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The line between disorder and order lies in logistics...

Sun Tzu
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SUMMARY

Same-day delivery (SDD) is a distribution service where consumers place orders online on the

same day that these are processed and delivered to the customer’s location. This service enhances

consumer satisfaction and, therefore, has been implemented by multiple e-commerce companies.

However, the increasing competitiveness within the e-commerce sector and the complex operation

involved puts downward pressure on last-mile logistics costs.

Providing SDD services requires two core logistics processes: (1) order management at the

stocking location, including request acceptance and processing; and (2) order distribution from

the stocking location to final delivery locations, including order dispatch and delivery via vehicle

routes. Unlike other last-mile services, in SDD processes are highly interrelated, simultaneously

executed, and have a high degree of information dynamism, meaning customer orders are incre-

mentally revealed during the operating period. While new technologies allow us to modify and

adapt operations in real time, traditional decision support tools such as deterministic optimization

are not adequate for this challenge; there is a need for dynamic decision support tools for SDD.

In this Ph.D. thesis we formulate and solve dynamic optimization problems to improve the

operation of SDD systems, integrating both order management and distribution. We also study

how our approaches perform over an extensive family of computationally simulated instances and

provide managerial insights for SDD practitioners, including structural solution properties that

any common SDD service should have, the trade-offs between common SDD objectives, and the

logistics cost of operational constraints in SDD.

The thesis consist of four chapters. The first one is an introduction where we describe the con-

text and challenges in same-day delivery systems, we present and discuss our thesis objectives, a

literature review, and a summary of our contributions for each following chapter. In the second

and third chapters we study the tradeoffs within SDD logistics distribution processes by defining

the Dynamic Dispatch Waves Problem (DDWP), which considers a single delivery vehicle operat-

xv



ing over a day partitioned in a discrete set of dispatch decision epochs (waves). At any wave, the

vehicle (if available) can wait for one wave, or can be loaded and dispatched to serve a subset of

disclosed requests. We study how to dynamically select the dispatch times from the depot and the

orders to be loaded in each dispatch, and how to design the delivery routes so that we minimize

vehicle travel costs plus penalties for unattended requests at the end of the day.

We begin the work on the DDWP in the second chapter by studying the case where customer

destinations are placed over a line segment with the depot at one end. This assumption simplifies

routing decisions to focus on the vehicle dispatch and order selection aspects. We efficiently solve

the deterministic problem, develop two tractable ways to get lower bounds, provide an optimal a

priori solution and design multiple dynamic policies.

We extend these results in the third chapter to a generalized model where customer locations

can have any network topology, adding vehicle routing decisions to the already present order se-

lection and dispatch problems; this makes the evaluation of an action’s cost NP-hard. Therefore,

we design heuristic dynamic policies and show their benefits over optimal a priori ones with com-

putational experiments. Also, we analyze the tradeoff between two common objectives in SDD:

minimizing total costs, including vehicle travel time, versus maximizing order coverage. We em-

pirically find that there are fundamental differences in the solution’s structure for both cases in

terms of vehicle dispatch frequency, route duration, and initial waiting time at the depot, that one

should expect significant sacrifices in travel costs and routing efficiency in order to maximize re-

quest coverage, and that the cost of an additional order served becomes more expensive as order

coverage increases.

In the fourth chapter we formulate a new model that integrates both order management and

distribution decision-making including an immediate request acceptance mechanism. When a de-

livery request arises, a decision is made immediately to accept (offer service) or reject (with a

penalty). All accepted delivery requests are included in dynamically-updated dispatch plans that

serve each request by the end of the operating day. This differs from the DDWP model, where

xvi



the acceptance of a newly arrived request can be postponed until the order gets loaded into the

vehicle for dispatch. We develop a framework for dynamic decision policies for such systems,

where a system state is maintained that includes a feasible dispatch plan (with potentially multiple

planned trips) serving all accepted delivery requests along with a set of potential future delivery

requests that have not yet realized. This dispatch plan is used to guide order acceptance decisions,

and it is update dynamically when new information is available. This type of operation imposes

additional constrains to decision making and may increase the solution’s cost; we experimentally

estimate this cost increase, extend our heuristic policies to this case and provide a meta-heuristic

to have a fast order acceptance process. We also study the interactions between order warehouse

management and distribution, and accepted requests are not available for immediate loading and

dispatch, and instead must wait to be processed (picked and packed) before they can be loaded

into the delivery vehicle. We estimate the cost sensitivity of the distribution system over different

values of orders processing times.



CHAPTER 1

INTRODUCTION

1.1 Motivation

We define same-day delivery (SDD) as a business-to-consumer distribution service that processes,

dispatches and delivers orders to the customer’s location on the same day the order from the cus-

tomer is placed online. SDD services are increasingly being offered by retailers and logistics

companies in the U.S. and are an example of the service improvements within e-commerce that

helped sales grow 15.8% annually and represent over 7.5% of U.S. retail industry sales as of the

second quarter of 2016 [29]. We present examples of these SDD services in Table 1.1; Amazon has

the biggest deployment, covering 27 metropolitan areas, and has also implemented “Prime Now”,

an even faster one-hour delivery service. We identify two classes of SDD providers: retailers of-

fering items primarily from owned stocks (in distribution centers or retail stores) such as Amazon

and Walmart, and logistics providers serving as intermediaries that pick up packages from stock-

ing locations and deliver them to customers, such as Google, Deliv and Instacart as well as USPS,

FedEx and UPS.

Table 1.1: Examples of same-day delivery programs in the U.S. as of October 2016

Service What Number of US metro areas

Amazon SDD items from warehouses 27
Instacart personal grocery shoppers 23
Deliv items from associated retailers 17
Amazon Prime Now items from warehouses 14
Google Express items from associated retailers 6
Walmart items from its physical stores 6

1



SDD services are designed to satisfy the increasing demand for “instant gratification” when

ordering consumer products online, and at the same time to discourage physical store visits as well

as slower delivery services, e.g., two-day (TDD) and next-day delivery (NDD) [44, 71]. However,

the retail sector is extremely competitive and operates with very low margins, putting downward

pressure on logistics costs. Consider Amazon’s 2015 annual report [4], which states that its ful-

fillment cost accounts for 12.5% of its $107 billion worldwide sales, while its operational margin

represents only 2.1%; a small increase in Amazon’s logistics costs can eliminate profits. This com-

petitive context is especially true for last-mile distribution; unlike most other parts of the supply

chain, it does not scale well and offers low freight consolidation opportunities due to the large

variety of SKUs and small volume handled per delivery.

To analyze home delivery services, we need to discuss its two core logistics processes: (1)

order management at the stocking location (depot), including request acceptance and order pro-

cessing; and (2) order distribution from the stocking location to customers’ locations, including

order dispatch and delivery via vehicle routes. Request acceptance refers to the promise of service

to the customer; order processing indicates the preparation of the order before dispatch; dispatch

decisions select the dispatch times and the orders to serve in a delivery vehicle trip; and delivery

routing decisions must select the order of customer visits for each vehicle route dispatched. In

slower delivery services these processes usually occur sequentially over time and most orders to be

dispatched and delivered in a day have already been accepted and processed before the distribution

starts; in Figure 1.1a we present a typical NDD setting. The operation dynamics are different for

SDD and, as depicted in Figure 1.1b, the executions of these processes overlap in time and should

be planned simultaneously under a high degree of dynamism, meaning that only a small fraction

of all relevant information needed to plan the daily operation is known prior to the initial decision

epoch. Missing information is revealed incrementally during the operating period after the execu-

tion starts. Traditional decision support tools such as deterministic optimization are not adequate

for this challenge. Moreover, the appearance of new technologies, such as immediate communi-
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orders processed

orders dispatched and delivered

(a) Next-day delivery

time
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orders processed
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(b) Same-day delivery

Figure 1.1: Description of logistics processes over time for same-day and next-day services

cations and tracking devices, i.e., RFID chips, GPS systems and internet-connected smartphones,

allows us to observe and adapt operations in real time; there is a need for dynamic decision support

tools able to continuously replan operations.

A solution to this dynamic problem is a dynamic policy that determines decisions depending

on the information state at each decision epoch. In contrast, simpler a priori policies specify

certain decisions in advance, and may allow simple changes over time via pre-established recourse

rules. Furthermore, one has to consider how these solutions incorporate potential future states of

the system, and it may be insufficient to consider myopic policies that take actions reacting only to

newly disclosed information. If probabilistic knowledge is available regarding future uncertainties

of the order realization process, we may outperform myopic solutions by designing proactive

policies that incorporate past as well as future information into decision making.

In addition, routing problems that arise from SDD distribution have distinctive characteristics

that make them unique compared to classic vehicle routing problems (VRP), and yield challenging
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research problems even without demand uncertainty. First, SDD is heavily constrained by available

time resources, such as driver’s workday limits and the daily operation, rather than vehicle volume

and weight capacities that suffice in other cases. Second, ours is a delivery problem for customized

orders to be picked up at a depot and delivered to the customer’s location, rather than a pick-up

problem at the customer or a generic commodity delivery that can be pre-loaded into vehicles

before its customer order realizes. This difference implies specific order release times at the depot

determining the earliest possible time to load the order into a vehicle; this differs from typical

service time window constraints at customers that govern many VRP operations. The delivery

setting also removes the ability to modify a route and insert more customers into it while the vehicle

is enroute. Third, in SDD a vehicle can be dispatched multiple times from the depot in one day

and all routes executed by the same vehicle cannot overlap in time; this differs from classic VRP

models that execute one route per vehicle and period. Finally, vehicle dispatch operations in SDD

are also frequently organized such that a fixed and finite number of possible vehicle dispatch times

are used from each depot. This type of organization is often best due to many factors, including

constraints associated with driver shifts and efficiencies gained by organizing warehouse activity

using wave picking. We will refer to these feasible dispatch times as dispatch waves.

1.2 Objectives

Our main goal is to formulate mathematical optimization models and algorithms that support SDD

operations and recommend decisions for both the order management and distribution processes.

Specifically, we establish four research objectives to address:

1. To model vehicle dispatch decisions and study their tradeoffs within SDD distribution.

2. To model the stochastic and dynamic request arrival process that determines order realiza-

tions.

3. To integrate vehicle dispatch and delivery routing decisions within SDD distribution.
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4. To model and integrate request acceptance decisions with order dispatch and delivery deci-

sions.

As a secondary objective we are interested in providing managerial insights for SDD practitioners,

to develop structural solution properties that any common SDD operation should have, to compare

solutions and performance between different SDD objectives, to estimate the marginal value of

dynamic and proactive policies versus a priori and myopic ones, and to measure the cost incurred

by imposing typical operational constraints in SDD.

1.3 Contribution

This Thesis is organized as follows. The remainder of Chapter 1 provides a literature review.

In Chapter 2 we present completed work [44] that addresses the first and second research objec-

tives; in Chapter 3 we present work under review [43] that builds on the results of Chapter 2 and

addresses the third research objective. In both, we state, solve and study the single-vehicle Dy-

namic Dispatch Wave Problem (DDWP) under different problem settings. Finally, in Chapter 4 we

develop the DDWP with Immediate order Acceptance (DDWP-IA), which deals with the fourth

research objective in Section 1.2; it also revisits the second one.

The DDWP studies SDD distribution and the interaction between order dispatch and delivery

decisions. It models a depot where orders realize dynamically throughout the day with stochastic

release times. At any decision epoch (wave) the system state has information about (1) a set of open

orders, which are ready to be delivered to the customer, and (2) probabilistic information describing

potential orders that may realize before the end of the day. The operator chooses whether to wait for

one wave, or to dispatch a single delivery vehicle loaded with a subset of open orders. The vehicle

can be dispatched multiple times throughout the day, and each route defines a dispatch duration

that impacts the vehicle’s future availability. The objective is to minimize expected vehicle travel

plus penalties for unattended orders at the end of the day.
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1.3.1 Chapter 2: The One-Dimensional Dynamic Dispatch Waves Problem

We begin the work on the DDWP in Chapter 2 by focusing on dispatch decisions and study the

simplified case where customer destinations are placed over a real line segment with the depot

at one end. We develop two tractable lower bounds for the optimal expected cost: (1) A perfect

information relaxation (PIR) and an (2) approximate linear programming (ALP) bound; each one

also gives an approximation for the cost-to-go value useful for approximate dynamic programming

(ADP). The PIR is based optimizing the DDWP for each scenario realization knowing all uncertain

information in advance. We solve this deterministic problem by establishing basic properties of an

optimal solution used to build a fast dynamic program. The ALP bound is based on generating a

suboptimal solution for the dual LP formulation of the DDWP’s Markov decision process (MDP)

model in which the cost-to-go values for each state are the variables of an LP of exponential

size. We derive a polynomially sized equivalent problem that recovers the optimal solution for

deterministic instances.

We develop heuristic solution policies based on ADP and test them in two sets of simulated ex-

periments. First, we provide an optimal a priori solution by reducing the problem to an equivalent

deterministic one. Experimentally, its performance is good in both sets of experiments with an av-

erage cost within 9.2% and 5.6% of the best lower bound. Nevertheless, we prove that the benefit

of a fully dynamic policy can be unbounded versus the optimal a priori policy in the worst-case

scenario. Accordingly, we propose two dynamic policies that differ by the nature of the approxi-

mate cost-to-go function used to choose an action at a given state of the system. The first one rolls

out the a priori policy and cuts the gap respectively by 28.7% and 20.6%, while the second one

is an ALP-based approximation that provides an extra improvement in gap reduction of 2.6% and

4.9%, respectively. We find that the maximum benefit of our dynamic policies versus the optimal a

priori one is for order sets of around 20 to 50. Many same-day delivery applications might expect

similar daily order volumes. Also, dynamic policies’ benefits decrease as orders become more
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likely to appear at the start of the horizon (less information dynamism). It is precisely in the most

dynamic and uncertain environments that our policies offer the most benefit.

1.3.2 Chapter 3: The Dynamic Dispatch Waves Problem for Same-Day Delivery

In Chapter 3 we generalize the DDWP to a model where customer locations can have any network

configuration. This integrates vehicle routing decisions to the order dispatch problems and makes

the design of the least cost vehicle route that covers a specific set of customers an NP-hard problem.

Accordingly, we design heuristic dynamic policies motivated by the solution methodology from

Chapter 2. First, we formulate an arc-based integer programming (IP) model for the deterministic

case that provides a PIR for the stochastic-dynamic case. The IP is a prize-collecting version of

the VRP where vehicle routes cannot overlap in time and where customers have earliest dispatch

times from the depot, sometimes called release dates in the literature; we also design a local search

heuristic to speed up the search for good solutions. We then exploit the deterministic IP solution to

design an a priori policy solved via a transformation to a deterministic instance, and implement its

corresponding roll out to get a dynamic policy. We also provide a computationally faster dynamic

greedy policy that only plans proactive decisions before the operation starts.

We show the benefits of dynamic policies over the optimal a priori solution with computational

test instances that suggest that their marginal cost reduction averages 9.3%, mostly due to a 5.4%

increase in the percentage of orders covered, which is highly desirable for SDD services. The

cost reduction and order coverage increase are especially high when the instance dynamism and

variability is high.

Moreover, we analyze the tradeoffs between two common objectives in SDD: minimizing total

costs, including vehicle travel time, versus maximizing order coverage. We empirically find that

there are fundamental differences in the solution’s structure for both cases in terms of vehicle

dispatch frequency, route duration, and initial wait at the depot, that SDD practitioners should

expect significant sacrifices in travel costs and routing efficiency to maximize order coverage, and
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that the distance cost of an additional order served becomes significantly more expensive as order

coverage increases.

1.3.3 Chapter 4: Order Acceptance Mechanisms for Same-Say Delivery

In this chapter we formulate and solve the DDWP with Immediate Acceptance (DDWP-IA), a

model that integrates both order management and distribution processes by accepting or rejecting

each request immediately after its realization. If an order gets accepted, its delivery should be

guaranteed; otherwise, it is permanently lost. An order distribution system operates simultane-

ously with order acceptance and dynamically chooses at waves whether to dispatch or not a single

vehicle (if available) loaded with a subset of accepted orders ready for service. We also study the

impact of order processing times at the stocking location. Accepted requests are not available for

immediate loading and dispatch, and instead must wait to be processed (picked and packed) before

they can be loaded into the delivery vehicle. We formulate the DDWP-IA as a semi-Markov deci-

sion process model that assumes dynamic arrival of requests over a continuous time horizon until

a cutoff time after which no more orders are accepted. We develop a framework for dynamic deci-

sion policies for such systems, where a system state is maintained that includes a feasible dispatch

plan (with potentially multiple planned trips) serving all accepted delivery requests along with a

set of potential future delivery requests that have not yet realized. This dispatch plan is used to

guide order acceptance decisions, and it is update dynamically when new information is available.

We extend our IP model to the deterministic DDWP-IA case and develop and test methods for

determining an initial optimal a priori dispatch plan, and for updating the plan via a roll-out pro-

cedure that includes heuristic approaches designed to speed up the update step. Our methods are

compared against two common-sense myopic benchmarks and a perfect information lower bound

in a computational study using a family of simulated instances. We show via experiments that

the cost-per-request of the best benchmark is 9.7% higher than our proposed best dynamic policy,

which has a gap of 21% over the perfect information bound. We also estimate that a cost increase
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of 4.4% results when imposing immediate order acceptance on same-day delivery systems, and

we study cost sensitivity to different assumptions on request processing times within the facility;

our experiments show that when processing times take 18% of the daily operation the cost per

request can increase by 116% versus a similar system where orders become immediately available

for dispatch after they realize. Moreover, our dynamic policy’s gap over the deterministic bound

becomes tighter as processing times increase.

1.4 Literature Review

The literature review is divided in three sections. First, we cover classic deterministic and dynamic-

stochastic vehicle routing literature. The second section covers approximate dynamic program-

ming techniques and the third one specifically covers last-mile logistics, dynamic dispatch and

delivery problems.

1.4.1 Vehicle routing problems

The deterministic DDWP qualifies within the large family of routing problems; these problems

have been extensively studied by operations researchers. The Vehicle Routing Problem (VRP) and

Traveling Salesman Problem (TSP), are the basic building blocks for routing problems; see e.g.,

the texts [8, 39] for the TSP, and [28, 36, 67] for the VRP. In particular, our problem is related to

the Pickup and Delivery Vehicle Routing Problem (PD-VRP) [58] with all orders’ pickups at the

depot. Another directly related problem is the VRP with release dates (VRP-rd) that considers a

delivery vehicle transporting orders from a depot with release times specifying the earliest time

when the order can be loaded into a vehicle and dispatched. In [9] the authors study simplified

versions of the problem with requests located on the one dimensional line. In [24], the authors

extend the work on the VRP-rd to a general network topology with service time windows (TW)

and capacitated vehicles. In addition to being deterministic, its objective differs from the DDWP

because it focuses on minimizing travel cost subject to covering all orders. Our deterministic
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DDWP selects the orders to be served during the day to maximize profit, which is important when

a system operates with a fixed fleet of vehicles and limited time resources; this generalizes the

Prize-Collecting Traveling Salesman Problem (PCTSP) [13]. Also, the DDWP does not include

TWs to consider full routing flexibility in vehicle dispatch decisions.

Dynamic and stochastic VRPs are problem extensions where some parameters are unknown

during planning and/or operations. The simplest stochastic VRP problems are a priori optimization

models, where fixed operating (recourse) rules are used to modify the solution during operation;

see [22, 28, 34] for recent surveys. Dynamic and online VRPs are problems where information is

revealed over time during the operating period, and routing and scheduling decisions are updated

in response; see [41, 47, 53, 56, 64]. Different stochastic and dynamic VRPs focus on uncertainty

in different sets of parameters. Some examples are the VRP with stochastic customer demands

[2, 17, 37, 52, 61], the VRP with stochastic travel times [27, 42, 46, 48, 49, 50, 63, 65] and the

VRP with probabilistic customers (VRP-PC) where orders realize over time with uncertainty; see

[23, 31, 40, 45, 70] for examples of a priori models and [3, 5, 6, 7, 14, 72] for dynamic models.

Our DDWP is related to VRP-PCs but differs from those considered in this literature, which are

designed primarily for pick-up operations. In pick-up operations, a vehicle route can be modified

after dispatch, both by re-routing existing customers and adding new customers. In contrast, our

order delivery model assumes customized orders to be delivered from a depot to the customer; it is

not possible to add new customers to a route that has been previously dispatched without returning

the vehicle to the depot.

1.4.2 MDP and approximate dynamic programming

The DDWP is also a dynamic and stochastic problem and can be modeled as Markov Decision

Processes (MDP); see [57, 15]. Optimizing MDPs that arise from routing problems is usually

intractable due to the curse of dimensionality originating from large state and/or action spaces.

However, there are several computationally efficient lower bounding techniques; see [30] for a
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survey. An example of a tractable bounding procedure is the a posteriori bound [61] or Perfect

Information Relaxation (PIR) [19] that disregards the solution’s “non-anticipative” dynamics and

computes the optimal deterministic cost for each possible realization of the random parameters;

typically, Monte Carlo sampling is used to estimate this value. Another bounding technique is the

Approximate Linear Programming (ALP) method [32, 60] that looks for suboptimal solutions of

the MDP’s dual LP formulation, in which the cost-to-go values for each state are the variables of

an LP that has exponentially many variables and constraints. The fundamental idea is to eliminate

the exponential number of state variables by enforcing a dependence on a previously determined

low-dimensional set of basis functions. Moreover, its solution can be used as a cost-to-go approxi-

mation in heuristic policies. The ALP approach has been successfully applied in stochastic routing

before, e.g., [1, 65].

In terms of approaches, the curse of dimensionality necessitates approximate dynamic pro-

gramming (ADP) solution techniques, e.g., [35, 37, 52, 55, 61]. One widely used ADP method

is to develop approximations for the optimal cost-to-go function and use it to select an approxi-

mately optimal action at any encountered state. The texts [15, 55] thoroughly discuss ADP. Rollout

algorithms [16, 38] have been widely applied for stochastic routing models, e.g., [37, 61, 65].

1.4.3 Last-mile logistics and dynamic dispatch and delivery problems

We now refer to some of the most relevant problems to last-mile delivery in the literature related to

order acceptance, dispatch and delivery. Challenges related to and last-mile and city logistics are

discussed in recent surveys [25, 59].

The dispatch component of SDD relates to the Order Batching Problem (OBP) [33, 51], which

determines an optimal assignment of pick orders to batches and the pick tour sequence for each

batch in warehouse operations. The Dynamic Order Batching Problem (DOBP) is an extension

with orders arriving dynamically while the decision maker processes previous orders; see [20].

Recently, [26] present an analytical model to determine the timing and the number of batches in
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an order fulfillment system. To the best of our knowledge, none of these models allow a detailed

selection of the orders within a batch, and solely contemplate threshold rules such as consolidating

the batch when a number (to be determined) of orders have arrived.

The Dynamic Multiperiod Routing Problem (DMPRP) introduced in [6, 7, 72] models dispatch

operations in a depot over a time horizon partitioned in days. Dynamic requests with service time

windows are disclosed over time, and each day the decision maker chooses which customers to

serve or postpone, and the corresponding vehicle routes. The extension in [3] covers the dynamic-

stochastic case where probabilistic information about future request arrival times and service time

windows is available. In this case, there is a fleet of capacitated vehicles available at the depot.

The problem is solved heuristically, running a daily prize-collecting VRP over the set of open

orders; the prize for each order is set according to an increasing function of proximity to the

service deadline and a decreasing function of geographic proximity to probabilistic future orders.

Note that this model assumes that a vehicle is available for dispatch at most once at every decision

epoch (day). In SDD operations, it may be sensible to dispatch a vehicle multiple times per day

and each route may span multiple periods within the day; in this case, if a vehicle is dispatched at

period t on a route of duration x, it cannot be dispatched again until a time after its return to the

depot at t + x. A recent extension in [68] considers a single vehicle operation and order arrivals

over a time horizon with multiple days (3-10) and multiple time periods per day (360 minutes).

At the start of a day, a vehicle route is designed visiting accepted orders carried on from previous

days. A decision is triggered upon the arrival to a customer location and the dispatcher chooses

whether to accept each newly arrived requests for SDD injecting it into the route or to postpone it

for the next day. The modified route determines where the vehicle travels next and the objective

is to maximize the number of requests accepted for SDD. Unlike the DDWP, it does not consider

order pick-ups at the depot and vehicle travel costs in the objective function. The problem is solved

via approximate value iteration (AVI) methods [55] to estimate the value function of an MDP via

offline simulation. To deal with the remaining curses of dimensionality, the authors restrict the
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feasible set of actions to node insertions and aggregate the state space into a vector consisting only

of temporal attributes, disregarding geographic customer information.

Perhaps the closest model in the literature to the DDWP is the Same Day Delivery Problem

for Online Sales [71], which considers a model for an order delivery system with dynamic order

arrival and a fleet of vehicles, each performing multiple trips per day. However, there are funda-

mental differences in assumptions and solution methodologies between this setting and the DDWP.

The model in [71] assumes narrow request service time windows, i.e., one or two hours within a

10-hour day operating period; these tight time constraints correspond to rapid delivery settings, like

Amazon’s “Prime Now” service. Serving customers is the priority in this model, and the objective

is to maximize the number of orders served, while ignoring vehicle travel costs. Alternately, the

DDWP that we consider generalizes the objective to consider a weighted combination of costs for

not serving customers and vehicle travel costs. An additional difference is the choice of solution

approach; [71] finds solutions by adapting a scenario-based-planing heuristic (see [14]), which

uses a consensus function to choose a best plan among those developed for a set of simulated

scenarios at each decision epoch. A recent extension of this problem discussed in [69] explores

the value of planning preemptive vehicle returns to the depot. Under this setting, the dispatcher is

allowed to abort the current route by inserting a detour to the depot when a new route dispatched

later that considers newly disclosed requests produces more value than the remaining portion of

the current route. The problem is solved using an extension of the methodologies in [68] using

AVI, insertion heuristics for route updates, and state space aggregation. Unlike this approach, the

DDWP does not consider preemptive returns to the depot after a vehicle has been dispatched. In-

stead, it proactively plans returns to the depot in an optimal a priori solution. Our experiments for

the DDWP suggest that the value of preemptive returns is marginal when returns to the depot are

planned using probabilistic information. These benefits may be further reduced, if we consider or-

der processing times at the depot that rule out an immediate service of newly disclosed orders. The

method proposed in [68] outperforms greedy order acceptance rules, but there is no comparison
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to lower bounds. The value lost by disregarding geographic locations in the value function and by

restricting the action set is also unclear.

Regarding request acceptance, a related problem to the DDWP is the Home Delivery Problem

(HDP) discussed by [21]. It develops a real-time model for last-mile grocery delivery that focuses

on the interactions between order promise of delivery times and order dispatch. They dynamically

determine whether to accept an order and, if so, set a time slot for order delivery. The objective

is to maximize the total profit resulting from service revenues minus costs. The problem is solved

via insertion heuristics of new orders in available spaces of the current routes. This problem is

motivated by NDD or overnight delivery, and its main drawback for SDD is that all orders are

received prior the execution of the delivery service.

Another example of closely related work is found in [12, 11], where the authors develop a VRP

model with time windows and multiple delivery routes per vehicle. Small and highly constrained

problem instances are solved via an exact optimization approach, while larger instances are solved

with an adaptive large neighborhood search (ALNS) heuristic. The optimization model objective

is to maximize the number of served orders and travel costs in hierarchical order, while multiple

trips per vehicle are induced by the inclusion of a route duration constraint; results show that this

constraint leads to short routes, with an average of four customers served. This model is useful for

settings in which the time between order placement and vehicle dispatch must be very short, e.g.,

in the dispatch of perishable goods such as meals. A fundamental difference between this model

and the DDWP is that we treat route duration as an unconstrained decision. In [10], the authors

extend the model to a dynamic setting that incorporates immediate order acceptance decisions

made using a scenario-based planning approach that estimates the insertion profit via ALNS for

multiple simulated future order scenarios.
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CHAPTER 2

THE ONE-DIMENSIONAL DYNAMIC DISPATCH WAVES PROBLEM

2.1 Introduction

We formulate the Dynamic Dispatch Waves Problem (DDWP) as a Markov Decision Process

(MDP). The DDWP models the dynamics of a single dispatch facility (depot) where customer

order requests arrive dynamically throughout an operating day. At any decision epoch, which we

call a wave, the logistics operator maintains a set of known open requests with known delivery

destinations and a set of potential requests that may arrive before the end of the day. At each wave,

the operator decides whether or not to dispatch vehicles loaded with known orders, and the vehicle

routes for dispatched orders. The objective is to minimize expected operational costs and expected

penalties for unserved open requests at the end of the day. Such penalties could represent the cost

of direct dispatch or revenue lost due to unserved customers.

We study the interaction between two important decisions in SDD distribution systems: dy-

namic dispatch and vehicle routing. Dispatch decisions refer to selection of the times at which

vehicles are dispatched and the orders that they deliver, while vehicle routing decisions refer to

the sequences of deliveries for each dispatched vehicle. Two fundamental tradeoffs exist. First,

there is a tradeoff between waiting and dispatching a vehicle to serve requests. When a vehicle

is dispatched, the queue of open requests is reduced but an opportunity to serve future requests

during the route is missed. On the contrary, when an available vehicle is not dispatched, we reduce

the time remaining in the operating day and potentially increase the likelihood that future requests

cannot be served. Second, there is a tradeoff between dispatching longer, time consuming vehicle

routes versus shorter ones. On one hand, a route serving many requests uses more total travel time,

and therefore keeps the vehicle away from the depot longer, but requires less time per customer
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visited. On the other hand, a shorter route uses more time per customer, but returns to the depot

faster and enables the vehicle to be reused sooner for future orders.

To simplify the vehicle routing decisions, this paper focuses on problem instances where a

single vehicle is available to make deliveries to customer locations on the positive real line with the

depot as the origin; travel times and vehicle operating costs are proportional to distances between

points.

We consider the following to be our main contributions.

1. We formulate the DDWP to capture the basic aspects of dynamic dispatch, order selection,

and routing decisions for same-day delivery.

2. We develop an approach for determining optimal a priori solutions to the stochastic one-

dimensional variant by reducing this problem to an equivalent deterministic problem where

all customer request arrival times are known in advance.

3. We show that, although a priori policies work well in practice, there exist problem instances

for which these solutions are arbitrarily worse than optimal dynamic policies. Accordingly,

we provide two schemes to obtain dynamic policies for the one-dimensional problem. The

first is a rollout of the a priori policy, and the second is an approximate dynamic program-

ming approach that uses an approximate linear program (ALP) to approximate the cost-to-go

function. We empirically show the benefits of dynamic policies with computational experi-

ments over two sets of representative instances.

The remainder of the paper is organized in the following manner. Section 2.2 formulates the

model, and Sections 2.3 and 2.4 respectively cover a priori and dynamic policies. Finally, Section

2.5 outlines the results of a computational study, and we conclude with Section 2.6. An online

supplement contains all technical proofs not included in the body of this document.
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2.2 The One-Dimensional Dynamic Dispatch Waves Problem

2.2.1 Problem Definition

Consider a dynamic dispatch and routing problem for a single vehicle operating over a fixed-

duration operating period (i.e., a day). The vehicle is dispatched from a depot, located at one end

of a line segment, to serve a set of customer delivery requests. After completing a route, the vehicle

returns to the depot and may be dispatched again until the end of the operating period. At each

decision epoch, the vehicle (if available) may be dispatched to serve any open customer requests,

those that have arrived and are ready for dispatch. In addition to information about open orders,

probabilistic information describing unknown future order requests is also available. The objective

is to minimize vehicle operating costs and penalties for unserved requests. We consider a specific

class of problems of this type:

1. Let W := {1, . . . ,W} be the set of waves (decision epochs) during the operating period,

where waves are counted backwards so that the waves number represents the “waves-to-go”

before w = 0, the deadline for the vehicle to return to the depot. Let W0 = W ∪{0}.

2. Let N := {1, . . . ,n} be the set of all potential customer requests i ∈ N, where each i is char-

acterized by: (1) a known destination represented by a round-trip travel time of di from the

depot; (2) a penalty cost pi > 0 that must be paid if the request arrives but is not served by

w = 0; and (3) a random arrival time τi drawn from a request-dependent distribution with

support W ∪{−1}, where −1 indicates “no arrival”. We assume that order arrival times are

independent between different customers, which is reasonable, since one customer’s behav-

ior should not affect the others’. Let N be ordered such that di ≤ d j for i < j. Note that our

probabilistic model enumerates all possible request arrivals. Another way of modeling this

problem is to define a fixed set of locations at which orders appear with potentially multiple

arrivals per wave. This alternative probabilistic model is implicitly captured in our setting
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by adding several requests with an identical customer location.

A vehicle located at the depot at any wave w ∈ W can be dispatched to serve some subset S

of the set of open (revealed and unattended) requests R ⊆ {i ∈ N : τi ≥ w} at wave w. Once a

vehicle leaves the depot at wave w, it cannot serve any request arriving at τ < w until it returns

for reloading; we assume that once dispatched, a vehicle must finish its route and cannot serve any

other request until it returns for reloading. Serving request set S requires time, and we assume that

no additional service time is required beyond vehicle travel time. Given request locations along

the line, the time required by the vehicle to serve S is then dS := maxi∈S di; we assume the vehicle

operating cost for this dispatch is αdS, where α is the cost per unit distance. A vehicle dispatched

at w returns to the depot at w−dS. S is therefore constrained by dS ≤ w, but we assume no other

constraints on S, such as capacity, consistent with motivating SDD applications where time is the

binding resource. Total system cost is measured by the sum of the vehicle operating costs over all

dispatches plus the sum of the penalties pi for all i ∈ R at the terminal wave (w = 0).

For purposes of analysis, we suppose in this paper that the di values are scaled such that they

are all integer, and time between consecutive waves is constant and equal to the time required for

the vehicle to complete a round trip with dispatch travel time 1.

2.2.2 MDP formulation of the DDWP

We now formulate an MDP for the DDWP. At each wave w ∈ W0, the system state is given by

(w,R,P) ∈ S , where S is the state space, w represents the waves-to-go, R is the set of open

requests, and P is the set of remaining potential requests with an unknown arrival time τ < w.

Requests not in R or P have been already served and so the pair (R,P) belongs to the set Ξ :=

{(R,P) : R∪P⊆ N,R∩P = /0}. The maximum number of waves and the three possible states for

each requests (open, potential and served) define a bound on the cardinality of the state space given

by O(3nW ).

In any non-terminal state (w,R,P) with w ≥ 1, we choose between waiting with the vehicle
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at the depot, and dispatching the vehicle to serve a set of requests S ⊆ R, which is equivalent

to selecting a route of duration d ≤ w serving the set {i ∈ R : di ≤ d}. Define then the action

space A w
R := {di | ∀i ∈ R : di ≤ w}, with cardinality O(n). Selecting an action d in a given state

(w,R,P) transforms the state as follows. If a dispatch of length d is selected, R is partitioned

into the new set of unattended requests Rd := {i ∈ R : di > d} and the set of served requests

R̄d = R \Rd . Time moves forward to w− d and state (w,R,P) becomes (w− d,Rd ∪Fw
d ,P \Fw

d )

where Fw
d := {i ∈ N : w > τi ≥ w−d} is the set of newly arriving requests. If no dispatch occurs

(d = 0), the new state is (w−1,R∪Fw
1 ,P\Fw

1 ).

Let Cw(R,P) be a set function representing the minimum expected cost-to-go at state (w,R,P)∈

S . The optimal expected cost C∗ is defined recursively over w ∈ W0 in (2.1), where R̂ is the set

of open requests at the start of the horizon (w = W ). First, at w = 0 the cost-to-go is simply the

sum of penalties of unserved requests, and subsequently, for each w ∈ W the cost-to-go at state

(w,R,P) is equal to the minimum cost between no dispatch and a dispatch to any distance d ∈A w
R :

C0(R,P) = ∑i∈R pi ∀(R,P) ∈ Ξ

(2.1a)

Cw(R,P) = min
d∈A w

R ∪{0}

{
αd +EFw

d

[
Cw−max{1,d} (Rd ∪Fw

d ,P\Fw
d )
]}

, ∀w ∈W ,(R,P) ∈ Ξ

(2.1b)

C∗ = ER̂
[
CW
(
R̂,N \ R̂

)]
. (2.1c)

Formulation (2.1) is a generalization that considers an uncertain set R̂, meaning that the initial

set of open requests is not disclosed when computing the problem’s expected cost, but a useful

special case is when R̂ is known. The optimal action d∗w(R,P) ∈A w
R ∪{0} that attains Cw(R,P) is
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then defined as a set function for each state (w,R,P). The vector of optimal actions for each state

is called an optimal policy. We can also express optimality conditions using a standard LP dual

reformulation of (2.1),

C∗ = max
{C≥0}

ER̂
[
CW
(
R̂,N \ R̂

)]
(2.2a)

s.t. C0(R,P)≤ ∑i∈R pi, ∀(R,P) ∈ Ξ (2.2b)

Cw(R,P)≤ EFw
1
[Cw−1 (R∪Fw

1 ,P\Fw
1 )] , ∀w ∈W ,(R,P) ∈ Ξ (2.2c)

Cw(R,P)≤ αd +EFw
d
[Cw−d (Rd ∪Fw

d ,P\Fw
d )] , ∀w ∈W ,(R,P) ∈ Ξ,d ∈A w

R , (2.2d)

which very clearly shows the difficulty in finding an optimal policy; formulation (2.2) has

exponentially many variables, exponentially many constraints and exponentially many terms in

the expectations.

2.3 A Priori Solutions for the Stochastic DDWP

In this section we develop a priori policies for the DDWP defined in (2.1). We begin studying the

deterministic version of the problem to understand the structure of optimal a priori policies.

2.3.1 The Deterministic Case

Suppose arrivals are known with certainty at the beginning of the horizon, and let the set of arriving

requests be NA := {i ∈ N : τi > 0}. Requests still arrive dynamically over the operating period,

and thus it remains infeasible to serve a request with a vehicle dispatch prior to its arrival time.

Figure 2.1a gives an instance where arrival times and destinations for each request i ∈ NA are

represented by a coordinate (τi,di) in a distance versus time graph. Also depicted is an example
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(b) Operation that could be optimal.

Figure 2.1: Examples of vehicle operations described in the distance versus time graph.

vehicle dispatch plan. The vehicle starts at the depot at wave W and waits until w1 when it is

dispatched a distance x. Then, it returns at w2 = w1− x and waits until w3 to execute a second

dispatch of distance y, and so on. Requests covered by this operation are those with coordinates

inside the shaded areas. We now state and prove three properties that at least one optimal vehicle

dispatch plan should satisfy:

Property 2.3.1 (Decreasing consecutive dispatches). For all dispatch pairs starting at two waves

w > w′ with respective dispatch durations d and d′, we have d > d′.

Proof. If d′ ≥ d, by deleting the dispatch at w we reduce operational cost with unaltered coverage.

Property 2.3.2 (No wait after a dispatch). The vehicle does not wait once the first dispatch has

occurred.

Proof. If a solution waits for w waves after a dispatch at w, we can shift forward each vehicle

dispatch that occurs prior to wave w exactly w waves in time without reducing the set of covered

requests.

Property 2.3.3 (Dispatch duration equals round-trip time to some request). The duration of each

dispatched route equals dS = maxi∈S di, where S⊆ R is the set of requests served by the route.

Proof. If d > dS, by setting d = dS we reduce operational cost with unaltered request coverage.

21



Figure 2.1b depicts an operation that satisfies all properties. A direct consequence of these

properties is that we can formulate a deterministic dynamic program with a reduced state space.

Let the set of possible dispatch durations be D := {di | ∀i ∈ NA : di ≤ τi}. We can find an

optimal dispatch plan via a dynamic program with states (w,x), where w is the current wave and x

is the duration of the previous dispatch completed at wave w (x = 0 if no dispatches have occurred

prior to w). Figure 2.2 is an example of the system at state (w,x), where the last dispatch was of

duration x at wave w+x and covered all requests shaded in light gray. Requests shaded in medium

gray will never be served by an optimal dispatch plan satisfying the previous three properties and

are thus lost, and the requests shaded in dark gray could be covered by the next dispatch at wave

w.
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Figure 2.2: Example of state and action for the deterministic DDWP.

An action given state (w,x) is defined as the next dispatch duration d ∈Aw,x, where

Aw,x = {di | ∀i ∈ NA : di ≤ w,di < x, w≤ τi < w+ x} , ∀x ∈D : w+ x≤W (2.3a)

Aw,0 = {0}∪{di | ∀i ∈ NA : di ≤ w, τi ≥ w} . (2.3b)

If no dispatches have occurred by w (x = 0), an optimal vehicle operation may wait until w− 1,

i.e., d = 0.

Define Cw(x) as the cost-to-go function in state (w,x). Optimality equations are given by (2.4),
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where CW (0) is the minimum cost for the deterministic DDWP:

C0(x) = ∑
i∈NA

pi, ∀ x ∈D ∪{0}

(2.4a)

Cw(0) = min
d∈Aw,0

{
αd− ∑

i∈NA: di≤d, τi≥w
pi +Cw−max{1,d}(d)

}
, ∀ w ∈W

(2.4b)

Cw(x) = min
d∈Aw,x

{
αd− ∑

i∈NA: di≤d, w≤τi<w+x
pi +Cw−d(d)

}
, ∀ w ∈W , x ∈D : w+ x≤W.

(2.4c)

In this dynamic program, we initialize by assuming that all arrived requests are not served by

w = 0. When we execute a dispatch of duration d, we incur its operating cost while also saving the

penalties of the requests served. This dynamic program has O(nW ) states, O(n) possible actions

for each state, and the cost of each action can be evaluated in constant time by computing its cost

incrementally over the dispatch distance. So, these equations are solvable in O(n2W ) operations.

2.3.2 The stochastic case and a priori policies

Consider again the stochastic DDWP defined in (2.1). We next develop the optimal static a priori

solution in which a schedule specifying the waves at which to dispatch the vehicle and the duration

of each dispatch is determined only with information revealed at the start of the horizon in wave

W .

The operating cost of such an a priori solution is known, and the penalties paid for unserved

requests depend on the future arrivals. This observation motivates an approach for determining an a

priori solution that minimizes expected cost. This problem is equivalent to solving a deterministic

DDWP instance in which each potential request i ∈ N is copied W times and assumed to arrive

at every wave w ∈ W for which its probability of arrival is positive, with an adjusted penalty for
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not serving the request at wave w equal to piP(τi = w|τi <W ). Known requests (τi =W ) are not

copied and arrive only at wave W with probability one. Thus, the recursive equations to find an

optimal a priori policy are a natural extension of the deterministic system (2.4),

CAP
0 (x) = ∑

i∈N:τi=W
pi + ∑

i∈N:τi<W
P(τi > 0 | τi <W )pi, ∀x ∈D ∪{0} (2.5a)

CAP
w (0) = min

d∈Aw,0

αd − ∑
i∈N:

τi=W, di≤d

pi − ∑
i∈N:

τi<W, di≤d

P(τi ≥ w|τi <W )pi +CAP
w−max{1,d}(d)

 , ∀w ∈W (2.5b)

CAP
w (x) = min

d∈Aw,x

αd − ∑
i∈N:

τi<W, di≤d

P(w≤ τi < w+ x|τi <W )pi + CAP
w−d(d)

 , ∀w ∈W ,x ∈D : w+ x≤W,

(2.5c)

where the optimal expected cost is given by CAP
W (0). Note that this policy is found by solving a

deterministic DDWP, and so, it satisfies Properties (2.3.1), (2.3.2) and (2.3.3). In addition, we can

preprocess the values of all probabilities in (2.5) and keep the O(n2W ) running time.

Our a priori problem requires knowledge of available orders at wave W . To estimate the

expected cost of implementing this heuristic policy, we simulate a set m ∈ {1, . . . ,M} of vectors

τ(m); each one containing an arrival time τi(m) for each order i ∈ N. We solve this heuristic for

each realization m ∈M assuming that the set {i ∈ N : τi(m) =W} is known, and then we take the

average cost over all M realizations. For consistency in computational results, we will use the same

M realizations when comparing performance of lower bounds and different solutions for a given

instance.

We can improve the performance of an a priori policy by allowing simple recourse actions

during the operation. Let a policy be represented by the ordered set of k dispatches, each with

dispatch distance d j and wave w j: {(d j,w j)}k
j=1. The policy satisfies w j−w j+1 = d j and d j >

d j+1 for j = 1, . . . ,k−1. Consider the following recourse actions:

1. Postponement and cancellation: Consider dispatch j scheduled at wave w j. Any open re-

quest i with di ≤ d j+1 can be covered by dispatch j + 1. So, if no request i has arrived
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since the previous dispatch time w j−1 with d j+1 < di ≤ d j, then postpone dispatch j by

modifying its scheduled time w j ← w j− 1 and its duration d j ← d j− 1 if d j− 1 > d j+1,

otherwise cancel dispatch j. A rescheduled dispatch is considered again for postponement

and cancellation iteratively.

2. Marginal profit adjustment: Given a dispatch j that has not been postponed or cancelled,

adjust its distance d j to maximize its marginal profit. This is accomplished by choosing the

actual dispatch distance d equal to the location dr of an open request r ∈ N with d j+1 < dr ≤

d j, such that it maximizes the following marginal profit

V mg(r,w) :=

 ∑
{i∈N:d j+1<di≤dr, τi≥w}

pi−dr

 . (2.6)

If V mg(r,w)≤ 0 for each possible request r, then again postpone the dispatch to w j←w j−1

with new dispatch duration d j← d j−1 if d j−1 > d j+1, otherwise cancel dispatch j. If the

dispatch is adjusted such that d < d j, we also postpone it to time w j+1 + d to potentially

serve more customers with no increase in cost.

2.4 Dynamic Policies for the Stochastic DDWP

A priori policies, particularly when adjusted via recourse actions, may yield reasonable solutions

to many problems. However, there exist instances for which an optimal adjusted a priori policy is

arbitrarily worse than an optimal dynamic policy.

Pathological A Priori Instances Consider a family of instances with 2 requests, W = 4, and a

parameter z≥ 0. Let locations be d1 = 1 and d2 = 2, and penalties p1 = z+1 and p2 = z2 + z+2.

Request 1 arrives at τ1 = 1, while request 2 arrives at τ2 = 3 with probability u = z
z+1 and τ2 = 2

with probability v = 1
z+1 . There are four possible a priori solutions (See Figure 2.3). Either of

the last two options (c) or (d) are optimal a priori policies with simple recourse, and both have

25



expected cost of 3+ z.
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Figure 2.3: Feasible a priori dispatch options.

The optimal dynamic policy is different. If request 2 arrives at w = 3, it dispatches to d = 2 at

w = 3 and then d = 1 at w = 1 for total cost of 3; otherwise it dispatches to d = 2 at w = 2 for cost

of 3+ z. The expected cost of this policy is 3u+(3+ z)v = 3+ z
z+1 < 4. As z→ ∞, the optimal

cost is bounded, while any a priori policy’s cost is unbounded.

2.4.1 A Priori-Based Rollout Policy

One approach to build a dynamic policy is to roll out the a priori policy. At each wave w ∈ W

when the vehicle is available, we recompute an optimal a priori policy given updated information

regarding requests (open, potential, and served); if the policy dictates a dispatch d > 0 at w, the

decision is executed and a new a priori policy is then computed at w−d, otherwise a new a priori

policy is computed at w−1. Computing such a rollout policy requires O(n2W 2) operations, i.e., it

solves O(W ) a priori problems.

2.4.2 Approximate Linear Programming for the DDWP

Heuristic dynamic policies can be generated via the dual MDP reformulation (2.2). Because this

formulation has exponentially many variables and constraints, the ALP approach restricts its fea-

sible region in such a way that the resulting optimization model is tractable and so it yields a lower

bound for the optimal expected cost-to-go that can be used within a rollout policy.
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We can generate a lower bound CALP
w (R,P) for the cost-to-go function of the DDWP at any

feasible state (w,R,P) by representing Cw(R,P) as a linear function of a predetermined set of basis

functions, and then solving the resulting restriction of (2.2) to obtain multipliers for these basis

functions. Let Cw(R,P)≈CALP
w (R,P), where

CALP
w (R,P) := ∑

i∈R
aw

i +∑
i∈P

bw
i −

w

∑
k=1

vk, (2.7)

and where aw
i represents the cost of request i if it is open at wave w, bw

i represents the cost of

potential request i if it hasn’t arrived by wave w, and vk represents the incremental value of each

wave k.

Proposition 2.4.1. Applying the restriction (2.7) to (2.2) yields a model equivalent to

CALP = max
{a,b,v,s,u}

∑
i∈N

(
P(τi =W )aW

i +P(τi <W )bW
i
)
−

W

∑
w=1

vw (2.8a)

s.t. a0
i = pi,b0

i = 0, ∀i ∈ N (2.8b)

siw ≥ aw
i −aw−1

i , ∀i ∈ N,w ∈W (2.8c)

siw ≥ bw
i − fiwaw−1

i − f̄iwbw−1
i , ∀i ∈ N,w ∈W (2.8d)

∑
i∈N

siw ≤ vw, ∀w ∈W (2.8e)

ud
iw ≥ aw

i − I(di>d)a
w−d
i , ∀i ∈ N,w ∈W ,d ∈A w

N (2.8f)

ud
iw ≥ bw

i −gd
iwaw−d

i − ḡd
iwbw−d

i , ∀i ∈ N,w ∈W ,d ∈A w
N (2.8g)

∑
i∈N

ud
iw ≤

w

∑
k=w−d+1

vk +αd ∀w ∈W ,d ∈A w
N (2.8h)

u,s≥ 0, (2.8i)

where fiw :=P(τi = w−1 | τi < w) is the conditional probability that potential request i at wave w
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arrives at the next wave, gd
iw := P(τi ≥ w−d) | τi < w) is the conditional probability that potential

request i at wave w arrives in one of the next d waves, and also ḡd
iw := 1−gd

iw and f̄iw := 1− fiw.

Any set of values {a,b,v} used to compute CALP
w (R,P) which are feasible for (2.8b)-(2.8i)

yield a lower bound of the cost-to-go function at any state (w,R,P): CALP
w (R,P)≤Cw(R,P). In

particular, we have CALP ≤C∗.

The proposition’s proof is in the online supplement. Model (2.8) has interesting properties

which give economic intuition and accelerate computation times; each of these properties is proved

in the online supplement.

Property 2.4.2 (Bounds). We may assume 0≤ aw
i ≤ pi and 0≤ bw

i ≤ gw
iw pi,∀i∈N,w∈W0 without

loss of optimality.

Intuitively, Property 2.4.2 implies that the individual cost per open request at any wave is non-

negative and cannot exceed the penalty for leaving the request unattended, and that the individual

cost for any potential request at any wave is nonnegative and cannot exceed the penalty discounted

by the arrival probability.

Property 2.4.3 (Lost requests). Without loss of optimality, we may assume that aw
i = pi for any

i ∈ N,w ∈W0 : di > w, and bw
i = gw

iw pi for any i ∈ N,w ∈W0 : di ≥ w.

Property 2.4.3 says that the cost of having an open request i at time w with an impossible

dispatch (di > w) is equal to pi. A similar idea motivates the expression for bw
i .

The following theorem, also proved in the online supplement, describes the performance of the

ALP lower bound in the deterministic case.

Theorem 2.4.4 (Strong duality for the deterministic case). Assume request i’s arrival wave τi is

deterministic for each request i ∈ N. Then the bound given by (2.8) is tight, i.e., equal to the

optimal cost of the deterministic DDWP given in (2.4).
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The result gives further motivation to use ALP for the DDWP, since the approximation is able

to recover optimality in the deterministic case. Furthermore, it relates the ALP and the a priori

solution: if we transform a stochastic instance into a deterministic one as described in Section 2.3,

the ALP matches the a priori solution, and both can be used heuristically. However, the ALP can

also be used without the transformation, so it can be viewed as a generalization of the a priori

rollout policy.

We next apply (2.8) to approximate the optimal action d∗w(R,P). Given a feasible (a,b,v)

to (2.8b)-(2.8i), we have a closed linear form lower bound for the expected cost-to-go function

measured after a decision with dispatch distance d ∈A w
R has been taken via

EFw
d

[
Cw−d

(
Rd ∪Fw

d ,P\Fw
d

)]
≥ EFw

d

[
CALP

w−d

(
Rd ∪Fw

d ,P\Fw
d

)]
= EFw

d

[
∑i∈Rd∪Fw

d
aw−d

i +∑i∈P\Fw
d

bw−d
i −∑

w−d
k=1 vk

]
= ∑i∈Rd

aw−d
i +∑i∈P

(
gd

iwaw−d
i + ḡd

iwbw−d
i

)
−∑

w−d
k=1 vk. (2.9)

A similar expression can be obtained to underestimate the expected cost-to-go measured after the

vehicle waits for one wave at the depot. We use these bounds to compute an approximately optimal

action dALP
w (R,P).

Any feasible set of values {a,b,v} provides an underestimate of the expected cost-to-go in

(2.9). In particular, the tightest lower bound is achieved when maximizing (2.9) subject to (2.8b)-

(2.8i). This is a post state and decision re-optimization of the ALP in which the values of {a,b,v}
are recomputed at each wave w when the vehicle is ready at the depot, and for each potential action

d ∈A w
Rw(m)∪{0}. We compute the approximate optimal action by

dALP
w (R,P) = argmin

d∈A w
R ∪{0}


max{(a,b,v)∈(2.8b)−(2.8i)}∑i∈R aw−1

i +∑i∈P
(

fiwaw−1
i + f̄iwbw−1

i

)
−∑

w−1
k=1 vk, if d = 0

αd +max{(a,b,v)∈(2.8b)−(2.8i)}∑i∈Rd
aw−d

i +∑i∈P
(
gd

iwaw−d
i + ḡd

iwbw−d
i

)
−∑

w−d
k=1 vk, else.

(2.10)

This involves solving O(nW ) linear programs sharing the same feasible set of solutions. Its per-
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formance can be improved by applying LP warmstart and ruling out suboptimal dispatch distances

(see the online supplement for details). The procedure is repeated for each realization m= 1, . . . ,M

of arrivals to estimate its expected cost.

2.5 Computational Experiments

We present two sets of computational experiments using different families of randomly generated

instances. Our goal is to test the quality of the various heuristics and to obtain qualitative insights

regarding solutions. The two sets of experiments differ in their models of the request arrival pro-

cess. In the first set, we assume that the conditional likelihood of a request arrival by the next

dispatch at wave w is constant over time but may vary by request. In the second set, we use an

arrival distribution that assigns probabilities for the arrival time (or the non-arrival event) for each

request using a mean arrival that varies by request. All heuristics were programmed in Java and

computed using a 2.1GHz Intel Core i7-3612QM processor with 8 GB RAM, using CPLEX 12.4

when necessary as the LP solver.

Table 2.1 summarizes the lower bounds and heuristic policies’ costs that we computed for the

instances in this study. We do not include the ALP lower bound, as our preliminary experiments

revealed it to be weaker than the PIR bound. Similar behavior has been observed in other stochastic

routing contexts, e.g., [65].

For each particular instance, we simulated M = 100 realizations of the arrival time vector τ ,

and use this common set to estimate lower bounds and policies’ expected costs via Monte Carlo

sampling.

Table 2.1: Lower bounds and heuristic policies’ costs computed

Type Procedures

Lower bound perfect information relaxation (PIR)
A priori policies Static a priori policy (AP) & a priori policy with recourse actions (APR)
Dynamic policies dynamic a priori policy rollout (DAP) & dynamic ALP policy (DALP)
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2.5.1 Design of Instance Set 1: Stationary Conditional Arrival Probability

The first set of experimental instances model arrivals using a stationary conditional arrival distri-

bution for each request. Therefore, for each i ∈ N, the probability that it arrives at wave w given

that it has not yet arrived is independent of w, i.e., P(τi =W ) = P(τi ≥ w−1 | τi < w) = θi and

P(τi =−1) = (1−θi)
W−1.

We construct instances with different size, geography, and time flexibility as follows. Let

(n, `,r) define an instance where n is the number of potential requests over the horizon; ` is the

maximum distance between a request and the depot; and r := W/` is the ratio between the total

number of waves W and `. We consider all combinations of n ∈ {5,10,20,40,60,80,100}, ` ∈

{5,10,20}, and r = {1,2,3} and generate 20 random instances for each combination by varying

the vectors {θi}, {pi}, and {di} as

{θi}: probability parameter θi for each i drawn i.i.d. from a continuous uniform distribution,

U( 1
2W , 2

W );

{pi}: penalty parameter pi drawn with equal probability from the values {0.25`,0.5`,0.75`,`}

{di}: distance parameter di drawn with equal probability from the values {1, . . . , `} .

2.5.2 Results for Instance Set 1

Figure 2.4 reports the average duality gap between the PIR bound and the optimal expected cost for

small instances (n ∈ {5,10}) where the fully dynamic-stochastic problem is solvable to optimality.

Table 2.2: Overall performance of heuristics in Instance Set 1

Heuristic %GAP vs OPT (small instances) %GAP vs lower bound Time per sample-instance (secs)

AP 11.53% 12.14% 0.0124
APR 5.27% 9.24% 0.0122
DAP 1.97% 6.59% 0.1489
DALP 1.65% 6.42% 0.5869
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Figure 2.4: Percentage gap between PIR lower bound and optimal solution values for Instance Set
1

Table 2.2 presents average gap and solution times for each heuristic. In case of the ALP-based

policy (DALP), we employed a hybrid approach that executes DAP until the operation reaches

wave x` and, afterwards, executes an ALP-based policy. The motivation is the two policies’ com-

plementary behavior. The ALP tends to be too conservative initially, when the remaining horizon

includes many possibilities it has to under-approximate, while DAP simply assumes “averages” for

the future; conversely, towards the end of the horizon the ALP can more accurately assess possible

future recourse actions, and thus can make better decisions. Also, the linear programs in the ALP

tend to have highly degenerate polytopes for instances with high flexibility, making them difficult

to solve. After searching over a grid of different values in preliminary experiments, we concluded

that x = 1.1 yields the best gap while still keeping computation times low. This contrasts with

naive implementations of ALP policies, which can be computationally demanding.

For small instances with n = 5 or n = 10, Figure 2.5 shows the average relative gap to the

optimal solution. The dynamic a priori policy rollout (DAP) and the dynamic ALP-based policy

(DALP) dominate the a priori solutions and achieve an average gap of 1.97% and 1.65%, respec-

tively.

For larger instances, the gap is computed with respect to the PIR bound. Figure 2.6 details
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Figure 2.5: Average percentage gap between heuristic solution costs and optimal costs for Instance
Set 1
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Figure 2.6: Average percentage gap between heuristic solution costs and lower bound for Instance
Set 1

average gaps over all classes of instances.

As expected based on each heuristic’s recourse possibilities, APR outperforms AP and both are

outperformed by the two dynamic policies (DAP and DALP). Also, the gap differences between

AP, APR and the dynamic policies decrease with n. This suggests that dynamic solutions produce

a bigger gap improvement for instances with more request arrival granularity, i.e., where an early

or late arrival can significantly impact costs unless corrective actions are taken. Conversely, for

instances with more requests the marginal value of dynamic solutions is smaller. This may be due

to risk pooling effects between requests, e.g., if one out of 100 requests arrives early, another one
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will likely arrive late and the relative disturbance will be minor. Moreover, the relative gap of

both dynamic policies as a function of n reaches a maximum and then decreases as n grows. This

confirms their effectiveness for large n. Also, all four heuristics’ gaps increase as a function of r;

the level of flexibility translates into solution complexity for our heuristics. Additionally, the gap

tends to increase with `; this is likely related to an increase in the problem’s complexity. Finally,

the ALP-based policy has an average gap smaller than DAP. For less flexible instances (r = 1)

both approaches average a relative gap of 3.4%, but when the variability and recourse flexibility

increases to r = 2 and r = 3 it improves over DAP, from 7.3% to 7.1% for r = 2 and from 9.0% to

8.8% for r = 3. Although small, this improvement was consistently observed across all instances.

2.5.3 Design of Instance Set 2: Uniform Arrivals

The previous arrival distributions defined by a single parameter could be hiding interesting in-

terdependencies between mean, variance, probability of arrival, and degree of dynamism. We

defined a second set of experiments with a fixed number of requests (n = 20), waves (W = 30)

and maximum location (` = 10). The distance vector d and penalty vector p are set as in the

previous experiments, but arrivals have distributions with a probability pstart of arrival at the be-

ginning of the horizon (i.e., the degree of dynamism), a probability pout of not showing up, and a

discrete uniform probability 1−pstart−pout
(min{W−1,µi+v}−max{1,µi−v})+1 of arriving during the operation at wave

w=max{1,µi−v}, . . . ,min{W−1,µi+v}, where µi is a request-dependent parameter drawn i.i.d.

from a discrete uniform distribution U(0,W − 1) for each i ∈ N. The parameter v represents the

arrival variability (half of the arrival range). We created 20 instances for each set of parameters

(v,q,w) in the set

{(v, pout , pstart) : v ∈ {0,1,2,4,8,30}, pout ∈ {0,0.2,0.4}, pstart ∈ {0,0.2,0.4,0.6,0.8,1} : pout + pstart ≤ 1} . (2.11)
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Table 2.3: Overall performance of heuristics in Instance Set 2.

Upper Bound %GAP Time per sample-instance (secs)

AP 7.54% 0.0006
APR 5.62% 0.0006
DAP 4.46% 0.0066
DALP 4.24% 0.442

2.5.4 Results for Instance Set 2

Table 2.3 presents overall results for each heuristic over the second set of experiments. We notice

that our simple recourse rules in APR capture 58% = 7.54−5.62
7.54−4.24 of the total gap improvement that

the best dynamic heuristic captures over the static solution AP. Figure 2.7 presents average relative

gaps over instances with different settings of parameters pout− pstart or v.

0.
0-

0.
0

0.
0-

0.
2

0.
0-

0.
4

0.
0-

0.
6

0.
0-

0.
8

0.
0-

1.
0

0.
2-

0.
0

0.
2-

0.
2

0.
2-

0.
4

0.
2-

0.
6

0.
2-

0.
8

0.
4-

0.
0

0.
4-

0.
2

0.
4-

0.
4

0.
4-

0.
60

2
4
6
8

10
12
14
16
18

pout− pstart

%
G

A
P
=

10
0(

va
lu

e
lb
−

1) DALP
DAP
APR
AP

0 1 2 4 8 30
0

2

4

6

8

10

12

v

%
G

A
P
=

10
0(

va
lu

e
lb
−

1)

DALP
DAP
APR
AP

Figure 2.7: Average percentage gap between heuristics cost and lower bound in Instance Set 2.

From these graphs we conclude that the relative gaps of all four policies decrease as pstart

increases; the more information available at the initial wave, the closer we can get to a deterministic

problem. There is zero gap in the extreme deterministic cases (pout + pstart = 1). The value of

dynamic solutions also decreases when pstart increases, which is expected, since a smaller pstart

implies a larger degree of dynamism and more importance is placed on recourse actions. Regarding
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the request arrival probability, the gap increases with pout (unless pout + pstart = 1). This means

that it is harder to optimize an instance for which there is a bigger probability of no arrival. The

value of dynamic solutions also grows with pout . With respect to the variability of the instance, the

gap increases as v increases. This may be due both to a decrease in the lower bound’s quality and

to an increase in the optimal expected cost. Finally, the dynamic heuristics yield larger marginal

costs savings when v increases. This means that the more variability the system has, the more

important it is to implement a dynamic solution. There is also a range of intermediate variability

for which DALP clearly dominates DAP. In this range, the additional complexity of ALP yields the

most benefit. Table 2.4 provides four examples of instance families within this rage; their average

percent reduction in relative gap of DALP over DAP is 15.0%.

Table 2.4: Average gap percent reduction of DALP for cases with intermediate variability in In-
stance Set 2.

Family (pout , pstart ,v) DALP %GAP DAP %GAP % reduction over DAP

(0.4, 0.2, 4) 8.23% 9.67% 14.9%
(0.4, 0.2, 8) 10.79% 12.41% 13.1%
(0.4, 0.4, 4) 7.46% 8.95% 16.6%
(0.4, 0.4, 8) 8.68% 10.31% 15.8%
Aggregate 8.79% 10.34% 15.0%

2.6 Conclusions

We have formulated the dynamic dispatch waves problem (DDWP) to capture the basic aspects of

dispatch and routing decisions for same-day delivery. This papers initiates work on the DDWP by

studying the single-vehicle stochastic case where customer destinations are placed over the line.

We develop a set of tractable solution policies that differ in their solution dynamism, from

an a priori solution to fully dynamic policies. Our computational experiments indicate that the

performance of an a priori policy is good, especially when we include heuristic improvements. In

computational tests over two instance sets this policy yields an expected cost within 9.24% and
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5.62% of the best lower bound. Nevertheless, we prove that the benefit of a fully dynamic policy

can be unbounded in the worst-case scenario. Accordingly, we proposed and experimentally tested

two dynamic policies that differ by the nature of the approximate cost-to-go function: the rollout of

the a priori solution and an ALP-based dynamic policy. The rollout of the a priori policy computes

this policy at the start of the horizon, but only implements the first action, then updates all known

information and re-computes a new a priori solution. In both sets of instances it cuts the gap of

our a priori policy with recourse by 28.7% and 20.6%, respectively. We have also found that a

dynamic policy that incorporates the ALP approach yields the best possible results. Its marginal

improvement as gap reduction for both sets of experiments is 2.6% and 4.9%, respectively. In

instance families with intermediate variability, this gap reduction grows to 15.0%.

A final conclusion of our study concerns the relative value of dynamic policies. With all other

things being equal, the benefit of a dynamic policy over the optimal a priori solution eventually

decreases as n grows, i.e., as the number of potential orders increases. This is unsurprising, since

for larger numbers of potential orders one would expect an averaging effect. We found the maxi-

mum benefit in dynamic policies for order sets of around 20 to 50; for smaller numbers, the exact

optimal solution is still tractable, whereas for larger numbers the a priori policy is close to optimal-

ity. Many same-day delivery applications, such as grocery home delivery, might expect maximum

daily order volume around these numbers. Similarly, dynamic policies’ benefits decrease as orders

become more likely to appear at the start of the horizon. In other words, if many of the orders

are not placed in the same day at all, but rather are carried over from the previous day, an a priori

policy performs quite well. It is precisely in the most uncertain environments, where orders can

appear at any moment, that new models such as ours offer the most benefit.

Future work on the DDWP needs to consider the solution on a general network topology, and

thus become more applicable for SDD operations in urban networks. This problem is quite chal-

lenging; in addition to dispatch decisions, it needs to deal with difficult vehicle routing problems.

Given this additional difficulty, one could deal with this problem by designing heuristics based
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on insights from the one-dimensional case. It would also be interesting to extend this model to

multiple vehicles that could pool the risk associated with leaving orders unattended and therefore

reduce costs. Other extensions could be incorporating vehicle service times at each location or

including customer service time windows instead of a deadline at the end of the day. In general,

same-day delivery offers many new challenges to the logistics research community.

2.7 Appendix of chapter 2

2.7.1 Proof of Proposition 2.4.1

Proof. Applying restriction (2.7) to (2.2) yields the LP

CALP = max
{a,b,v}

ERT

∑
i∈R̂

aW
i + ∑

i∈N\R̂
bW

i

− W

∑
w=1

vw (2.12a)

s.t. ∑
i∈R

a0
i +∑

i∈P
b0

i = ∑
i∈R

pi, ∀(R,P) ∈ Ξ

(2.12b)

∑
i∈R

aw
i +∑

i∈P
bw

i −EFw
1

 ∑
i∈R∪Fw

1

aw−1
i + ∑

i∈P\Fw
1

bw−1
i

≤ vw, ∀w ∈W ,(R,P) ∈ Ξ

(2.12c)

∑
i∈R

aw
i +∑

i∈P
bw

i −EFw
d

 ∑
i∈Rd∪Fw

d

aw−d
i + ∑

i∈P\Fw
d

bw−d
i

≤ αd +
w

∑
k=w−d+1

vk, ∀w ∈W ,(R,P) ∈ Ξ,d ∈A w
R .

(2.12d)

Model (2.12) has a polynomial number of variables for a given n and W , but it has exponentially

many terms within the expectations and constraints. We prove Proposition 2.4.1 in two steps.

First, we compute a closed form for the expectations in model (2.12). Then we show a one to one

equivalence between both domains.
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The expectations in (2.12) are given by

ERT

∑
i∈R̂

aW
i + ∑

i∈N\R̂
bW

i

= ∑
i∈N

(
P(τi =W )aW

i +P(τi <W )bW
i
)

(2.13a)

EFw
1

 ∑
i∈R∪Fw

1

aw−1
i + ∑

i∈P\Fw
1

bw−1
i

= ∑
i∈R

aw−1
i +∑

i∈P
fiwaw−1

i + f̄iwbw−1
i (2.13b)

EFw
d

 ∑
i∈Rd∪Fw

d

aw−d
i + ∑

i∈P\Fw
d

bw−d
i

= ∑
i∈Rd

aw−d
i +∑

i∈P
gd

iwaw−d
i + ḡd

iwbw−d
i . (2.13c)

Replacing them in (2.12) yields

max
{a,b,v≥0}

∑
i∈N

(
P(τi =W )aW

i +P(τi <W )bW
i
)
−

W

∑
w=1

vw s.t. (2.14a)

∑
i∈R

a0
i +∑

i∈P
b0

i = ∑
i∈R

pi ∀(R,P) ∈ Ξ

(2.14b)

∑
i∈R

(
aw

i −aw−1
i
)
+∑

i∈P

(
bw

i − fiwaw−1
w − f̄iwaw−1

i
)
≤ vw ∀w ∈W ,∀(R,P) ∈ Ξ

(2.14c)

∑
i∈R̄d

aw
i + ∑

i∈Rd

(
aw

i −aw−d
i

)
+∑

i∈P

(
bw

i −gd
iwaw−d

w − ḡd
iwaw−d

i

)
≤

w

∑
k=w−d+1

vk +αd ∀w ∈W ,∀(R,P) ∈ Ξ,∀d ∈A w
R ,

(2.14d)

where we still have an exponential number of constraints. We prove that (2.8) is equivalent to

(2.14) by showing equality between both domains.

1. (2.8b) ⇐⇒ (2.14b): Suppose that (a,b,v) satisfies (2.14b). If R = {i} and P = /0 we get

aw
i = pi, and if R = /0 and P = {i} we get bw

i = 0. Now, suppose that (a,b,v) satisfies (2.8b)

and add ai = pi and b j = 0 over any feasible pair of sets (R,P) ∈ Ξ to get (2.14b).

2. (2.8c),(2.8d),(2.8e) ⇐⇒ (2.14c): Suppose that (a,b,v) satisfies (2.14c). For each w∈W ,

choose a particular (R,P) ∈ Ξ as follows: put i ∈ R if aw
i − aw−1

i is greater than the value

of max{0,bw
i − fiwaw−1

i − f̄iwbw−1
i }, and put i ∈ P if bw

i − fiwaw−1
i − f̄iwbw−1

i is greater than
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max{0,aw
i −aw−1

i }.

Then, for (i,w) set siw = max
{

0,aw
i −aw−1

i ,bw
i − fiwaw−1

i − f̄iwbw−1
i
}

and we get

vw ≥∑
i∈R

aw
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i∈P

bw
i − fiwaw−1
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i (2.15a)
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i ,bw
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}
(2.15b)

= ∑
i∈N

siw. (2.15c)

Now suppose that (a,b,v,s) satisfies (2.8c),(2.8d),(2.8e), select any pair (R,P)∈ Ξ and we

have
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i∈N
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i∈P
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)
. (2.16)

3. (2.14d) ⇐⇒ (2.8 f ),(2.8g),(2.8h): Consider that (a,b,v) satisfies (2.14d). For each w ∈

W and d ∈ A w
N , choose (R,P) ∈ Ξ as follows: put i ∈ R if aw

i − Idi>daw−d
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max{0,bw
i −gd

iwaw−d
i − f̄ d
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ud
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(2.17b)

Now, suppose that (a,b,v,u) satisfies (2.8 f ),(2.8g),(2.8h), select any pair (R,P) ∈ Ξ and
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get
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2.7.2 Proof of Property 2.4.2

Proof. We start proving that there exists at least one optimal solution for (2.8) satisfying aw
i ≤ pi

and bw
i ≤ gw

iw pi for all i ∈ N and w ∈W0. Choose any i ∈ N and do forward induction on w.

• w = 0 is given by constraints (2.8b).

• Inductive step:

Assume that ak
i ≤ pi and that bk

i ≤ gk
ik pi for all k < w. We prove the statement for step w.

Suppose that aw
i = pi +δa and bw

i = gw
iw pi +δb, with ε = max{δa,δb}> 0. By the inductive

hypothesis, (2.8c),(2.8d), (2.8f) and (2.8g) it implies that siw ≥ ε , ud
iw ≥ ε , for all d ∈ A w

N

and by (2.8e) we have vw ≥ ε .

So, update the variables for time w as follows: aw
i ← pi; bw

i ← bw
i − ε; siw← siw− ε; ud

iw←

ud
iw− ε, ∀d ∈A w

N and vw← vw− ε . Also, update the variables for time v > w: av
i ← av

i − ε

and bv
i ← bv

i −ε . These changes keep (2.8) feasible and the objective value does not changes

(the reduction in vw increases the objective by ε , but the change in P(τi = W )aW
i +P(τi <

W )bW
i reduces it by ε).
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Now, let us show that there exists at least one optimal solution for (2.8) satisfying aw
i ≥ 0, bw

i ≥ 0

for all i ∈ N and w ∈W0. Choose any i ∈ N and do forward induction on w.

• w = 0 is given by constraints (2.8b).

• Inductive step:

Assume that ak
i ≥ 0,bk

i ≥ 0 for all k < w. We prove the statement for step w.

Suppose that: aw
i < 0 and/or bw

i < 0. We can set these variables equal to 0 without losing

feasibility. If w <W , then the objective remains unaltered. Else, it improves when w =W .

2.7.3 Proof of Property 2.4.3

Proof. Choose any i ∈ N. We prove by induction on w that there exists an optimal solution satis-

fying aw
i = pi and bw

i = gw
iw pi for all i ∈ N,w ∈W0 : di > w.

• w = 0 is given by (2.8b).

• Inductive step:

Assume that ak
i = pi, bk

i = gk
ik pi,∀k ∈ W0 : di > k with k < t and suppose that the optimal

solution is such that aw
i = pi−δa,bw

i = gw
iw pi−δb, where max{δa,δb}> 0. We can reassign

these two variables, i.e., aw
i ← pi and bk

i ← gk
ik pi, keeping feasibility and without reducing

the objective value. Just note that for constraints (2.8f) we have di > d (given by di > w and
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d ∈A w
N ). Thus, all constraints involving the reassigned variables are

siw ≥ aw
i −aw−1

i =−δa

siw ≥ bw
i − fiwaw−1

i − f̄iwbw−1
i =−δb

siw+1 ≥ aw+1
i −aw
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iw+1 pi + fiw+1δa + f̄iw+1δb

ud
iw ≥ aw

i −aw−d
i =−δa

ud
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iwaw−d

i − ḡd
iwbw−d
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ud
iw+d ≥ aw+d

i −aw
i = aw+d

i − pi +δa

ud
iw+d ≥ bw+d

i −gd
iw+daw

i − ḡd
iw+dbw

i = bw+d
i −gw+d

iw+d +gd
iw+dδa + ḡd

iw+dδb,

and when δa,δb→ 0 the lower bounds for u and s do not increase, since u and s are nonneg-

ative. The missing case, i.e. bw
i = gw

iw pi when di = w follows a similar proof.

2.7.4 Proof of Theorem 2.4.4

For this proof we simplify our formulation to keep the intuition as simple as possible. The action

set A w
R in state (w,R,P) will be {d ∈Z+ : d ≤w}, and so, will include possibly suboptimal actions.

So, consider the stochastic DDWP

C∗ =max
C

ER̂ [CW (R̂,N\R̂)]

s.t. C0(R,P)≤ ∑i∈R pi, (R,P) ∈ Ξ

Cw(R,P)≤ EFw
1
[Cw−1 (R∪Fw

1 ,P\Fw
1 )] , w ∈W , (R,P) ∈ Ξ

Cw(R,P)≤ αd +EFw
d
[Cw−d (Rd∪Fw

d ,P\Fw
d )] , w ∈W , d ∈ Z+ : d ≤ w, (R,P) ∈ Ξ,

43



and its ALP bound

C
′
= max

a,v,s,u ∑
i∈N

(
P(τi =W )aW

i +P(τi <W )bW
i
)
−

W

∑
k=1

vk

s.t. a0
i ≤ pi, b0

i ≤ 0, i ∈ N

aw
i −aw−1

w − siw ≤ 0, i ∈ N,w ∈W

bw
i − fiwaw−1

i − f̄iwbw−1
i − siw ≤ 0, i ∈ N,w ∈W

∑i∈N siw− vw ≤ 0, w ∈W

aw
i −ud

iw ≤ 0, i ∈ N,w ∈W , ,d ∈ {di, . . . ,w}

aw
i −aw−d

i −ud
iw ≤ 0, i ∈ N,w ∈W , ,d ∈ {1, . . . ,min(di−1,w)}

bw
i −gd

iwaw−d
i − ḡd

iwbw−d
i −ud

iw ≤ 0, i ∈ N,w ∈W ,d ∈ {1, . . . ,w}

∑i∈N ud
iw−∑

w
k=w−d+1 vk ≤ αd, w ∈W , ,d ∈ {1, . . . ,w}

s,u≥ 0.

For the deterministic case we get P(τi =W ) = I(τi=W ), fiw = I(τi=w−1) and gd
iw = I(w−d≤τi<w).
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The ALP collapses to

C
′
= max

a,v,s,u ∑
i∈N

(
aW

i I(τi=W )+bW
i I(τi<W )

)
−

W

∑
k=1

vk

s.t. a0
i ≤ 0, b0

i ≤ 0, i ∈ N

aw
i −aw−1

w − siw ≤ 0, i ∈ N,w ∈W

bw
i −bw−1

i − I(w−1≤τi<w)(a
w−1
i −bw−1

i )− siw ≤ 0, i ∈ N,w ∈W

∑i∈N siw− vw ≤ 0, w ∈W

aw
i −ud

iw ≤ 0, i ∈ N,w ∈W ,d ∈ {di, . . . ,w}

aw
i −aw−d

i −ud
iw ≤ 0, i ∈ N,w ∈W , ,d ∈ {1, . . . ,min(di−1,w)}

bw
i −bw−d

i − I(w−d≤τi<w)(a
w−d
i −bw−d

i )−ud
iw ≤ 0, i ∈ N,w ∈W ,d ∈ {1, . . . ,w}

∑i∈N ud
iw−∑

w
k=w−d+1 vk ≤ αd, w ∈W ,d ∈ {1, . . . ,w}

s,u≥ 0.

From this point we assume without loss of generality that di ≤ τi. Otherwise, we can transform

the model to an equivalent one satisfying this requirement. If request i does not arrive (τi < 0), the

optimal ALP value does not get altered by removing it, since at optimality aw
i = bw

i = 0, ∀w ∈W0.

In case that 0 < τi < di, i.e. the order arrives but cannot be served, one optimal solution is aw
i =

pi, ∀w ∈W0 and may be removed from the analysis by adding a constant pi to the objective.

Now, let us preset some variables in the ALP:

• aw
i = 0, for all i ∈ N,w > τi; the open order cost before arrival is zero.

• bw
i = aτi

i , for all i∈N,w > τi; the potential order cost before arrival is equal to the open order

cost upon arrival.

• bw
i = 0, for all i ∈ N,w≤ τi, i.e., the potential order cost after arrival is zero.

We have restricted the feasible space, and thus the remaining model is still an underestimate of
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C∗ given by

C
′′
= max

a,v,s,u ∑
i∈N

aτi
i −

W

∑
k=1

vk

s.t. (x) aw
i −aw−1

w − siw ≤ 0, i ∈ N,w ∈ {1, . . . ,τi}

(m) aw
i −ud

iw ≤ 0, i ∈ N,w ∈ {di, . . . ,τi},d ∈ {di, . . . ,w}

(α) aw
i −aw−d

i −ud
iw ≤ 0, i ∈ N,d ∈ {1, . . . ,di−1},w ∈ {d, ..,τi},

(β ) aτi
i −aw−d

i −ud
iw ≤ 0, i ∈ N,w ∈ {τi +1, . . . ,W},d ∈ {t− τi, . . . ,w}

(γ) a0
i ≤ pi, i ∈ N

(Z) ∑
i∈N

siw− vw ≤ 0, w ∈W

(Y ) ∑
i∈N

ud
iw−

w

∑
k=w−d+1

vk ≤ d, w ∈W ,d ∈ {1, . . . ,w}

s,u≥ 0,

46



and its dual problem is

C
′′
= min

Z,Y,α,β ,γ,m,x≥0
∑
i∈N

piγi +
W

∑
w=1

w

∑
d=1

dYw,d (2.23a)

s.t. (v) Zw +
W

∑
w′=w

w′

∑
d=w′−w+1

Yw′,d = 1, w ∈W (2.23b)

(s) xw
i ≤ Zw, i ∈ N,w ∈ {1, . . . ,τi} (2.23c)

(u) md
i,w ≤ Yw,d, i ∈ N,w ∈ {di, . . . ,τi},

d ∈ {di, . . . ,w} (2.23d)

α
d
i,w ≤ Yw,d, i ∈ N,d ∈ {1, ..,di−1},

w ∈ {d, . . . ,τi} (2.23e)

β
d
i,w ≤ Yw,d, i ∈ N,w ∈ {τi +1, . . . ,W},

d ∈ {w− τi, . . . ,w} (2.23f)

(a) γi =
(

x1
i +∑

W
k=1+τi

β k
i,k +∑

di−1
k=1 αk

i,k

)
, i ∈ N,

w = 0 (2.23g)(
xw

i +∑
w
d=1 αd

i,w

)
=
(

xw+1
i +∑

W
k=1+τi

β
k−w
i,k +∑

di−1
k=1 I(k+w≤τi)α

k
i,k+w

)
, i ∈ N,

w ∈ {1, . . . ,di−1} (2.23h)(
xw

i +∑
w
d=di

md
i,w +∑

di−1
d=1 αd

i,w

)
=
(

xw+1
i +∑

W
k=1+τi

β
k−w
i,k +∑

di−1
k=1 I(k+w≤τi)α

k
i,k+w

)
, i ∈ N,

w ∈ {di, . . . ,τi−1} (2.23i)(
xτi

i +∑
τi
d=di

md
i,τi

+∑
di−1
d=1 αd

i,w

)
+
(

∑
W
k=τi+1 ∑

k
d=k−τi+1 β d

i,k

)
= 1, i ∈ N,

w = τi. (2.23j)
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Figure 2.8: Network Structure in (Z,Y )-domain

Consider (2.23):

1. First note that (2.23b) are equivalent to the following network flow balance constraints

1 = ZW +∑
W
d=1YW,d (2.24a)

Zw+1 +∑
W
w′=w+1Yw′,w′−w = Zw +∑

w
d=1Yw,d, w ∈ {1, ..,W −1} (2.24b)

Z1 +∑
W
w′=2Yw′,w′−1 = 1 (2.24c)

Z,Y ≥ 0, (2.24d)

represented in Figure 2.8.

Proof. Equivalence is obtained by subtracting constraint w from constraint w+1 in (2.23b)

for all w ∈ {W − 1, . . . ,2}. The flow balance constraint at node w = W comes explicitly,

and the flow balance constraint at node w = 1 is obtained by adding the previously derived

equations.

Therefore, substructure (2.24) has integral extreme points.

2. Now, let us study the remaining constraints. Note that for a given (Z,Y ) the resulting problem

in variables (α,β ,γ,x,m) collapses to n independent capacitated minimum cost network flow
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problems (CMCNF) for each order i ∈ N defined in (2.25)

γi (Z,Y ) = min
αi,βi,γi,mi,xi≥0

γi (2.25a)

s.t. (2.23c),(2.23d),(2.23e),(2.23 f ),(2.23g),(2.23h),(2.23i),(2.23 j). (2.25b)

In this network there is a set of nodes given by {0, . . . ,τi} and a sink node Si defined

by the (redundant) flow balance constraint γi +∑
τi
w=di

∑
w
x=di

md
i,w = 1 obtained when adding

(2.23g),(2.23h),(2.23i) and (2.23j). We would like to minimize the cost of moving one unit

of flow from node τi to the sink node. There are five arc types available in (2.25) given by

• Type 1 arc (γi) going from node 0 to Si. Our objective is to minimize the value of this

flow, since it is the only one with non-zero cost.

• Type 2 arcs (md
i,w) going from node w ∈ {di, . . . ,τi} to Si. We want to maximize these

flows, but these arc flows are bounded by Yw,d .

• Type 3 arcs (xw
i ) going from w to w− 1 for each w ∈ {1, . . . ,τi}. These flows are

bounded by Zw.

• Type 4 arcs (αd
i,w) going from a node w ∈ {1, . . . ,τi} to any node w−d for each d < di

and d ≤ w; also bounded by Yw,d .

• Type 5 arcs (β d
i,k) going from node τi to any node w ∈ {0, . . . ,τi− 1} for each k ∈ Z+

and d ∈ Z+ satisfying τi < k ≤W and k−d = w; also bounded by Yk,d .

Note that problem (2.25) is feasible for any value (Z,Y ) ∈ (2.24). Its network is graphically

represented in Figure 2.9.
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τi · · · w · · · di · · · 1 0

Si
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γi
m

di
i,di

md
i,w , di ≤ d ≤ w

md
i,τi

, di ≤ d ≤ τi

x
τi
i xw+1

i xw
i x

di+1
i x

di
i x2

i x1
i

α
τi−w
i,τi

, τi−w < di

αd
i,τi

, d < di
αd

i,w , d < di
αd

i,di
, d < di

α
di−1
i,di

α1
i,1

β d
i,k , k−d < τi , k > τi

β
k−t
i,k , k > τi

Figure 2.9: Network for ith order subproblem.

If we put these two comments together, the dual ALP in (2.23) is equal to

min
(Z,Y )∈(2.24)

C(Z,Y ) := ∑
i∈N

piγi(Z,Y )︸ ︷︷ ︸
P(Z,Y )

+
W

∑
w=1

w

∑
d=1

dYw,d︸ ︷︷ ︸
COP(Y )

. (2.26)

We show in two parts that (2.26) has an optimal value equal to the optimal cost of the determin-

istic DDWP in (2.4). First, we prove that any feasible dispatch for the deterministic DDWP has a

one-to-one mapping with integer feasible solutions (Z,Y ) to (2.26). Then, we show that without

loss of optimality a solution of (2.26) can be assumed integral.

Part 1: Consider any feasible dispatch with lengths {d1, ...,dK} and dispatch times {w1, ..,wK}.

Then, there is a unique integer solution of (Z,Y ) representing this operation. Just set to zero all

components of Y except for Ywk,dk = 1,∀k ∈ {1, . . . ,K} and set Z to satisfy (2.23b). Thus, Yw,d

represents a dispatch at w with distance length d and Zw represents waiting at the depot between w

and w−1. Its corresponding operational dispatch cost matches the second term in the objective of
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(2.26), i.e. COP(Y ) := ∑
W
w=1 ∑

w
d=1 dYw,d = ∑

K
k=1 dk. Also, let

ηi =


1 if dk ≥ di and wk ≤ τi, for some k ∈ {1, . . . ,K}

0 otherwise

indicate whether order i is covered by any dispatch or not. If ηi = 0, then all type 2 arcs for

subproblem (2.25) cannot be used, i.e. md
i,w ≤ 0 for di ≤w≤ τi and di ≤ d ≤w, so there is a unique

path from τi to Si with γi = 1. If ηi = 1, then a new (τi− Si)-path arises with capacity one. The

idea is to move the unit flow horizontally using type 3 arcs (xw
i = 1) at each node w : 1 ≤ w ≤ τi

when Zw = 1. Otherwise, if Zw = 0 there are three potential scenarios:

• A dispatch at w covers i, i.e., d ≥ di. Then we can use the corresponding type 2 arc md
i,w =

Yw,d = 1 and reach the sink node Si at zero cost (γi = 0).

• A dispatch at w does not cover i, i.e. d < di. Then we can use the corresponding type 4 arc

αd
i,w = Yw,d = 1 and reach node w− d at zero cost. Since ηi = 1, we proceed until we find

the type 2 arc associated with the earliest dispatch that covers i.

• We have w = τi and there is a dispatch at time k > τi with distance d such that k− d < τi.

Then we can send one unit of flow in a type 5 arc to node k−d, i.e., bd
i,k = Yk,d = 1. Again,

we proceed until we find the earliest type 2 arc.

The first cost term in (2.26) will be exactly equal to the penalties paid for orders left unattended:

P(Z,Y ) := ∑i∈N piγi = ∑i∈N:
ni=0

pi.

Part 2: Now we prove that without loss of optimality Z,Y is binary, and hence an optimal so-

lution is an optimal dispatch for the deterministic DDWP. Assume by contradiction that Y has

fractional components and that C(Z,Y ) < C(Z̄,Ȳ ) for any integral solution (Z̄,Ȳ ) ∈ (2.24). We

can express (Z,Y ) as a convex combination of the extreme points (Z1,Y 1), . . . ,(Zp,Y p) of (2.24)
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which are binary. Thus, we have (Z,Y ) = ∑
p
l=1 λl(Zl,Y l) for a given nonnegative vector λ ≥ 0

such that ∑
p
l=1 λl = 1. The operational cost term COP(Y ) in (2.26) is additive in Y , since

COP(Y ) =
W

∑
w=1

w

∑
d=1

dYw,d =
W

∑
w=1

w

∑
d=1

d

(
p

∑
l=1

λlY l
w,d

)
=

p

∑
l=1

λl

(
W

∑
w=1

w

∑
d=1

dY l
w,d

)
=

p

∑
l=1

λlCOP(Y l).

So, if (Z,Y ) satisfies for each i ∈ N that

γi(Z,Y ) =
p

∑
l=1

λlγi(Zl,Y l), (2.27)

then the additive relation follows for the penalty cost term P(Z,Y ) in (2.26), because

P(Z,Y ) = ∑
i∈N

γi(Z,Y )pi = ∑
i∈N

(
p

∑
l=1

λlγi(Zl,Y l)pi

)
=

p

∑
l=1

λl

(
∑
i∈N

γi(Zl,Y l)pi

)
=

p

∑
l=1

λlP(Zl,Y l),

and the total cost is additive in (Z,Y ), i.e. C(Z,Y ) = ∑
p
l=1 λlC(Zl,Y l). So, if condition (2.27) is

true, the optimal cost is a convex combination of binary extreme point costs and it directly implies

that there should be an integer extreme point l∗ satisfying C(Zl∗ ,Y l∗)≤C(Z,Y ). This is our desired

contradiction.

Proof of condition (2.27): Note that the condition γi(Z,Y ) ≤ ∑
p
l=1 λlγi(Zl,Y l) is trivial, since the

optimal value of (2.25) is a convex function of the right-hand-side argument (Z,Y ). Also, we have

that γi(Zl,Y l) = 1 when the operation encoded in Y l covers order i, else it is equal to 0. So, the

right-hand-side of (2.27) yields ∑
p
l=1 λlγi(Zl,Y l) = 1−∑l:Y l covers i λl . We need to show that the

left-hand-side of (2.27) is also equal to the above value. There is two cases:

1. Suppose that for each l ∈ {1, . . . , p} with 0 < λl < 1, the operation encoded in Y l covers

order i ∈ N at most in one dispatch. In case that Y l covers i exactly once, then (λlY l,λlZl)

will add in (2.25) exactly one type 2 arc md
i,w with capacity λl > 0, where Y l

w,d is such that

di ≤ d and τi ≥w. Also, (λlY l,λlZl) will produce a zero cost path from τi to Si with capacity
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Si

1

1

∞

λ1

λ1 λ1 +λ3 λ1 +λ3
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λ2

λ3

Figure 2.10: Example of a convex combination of three operations in ith order subproblem.

λl that uses arc md
i,w. On the other hand, if Y l does not cover i there will be no additional

paths to Si. If we put all these solutions Y l together for each l ∈ {1, . . . , p} with 0 < λl < 1

and form Y = ∑
p
l=1 λlY l , the binding cut between τi and Si with zero-cost flows will be

defined by U = {1, . . . ,τi} with capacity ∑l:Y l covers i λl . So, given that the cut is always

binding, if we put these paths together in one single network it does not affect the output and

γi(Z,Y ) = 1−∑l:Y l covers i λl . Figure 2.10 provides an example of this network showing the

arc capacities of subproblem (2.25) for order i. This case has three integer extreme points Y :

Y 1,Y 2 and Y 3 defining Y = λ1Y 1 +λ2Y 2 +λ2Y 3 and 1 = λ1 +λ2 +λ2 for λ ≥ 0. Y 1 and Y 2

cover order i, but Y 3 does not. It is clear that the maximum zero-cost flow from τi to Si is

equal to the capacity of the cut U equal to λ1 +λ2 < 1. So, γi = 1−λ1−λ2.

2. A potential problem could occur if an operation covers an order more than once in multiple

dispatches. For example, suppose that there exists an operation l1 with 0 < λ l1
< 1 such that

Y l1
covers order i twice and that there exists another operation l2 not covering i such that

the vehicle is at the depot when operation l1 dispatches the latest dispatch covering i. Then,

an “artificial” coverage is created for order i. Figure 2.11 illustrates this problem. In this

example, operation l = 1 with weight λ1 = 0.5 waits at the depot until t1, covers order i at t1,
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Figure 2.11: Example of a convex combination of two operations where subproblem for order i is
not additive in the argument (Z,Y ).

returns at t2 and covers order i again at t2. Operation l = 2 with weight λ2 = 0.5 waits at the

depot all the time (between τi and 0). We have that 0.5γi(Z1,Y 1)+0.5γi(Z2,Y 2) = 0.5, but

γi
(
0.5(Z1,Y 1)+0.5(Z2,Y 2)

)
= 1− 0.5−min{0.5,0.5} = 0. So condition (2.27) does not

hold. Fortunately, we can prove that there exists an alternative set of operations l ∈ E such

that Y can also be written as Y = ∑l∈E λlY l and such that condition (2.27) holds.

Let us solve this problem for the example in Figure 2.11 first. Define Y 3 and Y 4 as follows.

Let

Y 3
w,d :=


Y 1

w,d w > w2,1≤ d ≤ w

Y 2
w,d w≤ w2,1≤ d ≤ w

and Y 4
w,d :=


Y 2

w,d w > w2,1≤ d ≤ w

Y 1
w,d w≤ w2,1≤ d ≤ w

.

Note that Y = 0.5Y 3 + 0.5Y 4 and, thus, this new decomposition does not affect operational

costs. Also, it covers the same amount of orders plus the “artificial” coverage which is now

valid. So 0.5γi(Z3,Y 3) + 0.5γi(Z4,Y 4) = γi
(
0.5(Z3,Y 3)+0.5(Z4,Y 4)

)
= 0. Figure 2.12

presents this solution.

The general proof can be constructed by induction on r1+ r2, where r1 is the total number of

additional dispatches covering i∈N in operations inside S, and r2 is the number of operations
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Figure 2.12: Same example with two operations where subproblem for order i is additive in the
argument (Z,Y ).

not covering i in S with the vehicle at the depot at a time w∗ where another operation l′ ∈ S

executes a dispatch covering i which is not the earliest such dispatch.

• Case r1 = 0,r2 = 0: This case is trivial, since the set S : Y = ∑l∈S λlY l satisfies (2.27).

• Case r1 > 0,r2 = 0: This case is also trivial, since the multiple dispatches cannot be

used to generate “artificial coverages” and any S such that Y =∑l∈S λlY l satisfies (2.27).

• Case r1 = 0,r2 > 0: This case is impossible, by the definition of r2 (r1 = 0 =⇒ r2 = 0).

• Case r1 > 0,r2 > 0: Let l1 ∈ S be the operation with a repeated dispatch to i at time

t∗ such that there exists another operation l2 ∈ S not covering i and with the vehicle

available at the depot at time w∗. Construct two new operations l3 and l4 as follows:

Y l3

w,d :=


Y l1

w,d w > w∗,1≤ d ≤ w

Y l2

w,d w≤ w∗,1≤ d ≤ w
and Y l4

w,d :=


Y l2

w,d w > w∗,1≤ d ≤ w

Y l1

w,d w≤ w∗,1≤ d ≤ w
.

We have three cases:

– If λl1 < λl2 , we have Y = ∑l∈S\{l1,l2}λl1Y l +λl1(Y l3
+Y l4

)+(λl2−λl1)Y l2
and r1

decreases by one. Use induction with S′ = S\{l1}∪{l3, l4}.

– If λl2 < λl1 , we have Y = ∑l∈S\{l1,l2}λl1Y l +λl2(Y l3
+Y l4

)+(λl1−λl2)Y l1
and r2
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decreases by one. Use induction with S′ = S\{l2}∪{l3, l4}.

– If λl2 = λl1 , set Y = ∑l∈S\{l1,l2}λl1Y l +λl1(Y l3
+Y l4

) and r1 and r2 each decrease

by one. Use induction with S′ = S\{l1, l2}∪{l3, l4}.

2.7.5 ALP solution pruning

We can reduce the computational effort involved in getting the ALP optimal policy defined by

(2.10) with the following proposition:

Proposition 2.7.1 (ALP solution pruning). Suppose δ ∈A w
R is a feasible dispatch distance at state

(w,R,P) and its related ALP solution to (2.10) is {a(δ ),b(δ ),v(δ )}. Let µ ∈ A w
R be a different

feasible dispatch distance. If

αδ +∑i∈Rδ
ai(δ )

w−δ +∑i∈P

(
gδ

iwai(δ )
w−δ + ḡδ

iwbi(δ )
w−δ

)
−∑

w−δ

k=1 vk(δ )

< αµ +∑i∈Rµ
ai(δ )

w−µ +∑i∈P
(
gµ

iwai(δ )
w−µ + ḡµ

iwbi(δ )
w−µ

)
−∑

w−µ

k=1 vk(δ ),

then µ is suboptimal for (2.10) and can be discarded before solving its related ALP.

Proof. The proof is based on the fact that {a(δ ),b(δ ),v(δ )} is also a feasible solution for the

ALP problem related to µ . By proposition (2.7.1) and the feasibility of a(δ ),b(δ ),v(δ ) in any

ALP problem we get

αδ + ∑
i∈Rδ

ai(δ )
w−δ +∑

i∈P

(
gδ

iwai(δ )
w−δ + ḡδ

iwbi(δ )
w−δ

)
−

w−δ

∑
k=1

vk(δ )

< αµ + ∑
i∈Rµ

ai(δ )
w−µ +∑

i∈P

(
gµ

iwai(δ )
w−µ + ḡµ

iwbi(δ )
w−µ

)
−

w−µ

∑
k=1

vk(δ )

≤ αµ + max
{(a,b,v)∈(2.8b)−(2.8i)}

∑
i∈Rµ

aw−µ

i +∑
i∈P

(
gd

iwaw−µ

i + ḡd
iwbw−µ

i

)
−

w−µ

∑
k=1

vk,
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and this proves that the dispatch distance δ yields a lower approximate expected cost than µ for

the ALP policy.
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CHAPTER 3

THE DYNAMIC DISPATCH WAVES PROBLEM FOR SAME-DAY DELIVERY

3.1 Introduction

In this chapter, we study the general Dynamic Dispatch Waves Problem (DDWP) that captures

the fundamental tradeoffs in dynamic dispatch decision-making and extends the one-dimensional

variant proposed in [44] to a general network topology. The DDWP is an order delivery problem

with dynamic dispatch and routing decisions for a single vehicle operating over a fixed-duration

operating period (i.e., a day) partitioned in W dispatch waves. Each dispatch wave can be thought

of as a point in time when picking and packing of a set of orders is completed, and a vehicle (or

vehicles) can be loaded for dispatch. In this research, a dispatch wave represents a decision epoch

where a single vehicle (if available at the depot) can wait for the next wave, or alternatively be

loaded and dispatched from the depot to serve a subset of open customer delivery orders. Open

orders are defined as those ready to be dispatched and not previously served. At each wave decision

epoch, complete information is known for all open orders and probabilistic information is available

describing potential future orders. After the vehicle completes a dispatch route, it returns to the

depot and is ready to be dispatched again. The objective is to minimize vehicle operating costs and

penalties for open orders that remain unserved at the end of the operating period. In this paper,

we extend the model in [44] to a general network topology to make it compatible with same-day

delivery operations using a typical road network.

The DDWP presents interesting challenges because of two fundamental tradeoffs discussed in

[44]. First, there is a tradeoff between waiting and dispatching a vehicle. When a vehicle is dis-

patched, the set of open orders waiting to be served is reduced, but the opportunity to observe and

serve future orders arriving geographically nearby to ones in the current route is lost. Conversely,
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when the vehicle is not dispatched, the time remaining to serve the set of open and future orders is

reduced. Second, there is a tradeoff between dispatching longer routes serving many orders versus

shorter ones with fewer visits. The former consume more time and keep the vehicle away from the

depot longer, but require less time per customer visited due to density economies. Shorter routes

require more time per customer, but enable the vehicle to be reused sooner.

We consider the following to be our primary contributions.

1. We formulate a natural model for the deterministic variant of our problem, which we leverage

to provide lower bounds for the stochastic-dynamic case via information relaxation and

simulation.

2. We use the deterministic model to find an optimal a priori solution to the stochastic variant,

by showing that the a priori optimization problem is equivalent to a deterministic instance

with known customer order arrival times and adjusted penalties. We design construction and

local search heuristics to complement commercial MIP solvers to speed up the identification

of solutions to problem instances.

3. We then provide three approaches to obtain dynamic policies using the a priori model. The

first uses a rollout scheme to dispatch according to the a priori solution and iteratively update

it with new information, and the latter approaches are based on fast heuristic modifications

to the initial a priori solution.

4. We empirically show the benefits of dynamic policies with computational experiments that

suggest that the marginal improvement provided by dynamic policies both in cost reduction

and in optimality gap improvements of our dynamic policies over an a priori one in terms

of cost reduction and duality gap are important for instances with greater order arrival vari-

ability and less information disclosed before the start of the operation. We also see that the

quality of a dynamic solution has less variability over all instances tested.
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5. Finally, we empirically analyze the tradeoff between two common objectives in SDD: min-

imizing total costs (including vehicle travel time) versus maximizing order coverage. One

might think that these two objectives deliver similar results, since well-sequenced routes

leave more vehicle time to cover additional orders. However, we find that there are funda-

mental differences in the solution’s structure for both cases in terms of number of vehicles

dispatched, route length and initial wait at the depot, that one should expect significant sacri-

fices in vehicle routing efficiency in order to maximize the order fill rate, and that the distance

cost of an additional customer covered becomes more expensive as order coverage increases.

The remainder of the chapter is organized in the following manner. Section 3.2 defines the

notation and formulates the DDWP, Section 3.3 covers the deterministic problem, and Sections 3.4

and 3.5 respectively cover a priori and dynamic policies. Finally, Section 3.6 outlines the results

of a computational study, and we conclude with Section 3.7.

3.2 DDWP problem formulation

We formally define the DDWP as a Markov Decision Process (MDP); see the text [57] for a refer-

ence on MDPs. We start by describing the notation and elements of our model:

1. Operating period. Let W := {1, . . . ,W} be the set of waves (decision epochs), each with

equal time duration `. The number w ∈ W represents the “waves-to-go” before w = 0, the

deadline for the vehicle to finish all deliveries and return to the depot.

2. Customer orders and geography. Let N := {1, . . . ,n} be the set of all potential customer

orders. Each i ∈ N and the depot (i = 0) define known locations represented by a complete

undirected graph G = (N∪{0},E), where E is the set of edges. We assume that the vehicle

takes te time and spends ce to traverse an edge e ∈ E; we assume for simplicity that time and

cost values are proportional to each other (ce = γte), non-negative, and satisfy the triangle

inequality.
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3. Order ready times. Each order i is ready for dispatch at a random wave τi ∈ W ∪{−1}

drawn from an order dependent distribution; if τi = −1 the orders i does not instantiate.

We assume that these ready times are independent between different orders, and that the set

{i ∈ N : τi ≥ w} is known at wave w.

4. Penalties. Each i ∈ N has a non-negative penalty βi to be paid if order i realizes and is left

unattended by w = 0.

We now are ready to formulate an MDP model for the DDWP. If the vehicle is available at the

depot at wave w, the system state is (w,R,P), where R⊆ N is the set of open orders and P⊆ N is

the set of remaining potential orders with an unknown arrival time (τi < w). Orders in N \{R∪P}

are “closed”, meaning they were ready and served before wave w. The pair (R,P) includes two

disjoint subsets of N, i.e., (R,P) ∈ Ξ := {(R,P) : R,P⊆ N,R∩P = /0}. The maximum number of

waves W and three possible states for each order (open-closed-potential) define an O(3nW ) bound

on the cardinality of the state space.

An action at any non-terminal state (w,R,P) : w≥ 1 is defined as a vehicle dispatch that serves

a subset of open orders S⊆ R; S = /0 represents waiting at the depot. The set S completely defines

the action and takes t(S) time, i.e., the minimum time required by any tour to visit S and return to

the depot (a Traveling Salesman Problem (TSP) tour over S∪{0}). Once dispatched, the vehicle

cannot serve any other order until it returns for reloading at wave qw(S) := w−max{1,dt(S)/`e},

and S is constrained such that the vehicle returns before the end of the day, qw(S)≥ 0. The subsets

S ⊂ R imply O(2n) possible actions. Selecting an action S in state (w,R,P) produces a transition

to state (qw(S),(R\S)∪Fw(S),P\Fw(S)) where Fw(S) := {i ∈ N : w > τi ≥ qw(S)} is the random

set of newly arriving orders in waves w−1, . . . ,qw(S), and R\S is the set of orders in R left open

by action S.

Let Cw(R,P) be a set function representing the minimum expected cost-to-go at state (w,R,P)

and let C∗(R̂) :=CW
(
R̂,N \ R̂

)
be the minimum expected cost depending on R̂, a given set of orders

ready at w =W (the order information known at the start of the operation). The dynamic program

61



defined in (3.1) computes C∗(R̂) recursively over w. Any terminal cost C0(R,P) is equal to the

sum of penalties of unserved open orders R, and subsequently, for each w ∈ W the cost-to-go at

state (w,R,P) is equal to the minimum cost between no dispatch and any feasible dispatch. Define

an optimal action as a subset Sw(R,P) ⊆ R that attains Cw(R,P) at a given state (w,R,P) and an

optimal policy as a vector of optimal actions for each possible state of the system.

C0(R,P) = ∑i∈R βi, ∀(R,P) ∈ Ξ (3.1a)

Cw(R,P) = min
S⊆R:qw(S)≥0

{
t(S)+EFw(S)

[
Cqw(S) (R\S∪Fw(S),P\Fw(S))

]}
, ∀w ∈W ,∀(R,P) ∈ Ξ. (3.1b)

The model (3.1) shows the difficulty in finding an optimal policy; it has exponentially many states

(O(3nW )), exponentially many actions per state (O(2n)), and exponentially many terms in the

expectations (O(2n)). Moreover, it is NP-Hard to evaluate the cost-to-go at any state (w,R,P)

given an action S, because we need to compute t(S) which requires the solution of a TSP over

S∪{0}. Given all these levels of difficulty, we will focus on finding good heuristics policies for

the DDWP.

3.3 The Deterministic DDWP

Suppose the wave τi at which order i ∈ N is ready is known at the beginning of the operating

horizon. Then, the set of orders ready at any wave w for each w ∈W is known beforehand, but it

remains infeasible to serve an order i ∈ N with a vehicle dispatch prior to τi. Let Nw := {i ∈ N :

ai ≤ w ≤ τi} be the set of orders ready and feasible to serve at wave w ∈W ; where ai defines the

latest wave to feasibly serve order i, i.e., ai :=
⌈
2t{0,i}/`

⌉
. Problem 3.3.1 states the deterministic

DDWP, which is NP-Hard since it generalizes the Prize-Collecting Traveling Salesman Problem

(PC-TSP); just set all τi = 1, W = 1, and `= ∑i∈N 2t0i.

Problem 3.3.1 (Deterministic DDWP). Find a collection of mutually disjoint subsets {Sw ⊂ Nw :

w ∈W } that minimize ∑w∈W
{

t(Sw)−∑i∈Sw βi
}

subject to:
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1. qw(Sw)≥ 0 for each w ∈W , and

2. if Sw 6= /0, then Sv = /0 for all v ∈ {w−1, . . . ,qw(S)}, for each w ∈W .

Property 3.3.2 is taken from [44] and extended to a general network topology.

Property 3.3.2 (No wait after a dispatch). There exists an optimal solution to Problem 3.3.1 in

which the vehicle does not wait after the first dispatch has occurred.

In [44], we show for the one-dimensional case that an optimal solution contains consecutive

vehicle dispatches with decreasing dispatch duration. This property does not hold for a general

network topology. Consider a line segment with a centered depot and two orders located at each

end of the line. Let W = 6, `= 1, α = 1, β1 = β2 = 7, τ1 = 4, τ2 = 6, t{0,1}= 2, t{0,2}= 1, t{1,2}= 3.

Leaving any order unattended costs at least 7 and the unique solution serving both orders has cost

6. This solution dispatches a vehicle round-trip to serve order 2 at wave w = 6, and again at wave

4 to serve order 1.

We next formulate the deterministic DDWP as an Integer Program (IP). Define Ew := {e ∈

E,ae ≤ w≤ be} ⊂ E for each w ∈W as the set of feasible edges for a vehicle dispatch at wave w,

where a{i, j}=
⌈(

t{0,i}+ t{i, j}+ t{0, j}
)
/`
⌉

and b{i, j}=min{τi,τ j}, for each {i, j} ∈ E. Also, define

the cut set Ew(S) = {{i, j} ∈ Ew : i ∈ S, j 6∈ S}, for any subset S⊆ Nw. Problem 3.3.1 is equivalent

63



to the IP

C∗(τ) = min
{x,y,v,z} ∑

i∈N:τi>0
βi

(
1−

τi

∑
w=ai

yw
i

)
+ ∑

w∈W
∑

e∈Ew

texw
e (3.2a)

s.t.
τi

∑
w=ai

yw
i ≤ 1, ∀i ∈ N

(3.2b)

∑
e∈Ew(0)

xw
e ≤ 2, ∀w ∈W

(3.2c)

∑
e∈Ew(S)

xw
e ≥ 2yw

i , ∀w ∈W ,∀S⊆ Nw,∀i ∈ S

(3.2d)

∑
e∈Ew

texw
e ≤ ` ∑

k<w
(w− k)vw

k , ∀w ∈W

(3.2e)

∑
k<W

zk + ∑
k<W

vW
k = 1 (3.2f)

∑
k<w

vw
k = ∑

k>w
vk

w + zw, ∀w ∈W \{W}

(3.2g)

vw
k ∈ {0,1}, ∀w ∈W ,∀k ∈W ∪{0} : k < w

(3.2h)

zk ∈ {0,1}, ∀k ∈W ∪{0} : k <W

(3.2i)

yw
i ∈ {0,1},∀i ∈ Nw, and xw

e ∈ {0,1,2},∀e ∈ Ew. ∀w ∈W

(3.2j)
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Variable yw
i is equal to 1 if a dispatch at wave w serves order i, and 0 otherwise; xw

e is equal

to m ∈ {0,1,2} if the vehicle traverses edge e m times at a dispatch at wave w, and 0 otherwise;

vw
k is equal to 1 if a dispatch at w returns at wave k, and 0 otherwise; and zk is equal to 1 if the

vehicle waits at the depot until wave k, and 0 otherwise (z0 = 1 implies no dispatch throughout the

horizon).

Constraints (3.2b) guarantee serving each order i exactly once at wave w (yw
i = 1) or, alterna-

tively, leaving it unserved (yw
i = 0, w = ai, . . . ,τi). Constraints (3.2c) - (3.2d) guarantee that vector

xw defines a feasible tour only visiting orders selected by the vector yw. Constraints (3.2e) force

routes to satisfy durations limits determined by vw
k . Finally, wave flow constraints (3.2f)-(3.2g)

enforce vehicle conservation throughout time.

We can solve instances of (3.2) using a standard Branch & Cut approach with dynamic genera-

tion for subtour elimination cuts based on approaches for the TSP; see [8]. We start with singleton

constraints (3.2d), i.e., S = {i}. If we find an integer xw for wave w at any given node in the Branch

& Bound tree, we check if it has a subtour in O(n) running time and add the corresponding cut.

Moreover, if xw is fractional we can check if it violates 2-connectivity by solving a Minimum Cut

problem efficiently. If the answer is yes, we add the corresponding cut from (3.2d) and repeat.

Consider again the stochastic DDWP defined in Section 3.2. We can estimate a lower bound

on the optimal expected cost of (3.1) with a Perfect Information Relaxation (PIR) of cost CPIR

that disregards the “non-anticipative” dynamics of the problem and computes one solution for

each possible realization of the random variables [19, 61]. To estimate the PIR, we simulate a set

of m ∈ {1, . . . ,M} realizations τm for the random vector of ready times τ , find the deterministic

optimal cost C∗(τm) for each realization m, and take the sample average CPIR ≈ ∑
M
m=1C∗(τm)/M.

3.4 A priori policies

In this section, we develop a procedure to compute an a priori policy in which a schedule spec-

ifying the waves at which to dispatch the vehicle and the subsets of orders to be covered at each
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dispatch is determined only with information disclosed at wave W .

We start by planning an optimal a priori policy in which no recourse actions are allowed. The

operating cost of such a policy is known beforehand, and the penalties paid for unserved orders

depend on future order arrivals. In this case each order has a probability P(τi = w) to be ready at

wave w. To simplify notation, the probability values include all information regarding the initial

set of orders R̂, i.e., P(τi =W ) = 1 if i ∈ R̂ and 0 otherwise. This a priori problem is equivalent to

solving a deterministic DDWP instance in which each order i ∈ N is duplicated at most W times

and each copy is assumed to be ready at each wave w ∈W in the support of the random variable

τi, with an adjusted penalty for not serving the order equal to βiP(τi = w).

Under this “extended” deterministic model, there exists an optimal solution visiting the cus-

tomers within the same location at most once. If this is not the case, we could simply delete all

but the latest visit and reduce the vehicle dispatch cost without a loss on customer coverage. This

observation allows us to define an a priori IP problem where planning to serve order i at wave w

indicates that order i is indeed serviced if it arrives during any wave v ∈ {w,w+ 1, . . . ,W}; this

action thus reduces the expected penalty by βiP(τi ≥ w). Define the expected penalty to be paid if

no vehicle dispatches are planned as β 0 := ∑i∈N βiP(τi ≥ 1), the earliest wave that a vehicle can

serve order i as bi := max{w : P(τi = w)> 0}, and redefine the sets Nw and Ew accordingly. Then,

the a priori DDWP is defined by

C∗AP(R̂) = min
{x,y,v,z}

β
0−∑

i∈N

bi

∑
w=ai

βiP(τi ≥ w)yw
i + ∑

w∈W
∑

e∈Ew

texw
e (3.3a)

s.t. (3.2c)− (3.2j),

bi

∑
w=ai

yw
i ≤ 1, ∀i ∈ N, (3.3b)

which shares its feasible region with (3.2), but now has a stochastic objective. In case of not

serving an order, we pay a penalty discounted by the arrival probability P(τi ≥ 1), and in case of
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planning to serve i at wave w, we pay the penalty discounted by the probability of a later arrival,

P(1≤ τi < w).

We can improve the performance of the a priori policy at execution by skipping planned orders

that aren’t ready on time from a route dispatched at wave w; the triangle inequality guarantees that

the solution cannot become more costly by skipping. We define by Qw(xw) the expected duration

of a dispatch at wave w given by xw; [40] provides a closed form to compute this expected cost

for a given route in O(n2) time. The expected cost of such a policy for a given a priori feasible

solution is equal to

β
0−∑

i∈N

bi

∑
w=ai

βiP(τi ≥ w)yw
i + ∑

w∈W
Qw(xw). (3.4)

We could also design an a priori solution that considers the order-skipping recourse proactively

when planning a solution with an extension of the L-shaped method described for the Probabilistic

Traveling Salesman Problem (PTSP) in [45]. We implemented this approach for our problem and

were only able to solve small instances to optimality (n= 25, W = 3). Moreover, the benefits in cost

savings over the value of (3.3) were small (under 2%). The intuition is the following: If the arrival

probabilities are high, the probabilistic routing cost in the objective collapses to a deterministic

routing cost, just as the PTSP. However, this is a prize-collecting problem, which is fundamentally

different from the PTSP, and if the arrival probabilities are small, the probabilistic routing cost

reduces its comparative importance with respect to the penalty cost in the objective and it becomes

more important to make good dispatch selections and less important to route. Nonetheless, it would

be interesting for future research efforts to design efficient heuristic procedures over the a-priori

cost with order-skipping recourse starting from an optimal solution of (3.3) to gain these marginal

improvements over the a priori solution; see e.g., [18, 62].
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3.4.1 Practical considerations when solving the a priori model

To solve larger instances of the a priori model effectively, we propose a solution improvement local

search heuristic (LS) that exploits problem structure and complements a MIP solver. Specifically,

we use this heuristic in two phases when solving problem (3.3). First, we run the heuristic for

any new feasible solution s identified during the branch-and-bound tree search, and update the

incumbent if the local search produces a solution with lower cost. Second, we use the heuristic

during a solution construction phase as described in Algorithm 8 to generate a good initial feasible

solution for the MIP solver.

Let {rs
w,w ∈ Ws} be the set of routes of a feasible solution s to (3.3) indexed over the wave

subset Ws ⊆ W where these dispatches occur; we refer to Ws as the dispatch profile of s. Each

route rs
w represents an elementary sequence of order visits starting and ending at the depot. The a

priori cost cs is defined by (3.3a), its first dispatch wave by inis := max{w ∈Ws}, the duration of

each route by ds
w, and its unserved customer set by Ns := N \

⋃
w∈Ws

rs
w. An example of a feasible

solution is given in Table 3.1.

Table 3.1: Example of a feasible solution s for an instance with 25 probabilistic orders

Ws route (rs
w) duration (ds

w)
1 {0,22,16,17,2,9,18,21,0} 1
3 {0,15,3,12,6,8,7,14,20,4,24,25,19,5,10,23,0} 2
4 {0,1,0} 1
Ns {11,13}

Our LS procedure uses three separate neighborhood searches given solution s: (1) intra-route

local search (IntraLS), i.e., single route node selection and re-sequencing; (2) inter-route local

search (InterLS), i.e., node exchanges between routes and re-sequencing; and (3) dispatch profile

local search. Pseudocode for LS is given by Algorithm 1. We execute the three-level search until

no improving solution is found; each separate search procedure is described below.
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Algorithm 1 Local Search Procedure
1: procedure LOCALSEARCH(Solution s)
2: loop
3: if (¬INTRALS(s) and ¬INTERLS(s) and ¬DPLS(s)) then return s.

IntraLS, defined in Algorithm 2, exploits the relation between the DDWP and a prize-collecting

TSP

PCT SP(m,Q,β ) := min
S⊆Q:

t(S)≤m`

{
αt(S)−∑

i∈S
βi

}
, (3.5)

with a set Q ⊆ N of potential customer orders, prizes βi, i ∈ Q, and a maximum route duration of

m waves. IntraLS is a best move procedure, where a move is described by re-optimizing one route

from s leaving all remaining routes unaltered. The procedure chooses a single route rs
w from s,

and solves a PCTSP over a set of nodes Q := Ns∪ rs
w defined by all orders left unattended if route

rs
w where removed, a maximum route duration m = ds

w predefined by the waves left available, and

prizes βi discounted by P(τi ≥ w), for i ∈ Q. Any solution s processed by IntraLS contains only

routes w that are optimally sequenced and that cannot be improved by selecting a different subset

of orders to service from Ns∪ rs
w.

Algorithm 2 Intra-route LS procedure
1: procedure INTRALS(Solution s)
2: improved← f alse and s∗← s
3: repeat
4: for w ∈Ws do
5: Let s′ be a copy of s without route rs

w
6: Solve PCTSP(ds

w,Ns′,{βiP(τi ≥ w)}) and add optimal route found to s′ at wave w
7: if (cs′ < cs∗) then s∗← s′ and improved← true
8: if (cs∗ < cs) then s← s∗

9: until ¬improved

InterLS uses best move searches over pairs of routes using neighborhoods inspired by those

in [66] for the CVRP: two-edge exchanges between routes, removal and reinsertion of a k-order

sequence from one route to another, and order swaps between routes. To implement these ideas, we
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account for two differences between the CVRP and the DDWP. First, we model the prize-collecting

component; a move changes penalty savings (due to the different dispatch time). Second, we check

the durations of the new routes to ensure that they remain compatible with the fixed dispatch times

of the unchanged routes.

The third neighborhood search that we implement is a Dispatch Profile Local Search (DPLS),

described in Algorithm 3. The DPLS search perturbs the structure of the dispatch profile Ws for

solution s using five operators: Cut, Merge, Exchange, Start, and Reorder. The first four operators

find potential new solutions by solving a PCTSP, while the fifth uses a job scheduling approach.

Algorithm 3 Dispatch Profile Local Search (DPLS)
1: procedure DPLS(Solution s)
2: improved← true
3: repeat
4: if (¬CUT(s) and ¬MERGE(s) and ¬EXCHANGE(s) and ¬START(s) and
¬REORDER(s)) then

5: improved← f alse.
6: until ¬improved

The Cut operator, described in Algorithm 4, searches over all possible dispatch profiles that

result when splitting a single dispatch w with duration ds
w ≥ 2 into two dispatches with shorter

duration; this operator always add an extra return trip to the depot, as depicted in Figure 3.1.

The Merge operator, described in Algorithm 5, works in reverse and searches over all dispatch

profiles that arise when merging two consecutive dispatches into a single longer duration dispatch,

as shown in Figure 3.2. The Exchange operator, described in Algorithm 6, changes the dispatch

durations of two consecutive dispatches (thus changing the dispatch wave w of the latter); see

Figure 3.3. The Start operator, described in Algorithm 7, searches for a better solution among

the (at most) two new dispatch profiles induced by moving the initial dispatch wave of solution s

backward or forward one wave, when feasible without altering subsequent dispatches; when the

move is backward, the initial dispatch is extended by one wave and when the move is forward, it
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Figure 3.1: Example of a cut operation where a new dispatch profile is created (dashed flow) from
an existing one (continuous flow) by cutting a route into two.

is reduced by one wave, as depicted in Figure 3.4.

The Reorder operator reassigns the routes in s to the best possible dispatch waves, without

altering the customer visit sequences or the route durations. This assignment problem is equivalent

to a single machine job scheduling problem of type 1||∑ j f j(w j) (see e.g., [54]): Consider a set of

jobs, where each job j corresponds to a route with processing time p j equal to the route duration

(measured in waves). The cost of assigning job j to start wave w is f j(w) := ∑i∈r j P(τi < w). This

job scheduling problem is NP-hard, since the single-machine scheduling problem minimizing the

weighted sum of tardy jobs can be reduced to this problem. Small instances with fewer than 10

routes can be solved effectively with dynamic programming.

Algorithm 4 Cut operation over solution s
1: procedure CUT(Solution s)
2: improved← f alse and s∗← s
3: for w ∈Ws do
4: for v : (w−1)→ (w−ds

w +1) do
5: Let s′ a copy of s without route rs

w
6: Solve PCTSP(w− v,Ns′ ,{βiP(τi ≥ w)}) and add optimal route to s′ at wave w.
7: Solve PCTSP(v−w+ds

w,Ns′,{βiP(τi ≥ v)}) and add optimal route to s′ at wave v
8: if (cs′ < cs∗) then s∗← s′ and improved← true
9: if (cs > cs∗) then s← s∗

10: return improved
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waves

dispatch wait dispatch

Vehicle

dispatch
removed

Figure 3.2: Example of a merge operation where a new dispatch profile is created (dashed flow)
from an existing one (continuous flow) by merging two dispatches into one.

Algorithm 5 Merge operation over solution s
1: procedure MERGE(Solution s)
2: improved← f alse and s∗← s
3: for w ∈Ws such that w−ds

w > 0 do
4: Let s′ a copy of s without routes rs

w and rs
w−ds

w
5: Solve PCTSP(ds

w +ds
w−ds

w
,Ns′,{βiP(τi ≥ w)}) and add optimal route to s′ at wave w

6: if (cs′ < cs∗) then s∗← s′ and improved← true
7: if (cs > cs∗) then s← s∗

8: return improved

waves

dispatch dispatch

Vehicle

new dispatch
pushed earlier

dispatch

Figure 3.3: Example of an exchange operation where a dispatch gives one wave to its successor
(dashed flow).

Algorithm 6 Exchange operation over solution s
1: procedure EXCHANGE(Solution s)
2: improved← f alse and s∗← s
3: for pair w1,w2 ∈Ws such that ds

w1
> 1 and (w1 = w2−ds

w2
or w1 = w2 +ds

w1
) do

4: if (w1 > w2) then Let w′1 = w1, w′2 = w2 +1, d′1 = ds
w1
−1, and d′2 = ds

w2
+1.

5: else Let w′1 = w2, w′2 = w1−1, d′1 = ds
w2

+1, and d′2 = ds
w1
−1

6: Let s′ a copy of solution s without routes rs
w1

and rs
w2

7: Solve PCTSP(d′1,Ns′,{βiP(τi ≥ w′1)}) and add optimal route to s′ at wave w′1
8: Solve PCTSP(d′2,Ns′ ,{βiP(τi ≥ w′2)}) and add optimal route to s′ at wave w′2
9: if (cs′ < cs∗) then s∗← s′ and improved← true

10: if (cs > cs∗) then s← s∗

11: return improved
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waves

dispatchinitial
dispatch

dispatch
pushed later

dispatch
pushed earlier

Figure 3.4: Example of a Start operation where the first dispatch is enlarged/reduced (dashed flow).

Algorithm 7 Start operation over solution s
1: procedure START(Solution s)
2: improved← f alse and s∗← s
3: Let s1 and s2 be two copies of solution s without route rs

inis
4: if (inis <W ) then
5: Solve PCTSP(ds

inis + 1,Ns1,{βiP(τi ≥ inis + 1)}) and add optimal route to s1 at wave
inis +1

6: if (cs1 < cs∗) then s∗← s1 and improved← true
7: if (ds

inis > 1) then
8: Solve PCTSP(ds

inis − 1,Ns2,{βiP(τi ≥ inis− 1)}) and add optimal route to s2 at wave
inis−1

9: if (cs2 < cs∗) then s∗← s2 and improved← true
10: if (cs > cs∗) then s← s∗

11: return improved

We can in addition enhance the search by calling LS recursively, i.e., we run LS within the

Cut, Merge, Exchange, and Start operators on the temporary solution s′, after the move gets imple-

mented but before comparing to the best solution available s∗. In our experiments, we implemented

a two-level local search to keep solution times manageable.

In addition to using the LS procedure during the branch-and-bound tree search, we also embed

it in a heuristic for building a good initial feasible solution s0 for the DDWP. This constructive

heuristic is given a set of m dispatch profiles, and for each Wk,k = 1, . . . ,m solves a series of

sequential prize-collecting TSPs over time to build a solution which is then improved by the LS

procedure. In our experiments, the set of dispatch profiles provided to the construction heuristic

was {{1,2, . . . ,q}} for all q in 1≤ q≤W , i.e., all possible profiles that include consecutive, single-
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wave dispatches up to the final wave.

Algorithm 8 Constructive Heuristic

1: procedure CONSTRUCTIVE(Set of dispatch profiles {W1,W2, . . . ,Wsm})
2: Initialize s0 as the empty solution
3: for k : 1→ m do
4: Build {dw,w ∈Wk}, the dispatch durations of Wk
5: Let sk be a copy of s0.
6: for w ∈Wk in decreasing order do
7: Update Nsk

8: Solve a PC-TSP over Nsk , with max duration dw and prizes βiP(τi ≥ w)
9: Add optimal route to sk.

10: LOCALSEARCH(sk)
11: if (csk < cs0) then s0← sk

12: return s0

3.5 Dynamic Policies

A priori policies, particularly when adjusted via recourse actions, may yield reasonable solutions

to many problems. However, [44] provides an instance sequence for which an optimal a priori

policy with recourse is arbitrarily worse than an optimal dynamic policy, i.e., C∗AP(R̂)/C∗(R̂)→∞.

Therefore, we next develop dynamic policies.

3.5.1 A Priori-Based Rollout Policy

A natural, but possibly computationally-expensive dynamic policy is to roll out the a priori policy.

At each wave w ∈ W when the vehicle is available at the depot, we recompute an optimal a

priori policy beginning at wave w using the current system state (w,R,P) to define a new, reduced

problem over the remaining operating period. If the policy decides at wave w to dispatch a route

serving customer set S⊂R, then this decision is implemented and a new a priori policy is computed

again at wave qw(S); otherwise, a new a priori policy is computed at w− 1 after waiting for one

wave.
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Computing such a rollout policy requires the solution of O(W ) a priori problems and may be

difficult to solve exactly for larger instances. However, there are multiple ways to improve the

computational performance. First, one can warmstart the solution of the a priori problem at wave

w using the most recently computed solution (from wave q>w), adjusted to skip all planned orders

that are not ready yet and then improved via the LS procedure. It is also not necessary within this

heuristic procedure to solve each a priori problem to optimality. A more substantial simplification

is to begin the rollout process only at the first wave where a dispatch is planned in the initial a

priori solution (computed at wave W ); we call this approach the restricted rollout policy.

Improvement guarantees for the a priori-based rollout policy

Now we show that rolling out the a priori solution has no bigger expected cost than the a priori

policy without recourse actions. We base this proof in the result provided by [38] stating that any

sequentially improving heuristic weakly improves its performance when rolled out. The definition

of sequentially improving heuristic is stated in 3.5.1. In Proposition 3.5.2, we prove that the optimal

a priori solution is a sequentially improving heuristic.

Definition 3.5.1. (Sequentially Improving Policy). Let s be the state of the system, let πH(s) be a

policy induced by a Heuristic H(s) computed at state s, and let Cπ(s) be the expected cost-to-go

paid if a policy π is implemented from state s onwards. Let s′ be any state such that it is on a

sample path induced by implementing πH(s) at state s. Then, H(·) is sequential improving if

E
[
CπH(s)

(s′)|s′
]
≥ E

[
CπH(s′)

(s′)|s′
]

(3.6)

Proposition 3.5.2. The optimal a priori solution is sequentially improving

Proof. (Proposition 3.5.2) Let πAP(s) be the resulting policy that arises from the optimal a priori

policy computed in state s and let s′ a state of the system in the sample path induced by πAP(s). As-
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sume by contradiction that we have E
[
CπAP(s)

(s′)|s′
]
< E

[
CπAP(s′)

(s′)|s′
]
, then πAP(s) has expected

cost lower than the expected cost of the optimal a priori solution policy computed at state s′. This

is clearly a contradiction.

3.5.2 Greedy a priori-based prize-collecting TSP Heuristic

We also test simpler rollout strategies that do not rely on repeatedly solving the a priori problem.

One such approach takes advantage of the relationship between the DDWP and the PC-TSP. To

initiate the approach, we solve the a priori problem at initial wave W . We then use this solution

to guide a rollout procedure that only solves deterministic PC-TSP problems as follows. At each

wave w<W for which the a priori solution dictates a vehicle dispatch, we determine the maximum

duration of the route (by ensuring the vehicle is back at the depot for the next a priori dispatch

wave). Then, we determine a vehicle route by solving a PC-TSP using only open orders that are

not postponed in the a priori solution for dispatch at a later wave. Let W AP be the set of waves

where vehicle dispatches take place in the a priori solution, and let Qw ⊂ Nw be its set of planned

orders to be dispatched at each w ∈W AP. We implement the heuristic dynamic policy outlined in

Algorithm 9.

Algorithm 9 Greedy a priori-based policy

1: Set w←max{v ∈W AP}, w+←max{v ∈W AP : v < w}
2: Wait at the depot until wave w
3: while w > 0 do
4: Read system state (w,R,P)
5: Compute R̄ := R\

⋃w+

v=1 Qv, the set of open orders not included in future dispatches of the
a priori solution

6: Solve PCTSP(w−w+, R̄,β ) and let S⊂ R̄ be the optimal set of sequenced orders selected
7: if qw(S) = w+, then dispatch a vehicle to S, set w← w+, w+←max{v ∈W AP : v < w},
8: else set w← w−1.

The greedy policy ignores information about orders dynamically realized throughout the opera-

tion, and only considers the available probabilistic information at the start of the horizon. However,
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it is dynamic enough to accommodate newly arriving orders, and to re-optimize routing decisions.

This last feature makes it a better candidate than a simple a priori policy with order-skipping

recourse.

3.6 Computational Experiments

We now present a set of computational experiments designed over a family of randomly generated

instances with the objective of testing the quality of our heuristic policies and to get qualitative

insights regarding the management of vehicle dispatches in a same-day delivery context. Table 3.2

summarizes the heuristic policies computed for each instance. All heuristics were programmed

in Java and computed using one thread of a Xeon E5620 processor with up to 12Gb RAM, using

CPLEX 12.6 when necessary as a MIP solver.

Table 3.2: Heuristic policies computed in our experiments

symbol strategy section
AP a priori policy + order-skipping 3.4
GP Greedy PCTSP-based policy 3.5.2
RP Rollout of a priori policy 3.5.1

RRP Restricted rollout of a priori policy 3.5.1

3.6.1 Design of data sets

We generated 240 data sets to evaluate our policies over different performance indicators. Each

data set has a specific geography of 50 orders, a known subset R̂ ⊆ {1, . . . ,50} of orders ready at

the start of the operating period, and a vector of ready wave probabilities for orders with unknown

arrival wave.

The geography for each data set is defined by a random seed g ∈ {0, . . . ,4} used to assign 50

different locations over a 51× 51 square subset of R2 following a discrete uniform distribution

U(0,50) for each component of the location’s coordinate and with the depot located at coordinate
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(25,25). We ruled out repeated coordinates to have a more interesting geography. Travel times

between locations are given by the `1-norm (Manhattan distance) between two locations, chosen

to model urban travel times. All data sets share a common horizon with W = 6 possible dispatch

waves, each with duration `= 100 time units. The duration of a round-trip visiting any single order

is less than or equal to 100 time units, and thus can be completed in a single dispatch wave.

For each order i∈ {1, ..,50}, its ready wave τi is a discrete random variable, independently dis-

tributed with probability P(τi =W ) = pstart of being ready at the start of the operating period (the

order’s degree of dynamism); a conditional probability P(τi = −1|τi < W ) = pout of not arriving

at all during the operation period; and a conditional discrete uniform distribution with probabil-

ity P(τi = w|1 ≤ τi < W ) = (min(W −1,µi +σ)−max(1,µi−σ)+1)−1 of arriving during the

operation at any wave w ∈ {max(1,µi−σ), . . . ,min(W − 1,µi +σ)}. The parameter µi repre-

sents the mean ready wave and is drawn for each i with equal probability between 1 and W − 1,

and σ represents variability. Each data set uses a triple (σ , pstart , pout) : σ ∈ {Lo = 1,Hi = 6},

pstart ∈ {10%,15%,25%,50%}, pout ∈ {20%,40%}, and a setting of the seed h∈ {0,1,2} to draw

the set R̂ of orders ready at start.

We created M = 50 realizations of the ready time vector τ for each data set using the prob-

abilistic model above. These scenarios are used as a common sample to estimate lower bounds

based on a perfect information relaxation and the expected cost of all policies. Each data set has

a unique value of (g,σ , pstart , pout ,h), and all sets, including their simulated realizations, are pub-

lished online at

sites.google.com/site/maklappor/ddwp-data-sets.

3.6.2 Set 1: Base experiments

For our first set of experiments, we build 3 instances by considering the first 25, 35 and 50 orders

for each one of the 240 data sets. This makes a set of 720 instances with 3 different problem sizes.

The penalty for leaving order i unattended if it appears is set as the duration of a round-trip to
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order i from the depot, βi := 2t{0,i}; this setting models a system that serves all realized orders by

outsourcing the service of each order that remains open at the end of the day to a direct delivery

service. Under these penalties, there is always a potential service profitability; in particular, there

is an economic incentive to dispatch the vehicle in the last wave if any order is open.

We computed the following metrics for each policy over each realization from each instance:

• Total cost (cost), travel time (duration) and penalties paid (penalty),

• gap: the percentage increase of the policy’s cost over the perfect information bound,

• fill rate ( f r): the percentage of orders served by the vehicle over all realized orders,

• duration/order: the routes’ duration over the number of served orders,

• nRoutes: number of vehicle dispatches,

• nWaves: average dispatch length in waves used by each route,

• iWait and pWait: number of waves spent waiting at the depot before/after the initial dispatch,

• timeo f f : average “off-line” solution time, i.e., before the solution is implemented,

• totaltimeon: total “on-line” solution time over the operating period,

• timeon: total “on-line” solution time divided by the number of active decision epochs, i.e.,

the number of waves in which the policy makes a dispatch decision (which excludes all

predetermined waits established by the initial a priori policy and dispatch waves jumped by

the vehicle routes).

These metrics are averaged for each instance over all M = 50 realizations. Table 3.3 presents

average results for each heuristic policy over all instances.
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Table 3.3: Average results of heuristic policies

metric policy AP GrAP RRP RP

cost (decrease from AP %) 555 523 (5.8%) 505 (9.1%) 505 (9.1%)
duration 298 305 (-2.5%) 305 (-2.4%) 311 (-4.4%)
penalty 258 218 (15.2%) 200 (22.3%) 194 (24.7%)
gap 23.1% 16.1% 12.1% 12.1%

f r 81.6% 85.0% 86.2% 86.6%
duration/order 11.0 11.2 11.2 11.4

nRoutes 2.5 2.5 2.6 2.7
nWaves (std) 1.4 1.4 1.4 1.4
iWait 2.6 2.6 2.6 2.5
pWait 0.003 0.005 0.002 0.003

timeo f f 836.2s.
totaltimeon 0.0001s. 0.08s. 252.0s. 607.5s.
timeon 0.0002s. 0.18s. 85.8s. 120.0s.

On average, the AP policy’s cost is 23.1% over the perfect information bound and, as expected

based on each heuristic’s recourse possibility, rolling it out improves upon AP and cuts the average

gap by 47.7%, with an average cost reduction of 9.1%. The dynamic heuristic GP achieves 63% of

that cost reduction, suggesting that a simple but dynamic policy can capture a significant amount

of the benefits of dynamism. The RRP policy achieves similar average cost reduction and gap as

RP, indicating that the AP policy is adequately choosing an initial dispatch. We find this to be

a useful insight for managers: Assuming average behavior in the future appears to be sufficient

when making an initial dispatch decision. Conversely, once the AP policy recommends an initial

dispatch, RP and RRP perform better by incorporating newly arrived information.

Also, RP increases the order fill rate over AP by 6.2%, by redesigning the solution at each

decision moment, which is crucial for logistics service providers interested in providing a better

customer service; GP and RRP respectively achieve 68.1% and 90.6% of this fill rate increase. The

dynamic policies’ benefits mostly stem from reducing penalty costs, while on average they produce

a slight increase in the routes’ duration. This is a tradeoff wherein dynamic policies significantly

improve order service, while incurring small increases in duration per order. We also see that
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dynamic policies slightly increase the average number of dispatches and reduce the initial waiting

time. In terms of waiting at the depot after the first dispatch (pWave), our results suggest it does

not occur often, and it may be better to keep the vehicle busy serving more orders.

All policies share the timeo f f value, but radically differ in on-line solution time: AP and GP are

almost instantaneous online policies, while each rollout policy requires more computational power.

RRP’s total online time is significantly less than RP, even though the former closely approximates

the latter in terms of cost and the other metrics.

In Figure 3.5, we observe the distribution of the gap over all instances for each heuristic policy.

We observe that RP not only outperforms AP on average, but is also less variable in solution

quality, with 3.7% deviation versus 7.4%; RRP has a similar distribution to RP’s, while GP has an

intermediate 4.9% deviation.
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Figure 3.5: Distribution of gap over all instances

In Figure 3.6 we compare the average gap of our heuristic policies between instances sharing

parameters of size n, degree of dynamism pstart , probability of not showing up pout , and arrival

variability σ . In the first graph on the left we see how the average gap increases with the number of

potential orders n; this increase may be related to an increase in the problem’s size and complexity,

but also to the lower bound’s tightness. Moreover we see that RPs gap difference over AP increases
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as n grows, with GP in between and RRP indistinguishable from RP. We also observe a significant

gap reduction for the a priori policy (AP) as pstart increases. As expected, the more information

available at the initial wave, the closer we can get to a deterministic problem and the better we

can optimize exactly. For dynamic policies the gap is significantly smaller and tends to be stable

over different values of pstart , showing the benefit and importance of complex recourse actions

when dealing with higher degrees of dynamism. Regarding the orders’ conditional probability of

not showing up and the variability of the ready wave, Figure 3.6 suggests that it may be harder to

optimize instances with higher value of pout and σ due to an increase in the problem’s uncertainty

and/or possibly due to a deterioration of our lower bound. Again, we see that the average gap

reduction of dynamic policies over the a priori policy is particularly valuable for instances with

higher ready time variability.
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Figure 3.6: Average gap versus n, pstart , pout , and σ

Figure 3.7 presents the average fill rate as a function of the instance parameters; for reference,

maximizing fill rate is the objective function of the model presented in [71]. We see that f r de-

creases as n increases over all policies, which may indicate congestion related to available vehicle

time. Interestingly, this fill rate reduction is marginally decreasing with n, presumably through

order consolidation; i.e., at N = 25, an increase of 10 customers results in a larger fill rate decrease
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than an increase of 15 customers at N = 35. Also, RP’s fill rate is consistently over AP by more

than 4.6% regardless of n. The second graph from the left shows how the average fill rate increases

by a 16.1% amount for AP and 10.6% for RP when pstart increases from 10% to 50%, meaning that

more information available at the start can significantly increase the number of orders served, es-

pecially for the AP policy. The relative difference between AP and RP is higher for instances with

higher dynamism showing again the additional value of dynamic policies. The third graph from

the left shows how RP (and dynamic policies more generally) can be useful when opportunities to

increase fill rate are presented. While the a priori policy’s rate remains stable over the probability

of not showing up (pout), all dynamic policies increase order fill rate, e.g., RP’s increases by 1.6%.

This may be explained by the fact that RP uses the time gained when initially planned orders do

not realize to serve unexpected and initially unplanned orders that do show up. This effect is also

observed when the average fill rate is compared versus σ . The fill rate of AP decreases with σ ,

but RP’s fill rate is more stable and the difference between RP and AP increases as the variability

parameter increases.
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Figure 3.7: Average fill rate versus n, pstart , pout , and σ

The graphs presented in Figures 3.8,3.9, and 3.10 show for each policy how the average number

of dispatches, duration in waves per dispatch, and initial number of waves spent waiting at the
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depot evolve over the different instance parameters. From the first graphs on the left, we see

that all policies dispatch more vehicles as n grows and wait a smaller amount of initial waves

at the depot, meaning that a relatively dense geography justifies a higher number of dispatches

during the day and more “active” dispatch waves during the operating period. We also see that the

difference in routes dispatched between RP and AP increases with n, and that dynamic policies

slightly reduce the waves used per dispatch as n grows. This shows empirically how dynamic

policies increase recourse opportunities, i.e., more returns to the depot, as n increases. The second

set of graphs from left to right show how our policies have fewer and longer vehicle dispatches

with shorter initial waiting periods as off-line information increases (higher pstart). This means

that as deterministic information increases, fewer recourse opportunities are needed and routing

efficiency becomes the focus. The shorter initial wait periods can be explained because there may

be relatively less need to “wait and see” versus instances where less information is given at start.

We also see how the RP policy comparatively increases the number of dispatches and reduces route

duration (gaining recourse opportunities) as pstart gets smaller. Similar effects can also be observed

from the graphs on the right. It is interesting to note that RP slightly increases the average number

of dispatches and the route length over AP as pout and sigma increase. Again, it shows how this

policy can recover from uncertainty, e.g., orders realizing later than expected or not showing up,

by dynamically inserting unplanned orders as substitutes.

The average solution times over all instances disaggregated by number of customers n and the

probability pstart are presented Table 3.4. The results on the left table show the off-line solution

times shared by all policies. As expected due to the nature of exact MIP models, this time increases

exponentially with the number of orders, but should not be problematic since this procedure is in-

tended to run before the start of the operating horizon. In addition, average times increase with

pstart , probably because the initial model has a bigger feasible region. The right-hand table shows
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Figure 3.8: Average number of vehicles dispatched versus n, pstart , pout , and σ
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Figure 3.9: Average number of waves per vehicles dispatch versus n, pstart , pout , and σ

the average solution times per dispatch of GP, RRP and RP policies. We observer a similar in-

creasing effect over the number of customers, which depending on available computing resources

could be an issue for the full rollout policy if n is large. Our results suggest substituting RRP for

RP, since both policies showed almost equivalent cost reductions over AP. For even larger n, the

GP policy is a simpler alternative to consider if RRP becomes inefficient; GP still takes less than 1

second per decision and generates better solutions than AP. Another possibility would be to further

exploit local search and meta-heuristic procedures; we leave this question for future work.
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Figure 3.10: Average number waves waited before initial dispatch versus n, pstart , pout , and σ

Table 3.4: Average timeon and timeo f f versus pstart and n

Average time offline in secs.
pstart\n 25 35 50

10% 121 338 1689
15% 130 375 1870
25% 224 494 1886
50% 245 579 2084

Average time per decision in secs.
GP RRP RP

pstart\n 25 35 50 25 35 50 25 35 50

0.10 0.06 0.10 0.16 3.4 16.5 147 5.5 44.0 273
0.15 0.05 0.12 0.14 4.1 16.1 186 6.0 41.4 284
0.25 0.04 0.05 0.07 4.3 32.8 256 7.1 57.8 324
0.50 0.03 0.03 0.06 4.7 51.9 305 7.8 62.8 326

3.6.3 Set 2: Second set of experiments

We now present a second set of computational experiments to study the tradeoff between two plau-

sible objective functions in same-day delivery: minimizing total cost and maximizing (weighted)

order coverage; in the DDWP setting this is equivalent to minimizing penalty costs. This coverage

goal also matches the objective in the models in [71]. We look for basic tradeoffs, performance of

our heuristic policies, and structural differences in our solutions to provide qualitative insights.

We build a new set of 720 instances by making 3 instances for each one of the 240 data sets

(with 35 orders each). Each instance has a different value of α ∈ {1,2,100} for the penalty setting

βi = 2αd0i. While the first set (α = 1) balances both vehicle traveling costs and penalty costs, the

last one (α = 100) hierarchically focuses on covering orders first, travel time minimization as a
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Table 3.5: Average cost and reduction percentage over AP for each policy under different settings
of α

policy\objective α = 1 α = 2 α = 100

LB 441 546 9395

AP 541 760 18958
GP 511 (5.5%) 711(6.4%) 16402 (13.5%)

RRP 493 (8.8%) 670 (11.8%) 13625 (28.1%)
RP 494 (8.7%) 669 (11.9%) 13614 (28.2%)

secondary objective; the second set (α = 2) is an intermediate case.

Table 3.5 presents average costs of all heuristic policies and perfect information bound over

all instances under different settings of α . It also shows for each dynamic policy the average

cost reduction percentage over AP. We first observe that cost reduction percentages of dynamic

policies substantially increase with α; this is explained by the order coverage improvement that

dynamic policies enjoy, discussed in the first set of experiments. It may also occur because the cost

savings from delivering an additional order become more significant as the weight on penalty costs

is bigger. For example, the cost reduction from serving one more order when there are two left

unattended is 50%. Second, we observe that RP becomes more attractive over GP as the relative

importance of penalty costs increases, suggesting that sophisticated dynamic policies that get better

fill rate improvements become more valuable as the focus shifts towards coverage.

The left table in Figure 3.11 presents results for RP averaged over all instances sharing the same

settings of α . The first two rows present the tradeoff between coverage cost (penalty) and vehicle

traveled time (duration) over the three cases of α . The third and fourth rows present these results

in comparable metrics: duration/order representing routing efficiency and f r representing order

satisfaction. These results are plotted in the graph on the right as a Pareto chart. As expected, we

observe that f r increases as order coverage becomes more relevant in the objective, but this fill rate

improvement requires a sacrifice in distance/order, i.e., the higher the order fill rates, the more

inefficient the routes. Moreover, the marginal rate of substitution between f r and distance/order
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metric α = 1 α = 2 α = 100

duration 305 352 448
penalty/α 189 159 132

duration/order 11.4 13.1 16.8
f r 86.0% 88.5% 90.7%

nRoutes 2.60 3.40 4.80
nWaves 1.36 1.22 1.13
iWait 2.60 1.97 0.58
pWait 0.003 0.013 0.047

(a) Metrics for RP under different settings of α
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(b) Pareto chart for RP with f r versus
duration/order

Figure 3.11: Average results for RP under different settings of α

decreases with α . From α = 1 to α = 2 the average gain in f r per distance/order sacrificed

is 1.4%. The same number from α = 2 to α = 100 is 0.61%, a 57% reduction. For decision

makers, this suggests that even in the efficient frontier, the distance cost of an additional customer

covered becomes increasingly more expensive; a cost-focused manager may be willing to sacrifice

coverage for routing efficiency at a sufficiently high fill rate.

We further explain the decreasing marginal substitution rate between coverage and routing

efficiency by looking at the last four rows of the table in Figure 3.11. RP has to create more recourse

opportunities (more returns to the depot), increases by 85% the average number of dispatches

and reduces the average dispatch length in waves by 17% to improve coverage; by the triangle

inequality, this reduces routing efficiency. Moreover, it drastically reduces the initial wait time by

78%, implying a longer usage of the vehicle throughout the day. This is also an interesting insight

for managers: When coverage is the objective, vehicles operate longer periods of time with higher

maintenance costs and longer workdays for drivers (a higher cost in human resources). Conversely,

order consolidation increases when total cost is the objective, routes become longer and efficient,

and dispatches are pushed forward in time. This reduces the operation’s length, but increases the

time between an order’s arrival and its dispatch; logistics providers may want to minimize this
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Figure 3.12: Example of two different solutions to the same instance realization. The left one min-
imizes total cost and the right one minimizes lost penalties first. Green orders are served and red
ones are left unattended. Each order’s ready wave is labeled at its node and route dispatch/return
waves are shown in the upper-left corner.

value to guarantee good service. In Figure 3.12 we show this tradeoff graphically, presenting two

solutions for the same instance realization. The left solution minimizes total cost while the right

one minimizes lost penalties. We clearly see how the right solution has to sacrifice roughly 50%

in routing efficiency to increase its order coverage by one order. It also makes 3 more vehicle

dispatches and actively uses the vehicle for 2 more waves.

We next analyze the performance of all heuristics under different values of α and the data set

parameters pstart , pout and σ . In Figure 3.13 we present the previously shown Pareto charts for

all heuristic policies under different settings of pstart . We observe that RP can approximately cut

the gap between the a priori heuristic and the perfect information bound in half. Approximately

two thirds of that improvement can be achieved by GP, while RPP appears equivalent to RP; this

is consistent with the first round of experiments. When pstart is small (10%) the value of dynamic

policies is higher and the marginal rate of substitution between f r and duration/order is smaller.

When pstart in higher (50%) there is less additional value in implementing dynamic policies and
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Figure 3.13: Pareto charts showing each policy’s average f r and duration/order for different
settings of pstart

the marginal rate of substitution becomes higher, implying that one has to sacrifice less routing

efficiency for a marginal increase in order coverage. We also see that as pstart grows the system

moves to the upper left, better for both f r and duration/order.

In Figure 3.14 we present the Pareto charts of all heuristics for each value of the conditional

probability of a order not showing up, pout . We observe that as pout increases all heuristics move

to the right, a loss in routing efficiency explained by the increased amount of uncertainty in the

order arrival process that makes a priori plans less reliable; this is especially true for problems

maximizing fill rate, making the marginal rate of substitution smaller. Dynamic policies provide

more value as pout increases and the curves move up in relation to AP, because they can better
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Figure 3.14: Pareto charts showing each policy’s average f r and duration/order for different
settings of pout

recover from unexpected order late arrivals and corresponding changes in the route plans.

In Figure 3.15 we analyze the Pareto charts of all heuristics under the two settings of order

ready wave variability (σ ). We observe two effects as variability increases. First, all curves get

wider, with a smaller marginal rate of substitution. This implies that as arrival variability increases

it is more expensive to gain coverage and more sacrifices in efficiency have to be made. Also, we

observe that AP and GP move down as σ increases, meaning that our static policy and simple dy-

namic policy lose order coverage. This is not the case of RP and RRP; again we see the importance

of sophisticated dynamic policies as variability increases.

3.7 Conclusions

We have formulated the Dynamic Dispatch Waves Problem (DDWP) on general network topolo-

gies to investigate the fundamental tradeoffs in same-day delivery distribution systems. We have

formulated an integer program to solve the deterministic version of the problem, and used this

model to derive an optimal solution for the stochastic a priori problem by converting it into a

deterministic equivalent.
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From the a priori solution we derive four heuristic policies that differ in their dynamism, from

an a priori policy with simple recourse to a fully dynamic rollout policy. The first policy, AP, is an

a priori solution with a order-skipping recourse; the second policy is a direct rollout of the a priori

solution, RP; the third, RRP, is a restricted version of RP that waits until the first dispatch wave

given by AP to roll out; and the fourth one is a computationally cheaper alternative to RP that rolls

out a prize-collecting TSP guided by the initial a priori solution.

We designed a first set of computational instances to test these policies under different settings

of geography, problem size, level of information disclosed before the operation starts (degree of

dynamism), and variability of the arrival process. Our computational experiments indicate that the

performance of the a priori policy has costs that are 23.1% over our perfect information bound,

even if we include heuristic order-skipping improvements. Its order fill rate is 81.6%. The benefit

of a fully dynamic policy over an a priori one can be significant; in our experiments, RP is able

to cut AP’s cost by 9.1% on average, yielding an average gap of 12.1% over the lower bound. It

also improves the order fill rate to 86.6%, which is highly desirable for SDD services. Part of

this benefit is achieved by increasing recourse opportunities to catch newly arrived orders, and by

sacrificing a small amount of routing efficiency. This also shows that the marginal benefit of RP
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is concentrated in order coverage and not in vehicle routing costs. A more surprising benefit is

that dynamic solutions also reduce the gap standard deviation by 3.6%, giving consistently good

solutions compared to AP. The cost reduction and fill rate increase are especially significant when

the instance dynamism is high (smaller pstart), and the order arrival variability is high (bigger pout

and σ ); this can be commonplace in SDD systems. We also found little benefit and few occurrences

of the vehicle waiting at the depot during the planning horizon once dispatches begin.

RP’s computational effort may prevent its deployment (at least using exact optimization) for

bigger problem sizes, e.g., n≥ 50. In this case, we provide a simpler and computationally efficient

dynamic policy (GP) that attains on average two thirds of the cost reduction benefits and fill rate

increase over AP. We also show that a practically equivalent result can be achieved by the restricted

rollout RRP; there appears to be almost no value in changing the initial dispatch wave established

by AP. In general, the DDWP proved quite challenging to solve and future work may consider

improvements in heuristic solution of the a priori problem using local search and meta-heuristics.

This could allow us to solve bigger problems and to make the RP policy practical for on-line de-

ployment in larger instances. Another interesting question is whether we can exploit probabilistic

routing methods to solve the a priori problem with recourse.

We also empirically studied the tradeoff between two possible SDD objectives, minimizing

total cost and maximizing the weighted order fill rate. One might think that these two objectives

deliver similar results, since well-sequenced routes leave more vehicle time available to cover

more orders. However, we found that one should expect significant sacrifices in vehicle routing

efficiency in order to maximize fill rate, and that the distance cost of an additional customer covered

becomes more expensive as order coverage increases. In our results, an RP solution that maximizes

order coverage and one that minimizes costs have a 50% difference in traveled distance per order

and a 5% difference in number of orders covered; also, a solution focusing on coverage makes more

dispatches (85% more), has 17% shorter routes on average, and starts dispatching earlier, having on

average a 50% longer vehicle utilization throughout the day. This has direct implications on driver
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salaries and vehicle maintenance costs. We also observed that, as fill rate becomes more important,

the average improvement of dynamic policies over a priori policies increases, and sophisticated

dynamic policies such as RP improve in relative terms over simpler dynamic policies like GP.

Possible extensions of the DDWP include incorporating vehicle service times at each location

or including customer service time windows instead of a deadline at the end of the day. The

extension of this model to multiple vehicles also seems natural; having a fleet of vehicles could

pool the risk associated with leaving orders unattended and therefore reduce costs, e.g., [2]. In

general, same-day delivery offers many new challenges to the logistics research community.
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CHAPTER 4

ORDER ACCEPTANCE MECHANISMS FOR SAME-DAY DELIVERY

4.1 Introduction

The Dynamic Dispatch Waves Problem (DDWP), defined in [43, 44], seeks to determine a vehicle

dispatch plan in a model where requests at potential delivery locations arrive according to some

stochastic process, and must be served by a single vehicle operating from a single fulfillment depot

over the course of a service day partitioned into a discrete set of feasible dispatch epochs (waves).

At any wave when the vehicle is available to dispatch at the fulfillment location, the vehicle can

wait for one wave to potentially accumulate and load more delivery requests, or can be dispatched

to serve a subset of ready requests. The objective of the DDWP is to minimize vehicle travel cost,

plus penalties for delivery requests that are not fulfilled by the end of the operating day.

An implicit assumption in the DDWP is that orders that will not be served via same-day delivery

are not formally rejected until the end of the operating day, after the final vehicle dispatch. Such a

setting gives the service provider a degree of flexibility that is likely not available in some practical

settings. In this chapter, we study a similar but more realistic problem setting in which customers

are offered a same-day delivery option when placing an order, and if a customer selects the option

then same-day delivery is guaranteed. To do so, we use an accept or reject framework: a request

is accepted (and thus delivered in the same day), or rejected immediately when received. Such a

framework, of course, reduces flexibility and leads to higher costs; we study the magnitude of this

cost increase. The DDWP also assumes that order processing times (from picking and packing) at

the distribution facility are negligible; thus any request is ready for delivery immediately once it is

known. In this research, we include a non-negligible order processing time that delays the dispatch

of each accepted order; see Figure 4.1.

95



time

disclosed & accepted ready

processing time

Order can be delivered
Order known

Figure 4.1: Order disclosure time and order ready time for an accepted order.

In this chapter, we formulate and study the Dynamic Dispatch Waves Problem with Immedi-

ate Acceptance (DDWP-IA), which integrates order request acceptance with vehicle dispatch and

routing decisions for SDD systems with a single vehicle. The DDWP-IA assumes customers place

online order requests dynamically until a cutoff time during the operating day; each order is not

known until its disclosure time. However, we assume that probabilistic information describing po-

tential future order requests is available. Immediately upon receipt of an order request, an order

acceptance mechanism must choose whether to accept or reject it. Each accepted order must

be delivered to its customer location no later than the end of the operating day, after it has been

processed by the distribution center and dispatched. An order dispatch system decides at each

of a number of dispatch waves whether to dispatch a vehicle from the distribution center (if avail-

able), loaded with a subset of accepted and ready orders. The routing of the dispatched vehicle

incurs travel cost, and also determines when the vehicle returns to the distribution center to be

loaded again; the order dispatch system is identical to that proposed in [43]. The objective of the

DDWP-IA is to minimize vehicle travel costs plus penalties for order rejections.

The order acceptance mechanism and dispatch system are clearly interrelated. For instance, we

avoid penalty cost if more orders are accepted earlier in the operating day, but doing so may incur

additional travel cost and reduces the flexibility of the dispatch system to accommodate orders

that appear later. Conversely, rejecting too many orders early in the day may lead to a vehicle

that is under-utilized. Routing economies created by geographic consolidation are also important;

accepting an order with a delivery location close to another order awaiting its dispatch may only
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lead to a small marginal increase in travel cost and vehicle travel time.

We explore two types of solution policies for the DDWP-IA; myopic policies that make accep-

tance decisions using only information about previously accepted orders, and proactive policies

that additionally incorporate probabilistic information regarding potential future order requests.

We expect proactive policies to outperform myopic policies, but the magnitude of the improvement

is of interest. Moreover, SDD systems operate under a high degree of information dynamism, and

there is a need for dynamic decision support tools able to continuously re-plan operations [44].

These dynamic policies determine decisions based on the information state at each decision epoch.

In contrast, simpler a priori policies specify most decisions in advance, and allow only simple

changes over time via pre-established recourse rules.

The primary contribution of this paper is to formulate the DDWP-IA, extending the DDWP

model from [43], and to develop a solution methodology for this new problem. The solution ap-

proach we develop uses a lower bounding procedure that solves deterministic instances of the prob-

lem to optimality, and a proactive and dynamic policy that rolls-out an optimal a priori solution.

In addition to this a priori roll-out policy, we also design a fast meta-heuristic for order accep-

tance as an alternative that requires far less computational effort. We compare our approaches with

two simpler benchmark approaches: a myopic re-optimization policy that assumes no information

regarding future arrivals, and a myopic policy that fixes dispatch waves according to an initial a

priori solution, but dynamically assigns order to dispatches and routes. A computational study pro-

vides results that are used to estimate the cost of imposing immediate order acceptance into SDD

systems, and to compare our best approaches with the performance of the simpler benchmark ap-

proaches. A second contribution is a study of the impact of distribution center order processing

time on the performance of SDD systems.

The remainder of the chapter is organized as follows. Section 4.2 defines notation and formu-

lates the DDWP-IA. Section 4.3 focuses on the deterministic problem, and proposes an approach

for it that will be used in the a priori model. Section 4.4 then proposes policies for solving the

97



dynamic and stochastic problem, and Section 4.5 provides a heuristic to speed up the order ac-

ceptance step. Finally, Section 4.6 presents the results of a computational study, and Section 4.7

provides conclusions.

4.2 Problem formulation

The DDWP-IA works within a service area defined by a finite set of nodes I := {1, . . . , |I|} rep-

resenting geographic customer locations, e.g., neighborhoods or city blocks; let I ∪ {0} be the

extended set that includes the depot (i = 0). Moreover, let E := I ∪{0}× I ∪{0} be the set of

edges between all pairs of nodes so that G := (I ∪{0},E) defines a complete undirected graph

representing direct routes between locations. Traversing an edge e∈ E takes de time and costs γde;

we assume for simplicity that time and cost values are proportional to each other, non-negative,

and that they satisfy the triangle inequality.

The problem’s operating period is represented as the continuous set T = [T,0]; time is

counted backwards as a resource being consumed so that t = T represents the start of the oper-

ating day and t = 0 when it ends. Let W := {W, . . . ,1} be a discrete set of waves, i.e., feasible

dispatch times, placed as a layer on top of T such that each wave w occurs at time tw ∈ T , with

tW = T ; the value w is also counted backwards and represents the waves-to-go before the terminal

wave w = 0 at t0 = 0. Define the extended wave set W0 :=W ∪{0} and the set of upcoming waves

at time t as W (t) := {w ∈W : tw ≤ t}; similarly let W0(t) := {w ∈W0 : tw ≤ t}.

Customer requests arrive over time according to a counting process for each node i ∈ I de-

fined by the random variables Ni(t)∈Z+, t ∈T . We assume node-independent counting processes

stopping after a cut-off time tct , and satisfying the memoryless property, meaning that the proba-

bility distribution of the kth arrival time τk
i ∈T at node i given that it has not occurred by time t is

completely independent of the history {τ j
i }

k−1
j=0. Mathematically, we assume for each i ∈ I

P(τk
i ≥ t ′|τk

i < t,τ j
i = t j, j = 0..k−1) = P(τk

i ≥ t ′|τk
i < t) = P(τi ≥ t ′|τi < t). (4.1)
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An example of (4.1) is a Poisson process truncated after the cutoff time tct with rate λi orders per

time unit, where

P(τi ≥ t ′|τi < t) =


1− e−λi(t−t ′) t ′ ∈ [tct , t]

1− e−λi(t−tct) t ′ ∈ [0, tct ]

. (4.2)

Order acceptance decisions occur immediately after each delivery request realization at a time

t ≥ tct demanding service to a node i ∈ I. If accepted, the order must be processed and dispatched

to the customer between its release time from the depot t− p and the end of the day; the parameter

p ∈ R+ is the request processing time. We study the problem with a constant p, but our model

can handle any node-dependent pi, i ∈ I. This implies that the order must be dispatched at a wave

w ∈W (t− p). A rejected request is lost, incurring a node-dependent penalty cost βi.

Vehicle dispatch decisions may occur at times tw for some wave w ∈ W . If the system dis-

patches a vehicle to execute a delivery route r = {0, ir1, . . . , irmr
,0} with mr customer visits, its

transportation cost is γd(r) := ∑
mr+1
j=1 {γd(irj−1,i

r
j)
} and spends t(r) := ∑

mr+1
j=1 {uirj−1

+ d(irj−1,i
r
j)
} =

d(r)+∑
mr
j=0 uirj time units, where ui, i ∈ I is a node service time assumed to be independent of the

number of customer requests served per node. The vehicle returns to the depot at time tw− t(r)

and becomes available for dispatch again at the earliest wave after the return time defined as

q(w,r) :=


max{k ∈W0(tw− t(r))} if mr ≥ 1

w−1 else
. (4.3)

The depot’s service time u0 represents vehicle set-up and load times. For notational purposes we

say that a route visits node i if i ∈ r. By the triangle inequality, we do not increase travel time if we

consolidate all requests at node i into one visit, so we consider only elementary routes. Also, we

assume no time difference between servicing one or multiple requests per node, so without loss of

optimality a route serves all open requests at a visited node.
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4.2.1 System states

The system’s state is described by a vector s = (t,a,w) ∈S at any time t ∈ T , where S is the

set of all feasible states. The parameter a ∈ W |I| is the vector of open commitments, and each

component indicates the earliest possible wave ai ∈ W a visit to node i at which the vehicle can

cover all its pending accepted orders; if ai = ∞, no order is waiting for service at i. Given a, let

Ia := {i ∈ I : ai < ∞} be the subset of nodes with open orders. The parameter w ∈W0(t) represents

the earliest upcoming wave when the vehicle is available at the depot, and determines the next

dispatch decision. The state s does not carry disaggregated information regarding specific orders

at i; without loss of optimality, all such orders can be covered in one visit occurring no earlier than

min(w,ai).

Any state s is certified as feasible by a dispatch plan π capable of feasibly serving all com-

mitments in a, and defined by a set of elementary routes {rπ
k }k∈W π indexed by its set of dispatch

waves W π ⊂ W . Formally, a state (t,a,w) ∈S is feasible if and only if t ∈ T ,w ∈ W0(t) and

there exists a dispatch plan π satisfying three conditions:

1. Plan π starts after wave w, i.e., if k ∈W π , then k ≤ w.

2. Plan π covers all commitments, i.e., if i ∈ Ia, then ∃k ∈W π such that k ≤ ai and i ∈ rπ
k .

3. Routes in π don’t overlap in time, i.e., for k1,k2 ∈W r : k1 > k2 we have k2 ≤ q(k1,rπ
k1
).

Let P(a,w) be the set of feasible dispatch plans for state (t,a,w). The state space is completely

defined by

S = {(t,a,w) : t ∈T ,w ∈W0(t),a ∈W |V |,∃π ∈P(a,w)}. (4.4)

We also define the extended state space

S ′ = {(t,a,w,π) : t ∈T ,w ∈W0(t),a ∈W |V |,π ∈P(a,w)}, (4.5)
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where all feasible states are combined with all feasible dispatch plans. A plan’s feasibility condi-

tion only depends on a and w; if π is feasible for state (t,a,w), then it is also feasible for any state

(t ′,a,w) : t ′ ∈ (t, tw]. Therefore, a plan’s feasibility is preserved over time until the next dispatch

wave, and is useful in heuristic design. If p is negligible, then all previously accepted and pending

orders are open for dispatch at the current time t and, therefore, any feasible state (t,a,w) has a

plan π consisting of one single vehicle dispatch after w covering all commitments in a. This is not

the case when p > 0 and a dispatch plan is a solution the VRP with release dates [9, 24].

4.2.2 Actions, transitions and costs

An accept/reject decision is immediately taken after a request realizes at node i ∈ I in state s =

(t,a,w). Denote the order’s earliest release wave from the depot as b := max{k ∈ W (t − p)}.

Rejecting an order costs βi, but keeps the system’s state unaltered. Accepting it is free of charge,

but can only be performed if the post-decision state (t,ai,w) remains feasible, where ai is the

updated vector of commitments with ai
j = a j,∀ j 6= i and ai

i = min{ai,b}. Acceptance is always

feasible when the new order satisfies b≥max{ai,w}.

A dispatch decision is taken at any state (tw,a,w) where time matches the next decision wave.

If we restrict ourselves to optimal Traveling Salesman Problem (TSP) routes, the vehicle dispatch

is fully determined by a subset Q ∈ I of node visits representing an optimal tour over Q∪{0},

defined by r∗(Q) := argmin{r:Q∈r} t(r), minimizing cost γd∗(Q) := γd(r∗(Q)) and maximizing the

return wave q∗(w,Q) := q(w,r∗(Q)). A feasible dispatch Q at wave w keeps the system in a feasible

post-decision state (t,a(w,Q),q∗(w,Q))∈S , where a(w,Q) is the updated vector of commitments

defined as

a(w,Q)i :=


∞ i ∈ Q and ai ≥ w

ai otherwise
. (4.6)

Q= /0 is the special action that represents waiting at the depot at zero cost and sets q∗(w, /0) =w−1.

Figure 4.2 depicts a flowchart of all system transitions and actions connected to a state (t,a,w) ∈
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Figure 4.2: Flowchart of system transitions and actions in state (t,a,w) for the DDWP-IA

S .

4.2.3 Dynamic programming model

We model the DDWP-IA as a semi-Markov decision process (SMDP) that generalizes a Markov

decision process (MDP) by modeling time as a continuous variable. Specifically, we assume that

the time spent between consecutive decision epochs follows a probability distribution that depends

on the previous state and action taken [57]. Given a time t ∈ T , let φ(i, t ′, t) be the probability

density of the next order arriving at time t ′ < t at node i ∈ I, and let ψ(t ′, t) be the probability that

no order arrives at all between t and t ′. We have

φ(i, t ′, t) = P({τi = t ′}
⋂
{τi > τ j,∀ j ∈ I : j 6= i}|τi < t), (4.7)

ψ(t ′, t) = ∏
i∈I

P(τi < t ′|τi < t); (4.8)

and in the particular case of the Poisson process we have

φ(i, t ′, t) =


λie(∑i′∈I λi′)(t−t ′) if t ′ ∈ [tct , t]

0 else
(4.9a)

ψ(t, t ′) = e∑i∈I λi(t−max(t ′,tct)). (4.9b)
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Let C(t,a,w) be a function representing the optimal expected cost-to-go at state (t,a,w), and

let C∗(I0) be the optimal expected cost-to-go at time T with a set I0 ⊆ I of previously accepted

visits ready at wave W . Let a0 satisfy a0
i =W, i ∈ I0 and a0

i = ∞ otherwise. The SMDP defined in

(4.10) computes C∗(I0) recursively over time with

C∗(I0) =C(T,aI0
,W ), (4.10a)

C(0,∞,0) = 0, (4.10b)

C(tw,a,w) = min
Q⊆I:

(t,a(w,Q),q∗(w,Q))∈S

{γd∗(Q)+C(tw,a(w,Q),q∗(w,Q))} , ∀(tw,a,w) ∈S

(4.10c)

C(t,a,w) = ψ(t, tw)C(tw,a,w)+∑
i∈I

∫ t

t ′=tw
φ(i, t ′, t)C̃(t ′,a,w, i)dt ′, ∀(t,a,w) ∈S : t > tw,

(4.10d)

C̃(t,a,w, i) = min{βi +C(t,a,w),C(t,ai,w) : (t,ai,w) ∈S }, ∀i ∈ I,(t,a,w) ∈S : t > tw,

(4.10e)

where Equation (4.10a) defines the optimal cost and Equation (4.10b) sets the terminal cost equal

to zero. Equation (4.10c) models the state transition during a dispatch decision and states that

the cost-to-go at a state (tw,a,w) is equal to the minimum sum of dispatch cost γd∗(Q) plus

the post-decision cost-to-go C(tw,a(w,Q),q∗(w,Q)) over all feasible dispatched subsets Q ⊆ I :

(tw,a(w,Q),q∗(w,Q)) ∈ S . Equation (4.10d) models the evolution of the system over time and

states that any cost-to-go C(t,a,w) : t > tw is equal to the cost-to-go in the next dispatch decision

C(tw,a,w) if no orders arrive between t and tw (with probability ψ(t, tw)), and equal to Q(t ′,a,w, i)

if the next order realizes at node i and time t ′ ∈ [tw, t] (with probability φ(i, t ′, t)); C̃(t,a,w, i) repre-

sents the cost-to-go immediately before the acceptance decision defined in Equation (4.10e), equal

to the minimum cost-to-go between rejecting the order C(t,a,w)+βi and accepting it C(t,ai,w)

(if feasible).

Model (4.10) clearly shows its intractability; it has an uncountable number of states, expo-
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nentially many dispatch decisions for each state (tw,a,w) ∈ S , and an uncountable number of

terms in the expectations that model transitions in time. Also, it is NP-Hard to evaluate d∗(Q) and

q∗(w,Q), which involve solving a TSP over Q∪{0}. We next develop approximate solutions to the

DDWP-IA, where each action’s computing time does not grow with the continuous time interval

T .

4.3 The deterministic DDWP and lower bounds

We first study the simplified problem when the number of orders and their arrival times at cus-

tomer nodes are disclosed before the operation starts. Under this setting all relevant information

is available beforehand and all request acceptance and vehicle dispatch decisions can be made be-

forehand. So, the DDWP-IA model collapses to the deterministic variant of the DDWP discussed

in [43].

Suppose all order arrival times {τ1
i ,τ

2
i , . . .} are known at t = T for each node i ∈ I; then each

variable Ni(t) is a deterministic quantity and the number of requests ready at any wave w ∈ W

ni,w := Ni(tw + p) is known beforehand. Figure 4.3 provides an example for a particular node i

where functions Ni(t) and ni,w are depicted in a seven-wave horizon, a cutoff time tct = t2, and a

processing time p.

t7 t6 t5 t4 t3 tct = t2 t1 t0
0
1
2
3
4
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time

or
de

rs

Ni(t)
ni,w

p

Figure 4.3: Evolution of the orders disclosed over time (Ni(t)) and orders ready for each dispatch
wave (ni,w) for a particular realization (ω) of arrivals at node i ∈ I.

In the deterministic DDWP it is still infeasible to serve a request before its ready wave, meaning
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the number of orders that can be accepted and dispatched to node i ∈ I by wave w ∈W is at most

ni,w. We cite some properties from [43] that any feasible deterministic solution satisfies without

loss of optimality:

1. Any node i ∈ I is visited by a vehicle at most once. Otherwise, there exist at least two vehicle

dispatches at waves w1 and w2 < w1 visiting i and one could skip i from the dispatch at wave

w1, covering these requests in the dispatch at w2. By the triangle inequality, the change does

not increase travel cost or travel time.

2. The vehicle does not wait at the depot after the first dispatch. If the vehicle waits for k > 1

waves after returning from a dispatch at a wave w, one can delay each dispatch occurring

prior to wave w by exactly k waves, serving the same orders at a later point.

In the deterministic case, a dispatch plan π completely defines the number of orders accepted

at each node. Consider all plan routes rπ
k dispatched at waves k ∈ W π ; the number of accepted

orders at node i ∈ I is equal to ni,w∗
π,i

, where w∗
π,i = min{k ∈W π : i ∈ rπ

k } is the latest visit to i in

π , or 0 if π does not visit i.

Define CD(I0,N(t)) as the minimum cost of the deterministic DDWP, where I0 is the set of

initially accepted visits and N(t) = {N1(t), . . . ,N|I|(t)} is the vector function of all order realiza-

tions over time t ∈ T ; define Iw := {i ∈ I : w ≥ h(0, i)} ⊂ I and Ew := {e ∈ E : w ≥ h(e)} ⊂ E

for each w ∈ W as the sets of feasible nodes and edges for a vehicle dispatch at wave w, where

h(i, j) = min{w ∈W : tw ≥ I(i>0, j>0)(s0)+ I(i>0)(t{0,i})+ I( j>0)(t{0, j})+ t{i, j}+ si + s j} is edge’s

{i, j} ∈ E latest possible wave. Also, define the cut set Ew(S) = {{i, j} ∈ Ew : i ∈ S, j 6∈ S}, for any

subset S ⊆ Iw; and define t̄e = te + 0.5si + 0.5s j as the adjusted time spent at edge e = {i, j} ∈ E

considering service times. The Integer Program (IP) in (4.11) formulates the deterministic DDWP
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that computes the optimal dispatch plan π(I0,N(t)),

CD(I0,N(t)) = min
{x,y,z,v,s} ∑

i∈I
βi{Ni(0)zi +

W

∑
w=h(0,i)

(Ni(0)−ni,w)yw
i }

+ ∑
w∈W

∑
e∈Ew

γdexw
e (4.11a)

s.t.
W

∑
w=h(i,0)

yw
i = 1, ∀i ∈ I0 (4.11b)

zi +
W

∑
w=h(i,0)

yw
i = 1, ∀i ∈ I (4.11c)

∑
e∈Ew(0)

xw
e ≤ 2, ∀w ∈W (4.11d)

∑
e∈Ew(S)

xw
e ≥ 2yw

i , ∀w ∈W ,∀S⊆ Iw,∀i ∈ S (4.11e)

∑
e∈Ew

t̄exw
e ≤ ∑

k<w
(tw− tk)vw

k , ∀w ∈W (4.11f)

∑
k<W

sk + ∑
k<W

vW
k = 1, (4.11g)

∑
k<w

vw
k = ∑

k>w
vk

w + sw, ∀w ∈W \{W} (4.11h)

vw
k ∈ {0,1}, ∀w,k ∈W0 : k < w (4.11i)

sk ∈ {0,1}, ∀k ∈W0 \{W} (4.11j)

zi ∈ {0,1}, ∀i ∈ I (4.11k)

yw
i ∈ {0,1},∀i ∈ Iw, and xw

e ∈ {0,1,2},∀e ∈ Ew, ∀w ∈W (4.11l)

where variable zi is equal to 1 if node i isn’t visited, and 0 otherwise; yw
i is equal to 1 if a dispatch

at wave w visits node i, and 0 otherwise; xw
e is equal to m ∈ {0,1,2} if the vehicle traverses edge

e m times at a dispatch in wave w; vw
k is equal to 1 if a dispatch at w returns at wave k, and 0

otherwise; and sk is equal to 1 if the vehicle waits at the depot until wave k, and 0 otherwise (s0 = 1

implies an empty plan with no dispatch throughout the horizon). Constraints (4.11b) force all

initially accepted visits in I0 and (4.11c) guarantee visiting each node i at most once at wave w.
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Constraints (4.11d) - (4.11e) guarantee that vector xw defines a feasible tour only visiting nodes

selected by the vector yw. Constraints (4.11f) force routes to satisfy durations limits determined

by vw
k . Finally, wave flow constraints (4.11g)-(4.11h) enforce vehicle conservation throughout

time. To simplify upcoming notation in this article, we say that any vector of variables (x,y,z,v,s)

satisfying constraints (4.11c) through (4.11l) belongs to domain D(W ).

Problem (4.11) generalizes the Prize-Collecting TSP (PC-TSP) and is NP-Hard. However, the

problem’s size is independent of the time horizon T and only depends on the number of waves W .

In [43] the authors show how to optimize over (4.11) using standard branch and cut approaches

for a routing problem based on arc variable formulations and dynamic addition of the subtour

elimination constraints (4.11e); they also estimate a lower bound on the optimal expected cost

C∗(I0) with a Perfect Information Relaxation (PIR) Eω [CD(I0,N(t,ω))] ≤C∗(I0) that disregards

the “non-anticipative” dynamics of any feasible policy for the stochastic DDWP-IA problem and

computes a different solution for each possible scenario realization ω of the random variables [19,

61].

4.4 Solution policies for the stochastic case

Now, we develop a framework to construct heuristic policies for the DDWP-IA, where a system

state is maintained that includes a feasible dispatch plan (with potentially multiple planned trips)

serving all accepted delivery requests along with a set of potential future delivery requests that

have not yet realized. This dispatch plan is used to guide order acceptance and vehicle dispatch de-

cisions, and it is updated dynamically when new information is available. Each policy P constructs

an initial dispatch plan π that is feasible for the initial state s0, defined by routes rπ
k dispatched at

waves k ∈W r, each visiting a subset Qπ
k ⊆ I of nodes. After the operation starts, policy P dynami-

cally updates π to keep it feasible throughout all states s j ∈S , j = {0,1,2,3,4, . . .} visited by the

system, so that (s j,π) ∈S ′.

Define the list of online request arrivals for a given realization of the random variables ω as
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L (ω) = {1, . . . ,L(ω)}, ordered by arrival time so that element k represents the k-th request arrival

time τ(ω,k) ∈T at node i(ω,k) ∈ I. Algorithm 10 provides a high-level pseudo-code description

to compute the cost CP(I0,ω) of a policy P given ω and the set of previously accepted visits I0.

P is determined by three functions used to update the dispatch plan: IniPlan, ArrivalUpdate and

DispatchUpdate.

Algorithm 10 Implementation of a generic policy P

1: procedure EXECUTEPOLICY(P, I0,ω)
2: Initialize parameters: k← 1, C← 0, s := (t,a,w)← (T,a0,W ).
3: Initialize plan: π ←INIPLAN(P, I0)
4: do
5: t←max{τ(ω,k), tw}
6: if (τ(ω,k)≥ t) then an order arrives at time t at node i← i(ω,k).
7: Get release wave: b←max{x ∈W0(t− p)}
8: Update plan: π ←ARRIVALUPDATE(P,π,s, i,b)
9: if (π covers i after b) then accept: ai←min{ai,b}

10: else reject: C←C+βi

11: k++;
12: else
13: Update plan: π ←DISPATCHUPDATE(P,π,s)
14: if w ∈W π then
15: dispatch route rπ

w visiting nodes Qπ
w: C ← C + γt(rw), a ← a(w,Qπ

w),w ←
q(w,rπ

w),
16: delete route rπ

w from plan π .
17: else wait at the depot: w← w−1
18: while (k ≤ L(ω) or w > 0)
19: return C

Algorithm 10 initializes all variables in line 2 and calls function IniPlan, which returns an

initial plan π in line 3. Then, it runs an event-based simulation that advances to the time of the

next event in line 5. If the event is a request arrival, it gets its information and updates the plan π ,

calling ArrivalUpdate in line 8; if the updated plan covers the new request it accepts it in line 9

and updates the state s; otherwise, it rejects it and pays the penalty cost in line 10. On the other

hand, if the event is a dispatch decision, it updates the plan, calling DispatchUpdate in line 13 and,
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if w belongs to the set of planned dispatches W π , it dispatches route rπ
w, making all cost, state, and

plan updates in lines 15 and 16; otherwise, the vehicle waits at the depot one wave by subtracting

one wave to state s in line 17. The simulation returns the cost C for realization ω after there are no

more orders to process in the list of arrivals and there are no more waves remaining.

The online computing time of Algorithm 10 depends directly on functions ArrivalUpdate

and DispatchUpdate. In particular, the speed of the former is critical to allow fast accept/reject

decisions. We next describe multiple policies that differ in how they implement functions IniPlan,

ArrivalUpdate and DispatchUpdate.

4.4.1 Myopic policy

The first policy disregards all available probabilistic information regarding future request arrivals,

but makes optimal decisions with respect to the information disclosed so far. Assume that a new

request realizes at time t and node i when the system is in state (t,a,w) ∈S ; the myopic policy

(MP) solves the IP defined in (4.12) to get its optimal dispatch plan πM(a,w, i,b) and, therefore,

accepts the new request if it is covered by this plan before b = max{k ∈W0(t− p)}.

min
{x,y,z,v,s}∈D({1,...,w})

βi{zi +
w

∑
k=max(b+1,h(0,i))

yk
i }+

w

∑
k=1

∑
e∈Ek

γdexk
e (4.12a)

s.t.
min{ai,w}

∑
k=h(0,i)

yk
i = 1, ∀i ∈ Ia. (4.12b)

The objective (4.12a) minimizes vehicle travel cost plus a penalty paid if the solution does not

dispatch to node i after wave b. The plan is forced to belong to all feasible plans starting from wave

w, i.e., {x,y,z,v,s} ∈ D({1, . . . ,w}) and constraints (4.12b) guarantee that we cover all previous

commitments in vector a. The function ArrivalUpdate(MP,π,s, i,b) defined in Algorithm 11

formally defines MP and optimizes problem (4.12) to update the feasible dispatch plan starting

from the previous plan; DispatchUpdate(MP,π,s) returns the same plan π entered as argument.
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Finally, function IniPlan(MP, I0) is defined in Algorithm 12 and determines an initial plan π with

a single route equal to an optimal TSP route over I0∪{0} dispatched at the latest possible wave

k∗ = min{k ∈W0 : tk ≥ t∗(I0)}.

Algorithm 11 Dispatch plan update upon arrival for MP
1: procedure ARRIVALUPDATE(MP,π,s, i,b)
2: Solve problem (4.12) with initial feasible solution π .
3: return πM(a,w, i,b), the optimal to (4.12) dispatch plan.

Algorithm 12 Initial dispatch plan for MP

1: procedure INIPLAN(MP,I0)
2: Solve a TSP over I0∪{0} and get rT SP, the optimal TSP route
3: return single route rT SP dispatched at k∗ = min{k ∈W0 : tk ≥ t∗(I0)} .

A myopic plan suffers from a significant drawback; it tends to build a plan consisting of one

single and long dispatch route, leaving few recourse possibilities (or none). It is consistent with

objective (4.12a), focused on consolidating all accepted dispatches, and does not consider the costs

for rejecting potential future request arrivals. We are interested in a solution with multiple returns

to the depot to create better recourse opportunities, and we can thus heuristically set a maximum

route duration dmax to enforce this in (4.12)

vw
k = 0, ∀w,k ∈ {0,1, . . . ,w′} : k < w and tw− tk > dmax. (4.13)

The value of parameter dmax must be calibrated beforehand.

4.4.2 A priori policy

Now we present an optimal a priori policy (AP) in which a dispatch plan π is determined before-

hand, using all probabilistic information available at time t = T . We accept each request released

at a wave and node covered by the a priori plan. As in [43], we plan an optimal a priori policy in
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which no recourse actions are allowed. The dispatch cost of such a policy is known beforehand,

while the penalties paid for unserved requests depend on future request realizations; however, one

can compute expected penalty costs based on the planned route at each dispatch wave. Define the

expected number of requests realized at node i ∈ I and released by wave w ∈ W0 as the discrete

function n̄i,w := E(Ni(tw + p)); for a Poisson process with a rate of λi orders per time and cutoff

time tct we have n̄i,w = λi max(0,T −max(tct , tw + p)); an example with four expected orders over

the horizon and tct = t2 is depicted in Figure 4.4.
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Figure 4.4: Expected orders realized at time t (E(Ni(t))) and expected orders ready for dispatch at
wave w (n̄i,w) at a particular node i ∈ I for a particular Poisson arrival process.

The a priori problem is equivalent to solving a deterministic DDWP instance with n̄i,w orders

ready at node i and wave w, so we can assume that an optimal a priori plan will visit each location

i at most once and will not wait at the depot after the first dispatch decision. The IP that solves for

this optimal a priori plan is

min
{x,y,z,v,s}∈D(W )

∑
i∈I

βi{E(Ni(0))zi +
W

∑
w=h(0,i)

(E(Ni(0))− n̄i,w)yw
i }+ ∑

w∈W
∑

e∈Ew

γdexw
e (4.14a)

s.t.
W

∑
w=h(i,0)

yw
i = 1, ∀i ∈ I0; (4.14b)

it shares its feasible region with (4.11), but has a different objective determined by expected future

requests ready at node i and wave w for each i ∈ I and w ∈W . In case the plan does not visit node

i, the expected penalty cost is equal to βi times E(Ni(0)), i.e., the expected requests disclosed by
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time t = 0; in case it visits node i at wave w, the expected penalty is βi times E(Ni(0))− n̄i,w, the

expected requests disclosed by time 0 that were not ready by wave w. The function IniPlan(AP, I0)

returns an optimal a priori plan solving (4.14); function ArrivalUpdate(AP,π,s, i,b) produces no

change to the plan; and DispatchUpdate(AP,π,s) improves the performance of the a priori policy

at each dispatch wave w ∈W π in state s by removing from route rπ
w all nodes i having no realized

orders at w.

4.4.3 Myopic policy with fixed a priori dispatch

We next present a myopic policy (MPF) that predetermines a subset of vehicle dispatch waves W at

t = T based on the a priori solution. Intuitively, MPF may outperform AP through re-optimization

of the plan, and may correct MP’s myopic dispatch structure by incorporating probabilistic infor-

mation. Let W AP be the dispatch waves used by an a priori plan solving (4.14). At any state s,

MPF keeps a feasible plan π : (s,π) ∈S ′ and π will only dispatch vehicles at waves in W AP. The

plan π is initialized in Algorithm 13 as the initial a priori plan, skipping all customer visits I \ I0

not yet realized by t = T .

Algorithm 13 Initial dispatch plan for MPF

1: procedure INIPLAN(MPF ,I0)
2: Solve the a priori problem in 4.14 and save its plan πAP.
3: Build a plan π by skipping all customer visits to I \ I0 from all routes in πAP.
4: return π ,

When a request arrives at state (t,a,w) and node i with release wave b the plan is updated by
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solving

min
{x,y,z,v,s}∈D({1,...,w})

βi{zi +∑
w
k=max(b+1,h(0,i)) yk

i }+∑
w
k=1 ∑e∈Ek

γdexk
e (4.15a)

s.t.
min{ai,w}

∑
k=h(0,i)

yk
i = 1, ∀i ∈ Ia,

(4.15b)

vw
k = 0, ∀w,k ∈W : k < w,w 6∈W AP. (4.15c)

The problem is similar to 4.12, but adds a new set of constraints 4.15c to ban dispatch waves not

belonging to the set W AP. Function ArrivalUpdate is implemented in Algorithm 14 and function

DispatchUpdate leaves the plan unaltered.

Algorithm 14 Dispatch plan update upon arrival for MPF
1: procedure ARRIVALUPDATE(MPF,π,s, i,b)
2: Solve problem (4.15) with initial feasible solution π .
3: Get an optimal solution π∗, set π ← π∗, return π

We believe that a fixed dispatch policy such as MPF emulates and improves a system that

practitioners may use; it builds a reasonable initial dispatch structure based on probabilistic infor-

mation and, once the daily operation starts, the decision maker assign requests to dispatch time

slots myopically.

4.4.4 Full rollout of the a priori policy

A better but more involved idea is to fully roll out the a priori policy (RP) and re-optimize the

a priori problem at each time t, after new information arrives. In a myopic policy, useful new

information is only disclosed each time an order arrives; conversely, for RP useful new information

may be disclosed continuously over time, depending on expected future arrivals. Thus, to improve

the policy’s performance we re-optimize the plan when an order arrives, and before each dispatch

decision.
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The initial dispatch plan π for RP matches the a priori plan IniPlan(RP,V 0) := IniPlan(AP,V 0).

Define the expected number of requests realized after time t ∈ T at node i ∈ I that are ready by

wave w ∈W as

fi,w(t) =


E(Ni(tw + p)−Ni(t)) if t > tw + p,

0 else;
(4.16)

for a Poisson process with rate λi and cut-off time tct , this becomes

fi,w(t) = λi max(0, t−max(tct , tw + p)). (4.17)

The function ArrivalUpdate is implemented in Algorithm 15 and sets π equal to the optimal a

priori plan for state s in (4.18), conditioned on an order realization at node i,

min
{x,y,z,v,s}∈D({1,...,w})

βi{zi +
k

∑
k=max(b+1,h(0,i))

yk
i }+

w

∑
k=1

∑
e∈Ek

γdexk
e

+∑
j∈I

β j

{
E(N j(0)−N j(t))z j +

w

∑
k=h(0, j)

(
E(N j(0)−N j(t))− f j,k(t)

)
yk

j

}
(4.18a)

s.t.
min{a j ,w}

∑
k=h( j,0)

yk
j = 1, ∀ j ∈ Ia, (4.18b)

where the problem’s domain equals (4.12), but it incorporates penalties for expected rejections

of future order arrivals in the objective (4.18a). We save some computational time in line 2 of

Algorithm 15 by skipping the re-optimization of the plan π for all orders already covered by the

previous plan; preliminary computational experiments showed that this filter had no significant

impact. Finally, function DispatchUpdate, implemented in Algorithm 16, updates the plan before

Algorithm 15 Update of plan upon an order arrival for RP
1: procedure ARRIVALUPDATE(RP,π,s, i,b)
2: if (π does not cover i after wave b) then
3: Solve the IP (4.18) and redefine π as its optimal solution
4: return π
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a dispatch decision at wave w in state s = (tw,a,w), solving

min
{x,y,z,v,s}∈D({1,...,w′})

w

∑
k=1

∑
e∈Ek

γdexk
e

+∑
j∈I

βi

{
E(N j(0)−N j(tw))z j +

w

∑
k=h(0,i)

(
E(N j(0)−N j(tw))− f j,k(tw)

)
yk

j

}
(4.19a)

s.t.
min{a j,w}

∑
k=h( j,0)

yk
j = 1, ∀ j ∈ Ia.

(4.19b)

Algorithm 16 Update of dispatch plan upon a dispatch decision for RP
1: procedure DISPATCHUPDATE(RP,π,s)
2: Solve the IP (4.19) and redefine π as its optimal solution
3: return π

Computing RP may require the solution of an IP for each request arrived and each dispatch

wave in the horizon, and these IP’s will grow in difficulty as I, W and arrival frequency per node

grow. We implement some procedures to speed up the solution of an IP at a given state s. First, we

warm-start the incumbent solution of an IP with the latest feasible plan available from previous plan

re-optimizations. Also, we keep all subtour elimination cuts from previous IPs sharing the same

network structure. Finally, we do not solve each problem to optimality and set up an optimality

tolerance (0.5%) and maximum solution time (1800 seconds). Particularly, the computational

effort in ArrivalUpdate may be critical; we evaluate policy RP via computational experiments in

section 4.6 and design an alternative heuristic rollout policy in 4.5.1 to improve computation times.
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4.5 A generic heuristic

Now, we propose a fast meta-heuristic procedure to improve any plan π feasible for the generic IP

GC(w,g) = min
{x,y,z,v,s}∈D({1,...,w})

w

∑
k=1

∑
e∈Ek

γdexk
e +∑

i∈I

{
gi,0zi +

w

∑
k=h(0,i)

gi,kyk
i

}
, (4.20)

where w is the earliest wave and gi,k ∈R+ represents a generalized cost for serving node i at wave

k; case k = 0 represents no service. All IPs defined in Sections 4.3 and 4.4 can be stated in this

form; if the original IP has constraints that enforce previous visit commitments to node i of the

form ∑
b
k=h(0,i) yk

i = 1, then we set gi,k = M,k = b+1, . . . ,w for an M value such that GC(w,g)> M

implies infeasibility.

The heuristic complements the IP solver and is used in two phases of the optimization process.

First, we run it over any feasible plan π identified during the branch-and-bound tree search, and

update the incumbent if the heuristic produces a plan with lower cost. Second, we run it over any

initial feasible plan π and use the heuristically improved plan as an initial feasible solution. Also,

our heuristic can be used as a solver-independent procedure. We use a local search procedure sim-

ilar to [43] that exploits the wave structure of any feasible plan by running multiple neighborhood

searches over it that solve instances of the prize-collecting Traveling Salesman Problem (PC-TSP).

We extend this procedure by adding two improvements; we randomly destroy the local solutions

to avoid local optimal points and use randomized acceptance rules to evaluate a candidate solution;

see Appendix 4.8.2. Second, we implement a sub-heuristic to solve each PC-TSP to remove the

dependence on a MIP solver; this sub-heuristic is defined in Appendix 4.8.3.

Algorithm 17 provides a high-level description of the heuristic; it requires an initial plan π0

feasible for (4.5), and uses three separate neighborhood searches to improve upon the best available

plan π∗: (1) intra-route local search (IntraLS), i.e., single route node selection and re-sequencing;

(2) inter-route local search (InterLS), i.e., node exchanges between routes and re-sequencing; and
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Algorithm 17 Heuristic Search Procedure

1: procedure RUNHEURISTIC(Initial feasible plan π0, maximum random destructions kmax)
2: π ←Copy(π0), π∗←Copy(π0), k← 0
3: do
4: if (¬INTRALS(r,r∗) and ¬INTERLS(r,r∗) and ¬WAVESLS(r,r∗)) then
5: RANDOMDESTRUCTION(r)
6: k← k+1
7: while (k < kmax)
8: return r∗

(3) wave local search (WavesLS), i.e., changes in the number of routes and dispatch times. Each

local search returns true if it has updated and accepted a new local solution π , and else, it returns

f alse. If no local search update is made, the procedure calls a solution destruction operator that

randomly deletes percentage of the nodes and routes in plan π; this is done kmax times before the

heuristic outputs plan π∗. The details of all local search functions and destruction operator can be

found in Appendices 4.8.1 and 4.8.2.

We make a final improvement to the meta-heuristic by running a very large neighborhood

search that makes two local search moves in series before evaluating a candidate plan’s cost;

we implement it by calling function RunHeuristic recursively. Specifically, we run function

RunHeuristic a second time over each candidate plan π ′ that does not improve the local solu-

tion π after one local search move π → π ′, but has a small enough cost (cπ ′ ≤ (1+ δ )cπ ) to be a

good candidate to start a subsequent heuristic procedure.

4.5.1 Heuristic acceptance rollout policy

Because a full rollout of the a priori policy may be computationally expensive, we propose a

dynamic policy that re-optimizes the a priori problem before each dispatch decision, but which

heuristically solves (4.18) upon order arrivals to adjust π before acceptance decisions; we refer to

this policy as the Heuristic Acceptance Rollout Policy (HARP).

The initial dispatch plan (IniPlan) and the update before dispatch decisions (DispatchUpdate)
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match RP’s functions, but the update upon arrivals (ArrivalUpdate) differs from RP and calls

Algorithm 17 instead of an IP solver to update the plan; it is implemented in Algorithm 18.

Algorithm 18 Update of dispatch plan upon an order arrival for HARP
1: procedure ARRIVALUPDATE(HARP,π,s, i,b)
2: if (π does not cover i after wave b) then
3: Heuristically solve problem (4.18): π ′←RUNHEURISTIC(π)
4: if (π ′ 6= π) then set π ← π ′.
5: return r

4.6 Computational Experiments

Now we present a series of computational experiments designed over randomly generated instances

with the objective of testing and comparing the quality of our heuristic policies over multiple

performance indicators, and performing sensitivity analysis over different instance parameters.

Table 4.1 summarizes all policies computed for each instance. Besides all previously discussed

policies, we added two infeasible solutions to the DDWP-IA operation used as benchmarks. The

policy FLEX is a flexible rollout of the a priori policy that relaxes immediate acceptance and

postpones it to the end of the day, following the model from [43]; unlike DDWP-IA, it only rejects

orders left unserved at the end of the day. We expect FLEX to perform better than the feasible

policies, given its less constrained feasible set of actions and similar methods employed to update

the plan. Finally, LB corresponds to the perfect information relaxation that executes the optimal

plan to each realization of the random variables and is a proven lower bound as described in section

4.3. All policies were programmed in Java and simulated running one thread of a Xeon E5620

processor with up to 12Gb RAM, and using CPLEX 12.6 when necessary as a IP solver.
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Table 4.1: Policies computed in experiments

symbol strategy section

MP Myopic re-optimization policy (calibrated dmax = 2T
7 ) 4.4.1

AP A priori policy + request skipping upon dispatch 4.4.2
MPF Myopic re-optimization policy with a priori dispatches 4.4.3
RP Rollout of the a priori policy 4.4.4
HARP Heuristic acceptance with rollout of the a priori policy 4.5.1
FLEX Flexible RP relaxing immediate acceptance a priori policy See [43]
LB Perfect Information Relaxation (deterministic solution) 4.3

4.6.1 Design of data sets for base experiment

We generated 135 data sets to evaluate our policies over different performance indicators. Each

data set has a specific geography setting of 50 customer nodes I = {1, . . . ,50}, a subset I0 ⊂ I of

previously accepted commitments, and a vector of online arrival rates λ ∈ R|I| determining the

probabilities of |I| independent Poisson arrival processes, one for each node i ∈ I.

The geography for each data set is defined by a random seed g ∈ {0, . . . ,4} used to assign 50

different locations over a square region of side 50 units following a discrete uniform distribution

{0, . . . ,50} for each component of the location’s coordinate; the depot is located at coordinate

(25,25). We ruled out repeated coordinates to have a more interesting geography. Travel times

between locations are computed as the `1-norm between two locations’ coordinates, in part to best

model urban travel times; we assume all proportionality constants between edge travel time, cost

and distance equal to 1. All data sets share a common continuous time horizon with T = 882 units,

a service time at nodes equal to ui = 6, a depot setup time u0 = 20, and W = 7 possible dispatch

waves homogeneously distributed over time with tW = 882, t0 = 0 and such that tw− tw−1 = 126

for each w ∈ W . Also, any node can be visited in a single dispatch wave since the duration of

any direct dispatch round-trip is less than or equal to 126 units. The cut-off time is set at 2/7 of

the horizon, i.e., tct = t2 = 252, and all order processing times are equal to pi = 20 units. We

use a penalty cost of the form βi = 2d0,i + 1 that makes any round-trip covering a single request
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profitable when vehicle time is abundant.

For each geography setting g we set three probabilities pstart = {0%,15%,30%} to have an

open request at each node i ∈ I at time t = T and simulated the sets I0 three times for each value

pstart using random seeds s= 0,1,2. Each data set also has a setting of λ ∗ ∈ {0.5,1,2}, the average

number of realized online requests per node-day, to simulate different levels of arrival intensity.

The arrival rate λi defining the Poisson process at node i ∈ I is randomly generated in clusters of

10 nodes so that 10λ ∗ = (T − tct)∑
10k
i=10(k−1)λi for each k = 1,2,3,4,5. We form clusters to create

540 instances with 4 different network sizes, each one made with the first n = 20,30,40,50 nodes

of a data set.

In addition, we created M = 50 arrival realizations for each data set using the probabilis-

tic model above. These scenarios are used as a common sample to estimate the expected cost

of all policies. Each instance is defined by a tuple (g, pstart ,s,λ ∗) : g ∈ {0,1,2,3,4}, pstart ∈

{0%,15%,30%},s ∈ {0,1,2},λ ∗ ∈ {0.5,1,2}.

The following metrics are computed for each policy and realization, and then averaged for each

instance:

• cost/request: the total cost of the realization divided by the total number of requests realized,

including orders carried from previous days.

• fill rate ( f r): the percentage of requests accepted by the vehicle over all realized requests,

• distance/order: the policy routes’ distance traveled over the total number of orders accepted,

• gapP: the percentage increase of the policy’s cost over P ∈ {LB,FLEX ,RP}, respectively,

• nRoutes: number of vehicle dispatches,

• nWaves: average dispatch length in waves used by the routes dispatched over the realization,

• iWait and pWait: number of waves spent waiting at the depot before/after the initial dispatch,
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• a f terCT : percentage of orders covered that are dispatched after the cut-off time,

• nodes/route: average number of node visits per route,

• timeo f f : average off-line solution time, i.e., a call of IniPlan in Algorithm 10,

• timedis: average solution time before dispatch decisions, i.e., a call of DispatchUpdate in

Algorithm 10,

• timeacc: average solution time before acceptance decisions, i.e., a call of ArrivalUpdate in

Algorithm 10.

4.6.2 Base experiments

Table 4.2 presents average results for each heuristic policy over all 540 instances. On average, AP

and MP have costs 48.0% and 35.0% over the deterministic bound (LB) and may be explained

due to a loss of 13.3% and 7.9% in the percentage of orders accepted. Nevertheless, both policies

have totally different behavior. MP takes advantage of re-optimization capabilities to produce

efficient routes, keeping the distance per order-served low. However, its myopic behavior does not

generate enough vehicle returns for recourse possibilities, producing 27.9% fewer routes, longer

route duration, and 27.8% more average nodes per route. Unlike MP, the a priori policy (AP) does

not consider unexpected request arrivals and becomes inefficient when expected requests do not

realize. However, it creates a dispatch plan closer to LB in terms of average number of routes,

initial wait at the depot, and average number of waves per route.

This suggests combining both policies; a simple mix is MPF, which marginally reduces the cost

per request by fixing vehicle dispatch times according to the a priori dispatch structure. A more

sophisticated combination that produces better results is RP, which rolls out the optimal a priori

policy (AP) and redesigns the dispatch plan before each decision epoch. Compared to MPF, RP

cuts the average cost per request and percentage gap over LB by 8.6% and 36%, respectively. Its

121



Table 4.2: Average results averaged for each policy

metric \policy LB FLEX MP AP MPF RP HARP

cost/request 11.5 13.3 15.4 17.0 15.2 13.9 14.2
f r 93.4% 88.6% 85.5% 80.1% 85.6% 87.8% 86.9%
distance/order 9.1 8.8 8.9 9.4 9.0 8.9 8.9

gapLB N/A 15.9% 35.0% 48.0% 33.0% 21.0% 23.8%
gapFLEX N/A N/A 16.2% 27.1% 14.5% 4.4% 6.8%
gapRP N/A -4.2% 11.2% 21.8% 9.7% N/A 2.3%

timeo f f (sec.) 121.9 529.2 0.00 529.2 529.2 529.2 529.2
timedisp (sec.) 0.00 81.8 0.00 0.00 0.00 68.6 80.1
timeacc (sec.) 0.00 0.00 2.4 0.00 1.2 18.1 1.1

nRoutes 2.69 2.51 1.94 2.48 2.21 2.52 2.52
iWait 2.87 3.21 3.43 3.09 3.35 3.20 3.21
pWait 0.00 0.00 0.00 0.01 0.04 0.00 0.00
nWaves 1.61 1.58 1.86 1.64 1.72 1.59 1.58
nodes/Route 7.2 7.4 9.2 6.7 8.3 7.4 7.3
a f terCT 68.4% 79.0% 73.3% 78.3% 76.3% 78.7% 79.1%

benefits mostly arise from improving order coverage and reducing penalty costs; this is crucial for

companies interested in providing the best possible customer service. In Figure 4.5 we show the

performance of RP and MPF in terms of order fill rate ( f r) and distance/order for all instances

having the same network size n; we also include the two benchmarks LB and FLEX. In all cases,

f r decreases as n increases and RP improves its request fill rate gain over MPF as n increases. All

policies are comparable in route efficiency (distance/order), which decreases with the network

size (due to consolidation opportunities).

If we compare the dispatch structure of RP against the deterministic LB bound, we observe

in 4.2 that it waits more before the first vehicle dispatch at the depot and increases the average

percentage of accepted orders dispatched after the cut-off time by 10.3%; it pushes some dispatch

decisions later in time to protect the plan against uncertainty. Also, as described in [43], our results

suggest that waiting at the depot after the first dispatch (pWave) does not occur, and it may be

better to keep the vehicle busy serving more orders. Compared to FLEX, RP increases the cost per

request by 4.5% and provides an estimate to managers of the operational cost incurred by imposing
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Figure 4.5: Average fill rate ( f r) and distance per order for RP policy accepted versus number of
nodes (n)

immediate order acceptance in SDD systems.

All policies using the a priori solution share offline computation time (timeo f f ), but differ

in online computation per dispatch (timedisp) and per request acceptance decision (timeacc); AP

and MPF are simple and fast online policies, while RP requires additional computational power.

The HARP policy is an alternative to RP that provides 16.5 times faster request acceptance times,

making small sacrifices in cost/request (2.2% increase); HARP still outperforms both myopic

policies, even when these last two use optimization engines. The average solution times timeacc

and timedisp over all instances aggregated by network size n are displayed in logarithmic scale

in Figure 4.6. As expected due to the nature of exact MIP models, computational times increase

exponentially with n. In case of timeacc, HARP removes this exponential growth and keeps this

average time under 2 seconds for n = 50.

In Figure 4.7 we compare the average cost per request of our best policies, RP and HARP, over

all instances sharing parameters of network size n and average arrival intensity per node λ ∗. We

experimentally observe small economies of scale as n grows for instances with low arrival intensity
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(λ ∗ = 0.5), possibly due to additional vehicle time per request and available order consolidation

capacity. Conversely, the cost per order grows with n for moderate and high arrival intensities

indicating congestion in the system; the increased request arrival frequency at nodes may reduce

the system’s remaining capacity and diminish the marginal acceptance of orders as n grows.

Also, our results suggest that the system is more efficient with higher request frequencies per

node, since the cost/request ratio is reduced as λ ∗ increases for a fixed n, and this reduction

marginally increases as n decreases. This implies that an instance with fewer nodes and higher

requests per node can be managed at lower cost than an instance with a larger network and lower

arrival intensity per node, even when both have the same total number of expected requests per

day. As Figure 4.7 shows, instances with 40 nodes and λ ∗ = 1 produce an average cost/request

50% higher than instances with n = 20 and λ ∗ = 2. We also observe that HARP performs better as

n decreases and λ ∗ increases. The former might be related to the optimization smaller problems,

while the latter might be linked with a reduced need for complex solutions; a simpler policy might

be good enough for order acceptance decisions when there is high request density.

Figure 4.8 presents the average cost per order of RP and HARP as a function of the probability

of having an open order at a node before execution starts (pstart) and the average arrival intensity
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Figure 4.9: Average number of routes and waves waited before dispatch (iWait) for RP policy
versus number of nodes (n) and online arrival intensity (λ ∗)

(λ ∗). As expected for each graph, the more information available at the start of the operation,

the smaller the cost per request. The cost reduction with pstart is particularly high for low arrival

intensity (λ ∗ = 0.5); in this case, orders carried over from previous days are relatively more im-

portant than possible requests realized during the operation; the cost per order tends to stabilize

for instances with (λ ∗ = 2), where off-line orders are less important because of frequent request

arrivals.

Figure 4.9 presents the average number of routes and initial wait at the depot before executing

vehicle dispatches (iWait) for RP as a function of n and λ ∗. For a relatively busier problem (bigger

n and λ ), our policy reacts by generating more dispatches and waiting less at the depot. It is also

interesting to note that instances with congested and smaller networks (n = 20,λ ∗ = 2) produce

fewer routes and wait more at the depot than instances with scattered and bigger networks (n =

40,λ ∗ = 1).

4.6.3 Experiment extension #1: Analysis of performance sensibility over processing time

We now extend the experiments, using all 45 instances with n = 30 and λ ∗ = 1 to study how

sensible the performance of RP is to the order processing time p. We generate 225 new instances
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Figure 4.10: Average cost/request, f r, and distance/order versus order processing time (p)

by combining these instances with different values of p ∈ {0,20,40,80,160}. We present the

average cost per request, fill rate, and distance per accepted order as a function of p in Figure 4.10.

Our experiments illustrate the direct impact that order processing times have in the performance

of the distribution system. The cost per request grows almost linearly at a rate of 0.1 per unit of

processing time. So, a system with p = 80 is 33.5% more expensive than one with p = 20. It

seems that an increase in processing time hinders the system in both aspects: routing efficiency,

increasing the distance per order covered because fewer orders are ready for dispatch at each wave;

and customer service level, possibly due to a loss in the system’s overall acceptance capacity when

shifting release times forward in time.

Additionally, Figure 4.11 depicts how the average RP gap over LB and gap difference over

the myopic policies reduce as p increases. These results suggest that the cost increase in LB

is relatively higher due to a reduction in the feasible space of actions, removing flexibility and

complexity even in the relatively simpler deterministic problem.

4.6.4 Experiment extension #2: Analysis of performance sensibility under varying levels of

information dynamism

In this section, we study the performance of RP as a function of the order arrival dynamism re-

lated to the cut-off time value tct . We take again all instances with λ ∗ = 1, n = 30 and combine
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with all values of tct ∈ {126,252,378}. To produce comparable instances in terms of number of

expected requests, we take all originally simulated order arrivals for tct = 252 and distribute them

proportionally between T and the new cut-off time. Formally, an arrival at x0 ∈ [tct
0 ,T ] is relocated

to time x1 = tct
1 +

T−tct
1

T−tct
0
(x0− tct

0 ) ∈ [tct
1 ,T ] when varying the cutoff time from tct

0 to tct
1 . Figure 4.12

presents an example with three requests relocated when tct changes from 252 to 126 and to 378.

time
T = 882 tct = 252

• • •
time

T = 882 tct = 252
• • •

time
T = 882 tct = 252

• • •

Figure 4.12: Example of request arrivals re-scaled from tct = 252 to tct = 126 and to tct = 378

In Table 4.3 we present average results over all instances as a function of the cut-off time. A

higher value of tct indicates orders arriving relatively closer to the start of the horizon (less dy-

namism), while a lower value of tct indicates arrivals more dispersed over time (more dynamism).

We first observe that the operation becomes cheaper with information disclosed earlier in time.

When tct is earlier, dispatch decisions are executed having more information, and the percentage

of accepted orders dispatched after tct increases from 65% to 94.8%, improving route efficiency

and f r. The opposite effect is observed when dynamism increases and the percentage of orders
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dispatched after the cut-off drastically reduces to 21.0%. The average gap over LB decreases with

any change from the base setting. The reduction of gap is expected when the cut-off time is earlier,

since earlier realized orders render the dynamic policy closer to a deterministic solution where all

arrivals are disclosed beforehand; there is equality for the limiting case tct = T . The gap reduction

when tct is later may be related to a reduction in the instance’s acceptance capacities, which adds

a fixed cost to both the deterministic and the dynamic instance.

Table 4.3: Average performance indicators of RP versus cutoff time (tct)

tct cost/order gapLB(%) f r(%) dist/accepted a f terCT (%)

126 27.4 21.8 76.2 10.1 21.0
252 17.1 32.4 86.8 8.9 65.0
378 9.9 16.0 95.7 7.5 94.8

4.7 Conclusions

We have formulated the DDWP-IA for SDD operations, which integrates immediate request ac-

ceptance and processing with order dispatch and delivery. We formulate an integer program to

solve the deterministic version of the problem, extending the DDWP’s solution methodology. This

model is used to design an optimal solution for the stochastic a priori problem by converting it into

a deterministic equivalent. We also design a fast meta-heuristic capable of replacing a MIP solver

with only a minor sacrifice in cost.

We designed a set of computational instances to test our heuristic policies under different set-

tings of geography, problem size, online order arrival intensity, and percentage of accepted orders

known before the operation starts. If the a priori policy is re-optimized before each decision epoch,

the resulting rollout policy (RP) outperforms any of our benchmarks and reduces the system’s cost

per request by 8.6%.

The success of RP is related to optimization-guided decisions and increasing recourse oppor-
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tunities by executing more vehicle dispatches compared to myopic policies. Its marginal benefit

is concentrated in improving order acceptance rates rather than in routing efficiency; this may be

highly desirable for SDD services. In particular, RP also outperforms the MPF policy that uses

an initial optimal a priori solution to fix vehicle dispatch times before the operation starts. We

also compared RP against an infeasible rollout of the optimal a priori policy that can postpone

order acceptance decisions throughout the day. The marginal cost per request added by imposing

immediate order acceptance is estimated to be 4.4%.

The rollout policy may be computationally expensive per acceptance decision, so we also pro-

posed HARP, a faster variant using meta-heuristics to solve the a priori problem before each ac-

ceptance decision; it speeds up computations 16.5 times on average, incurring a small increase in

cost/request (2.1%).

We also tested our policy against different levels of order processing times at the depot and

different order cut-off times. We conclude that a reduction in the order processing times may

linearly be transferred to a reduction in cost per request distributed. This suggests the importance

of implementing faster warehousing operations for SDD. Our experiments also show that having

more dynamism in the order arrival process (a later cut-off time) may significantly increase the

system’s cost per request; it is fundamental to design an SDD service with an appropriate order

cut-off time, delivering the necessary amount of service flexibility to the customer while awarding

enough of a time buffer to the operation’s planner.

Future research on the DDWP includes the extension of this model to multiple vehicles, so that

we can investigate the potential risk pooling effects, e.g., [2]. Another challenge is to study the

optimal number and allocation of feasible dispatch waves. There are still many open challenges

associated with same-day delivery for the logistics research community.
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4.8 Appendix of chapter 4

4.8.1 Local Search Neighborhoods

As follows we define three local search (LS) procedures called within our meta-heuristic in Algo-

rithm 17 and based on our heuristic in [43]: IntraLS, InterLS and WavesLS. Each LS procedure

explores over different levels of a dispatch plan π structure and searches to improve the best plan

available so far π∗.

IntraLS, defined in Algorithm 19, exploits the relation between the DDWP and a PC-TSP

PCT SP(dmax,Q,ρ) := min
S⊆Q: t∗(S)≤dmax

{
c∗(S)−∑

i∈S
ρi

}
(4.21)

solved over a subset Q⊆ I of nodes, prizes ρi, i ∈Q, and a maximum route duration dmax. IntraLS

is a best move procedure, where a move is described by re-optimizing one route rπ
w dispatched at

wave w from the local solution π . Let π ′ be a copy of the local solution π after removing route

rπ
w from it and leaving all remaining routes unaltered. The procedure solves a PC-TSP over the

set of nodes in π ′ left unattended Ī(π ′) = {i ∈ I : i 6∈ rπ ′
k ,∀k ∈ W π ′}, a maximum route duration

equal to the duration of the waves left available after removing route rπ
w, and prizes ρi = gi,0−gi,w

defining penalty savings when visiting node i in a vehicle dispatch at w. The procedure updates the

local solution π after each best improvement loop if the best move candidate π̂ has a lower cost;

it also updates the overall best solution π∗. The procedure returns a boolean variable with a true

value if the local plan π was improved and returns f alse if not. Any local solution π processed by

IntraLS contains only routes rπ
k ,k ∈W π that are optimally sequenced and that cannot be improved

by selecting a different subset of requests to service from Ī(π)∪{rπ
w}.

InterLS uses best move searches over pairs of routes using neighborhoods inspired by those

in [66] for the capacitated vehicle routing problem (CVRP): two-edge exchanges between routes,

removal and reinsertion of a k-customer sequence from one route to another, and customer swaps
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Algorithm 19 Intra-route LS procedure
1: procedure INTRALS(plan π , best plan π∗)
2: µ ← f alse
3: loop
4: π̂ ← π //initialize best candidate
5: for w ∈W π do
6: Let π ′ be a copy of π without route rπ

w
7: Let dmax← tw− tq(w,rπ

w)

8: Solve PCTSP(dmax, Ī(r′),{gi,0− gi,w}) and add the optimal route found to π ′ and
dispatch it at wave w

9: if (cπ ′ < cπ̂ ) then π̂ ← π ′ //update best candidate

10: if (cπ̂ < cπ ) then
11: π ← π̂ , µ ← true //update local solution
12: if (cπ̂ < cπ∗) then π∗← π̂ //update best solution

13: else break loop
14: return µ

between routes. To implement these ideas, we account for two differences between the CVRP and

the DDWP. First, we model the prize-collecting component; a move changes penalty savings (due

to the different dispatch time). Second, we check the durations of the new routes to ensure that

they remain compatible with the fixed dispatch times of the unchanged routes. Just as IntraLS, this

function updates the local solution π , the best solution π∗ and returns true if the local solution π

was updated and false, otherwise.

The third neighborhood search is a Waves Local Search (WavesLS), described in Algorithm

20. The search perturbs the dispatch structure W π of a plan π using seven operations: Re-

order,Cut,Merge,Insert,Delete,Enlarge, and Reduce. The Reorder operator is defined in [43] and

uses a job scheduling approach to re-reassign the routes dispatched in π to the best possible dis-

patch waves, without altering the customer visit sequences or the route durations. The last six

search over new candidate solutions by changing the dispatch structure of π and solving multiple

PC-TSPs.

The Cut operator, described in Algorithm 21, searches over dispatch plans that result when
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Algorithm 20 Waves Local Search (WavesLS)
1: procedure WAVESLS(local plan π , best plan π∗)
2: loop
3: if (¬REORDER(π,π∗) and ¬CUT(π,π∗) and ¬MERGE(π,π∗) and ¬INSERT(π,π∗)

and ¬DELETE(π,π∗) and ¬ENLARGE(π,π∗)and ¬REDUCE(π,π∗)) then
4: break loop

waves

dispatch wait dispatch

Vehicle

new
dispatch

Figure 4.13: Example of a cut operation where a new dispatch plan is created (dashed flow) from
an existing one (continuous flow) by adding an extra return to the depot.

splitting a single vehicle route rπ
w with duration w− q(w,rπ

w) ≥ 2 waves into two dispatches with

shorter wave duration; this operator adds an extra return trip to the depot, as depicted in Figure

4.13. The Merge operator, described in Algorithm 22, works reversing cut moves and searches

over all dispatch profiles that arise when merging two consecutive dispatches into a single longer

duration dispatch, as shown in Figure 4.14. The Insert operator, described in Algorithm 23, inserts

a new route with duration one wave between two dispatched routes in a plan π shifting all previous

dispatches a wave earlier in time; see Figure 4.15. The Delete operator, described in Algorithm

24, searches for a better solution by deleting one dispatch from the plan and pushing all preceding

dispatches later in time, as depicted in Figure 4.16. The Enlarge operator, described in Algorithm

25, searches for a better solution by extending the duration of a vehicle dispatch by one wave and

dispatching all preceding routes one wave earlier, as depicted in Figure 4.17. Finally, the Reduce

operator, described in Algorithm 26, searches for a better solution by reducing a wave the duration
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Algorithm 21 Cut operation
1: procedure CUT(local plan π , best plan so far π∗)
2: for w ∈W π do
3: dmax← tw− tq(w,rπ

w)

4: for v : (w−1)→ (w−q(w,rπ
w)+1) do

5: Let π ′ a copy of π without route rπ
w

6: Solve PCTSP(tw− tv, Ī(π ′),{gi,0−gi,w}) and add optimal route to π ′ at wave w.
7: Solve PCTSP(dmax− (tw− tv), Ī(π ′),{gi,0− gi,v}) and add optimal route to π ′ at

wave v
8: if (cπ ′ < cπ ) then
9: if (cπ ′ < cπ∗) then π∗← π ′

10: π ← π ′ and return true
11: return f alse

waves

dispatch wait dispatch

Vehicle

dispatch
removed

Figure 4.14: Example of a merge operation where a new dispatch plan is created (dashed flow)
from an existing one (continuous flow) by removing one return to the depot and merging two
dispatches.

Algorithm 22 Merge operation
1: procedure MERGE(local plan π , best plan π∗)
2: for w ∈W π such that q(w,rπ

w)> 0 do
3: Let w′← q(w,rπ

w)
4: Let π ′ be a copy of π without routes rπ

w and rπ

w′
5: Let dmax← tw− tq(w′,rπ

w′)

6: Solve PCTSP(dmax, Ī(π ′),{gi,0−gi,w}) and add optimal route to π ′ at wave w
7: if (cπ ′ < cπ ) then
8: if (cπ ′ < cπ∗) then π∗← π ′

9: π ← π ′ and return true
10: return f alse
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waves

dispatch
shifted earlier

dispatch
inserted

dispatchdispatch

Figure 4.15: Example of an Insert operation where an new dispatch is inserted launching previous
routes a wave earlier (dashed flow).

Algorithm 23 Insert operation
1: procedure INSERT(local plan π , best plan π∗)
2: if (max{k ∈W π}=W ) then return f alse
3: for w ∈W π ∪{0} do
4: Let π ′ a copy of π with routes rπ

k ,k ∈W π : k > w dispatched one wave earlier.
5: Solve PCTSP(tw+1− tw, Ī(π ′),{gi,0− gi,w+1}) and add optimal route to π ′ at wave

w+1.
6: if (cπ ′ < cπ ) then
7: if (cπ ′ < cπ∗) then π∗← π ′

8: π ← π ′ and return true
9: return f alse

of one dispatch in the plan and executing all precedent dispatches one wave later, see Figure 4.18.

waves

dispatch
deleted

dispatchdispatch dispatch
pushed later

Figure 4.16: Example of a Delete operation where last dispatch is deleted pushing preceding ones
later (dashed flow).
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Algorithm 24 Delete operation
1: procedure DELETE(local plan π , best plan π∗)
2: for w ∈W π do
3: Let π ′ a copy of π with rπ

w deleted and all routes rπ
k ,k ∈ W π : k > w dispatched w−

q(w,rπ
w) waves forward in time.

4: if (cπ ′ < cπ ) then
5: if (cπ ′ < cπ∗) then π∗← π ′

6: π ← π ′ and return true
7: return f alse

waves

dispatch
shifted earlier

dispatch
enlarged

and shifted earlier

dispatchdispatch

Figure 4.17: Example of an Enlarge operation where the last dispatch is enlarged and launched a
wave earlier pushing the previous dispatch earlier too (dashed flow).

Algorithm 25 Enlarge operation
1: procedure ENLARGE(local plan π , best plan π∗)
2: if (max{k ∈W π}=W ) then return f alse
3: for w ∈W π do
4: Let π ′ a copy of π without route rπ

w and all routes rπ
k ,k ∈ W π : k > w dispatched one

wave earlier.
5: Solve PCTSP(tw+1−tq(w,rπ

w)
, Ī(π ′),{gi,0−gi,w+1}) and add optimal route to π ′ at wave

w+1.
6: if (cπ ′ < cπ ) then
7: if (cπ ′ < cπ∗) then π∗← π ′

8: π ← π ′ and return true
9: return f alse
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waves

dispatch dispatch
reduced

and shifted later

dispatchdispatch

Figure 4.18: Example of a Reduce operation where one dispatch is reduced and launched one wave
later pushing the previous dispatch later too (dashed flow).

Algorithm 26 Reduce operation
1: procedure REDUCE(local plan π , best plan π∗)
2: for w ∈W π such that w−q(w,rπ

w)> 1 do
3: Let π ′ a copy of π without route rπ

w and all routes rπ
k ,k ∈ W π : k > w dispatched one

wave later.
4: Solve PCTSP(tw−1−tq(w,rπ

w)
, Ī(π ′),{gi,0−gi,w−1}) and add optimal route to π ′ at wave

w−1.
5: if (cπ ′ < cπ ) then
6: if (cπ ′ < cπ∗) then π∗← π ′

7: π ← π ′ and return true
8: return f alse

137



4.8.2 Random Destruction

The heuristic presented in Algorithm 17 calls the function RandomDestruction, defined in Algo-

rithm 27, that partially destroys a solution π to move the search to distant solutions and avoid local

optimality. This function works at two levels of a solution’s structure and deletes randomly chosen

routes and customers from it.

Algorithm 27 Random destruction procedure for plan π

1: procedure RANDOMDESTRUCTION(local solution π)
2: Generate a random number x ∈ {1, . . . ,b0.5|W π |c}
3: Randomly delete x routes from plan π .
4: if (π is empty) then return
5: for (w ∈W π) do
6: Set y equal to the number of nodes visited in rπ

w.
7: if (y > 1) then
8: Generate a random number z ∈ {d0.25ye, . . . ,b0.75yc}.
9: Randomly delete and skip z visits from rπ

w

10: return

4.8.3 Heuristic Solution For the prize-collecting TSP

In Algorithm 28 we implement a metaheuristic solution to a PC-TSP over the set of nodes Q, prizes

ρi, i∈Q, and maximum duration dmax. This solution implements simulated annealing running over

an elementary route r = {0, i1, i2, ..,0}with objective value vp with a subset Qr
out ⊆Q of unattended

nodes.

The parameters T0 and δ control the evolution of simulated annealing and kmax determines a

maximum number of iterations. The search also executes a partial solution destruction when no

improvement is found to avoid local optimality. The neighborhood N (r) used in line 10 is a com-

pound one consisting of ten polynomially sized neighborhoods, each one based on the following

moves:
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Algorithm 28 Metaheuristic for the PC-TSP
1: procedure HPCTSP(dmax,Q,ρ,kmax),
2: Initialize best route: r∗← /0,
3: for s = 0 to NumSeeds do
4: Set random seed s,
5: Generate route r by sequentially inserting random nodes from Q int the last position of

r; stop before violating the route duration constraint,
6: Update the set of non-visited nodes Qr′

out ← Q,
7: Initialize temperature T ← T0 and iteration counter k← 0.
8: while (k < kmax) do
9: update← f alse

10: for (neighbor r′ ∈N (r)) do
11: Generate a random number p for a Uni f orm(0,1) distribution,
12: if (e(vr′−vr)/T > p) then
13: r← r′, update Qr

out , update← true, and break for.
14: if (¬update) then Randomly skip and remove 30% of nodes from r. Update Qout .
15: k← k+1,
16: T ← T × ε .
17: if (vr > vr∗) then
18: r∗← r,
19: reset search T ← T0,k← 0.
20: return r∗
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1. a swap between an unvisited node i ∈ Qr
out and a visited node j in route r (O(|Q|2) moves),

2. an insertion of an unvisited node i ∈ Qr
out after a visited node j in route r (O(|Q|2) moves),

3. a removal of a visited node j from route r (O(|Q|) moves),

4. a removal of a visited node k from route r and the insertion of an unvisited node i ∈ Qr
out

after a visited node j in route r (O(|Q|3) moves),

5. 2-opt, i.e., 2-edge exchanges within route r (O(|Q|2) moves),

6. all possible removal of a series of k nodes in r starting with node i and its reinsertion after

node j in r () after ri, ..,ri+k after r j (O(|Q|3) moves),

7. a internal swap in route r between two visited nodes (O(|Q|2) moves),

8. a swap between one visited node i in route r an two nodes j,k ∈ Qout inserted in series

(O(|Q|3) moves),

9. a swap between two consecutive visited nodes i, j in route r an one node k ∈ Qout (O(|Q|2)

moves),

10. a swap between two consecutive visited nodes i, j in route r and two nodes k,q ∈ Qout in-

serted in series (O(|Q|3) moves).

All moves resulting in violations of the maximum duration limit are discarded.
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[26] E. Çeven and K. Gue, “Optimal wave release times for order fulfillment systems with dead-
lines,” Transportation Science, vol. 1, no. 1, pp. 1–15, 2015.

[27] T. Cheong and C. White, “Dynamic traveling salesman problem: value of real-time traffic
information,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 2, 2012.

[28] J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, and D. Vigo, “Vehicle routing,” Trans-
portation, handbooks in operations research and management science, vol. 14, pp. 367–
428, 2006.

[29] R. DeNale and D. Weidenhamer, “U.s. census bureau news: quaterly retail e-commerce sales
- second quarter 2016,” U.S. Department of Commerce, Nov. 2015.

[30] V. Desai, V. Farias, and C. Moallemi, “Bounds for Markov decision processes,” Reinforce-
ment Learning and Approximate Dynamic Programming for Feedback Control, pp. 452–
473, 2011.

[31] A. Erera, M. W. P. Savelsbergh, and E. Uyar, “Fixed routes with backup vehicles for stochas-
tic vehicle routing problems with time constraints,” Networks, vol. 54, no. 4, pp. 270–283,
2009.

[32] D. de Farias and B. van Roy, “The linear programming approach to approximate dynamic
programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

[33] N. Gademann and S. Velde, “Order batching to minimize total travel time in a parallel-aisle
warehouse,” IIE transactions, vol. 37, no. 1, pp. 63–75, 2005.
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