Cloud-Based Centralized/Decentralized Multi-Agent Optimization
with Communication Delays

Matthew T. Hale,! Angelia Nedié,* and Magnus Egerstedt!

Abstract— We present and analyze a hybrid computational
architecture for performing multi-agent optimization. The op-
timization problems under consideration have convex objective
and constraint functions with mild smoothness conditions
imposed on them. For such problems, we provide a primal-
dual algorithm implemented in the hybrid architecture, which
consists of a decentralized network of agents into which an
updated dual vector is occasionally injected, and we establish
its convergence properties. In this setting, a central cloud
computer is responsible for aggregating information, computing
dual variable updates, and distributing these updates to the
agents. The agents update their (primal) state variables and also
communicate among themselves with each agent sharing and
receiving state information with some number of its neighbors.
Throughout, communications with the cloud are not assumed
to be synchronous or instantaneous, and communication delays
are explicitly accounted for in the modeling and analysis of the
system. Experimental results for a team of robots are presented
to support the theoretical developments made.

I. INTRODUCTION

Algorithms for multi-agent and distributed optimization
have been considered for a variety of problems in part
because of the varied collection of application domains
in which such problems arise. Applications of multi-agent
optimization can be found in robotics [4], [2], [18], power
systems [14], sensor networks [19], [8], [17], and com-
munications [1], [7], [13]. These diverse applications lead
to optimization problems of many different formulations.
Correspondingly, algorithms have been developed that allow
for a broad range of problem characteristics. For example,
in [15] problems with constraints on network connectivity
and memory are considered. In [3] a distributed method for
minimizing a sum of convex functions over a digraph is
devised. Problems with time-varying communication graphs,
non-differentiable objective functions, and noisy communi-
cation links are considered in [12].

The development of decentralized methods in optimization
has been motivated in part by the fact that centralized meth-
ods may not scale well for very large networks of agents [20,
Section 1.1]. At the same time, centralized methods can more
efficiently solve some problems, like the Credit Assignment
Problem in multi-agent robotics, than decentralized meth-
ods [16, Section 3.1]. Such examples indicate that centralized

TSchool of Electrical and Computer Engineering, Georgia Insti-
tute of Technology, Atlanta, GA 30332, USA. Email: {matthale ,
magnus}@gatech.edu. Research supported in part by the NSF under
Grant CNS-1239225.

*Department of Industrial
ing, University of Illinois,
angelia@illinois.edu.

and Enterprise Systems Engineer-
Urbana IL, 61801, USA. Email:

information may be rich in a way that could be useful in
networks which would otherwise be purely decentralized. In
adding a centralized component to a decentralized network,
it seems likely that the centralized component would operate
slower than the decentralized components. Nevertheless, one
may ask whether it would be useful to occasionally inject
global information into a multi-agent network where such
information would otherwise be absent.

Towards answering this question, we present here a multi-
agent optimization architecture in which a cloud computer
is used to occasionally provide centralized information to a
network of agents solving a nonlinear programming problem.
This cloud-based optimization architecture was introduced
in [5], though here we substantially broaden the class of
problems to be solved and allow for communications delays
when communicating with the cloud. The cloud carries out
computations based on information sent to it by agents in the
network and intermittently disseminates these results to the
agents for use in their own computations. At the same time,
each agent shares its state with some number of neighboring
agents at each timestep. In [5], the assumption was made
that all information in the network was synchronized at each
time, so that all computations were relying on the same
information. Here we eliminate this assumption and, as a
consequence, delays occur which give rise to various kinds
of errors. We present explicit bounds on these errors in terms
of known constants.

To solve nonlinear programs in a distributed manner across
many agents, we cast such problems as variational inequal-
ities and then use a Tikhonov regularization, which endows
the resulting variational inequality with certain properties
that let us draw from existing results. In particular we
consider a fixed regularization as was done in [10]. A fixed
regularization is desirable for multi-agent problems because
it may be difficult to synchronize the timing of the changes
in regularization parameters across large networks. Accord-
ingly, we use the approach of [10] as a starting point, though
the problem and approach there are quite different from
the current paper. In [10], the need for these results stems
from reducing computation times in Lagrangian subproblems
associated with a dual optimization scheme by allowing
inexactness in some computations. Here we use a different
architecture and different model for delays to operate as fast
as possible by using the most recent information available
to the agents. Doing so results in delays in communication,
and computations that rely on information of different ages.
The resulting structure of delays will be detailed below.

The rest of the paper is organized as follows. Section II
will cover the background concerning the problem to be
solved and a centralized method for solving it. Then, Sec-
tion III will cover the cloud architecture and modify the
centralized solution method to fit with the hybrid cen-
tralized/decentralized system. Section IV will present the
convergence results and error bounds of the partially decen-
tralized algorithm, and Section V will present experimental
results from an implementation of this algorithm on a team
of mobile robots. Section VI concludes the paper.

II. PROBLEM FORMULATION AND
CENTRALIZED SOLUTION

In this section we formulate the problem to be solved.
This section states global results that will be modified later in
Section III to fit with a hybrid architecture described therein.

A. Variational Inequality Setup

Consider a multi-agent optimization problem comprised
of N agents indexed by i € I := {1,..., N}. Suppose that
agent 7 has state x; € R™ with n; € N, and let the vector x
denote the column vector of all states, namely

T

)
e R",

Ln

where n = Zfil n;. Let each agent have a local objective
function depending only on its own state, f;. We assume that
fi : R" — R is O and convex. We also consider a global
cost that is not necessarily separable, ¢(x), and assume that
c:R™ — R is both C' and convex as well. We assume that
agent ¢ knows ¢ and f;, but not f, for any ¢ # 4; that is,
each agent knows the non-separable cost and its own local
cost, but not the local cost function of any other agent. We
assume further that the cloud does not know f; forany ¢ € 1.

The agents are collectively subject to global inequality
constraints of the form

g(z) =

()

where g : R” — R™ with m > 1. The constraint functions
g; : R"™ — R are assumed to be convex and C' for all
j € J:={1,...,m}. Each agent’s state is also constrained
to lie in a non-empty set X; C R™, i.e., we require

z; € X;
for every ¢, where X; is compact and convex. Letting
X=X xXox---x Xy,
we encapsulate each set constraint by requiring

r e X.

Regarding the class of optimization problems under consid-
eration, we summarize the conditions that we have imposed
in the following assumption.

Assumption 1: The set X is non-empty, compact, and
convex. The functions {g;};ecs and ¢ are convex and C!
in x, and f; is convex and C" in x; for all 5 € I. A

For notational convenience, define the function

N
F@) =3 filwd) + cla).

Let V,, denote the operator % and define the map

Vi) = (Vo (fi(m)+e@), ., Vo (fv(an)+e(@))).

We enforce the following assumption on V f.
Assumption 2: The map V f is Lipschitz continuous with
Lipschitz constant L. A
Note that any collection of functions f; and ¢ which are all
C? comprise an f that automatically satisfies Assumption 2
whenever X is compact (cf. Assumption 1). Concerning the
constraints g, we have the following assumptions.
Assumption 3: (Slater’s Condition) There exists a vector
Z € X such that g(Z) < 0, i.e., the constraints are strictly
feasible at . A
Assumption 4: The gradient of each constraint, Vg;, j €
J, is Lipschitz with constant L; and hence Vg is Lipschitz
with constant

A
A global formulation of the multi-agent optimization prob-
lem under consideration is given by:
Problem 1:
minimize f(x)
subject to g(x) <0
zeX.

O

Assumption 1 guarantees that Problem 1 has a solution
and Assumption 3 guarantees that a dual solution exists
with no duality gap. Denote an optimal primal-dual pair
for Problem 1 by (&,[). We now define the Lagrangian
associated with Problem 1 as

Lz, 1) = f(zx) + p"g(z),

where z € X is as defined above and p is a vector of
Kuhn-Tucker multipliers in the non-negative orthant of R™,
denoted R". By definition, L(-, 41) is convex for all 1 € R’}
and L(zx,-) is concave for every x. Seminal work by Kuhn
and Tucker [11] showed that optimal primal-dual pairs for
Problem 1 are saddle points of L which maximize L(&, -) and
minimize L(-,). This condition can be expressed concisely
as: for all x € X and p € R,

L(#,p) < L(E, 1) < Lz, 1)

The problem of finding Lagrangian saddle points can
be restated as a variational inequality with an identical
solution set (e.g., [9, Section 11.1]). Let V, and V,, denote
the operators % and %, respectively. In the variational

inequality setting, we wish to find a point (Z, 1) € X x R’

such that

T

X

()2
for all (z,p) € X x R'. In order to make use of certain
established results concerning variational inequalities, we
take two further theoretical steps: first we regularize the
map (V,L — V,L)T to make it strongly monotone, and
second we find a (non-empty) compact, convex set containing
the optimal primal-dual vectors. Errors introduced by the

regularization of (V,L — V, L) are discussed in Section
IV.

= &

7vl"L("iI7 [L)

muam]>o

B. Tikhonov Regularization

By the convex-concave property of L, the gradient map

VoL(z, p)
_VHL(‘T7 M)
is monotone, and we use a fixed Tikhonov regularization in

order to work with a strongly monotone map. This is done
by regularizing the Lagrangian function as follows:

14 €
L) = () + Sl + #7g(e) — Slal?,

where v > 0 and € > 0, and these values are kept fixed to
avoid the need to synchronize changes in parameter values
across many agents.

Under this regularization, we see that L, (-, i) is strongly
convex for all 4 € RT" and L, (x,-) is strongly concave
for all x. These properties imply that the map (V L, . —
VuL,)T is strongly monotone. In addition, the strongly
convex-strongly concave property of L, ., together with
Assumption 1 and Assumption 3, guarantee the existence
of a unique saddle point, (.., /i) € X x R}. Using
the regularized Lagrangian, we now state the variational
inequality of interest.

Problem 2: Find the point (Z,., i) € X x R such
that for all (z,p) € X x RT,

_V,LLLV,E(i'D,EaﬂD,E) a

(PR

We note that a solution to the above variational inequality
is also a saddle-point of the regularized Lagrangian function
Ly ie., (e, fin,e) € X xR solves the above variational
inequality problem if and only if for all (z, u) € X x R™?,

V{L’LVE AVE’ AV&
20 N

LV,€('%1/,E7/’L) < Lu,e(j:u,eaﬂy,e) < Ll/,e('ra /:Lu,e)' (1)

C. Bounds on Dual Variables

We proceed along the lines of [21] and derive a bound on
flye. Letting T denote a Slater point for the constraints g,
we define the dual function associated with L, . as

Que(p) = min Ly ().

Now consider an arbitrary multiplier i € R’ and let € X
be such that & = mingex Ly (, i). By the definition of
gv,e we then have

QV,e(ﬂ) = Lu,e(i‘7 /1) S Ll/,e(jju,ea /]) S Lu,e(i‘u,ea /lu,e) S Ll/,G(f) ﬂl/,e)a
where the two right-most inequalities follow from the saddle-

point property of (&, , i) in Equation (1). Expanding the
regularized Lagrangian expression, we have

. _ . _ v, €, .
o) < F(2) + i 0(2) + 217 — &]
_ “ _ v, _
< S @) + fi,c0(7) + 5171

Rearranging terms then gives

m

S ey < 1O 81 ~)
V€, .

= oin {—g;(@)}

2

For any v > 0 and € > 0, we certainly have
Qo) = Lune(@ 1) > Lo (@, i) = F@)+i"9(@)—5 |l
Selecting ji1 = 0, observe that

Lo (2,0) = f(Z).

Letting f% = mingex f(z), the bound in Equation (2) can
be simplified to

m - V=2 *
Sy < LD 15

= fnin {—g;()}

Using that fi, . ; > 0 for all j € J and defining

f@) + 307 - fx

min {~4,(@))

D, = pe Ry : ulh <

we see that D, is non-empty, compact, and convex, and we
are guaranteed that /i, . € D, . Using D,,, we can now define
the algorithm used to solve Problem 2.

Algorithm 1: Given an initial point (x(0), u(0)) € X x
D,, execute the update law

o(k+1) = Iy [x<k) — aVaLy.(x(k), u(k))} 3)

plk 4+ 1) = T, [1(k) + 7V L2 (k), w(R)] . @)

until some stopping criterion is reached. ¢
Here I1x[-] and IIp, [-] are the projections onto the sets X
and D,,, respectively, with respect to the standard Euclidean
norm. In the next section we will explicitly reformulate
Algorithm 1 for the cloud-based multi-agent case.

III. CLOUD ARCHITECTURE AND HYBRID SOLUTION

We now cover the architecture that will be used to imple-
ment a modified form of Algorithm 1.

A. Overview

Let agent ¢ have neighborhood set N; containing the
indices of all agents it is directly coupled to by g and c.
That is, if the computation of % requires x;, then j € NV,
and agent j sends its state to z{gent 1 at each time. This
structure of communications necessitates that < € N; if and
only if 5 € N;.

Let the agents share their states with each of their
neighbors at each timestep. In this framework, each agent
stores and manipulates a local copy of Problem 2 onboard
and updates its own state within that local copy based on
computations it performs onboard. Within each timestep,
agent ¢ computes an updated value of its own state, x;, and
then shares the new value of z; with agent j for all j € N,.
In many cases, including in very large networks of agents,
we expect that the neighborhood set of each agent will be a
small subset of total collection of agents so that |N;| < N
for all 4, where | - | denotes cardinality. Computing values
of dual variables using Algorithm 1 will require all states in
the system (see Equation (4)), and given that |N;| < N, we
see that no agent will be able to perform these computations.
Furthermore, there is no assumption that the communication
graph of the system is connected, nor is it even assumed that
each agent is coupled to any other agent. In such cases, there
is not any way to aggregate all states in the network onboard
a single agent, even after long periods of time.

To fill this gap, we use a cloud computer as was done
in [5]. The cloud computer is assumed to be capable of
executing computationally intensive calculations quickly as
would be the case with a computer cluster or server farm.
Occasionally every agent sends its state to the cloud and after
some time each agent receives back an updated dual vector
that it stores onboard and incorporates into its own local
calculations of state updates. Because the cloud must take
the time to aggregate all states in the network, it is assumed
that there are delays in communicating with the cloud and,
due to these delays, Algorithm 1 will be modified.

The precise update law used by each agent will be detailed
below, though for the current discussion it is sufficient to note
that each agent executes some onboard update law using
its own state information, information it receives from its
neighbors, and the most recent dual vector it has received
from the cloud, regardless of how long ago that dual vector
was received. Suppose the agents send their states to the
cloud at some timestep ko and suppose they all have some
dual vector pp onboard which was received just prior to
sending their states to the cloud (the states sent at time
ko were not computed using). While the agents are
waiting to receive an updated dual vector, p1, they continue
to communicate with each other as before and continue to
use (1o, which is held constant onboard each agent, in their
computations of state updates.

Suppose the agents’ states from kg arrive at the cloud! at
time kg + po for some py € N. With all states received, the
cloud computes the next dual update using a rule similar to
that in Algorithm 1. Suppose that computing the next dual
vector takes some number of timesteps ¢o € N so that p;
has been computed at time kg + po + qo. Then the cloud
sends 7 to each agent and it takes r9 € N timesteps to
reach the agents, arriving at time kg + pg + qo + 7. Before
agent 7 computes a primal update of x; using pq, it again
sends its state to the cloud and then uses p; in its subsequent
computations. Then this process of the agents sharing states
with their neighbors, receiving a delayed dual update, and
sending their states to the cloud is repeated. Note that the
delays pg, qo, and ro are not assumed to be constant but
instead are associated with ky and are allowed to vary with
each communications cycle, i.e., if the agents again send their
states to the cloud at time k1, there is no need for p; = po,
q1 = qo, or 71 = rg. We denote the number of primal steps
taken between receiving u(t) and p(t + 1) by d(t).

B. Multi-agent Implementation

To compactly express this cycle of communication and
computation, we implement a change in notation. Let be
indexed by the time variable ¢ € N. The state of each agent
will be indexed both over timesteps at which the agents
compute primal updates and also over which dual vector is
currently being used in its computations. The time index of
the agents’ computations will be £ € N and agent 7’s state
will have a superscript to denote the time index of the dual
variable agent 4 currently has onboard. The results of agent
i’s k' state update using ji(¢) will be denoted z!(k). Using
this notation, we restate Algorithm 1 to explicitly specify the
update law for agent ¢ and to account for the delays in dual
vectors seen above.

Algorithm 2: Let agent i have initial state 2?(0), stepsize
«, and initial dual vector 1(0). Let the cloud have initial
multiplier vector 1(0) and stepsize 7. Execute for each agent
1, the following two steps: forall k = 0,...,d(t)—1, ¢t >0,

2k +1) = T, [a4(k) = aVa, Lu,e (2 (k). 1) | (5)
and for all ¢t > 0,
plt +1) =, [u(t) + 79, Ly (2 (d(t = 1), (2)) |

(6)
until a certain stopping criterion is reached by each agent
and the cloud. ¢

In the setting of Algorithm 2, we define z~'(d(-1)) =
29(0).

IV. CONVERGENCE ANALYSIS

We now show that Algorithm 2 “nearly” converges to the
saddle point of L, . and bound the quantities ||z’ (k) — &, ||
and ||u(t) — i), where 2t (k) := (2} (k),..., 2% (k))T.

IThe agents’ states can arrive at the cloud at different times in which
case the cloud can wait to compute an updated dual vector until it has
received all agents’ states. Here, we assume all states arrive simultaneously
for simplicity, though no generality is lost.

Theorem 1: Let Assumptions 1—4 hold. Suppose that each
agent uses regularization parameter v > 0 and the cloud uses
regularization parameter ¢ > 0. Let the primal stepsize «
satisfy 0 < o« < Cy := Ly +v + M, L, and let the dual
stepsize 7 be bounded according to

2v 2€
Mg2 + 2’ 1+ €2

T< min{

Define the constant
qd ‘= (1 - 7—6)2 + T27

which is in the set (0, 1) by the definition of 7. Then for all
t € N we have

it + 1) = fuel® < g7]1(0) = fivel®

t
3 g (aaMEM2) 202 MEM 2 2), ()
i=1

where M,, = max, yex [|z—y| and ¢, := 1—2av+a?vCy.
Proof: See [6], Theorem 1.]

The interpretation of Theorem 1 is that vectors pu(t)
computed by the cloud will eventually become close to [, ,
though the distance between them will never become zero.
In fact, after a long time this distance is dominated by the
first few terms of the summation in Equation (7) because the
term containing ¢! goes to zero and because ¢, ' becomes
negligible for large i. We now bound the distance between
primal vectors and their optima.

Theorem 2: Let Assumptions 1-4 hold. Then for the se-
quence of primal vectors {z*(d(t)) };en generated by Algo-
rithm 2 we have

~ M 7
I (A1) — el < 2O My + 22 (t) —]

along with

M .
max{0,g5(a' (4(0)} < 3, (M + 221000~ el)

Proof: See [6], Theorem 2. |

The first half of Theorem 2 says that z! will eventu-
ally become close to %, . ;, with the degree of closeness
determined in part by the distance between p(t) and fi, .
The second half makes a similar statement about the extent
of any constraint violations, namely that the degree of any
constraint violation depends upon the distance from p(t) to
fly,e. Both statements in Theorem 2 say that the length of
delays between dual updates can be beneficial when it is
long, though naturally longer delays also require more time
for convergence, and thus there is a tradeoff between rate of
convergence on the one hand and both proximity to £, . and
feasibility of the final primal point on the other.

While the point (&, ., fi,.) is not necessarily a saddle
point of the original (unregularized) Lagrangian, it is guar-
anteed to be sufficiently close to one when v and e are
small enough; an extended discussion of this matter is in [10,
Section 3.2]. In effect, Algorithm 2 lets the agents approach
2, which itself it not far from an optimal solution to

Problem 1 in terms of the optimal function value and small
feasibility violation of the functional constraints.

V. EXPERIMENTAL RESULTS

Algorithm 2 was simulated for and then run with 8 robots.
We outline the problem and cover the simulation results, and
then present the experimental results. All agents are planar
so that z; € R? for all ¢ and =z € R'6. The sum of the

per-agent objective functions is

o
- (42

8
> filwi) = |mlP+
=1
—1.4 (—0.1 —0.7
Is —

2
v (1.4> 0.5 0.7

+
+ (w71 — 0.5)* + wro — L1+ (51 + 0.3)° + 25 .

2
+

-1
1

0.2
—0.6

2

+ +

The non-separable term in the cost is

1
c(r) = Tm“'xl — z4]® + llz1 — s + (|24 — zs]|%).

As before the total cost used was f(x) = Zf:l filxy)+c(x).
The functional and set constraints were

Hxl — $2||2 — 0.6
HSEl — I5||2 —-1.2
|lz7 — s — 1.8
|21 — 3] — 0.4
H.Z'4 — .’L’@H2 —0.9
8
and X = [J[-1.5,1.5] x [-1.0,1.5].
i=1

g(z)

The constants needed to solve this problem were computed
(approximately) numerically to be

Ly =26.9982, L, = 4.2426, M, = 8.7430,
M, = 13.5277, and M, = /122.

The regularization parameters were chosen to be v = € =
0.1, giving Cy = 64.191. The primal and dual stepsizes
were chosen to be 0.9 times their upper bounds in Theorem
1, giving

a = 0.02804 and T = 9.835 - 104

All delays had length determined by a random integer
drawn from a uniform distribution on the integers between
10 and 100, inclusive. Algorithm 2 was run until the agents
had computed 250, 000 state updates, during which time the
cloud computed 4, 539 dual updates.

In simulation, the initial total distance between the agents’
positions and their regularized optima, ||z°(0) — 2, ||, was
2.6024 and their final total distance, ||z*°3(250000) — &, ||,
was 0.0843. In addition, after only 25, 000 iterations the total
distance of the agents to %, was 0.1392, indicating that
fewer steps can be taken while still achieving an acceptable
ending state. In the dual space, the final distance to the
regularized optimum was ||u(4,539) — fi,..]| = 0.0393,
indicating close convergence in the dual space as well.

2

2

$ * Regularized Optima
© Final Simulation Positions
1+ ¢ Final Experimental Positions

®
@&

0.5
O L
-0.5 ¢ @

1 - & -
15 075 0 075 15

Fig. 1. A plot of &, the final simulation positions, and the final robot
positions, shown as asterisks, circles, and diamonds, respectively.

This problem was executed on the team of 8 Khepera
IIT robots pictured in Figure 2. Position data was gathered
using an OptiTrack motion capture system and the cloud-
based algorithm was used to generate position waypoints
for the agents. The experiment was run until the robots
and cloud completed 75,000 total updates; this point was
reached in the middle of a communications cycle, and that
cycle was allowed to finish, giving 73, 720 total state updates
by each agent and 1,340 dual updates by the cloud. The
final error in the primal space was ||z1340(73720) — &, .|| =
0.0689 and the final error in the dual space was ||1(1340) —
fivell = 0.0587, indicating close convergence of the robots
to (Zy.e, flv,e) and close agreement with the simulation.
A plot of the regularized optima, simulation results, and
experimental results is shown in Figure 1, representing close
agreement among the three sets of data plotted there.

VI. CONCLUSION

We presented a hybrid centralized/decentralized algorithm
for solving multi-agent nonlinear programs with inequality
constraints. To do this, we used a Tikhonov regulariza-
tion of the problem and a computing regime that spread
computations across the agents and a cloud computer. The
architectural model incorporated communications delays in
the system and approximate convergence of the algorithm
was proven. Experimental results were provided to show the
applicability of these results.

REFERENCES

[1] M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering
as optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255-312, Jan 2007.

[2] J. Cortés, S. Martnez, and F. Bullo. Spatially-distributed coverage
optimization and control with limited-range interactions. ESAIM:
Control, Optimisation and Calculus of Variations, 11:691-719, 2005.

[3] B. Gharesifard and J. Cortes. Distributed continuous-time convex
optimization on weight-balanced digraphs. Automatic Control, IEEE
Transactions on, 59(3):781-786, March 2014.

[4] Y. Guo and L.E. Parker. A distributed and optimal motion planning
approach for multiple mobile robots. In Robotics and Automation,
2002. Proceedings. ICRA '02. IEEE International Conference on,
volume 3, pages 2612-2619, 2002.

Fig. 2. Team of 8 Khepera III robots executing the cloud-based algorithm.

[5] M.T. Hale and M. Egerstedt. Cloud-based optimization: A quasi-
decentralized approach to multi-agent coordination. In Decision and
Control (CDC), IEEE 53rd Annual Conference on, pages 6635-6640,
2014.

[6] M.T. Hale, A. Nedi¢, and M. Egerstedt. Cloud-based central-

ized/decentralized multi-agent optimization with communication de-

lays. arXiv:math.OC/1508.06230, 2015.

F. Kelly, A. Maulloo, and D. Tan. Rate control in communication

networks: shadow prices, proportional fairness and stability. In Journal

of the Operational Research Society, volume 49, 1998.

[8] M. Khan, G. Pandurangan, and V.S.A. Kumar. Distributed algorithms
for constructing approximate minimum spanning trees in wireless
sensor networks. Parallel and Distributed Systems, IEEE Transactions
on, 20(1):124-139, Jan 2009.

[9] 1. Konnov. Egquilibrium models and variational inequalities, volume
210. Elsevier, 2007.

[10] J. Koshal, A. Nedi¢, and U. Shanbhag. Multiuser optimization: Dis-
tributed algorithms and error analysis. SIAM Journal on Optimization,
21(3):1046-1081, 2011.

[11] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, pages 481-492, Berkeley, Calif., 1951.

[12] I. Lobel and A. Ozdaglar. Distributed subgradient methods for
convex optimization over random networks. Automatic Control, IEEE
Transactions on, 56(6):1291-1306, June 2011.

[13] D. Mitra. An asynchronous distributed algorithm for power control
in cellular radio systems. In Wireless and Mobile Communications,
pages 177-186. Springer, 1994.

[14] M.H. Nazari, Z. Costello, M.J. Feizollahi, S. Grijalva, and M. Egerst-
edt. Distributed frequency control of prosumer-based electric energy
systems. Power Systems, IEEE Transactions on, 29, November 2014.

[15] G. Notarstefano and F. Bullo. Network abstract linear programming
with application to cooperative target localization. In Modelling, Es-
timation and Control of Networked Complex Systems, Understanding
Complex Systems, pages 177-190. 2009.

[16] L. Panait and S. Luke. Cooperative multi-agent learning: The state of
the art. Autonomous Agents and Multi-Agent Systems, 11(3):387-434,
2005.

[17] M. Rabbat and R. Nowak. Distributed optimization in sensor networks.
In Information Processing in Sensor Networks, 2004. IPSN 2004. Third
International Symposium on, pages 20-27, April 2004.

[18] D.E. Soltero, M. Schwager, and D. Rus. Decentralized path planning
for coverage tasks using gradient descent adaptive control. The
International Journal of Robotics Research, 2013.

[19] N. Trigoni and B. Krishnamachari. Sensor network algorithms
and applications: Introduction. Philosophical Transactions of the
Royal Scoeity A - Mathematical, Physical, and Engineering Sciences,
370(1958, SI):5-10, JAN 13 2012.

[20] J. Tsitsiklis. Problems in Decentralized Decision making and Com-
putation. PhD thesis, Massachusetts Institute of Technology, 1984.

[21] H. Uzawa. Iterative methods in concave programming. Studies in
Linear and Non-Linear Programming, 1958.

[7

—

