
OPTIMAL ADMISSION CONTROL IN TANDEM AND
PARALLEL QUEUEING SYSTEMS WITH APPLICATIONS

TO COMPUTER NETWORKS

A Thesis
Presented to

The Academic Faculty

by

Daniel F. Silva

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2016

Copyright © 2016 by Daniel F. Silva



OPTIMAL ADMISSION CONTROL IN TANDEM AND
PARALLEL QUEUEING SYSTEMS WITH APPLICATIONS

TO COMPUTER NETWORKS

Approved by:

Dr. Hayriye Ayhan, Advisor
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. David Goldberg
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Sigrún Andradóttir
H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology

Dr. Bo Zhang
T. J. Watson Research Center
IBM Research

Dr. Antonius Dieker
Department of Industrial Engineering
and Operations Research
Columbia University

Date Approved: 7/22/2016



To my parents,

Carlos F. Silva & María Inés Izquierdo.



ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to all the people who

made this dissertation, and my Ph.D. journey, possible. First and foremost, I would

like to thank my advisor, Prof. Hayriye Ayhan, for her guidance and encouragement

throughout my studies. I am extremely grateful for Hayriye’s brilliant insights, her

dedication and her seemingly infinite patience, without which, this thesis would never

have been finished. I am also deeply thankful to Dr. Bo Zhang, who has practically

served as a co-advisor for this dissertation. Without Bo’s ideas, thoroughness and

keen eye for detail this work would not be what it is today.

This dissertation, as well as my experience at Georgia Tech, have also been greatly

enriched by the remaining members of my committee: Profs. David Goldberg, Ton

Dieker and Sigrún Andradóttir. David and Ton were both exceptional teachers, all

I know about the foundations of Stochastic processes, I learned from them. They

have also, throughout long talks about the future, become mentors for me, especially

helping me navigate the next steps in my academic career, for this I am very grateful.

I am also very thankful to Sigrún for her encouragement and her insightful comments

on my research, which have helped improve it considerably.

Of course, this research would not have been possible without the ISYE faculty.

I would especially like to thank Profs. Tovey, Nemhauser, Monteiro, Kim, Kleywegt,

Ahmed and Dai, as well as Profs. Popescu, Lounici and Iliev at the Department of

Mathematics, for the wonderful classes I had the opportunity to take from them. I

would also like to thank Profs. Gary Parker, Paul Kvam, Alan Erera and Edwin

Romeijn for giving me the continued opportunity and support to succeed in the

graduate program, here at ISYE. Thank you, also, to all the amazing ISYE staff, for

iv



making my life so much easier.

I would be remiss, if I failed to thank my professors at Universidad de Los Andes

for laying the groundwork to make this journey possible. I am especially grateful to

my friend and mentor, Dr. Germán Riaño, who encouraged me to pursue a doctoral

degree in the first place.

I would also like to thank my friends and colleagues, who made the past five years

a fun and enjoyable experience. I will forever cherish the memories we made with my

Atlanta family, grilling at the house on 16th street, traveling around the U.S. and

the world, as well as discovering this lovely city together; they are Diego Morán, Tim

Sprock, Margaret Johnston, Andrés Iroume, Stefanía Stefánsdóttir, Mallory Solder,

Matthias Klapp, Francisca Otero and Vinod Cheriyan. Their constant support and

unconditional friendship kept me sane. A huge thanks also to all my fiends here at

ISYE and beyond, including Alfredo, Cristobal, Gustavo, Tamara, Alvaro, Alejandra,

Rodolfo, Pamela, Camilo, Tatiana, Kevin, Lauren, Jeff, Tonya, Ethan, Toyya, Brian,

Matt, James, Ben, Erin, Carl, Ezgi, Ilke, Murat, Bahar, Isil, Tugce, Norbert, Jan,

Min-Kyoung, Chang-Han, and all the others, which are too many to list here.

Finally, a very special thank you to my family, especially my parents, Carlos and

María Inés. Without their perpetual support and encouragement nothing I have done

would ever have been possible.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 6

III ADMISSION CONTROL FOR A TANDEM LOSS SYSTEMWITH
TWO STATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Markov Decision Process Formulation for General Buffer Sizes . . . 14

3.1.1 The Prudent and Greedy Policies . . . . . . . . . . . . . . . 17

3.2 Case 1: When B2=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Case 2: When B1=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Characterization of c∗(B2) . . . . . . . . . . . . . . . . . . . 22

3.3.2 Trends in probabilities . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Heuristics and Numerical Experiments . . . . . . . . . . . . . 27

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV ADMISSION CONTROL FOR A TANDEM LOSS SYSTEMWITH
TWO STATIONS - GENERAL CASE . . . . . . . . . . . . . . . . . 35

4.1 The Prudent Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Conditions for Optimality of the Prudent Policy . . . . . . . 39

4.1.2 Limiting Behavior of the Prudent Policy . . . . . . . . . . . . 44

4.2 The Greedy Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Conditions for Optimality of the Greedy Policy . . . . . . . . 54

4.2.2 Limiting Behavior of the Greedy Policy . . . . . . . . . . . . 56

4.3 Discussion on the Structure of the Optimal Policy . . . . . . . . . . 57

vi



4.3.1 It Is Never Optimal to Reject in States where Customers Can-
not Be Lost . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Structure of the Optimal Policy for Systems with B = 2 . . . 61

4.3.3 Counter-example and Discussion on Larger Buffers . . . . . . 64

4.4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

V DYNAMIC CONTROL OF COMPLEX AUTHENTICATION SYS-
TEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Cost Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Infinite Capacity for All Methods . . . . . . . . . . . . . . . 83

5.4.2 One Method with Finite Capacity . . . . . . . . . . . . . . . 83

5.5 Constraint Based Approach . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 Infinite Capacity for All Methods . . . . . . . . . . . . . . . 96

5.5.2 One Method with Finite Capacity . . . . . . . . . . . . . . . 99

5.6 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

VI CONTRIBUTIONS AND FUTURE WORK . . . . . . . . . . . . 118

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

APPENDIX A — SUPPLEMENTAL MATERIAL FOR CHAPTER
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vii



LIST OF TABLES

1 Breakdown of cases we studied. . . . . . . . . . . . . . . . . . . . . . 26

2 Average percentage of excess over the optimal cost, under the Greedy
and Prudent policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Average percentage of excess over the optimal cost, under the heuristic
policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Worst case performances for each policy . . . . . . . . . . . . . . . . 32

5 Potentially Optimal Policies when B = 2 . . . . . . . . . . . . . . . . 61

6 Average percentage additional cost over the optimal cost in small systems. 71

7 Average percentage additional cost over the optimal cost in medium
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Average percentage additional cost over the optimal cost for large sys-
tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 Worst Case percentage additional cost over the optimal cost. . . . . . 74

viii



LIST OF FIGURES

1 What happens in an internet minute? LaBouef [41] . . . . . . . . . . 1

2 A tandem loss system with two stations. . . . . . . . . . . . . . . . . 14

3 Tandem loss system with two stations where B1 = 1, B2 = 4 . . . . . 19

4 Average p(0, B2) for increasing values of B2 for cases A-F . . . . . . . 27

5 Average p̂(0, B2) for increasing values of B2 for cases A-F . . . . . . . 28

6 Average p̂(1, B2) for increasing values of B2 for cases A-F . . . . . . . 29

7 Closed Jackson network equivalent model. . . . . . . . . . . . . . . . 38

8 CTMC Under the Greedy Policy when B = 3. . . . . . . . . . . . . . 50

9 Number of instances that each heuristic is optimal. . . . . . . . . . . 69

10 The authentication method assignment problem. . . . . . . . . . . . . 81

11 The finite capacity authentication method assignment problem. . . . 84

12 Operating cost of non-dominated solutions for fixed values of β̄ . . . . 114

13 Operating cost of non-dominated solutions for fixed values of h̄ . . . . 115

14 Efficient frontier mapping non-dominated solutions . . . . . . . . . . 116

ix



SUMMARY

Modern computer networks require advanced, efficient algorithms to control sev-

eral aspects of their operations, including routing data packets, access to secure sys-

tems and data, capacity and resource allocation, task scheduling, etc. A particular

class of problems that arises frequently in computer networks is that of admission and

routing control. Two areas where admission control problems are common are traffic

control and authentication procedures. This thesis focuses on developing tools to

solve problems in these areas. We begin the thesis with a brief introductory chapter

describing the problems we will be addressing. Then, we follow this with a review

of the relevant literature on the problems we study and the methodologies we use.

Then, we have the main body of the dissertation, which is divided into three parts,

described below.

In the first part, we analyze a problem related to data routing in a network.

Specifically, we study the problem of admission control to a system of two stations

in tandem with finite buffers, Poisson arrivals to the first station, and exponentially

distributed service times at both stations. We assume costs are incurred either when

a customer is rejected at the time of arrival to the first station or when the second

station is full at the time of service completion at the first station. We propose

a Markov decision process formulation for this problem. Then, we use this model

to show that, when one of the buffers has size one, the structure of the optimal

policy is threshold and that only two particular policies can be optimal. We provide

the exact optimality thresholds for small systems. For larger systems, we formulate

heuristic policies and use numerical experiments to show that these policies achieve

x



near-optimal performance.

For the second part of this thesis, we investigate the system described above in a

more general case, where the capacity of the buffers at both station is equal, finite and

arbitrary. We focus on two specific, extremal policies, which we call the Prudent and

Greedy policies. We derive a closed-form expression for the long-run average reward

under the Prudent policy and provide a necessary and sufficient threshold condition

for it to be optimal. For the Greedy policy, we give a matrix-analytic solution for the

long-run average reward and provide a sufficient condition for it to be optimal. We also

prove that it is always optimal to admit customers in the states where the Prudent

policy admits customers. Next, we use an example to illustrate that the optimal

policy can have a complicated form. Finally, we propose two heuristic policies and

use numerical experiments to show that they perform much better than the Prudent

and Greedy policies, and in fact, achieve near-optimal performance.

In the third and final part of this dissertation, we shift our attention to a different

admission and routing control problem. We study a centralized system where requests

for authentication arrive from different users. The system has multiple authentication

methods available and a controller must decide how to assign a method to each

request. We consider three different performance measures: usability, operating cost,

and security. First, we model the problem using a cost-based approach, which assigns

a cost to each measure of performance. Under this approach, we find that if each

authentication method has infinitely many servers the optimal policy is static and

deterministic. On the other hand, if there is one method that has finite capacity and

the rest have infinitely many servers, we show that the optimal policy is of trunk

reservation form. Then, we model the problem using a constraint-based approach,

which assumes hard constraints on some of the measures of performance. We show

that if each method has infinitely many servers, the optimal policy is static and

randomized. While, if one method has finite capacity and the rest have infinitely

xi



many servers, we show that the optimal policy has a 2-randomized trunk reservation

form. Finally, we illustrate how to use our results to construct an efficient frontier of

non-dominated solutions.

We end this dissertation with a short recapitulation of our main contributions and

a discussion on potential avenues for future research.

xii



CHAPTER I

INTRODUCTION

In recent years computer networks have become ubiquitous in daily life. A local com-

puter network such as Georgia Tech’s consists of thousands of interconnected comput-

ers, which have to handle traffic from thousands of users simultaneously, transmitting

millions of packets of data every day. The Internet as whole is much larger and more

complex. Just to get a sense of its scope, consider what happens in the Internet

globally in a single minute, illustrated in Figure 1.

Figure 1: What happens in an internet minute? LaBouef [41]

These massive and complex networks require advanced, efficient algorithms to

control several aspects of their operations, including routing data packets, access to

secure systems and data, capacity and resource allocation, task scheduling, etc.

There are several characteristics of computer networks that make them amenable

1



to stochastic modeling, and in particular to queueing models. First, there is an inher-

ent variability in the volume, timing, and duration of the operations that are required.

Also, data over these networks is handled in packets, and requests and tasks occur

one at a time, therefore the flow of customers in these systems should be modeled

discretely. Finally, the packets or tasks are routed through complex networks, where

at each station they must wait their turn to be processed. Considering this combi-

nation of characteristics, queueing networks have been one of the preferred tools of

researchers to model complex computer networks, as they capture all of these aspects.

A particular class of problems that arises frequently in computer networks and

naturally lends itself to a queueing theoretic approach is that of admission and routing

control. Such problems can appear in many different operations related to managing

these networks. Two areas where admission control problems are common are traf-

fic control and authentication procedures. In certain situations, the traffic control

problem consists of deciding whether to admit new packets into a sequence of servers.

This problem can be modeled as admission control into a tandem queueing network.

Similarly, a typical step in authentication processes consists of choosing the right au-

thentication server (from several available servers), which can be modeled as routing

in a network of parallel queueing systems. This thesis focuses on developing tools to

solve these problems. Next, we describe each of them in more detail.

A common problem in traffic control is to decide whether to admit or reject in-

coming data packets, or customers in a particular branch or section of a network,

which is controlled locally. The administrator of the local network wishes to choose

a policy for deciding whether or not to admit an incoming packet with the objec-

tive of minimizing the system’s overall operating cost. We focus on a special class

of networks, called tandem loss networks, which are common in telecommunications

(see Bertsekas and Gallagher [5] and the references therein). These networks consist

of several finite-capacity stations in series, where a packet which is admitted must

2



be processed sequentially at each station. In a tandem loss network blocking is not

allowed, but rather, if a customer completes service at a given station and the sub-

sequent station is full, then the customer is ejected from the system and a penalty

cost (which depends on the station) is incurred by the system administrator. The

administrator can also choose to reject an incoming customer and incur a (different)

penalty cost. In this thesis we study this problem analytically in order to gain an

understanding of the optimal admission control policies.

Although tandem loss networks arise naturally in telecommunications, recently,

similar systems have been used to model multiple situations in other applications,

such as call centers (see for example Li and Whitt [46]), and healthcare (see for

example Litvak, van Rijsbergen, Boucherie and van Houdenhoven [49]). Therefore,

an analytical solution could be applied in practice to those other application areas

as well. Currently, there is little work found in the literature on admission control in

tandem loss networks.

In the first part of this dissertation, we analyze the problem of admission control to

a tandem loss network with two stations. Specifically, we study a system of two queues

in tandem with finite buffers, Poisson arrivals to the first station, and exponentially

distributed service times at both stations. We assume a rejection cost is incurred each

time a customer is rejected at the first station and a loss cost is incurred each time

a customer is ejected from the system because the second station is full at the time

of service completion at the first station. We model the system for arbitrary finite

buffers using queueing theory and Markov Decision Processes (MDP). In order to

better understand optimal policies, we start with the case where one of the stations

has no waiting space, that is, only one customer can be at the station at a time.

This problem in itself presents several challenges. For this reason, we will dedicate

an entire chapter to it. We show that when there is a unitary buffer at one of the

stations, the structure of the optimal policy is threshold and that only two particular

3



policies can be optimal. We provide the exact optimality thresholds for small systems.

For larger systems, we formulate heuristic policies and use numerical experiments to

show that these policies achieve near-optimal performance.

Next, in the second part of this dissertation, we investigate the more general case,

where the size of the buffer at both stations is equal, finite and arbitrary. We focus on

two specific, extremal policies, for which we provide a way to efficiently calculate the

long-run average reward, as well as necessary and/or sufficient optimality conditions.

We also provide analysis on the behavior of these two policies as the buffer sizes go

to infinity. Then, we prove a structural result, which all optimal policies must meet.

We also offer a discussion on the characteristics of the optimal policy as the size of

the buffers increases. Finally, we propose two heuristic policies and show, through

numerical experiments, that these achieve near-optimal performance.

Then, we shift our attention to a different admission and routing control prob-

lem. Many online services require some form of user authentication to grant access

to secure data. Most authentication systems have multiple authentication schemes

available, including various forms of biometric data acquisition, behavioral analyses,

and schemes that consider contextual factors (see Bao, Pierce, Whittaker and Zhai

[4]). These different schemes have very different resource requirements, wait times

and also differ in the level of security that each affords. The system administrator

would like to minimize the perceived inconvenience to the user, as well as maximizing

the authentication confidence, all while keeping operating costs low.

This type of system can be modeled as an admission and routing control problem

in a queueing network consisting of several parallel queueing systems. However, in this

particular application there are multiple objectives. While there is some literature

regarding admission and routing in parallel systems, there is little work for the case

with multiple objectives. There is also, to the best of our knowledge, no previous

work on modeling an authentication system using queueing theory.

4



For the third and final portion of this dissertation, we study a centralized system

where requests for authentication arrive from different users. The system has multiple

authentication methods available and a controller must decide how to assign a method

to each request. We model each authentication method as a multi-server queue and

model the trade-offs between three different performance measures: operating cost,

latency and security. We use two different approaches: first, a cost based approach,

that gives different weights to each objective, and then a constraint-based approach,

which assumes hard restrictions on some of the performance measures. For each

approach we construct a mathematical model and derive structural and computational

results on the optimal admission and routing policy. We also provide a numerical

example to illustrate how a system administrator can use the models we propose to

build an efficient frontier of non-dominated solutions and select an appropriate one.

The rest of this document is organized as follows: Chapter 2 provides a review

of the relevant literature. We focus on work related to the methodologies applied

throughout this thesis, in several application areas. In Chapter 3, we study the

problem of admission control in a tandem loss system with two stations. We model

the problem as a MDP and characterize the optimal policy when either of the stations

has a buffer of size one. In Chapter 4, we consider a more general version of the tandem

loss system with two stations, where the the buffers at both stations are of finite and

equal size. We analyze the performance of two particular policies and give optimality

conditions for those policies. We also discuss the structure of the optimal policy and

present numerical results for some heuristic policies. In Chapter 5, we present the

authentication method assignment problem. We model it mathematically and provide

two approaches to find policies that balance the three performance measures. Finally,

in Chapter 6, we summarize the main contributions of this thesis and present some

extensions and open questions that we plan to explore in the future. Appendix A

provides some supplemental material for Chapter 3.

5



CHAPTER II

LITERATURE REVIEW

Most of the literature on queueing networks, where each station has finite capacity,

focuses on blocking paradigms (see for example Perros [56], and Balsamo, de Nitto

Personé, and Onvural [3]). However, in this thesis we focus on two classes of net-

works where blocking does not occur. These are tandem loss networks and parallel

queueing networks. In particular, we deal with admission and routing in these kinds

of networks. In this chapter, we present the relevant literature related to performance

evaluation and control of tandem queueing networks (with and without losses), and

parallel queueing networks.

Evaluating performance of purely tandem networks has gotten special attention

in the literature, including analytical results, such as Grassmann and Drekic [23],

asymptotic results, as in Martin [50] or approximation methods, as in Perros and

Altiok [57], and the references therein. The more specific case of networks consisting

of several tandem lines in parallel have been studied either as routing problems (see for

example Gosavi and Smith [22]) or as capacity allocation problems (see for example

Daskalaki and Smith [14]). However, none of these authors consider the loss feature

described in Chapter 1.

Loss networks have been studied in telecommunications literature. However, most

of the work has focused on a particular problem where an incoming customer simulta-

neously uses multiple resources over a network. As an example, consider connecting

a phone call through multiple links, where several links are required for the call to

go through. If the call is connected, the customer uses all the necessary links simul-

taneously and releases them all upon service completion. In these systems, losses

6



are said to occur when a call cannot be connected for lack of capacity in some links.

Note that, in such a telephone network, customers do not go from station to station,

but rather use several resources in the system at once. For a comprehensive survey

of these types of loss networks see Kelly [32]. Control problems in this context have

been addressed using techniques from queueing theory and Markov decision processes

such as Hunt and Laws [29], Kelly, Key and Zachary [33] and Key [34], just to name

a few. However, the loss networks described in Chapter 1 are different from these,

because customers travel the system one station at a time and losses occur at any

point in the network. Thus, the results in this literature are not applicable to the

problem we are considering.

Most of the literature dealing with admission control to queueing networks focuses

on networks with infinite capacity buffers or blocking. However, several related control

problems in tandem queues can be found. Stidham and Weber [69] give a good survey

of applications of Markov decision processes to admission control problems in queueing

networks.

Ku and Jordan [38] study admission control policies for a system of two multi-

server Markovian queues with loss. However, the system they consider has no waiting

space, the capacity is the same as the number of servers. They allow two types of

customers: type 1 customers are more valuable and require service at both stations

with a positive probability; and type 2 customers require service only at the second

station. They show that to maximize the total discounted reward over an infinite

horizon, type 1 customers must always be accepted and there is a threshold for ad-

mission of type 2 customers. Later, Ku and Jordan [40] generalize these results for

the case with n customer types and provide admission control heuristics that achieve

near optimal performance. Also, Ku and Jordan [39] develop admission control poli-

cies for a multi-server loss queue which is itself fed by an upstream set of parallel

multi-server loss queues and by a stream of customers from outside the system. Here,

7



the objective is to choose the number of servers to reserve for each customer stream.

Revenue is gained by each customer and at the target queue revenue depends on the

source of the customer. They prove that the policy that maximizes total discounted

revenue consists of a set of monotonically decreasing thresholds (as functions of the

occupancy of each queue). They obtain a fluid limit as the number of lines goes to

infinity and solve the related optimization problem. Chang and Chen [9] also consider

a system with no waiting space, that is, the capacity is equal to the number of servers,

specifically, a two stage tandem system where any customer who finds all servers busy

at its destination queue is lost, and compare the loss rates under several admission

control policies.

A different approach is taken by Ghoneim and Stidham [20], who consider admis-

sion control to a system of two tandem queues with infinite buffers. Their objective

is to maximize the discounted expected net benefit over a finite or infinite horizon,

where net benefit is composed of random rewards for entering customers minus hold-

ing costs at each queue. Hordijk and Koole [28] consider a similar system, where each

station has two servers, each with an independent queue. They find a policy which

stochastically minimizes the number in the system at any given time for certain sys-

tem parameters and show that choosing the shortest queue may not be optimal. Also,

Hordijk and Koole [27], consider routing to parallel queues in which each queue has

its own single server and service times are exponential with non-identical parameters.

Here the queues may have finite buffers, and the arrival process can be controlled and

can depend on the state and routing policy. They give conditions on the cost function

such that the optimal policy always assigns customers to the faster queue. Zhang and

Philles [76] consider two infinite capacity queues in tandem, each of which has its own

input of arriving customers, which in turn, may either be accepted or rejected. They

suppose that the system receives a fixed reward for each accepted customer and pays

a holding cost per customer per unit time in the system. They use fuzzy control to

8



determine long-run average reward optimal policies.

Leskelä and Resing [43] analyze a two station tandem queue with infinite capacity

and a control policy determined by whether the queue at the second station exceeds

a fixed threshold. They give conditions for stability, analyze the steady state distri-

bution of the queue lengths using matrix-analytic methods and solve numerically for

the average sojourn time and throughput. They conclude that these measures are

non-monotone with respect to the service rates. Finally, Kim and Dudin [36] expand

on Leskelä and Resing [43]. They analyze a two-stage multi-server tandem queue

with two types of customers, where priority customers are always admitted to the

system. Non-priority customers are admitted to the system only if the number of

busy servers at the second stage does not exceed some pre-assigned threshold. They

find the stationary distribution and calculate performance measures with respect to

the threshold, numerically.

Spicer and Ziedins [68] are the first to consider admission control for the type of

loss networks described in Chapter 1. They consider a system of several tandem loss

lines in parallel. In their work, each line is made up of two single server finite capacity

queues. They show that it may be optimal for an arriving customer to select a queue

with more customers in order to minimize its individual loss probability. Sheu and

Ziedins [63] consider admission and routing control in a system of N parallel tandem

lines where each line is a set of two single server queues with finite buffers and losses

can occur. They obtain the fluid limit as N →∞ and solve the related optimization

problem. They find that the asymptotically optimal policy takes one of two forms,

either accept arrivals into any line where there is capacity in the first station, or

only accept arrivals if there is a line where they cannot be lost. The assymptotically

optimal policy is threshold type and depends on the ratio between the cost of rejecting

an incoming arrival and the loss cost after service at the first station. Ziedins [77]

studies the differences between the optimal policies from the two previous papers

9



and gives numerical examples showing that for some small systems the user-optimal

and system-optimal policies may differ and that as the service rate is increased at

the second stage the user-optimal policy may change in such a way that the total

expected cost due to loss increases.

To the best of our knowledge the first paper to provide exact analytical results for

an optimal long-run average cost policy for tandem queues with loss was Zhang and

Ayhan [75]. They consider a system with a finite arbitrary buffer at the first station

and a unitary buffer at the second station. They showed that the optimal policy is

of threshold type. In Chapters 3 and 4, we build on the results of Zhang and Ayhan

[75], providing several results for the case with a unitary buffer at the first station

and a finite buffer at the second station, as well as a more general case with finite

buffers of equal size at both stations.

Now, let us consider the relevant literature for assigning costumers in a network

consisting of several servers in parallel. There are several classic results related to

this problem. The seminal work of Winston [73] considers a system of several iden-

tical, exponential single-server queues in parallel and identical customers that arrive

following a Poisson process, and shows that a join-the-shortest-queue (JSQ) policy

minimizes both the customer’s expected delay and the average delay in the system.

Weber [71] extends this result for any arrival process and service time distributions

with a non-decreasing hazard rate. Whitt [72] shows that if the service time distribu-

tion does not have non-decreasing hazard rate, then a JSQ policy may not minimize

the customer’s expected delay, and also, that a strategy that minimizes a customer’s

delay may not minimize the average delay in the system. Johri [30] shows that a JSQ

policy minimizes each customer’s expected delay in the case where the service times

are exponential and have non-decreasing state-dependent service rates. Hordijk and

Koole [26] prove that a JSQ policy is also optimal for the case of finite buffers and

batch arrivals.

10



The previous results all focus on the case where customers are identical, no jockey-

ing is allowed between queues and decisions are made deterministically. Several vari-

ations on this problem have been studied, specially in the context of load-balancing

or server assignment in parallel computer systems. For a survey on queueing methods

applied to load balancing, routing and server assignment in parallel and distributed

systems see Boxma, Koole and Liu [8]. For a more recent and broader view (not

limited to queueing theoretic methods) see Baccelli, Jean-Marie, and Mitrani [2].

A case of particular interest to our research is that of multiple customer classes

and several parallel queues. This has also been studied in the literature, specially

in load balancing applications. Ni and Hwang [53] consider Poisson arrivals from m

customer classes that must be assigned to n parallel M/M/1 queues and propose

an assignment policy that minimizes the average wait time. Bonomi and Kumar

[7] consider a variation of that problem where each queue has a dedicated arrival

stream, and allow the service time distributions to be general. They develop heuris-

tic algorithms and derive the optimal policy when the customers are homogeneous.

Sethuraman and Squillante [62] consider a similar problem. However, they consider

each station as a M/G/1 queue and the objective in this case is to minimize a linear

function of the per-class average response time. Furthermore, they consider a class of

policies that performs static routing to each queue and sequencing within the queue.

Their objective is to find optimal policies within this class. Ansell, Glazebrook and

Kirkbride [1] consider the same problem, but allow dynamic routing and scheduling

processes. They introduce a family of policies that can be constructed algorithmically

and achieve near-optimal performance.

Most of the work mentioned so far focuses on reducing waiting times or queue

lengths. Our research, on the other hand, focuses on admission and routing con-

trol of multiple customer classes to parallel systems, where each customer class has

an associated reward and/or costs. The classic reference in this case is Miller [51],

11



which considers a single M/M/c/c queue with several customer classes, where each

class has a reward associated for service completion. Miller [51] concludes that a

trunk-reservation policy ordered by the rewards maximizes the long-run average re-

ward. Lewis, Ayhan and Foley [44] show that for a single, finite-capacity queueing

system, with Poisson arrivals, monotone state-dependent exponential service rates

and multiple customer classes with rewards, a trunk reservation policy is again opti-

mal. Lewis, Ayhan and Foley [45] extend those results to include non-stationary rates

and capacities. Lin and Ross [47] provide conditions for a trunk reservation policy

to be optimal even in the case the gatekeeper has incomplete information. Feinberg

and Reiman [19] show that for a similar system (with full information), but with the

addition of a constraint on the blocking probability of the most profitable customer,

a trunk reservation policy where one of the thresholds is randomized is optimal. We

should note that this problem was initially proposed in Reiman [59], where its so-

lution was conjectured. Fan-Orzechowski and Feinberg [17] generalize this result by

adding penalty costs charged for each rejection and having a single constraint on the

average penalty cost per unit time. They reach the same conclusion as Feinberg and

Reiman [19]. Fan-Orzechowski and Feinberg [18] generalize the previous result to al-

low an arbitrary k number of constraints. In this case, the optimal policy is shown to

be a trunk reservation policy where k of the thresholds are randomized. In Chapter

5, we build on several of these results to define the structure of optimal policies for

the authentication method assignment problem, treating it alternatively as a multi-

objective problem with weights for each objective, and as a single-objective problem

with constraints.

12



CHAPTER III

ADMISSION CONTROL FOR A TANDEM LOSS SYSTEM

WITH TWO STATIONS

In this chapter, we study the problem of admission control into a tandem system of

two stations as a Markov Decision Process (MDP). We consider a system with two

stations in tandem and one server at each station. Arrivals to the system follow a

Poisson Process with rate λ and service times at each station follow an exponential

distribution with rate µi, i = 1, 2. Each station has a finite capacity denoted by

Bi < ∞, i = 1, 2. Upon each arrival a gatekeeper has to decide (based on full

knowledge of the state of the system) whether to admit or reject the incoming arrival.

If an arrival is not admitted, a cost c1 is incurred. If a customer completes service at

the first station and at that time the second station is full, the customer is lost and

a penalty cost of c2 is incurred. Note that if the first station is full at the time of an

arrival, then the incoming customer has to be rejected and a cost of c1 is incurred.

Our objective is to determine an admission control policy at the first station that

minimizes the long-run average cost. In this chapter, we provide a MDP formulation

for the system with general 1 ≤ Bi < ∞, i = 1, 2. Then we use this model to

derive analytical results for the specific cases B1 = 1, B2 < ∞ and B1 < ∞, B2 = 1.

Then in Chapter 4 we consider a case with identical, arbitrary, finite buffers at both

stations. Figure 2 illustrates the system we are studying for the particular case of

B1 = 3, B2 = 4.

The remainder of this chapter is organized as follows: in Section 3.1 we begin by

providing a MDP formulation of the tandem loss system described above. Section

3.2 presents the first of two special cases, namely we consider the system under the

13



Figure 2: A tandem loss system with two stations.

assumption B2 = 1. This section summarizes previous findings of Zhang and Ayhan

[75]. Afterwards, in Section 3.3 we focus on the specific case where B1 = 1 and we

show that there are only two policies that could be optimal depending on a threshold

on the ratio c2
c1
. Next, we provide closed form expressions for the threshold when

B2 ≤ 10. However, since the characterization of a closed form expression for general

values of B2 is difficult, we provide heuristics that serve as an alternative to the

threshold policy. We also present numerical results that show that the heuristics have

near-optimal performance in most cases. Finally, Section 3.4 presents our conclusion.

This chapter is based on Silva, Zhang and Ayhan [65]. Supplemental material for this

chapter is presented in Appendix A.

3.1 Markov Decision Process Formulation for General Buffer
Sizes

In this section, using uniformization (see Lippman [48]), we formulate the admis-

sion control problem as a discrete-time MDP. Furthermore, we show that we have a

unichain model. Suppose that the two servers work at all times. The service at a

station when there is no customer is referred to as fictitious service. Then, we let

the gatekeeper make an admission decision right before the occurrence of every event.

There are three types of events: a (real or fictitious) service completion at station 1,

a service completion at station 2, or a customer arrival. If the event that occurs right

after a decision is made is an arrival, the decision applies; otherwise, the decision does

14



not have any effect on the system. So, the times between consecutive decision epochs

are independent exponential random variables with rate µ1 + µ2 + λ. Minimizing the

continuous-time long-run average cost of this system is equivalent to minimizing the

long-run average cost of the discrete-time MDP over this new set of decision epochs.

Without loss of generality, we assume µ1 + µ2 + λ = 1 in the following analysis.

Let 1{X} = 1 if condition X holds, and 1{X} = 0 otherwise. We then define the

following discrete-time Markov decision process problem.

We have a discrete-time Markov chain with state space S = {(q1, q2) ∈ Z2 :

0 ≤ q1 ≤ B1, 0 ≤ q2 ≤ B2}, where qi denotes the number of customers at station

i (including those waiting and in service), i = 1, 2. The size of the state space is

|S| = (B1 + 1) · (B2 + 1).

Let 0 denote rejecting the next potential arrival and 1 denote accepting the next

potential arrival. Then, the sets of allowable actions are A(q1,q2) = {0} if q1 = B1, and

A(q1,q2) = {0, 1}, for any other (q1, q2) ∈ S. Let p(·|(q1, q2), d) denote the transition

probability when action d is taken in state (q1, q2). We have

p(s|(q1, q2), d) =


µ1, if s = ((q1 − 1)+, q2 + 1{q1>0 and q2<B2})

µ2, if s = (q1, (q2 − 1)+)

λ, if s = (q1 + 1{d=1}, q2).

(1)

with p((0, 0)|(0, 0), 0) = 1. Let r(s, d) denote the expected reward received when

action d is taken in state s. Specifically,

r((q1, q2), d) = −c1λ1{d=0} − c2µ11{q1>0 and q2=B2}. (2)

Let rπ be the vector of rewards for each state under policy π. Similarly define

Pπ as the transition probability matrix of the discrete-time Markov chain (DTMC)

resulting from implementing policy π. It is known that any policy π∗ that solves the

Optimality Equations for the MDP is also a long-run average reward optimal policy.

15



The optimality equations for this MDP are:

0 = max
π∈Π
{rπ + ge+ (Pπ − I)h} (3)

where g is a scalar and represents the long-run average reward, h is the bias vector

(as defined on page 338 of Puterman [58]) and e is a vector of ones.

We will refer to the above mathematical model as the MDP model throughout this

chapter and Chapter 4. As mentioned before, our goal is to find a policy π∗, which

maximizes the long-run average reward g. We wish to understand the structure of

such a policy, and how it changes with respect to the state and system parameters.

As introduced in Puterman [58], a discrete-time MDP is unichain, if the result-

ing Markov chain under every deterministic stationary policy has a single recurrent

class plus a possibly empty set of transient states. In fact, the discrete-time MDP

described above for our model is unichain. This can be seen from the following argu-

ment. Regardless of the policy and the initial state, state (0, 0) can be reached with

probability 1, due to a long enough interarrival time. Therefore, (0, 0) is recurrent,

and all the states accessible from (0, 0), together with (0, 0), form a recurrent class;

other states form a set of transient states.

The existence of a deterministic stationary optimal policy for our model is guar-

anteed by the finiteness of the state space and the action space, together with the

fact that the model is unichain and the rewards are bounded (see Theorem 8.4.5 in

Puterman [58]). Therefore, for each state we need only consider deterministic de-

cision rules. We assume the convention that, a policy π is binary-valued function

π : S → {0, 1}. So from here on we only refer to policies and not decision rules,

this is a common convention (see Guo and Hernandez-Lerma [24]). We refer to the

optimal policy as π∗and to the optimal long-run average reward as g∗(B1, B2).

Let Sd := {(q1, q2) ∈ S : 0 ≤ q1 ≤ B1 − 1} be the set of states at which a choice

of acceptance or rejection needs to be made. Each possible combination of actions to

be taken at each state in Sd comprises a deterministic policy π.

16



3.1.1 The Prudent and Greedy Policies

In this section, we introduce two policies that are intuitive and easy to implement.

Later, we show that if one of the buffers is unitary, then these are the only two

policies which can be optimal. The first policy is one that only admits an arrival if

the probability of loss at the second station is zero. The second policy admits an

arrival as long as there is space in the first buffer.

Define a Prudent policy (πP ) as a policy that only admits an arrival whenever

there are fewer customers in the system than the capacity of the buffer at the second

station. This policy never incurs the loss cost. Furthermore, of the policies that never

incur the loss cost, this policy admits incoming customers most often. That is, for

state s = (q1, q2) we have

πP (s) =


1 q1 + q2 < B,

0 otherwise.

On the other hand, consider a policy which accepts every arrival if possible (that

is, if there is room in the buffer at the first station). We call this a Greedy policy

(πG). So, for state s = (q1, q2) we have

πG(s) =


1 q1 < B,

0 otherwise.

The next two sections consider the special cases B1 < ∞, B2 = 1 and B1 =

1, B2 < ∞ respectively. In those sections we show that the Prudent policy and the

Greedy policy are the only two policies that can be optimal and provide necessary

and sufficient conditions for each of them to be optimal. We also provide expressions

for the long-run average gain as a function of the buffer sizes. We define gP (B1, B2)

as the gain under the Prudent policy and gG(B1, B2) as the gain under the Greedy

policy.

17



3.2 Case 1: When B2=1

Note that in this case the Prudent policy reduces to admitting a new arrival if the

system is empty upon arrival, and rejecting in all other cases. And the Greedy policy

admits in all s ∈ Sd. This case was studied in detail by Zhang and Ayhan [75]. We

provide their main result here for completeness (but omit the proof).

Theorem 1 (Zhang and Ayhan). Define

c∗(1) =

(
1 +

µ2
2

λµ1 + λµ2 + µ1µ2

)
,

then

1. If c2
c1
≥ c∗(1), the Prudent policy is optimal, and it is the unique stationary

optimal policy when the inequality is strict. Furthermore, in this case

g∗(B1, 1) = gP (B1, 1) = c1
λ2(µ1 + µ2)

λµ1 + λµ2 + µ1µ2

.

2. If c2
c1
≤ c∗(1), the Greedy policy is optimal, and it is the unique stationary

optimal policy when the inequality is strict. Furthermore, in this case

g∗(B1, 1) = gG(B1, 1) =

c1
λB1+1(µ1 − λ)

µB1+1
1 − λB1+1

+ c2

λ2µ2
1

[(
µB1

1 − λB1
)

+ µ2

(
µB1−1

1 − λB1−1
)]

(λ+ µ2)(µ1 + µ2)
(
µB1+1

1 − λB1+1
) .

3.3 Case 2: When B1=1

Here we focus on the original problem with B1 = 1 and B2 < ∞. An example of a

system under these conditions is illustrated in Figure 3.

Observing the structure of Sd for this case, one can deduce that a deterministic

policy that rejects at (0, q2) for some q2 < B2 cannot be optimal, as any arrival

admitted into the system at such states will not be lost. So, the system would incur

a cost of c1 when there is zero probability of incurring c2. In the next proposition, we

formalize this idea.

18



Figure 3: Tandem loss system with two stations where B1 = 1, B2 = 4

Proposition 1. For a given policy π it is always optimal to accept at (0, q2) for any

q2 < B2. Or conversely a deterministic policy that rejects at (0, q2) for some q2 < B2

cannot be optimal.

Proof. We prove by induction. For q2 = 0, it is true for the following reason:

rejecting at (0,0) yields the long-run average cost λc1 per time unit; accepting at (0,0)

while rejecting at all other states yields λc1δ, where δ, the long-run fraction of time

that the resulting system is not in state (0,0), must be strictly less than 1.

Now suppose the desired result holds for q2 = 0, 1, ..., j − 1, where j < B2. Then

we show it is also true for q2 = j.

Consider two systems: system I under any policy π, under which the rejection

action is taken at state (0, j) and system II also under π except that the acceptance

action is taken at state (0, j). Both systems start with the same initial state.

Because, for system I, all states (q1, q2) with q1 + q2 ≥ j + 1 are transient, we can

assume that the policy π prescribes the rejection action for all these states. Also, by

the induction hypothesis, it suffices for us to assume that the policy π prescribes the

acceptance action for (0, q2), where q2 = 0, 1, ..., j − 1. Note that both assumptions

are effective for system II as well, because it also operates under π.

Consider any sample path. If state (0, j) is never seen by an arrival on this sample

path, both systems evolve identically. We now show that, if (0, j) is ever seen by an

arrival at some point in time, system II will have no more cost than system I from

19



that point, say T1, to the next time point when both systems reach the same state,

say T2.

First, we note that no loss ever occurs at station 2 in either system because j < B2

and there are never more than j+ 1 customers in either system. Second, at any point

in time between T1 and T2 the states of the two systems at a customer arrival epoch

must have one of the following forms.

• System I at (0, j) and system II at (1, j). The arrival is rejected in both systems

in this case.

• System I at (0, i) and system II at (0, i + 1), where i < j. In this case, the

arrival is accepted in both systems by the induction hypothesis and also, for

i = j − 1, using the assumption that the acceptance action is taken at state

(0, j) in system II.

• System I at (0, j) and system II at (0, j+ 1). In this case, the arrival is rejected

in both systems.

• System I at (0, i) and system II at (1, i), for some i < j. The arrival is accepted

in system I by induction hypothesis but rejected in system II. Between T1 and

T2 this can only occur once, after which both systems immediately reach the

same state.

Therefore, from just after T1 to T2, at most c1 more cost is incurred in system II than

in system I. Also, because, at time T1, system I has a rejection cost c1 while system

II does not have any cost, we conclude that system II has no more cost than system

I from T1 to T2. Because π is arbitrary, it is optimal to accept at (0, j).

Proposition 1 implies that for a given value of B2 and a known set of parameters

either the Prudent policy must be optimal or the Greedy policy must be optimal.

This leaves the question of determining which of the two policies is optimal. In order

20



to answer this question, we compute the long-run average reward under both policies

and compare the gain values. Recall gP (1, B2) and gG(1, B2) are the long-run average

gain of operating a system with buffer B2 under πP and πG, respectively. Comparing

gP (B1, B2) and gP (B1, B2) we can immediately conclude that there exists a threshold

c∗(B2) such that if c2
c1
> c∗(B2) then πP is optimal and otherwise πG is optimal.

Let p(q1,q2), (q1, q2) ∈ S be the stationary distribution of the continuous-time

Markov chain (CTMC) model of this system operating under the Prudent policy,

that is S = {(q1, q2) ∈ Z2 : 0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ B2}. Define the transition rates

γ(i, j) for i, j ∈ S as

γ(i, j) =



λ, for i = (0, q2), j = (1, q2), 0 ≤ q2 < B2,

µ1, for i = (1, q2), j = (0, q2 + 1), 0 ≤ q2 < B2,

µ2, for i = (q1, q2), j = (q1, q2 − 1), q1 ∈ {0, 1} 1 ≤ q2 ≤ B2,

0 otherwise .

Similarly, let p̂(q1,q2), (q1, q2) ∈ S be the stationary distribution of the resulting

CTMC when operating under the Greedy policy πG, that is, a model with the same

state space and transition rates as above, except γ ((0, B2), (1, B2)) = λ instead of

zero. Define:

c∗(B2) =
λ

µ1

(∑B2−1
i=0

(
p(1,i) − p̂(1,i)

)
+ p(0,B2)

p̂(1,B2)

− 1

)
.

Theorem 2. If, for a fixed buffer size B2, c2
c1
> c∗(B2) then gP (1, B2) > gG(1, B2)

and πP is optimal for this system, otherwise πG is optimal.

Proof. Note, as a result of the Prudent policy p(0,B2) = 0. Then, for fixed B2:

gP (1, B2) = −c1λ

(
B2−1∑
i=0

p(1,i) + p(0,B2)

)
.

Likewise for the Greedy policy:

21



gG(1, B2) = −c1λ

B2∑
i=0

p̂(1,i) + c2µ1p̂(1,B2).

The result then immediately follows from Proposition 1 and the comparison of

gP (1, B2) and gG(1, B2).

In the next section we provide closed form expressions for c∗(B2) when B2 ≤ 10.

3.3.1 Characterization of c∗(B2)

First consider the case where B2 = 1. Note that this is a special case of the model

developed by Zhang and Ayhan [75]. Our derivation and that in Zhang and Ayhan

[75] both yield

c∗(1) =

(
1 +

µ2
2

λµ1 + λµ2 + µ1µ2

)
.

For B2 = 2, the gain for πP , is

gP (1, 2) = −c1
λ2 (µ2

2 (µ1 + µ2) + λ (µ2
1 + µ1µ2 + µ2

2))

µ1µ2
2(µ1 + µ2) + λµ2(µ1 + µ2)2 + λ2 (µ2

1 + µ1µ2 + µ2
2)
.

Similarly, the gain for πG, is

gG(1, 2) =

− λ2 (c2λµ
3
1 + c1 (µ2

2(µ1 + µ2)2 + λ2 (µ2
1 + µ1µ2 + µ2

2) + λµ2 (µ2
1 + 2µ1µ

2
2 + 2µ2

2)))

(λ+ µ1) (µ2
2(µ1 + µ2)2 + λ2 (µ2

1 + µ1µ2 + µ2
2) + λµ2 (µ2

1 + 2µ1µ2 + 2µ2
2))

.

Hence for B2 = 2,

c∗(2) =

(
1 +

µ3
2 (λ+ µ1 + µ2)

µ1µ2
2(µ1 + µ2) + λµ2(µ1 + µ2)2 + λ2 (µ2

1 + µ1µ2 + µ2
2)

)
.

For larger values of B2 ≤ 10, following the procedure described above we calculate

the threshold cost c∗(B2), obtaining expressions of the form

c∗(B2) =

(
1 +

α(B2)

β(B2)

)
,

22



where for B2 ≤ 10,

α(B2) = µB2+1
2

dB2/2e∑
i=1

[(
λB2−i + 1{(B2−i)>(i−1)}λ

i−1(µ1 + µ2)B2−2i+1
)

i−1∑
j=0

(
µi−j−1

1 µj2

(
i− 1

j

)
1

j!

j∏
k=1

(B2 − i+ k)

)]
.

Closed form expressions for β(B2) for B2 = 1, ..., 10 can be found in Appendix A,

in Section A.1. After the publication of Silva et al. [65] a closed form expression for

p(q1,q2) and p̂(q1,q2) for a general B2 was provided in Kim and Kim [35].

In the next two sections we take a heuristic approach to understand the optimal

policy and the optimal gain as B2 →∞.

3.3.2 Trends in probabilities

We want to understand the impact of choosing the wrong policy on the optimal cost.

To do this, we investigate the behavior of the probabilities of being in states where the

the Prudent policy and the Greedy policy are different. These next three propositions

follow by computing the stationary distributions of the corresponding continuous time

Markov chain.

Proposition 2. Under πP the stationary probability of being in state (0, B2), p(0,B2)

is strictly decreasing in B2 for 0 ≤ B2 ≤ 10 .

Proof. The stationary probabilities for each B2 ≤ 10 can be written as

p(0,B2) =
(λµ1)B2

(λµ1)B2−1(λµ1 + λµ2 + µ1µ2) + f(λ, µ1, µ2, B2)
,

where f1(λ, µ1, µ2, B2) is a polynomial function of the parameters which depends on

23



the buffer size. More specifically,

f1(λ, µ1, µ2, 1) = 0,

f1(λ, µ1, µ2, 2) = λ2µ2
2 + 2λµ1µ

2
2 + µ2

1µ
2
2 + λµ3

2 + µ1µ
3
2,

f1(λ, µ1, µ2, 3) = λ3µ1µ
2
2 + 2λ2µ2

1µ
2
2 + λµ3

1µ
2
2 + λ3µ3

2 + 3λ2µ1µ
3
2 + 3λµ2

1µ
3
2 + µ3

1µ
3
2

+ 2λ2µ4
2 + 4λµ1µ

4
2 + 2µ2

1µ
4
2 + λµ5

2 + µ1µ
5
2.

The remaining values of f1(λ, µ1, µ2, B2) are provided in the Appendix, in Section

A.2. Note that the expression

λµ1f1(λ, µ1, µ2, B2) < f1(λ, µ1, µ2, B2 + 1)

holds for the values of B2 presented above. The same inequality holds for any B2 ≤ 10.

We can verify this with the expressions for f1(λ, µ1, µ2, B2) in Section A.2. This

implies that p(0, B2) is strictly decreasing in B2 for πP for any fixed set of parameters.

Now consider the Greedy policy.

Proposition 3. Under πG the stationary probability of being in state (0, B2), p̂(0,B2)

is strictly decreasing in B2 for 0 ≤ B2 ≤ 10 .

Proof. The stationary probabilities for each B2 ≤ 10 can be expressed as

p̂(0,B2) =
(λµ1)B2(µ1 + µ2)

(λµ1)B2−1(µ1 + µ2) (λ2 + λµ1 + λµ2 + µ1µ2) + f2(λ, µ1, µ2, B2)
,

where f2(λ, µ1, µ2, B2) is a polynomial function of the parameters which depends on

the buffer size. More specifically,

f2(λ, µ1, µ2, 1) = 0,

f2(λ, µ1, µ2, 2) = λ3µ2
2 + 2λ2µ1µ

2
2 + 2λµ2

1µ
2
2 + µ3

1µ
2
2 + 2λ2µ3

2 + 4λµ1µ
3
2 + 2µ2

1µ
3
2

+ λµ4
2 + µ1µ

4
2,

24



f2(λ, µ1, µ2, 3) = λ4µ1µ
2
2 + 2λ3µ2

1µ
2
2 + 2λ2µ3

1µ
2
2 + λµ4

1µ
2
2 + λ4µ3

2 + 4λ3µ1µ
3
2 + 6λ2µ2

1µ
3
2

+ 4λµ3
1µ

3
2 + µ4

1µ
3
2 + 3λ3µ4

2 + 8λ2µ1µ
4
2 + 8λµ2

1µ
4
2 + 3µ3

1µ
4
2 + 3λ2µ5

2

+ 6λµ1µ
5
2 + 3µ2

1µ
5
2 + λµ6

2 + µ1µ
6
2.

The remaining values of f2(λ, µ1, µ2, B2) are provided in Appendix A, in Section A.3.

We observe that for any fixed set of parameters the expression

λµ1f2(λ, µ1, µ2, B2) < f2(λ, µ1, µ2, B2 + 1)

holds for the values of B2 presented above. The same inequality holds for any B2 ≤ 10.

We can verify this with the expressions for f2(λ, µ1, µ2, B2) in Section A.3. This

implies that p̂(0,B2) is strictly decreasing in B2 for πG.

Finally, consider state (1, B2) under the Greedy policy, where cost c2 may be

incurred.

Proposition 4. Under πG the stationary probability of being in state (1, B2), p̂(1,B2)

is strictly decreasing in B2 for 0 ≤ B2 ≤ 10 .

Proof. For B2 ≤ 10 we have,

p̂(1,B2) =
λB2+1µB2

1

(λµ1)B2−1(µ1 + µ2) (λ2 + λµ1 + λµ2 + µ1µ2) + f2(λ, µ1, µ2, B2)
.

Note that the denominator of this expression is the same as the one for p̂(0,B2) so the

result holds.

The above propositions lead us to the following conjecture:

Conjecture 1. Under πP as B2 →∞, p(0,B2) converges monotonically to some value

p∗(0,B2) ≥ 0. Under πG as B2 →∞ the probabilities p̂(0,B2) and p̂(1,B2) converge mono-

tonically to values p̂∗(0,B2) ≥ 0 and p̂∗(1,B2) ≥ 0, respectively.

After the publication of Silva et al. [65], Kim and Kim [35] proved that Conjecture

1 holds. In the remainder of this section we provide numerical results that illustrate

this point, and help understand the intuition behind this result.

25



Table 1: Breakdown of cases we studied.

Case Description

A λ < µ1 < µ2

B λ < µ2 < µ1

C µ1 < λ < µ2

D µ1 < µ2 < λ

E µ2 < λ < µ1

F µ2 < µ1 < λ

We conduct numerical experiments considering a system where B2 attains all

integer values from 1 to 50, and also multiples of 50 up to 500. We generate 1000

sets of parameters independently and solve the problem numerically for each set with

each value of the buffer size. In order to generate λ, µ1, and µ2, we sample from a

continuous uniform distribution between 1 and 100, while c1, c2 are sampled from a

continuous uniform distribution between 1 and 1000. If c1 ≥ c2, we discard those

cost values and generate a new set until c1 < c2. It is intuitive that if c1 > c2, then

the Greedy policy is optimal, because incurring c1 instead of risking the possibility

of incurring a lower c2 does not make financial sense. In Chapter 4, we prove this

formally in Proposition 12. In order to analyze the results we divided the data sets

into six cases as explained in Table 1.

Figure 4 illustrates how the average p(0, B2) changes with respect to B2 for each of

the cases above. Figure 5 and Figure 6 show the average p̂(0,B2) and p̂(1,B2) respectively,

for different values of B2. All probability values in these figures were calculated as

averages for a fixed buffer size over the instances described above. The half-width of

the confidence interval for each point in Figures 4, 5 and 6 is less than 0.02 for cases

E and F; for the remaining cases it is less than 0.01 and vanishes as B2 increases.

Our observations show that the probability of being in the states of interest decreases

dramatically as a function of the buffer size until it practically vanishes by B2 = 10

for cases A and C and by B2 = 50 for cases B and D but never vanishes for cases E

26



Figure 4: Average p(0, B2) for increasing values of B2 for cases A-F

and F (i.e., when µ2 is smaller than µ1 and λ). For cases E and F, as B2 increases, all

probabilities of interest monotonically decrease and eventually converge to a strictly

positive value.

These results suggest that choosing a non-optimal policy (amongst the Prudent

and Greedy policies) may not have a significant impact on the cost when parameters

satisfy cases A-D, but might have an impact when they satisfy cases E and F. In

particular, we can conjecture that c∗(10) can be a good approximation for c∗(B2) for

B2 > 10 in cases A to D, however, the same may not hold in cases E and F. Thus, it

is important to develop heuristic policies that yield good cost performance for larger

values of B2 under these scenarios as the risk remains that we incur unnecessary costs

by choosing the wrong policy.

3.3.3 Heuristics and Numerical Experiments

As we have shown, the optimal policy is characterized by a threshold c∗(B2). In

the previous section we saw that for large values of B2, the probabilities of being

in a full state vanish quickly as B2 increases for all systems where µ2 > λ and/or

27



Figure 5: Average p̂(0, B2) for increasing values of B2 for cases A-F

µ2 > µ1 but they are not negligible otherwise (namely cases E and F). In this section

we propose three easily implementable heuristic policies and show through numerical

experiments that they can yield near-optimal long-run average cost performance for

all buffer sizes.

3.3.3.1 Descriptions of the heuristics

The first heuristic uses the following upper bound.

Proposition 5. The following upper bound holds for 1 ≤ B2 ≤ 10

ĉ(B2) =

(
1 +

µ2

µ1 + λ

)
> c∗(B2).

Proof. For the case B2 = 1 we have from equation (3.3.1) that

c∗(1) =

(
1 +

µ2
2

λµ1 + λµ2 + µ1µ2

)
=

(
1 +

µ2

λµ1
µ2

+ λ+ µ1

)
<

(
1 +

µ2

µ1 + λ

)
= ĉ.

28



Figure 6: Average p̂(1, B2) for increasing values of B2 for cases A-F

Similarly for B2 = 2 we have from equation (3.3.1)

c∗(2) =

(
1 +

µ3
2 (λ+ µ1 + µ2)

µ1µ2
2(µ1 + µ2) + λµ2(µ1 + µ2)2 + λ2 (µ2

1 + µ1µ2 + µ2
2)

)
<

(
1 +

µ3
2 (λ+ µ1 + µ2)

µ1µ2
2(µ1 + µ2) + 2λµ1µ2

2 + λ2µ2
2 + λµ3

2

)
=

(
1 +

µ2

µ1 + λ

)
= ĉ

Note that the first inequality holds because 2λµ1µ
2
2 + λ2µ2

2 + λµ3
2 < λµ2(µ1 + µ2)2 +

λ2 (µ2
1 + µ1µ2 + µ2

2) as all parameters are positive. We can prove the inequality for all

values of B2 ≤ 10, using the values of c∗(B2) in the Appendix and following a similar

procedure.

We further conjecture that this bound holds for any value of B2 < ∞. To un-

derstand how the bound relates to the actual value c∗(B2), we calculated the exact

c∗(B2) and the bound for the data sets from the experiments presented in Section

3.3.2. Our numerical experiments suggest that ĉ(B2) is indeed an upper bound for

all the values of B2 > 10 considered. Furthermore, we observe that the bound is

much tighter for cases A-D than cases E and F. This leads us to consider a heuristic

that uses ĉ(B2) as a proxy for c∗(B2). However, since the bound is not as tight for

29



cases E and F, one may need to be more prudent if system parameters satisfy the

assumptions of cases E and F. We would like to point out that the numerical exper-

iments illustrated that c∗(B2) is not monotone in B2. Our results and observations

from numerical experiments lead to the following three heuristics:

• Heuristic 1: if c2
c1
> ĉ(B2) use the Prudent policy, else use the Greedy policy.

• Heuristic 2: if the parameters satisfy cases A-D use Heuristic 1, otherwise,

use the Prudent policy.

• Heuristic 3: if B2 ≤ 10, calculate c∗(B2) and use the optimal policy, otherwise,

if B2 > 10 and c2
c1
> c∗(10) use the Prudent policy, else if B2 > 10 and c2

c1
≤

c∗(10) use the Greedy policy.

Heuristics 1 and 2 are simple and easily implementable. Heuristic 3 requires more

computational effort than the other two heuristics since one needs to compute c∗(B2)

for all B2 ≤ 10, but can still be implemented in a simple spreadsheet. Note that

Heuristic 1 chooses the Greedy policy when it is optimal since c∗(B2) > c2
c1

implies

that ĉ(B2) > c2
c1
. However, if the Prudent policy is optimal it does not necessarily

choose the optimal policy. The same is true about Heuristic 2 in cases A-D but the

opposite holds in cases E and F. In these two cases, Heuristic 2 always chooses right

if the Prudent policy is optimal but will not choose the optimal policy if the Greedy

policy is optimal. For Heuristic 3, since we do not have a monotonicity result for

c∗(B2), we cannot predict which policy will be favored. However, since c∗(B2) appears

to change very slowly in B2, using c∗(10) might yield a better long-run average cost

performance than using ĉ(B2).

3.3.3.2 Numerical results from heuristic policies

For the data sets described in Section 3.3.2, we calculate both the optimal long-run

average cost and the long-run average cost under each heuristic. We compare the

30



cost (not the gain), as this is a more intuitive, yet equivalent measure. We compare

the proposed heuristics to an alternative of always choosing the Greedy policy or

always using the Prudent policy. Tables 2 and 3 summarize the results for average

cost performance for cases A to F. Each column shows the average percentage of

additional cost incurred by the policy over the optimal cost, with its corresponding

confidence interval. On the other hand, Table 4 shows the results for the worst

additional cost incurred over the optimal cost.

Table 2: Average percentage of excess over the optimal cost, under the Greedy and
Prudent policies

Case Greedy Prudent

A 0.022±6.3E-3% 0.123±2.3E-2%
B 0.412±5.8E-2% 0.072±1.7E-2%
C 0.000±1.6E-4% 0.042±6.9E-3%
D 0.011±2.2E-3% 0.023±4.2E-3%
E 2.517±5.9E-2% 0.041±6.6E-3%
F 1.524±3.8E-2% 0.023±4.2E-3%

Total 0.776±1.7E-2% 0.053±5.0E-3%

Table 3: Average percentage of excess over the optimal cost, under the heuristic
policies

Case Heuristic 1 Heuristic 2 Heuristic 3

A 0.003±1.3E-3% 0.003±1.3E-3% 0.000±0.0E+0%
B 0.007±2.4E-3% 0.007±2.4E-3% 0.000±0.0E+0%
C 0.000±1.6E-4% 0.000±1.6E-4% 0.000±0.0E+0%
D 0.004±1.4E-3% 0.004±1.4E-3% 0.000±0.0E+0%
E 0.593±2.3E-2% 0.041±6.6E-3% 0.000±1.0E-4%
F 0.418±1.5E-2% 0.023±4.2E-3% 0.000±1.7E-5%

Total 0.179±5.1E-3% 0.013±1.4E-3% 0.000±1.8E-5%

The results of Tables 2 and 3 illustrate that Heuristic 3 outperforms the other

two heuristics. Clearly, the Greedy policy is the worst as the average additional cost

31



of choosing the Greedy policy when it is not optimal is far larger than the average

additional cost of choosing the Prudent policy when it is not optimal. The next

best policy is Heuristic 1, which improves considerably over the Greedy policy in all

cases. However, it is interesting to note that on average the Prudent policy performs

better than Heuristic 1 (in particular for cases E and F). Heuristic 2 takes the best

results from Heuristic 1 and from the Prudent policy and gives better results. Finally,

Heuristic 3 outperforms all other policies, showing that c∗(10) is a very good proxy

for c∗(B2), when B2 > 10 (providing near optimal results).

It is clear from the results of Tables 2 and 3 that on the average all policies

yield good long-run average cost performance. However, Table 4, which shows the

largest percentage of additional cost incurred by each policy over the optimal cost,

illustrates that one needs to be careful since the Greedy policy and the Prudent policy

can yield poor long-run average cost performance for certain systems. The worst case

performance of Heuristics 1, 2, and 3 are significantly better than the Greedy policy

and the Prudent policy. In particular, Heuristic 3 has near-optimal performance in

all cases.

Table 4: Worst case performances for each policy

Case Greedy Prudent Heuristic 1 Heuristic 2 Heuristic 3

A 10.37% 25.97% 2.75% 2.75% 0.00%
B 58.85% 25.81% 4.53% 4.53% 0.00%
C 0.67% 7.08% 0.67% 0.67% 0.00%
D 3.27% 5.44% 2.61% 2.61% 0.00%
E 12.38% 6.81% 5.40% 6.81% 0.08%
F 9.03% 5.73% 3.39% 5.73% 0.02%

Our results indicate that computing c∗(B2) for B2 ≤ 10 is sufficient and one can

use Heuristic 3 to obtain near-optimal long-run average cost performance.

32



3.4 Conclusions

Some communication networks, such as the Internet, can be modeled as loss systems.

These are queueing networks where each station has a finite capacity, and if a customer

in the network encounters a station that is full, then (rather than blocking the previous

station) the customer leaves the network. In this chapter, we study an admission

control problem for a Markovian loss system consisting of two finite capacity service

stations in tandem. Customers arrive to station 1 according to a Poisson process

and a gatekeeper who has complete knowledge of the number of customers at both

stations decides to accept or reject each arriving customer. If a customer is rejected, a

rejection cost c1 is incurred. If an admitted customer finds that station 2 is full at the

time of his service completion at station 1, he leaves the system and a loss cost c2 is

incurred. We used uniformization to model this system as a Markov decision process.

We introduced two special policies. The Prudent policy, which only admits an arrival

if the loss probability is zero; and the Greedy policy, which admits an arrival as long

as there is space at the first station.

In this chapter, we analyzed the special case of having a buffer of size one at one

station and an arbitrary finite buffer at the other. First, we reviewed the results of

Zhang and Ayhan [75] for the case where B1 < ∞, B2 = 1. Then, for the remainder

of the chapter, we focused on the case B1 = 1, B2 <∞.

We proved that a policy which rejects arrivals when the buffer at the second station

is not full cannot be optimal. Furthermore, we showed that the optimal policy has

the structure that if c2
c1
> c∗(B2) then the Greedy policy is optimal, otherwise the

Prudent policy is optimal. We should note here that in this case the threshold on

c2
c1

is a function of B2, unlike the system studied by Zhang and Ayhan [75], where

the threshold does not depend on the buffer size. We provided exact expressions for

c∗(B2) for buffer values 1 ≤ B2 ≤ 10 and later showed that one does not need to

compute c∗(B2) for larger values of B2 to obtain near-optimal policies.

33



We also observed that, unless µ2 < min(λ, µ1), the probability of being in state

(0, B2) under the Prudent policy and in states (0, B2) and (1, B2) under the Greedy

policy, monotonically converge to 0 as B2 increases. Similarly, these probabilities

monotonically converge to a constant when µ2 is the smallest rate. These observations

on the probabilities led us to develop three heuristic policies with good long-run

average reward performance. In particular, the heuristic that uses c∗(10) as a proxy

for c∗(B2) when B2 > 10 results in near-optimal long-run average reward performance.

In the next chapter we consider the case where buffers at both stations are identical

and of finite, arbitrary size. We will use the same MDP model developed in this

chapter.

34



CHAPTER IV

ADMISSION CONTROL FOR A TANDEM LOSS SYSTEM

WITH TWO STATIONS - GENERAL CASE

In this chapter, we continue to study the problem described in Chapter 3, but now we

focus on the case where both stations have equal buffers of finite size. Specifically, we

study the problem of admission control to a loss system comprised of two stations in

tandem and one server at each station. Arrivals to the system follow a Poisson Process

with rate λ and service times at each station follow an exponential distribution with

rate µi, i = 1, 2. Each station has a finite capacity denoted by Bi < ∞, i = 1, 2.

In this chapter, we focus on the case where B1 = B2 = B. Upon each arrival a

gatekeeper has to decide (based on full knowledge of the state of the system) whether

to admit or reject the arriving customer. If a customer is not admitted, a rejection

cost c1 is incurred. If a customer completes service at the first station and at that

time the second station is full, the customer is lost and a loss cost of c2 is incurred.

Recall that if the first station is full at the time of an arrival, then the incoming

customer has to be rejected and the rejection cost c1 is incurred. The objective of the

system administrator is to determine an admission control policy at the first station

that minimizes the long-run average cost for the system.

Our goal, in this chapter, is to provide the system administrator with simple and

easy-to-implement policies that will yield optimal or near-optimal performance in

most cases. To do this, we start by analyzing the performance of the Prudent and

Greedy policies, as well as establishing optimality conditions for each of them. Next,

we show that there are some system states in which it is always optimal to admit

incoming customers. Then, we fully characterize the optimal policy for the particular

35



case of B = 2. We also use examples to illustrate that, in general, optimal policies

may have a complicated structure. Finally, we propose two heuristic policies. The

first heuristic uses only the two aforementioned policies, while the other uses our

insights about the structure of the optimal policy. We use numerical experimentation

to show that both of these heuristics yield near-optimal performance.

The remainder of this chapter is organized as follows: In Section 4.1, we focus

on the Prudent policy, we characterize its long-run average reward, we provide a

necessary and sufficient condition for optimality and we consider its limiting behavior

as the buffer sizes go to infinity. In Section 4.2, we shift to the Greedy policy, we

give a matrix-analytic characterization of its long-run average reward, we derive a

sufficient condition for optimality and we also consider its limiting behavior. Section

4.3 is devoted to exploring the structure of the optimal policy. First, we identify

states where it is always optimal to admit incoming customers; then we give a full

characterization of the optimal policy when B = 2; and we end the section with a

discussion on the complicated structure of optimal policies when B ≥ 3. In Section

4.4, we introduce two heuristic policies and, through numerical experiments, show

that these heuristics usually achieve near-optimal performance. Finally, Section 4.5

concludes the chapter. The results in this chapter can be found in Silva, Zhang and

Ayhan [66].

For clarity of exposition, we present all the results in this chapter for the particular

case of B1 = B2 = B. However, we note that all the results presented in Section

4.1 and Subsection 4.3.1 hold for any B1 ≥ B2, because for a fixed B2 the set of

recurrent states under the Prudent policy is identical for any B1 such that B1 ≥ B2.

Therefore, all the proofs in those sections follow immediately, substituting B for B2.

Furthermore, the analytical results in Section 4.2 hold for any general B1 ≥ 1, B2 ≥ 1.

Since now we only have one buffer size parameter B, we simplify the notation for the

gain under policy π as gπ(B). Consequently, the gain under the Prudent policy is

36



gP (B), under the Greedy policy it is gG(B) and the optimal gain is g∗(B).

4.1 The Prudent Policy

In this section, we explore the steady state behavior of the Prudent policy and give

necessary and sufficient conditions for it to be optimal. We also consider the limiting

behavior of the Prudent policy as B → ∞. Consider a system with B ≥ 1. Let us

partition the state space in a way that will be useful for our analysis:

S0 = {s ∈ S : s = (q1, q2), q1 + q2 < B, q1 < B} ,

S1 = {s ∈ S : s = (q1, q2), q1 + q2 = B, q1 < B} ,

S2 = {s ∈ S : s = (q1, q2), q1 + q2 > B, q1 < B} , and

S3 = {s ∈ S : s = (q1, q2), q1 = B} .

Note that {S0, S1, S2, S3} is clearly a partition of S. Since this model is unichain,

has finite state and action spaces and bounded rewards, there exists a stationary

deterministic policy which is optimal. Let Π be the set of all stationary deterministic

policies.

Let us generalize the definition of the Prudent policy, by considering a Prudent

Family of policies. Define

ΠP =


π ∈ Π : π(s) =



1 s ∈ S0

0 s ∈ S1

any action s ∈ S2

0 s ∈ S3


.

Since the Markov chain under any policy π ∈ ΠP has the same steady state

behavior the following results apply to all such policies, not just πP .

37



Proposition 6. For any policy π ∈ ΠP , the long-run average reward will be given by

gP (B) = −c1
λ

G

B∑
k=0

λB

µk1µ
B−k
2

,

where

G =
B∑

q1=0

B−q1∑
q2=0

(
λ

µ1

)q1 ( λ

µ2

)q2
.

Proof. Consider the continuous-time MDP (before uniformization) defined in

Section 3.1, under policy π ∈ ΠP . Note that for any policy π ∈ ΠP the resulting

continuous-time Markov chain has a single recurrent class given by R = S0 ∪ S1 and

transient states given by T = (S2 ∪ S3).

Now consider the closed Jackson network in Figure 7, where station A has inde-

pendent identically distributed exponential service times with mean 1/λ and stations

1 and 2 are the same as in our model.

Figure 7: Closed Jackson network equivalent model.

If the network in Figure 7 has B units in it, let q0 be the number of units in station

A, then we can model its behavior as a continuous-time Markov chain (CTMC) with

the following state space:{
X(t) = (q0, q1, q2) : q0, q1, q2 ∈ Z+,

3∑
k=1

qk = B

}
.

Note that if there are B units at station 1 and 2 combined, then there are 0 units

at station A and hence no arrivals to station 1. More specifically q0 = B − q1 − q2,

hence we will only have the possibility of arrivals to station 1 when q1 + q2 < B.

Furthermore, the arrival rate to station 1 is λ if q1 + q2 < B and zero otherwise.

38



Therefore, this closed Jackson network and our model under any policy in ΠP are

equivalent. In particular, the stationary distribution of X(t) will be the same as the

stationary distribution of the recurrent states for our model. Then using the classical

result from Gordon and Newel [21], we get that if p̃(s) is the stationary distribution

in state s of the Jackson network CTMC model, then,

p̃(q1, q2) =
λq1+q2

µq11 µ
q2
2

× 1

G
.

Therefore, since any policy in the Prudent family of policies rejects new arrivals

in states s ∈ S1 and admits them in s ∈ S0, and S2 ⊂ T then the long-run average

reward of any policy in the Prudent family is:

gP (B) = −c1λ
B∑
k=0

p̃(k,B − k) = −c1
λ

G

B∑
k=0

λB

µk1µ
B−k
2

.

4.1.1 Conditions for Optimality of the Prudent Policy

In the previous section, we derived a closed form expression for the long-run average

reward under the Prudent policy. In this section, we use a linear programming (LP)

approach to derive both necessary and sufficient conditions for the optimality of the

Prudent policy. In particular, we solve a LP where each decision variable corresponds

to a state-action pair of the Markov Decision process. We derive closed-form ex-

pressions for the reduced cost of each basic variable under the Prudent policy (each

stationary deterministic policy corresponds to a basis of the LP polyhedron) and de-

termine conditions for optimality by determining bounds for these reduced costs to

be non-negative.

Recall the LP approach to solving MDPs (see e.g. Hordijk and Kallenberg [25]).

It is well known that for a unichain MDP the solution to the following LP is a solution

39



to the optimality equation (3) of the MDP,

min g (4)

s.t. g + h(s)−
∑
j∈S

p(j|s, a)h(j) ≥ r(s, a) ∀a ∈ As, s ∈ S,

where g represents the long-run average reward and h(s) is the bias of state s as

defined in (3). The dual of (4) is

max
∑
s∈S

∑
a∈As

r(s, a)x(s, a) (5)

s.t.
∑
s∈S

∑
a∈As

x(s, a) = 1

∑
a∈As

x(j, a)−
∑
s∈S

∑
a∈As

p(j|s, a)x(s, a) = 0 ∀j ∈ S

x(s, a) ≥ 0 ∀a ∈ As, s ∈ S.

Note that there is a redundant constraint in the dual LP. It is also known that

for unichain MDP models there is a correspondence between the extreme points of

the dual (5) and stationary deterministic policies, determined up-to recurrent states

(see Kallenberg [31]). That is, multiple policies that have the same set of recurrent

states and are equal in their recurrent states, but differ only in the actions taken in

transient states correspond to the same extreme point in the dual polyhedron. A key

part of this equivalence is that for unichain models, under a deterministic stationary

policy π, the resulting Markov chain has a single recurrent class of states Rπ and a

unique stationary distribution p̄π. Namely, recall from Chapter 3 that we call the

stationary distribution under the Prudent policy p, and under the Greedy policy p̂.

Then, the corresponding dual LP (5) has a basic feasible solution given by

x(s, a) =


p̄π(s) s ∈ Rπ, π(s) = a,

0 otherwise.

We should note that if there are transient states the above solution will correspond

to a degenerate extreme point in the dual polyhedron. This means that multiple

40



stationary deterministic policies may correspond to the same extreme point of the

polyhedron. For instance,under for the Prudent policy πP , there is a corresponding

dual basic feasible solution given by

x̄(s, a) =


p(s) s ∈ S0 ∪ S1, πP (s) = a,

0 otherwise.
(6)

However, since the MDP model is not recurrent, this extreme point is degenerate

and corresponds to more than one basis. Specifically, every policy π ∈ ΠP in the

MDP has the same corresponding solution to the dual LP, with the same optimal

value, albeit with different basis matrices.

Finally, let us mention that although one must run the policy iteration algorithm

to completion to find a solution to equation (3), it has been shown that, in unichain

models it is not necessary to run it to completion to find an optimal policy (see

Puterman [58], Section 8.6.1). To show that a stationary deterministic policy is

optimal it suffices to show (in the policy improvement step) that changing the action

in recurrent states will not improve the long-run average reward. By the equivalence

with LP, it follows that: if in any iteration of the simplex method applied to (5) the

reduced costs of the non-basic variables corresponding to recurrent states are non-

positive, then the policy (or policies) corresponding to the current solution is optimal.

This is true regardless of the reduced costs for the variables corresponding to transient

states.

We can apply the LP approach here to show necessary and sufficient conditions

for πP to be optimal. Starting the simplex algorithm for (5) with the solution cor-

responding to the Prudent policy given by (6) results in having the basis matrix B

whose indices are given by {(s, a) : s ∈ S0, a = 1}∪{(s, a) : s /∈ S0, a = 0}. Therefore,

the non basic matrix N will have the index set: {(s, a) : s ∈ S0, a = 0} ∪ {(s, a) : s ∈

S1 ∪ S2, a = 1}. This way, there is a basic variable for each state and its correspond-

ing action under πP , and there is a non-basic variable for each state where |As| = 2

41



paired with the opposite action. Furthermore, since we have a redundant constraint

we arbitrarily eliminate the constraint corresponding to state (0, 0) from (5).

Since for every state in S3 there is only one available action, and every state in

S2 is transient under πP , then, by the previous discussion, to show optimality of the

Prudent policy it suffices to show that for every non-basic variable x̄(s, a), s ∈ S0∪S1

that corresponds to a column of N the reduced costs are non-positive. That is

c̄(s, a) = r(s, a)− cB ·B−1 ·N·(s,a) ≤ 0

where cB, is the vector of costs of the basic variables. In this case,

cB(s, a) =


0 {(s, a) : s ∈ S0, a = 1},

−c1λ {(s = (q1, q2), a) : s /∈ S0, q2 < B, a = 0},

−c1λ− c2µ1 {(s = (q1, q2), a) : s /∈ S0, q2 = B, a = 0}

where B−1 is the inverse of the basis matrix. And N·(s,a) is the column of N that

contains the coefficients on the left hand side of the dual LP problem (5) corresponding

to state-action combination (s, a).

Proposition 7. If we start the simplex algorithm for (5) with the solution corre-

sponding to the Prudent policy given by (6), for each non-basic variable of the form

x̄(s, 0) where s = (q1, q2) ∈ S0, the reduced costs are given by

c̄(s, 0) = −
(
c1λ

G

) (B−1)−(q1+q2)∑
i=0


(B−1)−q1∑

k=0

(
λ

µ1

)k (
λ

µ1

)i
where

G =
B∑
i=0

B−i∑
j=0

(
λ

µ1

)i(
λ

µ2

)j
.

Note that this means that, if p(i, j) is the long-run probability of being in state (i, j)

under the Prudent policy πP then we can rewrite the above as

c̄(s, 0) = − (c1λ)

(B−1)−(q1+q2)∑
i=0


(B−1)−q1∑

k=0

p(i, j)

 .

42



Proof. The statement in the proposition can be verified algebraically for any B,

by taking

c̄(s, 0) = − (c1λ)− cB ·B−1 ·N·(s,0)

for each (s, 0) such that it corresponds to a column of N where s ∈ S0. Note that

the quantities cB, B and N·(s,0) are all known.

Corollary 1. If we start the simplex algorithm for (5) with the solution corresponding

to the Prudent policy given by (6), each non-basic variable x̄(s, 0) is not a candidate

to enter the basis whenever s ∈ S0, because c̄(s, 0) < 0.

It follows from Corollary 1 and the previous discussions that in order to prove the

optimality of the Prudent policy it suffices to show that for every non-basic variable

x̄(s, a) such that s ∈ S1, a = 1, the reduced costs are non-positive.

Theorem 3. Let

c∗(B) = 1 +
1

G

B−1∑
k=0

k∑
r=0

(
k

r

) B−r∑
n=1

(
λ

µ1

)n−1(
µ2

µ1

)r+1

.

Then πP is an optimal policy if and only if c2
c1
≥ c∗(B).

Proof. In order to verify whether πP is optimal, we calculate the reduced costs

for each x(s, a) such that (s, a) has a corresponding column in N , and s is recurrent

under πP i.e.

c̄(s, a) = r(s, a)− cB ·B−1 ·N·(s,a) ≤ 0.

By Corollary 1, it is sufficient to show that c̄(s, 1) ≤ 0 for s ∈ S1. It can be verified

algebraically that for any B the reduced costs for (s, 1) : s = (q1, q2) ∈ S1 are given

by,

c̄((q1, q2), 1) = −λ
(

µ1

µ1 + µ2

)q1+1
(
c2 − c1 −

c1

G

q1∑
k=0

k∑
r=0

(
k

r

) B−k∑
n=1

(
λ

µ1

)n−1(
µ2

µ1

)r+1
)
.

Hence, the condition for c̄((q1, q2), 1) ≤ 0 reduces to

c2

c1

≥

(
1 +

1

G

q1∑
k=0

k∑
r=0

(
k

r

) B−k∑
n=1

(
λ

µ1

)n−1(
µ2

µ1

)r+1
)
.

43



In the above expression, the right hand side is increasing in q1 hence it is maximized

when q1 = B − 1, which is the same condition as c2
c1
≥ c∗(B).

The next result follows immediately,

Corollary 2. Every policy π ∈ ΠP is optimal if and only if c2
c1
≥ c∗(B).

Proof. In Proposition 6, we showed that the long-run average reward for any

π ∈ ΠP is the same. Therefore, if one policy in the Prudent Family is optimal then

they all are.

This is a necessary and sufficient condition for optimality of the Prudent policy.

So, as c2 →∞, or simply if c2 is sufficiently greater than c1, then the Prudent policy

is optimal. This is logical, since if c2 is large, the contribution of each loss to the

long-run average cost becomes so high that it is better to reject any customer that

might eventually be lost.

The condition in Theorem 3 determines when the Prudent policy is optimal from

the system administrator’s perspective. Spicer and Ziedins [68], considered the prob-

lem of having multiple tandem lines of two stations and finding a user-optimal policy,

where the user’s objective function is maximizing the probability of success (where

success is defined as not being lost). In this case, because the system consists of only

one line, the user has no choices to make. However, if every user’s objective is to max-

imize the probability of success, then the Prudent policy is also user-optimal. This

follows because the Prudent policy serves the greatest possible number of customers

while guaranteeing that no customers are ever lost.

4.1.2 Limiting Behavior of the Prudent Policy

Now we consider the limiting behavior of the Prudent policy as the buffer B increases.

First, we show that the long-run average gain under the Prudent policy is monotone

increasing in B. To see the intuition behind this result, consider two systems under

the prudent policy with the same parameters, except one system has a larger buffer.

44



The system with the larger buffer experiences rejections less often than the one with

the smaller buffer. Since, under the prudent policy, costs are only incurred when

rejections happen, then the larger system should have a greater long-run average

gain.

Proposition 8. The long-run average gain under the Prudent policy (gP (B)) is an

increasing function of B.

Proof. Recall from Proposition 6 that

gP (B) = −c1λ

∑B
k=0

λB

µk1µ
B−k
2∑B

j=0

∑B−j
i=0

(
λ
µ1

)j (
λ
µ2

)i .
Multiply the numerator and denominator by (µ1µ2)B and re-arranging the sums we

get:

gP (B) = −c1λ
λB
∑B

k=0 µ
B−k
1 µk2∑B

j=0

∑B−j
i=0 (µ1µ2)B

(
λ
µ1

)j (
λ
µ2

)i
= −c1

λB+1
∑B

k=0 µ
k
1µ

B−k
2∑B

j=0

∑B−j
i=0 λjµB−j1 λiµB−i2

= −c1
λB+1

∑B
k=0 µ

k
1µ

B−k
2∑B

j=0 λ
j
∑j

i=0(µ1µ2)B−jµi1µ
j−i
2

Now we take the difference and get:

gP (B)− gP (B + 1) =

= −c1

(
λB+1

∑B
k=0 µ

k
1µ

B−k
2∑B

j=0 λ
j
∑j

i=0(µ1µ2)B−jµi1µ
j−i
2

− λB+2
∑B+1

k=0 µ
k
1µ

B+1−k
2∑B+1

j=0 λ
j
∑j

i=0(µ1µ2)B+1−jµi1µ
j−i
2

)

45



Consider the numerator of the difference in parenthesis above, we have(
λB+1

B∑
k=0

µk1µ
B−k
2

)(
B+1∑
j=0

λj
j∑
i=0

(µ1µ2)B+1−jµi1µ
j−i
2

)

−

(
λB+2

B+1∑
k=0

µk1µ
B+1−k
2

)(
B∑
j=0

λj
j∑
i=0

(µ1µ2)B−jµi1µ
j−i
2

)

=λB+1

(
B∑
k=0

µk1µ
B−k
2

)(
(µ1µ2)B+1 + λ(µ1µ2)B(µ1 + µ2) + ...+ λB+1

B+1∑
i=0

µi1µ
B+1−i
2

)

− λB+2

(
B+1∑
k=0

µk1µ
B+1−k
2

)(
(µ1µ2)B + λ(µ1µ2)B−1(µ1 + µ2) + ...+ λB

B∑
i=0

µi1µ
B−i
2

)

=
B∑
j=0

[
λB+1+j(µ1µ2)B+1−j

(
B∑
k=0

µk1µ
B−k
2

j∑
i=0

µi1µ
j−i
2 −

B+1∑
k=0

µk1µ
B+1−k
2

j−1∑
i=0

µi1µ
j−1−i
2

)]

=
B∑
j=0

[
λB+1+j(µ1µ2)B+1−j

(
B∑
k=0

µk1µ
B−k
2

j∑
i=0

µi1µ
j−i
2

−
B∑
k=0

µk1µ
B−k
2

j∑
i=1

µi1µ
j+1−i
2 − µB+1

1

j−1∑
i=0

µi1µ
j−1−i
2

)]

=
B∑
j=0

[
λB+1+j(µ1µ2)B+1−j

(
B∑
k=0

µk1µ
B−k
2 µj1 − µB+1

1

j−1∑
i=0

µi1µ
j−1−i
2

)]

=
B∑
j=0

[
λB+1+j(µ1µ2)B+1−j

(
B−j∑
k=0

µk1µ
B−k
2 µj1

+
B∑

k=B+1−j

µk1µ
B−k
2 µj1 − µB+1

1

j−1∑
i=0

µi1µ
j−1−i
2

)]

=
B∑
j=0

[
λB+1+j(µ1µ2)B+1−j

(
B−j∑
k=0

µk1µ
B−k−j
2 (µ1µ2)j

)]

=(λµ1µ2)B+1

B∑
j=0

[
λj

(
B−j∑
k=0

µk1µ
B−k−j
2

)]
.

46



Then the difference is

gP (B)− gP (B + 1) =

− c1

(λµ1µ2)B+1
∑B

j=0

[
λj
(∑B−j

k=0 µ
k
1µ

B−k−j
2

)]
(∑B

j=0 λ
j
∑j

i=0(µ1µ2)B−jµi1µ
j−i
2

)(∑B+1
j=0 λ

j
∑j

i=0(µ1µ2)B+1−jµi1µ
j−i
2

) < 0,

since all the parameters are strictly positive. Therefore, gP (B) is increasing in B.

Next we focus on the behavior of the long-run average gain of the Prudent policy

gP (B) as B → ∞. We find that gP (B) always converges to a limit. However, the

limit depends on the relationships between the parameters as stated in the next

proposition.

Proposition 9. As the buffer size B → ∞, the long-run average gain under the

Prudent policy gP (B) converges as follows:

1. If λ < min(µ1, µ2), then gP (B)→ 0.

2. If µ2 < min(µ1, λ), then gP (B)→ c1(µ2 − λ).

3. If µ1 < min(µ2, λ), then gP (B)→ c1(µ1 − λ).

Proof.

1. We can re-write the numerator of gP (B) in Proposition 6 as:

−c1λ

[(
λ

µ2

)B
−
(
λ

µ1

)B
µ2

µ1

]
µ1

µ2 − µ1

Clearly, since λ < µ1 and λ < µ2, as B → ∞ this expression converges to 0.

Similarly, we can re-write the denominator of gP (B) in Proposition 6 as:

µ2

µ2 − λ

[
µ1

µ1 − λ

(
1−

(
λ

µ1

)B+1
)
− µ1

µ1 − µ2

((
λ

µ2

)B+1

−
(
λ

µ1

)B+1
)]

Clearly, since λ < µ1 and λ < µ2, as B → ∞ this expression converges to

µ1µ2/(µ2 − λ)(µ1 − λ). So gP (B)→ 0.

47



2. We can reorganize terms in the expression for gP (B) above and get

gP (B) =

−c1λµ1
µ1−µ2

[
1−

(
µ2
µ1

)B+1
]

λ
µ2−λ

[
µ1

µ1−λ

((
µ2
λ

)B+1 −
(
µ2
µ1

)B+1
)
− µ1

µ1−µ2

(
1−

(
µ2
µ1

)B+1
)]

Now, since µ2 < µ1 and µ2 < λ, taking the limit as B →∞ we get

lim
B→∞

gP (B) =

−c1λµ1
µ1−µ2

λ
µ2−λ

[
− µ1
µ1−µ2

]
=c1(µ2 − λ)

which is less than 0 under our assumptions.

3. We can reorganize terms in the expression for gP (B) above and get

gP (B) =

−c1λµ1
µ1−µ2

[(
µ1
µ2

)B
− µ2

µ1

]
λµ2

µ1(µ2−λ)

[
µ1

µ1−λ

((
µ1
λ

)B+1 − 1
)
− µ1

µ1−µ2

((
µ1
µ2

)B+1

− 1

)]
Now, since µ1 < µ2 and µ1 < λ, taking the limit as B →∞ we get

lim
B→∞

gP (B) =

−c1λµ1
µ1−µ2

[
−µ2
µ1

]
λµ2

µ1(µ2−λ)

[
−µ1
µ1−λ + µ1

µ1−µ2

]
=

c1λµ1µ2
µ1(µ1−µ2)

λµ1µ2
µ1(µ2−λ)

[
µ2−λ

(µ1−λ)(µ1−µ2)

]
=c1(µ1 − λ)

which is less than 0 under our assumptions.

When B =∞ the system is a two-station open Jackson network. In this case, the

two station tandem queue is only stable if λ < min(µ1, µ2). Our results show that

in that case gP (B) → 0, because in a stable system with infinite capacity rejections

never occur. In this case, we also conclude that as B → ∞ the gain of the Prudent

48



policy approaches the optimal gain, as the optimal gain is bounded by zero. So, for

very large systems where λ < min(µ1, µ2) the Prudent policy will be optimal, or close

to optimal. However, in the remaining cases if B =∞ then the system is not stable.

In these cases, the gain converges to a negative constant, as B → ∞, because the

number of customers in the system will also go to infinity and hence the system will

accumulate rejection costs, proportional to the rate that the number of customers

goes to infinity.

In summary, in this section we proved the following results about the Prudent

policy: the long-run average gain for the Prudent policy gP (B) is given by Proposition

6, which is a strictly increasing function of the buffer size B; we showed this gain

converges either to zero or a negative constant, depending on the relations between

the arrival rate and the service rates at each station; and, in Theorem 3 we gave

necessary and sufficient conditions for the optimality of the Prudent policy. In the

next sub-section we explore properties of the Greedy policy.

4.2 The Greedy Policy

In this section, we give a matrix-analytic solution for the stationary distribution

under the Greedy policy. Clearly, if the stationary distribution is known, the long-

run average reward can be computed directly. We also provide a necessary condition

for the Greedy policy to be optimal, and for systems with B ≤ 2 we give necessary

and sufficient conditions for optimality of the Greedy policy.

As mentioned in Section 3.1, under a given policy the system can be modeled as a

continuous time Markov chain with state space S = {(q1, q2) ∈ Z2 : 0 ≤ q1 ≤ B, 0 ≤

q2 ≤ B}. The transition rate diagram for the underlying continuous time Markov

chain when the system operates under the Greedy policy πG for the case with B = 3

is given in Figure 8.

Looking closely at Figure 8, we observe that this CTMC has the structure of a

49



(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(0, 2) (0, 3)

(1, 2)

(2, 1)

(3, 0)

(1, 3)

(2, 2)

(3, 1)

(2, 3)

(3, 2) (3, 3)

λ

λ

µ1

λ

µ1

µ1

λ

µ2

λ

µ1

µ2

λ

µ1

µ2

µ1

µ2

λ

µ2

λ

µ1

µ2

λ

µ1

µ2

µ1

µ2

λ

µ2

λ

µ1

µ2

λ

µ1

µ2

µ1

µ2

Figure 8: CTMC Under the Greedy Policy when B = 3.

finite Quasi Birth and Death process (QBD). For the specific example of Figure 8,

we observe that there are four levels. We have circled one of the levels in Figure

8 with a dotted line to point it out. It is made up of all the states of the form

(q1, 1), 0 ≤ q1 ≤ B. We can see that we will always have B + 1 levels (which for

convenience we’ll refer to as the zero-th, first, second, etc. up to B-th levels). It

is clear from the structure of the Markov chain that all levels will contain the same

number of phases and there will be B + 1 phases in each level.

The generator matrix for this continuous time Markov chain, denoted by Q, is

given as

50



Q =



D̃ F

R D F

R D F

· · ·

R D F

R D F

R D̂


where R, F , D, D̃ and D̂ are size (B + 1) square matrices. Suppose the row and

column indices on each of these matrices are i, j ∈ {0, 1, ..., B}. Then, the elements

of each sub-matrix are given by

Ri,j =


µ2 if j = i

0 otherwise
; Fi,j =


µ1 if j = i− 1

0 otherwise

Di,j =



λ if j = i+ 1

−(λ+ µ2) if j = i = 0

−(λ+ µ1 + µ2) if j = i, 1 ≤ i ≤ B − 1

−(µ1 + µ2) if j = i = B

0 otherwise

D̃i,j =



λ if j = i+ 1

−λ if j = i = 0

−(λ+ µ1) if j = i, 1 ≤ i ≤ B − 1

−µ1 if j = i = B

0 otherwise

51



D̂i,j =



λ if j = i+ 1

µ1 if j = i− 1

−(λ+ µ2) if j = i = 0

−(λ+ µ1 + µ2) if j = i, 1 ≤ i ≤ B − 1

−(µ1 + µ2) if j = i = B

0 otherwise

Quasi Birth and Death processes have been studied in the literature (see for ex-

ample Latouche and Ramaswami [42] and references therein). While finite QBD’s

have received less attention, a few methods for solving such problems have appeared

in the literature. In particular, deNitto Persone and Grassi [15] propose an explicit

matrix-analytic solution. Here we apply their method to the finite QBD described

above. This method is based on building a recursion, so it is necessary to have enough

levels for the definitions to make sense. Therefore, we require B ≥ 4 to guarantee that

the resulting finite QBD will have at least five levels. Note that for smaller values of

B one can easily compute the stationary distribution using traditional methods.

Let η = [η0,η1, ...ηB] be the stationary distribution of the Markov chain, where

ηk is the vector of steady state probabilities of the states in level k. Note that if p̂

is the stationary distribution of the Markov chain under πG, then ηk(q1) = p̂(q1, k)

for all k = 0, . . . , B and q1 = 0, . . . , B. Then, the next result follows directly from

Theorem 1 in deNitto Persone and Grassi [15].

Proposition 10. Suppose B ≥ 4 and define η as above, then

ηk = −η0
1

µ2

FCk−2
11 + η1

(
Ck−2

21 −
1

µ2

DCk−2
11

)
2 ≤ k ≤ B − 1

where Ck−2
11 and Ck−2

21 are (B + 1)× (B + 1) submatrices of the 2(B + 1)× 2(B + 1)

52



power matrix

Ck−2 =

Ck−2
11 Ck−2

12

Ck−2
21 Ck−2

22


where

C =

− 1
µ2
D I

− 1
µ2
F 0


with the convention that C0 = I.

This determines ηk,∀k : 2 ≤ k ≤ B − 1 in terms of η0 and η1. In order to

determine the vector [η0,η1,ηB] we use the next result, which follows directly from

Corollary 1 of deNitto Persone and Grassi [15].

Proposition 11. Suppose B ≥ 4 and define η as above, then

[η0,η1,ηB] = [1,0] (M ∗)−1

where [1,0] is a row vector of length 3(B + 1) with a 1 in the first position and zeros

in the rest. And M ∗ is the matrix resulting from taking the following matrix:

M =


D̃ − 1

µ2
F
(
CB−4

11 F +CB−3
11 D

)
− 1
µ2
FCB−3

11 F

R C̃
(
CB−3

21 − 1
µ2
DCB−3

11

)
F

0 R D̂


where

C̃ =

(
CB−4

21 − 1

µ2

DCB−4
11

)
F +

(
CB−3

21 − 1

µ2

DCB−3
11

)
D

and substituting the first column of M by the following column vector:
(
I −

∑B−1
k=2 −

1
µ2
FCk−2

11

)
e(

I −
∑B−1

k=2

(
Ck−2

21 − 1
µ2
DCk−2

11

))
e

e


where e is a vector of all ones.

53



With this, we have a matrix-analytic solution for the stationary distribution under

the Greedy policy. This is specially practical for large systems, where the number of

equations that need to be solved to find the stationary distribution directly, that is

(B + 1)2, is much greater than the size of the matrix M , that is 3(B + 1). Knowing

the stationary distribution, the long-run average reward under the Greedy policy can

be calculated as:

gG(B) = −c1λ
B∑
i=0

ηi(B)− c2µ1

B∑
i=1

ηB(i). (7)

In Section 4.4, we use this result, together with the closed form solution for the

stationary distribution under the Prudent policy to propose heuristics which yield

near-optimal performance and require much less computational effort than solving

for the optimal policy.

4.2.1 Conditions for Optimality of the Greedy Policy

In order to provide a sufficient condition on the optimality of the Greedy policy, we

analyze the corresponding finite-horizon MDP model under the expected total reward

criterion. Consider the MDP model we have been studying, but now assume a total of

N periods. Let vn,π(s) be the expected total reward with n periods remaining, under

policy π if the initial state is s and vn(s) be the optimal n-period reward with the

initial state s, or vn(s) = infπ vn,π(s). Here a policy is defined as a vector of functions

π = (πN , πN−1, ..., π0), where each πn is a map from the states into the action space,

that is πn : S → {0, 1}.

The optimality equation is as follows

vn(q1, q2) =µ1[−c21{q1>0 and q2=B} + vn−1((q1 − 1)+, q2 + 1{q1>0 and q2<B})]

+ µ2vn−1(q1, (q2 − 1)+)

+ λmax{−c1 + vn−1(q1, q2), vn−1(q1 + 1, q2)}, ∀(q1, q2) ∈ S.

The optimal policy π∗, would take the following form: at state s = (q1, q2) ∈ Sd

54



with n periods to go

π∗n(s) =

 0, if vn−1(q1 + 1, q2) < −c1 + vn−1(q1, q2)

1, if vn−1(q1 + 1, q2) ≥ −c1 + vn−1(q1, q2).

(8)

The following lemma is intuitive.

Lemma 1. ∀n ∈ Z+,vn(q1 + 1, q2) ≥ vn(q1, q2)− (c1 ∨ c2), ∀q1, q2 ≤ B.

Proof. Consider two systems with the same number of periods remaining in the

decision horizon: system I under any policy π with the initial state (q1, q2), and system

II with the initial state (q1 + 1, q2). Let system II operate under the same policy π

as if the initial state were (q1, q2). Mark the last customer in the queue at station

1 in system II and always hold the marked customer as late as possible; specifically,

serve the marked customer only if there is no one else at his station, and if there

is an arrival to his station during his service, his service is preempted (in this case,

his remaining service time, when he resumes service, is equal in distribution to his

original service time by the exponential assumption). Also, if a rejection or a loss

occur at the marked customer’s station before he leaves the system, he is immediately

unmarked and treated the same as all other customers afterwards.

With the two systems operating the aforementioned way, there are only two pos-

sibilities: (1) The marked customer leaves system II before any difference arises in

the costs in these two systems; after that, both systems evolve identically and thus

the same total cost is incurred in both systems by the end of the decision horizon.

(2) One more rejection or loss occurs in system II than in system I at one of the

two stations (where the marked customer is located at that moment), incurring an

extra cost c1 or c2, and after that both systems evolve identically. In other words, by

initially holding one more customer at station 1, system II either has the same total

cost, or c1 or c2 more than system I. Because this is true for any policy π, the result

follows.

55



Proposition 12. If c1 ≥ c2, the Greedy policy πG is long-run average reward optimal.

Proof. It follows from c1 ≥ c2 and Lemma 1 that

vn(q1 + 1, q2) ≥ vn(q1, q2)− c1. (9)

This, together with equation (8), then implies that the greedy policy πG is optimal

for the n-period problem under the expected total cost criterion, ∀n ∈ Z+. Taking

the limit as n→∞ yields the result.

This result is intuitive, as rejecting an arrival and incurring cost c1 with certainty,

rather than admitting it and taking the risk of incurring cost c2 only makes sense if

c1 < c2. Additionally, for small systems, we find that there exists a threshold that

provides a necessary and sufficient condition for optimality of the Greedy policy.

Proposition 13. Suppose B = 1 then the Greedy policy is optimal if and only if

c2

c1

≤
(

1 +
µ2

2

λµ1 + λµ2 + µ1µ2

)
Suppose B = 2 then the Greedy policy is optimal if and only if

c2

c1

≤
(

1 +
µ3

2 (µ2
2(λ+ µ1) + µ2(2λ+ µ1)(λ+ 2µ1) + (λ+ µ1)3)

β1

)
where

β1 =λ2µ2
1(λ+ µ1)2 + µ4

2

(
λ2 + λµ1 + µ2

1

)
+ 2µ3

2(λ+ µ1)
(
λ2 + λµ1 + µ2

1

)
+ µ2

2(λ+ µ1)2
(
λ2 + 3λµ1 + µ2

1

)
+ λµ1µ2(λ+ µ1)

(
λ2 + 4λµ1 + µ2

1

)
Proof. The proof for B = 1 follows from Theorem 2 in Chapter 3. The proof for

B = 2 follows from the proof of Lemma 15 in Section 4.3.2.

4.2.2 Limiting Behavior of the Greedy Policy

In order to understand the behavior of gG(B) as B → ∞, we performed numerical

experiments. We created 1000 randomly generated data sets. For each set we drew

56



λ, µ1 and µ2 independently from a continuous uniform distribution between 0 and

100, and drew c1 and c2 from a uniform distribution between 0 and 1000, discarding

values of c2 < c1. For each data set, we calculated gG(B) (the gain under the Greedy

policy), increasing B from 1 to 30.

We observe that if λ < min(µ1, µ2) then as B increases, gG(B) → 0. This is

expected, because in this case as B →∞ the system approaches a two-station tandem

open Jackson network. Therefore, if the system is stable at B = ∞, there are never

any losses and gG(B) = 0. So in the stable case, the gain of the Greedy policy

approaches to the optimal gain as B → ∞. If µ1 < min(λ, µ2), we observe that

the gain gG(B) appears to be increasing and converges to a constant. On the other

hand, if µ2 < min(µ1, λ), the gain gG(B) can be decreasing, increasing or even non-

monotone. For this reason it is difficult to predict how the Greedy policy will perform

in large systems, unless λ < min(µ1, µ2).

To summarize, in this section we provided the following results about the Greedy

policy: the long-run average gain for the Greedy policy has a matrix-analytic solution;

the Greedy policy is always optimal when c1 > c2; and, for small systems, there exists

a threshold on c2
c1
that determines necessary and sufficient conditions for the optimality

of the Greedy policy. In the next section, we show that the Prudent and Greedy

policies are opposites in the sense that no policy can be optimal and admit fewer

customers than the Prudent policy and, of course, no policy admits more customers

than the Greedy policy.

4.3 Discussion on the Structure of the Optimal Policy

So far, we have established necessary and sufficient conditions for the Prudent policy

to be optimal, and a necessary condition for the Greedy policy to be optimal. It

remains to consider the case when neither of these policies is optimal. In this section,

first, we show that every optimal policy must admit arrivals in the states where the

57



Prudent policy admits arrivals. Next, we focus on the special case where the buffer

size B is equal to two. For this particular case, we fully characterize the optimal policy

and observe that certain monotonicity properties hold. We then explore what happens

when B ≥ 3. We show through an example that some monotonicity properties that

hold for B = 2, do not always hold for larger buffers.

4.3.1 It Is Never Optimal to Reject in States where Customers Cannot
Be Lost

In this section we show that for each state in the set S0 the optimal action is always to

admit incoming arrivals. This means that any optimal policy must admit customers

in the states where the Prudent policy admits arrivals.

Let B be the basis of the dual LP Problem (5), when the simplex method starts

with the solution in (6). The rows of the basis B, are indexed by the constraints of

the dual LP, so there is one row per state, similarly the columns are indexed by the

basic state-action combinations. Let B−1 be the inverse of this matrix and call its

elements b(s,a),s′ , where (s, a) corresponds to a state-action combination in the basis

B and s′ ∈ S. LetN be the matrix of non-basic columns of the dual LP Problem (5)

when starting the simplex method with (6). Call its elements ns′,(s,a), where s′ ∈ S

and (s, a) is a non-basic state-action combination with its corresponding column in

N .

Lemma 2. Consider a state s′ = (q′1, q
′
2), then for each state-action pair in the set

{(s, 0) : s ∈ S2 ∪ S3}, where s = (q1, q2) we have the following

1. b(s,0),s′ = 0 whenever q′1 + q′2 < q1 + q2 or q′1 < q1.

2. b(s,0),s′ = 1
µ1+µ2

whenever q′1 = q1 and q′2 < q2.

3. For each s′ 6= s, such that q′1 + q′2 ≥ q1 + q2 and q′1 ≥ q1

b(s,0),s′ =
1

µ1 + µ2

(
µ1b(s,0),s+ + µ2b(s,0),s−

)
58



where s+ = (q′1 − 1, q′2 + 1q′2<B) and s− = (q′1, q
′
2 − 1).

Proof. These three statements can be verified algebraically for any buffer size

by obtaining B−1
(s,0)· (the row of the inverse of the basis corresponding to state action

combination (s, 0)) and formulating and solving a system of equations, by taking each

basic variable x(ŝ, a) and writing the equations:

B−1
(s,0)· ·B·(ŝ,a) = 1s=ŝ

where B·(ŝ,a) is the column of the basis matrix corresponding to the basic variable

x(ŝ, a).

Furthermore, we can use the above to understand some entries in the simplex

tableau for this problem. Define

m(s,a),(s′,a′) = B−1
(s,a)· ·N·(s′,a′)

where B−1
(s,a)· is the row of the inverse of the basis corresponding to state-action com-

bination (s, a) and N·(s′,a′) is the column of N corresponding to state-action combi-

nation (s′, a′).

Lemma 3. For each (s, a) ∈ {(s, 0) : s ∈ S2 ∪ S3}, (s′, a′) ∈ {(s′, 0) : s′ ∈ S0} we

have m(s,a),(s′,a′) = 0.

Proof. We write the dot product above as a sum,

B−1
(s,a)· ·N·(s′,a′) =

∑
k∈S

b(s,a),knk,(s′,a′).

By the previous proposition, we have that b(s,0),k = 0 whenever s = (q1, q2) and

k = (q1k , q2k) such that q1k + q2k < q1 + q2 or q1k < q1.

Similarly, recall that nk,(s′,a′) = p(k|s′, a′), so for every k such that q1k+q2k ≥ q′1+q′2

and q1k ≥ q′1 we have for every (s′, a′) ∈ {(s′, 0) : s′ ∈ S0} that nk,(s′,a′) = 0 because

these are transitions from states such that q1k+q2k > B to states such that q′1+q′2 < B,

which always have transition probability 0 under any action.

59



There has been some research exploring techniques to determine permanent basic

or non-basic variables in an LP, that is, variables that must be present in every optimal

solution or absent from every optimal solution, see Cheng [10, 11], Shi, Yu and Zhang

[64], and more recently Paparrizos, Stephanides and Samaras [55]. Of particular

interest to us is the work of Ye [74]. He proposed a technique for identifying permanent

non-basic variables with or without degeneracy in the problem. Specifically, Corollary

3.3 in Ye [74] which we re-state here adapting it to maximization will be useful for us.

It provides rules for when variables can be permanently eliminated from the problem.

Proposition 14 (Ye). If there exists some state action combination (s, a) that has

a corresponding column in B, such that the variable x(s, a) = 0 and m(s,a),(s′,a′) > 0,

then do not eliminate the column for (s′, a′); otherwise if

c̄(s′, a′) + ∆ ·max

(
0, max

(s,a):x(s,a)>0

(
m(s,a),(s′,a′)

x(s, a)

))
< 0

then the (s′, a′) column of N is non-basic for every optimal solution, where ∆ is a

non-negative upper bound on the optimal value.

In our case, we can take ∆ = 0 so the condition simplifies to: if for some state

action combination (s, a) the variable x̄(s, a) = 0 and m(s,a),(s′,a′) > 0 do not eliminate

column (s′, a′) otherwise if c̄(s′, a′) < 0 then the (s′, a′) column of N is non-basic for

every optimal solution.

Theorem 4. For any optimal policy the decision at state (q1, q2) is to admit customer

arrivals whenever q1 + q2 < B. Or, conversely, a deterministic policy that rejects

customer arrivals at state (q1, q2) whenever q1 + q2 < B cannot be optimal.

Proof. It follows from Propositions 7 and 14 and Lemma 3 above, that the

decision variables x(s, a) such that (s, a) ∈ {(s, a) : s ∈ S0, a = 0} are permanently

non-basic. Note that these are the only variables for which c̄(s, a) is always negative.

Therefore the variables x(s, a) such that (s, a) ∈ {(s, a) : s ∈ S0, a = 1} must be

permanently basic, as the basis must have one variable for each state.

60



Define

Π′ = {π : π(s) = 1 ∀s ∈ S0} .

Then by the previous theorem it follows that if Π∗ is the set of all optimal policies,

Π∗ ⊂ Π′ ⊂ Π. Therefore, the set of states where a decision needs to be made can be

reduced to Sd = S1 ∪ S2. For every state in S0 we can fix the action as admit (action

1). Similarly, for each state in S3 the only available action is reject (action 0).

This result shows that no policy that admits in fewer states than the Prudent

policy can be optimal. It also shows that the Prudent and Greedy policies are indeed

opposite, in the sense that one is the most conservative policy that can be optimal

and the other is the most greedy policy that can be optimal. Finally, note that any

potentially optimal policy is a combination of the Prudent and Greedy policies. In

the next section we provide further discussion on the structure of the optimal policy.

4.3.2 Structure of the Optimal Policy for Systems with B = 2

We begin by showing that, when B = 2, the optimal policy is of threshold type and

provide the thresholds for each potentially optimal policy. Consider the policies for

systems with B = 2 presented in Table 5. Note that the set of states where the

decision is to admit is a monotonically increasing set as we move from the Prudent

policy to P1 to P2 to the Greedy policy.

Table 5: Potentially Optimal Policies when B = 2

Policy Admit in States Reject in States

Prudent (0,0);(0,1);(1,0) (0,2);(1,1);(1,2);(2,0);(2,1);(2,2)
P1 (0,0);(0,1);(1,0);(1,1) (0,2);(1,2);(2,0);(2,1);(2,2)
P2 (0,0);(0,1);(1,0);(1,1);(1,2) (0,2);(2,0);(2,1); (2,2)

Greedy (0,0);(0,1);(0,2);(1,0);(1,1);(1,2) (2,0);(2,1); (2,2)

Proposition 15. Consider a system with buffer capacity B = 2, then the Prudent,

P1, P2 and Greedy policies, given in Table 5 are the only policies that can be optimal

61



(up-to recurrent states). Furthermore, the optimal policy is determined by a series of

monotonically decreasing thresholds on the ratio c2
c1
. Hence as the ratio c2

c1
decreases,

the set of states in which it is optimal to admit increases. And the order in which the

states are added to the admission set does not dependent on the rates λ, µ1, µ2.

Proof. Start the Policy Iteration algorithm with the Prudent policy as the initial

policy. Then perform the policy evaluation step to determine the gain and the bias.

Next perform the policy improvement step. Here, we find that if

c2

c1

≥
(

1 +
µ3

2(λ+ 2µ1 + µ2)

λ2 (µ2
1 + µ1µ2 + µ2

2) + λµ1µ2(µ1 + µ2) + µ2
1µ

2
2

)
(10)

then the next decision rule is the same as before, and hence the Prudent policy is

optimal. Otherwise, the Prudent policy is not optimal.

Now instead, start the policy iteration with policy P1. Then perform the pol-

icy evaluation step to determine the gain and the bias. Next perform the policy

improvement step. Here, we find that if(
1 +

µ3
2(λ+ 2µ1 + µ2)

λ2 (µ2
1 + µ1µ2 + µ2

2) + λµ1µ2(µ1 + µ2) + µ2
1µ

2
2

)
≥ c2

c1

(11)

≥
(

1 +
µ3

2(λ+ µ1 + µ2) (µ2(2λ+ 3µ1) + (λ+ µ1)2 + µ2
2)

β2

)
where

β2 =2µ4
2

(
λ2 + λµ1 + µ2

1

)
+ µ3

2(λ+ µ1)
(
3λ2 + 4λµ1 + 3µ2

1

)
+ µ2

2

(
λ2 + 3λµ1 + µ2

1

)2

+ λµ1µ2(λ+ µ1)
(
λ2 + 5λµ1 + µ2

1

)
+ λ2µ2

1(λ+ µ1)2

then the policy stays the same, and hence, P1 is the optimal policy. With some

algebra one can show that the difference between the term on the left-hand side of

condition (11) and the one on the right-hand side is positive.

Now, start the policy iteration algorithm with policy P2. Then perform the

policy evaluation step to determine the gain and the bias. Next perform the policy

62



improvement step. Here, we find that if(
1 +

µ3
2(λ+ µ1 + µ2) (µ2(2λ+ 3µ1) + (λ+ µ1)2 + µ2

2)

β2

)
≥ c2

c1

(12)

≥
(

1 +
µ3

2 (µ2
2(λ+ µ1) + µ2(2λ+ µ1)(λ+ 2µ1) + (λ+ µ1)3)

β1

)
then the policy stays the same, and hence P2 is the optimal policy. As in the previous

case, one can verify that the difference between the left-hand side of condition (12)

and the right-hand side is positive.

Finally, suppose you start the policy iteration with the Greedy policy. Then

perform the policy evaluation step to determine the gain and the bias. Next perform

the policy improvement step. Here, we find that if

c2

c1

≤
(

1 +
µ3

2 (µ2
2(λ+ µ1) + µ2(2λ+ µ1)(λ+ 2µ1) + (λ+ µ1)3)

β1

)
(13)

then the Greedy policy is optimal.

Define ps as the probability that a new arrival that is admitted when the system

is in state s will be lost. A recurrent expression for calculating 1 − ps for each state

is provided in Spicer and Ziedins [68]. Then, for the states where a decision must be

made, the loss probabilities are:

p(1,1) =

(
µ1

µ1 + µ2

)2

< p(1,2) =
µ2

1(µ1 + 2µ2)

(µ1 + µ2)3
< p(0,2) =

µ1

µ1 + µ2

. (14)

Note that the loss probabilities are not increasing in the total number of customers

in the system, nor are they increasing in the number of customers at the first station.

Similarly, we see that the decisions in an optimal policy are also non-monotone with

respect to either of these parameters, when P2 is the optimal policy. From these

probabilities and Proposition 15, we can immediately draw the following conclusion

about the optimal policy, when B = 2.

Corollary 3. Suppose B = 2, and a fixed set of parameters λ, µ1, µ2, c1, c2 and that

π is an optimal policy, then:

63



1. For any pair of states s, s′ ∈ Sd, which are recurrent under π if ps ≥ ps′ we have

π(s) ≤ π(s′). That is, the optimal policy is monotone in ps.

2. For any pair of states s = (q1, q2) and s′ = (q1, q
′
2), which are recurrent under

π and q′2 > q2, we have π(s) ≥ π(s′). That is, for a fixed q1 the optimal policy

is monotone in q2.

3. For any pair of states s = (q1, q2) and s′ = (q′1, q
′
2), which are recurrent under

π, q1 + q2 = q′1 + q′2 and q2 < q′2 < B, we have π(s) ≥ π(s′). That is, for a fixed

q1 + q2 the optimal policy is monotone with respect to q2.

4. Consider now another pair of costs c′1, c′2, such that if c′2
c′1
≤ c2

c1
, for any optimal

policy π′ of the system with costs c′1, c′2, the following inequality holds: π(s) ≤

π′(s), for every s which is recurrent under π.

Corollary 3 follows from Proposition 15. Specifically, Corollary 3.2, 3.3 hold be-

cause the Greedy, Prudent, P1 and P2 policies each have this structure, and are

(up-to recurrent states) the only potentially optimal policies. On the other hand,

Corollary 3.1 and 3.4 follow because the optimal policy when B = 2 is of threshold

type, and the order of the thresholds in conditions (10), (11), (12) and (13) is the

same for any set of parameters λ, µ1, µ2. Furthermore, the ordering of these thresh-

olds is the same as the ordering of the loss probabilities for the states in Sd, given in

(14), which is also independent of the parameters λ, µ1, µ2.

4.3.3 Counter-example and Discussion on Larger Buffers

Considering the above results, it seems intuitive to assume that Corollary 3 could

hold for buffers of size B ≥ 3. However, that is not always the case. There is no

equivalent statement to Proposition 15 for the case where B ≥ 3. The reason for

this is that there does not exist a set of thresholds that determine the optimal policy

64



and whose order is fixed regardless of the parameters. In this section, we show that

Corollary 3 fails for larger systems using a counter-example.

Consider a system with the following parameters: B = 3, λ = 23, µ1 = 74, µ2 = 80

and costs c1 = 225, c2 = 732. Note that all costs and parameters are within an order

of magnitude of each other, that is, this is not an extreme example. The optimal

policy, π∗, for this case satisfies:

π∗(0, 0) = π∗(0, 1) = π∗(0, 2) = π∗(1, 0) = π∗(1, 1) = π∗(1, 2) = π∗(2, 0) = π∗(2, 1) = 1,

π∗(0, 3) = π∗(1, 3) = π∗(2, 2) = π∗(2, 3) = π∗(3, 0) = π∗(3, 1) = π∗(3, 2) = π∗(3, 3) = 0.

In this case, we have that the loss probabilities of states (1, 2) and (2, 2) are

p(1,2) = 0.230 > 0.226 = p(2,2).

So, while customers arriving in state (1, 2) have a greater probability of being lost

than those arriving in state (2, 2), it is optimal to admit customers in state (1, 2) but

not in state (2, 2). In other words, the optimal policy is not monotone with respect

to the loss probabilities, so Corollary 3.1 does not hold for B ≥ 3.

For cases where the buffers B ≥ 3, there is no fixed ordering of the states based on

the loss probabilities (unlike the B = 2 case). Furthermore, there is no monotonically

increasing admission set, as in the B = 2 case. So, even though for a given set

of parameters λ, µ1, µ2 the optimal policy may be threshold type, the order of the

thresholds can vary with the parameters.

On the other hand, numerical experiments suggest that Corollary 3.2-3.4 also

seem to hold for larger values of B. Specifically, for each value of B = 3, 4, 5, 6 we

randomly generated 300,000 instances, with λ, µ1, µ2 and c1 drawn from a uniform

distribution between 0 and 1000, and c2 drawn for a uniform distribution between c1

and 1000. For each instance we solved the MDP using the Policy Iteration algorithm

(see Puterman [58], Section 8.6.1). For every instance we tested, the optimal policy

65



had the structure described in Corollary 3.2 and 3.3. Furthermore, we obtained c′2

by drawing a uniformly distributed factor between 1 and 10 and multiplying the

original c2 by this factor. We solved a new MDP substituting c2 for c′2 using the

policy iteration algorithm, then compared the optimal policy of each pair. Corollary

3.4 also held for every instance we tested.

Corollary 3.2 is intuitive, as a customer arriving in a state that is busier at the

second station and the same at the first station is more likely to suffer a loss. So,

if the gatekeeper rejects arrivals at a given state, he should also reject arrivals in

states that have the same number of customers at the first station and are busier at

the second station. Corollary 3.3 is also intuitive, because a customer that observes

q1 + q2 customers upon arrival is more likely to experience a loss if there are more

customers at the second station. So, if the gatekeeper rejects arrivals at a given state,

he should also reject arrivals in states that have the same total number of customers

and are busier at the second station.

Finally, the fact that Corollary 3.4 seems to hold would suggest that, for any

given instance of the problem, there exists an optimal policy which is threshold type.

Therefore, a policy that has a threshold structure that closely approximates the exact

thresholds for each state, may deliver near-optimal performance. On the other hand,

if the range of values where the Prudent and Greedy policies are not optimal is

narrow, then a strategy that uses only these policies may also be near-optimal. In

the following section we use these two insights and the results for the Prudent and

Greedy policies to propose heuristic policies which are easy to implement, and then

we evaluate the long-run average cost performance of these policies using numerical

experiments.

66



4.4 Heuristics

So far, we have shown that if c2
c1
≥ c∗(B), then the Prudent policy is optimal and

if c2
c1
≤ 1 then the Greedy policy is optimal. The only case left where the system

administrator needs to make a decision is when c∗(B) < c2
c1
< 1. Nevertheless, in

Section 4.3, we demonstrated that the optimal policy may have a complicated form.

For very small systems, it may be possible to solve the MDP to optimality using the

classical MDP techniques such as policy iteration. However, for large systems this

may not be practical. Furthermore, it is desirable to provide the system administrator

with a simple, easy-to-implement admission control policy to achieve optimal (or near-

optimal) performance in all instances. In this section, we construct two heuristic

policies, based on insights from the aforementioned results. We perform numerical

tests which suggest some of these heuristics can provide near-optimal performance in

most instances.

We consider the following four policies:

• P: The Prudent policy: we include this policy for benchmarking purposes. This

policy is intuitive because it guarantees that customers are never lost.

• G: The Greedy policy: we also include this policy for benchmarking purposes.

It is equivalent to not exercising any admission control.

• PvsG: This heuristic policy leverages the fact that we have an exact charac-

terization of the long-run average cost under the Prudent policy and a matrix

analytic solution for the long-run average cost of the Greedy policy. This heuris-

tic evaluates the Prudent policy using Proposition 6 and the Greedy policy using

Proposition 10, and then chooses the best of these two. It is computationally

easier to evaluate these policies, than to run an algorithm to find the optimal

policy. Evaluating the Greedy policy still requires solving a linear system of

equations of size 3(B + 1).

67



• LossProb: This is a two-step heuristic. First, it determines whether the Pru-

dent policy is optimal, using the threshold c∗(B) from Theorem 3. If the Pru-

dent policy is optimal it uses the Prudent policy. Otherwise, for each state s

the heuristic calculates the probability ps that a new arrival is lost. For each

state s ∈ Sd set:

π(s) = 1{ps≤c1/c2}

This heuristic uses the conjecture that the optimal action is monotone with

respect to c2
c1

for each state, and uses the loss probabilities ps as proxies for the

actual thresholds (which are unknown). Although in Section 4.3 we provide

counter-examples that show that this ordering of states is not necessarily the

same as the ordering in the optimal policy, we have observed in numerical tests

that this order matches the optimal policy ordering in up to 95% of cases (for

B = 3).

The two heuristic policies offer very different strategies. The PvsG heuristic lever-

ages the fact that we have efficient means to price the Prudent and Greedy policies

and never attempts to calculate the optimal policy. On the other hand, the LossProb

heuristic tries to directly approximate the optimal policy, based on the observation

that it appears to be of threshold type for each state, and does not rely exclusively on

the Prudent and Greedy policies. Computationally, The LossProb heuristic is more

efficient than the PvsG heuristic, as the loss probabilities can be calculated recur-

rently, while evaluating the greedy policy requires solving a system of 3(B+ 1) linear

equations.

In order to test the proposed heuristics we use the same 1000 randomly generated

data sets, we described in Section 4.2.2. We call each of these data sets an instance.

Recall that for each instance we draw λ, µ1 and µ2 independently from a continuous

uniform distribution in (0,100). Similarly we generate c1, c2 ∼ U(0, 1000) and discard

68



the values c1 ≥ c2 (as otherwise the Greedy policy is optimal as stated in Proposition

12).

In order to compare which heuristic policies work better for systems of different

sizes we split our tests into three different categories:

• Small systems: B ∈ {1, 2, 3}.

• Medium systems: B ∈ {4, 5, 6, 7, 8, 9, 10}.

• Large systems: B ∈ {15, 20, 25, 30}.

We define a system as each value of B taken from one of the three sets above. For

each system, we test all 1000 instances and for each one we calculate the long-run-

average cost of using each heuristic policy, as well as the cost of the optimal policy,

which we find using the policy iteration algorithm. In what follows we summarize our

results and highlight some insights that we draw from them.

Figure 9: Number of instances that each heuristic is optimal.

Figure 9 shows the number of instances that each of the heuristics chooses the

optimal policy. We see that the Prudent policy is optimal in about 40% to 60% of the

test instances. This is expected as we are not limiting our instances to those where

c2
c1
> c∗(B), so it is possible that we often have situations where the Prudent policy

is optimal. We also note that the Prudent policy is optimal more frequently when

the system is small or large, but less frequently for medium systems. We expect the

69



Prudent policy to be optimal often for small systems as the set of potentially optimal

policies is quite small. For the medium systems there are more potentially optimal

policies, so the Prudent policy is optimal less often. Finally, for large systems, the

Prudent policy is optimal more often than for medium systems. This is consistent

with the results of Section 4.1.2. As B increases, the gain of the Prudent policy also

increases, and in particular for cases where λ < min(µ1, µ2), it approaches the optimal

gain as B →∞. So it is expected that as B increases, the Prudent policy should be

optimal more often.

On the other hand, the Greedy policy is optimal about 30% to 40% of instances

for most system sizes. This again is expected as the condition c1 > c2 is sufficient

but not necessary for optimality. We observe that the number of instances where

the Greedy policy is optimal reduces slowly as system size increases. This is also

expected, as we pointed out in Section 4.2.2 unless the stability condition holds it is

possible that the Greedy policy performs worse as the size of the buffer increases.

Both the LossProb and PvsG heuristic policies are optimal more than 80% of

instances for small systems and about 70% of instances for medium systems and be-

tween 70% and 80% of instances for large systems. These results provide encouraging

evidence that these heuristics may be a good alternative to finding the optimal pol-

icy. The results suggest that in medium systems there is more to be gained from

the additional work of finding the optimal policy, than in small or large systems.

Also, neither heuristic dominates the other in terms of how frequently each achieves

optimality. However, as system size increases, it appears that the PvsG heuristic

performs slightly better than the LossProb heuristic.

Now we analyze the results in terms of average performance of each policy relative

to the optimal policy. We compare the cost (not the gain), as this is a more intuitive,

but equivalent measure. We begin our analysis with small systems. Table 6 shows

the percentage of excess cost over the optimal long-run-average cost for each of the

70



Table 6: Average percentage additional cost over the optimal cost in small systems.

B Prudent Greedy LossProb PvsG

1 2.719 ± 0.301% 44.356 ± 12.908% 0.000 ± 3.10E-04% 0.000 ± 1.06E-06%
2 5.382 ± 0.590% 56.609 ± 18.296% 0.139 ± 4.19E-02% 0.101 ± 3.09E-02%
3 7.020 ± 0.801% 65.014 ± 22.418% 0.356 ± 9.15E-02% 0.220 ± 5.71E-02%

heuristics for B = 1, 2, 3 (averaged over all 1000 test instances) and the 95th percentile

confidence intervals. It is clear that both heuristics are on the average within 1%

of optimal. The Prudent policy performs one order of magnitude worse, with the

average for each case being less than 10% over optimality. The Greedy policy performs

the worst, at up to 65% above optimality. These results highlight the importance

of choosing the correct policy as naively choosing the Greedy policy can result in

enormous excess cost. Table 6 also shows that both heuristics yield near optimality

for small systems. Note that the difference in long-run-average cost between the

LossProb and PvsG heuristics, for small systems, is not statistically significant. On

the other hand, the differences between any other pair of policies are statistically

significant. We conclude that both heuristics outperform the Prudent policy, which

outperforms the Greedy policy.

Table 7: Average percentage additional cost over the optimal cost in medium sys-
tems.

B Prudent Greedy LossProb PvsG

4 8.202 ± 0.995% 66.003 ± 25.187% 0.542 ± 0.128% 0.273 ± 0.067%
5 8.671 ± 1.144% 70.417 ± 27.952% 0.709 ± 0.165% 0.326 ± 0.085%
6 8.098 ± 1.172% 75.099 ± 30.647% 0.970 ± 0.229% 0.356 ± 0.092%
7 8.037 ± 1.254% 78.728 ± 32.753% 1.230 ± 0.288% 0.374 ± 0.098%
8 6.936 ± 1.131% 81.995 ± 34.742% 1.301 ± 0.318% 0.404 ± 0.110%
9 6.301 ± 1.100% 85.183 ± 36.505% 1.404 ± 0.351% 0.423 ± 0.123%
10 6.103 ± 1.111% 87.233 ± 37.579% 1.548 ± 0.394% 0.435 ± 0.135%

Next we consider medium systems. Table 7 shows the percentage of excess cost

71



over the optimal long-run average cost for B = 4, ..., 10 (averaged over all 1000 test

instances) and the corresponding 95th percentile confidence intervals. The data shows

that both heuristics outperform the Greedy and the Prudent policies. Furthermore,

it is apparent that there is a greater penalty for using the Greedy policy when it is

not optimal than using the Prudent policy when it is not optimal. Table 7 shows

both heuristics are on the average within 2% of the optimal cost. In this case, the

difference in average excess cost for any pair of policies is statistically significant.

So, we can say that the PvsG heuristic has the best performance, followed by the

LossProb heuristic, the Prudent policy and the Greedy policy. Recall however, that

the PvsG heuristic requires more computation than the LossProb heuristic, so if this

is an important factor for the system administrator, the LossProb heuristic may be

a better alternative for medium systems.

Table 8: Average percentage additional cost over the optimal cost for large systems.

B Prudent Greedy LossProb PvsG

15 3.639 ± 0.863% 97.097 ± 42.561% 1.534 ± 0.504% 0.254 ± 0.097%
20 2.476 ± 0.713% 101.383 ± 44.877% 1.556 ± 0.596% 0.151 ± 0.068%
25 2.080 ± 0.685% 103.474 ± 45.788% 1.389 ± 0.640% 0.116 ± 0.058%
30 1.406 ± 0.565% 105.264 ± 46.868% 1.314 ± 0.681% 0.068 ± 0.035%

Finally, we consider large systems. Table 8 compares the excess long-run-average

cost over the optimal cost for B = 15, 20, 25, 30. Again, there is a greater cost for

using the Greedy policy when it is not optimal. In fact, from Tables 6, 7 and 8,

we can conclude that the performance of the Greedy policy gets worse as the buffer

size increases. This is consistent with our findings that the gain under the Greedy

policy is not monotone decreasing in most cases. Here, we observe that for very large

systems the Prudent policy performs well, in some cases as well as the heuristics.

Note that the difference in average excess cost between the Prudent policy and the

LossProb heuristic is not statistically significant. The difference in average excess

72



cost between any other pair of policies is statistically significant. So, we can state

that the PvsG heuristic delivers the best performance. Next in performance are the

LossProb heuristic and the Prudent policy. The Greedy policy performs the worst

on the average. Hence, for large systems it is best to use the PvsG heuristic. If

computational capacity is very limited the best alternative is to use either the Prudent

policy or the LossProb heuristic. We should note that although the performance of

the Prudent policy and the LossProb heuristic are similar on the average, Figure 9

shows that the LossProb heuristic chooses the actual optimal policy more often than

the Prudent policy. Hence, if the administrator is also interested in increasing the

likelihood of choosing the optimal policy, the LossProb heuristic is a better choice

than the Prudent policy.

Next, we focus on the worst-case performance of each of the policies tested. Table

9 shows the percentage of excess cost over the optimal long-run average cost for each

of the heuristics in the worst case of the 1000 test instances for each value of B that we

tested. In all cases we observe that the Greedy policy always has the highest worst-

case performance in excess cost. The Prudent policy performs approximately one

order of magnitude better in terms of worst-case excess cost. For small and medium

systems the PvsG heuristic is an order of magnitude below the Prudent policy in

worst-case performance, while the LossProb heuristic performs twice as badly, but

better than the Prudent policy. For large systems the PvsG heuristic clearly performs

better than the LossProb heuristic, which performs similarly to the Prudent policy.

Overall, the excess cost of the PvsG heuristic is never more than 30% over the optimal

cost. The LossProb heuristic and the Prudent policy are always within a factor of 2.5

of the optimal cost. The Greedy policy is between a factor of 30 and 100 times the

optimal cost in the worst case.

We conclude that if the system administrator must choose a naive policy, the

Prudent policy is a better choice than the Greedy policy. However, these results

73



Table 9: Worst Case percentage additional cost over the optimal cost.

B Prudent Greedy LossProb PvsG

1 28.8% 3462.6% 0.1% 0.0%
2 55.7% 4884.1% 7.4% 5.2%
3 73.6% 5871.7% 17.5% 10.4%
4 91.0% 6637.3% 21.3% 10.1%
5 103.4% 7246.8% 24.8% 14.6%
6 111.3% 7724.8% 29.8% 13.3%
7 123.3% 8097.9% 33.3% 14.4%
8 106.2% 8391.3% 37.0% 18.0%
9 118.8% 8621.2% 40.9% 18.5%
10 135.0% 8803.9% 45.0% 23.8%
15 105.8% 9304.5% 65.5% 15.5%
20 105.1% 9496.5% 85.2% 11.8%
25 102.2% 9584.6% 103.6% 10.9%
30 90.4% 9620.5% 120.3% 5.9%

show that always using either the Prudent or the Greedy policy is too naive and may

result in large excess costs, regardless of system size. Furthermore, the results of

this section show that just using the findings about the Greedy and Prudent policies

provided in this chapter, possibly in conjunction with the loss probabilities, the system

administrator can achieve near-optimal long-run average cost performance.

4.5 Conclusions

In this chapter we consider a similar problem to the one we explored in Chapter 3,

but now allow for identical, finite, arbitrary buffers at both stations. First, we focus

on the Prudent policy, which only admits an arrival if the loss probability is zero.

For the Prudent policy we provide a closed form expression for the long-run average

reward, as well as necessary and sufficient conditions for optimality. We also show

that the long-run average cost under this policy is monotone, and calculate its limit

as B → ∞. Then, we turn to the Greedy policy, which admits an arrival as long as

74



there is space at the first station. For the Greedy policy we give a matrix-analytic

solution for the long-run average cost and a sufficient condition for optimality.

Next, we explore the structural properties of the optimal policy. First, we identify

a subset of states where it is always optimal to admit incoming arrivals. This shows,

that no policy admits customers in fewer states than the Prudent policy. We show

that the optimal policy is not monotone with respect to the total number of customers

in the system or the length of the queue at the first station, nor with respect to the loss

probabilities of an arriving customer. We also provide a complete characterization of

the optimal policy for the special case where the buffer at each station is two, and we

show that for larger buffers the optimal policy can have a complicated structure.

Lastly, using the results about the Prudent and Greedy policies, together with in-

sights on the structure of the optimal policy, we design two heuristic admission control

policies. Numerical experiments show that always using either the Prudent or Greedy

policy is too naive and may result in average excess cost of up to 100% and 10000%,

respectively. Furthermore, the results indicate that using the results provided here

to evaluate the performance of the Prudent and Greedy policies and picking the one

with the smaller long-run average cost value yields near-optimal performance. Alter-

natively, using a heuristic based on the loss probabilities of the arriving customer can

yield near-optimal performance for systems of certain sizes, requiring fewer compu-

tations.

75



CHAPTER V

DYNAMIC CONTROL OF COMPLEX AUTHENTICATION

SYSTEMS

In this chapter, we consider a different admission and routing control problem. We

study a centralized system where requests for authentication arrive from different

users. The system has multiple authentication methods available and a controller

must decide how to assign a method to each request. We consider three different

performance measures: usability, operating cost, and security. We model each au-

thentication method as a multi-server queue and model the trade-offs between these

performance measures using a cost-based approach and a constraints-based approach.

For each approach we construct a Markov Decision Process (MDP) in order to derive

structural and computational results on the optimal admission and routing policy.

We also provide a numerical example to illustrate the trade-offs between the three

performance metrics, and show how to use our models to build an efficient frontier.

This chapter is organized as follows: Section 5.1 presents background information

and a more detailed description of the problem. Section 5.2 gives an overview of

the literature about this specific control problem. Section 5.3 presents a detailed

mathematical model of the system. In Section 5.4, we present a cost-based approach

to the problem. Using a MDP model, we find the structure of the optimal policy under

certain assumptions about the system characteristics. In Section 5.5, we introduce

a constraint-based approach using a constrained MDP model. Here we also find

the structure of the optimal policy under specific assumptions. Section 5.6 offers

a numerical example for illustration purposes. Finally, Section 5.7 concludes the

chapter. A summarized version of the main results in this chapter can be found in

76



Silva, Zhang and Ayhan [67].

5.1 Background

As mobile technology becomes ubiquitous, people are using their devices for more

tasks than ever. Many of these tasks require authentication, such as banking, making

purchases and sending secure communications. At the same time, modern mobile

devices are equipped with more hardware and sensors as standard features, including

multi-touch screens, biometric sensors, GPS and accelerometers (Bao et al. [4]). In

consequence, we are experiencing the simultaneous growth of demand for authentica-

tion and a proliferation of methods to perform it. Hence, there has been a significant

increase in the challenge of managing the hardware and software available for authen-

tication.

Authentication is a secondary task, and therefore latency in this process can cause

user dissatisfaction. We refer to the system’s usability as a general measure of the

user experience, which includes their dissatisfaction with latency. Extended latency

in secondary tasks has been linked with adverse effects on productivity and short

term memory (Trafton, Altmann and Brock [70]). Therefore, it is desirable to imple-

ment authentication schemes that minimize latency. On the other hand, more secure

methods of authentication often cause greater latency, and thus lower usability. So,

there is a trade-off between security and usability. It is also desirable for the system

administrator to use an authentication scheme that minimizes the system’s overall

operating cost, but in practice the cheaper authentication methods may have lower

usability and/or be less secure. Thus, there is a three-way trade-off between usability,

operating cost and security.

In order to adapt to changing conditions, the authentication system controller

must consider the state of the system when making decisions. For example, when the

system is experiencing high congestion, it may be better to incur additional cost in

77



order to reduce overall latency until the system reaches a less congested state. The

system must also consider the characteristics of the user and those of the request. For

instance, a request to transfer funds from a bank account may be subject to more

stringent security than one for checking its remaining balance. Similarly, requests

from premium customers may have higher usability expectations for the system to

meet than those from regular customers. Our objective is to develop a methodology

to manage complex authentication schemes. Specifically, we develop a stochastic

dynamic control approach to assigning different authentication methods to incoming

tasks, taking into account all three performance metrics, namely, usability, operating

cost, and security. In most cases, we focus on balancing cost and security, but we

also track how the methods we propose impact usability. In a few special cases we

propose methods to balance all three objectives simultaneously.

More specifically, we consider a centralized authentication system where requests

with distinct characteristics arrive from different users. The system has multiple

authentication methods available and a controller must decide how to assign an au-

thentication method to each request, based on the current state of the system and

the probability that the request comes from an impostor. In many applications each

request is associated with information about the user’s history, location, device, net-

work, the request’s nature, priority, urgency, and various other intrinsic and contex-

tual attributes. However, we assume that there is a pre-processing step in place,

which uses those attributes to estimate each request’s probability of being legitimate

based on such information, these probabilities are the inputs to our model. The

controller makes authentication assignment decisions using only the estimated prob-

abilities. The pre-processing step can be viewed as a module based on appropriate

statistical or machine learning algorithms. The development of such algorithms is an

interesting research topic by itself, and outside the scope of this thesis.

78



The dynamics of the authentication system are represented by queueing mod-

els with and without delay, depending on the amount of capacity available for each

method. We use results from queueing theory, as well as those on constrained and un-

constrained MDPs to develop a strategy for dynamically assigning incoming requests

to authentication methods that balance operational cost, latency and security.

5.2 Related Work

The literature available on this problem is limited. The existing literature focuses on

the security aspect. Historically, authentication systems used a single form of authen-

tication and treated all requests equally in all situations. Using available information

about users or authentication requests, was first considered in Denning and MacDoran

[16], where they propose confirming physical location as part of the authentication

process. The need to make authentication decisions based on the state of the system

was pointed out in Cheng [12], where authentication decisions are based on a mea-

sure of the level of risk to the system. In Clark et al. [13], they add the feature of

parameter uncertainty and time-sensitivity to the risk-based authentication model.

However, none of these models considers latency. The importance of the effects of

latency was particularly highlighted in modern mobile computing settings due to the

fact that the primary task via interaction with mobile devices can be so brief that

it is dominated by the time to authenticate, see for example Trafton et al. [70] and

Nagata [52].

A recent short paper by Kovad and Zhang [37], suggests preliminary ideas on

queueing theory-based methods for modeling complex authentication systems. The

present chapter incorporates some of those ideas in the detailed approach developed

here. We draw on various sources from the literature regarding admission and routing

control into networks of parallel queueing systems detailed in Chapter 2. To the best

of our knowledge, this is the first application of queueing theory and stochastic control

79



to dynamically control a complex authentication system.

5.3 Mathematical Model

We consider an authentication system where requests for authentication arrive from

different users. A single central controller must decide what authentication challenge

to issue to each incoming request. Based on their characteristics, a pre-processing

procedure has classified user requests into I classes, where each class consists of user

requests with the same likelihood of coming from an impostor. We assume that the

classification procedure is given, and that the controller only sees each request’s class.

Specifically, each request from class i has a fixed probability pi of coming from an

impostor, which is known to the controller as well. So the probability that a request

for authentication of class i comes from a true user is 1−pi. We assume requests from

each class arrive to the system following independent Poisson processes with rate λi

for each i = 1, 2, ..., I.

The system controller has full knowledge of the system state and can observe which

class each incoming request belongs to. It must decide how to assign these incoming

requests among J different available authentication methods. These methods may

include a password challenge, verification of biometric data, or any other data that

can be provided by the user (e.g., voice, image, video). Each authentication method

j has independent and identically distributed (i.i.d.) service times, with mean 1/µj.

These times are independent of each other and of the arrival processes. A graphical

representation of the system is provided in Figure 10.

We measure the level of security using two conditional probabilities: the proba-

bility of not authorizing a request given that it does not come from an impostor, also

known as Type-I error probability; and the probability of authorizing a request given

that it comes from an impostor, also called the Type-II error probability. Specifi-

cally, each method j’s Type-I error probability is denoted by αj and Type-II error

80



Figure 10: The authentication method assignment problem.

probability by βj. We measure operating cost by charging a fixed cost cj each time

authentication method j is used. To measure usability, we define a latency cost which

is proportional to the time that a request spends in the system (either waiting or in

service). Let hij be the latency cost per unit-time for type i requests assigned to

method j.

Our goal is to determine how to assign each incoming request to an appropriate

authentication method. Specifically, we define an assignment policy as a function π

whose input is the current state of the system and the class index of the incoming

request, and whose output is either a single action to be taken, i.e., a deterministic

policy, or a probability distribution over all the available actions, namely, a random-

ized policy. We aim to find an assignment policy that optimizes the long-run average

performance of the system in terms of its operating cost, security, and usability.

We develop two approaches, which depend on the parameters available to the

controller. In Section 5.4 we present a cost-based approach, which considers penalty

costs each time an error is committed. In Section 5.5 we introduce a constraint-based

approach which assumes that there is a bound on the percentage of requests that

are allowed to result in errors. For each approach, we present analytical results for

policies that optimize the operating cost and security, but not usability. However, we

81



also prescribe explicit formulas for assessing the usability measure, even if it is not

considered in the optimization process. Additionally, in the cases where all authenti-

cation methods in the system have infinite processing capacity, we provide methods

to find policies that achieve optimal performance in terms of all three metrics.

5.4 Cost Based Approach

In order to capture the trade-off between operating cost and security we assign a

penalty cost for committing errors. Specifically, we charge a cost CI for committing

Type-I error and CII for committing Type-II error. These costs are the same for

every authentication method and request class. The expected Type-I and Type-II

error costs will be determined by the total probability that a request of class i that

is assigned to method j results in an error. The Type-I error probability is given

by αij := (1 − pi)αj and the Type-II error probability will be given by βij := piβj.

Then the expected total cost of assigning a class i request to method j (including

operational cost and expected security cost) is given by:

cij := cj + αijCI + βijCII .

In order to determine an optimal policy it is necessary to make assumptions about

the capacity available for each authentication method. We solve the problem under

two capacity assumptions. First, we assume that each method has infinite processing

capacity. This is in line with systems used in practice, where authentication is handled

by data centers with very large capacity, and authentication methods such as password

verification or security questions require very few resources. Next, we assume that

one method in particular has finite capacity, while all others have infinite capacity.

Again, in practice one (or a few methods) may require some resource with limited

availability, such as a confirmation phone call to the user by a human agent.

82



5.4.1 Infinite Capacity for All Methods

If the capacity available to process requests at each method is infinite, then we can

model each authentication method as an M/G/∞ queue. That is, a queueing system

where arrivals follow a Poisson process, there are infinitely many servers and service

times are i.i.d. with a general probability distribution.

Note that, because each method has an infinite number of servers, the decision to

admit an arriving customer to a certain queue will not affect the capacity available

to subsequent customers. So, the optimal strategy for the controller is static, that

is, it does not depend on the current number of customers in the system, or on past

decisions. Hence, the optimal policy can be found by evaluating cij for each method

j, for each class i and assigning the method j∗(i) to class i where

j∗(i) = min
j
{cij} .

The optimal policy can be stated as: whenever an incoming request is of class i,

assign it to method j∗(i).

In this system, because there are infinitely many servers, the waiting time is zero

for every arrival. Hence, the expected latency cost incurred by a request of class i

that is assigned to method j will be hij
µj
. Furthermore, in this case we can determine

a policy which balances the three way trade-off between usability, operating cost and

security by defining

j∗(i) = min
j

{
cij +

hij
µj

}
.

In this case the optimal policy is stated as before: whenever an incoming request

is of class i, assign it to method j∗(i).

5.4.2 One Method with Finite Capacity

In this section, we consider the case of two methods, where Method 1 has a finite

capacity of M with m available servers whereas Method 2 has infinite servers. For

83



Figure 11: The finite capacity authentication method assignment problem.

simplicity of exposition, we assume there is only one method with infinite capacity.

However, the results in this section hold for an arbitrary finite number of authen-

tication methods each of which has infinitely many servers. It is only necessary to

group the best infinite capacity method for each request class j∗(i) into a virtual

method, and call that Method 2. We assume the server for Method 1 has an expo-

nentially distributed service time with service rate µ1. Method 2 has i.i.d. generally

distributed service times with rate µ2. Figure 11 represents this scenario graphically.

For tractability, in the remainder of this section we focus on finding policies that

balance operating costs, with security costs, not taking into account latency costs.

However, at the end of the section we provide an expression to calculate the latency

cost of a given policy.

Let µ1,k be the service rate for Method 1 when there are k customers there. That

is µ1,k := min(k,m)µ1. And let Λ :=
∑I

i=1 λi be the total arrival rate.

The problem is a continuous-time stochastic process, but we can model it as a

discrete-time MDP using uniformization, as in Lippman [48]. We follow a similar

procedure as in previous chapters. We observe the system only at discrete times

immediately after certain events. Note that since Method 2 has infinite capacity, the

number of customers in service at that method will not affect the decision to assign a

new customer to either method, therefore we can ignore the job completion events at

84



Method 2. Furthermore, we assume that all the Method 1 servers work at all times.

If they are serving an actual customer, we call that a real service; otherwise we call it

a fictitious service. Then, since inter-arrival times for all customer types and service

times follow an exponential distribution, we can use the uniformization procedure

and observe the process immediately after each event of the following types: (a) a

new customer arrival, and (b) a (real or fictitious) service completion at Method 1.

Then the time between events follows an exponential distribution with parameter,

(µ1,m + Λ) which (without loss of generality) we assume is equal to 1.

Now we proceed to define the MDP. We use the sub-index n to define the n-

th event. Let Xn ∈ {0, 1, 2...,M} be the number of customers at Method 1 at the

time of the n-th event. Let Yn ∈ {0, 1, 2, ..., I} define the event just observed in the

system, where Yn = 0 means the event was a (real or fictitious) service completion,

and Yn = i ≥ 1 means the last event was a type i arrival. Then we define the state

of the MDP at instant n as the tuple (Xn, Yn), with a state space S. The available

actions at each state s are:

As =


{0} s = (k, 0), k ∈ {0, 1, 2, ...,M},

{1, 2} s = (k, i), k ∈ {1, ...,M}, i ∈ {1, ..., I},

{2} s = (k, i), k = M, i ∈ {1, ..., I}.

Action 0 represents doing nothing, and actions 1 and 2 stand for assigning the

request that just arrived to Method 1 or 2, respectively. Recall the assumption that

µ1,m + Λ = 1. Let p(s′|s, a) denote the transition probabilities from state s to state s′

when action a is taken in state s. First consider the probability that the next event

is an arrival:

p((k, l)|(k, 0), 0) = λl ∀l ∈ {1, ..., I}, k = 0, 1, ...,M

p((k + 1, l)|(k, i), 1) = λl ∀i, l ∈ {1, ..., I}, k = 0, 1, ...,M − 1

p((k, l)|(k, i), 2) = λl ∀i, l ∈ {1, ..., I}, k = 0, 1, ...,M.

85



Now consider the probability that the next event is a real service completion (this

event is only possible if k ≥ 1):

p((k − 1, 0)|(k, 0), 0) = µ1,k k = 1, ...,M

p((k, 0)|(k, i), 1) = µ1,k ∀i ∈ {1, ..., I}, k = 1, ...,M

p((k − 1, 0)|(k, i), 2) = µ1,k ∀i ∈ {1, ..., I}, k = 0, 1, ...,M.

Finally, consider when the event is a fictitious service completion. Note that this

event is only possible when k ≤ m− 1:

p((k, 0)|(k, 0), 0) = 1− Λ− µ1,k ∀k = 0, 1, ...,m− 1

p((k + 1, 0)|(k, i), 1) = 1− Λ− µ1,k+1 ∀i ∈ {1, ..., I}, k = 0, 1, ...,m− 1

p((k, 0)|(k, i), 2) = 1− Λ− µ1,k ∀i ∈ {1, ..., I}, k = 0, 1, ...,m− 1.

All other transition probabilities p(s′|s, a) = 0.

To complete the definition of the MDP, we define the immediate reward r(s, a) of

taking action a at each state s. These are:

r((k, i), 0) = 0 ∀i ∈ {1, ..., I}, 0 ≤ k ≤M,

r((k, i), 1) = −ci1 ∀i ∈ {1, ..., I}, 0 ≤ k ≤M − 1,

r((k, i), 2) = −ci2 ∀i ∈ {1, ..., I}, 0 ≤ k ≤M.

Note that for any stationary deterministic or randomized policy, the resulting

model is a discrete-time Markov chain. Under any stationary policy state (0, 0) is

reachable from any state if sufficiently many transitions occur without an arrival.

Therefore, this state is recurrent under every stationary policy and every other state

is either in the same recurrent class or transient. Hence, the model is unichain, that

is, under any policy, the resulting Markov chain has a single recurrent class. Note that

state (0, 0) is also aperiodic, since a fictitious service triggers a transition to itself.

Because the model is unichain and aperiodic, it has finite state and action spaces and

86



bounded rewards, this implies that there exists an optimal policy that is stationary

and deterministic (see Theorem 8.4.2 in Puterman [58]). So, we consider only these

policies. We define a stationary deterministic policy π as a function that takes the

state of the system s ∈ S and returns an action a ∈ As.

The objective is to find a policy π∗ that maximizes the long run average reward.

Note that all rewards are non-positive, because they represent costs. Define Eπ as

the expectation under policy π, then the long run average reward under policy π is

given by

gπ = lim
N→∞

1

N
Eπ
[

N∑
n=1

r(sn, an)

]
. (15)

The limit in the definition of gπ is guaranteed to converge to the same value for

any initial state, for a given stationary deterministic policy π, because the model is

unichain and has a finite state space.

Let us define a probability distribution that will be useful. Let γπ(k) be the long

run average fraction of time that there are k customers at Method 1, under policy π.

Note γπ is a probability distribution, with support in k = 0, 1, ...,M .

Suppose that for a certain customer class l we have cl1 ≥ cl2, and for all other

customer classes ci1 < ci2. That means that sending a request from class l to Method

2 will result in an immediate cost saving of cl1−cl2, compared to sending it to Method

1. Furthermore, if the gatekeeper sends a request from class l to Method 2 the length

of the queue will remain unchanged; the next arrival will observe the exact same

state as the previous one and the gatekeeper will have the same set of alternatives.

However, if the new request is sent to Method 1, then the length of the queue increases

by 1. It follows, that for any fixed k, a policy π that always sends class l requests to

Method 1 will have a greater γπ(M) than one that sends all such requests to Method

2, if the policies are identical in every other state. Hence, the policy π will send

arrivals from other customer classes to Method 2 more frequently (when it is in the

full state) and this will result in additional costs of ci2 − ci1 each time it happens.

87



Because this holds for any k, it follows that π∗(k, l) = 2 for all k under any optimal

policy. This argument extends to the case where there are several customer classes

such that ci1 ≥ ci2. Therefore, from now on we assume ci1 < ci2 for all i without loss

of generality.

For any unichain MDP there exists an optimal stationary deterministic policy that

satisfies the following optimality equations (see Theorem 8.4.4 of Puterman [58]):

wπ(s) + gπ = max
a∈As

{
r(s, a) +

∑
j∈S

p(j|s, a)w(s)

}
∀s ∈ S

where wπ is called the bias vector under that policy. Define wπ component-wise as:

wπ(s) = Eπ

[
∞∑
n=0

(r(sn, π(sn)− gπ)|s0 = s

]
.

We are only concerned with the states where more than a single action is available.

Let us re-write the optimality equations for states (k, i) such that k ∈ {0, 1, 2, ...,M−

1}, i ∈ {1, 2}) as:

wπ(k, i) + g = max {−ci1 + Uπ(k + 1),−ci2 + Uπ(k)} (16)

where

Uπ(k) = µ1,kwπ((k − 1), 0) +
I∑
i=1

λiwπ(k, i) + (m− k)+µ1wπ(k, 0),

with (m − k)+ = max(m − k, 0). We observe that this model is analogous to an

admission control problem presented in Lewis et al. [44]. Their results can be applied

here with proper modifications. Define ηπ(s) as the long-run average fraction of time

the Markov chain spends at state s under policy π. We get the following results.

Proposition 16. Under any optimal policy π, Uπ(k) is strictly decreasing, that is

Uπ(k + 1)− Uπ(k) < 0 ∀k ∈ (0, 1, 2, ...,M − 1).

Proof. We use induction on k. For k = 0, if π(0, i) = 2 for some i, then from the

optimality equation we can conclude that

(ci2 − ci1) + Uπ(k + 1)− U(k) ≤ 0

88



therefore, since ci1 < ci2 for all i, we have Uπ(k + 1) − Uπ(k) < 0. So let’s assume

π(0, i) = 1 for all i. Then from the definition of wπ(0, 0)

Uπ(0) =
I∑
i=1

λiwπ(0, i) + µ1,mwπ(0, 0) =
I∑
i=1

λiwπ(0, i) + µ1,m(Uπ(0)− gπ).

Applying the assumption that π(0, i) = 1 for all i, we get:

Uπ(0) =
I∑
i=1

λi(−ci1 + Uπ(1)− gπ) + µ1,m(Uπ(0)− gπ)

and applying the fact that Λ + µ1,m = 1 we get

Uπ(0) =
I∑
i=1

λi(−ci1 + Uπ(1)− gπ) + (1− Λ) (Uπ(0)− gπ).

Hence
I∑
i=1

λi(Uπ(1)− Uπ(0)) = gπ +
I∑
i=1

λici1.

Let Ri be the set of states where customers in class i are sent to Method 1, under the

policy π, then:

gπ = −
I∑
i=1

∑
k:(k,i)∈Ri

η(k, i)λici1 −
I∑
i=1

∑
k:(k,i)/∈Ri

η(k, i)λici2.

It follows that:

gπ +
I∑
i=1

λici1 < 0

because ci1 < ci2 and there must be some states for which we assign arrivals to Method

2. Therefore, Uπ(1) − Uπ(0) < 0. Now assume the statement holds for k − 1. Once

again if we let π(k, i) = 2, for some i then the statement follows, from

(ci2 − ci1) + Uπ(k + 1)− Uπ(k) ≤ 0.

So, let π(k, i) = 1 for all i. Here

Uπ(k) = µ1,kwπ((k − 1), 0) +
I∑
i=1

λiwπ(k, i) + µ1,(m−k)+wπ(k, 0)

= µ1,kwπ((k − 1), 0) +
I∑
i=1

λiwπ(k, i) + (1− µ1,k − Λ)µ1wπ(k, 0)

89



applying the the fact that π(k, i) = 1 for all i, we get

I∑
i=1

λi(Uπ(k + 1)− Uπ(k)) = gπ +
I∑
i=1

λici1 + µ1,k(Uπ(k)− U(k − 1)).

Then by induction hypothesis, and the same argument as before we get

(Uπ(k + 1)− Uπ(k)) < 0.

Define

∆Uπ(k) = Uπ(k + 1)− Uπ(k)

and

∆2Uπ(k) = ∆(∆Uπ(k)).

Similarly define:

∆wπ(k, i) = wπ(k + 1, i)− wπ(k, i),

then we can write the following proposition.

Proposition 17. Under any optimal policy π, Uπ(k) is strictly concave, that is

∆2Uπ(k) < 0 ∀k ∈ (0, 1, 2, ...,M − 2).

Proof. We use induction on k. For the base case we show the statement holds

for k = 0, we have

Uπ(0) =
I∑
i=1

λiwπ(0, i) + (1− Λ)wπ(0, 0) (17)

Uπ(1) =
I∑
i=1

λiwπ(1, i) + µ1wπ(0, 0) + (1− (Λ + µ1))wπ(1, 0) (18)

Recall that wπ(k, 0) = Uπ(k)− gπ, therefore rearranging the above we get

gπ =
I∑
i=1

λiwπ(0, i)−
I∑
i=1

λi (Uπ(0)− gπ)

=
I∑
i=1

λiwπ(1, i) + µ1wπ(0, 0)− (Λ + µ1) (Uπ(1)− gπ) .

90



Hence, we have:

I∑
i=1

λiwπ(0, i)−
I∑
i=1

λi (Uπ(0)− gπ) =
I∑
i=1

λiwπ(1, i)+µ1wπ(0, 0)−(Λ + µ1) (Uπ(1)− gπ) .

Re-arranging a few terms, and using wπ(k, 0) = Uπ(k)− gπ, we get:

I∑
i=1

λi(∆wπ(0, i)−∆Uπ(0)) = µ1∆Uπ(0).

Now define the following partition of the customer classes:

1. AAπ = The set of customer classes, such that the given optimal policy π routes

them to Method 1, when there are either 0 or 1 customers at Method 1.

2. RRπ = The set of customer classes, such that the given optimal policy π routes

them to Method 2, when there are either 0 or 1 customers at Method 1.

3. ARπ = The set of customer classes, such that the given optimal policy π routes

them to Method 1, when there are 0 customers at Method 1, and to Method 2,

when there is 1 at Method 1.

4. RAπ = The set of customer classes, such that the given optimal policy π routes

them to Method 2, when there are 0 customers at Method 1, and to Method 1,

when there is 1 at Method 1.

Then we have

µ1∆Uπ(0) =
∑
i∈AA

λi(∆wπ(0, i)−∆Uπ(0)) +
∑
i∈RR

λi(∆wπ(0, i)−∆Uπ(0))

+
∑
i∈AR

λi(∆wπ(0, i)−∆Uπ(0)) +
∑
i∈RA

λi(∆wπ(0, i)−∆Uπ(0))

Note, from the optimality equation (16) for 0 and 1, using the definition of Uπ(0) and

Uπ(1) in (17), (18), we can conclude the following:

1. For i ∈ AAπ we have ∆wπ(0, i) = ∆Uπ(1).

91



2. For i ∈ RRπ we have ∆wπ(0, i) = ∆Uπ(0).

3. For i ∈ ARπ we have ∆wπ(0, i) = ci1 − ci2.

4. For i ∈ RAπ we have ∆wπ(0, i) = ci2 − ci1 + Uπ(1).

Hence

µ1∆Uπ(0) =
∑
i∈AAπ

λi(∆Uπ(1)−∆Uπ(0)) +
∑
i∈ARπ

λi(ci1 − ci2 −∆Uπ(0))

+
∑
i∈RAπ

λi(ci2 − ci1 + ∆Uπ(1))

=
∑
i∈AAπ

λi(∆
2Uπ(0)) +

∑
i∈ARπ

λi(ci1 − ci2 −∆Uπ(1)) + ∆2Uπ(0)

+
∑
i∈RAπ

λi(ci2 − ci1 + ∆Uπ(1))

Then it follows that:∑
i∈AAπ∪ARπ

λi(∆
2Uπ(0)) =

µ1∆Uπ(0) +
∑
i∈ARπ

λi(ci2 − ci1 + ∆Uπ(1))−
∑
i∈RAπ

λi(ci2 − ci1 + ∆Uπ(1)).

Consider the right-hand-side of the expression above. This first term is negative

because Uπ is decreasing. The second term is non-positive, because for the classes in

ARπ it is optimal to send arrivals to Method 2 when there is 1 customer at Method

1. Similarly, for the last term, it is optimal to send arrivals from the classes in RAπ

to Method 1, that is ci2 − ci1 + ∆Uπ(1) ≥ 0, when there is 1 customer at Method 1.

Then, since Uπ is decreasing, we conclude ∆2Uπ(0) < 0.

Now assume the statement holds for k − 1. Once again we use the definition of

Uπ, for k and k + 1 and get

gπ =
I∑
i=1

λiwπ(k, i) + µ1,kwπ(k − 1, 0)− (Λ + µ1,k) (Uπ(k)− gπ)

=
I∑
i=1

λiwπ(k + 1, i) + µ1,k+1wπ(k, 0)− (Λ + µ1,k+1) (Uπ(k + 1)− gπ) .

92



Re-arranging a few terms, and using wπ(k, 0) = Uπ(k)− gπ, we get:

I∑
i=1

λi(∆wπ(k, i)−∆Uπ(k)) = 1{k<m}µ1∆Uπ(k) + µ1,k∆
2Uπ(k − 1)

Now define the following partition of the customer classes:

1. AAπk = The set of customer classes, such that the given optimal policy π routes

them to Method 1, when there are either k or k + 1 customers at Method 1.

2. RRπ
k = The set of customer classes, such that the given optimal policy π routes

them to Method 2, when there are either k or k + 1 customers at Method 1.

3. ARπ
k = The set of customer classes, such that the given optimal policy π routes

them to Method 1, when there are k customers at Method 1, and to Method 2,

when there are k + 1 customers at Method 1.

4. RAπk = The set of customer classes, such that the given optimal policy π routes

them to Method 2, when there are k customers at Method 1, and to Method 1,

when there are k + 1 customers at Method 1.

Then we have

1{k<m}µ1∆Uπ(k) + µ1,k∆
2Uπ(k − 1)

=
∑
i∈AAπk

λi(∆wπ(k, i)−∆Uπ(k)) +
∑
i∈RRπk

λi(∆wπ(k, i)−∆Uπ(k))

+
∑
i∈ARπk

λi(∆wπ(k, i)−∆Uπ(k)) +
∑
i∈RAπk

λi(∆wπ(k, i)−∆Uπ(k))

By a similar argument as before we get

1{k<m}µ1∆Uπ(k) + µ1,k∆
2Uπ(k − 1)

=
∑
i∈AAπk

λi(∆
2Uπ(k)) +

∑
i∈ARπk

λi(ci1 − ci2 −∆Uπ(k + 1) + ∆2Uπ(k))

+
∑
i∈RAπk

λi(ci2 − ci1 + ∆Uπ(k + 1))

93



Then it follows that:

∑
i∈AAπk∪AR

π
k

λi(∆
2Uπ(k)) =1{k<m}µ1∆Uπ(k) + µ1,k∆

2Uπ(k − 1)

+
∑
i∈ARπk

λi(ci2 − ci1 + ∆Uπ(k + 1))

−
∑
i∈RAπk

λi(ci2 − ci1 + ∆Uπ(k + 1)).

Consider the right-hand-side of the expression above, by the same reasoning as for

the base case, plus using the previous proposition and using the induction hypothesis

we can conclude ∆2Uπ(k) < 0. This completes the induction.

Theorem 5. There exists an optimal policy π∗ such that: for each customer class i,

there exists a threshold k∗i such that for each k < k∗i we have π∗(k, i) = 1 and for each

k ≥ k∗i we have π∗(k, i) = 2.

Proof. Suppose that π∗ is an optimal policy for which the optimality equations

hold. Because this is a unichain model with finite state and action spaces such a policy

is known to exist. Let Uπ∗(k), be the function U(k) in the optimality equations under

π∗. Choose an arbitrary customer class i, and let k∗i be the smallest k such that

π(k, i) = 2. The optimality equations hold, so

(ci2 − ci1) + (Uπ∗(k
∗
i + 1)− Uπ∗(k∗i )) ≤ 0.

By the concavity of Uπ∗ it follows that

(ci2 − ci1) + (Uπ∗(k + 1)− Uπ∗(k)) ≤ 0

for all k > k∗i . Therefore π∗(k, i) = 2 for all k > k∗i . Since we chose i arbitrarily, the

result holds for each class i.

We say a policy π is of pure trunk-reservation form, if

1. There exists a request class i such that π(k, i) = 1 for k = 0, 1, ...,M − 1.

94



2. For each i there exists a threshold ki such that π(k, i) = 1 for k = 0, 1, ..., ki− 1

and π(k, i) = 2 for k = ki, ...,M − 1.

3. Furthermore, we say a trunk reservation policy is ordered by bi, if for some

class-specific attribute bi the following holds: For two customer classes i, l we

have ki ≥ kl if and only if bi ≤ bl.

Corollary 4. There exists an optimal policy π∗ which is of pure trunk-reservation

form, ordered by ci1 − ci2.

This structure is significant because it is both intuitive and easy to implement.

Also, knowing the structure of the policy greatly reduces the universe of potentially

optimal policies, making it computationally tractable to solve the problem even for

larger instances.

Recall that the system administrator wishes to balance operating cost, security

and usability. In this subsection we have not included the latency cost hij, so this

solution only balances the operating cost and the security of the system. It does not

take into account usability. If the administrator wants to track the usability measure

for a given policy π, the average latency cost experienced by a type i user, can be

calculated as:
M∑
k=0

γπ(k)

(
hi1

(
(k + 1−m)+

mµ1

+
1

µ1

)
1{π(k,i)=1} +

hi2
µ2

1{π(k,i)=2}

)
.

In the next section, we solve the problem under the same capacity assumptions

as in this section, but assuming there are hard constraints on the fraction of errors of

each type that can be committed.

5.5 Constraint Based Approach

The model presented in the previous section depends heavily on the costs of com-

mitting errors, namely, CI and CII . However, in practice these costs involve several

consequences from committing an error and an accurate estimation may be difficult.

95



On the other hand, subject matter experts may already have in mind a target bound

on the fraction of authentications that result in each type of error. In this section,

instead of having costs associated with Type-I and Type-II error, we assume that

there is a known upper bound on the proportion of requests that suffer Type-I and

Type-II errors, called ᾱ and β̄, respectively. Now the controller must assign an au-

thentication method to each arriving user request, while ensuring that the long-run

fraction of arrivals that result in a Type-I error is below ᾱ and also that the long-run

fraction of arrivals that result in a Type-II error is below β̄.

As in Section 5.4, we will first analyze an authentication system where each method

has infinitely many servers available, and then a system where one method has finite

capacity, while all others have infinite capacity. In the second case, we will again

simplify the problem by grouping all finite-capacity methods into a single method.

5.5.1 Infinite Capacity for All Methods

Once again, if the capacity available to process each request is very large, then we can

assume there are infinitely many servers at each method. So, we treat each method

as an M/G/∞ queue. Because all the parameters are stationary, it follows that there

exists a stationary policy which is optimal. Furthermore, as in Section 5.4.1, the

decision of where to route an incoming request does not depend on the current state

of the system and will not affect the cost of future assignments. Therefore, there

exists a static policy which is optimal. Hence, we will consider only such policies.

Then, we can define a randomized policy π, by defining qπi,j as a map from I × J to

[0, 1], where qπi,j is the probability that a type i customer is assigned to method j,

under policy π. Clearly, we require
J∑
j=1

qπij = 1 ∀i ∈ {1, ..., I}.

Assume (without loss of generality) that Λ = 1, then the probability that the

reward for a given arrival is −cj is given as:
∑I

i=1 λiq
π
ij. Then the long run average

96



expected reward per customer of policy π would be:

lim
t→∞

Eπ
− 1

N(t)

N(t)∑
n=0

J∑
j=1

cj

I∑
i=1

λiq
π
i,j

 ,
where N(t) is the counting process of all arrivals. Similarly we can calculate the

proportion of arrivals that result in Type-I errors under policy π as

lim
t→∞

Eπ
 1

N(t)

N(t)∑
n=0

J∑
j=1

I∑
i=1

λiαijq
π
i,j

 ,
and the proportion of Type-II errors is

lim
t→∞

Eπ
 1

N(t)

N(t)∑
n=0

J∑
j=1

I∑
i=1

λiβijq
π
i,j

 .
The three previous limits all converge, because all the parameters are stationary

and bounded, and the counting process N(t)→∞ with probability 1 as t→∞.

Therefore, if Π are all the potential policies, we can write the problem as the

following optimization problem:

(SP1) : max
π∈Π

− lim
t→∞

Eπ
 1

N(t)

N(t)∑
n=0

J∑
j=1

cj

I∑
i=1

λiq
π
i,j


subject to

lim
t→∞

Eπ
 1

N(t)

N(t)∑
n=0

J∑
j=1

I∑
i=1

λiαijq
π
i,j

 ≤ ᾱ

lim
t→∞

Eπ
 1

N(t)

N(t)∑
n=0

J∑
j=1

I∑
i=1

λiβijq
π
i,j

 ≤ β̄

J∑
j=1

qπi,j = 1 ∀ i = 1, ..., I

qπi,j ≥ 0 ∀ i = 1, ..., I, j = 1, ..., J

Proposition 18. There exists an optimal policy π∗ for (SP1), which is randomized

and static. Assume Λ = 1, then such a policy can be determined by solving the

97



following linear program

(LP1) : max

{
−

J∑
j=1

I∑
i=1

cjλiqij

}

subject to
J∑
j=1

I∑
i=1

λiαijqij ≤ ᾱ

J∑
j=1

I∑
i=1

λiβijqij ≤ β̄

J∑
j=1

qij = 1 ∀i = 1, ..., I

qij ≥ 0 ∀i = 1, ..., I, j =, ..., J

and defining the policy π∗ as follows: let q∗ be an optimal solution to (LP1), whenever

the controller receives a type i request, he should assign it to method j with probability

q∗ij.

Proof. The problem of determining an optimal policy consists of determining

probabilities qij,∀i ∈ {1, ..., I}, j ∈ {1, ..., J}, where qij is a decision variable, repre-

senting the probability of assigning each incoming request from class i to authentica-

tion method j.

Since the objective (the reward) and the constraints (fraction of errors) of the op-

timization problem are expressed in terms of expectations, and the state and action

spaces are finite, those expectations can be expressed as finite sums, we can formulate

it as a deterministic Linear Program (LP). Consider the arrivals of all requests, which

by assumption follow a Poisson process with rate Λ. Each arrival collects a reward

which is i.i.d. We consider costs as negative rewards, as in previous sections. There-

fore, we have a Poisson process, where each arrival has bounded i.i.d. rewards. This

is a renewal-reward process. For this type of process it is known (see, for example,

Proposition 3.4.1 in Resnick [60]) that the long run average reward is equal to the

98



expectation of a single reward, that is:

lim
t→∞

Eπ
− 1

N(t)

N(t)∑
n=0

J∑
j=1

cj

I∑
i=1

λiq
π
i,j

 = −
J∑
j=1

cj

I∑
i=1

λiqij.

By the same argument the long run average fraction Type-I errors is equal to

the probability that a single arrival will result in a Type-I error; and similarly for

Type-II errors. Therefore, we can express the stochastic optimization problem (SP1)

as (LP1). So a solution to (LP1) determines an optimal policy for (SP1).

In this case we can further capture the three-way trade-off between usability, cost

and security by adding the following constraint to the (LP1) model:

J∑
j=1

I∑
i=1

λiqij
hij
µj
≤ h̄ (19)

where h̄ is an upper bound on the average latency cost experienced by all users. Call

the new LP which includes constraint (19), (LP1′). Appropriately adjusting ᾱ, β̄

and h̄ allows the system administrator to give more priority to security, usability

or operating cost. Section 5.6 uses a numerical example to illustrate how a system

administrator can use (LP1′) to build an efficient frontier of non-dominated solutions

to choose from.

5.5.2 One Method with Finite Capacity

In this section, we analyze the case where one method has finite capacity and one

method has infinite capacity. Following the same procedure as in the cost-based

approach, the results presented here can be extended to the case where there are

multiple methods with infinite capacity. Assume Method 1 has m parallel identical

servers, with exponentially distributed service times, and a total finite capacityM and

Method 2 has infinitively many parallel identical servers. This is the same situation

as depicted in Figure 5.4.2.

This problem can be reduced to an admission control problem to Method 1 with

constraints. Fan-Orzechowski and Feinberg [18] solve an admission control problem,

99



which is analogous to this one. In their setup a reward is collected for each admission

and costs of several types are incurred for each rejection. There is a constraint on how

much of each cost is incurred on average. The problem presented here is similar to

that one, but differs in a few aspects. First, rewards (negative costs) are collected for

both admissions and rejection. Similarly, penalties are incurred not only when there

is a rejection (corresponding to using Method 2), but also when there is admission

(corresponding to using Method 1). Finally, our model is also different in the sense

that the penalties are not monetary costs, but a measure of the risk of committing

an error. However, if we define r := c2 − c1, then r can be considered a reward

gained each time we assign a request to Method 1. Similarly, we can define αi2 − αi1

and βi2 − βi1 as penalties for the Type-I and Type-II fraction of errors, respectively.

In this case our model is equivalent to the one presented in Fan-Orzechowski and

Feinberg [18]. We note that those authors only consider costs in the constraints, but

their results hold for any constraint which is a weighted average of the state-action

frequencies, as evidenced by our application.

Fan-Orzechowski and Feinberg [18] model a similar parllel queueing system as a

semi-Markov process. We take an alternative approach and model the problem as

an MDP with constraints, using uniformization. First, we model the unconstrained

problem as an MDP, then we add the constraints. Note that, for the unconstrained

problem we can use the same MDP formulation described in Section 5.4.2, except

that the rewards for this model are different.

Hence we get the same uniformization constant Λ+µ1,m <∞, the same state space

S and the same actions for each state As. We assume (without loss of generality)

that Λ = 1. Then, we get the same transition probabilities p(s′|s, a), as defined

in Section 5.4.2, except each probability needs to be divided by Λ + µ1,m. In this

case, because we are modeling the problem as admission control into Method 1 we

define the rewards differently. When determining the reward of assigning a request to

100



Method 1 or Method 2 (actions 1 and 2), we define the reward as the relative savings

compared to assigning every incoming request to Method 2. When the last event was

a service completion, the only available action is 0 or do nothing, clearly the 0 action

has 0 reward. Hence, the rewards are given by:

r((k, i), 0) = 0 ∀i ∈ {1, ..., I}, 0 ≤ k ≤M,

r((k, i), 1) = c2 − c1 = r ∀i ∈ {1, ..., I}, 0 ≤ k ≤M − 1,

r((k, i), 2) = c2 − c2 = 0 ∀i ∈ {1, ..., I}, 0 ≤ k ≤M.

This is a unichain MDP, by the same argument as in Section 5.4.2. Because all

the parameters are stationary, the MDP is unichain and the state and action spaces

are finite, there exists a stationary deterministic policy which is optimal. This implies

that there exist stationary randomized policies which are optimal, since deterministic

policies are a subset of randomized policies.

We define a stationary randomized policy π, using a mapping yπ : {s = (k, i) ∈

S : i 6= 0 k 6= M} → [0, 1], where the policy π is defined as follows:

1. If a request of type i arrives when there are k customers at Method 1, assign it

to Method 1 with probability yπ(k, i).

2. If a request of type i arrives when there are k customers at Method 1, assign it

to Method 2 with probability 1− yπ(k, i).

3. If a request of type i arrives when there are M customers at Method 1, assign

it to Method 2.

4. If there is a real or fictitious service completion, do nothing.

Note that for any possible policy π, there exists a yπ that fully determines it. Our

objective is to find a policy π∗ which maximizes the long run average gain gπ, defined

in (15). The limit in (15) is guaranteed to converge to the same value for any initial

101



state, for a given stationary randomized policy π, because the model is unichain and

has a finite state space.

In this model, we observe that under a given policy π the number of customers

at Method 1 can be modeled as a Markov chain {Zn, n = 0, 1, ...}. Define γπ(k)

(as in section 5.4.2) as the long run fraction of time there are k customers in the

system under policy π. Now, following a similar argument as in Proposition 18 we

can re-write the gain gπ under a stationary randomized policy π, as

gπ = r

I∑
i=1

λi

M−1∑
k=0

yπ(k, i)γπ(k), (20)

where yπ and γπ satisfy the following balance and normalization equations:

I∑
i=1

λiyπ(k, i)γπ(k) = µ1,k+1γπ(k + 1) ∀k = 0, 1, ...,M − 1 (21)

M∑
k=0

γπ(k) = 1 (22)

γπ(k) ≥ 0 ∀k = 0, 1, ...,M. (23)

Here, because the resulting Markov chain is unichain, aperiodic and has finite

state space, it follows that for a given policy π, with a specific yπ there exists a

unique solution γπ to (21), (22) and (23).

By the above argument, finding a policy π that maximizes gπ is equivalent to

finding a pair (yπ, γπ), which maximize (20), subject to (21), (22) and (23). Since yπ

and γπ are both variables this is not an LP. But we can apply a change of variables,

defining xπ(k, i) = yπ(k, i)γπ(k) and formulate the following linear program (we drop

the π sub-indices for convenience):

102



(LP2) : max

{
r

I∑
i=1

λi

M−1∑
k=0

x(k, i)

}

subject to
I∑
i=1

λix(k, i) = µ1,k+1γ(k + 1) ∀k = 0, 1, ...,M − 1

M∑
k=0

γ(k) = 1

0 ≤ x(k, i) ≤ γ(k) ∀i = 1, ..., I, k = 0, 1, ...,M − 1.

In (LP2) the decision variables are x and γ.

Proposition 19. Let (x∗, γ∗) be an optimal solution to (LP2) then setting

yπ∗(k, i) =


x∗(k, i)

γ∗(k)
γ∗(k) > 0

0 otherwise
(24)

defines a policy π∗ which is optimal for the unconstrained MDP.

Proof. We proceed by contradiction. Suppose there exists another policy π′ that

is feasible and performs better than π∗ for the unconstrained MDP. Then there exists

a pair (yπ′ , γπ′) such that (21), (22) and (23) hold. Set x′(k, i) = yπ′(k, i)γπ′(k, i)

for each (k, i). Then the pair (x′, γπ′) is feasible for (LP2) and performs better

than (x∗, γ∗). This contradicts the optimality of (x∗, γ∗). So π∗ is optimal for the

unconstrained MDP.

Now we consider the constrained MDP. By a similar argument as in Proposition

18 we can formulate the constraint on the long-run fraction of requests that result in

Type-I and Type II errors under policy π, respectively as
I∑
i=1

λi

[
αi2(1−

M−1∑
k=0

yπ(k, i)γ(k)) + αi1

M−1∑
k=0

yπ(k, i)γ(k)

]
≤ ᾱ (25)

I∑
i=1

λi

[
βi2(1−

M−1∑
k=0

yπ(k, i)γ(k)) + βi1

M−1∑
k=0

yπ(k, i)γ(k)

]
≤ β̄. (26)

103



Hence we define the constrained MDP as maximizing (20), subject to (21), (22),

(23), (25) and (26). Once again we use the x(k, i) variables to formulate a linear

program. Suppose (x, γ) is a solution to (LP2) then the sum
∑M−1

k=0 x(k, i) represents

the long-run fraction of type i arrivals that are assigned to Method 1. Conversely

1−
∑M−1

k=0 x(k, i) is the long-run fraction of type i arrivals that are assigned to Method

2. Then, we can write a new LP, which considers the constraints on the long-run

fraction of errors as:

(LP3) : max

{
r

I∑
i=1

λi

M−1∑
k=0

x(k, i)

}

subject to
I∑
i=1

λi

[
αi2

(
1−

M−1∑
k=0

x(k, i)

)
+ αi1

M−1∑
k=0

x(k, i)

]
≤ ᾱ (27)

I∑
i=1

λi

[
βi2

(
1−

M−1∑
k=0

x(k, i)

)
+ βi1

M−1∑
k=0

x(k, i)

]
≤ β̄ (28)

I∑
i=1

λix(k, i) = µ1,k+1γ(k + 1) ∀k = 0, 1, ...,M − 1

M∑
k=0

γ(k) = 1

0 ≤ x(k, i) ≤ γ(k) ∀i = 1, ..., I, k = 0, 1, ...,M − 1. (29)

In (LP3) the decision variables are again x and γ.

Proposition 20. Let (x∗, γ∗) be an optimal solution to (LP3) then setting yπ∗ as in

(24) defines a policy π∗ which is optimal for the constrained MDP.

Proof. We proceed by contradiction. Suppose there exists another policy π′

that is feasible for the constrained MDP and performs better than π∗. Then there

exists a pair (yπ′ , γπ′) such that (21), (22), (23), (25) and (26) hold. Set x′(k, i) =

yπ′(k, i)γπ′(k, i) for each (k, i). Then the pair (x′, γπ′) is feasible for (LP3) and per-

forms better than (x∗, γ∗). This contradicts the optimality of (x∗, γ∗). So π∗ is optimal

104



for the constrained MDP.

Solving (LP3) using a standard LP solver, provides an easy and efficient way of

determining if the constrained MDP is feasible and obtaining an optimal policy. It

is not obvious from the parameters whether (LP3) is feasible or not. The following

condition:

min{αi1, αi2, } ≤ ᾱ, min{βi1, βi2} ≤ β̄ ∀i = 1, ..., I

is clearly necessary, but not sufficient for (LP3) to be feasible. On the other hand,

the following condition:

max{αi1, αi2, } ≤ ᾱ, max{βi1, βi2} ≤ β̄ ∀i = 1, ..., I

implies that every policy is feasible and the problem has a trivial solution. That is,

to assign requests to to the cheapest method whenever capacity is available and to

the other method, otherwise.

We are further interested on whether the optimal policies obtained using this

method have a particular structure. Specifically, we are interested in whether under

certain conditions the optimal policy is monotone in some sense, and on exactly how

many states the decision is randomized. Namely, (see Theorem 1 of Ross [61]) for

stationary finite-state and finite-action unichain MDPs, with n inequality constraints

over the state-action frequencies, there exists a so-called n-randomized stationary

policy which is optimal. This is a stationary policy that is deterministic in all but n

states. We would like to determine a way to find such a policy.

Recall that for the cost based approach the structure of the optimal policy depends

on how the two methods compare to each other. Under that approach we could

compare the overall performance of the methods for class i using the single parameter

cij. In particular, for each class i such that ci2 ≤ ci1, it is optimal (under the cost-

based approach) to assign requests to Method 2, and for the remaining classes there

exists an optimal policy which is of trunk reservation form. In this case, however, the

105



methods cannot be compared by a single aggregated parameter. For example, one

method may be better at Type-I errors, while the other is better at Type-II errors.

Thus, the structure of the optimal policy depends on how the methods compare.

There are a total of eight cases, and all of them are feasible in practice. We focus on

the cases where one of the methods dominates the other in every way. That is, cj, αj

and βj are all lower for one of the methods. These cases are the most mathematically

tractable and they are not uncommon in practice. An example of this is the process

to unlock a smart-phone. The user can input a PIN, which has low Type-I and

Type-II error and uses few resources; or he can use a novelty method, such as facial-

recognition, which is resource intensive and is still under development, and as such is

error-prone. The remaining cases are left as future work. However, we note that the

results presented here may hold under less restrictive assumptions.

5.5.2.1 Case 1: Method 2 is Cheaper and More Reliable

In this case, the problem is feasible if, and only if:

αi2 ≤ ᾱ, βi2 ≤ β̄ ∀i = 1, ..., I (30)

as otherwise one of the security constraints would never hold. If the problem is

feasible it is intuitive that the optimal solution is deterministic, and it is to send all

authentication requests to Method 2. Here we prove this formally.

Proposition 21. Assume c1 > c2, α1 > α2 and β1 > β2. Assume also that the

constrained MDP is feasible. Then a policy π with yπ(k, i) = 0 ∀k, i (that is a policy

that sends all requests to Method 2 with probability 1) is optimal.

Proof. If c1 > c2 then it is obvious that the objective (20) is bounded above by

0. Setting yπ(k, i) = 0 ∀k, i, implies (by (21)) that γπ(k) = 0 for all k = 1, 2, ...,M .

This in turn implies (by (22)) that γπ(0) = 1. So (21), (22) and (23) all hold. Also,

106



under this policy constraints (25) and (26) become:

I∑
i=1

λiαi2 ≤ ᾱ

I∑
i=1

λiβi2 ≤ β̄.

By condition (30), and the assumption that Λ = 1, these constraints hold if the

problem is feasible. Also, yπ(k, i) = 0, means that the objective value (20) of this

policy is 0. Since this policy is feasible and achieves the upper bound, then it is

optimal.

5.5.2.2 Case 2: Method 1 is Cheaper and More Reliable

Here we assume c1 < c2, α1 < α2 and β1 < β2. Therefore, it is desirable to send all

requests to Method 1, but this is not always possible, due to its finite capacity. In

this case the following condition:

αi1 ≤ ᾱ, βi1 ≤ β̄ ∀i = 1, ..., I

is necessary for feasibility. However, since Method 1 has finite capacity, this condition

is not sufficient. In general, it is not possible to determine the feasibility of this

problem a priori based on the parameters. We assume that (LP3) is feasible for the

given parameters.

Note that the problem (LP3) is bounded, so if it is feasible it has an optimum.

Consider an arbitrary optimal solution to the dual of (LP3) and let ν1, ν2 be the dual

variables associated with the two error constraints (27) and (28). We can write a

Lagrangian relaxation of (LP3) by dualising those two constraints with their corre-

sponding Lagrange multipliers. The objective function of the relaxation would be:

r
I∑
i=1

λi

M−1∑
k=0

x(k, i)− ν1

(
I∑
i=1

λi

[
αi2

(
1−

M−1∑
k=0

x(k, i)

)
+ αi1

M−1∑
k=0

x(k, i)

]
− ᾱ

)

− ν2

(
I∑
i=1

λi

[
βi2

(
1−

M−1∑
k=0

x(k, i)

)
+ βi1

M−1∑
k=0

x(k, i)

]
− β̄

)
.

107



Define an adjusted reward for each customer class as:

r′i := (c2 − c1) + ν1(αi2 − αi1) + ν2(βi2 − βi1).

Note that, under our assumptions, each term in this expression is non-negative,

so the adjusted rewards are non-negative. Furthermore, each r′i is different, because

by assumption the impostor probabilities of each class are different. Reordering some

terms in the objective function we get the following Lagrangean relaxation of (LP3):

(LR1) : max

{
I∑
i=1

λir
′
i

M−1∑
k=0

x(k, i)− ν1

(
I∑
i=1

λiαi2 − ᾱ

)
− ν2

(
I∑
i=1

λiβi2 − β̄

)}

subject to
I∑
i=1

λix(k, i) = µ1,k+1γ(k + 1) ∀k = 0, 1, ...,M − 1

M∑
k=0

γ(k) = 1

0 ≤ x(k, i) ≤ γ(k) ∀i = 1, ..., I, k = 0, 1, ...,M − 1.

Note that (LR1) is itself also a linear program.

Lemma 4. Any basic solution for (LP3) is optimal for (LR1) and has the same

objective function value.

Proof. Let ((x∗, γ∗), ν∗) be an optimal primal-dual pair of solutions to (LP3) and

its dual. Because the solution (x∗, γ∗) is feasible for (LP3) it is also feasible for (LR1).

We know that ν1 and ν2 in the objective function of (LR1) come from a optimal

solution to the dual of (LP3) (not necessarily ν∗), then it follows by complementary

slackness (see for example Theorem 4.5 in Bertsimas and Tsitsiklis [6]) that

ν1

(
I∑
i=1

λi

[
αi2

(
1−

M−1∑
k=0

x∗(k, i)

)
+ αi1

M−1∑
k=0

x∗(k, i)

]
− ᾱ

)
= 0

ν2

(
I∑
i=1

λi

[
βi2

(
1−

M−1∑
k=0

x∗(k, i)

)
+ βi1

M−1∑
k=0

x∗(k, i)

]
− β̄

)
= 0

108



as the expression in parenthesis represent the slacks of the constraints corresponding

to dual variables ν1 and ν2. This shows that if (x∗, γ∗) is optimal for (LP3) then

it has the same objective value in (LR1). Because the pair ((x∗, γ∗), ν∗) is primal

and dual optimal, it meets the Karush-Kuhn-Tucker (KKT) conditions (see Theorem

12.1 in Nocedal [54]) for (LP3) and its dual. The KKT conditions for (LR1) are a

subset of the KKT conditions for (LP3), as it has the same objective function value

for (x∗, γ∗) and a subset of the constraints. So the pair ((x∗, γ∗), ν∗) also meets the

KKT conditions for (LR1), hence (x∗, γ∗) is also optimal for (LR1).

We will use this result to prove the main result in this section. Define bxc as

the integer part of x. We say a policy π is of 2-randomized trunk-reservation form,

ordered by r′i if

1. There exists a request class i such that yπ(k, i) = 1 for k = 0, 1, ...,M − 1.

2. For each i there exists a threshold ki, which may not be an integer such that

yπ(k, i) = 1 for k = 0, 1, ..., bkic− 1, yπ(k, i) = 0 for k = bkic+ 1, ...,M − 1, and

yπ(bkic , i) = ki − bkic.

3. All, except at most 2 thresholds ki are integers.

4. For two customer classes i, l we have that r′i > r′l implies ki ≥ kl.

Theorem 6. If the constrained MDP is feasible, there exists a 2-randomized optimal

policy which is a 2-randomized trunk reservation policy, ordered by r′i. Furthermore,

taking any basic optimal solution to (LP3), (x∗, γ∗) and setting

yπ∗(k, i) =
x∗(k, i)

γ∗(k)

defines an optimal 2-randomized trunk reservation policy π∗ for the constrained MDP.

Before we proceed with the proof, we highlight that the importance of this result is

three-fold. First, it describes the structure of the optimal policy, which dramatically

109



reduces the search space, when looking for the optimum. Second, this structure is

intuitive and easy to implement in practice as a simple set of rules. And lastly, the

final statement of the theorem provides a practical mean for finding an optimal policy

with the desired structure.

We should also mention, as in previous sections, we are not including the latency

cost as part of the optimization process. However, for a given policy the average

latency cost experienced by a type i user, under π can be calculated as

M∑
k=0

γπ(k)

(
hi1

(
(k + 1−m)+

µ1,m

+
1

µ1

)
yπ(k, i) +

hi2
µ2

(1− yπ(k, i))

)
.

The proof for Theorem 6 follows from Fan-Orzechowski and Feinberg [18]. In

order to proceed with the proof we introduce some intermediate results.

Lemma 5. If (x∗, γ∗) is optimal for (LR1) then γ∗(k) > 0, ∀k = 0, 1, ...,M − 1.

For a proof we refer the reader to the proof of Lemma 3.4 in Fan-Orzechowski and

Feinberg [17].

Proposition 22. Taking any basic optimal solution to (LP3), (x∗, γ∗) and setting

yπ∗(k, i) =
x∗(k, i)

γ∗(k)

results in a 2-randomized stationary optimal policy for the constrained MDP.

Proof. In Proposition 20, we showed that if (x∗, γ∗) is an optimal solution to

(LP3) then setting yπ as above defines a policy π which is optimal for the constrained

MDP. Consider the (LP3) in standard form adding non-negative slack variables S1,

S2 to (27) and (28) respectively, as well as z(k, i) to each constraint (29). We get the

following LP:

110



(LP3′) : max

{
(c2 − c1)

I∑
i=1

λi

M−1∑
k=0

x(k, i)

}

subject to
I∑
i=1

λi

[
αi2

(
1−

M−1∑
k=0

x(k, i)

)
+ αi1

M−1∑
k=0

x(k, i)

]
+ S1 = ᾱ

I∑
i=1

λi

[
βi2

(
1−

M−1∑
k=0

x(k, i)

)
+ βi1

M−1∑
k=0

x(k, i)

]
+ S2 = β̄

I∑
i=1

λix(k, i) = µ1,k+1γ(k + 1) ∀k = 0, 1, ...,M − 1

M∑
k=0

γ(k) = 1

x(k, i) + z(k, i) = γ(k) ∀i = 1, ..., I, k = 0, 1, ...,M − 1

x(k, i) ≥ 0, z(k, i) ≥ 0 ∀i = 1, ..., I, k = 0, 1, ...,M − 1.

The resulting standard form LP has (M×(I+1)+3) constraints and (2M×I+I+3)

variables. So each basic feasible solution will have at most (M × (I + 1) + 3) non-

zero variables. By Lemma 5 it follows that γ(k) > 0 for the (M + 1) variables

γ(k), k = 0, ...,M . So at most (M × I + 2) basic variables between x(k, i) and z(k, i)

can be non-zero. Because x(k, i) + z(k, i) = γ(k) > 0, then for each pair (k, i) at

least one of the variables must be positive. Therefore, in at most two cases x(k, i)

and z(k, i) can both take positive values. By the definition of yπ∗ , it follows that in

all, but at most 2 cases yπ∗(k, i) is equal to either 1 or 0. So π∗ is a 2-randomized

optimal policy for the constrained MDP.

The following result follows directly from Theorem 3.1 in Feinberg and Reiman

[19]. We refer the reader to that reference for a proof. A variation on this result

is presented in both Fan-Orzechowski and Feinberg [17] and Fan-Orzechowski and

Feinberg [18].

111



Proposition 23. Consider any optimal solution (x∗, γ∗) to (LR1), and define a ran-

domized stationary optimal policy π as yπ(k, i) = x∗(k,i)
γ∗(k)

. Then for an unconstrained

MDP with rewards r((k, i), 1) = r′i ∀k = 0, 1, ...,M − 1, i = 1, ..., I and 0 otherwise,

we have the following:

1. For any i, l, such that r′i > r′l ,

yπ(k, i) ≥ yπ(k, l) ∀k = 0, ...,M − 1, i, l = 1, 2, ..., I.

2. For each k = 0, ...,M − 1, all the probabilities yπ(k, i), i = 1, ..., I except at

most one, are equal to either 0 or 1.

3. For a request type l such that r′l = maxi{r′i} we have yπ(k, l) = 1, ∀k =

0, 1, ...,M − 1.

4.

yπ(k, i) ≥ yπ(k + 1, i) ∀k = 0, ...,M − 1, i = 1, 2, ..., I.

and for each i = 1, ..., I all the probabilities yπ(k, i), k = 0, 1, ...,M − 1 except

at most one, are equal to either 0 or 1.

This implies that π is a randomized trunk reservation policy, where the decision will

be randomized in at most (I − 1) states.

With this we can complete the proof for Theorem 6.

Proof of Theorem 6. We can see that π∗ is properly defined, because of

Lemma 5. Then, from Propositions 20 and 22 we have that any optimal basic solution

of (LP3) produces a 2-randomized policy for the constrained MDP. By Lemma 4,

(x∗, γ∗) is also optimal for (LR1). By Proposition 23 any optimal solution to (LR1)

defines an (I − 1)-randomized trunk reservation policy ordered by its rewards r′i for

the unconstrained MDP with the adjusted rewards. Then, putting all together we

112



get that π∗ is an optimal 2-randomized trunk reservation policy for the constrained

MDP, which is ordered by the adjusted rewards r′i .

Note that during the proof of Theorem 6 we never used the condition that c1 < c2,

α1 < α2 and β1 < β2, except to guarantee the r′i > 0 for each class. Therefore, we

conclude that this a sufficient, but not a necessary condition for Theorem 6 to hold.

In fact, the necessary condition is simply r′i > 0 for each i. However, this condition

can not be verified a priori as it includes dual optimal variables of (LP3). But, we

conclude that the structure of the optimal policy described in Theorem 6 holds for a

broader class of instances, not limited to c1 < c2, α1 < α2 and β1 < β2.

5.6 Numerical Illustration

In this section we provide a numerical example, which illustrates how a system de-

signer can use the models developed here to balance the three-way trade-off between

usability, operating cost and security. Consider an authentication system with four

authentication methods and four request classes. Assume that each authentication

method has infinitely many servers. Suppose that the application requires setting

strict limits on the fraction of errors and the latency cost. In this case we can apply

the model (LP1′) described in Section 5.5.1. The controller needs to solve (LP1′) to

find the optimal assignment policy for a fixed set of upper bound parameters ᾱ, β̄, h̄.

In order to simplify the analysis, assume that the system is not concerned about

Type-I errors, equivalently, we can set ᾱ = 1. So, the only measure of security in

this case is the fraction of Type-II errors. We show how changing the bounds on

error (β̄) and on latency cost (h̄), either individually or simultaneously affect all

three measures of performance. Let p = [0.2, 0.4, 0.6, 1.0], c = [4, 40, 20, 80], λ =

[0.25, 0.25, 0.25, 0.25], µ = [1, 5, 10, 20], β = [0.02, 0.2, 0.5, 0.2]. And set hij = hi,

where h = [40, 20, 8, 4].

First, we study how the constraint on latency cost affects operating cost. Fix β̄

113



Figure 12: Operating cost of non-dominated solutions for fixed values of β̄

and let h̄ vary between 0 and 12. Figure 12 presents the optimal cost for each value

of h̄ under fixed β̄, each data series corresponds to different value of β̄. Note that as

we allow usability to deteriorate (h̄ increases), the optimal operating cost improves.

Also, that as we require a more secure system (reduce β̄) the minimum operating cost

for a given usability level increases. For smaller values of h̄ than the ones presented

in Figure 12 (LP1′) is infeasible.

Now, consider the effect of the Type-II error constraint on cost while fixing h̄.

We calculate the value of the optimal policy varying β̄ between 0 and 0.12, for three

fixed values of h̄. The results are presented in Figure 13. We observe that as we

allow security to deteriorate (β̄ increases) the optimal operating cost improves. Also,

as the bound on average latency cost becomes more strict (reduce h̄) the minimum

operating cost for a given security level increases. For smaller values of β̄ than the

ones presented in Figure 13 (LP1′) is infeasible.

Finally, we calculate the value of the optimal policy while varying the values of

β̄ and h̄ simultaneously. Figure 14 shows the efficient frontier of solutions. Each

point in Figure 14 represents a non-dominated optimal solution to (LP1′), for a

114



Figure 13: Operating cost of non-dominated solutions for fixed values of h̄

given value of β̄ and h̄. That is, for each point in Figure 14, the system designer

cannot improve any of the objectives, without deteriorating another one. Each point’s

coordinates in the graph are: (average latency cost, long-run fraction of Type-II errors,

minimal operating cost). A system designer can use this efficient frontier to select

the parameters that best balance the three-way trade-off, and set those parameters

for the authentication system.

5.7 Conclusions

We have considered the problem of assigning authentication methods to incoming

customer requests that have different probabilities of coming from an impostor. To

the best of our knowledge, this is the first attempt at solving this problem using

stochastic control theory. We model and solve the problem for two cases: when there

are infinitely many servers for each authentication method, and when there is one

method with finite capacity and all others have infinite capacity. We do this using

a cost-based approach and a constraint-based approach, and obtain structural and

115



Figure 14: Efficient frontier mapping non-dominated solutions

computational results accordingly.

We conclude that if there are infinitely many servers for each authentication

method, then the optimal policy is static. Specifically, under our cost based ap-

proach the optimal policy is deterministic and static; and under the constraints based

approach the optimal policy is randomized and static.

We also conclude that if one method has finite capacity and exponential service

times, then the optimal policy is of trunk reservation form. Namely, under the cost

based approach the optimal policy is stationary deterministic trunk reservation; and

under the constraint based approach, with positive adjusted rewards, the optimal

policy is stationary 2-randomized trunk reservation.

We highlight the fact that the results regarding the structure of the optimal policy

are consistent across both approaches. This shows that the results are in a sense

robust with respect to the modeling technique. The resulting policy structure is

intuitive and easy to implement.

We reiterate that this is the first queuing theoretic work on managing complex

116



authentication systems, and hence, there are many other cases, variations and exten-

sions that can be considered. For example, our ongoing work includes exploring new

cases in the constraint-based approach, to include when one method is cheaper and

the other is more reliable. In particular, we are working on understanding when the

optimal policy has the structure described in Theorem 6, even if one method does

not dominate the other in every way. In chapter 6 we go into further detail of future

work related to this problem.

117



CHAPTER VI

CONTRIBUTIONS AND FUTURE WORK

This dissertation focused on developing methodologies for evaluating and optimizing

admission and routing control strategies in parallel and tandem queueing systems.

The specific systems that we considered were motivated by applications related to

traffic routing and user authentication in complex computer networks. In this chap-

ter, we review the main results of our research and connect them to potential future

work. First, we summarize the main contributions of each chapter. Then, we high-

light questions that remain open and present potential directions for future research,

including some proposed strategies to pursue these topics.

6.1 Summary of Contributions

In Chapter 3, we considered an admission control problem for a tandem loss system

consisting of two finite capacity service stations. Customers arrive to station 1 accord-

ing to a Poisson process and a gatekeeper who has complete knowledge of the number

of customers at both stations decides to accept or reject each arriving customer. If

a customer is rejected, a rejection cost is incurred. If an admitted customer finds

that station 2 is full at the time of his service completion at station 1, he leaves the

system and a loss cost is incurred. Each station has a single server with exponentially

distributed service times. In this chapter we focused on the cases where the buffer at

one of the stations is unitary. We also introduced two special policies. The Prudent

policy, which only admits an arrival if its probability of being lost is zero; and the

Greedy policy, which admits an arrival as long as there is space at the first station.

Below, we list our main contributions in this chapter:

118



• We used uniformization to propose a Markov decision process formulation of

this problem.

• We showed that, for B1 = 1, B2 < ∞, the structure of the optimal policy is

threshold and that only the Prudent or Greedy policies can be optimal.

• We provided the exact optimality thresholds for small systems.

• For larger systems we formulated heuristic policies and used extensive numerical

experiments to show that these heuristic policies achieve near-optimal perfor-

mance.

• We also used these numerical experiments to understand the behavior of the

stationary probabilities under the Prudent and Greedy policies as B2 →∞.

In Chapter 4, we considered the tandem loss system described above, but now we

studied the system with identical, arbitrary and finite buffers at both stations. Our

main contributions in this chapter are listed below:

• We derived a closed-form expression for the long-run average reward under the

Prudent policy.

• We provided a necessary and sufficient condition for the Prudent policy to be

optimal.

• We gave a matrix analytic solution to calculate the long-run average reward

under the Greedy policy.

• We showed that if the rejection cost is higher than the loss cost, then the Greedy

policy is optimal.

• We proved that it is always optimal to admit customers in the states where the

Prudent policy admits customers. So, an optimal policy cannot admit customers

less frequently than the Prudent policy.

119



• We gave a full characterization of the optimal policy when the buffer size is two.

• We proposed two heuristic policies and used extensive numerical experiments

to show that they perform better than the Prudent and Greedy policies, and in

fact, achieve near-optimal performance.

In Chapter 5 we considered a different admission and routing control problem.

In particular, we studied an authentication system where requests for authentication

arrive from different users. Each request belongs to a class and requests from each

class have a fixed probability of coming from an impostor. We assumed requests

from each class arrive to the system following independent Poisson processes. A

single central controller with full knowledge of the system state must decide how

to assign these incoming requests among several available authentication methods.

Each authentication method has independent, identically distributed service times.

Our goal is to determine how to assign each incoming request to an appropriate

authentication method in a way that optimizes the long-run average performance of

the system in terms of its operating cost, security, and usability. Below, we list our

main contributions in this chapter:

• First, we modeled the problem using a cost-based approach, which assigns a

cost to each measure of performance.

– For the case with several authentication methods, where each method has

infinitely many servers we showed that the optimal policy is static and

deterministic.

– For the case where one method has finite capacity and exponential service

times, and the rest have infinitely many servers, we showed that the optimal

policy is of trunk reservation form, ordered by the costs.

• Then, we modeled the problem using a constraint-based approach, which as-

sumes hard constraints on some of the measures of performance.

120



– For the case with several authentication methods, where each method has

infinitely many servers we showed that the optimal policy is static and

randomized.

– For the case where one method has finite capacity and exponential service

times, and the rest have infinitely many servers, we showed that if the

finite-capacity method is better by every measure, then the optimal policy

has a 2-randomized trunk reservation form, ordered by an adjusted reward.

Also, if an infinite capacity method is better by every measure, then the

optimal policy is trivial and routes all requests to that method.

• We illustrated how to use our results to construct an efficient frontier of non-

dominated solutions.

In the next section we highlight which questions remain open and potential direc-

tions for future work.

6.2 Future Work

Beyond the contributions made in this dissertation, there are still open research ques-

tions related to the problems studied here that are worth exploring. These include:

proving extensions or generalizations of the results presented; exploring the mathe-

matical properties of the heuristics proposed; and considering related problems that

were outside the scope of this dissertation. In this section, we describe some potential

avenues of research that we are currently considering.

For the tandem loss system with a unitary buffer presented in Chapter 3, the most

direct extension of the results is allowing multiple identical parallel servers at either

station. Namely, we believe that Proposition 1 and Theorem 2 can be extended

for this case, following the same arguments presented here. More specifically, the

sample-path proof of Proposition 1 can be adjusted to allow multiple servers in the

121



second station. Similarly, the proof of Theorem 2 can also be adjusted, using the new

stationary distribution of the CTMC with multiple servers at the second station.

Another research opportunity relates to the heuristics proposed in Chapter 3. Kim

and Kim [35] proved Conjecture 1 and gave a general expression for the optimality

threshold. However, their expression requires many intermediate calculations, and as

such is both error-prone and computationally demanding. For this reason, the heuris-

tic policies proposed in Section 3.3.3 are still relevant. While numerical experiments

showed good performance of these policies, developing theoretical bounds for their

performance is an open research question.

The problem in Chapter 4 is itself a generalization of the problem in Chapter 3,

focusing on the case B1 = B2 = B. As mentioned, many of the results in that chapter

hold for any B1, B2, however some only hold for B1 ≥ B2. It is of immediate interest,

to generalize those results, specifically Proposition 6 and Theorems 3 and 4 to cover

the case where B1 < B2. However, this poses a challenge, as the proofs for the case

where B1 ≥ B2, rely heavily on the fact that for a fixed B2 the set of recurrent states

under the Prudent policy is identical for any B1 such that B1 ≥ B2. Therefore, the

proof techniques presented in Chapter 3 do not translate directly for the case where

B1 < B2.

On the other hand, we are currently exploring extensions to Proposition 6 and

Theorems 3 and 4 that consider multiple servers at each station, under the assump-

tion that B1 ≥ B2. In this case, the Jackson Network equivalence used to prove

Proposition 6 still holds, except with multi-server stations in the network. Similarly,

the LP formulation used to prove Theorems 3 and 4 still holds, and follows a similar

structure, therefore a similar expression for the reduced costs should be attainable,

and then the results for Theorems 3 and 4 would be generalized. Likewise, an ex-

tension to the matrix-analytic solution for the long-run average reward under the

Greedy policy, to account for multiple servers in the first station should be possible,

122



because the repeating structure of the QBD would be preserved in that situation.

However, allowing multiple servers in the second station disrupts the QBD structure.

Therefore, a method for calculating the gain under the Greedy policy, with multiple

servers at both stations is also an open question.

In Chapter 4 we also have heuristics that have near optimal performance. There-

fore, it is worthwhile exploring possible bounds for the heuristics. In fact, in every

single test we performed, the PvsG heuristic always performs within a factor of two

of the optimal policy, in absolute value. So, we have reason to believe that the gain

under the PvsG heuristic, may be bounded below by −2g∗(B).

If we consider the application that motivated the models in Chapters 3 and 4, we

find that in the real-life setting these systems are usually more complex than the ones

we considered here. Namely, tandem lines often consist of an arbitrary number N of

stations. Furthermore, these networks are sometimes configured as parallel-tandem

lines where the decision the controller makes includes both admission and routing

control. These two problems are of particular interest, as any new insight regarding

these systems would be applicable to real applications. However, the results in this

dissertation suggest that a purely analytic approach may be intractable. Sheu and

Ziedins [63] consider the problem of several parallel tandem lines, where each tandem

line has 2 stations and derive asymptotically optimal policies. However, they stress

that these policies may perform poorly for systems with few parallel lines. Therefore,

alternatives such as heuristics may be considered. One avenue of research we are

currently considering is using domain specific knowledge to propose heuristics that

perform well, under the regular working conditions of the system.

Now, we move on to the authentication system considered in Chapter 5. Since

this is the first queueing theoretic work on managing complex authentication systems,

there are many variations and extensions that can be considered. One scenario of

practical interest is to extend the results of the constraint-based approach to cases

123



where the limited-capacity server is more secure, but more expensive to use.

Note that the results of Section 5.5.2 assumed that one method was better than

the other by all measures. However, this assumption is not necessary for Theorem

6 to hold. That result only requires that r′i > 0 for each class. Therefore, we are

currently working on leveraging Theorem 6 under this condition, together with an

alternative decision for those classes where ri ≤ 0, to achieve a general result that

works for any combination of parameters. Specifically, we are interested in a policy

that uses the infinite capacity method whenever ri ≤ 0 and follows a 2-randomized

trunk reservation for classes such that r′i > 0. We suspect such a policy may be

optimal in the general case.

The characteristics of actual authentication applications should also be considered.

In practice, it is common to have more than one method of authentication with finite

capacity. Although each new method that we consider increases the size of the state-

space exponentially, the total number of methods available is usually low, so the

resulting model may still be computationally tractable. In fact, we believe setting up

an LP, similar to LP3, should be possible for the case where two methods have finite

capacity. However, finding the structure of the optimal policy in that case presents a

challenge.

Another assumption that should be re-visited to better approximate the applica-

tion is the one regarding exponential service times. For the infinite capacity model we

have already considered general service times, but not in the finite capacity model.

While a Poisson process is a suitable assumption for the arrival process, we need to

consider other service time distributions. However, without the exponential service

times assumption the discretization procedure in Section 5.5.1 would fail. On the

other hand, Fan-Orzechowski and Feinberg [18] model a similar parallel queueing sys-

tem as a semi-Markov process with exponential service time. Their model could be

extended to account for non-exponential service times.

124



Another model of interest in the authentication setting is the classification tool.

We assumed that the classification of user-requests into I classes based on impostor

probabilities was done a priori. A model which takes each request’s underlying char-

acteristics, such as location, request type, device, etc. into account and returns an

appropriate class is of practical interest. Techniques such as statistical clustering or

machine learning are possibly the most appropriate for this purpose. Such a model

could be implemented jointly with the models proposed here to produce an integrated

authentication system.

In this dissertation we have used queueing theory and Markov decision processes

to study and solve two admission and routing control problems in parallel and tan-

dem computer networks. However, there are many more applications in computer

networks, including routing data packets, access to secure systems and data, capacity

and resource allocation, task scheduling, etc. where similar techniques can be ap-

plied. We hope that this thesis serves as an initial step for us and other researchers

in the field to apply these tools to many potential applications arising in computer

networks.

125



APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 3

In this section we provide the full expressions for the terms defined in Chapter 3:

c∗(B2), f1(λ, µ1, µ2, B2) and f2(λ, µ1, µ2, B2) for each B2 ≤ 10.

A.1 Threshold values for Case 2

Recall from section 3.3.1 that for each B2 we have a expressions for the critical cost

c∗(B2) of the form:

c∗(B2) =

(
1 +

α(B2)

β(B2)

)
where

α(B2) = µB2+1
2

dB2/2e∑
i=1

[(
λB2−i + 1{(B2−i)>(i−1)}λ

i−1(µ1 + µ2)B2−2i+1
)

i−1∑
j=0

(
µi−j−1

1 µj2

(
i− 1

j

)
1

j!

j∏
k=1

(B2 − i+ k)

)]
.

We have that β(B2) is given by

β(1) = λµ1 + λµ2 + µ1µ2

β(2) = µ1µ
2
2(µ1 + µ2) + λµ2(µ1 + µ2)2 + λ2

(
µ2

1 + µ1µ2 + µ2
2

)
β(3) = µ1µ

3
2(µ1 + µ2)2 + λ3

(
µ3

1 + µ2
1µ2 + µ1µ

2
2 + µ3

2

)
+ λµ2

2

(
µ3

1 + 3µ2
1µ2 + 4µ1µ

2
2 + µ3

2

)
+ λ2µ2

(
µ3

1 + 2µ2
1µ2 + 3µ1µ

2
2 + 2µ3

2

)
β(4) = µ1µ

4
2(µ1 + µ2)3 + λ4

(
µ4

1 + µ3
1µ2 + µ2

1µ
2
2 + µ1µ

3
2 + µ4

2

)
+ λµ3

2

(
µ4

1 + 4µ3
1µ2 + 8µ2

1µ
2
2 + 6µ1µ

3
2 + µ4

2

)
+ λ3µ2

(
µ4

1 + 2µ3
1µ2 + 3µ2

1µ
2
2 + 4µ1µ

3
2 + 3µ4

2

)
+ λ2µ2

2

(
µ4

1 + 3µ3
1µ2 + 6µ2

1µ
2
2 + 8µ1µ

3
2 + 3µ4

2

)
126



β(5) = µ1µ
5
2(µ1 + µ2)4 + λµ4

2(µ1 + µ2)2
(
µ3

1 + 3µ2
1µ2 + 6µ1µ

2
2 + µ3

2

)
+ λ2µ3

2

(
µ5

1 + 4µ4
1µ2 + 10µ3

1µ
2
2 + 18µ2

1µ
3
2 + 16µ1µ

4
2 + 4µ5

2

)
+ λ3µ2

2

(
µ5

1 + 3µ4
1µ2 + 6µ3

1µ
2
2 + 10µ2

1µ
3
2 + 13µ1µ

4
2 + 6µ5

2

)
+ λ4µ2

(
µ5

1 + 2µ4
1µ2 + 3µ3

1µ
2
2 + 4µ2

1µ
3
2 + 5µ1µ

4
2 + 4µ5

2

)
+ λ5

(
µ5

1 + µ4
1µ2 + µ3

1µ
2
2 + µ2

1µ
3
2 + µ1µ

4
2 + µ5

2

)
β(6) = µ1µ

6
2(µ1 + µ2)5 + λµ5

2(µ1 + µ2)3
(
µ3

1 + 3µ2
1µ2 + 7µ1µ

2
2 + µ3

2

)
+ λ2µ4

2

(
µ6

1 + 5µ5
1µ2 + 15µ4

1µ
2
2 + 33µ3

1µ
3
2 + 44µ2

1µ
4
2 + 27µ1µ

5
2 + 5µ6

2

)
+ λ3µ3

2

(
µ6

1 + 4µ5
1µ2 + 10µ4

1µ
2
2 + 20µ3

1µ
3
2 + 33µ2

1µ
4
2 + 32µ1µ

5
2 + 10µ6

2

)
+ λ4µ2

2

(
µ6

1 + 3µ5
1µ2 + 6µ4

1µ
2
2 + 10µ3

1µ
3
2 + 15µ2

1µ
4
2 + 19µ1µ

5
2 + 10µ6

2

)
+ λ5µ2

(
µ6

1 + 2µ5
1µ2 + 3µ4

1µ
2
2 + 4µ3

1µ
3
2 + 5µ2

1µ
4
2 + 6µ1µ

5
2 + 5µ6

2

)
+ λ6

(
µ6

1 + µ5
1µ2 + µ4

1µ
2
2 + µ3

1µ
3
2 + µ2

1µ
4
2 + µ1µ

5
2 + µ6

2

)
β(7) = µ1µ

7
2(µ1 + µ2)6 + λµ6

2(µ1 + µ2)4
(
µ3

1 + 3µ2
1µ2 + 8µ1µ

2
2 + µ3

2

)
+ λ2µ5

2(µ1 + µ2)2
(
µ5

1 + 4µ4
1µ2 + 12µ3

1µ
2
2 + 26µ2

1µ
3
2 + 29µ1µ

4
2 + 6µ5

2

)
+ λ3µ4

2

(
µ7

1 + 5µ6
1µ2 + 15µ5

1µ
2
2 + 35µ4

1µ
3
2 + 68µ3

1µ
4
2 + 93µ2

1µ
5
2 + 65µ1µ

6
2 + 15µ7

2

)
+ λ4µ3

2

(
µ7

1 + 4µ6
1µ2 + 10µ5

1µ
2
2 + 20µ4

1µ
3
2 + 35µ3

1µ
4
2 + 54µ2

1µ
5
2 + 55µ1µ

6
2 + 20µ7

2

)
+ λ5µ2

2

(
µ7

1 + 3µ6
1µ2 + 6µ5

1µ
2
2 + 10µ4

1µ
3
2 + 15µ3

1µ
4
2 + 21µ2

1µ
5
2 + 26µ1µ

6
2 + 15µ7

2

)
+ λ6µ2

(
µ7

1 + 2µ6
1µ2 + 3µ5

1µ
2
2 + 4µ4

1µ
3
2 + 5µ3

1µ
4
2 + 6µ2

1µ
5
2 + 7µ1µ

6
2 + 6µ7

2

)
+ λ7

(
µ7

1 + µ6
1µ2 + µ5

1µ
2
2 + µ4

1µ
3
2 + µ3

1µ
4
2 + µ2

1µ
5
2 + µ1µ

6
2 + µ7

2

)

127



β(8) = µ1µ
8
2(µ1 + µ2)7 + λµ7

2(µ1 + µ2)5
(
µ3

1 + 3µ2
1µ2 + 9µ1µ

2
2 + µ3

2

)
+ λ2µ6

2(µ1 + µ2)3
(
µ5

1 + 4µ4
1µ2 + 13µ3

1µ
2
2 + 30µ2

1µ
3
2 + 37µ1µ

4
2 + 7µ5

2

)
+ λ3µ5

2

(
µ8

1 + 6µ7
1µ2 + 21µ6

1µ
2
2 + 56µ5

1µ
3
2 + 124µ4

1µ
4
2 + 210µ3

1µ
5
2 + 221µ2

1µ
6
2

+116µ1µ
7
2 + 21µ8

2

)
+ λ4µ4

2

(
µ8

1 + 5µ7
1µ2 + 15µ6

1µ
2
2 + 35µ5

1µ
3
2 + 70µ4

1µ
4
2

+124µ3
1µ

5
2 + 170µ2

1µ
6
2 + 130µ1µ

7
2 + 35µ8

2

)
+ λ5µ3

2

(
µ8

1 + 4µ7
1µ2 + 10µ6

1µ
2
2

+20µ5
1µ

3
2 + 35µ4

1µ
4
2 + 56µ3

1µ
5
2 + 82µ2

1µ
6
2 + 86µ1µ

7
2 + 35µ8

2

)
+ λ6µ2

2

(
µ8

1

+3µ7
1µ2 + 6µ6

1µ
2
2 + 10µ5

1µ
3
2 + 15µ4

1µ
4
2 + 21µ3

1µ
5
2 + 28µ2

1µ
6
2 + 34µ1µ

7
2 + 21µ8

2

)
+ λ7µ2

(
µ8

1 + 2µ7
1µ2 + 3µ6

1µ
2
2 + 4µ5

1µ
3
2 + 5µ4

1µ
4
2 + 6µ3

1µ
5
2 + 7µ2

1µ
6
2

+8µ1µ
7
2 + 7µ8

2

)
+ λ8

(
µ8

1 + µ7
1µ2 + µ6

1µ
2
2 + µ5

1µ
3
2 + µ4

1µ
4
2 + µ3

1µ
5
2 + µ2

1µ
6
2 + µ1µ

7
2 + µ8

2

)
β(9) = µ1µ

9
2(µ1 + µ2)8 + λµ8

2(µ1 + µ2)6
(
µ3

1 + 3µ2
1µ2 + 10µ1µ

2
2 + µ3

2

)
+ λ2µ7

2(µ1 + µ2)4
(
µ5

1 + 4µ4
1µ2 + 14µ3

1µ
2
2 + 34µ2

1µ
3
2 + 46µ1µ

4
2 + 8µ5

2

)
+ λ3µ6

2(µ1 + µ2)2
(
µ7

1 + 5µ6
1µ2 + 17µ5

1µ
2
2 + 45µ4

1µ
3
2 + 101µ3

1µ
4
2 + 164µ2

1µ
5
2 + 133µ1µ

6
2

+28µ7
2

)
+ λ9

(
µ9

1 + µ8
1µ2 + µ7

1µ
2
2 + µ6

1µ
3
2 + µ5

1µ
4
2 + µ4

1µ
5
2 + µ3

1µ
6
2 + µ2

1µ
7
2 + µ1µ

8
2 + µ9

2

)
+ λ8µ2

(
µ9

1 + 2µ8
1µ2 + 3µ7

1µ
2
2 + 4µ6

1µ
3
2 + 5µ5

1µ
4
2 + 6µ4

1µ
5
2 + 7µ3

1µ
6
2 + 8µ2

1µ
7
2

+9µ1µ
8
2 + 8µ9

2

)
+ λ7µ2

2

(
µ9

1 + 3µ8
1µ2 + 6µ7

1µ
2
2 + 10µ6

1µ
3
2 + 15µ5

1µ
4
2 + 21µ4

1µ
5
2 + 28µ3

1µ
6
2

+36µ2
1µ

7
2 + 43µ1µ

8
2 + 28µ9

2

)
+ λ6µ3

2

(
µ9

1 + 4µ8
1µ2 + 10µ7

1µ
2
2 + 20µ6

1µ
3
2 + 35µ5

1µ
4
2

+56µ4
1µ

5
2 + 84µ3

1µ
6
2 + 118µ2

1µ
7
2 + 126µ1µ

8
2 + 56µ9

2

)
+ λ4µ5

2

(
µ9

1 + 6µ8
1µ2 + 21µ7

1µ
2
2

+56µ6
1µ

3
2 + 126µ5

1µ
4
2 + 250µ4

1µ
5
2 + 411µ3

1µ
6
2 + 456µ2

1µ
7
2 + 266µ1µ

8
2 + 56µ9

2

)
+ λ5µ4

2

(
µ9

1 + 5µ8
1µ2 + 15µ7

1µ
2
2 + 35µ6

1µ
3
2 + 70µ5

1µ
4
2 + 126µ4

1µ
5
2

+208µ3
1µ

6
2 + 283µ2

1µ
7
2 + 231µ1µ

8
2 + 70µ9

2

)

128



β(10) = µ1µ
10
2 (µ1 + µ2)9 + λµ9

2(µ1 + µ2)7
(
µ3

1 + 3µ2
1µ2 + 11µ1µ

2
2 + µ3

2

)
+ λ2µ8

2(µ1 + µ2)5
(
µ5

1 + 4µ4
1µ2 + 15µ3

1µ
2
2 + 38µ2

1µ
3
2 + 56µ1µ

4
2 + 9µ5

2

)
+ λ3µ7

2(µ1 + µ2)3
(
µ7

1 + 5µ6
1µ2 + 18µ5

1µ
2
2 + 50µ4

1µ
3
2 + 119µ3

1µ
4
2 + 207µ2

1µ
5
2

+180µ1µ
6
2 + 36µ7

2

)
+ λ10

(
µ10

1 + µ9
1µ2 + µ8

1µ
2
2 + µ7

1µ
3
2 + µ6

1µ
4
2 + µ5

1µ
5
2 + µ4

1µ
6
2

+µ3
1µ

7
2 + µ2

1µ
8
2 + µ1µ

9
2 + µ10

2

)
+ λ9µ2

(
µ10

1 + 2µ9
1µ2 + 3µ8

1µ
2
2 + 4µ7

1µ
3
2 + 5µ6

1µ
4
2

+6µ5
1µ

5
2 + 7µ4

1µ
6
2 + 8µ3

1µ
7
2 + 9µ2

1µ
8
2 + 10µ1µ

9
2 + 9µ10

2

)
+ λ8µ2

2

(
µ10

1 + 3µ9
1µ2 + 6µ8

1µ
2
2

+10µ7
1µ

3
2 + 15µ6

1µ
4
2 + 21µ5

1µ
5
2 + 28µ4

1µ
6
2 + 36µ3

1µ
7
2 + 45µ2

1µ
8
2 + 53µ1µ

9
2 + 36µ10

2

)
+ λ7µ3

2

(
µ10

1 + 4µ9
1µ2 + 10µ8

1µ
2
2 + 20µ7

1µ
3
2 + 35µ6

1µ
4
2 + 56µ5

1µ
5
2 + 84µ4

1µ
6
2 + 120µ3

1µ
7
2

+163µ2
1µ

8
2 + 176µ1µ

9
2 + 84µ10

2

)
+ λ4µ6

2

(
µ10

1 + 7µ9
1µ2 + 28µ8

1µ
2
2 + 84µ7

1µ
3
2

+210µ6
1µ

4
2 + 460µ5

1µ
5
2 + 862µ4

1µ
6
2 + 1208µ3

1µ
7
2 + 1064µ2

1µ
8
2 + 490µ1µ

9
2 + 84µ10

2

)
+ λ6µ4

2

(
µ10

1 + 5µ9
1µ2 + 15µ8

1µ
2
2 + 35µ7

1µ
3
2 + 70µ6

1µ
4
2 + 126µ5

1µ
5
2 + 210µ4

1µ
6
2

+328µ3
1µ

7
2 + 441µ2

1µ
8
2 + 378µ1µ

9
2 + 126µ10

2

)
+ λ5µ5

2

(
µ10

1 + 6µ9
1µ2 + 21µ8

1µ
2
2 + 56µ7

1µ
3
2 + 126µ6

1µ
4
2 + 252µ5

1µ
5
2 + 460µ4

1µ
6
2

+732µ3
1µ

7
2 + 840µ2

1µ
8
2 + 532µ1µ

9
2 + 126µ10

2

)
A.2 Values of f1 expressions in Proposition 2

In this section, we provide the f1 expressions used in the proof of Proposition 2 for

B2 = 1, ..., 10.

f1(λ, µ1, µ2, 1) = 0

f1(λ, µ1, µ2, 2) = λ2µ2
2 + 2λµ1µ

2
2 + µ2

1µ
2
2 + λµ3

2 + µ1µ
3
2

f1(λ, µ1, µ2, 3) = λ3µ1µ
2
2 + 2λ2µ2

1µ
2
2 + λµ3

1µ
2
2 + λ3µ3

2 + 3λ2µ1µ
3
2 + 3λµ2

1µ
3
2 + µ3

1µ
3
2

+ 2λ2µ4
2 + 4λµ1µ

4
2 + 2µ2

1µ
4
2 + λµ5

2 + µ1µ
5
2

f1(λ, µ1, µ2, 4) = (λ+ µ1)µ2
2(λ2µ2

1(λ+ µ1) + λµ1(λ+ µ1)2µ2 + (λ+ µ1)3µ2
2

+ (3λ2 + 5λµ1 + 3µ2
1)µ3

2 + 3(λ+ µ1)µ4
2 + µ5

2)

129



f1(λ, µ1, µ2, 5) = (λ+ µ1)µ2
2(λ3µ3

1(λ+ µ1) + λ2µ2
1(λ+ µ1)2µ2 + λµ1(λ+ µ1)3µ2

2

+ (λ+ µ1)4µ3
2 + (λ+ µ1)(4λ2 + 5λµ1 + 4µ2

1)µ4
2 + 2(3λ2 + 5λµ1 + 3µ2

1)µ5
2

+ 4(λ+ µ1)µ6
2 + µ7

2)

f1(λ, µ1, µ2, 6) = (λ+ µ1)µ2
2(λ4µ4

1(λ+ µ1) + λ3µ3
1(λ+ µ1)2µ2 + λ2µ2

1(λ+ µ1)3µ2
2

+ λµ1(λ+ µ1)4µ3
2 + (λ+ µ1)5µ4

2 + (λ2 + λµ1 + µ2
1)(5λ2 + 9λµ1 + 5µ2

1)µ5
2

+ 2(λ+ µ1)(5λ2 + 6λµ1 + 5µ2
1)µ6

2 + (10λ2 + 17λµ1 + 10µ2
1)µ7

2 + 5(λ+ µ1)µ8
2 + µ9

2)

f1(λ, µ1, µ2, 7) = (λ+ µ1)µ2
2(λ5µ5

1(λ+ µ1) + λ4µ4
1(λ+ µ1)2µ2 + λ3µ3

1(λ+ µ1)3µ2
2

+ λ2µ2
1(λ+ µ1)4µ3

2 + λµ1(λ+ µ1)5µ4
2 + (λ+ µ1)6µ5

2

+ 2(λ+ µ1)(λ2 + λµ1 + µ2
1)(3λ2 + 4λµ1 + 3µ2

1)µ6
2

+ (15λ4 + 40λ3µ1 + 53λ2µ2
1 + 40λµ3

1 + 15µ4
1)µ7

2

+ 5(λ+ µ1)(4λ2 + 5λµ1 + 4µ2
1)µ8

2 + (15λ2 + 26λµ1 + 15µ2
1)µ9

2

+ 6(λ+ µ1)µ10
2 + µ11

2 )

f1(λ, µ1, µ2, 8) = (λ+ µ1)µ2
2(λ6µ6

1(λ+ µ1) + λ5µ5
1(λ+ µ1)2µ2 + λ4µ4

1(λ+ µ1)3µ2
2

+ λ3µ3
1(λ+ µ1)4µ3

2 + λ2µ2
1(λ+ µ1)5µ4

2 + λµ1(λ+ µ1)6µ5
2 + (λ+ µ1)7µ6

2

+ (7λ6 + 27λ5µ1 + 55λ4µ2
1 + 69λ3µ3

1 + 55λ2µ4
1 + 27λµ5

1 + 7µ6
1)µ7

2

+ (λ+ µ1)(21λ4 + 44λ3µ1 + 61λ2µ2
1 + 44λµ3

1 + 21µ4
1)µ8

2

+ (35λ4 + 95λ3µ1 + 126λ2µ2
1 + 95λµ3

1 + 35µ4
1)µ9

2

+ (λ+ µ1)(35λ2 + 46λµ1 + 35µ2
1)µ10

2

+ (21λ2 + 37λµ1 + 21µ2
1)µ11

2 + 7(λ+ µ1)µ12
2 + µ13

2 )

130



f1(λ, µ1, µ2, 9) = (λ+ µ1)µ2
2(λ7µ7

1(λ+ µ1) + λ6µ6
1(λ+ µ1)2µ2 + λ5µ5

1(λ+ µ1)3µ2
2

+ λ4µ4
1(λ+ µ1)4µ3

2 + λ3µ3
1(λ+ µ1)5µ4

2 + λ2µ2
1(λ+ µ1)6µ5

2 + λµ1(λ+ µ1)7µ6
2

+ (λ+ µ1)8µ7
2 + (λ+ µ1)(8λ6 + 27λ5µ1 + 56λ4µ2

1 + 69λ3µ3
1 + 56λ2µ4

1 + 27λµ5
1

+ 8µ6
1)µ8

2 + (28λ6 + 98λ5µ1 + 185λ4µ2
1 + 226λ3µ3

1 + 185λ2µ4
1 + 98λµ5

1 + 28µ6
1)µ9

2

+ (λ+ µ1)(56λ4 + 119λ3µ1 + 162λ2µ2
1 + 119λµ3

1 + 56µ4
1)µ10

2

+ 2(35λ4 + 98λ3µ1 + 131λ2µ2
1 + 98λµ3

1 + 35µ4
1)µ11

2

+ 7(λ+ µ1)(8λ2 + 11λµ1 + 8µ2
1)µ12

2 + 2(14λ2 + 25λµ1 + 14µ2
1)µ13

2

+ 8(λ+ µ1)µ14
2 + µ15

2 )

f1(λ, µ1, µ2, 10) = (λ+ µ1)µ2
2(λ8µ8

1(λ+ µ1) + λ7µ7
1(λ+ µ1)2µ2 + λ6µ6

1(λ+ µ1)3µ2
2

+ λ5µ5
1(λ+ µ1)4µ3

2 + λ4µ4
1(λ+ µ1)5µ4

2 + λ3µ3
1(λ+ µ1)6µ5

2 + λ2µ2
1(λ+ µ1)7µ6

2

+ λµ1(λ+ µ1)8µ7
2 + (λ+ µ1)9µ8

2 + (9λ8 + 44λ7µ1 + 119λ6µ2
1 + 209λ5µ3

1

+ 251λ4µ4
1 + 209λ3µ5

1 + 119λ2µ6
1 + 44λµ7

1 + 9µ8
1)µ9

2

+ (λ+ µ1)(36λ6 + 104λ5µ1 + 197λ4µ2
1 + 234λ3µ3

1 + 197λ2µ4
1 + 104λµ5

1 + 36µ6
1)µ10

2

+ 2(42λ6 + 147λ5µ1 + 273λ4µ2
1 + 331λ3µ3

1 + 273λ2µ4
1 + 147λµ5

1 + 42µ6
1)µ11

2

+ 14(λ+ µ1)(9λ4 + 20λ3µ1 + 27λ2µ2
1 + 20λµ3

1 + 9µ4
1)µ12

2

+ (126λ4 + 364λ3µ1 + 491λ2µ2
1 + 364λµ3

1 + 126µ4
1)µ13

2 + 12(λ+ µ1)(7λ2 + 10λµ1

+ 7µ2
1)µ14

2 + (36λ2 + 65λµ1 + 36µ2
1)µ15

2 + 9(λ+ µ1)µ16
2 + µ17

2 ).

A.3 Values of f2 expressions in Proposition 3

In this section, we provide the f2 expressions used in the proof of Propositions 3 and

4 for B2 = 1, ..., 10.

f2(λ, µ1, µ2, 1) = 0

f2(λ, µ1, µ2, 2) = λ3µ2
2 + 2λ2µ1µ

2
2 + 2λµ2

1µ
2
2 + µ3

1µ
2
2 + 2λ2µ3

2 + 4λµ1µ
3
2 + 2µ2

1µ
3
2

+ λµ4
2 + µ1µ

4
2

131



f2(λ, µ1, µ2, 3) = λ4µ1µ
2
2 + 2λ3µ2

1µ
2
2 + 2λ2µ3

1µ
2
2 + λµ4

1µ
2
2 + λ4µ3

2 + 4λ3µ1µ
3
2

+ 6λ2µ2
1µ

3
2 + 4λµ3

1µ
3
2 + µ4

1µ
3
2 + 3λ3µ4

2 + 8λ2µ1µ
4
2 + 8λµ2

1µ
4
2 + 3µ3

1µ
4
2 + 3λ2µ5

2

+ 6λµ1µ
5
2 + 3µ2

1µ
5
2 + λµ6

2 + µ1µ
6
2

f2(λ, µ1, µ2, 4) = (λ+ µ1)µ2
2(λ2µ2

1(λ2 + λµ1 + µ2
1) + λµ1(λ+ µ1)3µ2 + (λ+ µ1)4µ2

2

+ (λ+ µ1)(4λ2 + 5λµ1 + 4µ2
1)µ3

2 + 2(3λ2 + 5λµ1 + 3µ2
1)µ4

2 + 4(λ+ µ1)µ5
2 + µ6

2)

f2(λ, µ1, µ2, 5) = (λ+ µ1)µ2
2(λ3µ3

1(λ2 + λµ1 + µ2
1) + λ2µ2

1(λ+ µ1)3µ2

+ λµ1(λ+ µ1)4µ2
2 + (λ+ µ1)5µ3

2 + (λ2 + λµ1 + µ2
1)(5λ2 + 9λµ1 + 5µ2

1)µ4
2

+ 2(λ+ µ1)(5λ2 + 6λµ1 + 5µ2
1)µ5

2 + (10λ2 + 17λµ1 + 10µ2
1)µ6

2 + 5(λ+ µ1)µ7
2 + µ8

2)

f2(λ, µ1, µ2, 6) = (λ+ µ1)µ2
2(λ4µ4

1(λ2 + λµ1 + µ2
1) + λ3µ3

1(λ+ µ1)3µ2 + λ2µ2
1(λ

+ µ1)4µ2
2 + λµ1(λ+ µ1)5µ3

2 + (λ+ µ1)6µ4
2 + 2(λ+ µ1)(λ2 + λµ1 + µ2

1)(3λ2 + 4λµ1

+ 3µ2
1)µ5

2 + (15λ4 + 40λ3µ1 + 53λ2µ2
1 + 40λµ3

1 + 15µ4
1)µ6

2 + 5(λ+ µ1)(4λ2 + 5λµ1

+ 4µ2
1)µ7

2 + (15λ2 + 26λµ1 + 15µ2
1)µ8

2 + 6(λ+ µ1)µ9
2 + µ10

2 )

f2(λ, µ1, µ2, 7) = (λ+ µ1)µ2
2(λ5µ5

1(λ2 + λµ1 + µ2
1) + λ4µ4

1(λ+ µ1)3µ2 + λ3µ3
1(λ

+ µ1)4µ2
2 + λ2µ2

1(λ+ µ1)5µ3
2 + λµ1(λ+ µ1)6µ4

2 + (λ+ µ1)7µ5
2 + (7λ6 + 27λ5µ1

+ 55λ4µ2
1 + 69λ3µ3

1 + 55λ2µ4
1 + 27λµ5

1 + 7µ6
1)µ6

2 + (λ+ µ1)(21λ4 + 44λ3µ1

+ 61λ2µ2
1 + 44λµ3

1 + 21µ4
1)µ7

2 + (35λ4 + 95λ3µ1 + 126λ2µ2
1 + 95λµ3

1 + 35µ4
1)µ8

2

+ (λ+ µ1)(35λ2 + 46λµ1 + 35µ2
1)µ9

2 + (21λ2 + 37λµ1 + 21µ2
1)µ10

2

+ 7(λ+ µ1)µ11
2 + µ12

2 )

132



f2(λ, µ1, µ2, 8) = (λ+ µ1)µ2
2(λ6µ6

1(λ2 + λµ1 + µ2
1) + λ5µ5

1(λ+ µ1)3µ2 + λ4µ4
1(λ

+ µ1)4µ2
2 + λ3µ3

1(λ+ µ1)5µ3
2 + λ2µ2

1(λ+ µ1)6µ4
2 + λµ1(λ+ µ1)7µ5

2 + (λ+ µ1)8µ6
2

+ (λ+ µ1)(8λ6 + 27λ5µ1 + 56λ4µ2
1 + 69λ3µ3

1 + 56λ2µ4
1 + 27λµ5

1 + 8µ6
1)µ7

2 + (28λ6

+ 98λ5µ1 + 185λ4µ2
1 + 226λ3µ3

1 + 185λ2µ4
1 + 98λµ5

1 + 28µ6
1)µ8

2 + (λ+ µ1)(56λ4

+ 119λ3µ1 + 162λ2µ2
1 + 119λµ3

1 + 56µ4
1)µ9

2 + 2(35λ4 + 98λ3µ1 + 131λ2µ2
1

+ 98λµ3
1 + 35µ4

1)µ10
2 + 7(λ+ µ1)(8λ2 + 11λµ1 + 8µ2

1)µ11
2

+ 2(14λ2 + 25λµ1 + 14µ2
1)µ12

2 + 8(λ+ µ1)µ13
2 + µ14

2 )

f2(λ, µ1, µ2, 9) = (λ+ µ1)µ2
2(λ7µ7

1(λ2 + λµ1 + µ2
1) + λ6µ6

1(λ+ µ1)3µ2

+ λ5µ5
1(λ+ µ1)4µ2

2 + λ4µ4
1(λ+ µ1)5µ3

2 + λ3µ3
1(λ+ µ1)6µ4

2 + λ2µ2
1(λ+ µ1)7µ5

2

+ λµ1(λ+ µ1)8µ6
2 + (λ+ µ1)9µ7

2 + (9λ8 + 44λ7µ1 + 119λ6µ2
1 + 209λ5µ3

1

+ 251λ4µ4
1 + 209λ3µ5

1 + 119λ2µ6
1 + 44λµ7

1 + 9µ8
1)µ8

2 + (λ+ µ1)(36λ6 + 104λ5µ1

+ 197λ4µ2
1 + 234λ3µ3

1 + 197λ2µ4
1 + 104λµ5

1 + 36µ6
1)µ9

2 + 2(42λ6

+ 147λ5µ1 + 273λ4µ2
1 + 331λ3µ3

1 + 273λ2µ4
1 + 147λµ5

1 + 42µ6
1)µ10

2

+ 14(λ+ µ1)(9λ4 + 20λ3µ1 + 27λ2µ2
1 + 20λµ3

1 + 9µ4
1)µ11

2

+ (126λ4 + 364λ3µ1 + 491λ2µ2
1 + 364λµ3

1 + 126µ4
1)µ12

2 + 12(λ+ µ1)(7λ2 + 10λµ1

+ 7µ2
1)µ13

2 + (36λ2 + 65λµ1 + 36µ2
1)µ14

2 + 9(λ+ µ1)µ15
2 + µ16

2 )

133



f2(λ, µ1, µ2, 10) = (λ+ µ1)µ2
2(λ8µ8

1(λ2 + λµ1 + µ2
1) + λ7µ7

1(λ+ µ1)3µ2

+ λ6µ6
1(λ+ µ1)4µ2

2 + λ5µ5
1(λ+ µ1)5µ3

2 + λ4µ4
1(λ+ µ1)6µ4

2 + λ3µ3
1(λ+ µ1)7µ5

2

+ λ2µ2
1(λ+ µ1)8µ6

2 + λµ1(λ+ µ1)9µ7
2 + (λ+ µ1)10µ8

2 + (λ+ µ1)(10λ8 + 44λ7µ1

+ 120λ6µ2
1 + 209λ5µ3

1 + 252λ4µ4
1 + 209λ3µ5

1 + 120λ2µ6
1 + 44λµ7

1 + 10µ8
1)µ9

2

+ (45λ8 + 192λ7µ1 + 462λ6µ2
1 + 756λ5µ3

1 + 887λ4µ4
1 + 756λ3µ5

1 + 462λ2µ6
1

+ 192λµ7
1 + 45µ8

1)µ10
2 + 2(λ+ µ1)(60λ6 + 171λ5µ1 + 312λ4µ2

1 + 367λ3µ3
1

+ 312λ2µ4
1 + 171λµ5

1 + 60µ6
1)µ11

2 + 2(105λ6 + 378λ5µ1 + 707λ4µ2
1 + 858λ3µ3

1

+ 707λ2µ4
1 + 378λµ5

1 + 105µ6
1)µ12

2 + 12(λ+ µ1)(21λ4 + 49λ3µ1 + 66λ2µ2
1 + 49λµ3

1

+ 21µ4
1)µ13

2 + 3(70λ4 + 208λ3µ1 + 283λ2µ2
1 + 208λµ3

1 + 70µ4
1)µ14

2 + 3(λ+ µ1)(40λ2

+ 59λµ1 + 40µ2
1)µ15

2 + (45λ2 + 82λµ1 + 45µ2
1)µ16

2 + 10(λ+ µ1)µ17
2 + µ18

2 )

134



REFERENCES

[1] Ansell, P., Glazebrook, K., and Kirkbride, C., “Generalised join-the-
shortest-queue policies for the dynamic routing of jobs to multi-class queues,”
Journal of the Operational Research Society, vol. 54, no. 4, pp. 379–389, 2003.

[2] Baccelli, F., Jean-Marie, A., and Mitrani, I., Quantitative Methods in
Parallel Systems. Springer Science & Business Media, 2013.

[3] Balsamo, S., de Nitto Personé, V., and Onvural, R., Analysis of Queue-
ing Networks with Blocking, vol. 31. Kluwer Academic Publishers, 2001.

[4] Bao, P., Pierce, J., Whittaker, S., and Zhai, S., “Smart phone use by
non-mobile business users,” in Proceedings of the 13th international conference
on human computer interaction with mobile devices and services, pp. 445–454,
ACM, 2011.

[5] Bertsekas, D. and Gallager, R., Data Networks. Prentice-Hall, Inc, sec-
ond ed., 1992.

[6] Bertsimas, D. and Tsitsiklis, J. N., Introduction to linear optimization,
vol. 6. Athena Scientific Belmont, MA, 1997.

[7] Bonomi, F. and Kumar, A., “Adaptive optimal load balancing in a nonhomo-
geneous multiserver system with a central job scheduler,” IEEE Transactions on
Computers, vol. 39, no. 10, pp. 1232–1250, 1990.

[8] Boxma, O. J., Koole, G., and Liu, Z., Queueing-theoretic solution methods
for models of parallel and distributed systems. Centrum voor Wiskunde en In-
formatica, Department of Operations Research, Statistics, and System Theory,
1994.

[9] Chang, K.-H. and Chen, W.-F., “Admission control policies for two-stage
tandem queues with no waiting spaces,” Computers and Operations Research,
vol. 30, no. 4, pp. 589–601, 2003.

[10] Cheng, M. C., “New criteria for the simplex algorithm,” Mathematical Pro-
gramming, vol. 19, no. 1, pp. 230–236, 1980.

[11] Cheng, M. C., “Generalized theorems for permanent basic and nonbasic vari-
ables,” Mathematical Programming, vol. 31, no. 2, pp. 229–234, 1985.

[12] Cheng, P. C., Rohatgi, P., Keser, C., Karger, P. A., Wagner, G. M.,
and Reninger, A. S., “Fuzzy multi-level security: An experiment on quanti-
fied risk-adaptive access control,” in Security and Privacy, 2007. SP’07. IEEE
Symposium on, pp. 222–230, IEEE, 2007.

135



[13] Clark, J. A., Tapiador, J. E., McDermid, J., Cheng, P.-C., Agrawal,
D., Ivanic, N., and Slogget, D., “Risk based access control with uncertain and
time-dependent sensitivity,” in Security and Cryptography (SECRYPT), Proceed-
ings of the 2010 International Conference on, pp. 1–9, IEEE, 2010.

[14] Daskalaki, S. and Smith, J. M., “Combining routing and buffer allocation
problems in series-parallel queueing networks,” Annals of Operations Research,
vol. 125, no. 1-4, pp. 47–68, 2004.

[15] de Nitto Persone, V. and Grassi, V., “Solution of finite QBD processes,”
Journal of Applied Probability, pp. 1003–1010, 1996.

[16] Denning, D. E. and MacDoran, P. F., “Location-based authentication:
Grounding cyberspace for better security,” Computer Fraud & Security, vol. 1996,
no. 2, pp. 12–16, 1996.

[17] Fan-Orzechowski, X. and Feinberg, E. A., “Optimality of randomized
trunk reservation for a problem with a single constraint,” Advances in applied
probability, pp. 199–220, 2006.

[18] Fan-Orzechowski, X. and Feinberg, E. A., “Optimality of randomized
trunk reservation for a problem with multiple constraints,” Probability in the
Engineering and Informational Sciences, vol. 21, no. 02, pp. 189–200, 2007.

[19] Feinberg, E. A. and Reiman, M. I., “Optimality of randomized trunk reserva-
tion,” Probability in the Engineering and Informational Sciences, vol. 8, no. 04,
pp. 463–489, 1994.

[20] Ghoneim, H. A. and Stidham, S., “Control of arrivals to two queues in series,”
European Journal of Operational Research, vol. 21, no. 3, pp. 399 – 409, 1985.

[21] Gordon, W. J. and Newell, G. F., “Closed queueing systems with exponen-
tial servers,” Operations Research, vol. 15, no. 2, pp. 254–265, 1967.

[22] Gosavi, H. D. and Smith, J. M., “An algorithm for sub-optimal routeing in
series-parallel queueing networks,” International Journal of Production Research,
vol. 35, no. 5, pp. 1413–1430, 1997.

[23] Grassmann, W. K. and Drekic, S., “An analytical solution for a tandem
queue with blocking,” Queueing Systems, vol. 36, no. 1-3, pp. 221–235, 2000.

[24] Guo, X. and Hernández-Lerma, O., Continuous-time Markov Decision Pro-
cesses. Springer, 2009.

[25] Hordijk, A. and Kallenberg, L. C. M., “Linear programming and Markov
decision chains,” Management Science, vol. 25, no. 4, pp. 352–362, 1979.

[26] Hordijk, A. and Koole, G., “On the optimality of the generalized shortest
queue policy,” Probability in the Engineering and Informational Sciences, vol. 4,
no. 04, pp. 477–487, 1990.

136



[27] Hordijk, A. and Koole, G., “On the assignment of customers to paral-
lel queues,” Probability in the Engineering and Informational Sciences, vol. 6,
no. 495-511, p. 3, 1992.

[28] Hordijk, A. and Koole, G., “On the shortest queue policy for the tandem
parallel queue,” Probability in the Engineering and Informational Sciences, vol. 6,
pp. 63–79, 1992.

[29] Hunt, P. and Laws, C., “Asymptotically optimal loss network control,” Math-
ematics of Operations Research, vol. 18, no. 4, pp. 880–900, 1993.

[30] Johri, P. K., “Optimality of the shortest line discipline with state-dependent
service rates,” European Journal of Operational Research, vol. 41, no. 2, pp. 157–
161, 1989.

[31] Kallenberg, L. C. M., “Finite state and action MDPs,” in Handbook of
Markov Decision Processes, pp. 21–87, Springer, 2002.

[32] Kelly, F. P., “Loss networks,” The Annals of Applied Probability, pp. 319–378,
1991.

[33] Kelly, F. P., Key, P. B., and Zachary, S., “Distributed admission control,”
IEEE Journal on Selected Areas in Communications, vol. 18, no. 12, pp. 2617–
2628, 2000.

[34] Key, P. B., “Optimal control and trunk reservation in loss networks,” Probability
in the Engineering and Informational Sciences, vol. 4, pp. 203–242, 4 1990.

[35] Kim, B. and Kim, J., “Optimal admission control for two station tandem queues
with loss,” Operations Research Letters, vol. 42, no. 4, pp. 257–262, 2014.

[36] Kim, C. and Dudin, S., “Priority tandem queueing model with admission con-
trol,” Computers and Industrial Engineering, vol. 61, no. 1, pp. 131 – 140, 2011.

[37] Koved, L. and Zhang, B., “Improving usability of complex authentication
schemes via queue management and load shedding,” in Symposium on Usable
Privacy and Security (SOUPS), Citeseer, 2014.

[38] Ku, C.-Y. and Jordan, S., “Access control to two multiserver loss queues in
series,” IEEE Transaction on Automatic Control, vol. 42, no. 7, pp. 1017–1023,
1997.

[39] Ku, C.-Y. and Jordan, S., “Access control of parallel multiserver loss queues,”
Performance Evaluation, vol. 50, no. 4, pp. 219 – 231, 2002.

[40] Ku, C.-Y. and Jordan, S., “Near optimal admission control for multiserver
loss queues in series,” European Journal of Operational Research, vol. 144, no. 1,
pp. 166–178, 2003.

137



[41] LaBouef, K., “2016 update: What happens in one internet minute?.”
http://http://www.excelacom.com/resources/blog/2016-update-what-
happens-in-one-internet-minute/, Blog post, 2016.

[42] Latouche, G. and Ramaswami, V., Introduction to matrix analytic methods
in stochastic modeling, vol. 5. Siam, 1999.

[43] Leskelä, L. and Resing, J., “A tandem queueing network with feedback ad-
mission control,” in Network Control and Optimization, pp. 129–137, Springer,
2007.

[44] Lewis, M. E., Ayhan, H., and Foley, R. D., “Bias optimality in a queue with
admission control,” Probability in the Engineering and Informational Sciences,
vol. 13, no. 03, pp. 309–327, 1999.

[45] Lewis, M. E., Ayhan, H., and Foley, R. D., “Bias optimal admission con-
trol policies for a multiclass nonstationary queueing system,” Journal of applied
probability, pp. 20–37, 2002.

[46] Li, A. A. and Whitt, W., “Approximate blocking probabilities in loss models
with independence and distribution assumptions relaxed,” Performance Evalua-
tion, vol. 80, pp. 82–101, 2014.

[47] Lin, K. Y. and Ross, S. M., “Admission control with incomplete information
of a queueing system,” Oper. Res., vol. 51, no. 4, pp. 645–654, 2003.

[48] Lippman, S. A., “Applying a new device in the optimization of exponential
queuing systems,” Operations Research, vol. 23, no. 4, pp. 687–710, 1975.

[49] Litvak, N., van Rijsbergen, M., Boucherie, R. J., and van Houden-
hoven, M., “Managing the overflow of intensive care patients,” European Jour-
nal of Operational Research, vol. 185, no. 3, pp. 998–1010, 2008.

[50] Martin, J. B., “Large tandem queueing networks with blocking,” Queueing
Systems, vol. 41, no. 1, pp. 45–72, 2002.

[51] Miller, B. L., “A queueing reward system with several customer classes,” Man-
agement Science, vol. 16, no. 3, pp. 234–245, 1969.

[52] Nagata, S. F., “Multitasking and interruptions during mobile web tasks,” in
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
vol. 47, pp. 1341–1345, SAGE Publications, 2003.

[53] Ni, L. M. and Hwang, K., “Optimal load balancing in a multiple processor
system with many job classes,” IEEE Transactions on Software Engineering,
no. 5, pp. 491–496, 1985.

[54] Nocedal, J. and Wright, S., Numerical optimization. Springer Science &
Business Media, 2006.

138



[55] Paparrizos, K., Stephanides, G., and Samaras, N., “Improved criteria for
identifying optimal basic and nonbasic variables in LP,” Journal of Computa-
tional Analysis and Applications, vol. 3, no. 1, pp. 75–82, 2001.

[56] Perros, H. G., “Queueing networks with blocking: A bibliography,” ACM SIG-
METRICS Performance Evaluation Review, vol. 12, no. 2, pp. 8–12, 1984.

[57] Perros, H. G. and Altiok, T., “Approximate analysis of open networks of
queues with blocking: Tandem configurations,” IEEE Transactions on Software
Engineering, no. 3, pp. 450–461, 1986.

[58] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 1994.

[59] Reiman, M. I., “Optimal trunk reservation for a critically loaded link,” in Tele-
traffic and datatraffic in a period of change, ITC-13 (Jensen, A. and Iverson,
V. B., eds.), pp. 247–252, 1991.

[60] Resnick, S. I., Adventures in stochastic processes. Springer Science & Business
Media, 2013.

[61] Ross, K. W., “Randomized and past-dependent policies for markov decision
processes with multiple constraints,” Operations Research, vol. 37, no. 3, pp. 474–
477, 1989.

[62] Sethuraman, J. and Squillante, M. S., “Optimal stochastic scheduling
in multiclass parallel queues,” SIGMETRICS Performance Evaluation Review,
vol. 27, pp. 93–102, May 1999.

[63] Sheu, R.-S. and Ziedins, I., “Asymptotically optimal control of parallel tandem
queues with loss,” Queueing Systems, vol. 65, no. 3, pp. 211–227, 2010.

[64] Shi, Y., Yu, P.-L., and Zhang, D. Z., “Eliminating permanently dominated
opportunities in multiple-criteria and multiple-constraint level linear program-
ming,” Journal of Mathematical Analysis and Applications, vol. 183, no. 3,
pp. 685–705, 1994.

[65] Silva, D. F., Zhang, B., and Ayhan, H., “Optimal admission control for
tandem loss systems with two stations,” Operations Research Letters, vol. 41,
no. 4, pp. 351–356, 2013.

[66] Silva, D. F., Zhang, B., and Ayhan, H., “Admission control strategies for tan-
dem markovian loss systems.” Submitted for publication to Queueing Systems,
2016.

[67] Silva, D. F., Zhang, B., and Ayhan, H., “Dynamic control of complex authen-
tication systems.” Submitted for publication to IEEE Conference on Decision
and Control, 2016.

139



[68] Spicer, S. and Ziedins, I., “User-optimal state-dependent routeing in parallel
tandem queues with loss,” Journal of Applied Probability, vol. 43, pp. 274–281,
2006.

[69] Stidham Jr, S. and Weber, R., “A survey of Markov decision models for
control of networks of queues,” Queueing Systems, vol. 13, no. 1-3, pp. 291–314,
1993.

[70] Trafton, J. G., Altmann, E. M., and Brock, D. P., “Huh, what was i
doing? how people use environmental cues after an interruption,” in Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 49, pp. 468–
472, SAGE Publications, 2005.

[71] Weber, R. R., “On the optimal assignment of customers to parallel servers,”
Journal of Applied Probability, pp. 406–413, 1978.

[72] Whitt, W., “Deciding which queue to join: Some counterexamples,” Operations
research, vol. 34, no. 1, pp. 55–62, 1986.

[73] Winston, W., “Optimality of the shortest line discipline,” Journal of Applied
Probability, pp. 181–189, 1977.

[74] Ye, Y., “Eliminating columns in the simplex method for linear programming,”
Journal of Optimization Theory and Applications, vol. 63, no. 1, pp. 69–77, 1989.

[75] Zhang, B. and Ayhan, H., “Optimal admission control for tandem queues with
loss,” IEEE Transactions on Automatic Control, vol. 58, no. 1, pp. 163–167, 2013.

[76] Zhang, R. and Phillis, Y. A., “Fuzzy control of arrivals to tandem queues with
two stations,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 3, pp. 361–367,
1999.

[77] Ziedins, I., “A paradox in a queueing network with state-dependent routing
and loss,” Advances in Decision Sciences, vol. 2007, pp. 1–10, 2007. (Article ID
68280).

140



VITA

Daniel F. Silva was born in Bogotá, Colombia. He holds B.Sc. degrees in Industrial

Engineering and Mechanical Engineering from Universidad de Los Andes, in Colom-

bia. In recognition for his academic achievements as an undergraduate, Universidad

de Los Andes offered him a full scholarship for a Master’s degree in Industrial Engi-

neering, which he completed in 2008, graduating Cum Laude.

Before coming to Georgia Tech, Daniel worked as an Operations Research analyst

at Kimberly Clark and Amazon.com for over four years, creating and implementing

operations research solutions to a variety of supply chain, logistics and marketing

problems. The solutions he worked on have been implemented by local operations in

over 12 countries in three continents.

In 2011, Daniel joined the Ph.D. program for Operations Research at the H.

Milton Stewart School of Industrial and Systems Engineering at Georgia Tech. He

carried out his dissertation research under the supervision of Dr. Hayriye Ayhan.

Daniel’s broader research interests involve developing and applying novel techniques

to solve stochastic optimization problems arising in diverse applications, including

supply chains, healthcare, and other service systems. He also develops software ap-

plications related to stochastic optimization. This includes working as a major con-

tributor to the jMarkov Project, a Java framework for Markov chain modeling, which

is currently a part of the COIN-OR initiative.

After graduation, Daniel plans to start working as an Assistant Professor in the

Department of Industrial and Systems Engineering at Auburn University, starting in

the fall of 2016.

141


