
Correct-by-Construction Control Synthesis for Multi-Robot Mixing

Yancy Diaz-Mercado1, Austin Jones2, Calin Belta2,3 and Magnus Egerstedt1

Abstract— This paper considers the problem of control-
ling a team of heterogeneous agents to conform to high-
level interaction (coordination, sensing, and communica-
tion) missions. We consider interactions that can be speci-
fied via symbolic inputs from the braid group. We define a
novel specification language, called Braid Temporal Logic
(BTL), that allows us to specify rich, temporally-layered
tasks involving agents’ locations in an environment, their
relative positions to each other, and frequency of location
swaps and information exchanges between agents. We
use techniques from formal methods to generate symbolic
inputs that conform to a given BTL specification and
use recently developed hybrid optimal control synthesis
techniques to enact the synthesized pattern. The generated
trajectories are provably guaranteed to be collision-free,
respect physical boundaries of the agents’ mission space,
and to satisfy the high-level mission. Results are validated
via implementation on a team of wheeled robots.

I. INTRODUCTION

In this paper, we consider the problem of enforc-
ing high-level coordination, sensing, and communica-
tion missions for a team of robots with heterogeneous
sensing capabilities. Many of the existing works on
multi-agent cooperation use control theory, optimization,
and graph theory to enforce team properties such as
connectivity of the communication graph [1], optimal
coverage [2], or optimal routing [3]. Here, we propose
a framework for specifying and enforcing a general class
of high-level mission specifications that subsumes many
common tasks and can be used to address combinations
of these common tasks, e.g., “ensure that the environ-
ment remains covered and that every agent shares its
data with at least two other agents.”

Temporal logic (TL) [4] has been used in robotics
to generate control policies for single agents that are
guaranteed to satisfy a given high-level mission (TL
formula) [5], [6]. Less research exists on using TL to

This work was supported by a grant from the U.S. Air Force Office
for Scientific Research, NSF NRI-1426907 and NSF CMMI-1400167.

1Authors are with the Department of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
yancy.diaz@gatech.edu, magnus@gatech.edu

2Authors are with the Division of Systems Engineering, Boston
University, Boston, Massachussets, USA austinmj@bu.edu,
cbelta@bu.edu

3Authors are with the Department of Mechanical Engineering,
Boston University

coordinate teams of agents [7], [8]. This paper represents
one of the first examples (besides [9], [10]) in which
temporal logic has been used to coordinate teams of
agents and low-level controls have been synthesized that
are guaranteed to satisfy the given mission. In contrast
to the cited works, this paper explicitly considers inter-
actions between agents rather than requirements over the
absolute positions of the agents.

These interactions are formally encoded as mem-
bers of the algebraic braid group [11] and used as
symbolic inputs to multi-robot controllers for achieving
rich interaction patterns. Hybrid controllers called braid
controllers [12] can be synthesized to safely execute
these braids. In this paper, we address the question of
how to generate symbolic inputs (sequences of braid
generators) that can be enacted by braid controllers to
satisfy mission specifications. We define a new model,
called the braid transition system (BTS), that encap-
sulates how enacting these inputs affects the state of
the multi-robot system. We define a new specification
language over BTSs, called braid temporal logic (BTL),
that can describe properties involving agents’ locations
and communication. These properties can be interleaved
via Boolean and temporal operators to form high-level
missions, e.g., “the distance between agents 2 and 3 is
never greater than δ . At least two different agents survey
location 4. If agent 1 communicates with agent 2, then
agent 2 passes the message to agent 4 or 5.”

We present provably correct techniques for generating
a braid string that is guaranteed to enforce a given
BTL specification, number of agents, and maximum
number of allowed symbolic inputs. In particular, we
present a novel, computationally-efficient technique, in
which the BTS, whose size grows combinatorially with
the number of agents, is never constructed explicitly.
We demonstrate our method with an end-to-end case
study. We define a BTL specification, use our synthesis
algorithm to generate a satisfying braid string, generate
a set of minimum tracking error braid controllers, and
implement them on a team of wheeled robots.

II. ROBOTIC MIXING USING BRAIDS

We presented a framework in [12] that used gener-
ators of the N-strand Braid Group [11] as symbolic

inputs to an N-agent robot team to encode desired
interaction patterns. In general, there are N generators
in the N-strand braid group, with σ0 being the trivial
generator (i.e., no interactions) and σk describing the
interaction between the “strands” (or connecting lines)
k and k + 1, with k = 1, . . . ,N − 1. Fig. 1a illustrates
the generators of the 4-strand braid group. Complex,
temporally sequenced interactions can be constructed by
concatenating generator symbols to form braid strings
(Fig. 1b), which are themselves members of the braid
group. We denote the length of a braid string M as the
number of concatenated symbols. This length provides
a notion of the amount of mixing, or interactions, that
the team of agents achieves. We denote the set of all
braid strings of length M that can be generated from the
N-strand braid group as ΣM

N . For example, a braid string
of length four σ ∈ Σ4

N has the form σ = σa ·σb ·σc ·σd ,
a,b,c,d ∈ {0, . . . ,N−1}.

Geometrically speaking, elements of the braid group
will represent bijections between sets of agent positions.
The intermediary points in a braid to and from which
agents are bijectively mapped will be referred to as
braid points. These points correspond to sets of spatio-
temporal constraints that are decided by the underlying
application, or introduced as intermediary waypoints
for the sake of enforcing interactions. We will denote
Pi ∈RN×2 to be a matrix containing the set braid points
at step i, i.e., the set of positions the agents must occupy
at some time ti. If the mapping encoded by the symbol
σ1 is applied to transition from Pi to Pi+1, then the
agent occupying position [Pi]1 (resp. [Pi]2) at step i
will occupy position [Pi+1]2 (resp. [Pi+1]1) at step i+1,
where [·] j is used to denote the jth row of the matrix.

The elements of the braid group themselves do not
have a fixed geometric interpretation. For the sake of
robotic navigation, we interpret the “strands” of the
braid as the path agents should follow to achieve their
interactions. The positions of the agents at the end of
the path are given by the previously described bijection.

We now recall some definitions originally stated in
[12], but included here for completeness. Consider a
collection of N planar robots attempting to achieve the
mixing strategy given by a symbolic input.

Definition 1 (Braid Controller [12]): A multi-robot
controller is a braid controller if the resulting trajectories
satisfy the spatio-temporal constraints imposed by the
braid points, and are also collision-free for all collision-
free initial conditions. �

Definition 2 (Mixing Limit [12]): The mixing limit
M? is the largest integer M such that there exists a braid
controller for every string in ΣM

N . �
Whenever two strands of the braid associated with a

1
2
3
4

1
2
3
4

1
2
3
4

2
1
3
4

1
2
3
4

1
3
2
4

1
2
3
4

1
2
4
3

σ0 σ1 σ2 σ3
(a) The four generators.

1
2
3
4

2
1
3
4

2
3
1
4

1
2
3
4

2
1
3
4

2
1
4
3

σ1 ·σ2 σ1 ·σ3
(b) Generator concatenations.

Fig. 1: 4-Strand Braid Group Example.

given braid string cross, the two associated agents will
have to interact. The mixing limit therefore serves as
an input-independent bound on how much mixing is
achievable for a given team of agents operating in a
given environment. In [12], we make some assumptions
that allow us to compute bounds on the mixing limit.

Theorem 1 (Mixing Limit Theorem [12]): Given the
safety separation δ and bounds on the linear velocity
along the braid such that v(t) ∈ [0,vmax] ∀t, the mixing
limit M? for N-agent braids that can be performed in
a space of height h and length ` in time T is bounded
above by

M?≤min
{

`
√

4h2−δ 2(N−1)2

δh , 2(N−1)(vmaxT−(`+δ))−1
2h

}
.

Proof: See [12].
Theorem 1 provides a compact expression with which

to obtain an upper bound on the mixing limit that
abstracts away strand geometry. It provides a notion of
whether or not desirable mixing levels are achievable
in the space, regardless of what the actual movement
patterns to achieve these mixing levels are used (encoded
in the braid string of length M ≤M?).

Here, we use this bound on the mixing limit to
generate policies over the braid strings that conform
with a user provided specification through a flavor of
temporal logic we call braid temporal logic (defined
in Section IV). First, we present some preliminaries on
temporal logic and formal methods in Section III.

III. TEMPORAL LOGIC AND AUTOMATA

The set of all finite and set of all infinite words over
alphabet Ω are denoted by Ω∗ and Ω∞, respectively.

A deterministic transition system [4] (DTS) is a tuple
T S = (Q,q0,Act,Trans), where Q is a set of states, q0 ∈
Q is the initial state, Act is a set of actions, and Trans⊆
Q×Act×Q is a transition relation. A labeled DTS is a
tuple T S = (Q,q0,Act,Trans,AP,L) where AP is a set of
atomic propositions, and the labeling function L : Q→
2AP maps states to propositions. An input sequence a =

a0a1 . . . ∈ Act∗ induces a run r = q0q1q2 . . . ∈ Q∗ such
that q0 = q0 and (qi,ai,qi+1)∈ Trans. The trace of a run
of a labeled transition system is a word w = w0w1 . . . ∈
(2AP)∗ such that wi = L(qi).

A syntactically co-safe linear temporal logic (scLTL)
formula over a set AP is inductively defined as [13]:

φ := p|¬p|φ ∨φ |φ ∧φ |φ U φ | © φ | ♦ φ , (1)

where p ∈ AP and φ is an scLTL formula. The logi-
cal operators ∨,∧, and ¬ are disjunction, conjunction,
and negation, respectively, and the temporal operators
U , © , and ♦ are until, next, and eventually,
respectively. We also use Boolean implication⇒, where
(φ1⇒ φ2) = (¬φ1∨φ2). The logic scLTL is defined over
words w = w0w1 . . . ∈ (2AP)∗. The notation w |= φ is
used to mean that w satisfies an scLTL formula φ . The
language of φ is L (φ) = {w|w |= φ}.

A (deterministic) finite state automaton (FSA) is a
tuple FSA = (Ω,Π,Ω0,F,∆FSA) where Ω is a finite set
of states, Π is an input alphabet, Ω0 ⊆ Ω is a set of
initial states, F ⊆ Ω is a set of final (accepting) states,
and ∆FSA ⊆ Ω×Π×Ω is a deterministic transition
relation. An accepting run rFSA of an automaton FSA is
a sequence of states ω0ω1 . . .ω j+1 such that ω j+1 ∈ F
and (ω i,π i,ω i+1) ∈ ∆FSA ∀i ∈ [0, j]. The language of
FSA, denoted L (FSA), is the set of words w ∈Π∗ that
lead to an accepting run. Given an scLTL formula φ

over AP, there exist off-the-shelf algorithms [14] for
creating an FSA FSAφ with input alphabet 2AP such
that L (FSAφ) = L (φ).

The product automaton between a labeled
deterministic transition system T S and an FSA FSAφ

is an FSA Pφ = T S×FSAφ = (ΩP ,χ0,Act,FP ,∆P)
[4], where ΩP ⊆ Q × Ω, χ0 = (q0,ω0),
FP ⊆ Q× F , and ∆P = {(q,ω), p,(q′,ω ′)|(q, p,q′) ∈
Trans,(ω,L(q),ω ′)∈∆FSA}. The state of the automaton
at time k is denoted as χk = (qk,ωk). Any accepting
word a = a0a1 . . . ∈ Act∗ over P induces a trace w
over T S such that w |= φ . Thus, finding a path on T S
that satisfies φ corresponds to a reachability problem
on Pφ .

The distance to acceptance [15], [16] W : ΩP → Z+

is defined such that W (χ) is the minimum number of
actions required to drive P from χ to a state χ f ∈ FP .

IV. TEMPORAL LOGIC AND THE BRAID GROUP

In this section we introduce a formal framework
to specify rich, temporally layered multi-robot mixing
requirements. We define a special class of determinis-
tic transition systems, called braid transition systems
(BTSs), to encapsulate how braid strings affect the
mapping between braid points. In Section IV-B we

define a new logic, called Braid Temporal Logic, that
is interpreted over runs of BTSs.

A. Braid Transition System

In the BTS, we model the set of braid points abstractly
as configurations.

Definition 3 (Configuration space): Let vN =
[1 . . . N]T . The (mixing) configuration space for a team
of N agents is Perm(vN) where Perm(·) denotes the set
of permutations of the elements of the vectors. �

The configuration associated with P0 is by definition
vN . A column vector c ∈ Perm(vN) corresponds to a
configuration of the braid points such that c(k) = j if
and only if agent j is mapped to the braid point [Pi]k at
step i.

Definition 4 (Braid Transition System (BTS)):
The braid transition system of size N is a
deterministic transition system described by the
tuple BT SN =

(
vN ∪Perm(vN)

2,vN ,ΣN ,TransN
)
, where

TransN ⊆ CN × ΣN × CN is the smallest transition
relation that satisfies

(vN ,σ0,(vN ,vN)) ∈ TransN (2a)

(vN ,σi,(vN ,c22)) ∈ TransN ⇔
c22(i) = i+1∧ c22(i+1) = i

∀i ∈ 1, . . . ,N−1

 (2b)

((c11,c12),σ0,(c12,c12)) ∈ TransN (2c)

((c11,c12),σi,(c21,c21)) ∈ TransN ⇔
c21 = c12∧ c21(i) = c22(i+1)

∧c21(i+1) = c22(i)
∀i ∈ 1, . . . ,N−1 �

 (2d)

Example 1: The braid transition system for two
agents, BT S2, is illustrated in Fig. 2(a). �

A BTS stores one time unit of history, i.e., if the
BTS is in state (c1,c2), ci ∈ Perm(vN), at time k, then
the robots were in configuration c1 at time k−1 and are
in configuration c2 at time k. This allows us to check
properties that explicitly involve interactions between
agents. Given a run of the braid transition system
r = vN ,(vN ,c1),(c1,c2) . . . ∈ (Perm(vN) ∪ Perm(vN)

2)∗

we define its configuration trace as rC = vN ,c1,c2,
For a finite N, the number of states in BT SN is (N!)N+1
and the number of transitions in TransN is N2(N!)+N.

B. Braid Temporal Logic

In order to describe rich, temporally layered require-
ments on the agents’ mixing, we define a new predicate
temporal logic, called Braid Temporal Logic (BTL).

Definition 5 (BTL Syntax): The syntax of BTL is de-
fined inductively as

φ := Am pg|d(Am,A`)∼ x|AmA`|¬Aip j|¬AiA j

|φ ∨φ |φ ∧φ |φ U φ | © φ | ♦ φ ,
(3)

where φ is a BTL formula, ∼∈ {<,>}, x ∈ N, and
the Boolean and temporal operators are as defined for
scLTL in Section III. The predicate Am pg means agent
m is in position g; d(Aa,A`)∼ x means that the distance
between agents m and ` is less than (or greater than) x;
AmA` means that agents m and ` interact. �

Definition 6 (BTL semantics): The semantics of BTL
is defined recursively as

ci |= Am pg ⇔ ci(g) = m

ci |= ¬Am pg ⇔ ci 6|= Am pg

ci |= d(Am,A`)∼ x ⇔ | f −g| ∼ x where
ci(f) = m and ci(f) = `

ci |= AmA` ⇔ m and ` swap between

ci−1 and ci.

ci |= ¬AmA` ⇔ ci 6|= AmA`

ci |= φ1∨φ2 ⇔ ci |= φ1 or ci |= φ2

ci |= φ1∧φ2 ⇔ ci |= φ1 and ci |= φ2

ci |= φ1 U φ2 ⇔ ∃ j ≥ i s.t. c j |= φ2

and ck |= φ1 ∀i≤ k < j

ci |= © φ ⇔ ci+1 |= φ

ci |= ♦ φ ⇔ ∃ j ≥ i s.t. c j |= φ . �

(4)

Example 1 (cont’d): For the case of two robots inter-
acting, we can use the BTL formula

φn=2 = ♦ (A1 p2∧ © A1A2) (5)

to describe the property “eventually, Agent 1 is in
position 2 and in the next step, Agent 1 and Agent 2
interact.”

Example 2: Consider the specification
φc = ♦ (A3A4∨A2A4)

∧ (¬(A3A4∨A2A4) U A1A4)

∧ ((A3A4⇒ ♦ A3 p5)∧ (¬A3 p5 U A3A4)

∨ (A2A4⇒ ♦ A2 p5)∧ (¬A2 p5 U A2A4))

(6)

In plain English, this is “agent 4 communicates with
agent 2 or 3 after it has communicated with Agent
1. Whichever agent 4 communicates with reports to
position 5.”

V. FORMAL SYNTHESIS OF BRAID STRINGS

A. Synthesis of Braid Strings from BTL Formulae

In this work, we are both interested verifying rich
temporally layered behaviors of interacting robots, and
in developing braid controllers that enforce a given BTL
specification. We encode this in the following problem.

Problem 1 (Braid String Synthesis): Given a set of N
agents and a BTL formula φ , find a word σ ∈ ΣM

N such
that applying σ to BT SN will lead to a configuration
trace that satisfies φ and σ has fewer generators than
the mixing limit M∗. �

There are potentially many words σ that satisfy
Problem 1. Here, we synthesize the shortest satisfying
word. The problem of generating a braid controller from

a given word is addressed in [12], and these controllers
are used in the case study in Section VI.

The standard approach to solving Problem 1 is to
convert it to the problem of scLTL-based synthesis
for labeled transition systems. Briefly, we convert a
given BTL formula φ to an scLTL formula φ ′ by
applying a mapping π that maps every predicate in φ

to a unique atomic proposition. The product automaton
P = BT SN ×FSAφ ′ is constructed and then Djikstra’s
algorithm is used to produce the shortest accepting word.
We ensure that the length of the resulting word is less
than the mixing limit. Applying this word to BT SN will
result in a configuration trace rC that satisfies φ .

Example 1 (Cont’d): Fig. 2(b) shows the FSA con-
structed from (5). Fig. 2(c) shows the product automaton
between BT S2 and the FSA from (5). In Fig. 2(d), we see
the path that results from finding the shortest accepting
word on P .

B. Language-Guided Synthesis

The number of states in BT SN scales exponentially
with N. We present a procedure, outlined in Algorithm
1, that constructs the part of the product automaton
between BT SN and FSAφ ′ necessary to solve Problem 1,
denoted PLG, that does not require explicitly construct-
ing BT SN .

After constructing FSAφ ′ , we use its accepting states
and the set of predicates that enable transitions to these
states to enumerate the accepting states FP of P . Next,
we construct PLG backwards. At each iteration j, the
procedure BackStep constructs the set of states K j such
that W (χ) = j ∀χ ∈ K j and connects K j to PLG. Since
TransN can be represented by (2), we can enumerate
all transitions in BT SN that would result in a state
(c1,c2) ∈ K j. The inputs of the transitions in FSAφ ′ can
be used to determine whether paths originating from
these enumerated states can reach an accepting state in
j steps. Finally, after executing BackStep M∗−1 times,
we connect the initial state (vN ,ω0) to PLG and then
trim any states in the graph that are not reachable from
(vN ,ω0).

Proposition 1 (Exactness): The language of PLG is
the set of all paths that will induce BT SN to satisfy φ

and respect the mixing limit.
Proof: (Sketch) The result is guaranteed by enforc-

ing the loop invariant W (χ) = j ∀χ ∈ K j.

1
2
3
4
5

2
1
3
4
5

2
3
1
4
5

2
3
4
1
5

2
4
3
1
5

2
4
1
3
5

2
4
1
5
3

Fig. 3: Shortest braid that satisfies (6).

2

1

0

1

2

2

1

1

2

(a) (b) (c) (d)
Fig. 2: (a) The braid transition system constructed when two agents interact. (b) FSA constructed from (5). The initial state ω0
is indicated in grey and the accepting state is indicated by the double outline. The edges are annotated with the BTL subformulae
whose language is the set of inputs that enable the indicated transition. (c) Product automaton between (a) and (b). Again, the
accepting state is indicated with double circles. (d) The braid resulting from finding the shortest accepting path on (c).

Example 2 (Cont’d.): The braid in Fig. 3 satisfies (6)
and respects the mixing limit of 8. This braid was
generated by Algorithm 1 in 3.7s from an automaton
with 845 states. Applying the standard approach (Section
V-A) calculated the solution in 939s from an automaton
with 5724 states. All calculations were performed on a
PC with a 2.6 GHz processor with 7.8 GB RAM.

VI. CASE STUDY

We consider a team of 6 agents with heterogeneous
sensors that is tasked with the high-level mission “Agent
3 visits location 5 and communicates with agent 1. After
agent 3’s mission is complete, agent 1 goes to location
6 and agent 6 goes to location 1. Agents 1 and 2 are
never more than 3 locations apart for the duration of the
mission.” The corresponding BTL formula contains 30
symbols and is omitted due to length restrictions. This
mission represents part of a much longer mission that
has been decomposed into sequential BTL specifications
over different windows. This would be the case if the
team of agents are moving along a path and have
variable requirements at different points along this path.

An interpretation of this specification is that over this
time-window, agent 3 is carrying an infrared camera that

Algorithm 1 Language-guided product automaton con-
struction.

function LanguageGuidedConstruction(N,φ ,M∗)
FSAφ ′ =BuildFSA(φ)
FP = ComputeAcceptingState(FSAφ ′)
ΩP = FP; ∆P = /0; K0 = FP;
for j = 1 to M∗−1 do

(K j,∆FSA,ΩP,∆P) = BackStep(K j−1,∆FSA,ΩP,∆P)
(ΩP,∆P) = ConnectInitialState(ΩP,∆P)
PLG = (ΩP,(vn,c,ω0),Act,FP,∆P)
return Trim(PLG)

needs to measure an algal bloom in a pond in location 5.
Agent 1 will be tasked with updating a base station along
the path during the next time window, so it needs an
update from Agent 3 about its recent measurements and
needs to be in position 6 during the next time window.
Agent 6 needs to be in location 1 so it is ready to
measure tree density with its LIDAR in the next time
window. Agents 1 and 2 use downward-facing cameras
to sense cooperatively, so their proximity requirement is
permanent.

We used Algorithm 1 to generate a braid string that
satisfies the given specification and meets the mixing
limit of 15. The braid string was calculated in 43s from
an automaton with 5749 states. This resulted in the string

σspec={σ1 ·σ3 ·σ5} ·σ2 ·σ3 ·σ4 · {σ3 ·σ5} · {σ2 ·σ4} ·σ1 (7)

where the grouped substrings may occur simultaneously
without violating the specification.

Braid controllers were used to execute the braid string
on a team of six Khepera III differential-drive wheeled
robots. The robots were controlled over WiFi UDP from
an Ubuntu (version 14.04LTS) computer with a 2.8GHz
processor and 5.8GB RAM, running ROS (Robot Oper-
ating System, Indigo distribution). This computer also
received robot state information from ten OptiTrack
S250e motion capture cameras. Fig. 4 shows the actual
execution of the mixing strategy on the robots at two
stages of a 60s total mission time-window. The braid
points were uniformly distributed on a rectangular space
of length ` = 3.4m and height h = 2.5m. Straight lines
were chosen as the braid strands’ geometric interpreta-
tion. Optimal trajectory tracking controllers are used to
minimize the error between the robots actual trajectories
and the desired specification-satisfying trajectories, as
described in [12].

Fig. 4a shows the agents at a stage of interaction,
where an agent exits the safety separation region before
the other one enters. Fig. 5a illustrates the instantaneous

(a) The controller is collision-free – robots get as close as δ . (b) Braid points are reached simultaneously.
Fig. 4: Actual robots executing the mixing strategy given by (7), which is being projected onto the robot workspace.

minimum inter-agent distance throughout the execution.
It can be seen that the minimum inter-robot distance
achieved is approximately 0.132m — since the Khep-
era’s have a diameter of 0.13m, no collisions were
observed during execution. Fig. 4b illustrates the robots
simultaneously arriving at a set of braid points. Fig.
5b illustrates the robot trajectories in the plane. The
optimal tracking controller compensates for deviations
due to velocity saturation and the robots’ dynamics,
thus ensuring the controller remains collision-free and
braid points are reached while successfully satisfying
the mission specification.

VII. CONCLUSIONS

We approached the problem of controlling a team
of agents to conform to high-level interaction patterns
and developed a novel specification language, called
Braid Temporal Logic (BTL), that describes properties
involving agent interactions, relative distance between
agents, and the agents’ positions in space. We developed
a computationally-efficient formal synthesis algorithm
that is guaranteed to enforce a given BTL specification.
The braid controller generated trajectories are provably
guaranteed to be collision-free, respect physical bound-
aries of the agents’ mission space, and to satisfy the
high-level mission. The algorithms and controllers were
validated on a team of robots in a laboratory setting.

REFERENCES

[1] E. Stump, N. Michael, V. Kumar, and V. Isler, “Visibility-
based deployment of robot formations for communication main-

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

min ≈ 0.132867m

Time (s)

D
is

ta
nc

e
(m

)

(a) Instantaneous minimum
inter-robot distance.

−2 −1 0 1 2

−1

0

1

East (m)

N
or

th
(m

)

(b) Robot trajectories in
the plane.

Fig. 5: Robotic Implementation Data.

tenance,” in Robotics and Automation (ICRA), 2011 IEEE Inter-
national Conference on, May 2011, pp. 4498–4505.

[2] C. G. Cassandras and X. Lin, “Optimal control of multi-agent
persistent monitoring systems with performance constraints,”
in Control of Cyber-Physical Systems, ser. Lecture Notes in
Control and Information Sciences, D. C. Tarraf, Ed. Springer
International Publishing, 2013, vol. 449, pp. 281–299.

[3] S. Smith, M. Pavone, M. Schwager, E. Frazzoli, and D. Rus,
“Rebalancing the rebalancers: optimally routing vehicles and
drivers in mobility-on-demand systems,” in American Control
Conference (ACC), 2013, June 2013, pp. 2362–2367.

[4] C. Baier and J.-P. Katoen, Principles of Model Checking (Rep-
resentation and Mind Series). The MIT Press, 2008.

[5] M. Kloetzer and C. Belta, “A fully automated framework for
control of linear systems from temporal logic specifications,”
Automatic Control, IEEE Transactions on, vol. 53, no. 1, pp.
287 –297, feb. 2008.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas,
“Temporal logic motion planning for dynamic robots,” Automat-
ica, vol. 45, no. 2, pp. 343–352, Feb. 2009.

[7] Y. Chen, X. C. Ding, A. Stefanescu, and C. Belta, “Formal ap-
proach to the deployment of distributed robotic teams,” Robotics,
IEEE Transactions on, vol. 28, no. 1, pp. 158 –171, feb. 2012.

[8] S. Karaman and E. Frazzoli, “Vehicle routing problem with
metric temporal logic specifications,” in Decision and Control,
2008. CDC 2008. 47th IEEE Conference on, Dec 2008, pp.
3953–3958.

[9] M. Guo, J. Tumova, and D. Dimarogonas, “Cooperative decen-
tralized multi-agent control under local ltl tasks and connectivity
constraints,” in Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, Dec 2014, pp. 75–80.

[10] C. Vasile and C. Belta, “An automata-theoretic approach to the
vehicle routing problem,” in Proceedings of Robotics: Science
and Systems, Berkeley, USA, July 2014.

[11] E. Artin, “Theory of braids,” Annals of Mathematics, vol. 48,
no. 1, pp. 101–126, 1947.

[12] Y. Diaz-Mercado and M. Egerstedt, “Inter-Robot Interactions in
Multi-Robot Systems Using Braids,” 2015, arXiv:1509.04826v1.

[13] O. Kupferman and M. Y. Vardi, “Model checking of safety
properties,” Formal Methods in System Design, 2001, volume
19, pages 291-314.

[14] T. Latvala, “Efficient model checking of safety properties,”
in Model Checking Software, ser. Lecture Notes in Computer
Science, T. Ball and S. Rajamani, Eds. Springer Berlin /
Heidelberg, 2003, vol. 2648, pp. 624–636.

[15] E. Aydin Gol, M. Lazar, and C. Belta, “Language-guided con-
troller synthesis for discrete-time linear systems,” in Proceedings
of the 15th ACM international conference on Hybrid Systems:
Computation and Control, New York, NY, USA, 2012, pp. 95–
104.

[16] A. Jones, M. Schwager, and C. Belta, “Information-guided
persistent monitoring under temporal logic constraints,” in IEEE
American Control Conference (ACC), July 2015, pp. 1911–1916.

