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SUMMARY

Molecular communication (MC) is a novel communication paradigm in which

molecules are used to encode, transmit and decode information. MC is the primary method

by which biological entities exchange information and hence, cooperate with each other.

MC is a promising paradigm to enable communication between nano-bio machines, e.g.,

biosensors with potential applications such as cancer and disease detection, smart drug

delivery, toxicity detection etc.

The objective of this research is to establish the fundamentals of diffusion-based molec-

ular communication and sensing via biological agents (e.g., synthetic bacteria) from a com-

munication and information theory perspective, and design algorithms for reliable commu-

nication and sensing systems. In the first part of the thesis, we develop models for the

diffusion channel as well as the molecular sensing at the receiver and obtain the maximum

achievable rate for such a communication system. Next, we study reliability in MC. We de-

sign practical nodes by employing synthetic bacteria as the basic element of a biologically-

compatible communication system and show how reliable nodes can be formed out of the

collective behavior of a population of unreliable bio-agents. We model the probabilistic

behavior of bacteria, obtain the node sensing capacity and propose a practical modulation

scheme. In order to improve the reliability, we also introduce relaying and error-detecting

codes for MC.

In the second part of the thesis, we study the molecular sensing problem with potential

applications in disease detection. We establish the rate-distortion theory for molecular

sensing and investigate as to how distortion can be minimized via an optimal quantizer. We

also study sensor cell arrays in which sensing redundancy is achieved by using multiple

sensors to measure several molecular inputs simultaneously. We study the interference in

sensing molecular inputs and propose a probabilistic message passing algorithm to solve

the pattern detection over the molecular inputs of interest.
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CHAPTER 1

INTRODUCTION AND RELATED WORK

The use of molecular signaling as a means of communication is inspired from naturally

occurring communication between bacteria in a process called Quorum Sensing (QS) [1]. It

has been understood that bacteria use concentration of small signal molecules to understand

the state of the environment (e.g., bacteria’s population density) and to synchronize their

actions [1–5]. This mechanism enables bacteria to behave collaboratively for performing

the tasks that would be impossible otherwise. From a macro-level perspective, QS can

be viewed as a way that bacteria propagate information spatially by relaying it to other

bacteria in the vicinity. Some examples for these coordinated tasks are light production

and attacking the host by bacteria.

Molecular communication and sensing have been shown to play major roles in inter-

cell communication inside the human body as well. One of the most prominent examples

is the transfer of small micro-RNA (miRNA) molecules throughout the body [6–8]. In

particular, it has been observed that specific patterns over certain miRNA types can be

used to detect diseases such as cancer and heart failure. In the cancer case, it has been

proposed that tumors propagate their corrupt genetic information via transfer of molecules

(e.g., miRNAs) to the healthy tissues [9]. These phenomena call for a thorough study for

molecular communication and sensing from a theoretical and practical perspective.

Recent developments in synthetic biology and nano/bio technology have motivated the

researchers from various disciplines to study the fundamentals of molecular communica-

tion systems and the design of synthetic circuitry using primitive bio agents (e.g., bacte-

ria) [10–15]. This alongside with system biology enables researchers to engineer microor-

ganisms for certain objectives [16]. Moreover, primitive bio agents can be designed to be-

have collaboratively for performing the tasks that would be impossible otherwise [17, 18].
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Synthetic biology, despite in its infancy, provides engineering solutions to redesign bi-

ological systems that improve human health, address environmental issues, and provide

renewable energy [14, 19–21].

Emergence of new applications in biomedicine [22–24], e.g., smart drug administra-

tion [25] and monitoring systems [26] as well as several prospective industrial and se-

curity related applications including surveillance for biological and chemical attacks [10]

require network designs that are 1) capable of operation in micro-scale 2) bio-compatible,

3) cheap to deploy, 4) highly reliable, and possibly 5) self-organized [15, 27]. In many of

the above applications, communication between different network components is essential

to achieve their true capability which necessitate the development of alternative networking

paradigms. One of the most promising candidates for constructing networks that satisfy the

requirements mentioned above is adaptation and engineering of specific types of bacteria

that are capable of sensing, computation, actuation, and above all, communication with

each other [1, 28].

In this research, we are interested in both theoretical and practical aspects of molecu-

lar communication and sensing. The thesis has two parts, one studies the communication

problems and the other investigates the sensing problems. We first study the fundamental

problems in communication between two nodes in MC. In particular, we are interested in

Diffusion-Based Molecular Communication (DbMC) in which the molecules diffuse freely

to reach their destination. DbMC is the most common form of molecular communication

in nature [10]. The transmitter is considered to be a nano-device or a bio-engineered cell

capable of emitting molecules and releasing them into the medium to change the concen-

tration according to information bits. Similarly, the receiver is capable of absorbing the

molecules or chemical signals by using molecular bindings. The diffusion process has

a profound impact on transmission of information that makes the diffusion channel very

different from the classical models developed for electromagnetic-based communication.

The molecules that are produced by the transmitter stay in the medium and affect the later

3



transmissions. We study fundamental problems such as the maximum achievable rate of

information exchange (i.e., capacity) by considering all the components in such a diffusion-

based molecular communication.

Further, from a practical point of view, networks of engineered bacteria can be deployed

in the environments such as human body, where other forms of wireless communication

methods may be infeasible, to sense the density of a particular chemical, communicate it

to other nodes, and possibly take appropriate actions [11, 29]. In order to design practical

communication nodes, we employ genetically modified bacteria [17, 18] that can detect

specific types of molecules and respond accordingly as the basic element of the communi-

cation nodes. Reliability is one of the most critical issues in MC, especially for the sensitive

applications such as bio-sensors. We propose as to how design reliable MC nodes out of

the primitive unreliable agents. We also study relaying and error-control-coding to further

address this issue in MC.

The second part of this thesis investigates molecular sensing via synthetic cells. Among

the most promising applications of molecular sensing is the design of biological sensors

who measures and reports the existence and/or the intensity of specific types of molecules

in the environment [11]. We establish the rate-distortion theory in the context of molecular

sensing and show how redundancy can be employed to limit the distortion is molecular

inference. We identify the sources of distortion and obtain the optimal quantizer for such

a bio-sensor. We also discuss the sensor cell arrays in which multiple sensors can act

simultaneously to detect environmental signals. In particular, we study the problem of

detecting specific patterns of micro-RNA molecules in the environment via multiple RNA

sensors.

In Fig. 1.1, molecular communication between two bio-nodes, each consisting a popu-

lation of bio agents, has been depicted1. In the following, we introduce the building blocks

of such communication and sensing system that will be discussed in this thesis and also

1Courtesy of Precision Biosystems Lab, Mechanical Engineering department at Georgia Institute of Tech-
nology
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Figure 1.1. Two-node molecular communication via populations of synthetic bacteria

review the relevant prior literature.

Diffusion Channel in MC: In diffusion-based molecular communication, molecular

signals propagate the channel freely via diffusion, as shown in Fig. 1.1, from the transmitter

to reach the receiver node. Molecular random walk and the diffusion process [30] have been

studied in the biological context by [31]. In [32], an end-to-end model for communication

through a diffusion channel has been proposed. Authors in [33] have introduced a simpli-

fied binary symmetric channel model for MC and the channel capacity by considering the

molecular degradation has been discussed in [34].

In this thesis, we model the memory in the diffusion channel via a Markov chain and

treat it as a discrete noiseless channel. We obtain the capacity of the diffusion channel for

a binary signaling under certain assumptions and show the limiting effect of lingering of

molecules on the capacity. We also study the effect of model parameters, such as the range

of the input concentration, on the capacity [35].

Inspired by this research, authors in [36] have proposed a model to capture the channel

memory and molecular noise by modeling the molecular diffusion as an ideal gas transfer.

In [37], a LTI-Poisson model is used to obtain the diffusion channel capacity. In order

to mitigate the molecular lingering, different methods such as choosing appropriate pulse

lengths and shut-off periods [38], using enzymes to reset the channel [39], and alternative

use of molecule types [40] have been proposed. In [41], a stochastic model for bacterial
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electron transfer has been described.

Ligand Reception: In molecular communication, the receiver agents are capable of

absorbing the molecules or chemical signals by using ligand-receptor bindings and produc-

ing an appropriate response. In bacteria, the receptors are transmembrane proteins on the

surface of the cells [42, 43]. The details of such a sensing process is shown in Fig. 1.1 and

will be explained at length in Chapter 4. In such a setup, populations of synthetic bacteria

are employed as transmitter as well as the receiver. Upon the arrival of signal molecules

from the channel, complex molecules are formed by the probabilistic binding of the sig-

nal molecules with ligand receptors which in turn, transcribe the genes responsible for the

output production. The final translated output is usually in the form of Green Fluorescent

Protein (GFP). The theoretical analysis of the ligand reception process in molecular com-

munication is a novel subject of study. In [44], a noise model has been proposed for the

ligand-binding reception and a sampling-based receiver has been described in [45].

In this thesis, we present two models accounting for the uncertainty in estimation of

concentration of molecules by the ligand receptors in a biological agent. We focus on the

the steady state and obtain the sensing capacity of the ligand reception using these models.

We also obtain the capacity-achieving distribution on the molecular input and show that the

optimal distribution is approximately binary [46]. This observation will be used further on

to design the optimal transmitter.

Inspired by this research, it has been proven in [47] that discrete distributions can

achieve the capacity of ligand reception. In [48], the capacity of ligand reception has been

obtained in the transient mode in which the binding/unbinding has yet to reach an equilib-

rium. Authors in [49] have proposed different methods for a receiver in the MC to recover

the transmitted information distorted by both ISI and noise. In [50], two techniques for

the detection of the molecular pulses, amplitude and energy detection, have been analyzed.

In [51], authors study the estimation and detection problems for diffusion-based communi-

cation in the presence of ISI and reception noise and a combined model for diffusion and
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ligand reception is proposed in [52]. Authors in [53], in order to improve the decoding

performance, have introduced memory to keep track of the transmitted symbols. Optimal

receiver design has also been discussed under various assumptions [54, 55]

Two-Node Communication Design: In [10, 11], fundamentals of molecular commu-

nication in nano-networks have been discussed. They include the channel description, node

and protocol design, and experimental validation setup. In [56], several challenges that dif-

ferentiate molecular communication with conventional wireless communication have been

studied and a frameworks to study MC systems is also introduced in [57]. The transmitter

and receiver nodes in MC can be formed by modifying cells genetically [58] or by design-

ing artificial cells [59]. In [60], the idea of lab-on-a-chip has been analyzed for molecular

communication and a nonlinear model for molecular communication systems has been de-

veloped in [61].

In this thesis, we introduce using synthetic bacteria to form MC nodes and show that

forming reliable communication is possible by using a population of unreliable biological

agents. This scenario has been shown is Fig. 1.1 where population of primitive synthetic

bacteria form the communication nodes. As such, the collective behavior of such agents

can be used to transmit or receive signaling molecules [15, 62, 63]. We model the recep-

tion/transmission noise in such nodes and study the two-node communication using such

nodes. We show how the noise is accumulated at each stage and obtain the maximum rate

of transferring information [38, 64, 65].

Inspired by this research, authors in [66] have proposed a cooperative architecture for

MC. Source addressing and access control [67], Stop-and-Wait (SW) and Automatic Re-

peat reQuest (ARQ) [68], and resource allocation problem [69] have been discussed for

a bacterial communication network. Authors in [70] have discussed chromosome transfer

in bacterial networks and plasmid transfer in a nano sensor network is discussed in [71].

In [72], a swarm of nano-robots is proposed to be used in biomedicine applications. In [73],

a bacteria inspired mitigation of selfish users in social networks has been proposed and
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in [74], a probabilistic model for quorum sensing of bacteria is investigated.

Modulation Techniques: In molecular communication, information can be encoded

in various forms such as the concentration, type or timing of molecules. Encoding the in-

formation in the timing of emission of molecules has been introduced in [75,76] where the

propagation from the transmitter to the receiver is governed by Brownian motion. Capacity

under such circumstance, for both with and without drift, has been obtained in [77–80].

In [81], a new class of time-coding has been introduced with identical signaling quanta.

Although Brownian motion of particles is basically the same process as diffusion, nat-

ural organisms do not directly sense the Brownian motion of a single particle [31]. Instead,

they measure average diffusion of many small molecules by following the changes in con-

centration. Arguably, the most dominating form of the communication at the micrometer

scale in nature is diffusion based molecular communication, i.e., embedding the informa-

tion in the alteration of the concentration of molecules and rely on diffusion to transfer

the information to the destination [35]. Encoding information in the variations of con-

centration of molecules has been modeled in [32, 82]. Modulation techniques based on

type of molecules have been proposed in [83] and extended in [84]. Another approach for

information encoding in MC is to directly send genetic contents between different nano ma-

chines [85]. Although in such approaches, more information can be potentially transferred

in the network, the encoding/decoding complexity is a huge drawback.

In this thesis, we propose M-ary modulation in which the information is encoded in

discrete levels of concentration of molecules and decoded via measuring the GFP level at

the receiver [38]. We show that unlike the conventional wireless communication, reliability

cannot be improved arbitrarily by increasing the SNR. This suggests using other methods

alongside with the node design to increase the reliability in MC.

Inspired by this research, authors in [86] have analyzed the error performance of pulse-

based modulation. In [87], authors have proposed modulations techniques based on type

and concentration of molecules and analyzed their performance.
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Reliability in MC: Due to huge randomness in production, diffusion and reception of

molecules, reliability is one of the most critical problems in MC [88]. Attenuation of the

molecular concentration (i.e., the signal) as it travels through the medium via the diffusion

process is another major problem in achieving reliability in MC [89]. It has been shown that

the signal attenuation in molecular communication is faster than the conventional wireless

communication [90]. Therefore, communication to long distances remains a challenge

especially whenever other types of molecules are present at the medium.

Relaying is one of the methods to improve the communication reliability in MC. This

is inspired by QS through which bacteria reach a consensus by relaying their inaccurate

estimates back and forth. From a macro-level perspective, QS can be viewed as a way that

bacteria propagate information spatially by relaying it to the bacteria in their vicinity. We

are motivated by this observation to study and design a relaying scheme in which informa-

tion is transmitted from a source to a destination in a network, through the help of relay

nodes.The design of repeaters in Calcium junction channels is discussed in [91]. Authors

in [92] considered the multi-user problem in molecular communication and compared it

with its conventional counterparts.

In this thesis, we introduce two forms of relaying in MC namely, sense-and-forward and

decode-and-forward. In the former, we consider continuous symbols and study the effect

of relaying on the capacity [93]. In the latter, we study the more practical case of using

discrete symbols and demonstrate the effect of relaying on the probability of error [94]. We

investigate using the same or a different type of molecule for the relaying path as for the

direct path and identify the regimes at which one would outperform the other.

Inspired by this research, authors in [95] have analyzed a multi-hop architecture in

molecular communication and extended the Amplify-and-Forward Relaying in [96]. Relay-

ing with time-dependent concentration is discussed in [97] and network coding in molecu-

lar relaying is proposed in [98].

Error-Control Coding for MC: Another approach to enhance the reliability in MC is
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to use error-control coding [99, 100]. Different capacity-approaching codes such as Turbo

codes [101] and low density parity check (LDPC) codes [102] have been designed for

the conventional communication systems. However, the encoding/decoding complexity

of such codes deem them impractical for MC. One of the biggest challenges here is to

develop codings schemes with transmitter and receiver nodes requirements in terms of

complexity. Coding schemes for molecular communication has been briefly discussed in

the literature. In [103], a new distance measure for molecular communication has been

studied and a family of ISI-free codes has been introduced in [104]. Authors in [105]

apply convolutional coding schemes, by making use of memory units and XOR gates,

to improve the probability of error in molecular communication. The use of Hamming

codes for molecular communication is discussed in [106] in which logic gates are used for

encoding and decoding.

In this thesis, unlike the above schemes, we advocate using error detection schemes [100].

We focus on error detection rather than error correction for two reasons. First, often a

node acts as a sensor that reports its readings (e.g., existence of a chemical in the envi-

ronment [99]) to a destination repeatedly over time. In such a context, we need a reli-

able error-detection capability to avoid erroneous readings. However, discarding erroneous

transmissions can be tolerated as the nodes are repeatedly sensing the environment and

sending the information of interest. Hence, a natural repetition code is built into the ap-

plication. The second reason is due to the limitations of biological agents to implement

operations such as arithmetics and table lookup. Thus, error detection appears to be desir-

able to obviate the complexity imposed by error-correcting codes, especially at the receiver

using ML decoding, and allow the system to be implemented in all-bio domain without

requiring electronic components.

We model the binary DbMC over a completely asymmetric channel where one of the

bits can be transmitted without any error while the other can undergo a random error by the

channel. To obtain an optimal detection scheme, we model the detection problem via an
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erasure channel and propose algorithms to obtain the optimal codewords efficiently for two

different optimality measures. Then, we consider an error-free sub-family of such codes,

namely constant weight codes, and propose an implementation specific to the molecular

communication [107].

Rate Distortion and Optimal Quantization: Optimal Quantization techniques in

the context of conventional communication have been discussed extensively in the classi-

cal literature. Max in [108] described the optimal choice of quantizing intervals and the

reconstruction points that result in minimum average quantization error for an arbitrary

signal distribution. Uniform quantization (i.e., having uniform quantization levels) is the

most common and practical quantization method [109]. Authors in [110] showed that the

uniform quantization is asymptotically optimal with the number of quantization levels.

Universal quantizers have been introduced for the cases where the input distribution is un-

known beforehand [109]. A universal quantizer in the minimax sense (i.e., minimizing the

distortion for the distribution that yields the maximum error) is introduced in [111] and the

idea is extended in [112, 113].

In the world of biology, distortion and error are usually mitigated through redundancy

(e.g., number of sensors). In this research, we study the distortion in sensing and estima-

tion of the concentration of molecular signals by ligand receptors in biological agents. The

sensing distortion is caused by both the the random measurement of the molecular signal

and the quantization of the final receiver output. We propose an optimal random quanti-

zation technique that minimizes the overall distortion and compare its performance with a

uniform quantizer [114]. The exact distribution of molecules in the environment is often

unknown. Hence, in collaboration with my colleague A. Abdi, we introduce the optimal

universal quantizer in the minimax sense for a molecular sensor.

micro-RNA Sensor Cell Arrays: DNA microarays have long been a practical so-

lution for detecting/estimating environmental genetic targets [115–119]. Several signal
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processing and machine learning methods have also been developed for these technolo-

gies [120–132]. In particular, authors in [120,121] have proposed using Compressive Sens-

ing (CS) techniques to make more efficient microarrays capable of simultaneous estimation

of various targets. In [121] a graphical model is used to solve the CS decoding problem for

a microarray. Sparse nonnegative recovery through a sparse measurement matrix, where

the matrix is the binary adjacency matrix of a bipartite graph with constant column sum,

has been presented in [120].

As explained earlier in this chapter, irregular patterns over specific miRNAs have been

linked to certain types of cancer and cardiac diseases. In this research, we introduce a

general framework to sense environmental miRNAs and detect certain irregular patterns.

We use a sensor cell (i.e., biosensor) array comprising of various genes whose expression

can be suppressed through miRNAs of interest. Interference and noise are major issues in

miRNA sensing via such a cell array. In particular, every miRNA may have a footprint

on multiple biosensors and each biosensor in the array may be affected by multiple miR-

NAs. We present a probabilistic model capturing this phenomenon and solve the detection

problem via a factor graph. Since certain patterns rather than the exact values of the input

miRNAs are needed, for disease detection, fewer observation are required to achieve the

same level of pattern-detection accuracy relative to directly measuring the concentration.

Finally, we use Belief Propagation, a message-passing algorithm, to infer the presence of

irregular patterns [133].
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CHAPTER 2

MOLECULAR RECEIVER WITH LIGAND RECEPTORS

In this chapter, we discuss the reception model for the biological agents inside the MC

nodes as depicted in Fig. 1.1. The functionality of agents inside the transmitter and receiver

nodes, which can be synthetic bacteria or man-made nano-machines, is similar differing

only in the input and output type. In design of such bio agents, we are inspired by the

Quorum Sensing (QS) in bacteria through which bacteria can reach a consensus to perform

a task, e.g., producing light in bioluminescent bacteria, collectively.

In Fig. 2.1, we have shown the main stages in production of the output, Green Fluores-

cent Protein (GFP), in response to a molecular input, Acyl Homoserine-Lactone (AHL), in

a typical synthetic E. coli bacterium [17]. We can identify the three main stages as

1. AHL molecules binding to the receptor proteins LuxR

2. Complex molecule formation that transcribe corresponding genes

3. GFP production.

In this chapter, we focus on the receptor binding and assume the next stages to be

deterministic. Hence, our results would be applicable to any molecular receiver with ligand

receptors [46]. Specifically, we answer two questions: 1- What is the maximum rate by

which a bio agent can sense information from the environment via ligand receptors? 2-

What is the corresponding capacity-achieving molecular distribution?

2.1 Modeling the Ligand Receptors

In molecular sensing, the receiver measures the concentration of molecules, using a set of

binding sites, i.e., ligand receptors, that become active once they trap a molecule. The sim-

plest reaction between a ligand and its receptor can be written as a two-way process [43]:

Ligand + Receptor↔ Complex
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Figure 2.1. The main stages in GFP production of bacteria by reception of AHL molecules

In most cases, the focus is on the equilibrium behavior of the ligand reception in which

the rate of removal of the ligand by the cell is equal to rate at which new ligands are

supplied by diffusion [43]. Each binding site can trap one molecule at a time and cannot

accept any more until the reaction to the previously trapped molecule is completed. As the

concentration of molecules increases, the probability that a molecule is trapped and hence

the number of active sites increases. This way, the receiver can estimate the concentration

in the medium by observing the activated receptors.

Assume a receiver equipped with N binding sites/receptors as shown in Fig. 2.1. At

every moment, a receptor is either active (a molecule is trapped in it) or inactive (empty).

We assume all the receptors are identical, observe the same concentration, and act inde-

pendently. The process of determining the concentration of molecules at the receiver is

as follows: the molecules arriving from the channel produce a time-varying concentration

A(t) at the receiver vicinity. The higher the concentration around the receiver, the higher

the probability that a molecule is trapped in a receptor. The receiver periodically samples

the environment and based on the number of bound receptors infers the concentration of

molecules at the receiver vicinity.
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Figure 2.2. Molecular receiver with ligand recep-

tors

We denote by p the probability that

a single molecule being bound to an

empty ligand-receptor when the concentra-

tion A(t) = A. In other words,

p = P
(
Binding | A & the receptor is empty

)
(2.1)

For the general case, the function that maps

the concentration of molecules to the prob-

ability of the absorption is assumed to be a monotonically increasing one, [0,∞] → [0, 1].

In Chapter 4, we will consider a specific function modeling the ligand reception in bacteria.

Moreover, p ∈ [0, 1] is a realization of a random variable P.

We associate an indicator random variable Xi, i ∈ {1, 2, ...,N} to each receptor where

Xi’s are Bernoulli distributed with parameter p, i.e., P(Xi = 1) = p. Let X(N) be the vector

containing the outputs of all the receptors. The vector X(N) is the input used to estimate

p. It is known that
∑N

i=1 Xi is the sufficient statistics for estimation of p. This implies that

the receiver functionality is to aggregate the values of all the receptors at every sampling

instant. Let P̂ be the best unbiased estimator for p. Since P̂ = 1
N

∑N
i=1 Xi, the expected value

and variance of P̂, given p, can be easily derived as E[P̂] = p and Var[P̂] = 1
N p(1 − p).

Clearly, P̂ depends on the value that P takes. In other words, we have

P
(
P̂ =

i
N

∣∣∣∣∣ P = p
)

=

(
N
i

)
pi(1 − p)N−i. (2.2)

We use the shorthand P(i|p) for P
(
P̂ = i

N |P = p
)

in (2.2). Hence, by computing P̂, the

receiver has an estimate for p which in turn is a function of A. In other words, the receiver

maps back the estimate P̂ to a level of concentration Â.

We are interested in calculating the maximum information rate, i,e., the sensing capac-

ity, with which the receiver with functionalities as described above can obtain from the

environmental molecular signals. We observe that except for the relation between P and P̂,
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all the other relations are deterministic and one-to-one. Therefore to study the capacity of

the ligand receptors, it is sufficient to consider only the mutual information between P and

P̂. This implies that

C = max
fP(p)

I(P̂; P) = max
fP(p)

[H(P̂) − H(P̂|P)] (2.3)

where C is the ligand reception capacity and fP(p) is the probability distribution function

of P. In addition, H(P̂) is the entropy of the discrete random variable P̂ which takes values

from the set
{

i
N , i ∈ 0, 1, ...,N

}
. Using (2.2) and the definition of mutual information, we

have

C = max
fP(p)

∑
i

∫
p

P(i|p) log

 P(i|p)∫
p

P(i|p) fP(p)dp

 fP(p) dp (2.4)

Therefore, in order to calculate the capacity, we need to obtain the optimal input distribution

fP(p) that maximizes (2.4).

Note that the capacity of the receiver with ligand receptors depends on the model as-

sumed for functionality of the receptors. In the following, we study two models to describe

the process of estimating the concentration of molecules. First, the ideal receptor model is

discussed. Then, we extend this model to better capture the functionality of the receiver

using a Markov chain model.

2.1.1 Ideal Receptors

An ideal receptor is defined as a memoryless receptor which at each sampling time is ready

to receive molecules. Once bound, the receptor remains as such until the next sampling

time. This means that the parameter P̂ would be directly an estimate for the probability

in (2.1). Therefore,

I
(
P; P̂

)
= I

(
P;

∑N
i=1 Xi

)
= I

(
P; X(N)

)
. (2.5)

In this case, the problem of finding the capacity-achieving distribution in (2.3) resembles

the corresponding problem in source coding which is discussed in [134]. There, the prob-

lem is to find the distribution that maximizes the mutual information between an observed
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Figure 2.3. Capacity-achieving distribution for p

sequence and its unknown source parameter θ. It is shown that the capacity-achieving dis-

tribution is Jeffreys Prior which is proportional to the square root of the determinant of the

Fisher information I:

fP(θ) ∝
√
I(θ).

In our setup, we intend to maximize the mutual information between the sequence X(N) and

the unknown parameter p. By comparison to the source coding problem we have:

Lemma 1. The capacity achieving distribution on P that maximizes the mutual information

I(P, X(N)) follows the Jeffery’s prior [134].

It is easy to verify that the Fisher information contained in N independent Bernoulli

trials with parameter θ is

I(θ) =
N

θ(1 − θ)
.

Therefore, the Jeffrey’s prior for a Bernoulli random variable is given by the Arcsine dis-

tribution:

fΘ(θ) =
1

π
√
θ(1 − θ)

, 0 < θ < 1. (2.6)
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Figure 2.4. Capacity versus the number of receptors

As shown in [134], this results in the sensing capacity to be increasing logarithmically with

the number of receptors N as described by

C = max I(θ; XN) = ln(N) +
1
2

ln(
π

2e
) + o(1) (2.7)

The capacity-achieving distribution is shown in Fig. 2.3. The resulting distribution for

P shows that, in order to achieve the capacity, the transmitter should produce molecules in

a way that approximately, makes P close to either 1 or 0, in each transmission. Intuitively,

when p is chosen to become closer to 1
2 , the variance p(1−p) of the Bernoulli output of each

receptor is maximized which would reduce the mutual information in (2.3). The numerical

results for the capacity of the ligand receptors versus the number of receptors N is shown

in the outermost plot in Fig. 2.4. Expectedly, the capacity is monotonically increasing with

respect to N but the added value of each receptor decreases with N .

2.1.2 Markov Chain Model for Receptors

In [135], a more realistic model to address the lingering of molecules in receptors is in-

troduced. In the ideal model introduced in the previous section, the unbinding of a bound
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receptor is ignored. In contrast, here, we use a modified version of the model in [135] in

which the binding and unbinding of molecules are modeled with a Markov Chain (MC)

to better capture the performance of receptors. The bound molecules occupy the binding

site for a random amount of time. During this interval, the receptor remains occupied and

no other molecule is able to bind to the receptor. The MC model for such a receptor is

shown in Fig. 2.5. In this figure, state 0 corresponds to an empty receptor, i.e., Xi = 0,

whereas state 1 corresponds to the receptor with a trapped molecule, i.e., Xi = 1. Here, p is

the concentration-dependent binding probability and q is a fixed probability that a trapped

molecule is released at each time interval. As before, we are interested in the steady-state

behavior of the receive. The steady-state probability distributions for the above MC are

given by 
π0 = P(X = 0) =

q
p+q

π1 = P(X = 1) =
p

p+q

.

Since the diffusion channel is low-pass [35], the variations in the channel are slow relative

to the mixing time of the MC, which is the time that takes for the MC to reach the steady

state. In other words, the transition time to reach the steady state is quite small compared

with the time intervals that information is transmitted via the diffusion channel. Therefore,

we may assume that the MC reaches the steady state before the concentration level at the

receiver switches from high to low or vice versa.

Let Π̂1 be the estimator for π1 and denote by Π1 the random variable representing π1.

Again, we have: Π̂1 = 1
N

∑N
i=1 Xi. We use the method in the previous section to obtain the
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optimal distribution for Π1 to maximize the mutual information described in below:

C = max
fΠ1 (π1)

I(Π̂1; Π1) = max
fΠ1 (π1)

[H(Π̂1) − H(Π̂1|Π1)] (2.8)

However, the difference is that π1 is limited to [0, 1
1+q ] as p varies in the range [0, 1]. Con-

sequently, Π1 cannot take an Arcsine distribution as in the ideal receptor case.

One approach for finding the distribution of Π1 is to use Lagrange multiplier to max-

imize (2.8) with the constraint
∫ 1/(1+q)

0
fΠ1(π1) = 1. Since the Lagrange method is in-

tractable, instead, we obtain the capacity-achieving distribution for Π1 numerically by the

Blahut-Arimoto algorithm [136] for several values of q. The result is shown in Fig. 6(a).

We observe that the distribution of Π1 is asymmetric and its range decreases by increasing

the parameter q.

From the distribution of Π1, we can determine the optimal distribution for P; which in

turn will determine the required distribution of the transmitter output. The distribution for

P is shown in Fig. 6(b). We observe that the distribution of P does not depend considerably

on the value of q. Since the transformation from p to π1 is one-to-one and deterministic,

we can calculate the capacity of the ligand receptor receiver by computing the mutual

information between Π1 and Π̂1. The numerical results for different number of receptors

and q are shown in Fig. 2.4. We observe that the capacity increases by decreasing q. This

can be explained by the fact that the range of π1 increases when q decreases and hence,

the mutual information is increased. Note that q = 0 corresponds to the ideal receiver for

which the MC model would be meaningless.

2.2 Conclusion

In this chapter, we studied the ligand reception for a general bio-agent in MC. The func-

tionality model is inspired by the Quorum Sensing in bacteria. We presented two models

accounting for the concentration-estimation noise by the ligand receptors. In the ideal case,

we showed that the Arcsine distribution is optimal and the corresponding capacity increases

logarithmically with the number of receptors. In order to obtain a more practical model,
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Figure 2.6. The capacity achieving distribution (a) π1 and (b) p for different values of q.

we modeled the molecular unbinding with a Markov Chain and obtained the capacity nu-

merically in the steady state. In both cases, we showed that the transmitter should mostly

produce concentrations which are either low or high.

21



CHAPTER 3

ON/OFF SIGNALING FOR DIFFUSION CHANNEL

Analysis of the previous chapter suggests that the capacity-achieving distribution for a

molecular receiver with ligand receptors is highly polarized, i.e., taking values close to

0 and 1 with high probability. Hence, binary on/off signaling would behave close to the

optimal distribution. Having learned this, we study the diffusion channel capacity for the

case where the transmitter uses binary level pulses [35].

In our model, the transmitter either releases molecules with a constant rate over a time

period or remains silent. The emitted molecules are transferred through the medium by the

diffusion process and reach the receiver. The low-pass frequency response of the diffusion

channel restricts the rate of the information exchange; the receiver does not observe the

high frequency elements which in turn means that the rapid changes in concentration of

molecules at the receiver are absent. Molecules tend to linger in the medium after each

transmission and some amount of time is needed for the molecules to diffuse away and

channel to be reset. Unlike the previous section, here, we assume a noiseless receiver that

compares the concentration of the received molecules with a specific threshold and decides

whether the concentration in the environment is low or high.

3.1 Background

Assuming a molecule-production rate r(x, t) inside the channel, the Fick’s second law of

diffusion [30] gives the concentration of molecules c(x, t) at position x and time t as follows:

∂c(x, t)
∂t

= D∇2c(x, t) + r(x, t). (3.1)

Here, x is the distance of any point in the environment from the source and D is the

diffusion coefficient of the medium. The impulse response of (3.1) is the Green’s function
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gd(x, t), shown in Fig. 3.1 whose expression is as follows for a 2-D medium:

gd(x, t) =
1

4πDt
exp

(
−
|x|2

4Dt

)
. (3.2)

Since the diffusion equation is linear, the solution to (3.1) for an arbitrary input r(x, t),

denoted by c∗(x, t), can be obtained by c∗(x, t) = gd(x, t) ⊗ r(x, t) where ⊗ denotes a multi-

dimensional convolution operation on x and t. In our setup, we assume that there is only

one transmitter emitting molecules. Therefore, r(x, t) = F(t)δ(x), where F(t) is the input

signal. Hence, we will have

c∗(x, t) =

∫ ∞

0
F(τ)

1
4πD(t − τ)

exp
(
−

x2

4D(t − τ)

)
dτ. (3.3)

This response is valid for open free media in which the only boundary conditions are at the

transmitter. Note that in our model, we do not consider the delay due to the travel time of

molecules between the transmitter and the receiver. That is we assume molecules reach the

receivers instantly. This assumption, however, does not affect our analysis of the capacity

as it only shifts the time that molecules are arrived at the receiver.

3.2 Diffusion Channel Model

We consider a discrete-time model for the communication in which an arbitrary string of

binary information is given to the transmitter. This string is to be transferred to the receiver
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Figure 3.2. Markovian model to capture the channel memory

at distance r from the transmitter. The transmitter encodes the information bits into proper

concentration of molecules and releases them for specific durations.

The main difference here with a typical paradigm of communication is the memory

which exists in the diffusion channel and influences the communication dramatically. The

concentration of molecules cannot change momentarily and unlike the typical binary sym-

metric channel, previously sent symbols affect the new ones. Hence, the transmitter might

need to wait a specific amount of time to send a new bit. Note that we do not assume

existence of negative rates nor any noise in the environment.

Based on the previous discussion, we observe that each bit depends only on the current

state of the channel which is set by the last transmitted bit and it is independent of the

other previously transmitted bits. Therefore, a Markov chain can be used to model the

communication in the diffusion channel. In such a model, the channel state is “H” if the

last transmitted bit was “1”, and it is “L” otherwise. Hence, there are two states in the

channel, as shown in Fig. 3.2. In the “L” state, it can either stay in this state by sending “0”

or go to the “H” state by sending “1”. In the high state, however, for sending the bit “1”

again, it is inefficient to wait for the channel to reset to the “L” state. Instead, the transmitter

can send “1” which is shorter in time duration and needs less molecules or equivalently less

energy. To send “0” when channel is at the “H” state, it suffices that the transmitter waits a

specific amount of time such that the channel clears itself from the molecules; returning to

the “L” state.

The above discussion implies that depending on the channel state, duration of the bit
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“0” is different. Likewise, the duration for which the transmitter emits molecules for the bit

“1” depends on the channel state. Therefore, we can think of four different symbols sent

by the transmitter, namely, s0 =“00”, s1 =“01‘”, s2 =“10‘”, and s3 =“11‘”. The first bit

in each symbol indicates the previous bit which was already sent (and hence the channel

state), and the second bit is the one to be transmitted next. Assuming a binary symmetric

source, all these four symbols are equiprobable. However, a different transmission time is

associated with each, as explained.

In order to calculate the channel capacity, i.e., the maximum information rate with

which the information can be reliably sent, we effectively need to obtain the number of

combinations that the above symbols can be put together. Since our model involves sym-

bols with various time duration, we adapt the method by Shannon in [137] to compute the

capacity of a discrete noiseless channel as

C = lim
T→∞

log N(T )
T

, (3.4)

where N(T ) is the number of allowed blocks of duration T . Let T (s)
i j be the duration of s-th

symbol which is allowable in state i and leads to state j. Then N j(T ), the number of blocks

of length T ending in state j is given by

N j(T ) =
∑

i,s

Ni(T − T (s)
i j ). (3.5)

The asymptotic solution for these difference equations would be in the form N j = A jWT

where A j is a constant [137]. By substituting this form in (3.5), the possible number of

blocks would be equal to
∑

j A jWT where W can be found as follows. We define a matrix

M = [
∑

s W−T (s)
i j − δi j]; W would the largest real root of the determinant equation |M| =

0 [137], i.e.,

|M| =

∣∣∣∣∣∣∣∑s

W−T (s)
i j − δi j

∣∣∣∣∣∣∣ = 0. (3.6)

Here, δi j = 1 if i = j and is zero otherwise. Hence, following (3.4), the channel capacity C

is obtained as

C = lim
T→∞

log
(∑

j A jWT
)

T
= lim

T→∞

(
logWT

T
+

log
∑

j A j

T

)
= log W. (3.7)
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Rewriting (3.6) for the diffusion channel described above results in∣∣∣∣∣∣∣∣∣
W−T00 − 1 W−T01

W−T10 W−T11 − 1

∣∣∣∣∣∣∣∣∣ = 0. (3.8)

Here, Ts where s ∈ {00, 01, 10, 11} is the duration of the symbols. This leads to

W−(T01+T10) + W−T00 + W−T11 −W−(T00+T11) = 1. (3.9)

By solving (3.9) with respect to Ts for s ∈ 00, 01, 10, 11, we obtain the capacity of the

channel in bits per second. In the next section, we solve for Ts for the diffusion channel.

3.3 Channel Capacity Analysis

Consider the scenario in which for symbol s, the transmitter sends a pulse-shaped rate of

molecules with amplitude Fs to the receiver for duration Ts. It is clear that Fs is zero for

symbols s1 = 00 and s2 = 10 because the transmitter does not need to emit any molecules.

Instead, it must wait specific amounts of time. We assume F01 (for s1) to be equal to F,

the maximum rate that the transmitter can produce. For s3 = 11, there is no need for the

transmitter to send as many molecules as for s1. Hence, we assume F11 = αF. Thus

a fraction 0 < α < 1 of the maximum rate is allocated to s3. We denote by cs(r, t) the

response at the receiver, i.e. x = r, at time t due to transmission of symbol s. Using (3.3),

we have

c∗s(r, t) =

∫ Ts

0
Fs(τ)

1
4πD(t − τ)

exp
(
−

r2

4D(t − τ)

)
dτ. (3.10)

Note that ,the diffusion equations of the channel do not set any limits on T00. Instead, it

depends on the receiver sensitivity, the distance r between the transmitter and receiver and

the diffusion coefficient D. Specifically, T00 can be considered as the time sensitivity of the

receiver with which it can sense the medium periodically. Hence, T00 is the fundamental

time of the channel and the other Ts for s ∈ {01, 10, 11} can be considered as multiples

of T00. In the following, we derive equations for Ts for s ∈ {01, 10, 11} corresponding to

different symbols.
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Assume that the channel is in the low state. The transmitter may send bit “0”, i.e

s0 = 00, or change the channel state to high, i.e. s1 = 01. In the former case, the transmitter

must wait for an interval of T00 but in the latter, it must emit molecules into the channel.

Hence, for the s1 = 01, we will have (for 0 ≤ t ≤ T01)

c∗(r, t) = c01(r, t). (3.11)

On the other hand, when the channel is in the high state, we have to take into the

account the effect of the existing molecules in the channel, i.e. the channel memory. We

can replace the molecules in the channel by the source that produces this concentration

before the transmission of the current symbol and is zero afterwards.Hence, we can capture

the channel memory by incorporating the effect of the symbol s1 on the next symbol. In

the case that the transmitter sends the bit “0” afterwards, i.e. s2 = 10, it must wait for the

channel to become low. Hence, we have (for 0 ≤ t ≤ T10)

c∗(r, t) = c01(r, t + T01) + c10(r, t) = c01(r, t + T01). (3.12)

where the first term captures the memory effect. The second term c10(r, t) is equal to zero

which implies that the transmitter does send any molecules but must wait an appropriate

amount of time. Finally in the case that the transmitter sends the bit “1” again, i.e. s3 = 11,

we have (for 0 ≤ t ≤ T11)

c∗(r, t) = c01(r, t + T01) + c11(r, t). (3.13)

Here the first term in (3.13) corresponds to the channel memory and the second term is due

to the emission of molecules for the current symbol.

In the absence of noise, any intended concentration can reach the receiver without any

interference from the medium. Therefore, the only limiting factor for capacity is the chan-

nel memory. Let S denote the concentration sensitivity of the receiver. This implies that

the receiver cannot differentiate between the levels of concentration that differ by less than
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S . We map the low concentration on S and high concentration on 2S . We want the concen-

tration at the receiver to be equal to one of these values at the end of each interval t = Ts.

Using (3.11), (3.12), and (3.13), we have

c01(r,T01) = 2S ,

c01(r,T01 + T10) = S ,

c01(r,T01 + T11) + c11(r,T11) = 2S

. (3.14)

Note that in these equations the time delay between the transmitter and the receiver is

not considered. We can write the solution for (3.14) based on the function Ei(x) defined

as [138]

Ei(x) =

∫ ∞

x

exp(−y)
y

dy. (3.15)

Then expressions in (3.14) can be written as

Ei
(

r2

4DT01

)
= 8πDS

F ,

Ei
(

r2

4D(T01+T10)

)
− Ei

(
r2

4DT10

)
= 4πDS

F ,

Ei
(

r2

4D(T01+T11)

)
− (1 − α)Ei

(
r2

4DT11

)
= 8πDS

F .

(3.16)

Since finding closed form formula for (3.16) is intractable, in the following we solve

for (3.16) numerically to obtain T01, T10, and T11 in terms of F. The parameter F indicates

the maximum power used by the transmitter which affects the capacity. We solve (3.16)

based on the normalized input rate F̃ = F
4πDS and obtain Ts for s ∈ {01, 10, 11} as multiples

of R2

4D . As discussed before, T00 depends on r and D. Therefore, we may assume T00 = kR2

D

where k is a constant. We arbitrarily choose k = 1, although our analysis holds for any

values of k.

It can be shown that T11 is smaller, by orders of magnitude, than both T01 and T10.

Intuitively, this is due to the fact that producing a high state needs much more molecules

than maintaining it. Hence, for simplicity, we assume T11 to be equal to T00, and perform

our numerical analysis only on T01 and T10. The numerical results for T̃01 = T01
T00

and

T̃10 = T10
T00

versus the normalized maximum rate of the molecule production F̃ are shown in

Fig. 3(a) and 3(b), respectively.

28



0 2 4 6 8
0

20

40

60

80

100

F̃

T̃
0
1

(a)

0 2 4 6 8
4

6

8

10

12

14

16

F̃

T̃
1
0

(b)

Figure 3.3. Diffusion channel transition time versus maximum rate of production.

We observe that the transition time from low to high T̃01 is monotonically decreasing

with respect to F̃, and approaches to infinity when F̃ is close to zero. In Fig. 3(b), the

normalized transition time from high to low state T̃10 is presented. It has a minimum

around F̃ = 2. This behavior can be explained by the shape of the channel impulse response

shown in Fig. 3.1. As we see in this plot, the impulse response increases to a maximum

and then falls. To obtain the response to the transmitter, a pulsed-shape signal in time has

to be convolved with the impulse response. By increasing the input rate (or equivalently

decrease T̃01), at some point the threshold 2S is reached before the impulse response peaks.

Hence, in order to send the symbol “10”, the transmitter has to wait until the pulse is slided

to the right side of the peak and hence, T̃10 would be longer for a higher input rate.

Hence, although larger F̃ results in smaller T̃01, it makes T̃10 to grow larger, and hence

has a negative effect on the capacity. Hence, the optimum value for the production rate can

be found by considering the trade-off between T̃01 and T̃10.

Using (3.9) and the assumption that T11 = T00, the capacity of the channel in “bits per

an interval of T00” can then be obtained by solving for W in the following equation and

using it in C = log W.

W T̃01+T̃10 − 2W T̃01+T̃10−1 + W T̃01+T̃10−2 = 1, (3.17)
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Figure 3.4. Diffusion channel capacity vs production rate.

We note that the maximum capacity is achieved when T̃01 + T̃10 is minimized. The plot of

the resulting capacity is shown in Fig. 3.4 with respect to F̃.

As shown in the figure, the maximum capacity is approximately 0.5 (bit/T00) which is

achieved when choosing F̃ = 3.9 (units) and corresponds to the minimum value of T̃01 +T̃10

which is approximately 7 (time units). The left tail of the graph converges to zero which

corresponds to the no production rate. The right tail of the graph converges to zero as

well but at a slower pace. In this case, symbols “00”, “11”, and “01” can be transmitted

assuming the channel is in the proper state. However, since T̃10 becomes very large, the

transition between the channel states takes a long time, leading to zero capacity.

3.4 Conclusion

In this chapter, we obtained the diffusion-channel capacity for a binary noiseless signaling.

We showed that the channel state affects the next bit to be sent and modeled the channel

memory with a two-state Markov chain. This resulted in four symbols that the transmitter

needs to choose from in order to send the binary inputs. We showed that beyond a threshold,

increasing the power level would decrease the capacity.
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CHAPTER 4

TWO-NODE MOLECULAR COMMUNICATION

In this chapter, we analyze molecular communication between nodes containing a popula-

tion of bio entities. Reliable communication is not possible between individual unreliable

primitive agents. Hence, we consider using their collective response to form reliable bio

nodes [15, 62]. Note that, unlike the previous section, we are not concerned with the chan-

nel memory and focus on the transmitter/receiver noise. We will show that this can be

achieved by using long pulses for transmission or through various interference-canceling

techniques [38].

We study the communication between two nodes where information is encoded in the

concentration of molecules by the transmitter [64, 65]. The molecules produced by the

bacteria in the transmitter node propagate through the diffusion channel. Then, the concen-

tration of molecules is sensed by the bacteria population in the receiver node which would

decode the information and produce a corresponding output such as light, fluorescent, or

another type of molecules. We study the uncertainty in the communication caused by all

three components of communication, i.e., transmission, propagation and reception and in-

vestigate the theoretical limits over the information transfer rate in the presence of such

uncertainties. Finally, we consider M-ary signaling schemes and study their achievable

rates and corresponding error probabilities

4.1 Bio-entity Functionality Model and Node Design

The communication between bio entities (e.g. synthetic bacteria) entails huge amount of

randomness and, hence, is highly unreliable. This is observed in various experiments [139]

and will become more clear later through our results. Hence, one fundamental challenge

is how to form reliable communication out of unreliable bio entities (e.g. bacteria). To
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address this issue, rather than having molecular communication between individual bio en-

tities, we propose an architecture in which a cluster of biological entities (i.e. a cluster

of bacteria) communicates with another. We will refer to this cluster of biological entities

trapped in a chamber as a node. The basic building blocks of the communication system

are these clusters of bio entities which are able to transfer information from one point to an-

other. Throughout this chapter, these bio entities are considered to be genetically modified

bacteria [17,18] which can sense specific types of molecules and respond accordingly. Al-

though the principles of molecular communication is expected to hold for the bio entities,

we particularly choose bacteria due to the prevalence of models and experimental results

in the literature and also because of the relative ease in modifying them.

We consider molecular communication between two nodes each containing n engi-

neered bacteria as depicted in Fig. 1.1. Here, we explain the signal transduction inside

the synthetic E.coli bacteria which follow the DNA-RNA-Protein chain. Upon stimulation,

e.g., heat, nutrition etc, the bacteria in the transmitter node transcribe the LuxI gene from

the DNA and the messenger-RNA (mRNA) is sent to the ribosome to be translated. Ribo-

somal RNA (rRNA) associates with a set of proteins to form ribosomes. These complex

structures catalyze the assembly of amino acids into protein chains. The ribosome reads

the mRNA triplet codons (e.g., AUG) and matches the codon in the mRNA to the anti-

codon on the transfer-RNA (tRNA). Each tRNA bears the appropriate amino acid residue

to be added to the chain being synthesized. Upon translation, the molecular signals Acyl

Homoserine-Lactone (AHL) diffuse through the cell membrane. The production rate of the

AHL molecules depends on the intensity of the initial stimulation. As such the transmitter

information can be encoded in the alternation of the concentration of AHL molecules. The

molecules diffuse through the channel and reach the receiver. Upon arrival, AHL molecules

bind to the LuxR protein, which itself is translated from the LuxR gene, and form a com-

plex molecule which in turn transcribe the GFP gene. The GFP gene is translated at the
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Figure 4.1. The molecular communication setup consisting of the transmitter, channel and the receiver

receiver ribosome and the GFP output is produced. The intensity of the output (i.e., fluo-

rescence) depends on the input AHL molecules. As such, the input concentration can be

decoded from the GFP output. Note that the genes responsible for the GFP production can

be added via a plasmid to the bacteria.

The simplified schematic for the communication between two nodes is depicted in

Fig. 4.1. Note that throughout our analysis, we assume that the number of bacteria inside a

chamber remains constant. The bacteria inside the chambers grow and divide. To maintain

the population size constant, the new bacteria can be washed away from the chambers as

explained in [10]. Each bacterium is assumed to be able to sense and produce two different

types of AHL molecules, namely type I and II 2.

Let assume the transmitter node has some information in the form of concentration A0

that would like to convey to the receiver node. The bacteria inside the transmitter node can

be stimulated through its chamber with different levels of concentration of type I molecules

in order to produce various concentrations of type II molecules which are to be propagated

through the channel. The transmitter output as shown in the following has a probabilistic

nature such that higher levels of molecular stimulant would, on average, result in higher

levels of the output. The probabilistic nature of the molecule production introduces the

first component of the uncertainty in the communication. The specifics of the transmitter

2The labeling of the molecular types is chosen for the convenience of the presentation. Please refer
to [140] for the technical labeling of these molecular signals.
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node will be discussed in the next section. The emitted molecules would then diffuse

through the channel to the receiver at the distance r from the transmitter. The induced

molecular concentration at the receiver node depends on r. We assume that the transmitter

node has an estimate r0 for r which maybe slightly different. That introduces the second

component of the uncertainty in the communication from the transmitter to the receiver

which will be explained in Section 4.3. At the receiver, as explained in Section 4.4, each

bacterium senses the concentration of type II molecules through the corresponding type II

receptors. The reception of molecules again has a probabilistic nature which introduces

the third component of the communication uncertainty. Upon the reception of molecules,

a chain of reactions is triggered resulting in the production of GFP by bacteria. The GFP

output of the receiver node is used to decode the signal (i.e., the concentration A0).

We obtain the maximum information that the GFP output of the receiver node can give

about the input concentration produced by the transmitter node. As such, we consider the

models for the transmitter, the channel, and the receiver and analyze the uncertainty in each

component which is aggregated with the noise from previous components. The capacity of

the communication will be obtained by considering all these three components together.

Note that in order to perform its functionality as a transmitter or a receiver, each syn-

thetic bacterium must be able to sense either type I or type II molecules, respectively. Each

bacterium might be equipped in general with two distinct receptor types: one for each

molecule types. However, depending on the functionality, as a transmitter or receptor, only

one type of receptors is enabled. We assume N ligand receptors for each type of molecules.

The bacteria response to these two stimulants (i.e., molecular types) is different, i.e., pro-

ducing type II molecules upon the reception of type I but producing GFP in response to

type II molecules. The functionality model for the reception of these two molecule types

is assumed to be the same, i.e., the process of reception is governed by the same set of

equations with possibly different coefficients.

The response of various strands of bacteria to different levels of inter-cellular AHL
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molecule concentrations has been studied in the biological literature which account for the

chain of chemical reactions inside the bacterium due to the AHL molecular stimulus. In [4],

a model consisting of a chain of linear differential equations is introduced and validated

experimentally to account for the production of luminescence or fluorescence in response

to the presence of AHL molecules in the medium. These equations capture the average

dynamic behavior of bacteria in the steady state. They account for three main phases in the

process as described above

1. Binding of AHL to LuxR

2. transcription of GFP genes

3. GFP translation

The differential equation accounting for probability p of binding of molecules to the cell

receptors is given by [4]:

ṗ = −κp + Aγ (1 − p) , (4.1)

where A is the concentration of molecules surrounding the bacterium, γ is the input gain

and κ is the dissociation rate of trapped molecules in the cell receptors. Here, ṗ is the

derivative of p with respect to time. In this model, each cell receptor is activated (via a

trapped molecule) with a probability that depends on the concentration of molecules in the

medium surrounding the cell. According to (4.1), this probability starts growing from the

moment a constant concentration A is applied until it takes its final steady-state value p∗,

given by

p∗ =
Aγ

Aγ + κ
. (4.2)

Note that p∗ increases monotonically with respect to A and approaches to 1 for very high

concentrations. The production of complex molecules, the transcription of genes and the

production of GFP are modeled similarly as [4]:
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Ṡ 1 = (b0 p + a0) − b1S 1

Ṡ 2 = a1S 1 − b2S 2

. (4.3)

where S 1 and S 2 are two post-transcription messengers and bi and ai are some constants [4].

In the steady state, the final product S 2 is obtained as

S ∗2 =
a1(b0 p∗ + a0)

b1b2
(4.4)

Note that S ∗2, i.e., the intensity of GFP, has an initial value even when p∗ = 0 and

increases linearly when p∗ increases. In the following, we use the above results to model

the behavior of different components of the molecular communication system.

4.2 The Transmitter Model

As discussed in the previous section, to generate the desired type II concentration A0 at

the receiver, the bacteria residing in the transmitter node must be stimulated with type I

molecules with the appropriate concentration As. We assume that the noise in the transmit-

ter output (i.e., the aggregated type II concentration A0 at the receiver due to all n bacteria

residing in the transmitter node) is originated from the discrepancy in the individual behav-

ior of the bacteria in the transmitter node. In other words, even though the average behavior

of bacteria can be described by the set of deterministic differential equations in the previous

section, the individual behavior of bacteria features randomness.

Two factors contribute to the uncertainty of the molecular concentration output of the

transmitter node. One is the probabilistic nature of the number of activated receptors within

a single bacterium in response to the type I stimulus. We model this by assuming each

receptor being active as a Bernoulli random variable that is 1 with probability p∗ defined

in (4.2). The other factor is the randomness in p∗ itself from one bacterium to another within

the node; due to the variation of the constant parameters (i.e., γ and κ) in (4.2) among the

population of bacteria. Note that the other parameters, in addition to γ and κ, in the model

can be considered as random variables as well but the form of the obtained model would
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remain the same. Hence, for simplicity of modeling the discrepancy of bacteria behavior

in a node, we only consider the above parameters to contain randomness. We model this

variation with an iid additive noise εγ in the input gain γ and εκ in the dissociation rate κ.

Hence, the entrapment probability ps upon the reception of the stimulant concentration As

by the bacteria at the transmitter would be given by

ps =
As(γ + εγ)

As(γ + εγ) + (κ + εκ)
, (4.5)

where εγ and εκ are zero-mean Normal noises with variances σ2
γ and σ2

κ , respectively. The

variance of these noises is assumed to be sufficiently small such that we can ignore the

second and higher orders of ( εγ
γ

) and ( εκ
κ

) in the Taylor expansion of (4.5). We assume

the same ps for all the receptors belonging to the same bacterium, but it varies from one

bacterium to another inside a node, as we described in (4.5). We define the noiseless

entrapment probability at the transmitter as

p∗s =
Asγ

Asγ + κ
. (4.6)

Hence, by approximating (4.5) as described above, we have

ps ' p∗s + p∗s(1 − p∗s)
εγ

γ
− p∗s(1 − p∗s)

εκ
κ
. (4.7)

The total number of activated receptors of ith bacterium, Xi, is a Binomial random variable

with parameters (N, ps,i) where ps,i is the realization of ps for the ith bacterium. Recall that

N is the number of ligand receptors per bacterium for a given molecule type. We denote X

as the total number of activated receptors of all the bacteria in the transmitter node. Hence,

X =
∑n

i=1 Xi. Using the conditional expectation, we have

E(Xi) = E(E(Xi|ps,i)) = E(N ps,i) = N p∗s,

where the last equality is due to the fact that the εγ and εκ have zero means. Hence, we have

E(X) = nN p∗s = nN
Asγ

Asγ + κ
. (4.8)
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By using the conditional variance, we have

Var(Xi) = E(Var(Xi|ps,i)) + Var(E(Xi|ps,i))

= E(N ps,i(1 − ps,i)) + Var(N ps,i)

= N p∗s(1 − p∗s) + (N2 − N)p∗s
2(1 − p∗s)

2(
σ2
γ

γ2 +
σ2
κ

κ2 ).

The first term in (7.5) is due to the general uncertainty in a Binomial random variable

(i.e., the probabilistic nature of the ligand reception) and the second term is due to the noise

in the parameter ps. Assuming independency among the behavior of different bacteria, the

variance of the total number of activated receptors at the transmitter node is obtained as

Var(X) = nN p∗s(1 − p∗s) + n(N2 − N)p∗s
2(1 − p∗s)

2(
σ2
γ

γ2 +
σ2
κ

κ2 ).

Since the number of receptors N per bacterium is usually large enough, the second term is

dominating. Hence, we can approximate the variance by

Var(X) ' nN2 p∗s
2(1 − p∗s)

2(
σ2
γ

γ2 +
σ2
κ

κ2 ). (4.9)

As observed in (4.4), the average output of bacteria has an initial value corresponding

to p∗ = 0 and increases linearly with the average number of activated receptors. We assume

that this offset value is the same for all the bacteria in a population and independent of the

input concentration. Hence, the measured output is considered to be the GFP production

due to the presence of AHL molecules, which depends linearly on the number of activated

receptors X. Therefor, the total type II molecular output of the transmitter node is equal

to αX where α is associated with a single activated receptor. Using (4.4), we note that

αN = a1b0
b1b2

. To the rest of this chaper, we consider αX as the output of the transmitter node.

In order to make the analysis tractable, we use Central Limit Theorem (CLT) to approx-

imate X, which is a Binomial random variable with known mean and variance, as a Normal

random variable. In other words, since the number of receptors N is large, we can use CLT

to approximate Xi byN(N p∗s,Var(Xi)) where Var(Xi) is given in (7.5). Hence, X would be
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the sum of n Normal variables given by

X = nN p∗s + εX, (4.10)

where p∗s is given in (4.6) and εX has a Normal distribution N(0,Var(X)) where Var(X) is

given by (4.9). The emitted molecules are propagated through the diffusion channel and

reach the receiver. In the next section, we introduce the diffusion channel and study its

effect in the communication.

4.3 Diffusion Channel

We characterized the temporal and spatial variations of molecules in the channel in the

previous chapter. Here, in contrast, we are interested in the steady-state behavior of the

channel. Assume that the channel is stimulated with a constant molecule rate β for the

duration t0. In other words, the channel input rate is a constant concentration of βmolecules

per unit of volume for 0 ≤ t ≤ t0. From (3.3), the concentration of molecules A(r, t) at

position r at time t is given by:

A(r, t) =

∫ t

0
β

1

(4πDτ)
3
2

exp
(
−

r2

4Dτ

)
dτ =

β

4πDr
erfc

r

(4Dt)
1
2

0 ≤ t < t0 (4.11)

where erfc(x) is the error function complement( i.e.,1-erf(x)). Note that the error function

erf(x) is defined by the integral

er f (x) =
2
√
π

∫ x

0
e−u2

du.

Note that for t0 < t the concentration of molecules can be obtained from

A(r, t) =
β

4πDr
(erfc(

r

(4Dt)
1
2

) − erfc(
r

(4D(t − t0))
1
2

)) (4.12)

Since erfc r

(4Dt)
3
2

approaches 1 for large values of t, the pulse duration t0 must be long enough

to allow the channel output concentration in (4.11) to approach its steady-state value given

by

A∗(r) =
β

4πDr
(4.13)
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This response is valid for open free medium in which the only boundary conditions are

at the transmitter. If the dimension R of the receiver node is comparable to the distance r

between the nodes, a factor (1−R
r ) should be multiplied to the expression in (4.13). Here, we

assume that the distance between the transmitter and receiver nodes is significantly larger

than the size of the nodes. Hence, we ignore the effect of this term on the steady-state

response.

As discussed in the previous section, each activated receptor contributes an amount of

α to the output rate. Since the diffusion channel is linear, the total response at the receiver

will be the superposition of individual responses. Hence, β = αX and the steady-state

concentration Ar at the receiver is given by

Ar =
αX

4πDr
, (4.14)

where r is the distance between the transmitter and the receiver nodes. The response in

(4.14) is the average response of Brownian motion of the individual molecules without any

other interferences [141]. Here, we consider another source of uncertainty which poten-

tially arises in molecular communication due to uncertainty on the distance r of the two

nodes. We denote by r0 the transmitter estimate for r, which maybe slightly different from

r. Hence, we have

Ar =
αX

4πD(r0 + εr)
'

αX
4πDr0

(1 −
εr

r0
), (4.15)

where εr is a zero-mean Normal random variable with variance σ2
r which is assumed to be

much smaller than r2
0. Therefore, we only considered the first order term εr

r0
in (4.15). By

using (4.8), we obtain

E(Ar) =
αnN

4πDr0

Asγ

Asγ + κ
. (4.16)

Hence, the required stimulating concentration As for type I molecules at the transmitter

can be obtained by equating the expected concentration of molecules at the receiver (4.16)

to A0. As described in the previous section, A0 is the desired concentration of type II
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molecules to be transferred from the transmitter to the receiver node. Hence, we have

As =
κA0

γ( αnN
4πDr0

− A0)
.

From (4.10) and using the fact that A0 =
αnN p∗s
4πDr0

, we can write (4.15) as

Ar = (A0 +
α

4πDr0
εX)(1 −

εr

r0
) ' A0 + A0εt −

A0

r0
εr, (4.17)

where we have ignored the second-order noise terms and εt is a zero-mean Normal random

variable with variance given by

σ2
t =

(1 − p∗s)
2

n
(
σ2
γ

γ2 +
σ2
κ

κ2 ). (4.18)

The first term in (4.17) can be viewed as the signal to be decoded by the receiver node.

The second and third terms are signal-dependent additive Gaussian noises due to the ran-

domness at the transmitter and the channel uncertainty, respectively. We refer to these two

noises as the transmitter and the channel noise perceived at the receiver in the molecular

communication, respectively.

4.4 Receiver Model

The concentration Ar derived in (4.17) is sensed by the bacteria in the receiver node. The

sensing process of type II molecules is similar to that of the type I molecules we analyzed

for the transmitter, but through different receptors. Hence, it follows the same chain of dif-

ferential equations as in Section 4.2. The difference is that the input concentration is noisy

itself which introduces an additional uncertainty to the output of the receiver node; which

is in the form of GFP. This output is used to decode the information sent by the transmitter.

Note that we assumed an ideal GFP detection system. However, in practice, the GFP detec-

tion system may introduce an additional uncertainty to the overall communication system.

One may refer to [142] where the GFP sensors are studied in details.

Here, we incorporate the effect of both noises introduced in the previous section in

addition to the uncertainty contributed by the reception process itself. Again, assume the
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noises εγ and εκ with variances σ2
γ and σ2

κ account for the dependencies of gain γ and

the parameter κ among the bacteria at the receiver node, respectively. In other words, the

variations in the behavior of bacteria at the receiver node are incorporated by εγ and εκ.

Hence, the entrapment probability of type II molecules by a receptor at the receiver can be

written as

pr =
(A0 + A0εt −

A0
r0
εr)(γ + εγ)

(A0 + A0εt −
A0
r0
εr)(γ + εγ) + (κ + εκ)

. (4.19)

Note that the input concentration noises εt and εr affect all the receiver bacteria in the same

manner but εγ and εκ which account for the reception process of bacteria, are independent

for different bacteria. By approximating (4.19) and again keeping only the first-order terms

of the noises, we obtain

pr ' p0 + p0(1 − p0)(
εγ

γ
−
εκ
κ
−
εr

r0
+ εt), (4.20)

where we defined p0 ,
A0γ

A0γ+κ
. The first term in the right hand side of (4.20) is the ideal

channel input. The noise terms in (4.20) capture the uncertainty in all three components of

communication, i.e., the molecule production at the transmitter, the diffusion in the channel,

and the reception of molecules at the receiver. Note that εγ, εκ and εr have constant variances

σ2
γ, σ

2
κ and σ2

r , respectively but the variance of εt given by (4.18) is signal dependent. Since

the number of bacteria n in a node is large, the variance in (4.18) is negligible relative to

the other noise terms in (4.20). In other words, the noise of the transmitter is effectively

filtered in the reception process as it was expected due to the low-pass nature of bacterial

communicaton as discussed in [4].

We denote by Yi the number of activated receptors of the ith bacterium in the receiver

node at steady state. Then, Y =
∑n

i=1 Yi would give the total number of activated receptors

of all n bacteria in the node. Note that Y is the sum of binomial random variables with

parameters (N, Pr,i). Here, pr,i is the realization of pr for the ith bacterium. With a discussion

similar to the transmitter in Sec. 4.2, the GFP output of the receiver depends linearly on Y .

Here, we consider Y itself to be the output of the receiver. The expected value of Y can be
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obtained as

E(Y) = Nnp0. (4.21)

Computing the variance of the output will be more involved. Since εr is the same for all the

bacteria of a node, Yi’s are independent given the value of εr. Hence,

Var(
n∑

i=1

Yi|εr) =

n∑
i=1

Var(Yi|εr) ' nN2(
σ2
γ

γ2 +
σ2
κ

κ2 )(p0−p0(1−p0)
εr

r0
)2(1−(p0−p0(1−p0)

εr

r0
))2,

(4.22)

where the last equality is resulted by using p0 − p0(1 − p0) εr
r0

as p0 in (7.5) and neglecting

N relative to N2. By keeping only the terms with the first order of εr and the assumption

that E(εr) = 0, we obtain

E(Var(Y |εr)) = nN2(
σ2
γ

γ2 +
σ2
κ

κ2 )p2
0(1 − p0)2. (4.23)

On the other hand, we have

Var

E(
n∑

i=1

Yi|εr)

 = Var

 n∑
i=1

N(p0 − p0(1 − p0)
εr

r0
)

 = nN2 p2
0(1 − p0)2σ

2
r

r2
0

. (4.24)

From (4.23) and (4.24) and using the conditional variance, we obtain

Var(Y) = nN2 p2
0(1 − p0)2(

σ2
γ

γ2 +
σ2
κ

κ2 +
σ2

r

r2
0

). (4.25)

The analysis of the noisy Binomial random variable Y is cumbersome. Hence, with the

same argument as for the transmitter, we approximate Y with a Normal random variable

with the expected value and variance given by (4.21) and (4.25), respectively. Hence, the

output of the receiver node would be in the form

Y = nN p0 + εY , (4.26)

where εY is a zero- mean normally distributed random variable with the mean and signal-

dependent variance given by (4.21) and (4.25). Note that, the first term in (4.26) is the

signal and the second term is the additive noise due to both the channel and the reception

process. In the next section, we obtain the communication capacity from the model derived

above.
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4.5 Communication Capacity Analysis

As described in the previous section, the noise due to the transmitter is neglected in εY rel-

ative to the other two noises. In addition, if we assume that the uncertainty in the position

of the receiver is negligible (i.e., σ2
r

r0
is small due to sufficiently large r0), then εY is only

due to the randomness in the reception of the molecules by the receiver. Note that through-

out the discussion, we assumed that the number of bacteria n remains constant inside the

chambers. The effect of variations of the number of bacteria would result in an additional

variance term in the final output. However, it can be shown that this term is negligible

compared to the other terms in the variance.

In order to calculate the capacity per channel use from the transmitter to the receiver,

we should obtain the optimized distribution of A0 which maximizes I(A0; Y); the mutual

information between the input and the output. Since p0 is deterministically obtained from

A0 through (4.2), we can consider p0 as the channel input and maximize the information

that Y gives about p0:

max fp0 (p0)I(p0; Y) = H(Y) − H(Y |p0). (4.27)

The optimal distribution on p0 would in turn give the optimized distribution of A0. To

proceed, we observe that, in practice, A0 cannot take any arbitrary value due to the limita-

tion in the molecule production of bacteria. Hence, we assume a maximum output concen-

tration that is equal to Amax. This corresponds to probability pmax =
Amaxγ

Amaxγ+κ
via (4.2). This

maximum probability is due to the maximum concentration range with which the trans-

mitter can emit the molecules into the medium. By using a higher range, the transmitter

can increase the maximum concentration of molecules at the vicinity of the receiver node

and increase pmax. Therefore, we obtain the optimized distribution for p0 over the interval

[0 pmax] and calculate the capacity with respect to pmax or equivalently Amax.

The noise term in (4.26) is complicated since the noise power depends on the signal
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Figure 4.2. Capacity versus maximum concentration of molecules at the receiver for different numbers
of bacteria in a node.

itself as it can be seen in (4.25). Hence, we resort to use the numerical method of Blahut-

Arimoto algorithm (BA) to obtain the optimal distribution for p0 and its corresponding

capacity. Equation (4.25) implies that the noise power is at its maximum at p0 = 1
2 and goes

to zero when p0 approaches to either zero or one. Hence, we expect that the distribution of

p0 should take values closer to 0 and pmax with a higher probability. The results from the

numerical algorithm confirms this fact and the distribution has local maximums at 0 and

pmax.

We define σ2
0 ,

σ2
γ

γ2 +
σ2
κ

κ2 +
σ2

r
r2

0
. Results for the capacity (in bits per sample) with respect

to Amax, the maximum concentration of molecules which results in pmax, for different num-

bers of bacteria in the nodes is shown in Fig. 4.2. The unit of measurement used for the

concentration of molecules is nano-Moles per litre (nM). In this setup, we assume N = 50,

σ2
0 = 0.1 and also use the values κ = 0.1, and γ = 0.0004 from [4]. As we observe from the

plot, the capacity increases when we increase Amax which results in higher pmax or increase

the number of bacteria n. The ratio of the expected value of the output to its standard vari-

ance which is a measure of the decoding precision can be obtained using (4.21) and (4.25)

as
E(Y)
√

Var(Y)
=

√
n

(1 − p0)σ0
. (4.28)
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Figure 4.3. Capacity versus maximum concentration of molecules at the receiver for different levels of
noise.

As we observe in (4.30), the ratio of the expected value and the standard deviation

of the output increases as
√

n and, hence, the capacity of the bacteria increases by using

more bacteria in a node. Note that the maximum achievable capacity is limited even if the

transmitter used infinite Amax to make pmax = 1. The capacity for different values of σ2
0

is shown in Fig. 4.3. The results are shown for n = 100 and N = 50. Note also that, in

practice, N and in particular n can be very large. However due to the exponential growth

of the time complexity of the numerical method with respect to N and n, we only provided

the capacity for relatively small values of N and n.

4.5.1 Information rate per time

Thus far, we obtained the capacity per sample in the molecular communication system. In

order to compute the information exchange rate per unit of time, we now study a Return-to-

Zero communication scenario. In other words, the transmitter sends the information, waits

until the information is received by the receiver, and finally the channel becomes empty

and ready for the transmission of the next sample. In order to obtain the information rate

per unit of time, we should consider both the delay imposed by the channel as well as the

delay due to the the reception process. In particular, we obtain the time it takes for the

concentration of molecules to reach the steady state at the receiver, the time it takes for the
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Figure 4.4. Rise time of the diffusion channel.

receiver bacteria to decode the concentration of molecules, and the time for the channel to

become ready for transmission of the next sample.

In order to account for the delay due to the channel, we need to obtain both the rise

time Tr and fall time T f of the diffusion process of the channel. Note that the time for the

channel to reach the steady-state response depends on the diffusion coefficient D and the

distance r. In particular, using (4.11) and (4.13), we obtain the ratio of the transient to the

final steady-state response as

τr(r, t) =
A(r, t)
A∗(r)

= erfc
r

(4Dt)
1
2

(4.29)

In Fig. 4.4, we have plotted this ratio vs time for different distances between the trans-

mitter and the receiver. In this plot, D is assumed to be equal to 10−5 cm2

sec which is a typical

value for diffusion in water. The steady-state can be defined as the time that τr surpasses a

specific threshold (e.g., τr = 0.9).

On the other hand, in order to account for the fall time T f of the channel, we define by

τ f the ratio between the falling concentration of molecules and its maximum value at the

steady state. Using (4.12) and (4.13)), we have:

τ f (r, t) =
A(r, t)
A∗(r)

= erfc(
r

(4Dt)
1
2

) − erfc(
r

(4D(t − t0))
1
2

) (4.30)

47



10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T ime(s)

τ
f
(r
,t
)

 

 

r=10 µm

r=50 µm

r=100 µm

Figure 4.5. Fall time of the diffusion channel.

We assume the fall time of the channel to be the time that τr falls below a specific

threshold (e.g., τr = 0.1). We have plotted this ratio vs time for different distances in

Fig. 4.5. The aggregation of the rise time and fall time gives the total delay imposed by the

channel in the communication from the transmitter to the receiver. As we see in the plots,

both the rise time and the fall time are in the order of tens of minutes and increase with the

distance r.

The second component in the communication delay is the time it takes for the receiver

bacteria to receive and decode the concentration of molecules. Note that the concentration

of molecules at the receiver should remain constant until decoded by the receiver. Here,

we use the set of differential equations introduced in Section 4.1. Moreover, we use the

estimated parameters given in [4] to obtain the value of the reception delay. As described

in Section 4.1, the total delay is due to the three processes that occur consecutively: entrap-

ment of molecules, production of the proteins and transcription of genes, and production

of the GFP. Using (1), the time constant for the entrapment of molecules is obtained as

T1 = 1
Aγ+κ

. For a typical value of concentration of molecules (e.g., A=100nM), we have
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bits per hour r = 10µ r = 50µ r = 100µ
n = 50 1.7 1.4 1.2
n = 100 1.9 1.6 1.3
n = 200 2.1 1.8 1.4

Table 4.1. The information rate per hour

T1 ' 5 min. The time constant for the production of protein and transcription of genes, ob-

tained from the first equation in (3), is equal to T2 = 1
b1
' 1 hr . Finally, the time constant

for production of fluorescent is obtained from the second equation in (3) and is equal to

T3 = 1
b2
' 10 min. Due to the exponential behavior of the differential equations in (3), we

consider three times of these time-constants as the time required to reach the steady-state

response. Hence, the overall delay is approximated as TR ' 3 hr. Note that the production

of proteins and transcription of genes are the dominating factors in the response delay and

they are independent of the concentration of molecules A. Hence, we can assume that the

above analysis holds true for all the values of A in the range.

Based on the discussion above, the total time it takes for the molecules to propagate

through the channel and decoded by the receiver can be obtained by accumulating the

delays discussed above. In other words, the total delay is given by TT = Tr + TR + T f and is

in the order of a few hours. This is the time the transmitter should wait before sending the

next sample. Hence, the information rate per unit of time can be obtain by dividing the rate

per channel shown in Fig. 4.2 by the total delay TT . Moreover, note that the stimulation

time t0 introduced in Section 4.3 would be equal to Tr +TR. The information rate per hour is

shown in Table 1 for different values of n in Fig 4.2, and variations of r in Fig. 4.4 and 4.5.

We assumed σ2
0 = 0.1 and Amax = 400nM.

As we see in the table, low information rates (1-2 bits per hour) can be achieved in the

diffusion-based molecular communication by trading the rate for reliability.
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4.6 M-ary Modulation in DbMC

The analysis in the previous section was based on the assumption that any continuous val-

ues of the concentration less than Amax can be produced and received by the nodes. With

that assumption, we obtained the maximum amount of information that can be communi-

cated per channel use. In this section, we consider a practical signaling method (i.e., M-ary

modulation) and study the information exchange rate and the corresponding achievable er-

ror rate. We use only a finite discrete number of levels of molecular concentrations A0

for communication which results in discrete levels of p0. The range of the input is deter-

mined by pmax. Two factors influence the signaling performance: the number of levels of

molecular concentration and the choices for the values of those levels.

We consider the scenario in which m symbols to be chosen with uniform spacing from

the interval [0 pmax]. Therefor, the ith symbol level would correspond to pmax
i

m−1 , 0 ≤ i ≤

m − 1. We show by pe,i the probability of error in the detection of ith symbol. Hence, the

total probability of error is given by

pe =

m−1∑
i=0

wi pe,i, (4.31)

where the weights wi associated with the m symbols must be obtained.

We consider a hard-decision scenario in decoding the symbols. In other words, the re-

ceiver chooses the closest symbol to the received one. Hence, the error occurs when the

detected symbol passes the half way from the previous or the next symbol. As observed

in (4.25), the variance of the noise, and hence pe,i depends on the chosen symbol i. There-

fore, we have

pe,i = 1 − Pr(
−pmax

2(m − 1)
≤ εYi ≤

pmax

2(m − 1)
). (4.32)

Here, εYi comes from N(0, σ2
i ) where σ2

i can be computed by replacing p0 with i
m−1 pmax

in (4.25). As discussed in the previous section, variance of the noise is the smallest when

the input is closets to 0 or 1. Hence, it is intuitive to choose larger weights for the inputs
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Figure 4.6. The information rate versus the maximum concentration of molecules at the receiver for
different M-ary schemes.

closer to these two points. In our scheme, we use the weights from the optimal distribu-

tion calculated by the Blahut-Arimoto algorithm. In Fig. 4.6, we have shown the rate of

information for different M-ary modulations versus Amax, the maximum concentration of

molecules at the receiver. In this setup, again we have chosen N = 50 and σ2
1 = 0.1. In

addition, the number of bacteria in a node is chosen to be n = 100. As shown by the plot,

reliable communication (i.e., pe = 10−6) is feasible for M = 2, 4, 8, 16 and the required

range is shown as well. For larger number of symbols, reliable communication is not pos-

sible as for the case of M = 32. It was obtained that the least error rate (by maximizing

Amax) would be 10−2 for M = 32. This is in contrast with traditional communication in

which the reliability of M-ary schemes can be increased arbitrarily by using more power.

Instead, in molecular communication, smaller error rates can be achieved by increasing the

number of bacteria n.

Finally, in Fig. 4.7, we have shown the probability of error versus Amax for different

values of M. Note that error for M = 2 and 4 is negligible and is not shown in the plot. As

we observe in the plot, the probability of error decreases with increasing the range of input

(i.e., Amax) but it is not possible to make the error arbitrarily small for large M. In the next

section, we present the experimental results validating the observations made above.
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Figure 4.7. The probability of error versus the maximum concentration of molecules at the receiver for
different M-ary schemes.

4.7 Experimental Results

The results in this section have been procured in collaboration with the Precision Biosystem

Lab (PBL) run by Dr. Forest at the mechanical engineering department of Georgia Institute

of Technology. In all experiments, a genetically engineered strain DH5 E. coli bacteria is

used. Explanation of methods and functionality of the bacteria and the microfluidic device

fabrication and specifications can be seen in [139,143], but will be briefly reviewed here. In

this system, the stimulus is autoinducer N-acyl homoserine lactone (AHL) and the bacterial

response is the expression of green fluorescent protein (GFP). The design consists of a main

channel with in direct fluidic contact with adjacent chambers that house the bacteria for the

duration of the experiment as seen in Fig. 4.8. After initial loading of the chip, the bacteria

were allowed to populate the chambers for 24 hrs to reach chamber capacity. During this

time the bacteria were supplied with a constant flow of Lysogeny Broth (LB) at 100 µl/hr.

Once the bacteria had filled the chamber flow rate was increased to 360 µl/hr. One syringe

was used for LB (at 350 µl/hr), while the second (10 µl/hr) was used to deliver varying

concentrations of AHL. An AHL pulse is the duration and concentration over which this

AHL was delivered to the bacteria chamber. Pulse durations of 50 min that have been

previously optimized [139] were used. Fluorescent images were captured once every 10

52



Trapping Chamber

Flow

Main Channel

AHL

Bacteria

Figure 4.8. The experimental setup consists of microfluidic channels in a direct contact with trapping
chambers housing bacteria.

min and post-processed using MATLAB. The intensity of the pixels within the bacteria

chamber was averaged and the background fluorescence was subtracted, yielding relative

fluorescence (arbitrary units, or AU).

Table. 4.2 summarizes the data related to the amplitude of the relative fluorescence re-

sponse of the bacterial populations in the microfluidic chambers to AHL stimuli of varying

concentrations at constant 50 min duration. The AHL concentrations used for the experi-

ments ranged from 15 µM to 30 µM corresponding to the dynamic range of the bacteria

response. As we can see in the table, the average output amplitude increases monotonically

with the input molecular signal. However, the growth of the output tends to saturate as we

increase the input concentration. Moreover, the output variance shrinks where the input

takes values from its dynamic range extreme points. These observations are aligned with

the model we obtained in this chapter. Note that, unlike the theoretical model, the variance

does not approach zero at its extreme points. The biological noise due to the output pro-

duction, spatial heterogeneity of molecules inside the chambers, and measurement noise

are among the reasons for this discrepancy.
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Table 4.2. The experimental data for M-ary modulation
AHL

concentration
(µM)

Average peak
fluorescence

Standard
deviation

Sample
size

30 25.86 1.32 7
25 22.04 1.94 5

22.5 13.60 2.17 5
20 11.52 1.36 7
15 5.03 0.87 4

4.8 Conclusion

In this chapter, we studied two-node communication between nodes in MC and showed

how reliable communication can be formed out of collective behavior of unreliable agents.

We showed that the transmitter noise effect diminishes due to the low-pass property of

the reception process. We studied the information capacity and investigated the effect of

model parameters such as number of bacteria per node, noise level and maximum molecule

production levels. We observed that the capacity increases with the number of bacteria in

the nodes.

Further, we considered M-ary schemes and analyzed the achievable rates and their error

probabilities. We observed that, unlike conventional wireless communication, for a fixed

number of bacteria per node, reliable communication is not possible for large M, even with

arbitrarily increasing the range of the molecular input. Instead, reliable communication can

be achieved by increasing the effective number of bacteria in the nodes. Finally, we pre-

sented the experimental results for M-ary signaling which validate the conclusions derived

from our models.
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CHAPTER 5

RELAYING IN MOLECULAR COMMUNICATION

In the previous chapter, we discussed how the molecular communication reliability can be

improved via using a population of primitive agents as bio nodes. We also showed that

unlike conventional forms of communication, it is not possible to reduce the probability of

error arbitrarily by using more power. In [90], it has been shown that the signal-to-noise

attenuation in molecular communication is higher than the conventional wireless communi-

cation. Therefore, communication to long distances remains a challenge especially when-

ever other types of molecules are present at the medium.

One method to increase the communication range is by increasing the number of bac-

teria per node, i.e., a higher density of the population in a chamber node. However, due to

introduction of spatial diversity of molecular concentration by using larger chambers and

the restrictions on food availability and waste disposal at the node, a limited number of

bacteria should be used inside a node. Instead, here, we resort to relaying to mitigate this

problem and achieve more reliable communication between two nodes at large distances.

We consider two relaying scenarios. First, we study a theoretical case in which the

transmitter is able to emit continuous concentration of molecules. In such a case, we intro-

duce the sense-and-forward relaying in the molecular communication context [93]. Second,

we introduce the decode-and-forward relaying in M-ary signaling [94]. In each of the two

scenarios, we study two variations in which the relay node would transmit the information

message either by a different or the same type of molecules as the original signal from the

sender node. We show how relaying in the molecular communication can improve the ca-

pacity or probability of error, by either increasing the effective range of the molecular input

or forming molecular diversity at the destination.
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5.1 Molecular Sense-and-Forward Relaying

The schematic for a relay setup is shown in Fig. 5.1. In this setup, the relay node forms

another path to the destination node to help it in decoding the information. Here, we assume

a theoretical case in which the nodes are able to produce any continuous concentration of

molecules in their maximum range. Moreover, no decoding occurs at the relay node and

the same concentration (or a constant multiple of it) is relayed to the destination. In the

setup shown in Fig. 5.1, the direct distances from the transmitter to the destination, from

the transmitter to the relay and from the relay to the destination are assumed r1, r2 and r3,

respectively.

In the previous chapter, we obtained the output expression for the two-node communi-

cation as

Y = nNP0 + εY , (5.1)

where Y is the node output, n is the number of bacteria inside the nodes and N is the

number of receptors on each bacteria. Moreover, P0 is the molecular binding probability

that depends on the concentration of input signal. Hence, P0 can be considered as the

transmitted symbol to be decoded. Further, εY is a signal-dependent zero-mean Gaussian

noise with variance

Var(εY) = nN2 p2
0(1 − p0)2(

σ2
γ

γ2 +
σ2
κ

κ2 +
σ2

r

r2
0

). (5.2)

Figure 5.1. Communication via molecular relaying
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Hence, the normalized GFP output at the receiver node can be written as:

Y = P0 + ε, (5.3)

where ε is a signal-dependent zero-mean Gaussian noise with variance P2
0(1 − P0)2 σ

2
0

n and

σ2
0 =

σ2
γ

γ2
0

+
σ2
κ

κ2
0

. (5.4)

Assume that the transmitter produces the concentration ATD, and correspondingly the

probability PTD, at the destination node. Hence, using (5.3), the output YTD at the destina-

tion due to the direct transmission would be

YTD = PTD + εTD (5.5)

where εTD is a zero-mean Gaussian noise with signal-dependent variance as in (5.3). Note

that the diffusion channel has a broadcast nature. Therefore, the output molecular con-

centration of the transmitter node travels to both the destination and relay nodes. Since

the steady-state concentration of molecules depends inversely on the distance as shown

in (4.13), the average concentration of molecules received at the relay would be ATR = ATDr1
r2

.

In response to the molecular concentration ATR, similar to the destination node, the relay

would produce YTR as

YTR = PTR + εTR (5.6)

where PTR =
ATRγ0

ATRγ0+κ0
and εTR is a signal-dependent zero-mean Gaussian noise whose vari-

ance is similar to the noise variance in (5.3), i.e., Var(YTR) = P2
TR(1 − PTR)2 σ

2
0

n .

Being stimulated by the type I molecules from the transmitter, the output of the relay

node’s bacteria which depends on PTR, is assumed to be designed to induce the concentra-

tion ARD = βATR of molecules at the destination. Note that such a functionality would be

programmed into the plasmid of the synthetic bacteria at the design stage. Here, β is a con-

stant amplification factor due to the chemical processes. We refer to this relaying scenario

as the sense (the concentration ATR) and forward relaying. Whether the molecules used for
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this relaying are the same as the transmitter node’s molecules (i.e., type I) or another type

of molecules (namely type II), the problem is divided into two cases. In the following, we

study and compare the two cases. Note that we assume that the necessary relative distances

are known to the corresponding nodes.

5.1.1 Same-type Sense-and-Forward Relaying

Here, the relay is assumed to produce type I molecules in response to its input from the

transmitter node. We assume that the nodes have the same maximum rate Amax of type

I molecule production, and β = r2
r3

. Therefore, the total steady-state concentration of

molecules AD at the destination is equal to the aggregate of all molecules received from

both the transmitter node and the relay. That is:

AD = ATD + ATD
r1

r3
+ εr (5.7)

where εr is a zero-mean noise due to the reception process at the relay node (i.e., a function

of εTR and the distance r3).

Since no decoding is done by the relay, the noise incurred by the relay node is domi-

nated by the reception process at the receiver; as in the case of the transmitter noise in the

previous chapter. As such, the concentration of molecules AD, sensed by the destination,

produces the output (in form of GFP) YD as

YD = PD + εD (5.8)

where PD =
ATD(1+

r1
r3

)γ0

ATD(1+
r1
r3

)γ0+κ0
and εD is the resulting signal dependent zero-mean Gaussian noise

with variance P2
D(1 − PD)2 σ

2
0

n . Using (5.8), the capacity of the system involving relay can

be computed by maximizing I(PD; YD) = I(ATD; YD) = I(PTD; YD).

In the previous chapter, we showed that one major factor in the capacity of molecular

communication is the range of concentration of molecules [0 Amax] that the transmitter can

induce at the receiver. As we see in (5.8), the relaying in this case results in increasing Amax

to Amax(1 + r1
r3

). Note that Amax is itself inversely proportional to r1. Moreover, in order
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Figure 5.2. Capacity improvement in sense-and-forward relaying with a single molecule type.

to neglect the relay noise, r3 should be large enough (compared with r2). In Fig. 5.2, we

have shown the capacity improvement, resulted from relaying, for different values of Amax.

Here, we assumed n = 50, σ2
0 = 0.1, and r1 = r2 = r3.1 As shown in the plot, the advantage

of relaying decreases for large Amax.

5.1.2 Hetero-type Sense-and-Forward Relaying

In this scenario, in response to receiving type I molecules from the transmitter, the re-

lay outputs another type of molecules, namely type II. Hence, there will be two types of

molecules at the destination which would result in two different receiver node outputs, e.g.,

GFP and YFP, the Green and Yellow Fluorescent Proteins. Here, we neglect the interfer-

ence between the two different types of molecules at the destination and assume they act

independently.

We assume that the reception is the same for the both types of molecules but each type

has its own separate receptors in the bacteria. Hence, the two outputs can be written as


YTD = PTD + εTD

YRD = PRD + εRD

(5.9)

1Since the computations are prohibitive for large n, we used a small value for n.
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Figure 5.3. The capacity improvement by using two types of molecules in sense-and-forward relaying

where PRD =
βATD

r1
r2
γ0

βATD
r1
r2
γ0+κ0

. In addition, εTD and εRD are zero-mean noises with variances

P2
TD(1−PTD)2 σ

2
0

n and P2
RD(1−PRD)2 σ

2
0

n , respectively. Here, we have assumed that the number

of bacterium’s receptors for the both types are equal.

In order to make the analysis tractable, we assume that the amplification factor β in the

production of type II molecules is β = r2
r1

. Hence, we have PTD = PRD. The goal is to

maximize the mutual information between the input PTD and the outputs YTD and YRD:

C = max f (PTD)I(PTD; YTD,YRD). (5.10)

The equations in (5.9) resembles the Single-Input/Multiple Output (SIMO) configura-

tion in classical communication. With constant-variance noises, the sum of the two outputs

YTD and YRD, i.e., performing Maximum Ratio Combining, would have been the sufficient

statistics for decoding PTD:

Ŷ = 2PTD + ε̂ (5.11)

where ε̂ is a zero-mean Gaussian noise with variance 2P2
TD(1 − PTD)2 σ

2
0

n . In our case, how-

ever, since the noise powers are signal dependent and only conditionally Gaussian, Ŷ is

not the sufficient statistics for decoding PTD. As such, some information would be lost

if we use only Ŷ . We note that the output YTD and YRD are independent given PTD, i.e.,
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P(YTD,YRD|P0) = P(YTD|P0)P(YRD|P0). Hence, we may use the numerical Blahut Arimoto

algorithm for the joint outputs to maximize the joint mutual information in (5.10).

In Fig. 5.3, we have shown the numerical results for the maximum mutual information

I(PTD; YTD,YRD) as well as I(PTD; Ŷ). The case without relaying is shown for comparison

as well. The results are shown for σ2
0 = 0.1 and n = 100. As we see in the plots, the

difference between using the sum Ŷ instead of both YTD and YRD to decode PTD is almost

negligible. In other words, the improvement due to using two different outputs (e.g., GFP

and YFP) instead of using only one output in response to both type I and type II molecules

is negligible. Finally, comparing Fig. 5.3 with Fig. 5.2, we note that unlike the same-

type relaying, the capacity improvement by hetero-type relaying persists for even large

molecular ranges Amax.

5.2 Decode-and-Forward Relaying in Molecular M-ary Signaling

In the previous section, we discussed the cases that the relay forwards a continuous con-

centration of molecules that it senses. Here, we study the improvement in probability of

error for a practical scenario in which the transmitter uses the M-ary signaling discussed in

Section 4.6. In particular, as shown in the theoretical and experimental results, for a fixed

number of bacteria in the nodes n, reliable communication is not possible for values of M

larger than a threshold. Here, we employ relay to mitigate this problem.

The schematic for the relay setup is the same as the one in Fig. 5.1. We assume that

nodes are able to produce as well as decode M levels of concentration of molecules. The

transmitter broadcasts the information symbol through type I molecules to both the relay

and the destination nodes. The received symbol by the relay node is decoded and forwarded

on the helper path which arrives at the destination node alongside with the symbol from the

direct path.

The ith symbol corresponds to pi = i
M−1 pmax for i = 0, 1...,M − 1. In the setup shown in

Fig. 5.1, the direct distances from the transmitter to the destination, from the transmitter to
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the relay and from the relay to the destination are assumed r1, r2 and r3, respectively. Note

that since the distances may not be equal, each symbol would correspond to a different

concentration of molecules at the nodes. Hence, in order to obtain the proper symbols,

nodes must know the distances and scale the concentration of molecules accordingly. Here,

without loss of generality, we assume that r1 = r2 = r3. Using (5.3), the normalized output

Y at the relay due to the transmission of the symbol pT where PT ∈ {p0, p2, . . . , pM−1},

would be equal to

Y = PT + PT(1 − PT)ε (5.12)

where ε is a zero-mean Gaussian noise with the variance σ2
0

n .

5.2.1 Hetero-type Decode-and-Forward Relaying

Here, we consider a scenario in which the relay uses a different molecule than the transmit-

ter node. In other words, upon the reception of the type I molecules from the transmitter,

the relay forwards the decoded symbol PR by using type II molecules (i.e., hetero-type re-

laying). Note that due to noisy decoding at the relay, PR is not necessarily equal to PT. The

two types of molecules arriving from both the direct path and from the relay are then used

at the destination to decode the transmitted symbol.

The two types of molecules at the destination would result in two different outputs such

as GFP and YFP, i.e., the Green and Yellow Fluorescent Proteins. We neglect the subtle

interference between the two different types of molecules at the destination and assume

that they act independently. We assume that the reception is the same for the two types of

molecules but may differs in the noise attribute σ2
0. We denote by YD and YR the normalized

outputs due to the direct and relay paths, respectively. Hence, we have
YD = PT + PT(1 − PT)εD

YR = PR + PR(1 − PR)εR

(5.13)

where εD and εR are zero-mean noises with variances σ2
D

n and σ2
R

n , respectively. Moreover,

σ2
D and σ2

R correspond to the noises in the reception of type I and II molecules, respectively.
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Figure 5.4. Average probability of error vs λ for different M-ary schemes.

Note that PR would be different from PT in case the decoding at the relay node is erroneous.

We consider a linear combination of the outputs Ŷ = wDYD+wRYR in order to decode the

transmitted symbol. In a collocated multiantenna setup [144], Maximum Ratio Combining

(MRC) employs the optimal weights wi = hi
n̄i

2 , where hi is the attenuation of the ith channel

and n̄i
2 is the average power of the corresponding channel noise. Likewise, adapting MRC

in our setup, the optimal weights would be given by wR = 1
σ2

R
and wD = 1

σ2
D

. However,

since the relaying node may have a decoding error, the performance of MRC would be

sub-optimal for our setup.

Different approaches have been proposed in classical wireless communication literature

to find the optimal weights in a decode-and-forward relaying scenario. In [145], the two

consecutive source-relay and relay-destination channels are replaced with an equivalent

Gaussian channel. In [146], authors have introduced a generalized form of λ-MRC in

which wD is fixed to its MRC value and wR is considered to be λ times its MRC value,

where 0 ≤ λ ≤ 1. Here we use a similar method as the one in λ-MRC. Without loss of

generality, we assume σ2
R = σ2

D = σ2
0. Further, we fix wD = 1

σ2
0

and assume wR = λ
σ2

0
where

0 ≤ λ ≤ 1. Hence, by combining the outputs in (5.13), we have

63



Ŷ = PT + λPR + εY , (5.14)

where εY is a zero-mean Gaussian noise with the variance σ2
0

n (P2
T(1−PT)2 +λ2P2

R(1−PR)2).

We obtain the optimal value of λ that minimizes the M-ary average probability of error

in (4.31). Further, we assume that only transitions to the adjacent symbols would cause er-

ror at the relay node. In other words, if the ith symbol is sent, PR would be in {pi−1, pi, pi+1}.

In Fig. 5.4, we have plotted Pe vs λ for different values of M. The results are shown for

n = 100, pmax = 0.95 and σ2
0 = 0.6 corresponding to a highly-noisy situation. Fig. 5.4

shows the existence of an optimal λ. The rationale for this behavior is that increasing λ, on

the one hand, extends the maximum range of the output and hence, improving the reliabil-

ity. On the other hand, increasing λ would increase the influence of the more noisy symbol

from the relay node, which in turn would decrease the reliability.

In Fig. 5.5, we have plotted the probability of error with and without using the relay

with the optimal choice of λ for M = 8 and M = 16. Furthermore, r1 = r2 = r3, n = 100

and σ2
0 = 0.6. As we can see in the plots, the advantage of relaying diminishes for large

values of Amax for M = 8 where the probability of error approaches zero, but prevails for

M = 16 where achieving an arbitrary probability of error is impossible without relaying.

In other words, depending on the signaling, the relative advantage of hetero-type relaying

can be either achieving a lower asymptotic probability of error or achieving the asymptotic

value with a lower range of the molecular input (i.e., power).

5.2.2 Same-type Decode and Forward relaying in M-ary signaling

In this section, we study the scenario in which the relay node decodes the incoming infor-

mation symbol from the transmitter and forwards it via the same type of molecules to the

destination. We compare the performance of such a relaying scenario with the hetero-type

relaying scenario discussed in the previous section. It is important to note that we assume

the production of the same type of molecules by the relay does not affect the relay input
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Figure 5.5. The average probability of error with and without using relaying vs maximum concentra-
tion of molecules.

coming from the transmitter. The relay output production contains a huge amount of delay

and the relay node can be designed such that the production of molecules would shut off

the reception of molecules by the relay node. The arriving molecules from both the relay

and direct paths would form the concentration of molecules at the destination. Since the

relay employs the same type of molecules as at the transmitter node and also the diffusion is

linear [31], the concentration of molecules at the destination would be the superposition of

the individual concentrations of molecules induced by the transmitter and the relay nodes.

For 0 ≤ i ≤ M − 1, let Ai and Bi be the concentrations of molecules induced by the

transmitter at the destination node and the relay node, respectively. Likewise, let Ci be the

concentration induced by the relay at the destination node. As discussed in the previous

section, by the broadcast nature of the diffusion channel, producing the concentration Ai at

the destination corresponds to the production of the concentration Bi = Ai
r1
r2

at the relay.

Assume each concentration symbol Ai designed optimally in the range [0 Amax] for the

destination node is mapped linearly to the concentration symbol Bi in [0 r1
r2

Amax] at the

relay node. Hence, the distribution of the Bi concentration symbol at the relay input would

be optimal as well.

Assume the concentration symbol B j, (0 ≤ j ≤ M − 1), is decoded at the relay. In

response, the relay induces the concentration symbol C j in the range of [0 r1
r3

Amax] at the
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Figure 5.6. Comparison between relaying using one and two types of molecules.

destination. Then the aggregated concentration of molecules from both the direct and relay

paths would be Ai+C j which is in the range [0 Amax(1+ r1
r3

)]. The output YD at the destination

is given by

YD =
(Ai + C j)γ0

(Ai + C j)γ0 + κ0
+ εD, (5.15)

where εD is a signal-dependent noise as in the previous section. We assume the destination

uses maximum a posteriori (MAP) detection to decode the concentration symbol Ai. Hence,

we have

P(Ai|YD) ∝ P(YD|Ai)P(Ai) =

M−1∑
j=0

P(YD|Ai,C j)P(C j|Ai)P(Ai), (5.16)

In (5.16), P(YD|Ai,C j) = P(YD|Ai+C j) = P(εD|Ai+C j) where ε is the conditionally Gaussian

noise in (5.15). Moreover, since the mapping from B j to C j and from Ai to Bi are one-to-

one, P(C j|Ai) = P(B j|Bi) and we have

P(B j|Bi) = P( j = argmaxkP(Bk|YR)) (5.17)

where YR is the output at the relay with a conditionally Gaussian distribution N(pi, p2
i (1 −

pi)2 σ
2
0

n ) in which pi =
Biγ

Biγ+κ
.

We have plotted the probability of error for the same-type relaying scenario in Fig. 5.6

and compared it with the hetero-type relaying discussed in the previous section for M = 8
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and M = 16. We have used the parameters n = 100 and σ2
0 = 0.6, and r1 = r2 = r3, as in the

previous section. As we see in the plot, the same-type relaying outperforms the hetero-type

scenario for very low molecular input ranges but underperforms it otherwise. Moreover, by

comparing this plot with Fig. 5.5, we observe that same-type relaying loses its effectiveness

for large Amax. This is in contrast with hetero-type relaying which is advantageous even for

large Amax. This is due to the fact that hetero-type relaying not only results in the extension

of the range of the molecular concentration but also introduces molecular diversity at the

destination.

5.3 Conclusion

In this chapter, we studied the relaying problem in the context of molecular communication

to enhance the reliability. We considered both the case that the relay node simply senses

and forwards the received continuous concentration of molecules and the practical case that

relay decodes the received M-ary symbol and forwards it to the destination node. In the

first case, we showed that if the relay uses the same type of molecules as the transmitter,

relaying effectively results in expanding the range of the concentration of molecules at

the destination, and hence, increases the capacity. This effect is more significant for the

low range of concentrations. On the other hand, by using a different type of molecules,

relaying nearly corresponds to increasing the effective number of bacteria in the nodes

which increases the capacity for low and high molecular ranges alike.

For decode-and-forward relaying with M-ary scheme, the relay node decodes the in-

coming symbol from the transmitter and forwards it to the destination using the same or

different type of molecules as the transmitter. In the hetero-type case, we showed as to how

the optimal combining of the outputs results in improving the reliability of the communica-

tion. We also compared the results with the same-type relaying scenario. We showed that

except for the mid-range values of maximum concentration of molecules, the hetero-type

relaying outperforms the same-type relaying.
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CHAPTER 6

ERROR-DETECTION SCHEMES IN MOLECULAR
COMMUNICATION

In the previous chapters, we discussed how the MC reliability can be improved via the

node design and also by the use of relay nodes. In certain sensitive applications such as

biochemical sensing, (nearly) perfect error detection may be required while loss of some

symbols can be tolerated. Hence, in this chapter, we develop suitable error-detecting coding

schemes which meet the molecular communication specific constraints in terms of reliabil-

ity and complexity, and take into account the communication channel properties [100].

We show the trade-off between the code rate and probability of error in such detection

codes. Using the constant-weight codewords can achieve a perfect error detection capa-

bility at the cost of losing the rate significantly. However, in most of the applications, a

small probability of error can be tolerated by the system without significantly harming the

functionality. As such, we will study how the rate can be optimized with constraining the

probability of error [107].

6.1 Error in binary Diffusion-based Molecular Communication

In this chapter, we focus on a binary molecular communication setting in which the trans-

mitter emits a certain molecular concentration level for a duration T in order to send symbol

“1” and shuts off for sending symbol “0”. The duration T must be long enough to give the

receiver sufficient time to sense the concentration of molecules. It must also provide enough

time for the channel to reset from high to low. The optimal values of T was discussed in

Chapter 4. Here, we assume that T is sufficiently large that the receiver output can reach the

steady state and there would be no inter-symbol interference (ISI). The independent decod-

ing of the successive symbols can be further justified through the use of variant strategies

to cancel the ISI in the channel. In [39], the authors have introduced the use of enzyms
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to expedite the channel reseting process. Alternative use of multiple molecule types (de-

pending on the channel memory intensity) to transmit successive symbols independently

has also been discussed in [40].

Let A(i)
0 and p(i)

0 be the values of A0 and p0 for transmitting bit i, where i = 0, 1. As

we can see in (4.25), the variance and hence, the probability of error is zero for sending

A(0)
0 = 0 (i.e., p(0)

0 = 0) which corresponds to the transmitter being shut off for sending

the symbol “0”. For the transmission of symbol “1”, one may assume a very large A(1)
0

in (4.2) that would approximately result in p(1)
0 = 1. However, inducing high entrapment

probabilities are impractical, especially for longer communication distances, due to energy

constraints. Based on (4.25), by choosing p0 for sending bit “1”, the probability of error

(i.e., decoding symbol “1” as “0”) can be written as:

pe =

∫ pth

−∞

1√
2πp(1)

0
2
(1 − p(1)

0 )2 σ
2
0

m

exp (−
(p − p(1)

0 )2

2p(1)
0

2
(1 − p(1)

0 )2 σ
2
0

m

)dp (6.1)

where pth corresponds to the minimum concentration of molecules that bacteria are able to

sense. Numerical analysis of (6.1) shows that pe is monotonically decreasing for p(1)
0 greater

than pth. In other words, in order to minimize the probability of error in transmission of

the symbol “1”, the transmitter should use the highest concentration of molecules that it

can induce at the receiver. On the other hand, factors such as the limited rate of molecule

production, energy constraints, and the need for longer shut-off time (to avoid inter-symbol

interference) prevent the transmitter from using high concentrations of molecules [35].

Furthermore, in the absence of other transmitters in the vicinity, the molecules cannot

be produced in either the channel or the receiver and can only be lost. As such, unlike

the bit “1”, the bit “0” can be transmitted almost without any error. Hence, based on

the above discussion, we model the above two-node molecular communication with a z-

channel, depicted in Fig. 6.1, in which the bit “0” is transmitted with no error while the bit

“1” entails a non-zero probability of error pe as derived in (6.1). Note that the proposed

error-detection codes are envisioned for sensing purposes which require high-accuracy but
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Figure 6.1. The z-channel model

communication is sparse. Hence, one needs to worry only about the ISI between bits of

the same codeword. Moreover, this assumption could only increase the theoretical bounds

obtained in the following sections whereas the actual decoding proposed in Section 6.4 is

done biologically over the code block length.

6.1.1 The Error Detection Model

We consider a binary completely asymmetric channel (i.e., z-channel) with the transition

probability of pe from the bit “1” to “0”. Clearly, by the z-channel definition, there is no

error in transmitting the bit “0”. Our objective is to find the optimal codewords for an error-

detection scheme in this z-channel. We denote by S the codeword set where S ⊆ {0, 1}n,

and the codewords by Xn ∈ S where Xn are length n binary vectors. In order to capture the

transition between the codewords in the aforementioned z- channel, we define a codeword

transition matrix P where

Pi. j = Prob(Xn
i → Xn

j ). (6.2)

As an example, the general transition matrix is as follows for n = 2 (illustrated for the

hypothetical case of S = {0, 1}2):



(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) 1 0 0 0

(0, 1) pe 1 − pe 0 0

(1, 0) pe 0 1 − pe 0

(1, 1) pe
2 pe(1 − pe) pe(1 − pe) (1 − pe)2
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At the receiver side, any vector that is not in S is erroneous and hence, discarded. Thus,

we treat all such received vectors as an erasure symbol E. Hence, the received set would

be {S ′} = {S } ∪ E. The average probability of error in such a setting can be written as

Pavg =

K∑
i=1

pi

∑
j:Xn

j<Xn
i

Pi, j, (6.3)

where pi is the probability of sending Xn
i and K is the number of codewords. Note that

Xn
j < Xn

i if and only if i , j and for every “1” in Xn
j , the corresponding position in Xn

i is

“1” as well. The new transition matrix, by considering the E symbol, can be obtained by

reducing the general transition matrix and removing the rows corresponding to the vectors

Xi < S and adding the corresponding column to the E column. For example, the reduced

transition matrix resulting from removing the vector (0, 0) from S = {0, 1}2 would be:



(0, 1) (1, 0) (1, 1) E

(0, 1) 1 − pe 0 0 pe

(1, 0) 0 1 − pe 0 pe

(1, 1) pe(1 − pe) pe(1 − pe) (1 − pe)2 pe
2



The performance of such a detection scheme can be measured in terms of probability of

error and the code rate. Our goal is to find the detection code set S (and equivalently the set

S′) that is optimal in the sense that a given probability of error is satisfied and the code rate

(or information rate) of the detection scheme is maximized. Hence, the end-to-end model to

transmit and receive the codewords is captured by the codeword transition matrix P(Yn|Xn)

where the input symbols are the codewords Xn ∈ S, the outputs are the received words

Yn ∈ S′, and the bit-wise transition probabilities follow a z-channel model. Depending on

the assumptions and the encoding/decoding complexity, we deploy two different theoretical

measures to capture the optimality of the coding scheme.
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In the first case, we consider an encoder that can generate the codewords with any arbi-

trary relative frequency. Moreover, we do not assume any source coding at the transmitter

which means the input symbols may have different probability of occurrence. This is es-

pecially of interest for the bio-sensing applications where the low concentration regime is

usually more probable to occur. Moreover, since it is not possible to achieve zero probabil-

ity of error with the simple error-detecting receiver described above, in the erasure channel

with error model H(Yn|Xn) , 0. Now the question of interest is to find the upper-bound on

the rate of the error-detection code over the z-channel subject to a detection-error proba-

bility constraint. This question is equivalent to finding an upper-bound on the information

delivery over the erasure channel with error, subject to an inter-symbol error constraint.

From now on, we refer to this model as the erasure channel. In order to establish a theo-

retical upper limit to the rate of the error-detection scheme, we define the error-detection

capacity as follows:

c′(pT ) , max
p(x)

H(X) − H(X|Y) provided that Pavg < pT , (6.4)

where X is a transmitted symbol and Y is a received symbol. Moreover, pT is the con-

straint on the detection-error probability and p(x) is the probability distribution over the

set of input symbols in the erasure channel model. Moreover, we consider the rate of the

error-detection code to be the amount of information that a transmitted codeword yield on

average at the receiver. This corresponds to r = I(X; Y) over the erasure channel, which

is a function of the input codeword distribution. Hence, the maximum rate of any error-

detection code subject to a detection-error probability constraint can be written as:

r′(pT ) = max{r : Pavg < pT }. (6.5)

Note that by definition, r′(pt) ≤ c′(pT ). In other words, c′(pT ) is the theoretical limit for

the rate of any error-detection scheme in the z-channel given the detection-error constraint

pT and the model described above. Hence, in order to find the optimal codeword set for

the z-channel, given the probability of detection-error constraint, one needs to find the
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Table 6.1. The effect of removing a vector from S = {0, 1}2

(0, 0) (0, 1) (1, 0) (1,1)
R (bits/codeword) 1.2076 1.2118 1.2118 1.2592
Pavg 0.0436 0.0615 0.0615 0.0647

optimal codeword subset and the corresponding optimizing distribution that maximizes the

detection capacity in (6.4).

In the second case, we consider an encoder that generates the codewords equiprobably

and the decoder performs single codeword decoding by discarding any received codewords

outside the codebook (i.e., ignoring the erasure symbols). Note that, unlike the previous

theoretically optimal case, here the information about the input by observing the erasure

output, which is non-zero when different codewords have different probability of trans-

forming into the erasure symbol, is lost. Hence, in order to find the optimal subset, given

the error probability constraint, one needs to maximize R =
log N

n where N is the number of

codewords.

6.2 Optimal error-detection codes via Maximizing the Mutual Infor-
mation

In this section, we study the first case discussed in the previous section. In order to obtain

the optimal distribution and hence, the maximum information rate for each choice of S, we

use the Blahut-Arimoto (BA) algorithm [147] on the corresponding codeword transition

matrix. As a toy example, for n = 2 and S = {0, 1}2, the maximum rate and the correspond-

ing average probability of error are obtained as R = 1.525 bits/codeword and Pavg = 0.089.

The resulting average probability of error Pavg and optimal rate R achieved by removing

only one vector from the general transition matrix, are shown in Table 6.1. Here, the vector

shown in the column is removed from S = {0, 1}2. As we observe in this Table, there exists

a trade-off between the rate and the probability of error. We also observe that perturbing the

error constraint may result in a completely different subset of codewords. In other words,
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different constraints on Pavg may result in different orders that the vectors are removed.

It can be shown that finding the optimal codewords in the above general scenario is an

NP-hard problem. In order to solve the problem for a more specific case, we model it on

a directed graph. We have shown the codeword transition graph for n = 3 in Fig. 6.2. In

such a directed graph, each potential codeword is represented by a vertex and the vectors

are arranged from the highest (hamming) weight to the lowest such that vectors with the

same weights are on the same level (i.e., drawn on the same horizontal level). The edges

of the codeword graph represent the transition of a vector to another with only a single bit

error. A vector can be transformed to another by the channel error if and only if there exists

a directed path between input and the output vectors. Due to the asymmetric nature of

the channel, the transformations can only happen from a codeword to the ones with lower

weights located on lower levels of the graph. The probability of such transformation pt is

equal to:

pt = ph
e(1 − pe)w−h (6.6)

where w is the transmitted vector weight and h is the number of hops in the directed path

to the received vector.

We can also observe that the transformation probability is unique regardless of the path.

The reason is that at each hop, the vector weight decreases by 1. Since traversing to above

or across nodes are not possible, the number of hops is always equal to the difference in

vector weights and independent of the chosen path. Based on the above description, the

problem of finding the optimal code would reduce to finding the optimal subset of vertices

of the above graph that satisfies the error probability constraint.

6.2.1 Dynamic-programming based Algorithm to Find the Optimal Code

In order to provide an algorithm rather than the brute-force search to find the optimal code-

words, we make two simplifying assumptions to the optimality definition we had:
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Figure 6.2. The codeword graph for n=3; the collection of all potential codewords

1. We relax the average probability of the detection error constraint and instead use an

upper limit on the maximum probability of the detection error. The advantage of this

modification is that we will be able to set a minimum distance h∗ between each pair

of chosen codewords and hence, can decide whether a subset is a viable code set

before running the BA algorithm.

2. We confine ourselves to small enough pe such that the transition probability between

two codewords of the distance more than h∗ would be negligible. This assumption,

as shown later, makes choosing the optimal codewords of two subsets with distance

more than h∗ independent of each other. In the case that pe does not satisfy this condi-

tion, h∗ needs to be increased beyond the level set by the maximum error probability

constraint.

In the first phase of the algorithm, we need to obtain the minimum edge distance of

the codewords to satisfy the maximum error probability constraint. Edge distance of two

codewords is the directed distance between their corresponding vertices on the codeword

graph.

Lemma 2. In order to comply with the maximum error probability pmax, the codewords

must be at least in the distance h∗ from each other where h∗ is the minimum integer that

satisfies maxw

(
w
h

)(
pe

1−pe

)h
(1 − pe)w ≤ pmax for 0 ≤ w ≤ n.
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Proof. Consider the codeword cw with the weight w. Since the weight of the vectors at the

distance h from cw is w−h, there are
(

w
h

)
vectors at distance h that cw can be transformed to.

Using (6.6), to satisfy the error constraint, we need maxw

(
w
h

)(
pe

1−pe

)h
(1 − pe)w ≤ pmax where

0 ≤ w ≤ n. Note that for the small values of pe, w = n maximizes the above criterion.

In the second phase of the algorithm, we employ dynamic programming [148] to find

the optimal code given the minimum edge distance h∗. First, we observe the following:

Lemma 3. If one vector with weight w is chosen as a codeword, all the vectors with the

same weight must be selected.

Proof. First, we observe that since all the vectors with the same weight are on the same

level in the codeword graph, the minimum edge distance remains intact by exhausting all

the codewords in that level. Hence, the maximum probability of error constraint would

still hold. Secondly, adding more codewords to the existing subset of codewords can only

increase the information rate of the detection scheme. The reason is that the optimal dis-

tribution for the original subset can be achieved by setting the channel input distribution

corresponding to the new codewords to zero. Hence, the rate of the old codeword set is

always sub-optimal to the one obtained by the new set.

Hence, the problem of finding the optimal code reduces to finding the optimal code-

word weights. Note that this alone reduces the number of viable sets, i.e., number of BA

algorithm runs, from O(2(2n)) to O(2n). Now, we resort to dynamic programming to obtain

the optimal weights with O(n) runs of the BA algorithm. We assume Ck to be the set of

weight-k vectors, S k to be the optimal codeword set using only the weights lower than or

equal to k, and R∗k to be the corresponding optimal rate. Moreover, we denote by R(Π) the

rate of the set Π. Our objective is to obtain S n and R∗n. The algorithm works as follows:

• Initialize S 0 by C0 and S k by the empty set for k < 0.

• Initialize R∗k to zero for k ≤ 0.
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• for k = 1, 2, 3, . . . , n, do:

R∗k = max(R(Ck ∪ S k−h∗),R(Ck ∪ S k−h∗−1),R∗k−1,R
∗
k−2...,R

∗
k−h∗+1).

Update S k according to the set that achieves the maximum in the above term. In other

words, set S k to either Ck∪S k−h∗ , or Ck∪S k−h∗−1, or S k−1,. . . , or S k−h∗+1, accordingly.

The above algorithm ensures that the minimum edge distance between the codewords

is always held at h∗ and builds upon the solutions to the smaller sets in order to obtain

the optimal solution of the larger ones. Note that at the maximization step, the average

probability of error can be calculated since the optimal distribution of the codewords is

already obtained by the BA algorithm at that step. Hence, one could discard the choices

that yield average probability of error greater than a threshold with no additional cost. In

order to obtain R∗n and S n, in each iteration, we need two runs of the BA algorithm and

O(h∗) comparisons which is negligible compared with the BA algorithm cost. Hence, we

have reduced the total number of BA algorithm runs from O(2n) to O(n). It is worth noting

that the overall performance of the above algorithm is not linear in n as the BA algorithm

itself has quadratic complexity with respect to number of symbols and hence, exponential

with respect to n. Before we prove the correctness of the above algorithm, we need the

following lemma.

Lemma 4. Assume the codeword subsets S 1 and T1 are the optimal subsets of the sets S

and T , respectively, which satisfy the maximum error detection probability constraint. If

there exists no transition probability between the codewords of the sets S and T , S 1 ∪ T1

would be the optimal codewords for S ∪ T under the same constraints.

Proof. First, notice that since there is no transition probability between the codewords of

S 1 and T1, the overall transition matrix is in the form of C =

 T1 0

0 S 1

. Hence, this

transition matrix can be viewed as two independent parallel channels with overall rate of

R(S 1 ∪ T1) = R(S 1) + R(T1). Now imagine there were subsets S 2 ⊂ S and T2 ⊂ T which

S 2∪T2 would give the optimal rate for the set S ∪T , i.e., R(S 1∪T1) < R(S 2∪T2). Since the
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transition matrix of S 2 ∪ T2 has a similar form as above, we would have R(S 1) + R(T1) <

R(S 2) + R(T2) which would mean that either R(S 1) < R(S 2) or R(T1) < R(T2), or both.

Suppose the first case was true. Since S 2 ∪ T2 is assumed to satisfy the maximum error

probability, each one of the individual sets must satisfy the constraint individually. Hence,

there would exist a subset S 2 ⊂ S that achieves a higher rate than the optimal subset S 1

under the same constraint, which is a contradiction.

Theorem 5. The proposed dynamic algorithm ensures finding the optimal code under the

maximum error probability constraint.

Proof. In order to show the correctness of the algorithm, we need to show that given the op-

timal answer for the sub-problems 1, 2, . . . , k−1 , the algorithm gives the optimal answer for

the kth problem. First, assume the weight-k vectors Ck are not included in S k. Since the min-

imum edge distance of the codewords must be h∗, R∗k would be max(R∗k−1,R
∗
k−2, . . . ,R

∗
k−h∗+1)

and S k would be the corresponding subset. Note that R∗k−h∗ cannot be the optimal answer as

adding Ck to S k−h∗ would increase the optimal rate while we assumed Ck is not included in

S k. Now consider the case where Ck is indeed in the optimal codeword set S k. We consider

two sub-cases:

First, consider the case that Ck−h∗ is not included in S k−h∗ , i.e., S k−h∗ = S k−h∗−1. Here,

the set S k−h∗ ∪ Ck would be the optimal set because the minimum edge distance between

Ck and S k−h∗ is greater than h∗ and since we ignore the transition between two codewords

of edge distance more than h∗, using Lemma 4, choosing Ck does not impact the optimality

of S k−h∗ .

Next, consider the case that Ck−h∗ is actually included in S k−h∗ , and hence, picking Ck

could possibly impact the optimality of S k−h∗ for the smaller problem. This could possibly

result in evicting Ck−h∗ from the optimal set. If so, the rest of the codewords are in distance

at least h∗ + 1 from Ck, and hence, S k−h∗−1 would be the optimal subset for the smaller

problem. If Ck−h∗ is not evicted from the optimal set, since other codewords in S k−h∗ are not
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Figure 6.3. Optimal rates at each step of the algorithm

impacted by the presence of Ck (as their distance is more than h∗), S k−h∗ remains optimal.

Hence, we need to consider R(Ck∪S k−h∗) and R(Ck∪S k−h∗−1) in the maximization step of the

algorithm for the case that Ck is included in the optimal set as well as R∗k−1,R
∗
k−2, . . . ,R

∗
k−h∗+1

for the case that Ck is not included.
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Figure 6.4. Optimal codewords’ average probability of error at each step

In Fig. 6.3, we have shown the optimal rate at each step of the algorithm for n = 8,

pe = 0.1, different values of h∗, and the corresponding maximum error probability. Note

that h∗ = 1 corresponds to the case that all the vectors can be used. We can observe the
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Figure 6.5. Optimal rate for different block lengths

amount of forgone rate in order to achieve lower maximum error probabilities. Further, the

incremental value of the higher-weight vectors diminishes at each step. On the other hand,

in order to show the negative effect of high-weight codewords, we have plotted the average

probability of error for the optimal codewords at each step of the algorithm in Fig. 6.4. As

we can see in this plot, the average probability of error continues to increase even when

there is no significant improvement in the rate by including more high-weight vectors in

the code set. This suggests stopping the algorithm when the rate improvement is negligible

by increasing k. In Fig. 6.5, we have shown the behavior of optimal rate per channel use

versus the block length n for different values of h∗ and pe = 0.1. As we see in the plot, for

h∗ = 1, where we can employ all the vectors, the rate is independent of n. In contrast, for

higher values of h∗ (where the erasure symbol exists), there exists an optimal code length

beyond which the code rate decreases and eventually approaches zero.

6.3 Optimal error-detection codes via Maximizing the Code Rate

In this section, we consider the second case discussed in Section 6.1 which finds the optimal

error-detection codewords with more practical assumptions than in the previous section.

We achieve this goal through maximizing the codeword rate R =
log N

n , where N is the
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number of codewords in S = {0, 1}2. We also assume the average probability of error

defined in (6.3) is limited to PT . Since we assume equiprobable codewords (i.e., the channel

input), the average probability of error can be written as

Pavg =
1
n

n∑
i=1

n∑
j=1, j,i

P(i, j), (6.7)

where P is the transition matrix in (6.2). Hence, our objective is to find the optimal sub-

matrix of P, by removing the minimum number of rows and the corresponding columns,

that would result in maximum R and meet the error probability criterion. Note that each

column, upon its removal, should be added to the last column corresponding to the erasure

symbol.

The above problem resembles the bi-clustering problem which has been studied ex-

tensively in the gene expression context. In such applications, the objective is to find the

sub-clusters of a two-dimensional matrix which meet specified patterns on the rows and/or

columns [149]. As the general problem in biclustering is NP-hard, greedy algorithms are

among the most common methods to find the near-optimal clusters. Here, we deploy the

two-phased δ-biclustering algorithm introduced in [150]. In the first phase of the algo-

rithm, rows (and their corresponding columns) are greedily removed until the specified

criterion is met. In the second phase, the algorithm greedily adds back the removed rows

(and columns) which would still hold the criterion. Here is the outline of the algorithm to

find the maximum number of codewords that satisfy the Pavg < PT requirement:

• while Pavg > PT :

– Remove the row (and the corresponding column) that would result in maximum

reduction in Pavg

• while Pavg <= PT :

– Add back the row (and the corresponding column) that would result in mini-

mum increment to Pavg
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Figure 6.6. Code rate versus block length for various values of average probability of error

In Fig. 6.6, we have plotted the transmition rate R =
log N

n ∗ (1−PE) versus the codeword

length n for different values of Pavg and pe = 0.1. Here, PE is the average probability of

erasure which corresponds to the case where the codewords are discarded by the receiver.

As we can see in the plot, due to the greedy nature of the algorithm, the curves behave

irregularly with respect to n, especially for larger values of Pavg. By lowering Pavg, the

curves converge; as extremely small error probabilities are only possible by choosing a

single weight corresponding to zero error probability.

6.4 Coding Schemes for Perfect Error Detection in Molecular Com-
munication

In this section, we study and analyze the constant-weight codes for molecular communi-

cation. Constant-weight codes, notably the four out of eight codes, have been commonly

used for error detection in completely asymmetric channels in the context of conventional

communication systems [151]. Note that throughout this section, the code weight refers

to the hamming weight. In such channels, the fixed weight of the codewords results in a

perfect error detection mechanism as the codeword weights can only decrease by error and

hence, any number of errors in a codeword can be detected. Berger in [152] introduced
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a new class of perfect error-detection codes for completely asymmetric channels. In such

codes, known as Berger codes, the number of zeros in each codeword is sent along with

the codeword to the receiver as a binary number. Since errors can only reduce the number

of “1” bits in a transmitted codeword, the number of zeros in the received codeword can

only increase whereas the accompanying binary number can only decrease in value due to

an error. Hence, in case any number of errors happen, the number of zeros in the received

codeword would not match the received binary number which results in a perfect error

detection.

These codes are sub-family of the general optimal codes discussed in Section 6.2, but

they constrain the maximum probability of error to be zero. This coding scheme is suit-

able for the low complexity requirements of the molecular communication especially for

the communication systems that need perfect error detection. As discussed in the previ-

ous section, the binary molecular communication can be approximated with a completely

asymmetric channel in which the symbol “0” can be transmitted impeccably while there is

a non-zero probability of error pe in transmitting “1”.

In addition, unlike the common case in molecular communication literature, we do

not assume the existence of an additional mechanism to synchronize the transmitter and

the receiver [153], and instead, we seek to provide synchronization using the proposed

code. Moreover, since sending the symbol “0” and sending nothing are indistinguishable,

the receiver cannot differentiate between codewords such as (0,0,1,1) and (0,1,1,0). To

mitigate this problem and also synchronization, each codeword should begin with “1” to

signal the beginning of a codeword. Note that we assume that the least significant digit is

sent first. As such, no two codewords are the same by placing any number of “0” to their

end or beginning.

One of the main constraints in designing a coding scheme for molecular communica-

tion is the low complexity requirements in encoding and decoding. Our objective is to
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implement perfect error-detection schemes for the above molecular communication by em-

ploying constant weight codes, and to compare the rate loss compared with the theoretical

limits from sections 6.2 and 6.3. Note that since the conversion of the symbol “0” into

“1” is impossible, error among the codewords of the same weight cannot happen. At the

receiver side, weight of the codewords is examined and in case of a mismatch with a preset

weight, the codeword is discarded.

Here, we explain how the decoding at the receiver works. The arriving symbols are

decoded one by one for the duration of the codeword length which is known to the re-

ceiver. The output of the receiver agents (e.g., bacteria) is only produced when symbol

“1” is detected and it is in the form of Green Fluorescent Protein (GFP) [154]. Equipped

with a circuitry, the receiver chamber should have the capability of detecting the aggregate

output produced by the agents during the entire codeword. In order to check the codeword

weights, the chamber circuitry accepts a codeword only if the aggregated level of the out-

put surpasses a threshold. This threshold can be programmed beforehand and should be

higher than the level obtained where the codeword weight is less than the preset weight.

This way, any erroneous codeword can be detected and discarded when the output is below

the threshold.

In order to analyze the general length n family of codes described here, we denote by

w the constant weight of such codes and by pe the probability of error for transmitting the

symbol “1”. Hence, the probability that error is occurred in a codeword, which results in

being rejected by the receiver, is equal to Pc = 1− (1− pe)w. As the number of information

bits in such a codeword is log2

(
n
w

)
, the average rate (bits per channel use) for such a code

would be

R =
(1 − pe)w

n
log2

(
n
w

)
. (6.8)

The code rate versus weight is shown in Fig. 6.7 for n = 8 and for different values

of pe. As we observe in the plot, and shown to be true for other values of n, optimal w
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Figure 6.7. Code rates versus the codeword weight for different values of pe
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Figure 6.8. Optimal code rates versus the code length for different values of pe

approaches to n
2 for small values of pe. In Fig. 6.8, we have shown the effect of block size n

for different channel probability of error when the optimal weight is chosen for each case.

Since pe is small, w = n
2 is chosen as the optimal weight. As we see in the plot, the optimal

block size increases for a more reliable channel. Notice that the rate (in bits per channel

use) eventually approaches to zero as the code length continues to increase (this effect is

not shown on the plot for the curves corresponding to very low pe). Moreover, we can

observe the rate loss due to perfect error detection by comparing the curve in Fig. 6.7 for

pe = 0.1 with the plots in Fig. 6.5. We can see that imposing the perfect error detection
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property results in about 30% loss in the code rate compared with the maximum theoretical

limit obtained by imposing no constraints on probability of error ( which results in the

maximum rate for the top curve in Fig. 6.5). Moreover, by comparing the pe = 0.1 curve

with Fig. 6.6, we observe the convergence of the curves, at n = 8, below a certain error

constraint.

In the above coding scheme, the only complexity imposed on the receiver node (i.e.,

the chamber circuitry) is the ability to read consecutive bio agents’ output, aggregate and

compare it with a threshold, and report the decoded output if it passes the threshold. In

the next section, we show how can one extend the above coding scheme by the introduc-

tion of additional weights and molecular types without hurting the perfect error detection

capability.

6.4.1 Extending the Constant-weight codes in Molecular Communication

As we observed in the previous section, imposing perfect error-detection constraint can

hurt the code rate significantly. In order to increase the rate while keeping the perfect error

detection capability, one needs to extend the introduced coding scheme. As shown in [154],

the output of bacteria depends on both the type of the signal molecules and also on the level

of the input signal. Hence, there seems to be two ways to extend the above coding scheme:

1- Using multiple constant-weight codeword families (with the optimal weight and block

size) using different types of molecules that trigger different types of outputs at the receiver

(e.g., Green and Yellow Fluorescent). 2- Using multiple constant-weight codeword families

that each use different types of molecules but the same output at the receiver.

First consider the first scenario. Here, the decoding can be separately performed for

each type of molecules and their corresponding outputs. As such, we would have parallel

channels for different molecule types and each codeword family can use the optimal weight

and block size obtained in the previous section without affecting the other codeword fam-

ilies. At the receiver side, each type of outputs should be compared to the corresponding
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threshold by the detection circuit separately. This scenario would add decoding complex-

ity in terms of the production of two different outputs by bacteria (e.g., Green and Yellow

Fluorescent) and the corresponding sensing ability by the detection circuit.

Now consider the second scenario. Here, two different molecules are employed which

trigger the same output but with different sensitivities. As such, we show how using dif-

ferent weights by each codeword family and only one threshold can result in a perfect

error detection. As mentioned in Section 6.2.1, the problem with employing more than

one weight is that the higher-weight codeword can be decoded as the lower-weight ones.

For example, the constructed weight-three codewords for the coding scheme described in

the previous section would be (0,1,1,1), (1,0,1,1), (1,1,0,1) and (1,1,1,0). Among other

transitions, one can observe that (1,1,0,1) may be decodes as (0,1,0,1), a weight-two code-

word. This problem can be mitigated by sending each weight with a different type of

molecules. Take the case that we have two types of molecules, namely type I and type

II. Note that these names are used generically and one can refer to [154] for more details.

In this case, the weight-two codes can be sent with type I and weight-three codes with

type II molecules. Further, assume that the bacteria are less sensitive to type II than type I

molecules and hence, producing smaller output when triggered by the same concentration

of molecules. We denote by Y j
i the aggregated output resulting from a weight-i codeword

of type j molecules. Hence, in the above example with two types of molecules (using type

I and II to send w = 2 and w = 3 families), the range of the output threshold τ which results

in perfect error detection between the two family codewords is obtained as

max(Y I
1,Y

II
2 ) < τ < min(Y I

2,Y
II
3 ) (6.9)

The right inequality in (6.9) ensures all the error-free codewords to pass the threshold

test and the left inequality ensures that any output due to an erroneous codewords (from

either family) would be below the threshold. Note that since we assumed the bacteria are

less sensitive to type II molecules, we have Y II
2 < Y I

2, and hence both inequalities in (6.9) are

satisfiable. As such, the weight of the codes can be matched to the type of signal molecules
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and the codeword is discarded in the case of a mismatch. The above inequality can also be

generalized for more than two types of molecules. Note that for a general n and k types of

molecules, the best k codeword weights should be chosen from Fig. 6.7. As such, the total

rate would be the sum of the individual rates for each constant weight code family. For

example, for the case that pe is small and k = 2, w = n
2 ,

n
2 + 1 should be chosen. As a side

note, the special case of n = 1 and w = 1 in the above coding scheme results in sending

type I molecules and type II molecules to encode the binary information. This would be

equivalent to Molecule Shift Keying (MSK) introduced in [83]).

6.5 Conclusion

In this chapter, we studied error-detection coding schemes for molecular communication

channel that would achieve arbitrarily small probability of detection error. We focused on

error detection instead of correction for two reasons: complexity of the error-correction

schemes and the envisioned sensitive applications of molecular communication. We mod-

eled the binary communication over a completely asymmetric channel and showed the

trade-off between the rate and probability of error for such coding schemes. In order to

obtain the theoretical limits, we introduced two optimality measures under different as-

sumptions and proposed algorithms to find the optimal codewords for each case. We then

studied constant-weight codewords, a sub-family of above codes, which meet the molecular

communication specific needs in terms of both the perfect error detection and low complex-

ity. We analyzed the optimal weight and length of such codes and compared the rate with

the theoretical limit obtained earlier. We also showed how such codes can be extended by

using multiple types of molecules and different detection thresholds.
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CHAPTER 7

RATE DISTORTION AND OPTIMAL QUANTIZER IN
MOLECULAR COMMUNICATION

So far, we have studied the fundamental problems in molecular communication such as

the diffusion channel capacity, ligand-receptor capacity, and two-node communication. We

also introduced methods such as relaying and error-control coding to mitigate the reliability

issue in molecular communication. In this chapter and the following, we focus on the

molecular sensing and study the relevant theoretical and practical problems.

In a molecular bio-sensor, signal distortion is a matter of paramount importance. In the

world of biology, distortion and error are mitigated through redundancy (e.g., number of

sensors). In this chapter, we study the rate-distortion problem in the context of molecular

sensing via ligand receptors. We demonstrate the effect of receptor redundancy in distortion

and obtain the optimal quantization that minimizes the distortion in the inference of the

input signal. where the input distribution of molecules is known.

In a more practical case, either the distribution is completely unknown or there exists

only some peripheral knowledge about it (e.g., the distribution family). Hence, we discuss

the universal quantizer for a molecular sensor in the minimax sense. In such a quantizer, we

minimize the distortion for the worst-case distribution in the environment. My colleague

A. Abdi has mainly developed this section with my collaboration. The result will be briefly

presented for the sake of completeness of discussion.

7.1 Optimal Quantizer in MC

There are two main sources of distortion in a molecular sensor with ligand receptors. The

first is due to random discretization of a continuous signal (i.e., concentration of molecules)

through the ligand receptors. As the concentration of molecules at the vicinity of receptors
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Figure 7.1. Quantizer in a molecular sensor

increases, the probability of ligand binding increases as well. Hence, the number of acti-

vated receptors is a random discrete indicator that can be used to infer the concentration

of signal molecules. We model this source of distortion with a binomial random variable

which represents the mapping from the continuous binding probability (or equivalently the

corresponding concentration of molecules) onto a discrete level of activated receptors. The

second source of the distortion is due to the limited number of output levels at a primitive

molecular sensor node. As such, the node needs to map multiple levels of activated re-

ceptors to a single output representation value which can be viewed as quantization of the

discrete binomial random variable from the previous stage.

We consider a node that comprises N ligand receptors that act independently to measure

the steady-state concentration of molecules. We wish to measure the distortion imposed

on the system by both the ligand reception process as well as the output representation

with finite number of levels and ignore the distortion due to the latter stages of the output

production. Hence, the measured distortion would be a lower bound for any node who uses

ligand reception to sense the signal molecules.

Upon being stimulated by the concentration of molecules A∗ in the steady state, as

depicted in Fig. 7.1, a random S number of the receptors will be activated where S ∼

Binomial(N, p∗). From now on, we drop the superscript ∗when referring to the steady-state

values. The quantized value of p (i.e., the corresponding value of A in (4.2)) is inferred by

observing the quantized value of S as the final output. Hence, the distortion on p has two

sources: 1. Random and discrete nature of S in measuring p, and 2. Quantization error in

representing S .

We formalize the problem as follows: Given the random variable corresponding to the
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number of activated receptors S ∼ Binomial(N, p), where p is an instantiation of P with

the density function fP(p), and k quantization levels at the output, the objective is to find an

optimal (the notion of optimality will follow) mapping π from N + 1 levels of S to k levels

of the node output. In other words, we need to find the optimal mutually exclusive sets S i,

i ∈ {1, . . . , k} and S i ⊂ {0, 1, . . . ,N}, where
k⋃

i=1
S i = {0, 1, . . . ,N}. This would correspond to

finding the optimal quantization intervals in a classical quantization problem [109]. Further,

we need to find the optimal reconstruction points pi, i ∈ {1, . . . , k}, corresponding to each

S i. note that each Ai can then be computed from (4.2). Here, the optimality is defined

as minimizing the modified distortion rate [109] for a noisy source. In other words, we

minimize the conditional expectation E[d(P, p̂)|S = s] where d() is a distance measure,

which is assumed to be the squared error.

Following the footsteps of [155], we solve the above optimization problem, which can

be shown to be convex, by simultaneously solving the following two problems: 1. For a

given set of reconstruction points p1, . . . , pk, find the best quantization sets S 1, . . . , S k, and

2. For a given set of S i’s, find the best corresponding reconstruction points pi’s. If we order

the reconstruction points pi in increasing order, Fine has shown that optimal S i sets can be

described as follows [155]:

S i = {s :
pi + pi−1

2
≤ E[P|S = s] ≤

pi + pi+1

2
}, (7.1)

where i ∈ {1, . . . , k} and we define p0 and pk+1 to be negative and positive infinity, respec-

tively. Note that (7.1) resembles the first optimality criterion in a classical quantization

problem [108] which declares each interval end point must be halfway between the recon-

struction points immediately before and after that.

In the second step of the algorithm, we need to find the optimal reconstruction points

for each S i set. In other words, we need to minimize E[(P − pi)2|S ∈ S i]. It can be easily

shown that the conditional mean of P minimizes this error. Hence, we have:

pi = E[P|S ∈ S i], i ∈ {1, . . . , k}. (7.2)
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Rewriting (7.2) for our problem using the Bayes formula results in:

pi =

∫ 1

0
p P(S ∈ S i|p) fP(p)dp

P(S ∈ S i)

=

∑
s∈S i

(
N
s

) ∫ 1

0
ps+1(1 − p)N−s fP(p)dp∑

s∈S i

(
N
s

) ∫ 1

0
ps(1 − p)N−s fP(p)dp

, (7.3)

where we have exchanged the order of summation and integration at the end. In the next

section, we solve (7.1) and (7.3) simultaneously and compare the resulting distortion with

both a simple uniform quantizer and the rate-distortion function.

7.2 Rate-Distortion in the Optimal Quantizer

We define the distortion D(N, k) as the expected value of squared error over the input prob-

ability distribution. Hence, we have:

D(N, k) = EP[(P − p̂)2] = ES [EP|S [(P − p̂)2|S ]]

=

N∑
s=0

∫ 1

0
(p − pπ(s))2P(S = s|P = p) fP(p)dp

=

N∑
s=0

(
N
s

) ∫ 1

0
(p − pπ(s))2 ps(1 − p)N−s fP(p)dp, (7.4)

where π(s) is the optimal mapping from [0, . . . ,N] to [1, . . . , k] introduced in the previ-

ous section. Note that we have used the Law of total expectation and the Bayes rule to

obtain (7.4).

In Fig. 7.2, we have shown the average distortion versus the number of quantization

levels k for different values of N using the optimal technique described above. We have

chosen fP(p) to be uniform in [0, 1] but the following observations can be easily extended

for any arbitrary distribution. As we observe in the plot, the effect of using larger quantiza-

tion levels in reducing the overall distortion diminishes after a certain point. On the other

hand, for small values of k, the distortion is approximately the same regardless of N. In par-

ticular, at k = 1 which corresponds to representing the input distribution with its expected

value, the distortion is equal to the distribution variance, here 1
12 . These behavior can be
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Figure 7.2. Distortion versus number of quantization levels for different values of N

explained by the observation that we made about the sources of the overall distortion in the

previous section. The second source which stems from the size of the quantization levels

and is independent of N, is the dominant term for small values of k but its effect diminishes

in the form of 1
k2 . The first source of the overall distortion which is due to the randomness

in the observation of S , is enduring and the same for all the values of k. Hence, it becomes

approximately the sole source of distortion for high values of k.

Here, we take a closer look at the first source of the overall distortion due to randomness

in the observation of S . Given N and observing the value of S = s, from classical statistics,

s
N is the sufficient statistics for estimating the input p. For large values of k, this statistic

can be represented with a near perfect precision. Hence the average asymptotic distortion

D∞ in inferring the value of p becomes the expected value of the variance of S
N . In other

words:

D∞ �
∫ 1

0

p(1 − p)
N

fP(p)dp, (7.5)

where we have used the fact that Var[ S
N ] =

p(1−p)
N . Here, we consider two input distributions

fP(p). First is the uniform distribution discussed above which results in D∞ � 1
6N . The
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Figure 7.3. Asymptotic distortion of optimal random quantizer versus N

second distribution is the Jeffreys prior for a Binomial observation given by:

fP(p) =
1

π
√

p(1 − p)
, 0 < p < 1. (7.6)

In Chapter 2, we showed that the Jeffreys prior is the capacity-achieving distribution

for the receiver model in which a continuous concentration of molecules is mapped to a Bi-

nomial observation. Calculating (7.5) for the distribution in (7.6) results in the asymptotic

distortion D∞ � 1
8N . Moreover, based on (7.5), the worst case asymptotic distortion is re-

sulted by the probability distribution having all its probability mass at p = 1
2 which would

result in D∞ � 1
4N . In Fig. 7.3, we have shown the asymptotic distortion of the optimal

random quantizer for both the uniform distribution and the Jeffreys prior. We can observe

perfect match of the two curves with the asymptotic distortion D∞ � 1
6N and D∞ � 1

8N ,

respectively, as obtained above.

In order to show the advantage of using the optimal random quantizer, we compare

its distortion performance with the performance of a uniform random quantizer where the

binomial observations are uniformly assigned to the quantization levels and also, the recon-

struction levels are uniformly picked in the interval [0, 1]. We have plotted the normalized
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Figure 7.4. Comparison of the optimal versus uniform random quantization for the uniform distribu-
tion

difference between the distortion of the optimal and uniform random quantizers versus the

number of quantization levels k for the uniform distribution in Fig. 7.4. As we can see in

Fig. 7.4, the two techniques result in approximately the same distortion for small values of

k where the quantization error is dominant. The relative advantage of the optimal random

quantizer becomes more apparent in this case for larger values of k but falls sharply for

k = N + 1. This latter case corresponds to the point where a one-to-one mapping from the

receptor outputs and the reconstruction levels becomes possible and the optimal quantizer

loses its advantage in picking the optimal mapping. We can also observe from the plot

that the overall advantage of using the optimal quantizer diminishes for large values of N

and k. This reinforces the observation in [110] that uniform quantization is asymptotically

optimal.

In Fig. 7.5, we have made the same comparison for the case of the capacity-achieving

distribution in (7.6). As we can observe in the plot, except for k = 1 which corresponds to

representing the distribution with its expected value, the optimal quantizer outperforms its

uniform counterpart considerably for small values of k. Moreover, unlike the uniform dis-

tribution case, the optimal quantizer advantage is even more accentuated for larger values

of N. This phenomenon can be explained by the observation that for small k and large N,
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Figure 7.5. Comparison of the optimal versus uniform random quantization for the Jeffreys prior

the optimal distribution can fully take advantage of the asymmetric nature of the distribu-

tion in (7.6). Moreover, similar to the previous case, the uniform quantizer approaches its

optimal counterpart for large values of N and k. Note that in both Fig. 7.4 and Fig. 7.5 , the

curves have been smoothed to offset the illegibility due to their discrete nature.

We also compare the performance of the optimal random quantizer with the theoreti-

cal limit given by the distortion-rate function as defined by Shannon in [156]. Based on

Shannon, D(R) in estimating X by X̂ is defined as:

D(R) = min
Q(X̂|X):I(Q(X̂|X))≤R

d(Q(X̂|X)), (7.7)

where Q(X̂|X) is the conditional probability distribution over the reproduction alphabets

given the source. Moreover, d(Q(X̂|X)) and I(Q(X̂|X)) are the average distortion and the

average Shannon mutual information associated with Q(X̂|X), respectively, and are given

by:

d(Q(X̂|X)) =
∑

x

∑
x̂

p(x)Q(x̂|x)d(x, x̂),

where p(x) is the input distribution and d() is a distance measure (here the squared error)

and

I(Q(X̂|X)) =
∑

x

∑
x̂

p(x)Q(x̂|x) log
Q(x̂|x)∑

x p(x)Q(x̂|x)
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Figure 7.6. Comparison of the optimal random quantizer with distortion rate curve

Note that in the ligand receiver model, Q(x̂|x) has been fixed to be a Binomial distribu-

tion. Based on the definition above, D(R) gives the lower bound on the distortion for any

quantizing methods with the rate limited to R. In order to solve the constrained optimiza-

tion in (7.7), we use the Blahut algorithm described in [157] which obtains the points on

the rate-distortion curve (or equivalently, distortion-rate curve) iteratively. In Fig. 7.6, we

have shown the distortion of the optimal random quantizer versus R = log(k) for different

values of N and compared it with the Shannon distortion-rate curve. As we can see in the

plot, the optimal random quantizer curves follow the theoretical limit closely for small R

but fall short afterwards and approach their asymptotic distortion. Also, it is possible to get

closer to the distortion-rate curve by using larger values of N but the curves will eventually

diverge where the random observation error dwarfs the quantization error. This will also

correspond to the best practical choice for the number of levels k∗(N), i.e., the minimum k

that satisfies k2

N > a where the left side is the relative variance of the two errors and a is a

constant. Hence, R∗(N) = log k∗(N) =
log N

2 +
log a

2 . Choosing a = 10, we observe a good

match between R∗(N) and the points of divergence in Fig. 7.6.
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7.3 Minimax Universal Quantizer

The derivations in the previous sections assume the probability distribution of molecule

concentration in the environment to be known. In practice, the performance of the sensor

can be significantly deteriorated by the actual molecular distribution. Universal quantizers

for unknown input distribution are discussed in [109]. A universal quantizer in the minimax

sense (i.e., minimizing the distortion for the distribution that yields the maximum error) is

introduced in [111]. Here, we study the design and performance of universal minimax

quantizers for the ligand reception process. This section is developed in collaboration with

my team member Afshin Abdi. While the analytic component is developed by Afshin, I

provided the model and the setup of the problem. The results are briefly presented here

for completeness of the molecular sensing discussion. More detailed presentation can be

found at [158]

The objective in the minimax universal quantizer is to find a quantization Q, of k levels,

such that it minimizes the worst case distortion, i.e.,

Dminimax = min
Q

max
p

D(p; p̂)

= min
p̂,π(·)

max
p

N∑
s=0

(
N
s

)
ps(1 − p)N−s(p − p̂π(s))2.

It is well known [159] that if there is no bound on the quantization levels, the optimum

quantizer is given by p̂s = s
N+
√

N
+ 0.5

1+
√

N
, which has k = N + 1 quantization levels. Further-

more, Dminimax = 1
4(1+

√
N)2 = O( 1

N ).

However, when number of reconstruction points, k < N, is fixed a priori, finding op-

timum minimax quantizer is intractable and requires investigating almost all ’reasonable’

quantization mappings, π(.), as well as optimizing the reconstruction points, p̂. In the

following, we briefly present some bounds on the performance of the optimum minimax

quantizer and propose an approximate solution [158].

Lemma 6. Let Q∗ = { p̂1, . . . , p̂k} be the optimum reconstruction points, sorted in an as-

cending order. Define η = maxi;0≤i≤k+1( p̂i+1 − p̂i), where p̂0 = 0 and p̂K+1 = 1. Then,
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Dminimax ≥ η
2/4.

Lemma 7. Consider the class of quantizers with k levels, k < N. Then, the minimax

distortion is bounded as [158]

1
4k2 ≤ Dminimax <

2
k
. (7.8)

7.3.1 Performance of the Uniform Quantizer

Here, we present an upper bound for the maximum distortion of the uniform quantizer. The

quantization points and regions are defined as p̂i = (i−0.5)/k and S i = {s : s/N ∈ [bi, bi+1)},

for i = 1, 2, · · · , k; where bi = (i−1)/k and bk+1 = +∞. We show that the uniform quantizer

converges to the minimax optimum quantizer at the rate of O( 1
√

N
) and hence, for a fixed k,

it is asymptotically optimal.

Lemma 8. The maximum distortion of the uniform quantizer is bounded as [158]

max
p

Duniform(p) ≤
1

4k2 + 1.75
k4

N2 +
2

k
√

2k − 1

1
√

N
. (7.9)

Since, except in some special situations, it is almost impossible to analytically solve

for the minimax quantizer, we adapt numerical approximate solution. To do so, we first

quantize the possible values of p to F = {p1, . . . , pJ}, such that maxi |pi − pi+1| ≤ δ. Note

that since
∣∣∣∣∂D(p,p̂)

∂p

∣∣∣∣ ≤ 2(N + 1),

max
p

D(p, p̂) ≤ max
p∈F

D(p, p̂) + 2(N + 1)δ (7.10)

Hence, we can choose F such that the solution to the quantized minimax problem lies

within given bound, ε, of the optimum quantizer, by setting δ = ε/2(N + 1).

We compared the performance of uniform quantizer with the (near) optimum minimax

quantizer for k = 8 and different values of N in Fig. 7.7. Also, for a given uniform quan-

tization regions, we optimized the reconstruction points, p̂i, to minimize the maximum

distortion. As seen from figures, the performance of the uniform quantizer with optimized

p̂i’s is close to the optimum minimax quantizer, mainly due to the fact that the quantization
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Figure 7.7. Maximum distortion of uniform and minimax quantizers with k = 8 levels versus N

regions (i.e., the mapping π(.)) of the optimum minimax quantizer are close to the uniform

one.

7.4 Conclusion

In this chapter, we studied the rate-distortion theory in the context of molecular sensing and

obtained the optimal quantizers for the receiver with ligand receptors. We identified two

sources of distortion, namely the random ligand reception and the receiver output quanti-

zation. We proposed an optimal random quantization technique that minimizes the overall

distortion through optimal mapping of the binomial output and finding the best correspond-

ing reconstruction levels. We showed that the first source of distortion decreases inversely

with the number of receptors while the second decreases as inverse squared of the number

of quantization levels. As such, increasing the number of quantization levels (i.e., increas-

ing the receiver output rate) after a certain point has negligible effect on improving the

overall distortion where the random observation of the input becomes the dominant source

of the distortion. We also compared the performance of the optimal quantizer with the theo-

retical limit given by the distortion-rate curve proposed by Shannon. We observed that it is

possible to approach the distortion-rate curve in low rates by using large number of recep-

tors but the curves always finally diverge as the optimal quantizer’s distortion approaches its

asymptotic value which is independent of the rate. We also studied the universal minimax
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quantizer when the distribution of molecules are not known at the receptors. We derived

lower and upper bounds on the distortion of the optimal minimax quantizer, and showed

that as the number of receptors increases, the uniform quantizer approaches the optimum

minimax quantizer.
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CHAPTER 8

MICRO-RNA PROFILE DETECTION VIA FACTOR GRAPHS

Sensor cell arrays have long been a practical solution for detecting environment chemicals

such as DNA molecules. In sensor cell arrays, redundancy in molecular sensing is achieved

by using multiple types of sensors to measure a molecular signal. Micro-RNA (miRNA)

molecules are small non-coding RNA molecules that have been shown to play a major role

in the inter-cell communications inside the human body [6].

In this chapter, we study the problem of detecting irregular patterns of miRNA which

are deemed to be related to various diseases such as cancer and heart failure [7]. In order to

detect the miRNAs in the environment, we use a sensor cell array. Each sensor consists of

one or multiple mRNA transcripts that can detect a subset of the environmental miRNAs.

Interference is a major issue in miRNA sensing as multiple miRNAs can act on a single

sensor and also, a single miRNA can act on multiple sensors. Here, we propose a frame-

work to accommodate the pattern recognition problem without estimating the individual

miRNA concentrations [133].

8.1 The case for Micro-RNA

Recently, RNA molecules have been employed as the key element in a variety of biosen-

sors [12]. This is justified by RNA natural versatility, predictable base-pairing and its

ability to interact with a variety of molecules such as nucleic acids and proteins. Moreover,

RNA can be used in actuators to link biosensors to transcriptional outputs for diagnostic

applications [160]. RNA parts are also highly composable and can be used as building

blocks of more complicated biosensor structures. Finally, the rules for RNA folding are

similar across different organisms which increases their portability from one organism to

another [160].

On the other hand, miRNAs are a class of small non-coding RNA molecules that have

102



been recently identified as having various crucial regulatory functionalities in human body

such as cell growth and development, and are associated with a wide variety of human

diseases [7, 9, 161, 162]. miRNAs influence cell gene expression by silencing the protein

translation of messenger-RNAs (mRNAs) inside the cell. There is a class of extracellular

miRNAs, exRNA, that is observed to play a key role in cell-cell communication [6]. Cells

communicate with neighboring cells to influence their behavior by changing the local en-

vironment [8]. miRNAs are packaged in microparticles (e.g., exosomes and microvesicles)

alongside other molecules and change the gene expression of the receiver cells. Due to their

remarkable stability and relative ease of detection, using circulating miRNAs in biological

fluids as biomarkers are advantageous compared with current diagnostic methods [7].

There has been growing evidence that cancerous cells communicate to the healthy ones

to spread the mutagenic information [163]. Irregular expression (i.e., higher or lower than

normal levels) of several miRNAs have been linked to a number of diseases such as cancer

and heart dysfunctionality [9, 164, 165]. Hence, one of the most promising methods of de-

tecting cancer at the earliest stage could be to detect irregular patterns of multiple miRNAs

which have been found to be related to certain types of cancer [9].

Recently, synthetic biologists designed a logic circuits that can detect a specific indica-

tor pattern over a group of miRNAs which is associated with a certain type of cancer [9].

The sensing unit is coupled with an actuator that produces apoptosis-inducing protein when

the cancerous cells are detected. In this thesis, we focus on a modular and generalized form

of such sensor/acuator which would be promising for future non-invasive cancer detection

that act with high selectivity and specificity.

Instead of aiming to measure all the gene expression levels (i.e., mRNA concentrations)

as it is done in regular microarrays, we focus on sensing for the detection of specific indi-

cator patterns in the miRNAs that are involved in certain types of cancer. In the following,

we obtain a probabilistic model for the miRNA silencing and model the pattern detection
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problem over a Factor Graph. We solve the inference problem directly without estimat-

ing the individual miRNA concentrations using Belief Propagation (BP). BP is an iterative

message passing algorithm that has been shown to perform well in various contexts such

as error control coding [166], computer vision [167], and recommender systems [168].

8.2 A Probabilistic Model for miRNA Silencing

To develop our framework, we derive a probabilistic model for a single miRNA silencing

action on a single mRNA which will be extended later on for the sensor-cell array. A math-

ematical model is developed and experimentally verified in [169] to elucidate the average

behavior of miRNA silencing system. We build upon it to capture the stochastic nature of

this regularity system. The model in [169] explains the steady-state behavior of the expres-

sion level Gp of the output target gene (e.g., GFP) as a function of the input mature miRNA

in the cell. With no miRNA present, the transcription/translation system can be described

as 
dm(t)

dt = ktrs − kdegm(t)
dGp(t)

dt = ktlnm(t) − kpdegGp(t)
(8.1)

where coefficients ktrs and kdeg are the the transcription and degradation rates of the mRNA

transcript, respectively, and m(t) is the mRNA concentration. Moreover, coefficients ktln

and kpdeg are the translation and degradation rates of the target gene protein, respectively.

One can derive the steady-state quantities as

mm =
ktrs

kdeg
, Gp =

ktln

kpdeg
m, (8.2)

where mm is the maximum mRNA level observed at the steady state with no miRNA-

mediated degradation. Since Gp is linearly proportional to m, which has also been exper-

imentally validated in [169], we work with m as the system output (and omit Gp in the

discussion). In the presence of miRNA silencing, (8.1) is modified as

dm(t)
dt

= ktrs − kdegm(t) − kcatµ
m(t)

m(t) + K
, (8.3)
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where µ is the molar concentration of miRNA in the micro-environment of the transcripts,

kcat is the catalytic constant for miRNA degradation of the target gene transcript and K

is the affinity constant (where usually K >> m + µ) [169]. Approximating m + K by K

in (8.3), the miRNA presence increases the mRNA degrading rate by kcat
µm
K , and hence

decreasing the ”effective” number of mRNA at the steady state. The reason for the mention

of effective number is that miRNA regulates the protein translation by affecting the mRNA

stability and/or its efficiency in protein translation. In this model, both of these possible

effects are lumped into one term.

To reflect the stochasticity in miRNA pairing to the target mRNA, we treat the input

miRNA as ligands binding with probability µ

K to the mRNA (as in target receptors) where

each binding increases the transcript degradation by kcat. Throughout the discussion, we

assume µ to be in the low-concentration regime and hence, ignore the second-order (and

higher) terms with respect to µ

K . Assuming it is Binomially distributed, the bindings at the

steady state would average at m µ

K , as (8.3) shows, with variance m µ

K (1 − µ

K ). Ignoring the

second-order term in the variance and approximating the binomial random variable (rv)

with a Gaussian rv (assuming m being large enough), the miRNA degradation effect kµ

would be equal to (with the abuse of the notation):

kµ = kcat

(
µm
K

+ ε(0,
µm
K

)
)

(8.4)

where ε(a, b) is a Normally-distributed rv with expected value of a and variance b. Con-

sidering the effect of kµ as an additional term in (8.1) would yield the level of transcripts at

the steady state m∗ as:

m∗ =
ktrs − kcatε(0,

µm∗

K )

kdeg + kcat
µ

K

(8.5)

Assuming the worst case noise behavior, the normalized level of transcripts at the steady

state would be
m∗

mm
=

1 − Aε(0, µ

Kmm
)

1 + A
Kµ

, (8.6)

where A = kcat
kdeg

is the miRNA efficacy in degrading mRNA. As explained earlier, in the
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low-concentration regime, we can make a linear approximation by ignoring the second and

higher-order terms of µ

K in the taylor series of (8.6). Considering Y = 1− m∗
mm

as the biosensor

final output, we obtain:

Y =
A
K
µ + Aε(0,

µ

Kmm
) for all µ such that Y ∈ [0 1]. (8.7)

In the next section, we extend this model to the silencing behavior of a group of miRNA

and discuss the pattern detection problem.

8.3 Detection of Patterns in a Group of miRNAs

There has been growing evidence that cancerous cells communicate to the healthy ones

to spread their mutagenic information [170]. Gene regulating miRNAs sent via micro-

vesicles or ectosomes has been observed to play a key role in this inter-cell communication

process [8]. Hence, one of the most promising methods of detecting cancer at the earliest

stage could be to detect irregular patterns of multiple miRNAs which have been found to

be related to certain types of cancer [9, 171]. This would give the opportunity to detect or

potentially react when the destructive mutants have yet to spread throughout the tissue.

The irregular miRNA patterns can be in the form of concurrent constraints on the in-

dividual miRNAs (e.g., concentrations of miRNA1 as ”high” and miRNA2 as ”low” ) or

on their collective concentration (e.g., µ1 + µ2 being ”high”) [9]. Instead of using sin-

gle biomarkers, authors [9] made a circuitry by combining various biomarkers that could

uniquely identify the cell of interest out of a limited number of candidates. This tedious

task is not scalable and also may not be robust enough when exposed to the interference

and noise in an actual setting where the sensor is being employed.

A schematic of the sensing mechanism, with some intermediate steps omitted, is de-

picted in Fig. 8.1. Loosely speaking, the miRNAs (from the cancerous cell) penetrate and

interact with the synthetic cell array. The synthetic cell array consists of N biosensors

each containing a population of synthesized cells (e.g., bacteria) containing one or several

mRNA sensor circuitry. Examples of such a biosensor has been implemented in [9, 169].
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Figure 8.1. Illustration of miRNA silencing a biosensor ( i.e., mRNA)

The silencing effect of miRNAs on their corresponding mRNA can be measured from the

translated protein of each biosensor. It can be either directly measured (e.g., Green Fluo-

rescent Protein output) or be connected to actuator circuitry in order to produce the appro-

priate response (e.g., apoptosis inducing proteins to kill tumor) [9, 169]. We assume there

is set of M different potential miRNAs in the sensor micro-environment with independent

prior probability distributions fµi(µi) i ∈ 1, . . . ,M. We are interested in detecting particular

(cancer indicator) patterns over given subsets of the miRNAs using the cell array output.

Due to partial and imperfect pairing between a miRNA, with typical length of 20 nt

(nucleotide), and a mRNA, with typical length of 200 nt, there could be multiple miRNAs

in the sensor micro-environment silencing the same mRNA with different degrees of affinity

and efficacy [7]. On the other hand, each miRNA can potentially silence multiple mRNA

biosensors. We capture the pairing affinity, i.e., the average pairing likelihood between

miRNAi and mRNA j transcript by a matrix KM×N where Ki, j is inversely proportional to

the pairing affinity between miRNAi and mRNA j. Moreover, the efficacy of miRNAi in

silencing mRNA j is captured by AM×N where Ai, j is the ratio of mRNA j’s degradation rate

due to the silencing effect of miRNAi, and the natural degradation rate of mRNA j.

Our goal is to detect the patterns of interest in the environmental miRNAs by observing
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their silencing behavior on the cell array biosensors with minimum error or distortion. The

concentration-based probabilistic nature of miRNA silencing, interference-prone detection

of the miRNA in the micro-environment of sensor cells together with nonlinearity of the

cell output are among the challenges in the above problem. This calls for introducing both

diversity and redundancy to the detection via multiple types of biosensors.

Here, we use the model in (8.7) and assume miRNAs influence their target mRNA

transcripts independently and additively [9]. Hence, the output of the jth biosensor is given

by

Y j =

M∑
i=1

Ai, j

 µi

Ki, j
+ ε

0, µi

Ki, jm
j
m

 (8.8)

Assuming M is large enough, we approximate the sum of conditionally Gaussian noises

with N(0, σ2
j) where σ2

j =
∑M

i=1
A2

i, jµ̄i

Ki, jm
j
m

. Here, µ̄i is the expected value of fµi(µi). Hence, we

will have

Y = Θµ + e, (8.9)

where Y is the N × 1 biosensor output vector and Θ is a N × M matrix where Θi, j =
Ai, j

Ki, j

models the silencing effect of miRNA j on mRNAi. Moreover, µ is the M × 1 concentration

vector of all the potential miRNA in the sensors’ micro-environment, and e is a signal-

dependent N × 1 noise vector.

In the next section, we introduce a general framework to solve the above detection

problem.

8.4 Pattern Inference via Belief Propagation on Factor Graphs

In this section, we propose a graphical model framework to solve the miRNA pattern de-

tection problem introduced in the previous section. As explained earlier, the input set µ

consists of the miRNAs in the patterns of interest and also the interfering ones. Note that

this set is not necessarily sparse and the patterns of interest may impose both ”high” or

”low” constraints on each individual input. Here, we solve the pattern detection problem

directly without estimating the individual miRNA concentrations using Belief Propagation
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Figure 8.2. Decoding miRNA patterns on a factor graph

(BP) on a Factor Graph. Since, the exact values of the input miRNAs are not needed, fewer

observation are required to achieve the same level of pattern-detection accuracy relative to

the method that finds the concentrations first and then aim at detecting the patterns. Further-

more, the BP method provides a generic setup that would work with the linear or nonlinear

miRNA silencing model. Note that though we solve the detection problem using the model

in (8.9), the factor graph model can be readily extended for the nonlinear model in (8.6) or

the one introduced in [9].

The factor graph, as depicted in Fig. 8.2, consists of edges that connect a variable

node (shown in black) to a constraint node (white). Each variable node corresponds to

the random variable that it represents. Every constraint node represents the dependencies

enforced on its neighbors (i.e., the variable nodes it is connected to). Denote the ith pattern

of interest on miRNAs by Ri which is over a known subset of the input miRNAs. BP

is an iterative message passing algorithm that marginalizes the joint posterior distribution

P(R|Y), which has exponential complexity in terms of size of R, i.e., the number of patterns,

into posterior distributions for each pattern, i.e., P(Ri|Y). This will reduce the complexity

to be linear versus the size of R. There are two types of messages in BP. A message

from a variable node to its neighbor constraint node represents its marginal distribution

estimate at each iteration. The constraint node combines all the incoming messages from its
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variable node neighbors, except for one of the variable nodes in its neighborhood, imposes

its constraint and sends it to the variable node which in return updates its estimate. Note

that convergence of BP requires a sparse factor graph which would be met for the sparse A.

In Fig. 8.2, we have five types of variable nodes: pattern indicators I, miRNA state

variables Q, miRNA concentration nodes X (continuous variable Xi for ith miRNA), mea-

surements Y (variable Y j for biosensor output j), and the noise terms n. Binary ran-

dom variables Ii, i ∈ {1, . . . , , L} are indicator function for the pattern. In other words,

Prob{Ii = 1} = Prob{Ri present}. Here, L is the total number of patterns of interest (out of

2M possible patterns). Hence, each Ii is a function Gi(·) of the state of the miRNAs (i.e.,

those Q j) that make up the pattern Ri. The binary random variable Qi in Fig. 8.2 determines

the state of the ith miRNA and is initialized with the Bernoulli prior probability ηi.

We use a mixture model consisting of distributions with different means (and possibly

variances) to model the concentration of the input miRNAs X. Depending on the state of

each miRNA, i.e., Qi, one of the distributions is chosen to model Xi. In the special binary

case, there will be two distributions corresponding to the ”high” and ”low” state of each

input miRNA. We use a Gaussian mixture taking N(µl, σ2
l ) for Qi = 0 and N(µh, σ2

h) for

Qi = 1 where µl < µh and σl < σh. The mixture parameters are chosen such that the prob-

ability of Xi being negative, which is meaningless for an input concentration, approaches

zero. We also assume the noise variables to be independent of the signal and have a con-

stant variance σ2
0. The setup can be extended to accommodate the signal-dependent noise

as well. As we will see, these assumptions will allow us to construct short messages in BP

by only sending the model parameters.

We also have five types of constraint nodes: Bernoulli priors π on I which depend on

the natural prevalence of each pattern, g which represents the constraint between I and

the subset of Q that makes up the pattern, and Bernoulli priors η on Q which depends

on the natural occurrence of each miRNA. Moreover, ν imposes the conditional mixture

model constraint between X and Q, and F imposes the measurement constraints (linear or
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nonlinear) between Y and a subset of relevant X in that measurement.

Here, we explain the non-trivial BP messages in Fig. 8.2 that would solve the Bayesian

inference problem described. Note that due to the Gaussian mixture model, all the messages

are short and can be sent parametrically. In lack of such assumption, the distributions need

to be sampled and sent. At the beginning, the variables Qi and I j are initialized with their

corresponding priors and BP starts from left side of the factor graph. The message passing

continues until the change in distributions of Ii is smaller than a fixed threshold. In order to

elucidate the mechanism, we focus on nodes X1 and X2 and assume the pattern of interest

R1 is observed when both Q1 and Q2 are on the “1” state, i.e., G1(Q1,Q2) = Q1 ∧ Q2. In

such a case, the g1 constraint can be written as

g1(I1,Q1,Q2) =


1 for G1(Q1,Q2) = I1 = 1 or G1(Q1,Q2) = I1 = 0,

0 otherwise
(8.10)

The message from nodes Q1 and Q2 to g1 represent their corresponding binary distri-

bution. Hence, the message λg1→I1 from g1 to I1 would be
∑

Q1,Q2
g1(I1,Q1,Q2)P(Q1)P(Q2),

which indicates the probability distribution of I1 from the perspective of g1. For G1(Q1,Q2) =

Q1 ∧ Q2, it can be written as

λg1→I1(I1) = I1P(Q1 = 1)P(Q2 = 1) + (1 − I1) (1 − P(Q1 = 1)P(Q2 = 1)) , (8.11)

which can be simply interpreted as P(I1 = 1) ∝ P(Q1 = 1)P(Q2 = 1) from the perspective

of g1. Based on this incoming message and its prior π1, node I1 updates its posterior dis-

tribution. On the other hand, the message from node I1 to g1 would only contain the prior

information π1 and hence, the message λg1→Q2 from g1 to Q2 would be:
λg1→Q2(Q2 = 0) = π1(0)

λg1→Q2(Q2 = 1) = π1(1)P(Q1 = 1) + π1(0)P(Q1 = 0)
. (8.12)

The first equation in (8.12), can be explained by the fact that for Q2 = 0, no matter the

value of Q1, the constraint in (8.10) can be only satisfied by having I1 = 0. On the other

hand, for Q2 = 1, the constraint can be met by either having I1 = Q1 = 1 or I1 = Q1 = 0.
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The message from node Q1 to ν1 determines the probability by which each of the mixture

models governs the state of X1. The message from X1 to F1 sends the mixture model

parameters alongside with probability of each. For the case of linear measurements, the

constraint message can be formed parametrically as well. For example, consider Y1 =

X1 + X2 + n1. Hence, the constraint message sent to X1 would be Y1 − X2 − n1 where Y1

is a constant, X2 is conditionally Gaussian, and n1 is Gaussian noise. Hence, the return

message is conditionally Gaussian as well; i.e., N(Y1 − µl, σ
2
l + σ2

0) with P(Q2 = 0), and

N(Y1 − µh, σ
2
h + σ2

0) with P(Q2 = 1).

8.4.1 Simulation Results

Here, we study the performance of the algorithm over the data derived by a model, as there

is no public real-world data readily available at this moment. As mentioned earlier, the

sampling matrix Θ in (8.9) is row/column-wise sparse. Hence, we assume each column θi

that corresponds to the universal silencing effect of miRNAi consists of k randomly chosen

nonzero elements from a given distribution (here N(0, σk)). The positive and negative

elements of Θ correspond, respectively, to promotory or inhibitory effect of a miRNA on

a particular biosensor’s output. In other words, the usual inhibitory effect of a miRNA

silencing can be used to promote the production of the output protein through a ”double

inversion” strategy, whereby the miRNA targets a repressor of the protein. Thus in the

absence of the miRNA, the output protein is repressed while increasing the miRNA level

depletes the repressor, resulting in increased output protein levels [9, 172].

Note that the location of nonzero elements in Theta, chosen randomly here, would have

a major effect on the performance of the algorithm. In a more practical setting, following

the modularity guidelines in synthetic biology [13], one should choose the optimal sensors

for the input miRNAs from a pool of pre-synthesized biosensors such that their concurrent

false positive would rarely, if ever, concur.

In order to obtain the performance of BP, we use Monte Carlo simulation by randomly

selecting values for the entries of Θ, the concentration µ for miRNAs and also on the
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Figure 8.3. BP accuracy versus the number of iterations for different number of biosensors

patterns of interest. We pick N(100, 20) and N(50, 10) for the high and low distribution,

respectively, in the mixture model for miRNA concentration. Moreover, we fix k = 3. To

measure the effect of the output noise, we introduce the ratio r =
σ2

k
σ2

0
which captures the

relative variances of Θ and e entries in (8.9). Moreover, we fix the number s of miRNAs in

each pattern of interest.

We define accuracy as the percentage of patterns, regular or irregular, that are correctly

classified. In Fig. (8.3), we have shown the effect of BP iterations on the detection accu-

racy for M = 80, r = 1 and different values of N. Moreover, the number of patterns of

interest L = 10 and number of miRNAs in each patters is s = 3. Note that iteration zero

corresponds to the base measure, i.e., initialization of BP with the priors. We observe that

BP converges very fast as the factor graph is sparse and lacks short cycles. Moreover, using

more biosensors results in higher accuracy but with diminishing gains. Further, since the

irregular patterns are quite unlikely, the base prior classifier yields high accuracy.

We define precision as the percentage of detected irregular patterns that are correctly

classified. In Fig. (8.4), we have shown the precision versus s for N = 80, r = 1, L = 10,

and different values of M. As we observe from the plot, the BP precision decreases linearly

with respect to increasing s for which the irregular patterns become more improbable.
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Figure 8.4. Precision versus the number of miRNAs in each pattern for different number of input
miRNAs

Moreover, the relative precision advantage of using more biosensors than input miRNAs is

more emphasized for larger s. Further, the prior base measure (which can be considered as

having N = 0) yields comparable precision for small s but falls exponentially afterwards.

We define recall as the percentage of irregular patterns that are detected by the algo-

rithm. In Fig. (8.5), we have shown the recall versus s for M = 80, N = 80, and L = 10,

and different values of the noise measure r. As we can see in the plot, the BP recall falls

linearly with s whereas the base performance approaches zero exponentially. Moreover,

the advantage of using higher values of SNR is diminishing and stops at the point where

the BP performance is solely constrained by the interference between the input miRNA. In

Fig. (8.6), we have fixed r = 1 and shown the recall for different number of input miRNAs

M. We observe that unlike the case for accuracy, the advantage of using more biosensors

than input miRNAs persists for the recall performance.

In Fig. (8.7), we have shown the effect of number of patterns L on the recall for M = 80,

s = 3, r = 1, and different values of N. As we can see in the plot, the recall is almost

constant for simultaneous detection of different number of irregular patterns which shows

the scalability of using BP over factor graphs.
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Figure 8.6. Recall versus the number of miRNAs in each pattern for different values of input miRNA
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8.5 Discussion

The general framework described above can be extended in various directions. First is the

measurement matrix Θ which was chosen randomly based on some rules. Following the

modularity guidelines in synthetic biology [13], one should use a pool of pre-synthesized

biosensors in which each circuit may comprise one or more transcripts that are logically

combined. Using higher number of transcripts in each sensor would make it more spe-

cific and less prone to interference but would be less reusable. Given a library set of the

biomarkers, one would be interested in analytically finding the ”optimal” subset such that

their failure would rarely, if ever, concur. Another problem of interest in this context is to

obtain the minimum number of optimally-chosen biomarkers to lower the detection error

below a preset threshold.

One can also impose the signal-dependent noise by placing new constraint nodes be-

tween ni and the set of X’s that account for the observation Yi. Further, the effect of using

different mixture models such as the exponential mixture, which enforces the non-negative

nature of the input concentrations, can be investigated. Note that in such cases, the mes-

sages cannot be formed parametrically and would contain the sampled distributions of the

continuous variables, e.g., Gibbs sampling method. Hence, messages would be no longer

short and the quantization noise may affect the accuracy and convergence of BP. Note that

due to both the measurements and pattern constraints, there might be loops in the fac-

tor graph which would increase by adding the signal-dependence constraints to the noise

nodes. Hence, loopy BP techniques should be investigated [173]. Moreover, the signal-

dependence of e has a broader impact as the output samples are not necessarily indepen-

dent. The effect of such a noise on the robustness of this algorithm should be studied as

well.

The sensing model described above can be generalized to work with a nonlinear model

for the miRNA silencing action. We derived a nonlinear model in (8.6) and another one has

been introduced in [9] for the miRNA silencing action. In the latter, the miRNA effect has
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been modeled as

Y =


1 − e−

∑
i αiµi(1 −

∑
j e−β jµ j) for

∑
j e−β jµ j < 1,

1 otherwise
(8.13)

where αi and β j are constants corresponding to the silencing and anti-silencing miRNAs.

As such, the parameter passing would not be possible even for well-behaving mixture mod-

els. Further, nonlinear observation constraints would dramatically increase the message

formation complexity.

Finally, we need to measure the performance of the algorithm on real-world data. There

have been numerous efforts in gathering a comprehensive miRNA database that could be

aggregated to evaluate our algorithm [174–180]. For example, microRNA.org provides

miRNA’s expression levels at various tissues and miRTarBase is a comprehensive atlas of

predicted and validated miRNA-target interactions for different species. Also miR2Disease

and miRCancer provide comprehensive collections of miRNA expression profiles in vari-

ous human cancers and diseases.

8.6 Conclusion

In this chapter, we studied sensor cell arrays in which sensing diversity is introduced by

measuring the molecular inputs by using multiple types of sensors. In particular, we studied

the problem of detecting irregular patterns over environmental miRNAs via a RNA sensor

array. Such irregular patterns have been shown to be indicator of various diseases such as

cancer. We formulated the noise and interference in such a sensing system and solved the

detection problem via a factor graph. Finally, we used BP to iteratively infer the detected

patterns. We showed that the performance of BP depends on parameters such as the number

of biosensors and number of miRNAs in each pattern. Moreover, we showed how using BP

over the sensor-cell data can improve the recall performance significantly.
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CHAPTER 9

CONCLUSION OF THE THESIS

In this dissertation, we investigated molecular communication and sensing via primitive

living agents. We analyzed fundamental problems such as capacity, modulation and rate-

distortion and proposed algorithms for practical design of communication and sensing sys-

tems. Reliability is one of the most important issues in such design. We introduced various

methods such as relaying, error-control coding and sensing redundancy to improve the re-

liability in sensing and communication applications.

In Chapter 1, we introduced the molecular communication and sensing as an alternative

for the conventional electromagnetic communication for biological environments. We mo-

tivated the research via the related work and presented the important fundamental problems

that need to be solved.

In Chapter 2, we presented two models accounting for the uncertainty in estimation of

concentration of molecules by the ligand receptors. Using these models, we obtained the

rate limit due to the ligand reception. The input capacity-achieving distribution was shown

to be highly polarized, i.e., in order to achieve higher rates, the transmitter should mostly

produce concentrations which are either low or high. This observation motivates the use of

binary symbols in molecular communication.

In Chapter 3, we used the discrete noiseless channel model to obtain the capacity of

the diffusion channel for a binary input which is motivated by the results of the previous

chapter. We modeled the channel memory with a two-state Markov chain by taking into

account the effect of the channel state on the next received bit. We showed that beyond

a threshold, increasing the power level is detrimental to the channel memory and has a

negative effect on the capacity.

In Chapter 4, we showed how reliable communication can be formed out of collective
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behavior of unreliable agents and studied the molecular communication between two pop-

ulations of bacteria via a diffusion channel. Although, it is aimed at bacteria, the principles

developed here can be generalized to analyze the communication of any population of bio

entities through molecular signaling in a diffusion channel. The effects of uncertainty in

production of molecules, channel parameters and reception process on the overall noise

of the communication were studied. We studied the theoretical limits on the information

transfer rate in terms of number of bacteria per node, noise level and maximum molecule

production levels. Finally, we considered M-ary schemes and analyzed the achievable rates

and their error probabilities. We observed that for a fixed number of bacteria per node, re-

liable communication is not possible for large M, even with arbitrarily increasing the range

of the molecular input.

In Chapter 5, we proposed relaying as a means of enhancing reliability in molecular

communication. We investigated both the amplify-and-forward and decode-and-forward

scenarios. In the first case, we showed that depending on whether the relay uses the same

or different type of molecules as the transmitter, relaying would result in expanding the

range of the concentration of molecules or increasing the effective number of bacteria in the

nodes, respectively. For decode and forward relaying, the relay node decodes the incoming

symbol from the transmitter and forwards it to the destination using the same or different

type of molecules as the transmitter. In the hetero-type case, we showed how the optimal

combining of the outputs would result in improving the reliability and compared the results

with the same-type relaying scenario.

In Chapter 6, we studied another method to improve the reliability in MC by introduc-

ing error-detection coding schemes that achieve arbitrarily small probability of detection

error. We showed the trade-off between the code rate and probability of error for such cod-

ing schemes. We obtained the theoretical limits on the rate of such codes and proposed

algorithms to find the optimal codewords. We then studied constant-weight codewords,

a sub-family of above codes, which meet the molecular communication specific needs in
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terms of both the perfect error detection and low complexity.

In Chapter 7, we studied the distortion in a molecular sensor with ligand receptors. We

obtained the optimal quantizers and identified two sources of distortion: the random lig-

and reception and the receiver output quantization. We showed that increasing the number

of quantization levels after a certain point has negligible effect on improving the overall

distortion where the random observation of the input becomes the dominant source of the

distortion. We compared the performance of the optimal random quantizer with a uniform

quantizer and the theoretical limit given by the distortion-rate curve. We observed that it is

possible to approach the distortion-rate curve in low rates by using large number of recep-

tors but the curves always finally diverge as the optimal quantizer’s distortion approaches its

asymptotic value which is independent of the rate. We also studied the universal minimax

quantizer when the distribution of molecules are not known at the receptors and obtained

lower and upper bounds on the distortion of the optimal minimax quantizer

In Chapter 8, we studied RNA sensor arrays to detect irregular patterns over envi-

ronmental miRNA. Such irregular patterns have been shown to be biomarker of various

diseases such as cancer. We presented a probabilistic model for the miRNA silencing to

account for the noise and interference. We solved the detection problem via a factor graph

and we used BP to iteratively infer the detected patterns.
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