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SUMMARY

Great strides have been made in recent years in developing the necessary technologies to

make autonomous cars a reality. However, a number of challenges remain, a major one being

that of accurate vehicle localization.

This thesis presents a vision-only approach to the outdoor localization problem. The

system provides for real-time, metric localization of a moving camera (on a vehicle) in a

pre-built 3D map, which is inherently robust with respect to appearance changes. This is

achieved by utilizing a novel spatio-temporal map (STM) representation which is built up

from multiple drives worth of stereo camera data, as well as a localization algorithm which

efficiently retrieves landmarks from the STM to perform appearance-based localization in

real-time. The STM encodes the landmark visibility structure of the datasets which were

captured to build the map, as well as landmark descriptors and observation times. This

visibility structure and meta-data are then exploited for efficient localization. In addition,

by splitting the STM up into a number of submaps, computational tractability is ensured

during the map-building phase, as well as during localization. Experiments on real data

validate that the presented method works better than conventional approaches which operate

in a map built of a single dataset.

xi



Chapter I

INTRODUCTION

Robust localization capability in changing environments is a prerequisite for any autonomous

vehicle to operate in the long term. Using vision alone, this requirement proves to be quite

challenging, as varying lighting and environmental conditions can drastically alter the ap-

pearance of the scene. Many existing algorithms fail when this occurs, as they typically

assume a static scene, with a single representation of the world stored in the map. Localiza-

tion using vision alone is attractive considering its very low cost compared to other sensor

modalities. GPS is a popular solution in the context of outdoor vehicle localization and

route guidance, but there are many scenarios where this can fail due to multi-path issues,

drop-out, and drift, especially in urban environments. An example of an erroneous GPS

trace is shown in Figure 1.

To date, a number of unsolved problems remain to make vision-based localization a

reality. Most systems fall short in the face of changing scene appearance caused by differences

in lighting, seasonal variation, foliage changes, weather, etc. This has become a very active

area of research in recent years, and through some valiant efforts some progress has been

made in addressing some of these challenges. For example, representing each place as a

different experience in a topologically connected map appears to be a particularly promising

Figure 1: GPS-INS trajectory superimposed on Google Earth imagery. Severe GPS drift due to multi-path
issues can be observed to the east of the stadium.

1



approach [21, 20], but this technique makes exact metric localization difficult as the query

images are localized in several distinct visual odometry tracks. Muehlfellner et al. aimed to

solve the problem by building a map containing many different datasets [62]. Their focus is

on map building and the evaluation of different scoring functions to decide which landmarks

to admit to the map, all in order to keep the size of the map relatively small. Experiments

are limited to a parking lot and a simple loop on city roads.

In this thesis I present a methodology for real-time, metric localization of a moving

camera in a pre-built 3D map, which is inherently robust with respect to appearance changes.

This is achieved by utilizing a novel spatio-temporal map (STM) representation which is

built up from multiple drives worth of data, as well as a snapshot recognition module (SRM),

which efficiently retrieves landmarks from the STM to perform appearance-based localization

in real-time. The map encodes the visibility structure of the datasets which were captured

to build the map, and this information is exploited for efficient localization. The approach

is validated with experiments in a map which has many intersections, and is also an order

of magnitude larger than those in [62].

1.1 Thesis Statement

The spatio-temporal map and snapshot recognition modules together provide real-time,

high-quality metric localization in changing environments.

1.2 Claims

In particular, I make the following three claims to support this thesis:

• High-quality - Localization results of the SRM have high accuracy, which is crucial

for autonomous driving. A highly accurate 3D map of sparse landmarks from multiple

data sequences is effective as the basis for high-quality localization. Furthermore, a

highly accurate stereo visual odometry system forms the backbone of both the map-

building and localization modules.

• Efficient - The SRM-STM localization algorithm provides localization in real-time,

which is a critical requirement for autonomous driving.

2



• Robust to change - The SRM-STM localization system is robust to change because it

utilizes a spatio-temporal map. By storing landmarks from multiple datasets collected

at different times, it enables more robust localization than a single-dataset map in the

presence of appearance changes.

1.3 Contributions

I make the following contributions as part of this thesis:

• I developed a highly accurate, real-time stereo visual odometry pipeline which is used

for map building, as well as localization with the SRM.

• I developed the spatio-temporal map (STM) representation and methodology to build

this map. The STM combines data from multiple seasons into a monolithic metric

map, which makes localization in different conditions more robust.

• I developed the Submap-STM, which extends the STM and addresses its scalability

limitations, both in run-time and storage space (memory).

• I developed a real-time visibility-based localization module for localization with the

STM or Submap-STM.

1.4 Overview

The remainder of this document is organized as follows. In Chapter 2 I provide an overview

of the relevant literature covering topics ranging from stereo visual odometry, to loop closure

detection, smoothing and mapping, and finally localization. In Chapter 3 I present a real-

time, and highly accurate visual odometry algorithm, which is an essential ingredient for

the construction of the spatio-temporal map, and also for localization with the SRM-STM

algorithm. The spatio-temporal map representation is introduced in Chapter 4, along with

the algorithm to construct it from raw image data and GPS. In this chapter I also intro-

duce an improved version—the Submap-STM—which addresses computational scalability

limitations that exist with the monolithic STM. In Chapter 5 I describe the SRM-STM and

Submap-SRM-STM localization algorithms. Final remarks are found in Chapter 6.
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Chapter II

RELATED WORK

The literature survey that follows is divided into four parts. I begin with a brief overview

of Visual Odometry (VO), which is a basic building block of the map building, as well as

localization algorithms. This is followed by loop closing in Section 2.2. In Section 2.3 I

review smoothing and mapping, and localization is presented in Section 2.4.

2.1 Visual Odometry

Camera egomotion can be computed from time-ordered image sequences, both monocular

and stereo. This technique is referred to as visual odometry in the literature. In the monoc-

ular case this can be done only up to some unknown scale factor [38]. This scale ambiguity

does not exist when a stereo camera is employed. In fact, results have been obtained with

less than 1% error over many kilometers [66, 35, 45]. Several excellent survey/tutorial papers

exist on this topic [79, 33]. I will give a brief overview of the stereo case here.

Stereo visual odometry algorithms take as input pairs of stereo rectified images obtained

from the calibrated stereo rig. The process iterates as follows: In each frame, image features

are extracted and stereo correspondences are established. A variety of feature detectors are

suitable for this task, including those which require patch-based matching [37, 81], as well

as the more recent descriptor-based detectors, such as the scale-invariant feature transform

(SIFT) [56] or speeded up robust features (SURF) [8]. Descriptor-based detectors have

nice scale- and rotation-invariance properties, and as such are also more suitable for the

localization task described in the following sections.

Next, these features are matched into the next consecutive stereo frame, forming a set

of temporal putatives. A 3-point algorithm is employed within a random sample consensus

(RANSAC) framework to recover the incremental 6 degree of freedom (DOF) camera pose

[38, 31]. RANSAC has become the standard tool framework to achieve robust matching

in the presence of outliers. When inlier ratios become very low RANSAC can take many
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iterations to find a good model. This was addressed by Chum et al. with progressive sample

consensus (PROSAC) [18] , which progressively increases the sample size. This approach

assumes that match putatives can be prioritized, and in the usual case the descriptor dis-

tance is suitable. In [73, 74] feature weighting is integrated into the geometric verification

procedure (as opposed to a post-processing step). Composition of incremental poses yields

the trajectory in the global coordinate frame. In fact, in some applications the resulting

trajectory is all that is needed, or the landmark measurements may be expressed with re-

spect to their originating reference frames, as was shown in FrameSLAM [44]. In recent

years, visual-inertial solutions have become increasingly popular, as inertial measurement

unit (IMU) measurements prove to be complementary to visual measurements, and can lead

to more consistent results [51].

2.2 Closing the Loop

VO trajectory drift is corrected by introducing loop closures before optimizing the vehicle

trajectory. An overview of map-to-map, image-to-image, and image-to-map loop closure

techniques is given in [89]. Appearance based image-to-image matching is the most flexible,

as it makes no assumptions about trajectory or map quality, but operates on descriptors

extracted from images directly, and therefore is also applicable to image retrieval in general

[67]. Large-scale SLAM systems that made use of appearance-based image matching were

demonstrated in [22, 23]. The idea behind appearance-based loop-closure detection comes

from text-retrieval and search. A word is analogous to a a set of feature descriptors that are

very similar, while a document is analogous to a single image frame. An image is then rep-

resented by all of the descriptors (words) it contains, and similar images in a video sequence

can be identified by looking for images which have similar word occurrence histograms.

2.3 Map-Building by Smoothing and Mapping

Smoothing and Mapping (SAM) refers to the process of simultaneously estimating the full

set of robot or camera poses and landmark locations in the scene [26, 28]. When this

technique is applied to visual image features, it is called Structure from Motion [86], or

bundle adjustment [85]. The cost function is typically taken to be the reprojection error of
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Figure 2: Factor Graph of two camera poses xi and three landmarks lj . The black nodes are the factors,
which represent the landmark measurements taken by the respective cameras.

each landmark measurement into the image plane. Bundle adjustment has been applied to

create highly accurate, city-scale reconstructions from large photo-collections [39, 82, 1].

Factor graphs offer a natural representation for the SAM problem. A factor graph is a

bipartite graph containing two types of nodes: state variables and factors. In our case, the

unknown camera poses X = {x
i

| i 2 1...M} and landmarks L = {l
j

| j 2 1...N} correspond

to the set of state variables. The factors in the graph represent the landmark measurements

Z = {z
k

| k 2 1...K}. An exemplar factor graph is shown in Figure 2.

The non-linear cost-function to minimize is

K

X

k=1

kh
k

(x
ik , ljk)� z

k

k2⌃k
(1)

where h
k

(⇧) is the measurement function of landmark l
j

from camera x
i

, and the notation

k.k2⌃ represents the squared Mahalanobis distance with covariance ⌃. We assume that we

have normally distributed Gaussian measurement noise.

In practice one considers a linearized version of the problem, and the terms in equation

1 can be linearized as

h
k

(x
ik , ljk)� z

k

⇡
n

h
k

(x0
ik

, l0
jk

) + H ik
k

�x
ik + J jk

k

�l
jk

o

� z
k

(2)

where H ik
k

, J jk
k

are the Jacobians of h
k

(⇧) with respect to x
ik , ljk evaluated at (x0

ik
, l0

jk
).

During optimization the ordering in which variables are eliminated is crucial for per-

formance. An approximate minimum degree (AMD) ordering is used in the GTSAM [7].
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For more details on the SAM optimization process, refer to [26]. Some of the most popular

software packages to solve these sorts of problems are GTSAM, Ceres, and g2O [27, 3, 47].

There have also been various efforts to improve the computational tractability. Some

examples of this are application of the Schur complement trick to eliminate landmarks [2],

smart factors [16], and divide and conquer approaches [64, 65].

2.4 Localization

As self-driving cars are moving closer and closer to becoming a reality, many researchers

have been working on solutions to the localization problem. Many of these techniques rely

primarily on vision. An extensive survey is provided in [57], and [34].

The work most relevant in terms of its application is that of Churchill et. al. [20][19][21].

Visual odometry trajectories, termed experiences, are stored each time the vehicle visits a

new place and is unable to relocalize itself within existing experiences. The system keeps col-

lecting new experiences until they become fully adequate for localization. One disadvantage

of this work is that these experiences are only topologically linked, and exact metric pose

recovery presents a challenge. Linegar et al. further extend this approach by introducing

the concept of path memory, which encodes the robot’s past use of the experience graph,

and leverages this information during localization. [54].

Muehlfellner et. al take an approach which is similar in spirit to mine [62]. They build a

map comprising many datasets, and optimize this offline. Only the most relevant landmarks,

according to a variety of scoring functions, are included in the map, and the map is therefore

a summary of what was actually observed. During localization, the most nearby landmarks

are retrieved for pose recovery. Taking this a step further, landmark scoring functions are

used by Dymczyuk et al. to summarize landmark maps so that the map remains at a

relatively fixed size, while retaining the most useful features for robust localization[29]. The

algorithm alternates between localization and offline maintenance procedures in order to

perform this maintenance.

Most appearance-based localization methods operate with sparse landmark maps, but

dramatic increases in computing and GPU power are beginning to make dense methods
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feasibile at city scale. LIDAR is used together with cameras mounted on a vehicle to build

a dense map of the survey environment in the recent work by Pascoe et al. [68]. LIDAR

is not employed during localization. The camera is localized by minimizing the normalized

information distance with respect to a rendered view of the dense 3D map. This approach is

inherently robust to scene appearance changes, but its downside is that LIDAR is required

during the mapping stage.

Another very relevant approach is that of Lategahn and Stiller, who used a pre-computed

3D map, comprising 3D landmarks and their descriptors, to localize a stereo camera without

the help of GPS [49]. Given the previous known pose, all landmarks observed by the nearest

camera pose used to build the map are used for descriptor matching. Lategahn et al. took

a similar approach in [48], using a monocular camera during localization, and the resulting

pose is refined in a filter together with IMU measurements.

Milford and Wyeth [61] introduced SeqSLAM. Rather than matching local features be-

tween images, sequences of images are compared to establish a loop closure. Image sim-

ilarity is established using sum of absolute differences. Consequently, no lighting/season

invariant descriptors are needed. The method works on sequences with drastically different

appearance, e.g. night/day. The method does have some notable disadvantages, such as

assumptions about relatively constant velocity and direction of travel, some of which were

addressed in [71, 36]. Most recently, Pepperell et al. improved the approach by adding a

directed graph to the image database to allow for branching at intersections, and images

are rescaled to allow for greater invariance to lateral shifts, which are the primary source of

pose variation in the authors’ experiments [70].

Naseer et al. frame the sequence matching idea as a minimum cost network flow problem

over a data association graph [?], and this is augmented with GPS information for better

performance and the capability to handle loops in [88].

A related approach is that of Maddern et al. [59], in a system called CAT-SLAM.

Sequential appearance based SLAM is enhanced with metric pose filtering to improve the

performance.

Valgren et al. [87] also explored an appearance-based approach across scenes with stark
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appearance changes, using SIFT/SURF descriptor matching, and tuning the parameters for

optimal results. As expected, results are good on relatively similar data, but the system

breaks down when snow-cover is present.

Stylianou et al. investigated the matching performance of feature descriptors over long

time periods on a set of static webcams over a timespan of several years [83]. They found

several trends in the data: There are seasonal variations, but they are dwarfed by changes

in weather and also by changes in lighting. Specifically, they mention that matching sunny

images against overcast images is more difficult than matching those taken in identical

conditions. Moreover, in varying lighting conditions the feature detector often does not

fire in the same place, so feature detection plays a large role in matching performance, as

well. Despite these challenges, Lowry et al. showed promising results with predicting image

appearance over diurnal appearance changes [58] , and Torii et al. used linear combinations

of image descriptors to localize query images [84].

An evaluation of feature descriptors across different seasons was presented by Krajnik

et al., and the authors also present a new bespoke feature descriptor called GRIEF [46].

McManus et al. learn place-dependent features for long-term localization by leveraging

prior experiences of a place [60]. Neubert and Protzel present a system to solve the place

recognition problem with the help of superpixels, combining the advantages of keypoints

and fixed image patches [63].

More recently, Linegar et al. introduced a custom place-specific linear SVM classifier to

recognize distinctive elements in the environment [55] . This approach uses unsupervised

mining on single dataset which finds these distinctive elements.

As noted in the introduction, retrieving the best set of landmarks to match against is

a major challenge, and this is especially true in the case of Structure from Motion (SfM),

where unordered datasets with mostly unknown location priors are the norm. Li et al.

[53] addressed this difficulty by matching 3D points to image features, rather than the

more conventional 2D to 3D matching. Points with higher degree in the visibility graph are

considered before points with lower degree. When a match is found, the priority of connected

points is increased in the matching queue. They further improved on this by introducing
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bi-directional matching in [52].

A similar approach is taken by Sattler et al. [77], where 2D-3D matching is sped up

by indexing all image features into a vocabulary tree that was constructed using the 3D

model, and the size of each word cluster is used as a proxy for estimated matching speed.

Feature matching is prioritized according to cluster sizes. In [78] this approach is further

refined with an active correspondence search in both directions. Once a match in the forward

direction (image to map) is made, nearby 3D points can be used to attempt reverse matches.

Hyperpoints are introduced in [76] to push the performance of this matching strategy even

further.

Another interesting line of attack is reasoning about descriptor occurrence. One such ap-

proach is taken in [41, 40] by Johns et al., where robust localization is achieved by computing

landmark observation likelihoods based on the number of times a landmark was observed

across training runs. [42, 43]

It is standard practice to employ a RANSAC [31] framework to achieve robust matching

in the presence of outliers. Formally, the goal of RANSAC is to obtain a set of inlier data

points I in a set of putatives P . The algorithm randomly selects a minimal subset S ✓ P ,

where the size of S is the minimum required to compute a desired model M1, e.g. in the

case of camera pose estimation, |S| = 3. Given model M1 the set of inliers I is computed. If

|I| exceeds a predetermined threshold the algorithm terminates and a refined model M1

⇤ is

computed from all inliers I. Otherwise, a new subset is randomly selected, and the algorithm

iterates until a good inlier set has been found, or until a maximum number of iterations is

reached, thus indicating failure.

RANSAC does not perform very well when when inlier ratios are very low, as it can

take many (hundreds) iterations to find a good model. To this end, Chum et al. introduced

PROSAC [18] , which progressively increases the sample size. This approach assumes that

matches can be prioritized according to some quality measure, and in the usual case the

descriptor distance is suitable and yields significant performance improvements. Raguram

et al. improved upon this even further in [73, 74]. Feature weighting is integrated into

geometric verification procedure (as opposed to post-processing step).
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Choudhary and Narayanan explicitly model the visibility probability of a landmark,

which leads to a probability guided matching algorithm [17]. A similar approach to the

landmark retrieval problem is taken in [5, 6], under the assumption that a coarse location

estimate is available for the camera to be localized. Specifically, the authors introduced a

framework for predicting the visibility of landmarks in the scene. Given a new query image

with a pose prior, the landmarks which were previously observed by nearby cameras are

probabilistically weighted according to a distance metric which is learned in an offline step.

The distance metric takes into account camera rotation and translation. This makes it trivial

to ignore landmarks which were observed by a camera facing in the opposite direction, even

though they are very close to the query camera. In the presented research I also assume that

a coarse location estimate is available, and landmark visibility prediction is a component of

the landmark retrieval algorithm.

A number of hybrid approaches for vehicle localization have been presented which com-

bine different approaches, map sources, or sensing modalities. Senlet and Elgammal present

a system for global vehicle localization which uses satellite imagery and road maps [80].

Good results have also been achieved by tracking the position of the vehicle with respect

to lane markings [?]. Floros et al. introduced OpenStreetSLAM, an approach which used

stereo visual odometry together with data from the OpenStreetMap (OSM) project for

global localization [32]. Also using road maps, Brubaker et al. probabilistically localize the

vehicle using OSM and visual odometry alone, but this approach fails in maps with many

topological ambiguities, such as a Manhattan world [14].

Ros et al. presented an offline-online system in which 3D semantic maps were built

offline, which could then be recalled during localization in real-time [75]. Cadena et al.

present an approach which takes appearance, as well as geometry into account for loop

closure detection by combining Bag-of-Words and CRFs, with better results than FabMap

[15].

There have been a number of techniques which combine the best of topological and metric

localization. For example, pose graphs with locally accurate points clouds attached to each

node [24].Xu et al. demonstrated topometric localization on a road network represented as
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a directed graph, each node has WI-SURF descriptor per node, as well as a road curvature

descriptor. Redundant visits are removed during map building [90].

2.5 Submaps for SLAM

Submaps are often used when operating in a single map becomes computationally in-

tractable, either due to size or computational limitations.

Bosse et al. introduced the Atlas framework, which uses a hybrid metric topological

system of a pose graph with locally metric maps attached at each pose graph frame[13].

Estrada et al. presented a two-level hierarchical SLAM system, where local submaps are

related to a global reference frame via conditionally independent transformations. All of the

measurements are stored in the low-level submaps [30]. A similar approach with multiple

overlapping submaps, each defining its location with respect to its neighbors, was presented

by Leonard and Newman [50].

A large-scale stereo visual SLAM system with submaps was presented by Paz et al. [69].

Pinies and Tardos introduced a similar approach tailored specifically to monocular cam-

eras, which operates in submaps which are conditionally independent given their coobserved

landmarks[72].
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Chapter III

STEREO VISUAL ODOMETRY

Visual odometry is a key component for map building and also localization. I present the

specifics of my VO pipeline in this chapter. A high-level overview of the steps is shown in

Figure 3. The main steps are image rectification, feature extraction, stereo feature matching,

temporal feature matching, and finally pose recovery with the three-point algorithm and

RANSAC. The output from the visual odometry algorithm is a camera trajectory, as well as

a set of sparse landmarks and associated feature descriptors arising from the triangulation

of feature points observed in both images. Both of these outputs are required in the map

and localization modules of this work. The work in this chapter was initially presented in

[11].

3.1 Claims

Visual odometry plays an important role during localization, as well as map building. It is

therefore appropriate to think about VO in terms of the claims I make about the system as

a whole. I make the following claims about VO, which are are supported by experiments

with real data as shown in Section 3.4.

• High-quality - Stereo visual odometry provides highly accurate pose estimates.This

is validated with on benchmark datasets.

• Efficient - The stereo visual odometry algorithm runs in real-time. This is achieved

due to parallelization of the processing pipeline, which is explained in Section 3.4.2.

• Robust to change - Visual odometry is robust to apparent short term changes due to

moving objects, as well as appearance changes. Changes induced by motion are very

common when operating on city streets with vehicular traffic. This claim is validated

in Section 3.4.3.
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1. Rectification 

2. Feature Extraction 

4. Temporal Feature Matching

3. Stereo Feature Matching

5. Incremental Pose Recovery/RANSAC
Lowe ICCV 99

Figure 3: Overview of the visual odometry pipeline. 1. Image rectification 2. Feature extraction in the left
and right images 3. Feature matching between the left and right images, constrained to a small bounding
box 4. Temporal feature matching in the left image, also constrained to a bounding box, and landmark
triangulation 5. Incremental pose recovery between consecutive frames with the three-point algorithm in
the context of RANSAC.
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Figure 4: (a) Factor graph for the three point pose recovery problem with binary projection factors between
each of the poses and landmarks, and a pose prior on xt�1. (b) An improved version of the problem, taking
advantage of the fact that xt�1 can be assumed as fixed, since we are only interested in the relative pose of
xt with respect to xt�1. This reduces the binary factors involving xt�1 to unary priors on the landmarks.

3.2 Feature Detection and Stereo Matching

For each rectified stereo image pair, features are extracted and matched across the stereo

pair. Matches are only retained if they are mutually optimal according to the ratio test [56],

and fall within a tight threshold (1px) of the epipolar line, which is a horizontal scan-line for

rectified images. In practice, the search region for stereo correspondences can be restricted

even further to a bounding box of a limited width, as disparities above a certain threshold

are unlikely to occur. Next, stereo matches with very small disparity (< 0.5px) are discarded

as their depth uncertainty is very large, and 3D landmarks (X, Y, Z)

>are then triangulated

using the known stereo calibration. A 2D feature point (u
L

, v
L

) taken from the left camera

with an associated disparity d = u
L

� u
R

can then be reprojected to 3D coordinates in the

left camera coordinate frame:

P =

2

6

6

6

6

4

X

Y

Z

3

7

7

7

7

5

=

2

6

6

6

6

4

(u
L

� c
x

) Z/f
x

(u
R

� c
y

) Z/f
y

bf
x

/d

3

7

7

7

7

5

(3)

16



3.3 Temporal Matching and Incremental Pose Recovery

Features are then matched temporally to form a set of putative matches. Depending on

the frame rate of the camera, the putative matches could only have translated a limited

distance in the image, and therefore this search is also restricted to a bounding box. The

incremental 3D transformation T 2 SE(3) which expresses the current camera pose x
t

with

respect to the previous pose x
t�1 is recovered by way of applying a three point algorithm

within a RANSAC framework [31, 38]. A minimum set of three landmarks is needed, which

can be represented with a small factor graph containing two poses and three landmarks, as

shown in Fig 4. In practice, and to gain a slight computational advantage, I assume that

camera pose x
t�1 is fixed, and we only need to optimize over the landmarks and camera

pose x
t

. Landmarks are initialized from the stereo triangulation, and x
t

is initialized with

the previous incremental motion. The factor graph then captures a non-linear least-squares

problem

⇥

⇤ �
= arg min

⇥

M

X

m=1

kh
m

(x

im , l
jm)� z

m

k2⌃m
(4)

where h
m

(·) is the measurement function of landmark l
jm from pose r

im , and M is the

total number of measurements, and r 2 R and l 2 L .The measurements are denoted by

z

m

= (u
L

, u
R

, v), where u
L

and u
R

are the horizontal pixel coordinates, and v the vertical

pixel coordinate, all of which result from the projection of a tracked 3D point into the stereo

pair. Only one value is needed for v because the stereo rig is rectified, and hence v
L

= v
R

.

The measurement function h
m

(·) takes a landmark l in world coordinates, transforms it into

the left camera coordinate frame to obtain p
i

, and then projects this point into the stereo

pair according to

u
L

=

f
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)

Z
+ c

x
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(5)

where T
x

is the baseline between the stereo cameras. This is shown in Figure 5.Finally,

repeated composition of T with the previous camera pose yields the camera trajectory in

the global coordinate frame.
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Figure 5: Schematic showing the projection of landmark l into a stereo camera, where the 3D scene is
viewed top-down, and the image planes are shown from the front.

Figure 6: Sparse point cloud generated generated by running visual odometry and transforming the trian-
gulated stereo points into the global coordinate frame.
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Features which are successfully tracked for at least two consecutive frames, called feature

tracklets, are recorded for later use along with their feature descriptors. As these feature

tracklets have been proven to be geometrically consistent across at least two frames they

are excellent candidates for inclusion in the map used for localization. Figure 6 shows

an example of a sparse point cloud generated by my VO pipeline. The resulting camera

trajectory, together with the accepted landmarks is optimized later as described in Section

4.5.

3.4 Results

The visual odometry algorithm I have discussed in the previous sections was first used in the

context of underwater reconstruction [11]. Since then, I have improved upon it by making it

faster and more accurate, as detailed in the results that I describe here. The results reinforce

the claims that visual odometry is of high quality, real-time, and robust to change, which are

all necessary properties for it to function effectively as part of the SRM-STM localization

system.

3.4.1 High Quality

The stereo visual odometry algorithm I have presented held the top-ranking spot in the

KITTI VO benchmark among competing approaches which operate only frame-to-frame [35],

although it was not real-time at that time. Visual odometry accuracy is easily evaluated

in terms of accumulated translational and rotational error, averaged over different distances

of a ground truth dataset, as well as computation time. Figure 7shows results on the

KITTI benchmark [35], where my VO pipeline achieved top-ranking performance of 2.54%

translational error, and 0.0078 deg/m of rotational error at the time of submission in 2012.

The benchmark reports errors averaged over 5, 10, 50, 100, 150, ... 400m.

3.4.2 Efficient

The VO algorithm I developed is highly parallelized, and runs in real-time (⇠ 10Hz) for

a variety of feature descriptors and image resolutions. Feature extraction is by far the

most expensive operation, followed by feature matching. Both of these operations can be
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Figure 7: Visual odometry trajectories generated with my pipeline evaluated against the KITTI benchmark
[35]. A few degrees of rotational error are accumulated over the course of thousands of poses.
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Figure 8: Visual Odometry pipeline. Individual stereo frames progress through a parallel bank of feature
detectors. Stereo frames are then reassembled, and move on to paralleized stereo matching. The last stage is
temporal matching and incremental pose recovery with the three-point algorithm in a RANSAC framework.

Table 1: Performance of the visual odometry pipeline on KITTI and Georgia Tech datasets with all elements
of the pipeline running on the CPU on an 8 core Intel i7 chip at 4Ghz.

Resolution FAST/BRIEF (fps) SIFT (fps)
KITTI 1241⇥ 376 16 11

GT 1380⇥ 480 22 9

parallelized, as shown in Figure 8. I have implemented the pipeline so that feature extraction

is carried out in parallel threads, of which I create as many as are needed. The ideal number

of feature extractors depends on the frame rate, the image resolution, as well as the choice

of feature descriptor (SIFT,SURF,FAST, etc.). Feature extraction and description may be

offloaded to the GPU for even better performance. Stereo matching is also carried out

in parallel. Finally, at the end of the pipeline there is a single thread running temporal

matching and RANSAC/pose recovery.

Quantitative results with the entire pipeline running on the CPU are shown in Table 1

for a selection of datasets and feature descriptors.

3.4.3 Robust to Change

The VO algorithm as I have described it so far already performs very well in relatively

static scenes due to the use of RANSAC, but special care must be taken in more challenging

scenarios. Highly dynamic scenes, for example heavy automobile traffic, or substantial

variations in lighting conditions can cause problems. Uneven lighting can lead to nonuniform

feature distribution, which in turn can result in biased rotation estimates. Figure 9 shows
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Figure 9: Feature tracking with feature binning. The left side of the image is much darker than the right,
so a uniform distribution is achieved by dividing the image into a grid, and retaining at least n features in
each grid cell.

an example where the left side of the image is much darker than the right, which results

in far fewer features in that portion of the image. To prevent this, I divide the image into

a grid, and after running feature extraction with much lower thresholds, I retain only the

k strongest features in each grid cell. Stereo matching and pose recovery then proceed as

usual. Experimentation showed that this yields much better results on some data, and

feature binning was critical to achieving the top-ranking results on the benchmark results

reported in Section 3.4.

3.5 Summary

In this chapter I have presented the visual odometry system which is used as part of lo-

calization with the SRM, as well as during map building. The VO pipeline presented here

outputs a camera trajectory, as well as sparse feature tracklets. These outputs are used in

the next chapter for map building. The outputs are also used in the complete localization

system. With the results I have shown that it satisfies these claims:

• High-quality - Results form the KITTI benchmark have shown that VO achieves

accuracy of 2.54% translational error, and 0.0078 deg/m of rotational error, as averaged

over several different vehicle trajectory lengths. This level of accuracy is more than

enough to initialize camera trajectories for map building, and also to serve as source

of incremental pose updates during localization.

• Efficient - The stereo visual odometry algorithm runs at up to 11fps with SIFT, and
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(a) (b)

(c)

Figure 10: Pose recovery failure caused by a large vehicle moving laterally through the field of view while
our data collection vehicle is stopped at an intersection (a) Temporal putative matches between features
(red) are shown in blue (b) Estimated inlier flow from previous frame is highlighted in green (c) Vehicle
trajectory indicating an inconsistent sideways jump.

23



(a) (b)

Figure 11: Correct trajectory result after incorporating motion model rejection for incremental pose re-
covery, together with key-framing.

up to 22fps with FAST/BRIEF on CPU. The speed depends on a number of variables

such as the feature detector, the image size, and the number of features detected. As

a result, the parameters can easily be tuned to achieve the desired performance.

• Robust to change - The visual odometry algorithm has been made robust to change

thanks to keyframing and motion-model pose rejection. As a result, the VO pipeline

is able to process all of the data I have collected without any failures.

In the next chapter the output from VO will be used to build large scale 3D maps which

are used as a basis for localization.
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Chapter IV

MAP BUILDING

Accurate localization requires a highly accurate map of the environment against which lo-

calization will be performed. I show in this chapter that such a map can be constructed

by combining data from multiple data sequences collected at different times into a spatio-

temporal map (STM). Again, I begin this chapter by outlining the claims that to be made

about the STM and Submap-STM presented in this chapter, followed by the data collection

apparatus and methodology. I then discuss the map building procedure that was used to

build the spatio-temporal map, followed by results which validate the claims which I make

about the STM. The work in this chapter was initially presented in [10, 9, 4].

4.1 Claims

I make the following claims about the spatio-temporal map, and these are supported by

results in Sec. 4.7.

• High-quality - The map built of multiple datasets is of high quality as measured by

reprojection errors. Results which support this claim are shown in Section 4.7.1.

• Efficient - The Submap-STM is efficient to construct because the size of each submap

is bounded. Submapping ensures ensures that this remains the case even as the total

coverage area and number of datasets in the map grows. Furthermore, the Submap-

STM supports real-time retrieval of landmarks and descriptors during localization,

which is necessary for real-time operation of the overall system. Results to support

this claim are shown in Section 4.7.2.

• Robust to change - The spatio-temporal map is inherently robust to change because

it incorporates landmarks observed at different times of year. This is demonstrated

by the distribution of landmarks in the map, as well as the localization experiments in
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(a) (b)

Figure 12: Picture of front stereo camera assembly mounted on car.

Table 2: Data collection equipment.

Name/Description Quantity
Point Grey FL3-GE-14S3M-C GigE monochrome camera 2
Point Grey FL3-GE-14S3C-C GigE color camera 1
Microstrain 3DM-GX3-45 GPS-INS unit 1
Laptop for data collection 1
Gigabit Ethernet switch 1

the following chapter. Section 4.7.3 shows results which demonstrate that landmarks

are evenly distributed.

4.2 Data collection

The data were collected using PointGrey Flea3 cameras running at 10Hz, mounted on a

conventional car rack along with a 3DM-GX3-45 Microstrain GPS-INS unit, which outputs

data at up to 100Hz. The data collection equipment is summarized in Tab. 2. There are two

monochrome cameras to form a stereo-pair, as well as a color camera which is used solely for

visualization purposes. All sensors are connected to a single laptop for data collection while

the car is driven around GT campus. The GPS-INS unit records GPS, as well as an EKF-

filtered solution which includes attitude and heading. The GPS-INS data was interpolated

and sub-sampled in a post-processing step to line up with image timestamps. A diagram

showing how everything was connected is shown in Figure 13.
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GigE	Switch

Grayscale	
Camera
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Figure 13: Data collection wiring schematic. The GPS/INS unit is connected directly to the laptop through
USB. The GigE cameras are connected to a network switch which is connected to the laptop. One of the
cameras is designated the master camera, and triggers exposure of the other cameras through hardwired
circuit.

Table 3: Georgia Tech campus stereo and IMU datasets, along with notes that specify limitations or quality
issues due to hardware or software failure.

Label Date Number of frames Resolution Notes
A 2012/08/13-A 10292 1380⇥ 480 North campus only
B 2012/08/13-B 11199 1380⇥ 480 North campus only
C 2012/08/14 29685 1380⇥ 480 Outside of campus
D 2012/09/02 29996 1380⇥ 480

E 2012/09/11-A 22663 1380⇥ 480

F 2012/09/11-B 20373 1380⇥ 480

G 2012/10/06-A 21460 1380⇥ 480 Poor GPS and calibration
H 2012/10/06-B 25204 1380⇥ 480 Poor GPS and calibration
I 2012/11/20 20389 1380⇥ 480 Partial GPS
J 2013/02/05 25525 1380⇥ 480

K 2013/04/02 23091 1384⇥ 680

L 2013/08/01 21691 1384⇥ 680

M 2014/04/03 21282 1384⇥ 680

N 2015/03/25 24995 1384⇥ 680
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Figure 14: GPS traces for a subset of the Georgia Tech datasets. The black dot indicates the starting
position, and the red dot the last frame. The start and end positions coincide for some datasets, which is
indicated by a red dot only.

Over one million images have been collected. Table 3 shows the data collected, as well

as the approximate size of each dataset. Some of the GPS traces are shown in Figure 14.

A computer with an i7-3400 processor, 32GB of RAM and 4TB of storage is used for

running the presented algorithms on the obtained data. The algorithms make use of a num-

ber of open-source software packages, including the Georgia Tech Smoothing and Mapping

library developed in our lab, as well as the popular computer vision library OpenCV.

GPS data—and especially elevation data from GPS—is noisy. So I preprocess the GPS

data by correcting the elevation from digital elevation models (DEM) obtained from the

United States Geological Survey (USGS). I also compared this with Google Map data, and

while they are very close most of the time, USGS data is easier to work with as it can be
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Figure 15: Raw GPS and INS solutions compared to elevation data obtained from Google Maps and USGS
surveys.

stored locally. Figure 15 shows a subset of dataset L and its elevation compared to the DEM

sources.

Each data sequence is also individually calibrated at the beginning of each data collection

run with a rigidly mounted checkerboard pattern, as shown in Figure 16

4.3 Map Building Overview

I now describe the procedure to build the map used for localization. This map consists of

landmarks L 2 R3, as well as the camera poses X 2 SE(3) from which these landmarks were

observed. Each landmark has associated with it feature descriptors, as well as the times at

which the landmark was observed. As shown in Figure 17the map also contains a lookup

table which maps camera poses to landmarks. This map will be used for localization, so it

must fulfill a number of requirements:

• Metrically accurate

• Good spatial coverage of landmarks

• Good coverage of different datasets to capture the varying appearance
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Figure 16: Camera calibration with a rigid calibration grid. The grid is moved around the overlapping
viewing of the stereo cameras, and its known dimensions are then used to recover the intrinsic and extrinsic
parameters.
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Figure 17: Data structures used for the STM. (a) Cameras are stored in a binary tree, where each camera
node contains an id, 3D pose, and list of landmarks observed from this camera. (b) Landmarks are stored
in a tree, and each is represented by an id, 3D point, feature descriptor and observation time.
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Figure 18: STM building pipeline for two image sequences. After running visual odometry on each data
sequence, loops are detected and geometrically verified. This is followed by loop closure detection between
the individual data sequences and another round of optimization to obtain the globally consistent STM.

This map encodes information about space, as well as time, which is why I call it the

spatio-temporal map (STM). A high-level representation of the STM-building algorithm is

shown in Figure 18. After running stereo visual odometry on each data sequence, loops

are detected and geometrically verified. This is followed by loop closure detection between

the individual data sequences and another round of optimization to obtain the globally

consistent STM. This basic approach has scalability issues, which I address in Sec. 4.6 by

introducing submaps.

4.4 Closing the Loop

Loop closure detection serves several functions. Loop closure detection is necessary to correct

for drift accumulated by the VO algorithm, which appears as map alignment errors when

parts of the trajectory are revisited. The loop closures serve as additional constraints during

map optimization, as described in the following section. As parts of the map are revisited,

loop closure detection identifies matching landmarks and prevents duplicate entries in the

map.

There are essentially two steps to most loop closure detection approaches:

1. Detecting a set of potential loop closures candidates. There are several ways to do

this. Appearance-based, or with help of GPS are two of the ways discussed below.
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Figure 19: Appearance-based loop closure result including a false loop closure. The visual odometry
trajectory is shown in blue, GPS in green, and loop closures are shown in red.

2. Geometrically verify loop closure candidates. This follows the same steps as incremen-

tal pose recovery with the three-point algorithm in the context of RANSAC.

Care must be taken to avoid/detect incorrect loop closures, as these may cause catastrophic

failure during map optimization.

4.4.1 Appearance-based Loop Closure

Loop closure detection algorithms based on vocabulary trees and bag of words are as in

[22, 67], yield satisfactory results within some of my sequences, but due to perceptual aliasing

and other effects, many loop closures are actually missed. Figures 19 and 20 show an example

of this approach on one of the KITTI sequences. Figure 19includes an incorrect loop closure

which results in catastrophic failure during map optimization, due to the global inconsistency

introduced by this loop closure. After careful tuning of parameters and inlier thresholds I

was able to obtain the result in Figure 20.
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Figure 20: Appearance-based loop closure result. The visual odometry trajectory is shown in blue, and
loop closures are shown in red.

4.4.2 Loop Closure Detection With GPS

The data we have collected has GPS measurements for each frame, so I use this to identify

likely loop closures and which frames are likely to match, and geometrically verify those.

Using GPS also has the added benefit of eliminating grossly erroneous matches as shown

in Figure ??, and it also reduces the likelihood of missed loop closures due to perceptual

aliasing. Given the GPS readings, I take a brute force approach, which is acceptable dur-

ing the map-building stage as I am not concerned about real-time performance here. For

each frame in the data sequence I find the k nearest neighbor camera frames, and attempt

feature matching and geometric verification for each one. A loop closure is accepted when

a minimum number of inliers is found. Loop closure landmark observations are recorded to

be incorporated into the map during the following optimization step (Sec. 4.5). Figure 22

shows an example of GPS-based loop closure detection applied to one of the data sequences.

To combine multiple datasets into the STM, I repeat this procedure and also apply it

in between data sequences. An example of this brute-force matching between sequences is

shown in Figure21 This image has significant appearance changes, including lighting, foliage,

and vehicular occlusions, but in this instance geometric verification was still successful.
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Figure 21: Successful loop closure and pose recovery on challenging imagery between frames from sequences
K (top) and L (bottom). There are notable differences in lighting, foliage, as well as vehicular occlusions.
Putative matches are shown in blue, and accepted inlier matches are shown in green.
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Figure 22: Loop closure results for sequence L. (a) Inlier ratios (b) Accepted loop closures exceeding the
inlier threshold and minimum inlier count are shown in red.
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Figure 23: Loop closures between sequences K & L. Poses where loop closure is deemed possible (and
attempted) are shown in blue, and accepted loop closures are shown in green.

It is crucial to identify as many loop closures between sequences as possible, since that

will yield the most consistent 3D map. Missed loop closure detections could also cause

multiple inclusions of landmarks in the database, consequently leading to poor localization

results. On the other hand, accepting false loop closures can lead to catastrophic map errors.

Through experimentation I found that for our datasets a minimum inlier ratio of 0.5, and

a minimum RANSAC inlier count of 10 yields satisfactory results. This is much lower than

the inlier ratios typically observed in VO, which are often as high as 95%. Figure 23 shows

the loop closure result between sequences K and L.

4.5 Map Optimization

After loop closure detection, I run a full bundle adjustment step on each data sequence

individually, before combining them into the STM, where I apply bundle adjustment once

more. The STM is optimized by applying nonlinear Levenberg-Marquardt optimization such

that I minimize the reprojection error of each landmark into each of the cameras which have

observed it. Specifically, I minimize the non-linear cost function
K

X

k=1

kh
k

(x
ik , ljk)� z

k

k2⌃k
(6)
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Figure 24: Sequence L, per-camera RMS errors. (a) Initialization (b) Optimized.

where h
k

(⇧) is the projection function of landmark l
j

from camera x
i

, and the notation k.k2⌃

represents the squared Mahalanobis distance with covariance ⌃. I assume that we have

normally distributed Gaussian measurement noise.

Large scale nonlinear optimization problems are very sensitive to initialization. The

presence of outlier feature tracks, or inconsistent VO trajectories can easily result in di-

vergence. Camera poses Xs are initialized from GPS, and landmarks Ls are initialized by

transforming each from the observed camera frame to the global frame. I also add weak GPS

priors to camera poses to accurately geo-register the map. All coordinates are expressed in

the local UTM frame. Loop closures introduce many new measurements into the graph,

and these are expected to have high reprojection errors before optimization. The Huber

cost function is used to achieve robustness, and to cope with potential outliers. Root mean

square projection errors per camera, before and after optimization, are shown in Figure 24.

Two or more maps are combined in a final optimization step. Here, cameras and land-

mark variables are initialized from the individual map optimization results. Landmarks

which were observed in one or more sequences (as detected by the previous loop closure

stage) are reconciled and represented in the map just once. Furthermore, due to memory

constraints I only retain landmarks which were tracked for at least three consecutive frames.

An example of two datasets being optimized together is shown in Figure 25 At over 2.2
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Figure 25: Optimized camera trajectories after full bundle adjustment of over 12 million factors and over
2.2 million variables.

million variables (cameras and landmarks), with over 12 million observations, the optimiza-

tion requires just over 31GB of memory, and so it just barely fits into RAM on a typically

configured desktop PC. This huge memory footprint is due to the very large cliques which

are induced in the factor graph during elimination, resulting in large amounts of infill in our

otherwise sparse system of equations. Sec. 4.6 describes a submap-based approach to work

around this problem. A color visualization is shown in Figure 26a, and Figure 26b shows all

landmarks in sequence K shown in blue, and landmarks observed in sequence L in red. The

complete map, inclusive of feature descriptors has a size of approximately 1.4GB on disk.

4.6 Scalability through Submaps

To overcome issues of scalability—memory and time—associated with optimizing the STM,

I now introduce the Submap-STM, which breaks the STM up into roughly street-sized

segments. With the ultimate goal of highly accurate, real-time localization in mind, a

number of criteria drove the design of the Submap-STM:

• The Submap-STM must retain the same level of accuracy as the monolithic STM,

without alignment errors between submaps.
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(a) (b)

Figure 26: Landmark point cloud comprising sequences K and L with (a) actual color (b) points in blue
and red from sequences K and L, respectively.

• Submap selection during localization must be unambiguous, correct and real-time.

• Vehicle pose transitions from one submap to the next during localization must be error

free and real-time.

• Submaps must capture the same visibility structure as the monolithic STM. Some

landmarks near the boundary of a submap may appear in multiple submaps to satisfy

this criterion.

• The number of cuts between submaps should be as small as possible.

These requirements lead to few deliberate design choices. To minimize the possibility of

alignment errors, as well as submap transition ambiguities during localization, submaps

must not meet at intersections. Intersections are potentially complicated during localization

because a decision must be made about which submap to load next. Of course this is not a

problem when the route is planned ahead of time and known to the localization algorithm.

Nonetheless, avoiding intersections helps to satisfy all the other design requirements. The

resulting algorithm for submap creation is shown in Algorithm 4.1.

This algorithm has several nice properties: Each submap begins N meters after passing

through an intersection, and it continues through the next intersection by N meters in each
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Algorithm 4.1 Submap assignment of camera frames
Input: Interpolated GPS poses for stereo frames
Input: GPS coordinates of intersections
Input: Distance N
Output: submaps with pose assignments
1: submaps  ; . Initialize set of submaps
2: submap  ; . Initialize empty submap
3: for each GPS pose g do
4: intersection  findNearestIntersection(g)
5: if just passed through intersection and distance(g,intersection) > N then
6: submap  submaps.getSubmap(g, intersection) . submap with same

intersection origin and similar heading as g
7: if submap = NULL then
8: submap  createNewSubmap(intersection)
9: submaps.insertSubmap(submap)

10: end if
11: end if
12: submap.insertPose(g)
13: end for

possible direction, containing all the poses and landmarks for all possible turning directions

at that intersection. Consequently, traversal of intersections during localization is no more

complicated than with the monolithic STM. Furthermore, choosing the correct submap to

move into after passing through an intersection is trivial, as the map building algorithm

also yields a directed graph of possible submap transitions. In addition, and this is a quite

important detail, opposite directions of travel of the same street are represented in two

separate submaps. In other words, submaps explicitly encode the fact that cameras facing

in the opposite direction are very unlikely to observe the same landmarks, and those cameras

and landmarks are members of separate submaps.

Applying this algorithm to four datasets (J,K,L,M) yields a Submap-STM containing 45

individual submaps as shown in Figure 27.

The procedure to build each Submap-STM differs from the algorithm to construct the

monolithic STM in the following way. First, putative loop closures within each submap

are identified from GPS, and then geometrically verified. Each submap is then individually

optimized, which involves all of the camera poses and landmarks observed in this submap.

This takes a few minutes per submap, as shown in Section 4.7.2. Next, the camera poses
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Figure 27: Optimized Submap-STM comprising 45 individual submaps. Labels and arrows indicate the
starting point and direction of each submap.
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from all submaps are reduced to a pose graph (including connections between submaps), and

this pose graph is optimized to bring all submaps back into perfect alignment. Separator

variables for each submap are then constrained in a final re-optimization step per submap.

In addition to submapping, other techniques can be used to reduce the computational

complexity of optimization. For example, I have implemented a stereo factor version of the

smart projection factor first introduced in [16]. This smart stereo factor uses the Schur com-

plement trick to algebraically remove the landmarks from the actual optimization, leaving

only camera poses, which means we are now optimizing a much smaller problem. However,

this approach comes at a cost of additional bookkeeping overhead for each factor (one per

landmark), and this overhead negated any benefits that were expected due the landmark

elimination.

4.7 Results

In this section I show the results for STM and Submap-STM construction. Again, the

results are organized according to the claims of the thesis. I first verify that the map

building procedure yields maps of high quality as indicated by landmark reprojection errors.

Next, I show that constructing the Submap-STM is fast, and finally that it is inherently

robust to change.

4.7.1 High Quality

The GPS traces collected with the data are not accurate enough to serve as ground truth, as

was shown in Figure 1. No other ground truth data is available. However, root mean square

projection errors give a very good picture of the local consistency of the map, which is really

the metric that matters most for localization. Figure 28 shows RMSE for the Submap-STM,

containing four different datasets.

The individual optimized dataset trajectories which constitute the full Submap-STM are

shown in Figure30.

The optimized camera poses from the first version of the STM were also used as the basis

for dense reconstruction work in collaboration with Pablo Alcantarilla in [4]. A screenshot

of the dense reconstruction result is shown in Figure 31.
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Figure 28: Root mean square projection errors per camera for the fully optimized Submap-STM.

Figure 29: Complete Submap-STM superimposed on Google Earth for scale. The map covers an area of
almost 2km2

.
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Figure 30: Datasets J K L M trajectories shown separately.
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Figure 31: Dense reconstruction based on the camera poses resulting from large scale map optimization.
A dense stereo algorithm is used to backproject all image pixels to 3D, and dynamic objects are then filtered
out with a consistency check across a sliding window of three adjacent frames.

4.7.2 Efficient

Submap-STM optimization is much faster than optimizing a single monolithic map. Taking

submap 12 as an example, which has 3812 camera poses, 465194 variables in total, and

1761264 measurements, requires 392s to optimize. In contrast, optimizing the largest pos-

sible monolithic map (which fits within 32GB of system memory without paging), takes

several hours. So, submap optimization is not only faster, but it could be carried out in

parallel on many machines, if desired. Monolithic map optimization, on the other hand, is

not easily distributed across multiple nodes.

Other advantages of the Submap-STM are their smaller size, which reduces storage

requirements.

4.7.3 Robust to Change

The map is robust to change because it incorporates landmarks observed in different data

sequences collected at different times of the year. Figure 32 shows the distribution on the

map, and Table 4 shows quantitative results. Figure 33 shows a zoomed in view of one city
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Figure 32: Landmark distribution for each of the submaps which have full dataset coverage. Each histogram
represents the relative number of landmarks contributed by each of the four datasets.

Table 4: Number of landmarks observed in each of the submaps which have full dataset coverage.

Submap J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14)
5 25719 51819 57260 50524
6 47343 42865 37086 39792
7 56619 163098 299965 177118
8 103325 137281 63345 128456
10 40131 71602 21881 92052
11 40065 31730 16472 59354
12 136489 153935 199199 302841
18 61064 35963 51054 71994
19 29524 22150 16677 27574
20 151901 102898 68338 110839
21 64132 55613 50743 77534
22 93755 103915 66669 98372
23 67717 90445 27557 49868
25 70258 108629 52306 68960
26 19025 28954 26259 27769
27 24933 98853 50454 79501
30 13249 29814 19942 31442

Total 1045249 1329564 1125207 1493990
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Figure 33: Closeup top-down view of STM, covering a single city block. Landmarks from three different
datasets are shown in red, green, and blue.

block, with landmarks from three different datasets shown in red, green, and blue. The

figure shows that no matter where the camera faces, some landmarks from each dataset

should always be visible.

4.8 Summary

In this chapter I have presented the STM and Submap-STM, and procedures to build these

two variants of spatio-temporal maps. The STM was built from multiple datasets, and

encodes the spatio-temporal visibility of each landmark. Landmarks are annotated with

observation times, as well as feature descriptors in the map. Having a good map is absolutely

necessary for good localization. In evaluating the map I have verified these claims to be true:

• High-quality - The map built of multiple datasets is of high quality as measured by

reprojection errors.

• Efficient - Submap-STM construction is efficient compared to monolithic map con-

struction. Submap construction requires less memory and time.

• Robust to change - The spatio-temporal map is inherently robust to change because

it incorporates landmarks observed at different times of year. This is demonstrated

by the distribution of landmarks in the map, as well as the localization experiments

in the following chapter.
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The STM and Submap-STM will be used in the next chapter as part of the full localization

system.
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Chapter V

LOCALIZATION

In this chapter I present the algorithms which implement real-time localization in the STM.

Figure 34 shows the main components of the system and the general flow of information

between these components. The localization module (shown at bottom) works together with

visual odometry (top left) and the Submap-STM (top left) to form the complete real-time

localization system. At a high level, image features extracted by the VO pipeline are sent

to the localization module along with incremental poses. The localization module uses its

most recent pose estimate to retrieve the most appropriate submap from the Submap-STM

module. The features extracted by VO are then matched against landmarks stored in the

submap. And finally, if matching was successful, the camera pose is estimated. This global

pose is then used to update the pose estimate maintained by the localization module, which

is then used again in the next iteration as the process iterates.

I begin this chapter by restating the claims about the SRM-STM localization system,

followed by a formal problem formulation and results. The early work in this chapter was

initially presented in [9].

5.1 Claims

The claims I introduced in the introduction of this thesis are directly applicable to the

localization system as a whole. Specifically, the claims are:

• High-quality - Localization results have high accuracy, which is crucial for au-

tonomous driving. Accuracy is validated experimentally, with translational and ro-

tational errors compared to the optimized poses in the map.

• Efficient - The Submap-STM localization algorithm provides localization in real-time,

which is also a critical requirement for autonomous driving. Timings are provided for

each experiment.
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Putting It All Together
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Figure 34: Localization system diagram showing three distinct components: Visual odometry, Submap-
STM, and the Localization module. Visual odometry ingests stereo images and provides image features
and incremental poses to the localization module. The most recent pose estimate is used to retrieve the
closest submap from the Submap-STM module. The SRM then finds the landmarks most likely to be visible,
which are used for localization. Finally, the SRM feeds its result back to the fixed-lag smoother where it is
incorporated as a pose prior, yielding a refined pose estimate.

• Robust to change - The SRM-STM localization system is robust to change because it

utilizes a spatio-temporal map. By storing landmarks from multiple datasets collected

at different times, it enables more robust localization than a single-dataset map in

the presence of appearance changes. This robustness is validated experimentally with

leave-out experiments.

5.2 Problem Formulation

The goal of localization is to estimate the current vehicle position ⇥

t

, provided some sensor

data S and some knowledge about the world. This being the case, I want to find the best

estimate for the current vehicle pose ⇥

t

2 SE(3), given all of the sensor measurements St

taken up to and including the current time t, and the spatio-temporal map. This thesis

is focused on vision-based localization, so the sensor used for the experiments is a camera,

but other sensors could be added to augment the system. Here what matters is that it

includes landmarks L 2 R3, annotated with feature descriptors and the time t at which each

landmark was observed during the map-building phase.
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I take, as is standard, a Maximum a Posteriori (MAP) approach to the problem, maxi-

mizing the posterior density

P (⇥

t

|St, STM) / L(⇥

t

; S
t

, STM)P (⇥

t

|St�1, STM)

Above, Bayes law was applied to decompose this into a likelihood term L(⇥

t

; S
t

, STM),

explained below, and a prior P (⇥

t

|St�1, STM) that predicts the pose ⇥

t

at time t given

past sensor readings St�1 and the STM . While our technique can work with images alone,

the prior can be augmented—where possible or needed—by additional sensors such as GPS,

wheel odometry, etc.

The key to localization, however, is the likelihood term L(⇥

t

; S
t

, STM), and just like

the work of many other researchers [49, 78, 38], a key ingredient of my approach is a feature-

based data-association step with landmarks stored in the STM. Indeed, after extracting 2D

features Z
t

from the current image I
t

2 S
t

, we assume that the likelihood can be factored

over features and other information

L(⇥

t

; S
t

, STM) = L(⇥

t

; Z
t

, STM)L(⇥

t

; S
t

\ Z
t

, STM)

and we concentrate on the former from now on.

What complicates matters is that the assignment of image measurements Z
t

to landmarks

in the map STM is not known. This is referred to as the data association problem. Let the

variable J represent an arbitrary data association assignment as in [25], and (??) can then

be rewritten as

⇥

⇤
t

�
= arg max

⇥t

P (⇥

t

|Zt�1, STM)

X

J

P (Z
t

|⇥
t

, STM, J)P (J |⇥
t

, STM)

where we sum over all possible data associations J . Given that the current image contains up

to thousands of measurements Z
t

, and the map STM has millions of landmarks, the number

of possible assignments is vast. Instead, I will introduce a single best-guess correspondence

between image measurements and the map. Let JR denote the best-guess data association,

and I can finally write

⇥

⇤
t

⇡ arg max

⇥t

P (⇥

t

|Zt�1, STM)P (Z
t

|⇥
t

, STM, JR

)P (JR|⇥
t

, STM)
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To find JR I employ a well known algorithm, RANSAC [12], which from a set of hypo-

thetical correspondences (also called putatives) determines an inlier set of correspondences.

Formally, the goal of RANSAC is to obtain a set of inlier data points I in a set of putatives

P . The algorithm randomly selects a minimal subset S ✓ P , where the size of S is the min-

imum required to compute a desired model M1, e.g. in the case of camera pose estimation,

|S| = 3. Given model M1 the set of inliers I is computed. If |I| exceeds a predetermined

threshold the algorithm terminates and a refined model M1

⇤ is computed from all inliers I.

Otherwise, a new subset is randomly selected, and the algorithm iterates until a good inlier

set has been found, or a maximum number of iterations is reached, thus indicating failure.

Finding a good set of putatives is itself a really hard problem when the map is large,

i.e. it contains millions of landmarks, most of which are not observable from any given

location. Measurements detected in the current image could be matched to landmarks in

many different places in the map using a naive appearance-based data association approach.

Given that outdoor scenes experience seasonal and weather-related appearance changes, the

situation is complicated further.

However, for the purpose of this research I assume that the camera is moving smoothly

through the map, i.e. it is mounted to a driving vehicle, and not observing different map

locations at random. This assumption simplifies the data association considerably, as I do

not need to consider the entire map to build the set of putatives P . Given the previously

estimated pose ⇥

t�1, the data association problem is reduced to finding a set of putatives

from the landmarks which are in the vicinity of ⇥

t�1, and which are therefore likely to be

visible from ⇥

t

.

I build on the landmark visibility prediction framework introduced in [6, 5] to solve the

data-association problem in a tractable way. In light of the STM having many millions of

landmarks, it is important to only attempt matching against landmarks which are likely to

be visible in the current image frame. The key idea here is that frames which were taken

at camera poses X which were nearby the current pose prior P (⇥

t

|St�1, STM), and also

facing in roughly the same direction, are likely to have observed a similar set of landmarks

L
v

.
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Summary. The quad tree is a data structure appropriate for storing information 
to b e  retrieved on composite keys. We discuss the specific case of two-dimensional 
retrieval, although the structure is easily generalis~ to arbitrary dimensions. Algorithms 
are given both for staightforward insertion and for a type of balanced insertion into 
quad trees. Empirical analyses show that the average time for insertion is logarithmic 
with the tree size. An algorithm for retrieval within regions is presented along wi th  
data from empirical studies which imply that  searching is reasonably efficient. We 
define an optimized tree and present an algorithm to accomplish optimization in n 
log n time. Searching is guaranteed to be fast in optimized trees. Remaining problems 
include those of deletion from quad trees and merging of quad trees, which seem to 
be inherently difficult operations. 

 9 Introduction 
One way to a t tack  the problem of retrieval on composite keys is to consider 

records arranged in a several-dimensional space, with one dimension for every 
attribute. Then a query r the presence or absence of records satisfying 
given criteria becomes a specification of some (possibly disconnected) subset of 
tha t  space. All records which lie in tha t  subset are to be returned as the response 
to the query. 

The retrieval of information on only one key has been well studied. Experience 
has shown binary trees serve as a good data structure for representing linearly 
ordered data, and tha t  balanced binary trees provide a guaranteed fast structure 
(Knuth, 6.2.3). 

This paper  will discuss a generalization of the binary tree for the t rea tment  of 
da ta  with inherently two-dimensional structure. One clear example of such 
records is that  of cities on a map. A s a m p l e  query might be: " F i n d  all the cities 
which are within 300 miles of Chicago or north of Seattle." The data  structure 
we propose to handle such queries is called a quad tree. I t  will be obvious tha t  
the basic concepts involved are easily generalized to records of any dimensionality. 

Definitions and Notation 
The location of recolds with two-dimeusional keys will be stored in a tree 

with out-degree four at each node. Each node will store one record andwi l l  have 
up to four sons, each a node. The root of the tree divides the universe into four 
quadrants, namely NE, NW, SW, and SE (using the map  analogy). Let  us call 
these quadrants one, two, three and four, respectively. Fig. f shows the cor- 
respondence between a s imple tree and the records it represents. 

The convention we use for points which lie directly on one of the quadrant  
lines emanating from a node is as follows: Quadrants one and three are closed, 
I Acta Informatica, Vo l .  4 
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Valgren et al. [6] also explored an appearance-based
approach across scenes with stark appearance changes, using
SIFT/SURF descriptor matching, and tuning the parameters
for optimal results.

Deciding which map features to match against is a major
challenge, and this is especially true in the case of Structure
from Motion (SfM), where unordered datasets with mostly
unknown location priors are the norm. Li et al. [7] addressed
this difficulty by matching 3D points to image features, rather
than the more conventional 2D to 3D matching. Points with
higher degree are prioritized. This was further improved upon
with bi-directional matching in [8]. A similar approach is
taken by Sattler et al. [9], where 2D-3D matching is sped
up by indexing all image features into a vocabulary tree
that was constructed using the 3D model, and the size of
each word cluster is used as a proxy for estimated matching
speed. Feature matching is prioritized according to cluster
sizes. In [10] this approach is further refined with an active
correspondence search in both directions.

Another interesting line of attack is reasoning about de-
scriptor occurrence. One such approach is taken in [11],
[12] where robust localization is achieved by computing
landmark observation likelihoods based on the number of
times a landmark was observed across training runs.

It is standard practice to employ a RANSAC [13] frame-
work to achieve robust matching in the presence of outliers.
When inlier ratios become very low RANSAC can take many
iterations to find a good model. Chum et al. introduced
PROSAC [14] , which progressively increases the sample
size. This approach assumes that matches can be prioritized,
and in the usual case the descriptor distance is suitable. In
[15], [16] feature weighting is integrated into the geometric
verification procedure (as opposed to post-processing step).

A different approach to solving the data association prob-
lem is taken in [17]. The authors proposed a framework for
predicting the visibility of landmarks in the scene. Given a
new query image with a pose prior, the landmarks which
were previously observed by nearby cameras are probabilis-
tically weighted according to a distance metric which is
learned in an offline step. The distance metric takes into
account camera rotation and translation. This makes it easy
to ignore landmarks which were observed by a camera facing
in the opposite direction, even though they are very close to
the query camera prior. In this paper we are also interested
in localizing a query image given a pose prior, and we adopt
this same visibility approach for efficiently retrieving likely
visible landmarks from our map.

III. LOCALIZATION

[Not: in this paper we restrict ourselves to vision as our
only sensing modality], and we focus on the scenario of a
camera moving smoothly through the world.]

The goal of localization is to estimate the current vehicle
position, provided some sensor data S and some knowledge
about the world. In this paper we focus on the scenario of a
camera moving smoothly through the world. This being the
case, we want to find the best estimate for the current vehicle

pose ⇥t 2 SE(3), given all of the sensor measurements
St taken up to and including the current time t, and some
representation of the world, which we discuss next. We
require that one of these sensors is a camera, as the image-
based localization step is a crucial part of our pipeline.

A key contribution in this paper is a world representation,
the spatio-temporal map (STM), that knows about both
geometry and the way geometry changes or can be observed
throughout time. We discuss in more detail in the next
section. Here what matters is that it includes landmarks
L 2 R3, annotated with feature descriptors and the time
(or times) t at which each landmark was observed during
the map-building phase.

We take, as is standard, a Maximum a Posteriori (MAP)
approach to the problem, maximizing the posterior density

P (⇥t|St, STM) / L(⇥t; St, STM)P (⇥t|St�1, STM)

Above, we applied Bayes law to decompose this into a
likelihood term L(⇥t; St, STM), explained below, and a
prior P (⇥t|St�1, STM) that predicts the pose ⇥t at time
t given past sensor readings and the STM . While our
technique can work with images only, the prior can be
augmented -where possible- by additional sensors such as
GPS or even wheel odometry.

The key to localization, however, is the likelihood term
L(⇥t; St, STM), and as many other researchers [2], [10],
[18] a key ingredient of our approach is a feature-based data-
association step with landmarks in a 3D map. Indeed, after
extracting 2D features Zt from the current image It 2 St,
we assume that the likelihood can be factored over features
and other information

L(⇥t; St, STM) = L(⇥t; Zt, STM)L(⇥t; St \ Zt, STM)

and we concentrate on the former from now on.
We build on the landmark visibility prediction framework

introduced in [17]. The key idea here is that frames which
were taken at camera poses X which were nearby the current
predicted pose, and also facing in roughly the same direction,
are likely to have observed a similar set of landmarks Lv . We
extract features and descriptors such as SIFT [19], and then
seek to match them to descriptors found in the STM . The
associations are made by comparing the feature descriptors
directly, which is computationally expensive. In light of the
STM having many millions of landmarks, it is important to
only attempt matching against landmarks which are likely to
be visible in the current image frame.

Our key contribution is to use the spatio-temporal map to
drastically improve the visibility prediction

P (vj |⇥t, STM)

We will do this by having a time (new) and geometry (old)
part....

Rather than naively selecting the set of n landmarks which
are nearest to the previous pose estimate ⇥t�1, this approach
works by computing P (vj |⇥t), the probability of a landmark

Valgren et al. [6] also explored an appearance-based
approach across scenes with stark appearance changes, using
SIFT/SURF descriptor matching, and tuning the parameters
for optimal results.

Deciding which map features to match against is a major
challenge, and this is especially true in the case of Structure
from Motion (SfM), where unordered datasets with mostly
unknown location priors are the norm. Li et al. [7] addressed
this difficulty by matching 3D points to image features, rather
than the more conventional 2D to 3D matching. Points with
higher degree are prioritized. This was further improved upon
with bi-directional matching in [8]. A similar approach is
taken by Sattler et al. [9], where 2D-3D matching is sped
up by indexing all image features into a vocabulary tree
that was constructed using the 3D model, and the size of
each word cluster is used as a proxy for estimated matching
speed. Feature matching is prioritized according to cluster
sizes. In [10] this approach is further refined with an active
correspondence search in both directions.

Another interesting line of attack is reasoning about de-
scriptor occurrence. One such approach is taken in [11],
[12] where robust localization is achieved by computing
landmark observation likelihoods based on the number of
times a landmark was observed across training runs.

It is standard practice to employ a RANSAC [13] frame-
work to achieve robust matching in the presence of outliers.
When inlier ratios become very low RANSAC can take many
iterations to find a good model. Chum et al. introduced
PROSAC [14] , which progressively increases the sample
size. This approach assumes that matches can be prioritized,
and in the usual case the descriptor distance is suitable. In
[15], [16] feature weighting is integrated into the geometric
verification procedure (as opposed to post-processing step).

A different approach to solving the data association prob-
lem is taken in [17]. The authors proposed a framework for
predicting the visibility of landmarks in the scene. Given a
new query image with a pose prior, the landmarks which
were previously observed by nearby cameras are probabilis-
tically weighted according to a distance metric which is
learned in an offline step. The distance metric takes into
account camera rotation and translation. This makes it easy
to ignore landmarks which were observed by a camera facing
in the opposite direction, even though they are very close to
the query camera prior. In this paper we are also interested
in localizing a query image given a pose prior, and we adopt
this same visibility approach for efficiently retrieving likely
visible landmarks from our map.

III. LOCALIZATION

[Not: in this paper we restrict ourselves to vision as our
only sensing modality], and we focus on the scenario of a
camera moving smoothly through the world.]

The goal of localization is to estimate the current vehicle
position, provided some sensor data S and some knowledge
about the world. In this paper we focus on the scenario of a
camera moving smoothly through the world. This being the
case, we want to find the best estimate for the current vehicle

pose ⇥t 2 SE(3), given all of the sensor measurements
St taken up to and including the current time t, and some
representation of the world, which we discuss next. We
require that one of these sensors is a camera, as the image-
based localization step is a crucial part of our pipeline.

A key contribution in this paper is a world representation,
the spatio-temporal map (STM), that knows about both
geometry and the way geometry changes or can be observed
throughout time. We discuss in more detail in the next
section. Here what matters is that it includes landmarks
L 2 R3, annotated with feature descriptors and the time
(or times) t at which each landmark was observed during
the map-building phase.

We take, as is standard, a Maximum a Posteriori (MAP)
approach to the problem, maximizing the posterior density

P (⇥t|St, STM) / L(⇥t; St, STM)P (⇥t|St�1, STM)

Above, we applied Bayes law to decompose this into a
likelihood term L(⇥t; St, STM), explained below, and a
prior P (⇥t|St�1, STM) that predicts the pose ⇥t at time
t given past sensor readings and the STM . While our
technique can work with images only, the prior can be
augmented -where possible- by additional sensors such as
GPS or even wheel odometry.

The key to localization, however, is the likelihood term
L(⇥t; St, STM), and as many other researchers [2], [10],
[18] a key ingredient of our approach is a feature-based data-
association step with landmarks in a 3D map. Indeed, after
extracting 2D features Zt from the current image It 2 St,
we assume that the likelihood can be factored over features
and other information

L(⇥t; St, STM) = L(⇥t; Zt, STM)L(⇥t; St \ Zt, STM)

and we concentrate on the former from now on.
We build on the landmark visibility prediction framework

introduced in [17]. The key idea here is that frames which
were taken at camera poses X which were nearby the current
predicted pose, and also facing in roughly the same direction,
are likely to have observed a similar set of landmarks Lv . We
extract features and descriptors such as SIFT [19], and then
seek to match them to descriptors found in the STM . The
associations are made by comparing the feature descriptors
directly, which is computationally expensive. In light of the
STM having many millions of landmarks, it is important to
only attempt matching against landmarks which are likely to
be visible in the current image frame.

Our key contribution is to use the spatio-temporal map to
drastically improve the visibility prediction

P (vj |⇥t, STM)

We will do this by having a time (new) and geometry (old)
part....

Rather than naively selecting the set of n landmarks which
are nearest to the previous pose estimate ⇥t�1, this approach
works by computing P (vj |⇥t), the probability of a landmark

Pose Prior

Figure 35: Cameras from two different sequences observe a set of landmarks. The lines represent the
visibility graph encoded in the STM. Given the previous pose estimate ⇥t�1, and a set of image measurements
Zt, landmarks which are likely to be visible can be retrieved from the map.

Figure 36: Two clusters of features are most likely to be observed in April, and August, respectively.
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In this thesis I also explore whether geometric visibility can be augmented with a time-

dependent term P (v
j

|⇥
t

, STM), operating under the assumption that landmarks which

were observed at similar times of year might also be effective predictors of visibility. See

Figure 36. This “visibility score” is then computed as
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where in practice only the T nearest camera poses are considered, as visibility of very distant

landmarks can safely be assumed to be zero. v
j

is the visibility of landmark l
j

. P (v
j

|t, STM)

is the probability of a landmark to be visible given the current time, explained in more detail

in the following section. k(.) is a function which measures the similarity (distance) between

two camera poses:
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where
�!
✓ are vectors encoding the translation and rotation of each of the camera poses

in question. A is learned from the existing 3D reconstruction, and is obtained using the

visibility learning framework in [6]. Intuitively speaking, this function optimally weights

the rotation & translation distances between two poses, as these quantities are scaled very

differently.

Figure 35 shows a prior camera pose, and some nearby map camera poses, which in turn

are connected to some landmarks via the visibility graph stored in the map. A landmark is

connected to cameras in multiple data sequences if the landmark was part of a loop closure.

As each landmark, and consequently each putative now has a visibility score associated

with it, I can exploit this information during pose recovery. I use PROSAC [18] instead of

RANSAC, which assumes that P is sorted according to some quality criterion q:

p
i

, p
j

2 P
N

: i < j ) q(p
i

) � q(p
j

)

The PROSAC algorithm begins by drawing samples from the landmarks with highest pre-

dicted visibility (i.e. during the first iteration S = {p0, p1, p2}), and progressively increases

the sample pool until termination. The algorithm makes the assumption that samples of

high quality putatives are more likely to yield a valid model, and hence allows termination

much sooner than RANSAC.

I take the view that the visibility score meets this requirement, in the same way that it

has been shown that SIFT match scores work well in this context.

As mentioned previously, the STM annotates each landmark with observation times,

which I can use during localization to compute the time-dependent visibility probability

P (v
j

|t, STM). We make the assumption that landmarks which have previously been ob-

served at a particular time of year (season), are more likely to be re-observed during similar

conditions. Hence, the time-dependent visibility prediction term P (v
j

|t, STM) is computed

from distance in time. For example, we need to compute the absolute distance between

months, and wish to assign a score in the range of [0,1]. Neglecting wrap-around due to

subtraction, we have 1� |(t1 � t2)/6|. This equation gives us a visibility score of 1 for any

given STM landmark if it was observed in the same month, i.e. t1 = t2, and 0 if it was
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observed 6 months apart, e.g. t1 = 7 (July), and t2 = 1 (January.)

Given L
v

, the standard approach is followed to compute a pose estimate: Detect features

in the current stereo pair, match and verify with RANSAC/PROSAC.

In practice, some steps can be taken to further speed up the algorithm described above.

Computing the visibility score with respect to all poses X can be costly for large STM.

Instead, I pre-prune the set of poses, and only compute the visibility for poses that fall

within a small neighborhood of the predicted pose.

5.3 Methodology and Implementation Details

In this section I describe the algorithm and implementation details of the localization mod-

ule. As shown in Figure 34, there are essentially four steps to iterate over. Pose prediction,

and the pose update step are handled by a fixed-lag smoother, which maintains the pose

estimate of the camera. The SRM, on the other hand, interfaces with the STM to compute

a pose estimate given the STM and the most recent features from VO.

5.3.1 Snapshot Recognition Module

The heavy lifting during localization is done by the SRM, which is responsible for computing

an absolute global pose given the Submap-STM and a pose prior. The latest pose from the

fixed-lag smoother is used as pose prior to select the most appropriate submap. The SRM

then uses this pose prior to compute the set of most likely visible landmarks. The STM

contains the visibility graph which was uncovered during map building, so the algorithm

begins by finding the set of cameras which are nearest to the pose prior, and then collects

landmarks which were observed by those nearest cameras. The search for nearest cameras

is bounded by the size of the map, so this search does not affect scalability. Once the set of

landmarks is identified, I compute the geometric (and/or seasonal) visibility score for each

of the landmarks. This is followed by 2D-3D matching between the VO features for the

current frame and the landmarks, and the pose is recovered using RANSAC/PROSAC with

the three-point algorithm. If a pose with sufficient number of inliers is found, the pose is

provided to the fixed-lag smoother, which means it is added as a pose prior. Without this

prior the fixed-lag smoother would be reduced to outputting the VO solution.
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Figure 37: Inlier propagation: By propagating inliers from frame xt�1 to frame xt, these features and
landmarks are removed from the feature association step which is very time consuming.

5.3.2 Inlier Propagation

Localization with the SRM is very fast because of landmark visibility prediction. How-

ever, some time can also be saved by taking advantage of the fact that we are localizing a

continuous stream of images, without reducing the number of landmarks. As explained in

Section 3.3, image features are tracked from frame to frame by the visual odometry algo-

rithm. During localization each of these 2D features is matched to a 3D landmark for pose

recovery. Now, instead of starting this process from scratch for each frame, I propagate the

2D-3D inliers from one frame to the next. This means that the involved 2D features and 3D

landmarks are removed from the regular descriptor matching at this step. Figure 37 shows

an example of the inlier propagation idea. The 2D features on the traffic signal appear in

two consecutive images, and remain associated with the same 3D landmark from the STM

without having to redo the feature matching step.

5.4 Results for Monolithic SRM-STM

I first show results for the monolithic version of the SRM-STM in the following two sections.

5.4.1 Two Data Sequences

The results for two data sequences were first reported in [9]. The purpose of this experiment

was to ascertain whether combining several datasets into a single map was at all useful,

or if this had entirely detrimental effects on localization performance. Table 5 shows the

localization performance of the three sequences with respect to a map constructed from
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Table 5: Number of successfully localized frames of sequences F, K, L against maps created from sequence
K alone, and from sequences K and L.

Map F K L Total
K 5335 22969 10540 38844

K+L 4417 22819 21245 48481
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Figure 38: Camera visibility scores (Mahalanobis distance) per GPS query pose for sequence F with respect
to the full database. Lower (blue) is better. Streets which were not covered by the database, or which were
traveled in the opposite direction have a large distance (red).

sequence K alone vs. a map constructed from K+L.

Figure 38 shows a visualization of the smallest visibility distance metric for each query

pose. Note that to the east there is a loop which was not covered in the map, and therefore

has a very large visibility distance (deep red).

5.4.2 Three Data Sequences

For this experiment, the STM contains landmarks observed from an overlapping area of

datasets J, K & L shown in Table 6. All areas of this region of interest (ROI) are visited

by our vehicle in at least two sequences. Frames taken outside of this ROI are ignored

completely.

This STM contains 34509 camera poses, and over 2.3 million landmarks with SIFT
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Table 6: Datasets used in experiments. The “localized” column represents the number of frames which
were able to localize with respect to the STM.

Label Date ROI Frames Localized Resolution
F Sep 11, 2012 11377 4280 (37.6%) 1380⇥ 480

J Feb 2, 2013 12304 11493 (93.4%) 1380⇥ 480

K Apr 2, 2013 11327 10833 (95.6%) 1384⇥ 680

L Aug 1, 2013 10878 10686 (98.2%) 1384⇥ 680

Figure 39: STM camera poses after full bundle adjustment.

feature descriptors. This map takes 1.4GB of storage when serialized out to disk. Optimized

camera trajectories are shown in Figure 39.

When it comes to localization results from the STM, I first show that my approach serves

to relocalize the images that comprise the map itself very well. I use the noisy GPS-INS

readings as the pose prior, retrieve all of the landmarks observed by the 15 nearest cameras

in the STM, and require an inlier ratio of at least 10%. Localization results for this scenario

are shown in Figure 40.

Next, I evaluate the localization performance on a sequence which was not used to build

the STM. This dataset -F- was collected well before the others, and the appearance of some

streets has changed significantly. Even so, localization rate of 37.6% was achieved.

59



(a) (b)

(c)

Figure 40: STM Localization Results for the images in the three sequences which contributed to the STM.
The GPS-INS pose priors are shown in green, and the localization result in blue.
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Figure 41: Localization of sequence F in the STM. Pose priors are shown in green, and localization results
in blue.

61



Figure 42: Localization GUI developed to monitor the progress of the vehicle through the Submap-STM.
Top left: Zoomed in top-down view of the map, with vehicle location shown in black, nearby cameras from
the map are shown in yellow, and the active Submap-STM is shown in blue. As the eastwardly traveling car
comes up to the intersection, three possible follow-on submaps are highlighted in light orange and purple.
Top right: Current camera frame, with thumbnail of the closest image from each dataset in the map. Bottom:
Sparse point cloud of all 3D landmarks in the map.

5.5 Localization in the Submap SRM-STM

Localization within the Submap SRM-STM requires an additional layer to handle the loading

and unloading of submaps, and the decision-making about which submap to load. As the

submaps are non-overlapping and unidirectional, only one must ever be used at one time.

There are two operational modes: A “lost” mode which is used at the beginning, and a

“locked-in” mode which is used for normal operation.

In the “lost” mode the pose prior—at startup this comes from GPS—is used to find the

Submap-STM which comes closest, and is facing most nearly in the same direction as the

pose prior. There are generally two submaps covering each street: one in each direction

of travel. The selected submap is then used to make a localization attempt. If successful,

this becomes the active submap, and we are now in “locked” mode. Otherwise, the process
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repeats at the next frame.

In “locked-in” mode the choice of submap is restricted to the currently active submap, or

any of the allowable successor submaps, according to the directed submap graph. Of these,

whichever submap is closest to the pose prior is chosen as the active submap. The algorithm

for submap selection and localization is shown in Algorithm 5.1.

Algorithm 5.1 localizeSubmapSrmStm: Algorithm for Submap-STM selection during lo-
calization.
Input: Pose Prior p
Input: Last used submap activeSubmap
Input: Directed graph of submap transitions submapTransitions
Input: Stereo features for current frame stereoFeatures
Output: New active submap activeSubmapStm
Output: Pose estimate submapSrmStmPose
1: submapSrmStmPose  ; . Initialize empty pose
2: if activeSubmapStm = NULL then
3: activeSubmapStm  getNearestSubmapWithSimilarHeading(p)
4: submapSrmStmPose  activeSubmapStm.localize(p, stereoFeatures)
5: if submapSrmStmPose = NULL then
6: activeSubmapStm  ; . Reset, and try again on next frame
7: end if
8: else
9: permissibleSubmapStm submapTransitions.validTransitionsFrom(activeSubmapStm)

10: permissibleSubmapStm  permissibleSubmapStm [ activeSubmapStm
11: activeSubmapStm = selectClosestToPrior(p, permissibleSubmapStm)
12: submapSrmStmPose  activeSubmapStm.localize(p, stereoFeatures)
13: end if

5.6 Results for Submap SRM-STM

I evaluate the performance of the Submap-SRM-STM localization algorithms in terms of

the claims. I first show that the STM supports very high quality localization with four

datasets, and leave-one-out cross-validation experiments in Section 5.6.1. This is followed

by validation of real-time performance, and a set of experiments that show how the speed

varies with the number of nearby cameras and landmarks in Section 5.6.2. I also present an

inlier propagation algorithm which can further reduce the time required during data associ-

ation and pose recovery. Finally, I validate robustness to seasonal change with experiments

comparing the localization performance of the Submap-STM against results with just a sin-

gle dataset in Section 5.6.3. I conclude with a head to head comparison of geometric and
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Figure 43: Complete localization results, including non-overlapping areas of datasets. Poses returned by
the SRM are shown in blue, and frames where a GPS-assist prior was used are shown in red. The complete
map is shown in light gray for reference.

seasonal visibility.

5.6.1 High Quality

As shown in the experiments in this chapter, translational errors with respect to the STM

are very good, from an average low of 8 cm, up to a maximum error of 0.56 m. Rotational

errors are very low across all experiments, with a low of 0.017 deg in the ideal case, and an

average up to 0.2 degrees otherwise.
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Table 7: Number and percentages of frames which were successfully localized.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14)
Localized frames 17023 13323 14809 13593

Query frames 17442 14014 15229 13841
Localized frames (%) 97.6 95.1 97.3 98.2

Frames in map 16959 13685 14768 13733

5.6.1.1 Basic Localization

Before moving on to more interesting leave-one-out cross-validation experiments, it is nec-

essary to establish a baseline showing the maximum performance that is attainable. After

all, one might reasonably expect that the addition of several datasets into a single metric

map could actually degrade localization performance. I start out with the most trivial local-

ization experiment where each sequence contained in the map is localized against the map

containing all four datasets. Geometric visibility prediction is used in this experiment to

retrieve landmarks from the map, with the number of nearby cameras fixed at 15. RANSAC

is used for pose recovery, which means that the visibility score is not used for pose estima-

tion itself. Ideally we can expect localization recall of 100% in this scenario. Quantitative

results are shown in Table 7. Note that the query dataset has slightly more frames than

are contained in the map, and the map does not have perfect coverage, meaning that the

data collection routes varied and do not fully overlap. The complete map contains data

from 59145 individual stereo frames. Figure 43 shows successful localizations in blue, and

areas where GPS was used as the pose prior in red. GPS assistance is always used at the

beginning to bootstrap the localization module, and again whenever the SRM has not been

able to return a pose, as is evidenced at the northern part of trajectory J.

I focus the leave-one-out experiments in the following sections on just those roads which

were traversed at least once by each of the datasets contained in the map to avoid any

potential biases. Figure 44shows the relevant subset of submaps. These reduced submaps

contain observations from a total of 32571 frames. The quantitative results of the same

experiment as above, focused on this core area are shown in Table 8. The table shows

that localization recall is almost perfect, mainly being impacted only by the use of GPS at

startup. Sequence K has a harder time locking in at the beginning, hence the lower overall
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Figure 44: Subset of 17 submaps which were traversed at least once by each dataset.
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Table 8: Number and percentages of frames which were successfully localized in full-coverage submaps.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14) Total
Localized frames 9685 7431 7050 8241 32407
Frames in ROI 9686 7590 7052 8243 32571

Localized frames (%) 99.9 97.9 99.9 99.9 99.5
Mean rotational error (deg) 0.024 0.022 0.018 0.017 0.020
Mean translational error (m) 0.083 0.082 0.167 0.081 0.103

performance of 97.9%. The table also shows mean rotational and translation error, with

rotational error almost negligible, and translational error in the centimeter range. This is

the ideal baseline result against which I compare all other experiments. Error histograms

are shown in Figure 46

Figure 45 shows localized frames and their inlier counts. In this experiment inlier counts

in the hundreds are commonly observed, but this is not typical—or expected—during leave-

one out experiments. Inlier counts are impacted by the number of nearby landmarks re-

trieved from the Submap-STM, by the number of features detected in each frame, and finally

by how many of these were successfully matched. Regions with lower inlier counts, relatively

speaking, could be indicative of significant changes in the scene due to construction, etc.

This may also be indicative of poor expected performance in other experiments to follow.

5.6.1.2 Leave-one-out cross-validation

To evaluate the system in a more realistic scenario, I have conducted leave-one-out exper-

iments for each of the four datasets. Here, the same Submap-STMs as in the previous

experiments are used, but any landmarks occurring only in the query sequence are sup-

pressed during landmark retrieval. This effectively means we are localizing one sequence

against a map constructed of three sequences. Again, geometric visibility prediction is used

in this experiment only to retrieve landmarks from the map, with the number of nearby

cameras fixed at 15. The three-point algorithm with RANSAC is used for pose recovery.

Quantitative results for this leave-one-out experiment are shown in Table 9. Paradox-

ically, dataset J has the lowest percentage of localized frames, but those have the lowest

translational error, while dataset M has the largest percentage of localized frames, but the

highest average translational error. Inlier counts per pose are shown in Figure 47, and error
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Figure 45: Localized poses in overlapping map area with inlier counts. Higher (red) is better than low
(blue). The scale tops out at 500 inliers, but there are some frames which had even more inliers.

Table 9: Number and percentages of frames which were successfully localized in full-coverage submaps for
leave-one-out experiment with RANSAC.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14) Total
Localized frames 5213 6396 5131 7114 23854
Frames in ROI 9686 7590 7052 8243 32571

Localized frames (%) 53.8 84.2 72.8 86.3 73.2
Mean rotational error (deg) 0.167 0.102 0.206 0.179 0.164
Mean translational error (m) 0.209 0.252 0.499 0.536 0.374

SRM wall time (ms) 148 126 136 123 133
SRM CPU time (ms) 791 733 753 712 747
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Figure 46: Error histograms showing rotational error in degrees, and translational error in meters per
localized frame.
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Figure 47: Inlier counts for leave-one-out experiment. Higher (red) is better than low (blue).

distributions are shown in Figure 48.

5.6.2 Efficient

The speed of the localization module varies with the number of landmarks that are retrieved,

which can be tuned with several parameters. Overall timings for the SRM are are reported in

Table 10. The SRM wall time includes the retrieval of nearby cameras and visible landmarks

from the Submap-STM, as well as data association, and three-point pose recovery with

PROSAC. Real-time performance (faster than 10fps) was only achieved after multi-threading

and optimizing the data association function, which is apparent in the actual CPU time

spent. All timings are obtained on an 8 core Intel i7 CPU @4Ghz.
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Figure 48: Error histograms showing rotational error in degrees, and translational error in meters per
localized frame for the leave-one-out experiment.

Table 10: Total localization timings with 15 nearby cameras and PROSAC.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14) Total
Localized frames 5059 6264 4978 7041 23342
Frames in ROI 9686 7590 7052 8243 32571

Localized frames (%) 52.2 82.5 70.6 85.4 71.7
Mean rotational error (deg) 0.158 0.101 0.481 0.166 0.226
Mean translational error (m) 0.205 0.256 0.489 0.525 0.369

SRM wall time (ms) 87 98 89 92 92
SRM CPU time (ms) 449 552 497 522 505
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Figure 49: Cumulative time spent in the SRM. Data association is by far the most expensive part (or-
ange), followed by the three-point algorithm and RANSAC (yellow). Camera pose and landmark/descriptor
retrieval from the STM are almost negligible (red and dark red).

A breakdown of the timings for just the SRM is shown in Figure 49. Data associa-

tion (orange) is by far the most expensive part, followed by the three-point algorithm and

RANSAC (yellow). A negligible amount of time is spent finding the closest set of cam-

eras given the query pose (dark red), and retrieving the visible landmarks and computing

their scores (red). The camera and landmark retrieval time is bounded by the size of the

Submap-STM.

5.6.2.1 Reducing the Number of Landmarks

As shown in Figure 49, data association is the most costly time consuming operation, and

this is directly related to the number of features in the image, and the number of landmarks

retrieved from the STM. The number of landmarks retrieved from the map is easily tuned

by adjusting the number of nearby cameras from which visible landmarks are retrieved. For

example, repeating the leave-one out experiment with the number of nearby cameras fixed at

5 instead of 15 frames yields a 17% speedup, with a total localization rate of 66.4% instead

of 71.7%. Quantitative results for the leave-one out experiment with five nearby cameras

are shown in Table 11.
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Table 11: Total localization timings with 5 nearby cameras and PROSAC.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14) Total
Localized frames 4464 5920 4589 6661 21634
Frames in ROI 9686 7590 7052 8243 32571

Localized frames (%) 46.1 78.0 65.1 80.8 66.4
Mean rotational error (deg) 0.171 0.247 0.212 0.179 0.202
Mean translational error (m) 0.213 0.254 0.53 0.554 0.387

SRM wall time (ms) 72 78 76 76 75
SRM CPU time (ms) 373 441 415 431 415

Table 12: Total localization timings with 5 nearby cameras and PROSAC, as well as inlier propagation
between consecutive frames.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14) Total
Localized frames 4996 6331 4990 7053 23370
Frames in ROI 9686 7590 7052 8243 32571

Localized frames (%) 51.6 83.4 70.8 85.6 71.8
Mean rotational error (deg) 0.163 0.278 0.197 0.174 0.203
Mean translational error (m) 0.222 0.284 0.55 0.597 0.413

SRM wall time (ms) 68 63 68 63 65.5
SRM CPU time (ms) 342 361 374 365 360.5

5.6.2.2 Inlier Propagation

As shown in the previous section, the total computation time spent in data association is

easily tuned by adjusting the number of landmarks, with relatively minor impact on the

localization rate accuracy. However, some time can also be saved by taking advantage of

the fact that we are localizing a continuous stream of images, without reducing the number

of landmarks. Table 12 shows quantitative results for the SRM with inlier propagation.

5.6.3 Robust to Change

To prove the claim that the STM provides increased robustness to change as compared to a

map constructed from a single data collection run, I compare the leave-one-out experiment

from above against leave-out-three experiment. Specifically, the total number of successful

localizations of sequences KLM against map J alone was only 11916, while leave-one-out

experiments for those three datasets yielded 18641 successful localizations, a 56% improve-

ment!
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Table 13: Number and percentages of frames which were successfully localized against dataset J.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14)
Localized frames 9686 4662 3555 3699
Frames in ROI 9686 7590 7052 8243

Localized frames (%) 100 61.4 50.4 44.9
Mean rotational error (deg) 0.024 0.124 0.244 0.215
Mean translational error (m) 0.087 0.216 0.463 0.393

Table 14: Number and percentages of frames which were successfully localized in full-coverage submaps
against dataset M.

J (Feb ’13) K (Apr ’13) L (Aug ’13) M (Apr ’14)
Localized frames 2070 5325 3280 8241
Frames in map 9686 7590 7052 8243

Localized frames (%) 21.3% 70.2% 46.5% 99.9%
Mean rotational error (deg) 0.488 0.165 0.390 0.018
Mean translational error (m) 0.403 0.443 0.644 0.080

5.6.3.1 Leave out three

In this experiment I leave out all but one dataset, localizing against only landmarks observed

in sequence J. This is a very important experiment, because it confirms the hypothesis that

a multi-dataset STM achieves better localization success rates than localizing against just a

single dataset. While it may seem like an obvious conclusion that this ought to be better,

there are actually several things which may cause this to turn out false: Adding additional

landmarks from another sequence to the map can introduce matching ambiguities, reducing

the number of available putatives. Even worse, map inconsistencies can result in lower inlier

ratios, and thereby also causing localization failure. Quantitative results are shown in Table

13. An interesting trend is apparent in the localization rates, that is they decline as time

goes on.

To rule out the effect on any biases I repeat this experiment, localizing only against

landmarks contained in dataset M, the youngest dataset contained in the map. Results are

summarized in Table 14. As expected, sequence M is localized almost perfectly, while the

other sequences do quite poorly. Interestingly, sequence L does a lot worse than sequence

K.
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Figure 50: Error histograms showing rotational error in degrees, and translational error in meters per
localized frame for the leave-one-out experiment. Note the different scale compared to the previous figure.
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Figure 51: Error histograms showing rotational error in degrees, and translational error in meters per
localized frame for the leave-one-out experiment. Note the different scale compared to the previous figure.
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5.6.3.2 Geometric vs. Seasonal Visibility

In this section I evaluate the hypothesis that seasonal visibility is a good predictor of land-

mark visibility. As a reminder, if the hypothesis were true, it would mean that landmarks

observed at a certain time of year are more likely to be reobserved at that same time of year.

To evaluate the seasonal visibility hypothesis, I repeat the leave-one-out experiment shown

in Section 5.6.2, except that putatives provided to PROSAC are now sorted according to

the seasonal visibility score instead of the geometric visibility score. Table 15 shows the

two results comparing PROSAC prioritization according to geometric and seasonal visibil-

ity side by side. As this table shows, there is only a very small difference between the two

results. Looking at the overall totals, the difference in the total number of successfully lo-

calized frames is only 67, a mere 0.29%. The rotational error with seasonal visibility scoring

was improved by 28%, which is largely due to the rotational error of 0.481 degrees for the

geometric visibility experiment. However, it is important to note that geometric visibility

alone did better for the other three datasets as far as rotational and translational errors were

concerned. Overall, the translational error was 4% worse for seasonal visibility. The total

wall time spent with the seasonal visibility ranking was 5% better than with the geometric

visibility ranking.

While initial experiments seemed promising with regards to seasonal visibility, it has

become quite clear that seasonal visibility carries far less importance than we had hoped. A

number of researchers have speculated that weather and lighting are the dominant drivers

of visibility, and this was finally confirmed with some hard data in [83].

5.7 Summary

In this chapter I have presented the algorithm which performs real-time localization with

respect to the pre-built STM. The use of submaps and visibility prediction ensures real-time

performance, even as the size of the map is scaled up. The performance and accuracy of

the approach were evaluated experimentally. I have shown that the map constructed from

multiple datasets performs better than a map made up of a single dataset. I have also shown

that inlier propagation can be utilized to further speed up localization by taking advantage
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Table 15: Number and percentages of frames which were successfully localized in full-coverage submaps
for geometric visibility and seasonal visibility.

Geometric visibility Seasonal visibility
J K L M

Total
J K L M

Total
Feb’13 Apr’13 Aug’13 Apr’14 Feb’13 Apr’13 Aug’13 Apr’14

Localized frames 5059 6264 4978 7041 23342 5116 6252 5048 6993 23409

Frames in ROI 9686 7590 7052 8243 32571 9686 7590 7052 8243 32571

Localized frames (%) 52.2 82.5 70.6 85.4 71.7 52.8 82.3 71.6 84.8 71.8

Mean rot. error (deg) 0.158 0.101 0.481 0.166 0.226 0.164 0.104 0.210 0.167 0.161

Mean trans. error (m) 0.205 0.256 0.489 0.525 0.369 0.216 0.263 0.510 0.559 0.387

SRM wall time (ms) 87 98 89 92 92 80 93 83 91 87

SRM CPU time (ms) 449 552 497 522 505 444 566 486 549 511

of the fact that I am localizing a continuous stream of images, which means that feature

associations do not have to be recomputed from scratch at every time step. In summary,

the claims with respect to localization are:

• High-quality - Localization results of the SRM have high accuracy, which is crucial

for autonomous driving applications. A highly accurate 3D map of sparse landmarks

from multiple data sequences is effective as the basis for high-quality localization.

Furthermore, a highly accurate stereo visual odometry system forms the backbone of

both the map-building and localization modules.

• Efficient - The SRM-STM localization algorithm provides localization in real-time,

which is a critical requirement for autonomous driving.

• Robust to change - The SRM-STM localization system is robust to change because it

utilizes a spatio-temporal map. By storing landmarks from multiple datasets collected

at different times, it enables more robust localization than a single-dataset map in the

presence of appearance changes.
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Chapter VI

CONCLUSIONS

In this thesis I have presented a methodology for real-time, metric localization of a moving

camera in a pre-built 3D map, which is inherently robust with respect to appearance changes.

This is achieved by utilizing a novel spatio-temporal map (STM) representation which is

built up from multiple drives worth of data, as well as a snapshot recognition module (SRM),

which efficently retrieves landmarks from the STM to perform appearance-based localization

in real-time. The map encodes the visibility structure of the datasets which were captured

to build the map, and this information is exploited for efficient localization. Furthermore,

with an improved version called the Submap-STM, real-time performance and scalability

were demonstrated.

6.1 Review of Claims

In this thesis I have shown that the spatio-temporal map (STM) and snapshot recognition

modules (SRM) together are able to provide real-time, high-quality metric localization in

changing environments.

In particular, I have demonstrated that the three following claims are true about the

system as a whole.

• High-quality - Localization results of the SRM were shown to have high accuracy.

A highly accurate 3D map of sparse landmarks from multiple data sequences is effec-

tive as the basis for high-quality localization. Furthermore, a highly accurate stereo

visual odometry system forms the backbone of both the map-building and localization

modules.

• Real-time - The SRM-STM localization algorithm provides localization in real-time,

which is a critical requirement for autonomous driving.

• Robust to change - The SRM-STM localization system is robust to change because it
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utilizes a spatio-temporal map. By storing landmarks from multiple datasets collected

at different times, it enables more robust localization than a single-dataset map in the

presence of appearance changes.

6.2 Future Work

While I have shown in this thesis that building maps from multiple datasets can be used to

achieve reliable localization results in changing environments, numerous challenges remain

to be addressed. For instance, one problem I did not address in this work at all is that of

long-term map maintenance. It clearly does not make sense to continually grow the map as

more observations are made, but identifying which landmarks should be removed as time

goes on is not trivial. Similarly, algorithms are needed to decide when enough landmarks

have been added to the map, as an alternative to adding all landmarks which were observed

from a minimum number of images, as was the case in this work.

The experiments shown in this thesis were all conducted in daytime. However, for this

work to be truly useful it must work across all manner of lighting conditions, including night-

time. This presents a serious problem for the map-building phase, as matching of landmarks

across such drastic illumination differences is extremely challenging. Other sensors, such as

LIDAR might prove useful in this area.

The lack of reliable ground truth makes it difficult to fairly evaluate large-scale localiza-

tion results. In this thesis I used the optimized map as the basis for localization accuracy

evaluation, since this was much better than GPS. Large-scale, long-term datasets across

seasons with high-quality ground truth derived from other sensors are needed.

Finally, at the onset of this work we had hypothesized that in outdoor scenarios, land-

mark visibility would follow a cyclical pattern, but in reality, the data did not support this

hypothesis. In fact, we now know, as recent research has shown, that lighting and other

effects completely dominate any seasonal effects.
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