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Multi-Contact Locomotion on Transfemoral Prostheses via Hybrid
System Models and Optimization-Based Control

Huihua Zhao1, Jonathan Horn2, Jacob Reher1, Victor Paredes2 and Aaron D. Ames3

Abstract—Lower-limb prostheses provide a prime example of
cyber-physical systems (CPSs) requiring the synergistic develop-
ment of sensing, algorithms and controllers. With a view towards
better understanding CPSs of this form, this paper presents
a systematic methodology using multi-domain hybrid system
models and optimization-based controllers to achieve human-like
multi-contact prosthetic walking on a custom-built prosthesis:
AMPRO. To achieve this goal, unimpaired human locomotion
data is collected and the nominal multi-contact human gait
is studied. Inspired by previous work which realized multi-
contact locomotion on a bipedal robot AMBER2, a hybrid
system based optimization problem utilizing the collected ref-
erence human gait as reference is utilized to formally design
stable multi-contact prosthetic gaits that can be implemented on
the prosthesis directly. Leveraging control methods that stabi-
lize bipedal walking robots—control Lyapunov function based
quadratic programs coupled with variable impedance control—
an online optimization-based controller is formulated to realize
the designed gait in both simulation and experimentally on
AMPRO. Improved tracking and energy efficiency are seen when
this methodology is implemented experimentally. Importantly, the
resulting multi-contact prosthetic walking captures the essentials
of natural human walking both kinematically and kinetically.

Index Terms—transfemoral prosthesis, cyber-physical-system,
hybrid system, optimization, control Lyapunov function

Note to Practitioners:
Variable impedance control, as one of the most popular
prosthetic controllers, has been used widely on powered pros-
theses with notable success. However, due to the passivity
of this controller, it requires substantial hand tuning and
heuristic feedback is required to adjust the control parameters
for different subjects and motion modes. The end result is
extensive testing time for the users, coupled with non-optimal
performance of the prostheses. Motivated by the shortcom-
ings in the current state of the art, this work proposes a
novel systematic methodology—including gait generation and
optimization-based control based on a multi-domain hybrid
system—to achieve prosthetic walking for a given subject.
This method also aims to improve control optimality and
efficiency while reducing clinical tuning.

The overarching technology utilized in this paper is the use
of nominal human trajectories coupled with formal models
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Fig. 1: Multi-contact locomotion capable bipedal robot AM-
BER2 (Advanced Mechanical Bipedal Experimental Robotics,
left) and healthy human subject with the prosthesis AMPRO
(AMBER Prosthesis) in a multi-contact posture (right).

and controllers that circumvent the need for excessive hand-
tuning. In particular, rather than using a prerecorded trajectory
(as is common), this work takes a different approach by using
a human-inspired optimization problem to design a human-like
gait for the amputee automatically. The proposed optimization
framework uses the trajectory of a healthy subject as the
reference and is subject to specific constraints (to ensure
smooth transitions, torque and angle limitations) such that the
output gait is applicable for implementation on the prosthetic
devices directly. The results of the offline optimization are then
utilized to synthesize an online real-time optimization-based
feedback controller that allows for point-wise optimal tracking
on the prosthesis, thereby improving overall efficiency. The
experiment results in this work suggest that this approach
is able to achieve stable human-like multi-contact prosthetic
walking and also guarantees a more balanced performance
compared to other traditional controllers (such as PD).

I. INTRODUCTION

As an important application of bipedal robotics research,
powered lower-limb prostheses are a prime example of cyber-
physical systems (CPSs) requiring safety critical interaction
between a human and prosthetic device. During the course of a
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step, the human leg and the prosthetic device interchange roles
between weight bearing (stance phase) and swing forward
(swing phase) phases. Moreover, interactions between the
human, device and environment change in a multi-contact
fashion, e.g., with the heel or toe leaving and impacting
walking surface [3], [33]. With this behavior in mind, a
synergistic development of sensing, algorithms and controllers
for the correct and safe collaboration between the human and
the device are required for natural and efficient robotic-assisted
locomotion.

The multi-domain, or multi-contact nature of the human gait
results in walking which is both fluid and efficient [21]. Using
the foot push off during the single support phase, a human
can lift the swing leg higher, and thus achieve greater foot
clearance without bending the swing knee significantly. By
having the body pivoting over the the stance toe, much less
energy is required for a human to move forward through the
utilization of their forward rotational momentum. Researchers
also found that the prosthetic foot push off is negatively
correlated with leading intact limb loading impulse, which may
help reduce knee osteoarthritis in lower extremity amputees
[25]. While exhibiting these behaviors is seemingly effortless
for an unimpaired human, it is quite challenging to incorporate
these advantages into bipedal robots or prostheses locomotion.

Multi-contact locomotion, which utilizes complex foot be-
haviors, has been studied actively in the robotics and control
field throughout the recent decade. In this setting, methods
utilizing the popular Zero Moment Point, including gait pattern
generation and gait planning methods, are adopted to design
the foot trajectory specifically for multi-contact foot behavior
in [10], [15], [19] with foot roll only during the double support
phase. Simulated robotic walking with significant foot push
can be found in [12], [34], in which the authors show that
the walking gait with foot push off helps reduce torque and
achieve faster walking speeds. In contrast to these approaches,
previous work by the authors [23], [41] started with a hybrid
system model of human locomotion [8], [13], and proposed a
novel multi-domain optimization problem which embeds this
multi-contact feature into gait design to generate human-like
locomotion in a manner which is both formally guaranteed
and physically realizable. This was combined with a trajectory
reconstruction method [5], with the end result being successful
experimental realization of stable human-like multi-contact
locomotion on a 7-link 2D bipedal robot AMBER2 seen in
Fig. 1 (see video at [1]).

The primary goal of this paper is to extend the framework
used to achieve multi-contact robotic walking [41], as moti-
vated by previous work by the authors in translating simpler
locomotion behaviors to prostheses [43]. More specifically,
this work will utilize a prosthetic gait that is generated based
on the hybrid system model of multi-domain locomotion and
an optimization-based controller that stabilizes the robotic
walking. The main contributions of this paper are three-fold:
(1) proposed a hybrid system model of multi-contact prosthesis
locomotion along with a corresponding hybrid zero dynamics
(HZD) based optimization problem that yields stable pros-
thesis walking gaits, (2) a real-time nonlinear optimization-
based control methodology for generating and realizing multi-

contact prosthesis walking gait on the custom-built prosthesis
AMPRO; (3) illustrated the method for experimental imple-
mentation with the detailed analysis of the resulting multi-
contact prosthetic walking. The results presented in this paper
shows a) a smoother gait with natural and human-like joint
movement; b) more symmetric walking with close prosthetic
stance and human-stance duration and c) more comfortable
user experience with foot push off when compared to flat-
foot walking. Importantly, this substantially differentiates this
paper from a conference version that appeared in the Inter-
national Conference of Decision and Control 2015 [39]; the
conference version only included the initial results on multi-
contact locomotion without the detailed framework and in
depth experimental evaluation. This paper, therefore, gives
substantially more context and supporting experimental ev-
idence that provides the formal framework and quantifiable
metrics of improved performance. These contributions are
achieved through a two-step process.

The first step is to generate a multi-contact prosthetic gait
using a multi-domain hybrid system model. Based upon the
fact that humans share a similar gait pattern during locomotion
[14], [32], a low-cost motion capture system is used to collect
reference human locomotion data from an unimpaired subject.
With the collected data as a reference, a multi-domain opti-
mization problem—subject to constraints determined by the
interface between virtual constraints and the hybrid model—is
proposed as a means to generate a customized stable multi-
contact prosthetic gait. The result is an automatically generated
prosthetic gait which is both theoretically sound and directly
implementable on the prosthetic device, thereby essentially
eliminating the necessity of hand tuning the controller.

Utlizing control methods that stabilize bipedal walking
robots, in particular control Lyapunov functions [7], the second
step is to formulate a quadratic program based controller
that achieves rapidly exponential convergence of virtual con-
straints subject to actuator bounds. When this approach is
synthesized with impedance control as a feed-forward term,
the result is a model independent quadratic program (MIQP)
based controller that is able to achieve better tracking and
improved energy efficiency on prostheses. This controller was
first verified in simulation and tested on a human-like bipedal
robot platform: AMBER [40]. The systematic methodology
was then successfully translated to a custom built prosthesis
AMPRO for achieving both flat-foot level ground walking
[43] and stair ascent [44], showing improvements on both
tracking and energy efficiency compared to other controllers
such as PD. With this framework in hand, the proposed real-
time optimization-based controller will be utilized to realize
multi-contact prosthetic walking on AMPRO.

The paper is structured as follows. The multi-contact na-
ture of human locomotion will be revisited in Section II.
The automatic multi-contact gait generation process, utiliz-
ing human-inspired optimization, is discussed in Section III.
Section IV reviews the real-time optimization-based controller
briefly and discusses the results of simulated multi-contact
prosthetic walking. The experimental realization of both the
multi-contact gait and the proposed controller is illustrated in
Section V.
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Fig. 2: Multi-contact locomotion diagram of a typical human
gait cycle [3] (top) and multi-contact domain break of the
AMPRO prosthetic walking (bottom).

II. MULTI-DOMAIN HUMAN LOCOMOTION

This section begins with reviewing the multi-domain behav-
ior embedded in human locomotion [3], [8], [41]. A motion
capture system with inertial measurement units (IMUs) is
developed to obtain the nominal human locomotion data for
an unimpaired subject; this will be utilized as a reference
for the purpose of prosthetic gait design. The collected data
for the subject is compared with averaged human locomotion
trajectories [37] in Fig. 3, where reasonable agreement is seen.

A. Multi-Domain Human Locomotion

The nominal human walking pattern is of obvious impor-
tance when attempting to reproduce natural looking behaviors
on robots or prostheses. At the highest level, a human walking
gait normally is divided into two phases consisting of a single
support phase in which only one foot is in contact with the
ground and a double support phase in which both feet are
in contact with the walking surface as depicted in Fig. 2.
Sub-phases are usually extracted from each phase to describe
human locomotion more explicitly. The work in this paper
breaks each step into three distinct sub-phases based on the
points of the feet that are in contact with the ground.

Utilizing the acceleration-based domain breakdown method
discussed in [42], three domains (i.e., sub-phases) of a single
step are considered as motivated by the multi-contact walking
achieved on the bipedal robot AMBER2 [41]. Based on the
actuation type and contact points, we denote the three domains
as over-actuated domain, oa (with the stance heel and swing
toe in contact with the ground), fully-actuated domain, fa (with
the stance heel and toe in contact with the ground) and under-
actuated-domain, ua (with only stance toe in the ground) as
shown in Fig. 2. The switching between domains is triggered
by the changes of contact points of the feet. A detailed hybrid
system model based upon the multi-contact model of human
walking will be developed in Section III. First, the method for
collection human data will be discussed.

B. Invariant Human Trajectory Reference

Reproducing the multi-contact behavior of human gaits in
prosthetic walking is important for symmetric, natural and
efficient walking on an amputee. One obvious problem en-
countered when designing such a gait is the lack of a nominal
gait reference specific to the amputee. Human gait researchers
and biomechanists have found that humans share a common
pattern of joint trajectories during locomotion [37]. Therefore,
a feasible approach is to use the nominal trajectories obtained
from healthy subjects as the initial test gait for the amputee.
While this is a common practice for prosthesis researchers
and clinical physicians [14], [32], this approach requires hand
tuning and heuristic experience. This motivates the proposed
approach of formulating an optimization problem to formally
design a gait for the amputee automatically. Building upon pre-
vious work, we propose a method to utilize the reference gait
from an unimpaired subject that has similar anthropomorphic
parameters (w.r.t. limb length) to the amputee as the reference
for automatic prosthetic gait design.

C. Motion Capture with IMU

In order to obtain a gait from the reference subject, a low-
cost motion capture system is developed for user locomotion
trajectory collection. In particular, a model based Extended
Kalman Filter (EKF) utilizing the filter presented by [31]
is used to obtain accurate joint angle information about the
human subject. During the experiment, the subject was asked
to walk along a straight line with a self-selected cadence for
several steps. The joint angles and velocities are estimated
and collected from the EKF algorithm, and then several steps
are averaged to yield their unique trajectories for optimization.
These captured trajectories by the IMUs are compared with the
nominal human trajectories obtained from Winter’s data [37].
The results in Fig. 3 indicate that the IMU system is able to
capture the human locomotion trajectory quantitatively.

Note that, we did not perform a multi-subject validation
of this estimation algorithm as it is not central to the topic
of this paper. Since the authors in [31] validated the 3D
filtering method, we are assuming in this work that a planar
projection of the method will capture the information we seek
accurately. Specifically, the captured data of our single user
is not statistically relevant for the purposes of claiming a
validation of the method. Instead, the aim of Fig. 3 is to show
that the saggital plane trajectories are qualitatively human-like
through a comparison of the data to a widely used dataset
[37]; therefore, the captured data can be used as a reasonable
seed for the prosthetic gait design.

III. MULTI-CONTACT PROSTHETIC GAIT GENERATION

One of the main contributions of this work is the translation
of the methodology previously utilized for designing multi-
contact walking gaits for the bipedal robot AMBER2 to
design walking gaits for prostheses in an automatic fashion.
In particular, a multi-domain bipedal hybrid system with
anthropomorphic parameters is considered to be a “human”
model for the purpose of prosthetic gait design. Based on
this model and the reference human locomotion data obtained
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Fig. 3: Joint angles for human subject collected with IMUs, the
designed prosthetic gait and the simulated prosthetic walking
joint trajectories compared to Winter [37]. The trajectories
(i.e., Winter data) are used as a comparison to show that the
subject is walking with qualitatively human-like trajectories
for use as a seed in the trajectory optimization.

with the IMUs, a hybrid system model based human-inspired
optimization [23] is implemented to generate a human-like
prosthetic gait that (a) yields theoretically provable stability,
(b) captures the essential multi-contact behaviors of healthy
human walking, (c) suits the specific test subject wearing the
prosthetic device and (d) can be implemented on the prosthetic
device directly.

A. Multi-Domain Hybrid Model

A hybrid system model with both continuous dynamics
and discrete dynamics is developed to properly represent the
changing dynamics of the device throughout the various foot
contact events (lifting and striking of the heel and toe) in a
gait cycle. This hybrid model can be formally written as the
following tuple [8], [13]:

H C = (Γ,D,U,S,∆,FG), (1)

where
• Γ = (V,E) is a directed cycle, with vertices V = {oa,

fa,ua}; and edges E = {e1 = {oa → fa},e2 = {fa →
ua},e3 = {ua→ oa}},

• D = {Doa,Dfa,Dua}, set of domains of admissibility,
• U = {Uoa,Ufa,Uua}, set of admissible controls,
• S = {Soa→fa,Sfa→ua,Sua→oa}, set of guards,
• ∆ = {∆oa→fa,∆fa→ua,∆ua→oa}, set of reset maps,
• FG = {( fv,gv)}v∈V with ( fv,gv) a control system on Dv,

i.e., ẋ = fv(x)+gv(x)uv for x ∈ Dv and uv ∈U .
The detailed mathematical construction of this hybrid system
representation is not a major focus in this work. For readers
who are interested about the explicit derivation can be referred
to [23], [41].

The configuration space of the robot Q is characterized
by the generalized coordinates θ = {px, pz,ψ0,θb}, where the
extended coordinates {px, pz,ψ0} represent the position and

Fig. 4: Coordinates (left) and outputs configuration (right) of
the multi-contact robotic model.

rotation angle of the body fixed frame Rb with respect to a
fixed inertial frame R0; and θb = {θsa,θsk,θsh,θnsh,θnsk,θnsa}
denotes the body coordinates of the model shown in Fig. 4.
The dynamics on each domain will be obtained from general
“unpinned” model through the use of holonomic constraints
[27], [35]. Particularly, the equations of motion for the contin-
uous dynamics are obtained using the Euler-Lagrange formula
and the holonomic constraints:

M(θ)θ̈ +H(θ , θ̇) = Bv(θ)u+ Jv(θ)
T Fv(θ , θ̇ ,u),

Jv(θ)θ̈ + J̇v(θ)θ̇ = 0, (2)

where M(θ) ∈ R9×9 is the inertial matrix. H(θ , θ̇) =
C(θ , θ̇)θ̇ +G(θ)∈R9×1 contains the terms resulting from the
Coriolis effect, centrifugal forces and the gravity vector. Bv(θ)
denotes the torque distribution matrix of domain v and u ∈U
is the input torque vector. Fv(θ , θ̇ ,u) is a vector containing
a contact wrench for each point on the robot in contact with
the walking surface and Jv(θ) is the corresponding Jacobian
matrix of the holonomic constraints, i.e., the contact points of
a particular domain. To be more specific, the elements of the
Jacobian matrix are the first-order partial derivatives of the
generalized position vector (including both the translational
position and the planar rotation) of the contact points.

With the notation x = (θ ; θ̇), the affine control system
ẋ = fv(x) + gv(x)u for each domain Dv with v ∈ V can be
obtained by reformulating (2) [30]. The discrete behavior, ∆e,
of impacts is modeled with the assumption of perfectly plastic
impacts, i.e., there is no deformation, slippage or bounce
during the impacts. This is a common practice in robotic
modeling literature; more details can be found in [20], [35].

B. Human-Inspired Outputs

Given the complexity of human locomotion (utilizing 57
muscles during the locomotion [21]), we take the perspective
of viewing this system as a “black box.” The goal of achieving
human-like walking (i.e., obtaining a human-like gait) then
becomes to drive the actual robot outputs ya(θ) to the desired
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human outputs yd(t,α) that are represented by the extended
canonical walking function (ECWF):

yd(t,α) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+ ...

α5 cos(α6t)+κ(α)sin(α6t)+α7, (3)

with κ(α) = (2α4α5α6/((α2)
2 + (α4)

2 + (α6)
2)). For the

multi-domain 7-link bipedal robot model, a total of 7 actual
outputs are of interest, which can be further separated into
two groups. The first group is the velocity-based relative
degree one output ya

1(θ , θ̇) ∈ R, i.e., the linearized forward
hip velocity δ ṗhip(θ). The second group is the relative degree
two outputs ya

2(θ) ∈ R6, which include two knee angles θsk,
θnsk, stance ankle angle θsa, torso angle θtor, hip angle θhip
and non-stance foot angle θns f . The detailed convention of
these outputs is shown in Fig. 4.

Additionally, from analysis of multi-contact human loco-
motion data, the linearized forward hip position, δ phip(θ),
was discovered to increase linearly, i.e., the hip velocity is
approximately constant through the progress of a step cycle
[22]. This motivates the following phase variable:

ρ(θ) = (δ phip(θ)−δ p+hip)/vhip, (4)

aiming to remove the dependency of time [5], [35]. δ p+hip(θ)
is the initial hip position at the beginning of a step, which
is decided through the optimization problem that will be
discussed in the following sections.

Therefore, the virtual constraints can be represented as: [5]

y(θ , θ̇ ,α)=

[
y1(θ , θ̇ ,α)

y2(θ ,α)

]
=

[
ya

1(θ , θ̇)− vhip
ya

2(θ)− yd
2(ρ(θ),α)

]
, (5)

where y1(θ , θ̇ ,α) ∈ R is the relative degree one virtual
constraint, which is the difference between the actual hip
velocity ya

1(θ , θ̇) and the desired hip velocity vhip
1. The vector

y2(θ ,α)∈R6 contains the relative degree two human-inspired
outputs which are the differences between the actual outputs
ya

2(θ) and desired outputs yd
2(ρ(θ),α). Note that the parameter

set α is the grouped parameters of all the outputs for a
complete step cycle [41]. Based on the actuation type in each
domain Dv with v ∈ V , the corresponding components αv of
α will be utilized to characterize the human-inspired outputs
via (3). For example, for the fully-actuated domain fa, one
relative degree one output and five relative degree two outputs
are considered [41]. The parameters will be kept the same for
all the domains for a specific output, i.e., only one parameter
set α is used to characterize an entire step.
Partial Hybrid Zero Dynamics (PHZD). A feedback lin-
earization controller (as in [35], [36]) can be utilized to drive
both y1→ 0 and y2→ 0 exponentially for the continuous dy-
namics. However, the robot will be “thrown off” the designed
trajectory when impacts occur. This motivates the introduction
of the PHZD constraints aiming to yield a parameter set α that
ensures the tracking of relative degree two outputs remain
invariant through impacts [?]. In particular, with the partial
zero dynamics surface defined:

PZα = {(θ , θ̇) ∈ T Q : y2(θ ,α) = 0,L f y2(θ ,α) = 0}, (6)

1The desired relative degree one output vhip can be viewed as a special
case of the ECWF with α1,...,6 = 0 and α7 = vhip

the general PHZD constraints can be stated as:

∆(S∩PZα)⊆ PZα , (PHZD)

which are required to be valid through all the three discrete
transitions as illustrated in (1). Particularly, the three sets of
PHZD constraints can be stated as:

∆oa→ f a(Soa→ f a∩PZαoa)⊆ PZα f a , (PHZD1)

∆ f a→ua(S f a→ua∩PZα f a)⊆ PZαua , (PHZD2)

∆ua→oa(Sua→oa∩PZαua)⊆ PZαoa . (PHZD3)

These three PHZD constraints ensure that the virtual con-
straints of each domain remain invariant through all the
discrete transitions, therefore, guarantee the smoothness of
the designed gait obtained from the optimization problem.
The detailed mathematical construction of these constraints
requires the explicit explanation of techniques such as the
reduced order hybrid zero dynamics, inverse kinematics and
PHZD reconstructions, which are not the focus of this work
and omitted here. The details can be referred to [23], [41].

C. Multi-Contact Prosthetic Gait Design

Enforcing the PHZD constraints discussed above, a multi-
domain optimization is utilized to design stable human-like
prosthetic gaits automatically. For the cyber-physical system
of a lower-limb prosthesis interacting with humans in a
safety critical fashion, physical constraints incorporating (a)
hardware limits (torque limits and joint movement range), (b)
safety concern (foot clearance and impact velocity) and (c)
user comfort (user preferred trajectory profile) are explicitly
considered during the gait design optimization [43]. These
specifications yield the optimization problem subject to both
the PHZD constraints and the physical constraints as follows:

α
∗ = argmin

α∈R43
CostHD(α) (7)

s.t (PHZD1)− (PHZD3),
Physical Constraints,

where the cost function is the least-square-fit error between the
unimpaired human reference data and the ECWF representa-
tions in (3). The end result of this optimization problem is the
outputs parameter set α that renders an optimal (w.r.t. torque,
foot clearance, joint position and velocity) and provably stable
subject-like multi-contact prosthetic gait, which at the same
time can be implemented directly on the prosthetic device. The
desired joint angles and angular velocities for the prosthetic
device can be obtained through the inverse projection from
the PHZD surface by only knowing the actual forward hip
position δ phip and the corresponding hip velocity δ ṗhip. In
particular, the hip position δ phip is used for the desired
position calculation based on (3) and (4) and the δ ṗhip will be
used for desired velocity calculation based on the derivation
of (3) and (4), more details of which can be referred to
[5], [41]. With this PHZD reconstruction methodology, the
designed trajectories of both the ankle and knee joint, shown
in Fig. 3, are obtained and compared with the nominal human
locomotion data obtained from Winter [37]. Both the knee and
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ankle angle are shown to have a similar pattern as the nominal
locomotion.
Remark. Utilizing the gait of an unimpaired subject as refer-
ence, this optimization problem is subject to both the PHZD
and physical constraints such that the generated gait is smooth,
user-friendly and applicable for direct implementation on the
prosthetic device. While there is no clear evidence showing
that a particular gait is more comfortable or performant, the
goal of the proposed methodology is that with the automation
of the gait generation, hand tuning can potentially be reduced
and done in a more high-level manner. For example, for the
experimental walking trajectories used in this work, the initial
gait was designed with more stance knee movement, i.e., the
stance knee angle was more human-like with bigger knee bent.
However, the test subject prefers less stance knee movement,
which was reported to feel more comfortable and safer (large
stance knee movement may increase the possibility of buckling
during stance phase for some extreme situations). Therefore,
this preference can be easily added into the optimization, the
end result of which is the stance knee angle being more flat
compared to the nominal human trajectory (see Fig. 3).

IV. PROSTHETIC CONTROLLER DESIGN

This section begins with the brief introduction of the
variable impedance controller commonly used in the control
of prostheses [11], [18], [32]. Then, the novel real-time
optimization-based prostheses controller, proposed in [40] and
validated in [43] is revisited. Finally, the proposed controller is
implemented to achieve multi-contact prosthetic walking with
the designed trajectory in simulation at the end of this section.

A. Impedance Control for Prosthesis

As one of the most common approaches for prosthetic
control [11], [17], [18], [32], variable impedance control
assumes that human gait is cyclical and the torque at each
joint can be represented in a piecewise fashion by a series of
passive impedance functions of the form:

uimp = k(θ −qe)+bθ̇ , (8)

with k, qe and b representing the impedance parameters for
stiffness, equilibrium angle and damping, respectively, which
are constant for a specific phase. Based upon previous work
[4], analysis of multi-contact locomotion data obtained from
human models shows that one gait cycle can be divided
into four sub-phases based on the profile of prosthesis joint
angles. It is important to note that the impedance sub-phases
considered here are for the implementation of impedance
control only, as opposed to the domains considered in the gait
design process. The explicit criterion of the phase separation
(which is based on the joint angles or angular velocities) is
bypassed here but can be found in [4], [38].

B. MIQP+Impedance Control

In previous work [43], the authors proposed a novel pros-
thetic controller which combines the rapidly exponentially
stabilizing control Lyapunov functions (RES-CLFs) based

quadratic program control [7] with impedance control in an ef-
fort to achieve better tracking and improved energy efficiency
on prostheses. In particular, we consider the simplest form
of a trajectory tracking problem with η̈ = u, which can be
converted to a linear form as follows:

η̇ =

[
02×2 I2×2
02×2 02×2

]
︸ ︷︷ ︸

F

η +

[
02×2
I2×2

]
︸ ︷︷ ︸

G

u, (9)

where η = (yp; ẏp)∈R4×1 with yp = (yankle
p ,yknee

p )T the virtual
constraints for the prosthetic ankle joint yankle

p and knee joint
yknee

p , respectively, and u ∈ R2×1 is the direct control input.
Here we only focus on the control of the two prosthetic joints.
The whole body dynamics can also be written in this linear
form after applying a state-based feedback linearization con-
troller by defining η = (y; ẏ) [5]. Leveraging the Continuous
Algebraic Riccati Equation (CARE) with solution P= PT > 0,
allows for the construction of a RES-CLF [7] given as:

Vε(η) = η
T
[ 1

ε
I 0

0 I

]
P
[ 1

ε
I 0

0 I

]
η := η

T Pε η , (10)

with the convergence rate ε > 0. In order to exponentially
stabilize the system, we want to find u such that, for a chosen
γ > 0 [7], we have:

LFVε(η)+LGVε(η)u≤− γ

ε
Vε(η), (11)

where LFVε(η) and LGVε(η) are the corresponding Lie deriva-
tives of the Lyapunov function (10) relative to (9). Particularly,
an optimal (point-wise) u could be found by turning this
condition into a quadratic problem (QP) while enforcing a
relaxation term δ > 0 [7] to ensure that hardware constraints
(related to maximum torque constraints uqp

MAX and uMAX ) take
priority over control objectives. More importantly, we add
the variable impedance term uimp into this construction for
the total hardware torque bounds, which yields the following
model independent quadratic program plus impedance control
(MIQP+Impedance):

argmin
(δ ,uqp)∈R2+1

pδ
2 +uqpT uqp (12)

s.t LFVε(η)+
γ

ε
Vε(η)+LGVε(η)uqp≤δ , (CLF)

uqp ≤ uqp
MAX , (Max QP Torque)

−uqp ≤ uqp
MAX , (Min QP Torque)

uqp ≤ uMAX −uimp, (Max Input Torque)

−uqp ≤ uMAX +uimp. (Min Input Torque)

This QP problem yields an optimization-based controller that
regulates the error of the output dynamics in a rapidly expo-
nentially stable fashion. Simultaneously, by adding impedance
control as a feed-forward term into the input torque, the model
independent dynamic system (9) gathers some information
about the system that it is controlling. By setting the QP torque
bounds uqp

MAX , we can limit problems of overshoot. We also
set the total input torque bounds for the QP problem such that
the final input torque will satisfy the hardware torque bounds
uMAX , which is critical for practical implementation.
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Fig. 5: Phase portraits of the prosthesis joints of the simulated
unimpaired walking and prosthetic walking.

This nonlinear optimization-based controller was first ver-
ified on a custom-built prosthetic device: AMPRO for flat-
foot level ground walking with improved performance of
both tracking (23% improvement) and energy efficiency (25%
reduction) when compared to other existing controllers (such
as PD) [43]. The main contribution of this work will extend
the aforementioned controller to achieve more dynamic and
human-like multi-contact level ground walking. Both the re-
sulting multi-contact gait trajectories and torque profiles will
be compared with the flat-foot prosthetic walking, showing
the improved prosthetic walking in the aspects of both the
user experience and natural human motions.

C. Simulation Results

Before implementing the controller on the prosthesis, the
control architecture is first verified in simulation. In particular,
two simulation scenarios are considered and compared. For the
first simulation, the whole bipedal robot model is controlled by
the original model-based human-inspired feedback controller
for perfect tracking [5], which we consider as “unimpaired”
human walking. For the second simulation, the biped model is
assumed to “wear” a prosthetic device which will be controlled
by the decentralized (i.e., independent of the control of the
residual limbs) MIQP+Impedance controller. We consider this
case as the “prosthetic” walking. To be more explicit, the right
leg will be assumed to be the prosthetic device (including the
actuation of both the ankle and knee joints of the “prosthesis”),
and the residual limbs will be controlled with the human-
inspired controller with the purpose to mimic the function of
the healthy human side.

The limit cycles of both the healthy human walking and
the prosthetic walking are shown in Fig. 5. By looking at the
shape of the two plots, we can see that the model indepen-
dent optimization-based controller achieves similar walking
trajectory as the model-based feedback linearization controller
(i.e., the human-inspired controller [5]). It is also clear to see
that the phase portrait of the proposed decentralized nonlinear
controller is less smooth (i.e., not impact invariance) than the
one with the human-inspired controller. While the smoothness
is trivial for a centralized state-based feedback controller, this
invariance is hardly possible for the decentralized prosthetic
controller which lacks model information. However, due to
the embedded feature of rapidly exponential convergence of
the proposed controller, one can note that the phase portraits
converge back (instead of blowing up) to the normal trajectory

Start
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Calculate Trajectories
with PHZD
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Calculate

with IMUs
AMPRO
Stance?
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Control
Strategy?

PD
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End

Yes

NoA
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High-Level Control

Mid-Level Control

Low-Level Control

Fig. 6: Flow chart of the pseudo-code.

quickly after the impact. Similar discussion can also be found
in [40].

The stability of both the multi-contact gaits was numeri-
cally validated through the Poincaré map, which is a general
mathematical tool for determining the existence and stability
properties of periodic orbits for hybrid dynamical systems
with impulses [6], [26], [29]. In particular, with the unit of
the maximum eigenvalue smaller than one, it indicates the
exponential stability of the corresponding nonlinear hybrid
system. With numerical approximation, the magnitude of the
maximum eigenvalue was found to be 5.5e−8 using human-
inspired control and 5.5e−4 using MIQP+Impedance control.
The resulting joint trajectories of the simulated prosthetic
walking are depicted in Fig. 3, showing that the proposed real-
time optimal controller can replicate the human trajectory with
remarkable similarity. Note that the pure impedance controller
also has been tested in simulation. However, due to complexity
of multi-contact locomotion (multiple impacts and switching
between different actuation types of domains), the impedance
controller can not provide stable multi-contact walking in
simulation.

V. EXPERIMENTAL REALIZATION

With the multi-contact gait generated in Sec. II and the
controller introduced in Sec. IV, we now are ready to realize
the main contribution of this paper experimentally on the
custom-built prosthesis AMPRO to achieve dynamic multi-
contact prosthetic walking. The resulting walking using the
real-time optimization-based controller will be compared with
several other control approaches. The proposed controller
demonstrates an improved performance.
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A. Specification of AMPRO

AMPRO was designed to be a high powered, compact and
structurally safe device. The device uses a roller chain drive
train consisting of a brushless DC motor and a harmonic
gearhead to actuate the ankle and knee joints in the sagittal
plane. This design utilizes two incremental encoders for each
motor and is designed to incorporate absolute encoders at
both actuated joints. Two Elmo motion controllers are used
to drive the motors and read the encoder values. Additionally,
two FlexiForce force sensors are mounted at the toe and
heel to measure the normal reaction forces which are used
for the purpose of leg switch. More details about the design
specifications can be found in [43].

B. Methods

The architecture of the control scheme for the transfemoral
prosthesis includes three hierarchical levels, the pseudo-code
of which can be seen in Fig. 6. In particular, a low-level
controller is realized in a closed-loop by the ELMO motion
drive, which is able to compensate for friction, damping
effects and transmission dynamics of the motors. The mid-
level controllers generate the input torques for the joints using
various controllers. The high-level controller is in charge of
the interaction between the robot and human, which includes
switching to different domains based on specific criteria and
computing the desired trajectories for the domain.

Desired Trajectory Computing. As discussed in Sec. III,
the outputs are synchronized by the phase variable (4), by
knowing which the desired trajectory can be computed using
the PHZD reconstruction strategy [16], [23], [41]. During the
prosthetic-stance phase, the phase variable and the correspond-
ing hip velocity can be obtained from the encoders directly.
To provide a point of human-robotic interaction during the
human-stance phase, two IMUs are mounted on the shin and
thigh of the human leg to sense the human movement, i.e., the
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IMU Human-Stance Encoder Prosthesis-Stance

Fig. 8: Phase variable ρ(θ) comparisons between Exper-
imental flat-foot and multi-contact prosthetic walking over
6 steps. The red solid lines represent ρ(θ) computed by
the IMUs during human-stance phase. The blue dash lines
represent ρ(θ) computed by the encoders during prosthesis-
stance phase. x-axis is the real-time each step takes.

relative orientation and velocity between body segments. The
obtained knee and ankle angles/velocities are utilized directly
for computing the phase variable. Therefore, prosthetic leg can
sense the movement of the human body, and the desired swing
trajectories of the prosthesis can be calculated accordingly.

The instrumentation of the human leg with IMUs are
not necessary for achieving stable prosthetic walking with
the framework in this work. Instead of having a state-base
prosthetic swing phase, a time-base swing phase can be
implemented without the requirement of the IMUs, which is
also a common practice for prosthetic control as discussed in
[24], [32]. However, one of main benefits with using the IMUs
is that the prosthetic leg is able to react to the human body
directly. For example, the prosthetic leg can stop if the human
stops during walking while the prosthetic leg is in the swing
phase. More importantly, with the augmentation of the IMUs,
the amputee can start, stop and change the walking cadence
easily and smoothly without requiring any extra effort, which,
can benefit the prosthetic walking greatly.

Domain Switching. For the multi-contact walking with mul-
tiple domains, different sets of outputs are considered for
each domain (as discussed in Sec. III). Therefore, the desired
trajectory needs to be calculated according to the current
domain [41]. During the prosthetic-stance phase, the domain
switch can be achieved using the two force sensors mounted
on the heel and toe of the prosthetic foot. However, because
the human foot is not instrumented, the domain switch is
estimated using the phase variable. In particular, the specific
phase variable ρ(θ), at which moment the domain switches,
is recorded during the gait design optimization. These values
are then utilized as the thresholds to determine the domain
switch during human-stance phase in the experiment.
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Fig. 9: Gait tile comparisons between the simulated and the experimental prosthetic walking using MIQP+Imp control.

C. Experiment Results
A PD controller upd is first implemented to achieve stable

walking. Walking trials were performed on a treadmill provid-
ing a constant speed of 1.3 mph. The impedance parameters
are estimated with the least-square-error fitting method based
on the experimental walking data obtained using the PD
controller. With the impedance parameters in hand, we apply
impedance control uimp as the feed-forward term while using
the MIQP control uqp as the feedback term to track the desired
joint trajectories. The resulting joint trajectories (averaged over
10 steps) are compared with the designed gait (generated
in Sec. III) in Fig. 7, showing that the obtained prosthetic
walking is able to realize the designed gait successfully and
shares a similar pattern as the healthy human locomotion.
The experimental multi-contact phase variable ρ(θ) is plotted
in Fig. 8 with the comparison to the flat-foot walking. The
experiment gait tiles of the multi-contact level-ground walking
using the proposed optimization-based controller along with
the simulated prosthetic walking are shown in Fig. 9. A video
of the resulting multi-contact walking can be seen at [2].

For the purpose of control performance comparison, an aug-
mented control strategy, PD+Impedance (i.e., ud = upd +uimp)
is tested in the experiment. Note that, as mentioned in Sec.
IV, the torque bounds can be considered inside the quadratic
program, therefore yielding the resulted controller (point-
wise) optimally satisfying the torque bounds. In particular,
two rounds of test with different torque bounds—100 Nm
for high torque bounds (MIQPH+Imp) and 40 Nm for low
torque bounds (MIQPL+Imp)—are tested to verify the torque
optimality. The tracking rms errors along with the average
power consumption of one step using different controllers are
compared in Fig. 10.
Remark. One practical problem during testing is that the

subject walking with prosthetic devices will not have the
same step posture every step, i.e., each step will be slightly
different. Also, asymmetry in the gait in the form of short
stepping on one leg can cause variations in the starting ρ(θ).
Therefore, the phase variables ρ(θ) computed from the IMUs
and encoders will not evolve exactly as predefined—from 0
to ρmax(θ) (which is obtained based on the chosen gait).
During the human-stance phase, non-zero initial ρ(θ) will
cause problems with yielding a non-smooth prosthetic-swing
trajectory, i.e., there will be jumps of the desired position and
velocity at the transition from prosthetic-stance to prosthetic-
swing. To overcome this problem in the testing, a time-based
ρ(θ) was used at the beginning of the prosthetic-swing phase,
in which way the ρ(θ) will always start from zero to guarantee
the smooth transition. Then the ρ(θ) will switch to state-
based when the state-based value is very close (within 0.02
difference) to the time-based value. During the prosthetic-
stance phase, due to a flatter pattern of the trajectory (i.e.,
both the movement ranges and velocities of both the knee and
angle joints are small), the non-zero initial ρ(θ) was not found
to be a problem that affects the overall performance during the
prosthetic-stance phase.

D. Discussion

Comparison of Different Controllers. The tracking results
plotted in Fig. 10 show that the tracking performances of
both the ankle and knee are best with MIQPH+Imp control.
In particular, we found that with improved tracking perfor-
mance (12.9% improvement), the MIQPL+Impedance has
similar energy consumption (less than 1% difference) when
compared with PD control. Similarly, the MIQPH+Impedance
outperforms PD+Impedance control in tracking performance
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(13.9% improvement) while requiring similar power (less
than 1% difference). Note that, traditional control approaches
(e.g. variable impedance control) to powered prostheses rely
on the extensive tuning of control parameters in order to
achieve successful operation of the device for a particular
subject. Alternatively, we take the position tracking path with
the goal of automating both gait generation and controller
design for different subjects and various locomotion types.
We believe that a well designed gait (w.r.t power, torque,
velocity etc) is the first step toward benefiting the amputee
when clinical expertise is also considered in future work.
More importantly, this process can be done iteratively in an
automatic way such that the performance (e.g., comfortability)
can be improved with the feedback from the test subjects.
Considering the fact that the proposed control method is based
on position tracking, the tracking performance is one of the key
aspects for performance comparison. Therefore, to summarize,
we can conclude that the MIQP+Impedance controller has
a more balanced performance between tracking and power
requirements.

Comparison With Flat-Foot Walking. In the authors’ pre-
vious work [43], the proposed optimization-based controller
has been utilized to realize flat-foot prosthetic walking. One
important improvement can be seen from Fig. 8 by comparing
the phase duration symmetry between the multi-contact walk-
ing and the flat-foot walking. In particular, during the flat-foot
walking, the prosthetic-stance phase duration is 0.65s, which
is much shorter than the 1.33s human-stance phase duration
(averaged over 5 steps), i.e., the gait is asymmetric w.r.t
the phase duration. On the other hand, for the multi-contact
walking, the averaged (over 5 steps) prosthetic-stance phase
duration is very close to the human-stance phase duration
with the time being 1.28s and 1.02s, respectively. Therefore,
the multi-contact walking has a much better phase duration
symmetry performance than the flat-foot walking.

Due to the flat-foot constraint, the prosthetic ankle move-
ment is limited, therefore yielding a less human-like ankle
trajectory. In this work, we explicitly compare the resulting
multi-contact joint trajectories with the flat-foot walking ob-
tained from [43] along with the collected unimpaired human
locomotion data in Fig. 11. From this comparison, we can
see that the multi-contact ankle angle has a more human-like
curve pattern as the healthy human ankle. Importantly, the

knee trajectory also has more human-like features such as a
longer swing phase duration and a bigger stance knee bend
when compared to the flat-foot knee trajectory.

Additionally, the most important improvement is achieved
with the ankle joint kinetically. The human ankle plays an
important role in progressing forward smoothly and efficiently
during the stance phase [28]. In particular, the ankle stores
the elastic energy in mid-stance phase, which will be utilized
to propel the body forward and upward during the foot push
off phase [9]. The ankle torque comparison shown in Fig. 11
indicates that the ankle joint in multi-contact walking follows
a closer pattern of human walking, which is not seen in the
flat-foot walking. More importantly, the user also reported a
significant foot push off from the prosthetic device to help
propel forward, which is lacking during the flat-foot walking.

VI. CONCLUSIONS
By leveraging a systematic methodology—including hybrid

system models and real-time optimization-based controllers—
this paper successfully translated the multi-contact behavior
that is intrinsic in human locomotion from bipedal walking
on AMBER2 to prosthetic walking on the prosthesis AMPRO.
The performance of multiple controllers—utilized to track
the generated multi-contact gait—are compared with the real-
time optimization-based controller resulting in the best overall
performance. The obtained prosthetic walking is shown to
capture the essentials of human walking both kinematically
and kinetically. This results in a smoother, more symmetric
gait duration and more comfortable user experience when
compared to flat-foot walking.
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exponentially stable periodic orbits in systems with impulse effects:
Application to bipedal robots. In Decision and Control and European
Control Conference. 44th IEEE Conference on, pages 4199–4206, 2005.

[27] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC Press, Boca Raton, March 1994.

[28] R. R. Neptune, S. A. Kautz, and F. E. Zajac. Contributions of the
individual ankle plantar flexors to support, forward progression and
swing initiation during walking. J. of Biomechanics, 34(11):1387–1398,
November 2001.

[29] T. S. Parker and L. O. Chua. Practical numerical algorithms for chaotic
systems. Springer New York, 1989.

[30] S. S. Sastry. Nonlinear Systems: Analysis, Stability and Control.
Springer, New York, June 1999.
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