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Abstract

In this paper, we consider the problem of routing multiple robots to service spatially distributed requests at specified time instants. We
show that such a routing problem can be formulated as a pure assignment problem. Additionally, we incorporate connectivity constraints
into the problem by requiring that range-constrained robots ensure a connected information exchange network at all times. We discuss the
feasibility aspects of such a spatio-temporal routing problem, and derive the minimum number of robots required to service the requests.
Moreover, we explicitly construct the corresponding routes for the robots, with the total length traveled as the cost to be minimized.
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1 Introduction

Multi-robot routing requires multiple robots to visit a set of
spatially distributed locations for some purpose (e.g., deliv-
ery or acquisition) with routes that optimize certain crite-
ria (e.g., minimization of total distance traveled, completion
time, or energy consumption). In this paper, we consider
such a problem of servicing spatial requests, with an added
temporal constraint that each request be serviced at a spec-
ified time instant. Moreover, we consider the connectivity
constrained version of the problem, where we require that
the underlying information exchange network remains con-
nected at all times.

In the robotics literature, multi-robot routing is a well stud-
ied topic (e.g. see Burgard et al. [2005], and Mosteo et al.
[2008]). Many problems on combinatorial optimization are
associated with multi-robot routing. For instance, the mul-
tiple traveling salesman problem (m-TSP) consists of de-
termining a set of optimal routes for m salesmen who all
start from and turn back to a home city (see Bektas [2006]).
Another example is the vehicle routing problem (VRP) (see
Arsie et al. [2009]), which concerns the design of optimal
delivery or collection routes for a fleet of vehicles from one
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or many depots to a number of geographically scattered cus-
tomers with known demands. The dynamic counterpart of
the VRP, known as the dynamic vehicle routing problem,
deals with online arrival of customer demands during the
operation (see Bullo et al. [2011], and Pavone and Frazzoli
[2010]).

Applications of such routing problems include surveillance,
search and rescue, transportation on demand, and assem-
bly. However, to solve these problems is computationally
expensive. In fact, the VRP is proven to be NP-hard (see
Karp [1972]). To overcome this complexity, one can note
that many times, applications require an ordered sequence
in which requests be serviced. For instance, an autonomous
structure assembly system, or a car manufacturing system,
may require multiple robots to service locations in a syn-
chronized and sequenced manner, thus motivating the need
for spatio-temporal requests in lieu of spatial requests. In
this paper, we show that by adding such temporal constraints
to the spatial requests, a notion of directionality appears in
the otherwise NP- hard problem of routing, and thus, it can
be converted to an assignment problem, solvable in poly-
nomial time (for preliminary results in this direction, see
Chopra and Egerstedt [2012b]).

An important aspect of multi-robot coordination concerns
connectivity maintenance, where in order to ensure that the
robots can execute a mission in a collaborative manner, the
induced information exchange network must be sufficiently
rich. In this paper, we require that the range-constrained net-
work induced by the positions of the robots be connected
for all times (for preliminary results, see Chopra and Egerst-
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Fig. 1. A rendering of the Robot Music Wall concept

edt [2012a]). In general, connectivity maintenance in multi-
robot networks requires techniques for ensuring connectiv-
ity of a range constrained multi-robot network during some
task execution. Such techniques include using relays dedi-
cated towards maintaining sensing or communication links
(e.g. Nguyen et al. [2003], and Dixon and Frew [2009]), or
using formation control strategies towards motion planning
(see Kan et al. [2011]). Other methods seek connectivity
at particular time instants only, (e.g. Ponda et al. [2011]).
However, we are interested in constructing routes that main-
tain connectivity for all times, while allowing dynamic as-
signment between robots and spatio-temporal requests such
that no robots exist solely for the task of maintaining con-
nectivity links.

This paper is organized as follows : In Section 2, we discuss
the Unconstrained Routing Problem, followed by its cor-
responding Connectivity Constrained version in Section 3.
Finally, we demonstrate the routing problems through sim-
ulations and hardware implementations, in Section 4.

A Motivating Example - The Robot Music Wall

Consider a two-dimensional magnetic-based surface (wall)
with a grid of strings in different pitches that generate sound
when plucked. Distinct positions on the wall correspond to
distinct sound frequencies, i.e. distinct notes of an instru-
ment. Multiple robots with the ability to traverse the wall can
reach these positions and pluck at the strings above them.

With this set-up, we can interpret any piece of music con-
sisting of a series of notes to be played at specified time in-
stants, as a series of corresponding spatio-temporal requests
(timed positions) on the music wall. We call such a series
a Score, which contains positions that must be reached at
specified time instants. By routing multiple robots to service
such timed positions, we can effectively “play” the piece of
music associated with them on the wall.

2 The Unconstrained Routing Problem

We let T = {t
1

, t
2

, ..., tn} denote the set of n discrete time
instants over which the Score is defined, where t

1

< ... <

tn. Moreover, we let Pi denote the corresponding set of
planar positions that require simultaneous servicing at time
ti. Each position in this set is denoted by Pi,↵, where ↵ 2
{1, ..., |Pi|} (the symbol | · | denotes cardinality), i.e.,

Pi = {Pi,↵ |↵ 2 {1, ..., |Pi|}}, 8i 2 {1, ..., n} (1)

We let K be the maximum number of positions that require
simultaneous servicing at any time instant in T , i.e.,

K = max

i2{1,...,n}
|Pi| (2)

Definition 1. Let the Score, denoted by Sc, be the set of all
timed positions that the robots must reach. We express such
timed positions as (position, time) pairs in the Score, i.e.,

Sc = {(Pi,↵, ti) | i 2 {1, ..., n},↵ 2 {1, ..., |Pi|}} (3)

Moreover, for a given set of r robots, denoted by R =

{1, ..., r}, we let P
0

= {P
0,↵ |↵ 2 {1, ..., |P

0

|}} be the set
of their initial positions, defined at time instant t

0

.

Notice that if we have fewer robots than the maximum
number of positions requiring simultaneous servicing in the
Score, given by K, then all K positions cannot be reached
simultaneously. Thus, we must have at least K robots, i.e.
r � K.

We are interested in the problem of optimally routing these
robots to reach the timed positions contained in the Score.
By optimal, we mean a routing plan that minimizes the to-
tal distance traveled by the robots. Moreover, we want our
solution to act at a high enough level of abstraction so that
the dynamics of the robots do not have to be explicitly ac-
counted for. This construction must be inherently hybrid in
that it connects the continuous dynamics to a discrete solu-
tion. Hence, we assume single integrator dynamics for every
robot, given by ẋp = up, p 2 R. Since for such systems,
minimum distance paths are straight lines and minimum en-
ergy motions have constant velocities, we let robots move
between assigned positions in straight line paths with con-
stant velocities that ensure their timely arrival.

Note that we can interpret the path of any robot as a series
of individual assignments between timed positions assigned
to that robot, directed in increasing order of specified time
instants. Hence, the information contained in the optimal
paths of the robots can be encoded in a different function
that explicitly describes such individual assignments. We
elaborate on this in subsequent paragraphs,

Definition 2. Let the Assignees, denoted by As, be the set
containing all timed positions in the Score specified before
the last time instant tn, in addition to all timed initial posi-
tions of the robots, i.e.,

As = {(Pi,↵, ti) | i 2 {0, ..., n� 1},↵ 2 {1, ..., |Pi|}}
(4)
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Fig. 2. An example of an optimal assignment between three robots
(circles) and a Score (stars)

Note that r � K implies that |As| � |Sc|.
We let ⇡ : As ! Sc be a function that maps between timed
positions in the Assignees and the Score. If there exists some
As0 ✓ As, such that firstly, the restricted function ⇡|As0 :

As0 ! Sc is a bijection, and secondly, ⇡((Pi,↵, ti)) =

(Pj,� , tj) 2 Sc ) tj > ti for all (Pi,↵, ti) 2 As0, then we
call this restricted function a feasible assignment. The first
condition ensures that every timed position in the Score is
assigned, no two timed positions in the Assignees map to
the same timed position in the Score, and no two timed po-
sitions in the Score are assigned to the same timed position
in the Assignees. The second condition enforces direction-
ality within each individual assignment, i.e. it states that a
position in the Score specified at time instant tj must be as-
signed to a position in the Assignees specified at some time
instant ti earlier than tj i.e. ti < tj . We call this the direc-
tionality constraint.

In addition to being feasible, if the total distance associated
with the individual assignments in ⇡|As0 is minimum (akin
to saying that the total distance traveled by all the robots is
minimum), then we call it an optimal assignment, denoted by
⇡?. Note that ⇡? is restricted to the subset As0 2 As because
the condition |As| � |Sc forces (|As| � |Sc|) number of
timed positions in As to go unassigned, in order to ensure
⇡? is indeed a bijection.

See Figure 2 for an example of an optimal assignment ⇡?
:

As0 ! Sc, where,

R = {1, 2, 3}
Sc = {(P1,1, 1), (P1,2, 1), (P2,1, 2), (P3,1, 3)}
As = {(P0,1, 0), (P0,2, 0), (P0,3, 0), (P1,1, 1), (P1,2, 1), (P2,1, 2)}
As0 = {(P0,1, 0), (P0,2, 0), (P0,3, 0), (P1,1, 1)}
⇡?((P0,1, 0)) = (P1,1, 1)

⇡?((P1,1, 1)) = (P3,1, 3)

⇡?((P0,2, 0)) = (P1,2, 1)

⇡?((P0,3, 0)) = (P2,1, 2)

From the above example, we can see that by applying ⇡?

repeatedly on the initial position of a robot, we can determine
the corresponding optimal path for that robot. Thus, we focus
on the problem of finding an optimal assignment ⇡? for a
given triple (Sc,R, P

0

).

2.1 Problem Definition

Let I , {0, ..., n � 1} and J , {1, ..., n} be the index
sets for i and j, representing the time instants at which

positions are specified in As and Sc respectively. Also, let
Ai , {1, ..., |Pi|}, i 2 {0, ..., n} be the index set for ↵ and
�.

By defining a mapping l(i,↵, j,�), we can formally define
the routing problem as a linear program,

min

l

X

i2I

X

↵2Ai

nX

j=i+1

X

�2Aj

||Pj,� � Pi,↵|| l(i,↵, j,�) (5)

subject to:

l(i,↵, j,�) 2 {0, 1} (6)
j�1X

i=0

X

↵2Ai

l(i,↵, j,�) = 1, 8 j 2 J ,� 2 Aj (7)

nX

j=i+1

X

�2Aj

l(i,↵, j,�)  1, 8 i 2 I,↵ 2 Ai (8)

where l(i,↵, j,�) represents the individual assignment of
(Pi,↵, ti) 2 As to (Pj,� , tj) 2 Sc, and is 1 if the assign-
ment is done, and 0 otherwise. The resulting l gives us the
corresponding optimal assignment ⇡?, where l(i,↵, j,�) =
1 () ⇡?

((Pi,↵, ti)) = (Pj,� , tj). Equations (7) and (8)
ensure feasibility of this assignment, while (5) ensures that
the total distance associated with the individual assignments
is minimum.

For the sake of convenience, we refer to the Unconstrained
Routing Problem given by Equations (5) - (8), as the URP.

2.2 Assignment

The URP is a modified version of the classic linear sum
assignment problem (LSAP) (see Martello and Toth [1987])
that concerns the following: given two equal sized sets P and
Q with some non-negative cost function C : (P ⇥Q) ! R,
the objective is to find a complete assignment, i.e. a bijection
S : P ! Q that minimizes the function

P
a2P C(a, S(a)).

As and Sc in the URP correspond to P and Q in the LSAP,
and the feasible assignment ⇡ corresponds to S. Note that the
LSAP insists on P and Q being equal sized while the URP
insists on |As| � |Sc|. Moreover, in the LSAP, there exist no
forbidden individual assignments betweenP andQ, contrary
to the URP, where individual assignments between As and
Sc that violate the directionality constraint are forbidden.
However, we can apply algorithms developed for solving
the LSAP towards solving the URP, by incorporating certain
modifications that we discuss later in this section.

Many algorithms, both sequential and parallel, have been
developed for solving the LSAP (e.g. Martello and Toth
[1987]), ranging from primal-dual combinatorial algorithms
to simplex-like methods, cost operation algorithms, forest
algorithms, and relaxation approaches. Although immaterial
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to the underlying theory, in this paper, we choose to use
the first polynomial-time primal-dual algorithm developed
for solving the LSAP, called the Hungarian Method (see
Kuhn [1955]). Note that the fastest version of the Hungarian
Method involving N stages is O(N3

) (see implementation
in Lawler [1976]).

In order to use the Hungarian Method towards solving the
URP, we generate a cost matrix C = [ci↵,j� ] of size |As|⇥
|Sc|, where the rows and columns in C represent timed po-
sitions in the Assignees and the Score respectively, and the
element ci↵,j� equals the distance between the correspond-
ing timed positions, i.e. ||Pj,� � Pi,↵||, (Pi,↵, ti) 2 As and
(Pj,� , tj) 2 Sc. The Hungarian Method requires a square
cost matrix, for which we introduce (|As|� |Sc|) dummy 1

positions as targets (in addition to the timed positions in the
Score). For convenience, we denote the set of such dummy
positions by Pn+1

= {Pn+1,� |� 2 An+1

} where An+1

,
{1, 2, ..., (|As|�|Sc|)}. Moreover, we let the cost associated
with reaching these dummy positions be zero. We define Sc0
to be the set containing the Score in addition to the dummy
positions, i.e., Sc0 = Sc [ {(Pn+1,� , tn+1

) |� 2 An+1

}.

The Hungarian Method operates on such a square cost ma-
trix to search for a one-to-one correspondence (assignment)
between its row and column elements (assignees and targets
respectively), such that the assignment has a minimum cost.
In the case of the LSAP, it always terminates with a complete
assignment, i.e. a bijective function H : P ! Q with mini-
mum cost, denoted by cost(H). More importantly, there ex-
ist no targets in Q that go unassigned. However, in the case
of the URP, there exist forbidden individual assignments be-
tween As and Sc0 that need to be taken into account. The
way these are typically dealt with within the framework of
the Hungarian Method, is to associate a prohibitively large
cost M with each of them (see e.g. Burkard et al. [2009]).
We denote this modified cost matrix by ˆC = [ĉi↵,j� ], where,

ĉi↵,j� =

8
>>>>>>><

>>>>>>>:

||Pj,� � Pi,↵||, i 2 I,↵ 2 Ai,
j 2 {i+ 1, ..., n},� 2 Aj

M, i 2 I,↵ 2 Ai,
j 2 {1, ..., i},� 2 Aj

0, i 2 I,↵ 2 Ai,
j = n+ 1,� 2 Aj

(9)

The symbol M represents forbidden assignments. If M is
large enough, then the Hungarian Method finds a complete
assignment between As and Sc0 that avoids forbidden indi-
vidual assignments, if such an assignment exists. We denote
the assignment by Hr : As ! Sc0, where r refers to the
number of robots.

1 The term dummy is standard in the assignment literature, e.g.
see Martello and Toth [1987].

2.3 Existence of Solutions

Since the cost associated with reaching a dummy position
in Sc0 is zero, Hr always contains (|As| � |Sc|) number
of individual assignments between timed positions in the
Assignees and dummy positions. Thus, all timed positions in
the Score are reached, i.e. Sc ✓ range(Hr), if and only if
Hr is a complete assignment that avoids forbidden individual
assignments. Moreover, given such a complete assignment,
we can construct an optimal assignment Hr|As0 : As0 ! Sc,
whereAs0 ✓ As is the set of timed positions in the Assignees
that are not assigned to dummy positions. We denote such
an assignment by H?

r (Hr|As0 is a bijection that satisfies the
directionality constraint, with minimum associated cost).

Theorem 1 Given the URP ((5) - (8)), the Hungarian
Method operating on the cost matrix ˆC, given by (9),
produces an optimal assignment H?

r .

Proof : We only provide the outline of the proof, due to
space considerations (for the complete proof, see Chopra
and Egerstedt [2012b]). In particular, we consider a bijective
function !r : As ! Sc0 such that !r contains individual
assignments between all timed positions in As and Sc0 that
have a corresponding diagonal cost entry in the cost matrix
ˆC. By showing that no diagonal element in ˆC equals M ,
we prove that !r is a complete assignment that avoids for-
bidden individual assignments. The existence of such an as-
signment further proves that the Hungarian Method always
finds a complete assignment that avoids forbidden individ-
ual assignments, i.e. a bijection Hr : As ! Sc0 which is, at
the very least, equal to !r. Thus, we can construct an opti-
mal assignment Hr|As0 : As0 ! Sc, denoted by H?

r , where
As0 ✓ As is the set of timed positions in the Assignees that
are not assigned to dummy positions.

Theorem 2 The minimum number of robots, given by r?,
required to ensure that a solution exists to the URP, equals
the maximum number of positions that require simultaneous
servicing in the Score (K), i.e.,

r? = min

r
{Sc ✓ range(Hr)} = K (10)

Proof : If r < K, then there are not enough robots to ensure
that all K positions (specified at some time instant tj , j 2
J ), are reached simultaneously. Moreover, from Theorem 1,
we know that for r � K, there exists a solution to the URP
that can be found through the Hungarian Method. Hence,
r? = K.

3 The Connectivity Constrained Routing Problem

In this section, we incorporate connectivity constraints in
the URP discussed previously in this paper, i.e., we require
that the range-constrained network induced by the positions
of the robots be connected at all times.
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Recall that for the set of robots R, we represent each robot
as a planar point particle with single integrator dynamics
ẋp(t) = up(t), p 2 R, t 2 [t

0

, tn]. We assume that up is
continuous almost everywhere, and we use the notation xp 2
ˆC
2

[t
0

, tn] to denote this fact (xp denotes the differentiable
almost everywhere trajectory of robot p over the interval
[t
0

, tn]). Moreover, we let X(t) denote the set of positions
of all robots at time t, i.e., X(t) = {xp(t) | p 2 R}. By
defining Cr as the following space,

Cr =

ˆC
2

[t
0

, tn]⇥ ...⇥ ˆC
2

[t
0

, tn]| {z }
r copies

X 2 Cr as such, denotes a collection of differentiable almost
everywhere trajectories of the robots over the time interval
[t
0

, tn]. Additionally, we let dp,q(t) denote the Euclidean
distance between robots p and q, i.e.,

dp,q(t) = ||xp(t)� xq(t)|| (11)

Each robot has a fixed sensing range � 2 R. In other words,
at a given time t, robot p can sense (or “see”) all robots
that lie within a circle of radius � centered at xp(t). Since
all robots possess the same range �, sensing links between
pairs of robots are bidirectional, i.e. if robot p can sense
robot q, then robot q can sense robot p as well. The positions
of the robots and the resulting sensing links induce a ��
disk proximity graph G(X(t),�), where the vertex set of
G is given by the set R, and distinct vertices p and q share
an edge in G if and only if the distance between them (dp,q)
is at most equal to �, i.e.,

(p, q) 2 E(G) () �� dp,q � 0 (12)

where E(G) denotes the edge set of G.

3.1 Feasibility

In this section, we discuss the feasibility aspects of the Con-
nectivity Constrained version of the URP.

Definition 3. Given (Sc, R, P
0

, �), X 2 Cr is feasible if it
satisfies the following conditions,

(a) Pi ✓ X(ti) 8 i 2 {0, ..., n}
(b) G(X(t),�) is connected 8 t 2 [t

0

, tn]

The first condition ensures that every timed position in the
Score is reached by a robot. The second condition ensures
that the �� disk proximity graph induced by the positions of
the robots is connected for all time over the interval [t

0

, tn].

We let Fr ✓ Cr denote the set of all feasible sets of trajec-
tories,

Fr = {X |X 2 Cr is feasible}, (13)

which allows us to state the Feasibility Problem :

Given (Sc,�), the objective is to find the minimum num-
ber of robots, r? such that Fr? 6= ; for the corresponding
(Sc,R?, P

0

,�) quadruple, where R?
= {1, ..., r?} is the

set of robots and P
0

is the set of their initial positions.

3.1.1 Establishing Feasibility

In this section, we present results on the existence of a fea-
sible set of trajectories.

Theorem 3 Given (Sc, R, P
0

, �), there exists X 2 Cr such
that,

(a) Pi ✓ X(ti) 8 i 2 {0, ..., n}
(b) G(X(ti),�) is connected 8 i 2 {0, ..., n}

if and only if there exists a set of trajectories X 0 such that
X 0 2 Fr and X 0

(ti) = X(ti) 8 i 2 {0, ..., n}.

Proof : Assume that there exists X 2 Cr that satisfies the
above conditions (a) and (b). Notice that both these condi-
tions constrain X at only particular time instants, i.e. the
initial time instant (t

0

) and the subsequent Score time in-
stants (t

1

, ..., tn). In other words, the conditions constrain
sets of robot positions X(ti), i 2 {0, ..., n}.

Consider a pair of such sets of robot positions, specified at
successive time instants, denoted by say X(ti�1

) and X(ti).
From condition (b), we see that the corresponding induced
graphs G(X(ti�1

),�) and G(X(ti),�) are connected. For
such a pair of connected graphs, it was shown in Spanos
and Murray [2005] that there exist connectivity preserving
motions from one configuration to another. In other words,
there exists X 0 2 Cr such that X 0

(ti�1

) = X(ti�1

) and
X 0

(ti) = X(ti), and G(X 0
(t),�) is connected over the in-

terval (ti�1

, ti). Moreover, one can see that such a X 0 exists
between every pair of successive sets of positions, thereby
proving the existence of a set of piecewise robot trajectories
X 0 2 Fr, where X 0

(ti) = X(ti) 8 i 2 {0, ..., n}.

Conversely, if we assume that there exists X 0
(t) 2 Fr such

that X 0
(ti) = X(ti) 8 i 2 {0, ..., n}, then by definition,

X(t) 2 Cr satisfies conditions (a) and (b).

Theorem 3 states that the positions of the robots at partic-
ular time instants are sufficient to determine the existence
of a feasible set of trajectories. However, in order to ensure
that the positions satisfy conditions (a) and (b), we need to
first ensure that we have enough robots. The following equa-
tions establish such a requirement for a minimum number
of robots,

r < K ) Fr = ; (14)
r � K 6) Fr 6= ; (15)
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Equation (14) states that if the number of robots is less than
the maximum number of positions requiring simultaneous
servicing (K) in the Score, then there are not enough robots
to ensure that all those positions are occupied simultane-
ously. In other words, condition (a) would never be satisfied,
and consequently, there would exist no feasible set of trajec-
tories. Equation (15), on the other hand, states that having
a minimum of K number of robots still does not guarantee
the existence of a feasible set of trajectories. For instance, it
is entirely possible that, for a given range �, the positions
requiring simultaneous servicing at some time instant in the
Score are located so far apart from one another that K num-
ber of robots are just not enough to induce a connected ��
disk proximity graph at that time instant. In other words,
condition (b) would never be satisfied, resulting in Fr = ;.

Thus, we proceed to find the minimum number of robots
r? that ensures that conditions (a) and (b) from Theorem 3
can be met, which in turn would prove the existence of a
feasible set of trajectories. To keep the problem of finding r?

independent of the initial positions of the robots, we make
the following assumption,

Assumption : The starting position of every robot in R is
chosen such that the induced �� disk proximity graph
G(X(t

0

),�) = G(P
0

,�) is connected.

Theorem 4 Given a set of positions Pi specified at time
ti in the Score, and a sensing range �, the problem of
finding the minimum number of robots, ri, that ensures that
every position in Pi is occupied, and the induced �� disk
proximity graph is connected, is equivalent to the Steiner
tree problem with minimum number of Steiner points and
bounded edge length (STP-MSPBEL).

Proof : The STP-MSPBEL in its general form (see Lin and
Xue [1999]) is stated as follows,

“Given a set of planar positions P , and a positive constant
R, the objective of the STP-MSPBEL is to find a tree span-
ning a superset of P such that each edge in the tree has a
length no more than R and the number of points other than
those in P , called Steiner points, is minimized.”

We see that the problem of finding the minimum number
of robots at time instant ti is identical to the STP-MSPBEL,
where the position set Pi corresponds to P and the range
� corresponds to the positive constant R. The positions of
the vertices of the solution tree denote the positions of the
robots, thus ensuring that each position in Pi is occupied,
and the induced �� disk proximity graph is connected.

We denote the positions of the robots in the solution tree
by Si, and the number of Steiner Points by si. Note that
si + |Pi| = |Si| = ri. Notice that from Theorem 4, we
get the minimum number of robots required at a particular
time instant in the Score, such that conditions (a) and (b) in
Theorem 3 evaluated at that particular time instant, can be

met. However, each time instant in the Score may require
a different minimum number of robots, depending on its
corresponding specified position set. Thus, in order to obtain
a global minimum that ensures that both conditions (a) and
(b) in Theorem 3 can be met, we must take the maximum
over all time instants, of the minimum number of robots.

Theorem 5 For a given (Sc,�), the minimum number of
robots, r? that ensures Fr? 6= ; for the corresponding
(Sc,R?, P

0

,�) quadruple, where R?
= {1, ..., r?} is the

set of robots and P
0

is the set of their initial positions, is
given by,

r? = min

r
{Fr 6= ;} = max{ri|i 2 {1, ..., n}} (16)

Proof : Let us assume that at time instant ti, the minimum
number of robots required is indeed the maximum over all
time instants in the Score, i.e., ri = r?. Thus, if the total
number of robots r is less than r?, then at least one of the
conditions (a) or (b) in Theorem 3 would never be met, thus
resulting in Fr = ;.

Conversely, if the total number of robots r is at least equal
to r?, then both conditions (a) or (b) in Theorem 3 can be
met, thereby proving that Fr 6= ;.

Calculating the minimum number of robots

From Theorem 4, it is clear that solving the STP-MSPBEL
is impertinent to finding r?. However, the STP-MSPBEL is
proven to be NP-hard (see Lin and Xue [1999]). Thus, The-
orems 4 and 5 provide theoretical results on global optimal-
ity. To calculate r? in practical scenarios, one can use many
existing algorithms with varying time complexities and per-
formance ratios that provide an approximation to the STP-
MSPBEL (see Chen et al. [2000] and Cheng et al. [2008]).
For instance, an O(N3

) time approximate algorithm with
performance ratio of at most 3, is presented in Cheng et al.
[2008], where N denotes the number of planar positions
given in the STP-MSPBEL. Another example is the approxi-
mate algorithm obtained by the minimum spanning tree (see
Lin and Xue [1999]).

3.2 Generating Trajectories

In this section, we go from existence results to the generation
of actual feasible trajectories. In order to achieve this, one
can associate a cost with the trajectories, for example, the
total length traveled. Or more precisely,

Given (Sc,R, P
0

,�), where it is assumed that we have
enough robots to ensure the existence of a set of feasible
trajectories (r � r?), the objective would be to generate
X 2 Fr such that the following function is minimized,

X

p2R

Z tn

t0

q
ẋ2

p1 + ẋ2

p2 dt (17)
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Fig. 3. Example scenarios (before and after) of the sub-algorithms used in the Trajectories algorithm

For convenience, we refer to the Connectivity Constrained
Routing Problem, stated above, as the CCRP.

Due to the high dimensionality of the multi-robot configu-
ration space, finding a global solution i.e. a set of minimum
length trajectories that are feasible, is typically not an op-
tion. As a result, we relax the requirement for global opti-
mality and instead, propose the Trajectories algorithm that
guarantees convergence to a sub-optimal solution. The main
idea behind this algorithm is to apply the framework of as-
signment problems towards finding a solution.

In order to generate trajectories for the CCRP, we revisit the
URP discussed previously in this paper. In particular, we use
the result from Theorem 1 that uses the Hungarian Method
to find an optimal assignment for a given triple (Sc,R, P

0

),
and consequently, the trajectories of every robot by linearly
interpolating between successive pairs of assigned timed po-
sitions in increasing order of specified time instants. We let
Xb 2 Cr denote the set of such trajectories.

3.2.1 The Trajectories Algorithm

For a given (Sc,R, P
0

), the Trajectories algorithm calcu-
lates the positions of the robots at every time instant in the
Score, using the optimal assignment that solves the URP ,
i.e., the algorithm calculates Xb

(ti) for all i 2 {1, ..., n}.
Using these positions as an initial estimate, and for a given
�, the algorithm (inspired by Theorem 3) uses the Connect
sub-algorithm to modify these positions in a manner that
ensures that the induced proximity graph at every time in-
stant in the Score is connected. As a result, conditions (a)
and (b) of Theorem 3 are satisfied. Moreover, the algorithm
uses the Assign sub-algorithm (which essentially solves an
assignment problem) to reassign robots from their positions
at a particular time instant to positions at the next (succes-
sive) time instant in the Score. Finally, the algorithm uses
the Mid-Config sub-algorithm to find connectivity preserv-
ing motions between sets of such robot positions, specified
at successive time instants, thus generating a set of feasible
sub-optimal piecewise robot trajectories.

Algorithm 1 Trajectories (Sc,R, P
0

,�)

1: X  Xb, where Xb(t0) = P0 {X is initially equal to Xb}
2: for i = 1 to n do {iterating over all time instants in the

Score}
3: if G(X(ti),�) is connected then

4: if G(Xb(ti�1),�) is not connected then {initial esti-
mates of the robot positions at ti�1 required modifica-
tion}

5: H  Assign (X(ti�1), X(ti), ;)
6: Using H : X(ti�1)! X(ti), update X(ti) such that

the current position of robot p is given by xp(ti) =
H(xp(ti�1)) = xb

q(ti), where p, q 2 R {At ti, robot
p assumes the position originally occupied by robot
q}

7: Update X(tj), j 2 {i + 1, ..., n} such that robot p
assumes all positions originally occupied by robot q,
at all future Score time instants, i.e. xp(tj) = xb

q(tj)
8j 2 {i+ 1, ..., n}

8: end if

9: else {G(X(ti),�) is not connected}
10: Find Si, i.e. the positions of ri robots at ti, obtained

by approximately solving the STP-MSPBEL (see Cheng
et al. [2008])

11: if Si 6= Pi then {Pi does not induce a connected prox-
imity graph, i.e. steiner points are added at ti}

12: H  Assign (X(ti�1), Si, X(ti) \ Pi) {e.g. Figure
3a}

13: Using H : X(ti�1)! Si[X(ti) \ Pi, update X(ti)
such that the current position of robot p is given by
xp(ti) = H(xp(ti�1))

14: end if

15: X(ti) Connect (Si, X(ti) \ Si,�) {e.g. Figure3b}
16: H  Assign (X(ti�1), X(ti), ;)
17: Using H : X(ti�1) ! X(ti), update X(ti) such that

the current position of robot p is given by xp(ti) =
H(xp(ti�1))

18: end if

19: X(tmid)  Mid-Config (X(ti�1), X(ti),�), tmid 2
(ti�1, ti) {e.g. Figure 3c}

20: X(t)  linear interpolation between X(ti�1), X(tmid)
and X(ti), t 2 (ti�1, ti)

21: end for

22: return X
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Assign (A,B,C)

Given A = {a
1

, ..., a|A|} specified at time instant ti�1

, and
B = {b

1

, ..., b|B|} and C = {c
1

, ..., c|C|}, both specified at
time instant ti, as three sets of planar positions each, where
|A|  |B| + |C|. Let the cost of assigning a position in
A to a position in B [ C equal the distance between the
two positions. The idea is to assign every position in A to
a unique position in B [ C, such that all positions in B
are assigned, positions in C may or may not be assigned,
and the total cost of assignment is minimized. In essence,
the Assign sub-algorithm solves an unbalanced linear sum
assignment problem (see Martello and Toth [1987]).

By defining ˆB , {b
1

, ..., b|B|, c1, ..., c|C|} , {ˆb
1

, ...,ˆb|B|+|C|},
we can describe the assignment problem as a linear program,

min

l

|A|X

↵=1

|B|+|C|X

�=1

||ˆb� � a↵|| l(↵,�) (18)

subject to:

l(↵,�) 2 {0, 1} (19)
|A|X

↵=1

l(↵,�) = 1, 8� 2 {1, ..., |B|} (20)

|A|X

↵=1

l(↵,�)  1, 8� 2 {|B|+ 1, ..., |B|+ |C|} (21)

|B|+|C|X

�=1

l(↵,�) = 1, 8↵ 2 {1, ..., |A|} (22)

where l(↵,�) is 1 if a↵ 2 A is assigned to ˆb� 2 ˆB, and 0

otherwise.

Algorithm 2 Assign (A,B,C)

1: B̂ , {b1, ..., b|B|, c1, ..., c|C|} , {b̂1, ..., b̂|B|+|C|}
2: Find l that solves Equations (18)-(22)
3: Find H : A! B̂ such that l(↵,�) = 1 () H(a↵) = b̂� ,
8 ↵ 2 {1, ..., |A|},� 2 {1, ..., |B|+ |C|}

4: return H

Connect (A,B,�)

Given A = {a
1

, ..., a|A|} and B = {b
1

, ..., b|B|}, both spec-
ified at time instant ti, as two sets of planar positions each,
where the induced graph G(A,�) is connected, i.e. posi-
tions in A form a connected backbone, while B contains
positions that may or may not be connected to this back-
bone. The idea is to “grow” this connected backbone by re-
cursively adding to A, updated positions from B such that
the updated G(A,�) becomes connected. The algorithm re-
turns this connected backbone A.

Algorithm 3 Connect (A,B,�)
1: repeat

2: Find ↵? 2 {1, ..., |A|}, �? 2 {1, ..., |B|} such that ||a↵?�
b�? || = min (||a↵ � b� ||) 8↵,�

3: if ||a↵? � b�? || > � then

4: b�?  a↵? +
b�?�a↵?

||a↵?�b�? ||�

5: end if

6: A A [ {b�?}
7: B  B \ {b�?}
8: until B = ;
9: return A

Mid-Config (A,B,�)

Given A = {a
1

, ..., a|A|} specified at time instant ti�1

, and
B = {b

1

, ..., b|B|} specified at time instant ti, as two sets
of planar positions each, where |A| = |B| and the induced
graphs G(A,�) and G(B,�) are both connected. The idea
is to find an equal sized set of intermediate planar positions
M = {m

1

, ...,m|M |}, specified at some time instant tmid 2
(ti�1

, ti), such that the induced proximity graph G(M,�)

contains the edges of the spanning trees of both G(A,�) and
G(B,�) (Notice that G(M,�) is connected by definition).
Consequently, the set of piecewise linear trajectories formed
by linearly interpolating between A, M and B, is guaranteed
to ensure a connected proximity graph for all times t 2
(ti�1

, ti).

Moreover, let the mid points of each unconstrained straight
line path between corresponding positions a↵ and b↵, ↵ 2
{1, ..., |A|} be the so-called target points for corresponding
planar positions in M . Let C = {c↵ | c↵ =

a↵+b↵
2

,↵ 2
{1, ..., |A|}} denote the set of these target points. The sub-
algorithm Mid-Config then solves the following constrained
optimization problem,

min

M

|A|X

↵=1

||m↵ � c↵|| (23)

such that G(M,�) contains the edges of the spanning trees
of G(A,�) and G(B,�).

Algorithm 4 Mid-Config (A,B,�)

1: C , {c↵ | c↵ = a↵+b↵
2 ,↵ 2 {1, ..., |A|}}

2: Gs(A,�) euclidean min span tree of G(A,�)
3: Gs(B,�) euclidean min span tree of G(B,�)
4: Find M by solving Equation 23 such that G(M,�) contains

the edges of Gs(A,�) and Gs(B,�)
5: return M

Computational Complexity : For a given (Sc,R, P
0

,�), the
Trajectories algorithm initially solves the URP by employing
the Hungarian Method, the complexity of which is O(|Sc|3).
Additionally, it computes piecewise linear trajectories using
the various sub-algorithms, by iterating over n time instants,
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(a) A simulated Piano Wall with 36 coordinates
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Fig. 4. Simulation results

with the complexity of each iteration being O(r3). Thus, the
overall complexity of the algorithm is O(|Sc|3 + nr3).

Note: Since the optimization criterion we consider is the
total length travelled, every time an assignment problem
is solved in the Trajectories algorithm, i.e. a one to one
correspondence is found between two sets of positions, with
minimum total length travelled, we get corresponding paths
between the sets of positions, that do not intersect (e.g. on
the initial step that finds the optimal assignment for solving
the corresponding URP, and on every call of the Assign sub-
algorithm). Though we do not provide a formal analysis,
one can build on such a notion to generate robot trajectories
that avoid collisions.

3.2.2 Optimizing Total Length : A Discussion

In this section, we highlight various design characteristics
targeted towards optimizing the total length of robot trajec-
tories. To begin with, the Trajectories algorithm uses opti-
mal positions of robots, obtained by solving the URP, as
initial estimates for finding a sub-optimal solution to the
CCRP. Moreover, the Connect sub-algorithm recursively
moves each disconnected robot by a minimal distance, in
order to merge it with a connected backbone at a particular
time instant in the Score. The Assign sub-algorithm reassigns
robots from their positions at one time instant in the Score
to the next, such that the total length of the corresponding
straight line robot trajectories between assigned positions is
minimum, thereby providing a good base for the Mid-Config
sub-algorithm. In turn, the Mid-Config sub-algorithm finds
intermediate robot positions that cause a minimum devia-
tion between the the original straight line trajectories and
the resulting piecewise linear ones, while satisfying the edge
constraints on the induced proximity graph.

As discussed before, finding an optimal solution to the CCRP
is typically not feasible, since searching the space for all
possible coordinated paths for multiple robots requires a
prohibitive amount of computation time and memory (for

instance, the general optimal motion planning problem for
multiple robots is P-Space hard (see Hopcroft et al. [1984])).
However, we attempt to characterize ‘how” sub-optimal the
solution obtained from the Trajectories algorithm is, in the
following (designed) instance of the CCRP where we do, in
fact, know the optimal solution: For a given (Sc,R, P

0

), we
solve the Unconstrained Routing Problem (URP ) using the
Hungarian Method. Since the solution to the URP provides
globally optimal robot trajectories, we calculate the mini-
mum sensing range �free that ensures a connected prox-
imity graph for all times, given the robot trajectories. Thus,
for the quadruple (Sc,R, P

0

,�free), these trajectories pro-
vide an optimal solution to the corresponding Connectiv-
ity Constrained version of the problem (CCRP ). Now, by
running the Trajectories algorithm on the same quadruple
(Sc,R, P

0

,�free), we obtain a sub-optimal solution to the
CCRP , that can be compared to the optimal solution com-
puted earlier.
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Fig. 5. Average percentage increase in the cost, calculated over
5000 Scores, randomly generated each time for a different r

Notice that through this approach, the optimal solution to
the CCRP is the very same that is computed by the Trajec-
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Fig. 6. Hardware Implementation
The complete video can be found at: http://www.youtube.com/watch?v=YigAzrFoN3E/

tories algorithm on line (1), as an initialization step. Conse-
quently, the Trajectories algorithm never executes lines (10)
- (17), and thus, the approximation algorithm that solves the
STP-MSPBEL on line (10) does not affect the optimality of
the solution. In fact, the main deviation from the optimal
solution is caused by the Mid-Config sub-algorithm, which
we characterize through multiple simulation experiments.
We acknowledge that this approach is targeting a simpler
instance of the CCRP, but since the generalized problem is
computationally intractable to solve, we hope to provide an
insight into cases where we do know the optimal solution,
and hence can make a sub-optimality comparison.

In particular, for a fixed number of robots, say r, we ran-
domly generate r number of initial and final positions from
a pre-defined uniform distribution. For such a “one-beat”
Score, we calculate �free that allows the Hungarian Method
to provide an optimal solution to the corresponding CCRP .
Moreover, we generate the sub-optimal solution through the
Trajectories algorithm, and calculate the percentage increase
in the cost, i.e. the total length travelled, with respect to
the optimal solution (see Figure 5). As can be seen, the in-
crease in the deviation from the optimal cost (from ⇡ 0.1%
to ⇡ 1.1%), is small on the average across all cases.

4 Implementation

To demonstrate the musically inspired routing problems con-
sidered in this paper, we simulated an example of the Robot
Music Wall in MATLAB, instrumented to sound like a piano
(see Figure 4a). We called it the Piano Wall. Our goal was
to make multiple robots perform the popular composition
“Für Elise” by Ludwig van Beethoven on this Piano Wall.
Note that firstly, all notes in the version of “Für Elise” we
presented to the robots, lay amongst the set of notes used to
create the Piano Wall. Secondly, a pianist was required to
hit a maximum of two keys simultaneously throughout its
performance (K = 2). With this set-up, we created the Score
associated with “Für Elise”, containing timed positions on
the wall corresponding to notes in “Für Elise”.

We simulated the robots as 2-d multi-colored circular points
on the Piano Wall. In our program, the instant a robot reached
an assigned timed position on the wall, it was encircled by

a light circle (yellow), and the sound of the corresponding
piano note was generated. For the Connectivity Constrained
Routing Problem (CCRP) discussed in Section 3, we chose
different values of �, and calculated the corresponding min-
imum number of robots r? (see Figure 4b). Then, for dif-
ferent number of robots r � r? (given some �), we con-
structed the routes for every robot, using the Trajectories
algorithm (see Figure 4c). These routes/paths were executed
by the robots with appropriate velocities that ensured their
timely arrival at assigned positions. In addition to MATLAB
simulations, we carried out hardware implementations (see
Figure 6) to demonstrate the routing problems in this paper.

5 Conclusions

We consider spatio-temporal multi-robot routing, where
multiple robots are required to service a set of spatially
distributed requests at specified time instants. We show that
such a routing problem can be formulated as an assign-
ment problem, solvable in polynomial time, and provide
the Robot Music Wall as a motivating example, to illustrate
the musical inspiration behind the problem. We incorpo-
rate connectivity maintenance into spatio-temporal routing,
and discuss the feasibility aspects of the ensuing problem.
Additionally, we develop an algorithm for generating ex-
plicit trajectories for the robots, and demonstrate our results
through MATLAB simulations and hardware implementa-
tions, using the Robot Music Wall as the basic set-up.
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