
A FRAMEWORK FOR MODELING AND SIMULATION
OF CONTROL, NAVIGATION, AND SURVEILLANCE

FOR UNMANNED AIRCRAFT SEPARATION
ASSURANCE

A Thesis
Presented to

The Academic Faculty

by

Youngjun Choi

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
August 2016

Copyright © 2016 by Youngjun Choi

A FRAMEWORK FOR MODELING AND SIMULATION
OF CONTROL, NAVIGATION, AND SURVEILLANCE

FOR UNMANNED AIRCRAFT SEPARATION
ASSURANCE

Approved by:

Professor Dimitri N. Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Hernando Jimenez
School of Aerospace Engineering
Georgia Institute of Technology

Professor Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Professor John Valasek
Department of Aerospace Engineering
Texas A & M University

Professor Eric Feron
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 8 July 2016

ACKNOWLEDGEMENTS

First, I would like to express my deepest appreciation to my committee members.

I would first like to recognize Prof. Dimitri Mavris, the director of the Aerospace

Systems Design Laboratory, for his valuable advice and guidance of my research and

career path. During my long journey of Ph.D. thesis writing, he has kept motivating

me and continuously forced me to reach my final research goal. He also helped me

discover my special hidden talent. I have been enjoying showing my hidden talent

at every Christmas event. I appreciate Prof. Daniel Schrages review and critique.

I am extremely grateful to Prof. Eric Feron for sharing current research trends and

discussing the extension of my research and technical critics. I also thank Prof. John

Valasek from Texas A& M for the technical discussion about different aspects of

my research work and sharing his empirical research experiences. I would like to

express my sincere gratitude to Dr. Hernando Jimenez for the immeasurable amount

of support and guidance. He has spent a considerable amount of time to discuss my

immature ideas to make them more constructive and concrete, and supported all of

my research works. His deep insights and keen arguments helped me through all the

stages of my thesis.

A special thank goes to Dr. JongKi Moon from Gulfstream who spent his time to

discuss my technical problems and his work experience in person and on the phone.

I very much appreciate Prof. Brian German who always encouraged me and allowed

me to work in the office of the German Research Group with my colleagues who

helped accelerate my research process. I would like to recognize my colleges at the

Aerospace System Design Laboratory and the department of the aerospace engineer-

ing who have always discussed my research with me in the hallway, Starbucks and

iii

my thesis presentations. I would like to name a few members. Nicky Acrockiam has

always supported and motivated me, and proofread my documents, David Pate who

is my thesis partner has taught Pate-factor that enhanced the quality of my disser-

tation, Micheal Patterson (NASA, Langley) discussed my research works in CRC,

Marc Canellas has always listened to me about my new algorithms and gave great

feedback and comments, and Xiaofan Fei has asked me many creative questions and

critics. Andrea Garbo and Giada Abate have always supported and discussed Linux

cluster issues and taught me naughty Italian expressions and words. Emre Yilmaz

gave some great feedback in my pre-defense. John Dykes has told me diverse new

control theories and gave me many new ideas. Erika Brimhall has proofread my thesis

document when she was pregnant. Eugina Mendez Ramos has been supportive and

fed me to give me energy to work. Ryan coder has always encouraged and supported

me all throughout my Ph.D. process. KyungHak Choo has provided me good advice

related to the qualifying test and spent fun evenings with me. All of you were always

there for me and I will always appreciate your encouragement and the good we shared

together.

I want to thank three professors: Professor Patrick Keogh (University of Bath

in U.K.) has helped and supported my academic career. Professor Hyun-Ung Oh

(Chosun University) has also helped and taught me how to survive in a professional

world. Professor Minsig Kang (Gachon University) has provided me numerous advice

and taught me fundamental control theories. I especially appreciate my parents,

Chulho Choi and Hyunju Kim for their unconditional love and encouragement though

my entire life. They have always supported my decisions and provided valuable

advices. My father always emphasizes Be healthy and be happy, which made my

Ph.D. life full of happy moments. I deeply thank to my grandfather, Jumsuk Choi

(1927 2013) who had trusted and waited for this moment.

Lastly, I would like to extend my deepest gratitude to my lovely wife, Eunyoung

iv

An, for her patience, love, constant encouragement and immense supports. She is my

best friend, my private English teacher, and the best cook. I am really excited for

our next journey with you.

Youngjun Choi

Atlanta, Georgia

July, 2016

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xvi

I INTRODUCTION . 1

1.1 Growing market and applications of UAS 1

1.2 Integration of UAS into the NAS as an emergent imperative 6

1.3 Characterization of the problem space 10

1.4 How is it done today? . 12

1.5 Identification of a critical area . 14

1.6 Objective of thesis . 16

II STATISTICAL GAIN-SCHEDULING METHODS FOR AIRCRAFT
FLIGHT SIMULATION . 17

2.1 Flight modeling and simulation environment 18

2.1.1 Equation of UAV motion . 20

2.2 Gain-Scheduling Method . 22

2.2.1 Proposed approach - Gain-scheduling with polynomial regression 25

2.2.2 Implementation of aircraft dynamics and controller design . . 28

2.2.3 Implementation of global polynomial interpolant 29

2.3 Results and discussion . 37

2.3.1 Computational cost . 37

2.3.2 Controller stability and performance 43

2.4 Conclusion . 49

III COLLISION AVOIDANCE ALGORITHM USING OPTIMAL CON-
TROL THEORY . 51

3.1 General optimal trajectory problem 51

vi

3.1.1 Numerical method . 59

3.2 Optimal collision avoidance trajectory strategy 66

3.2.1 Collision avoidance framework 69

3.2.2 Problem formulation of the optimal collision-free collision avoid-
ance algorithm with minimal effort 71

3.3 Hybrid collision avoidance methodology using machine learning . . . 91

3.3.1 Step 1-2: Define the problem and the input space 96

3.3.2 Step 3: Define the cost function 97

3.3.3 Step 4: Generate optimal collision avoidance alternatives . . 99

3.3.4 Step 5: Evaluate alternatives and define perdiction model . . 100

3.3.5 Step 6: Make a decision . 106

3.4 Numerical simulation . 111

3.4.1 Performance of obstacle avoidance algorithms 111

3.4.2 Learning classification algorithm for hybrid method 114

3.5 Conclusion . 120

IV COLLISION AVOIDANCE ALGORITHM IN AN URBAN ENVI-
RONMENT . 121

4.1 New path planning architecture using a learning algorithm 123

4.1.1 Two-level algorithm concept 123

4.1.2 Two-level algorithm in the guidance, navigation, and control
architecture . 124

4.1.3 Global trajectory optimization 126

4.1.4 Local trajectory optimization 133

4.2 Numerical simulation . 140

4.2.1 Simulation of unmanned aircraft dynamics, controller, and
sensor . 140

4.2.2 Comparative analysis of clustering algorithms for obstacle res-
olution . 141

4.2.3 Assessment of two-layer collision avoidance with numerical
simulation . 143

4.3 Conclusion . 152

vii

V CONSTRUCTION OF REALISTIC URBAN ENVIRONMENTS 154

5.1 Data-driven grid-based urban modeling 156

5.1.1 Collecting/Resampling/refining LiDAR data 158

5.1.2 Identification of building clusters 160

5.1.3 Identification of rotational angle and construction of a building 161

5.1.4 Grid generation . 166

5.1.5 Examples of urban construction 167

5.2 Conclusion . 170

VI SYSTEM OF SYSTEMS LEVEL INTEGRATION EXPERIMENT172

6.1 Potential experiment scenarios . 173

6.2 Characterization of an urban environment 175

6.3 System of systems level experimental design 182

6.3.1 Defining initial trajectories 186

6.3.2 Defining sensor variables . 190

6.3.3 Defining a design of experiments for guidance and navigation
parameters . 191

6.3.4 Summary of the design of experiments 192

6.4 Results of the system of systems level experiments 1 194

6.5 Results of the system of systems level experiments 2 210

6.6 Conclusion . 224

VII CONCLUSION AND FUTURE WORK 226

7.1 Summary of thesis objectives and contributions 226

7.2 Recommendations for further research 232

APPENDIX A — MULTI-CLASS CLASSIFICATION LEARNING AL-
GORITHM . 238

VITA . 273

viii

LIST OF TABLES

1 Current and Potential UAS Applications [9][4] 3

2 UAS Vehicle Classification [9] . 4

3 R2 results . 36

4 UAS Elemental maneuvers and basic mission profiles 38

5 Off-line computational time in seconds [s] for nearest neighbor, bilin-
ear interpolation, and global polynomial, with reference data sets of
varying size . 40

6 Scheduling function (online) evaluation time, mean and standard de-
viation in miliseconds [ms] for nearest neighbor, bilinear interpolation,
and global polynomial, with reference data sets of varying size 41

7 Total simulation time [s], number of scheduling function calls, and total
scheduling function time [s] for nearest neighbor, bilinear interpolation,
and global polynomial, with 100 point reference data set 41

8 Rule-based optimal collision avoidance algorithm 77

9 Optimal collision avoidance algorithm using LP -norm 79

10 Initial conditions and assumptions for case studies 80

11 Optimal collision avoidance algorithm (SCAA–1 and SCAA–2) 85

12 Optimal collision avoidance algorithm (SCAA–3) 88

13 Best collision avoidance strategy based on initial conditions 92

14 Learning algorithms for multi-class classification[98] 104

15 Results of the full-factorial design of experiments 117

16 Rate of the best method . 117

17 Computation runtime . 119

18 Description of UAV parameters . 141

19 Comparison assessment results of the clustering algorithms 143

20 Summary of numerical simulation . 148

21 Airborne LiDAR Resource . 158

22 UAV parameters of the integrated experiment 185

23 Example of infeasible DOE . 186

ix

24 Specifications of representative LiDAR sensors 190

25 Experiment design of sensor parameters 191

26 Summary of integrated experiment 193

27 Summary of surrogate models . 199

28 Parameter definition of a local sensitivity analysis 200

29 Parameters of the redesigned Experiment 210

30 Definition of risk profiles . 214

31 Parameters of Gaussian random numbers with three classes 242

32 Experiment results of the two ensemble methods : OLS and Bagging 251

x

LIST OF FIGURES

1 UAS Budget 1998 - 2013 [50] . 5

2 Forecast Result of Total UAS [9] . 5

3 UAV flight simulation environment 20

4 UAV free body diagram . 21

5 Flight envelope . 23

6 Surrogate model for the trim inputs 34

7 Optional caption for list of figures . 35

8 Predicted vs. Actual plot . 36

9 Simulation scenarios . 39

10 Multivariate gain and phase margin for three candidate scheduling
methods . 45

11 Statistic analysis for Gain margin and Phase margin 47

12 Time response . 48

13 Methodologies for solving an optimal control problem 59

14 Two-layer collision avoidance framework 68

15 Definition of shperes for a collision avoidance framework 70

16 Framework of collision avoidance . 71

17 LP -norm examples . 78

18 Rule-based optimal collision avoidance trajectory suggested 82

19 Optimal collision avoidance trajectory based on P-norm inequality con-
straint . 82

20 Optimal trajectory cost vs. Computational time 83

21 The one-dimensional inequality condition definition of the simplified
optimal collision avoidance methods (SCAA–1 and SCAA–2) 84

22 Optimal collision avoidance trajectory SCAA–1 86

23 Optimal collision avoidance trajectory SCAA–2 87

24 Optimal trajectory cost vs. Computational time 87

25 Optimal collision avoidance trajectory SCAA–3 89

xi

26 Optimal trajectory cost vs. Computational time 90

27 Overall trajectory cost of each avoidance method as weights (W1 and
W2) vary . 94

28 Framework of hybrid collision avoidance methodology using a machine
learning technique . 96

29 Notional diagram of designing an input space 98

30 Optional caption for list of figures . 101

31 Notional concept of the evaluation for the alternatives and the defini-
tion of a prediction model . 103

32 Flow diagram of the optimization of neural network and ensemble neu-
ral network structures . 108

33 Framework of hybrid optimal collision avoidance algorithm 109

34 Framework of hybrid collision avoidance methodology using machine
learning . 110

35 Optional caption for list of figures . 112

36 Optional caption for list of figures . 113

37 Optional caption for list of figures . 116

38 Optional caption for list of figures . 118

39 Optional caption for list of figures . 118

40 Concept formulation and flow of the two-layer collision avoidance al-
gorithm . 125

41 New path planning architecture using a machine learning algorithm . 126

42 Global path optimization . 132

43 Identification of a potential threat . 133

44 Notional depiction of the three obstacle avoidance trajectory event
constraints at a safety distance rs around the obstacle cluster C̃ . . . 138

45 Simulated experiment setup for comparative analysis of clustering al-
gorithms. (Aircraft not shown to scale) 142

46 Clustering results (D = 20ft, L1 = 1100ft, L2 = 1100ft) 143

47 Clustering results (D = 40ft, L1 = 1100ft, L2 = 1500ft) 144

48 Clustering results (D = 100ft, L1 = 1500ft, L2 = 1100ft) 144

49 Clustering results (D = 100ft, L1 = 1500ft, L2 = 1500ft) 144

xii

50 Numerical simulation results of obstacle avoidance algorithms in the
first scenario . 149

51 Numerical simulation results of obstacle avoidance algorithms in the
second scenario . 150

52 Numerical simulation results of obstacle avoidance algorithms in the
third scenario . 151

53 A rapid, data-driven and grid-based urban modeling method 157

54 Collection of LiDAR data . 159

55 Result of resampled point cloud in a densed urban example 160

56 Clustering result of the DBSCAN technique 161

57 Example of point cloud . 164

58 Problem of the PCA using raw LiDAR information 164

59 Modified PCA approach . 165

60 Point cloud data in principal coordinate system 166

61 Grid generation results . 166

62 Grid generation results in three dimensional space 168

63 Example of a dense urban modeling with multiple grid 169

64 Example of a dense urban modeling with single grid 169

65 Example of a sparse urban modeling with multiple grid 169

66 Example of a sparse urban modeling with single grid 170

67 Examples of realistic urban environments 171

68 Definition of urban airspace (Example : Dense San Diego) 177

69 Available airspace of eight representative cities 178

70 Analysis results of urban environment 180

71 Representative urban scenario (San Diego) - Google Earth image . . . 181

72 Block diagram of UAV flight simulation 184

73 Initial/terminal conditions . 187

74 Initial and terminal conditions . 188

75 Example of computing the obstacle ratio along an initial trajectory . 189

76 Distribution of the obstacle ratio . 189

xiii

77 Selected ten initial trajectories . 190

78 Building map in two-dimensional space 192

79 Distribution of the distance between buildings 193

80 Results of integrated experiment . 195

81 Non-collision distribution of design variables 197

82 Heat map of safe distance and minimum separation distance 198

83 Results of collision avoidance . 198

84 Issues of surrogate models . 199

85 Local sensitivity analysis . 203

86 Trajectory variation according to two different levels of energy con-
sumption . 203

87 Risk definition for a partition analysis 204

88 Partition analysis of minimum distance (Risk averse approach) 204

89 Partition analysis of minimum distance (Risk nominal approach) . . . 205

90 Partition analysis of minimum distance (Risk taken approach) 206

91 Partition analysis of energy consumption (Risk averse approach) . . . 207

92 Partition analysis of energy consumption (Risk nominal approach) . . 208

93 Partition analysis of energy consumption (Risk taken approach) . . . 209

94 Concept of the redesigned experiment 211

95 Experiment results (Fixed poor sensor and varied GNC performance) 216

96 Distribution analysis (Fixed poor sensor and varied GNC performance) 216

97 Experiment results (Fixed good sensor and varied GNC performance) 217

98 Distribution analysis (Fixed good sensor and varied GNC performance) 217

99 Experiment results (Fixed relaxed GNC and varied sensor performance)218

100 Distribution analysis (Fixed relaxed GNC and varied sensor performance)218

101 Experiment results (Fixed restrictive GNC and varied sensor perfor-
mance) . 219

102 Distribution analysis (Fixed restrictive GNC and varied sensor perfor-
mance) . 219

103 Contour surface plot . 220

xiv

104 Interaction profiles (Risk nominal) of the minimum distance 221

105 Interaction profiles (Risk nominal) of the energy consumption 221

106 Interaction profiles (Risk taker) of the minimum distance 222

107 Interaction profiles (Risk taker) of the energy consumption 222

108 Interaction profiles (Risk averse) of the minimum distance 223

109 Interaction profiles (Risk averse) of the energy consumption 223

110 Wind gust profile of Oklahoma city [31] 235

111 Block diagram of UAV flight simulation with a wind gust model . . . 236

112 Neural Network structure . 239

113 Training data . 243

114 Optional caption for list of figures . 244

115 Ensemble architecture with neural network 247

116 Training data . 251

117 Ensemble learning method using the bagging technique 252

118 Ensemble learning method using the ordinary least square 253

xv

SUMMARY

Unmanned Aircraft Systems (UAS) have gained popularity and attention due

to highly flexible mission capabilities and low operating costs compared to manned

missions among many other reasons. These advantages have led to various mission

concepts such as border control, atmospheric observation, agricultural surveys, com-

munications relay, and surveillance missions. According to the Radio Technical Com-

mission for Aeronautics (RTCA), the future UAS market is forecasted to grow rapidly

in the near future. However, in order to accommodate future diverse UAS missions

and numerous operations in the national airspace system, several key challenges must

be addressed. The major technical challenges are separation assurance, communica-

tions, human systems integration, airspace operations, and regulation/certification.

Among these challenges, separation assurance has received special attention and is

considered to be a critical challenge since it is directly associated with human risk,

highly coupled with other disciplinary domains and high degree of difficulty.

Among the Unmanned Aircraft Systems Integration problems in the National

Airspace System (UASNAS), the separation assurance challenge is highly complex

because of many interactions of the elements in different levels of abstraction and

coupling effects between different disciplinary domains. In order to explore this com-

plex separation assurance problem, an analytic model should capture diverse opera-

tional scenarios, vehicle dynamics, subsystem functions such as sensor/surveillance,

control, navigation and communications, and interactions between various levels of

abstraction and different disciplinary domains. This has major implications on the

analytic model requirements, particularly with regard to modeling scope, resolution

xvi

(or fidelity), and computational expense.

In response to the complex separation assurance problem, this thesis aims to de-

velop Unmanned Aerial Vehicle (UAV) modeling and simulation capabilities for a

non-cooperative collision avoidance problem with a ground obstacle, utilizing flight

attitude control and guidance, navigation, and control. Second objective is to quanti-

tatively characterize the performance of the non-cooperative collision avoidance as a

critical element of separation assurance with regards to system behavior across levels

of abstraction and multiple disciplines

To address the first objective, firstly, for the flight attitude control, a new gain-

scheduling approach is proposed to mitigate the computational drawback of using

conventional methods for real-time flight simulations. The main idea of this proposed

method is to create response surface models for trim-inputs and the control gain-set

during pre-processing instead of implementing local interpolation, which has been

done in conventional gain-scheduling techniques. This a-priori model creates simple

functional forms of the trim control inputs and the control gain-set so that it enables a

simpler and more computationally efficient gain-scheduling scheme over conventional

gain-scheduling methods.

Second, Model Predictive Control (MPC) structure is implemented for a path

planning against an obstacle. The MPC structure provides an optimal trajectory

based on approximated dynamics, constraints and obstacle information from a sen-

sor. Formulating a simple optimal trajectory problem in MPC structure is an enabler

for a fast or real-time trajectory optimization to mitigate computational complexity.

However, there is a tendency for the formulated trajectory problem to be oversim-

plified, which is highly likely to increase optimal trajectory cost. To overcome this

issue, this thesis proposes a hybrid optimal collision avoidance methodology using

a machine learning technique. The main idea of this proposed methodology is to

identify the best avoidance strategy among pre-identified multiple simplified collision

xvii

avoidance algorithms through a machine learning technique. During a real-time pro-

cess with this methodology, the best collision avoidance strategy is selected based on

the initial/terminal conditions and sensor information. This methodology will allow

the optimal avoidance trajectory to find lower trajectory cost as well as to improve

the required computational time.

Third, a two-layer obstacle avoidance algorithm is proposed for a multi-obstacle

problem. This two-layer structure allows an unmanned aircraft system to avoid up-

coming multiple obstacles with minimal effort. The algorithm includes a global-path

optimization that identifies possible approximated avoidance paths from a cluster-

ing technique based on obstacle information detected from an airborne sensor, and

then selects a path. A local-path trajectory optimization has the same structure of

a model predictive control structure with a multi-phase optimal trajectory resulting

from approximated dynamics, vehicle constraints, and sensor information. Unlike the

conventional on-layer optimal obstacle avoidance algorithm, this proposed two-layer

optimal obstacle avoidance algorithm can generate more energy-efficient avoidance

trajectory against multiple downstream obstacles.

Forth, a rapid, data-driven and grid-based urban operating urban modeling method-

ology is proposed for an urban model construction. For the exploration of the UAS

urban operation problem, a rapid and realistic urban modeling is a key technique. Al-

though many methodologies in a computer science domain have been introduced, they

are highly sophisticated and infeasible for the UAS problem because of computational

burdens. To resolve this issue, a novel urban modeling methodology using airborne

LiDAR (Light Detection and Range) data is proposed which includes multiple steps:

resampling and refining LiDAR raw data, identifying building components, solving

a principal component analysis, defining a grid resolution, and generating an entire

urban model. The proposed urban modeling technique as a rapid and automatic

process enables the exploration of the diverse UAS urban operation scenarios.

xviii

Lastly, an integrated experiment is introduced which includes aircraft dynamics,

an aircraft controller, an obstacle avoidance algorithm and an urban environment.

Using the developed simulation environment, we explore a canonical UAS problem

(i.e., collision avoidance problem in San Diego downtown), analyzing sensitivity and

interactions between a sensor system and a GNC system in an urban operation. The

experiment results are discussed with respect to three perspectives: risk taker, risk

averse, and risk nominal. Diverse sensitivity and interaction analyses are performed

by various statistical techniques. The results of the representative scenario constitutes

a contribution to a strategic decision making process with regards to different risk

standards through the sensitivities and interactions.

The research efforts of this thesis enable a full exploration of the UASNAS prob-

lem, specifically the obstacle avoidance problem in an urban environment. This

new modeling and simulation environment provides insights into coupling and cross-

coupling effects between systems, subsystems, or different levels of abstractions that

cannot be characterized by a conventional modeling and simulation environment.

This simulation environment and introduced analysis methods facilitate the explo-

ration of diverse scenarios and various UAS platforms that allow a strategic decision

maker to fully understand the relationships of each system/subsystem component.

The information of this research may contribute to a full integration of UAS into

NAS in the near future.

xix

CHAPTER I

INTRODUCTION

1.1 Growing market and applications of UAS

In recent years, Unmanned Aerial Vehicles (UAV)/drones have gained attentions from

commercial investors/companies because of their highly flexible mission scenarios, a

low operating cost and a low human risk level [79][78]. These attractive benefits led

Google to buy Titan Aerospace, a UAV technology company, to proliferate Internet

access around the world as well as to assist global issues, such as monitoring en-

vironmental variation and disasters [144]. Other than Google, any leading delivery

companies, such as DHL, Amazon and United Parcel Service (UPS), also have in-

vested a large amount of money to develop new types of delivery drones to reduce

delivery time and to become a pioneer of a new delivery market [44][8]. The use of

UAV operations have been expanded by being utilized not only by commercial com-

panies but also by civil governments [128]. For instance, the Raven UAV supports

the observations of suspect cars in the Los Angeles region. The ScanEagle platform

monitors illegal fishing activities in the Dry Tortugas National Park. The Global

Hawk tracks the movements of tropical storms or hurricanes along the African coast

by conducting research on strength variation of the storm and by forecasting their

future trajectories. The examples of current and growing UAV investments and us-

ages indicate that in the future, a variety of UAV missions and platforms will be

utilized for military, civil government and commercial applications. Thus, there will

be a need for the advent of new technologies and technology improvements as well as

the creation of new regulations/certification rules for UAV operations.

The growth of UAV platforms and Unmanned Aircraft System (UAS) missions

1

requires a new rationalized classification or categorization with regard to the UAV

performance, operational scenarios, and physical characteristics. The existing classi-

fication has limitations to gain a systemic understanding about UAS Integration in

the National Airspace System (UASNAS) [57] issues because the existing classifica-

tion/categorization is based on physical characteristics of manned aircraft. Therefore,

the existing methods do not adequately account for unique UAV platforms, such as

airships and High Altitude Long Endurance (HALE) platforms.

With the remarkable feature of remote/unmanned control, UAS can conduct a

broad range of missions which manned aircraft cannot fulfill due to pilot risk. No-

table examples include monitoring missions for a nuclear power plant and surveillance

missions by a high altitude airship. Despite the diverse potential uses of UAS, it can-

not be fully utilized because of the existing classification, which cannot encompass

the entire range of UAS mission scenarios.

A new classification/categorization for UAS is therefore a necessary enabler for

evaluating interoperability issues and gaining a systemic understanding of the poten-

tial impacts of UAS on the National Airspace System (NAS). However, a standard

classification/categorization for UAS does not exist due to a lack of consensus among

stakeholders [101]. Most classifications are based on UAV physical characteristics,

user classes, mission purposes and operation concepts. Thus, this thesis introduces

some key classification methods for a better understanding of UAV operation concepts

and diverse missions.

The first classification method is breaking down UAS missions according to user

class; these classes include military users, public users, commercial users and private

users [9]. The military class includes UAS utilized for military purposes such as re-

connaissance and surveillance missions by Predator B [128] and communications relay

[37]. The public class is supported by government entities, which include the Federal

Aviation Administration (FAA), the Department of Homeland Security (DHS), the

2

Table 1: Current and Potential UAS Applications [9][4]
Military class Public class Commercial class
Reconnaissance/Surveillance Atmospheric research Fish spotting
Tactical strike Border patrol Remote imaging and mapping
Communications relay Disaster response Utility inspections
Signals intelligence Hurricane tracking Mining exploration
Maritime patrol Forest fire monitoring and support Agricultural applications
Penetrating strike Search and rescue Communications relay
Integrated strike/SEAD Maritime surveillance Petroleum spill monitoring
Aerial refueling Law enforcement Site security
Counter air Humanitarian aid News media support
Airlift Aerial imaging and mapping Filming

Drug surveillance and interdiction Real estate photos
Monitor critical infrastructure Aerial advertising
Natural hazard monitoring Cargo
Airborne pollution observation Crop monitoring
Chemical petroleum spill monitoring Broadcast services
Communications relay
Traffic monitoring
Port security

Department of Commerce (DOC) and others. Notable operational scenarios in the

public class include scientific missions (e.g. hurricane observation by Global Hawk)

and monitoring missions (e.g. coal emission monitor by Aerosonde) [128]. UAS used

for business purposes are put into the commercial class. The Amazon and DHL deliv-

ery systems by UAV are included in this commercial class. The private class includes

all UAS used for private operations such as recreation or UAV competitions. Table 1

summarizes the current and potential applications based on user class.

Another method of UAS vehicle classification is based on physical characteristics

and mission features, as shown in Table 2. The types of UAVs are divided into seven

groups: nano, micro, small UAS, ultralight aircraft, light sport aircraft, small aircraft

and medium aircraft. The FAA classification has four groups and does not include

nano, micro or small UAS. Depending on the stakeholders, the classification can be

slightly different, but most communities have a similar classification structure.

These classifications are the representative formats of UAV classifications. How-

ever, all the applications, missions and types of platform shown in the introduced

classifications do not currently exist because of immature technologies and regula-

tion/certification issues. Next, we will discuss UAS market growth in order to observe

3

Table 2: UAS Vehicle Classification [9]
Platform Type Weight Overall Mission Mission Range Endurance

(lbs) Size (ft) Altitude (ft) Speed (mph) (Miles) (hrs)
Nano < 1 < 1 < 400 < 25 < 1 < 1
Micro 1 ∼ 4.5 < 3 < 3000 10 ∼ 25 1 ∼ 5 1
Small UAS 4.5 ∼ 55 < 10 < 10000 50 ∼ 75 5 ∼ 25 1 ∼ 4
Ultralight Aircraft* 55 ∼ 255 < 30 < 15000 75 ∼ 150 25 ∼ 75 4 ∼ 6
Light Sport Aircraft* 255 ∼ 1320 < 45 < 18000 75 ∼ 150 50 ∼ 100 6 ∼ 12
Small Aircraft* 1320 ∼ 12500 < 60 < 25000 100 ∼ 200 100 ∼ 200 24 ∼ 36
Medium Aircraft* 12500 ∼ 41000 TBD < 100000 TBD TBD TBD

* FAA-Defined Manned Aircraft Weight Categories

the UAS market trends, current UAS integration issues and technological challenges.

UAS Research and development began by the U.S. military in the early 1900s [50].

However, it was not until the mid-1900s when the first UAS (Firebee) was actually

flown in combat in Vietnam War. Around the early 2000s, UAS was deployed in

several wars, such as Kosovo, Iraq and Afghanistan for tactical purposes. These

tactical operations for military purposes have proved the combat effectiveness of UAS.

The first advantage of UAS operation is that without a pilot on board, the UAV is

able to achieve a longer endurance, a wider flight envelope, a lighter weight, a smaller

structure and relaxed maneuvering constraints. Second, the absence of a pilot on

board in the UAV protects against pilot risks in dangerous missions. Third, the UAS

procurement cost is lower than the acquisition cost of manned aircraft. For these

reasons, the investment on UAS development in the United States has dramatically

increased starting in the year of 2000, as presented in Figure 1. Despite this trend

and these characteristics of UAS, the current UAS investment is mainly limited to

military purposes because of regulation/certification issues and technology limitations

[128].

According to the forecasting research by the U.S. Department of Transportation

[9], both commercial and public (including military) UAS usages will continuously

increase. This report also states that the size of the UAS fleets of the federal public

agencies will reach approximately 10,000 vehicles by 2035, compared to only a few

hundred in 2015. Commercial UAV use will also have a radical growth after 2025, and

4

Figure 1: UAS Budget 1998 - 2013 [50]

Figure 2: Forecast Result of Total UAS [9]

the number of commercial UAS will surpass the total number of public UAS between

2028 and 2030.

Nevertheless, this growth pattern of UAS will not be possible without overcoming

several key issues. The first issue is that the current accessing scheme to the National

Airspace System for UAS is too limited to utilize a wide range of missions and nu-

merous UAS platforms. The current scheme is based on two certification processes:

Certificates of Waiver or Authorization (COA) and Special Airworthiness Certifi-

cates, Experimental Category [5][48]. The COA process utilizes for public operations

5

by public agencies and institutions. The special airworthiness certificate, experimen-

tal category, is applied for UAS operations within an assigned test area. Although

this process is the current enabler for UAS to access the NAS, this process is not suf-

ficient to accommodate the future growth of UAS with a wide range of missions and

numerous UAS platforms [40]. In other words, this COA process is not a long-term

solution but rather a short-term solution. Second, there are technology barriers such

as communication technologies for ground-to-ground, Air Traffic Controller (ATC) to

a pilot/remote operator, Separation Assurance, high precision sensor technologies and

collision avoidance algorithms. Third, regulation/certification is needed to facilitate

the integration of UAS into the NAS. In the next section, we will discuss the role of

each stakeholder and specify the major challenges.

1.2 Integration of UAS into the NAS as an emergent im-
perative

Integration of UAS into the NAS is imperative for several reasons. First, according

to the flight hours of unmanned aircraft in a DoD report [40], in 2011, there were

more than one million UAS flight hours, and the number of UAS sorties surpassed the

number of manned aircraft sorties. This report also states that for military missions,

UAS usage is estimated to replace most manned aircraft usages in the near future.

Second, in spite of the current limited UAS operation in civil government missions

such as border patrol and disaster response, the forecasting research indicates that

most current operations of manned aircraft will shift to UAS operations because of the

potential benefits in terms of human safety, operation/acquisition cost and the pos-

sible variety of missions [9]. Third, the commercial UAS demand will likely increase

due to various potential markets for UAS [128]. However, these optimistic forecasts

about the increase in UAS operations will be fulfilled only when all key challenges

and barriers are solved. This section will provide an overview of the stakeholders

and their roles to provide an understanding of which organizations are involved and

6

what research activities are being performed in each organization. In addition, key

challenges/gaps found through a survey of relevant literatures will be discussed.

The core stakeholders are the National Aeronautics and Space Administration

(NASA), the Federal Aviation Administration (FAA), the Joint Planning and Devel-

opment Office (JPDO), the Department of Defense (DoD) and the Department of

Homeland Security (DHS) [76]. NASA is committed to solving civil UAS integration

and addressing key technical challenge areas, assessing technologies, identifying stan-

dards and gaps, and identifying required research fields [112]. JPDO is working on

defining the Next Generation (NextGen) air transportation system and coordinating

all research activities, plans and goals with other stakeholders for NextGen integra-

tion [7]. The FAA is building or revising standards/regulations, as well as certification

and operational procedures so that UAS can achieve an acceptable level of a safety

[48]. The DoD’s responsibility for UASNAS integration is supervising the direction

of airworthiness and UAS pilot/operator training [39].

Many reports have been published by stakeholders to address the challenges of

UAS integration in the NAS [6][39][112][76][7][48]. Based on the literatures, the major

challenges can be divided into two categories, non-technical challenges and technical

challenges.

In the non-technical area, the NextGen UAS Research, Development and Demon-

stration Roadmap highlight the issue of sharing research information and coordinating

research activities among stakeholders. The research work done by each organization

is performed concurrently for their specific communities. These concurrent activ-

ities make the UASNA problem difficult to examine the coupling effects between

the researches performed by different organizations. For instance, the FAA needs

to collaborate with other entities to decide on regulations/certification rules for safe

UAS operations in NAS because the regulation/certification process should consider

7

the characteristics of all types of vehicles, concepts of operations, and the technolo-

gies’ capabilities. However, sharing this information with other entities is practically

impossible due to the concurrent development structure. This process causes overlap-

ping research in research entities, an increase in the cost and a duplication of effort,

which leads to the degradation of R&D efficiency.

In the technical area, the major issues are Communications, Separation Assurance

(SA)/Self Separation (SS)/Collision Avoidance (CA), Human Systems Integration

(HSI), airspace operation and regulation/certification.

Communications challenges include several critical issues. The first issue is that

no methodology exists to characterize the impact of the UAS communications system

on the current Air Traffic Control (ATC) and the communications system of the

UAS platform. The second challenge is the communications frequency allocation

issue to protect the safety of the frequency spectrum. Another challenge is defining

communications requirements and building a validation process to investigate the

integrity of the whole communications system.

The Separation Assurance (SA) area also includes some technical challenges. First,

the sensor technologies are not mature. The existing sensor technologies, such as Li-

dar, radar, and vision sensors have advantages and disadvantages in terms of cost,

operational environment (such as weather conditions), and sensor range. Nowadays,

to overcome the sensors’ shortcomings, sensor fusion technologies have been widely

researched. However, there is no standard rule about sensor fusion technologies for

separation assurance. Second, the collision avoidance algorithm has a large techni-

cal gap. UAS platforms are very diverse; examples include airships, quad-copters

and UAVs with distributed propulsion. Therefore, the collision avoidance algorithm

should consider the diverse UAV platforms and a variety of sensor systems.

Human Systems Integration (HSI) is also one of the major challenges in UAS

integration. Depending on the level of autonomous capabilities (fully autonomous,

8

semi-autonomous, passive autonomous), the human impact varies on UAS operation

with respect to safety level. However, no quantification methodology exists for the

exploration of the impact of human interaction. Second, the visualization tools for

the weather and air route information, as well as the separation assurance interface

to the pilot or remote pilot, are issues, since the efficiency of the visualization system

can influence the level of safety in the UASNAS problem.

The Integration of Civil Unmanned Aircraft Systems (UAS) in the National

Airspace System (NAS) Roadmap and the UAS Integration in the NAS Project both

address standards/regulations/certification and airspace operation issues. Due to the

characteristics of unmanned aircraft, UAS cannot follow the sense and avoid” rule

(FAR 91.159) of the national airspace system. This feature complicates the structure

of UAS operations. UAS operations require more system elements, such as a com-

munications relay, a control station and a remote pilot to provide information about

upcoming obstacles to the UAV platform so that the UAS can perform an avoidance

mission in order to satisfy the same level of safety required by the current sense and

to avoid the rule for manned aircraft. However, the greater number of system com-

ponents and interactions between systems in a UAS make the avoidance mission a

more difficult problem to design standards/regulations/certification processes. More-

over, UAS operation data do not currently exist. The lack of UAS flight data result

in a more challenging problem of developing regulations without understanding the

fundamental features of UAS and the interactions between systems.

The airspace operation issue includes integration issues such as automation roles

and responsibilities between manned aircraft and UAVs, or between UAVs. Another

challenge is that there is no existing analysis approach to evaluate the level of safety

in airspace operation.

All in all, UAV integration is absolutely essential due to a large and increasing

demand/market for UAS, according to the forecasting research. In order to meet

9

the demand, there are five key challenges (Communications, Separation Assurance,

Human Systems Integration, airspace operation and regulation/certification) from

the literature provided by the stakeholders. These major challenges have many sub-

challenges which must be solved for successful UAS integration into the NAS.

1.3 Characterization of the problem space

This section introduces key characteristics of the UASNAS problem space to have a

better understanding about the UASNAS problem and achieve a systemic approach to

solve the UASNAS problem. Before describing the features of the UASNAS problem

space, some fundamental definitions associated with the UASNAS problem will be

introduced.

According to the Defense Acquisition Guidebook, a system of systems is defined as

a set or arrangement of systems that results when independent and useful systems are

integrated into a larger system that delivers unique capabilities” [38]. The UASNAS

problem is a system of systems problem since it has a set or arrangement of integrated

systems.

Next, a system is defined as a functionally, physically, and/or behaviorally related

group of regularly interacting or interdependent elements” [35]. The UASNAS prob-

lem has several systems, such as UAVs, other airplanes, air traffic controllers, ground

stations and communications relays.

The system is composed of subsystems. According to the NASA Systems Engi-

neering Handbook [3], a subsystem is a system in its own right, except it normally will

not provide a useful function on its own, it must be integrated with other subsystems

to make a system”. An example of the subsystem in the UASNAS problem is that

a UAV has several subsystem components such as a propulsion system, a guidance,

navigation and control system, a sensor system, and a communications antenna.

Based on the basic definitions, three UASNAS features will be discussed. The

10

first characteristic of the UASNAS problem is coupling effects among many levels

of abstraction. For instance, in the separation assurance problem, the UAV system

performance parameters, such as maneuverability, can affect the level of safety of

the UAS integration. Furthermore, the subsystems (e.g., a satellite communications

antenna, a propulsion system, sensor technologies, and a guidance and navigation

control system) have a significant impact on the separation assurance capability with

respect to safety. The second feature of the UASNAS problem is that many disci-

plines are highly coupled. As an example of the airspace operation discipline, the

performance of the communications can impact the safety of the airspace operation,

and the performance of the separation assurance can influence the safety level of the

airspace operation as well. Similarly, the degree of human systems integration can

contribute to the safety level of the airspace operation. The last characteristic of the

UASNAS problem is that the disciplines and levels of abstraction are cross-coupled.

That is, the separation assurance capability is influenced by different systems, such

as the communications relay, the air traffic controller, the ground station and oth-

ers. The subsystems of various systems can have a primary effect on determining the

safety level in separation assurance as well. The performance and characteristics of

these systems and subsystems affect the capabilities in other disciplinary domains.

Note that the UASNAS problem is highly complicated due to the extensive cou-

pling and cross-coupling impacts among different levels of abstraction and the various

disciplinary domains. Consequently, a new environment for trade-off studies is neces-

sary which will enable the designer to explore the impact of the interactions between

the measures of performance, sometimes in different levels of abstraction and different

disciplinary domains.

11

1.4 How is it done today?

In the previous section, the characteristics of the UASNAS problem space were ob-

served. To explore the UASNAS problem precisely, a new trade-off study environment

is required. In this section, current existing trade-off study environments will be ex-

amined to identify the gaps.

There are two approaches in order to observe the UAS impact on the NAS: using a

real and physical experiment, or using an analytic method (modeling and simulation

environment). A key benefit of using real experiments is that one can collect actual

flight data and investigate more accurately the actual interaction among the systems

or subsystems. Recently, the FAA announced six test sites, which are located in

Alaska, Nevada, New York’s Griffiss International Airport, North Dakota, Corpus

Christi and Virginia [57]. These test facilities were selected to cover diverse locations

in different climatic zones and achieve geographical diversity. Each test site has

a specific goal to solve in the UASNAS integration problem. The Alaska region

has the role of investigating standards for UAS categories and state monitoring and

navigation. The Nevada test site will study UAS standards/certification and operator

standards. The integration impact on NextGen will be explored in Nevada. The test

site located in New York will provide verification and validation research on how to

integrate UAS into the congested NAS. The North Dakota area has a plan for the

evaluation of technologies’ reliability and human factors. The site in the Texas region

will review operational procedures and protocols from an airworthiness perspective.

Lastly, the Virginia test site will conduct UAS failure experiments to specify the

risk areas from technological and operational perspectives. These six test sites will

address key challenges such as technologies, operations, safety and human systems

integration.

However, the real experiments performed in those sites have limitations in examin-

ing the UASNAS problem for several reasons. The first reason is that the experiments

12

to explore the coupling effects between different disciplinary domains are difficult.

Each test site has individual research goals for UASNAS integration. Although each

experiment site may produce limited exploration outcomes for the studies of the cou-

pling effects, it is impossible to examine all the coupling and cross-coupling impact

in the entire UAS domain. Second, some critical scenarios which can impact human

risk directly cannot be implemented through a real experiment. For instance, failure

scenarios near a terminal or urban area are impossible to be tested in a real exper-

iment due to the high risk of human safety. Another reason is that it is impossible

to perform experimental demonstrations of all types of vehicles or all possible flight

scenarios, including emergency scenarios. Conducting experiments on all the diverse

mission scenarios and numerous types of vehicles would result in a high cost and a

long schedule. Hence, to investigate the various mission scenarios and the impact of

the diverse UAV characteristics, an analytic method is a suitable approach.

The representative analytic models include both a high-fidelity model and a low-

fidelity model. The high-fidelity model commonly includes detailed flight dynamics

like six Degree of Freedom (DOF) and specific sensor models such as a vision sen-

sor, LiDAR sensor, radar sensor and/or sonar sensor. The typical purpose of the

high-fidelity model is to validate the proposed aircraft controllers and guidance, and

navigation algorithms. Watanabe et al. proposed a collision avoidance algorithm

using a vision sensor model [150]. To validate the proposed method, a flight sim-

ulation with six DOF vehicle dynamics as well as a detailed vision sensor model,

were implemented. Park has also proved the efficiency of obstacle avoidance ap-

proach by applying a collision cone through six DOF quad-rotor dynamics and a

specific stereo vision model [117]. Another example of a high-fidelity model is that

of Salmah, who applied six DOF dynamics to a Model Predictive Control (MPC)

approach to validate a collision avoidance method [131]. However, this high-fidelity

simulation model is not the most favorable approach for a broad scope analysis for

13

scenarios such as formation flights, multi-aircraft surveillance and air traffic control

since running the high-fidelity model requires a large computational expense. Due to

the expense, many modeling and simulation environments with a broad scope choose

a low-fidelity model. Agent-based models are well-suited to simulate large portions of

the airspace with a multitude of interacting entities while typically ignoring aircraft

dynamics altogether. A general implementation assumes a point mass and specifies

value ranges for parameters such as velocity, altitude and turning radius, but it can

nonetheless become an effective method in examining airspace operations as shown

in Ref. [87] for UAS in-transit operations. Encounter models have even lower fidelity

because they do not explicitly model the agent interactions, although they have been

used to study self-separation function thresholds [151]. A live virtual constructive

distributed test environment developed by NASA is a trajectory-based simulation

environment with point mass dynamics in order to examine safety and operational

challenges [103][109][120]. However, these low-fidelity environments do not provide

enough information to address different levels of systemic abstraction or the under-

lying coupling between the measures of the performance of subsystems, systems, and

systems-of-systems.

The UASNAS problem requires an exploration of coupling and cross-coupling

effects with respect to different levels of abstraction and different disciplinary domains.

The analytic model has to enable a trade-off environment where it is easy for multiple

scenarios to be explored with various platforms. Consequently, a favorable balance

of breadth, depth and cost is necessary for the modeling and simulation tools.

1.5 Identification of a critical area

The key challenges for UAS integration in the NAS are specified in the previous sec-

tion. The major technical challenge areas are separation assurance, communications,

airspace operation, certification/regulation and human systems integration.

14

Among the key challenge areas, separation assurance is the most critical area.

Many researchers indicate that separation assurance, including self-separation/collision

avoidance, is the most critical challenge since it is directly associated with safety issues

such as risk of human life and property [99][32][17][51][89].

An FAA report [10] also indicates that See and Avoid” is a significant barrier

because of the potential problems resulted from the absence of pilots on board in the

UAV, and the immature technologies that are not capable of detecting and avoiding

fixed obstacles or moving aircraft/obstacles. Gayer et al. [51] mentions the issues of

detection sensor technologies, such as acoustic sensors, radar sensors, LiDAR sensors

and vision sensors. These sensors have some limitations. For instance, the vision sen-

sor cannot detect obstacle information under severe weather conditions. The acoustic

sensor can acquire obstacle information under the bad weather conditions but is not

able to identify low-speed obstacles. Whereas the recently-developed LiDAR sensor

has a remarkable accuracy and has outstanding performance under the bad weather

conditions, it is not a viable technology for small UAV applications due to its high

cost. Due to these drawbacks and limitations of the existing sensor technologies,

much research about sensor fusion technology has recently been conducted to over-

come sensor drawbacks/limitations.

The current paradigm of separation assurance for unmanned aircraft builds upon

that for manned traffic and is structured as a multi-layered framework with overlap-

ping capabilities. It is generally conceived with five main layers: regulatory struc-

ture, strategic separation, tactical separation, self-separation, and collision avoidance

[89][32]. The regulatory structure includes operating procedures, and airspace interac-

tion rules. Strategic separation addresses separation assurance and conflict resolution

with time horizons roughly between 3 minutes and 10+ minutes, and is exercised by

air traffic management services. Tactical separation is concerned with separation and

conflict resolution with timescales between 2 minutes and 5 minutes, and is managed

15

by air traffic control services. Self-separation is co-managed by air traffic control and

on-board systems for separation assurance with closure margins between 15 seconds

and 2 minutes. The last separation assurance layer is collision avoidance that is op-

erated by on-board systems for conflict resolution within 15 seconds approximately.

The detect and avoid capability of an unmanned aircraft is a key enabler for self-

separation and collision avoidance. Separation assurance across its various layers is

a top-level operational capability in the integration of unmanned aircraft systems

into the national airspace since it is coupled with critical operational elements and

challenges such as sensing/surveillance, communications, functional allocation, and

human factors.

1.6 Objective of thesis

The primary goal of this research is to develop an analytic modeling environment for

the UASNAS integration problem, specifically for a collision avoidance case under

non-cooperative (lost-link) scenarios with a ground obstacle. To meet the overall

research objectives, this thesis will accomplish the following tasks:

� Objective 1: to study and develop improvements in modeling and simulation of

fully integrated UAS to address the current gaps and to enable systems analysis

across levels of abstraction and multiple disciplines

� Objective 2: to quantitatively characterize collision avoidance as a critical ele-

ment of separation assurance in terms of system behaviors across the levels of

abstraction and multiple disciplines

16

CHAPTER II

STATISTICAL GAIN-SCHEDULING METHODS FOR

AIRCRAFT FLIGHT SIMULATION

Controllers in the aircraft dynamics model are typically approached with a gain-

scheduling method or with a non-linear control method using dynamic inversion by

adaptive neural network structure [84].

Gain-scheduling methods are more commonly used mainly due to the reduced

computational burden associated with the local linearization of model dynamics in-

herent compared to other nonlinear approaches [129]. In a general aviation class,

because of the small variation in the cruise flight condition, the controller commonly

utilizes a fixed-gain approach, but the controller in a small UAS class requires the

gain-scheduling structure because of high dynamics variation resulting from agile

maneuvers. Gain-scheduling is typically included as part the stability augmentation

system (SAS) that define control settings to follow the path trajectory defined by

the navigation or autopilot system. The gain-scheduling approach transforms the

non-linear aircraft dynamics into a linear time invariant (LTI) equation for given

trim conditions and then optimally solves for the feedback gain set. The process is

repeated for points of interest within the flight envelope so as to produce a finite one-

to-one mapping between operating points and corresponding trim control input and

gain values. A scheduling scheme utilizes the a-priori data to generate trim control

input and gain values for any operating point within the flight envelope during the

simulation. Different gain scheduling schemes with varying degrees of complexity ex-

ist. The nearest neighbor approach assigns the trim control input and gain values of

the closest a-priori point. Interpolation and blending techniques are also commonly

17

employed [104]. Gain scheduling presents some inherent shortcomings that have been

noted in the literature. The controller can exhibit poor robustness and stability due

to deficient gain approximations [73]. Higher order effects in dynamic behavior can

be significant but are inherently absent in a linearized model. As a result all higher-

order effects, such as the non-linear actuator response or phantom yaw caused by

asymmetric vortices, introduce uncertainty and error to the model [155]. To address

the issue of higher-order contributions an augmented control structure with adaptive

controller has been proposed that can produce more precise predictions of the aircraft

dynamics [69]. As can be expected these improvements are attained with increased

computation cost and greater complexity of the aircraft controller [130].

We propose a gain-scheduling approach to improve performance and address

salient computational drawbacks of conventional gain-scheduling methods. A poly-

nomial regression model is generated a-priori and used in place of nearest neighbor

or bivariate interpolation schemes. The polynomial regression model provides ac-

curate trim input solutions and control gain set estimates with a computationally

efficient functional form that improves the cost of the overall simulation. Accord-

ingly, we hypothesize that the proposed method offers improvements in computa-

tional cost without degradation of controller stability, relative to nearest neighbor

and bivariate interpolation gain scheduling methods. In order to test our hypothe-

sis and demonstrate the proposed gain-scheduling approach numerical analysis using

flight simulation is performed and the results compared against the two aforemen-

tioned conventional gain-scheduling algorithms. This section is written based on the

published journal paper [30].

2.1 Flight modeling and simulation environment

In this section, a general flight simulation environment will explore to identify chal-

lenges for describing coupling effects and cross-coupling effects between different levels

18

of abstraction and diverse discipline domains. A general flight control simulator shown

in Figure 3. The flight simulation environment is composed of several components.

The first component is a guidance and navigation loop, which provides a trajectory

based on waypoints determined by a mission scenario. The next component is a flight

attitude loop to generate control inputs to follow the trajectory computed in the pre-

vious step(guidance and navigation). Another simulation part is a dynamics model

including all kinds of system dynamics such as actuator dynamics, vehicle dynamics

and others. The simulation environment has a database which have all vehicle in-

formation about aerodynamic characteristics, propulsion system specifications and a

vehicle weight. The other model of a flight simulator to handle a collision avoidance

problem is a sensor model like Radar, Lidar and Vision sensors. The sensors gives

an obstacle information to the guidance and navigation loop to update a collision

free trajectory. The last component is a world model. The world model has all in-

formation about atmosphere and obstacle information such as a size of obstacle and

location information.

This thesis focuses on improving the guidance and navigation loop and the aircraft

controller since the collision avoidance performance level is highly dependent on the

these two loops. These guidance and navigation, control loops highly impact on the

level of the flight simulation time, which is a critical component in a fast or real-

time simulation environment. If guidance and navigation, control logic has a high

complexity model, it would require higher computational expense. On the other

hand, these two loops has a simple model it would have some degradation in terms of

a control performance, but it leads to run a mission faster. The purpose of the thesis

is maintaining the middle level of fidelity and reducing a computational expense of an

existing method so that it enables to explore system of systems problem in multiple

discipline domains. This thesis will explore the existing UAV modeling and simulation

environment to specify the features as a fast time simulation environment and based

19

Figure 3: UAV flight simulation environment

on that observation new approaches are proposed.

This section focuses on the aircraft controller to improve the computational run-

time. The remainder of this chapter is follows: Section 2.1.1 provides about an

equation of the UAV motion. Section 2.2 overviews a conventional gain-scheduling

approach and elaborates drawbacks/shortcomings with respect to a real-time simu-

lation environment. Based on the observation, a new gain-scheduling is introduced

to overcome shortcomings. To demonstrate the proposed gain-scheduling method,

numerical simulation and experiment results are discussed.

2.1.1 Equation of UAV motion

There is rich diversity in the platform architectures of unmanned aircraft; numerous

planform-propulsion variants exist for fixed wing aircraft, rotorcraft, and airships. In

addition, unconventional concepts such as hybrid wing-body or multi-rotor aircraft

20

are much more pervasive for unmanned applications. This variety presents inher-

ent burdens and difficulties in the development and treatment of flight dynamics

and control for unmanned aircraft.[94][36] A conventional propeller-driven fixed wing

architecture is selected for simplicity and in consideration of the large portion of

unmanned vehicles that it applies to. [94] [102] With a point-mass assumption, the

free-body diagram for the aircraft is as shown in Figure 4 and the equations of motion

can be stated as follows:

Figure 4: UAV free body diagram

ẋ = vcosγcosχ (1)

ẏ = vcosγsinχ (2)

ż = vsinχ (3)

v̇ =
g

w
(Tcosε−D − wsinγ) (4)

21

χ̇ =
g

wvcosγ
(Tsinε+ L) sinφ (5)

γ̇ =
g

wv
((Tsinε+ L)cosφ− wcosγ) (6)

where, x, y and z are a vehicle position in a global coordinate system. v, χ and γ

are a velocity, a heading angle, a flight path angle. D, T , w and φ are drag, thrust,

weight, and bank angle. ε indicates the angle difference between the actual thrust

vector and the free stream velocity vector. The lift equation can be defined by

L =
1

2
ρv2S(CL0 + CLαα) (7)

where, α is an angle of attack, CL0 is a coefficient when angle of attack is zero and a

lift curve slope CLα is

CLα =
πAR

1 +
√

1 + (AR/2)2
(8)

Here, AR is the wing aspect ratio and e is the span efficiency factor. The following

two equations represent a drag model and thrust model.

D =
1

2
ρV 2S(CD0 +

(CL0 + CLαα)2

πeAR
) (9)

T =
1

2
ρSpCp

[
(kmδt)

2 − v2
]

(10)

where, CD0 is a zero-lift drag coefficient and S is a planform area. Sp is the area

swept out by the propeller, Cp is an aerodynamic coefficient of the propeller, km is a

constant indicating the efficiency of the motor and δt is the motor command.

2.2 Gain-Scheduling Method

Conventional gain-scheduling techniques follow the same general process and build

upon a common theoretical formulation for the implementation of a linear feedback

control to a non-linear system. First, scheduling variables S1...Sn are chosen to define

the flight envelope shown in Figure 5 and all the operating points. A grid of points

is defined to span the flight envelope. Normally the grid resolution is chosen based

on the sensitivity of vehicle dynamics to scheduling variables. This sensitivity must

22

be known a-priori, so one may opt for a conservatively dense grid or for an iterative

approach that evaluates sensitivity and increases grid resolution in more sensitive

regions if needed. An adaptive sampling pursuant to sensitivity information may be

chosen, albeit at greater computational expense and complexity. For simplicity we

assume two scheduling variables S1 and S2 consistent with common practice, and

index values for each of them as i = 1...n and j = 1...m. We further assume uniform

sampling of the flight envelope for simplicity. The aircraft flight dynamics expressed

in equations 1 through 10 can be expressed a function of vehicle states x, control

inputs u and time t.

Figure 5: Flight envelope

ẋ = f(x,u, t) (11)

For this study vehicle state variables x are velocity v, heading angle χ and flight

path angle γ. The control inputs u are motor command δt, angle of attack α and back

angle φ. The model is locally linearized most commonly with a multivariate Taylor

series expansion so that the aircraft state is expressed as the sum of an equilibrium

component and a deviation component, as follows:

23

x = x0ij + δx (12)

u = u0ij + δu (13)

where x0ij and u0ij are equilibrium states and control inputs respectively for point

i, j. Similarly, δx and δu are the perturbation components for the states and the

control inputs.

There is an algebraic method and a numerical method for the creation of the

linearized model. The algebraic method has some inherent limitations [138] so the

numerical alternative is typically preferred. The final mathematical form of linearized

dynamics are thus written as:

δẋ = Aijδx + Bijδu (14)

where Aij is a system matrix of aircraft dynamics at given index i, j, Bij is a

control matrix at given index i, j and x is the states array. Trim solutions may be

found with a number of well established methods and consistent with the assumed

order of the flight dynamics model. The next step is designing a linearized controller

at each of the prescribed equilibrium points in the flight envelope. There are several

design methods available for the linearized controller including the lead-lag method,

pole-placement, and optimal controller [82][121]. Robust methods such as H-infinity

control [114] can also be applied. The control gain matrix Kij is thus estimated with

the method of choice for each equilibrium point (S1
i , S

2
j), or i, j for simplicity.

During online aircraft dynamics and controller simulation the gain matrix K is

estimated by a gain-scheduling mechanism as a function of the current scheduling

variables. The simplest is the nearest neighbor where the closest equilibrium point

(S1
i∗, S

2
j∗) to the current point in the flight envelope (S1, S2) is identified, and the

corresponding gain matrix Ki∗j∗ is used. The nearest neighbor algorithm is very

24

simple to implement and is computationally efficient, making it popular in many real-

time applications. However, system response features discontinuities for the locus of

points equidistant to two or more equilibrium points. The effect is reduced with

denser flight envelope sampling requiring greater up-front computation investment

and some on-line efficiency degradation for sufficiently large sets. Another popular

approach is the use of interpolation techniques such as bilinear interpolation (for the

case of two scheduling variables). This approach produces linear interpolants along

lines parallel to the scheduling variable axes, and quadratic in all other directions.

Extensions to higher order interpolants are straightforward but come at increasing

computational burden. Obvious examples include bicubic and spline interpolation

[121]. In general, interpolation is recognized to be more computationally expensive

than nearest neighbor, even for the lowest allowable order (i.e. linear) and across

any number of dimensions. On the other hand, interpolation yields estimates that

are generally more accurate, lack discontinuities, and collectively describe a smoother

response.

2.2.1 Proposed approach - Gain-scheduling with polynomial regression

Conventional methods discussed above outline the fundamental tradeoff between ac-

curacy and computational efficiency. However, both approaches rely on a data set

of points in the scheduling variable domain (S1
i , S

2
j) with corresponding values in the

gain set range K, and both approaches feature the same fundamental steps:

� Identify the point(s) in the a-priori set that serve as the basis for generating the

estimate of K. For nearest neighbor it is the equilibrium point (S1
i∗, S

2
j∗) closest

to the current point. For bilinear interpolation is the four closest equilibrium

points, which happen to be corner points surrounding the point of interest.

� Solve for an interpolant of some prescribed order using the selected scheduling

variable points as a basis for the solution and its bounding conditions. For

25

nearest neighbor this step doesn’t exist in practice because no interpolant is

solved for.

� Evaluate the interpolant at the current point to yield an estimate for gain values

K. For nearest neighbor this step is reduced to calling the value of K that maps

to the closest equilibrium point.

The identification of interpolation basis points within a structured set (first step

above) as well as the evaluation of a polynomial interpolant of modest order (third

step) are both reasonably expected to be fairly inexpensive, whereas solving for the

interpolant with scheduling variable points is expected to be the most expensive

step. It follows that efficiency improvements of the entire gain scheduling block may

be realized by expediting (or eliminating) the generation of the interpolant function.

Based on this premise we propose a new gain scheduling method where a single global

polynomial interpolant for the entire flight envelope is generated a-priori, effectively

reducing the gain scheduler to the evaluation of the polynomial interpolant at the

current state. On-line simulation costs are thus reduced. The generation of a global

interpolant effectively preserves this as a fundamental step but re-allocates it as an

off-line step with some up-front computation cost. The benefits of this approach are

reasonably extended to the estimation of trim control inputs so that the latter can

be estimated as a polynomial function of scheduling variables generated off-line.

A polynomial interpolant constructed from a structured sample of points in the

scheduling variable space is fundamentally equivalent to the creation of a response

surface equation from a design of experiments. A response surface takes the form

y = β0 +
k∑
i=1

βiS
i +

k∑
i=1

βi,iS
i2 +

k∑
i=1

k∑
j=16=i

βi,jS
iSj + ε (15)

where, β are regression coefficients, S are independent scheduling variables, k is the

number of scheduling variables (k = 2), y is the dependent response of interest,

namely the trim control inputs u0ij and the optimal control gain Kij. The term ε

26

is the error of the polynomial approximation relative to the true response typically

associated with higher order terms omitted. An evenly gridded sample of points in

the operating envelope is consistent with a full-factorial design of experiments. The

full factorial design is easily justifiable for the commonplace choice of a two scheduling

variable setup because it offers the most beneficial sampling of the space for response

surface regression while the number of data points m × n is still reasonable. With

the inclusion of more scheduling variables the cardinality of the full factorial set

grows quickly and becomes prohibitive. Other designs of experiments may need to

be considered in such a case; examples include central composite design (CCD), Box-

Behnken, and different variants of space filling designs [110].

Response surface coefficients are most commonly solved for with the least squares

method primarily due to its simplicity and guaranteed optimality for the given data

set. Alternative methods include step-wise approaches that exploit analysis of vari-

ance estimates to determine the inclusion or exclusion of regression terms. The quality

of the response surface is commonly evaluated with error statistics including the co-

efficient of determination R2, residuals, and standard normal distributions for Model

Fit Error (MFE) and Model Representation Error (MRE) [110].

We hypothesize that despite the computational cost of generating response sur-

faces as a priori global approximations, measurable improvements in computational

efficiency can be attained relative to nearest neighbor and bilinear methods described

above. Moreover, we also hypothesize that these runtime benefits can be attained

without degradation of controller stability.

At the same time, we recognize that global polynomial fits for gain scheduling

also present some limitations inherent in response surface methodology. The most

salient issue is the non-linearity of the underlying multivariate response vis-a-vis the

extent to which the polynomial can approximate it given its order. The polynomial

presented in equation 15 is second order, which is sufficient for a surprisingly large

27

number of relationships in the aircraft performance literature. For phenomena of

greater non-linearity the error of a second order polynomial approximation can be-

come unacceptable. A polynomial of higher order may be considered, but the option

should be approached with caution. Overfitting may occur, where model fit error im-

proves moderately and model representation error increases significantly, suggesting

that the nonlinearlity of the underlying response is not suitably appoximiated by a

polynomial. This effect is typically observed near the extremes of the response inter-

val and is referred to as Runge’s phenomenon. In the subsection 2.2.3 we address the

issue of nonlinearity of polynomial approximations via order increase and logarithmic

transformations.

2.2.2 Implementation of aircraft dynamics and controller design

We select altitude and speed as scheduling variables consistent with common practice.

For simplicity we bound the flight envelope as a rectangle in the scheduling variable

space with pairwise combinations of minimum and maximum values of speed and

altitude. Other operating points in the envelope are readily defined with a grid

resulting from a uniform segmentation of the domain of each variable from the flight

envelope presented in Figure 5, so that the total number of the equilibrium points is

the product of m uniformly spaced values of speed and n uniformly spaced values of

altitude.

In the numerical simulation the aircraft dynamics model is assumed at three de-

grees of freedom. The states x include velocity, directional angle and flight path

angle [v ψ γ]T and the control inputs [T α φ]T have thrust and two pseudo control

inputs which are Angle of Attack (AoA) and bank angle. We apply the numerical

linearization method to the resulting non-linear system.

Optimal controller design is implemented with the Linear Quadratic Regulator

28

(LQR) technique which is fairly straightforward to implement for a Multi-Input Multi-

Output (MIMO) system. From the state space equation of the linearized model

presented in equation 14 the control input δu can be defined by LQR theory as

follows:

δu = δuT = −Kijδx (16)

where Kij is the matrix containing a family of control gains and uT ij is a set of

control inputs at given equilibrium conditions. The optimal control inputs minimize

the performance index

δJij =

∫ ∞
0

(
δxTW1ijδx + δuTW2ijδu

)
(17)

where W1ij and W2ij are weighting matrices at given flight condition points i, j. The

control gain matrix Kij is defined by

Kij = W−1
2ijBijP̄ij (18)

P̄ij is the positive definite solution of the Riccati equation

P̄ijBijW
−1
2ijB

T
ijP̄ij − P̄ijAij −AT

ijP̄ij −W1ij = 0 (19)

2.2.3 Implementation of global polynomial interpolant

In order to examine the proposed global polynomial interpolant against competing

approaches it is useful to formulate its generation from an algorithmic perspective

readily conducive to implementation in a repeatable and recursive manner. As noted

in previous sections the selection, domain bounding, and sampling of scheduling vari-

ables are prerequisite. In general the sampling follows a design of experiments chosen

based on number of arguments, effects resolution, and corresponding number of func-

tion calls. Here we simplify to two scheduling variables (S1, S2) = (v, h) so that

(vi, hj) are sampled in a uniform n×m full factorial set where i ∈ N|1 ≤ i ≤ m and

j ∈ N|1 ≤ i ≤ n. The selection of m and n effectively captures the granularity of the

29

training sample in each ordinate. For all (vi, hj) we solve for δuij and Kij as shown

in the previous section, so that the argument array (v,h) has corresponding response

arrays δu and K. A response surface can be generated for each response variable

using the least squares method.

To do so the orderO of the response surface must be selected. The response surface

shown in Eq (15) is of second order, which is typical for many practical applications.

A higher order response surface typically yields approximations with smaller error ε.

However an indiscriminately high polynomial order is not feasible for various reasons.

Higher order terms requires more sample data points so that higher order regression

coefficients β can be solved for in the least squares regression. Very large data sets

may not be realistically attainable for resource intensive data acquisition applications

such as computationally expensive simulations and some experimental setups. Even

without resource limitations the nonlinear characteristics of the underlying behavior

may be such that they cannot be well approximated by a polynomial of high order.

Attempting to overcome this inherent barrier with higher polynomial order typically

results in ’overfitting’, where the error of the polynomial against the regression data

set reduces moderately while the validation error against additional data points grows

considerably thus diminishing the overall approximation quality of the polynomial.

The recommended approach in this and most other applications is to begin with the

lowest order expected and to increase the order until some criteria for the quality of

the approximation is met.

The least squared regression assumes that error follows a standard normal distri-

bution. Comparison of the model fit error (MFE) εMFE against this distribution thus

offers a suitable basis to evaluate the quality and statistical validity of the polynomial

approximation. Model fit error for the pth observation in the data sample is estimated

as

εMFE,p =
∆yO
yO

=
yp − y∗p
yO

, (20)

30

where the absolute error ∆y is the difference between the true value y from the data

sample and that approximated by the polynomial, y∗. Although several tests for

distribution normality exist, it is typical to directly estimate the mean µMFE and

standard deviation σMFE, and evaluate against standard values. We do so with the

following inequality condition, allowing for some small deviation of the mean.

−0.05 ≤ µMFE ≤ 0.05 ∩ σMFE ≤ 1 (21)

Model representation quality of the polynomial beyond the sample used for its re-

gression via least squares method is evaluated with model representation error (MRE)

εMRE. It is calculated in the same way as model fit error εMFE in Eq (20) but uses

a validation points sample, typically drawn at random from the bounded domain of

the regression variables. There is no constraint on the size of the MRE data sample,

although some rules of thumb exist balancing the practicality and cost of obtaining

said sample against the sample size to obtain a statistically significant distribution.

In most cases the distribution of model representation error features greater variance

relative to model fit error. We account for this trend in the inequality conditions to

test for representation error

−0.05 ≤ µMRE ≤ 0.05 ∩ σMRE ≤ 1.5 (22)

The coefficient of determination R2 is another convenient and suitable test for

the quality of the response surface. It provides a statistical measure of how well

the regression approximates the real data. The coefficient can be expressed in many

different ways, but is commonly defined on the basis of the sum of squares as follows:

R2 ≡ 1− SSresidual
SSTotal

= 1−
∑

p(yp − y∗p)2∑
p(yp − ȳ)2

(23)

Here yp is the true value of the pth data point, y∗p is the corresponding value approxi-

mated by the polynomial, and ȳ is the mean of true value observations

ȳ =
1

n

n∑
p=1

yp (24)

31

The coefficient of determination assumes values between 0 and 1, with the latter

representing a perfect fit of the polynomial approximation to the regression data set.

While values of 0.95 or 0.975 are common standards for a high quality polynomial fit,

we opt for the more stringent condition

R2 ≥ 0.99 (25)

We adopt the conditions expressed in Eq (21), Eq (22), and Eq (25) as the cri-

teria for polynomial approximation quality. For a given scheduling data sample and

some prescribed polynomial order O a least squares regression can be conducted and

checked against said conditions. We assume here that the data sample is sufficiently

large and so designed that polynomial coefficients can be solved. If the quality con-

ditions are not met the order of the polynomial may be increased by one and the

process repeated. As discussed above this process should be bound by some maxi-

mum polynomial order allowed. In the case that conditions cannot be met even for

the highest order allowed then the non-linearity of the true response may be beyond

that characterized by the Omax order polynomial. A logarithmic transformation of the

response is a convenient mechanism to mitigate the non-linearity of the response and

fit a polynomial approximation that can then be exponentiated, typically of better

quality. For logarithmic transformations the estimation of MFE and MRE is con-

ducted as shown in Eq (20) except that y∗p is replaced by exp(y∗p), noting that the

least squares regression is performed on log(Y).

Algorithm 1 states the aforementioned recursive regression, as follows:

32

Algorithm 1 Surrogate modeling procedure for gain-scheduling method

Inputs: S, a m× n array of (vi, hj) pairs, 1 ≤ i ≤ m and 1 ≤ i ≤ n
System matrix Aij, control matrix Bij, weighting matrices W1ij and W2ij

Compute trim control inputs u0ij and optimal control gains Ki,j at equilibrium
points
for i=1:m do

for j=1:n do
Solve:u0ij

Solve:P̄ . Eq (19)
Solve:Ki,j . Eq (18)

end for
end for
for Y = u0,K do

O = 1
C =FALSE
while C = FALSE do

O = O + 1;
Ypred=LeastSquares(Y,S,n)
(µMFE, σMFE, µMRE, σMRE, R

2)=FitStats(Y,Ypred) . Eq (21), Eq (22),
and Eq (23), or log transform equivalent

C = Eval: Eq (21) AND Eq (22) AND Eq (25)
if O = OMax then

O = 1
Y = log(Y), Replace:FitStats, LogFitStats

end if
end while

end for

33

We illustrate the process and its final outcome by bounding the scheduling variable

domain with v [ft/s] : 50 ≤ v ≤ 150 and h [ft] : 0 ≤ h ≤ 15, 000, and sampling

uniformly along each dimension with n = m = 5 and we eliminates the sampling

points outside of flight envelope region presented in Figure 5. Figure 6 and Figure 7

illustrate the results of the response surface regressions for the trim control inputs and

the control gain values respectively. The 25 training points are shown as black dots.

For the trim control inputs shown in Figure 6 the bank angle is zero in the entire

flight envelope since the equilibrium conditions is only defined under a level flight

condition. Visual inspection of the response surfaces for the motor command and

angle of attack suggest greater sensitivity to speed variation than to altitude. This

trend is observed as well in the regressed polynomials for the control gain matrix

K values as shown in Figure 7. In these polynomial approximation of the control

gain matrix K, K13, K23, K31 and K32 are approximately zero since our simplified

equations of motion do not account for coupling effects between bank angle and other

variables (thrust and angle of attack).

(a) Motor command (b) Angle of attack (c) Bank angle

Figure 6: Surrogate model for the trim inputs

As an initial comparative assessment of control inputs (motor and angle of attack)

and gains (K11, K12, K21 and K22) obtained via the three scheduling methods

we evaluate a random sample of 100 points in the scheduling variable space. We

quantify the average accuracy of the estimates against optimal solutions with R2.

Table 3 summarizes R2 values, and Figure 8 illustrates the data set as actual vs.

34

(a) K11 (b) K12 (c) K13

(d) K21 (e) K22 (f) K23

(g) K31 (h) K32 (i) K33

Figure 7: Surrogate models for the control gain matrix K

35

predicted plots for the 100 data points, color-coded according to gain-scheduling

methods. These results indicate that the global polynomial approach has comparable

(modestly better) accuracy relative to bilinear interpolation, and both are notably

more accurate than nearest neighbor. The control gain K11 is most sensitive to the

choice of method, and is explained by its association to the low speed region.

Figure 8: Predicted vs. Actual plot

Table 3: R2 results
Nearest Neighbor Bilinear Interpolation Global Polynomial

Motor command 0.99074 0.99999 0.99982
Angle of attack 0.9817 0.9988 0.99997

K11 0.91475 0.96196 0.99819
K12 0.97139 0.99487 0.99981
K21 0.9609 0.99288 0.99754
K22 0.96359 0.99109 0.98461

36

2.3 Results and discussion

2.3.1 Computational cost

Our hypothesis states that the global polynomial incurs in online and off-line compu-

tational cost that is the same or better than nearest neighbor and bilinear methods.

To test the hypothesis we measure the actual off-line and online computational pro-

cessing time for the nearest neighbor, bilinear interpolation, and global polynomial

approaches. Off-line processing pertains to the solution of the trim control inputs

u0ij and the optimal control gain matrix Kij for the n ×m set of conditions in the

scheduling variable space. Off-line computational time thus increases with the car-

dinality of the set. In the case of the global polynomial method off-line processing

also includes the generation of the response surface approximations via least square

regression as illustrated in Algorithm 1. The regression process is also expected to

increase with the size of the data sample, albeit less so than the solution of u0ij and

Kij. Online processing pertains to the actual simulation of the UAS flight dynam-

ics, including the variable scheduling function applied to the trim control inputs u0ij

and the optimal control gain matrix Kij, utilizing each of the three methods under

consideration. As discussed in subsection 2.2.1 value scheduling involves three basic

steps: the identification of points that are the basis for the interpolation, solving

for the interpolant, and evaluating the interpolant. The first step is believed to be

of very low computational cost, marginally sensitive to the granularity of the data

set, and not applicable for the global polynomial. The second step is believed to be

the most expensive and only applicable to the bilinear interpolation. The evaluation

of the interpolant in the third step is also believed to be inexpensive and modestly

dependent on its order, and is not applicable to nearest neighbor.

The hypothesis test is designed to explicitly quantify the effect of the selected

gain scheduling approach and of the data set size on computational time, and to

provide relevance and representativeness to UAS applications treated in this paper.

37

To address the former we conduct tests with data sets containing 16, 25, 64, and

100 trim points arranged in a square design within prescribed velocity and altitude

bounds. To address the latter, we simulate four different maneuvers selected from the

literature based on their importance and pervasiveness across different UAS mission

profiles. More specifically, we utilize the RTCA Operational Services and Environ-

mental Definition (OSED) for UAS [128] which outlines seven basic UAS mission

profiles and categorizes them as point-to-point (P2P), planned aerial work (PAW),

and unplanned aerial work (UAW). We identify four elemental flight maneuvers from

explicit commentary in Ref. [128] or implicitly through our own interpretation and

understanding of the mission profiles: Climb, Circular Turn, Circular Climb (spiral

climb), and Horizontal Step. Table 4 summarizes the four elemental maneuvers and

their presence across the seven basic UAS mission profiles. A circle indicates that

the maneuver is observed in a given mission, a cross indicates the maneuver does

not occur, and a triangle indicates that maneuver is understood or expected to occur

albeit lack of explicit textual reference. Figure 9 illustrates the elemental maneuvers.

Table 4: UAS Elemental maneuvers and basic mission profiles
Law Marine Environmental Cargo Border Hurricane Environmental

Mission enforcement monitoring sensing Delivery surveillance research monitoring
Mission P2P P2P P2P P2P P2P P2P P2P
Type PAW PAW PAW PAW PAW PAW

UAW UAW PAW UAW UAW
Climb O O O O O O O
Cir. turn X X O X O O X
Cir. climb X X 4 X 4 4 X
Hor. step X O O X X X O
O - Observed
X - Not observed
4 - No information

Simulations were conducted on a commercially available desktop computer with

a 3.40GHz Intel(R) Core(TM) i7-2600 processor and a 8GB RAM. Results for off-

line computational cost, presented in Table 5, confirm expected trends discussed

above. For all scheduling methods off-line cost increases with number of points in

the scheduling variable space. For nearest neighbor and bilinear interpolation the

cost is the same since the off-line process is exactly the same, namely solving for trim

38

0
1

2
3

4
5

6

x 10
4

−3000

−2000

−1000

0

1000

2000

3000

0

1000

2000

3000

4000

5000

6000

7000

x [ft]
y [ft]

z
[f

t]

(a) Climb

−2

−1

0

1

2

x 10
4

−1

0

1

2

3

x 10
4

0

1000

2000

3000

4000

5000

z
[f

t]
x [ft]

y [ft]

(b) Circular turn

0
1

2
3

4
5

6

x 10
4

−2

−1

0

1

2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

x [ft]
y [ft]

z
[f

t]

(c) Circular climb

0
2

4
6

8
10

12

x 10
4

−1

0

1

2

3

4

x 10
4

0

1000

2000

3000

4000

z
[f

t]

x [ft]
y [ft]

(d) Horizontal step

Figure 9: Simulation scenarios

39

control inputs and the control gain set. Results indicate that off-line cost is linear with

number of points, with a fixed minimum cost of 0.59 seconds and an incremental cost

of 0.0355 seconds per trim point. For the proposed method using a global polynomial

interpolant results also show off-line cost increasing linearly with number of points.

Incremental cost is also observed at 0.0355 seconds per trim point, whereas fixed

minimum cost is 0.12 seconds greater by virtue of the global polynomial regression.

The computational time for the regression increases with the number of trim points,

but negligibly within the 0.01 second accuracy used in reporting these results. This

approximately constant increment in off-line cost represents a 8.6% increase for 16

points decreasing linearly to 2.8% for 100 points. Altogether, the we consider this

penalty in off-line processing to be very modest.

Table 5: Off-line computational time in seconds [s] for nearest neighbor, bilinear
interpolation, and global polynomial, with reference data sets of varying size

No. of Points Nearest Neighbor Bilinear Interpolation Global Polynomial
16 1.17 1.17 1.28
25 1.47 1.47 1.59
64 2.86 2.86 2.98
100 4.14 4.14 4.26

For online computational cost we record the computer processing time associated

with the evaluation of the scheduling function. Because this function is evaluated

a multitude of times in each simulation, we report results as mean and standard

deviation values in Table 6. We also record the entire simulation time, the total time

spent on scheduling function calls, and the number of scheduling function calls within

the simulation, all summarized in Table 7

From results in Table 6 we observe that the global polynomial features the best

function evaluation time of all three methods, followed by nearest neighbor which

is 2.7 times greater on average, and then by bilinear interpolation taking 5.5 times

as long on average. As expected, within each method the function call time is not

dependent on the definition of the maneuver or the resolution of the reference data

40

Table 6: Scheduling function (online) evaluation time, mean and standard deviation
in miliseconds [ms] for nearest neighbor, bilinear interpolation, and global polynomial,
with reference data sets of varying size

No. of Mean[ms] Standard Deviation [ms]
Points Climb Cir. Turn Cir. Climb Hor. Step Climb Cir. Turn Cir. Climb Hor. Step

16 0.492 0.489 0.490 0.490 0.067 0.018 0.046 0.050
Nearest 25 0.490 0.488 0.490 0.491 0.043 0.023 0.044 0.049

Neighbor 64 0.492 0.491 0.490 0.490 0.049 0.034 0.031 0.045
100 0.490 0.489 0.491 0.490 0.041 0.042 0.045 0.038
16 1.000 0.996 1.005 0.998 0.100 0.037 0.073 0.062

Bilinear 25 0.999 0.999 0.998 0.998 0.059 0.055 0.044 0.043
Interpolation 64 0.998 1.000 0.997 0.999 0.030 0.046 0.056 0.070

100 1.011 1.005 1.001 1.000 0.078 0.049 0.045 0.031
16 0.184 0.181 0.180 0.181 0.224 0.013 0.024 0.043

Global 25 0.181 0.184 0.182 0.182 0.014 0.038 0.022 0.026
Polynomial 64 0.182 0.182 0.182 0.182 0.013 0.038 0.027 0.033

100 0.182 0.182 0.182 0.182 0.041 0.012 0.027 0.036

Table 7: Total simulation time [s], number of scheduling function calls, and total
scheduling function time [s] for nearest neighbor, bilinear interpolation, and global
polynomial, with 100 point reference data set

Nearest Neighbor Bilinear Interpolation Global Polynomial

Total Simulation Time [s]

Climb 8.64 11.59 7.31
Cir. Turn 10.29 14.09 8.73
Cir. Climb 111.02 153.44 93.79
Hor. Step 40.04 55.02 33.82

Number of Function Calls [-]

Climb 4,775 5,016 5,018
Cir. Turn 5,879 6,172 6,176
Cir. Climb 64,522 67,648 67,677
Hor. Step 23,141 24,280 24,271

Total Scheduling Function Time [s]

Climb 2.33 5.07 0.91
Cir. Turn 2.87 6.2 1.12
Cir. Climb 31.68 67.68 12.33
Hor. Step 11.33 24.29 4.42

set used to generate the approximation. Standard deviation for the evaluation time

sample is shown to be one order of magnitude smaller than the mean thus indicating

an acceptably modest degree of variation.

Results collected for the entire experimental set indicate that for each variable

scheduling method the total simulation time for each maneuver is insensitive to the

number of reference points. Accordingly, we only report results in Table 7 for the

case of 100 points noting that they are almost identical to those for simulations using

reference data sets with 16, 25, and 64 points.

Results depict a consistent trend in total simulation time across the four maneu-

vers for all gain scheduling methods. Climb takes the least amount of time followed

by circular turn, horizontal step, and circular climb. The same trend can be observed

41

via number of function calls. This difference is attributed to the duration of the simu-

lated maneuvers themselves as defined in this study. The climb maneuver is the most

brief, whereas the circular climb is the most lengthy. Within the total simulation

time we identify the time allocated for scheduling function evaluation. Online sim-

ulation time for functions other than variable scheduling includes vehicle dynamics

functions, atmosphere conditions function, and geometry conversion function, among

others. These functions are called the same number of times and with no variation in

evaluation time within each iteration. They are identical across method, maneuver,

and reference data size. Only small variations are observed as minimal perturbations

due to fluctuations in computer processing, and are on average 1.2 [ms] per scheduling

function call iteration.

It is worth noting that the number of function calls for bilinear interpolation

and global polynomial are almost same and the biggest difference between the two

methods is 29 function call difference relative to a nominal 67,667 value is noted

for the circular climb maneuver. However, for the nearest neighbor more significant

differences in the number of function calls are noted. To explain this difference we

first note that the number of function calls is related to the simulated maneuver flight

time and the simulation engine sampling time as follows:

N =
tflight
tsampling

+ 1 (26)

where N is the number of function calls, tflight is the simulated flight time, and

tsampling is the sampling time. For instance, for the nearest neighbor method the

Climb maneuver required 4,775 function calls (See Table 7), which corresponds to the

477.4 second duration of the simulated maneuver and the 0.1 second sampling time

of the simulation engine. The additional function in Eq (26) is the first evaluation

at flight time 0.0 that initializes the flight dynamics simulation. All methods and all

maneuvers features the same 0.1 second simulation sampling time.

42

The difference in number of function calls of the nearest neighbor method relative

to the bilinear interpolation and the global polynomial is traced to differences in

the control gain set and trim solution estimation which have a direct impact on

control inputs, overall vehicle response, and ultimately on the duration of the flight

maneuver. Estimates produced with bilinear interpolation and global polynomial are

similar, at least when compared to those produced by nearest neighbor, and result

in maneuvers with practically the same duration. The nearest neighbor algorithm

yields noticeably different inputs and gain sets, and therefore has noticeably different

flight times. The flight time with nearest neighbor is found to be consistently lower

than that with the other two scheduling methods, an unexpected result that could

be thought to be favorable. However we note that even with less function calls the

total variable scheduling time and total simulation time is greater than that for the

global polynomial. The quality of the nearest neighbor approximation as discussed

in the next subsection also places this observation in context and suggests that this

reduced flight time may in fact be misleading as the controller stability with this

method deviates from the optimum.

Overall we find that compared to bilinear interpolation and nearest neighbor the

global polynomial method presents very small penalties in off-line processing costs,

while providing significant improvements in online time. The latter is improved by a

factor of 2.7 relative to bilinear interpolation and much more significantly relative to

nearest neighbor with a factor of 5.5. Collectively the evidence here reported supports

the stated hypothesis on runtime.

2.3.2 Controller stability and performance

The hypothesis for the proposed gain scheduling method with a global polynomial

states that the resulting controller stability and performance is the same or better

than nearest neighbor and bilinear methods.

43

To evaluate controller stability and performance we conduct multivariate gain

and phase margin analysis on the gain value approximations K produced by each

of the gain-scheduling approaches. Gain and phase margin are well known measures

of stability in closed-loop, dynamic-control systems. We use multivariate gain and

phase margin analysis that simultaneously considers the response of each controller

output (xi: velocity v, heading angle χ, and flight path angle γ), relative to each

controller input signal (ui: motor command δt, angle of attack α, bank angle φ).

Like its univariate analogue, multivariate margin analysis provides a measure of the

tolerance of the close-loop system before becoming unstable. This technique has been

implemented in many stability analysis, for instance, for of the F/A-18 aircraft in the

falling leaf mode [28].

Figure 10 presents multivariate margin analysis results as surface plots of gain

margin and phase margin on the scheduling variable space (v, h) for each of the

three value scheduling methods. Visual inspection of the results reveals the step-like

response of gain and phase margin in figures 10(a) and 10(b) for the nearest neighbor

method. These undesirable discontinuities in the response are expected and occur for

the locus of points that are equidistant to two (or more) adjacent solution points. In

contrast the gain and phase margin for bilinear interpolation and global polynomial

appear to be smooth and within comparable value bounds. For all methods gain and

phase margin are governed by velocity and notably insensitive to altitude.

To evaluate controller stability for each of the gain scheduling methods we char-

acterize the deviation of gain and phase margin relative to the optimal trim and gain

solution. To do so we define 10,000 (i = 1, ... , 100, j = 1, ... , 100) equilibrium points

in a square grid design of the scheduling variable space and solve for the optimal

control gain-values Kopt
ij . High-altitude low-speed points of the square grid that lay

outside the flight envelope are removed, resulting in 9,837 points. We estimate cor-

responding multivariate gain and phase margin values GMopt
ij ,PMopt

ij for each point.

44

(a) Gain margin - nearest neigh-
bor

(b) Phase margin - nearest neigh-
bor

(c) Gain margin - bilinear inter-
polation

(d) Phase margin - bilinear inter-
polation

(e) Gain margin - global polyno-
mial

(f) Phase margin - global polyno-
mial

Figure 10: Multivariate gain and phase margin for three candidate scheduling meth-
ods

45

The process is repeated with each of the gain scheduling methods, and the margin

deviation estimated as the difference relative to GMopt
ij and PMopt

ij respectively for

each point (vi, hj):

∆GM = GM opt
ij −GMij

∆PM = PM opt
ij − PMij

(27)

Statistical results of the analysis are graphically summarized as box plots in Figure

11. The deviation relative to optimal solution margin values is presented for each of

the gain scheduling methods and for each of the four grid resolutions tested (16, 25, 64,

and 100 points in square design). In each box plot the box encompasses the second

and third quartile (25th to 75th percentile), the bars near the extremes encompass

5th to 95th percentiles, the bar near the middle indicates the median, and the circle

indicates the mean.

Results for each method indicate that a higher number of reference solution points

results in smaller stability deviations relative to the optimal controller design. This

effect can be reasonably expected because approximations of the gain values K for

points other than those in the reference set are more accurate. The trend is readily

observed in the box plots as a decreasing deviation from the optimal solution with

mean and median values closer to zero as well as decreasing data sample dispersion.

In consideration of the magnitude of the deviations observed, in the order of +/−1dB

and +/− 0.4deg, the effect of number of trim points on deviation relative to optimal

solution margins is measurable but not of any major practical significance.

Results also show that, for any given number of reference solution points, the pro-

posed global polynomial approximation features small stability deviation from the

optimal controller. These deviations are of the same order of magnitude as those

observed for nearest neighbor and bilinear interpolation. Although results indicate

slightly smaller margin deviations for the proposed polynomial regression the numeri-

cal nature of this assessment and the measured magnitude of the effect do not suggest

46

a stability margin benefit. The findings none the less support the hypothesis that rel-

ative to nearest neighbor and bilinear interpolation the polynomial gain scheduling

does not observe degradation of controller stability.

16 pts 25 pts 64 pts 100 pts
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Number of trim points

G
M

 d
ev

ia
ti

o
n
 [

d
B

]

Nearest neighbor

Bilinear neighbor

Polynomial regression

(a) Gain margin

16 pts 25 pts 64 pts 100 pts
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of trim points

P
M

 d
ev

ia
ti

o
n
 [

d
eg

re
e]

Nearest neighbor

Bilinear neighbor

Polynomial regression

(b) Phase margin

Figure 11: Statistic analysis for Gain margin and Phase margin

As an additional means to characterize modeling accuracy we perform numer-

ical simulations showing the time-response characteristics of each gain-scheduling

method. The assessment is done in the style of work by Morelli [108][107] who used

time-response to doublet control inputs to quantify the modeling accuracy of a multi-

variate power series expansion for aerodynamic coefficient predictions. For the mod-

eling accuracy comparison with the three scheduling techniques we define a reference

trajectory as shown in Figure 12 and investigate the time response arising from each

gain-scheduling method. Results indicate that gain-scheduling with the bilinear inter-

polation and the proposed polynomial approach have very similar time-response. The

nearest neighbor method can give rise to some loss of smoothness in the speed response

due to the switching control structure. We conclude that the proposed polynomial

gain-scheduling has time-response quality comparable to bilinear interpolation.

47

0 500 1000 1500 2000 2500 3000 3500 4000

0
500

3000

3500

x [ft]

y [ft]
z

[f
t]

Reference trajectory

0

2000

4000

6000
x

 [
ft

]

Nearest neighbor

Bilinear neighbor

Polynomial regression

−500

0

500

y
 [

ft
]

2500

3000

3500

z
[f

t]

50

100

150

v
 [

ft
/s

]

0 5 10 15 20 25 30 35 40
−50

0

50

γ
 [

d
eg

re
e]

Time [sec]

Figure 12: Time response

48

2.4 Conclusion

Analysis of increasingly complex operational airspace concepts, such as separation

assurance functions for unmanned aircraft, require modeling and simulation capabil-

ities with breadth of scope to capture multi-agent interactions and depth of scope to

accurately model aircraft flight dynamics, navigation, and control governing said in-

teractions. Runtime improvements without loss of accuracy or fidelity are paramount

enablers. The global polynomial approximation proposed for variable scheduling of

controller gain and trim inputs replaces conventional local approximation via near-

est neighbor or bilinear interpolation algorithms. The hypothesis presented contends

that, relative to the two conventional methods considered, the proposed method con-

currently provides improvements in computational cost and controller stability. To

test this hypothesis we conduct numerical flight dynamics simulations with the three

variable scheduling methods for four aircraft maneuvers using scheduling variable so-

lution sets with 16, 25, 64, and 100 points. Computational runtime is recorded for

each simulation case and used to conduct a comparative assessment across meth-

ods. Results support our hypothesis and show that the proposed global polynomial

method reduces runtime by a factor of 2.6 over the nearest neighbor approximation,

and by a factor of 5.4 over bilinear interpolation. In the interest of transparency and

fairness we account for the computational cost of the polynomial regression in off-line

runtime. We find that the penalty is negligible, in the order of 0.1 [s]. Assessment of

controller stability attained with each method is measured as the deviation of mul-

tivariate gain and phase margin from optimal controller values. Margin deviation

is statistically assessed using a uniform 100 × 100 sampling in the scheduling vari-

able space, and repeated for the four scheduling variable solution sets. Qualitative

inspection of box plots readily reveals that the margin deviation is smallest for the

proposed method for any given number of reference solution points. Moreover, the

global polynomial produces practically no deviation from optimal solution with a 25

49

point reference data sample whereas the bilinear interpolation method only begins to

reach this level of stability with the 100 point reference sample. Overall the evidence

produced through numerical flight dynamics simulations support the hypothesis and

characterize the improvements of the proposed method over conventional approaches.

This statistical gain-scheduling technique is especially more efficient for the multi-

UAV problem because each vehicle employs the proposed gain-scheduling structure.

For example, if n UAVs are simulated, the computational improvement is n times

than a single UAV simulation. However, in the actual hardware implementation,

this proposed technique can have a limited improvement depending on the on-board

hardware processor. For instance, if the on-board hardware process is powerful, the

impact of the proposed gain-scheduling technique may not be significant to improve

the computational process.

50

CHAPTER III

COLLISION AVOIDANCE ALGORITHM USING

OPTIMAL CONTROL THEORY

Trajectory optimization is a method to compute a trajectory with the minimum cost

function (i.e., Performance index) that satisfies dynamic constraints and initial/termi-

nal/boundary conditions. The optimal trajectory is widely utilized for diverse appli-

cations in autonomous vehicles, launch vehicles, and aircraft. This chapter provides

an overview of the fundamental optimal trajectory problem and existing numerical

methods. Based on the optimal trajectory problem, we introduce a mathematical

formulation of the optimal collision avoidance algorithm.

3.1 General optimal trajectory problem

This section provides the overview of the trajectory optimization problem based on

Bolza problem with an unspecified final time. The objective of the trajectory op-

timization is to identify the trajectory with a minimum cost and to satisfy all con-

straints. To compute the optimal trajectory, we define a performance index. The

performance index (cost function) to find the optimal trajectory in [t0 tf] can be

written as

Min J(u) =

∫ tf

t0

L(x(t),u(t), t)dt+ Ψ(x(tf), tf), (28)

where L is a transient cost function (i.e., Lagrange cost or running cost) and Ψ is a

terminal cost function (i.e., Mayor cost). x(t) is a vehicle state vector, u(t) is a control

input, t0 is an initial time, and tf is a terminal time. Vehicle state are captured as

dynamic constraints. The vehicle dynamic constraints can be defined as a non-linear

51

differential equation:

ẋ(t) = F (x(t),u(t), t) (29)

The dynamic equation is F : [t0 tf]×D × U → Rn, the states are D ⊆ Rn, and the

control inputs are u ∈ Uadm = u[t0 tf]→ Rm, PWC(PieceWise Continuous),u(t) ∈

U , ∀t ∈ [t0 tf]. Uadm is an admissible control input.

The boundary conditions are x(t0) = x0 ⊆ D, and x(tf) = xf ⊆ D. The state

constraints can be stated as

x(t0) ∈ X0 ⊆ D (30)

x(ti) ∈ Xi ⊆ D, i = 1, 2, ..., k

x(t) ∈ Xi ⊆ D, i = 1, 2, ..., k, ∀t ∈ [t0, t1]

In Equation 30, the first state constraint is the initial time constraint, and the sec-

ond state constraints indicate a mid-point constraint. The last constraints are the

general state constraints for all time. From the given cost function, dynamic con-

straints, states constraints and boundary conditions, and the necessary conditions

for the optimal trajectory can be derived from the calculus of the variations [85] [27]

[93]. The necessary conditions can be different mathematical forms depending on

the given boundary conditions and constraints. This paper focuses on the trajectory

optimization with given initial/terminal conditions and an unspecified terminal time

that can be formulated as the optimal trajectory problem with a free final time. The

augmented performance index to derive the necessary conditions can be expressed as

follows

Ĵ(x,u, λ, t) =

∫ tf

t0

L(x,u, t) + λT (f(x,u, t)− ẋ)dt+ Ψ(x(tf), tf) (31)

In the unspecified final time case, the variations by the admissible weak variation v

are u+εv and tf+ετ over [0 tf+ετ]. Note that the perturbed control is u+εv ∈ Uadm.

52

The variation from the incremental is

δĴ(x,u, λ, t) =
1

ε
lim
ε→0

[Ĵ(x + εη,u + εv, λ, t)− Ĵ(x,u, λ, t)]. (32)

The variation equation can be rewritten using the augmented performance index in

Equation 31.

δĴ(x,u, λ, t) =
1

ε
lim
ε→0

[

∫ tf+ετ

t0

(L(x + εη,u + εv, t)) dt+λT (f(x+εη,u+εv, t)−ẋ−εη̇)dt

+Ψ(x(tf+ετ), εη(tf+ετ), tf+ετ)−
∫ tf

t0

(
L(x,u, t)dt+ λT (f(x,u, t)− ẋ)

)
dt+Ψ(x(tf), tf)]

(33)

The first integral term can be divided into two integral terms that are from the

initial time t0 to the final time tf , and from the final time tf to the final time plus

the perturbed time tf + ετ :

δĴ(x,u, λ, t) =

1

ε
lim
ε→0

[

∫ tf

t0

(
L(x,u, t) + ε

∂L

∂x
η + ε

∂L

∂u
v + λT (f(x,u, t) + ε

∂f

∂x
η + ε

∂f

∂u
v)− ẋ− εη̇

)
dt+o1(ε)

+

∫ tf+ετ

tf

(L(x + εη,u + εv, t)) dt+ λT (f(x + εη,u + εv, t)− ẋ− εη̇))dt+

Ψ(x(tf + ετ), εη(tf + ετ), tf + ετ)

−
∫ tf

t0

(
L(x,u, t)dt+ λT (f(x,u, t)− ẋ)

)
dt+ Ψ(x(tf), tf)] (34)

In Equation 34, o1(ε) presents high order terms in the first integral term. In Equation

34, the second integral can be rewritten using the Taylor series expansion

δĴ(x,u, λ, t) =

1

ε
lim
ε→0

[

∫ tf

t0

(
L(x,u, t) + ε

∂L

∂x
η + ε

∂L

∂u
v + λT (f(x,u, t) + ε

∂f

∂x
η + ε

∂f

∂u
v)− ẋ− εη̇

)
dt+o1(ε)

+ ετ(L(x,u, t)) + o2(ε) + Ψ

(
x(tf) + ε(

∂x

∂t
)|tf τ + η(tf)) + o3(ε), tf + ετ

)
−
∫ tf

t0

(L(x,u, t)dt+ λT (f(x,u, t)− ẋ))dt+ Ψ(x(tf), tf)], (35)

53

where o2(ε) and o3(ε) are high order terms resulting from the Taylor series expansion.

By reorganizing the equation, the variation equation is

δĴ(x,u, λ, t) =

1

ε
lim
ε→0

[

∫ tf

t0

(
L(x,u, t) + ε

∂L

∂x
η + ε

∂L

∂u
v + λT (f(x,u, t) + ε

∂f

∂x
η + ε

∂f

∂u
v)− ẋ− εη̇

)
dt+o1(ε)

+ ετ(L(x,u, t)) + o2(ε) + Ψ(x(tf), tf) + ε
∂Ψ

∂x

(
∂x

∂t
|tf τ + η

)
|tf + ε

∂Ψ

∂tf
τ + o4(ε)

−
∫ tf

t0

(L(x,u, t)dt+ λT (f(x,u, t)− ẋ))dt+ Ψ(x(tf), tf)]. (36)

o4(ε) entails high order terms with the terminal cost. For the simplification of the

variation equation, we assume that the high order terms are small, which means neg-

ligible. From this assumption, the final simplified equation can be therefore rewritten

as follows

δĴ(x,u, λ, t) =∫ tf

t0

[(
∂L

∂x
+ λT

∂f

∂x
+ λ̇T

)
η +

(
∂L

∂u
+ λT

∂f

∂u

)
v

]
dt− λT (tf)η(tf) + λT (0)η(0)

+ τL|tf +
∂Ψ

∂x

(
∂x

∂t
τ

)
|tf +

∂ΨT

∂x
η(tf) +

Ψ

∂tf
τ |tf (37)

From the final variation equation, the first order necessary conditions can be stated

as

∂L

∂u
+ λT

∂f

∂u
= 0 (38)

λ̇T = −
(
∂L

∂x
+ λT

∂f

∂x

)
(39)

λT (tf) =
∂ΨT

∂x
|tf (40)(

L+
∂ΨT

∂x

(
∂x

∂t

)
+
∂Ψ

∂tf

)
|tf = 0 (41)

The term L+λTf that is named Hamiltonian H. The first order necessary conditions

can also be expressed with respect to Hamiltonian H.

∂H

∂u
= 0 (42)

54

λ̇T = −∂H
∂x

(43)

λT (tf) =
∂ΨT

∂x
|tf (44)(

H +
∂Ψ

∂tf

)
|tf = 0 (45)

In the first necessary conditions, Equation 39 and Equation 43 are called the costate

equation or the adjoint equation. Equation 41 and Equation 45 are the transversality

condition.

In general engineering systems such as an autonomous vehicle, and manipulate

systems, states and control inputs are bounded by constraints. For example, a thrust

of spacecraft cannot exceed over a maximum thrust. The maximum climb angle for

a commercial aircraft can be limited due to safety reasons. Therefore, we discuss

solving a constrained optimal trajectory problem.

If Hamiltonian can be a linear function of a control input u, the optimal controller

does not exist in the first order necessary condition because the optimal controller

∂H
∂u

is not a function of u. In this case, the Pontryagin’s minimum principle (i.e.,

Pontryagin’s maximum principle) is a way to generalize the optimal control problem

with control and state constraints. If the control is bounded to (umin ≤ u ≤ umax),

Pontryagin’s minimum principle:

H∗ = H∗(x∗(t), u∗(t), λ∗(t), t) ≤ H∗(x∗(t), u(t), λ∗(t), t) (46)

u∗ = argmin H∗(x∗(t), u(t), λ∗(t), t), u ∈ uadm, ∈ [t0, t1], (47)

where x∗(t) is an optimal state, u∗(t) is an optimal control and λ∗(t) is an optimal

Lagrange multiplier. The Pontryagin theory implies that if a control is bounded, the

control input to minimize Hamiltonian is optimum. This theory can also be applicable

to the problem with unbounded controls [85]. The Pontryagin’s minimum principle

approach has an issue when Hamiltonian is linearly dependent on the controller u. The

optimal controller cannot be specified because the necessary condition of the optimal

55

controller is not a function of the control input u. This case is called singular control

or singular arc. To determine the optimal control u∗, one approach is repeated to

differentiate ∂H/∂u until the control input u appears. To be the optimal singular

controller, the control input u should meet the following necessary conditions:

(−1)k
∂

∂u

[(
d

dt

)2k (
∂H

∂u

)]
≥ 0 k = 0, 1..., (48)

where m = 2k is the order of derivative of ∂H/∂u and k is the order of singular arc.

This condition is named Kelley’s condition

The function of Legendre necessary condition is to find a weak local minimizer of

the cost function J(t, x, ẋ) [152]. This Legendre necessary condition is weaker than

Weierstrass necessary condition. The Legendre condition is a more practical approach

because of its simpler mathematical form. The Legendre necessary condition is that

if x∗ is a weak local minimizer of the cost function J(t, x, ẋ), then

Lẋẋ(t, x
∗, ẋ∗) ≥ 0 ∀t ∈ [t0, tf] (49)

From the calculus of variations and the necessary condition of the cost function,

J(t, x, ẋ) can be written as

J(η) =

∫ tf

t0

Lxxη
2 + 2Lxẋηη̇ + Lẋẋη̇

2dt ≥ 0 (50)

Legendre condition defines the candidate solutions. To determine the minimizer, we

can consider the following Jacobi condition defined as

d

dt
(Lxẋη + Lẋẋη̇) = Lxẋη̇ + Lxxη (51)

If this Jacobi condition is satisfied, conjugate points will not be appeared as/on

[t0 tf], which is the weak local minimizer. The sufficient condition of the cost function

J(t, x, ẋ) is that a weak local minimizer x∗ should be a smooth function. This smooth

function should also satisfy the following three conditions: Euler-Lagrange equation,

Legendre condition, and Jacobi condition.

56

In the constrained optimization problem, the cost function of the continuous op-

timal trajectory in [t0 tf] without any terminal cost function can be written as

Min J(u) =

∫ tf

t0

L(x(t),u(t), t)dt, (52)

where L is a transient cost function and the final time is free. The vehicle dynamics

can be defined with non-linear differential equation:

ẋ(t) = F (x(t),u(t), t) (53)

In this equation, the function is F : [t0 tf]×D×U → Rn, the states are D ⊆ Rn, the

control inputs are u ∈ Uadm = u[t0 tf]→ Rm, PWC, u(t) ∈ U,∀t ∈ [t0 tf]. If the

control input u is a local minimizer of the cost function J(u), the co-state equation

will satisfy the following function:

λ̇ = −∂H
T

∂x
, t ∈ [t0 tf] (54)

The co-state at the final time is λ(tf) = 0 since the states x at the terminal time

are free. If the optimal control input equation is zero, the following condition can be

defined

∂H

∂u
= 0. (55)

The second order condition should also be considered to specify the optimal controller.

The condition to be a local minimizer of J(u) is

δ2J(u) =
1

2

∫ tf

t0

[
δxTHxx(t)δx+ 2δxTHxu(t)v + vTHuu(t)v

]
dt ≥ 0 (56)

A necessary condition of the optimal controller is

vTHuu(x(t), u(t), λ(t))v ≥ 0 (57)

This necessary condition in the equation 57 is called the Legendre−Clebsch condition.

To solve the second order variation of the cost function, the additional necessary

conditions should be considered. From the equation 56 when the control input u is a

57

local minimizer, the admissible control variation v should not be negative. This fact

makes the accessory minimization problem.

Jacc(v) =
1

2

∫ tf

t0

[
δxTHxx(t)δx+ 2δxTHxu(t)v + vTHuu(t)v

]
dt (58)

The dynamic equation is

δẋ = A(t)δx(t) +B(t)u(t). (59)

The boundary condition is δx(0) = 0. The Hamiltonian of the accessory minimization

problem is

H =
1

2
δxTHxx(t)δx+ δxTHxu(t)v +

1

2
vTHuu(t)v + λT (A(t)δx(t) +B(t)u(t)). (60)

The optimal control is given by

∂H

∂u
= HT

xu(t)δx+BT (t)λ+Huu(t)u. (61)

The adjoint equation is

λ̇T = − ∂H
∂δx

= −Hxx(t)δx−Hxu(t)u− A(t)Tλ (62)

It is assumed that Huu satisfies Legendre− Clebsh condition in Equation 57. From

Equations 59, 61 and 62, the state space equation can be represented asδẋδλ̇
 =

 A−BH−1uuHT
xu −BHuuB

T

−(Hxx −HxuH
−1
uuH

T
xu) −(AT −H−1xuBT)

δxδλ

 (63)

The boundary conditions are δx(0) = 0 and δλ(tf) = 0. The matrix form can be

rewritten with respect to a state transition matrix through solving the homogeneous

solution of the different equation

Φ̇(t) = M(t)Φ(0), (64)

where the state transition matrix is Φ(t) = [δx(t) δλ(t)]T . In this matrix form, if

detM12(tc) is zero, tc ∈ (0 tf), the tc is a conjugate point. In other words, the control

58

input u is not a local minimizer in the optimal trajectory problem. For the optimal

trajectory problem with unspecified final time, the final time needs to be specified.

This final time can be computed from the first order necessary conditions mentioned

from Equations 42 to Equation 45.

3.1.1 Numerical method

This section discusses optimal solution methodologies to find an optimal trajectory

problem described in previous section. Figure 13 illustrates the representative meth-

ods for solving the optimal trajectory problem.

Figure 13: Methodologies for solving an optimal control problem

The first order necessary conditions of the optimal trajectory problem can be de-

fined from the calculus of variations and Pontryagin’s maximum principle, which is

based on a cost function, initial conditions and constraints [85][27][19]. This first

order necessary conditions can convert the optimal control problem into two points

boundary value problem (TBVP). This two points boundary value problem can be

solved by an analytic approach or numerical techniques. Most analytic techniques for

the optimal trajectory is not solvable because of the mathematical complexity derived

59

from the first order necessary conditions and the sufficient conditions [24][27]. Practi-

cal engineering problems like an optimal trajectory for a launch vehicle to reach Mars

or other planets cannot be solved analytically due to their complex dynamics and

constraints. Consequently, the iterative numerical approach is a suitable approach

to overcome the complexity issue of the analytic solution. The numerical methods

have two types of techniques which are an indirect method and a direct method

[19][149][124]. The indirect method requires the analytic expression about the first

order necessary conditions of the optimal trajectory problem from the calculus of

variations. From the first order necessary conditions, the indirect approach solves

the candidate optimal trajectory solutions, which are called extremals, based on the

given boundary conditions and constraints. The final optimal trajectory is one of

the candidate solutions to satisfy the necessary conditions with the lowest cost. The

advantages of the indirect method are that the final optimal solution is highly accu-

rate, and the solution does not violate the necessary conditions since the candidate

solutions satisfy the first order necessary conditions. However, this indirect technique

has several drawbacks. The first drawback is that solving the first order necessary

conditions is not trivial because the first order necessary conditions must be solved

analytically, not numerically. Second drawback is a small convergence bound. In

other words, initial guesses can hugely affect the convergence of the final optimal tra-

jectory solution since gradient methods (ex. steepest descent algorithm) or Newton

method is commonly employed for the trajectory optimization [85]. The guesses for

the initial co-states’ values are also very difficult because the co-states do not have

physical meanings. Moreover, the designer of the optimal trajectory has to derive a

switching structure from the given constraints. Identifying the switching structure

may not be trivial depending on the optimal trajectory problem complexity. Notable

examples of the indirect method are the shooting method, multiple shooting method

and indirect collocation method [83][122][123][124].

60

The direct method converts the continuous optimal trajectory problem into a finite

discrete optimal trajectory problem with algebraic constraints. The direct method

is also named Nonlinear Program (NLP). The benefits of the direct method are that

it does not require the analytic solution for the first order necessary condition. In

addition, unlike the convergence issue of the indirect method, the convergence area is

larger. Namely, the level of the convergence is less related to the initial guess for the

initial states or initial co-states. There are two types of direct methods. One is the

method to parameterize control input. The direct shooting method and the direct

multiple shooting method are included in this category [124]. The other method is

a collocation method using a spectral method. Examples of the spectral method are

the spectral method using Chebyshvy polynomial, Legendre pseudo spectral method,

Legendre polynomials, Legendre pseudo spectral method [148][147][124]. Stryk pro-

posed a hybrid approach to have both benefits of the direct and indirect method

[149]. The hybrid approach combines the large convergence feature and the multiple

shooting strategy with the high accuracy. The hybrid approach is verified from the

examples of the Brachistochrone problem and the Apollo reentry problem [149]. In

the optimal trajectory problem, the co-state estimation is critical because the esti-

mated co-state is applied to verify the optimality conditions, mesh refinement and

sensitivity analysis. The co-state can be estimated from solving approximation to

the co-state dynamics from a post-processing or the method based on the relation-

ship of KKT (Karush-Kuhn-Tucker) multipliers in NLP and the continuous co-states

from the sensitivity analysis. The recent technique to estimate co-state is a pseudo

spectral method, which the co-state maps a principle from the relationship between

KKT multipliers of NLP and co-state estimations. The drawback of this technique

is that the boundary points cannot be held from the KKT multipliers and the co-

state estimations. Therefore, it may not satisfy the co-state dynamics or boundary

61

conditions. To solve this problem, Benson suggested Gauss pseudo-spectral tran-

scription optimal control [19]. In details, this method uses a direct transcription

method through a parameterization technique for the states and the controls by a

global polynomial collocated at Gauss points. This technique produces more pre-

cise co-state estimation. To be more specific, the KKT conditions of NLP are exactly

equivalent to the first order necessary condition from the discretization. Consequently,

this Gauss pseudo-spectral technique has the benefits of both of the direct method

and indirect method. This method is also very stable and robust, and in spite of

the unidentified switching structure, this method provides the result of the trajectory

optimization. Lastly, this convergence speed is exponentially fast. Because of these

benefits, the Gauss Pseudospectral Method (GPM) provided by the open-source soft-

ware GPOPS is implemented as a numerical solver for the optimal collision avoidance

problem. The Gauss pseudo-spectral method is suggested by Benson, and it is ad-

vanced and validated from several practical case studies performed by Huntington,

et al [19][20][62][61][63]. This technique uses an orthogonal collocation method based

on the Legendre-Gauss points. GPOPS software provides MATLAB interface with

the non-linear programming problem solver SNOPT [54][55].

3.1.1.1 Gauss Pseudospectral method

In this section, the Gauss pseudospectral method will be introduced. The Gauss

pseudo-spectral method is proposed by Benson and extended by Huntington [19][20][62].

To formulate an optimal trajectory problem, the Bolza optimal control problem will

be stated. In the Bolza optimal control problem, the performance index can be rep-

resented as follows:

Min J(u) =

∫ tf

t0

L(x(t),u(t), t)dt+ Ψ(x(t0), t0,x(tf), tf), (65)

62

where L and Ψ are respectively a transient cost function and a terminal cost function.

The vehicle dynamics can be defined with non-linear differential

ẋ(t) = F (x(t),u(t), t) (66)

The dynamic constraint F → Rn in t ∈ [t0 tf], the states are D ⊆ Rn, and the control

inputs are u ∈ Uadm and u[t0 tf]→ Rm. The boundary conditions at the initial time

and terminal time can be expressed as

Φ(x(t0), t0,x(tf), tf) = 0 (67)

The constraints can be written as

C(x(t),u(t), t) ≤ 0, t ∈ [t0 tf] (68)

The Gauss pseudo-spectral method for solving the continuous Bolza optimal trajec-

tory problem described from Equation 65 to Equation 68 requires fixed time interval

for a Nonlinear Program problem. Namely, Bolza optimal problem can be transformed

into the optimal control problem with the fixed time according to the following trans-

formation algebraic equation.

τ =
2t

tf − t0
− tf + t0
tf − t0

(69)

This algebraic equation transforms the continuous optimal control problem in t ∈

[t0 tf] into the optimal control problem with the fixed time τ ∈ [−1 1]. The

transformed discrete cost function of Bolza optimal problem is given as

Min J(u) =
tf − t0

2

∫ τf

τ0

L(x(τ),u(τ), τ)dt+ Ψ(x(τ0), t0,x(τf), tf) (70)

The dynamic constraints can be transformed to

2

tf − t0
dx

dτ
= F (x(τ),u(τ), t0, tf) (71)

The transformed boundary condition and constraints can be written as

Φ(x(τ0), t0,x(τf), tf) = 0 (72)

63

C(x(τ),u(τ), τ) ≤ 0 (73)

The above equations are called transformed continuous Bolza problem. The next

step of the Gauss pseudo spectral method is making a discretized mathematical for-

mula, known as Nonlinear Program (NLP), from the transformed continuous Bolza

problem described from Equations 70 to 73. The discretized equations for the state,

the control and the co-state functions can be defined by the approximation technique

of Lagrange interpolation polynomial. The Lagrange interpolation equations Li(τ)

are given as

Li(τ) =
N∏

j=0,j 6=i

τ − τj
τi − τj

, (i = 1, ..., N) (74)

The differential equation of the Lagrange interpolating polynomial can be written as

L̇i(τ) =
N∑
i=0

∏N
j=0,j 6=i(τk − τj)∏N
j=0,j 6=i(τi − τj)

, (i = 1, ..., N) (75)

The state and control equations can be derived from the previous Lagrange interpo-

lation equation and the differential equation of Lagrange polynomial equation. The

approximated state equation is

xL(τ) =
N∑
i=0

x(τi)L
x
i , (i = 1, ..., N), (76)

where xL is the approximated state, and Lx
i is the Lagrange interpolation function

for the state. The derivative of the state equation is

ẋL(τ) =
N∑
i=0

x(τi)L̇
x
i , (i = 1, ..., N) (77)

where L̇x
i is the derivative of the Lagrange polynomial, which is be written in Equation

75. The control equation can be approximated in the same manner of the state

approximation using Lagrange interpolating polynomial.

uL(τ) =
N∑
i=0

u(τi)L
u
i , (i = 1, ..., N) (78)

64

The two Lagrange polynomial equations approximating the state Lx
i and the control

Lu
i satisfy the following properties.

Lx
i (τj) =

1, i = j

0, i 6= j
(79)

Lu
i (τj) =

1, i = j

0, i 6= j
(80)

The previous discussion of the approximation technique can be provided to define

the formal Gauss pseudo-spectral discretization. The cost function can be written as

Equation 70

Min J(u) =
tf − t0

2

K∑
k=1

wkL(xk,uk, τk; t0, tf)dt+ Ψ(x(τ0), t0,x(τf), tf) (81)

The integral part of the cost function is transformed by the quadrature approximation

(Gaussian quadrature) which makes a weighted sum of the function at a specified

point within the integration range [139]. Dynamic constraints can be restated from

Equation 71 and Equation 77 as a residual equation.

Rk =
K∑
i=0

x(τi)L̇
x
i (τ)− tf − t0

2
f(xk,uk, τk; t0, tf) = 0 (82)

The final states of the continuous form is

x(tf) = x(t0) +

∫ tf

t0

f(x(t),ut, t)dt (83)

The final states in the fixed time, t ∈ [−1 1], can be transformed as follows

x(τf) = x(τ0) +
tf − t0

2

∫ 1

−1
f(x(τ),u(τ), τ)dτ (84)

Using Gaussian quadrature approximation, the boundary condition of the final state

can be expressed as

Rtf = x(τf)− x(τ0)−
tf − t0

2

N∑
k=1

wkf(xk,uk, τk; t0, tf)dτ, (k = 1,, N) (85)

65

Φ(x(t0), t0,x(tf), tf) = 0 (86)

The constraints can be written as

C(xk,uk, τk; t0, tf) ≤ 0, (k = 1, ..., N) (87)

The discretization points are a set of Legendre-Gauss points, which is the roots of the

Kth degree Legendre polynomial. Consequently, NLP of the optimal Bolza problem

is that the cost function is Equation 81, and the algebraic constraints are Equations

82, 85, 86 and 87. The NLP optimal cost function of the Bolza problem can be

rewritten to represent the augmented performance index.

Min Ĵ(u) =Ψ(x(τ0), t0,x(τf), tf) +
tf − t0

2

K∑
k=1

wkL(xk,uk, τk; t0, tf)dt (88)

+ Π̄Tφ(x(τ0), t0,x(τf), tf)−
K∑
k=1

λ̄TkC(xk,uk, τk; t0, tf) (89)

−
K∑
k=1

µ̄TkRk − µ̄TRtf (90)

From the augmented performance index, we can solve the first order necessary

conditions for the optimality, which can be defined through the calculus of the varia-

tion. The details to derive the first order necessary conditions is well described in the

reference [64]. For the Gauss Pseudospectral Method, we implement the trajectory

optimization software GPOPS to solve the optimal collision avoidance problem.

3.2 Optimal collision avoidance trajectory strategy

In the previous section, the general optimal trajectory problem and the numerical

techniques to solve an optimal trajectory problem are discussed. The introduced

optimal trajectory problem is an open-loop control strategy, but it does not have a

feedback structure to compensate the tracking error. The three general optimal con-

trol structures for the integration of guidance and navigation and an aircraft attitude

controller can be implemented.

66

The first structure is a tracking control scheme without the feedback structure

for the compensation of the tracking error. The optimal trajectory defines an opti-

mal controller u(t) based on the performance index (cost function), initial/terminal

conditions, boundary conditions and dynamic constraints. From the definition of

the optimal controller u(t), the optimal reference states xref can be specified. The

guidance and navigation loop from the optimal trajectory function gives this opti-

mal reference states xref to the flight control loop. The flight controller using the

reference states information generates the control inputs u(t) to follow the optimal

trajectory path xref . The advantage of this tracking structure is a computationally

efficient and simple since the integrated flight controller does not have the feedback

loop. However, due to the non-existence of the feedback scheme when the tracking

controller cannot follow accurately, the tracking error will be accumulated.

Another optimal trajectory structure is the optimal state feedback control scheme.

This technique is also called a policy optimization technique. The role of the optimal

state feedback control is finding an optimal controller input u(x) instead of find-

ing an optimal controller u(t). The result of the optimal state feedback controller

input u(x) is Hamilton-Jacobi-Bellman (HJB) equation, which is nonlinear Partial

Differential Equation (PDE). This state feedback control approach has a difficulty to

solve numerically in a real-time manner due to the high complexity of the nonlinear

PDE equation [27]. Therefore, the optimal state feedback control scheme is not an

adequate structure for the real-time trajectory problem.

The last approach is Model Predictive Control (MPC). This method is also

called Receding Horizon Control (RHC), or Moving Horizon Optimal Control.

The model predictive control predicts a future trajectory, future states’ vector based

on the current states xc over time horizon at each sampling instant. This process

is repeated at every sampling step. Unlike the tracking control structure, the MPC

approach continuously updates a new trajectory over a finite horizon that provides

67

some levels of robustness against perturbations and modeling uncertainties [16]. This

MPC structure commonly applies a simplified dynamic model to the future reference

trajectory with constraints so that it can improve a computational efficiency better

compared to the optimal state feedback control scheme. Therefore, MPC structures

have been implemented in many flight real-time simulations [141][21][34][106][81][105].

For these reasons, the model predictive control structure is adopted to the integrated

flight controller.

The block diagram of the overall flight control system is shown in Figure 14.

The proposed flight simulation structure have two loops including the flight control

logic and the guidance and navigation loop. The flight controller is designed by

the proposed statistic gain-scheduling method addressed in the earlier chapter. The

guidance and navigation structure will be discussed to explain how to formulate the

optimal collision avoidance problem in the following sections.

Figure 14: Two-layer collision avoidance framework

68

3.2.1 Collision avoidance framework

To formulate a trajectory optimization problem in a collision avoidance situation, we

must define the steps of collision avoidance such as detection and avoidance. The

sequence of collision avoidance in cooperative and non-cooperative collision prob-

lems have been actively researched. The cooperative collision avoidance problem is

that unmanned aircraft systems can receive information about fixed or moving obsta-

cles from other systems such as ground stations, chasers, and air traffic controllers.

Notable systems of the cooperative avoidance problem that provide obstacle informa-

tion are the traffic collision avoidance system (TCAS) and the automatic dependent

surveillance broadcast (ADS-B) system. Unlike the cooperative collision avoidance

problem, the non-cooperative situation is that unmanned aircraft systems receive

obstacle information from sub-systems. A common example is on-board sensor sys-

tems: LiDAR, radar, and vision types of sensors. Because of complex sequence of

these cooperative/non-cooperative collision avoidance problems, we introduce several

concepts of the sequence of the collision avoidance from the following literatures.

Andrew[89] addresses a generic process about the steps of conflict detection, aware-

ness of obstacles, and identification of the specific required tasks to achieve separation

assurance in cooperative/non-cooperative cases. Yazdi[70] also has constructed an

autonomous collision avoidance algorithm based on a comprehensive architecture for

collision avoidance situations that include cooperative and non-cooperative avoidance

problems suggested by Barfield [17]. The collision avoidance architecture suggested

by Yazdi is based on a sphere that characterizes each of the four stages, which are

determined by available information from the TCAS and airborne sensors.

Based on the introduced frameworks of a collision avoidance sequence from litera-

ture, we establish a comprehensive architecture of an autonomous collision avoidance

to formulate an optimal collision avoidance trajectory problem. First, we define two

collision avoidance spheres shown in Figure 15. The first, Rd, is a detection distance

69

defined by the maximum distance range of the sensor. The second sphere, Rs, is a

safe distance that is the required separation distance that the UAV must maintain to

protect against the collision. In Figure 15, AZ and EL are the range of the azimuth

angle and the elevation angle in the sensor model, respectively.

Figure 15: Definition of shperes for a collision avoidance framework

Figure 16 depicts the architecture of the collision avoidance framework, which is

based on the definitions of two spheres. The new collision avoidance framework is

composed of four phases. In the first phase of obstacle detection and awareness, the

UAV detects obstacles and collects information about the obstacle locations and sizes

from the on-board airborne sensor. Then, based on the sensor data information and

UAV states information, the UAV evaluates the possibility of the collision with the

obstacle. In the second phase, once the probable collision is identified, the UAV up-

dates a new optimal trajectory based on the UAV dynamic constraints and boundary

conditions to avoid the identified obstacle, and then the UAV starts the avoidance

mission. In the third phase, after the avoidance mission, the UAV returns to the

original path, and in the last phase, returns to its original trajectory.

70

Figure 16: Framework of collision avoidance

3.2.2 Problem formulation of the optimal collision-free collision avoidance
algorithm with minimal effort

This section discusses the formulation of the optimal trajectory problem in a collision

avoidance situation. We will introduce benchmark algorithms from literatures, and

after observing the advantages and disadvantages of the benchmarking algorithms,

we will suggest new collision avoidance algorithms

An objective function of the optimal collision avoidance problem can define a time-

optimal trajectory problem, a minimal-effort (minimal-energy) trajectory problem, or

the combination of the minimal-effort and time problems with weight factors. The

minimal-time approach, which minimizes the duration of time in hostile environments,

was employed in a number of studies [140][106][81]. However, the minimal-time ap-

proach requires high energy consumption because of aggressive maneuvers in which

a UAV quickly escapes from an obstacle. Having consumed most of its energy, a

UAV may not be able to complete a given mission. In other words, high energy re-

quirements cause the degradation of a mission feasibility. To avoid this situation, we

71

adopt the energy-based optimal collision avoidance that minimizes energy consump-

tion. The optimal collision avoidance trajectory problem with a minimal effort can

be defined as

J =
1

2

∫ tf

t

uTWu dt, (91)

where u is the control input vector (u ∈ R3), W is the 3×3 weighting matrix, t is the

current time, and tf is the terminal time. The vehicle dynamics is defined through

a simplified kinematic model that is the first order approximation model. The first

order approximation model for the guidance has been adopted by several researchers

[65] [106][81] to improve on-line computational time. The state space model of the

approximated vehicle dynamics is
ẋ

v̇

ȧ

 =

0̃3×3 Ĩ3×3 0̃3×3

0̃6×6 Ĩ3×3

Ã

x

v

a

+

0̃6×3

B̃

 ac, (92)

where x is the position vector [x y z]T , v is the velocity vector [u v w]T , a is the

acceleration vector, and ac is command acceleration [ax ay az]
T . These states are

expressed in a navigation coordinate system. Ĩ3×3 is a 3 × 3 that identities matrix.

Ã, B̃, and 0̃n×m are defined as

Ã =

− 1
τx

0 0

0 − 1
τy

0

0 0 − 1
τz

 ,

B̃ =

κx
τx

0 0

0 κy
τy

0

0 0 κz
τz

 ,

0̃n×n =

0 · · · 0

...
...

0 · · · 0

 .

(93)

72

τx, τy, and τz are time constants with respect to three acceleration states [ax ay az]
T .

κx, κy, and κz are the gains of the first order approximation. According to the devel-

oped collision avoidance architecture, once a UAV detects an obstacle, an on-board

computer checks the possibility of a collision with an obstacle. If the UAV recognizes

the obstacle as a potential threat, a new optimal collision avoidance trajectory will be

computed and updated. When the optimal collision avoidance trajectory is initiated,

the initial conditions at time t can be expressed as:

x(t) = [x(t) y(t) z(t)]T

v(t) = [u(t) v(t) w(t)]T

a(t) = [ax(t) ay(t) az(t)]
T

(94)

In a real-time simulation, formulating terminal constraints for a collision avoidance

problem is critical. This complex formulation for terminal constraints may increase

required computational resources to solve the optimal trajectory problem. In contrast,

a simple formulation may result in an increase of the optimal trajectory cost. To avoid

this problem, we have to construct an appropriate formulation for the optimal collision

avoidance problem.

To simplify the formulation for an optimal trajectory problem, Schouwenaars et

al.[143] introduces the mixed-integer linear program (MILP) for collision avoidance

against a fixed object. Through binary constraints, this technique allows an optimal

avoidance trajectory to avoid a rectangular obstacle. This methodology was validated

by a simulation in a horizontal plane (i.e., a two-dimensional simulation environment).

Yoshiaki et al. have extended the MILP approach to the receding-horizon mixed-

integer linear program (RH-MILP) [88]. These two collision avoidance methodologies

are computationally tractable, and they allow a vehicle to safely avoid fixed obstacles.

However, the MILP requires multiple optimal solutions that can identify the optimal

constraint, so it is commonly implemented with the Branch and Bound method to

choose the optimal avoidance trajectory solution with a constraint from the set of

73

binary constraints.

In addition to the MILP, two-dimensional rule-based approaches can be used to

simplify the collision avoidance algorithm suggested by Moon and advanced by Kang

[106] [81]. The rule-based approach suggested by Moon defines safe positions based

on the maximum and minimum horizontal and vertical points from the sensor infor-

mation about the detected obstacle. These safe positions, which are the considered

minimum required separation distance, are implemented by a trajectory optimiza-

tion as a terminal constraint. The final optimal trajectory is the minimal time with

the lowest cost. However, since safe positions are multiple, this collision avoidance

method requires a safe position to solve multiple trajectory optimization problems

that increase computational expenses. Unlike Moon, Kang proposed a simpler col-

lision avoidance approach based on a rule-based approach that can only solve one

optimization problem through selecting a safe positon without solving multiple tra-

jectory optimization problems. Because this rule-based approach is mathematically

simple and computationally efficient, we, therefore, select this rule-based collision

avoidance algorithm as a benchmark case.

For the benchmark case of the rule-based collision avoidance algorithm, we need to

identify final states. The final position of a UAV must be placed outside of an obstacle

that satisfies the minimum safe distance. To satisfy this condition, we can specify

the terminal position x(tf), which is the safe position, and define tf as free final time

because our trajectory optimization problem is the minimum-energy problem. We

also assume that terminal velocity and acceleration conditions are in a level-flight

condition, which is a zero acceleration condition and constant velocity. The following

74

conditions represent the terminal constraints,

tf = free

x(tf) = [x(tf) y(tf) z(tf)]
T = xsafe

v(tf) = [vx(tf) 0 0]

a(tf) = [0 0 0]

, (95)

where xsafe is the vector of the safe position, which can be determined from the

detected obstacle information and the safe distance. In this paper, we introduce

the definition of the safe position from the rule-based collision avoidance approach

proposed by Kang [81]:

xsafe = min xob − rs (96)

ysafe =

min yob − rs, if |min yob − y(t)| ≤ |max yob − y(t)|

y(t), if zsafe 6= z0

max yob + rs, if |min yob − y(t)| ≥ |max yob − y(t)|

. (97)

zsafe =

max zob + rs, if ysafe = y0

z0, if ysafe 6= y(t)

. (98)

[xob yob zob]
T is the position information of the detected obstacle. The on-board

sensor is assumed to be LiDAR sensor, which provides point cloud information about

obstacles. In the simulation model, LiDAR model does not include uncertainties such

as noise. rs is the safe distance.

During the avoidance maneuver phase, a UAV velocity and acceleration must be

operated within a flight envelope. To include these restrictions in the optimal trajec-

tory formulation, we must define them as the path constraints of a flight envelope so

that the UAV maintains its velocity and acceleration within the flight envelope. The

75

velocity path constraint can be written as follows:

0 ≤ u ≤ umax

vmin ≤ v ≤ vmax

wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

, (99)

where vmin, and wmin are low speed limits and umax, vmax, and wmax are high speed

limits specified by its flight envelope. Another path constraint is the load factor

conditions. To simplify the load factor conditions, we define the following load factor

constraints instead of ellipsoid load factor constraints,

|ax| ≤ gxmax

|ay| ≤ gymax

|az + g| ≤ gzmax

, (100)

In this table, gmax is the maximum allowable acceleration defined by the V-n diagram.

That is, the maximum gmax in a low-speed region can be identified from the stall

effect which is a significant constraint of flight conditions, and the maximum gmax in

a high-speed region can be load constraints caused by a structural damage which is a

critical constraint in a high-speed operation [14][127]. The last path constraint is the

constraint of the minimum flight attitude that minimizes a collision risk with ground

facilities. This minimum flight altitude constraint can be added as follows:

z ≥ zmin (101)

Table 8 summarizes the rule-based collision avoidance algorithm that includes

initial, terminal, and path constraints.

In this table, P = [Px Py Pz] is the point cloud information about a detected

obstacle from an airborne sensor.

The rule-based collision avoidance strategy is computationally efficient because

it consists of simple formulations, which are derived by the safe position concept.

76

Table 8: Rule-based optimal collision avoidance algorithm

Path constraints

tf = free
x(tf) = [x(tf) y(tf) z(tf)]

T = xsafe
v(tf) = [u(tf) 0 0]
a(tf) = [0 0 0]
z ≥ zmin
xsafe = min Px − rs

ysafe =

min Py − rs, if |min Py − y(t)| < |max Py − y(t)|
y(t), if |min Py − y(t)| = |max Py − y(t)|
max Py + rs, if |min Py − y(t)| > |max Py − y(t)|

.

zsafe =

{
max Pz + rs, if ysafe = y(t)

z(t), if ysafe 6= y(t)
.

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

However, it has several drawbacks. The first drawback is that since its formulation

does not include a next waypoint, the trajectory cost of a computed optimal avoid-

ance trajectory may be higher than an actual optimal avoidance trajectory. Second

potential drawback is that because of the hard waypoint constraint from the safe-

position, the optimal trajectory cost may increase in certain state conditions. To be

more specific, the final avoidance trajectory always passes one of the safe positions,

but an actual optimal trajectory may not pass the selected safe position; thus, this

restriction by the safe position concept may raise the optimal trajectory cost. These

two drawbacks lead to the following research question: How can a collision avoidance

trajectory problem that reduces computational expense and minimizes maneuver effort

be constructed?

To consider a next waypoint in the formulation of an optimal avoidance trajectory,

one can apply a multi-phase optimal trajectory problem that leads to a better optimal

avoidance trajectory with respect to the optimal trajectory cost. Next, to solve the

77

restricted safe position concept, we can formulate a more sophisticated optimal prob-

lem that provides more flexibility to the final optimal collision avoidance trajectory.

In other words, the terminal constraints of a new optimal collision avoidance can be

formulated by the Lp norm. Terminal conditions using the Lp norm have been im-

plemented in the optimal collision avoidance problem [81][156]. These papers applied

the Lp-norm formulation to build the formulation of an optimal avoidance trajectory.

Xu applied this collision avoidance algorithm to off-line trajectory generation, and

Kang implemented it in receding-horizon on-line trajectory generation. The Lp norm

commonly measures the length of a vector in p dimensional space. The mathematical

expression of the Lp-norm is

‖xn‖LP
=

(
∞∑
n=1

|xn|p
)1/p

. (102)

When p is two, it is called the Euclidean norm, which is well-known as a unit circle

shape. As p increases to infinity, the Lp norm becomes a square shape that is the

maximum norm (i.e., uniform norm). Examples of the Lp norm as p increases are

exhibited in Figure 114.

(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 7 (e) p = 10 (f) p = 105

Figure 17: LP -norm examples

78

The Lp-norm examples illustrate that the boundary shape varies according to the

p value. This feature of the p value can be used to formulate the shape of a detected

obstacle from an airborne sensor. In other words, the mathematical expression of the

Lp norm can be implemented to formulate a path constraint of an optimal avoidance

trajectory. In the Lp-norm expression, the p value is assumed to be ten because the

shape is approximately a cuboid shape. Based on the Lp-norm constraint, we can

formulate the multi-phase optimal collision avoidance problem described in Table 9.

Because of the more precise constraints by the inequality constraint and the ad-

dition of the next waypoint constraint to the multi-phase optimal problem, the for-

mulation of the multi-phase optimal collision avoidance can yield a lower optimal

trajectory cost of a UAV than that of the rule-based avoidance approach. In this

Table 9: Optimal collision avoidance algorithm using LP -norm

Phase 1 Path constraints

x(t1) = [x(t1) free free]T

v(t1) = [u(t1) 0 0]T

a(t1) = [ax(t1) 0 0]T

xt1 = min Px − rs
z ≥ max[min Pz, zmin]

0 ≤ ‖c(y, z)‖p =
[∣∣y−yc

a

∣∣p +
∣∣ z−zc

b

∣∣p] 1
p − 1 ≤ LPmax

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Phase 2 Path constraints

tf = free
x(tf) = [x(tf) y(tf) z(tf)]

T = xt
v(tf) = [u(tf) 0 0]

a(tf) = [0 0 0]

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Corner conditions
λT (t+1) = λT (t−1)
HT (t+1) = HT (t−1)
HT
u (t+1) = HT

u (t−1)

table, t1 is the terminal time in the first phase, a is the width that includes the the

79

half width of the detected obstacle and a safe-distance, and b is the width that in-

cludes the half height of the detected obstacle and a safe-distance. These a and b are

computed from the point cloud information P.

To analyze the optimal trajectory cost and the required computational time of

the both optimal avoidance algorithms, which are the rule-based algorithm and the

optimal collision avoidance algorithm using the Lp norm, we perform case studies.

The experiment cases only vary initial velocity conditions, and fix other vehicle con-

ditions and an obstacle. The conditions for the case studies are summarized in Table

10, which lists the initial/terminal conditions, sensor specifications, and obstacle in-

formation. We select seven initial velocity vectors: V1 = [100 0 0], V2 = [100 5 10],

V3 = [100 − 5 10], V4 = [100 − 10 5], V5 = [100 10 5], V6 = [100 10 10] and

V7 = [100 − 10 10].

Table 10: Initial conditions and assumptions for case studies
Variable name Variable Value Etc.
Initial condition x0 [ft] [0 0 800]

v0 [ft/s] [u0 v0 w0]
a0 [ft/s2] [0 0 0]

Terminal condition xtf [ft] [4000 0 800]
vtf [ft/s] [100 0 0]
atf [ft/s2] [0 0 0]

Field of View Distance range Sr[ft] 2500
Azimuth range SAZ [deg] 45
Elevation range SEL[deg] 45

Obstacle information Volume center [ft] [2000 0 500]
Side length [ft] [100 500 1000] [width depth height]
Euler rotation [deg] [0 0 0] [roll pitch yaw]

Figures 18 and 19 are the results of optimal collision avoidance trajectories ac-

cording to the seven initial velocities. As we can reasonably expect, when the initial

velocity vector is V = [100 0 0], the optimal trajectory of the rule-based approach

selects the top safe position. In other cases, the optimal avoidance trajectories are

dependent on the initial horizontal velocity (i.e., y-direction velocity in the navigation

frame). In Figure 19, results of the optimal collision avoidance trajectory using the Lp

80

norm (i.e., the PNORM approach), show that unlike those of the rule-based approach,

the optimal trajectories of the PNORM are not associated with the initial velocity di-

rection because the Lp norm formulation is not a function of the velocity that provides

more flexible trajectories. For a qualitative comparison assessment of the two opti-

mal collision avoidance algorithms, the optimal trajectory cost and the computational

time are measured because the algorithms have to minimize energy consumption as

well as remain computationally efficient for fast-time simulation. The results of the

comparison of the two algorithms with respect to two aspects are depicted in Figure

19. The results illustrate that the rule-based optimal collision avoidance algorithm

is computationally favorable because of the simplified mathematical formula, but it

requires higher optimal trajectory cost because of the ignored target position in the

optimal trajectory formulation and the intermediate trajectories limited by the safe

position concept. In contrast to the rule-based optimal collision avoidance algorithm,

the PNORM approach is optimally favorable, but it increases computational expense

due to the complex constraints. Overall, the experimental results imply that more

complex inequality constraints for the optimal collision avoidance algorithm incur

higher computational expense.

From the previous case studies, we observe that the computational time is coupled

with the complexity of the terminal constraints, and the optimal trajectory cost is

highly correlated with the terminal constraints. Therefore, if we build a less complex

formulation of the optimal collision avoidance problem than the PNORM approach, it

may slightly degrade the optimal trajectory cost but improve computational runtime.

Instead of using the two-dimensional inequality constraints of the PNORM approach,

we suggest a new collision avoidance algorithm that has simpler one-dimensional in-

equality constraints and improve computational efficiency. The new optimal collision

avoidance trajectory is summarized in Table 11. The new optimal collision avoidance

81

Figure 18: Rule-based optimal collision avoidance trajectory suggested

Figure 19: Optimal collision avoidance trajectory based on P-norm inequality con-
straint

82

Figure 20: Optimal trajectory cost vs. Computational time

algorithm defines three one-dimensional constraints by the safe distance rs and in-

formation about the minimum and maximum points (i.e., Pxmin, Pymax and Pzmax)

among the point cloud information from the sensor. Figure 21 illustrates the three

inequality constraints, D1(z), D2(z), and D3(y).

From these three inequality constraints, the new collision avoidance algorithm

selects one constraint. The selection of a constraint is based on the safe distance from

the projected point information, [yp zp]. The projected point can be specified from a

velocity vector or a vector between the next waypoint and the current position of an

UAV. Using velocity vector is an appropriate concept when the acceleration impact

is minimal. This algorithm using the projected velocity vector information is called

Simplified Collision Avoidance Algorithm 1 (SCAA-1). However, if the magnitude

of the initial acceleration is high, the SCAA-1 using the velocity vector, may not be

adequate because the optimal avoidance trajectory also depends on the magnitude

and direction of acceleration. In such case, vector information is determined by the

current UAV position, and the target position would be a better approach to define

83

Figure 21: The one-dimensional inequality condition definition of the simplified
optimal collision avoidance methods (SCAA–1 and SCAA–2)

84

the projected point, which selects the one-dimensional inequality constraint. This

collision avoidance algorithm is called Simplified Collision Avoidance Algorithm 2

(SCAA-2).

Table 11: Optimal collision avoidance algorithm (SCAA–1 and SCAA–2)

Phase 1 Path constraints

x(t1) = [x(t1) free free]T

v(t1) = [u(t1) 0 0]T

a(t1) = [ax(t1) 0 0]T

xt1 = min Px − rs
z ≥ zmin

y ≤ gymin +Mt1
−y ≤ −gymax +Mt2
−z ≤ −gzmax +Mt3

t = [t1t2t3], M is large number

where,
D = [|(min Py − rs)− yp| , |(max Py + rs)− yp| , |(max Pz + rs)− zp|]
t = [0 1 1], if min D = |(min Py − rs)− yp|
t = [1 0 1], if min D = |(max Py + rs)− yp|
t = [1 1 0], if min D = |(max Pz + rs)− zp|

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Phase 2 Path constraints

tf = free
x(tf) = [x(tf) y(tf) z(tf)]

T = xt
v(tf) = [u(tf) 0 0]

a(tf) = [0 0 0]

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Corner conditions
λT (t+1) = λT (t−1)
HT (t+1) = HT (t−1)
HT
u (t+1) = HT

u (t−1)

For the performance analysis of the two collision avoidance algorithms (SCAA-1

and SCAA-2), we execute the seven case experiments, described in 10. The next two

figures depict the results of the optimal collision avoidance trajectories. The trajec-

tory results show that the SCAA-1 optimal trajectories vary according to the initial

velocity components because the one-dimensional inequality constraint is determined

by the velocity direction. In contrast, the optimal collision avoidance trajectories

generated by the SCAA-2 algorithm maintain almost the same trajectories because

the initial position and the next target position have the same vector, which always

selects the D3 inequality constraint, specifically t = [1 1 0].

85

Figure 24 presents the results of the analysis for the optimal trajectory and re-

quired computational costs. The SCAA-1 and SCAA-2 methods require less compu-

tational time than the PNORM collision avoidance approach, and these two methods

improve the optimal trajectory cost compared to the rule-based collision avoidance al-

gorithm. From the experiment results, the SCAA-1 and SCAA-2 algorithms improve

the computational runtime for trajectory optimization by decreasing the complexi-

ties of constraints, but the incremental complexities cause degradation of the required

computational efficiency. These results show that the reduced complexity of an in-

equality constraint decreases computational burdens.

Figure 22: Optimal collision avoidance trajectory SCAA–1

The results of the previous case studies imply that relaxing constraints in the

formulation of an optimal collision avoidance problem improves computation runtime.

Therefore, to achieve more computational efficient algorithm, we suggest a simpler

optimal collision avoidance algorithm (SCAA-3) shown in Table 12.

To be more specific, instead of using inequality constraints, the SCAA-3 algorithm

entails a fixed terminal position as a safe position xs to avoid an obstacle. The safe

86

Figure 23: Optimal collision avoidance trajectory SCAA–2

Figure 24: Optimal trajectory cost vs. Computational time

87

position xs is defined as the projected point xp closest to one of the three line equations

D1(z), D2(z), and D3(y). The three lines are determined by the sensor information

and the minimum required separation distance rs, and the projected point xp is

defined by the vehicle velocity vector.

Table 12: Optimal collision avoidance algorithm (SCAA–3)

Phase 1 Path constraints

x(t1) = xs
v(t1) = [u(t1) 0 0]T

a(t1) = [ax(t1) 0 0]T

z ≥ zmin
D = [|(min Py − rs)− yp| , |(max Py + rs)− yp| , |(max Pz + rs)− zp|]

xs = [xt1 Dm zp], if min D = |(min Py − rs)− yp| then Dm = |(min Py − rs)− yp|
xs = [xt1 Dm zp], if min D = |(max Py + rs)− yp| then Dm = |(max Py + rs)− yp|
xs = [xt1 yp Dm], if min D = |(max Pz + rs)− zp| then Dm = |(max Pz + rs)− zp|

where,
xt1 = min Px − rs

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Phase 2 Path constraints

tf = free
x(tf) = [x(tf) y(tf) z(tf)]

T = xt
v(tf) = [u(tf) 0 0]

a(tf) = [0 0 0]

Velocity constraints

0 ≤ u ≤ umax
vmin ≤ v ≤ vmax
wmin ≤ w ≤ wmax

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax

Load factor constraints
|ax| < gxmax
|ay| < gymax
|az + g| < gzmax

Corner conditions
λT (t+1) = λT (t−1)
HT (t+1) = HT (t−1)
HT
u (t+1) = HT

u (t−1)

The results of the SCAA-3 trajectories under the conditions in Table 10 are de-

picted in Figure 25. This approach applies the safe-position concept to the compu-

tationally efficient avoidance trajectory, which is similar to the rule-based collision

avoidance algorithm. Unlike those of the rule-based approach, the computed tra-

jectories of the SCAA-3 spread out according to the initial velocity vector since the

safe position results from the point with the minimum distance from the line and

the projected velocity vector. The comparison assessment with respect to the com-

putational expense and the optimal trajectory are graphically summarized in Figure

25. The results show that the SCAA-3 method decreases the computational expense,

but it does not decrease the expense as much as the one-dimensional optimal colli-

sion avoidance approaches, SCAA-1 and SCAA-2. However, from the computational

88

time perspective, the SCAA-3 algorithm exhibits little degradation and yields higher

improvement than the rule-based collision avoidance approach.

Figure 25: Optimal collision avoidance trajectory SCAA–3

89

Figure 26: Optimal trajectory cost vs. Computational time

90

3.3 Hybrid collision avoidance methodology using machine
learning

In the previous section, the simplified optimal collision avoidance algorithms are dis-

cussed to achieve both low computational cost and low optimal trajectory cost. The

results of the case experiments reveal that a dominant general solution does not exist

that works for any algorithm, computationally and optimally because of the complex-

ity level of an optimal collision trajectory problem. For instance, when the formu-

lation for the collision avoidance algorithm has mathematically complex constraints

like PNORM approach, the optimal trajectory will have a low optimal trajectory cost

whereas solving optimal trajectory problem needs more computational expense. On

the other hand, when the formulation of the collision avoidance algorithm has a simple

formulation like SCAA-3, the computed optimal trajectory will have a large compu-

tational improvement, but it yields some degradation of the optimal trajectory cost.

From these observations, we pose a following question: How can a collision avoid-

ance algorithm be formulated to maintain computational efficiency and the optimal

trajectory with a low trajectory cost?

To answer the research question, we need to observe the individual sample exper-

iments in detail. For the examination of the best trajectory solution with the fast

runtime and the low trajectory cost, we adopt the overall optimal cost function, which

is shown in Equation 103 since this overall cost function aggregates two metrics (opti-

mal trajectory cost and computation runtime) into one metric, this aggregated overall

cost function explicitly enables the evaluation of each collision avoidance algorithm

according to the given initial conditions.

J = W1J̄opt +W2J̄com, (103)

where J̄opt and J̄com are an optimal trajectory cost and a computational time cost,

respectively. The terms W1 and W2 are the weights for the optimal trajectory cost

and the computational time. It is assumed that the sum of the two weights is one

91

(W1 + W2 = 1). The overall cost function with two weights is a flexible concept.

That is to say, when a designer emphasizes the optimal trajectory cost, the weight

W1 increases, but when the designer wants to improve computational efficiency, the

weight W2 increases.

Using this overall cost function, we evaluate the best obstacle avoidance algorithm

based on the sample experiments. The best obstacle avoidance algorithm is selected

by the lowest overall cost under the given weights.

Table 13: Best collision avoidance strategy based on initial conditions

Case Velocity vector [feet/sec] Best alternative
1 [100 0 0] PNORM
2 [100 5 10] SCAA-3
3 [100 -5 10] SCAA-3
4 [100 -10 5] SCAA-1
5 [100 10 5] SCAA-1
6 [100 10 10] SCAA-3
7 [100 -10 10] SCAA-3

After evaluating the overall cost of the avoidance algorithms for the seven cases

shown in Table 3.3, we identify the best strategy with the lowest overall cost. In the

overall cost function, the weights of this evaluation are assumed as W1 = 0.5 and

W2 = 0.5. The evaluation results present that while SCAA-3 was selected the most

frequently, it is not always the best optimal collision strategy because any formulated

method cannot be always the best in terms of the overall cost. In other words, the

best avoidance strategy varies depending on the initial condition. Moreover, note

that the best obstacle avoidance strategy can also be different depending on the two

weights. The best avoidance method depends on different weight conditions; thus it

is necessary to explore the general trend of the best avoidance method.

For this investigation of the weight variation effect, 100 sample trajectories of

four avoidance algorithms (PNORM, SCAA-1, SCAA-2, and SCAA-3) are defined

92

under randomly selected initial/terminal conditions that satisfy flight envelope con-

straints. The terminal conditions are assumed as a level flight condition. We execute

all collision avoidance algorithms and evaluate the optimal trajectory cost J̄opt and

the computational runtime J̄com. Then, we compute the overall cost function J as

the two weights (W1 and W2) vary. Based on the results of the overall cost function,

we specify the probability of the best avoidance strategy. The probability means

the percentage of each method that has the lowest overall cost under the experiment

results of 100 samples, and the given weights. For example, if SCAA-1 has 20 sam-

ples with the lowest overall cost under the given weight, the probability of the best

strategy for SCAA-1 under the given weight is 20 percent. Figure 27 presents the

probability of the best strategy according to different weight conditions. The results

represent that when the weight for the computational time is high (low W1), SCAA-

3 yields outstanding performance. As the weight W1 increases, we can observe the

performance improvement of the obstacle avoidance strategy with one-dimensional

constraint (SCAA-1 and SCAA-2). In the middle region of the weight W1, these

two methods are highly probable to be the best strategy. When the weight W1 is

around one, the obstacle avoidance algorithm (PNORM) with two-dimensional con-

straint improve. These results are expectable because the SCAA-1 is the simplest

and fastest algorithm, but due to the simple constraint, it requires high optimal tra-

jectory cost. On the other hand, the PNORM has the most complex constraint and

slowest algorithm, but it yields low optimal trajectory cost due to the sophisticated

constraint.

Based on the previous analysis, we can observe that any introduced obstacle avoid-

ance method cannot provide the best obstacle avoidance performance with respect

to overall cost function and is dependent on the weight, which means that the best

obstacle avoidance method varies. From the two observations, if a-priori knowledge

about the best collision avoidance algorithm in an input space, which is the variables’

93

Figure 27: Overall trajectory cost of each avoidance method as weights (W1 and
W2) vary

space associated to the optimal trajectory problem, can be obtained by a learning

technique, the best collision avoidance algorithm among the pre-identified strategies

can be selected during a real-time simulation. Consequently, this process selecting

the best strategy improves the performance of the obstacle avoidance with respect

to the optimal cost, and they provide computationally tractable solutions because

the pre-identified strategies are determined by the simple prediction model. The best

collision avoidance algorithm is identified from the overall cost function below 103

the given weights W1 and W2.

The simple prediction model can be defined by using diverse methods such as a

fuzzy controller and a machine learning technique. The fuzzy logic controller has been

applied to aircraft vortex flow control to adjust the fuzzy-rule [142]. The machine

learning technique can be applied to the hybrid method through supervised learning

methods. Because the machine learning algorithm is very flexible and has diverse

approaches, this thesis focuses on applying the machine learning algorithm to the

94

hybrid method.

Accordingly, we suggest the hybrid methodology for an optimal collision avoid-

ance. The hybrid methodology is a technique that selects the best collision avoidance

strategy through a classification algorithm in pre-processing, which is one of the ma-

chine learning techniques. During a real-time simulation, the classification result

provides the best avoidance mode based on input conditions of the optimal obstacle

avoidance problem. In this section, a novel hybrid collision avoidance methodology

using a machine learning will be discussed.

The proposed hybrid methodology for the optimal collision avoidance is based

on the framework of the generic decision-making process [132] because the hybrid

methodology as a data-driven approach is a top-down decision making process based

on the pre-evaluated data. The generic decision-making steps as a top-down design

decision support process is described in Figure 28. The main steps of the process entail

six steps: establishing the need, defining the problem, establish value, generating

feasible alternatives, evaluating alternatives, and making a decision.

The proposed framework of the hybrid collision avoidance methodology is concep-

tually represented in Figure 28. The first step is the definition of the problem. The

second step is defining the input space. Then, objective functions (i.e., cost function)

are identified, and an overall evaluation cost function is determined to merge multi-

objective functions. The next step is building various alternatives for an optimal

collision avoidance trajectory problem. From these collision avoidance alternatives,

the design of experiments is conducted, and the overall cost function for all collision

avoidance alternatives is evaluated from the experiment results. Then, the prediction

model is specified by a machine learning algorithm. This prediction algorithm has

a simple functional form that is computationally efficient in the on-line process. In

the on-line process, the best collision avoidance algorithm is selected according to

the results of the prediction model based on the vehicle conditions. The functions

95

corresponding to each step of the hybrid optimal collision avoidance methodology will

be described in the subsections that follow.

Figure 28: Framework of hybrid collision avoidance methodology using a machine
learning technique

3.3.1 Step 1-2: Define the problem and the input space

The first step of the hybrid optimal collision avoidance methodology is defining a

problem. During this step, we define a problem to be solved through a trajectory

optimization in a collision avoidance domain. An example is an obstacle avoidance for

terrain obstacles, such as a building, tree, or mountain. Other examples are avoiding

a moving obstacle or a combination of moving and fixed obstacles. In this thesis,

our interested problem is an obstacle avoidance problem with non-cooperative and

fixed obstacles. Therefore, the problem for the hybrid method is a collision avoidance

96

problem under both a non-cooperative and a ground obstacle.

The second step is defining an input space. The input space indicates the space

including all required input variables to solve on the optimal trajectory problem.

In the case of an obstacle avoidance problem with a fixed obstacle, the variables of

the input space can be vehicle states (position, velocity and acceleration), obstacle

information (obstacle position and size of obstacle), or a target position and sensor

specification (distance, azimuth, and elevation range). However, the input space

has large dimensions that cause computational inefficient solution for a prediction

model due to high dimensional space. To reduce the dimension of the input space,

one can adopt a relative coordinate system. For instance, instead of expressing the

vehicle position and obstacle position in the global coordinate system, a single relative

coordinate system to describe both positions will reduce the dimension of the required

input space.

The next step is specifying variables’ ranges in the input space. In the optimal col-

lision avoidance formulations we introduced, the variables’ ranges can be determined.

The relative positions between a vehicle and an obstacle position can be identified

from the sensor specification since obstacle detection range is restricted by the sensor

specifications, such as azimuth and elevation angles, and distance range.

The allowable velocity and acceleration ranges can be defined by a flight envelope

and V-n diagram, which addresses the structural and aerodynamic maneuverability

limitations [134][12]. The input range for the size of an obstacle can be determined

by relevant statistical data about interested areas. Figure 29 summarizes the notional

concept of defining the input space.

3.3.2 Step 3: Define the cost function

The third step is defining a cost function. In this section, we will discuss two cost

functions (Optimal trajectory cost and computation runtime), and the aggregation

97

Figure 29: Notional diagram of designing an input space

of two cost functions.

In the trajectory optimization problem, we need to define an optimal trajectory

cost function, that is also called performance index. This cost function can be for-

mulated into diverse forms, such as time-optimal, energy optimal, or combination of

the two cost functions. For instance, in a time-optimal problem, a cost function can

be J = tf . In an energy-optimal problem, a cost function can be J =
∫ tf
t0
u2. In our

collision avoidance problem, the cost function is defined by a minimal-energy problem

shown in Equation 91.

In the trajectory optimization problem, we also consider an additional metric,

computation runtime because the characterization of the UASNAS problem requires

a large number of experiments resulting from diverse mission scenarios and UAV

platforms; thus, the trajectory optimization should have a computationally efficient

structure. Moreover, the previous sample experiments show that the computational

98

runtime to solve the optimal trajectory problem varies depending on its mathematical

complexity. Therefore, the computational runtime is selected as a metric.

Next, we need a method to identify the best collision avoidance alternative. The

defined optimization problem is a multi-objective problem that entails the optimal

trajectory cost and the computational efficiency. Thus, we need to specify an aggre-

gated objective function J = g(w1J̄opt, w2J̄com). In the equation, w1 and w2 are

weights, and J̄opt and J̄com are attributed costs, which are the computational runtime

and the optimal trajectory cost, respectively. The function g(·) is a multi-objective

function. For the evaluation multi-objective function, the well-known approach is the

Pareto frontier method. The Pareto frontier adapts the weighted sum function shown

in the following form.

J = W1J̄opt +W2J̄com, (104)

where W1 and W2 are weights, and J̄opt is a normalized optimal cost, and J̄com is a

normalized computational time. The new cost function, which is named as an overall

cost function, enables the evaluation for the best strategy in the step of evaluating

alternatives.

3.3.3 Step 4: Generate optimal collision avoidance alternatives

This step is formulating multiple optimal collision avoidance alternatives. The op-

timal collision avoidance algorithm can be built by various mathematical formula-

tion with different complexity of constraints. Note that other constraints, such as

a dynamic constraints and path constraints except the constraint for the obstacle

avoidance should be same. In addition, the cost function must be same since we will

specify the best collision avoidance algorithm using the specified cost function. As-

suming that the number of the formulated avoidance algorithms are n, an avoidance

99

alternative space is A = [A1, A2, ..., An], A ∈ Rn. A is the avoidance alterna-

tives vector, n is the number of collision avoidance algorithms and Ai indicates each

avoidance algorithm.

In this thesis, we have introduced four collision avoidance algorithms and one

benchmark case. In the hybrid method, we will only consider the proposed four

collision avoidance algorithms (PNORM, SCAA-1, SCAA-2, SCAA-3) described in

Tables 10, 11, and 12 as alternatives in the hybrid method since the rule-based ap-

proach reveals worse performance resulting from the sample case studies. It means

that n is four. For the sample studies of the hybrid method, we generate 100 ob-

stacle avoidance trajectories of individual methods. In the sample experiments, we

fixed initial/boundary conditions described in Table 10 and randomly selected initial

velocity conditions.

3.3.4 Step 5: Evaluate alternatives and define perdiction model

The most novel step in the hybrid methodology is the evaluation of alternatives and

the generation of the prediction model. The objective of this step is to define the

prediction model from the overall cost analysis of the alternatives through a machine

learning technique. In the first step, we execute the design of experiments. In the

design of experiments, a space-filling design method was chosen.

Next, we run the optimal collision avoidance problem based on the design of

experiments and compute the overall cost function presented in Equation 104. Then,

from the results of the overall cost, we can specify the best collision avoidance strategy.

The best strategy is determined by solving a classification problem. The classification

problem provides a prediction model that identifies the best one in on-line process.

Figure 31 shows the notional concept of the evaluation for the alternatives and the

definition of the prediction model. In the first step, we collect 100 sample cases and

simulates these cases of each collision avoidance algorithm. The first figure shows the

100

(a) Optimal collision avoidance algorithm
PNORM

(b) Optimal collision avoidance algorithm
SCAA-1

(c) Optimal collision avoidance algorithm
SCAA-2

(d) Optimal collision avoidance algorithm
SCAA-3

Figure 30: Optimal collision avoidance trajectories of each avoidance method

101

results of two metrics (optimal trajectory cost and computational runtime) of four

alternatives; thus, each method has 100 results. The second graph is the results of

the best strategy based on the overall cost function that is 100 data. In the figure,

we presume the input space is two dimension. These 100 data set is classified by a

machine learning technique. The last graph is the result of the classification. The

classification problem can be specified through diverse classification algorithms such

as k-nearest neighbor, Bayesian multi-class classification, neural network classification

and ensemble learning, which are the kinds of supervised learning for classification

problem in machine learning field [53][126]. Due to various learning techniques for a

classification problem, it leads to a following question: Which classification method

is the best technique for the proposed hybrid collision avoidance methodology? In the

later subsection, we will discuss the details of a machine learning algorithm for a

classification problem.

3.3.4.1 Classification method

The key idea of the hybrid optimal collision avoidance methodology is a classification

algorithm, which is one of the machine learning techniques, since the class classifica-

tion technique provides the best avoidance mode information according to the vehicle

conditions and the detected obstacle information. Our problem is a multi-class clas-

sification problem since we have multiple alternatives. The representative multi-class

classification algorithms are decision tree, K-nearest neighbor, Bayesian multi-class

classification algorithm, multi-class classification using neural network and ensemble

learning.

Table 14 summarizes the features of the representative learning techniques. The

decision tree technique gives classification information based on the input variables

through sorting out the inputs from the tree root to the edges node. This technique

102

Figure 31: Notional concept of the evaluation for the alternatives and the definition
of a prediction model

has rapid fitting and prediction, but the prediction accuracy rate is medium. K-

nearest neighbor does not require any pre-processing to create a prediction model.

This technique directly utilizes training data points for the identification of the multi-

class classification. The benefit of the K-nearest neighbor algorithm is that it does not

have the pre-processing structure to generate a prediction model. However, this tech-

nique acquires the classification information from an on-line process, so the required

computational time is highly dependent on the number of training points. Another

classification is Bayesian multi-class classification (Naive Bayes), which needs the pro-

cess of estimating the probability distribution of each alternative (collision avoidance

method) through Gaussian assumption or a Kernel estimator. This technique can

give accurate classification results when a precise distribution estimation is achieved.

103

Neural network multi-class classification method computes the prediction model using

neural network for the classification, which is also called a multi-layer logistic classifi-

cation method. The other technique is the ensemble learning that uses combinations

of multiple weak learners (i.e., a prediction model) to build a strong learner that is

a combination of the weak learners. There are many introduced methods of the en-

semble technique in the literature such as boosting, Adaboost, and ensemble neural

network. The representative learning algorithms and characteristics are presented in

Table 14. In this table, ∗ indicates that performance is dependent on the amount

of the evaluation by the Kernel function. For candidates of the classification algo-

rithms, we select neural network and ensemble neural network because they provide

high accurate prediction result, fast prediction speed and low memory usage.

Table 14: Learning algorithms for multi-class classification[98]
Algorithm Predictive Accuracy Fitting Speed Prediction Speed Memory Usage

Trees Medium Fast Fast Low
SVM High Medium * *
Naive Bayes(Bayesian Classification) Medium * * *
K-Nearest Neighbor * N/A Medium High
Neural Network High Low Fast Low
Esemble Neural Network High Low Fast Dependent on architecture

Appendix A introduces the characteristics of the representative multi-classification

algorithms such as Neural Network (NN), Ensemble Neural Network using Bagging

(ESNN-Bagging),and Ensemble Neural network using Ordinary Least Square tech-

nique (ESNN-OLS). For the weight optimization process of the neural network and

the ensemble neural network, we should specify optimal structure about the neural

network and the ensemble learning with neural networks, such as a number of layers,

a number of nodes, and a regularization parameter, and a number of neural networks.

This optimal neural network structure makes a research question:How can we define

the optimal structure of a neural network and an ensemble neural network?

For the optimization of the neural network optimization, we develop a new opti-

mization process. The main idea of the optimization process includes two processes:

104

optimization for a single neural network, and optimization of an ensemble structure.

These two main processes effectively reduce computational resources compared to the

entire single and ensemble structure optimization. The detailed description will be

discussed in the later section.

Figure 32 illustrates the proposed methodology that is the optimization scheme

with a full-factorial design experiments. In the first step, we collect training data,

D = [(x1, y1), (x2, y), · · · , (xm, ym)] from the optimal trajectory problems. In the

training data, x indicates input variables (x ∈ Rm×n), and ym is collision avoidance

modes (y ∈ Rm×k). m is the number of training data, n is the dimension of the

input space, and k is the number of the collision avoidance algorithms. Collecting

the training data is executed by full-factorial experiments. The design variables of

the full-factorial experiments are number of layers, number of nodes, regularization

factors and number of neural networks. Note that the number of neural network is

the design variable for an ensemble neural network structure in the second experi-

ment (i.e., the optimization of the ensemble learning structure). Next, we solve an

optimization problem to identify weights of a neural networks defined from the design

of experiments. For the optimization process of the neural network weights, we im-

plement gradient-based approach using a back-propagation method and adopt K-fold

validation method that validates multiple rounds to decrease variability. In details,

we partition the entire data into K test sets. In each cross-validation process, we

select one of the test sets and use the rest of the data sets as a training data. We

perform Kth optimization processes using different test data.

After executing all designs of the experiments, we sort the test results of all neu-

ral network structures based on the high prediction success rate. Among all neural

networks, the neural network with the top prediction performance is selected as the

single neural network for the hybrid methodology. In the optimization of the en-

semble learning structure, we need to optimize the number of the neural networks.

105

For this work, we will perform additional full-factorial design about number of neu-

ral networks. In the full-factorial experiments, each neural network of the ensemble

learning structures is defined based on the sorted results of the single neural network.

The sorted results are used because if the design variables in an optimization process

entails a full-factorial experiment with all variables (the number of layers, the number

of nodes, a regularization factor, and the number of neural networks) simultaneously,

the experiment will have computational issues resulting from a large number of ex-

periment cases. Therefore, we use the outcomes of the single neural network for the

optimization process of the ensemble learning to reduce the computational expense.

For instance, if an experiment has three neural networks in an ensemble learning

structure, the top three neural network with highest prediction rate will be selected.

For the ensemble learning algorithm, we adopt the bagging and OLS technique de-

scribed in Section A. After the full-factorial experiments, the ensemble structure will

be determined based on the best prediction results. To be more specific, the number

of neural networks for the bagging and OLS technique is specified.

3.3.5 Step 6: Make a decision

In the previous step, we introduced the optimization process for the single neural

network and ensemble neural network prediction models, which specify the best ob-

stacle avoidance alternative. Specifically, the prediction model solves the multi-class

classification problem and gives the best solution. The last step is a decision making

step that identifies the best option among a set of obstacle avoidance alternatives.

In other words, the prediction model will be adopted to select the best alternative in

the on-line process.

Figure 33 illustrates the block diagram of the novel hybrid optimal collision avoid-

ance algorithm. The machine learning algorithm that includes a prediction model

106

resulting from multi-class classification determines the best optimal collision avoid-

ance mode based on vehicle states and airborne sensor information through using the

prediction model. This best avoidance mode information is updated to real-time op-

timal trajectory function so that the function can generate the best optimal collision

avoidance trajectory according to the predicted best avoidance mode.

Figure 34 summaries the entire process of the hybrid methodology.

107

 Optimize of neural network

weights

- Objective function

𝐽𝑁𝑁 = 𝑀𝑖𝑛
1

2𝑚
 (𝑦𝑖 − 𝑦 𝑖)

2+
𝜆𝑁𝑁
2𝑚
𝒘𝑇𝒘

𝑚

𝑖=1

- K-fold validation

Training data,
𝐷 = { 𝒙1, 𝑦1 , 𝒙2, 𝑦2 , … , (𝒙𝑚, 𝑦𝑚)}

Rearrange of the full-factorial experiment

results

in terms of low cost

Find the optimum

neural network

structure

minimizing the

cost function 𝐽

 Design of experiment for

ESNN-bagging and ESNN-

OLS

- Objective function

𝐽𝐸 = 𝑀𝑖𝑛
1

𝑚𝑛
 (𝑦𝑁𝑘,𝑖 − 𝑦 𝑖)

2

𝑚𝑛

𝑖=1

Find the optimum ensemble neural network
structure minimizing the cost function 𝐽

Full-factorial

design

Optimization

variables:

1. Number of

layer

2. Number of

node

3. Regularization

factor

4. Number of

neural network

(Ensemble

learning) Full-factorial design

Optimization variables:

1. Number of layer

2. Number of node

3. Regularization

factor

4. Number of neural

network (Ensemble

learning)

Figure 32: Flow diagram of the optimization of neural network and ensemble neural
network structures

108

Figure 33: Framework of hybrid optimal collision avoidance algorithm

109

F
ig

u
re

3
4
:

F
ra

m
ew

or
k

of
h
y
b
ri

d
co

ll
is

io
n

av
oi

d
an

ce
m

et
h
o
d
ol

og
y

u
si

n
g

m
ac

h
in

e
le

ar
n
in

g

110

3.4 Numerical simulation

3.4.1 Performance of obstacle avoidance algorithms

In the previous section, we formulate following three hypotheses based on some ob-

servations from the sample case studies.

� Waypoint based collision avoidance algorithm (SCAA-1) will be a dominant

solution with respect to the overall cost function, if the weight W1 is low value.

� Collision avoidance algorithms with one-dimensional inequality constraints (SCAA-

1, SCAA-2) will improve the overall cost if the weight W1 is medium value.

� Collision avoidance algorithm with two-dimensional inequality constraint (PNORM)

will improve the overall cost performance if the weight W1 is high value.

For the validation of three hypotheses, we compute probability of the best strat-

egy resulting from the design of the experiments for the hybrid approach that include

15,466 cases. The best strategies are judged from the lowest result of the overall cost

function, which is shown in Equation 104. Figure 35 illustrates the results of the

overall cost function. As expected, in the low value of the weight W1, the collision

avoidance algorithm SCAA-3 has outstanding performance because the mathemat-

ical complexity of the SCAA-3 is the simplest. That is to say, when W1 is zero,

approximately 67.75 [%] of the total experiment data is specified as the best collision

avoidance algorithm. On the other hand, other obstacle avoidance algorithms SCAA-

1, SCAA-2, and PNORM have relatively lower probability of the best strategy. This

result clearly presents that the waypoint-based approach SCAA-3 is the dominant

solution in the low value of the weight W1.

In the middle value of the weight W1, the collision avoidance algorithms SCAA-1,

SCAA-2, and SCAA-3 show good performance. Between 30 [%] and 35 [%] among

the total experiments are identified as the best strategy. On the other hand, the

111

two-dimensional obstacle algorithm PNORM has the lowest performance. This re-

sult supports the second hypothesis: one-dimensional collision avoidance algorithm

(SCAA-1 and SCAA-2) will have high performance because the sum of the probabil-

ity of the best strategy resulting from these two strategies have around 65 [%] when

the weight W1 is 0.5.

In the high value of the weight W1, the performances of the SCAA-1 and SCAA-

2 degrade, but the collision avoidance algorithm PNORM with two-dimensional in-

equality constraint improves the performance with respect to the overall cost function.

Note that although the PNORM has the most sophisticated inequality constraint, it

cannot have the best obstacle avoidance algorithm at the highest value of the weight

W1 because we impose the limitation of the iteration number to solve the optimal

trajectory problem which achieves tractable computational time. Therefore, the re-

sult presents that the hypothesis ’Collision avoidance algorithm with two-dimensional

inequality constraint (PNORM) will improve the overall cost performance when the

weight W1 is high value’ is rejected.

Figure 35: Overall cost analysis

112

To characterize individual obstacle avoidance algorithm, we compute probability

of ranks according to each algorithm. In Figure 36, four graphs show the results of

rank probability according to four different obstacle avoidance algorithms. The visual

inspection reveals that the SCAA-2 and SCAA-3 have similar trend. In the middle of

the weight W1, most cases around 70 [%] have first and second ranks. In the SCAA-3

around the low value of the weight W1, most cases are ranked on the first. When

the weight increases, the case with fourth rank increases, and the case with the first

rank decreases simultaneously. In the PNORM method, when the weight is low, most

cases have forth rank, but as the weight W1 increases, the numbers of the first, second

and third increase.

(a) SCAA-1 (b) SCAA-2

(c) SCAA-3 (d) PNORM

Figure 36: Rank probability of each collision avoidance algorithm

113

3.4.2 Learning classification algorithm for hybrid method

This section discusses numerical simulation results about learning a classification

model by three different learning algorithms, which are a single neural network and

two ensemble neural networks (bagging and ordinary least square methods). It also

addresses prediction performance analysis of three hybrid methods.

The optimization process introduced in the previous section includes two designs of

experiments (DOE). The first DOE is for the optimization of a single neural network.

The second DOE is to define the number of neural networks with the optimal ensemble

structures. Note that in the second DOE process, we utilize the results of the single

neural network from the first DOE because of reducing the number of experiments

through decreasing the size of variables.

The details of the experiments in the first DOE, the full-factorial experiments have

three design variables: the number of node, the number of layer, and the regularization

coefficient. Note that the variables (the number of node and the number of layer) are

discrete variables, and regularization coefficient is a continuous variable.

The range of the number of nodes are defined as 1 to 50, and the range of the

number of layer is from one to two. These two ranges are identified as initial sample

experiments through observing learning performance according to these variables.

The regularization coefficient is [0 1].

For the learning prediction model, we collect 15,466 data-set that entails input

variables and output labels that indicate four alternatives (PNORM, SCAA-1, SCAA-

2, and SCAA3). Among the data-set, 80 % of the data (11563) is utilized for training

a neural network, and 20 % of the data (3903) is utilized in a test phase. Using

this data-set, the full-factorial DOE is conducted to optimize all neural networks.

To measure the performance of each neural network, the prediction success rate is

computed.

114

The full-factorial experiment with 15,466 cases requires large computational re-

sources because of high expense to solve the trajectory optimization problem. There-

fore, in order to accelerate running experiments, we adopt the parallel computing

resource offered by the PACE cluster that is an advanced computing environment

provided by Georgia Institute of Technology.

In the full-factorial experiment, the results of the prediction rate are sorted ac-

cording to the high prediction success rate. The neural network with the highest

prediction rate is selected as a single neural network for the hybrid method. The

sorted result shows that the best neural network has two layers, zero regularization

coefficient. Each layer (first and second layer) has 46 and 24 nodes, respectively.

Based on the sorted full-factorial DOE results, another full-factorial DOE is ex-

ecuted to specify the structures of the two ensemble neural networks. This second

DOE includes one design variable, which is the number of neural network.

The variable, a number of neural network, varies from 3 to 50. This range is

identified based on the feasible computational time since the higher number of neural

network causes higher online computational time to calculate prediction solution.

The neural network structure of each ensemble structure is defined from the results

of the first full-factorial experiments. For instance, once the number of neural network

in an ensemble learning is five, we select five neural network structure with the top-five

prediction rate from the previous full-factorial experiments.

Figure 37 presents the results of two ensemble learning algorithms (Bagging, and

OLS) as the number of neural networks increase. Visual inspection of the results

reveals that the performance of both ensemble methods improves in the low number

of neural network as the number of neural network increases, but after reaching the

maximum performance, the prediction rate of both algorithms decrease. Based on

this result, we select the number of neural networks with the maximum performance

for two ensemble structures. The bagging ensemble learning method has 10 neural

115

networks, and the OLS ensemble learning method has 18 neural networks. Table

15 summarizes the results of the optimization for a single neural network and two

ensemble learning methods (Bagging and OLS).

Figure 37: Overall cost analysis

Using the optimized the single neural network and two ensemble neural networks,

we analyze the performance of three classification algorithms. The performance is

measured by the error cost (Jerr = Jopt − Jactual). In details, the misclassified data

is collected from the test results. The collected data is evaluated by the error cost

Jerr. Figure 38 shows the error cost of all obstacle avoidance methods including the

proposed hybrid methods. In the figure, X axis indicates the number of data, which

implies the classification performance. The number of data tells misclassified data.

In other words, higher number of data indicates worse classification performance.

Table 16 summarizes the percentage of the best strategy. Among seven obstacle

algorithms (PNORM, SCAA-1, SCAA-2, SCAA-3, HYBRID-NN, HYBRID-ESNN-

Bagging, HYBRID-ESNN-OLS), the three hybrid algorithms show the outstanding

performance, and the worst performance is PNORM algorithm. In general, com-

pared to four obstacle avoidance algorithms (PNORM, SCAA-1, SCAA-2, SCAA-3),

116

Table 15: Results of the full-factorial design of experiments
Rank Number of Num. of nodes Num. of nodes Regularization Single NN ESNN- ESNN-

layer at 1st layer at 2nd layer factor Bagging OLS
1 2 46 24 0 o o o
2 2 48 28 0.3 o o
3 2 44 38 0.2 o o
4 2 46 32 0.9 o o
5 1 38 0 0.8 o o
6 2 44 46 0.2 o o
7 1 50 0 0.5 o o
8 2 50 40 0 o o
9 2 50 48 1 o o
10 2 34 26 0.5 o o
11 1 50 0 0.6 o
12 2 48 48 0.8 o
13 2 26 48 1 o
14 2 40 4 0.5 o
15 2 38 40 0.9 o
16 1 38 0 0.1 o
17 2 46 36 0.2 o
18 2 44 40 0 o

the proposed hybrid methods has higher classification performance and the hybrid

methods present similar performance.

Table 16: Rate of the best method
Algorithm Rate of the best method [%]
PNORM 0.87
SCAA-1 34.48
SCAA-2 33.54
SCAA-3 31.11

HYBRID-NN 48.64
HYBRID-Bagging 49.16

HYBRID-OLS 49

Figure 39 is the probability density function of the cost for all test cases. This

result shows that the hybrid methods using a neural network and two ensemble learn-

ing are higher probability in the low error cost region compared to others while these

hybrid methods are lower probability in the high error cost region. These trends indi-

cates that the hybrid approach provides better avoidance trajectory through selecting

one of alternatives (PNORM, SCAA-1, SCAA-2, SCAA-3).

To sum up, from the experiment results, the proposed hybrid methods provide

117

Figure 38: Error cost analysis

Figure 39: Error cost analysis

118

a better solution. The hybrid method with ensemble learning methods are better

performances compared to the hybrid with a single neural network. Nevertheless, the

performance difference of the three classifications is minimal in the hybrid method.

Moreover, the hybrid with a single neural network present more computationally

efficient than other two approaches shown in Table 17. Hence, as a part of the

hybrid method, we select the single neural network because of its high classification

performance and low computational burden.

Table 17: Computation runtime

Algorithm Computational time [sec]
HYBRID-NN 0.0012

HYBRID-Bagging 0.0039
HYBRID-OLS 0.0048

119

3.5 Conclusion

This chapter describes the optimal collision avoidance algorithm based on the obser-

vation of the existing avoidance algorithms. The formulated collision algorithms solve

a two-phase optimal trajectory problem with dynamic constraints, a cost function,

path constraints, event constraints, and link constraint. The sample case studies of

four optimal collision avoidance algorithms present that the mathematical complexity

of the trajectory optimization problem affects a computational expense and an opti-

mal trajectory cost. To be more specific, the PNORM, which has a two-dimensional

inequality constraint, generates an avoidance trajectory with a low cost, but the re-

quired computational time to solve the PNORM is high. On the other hand, the

SCAA-3, which has the simplest mathematical formula, requires a low computational

expense, but generates a high cost trajectory.

Based on the sample case studies, the best collision avoidance algorithm is depen-

dent on initial conditions and obstacle sensor information. This observation leads to

the hybrid collision avoidance algorithm that can select the best collision avoidance

algorithm based on the prediction model. The prediction model is determined in

the pre-processing through a multi-class classification algorithm that is a supervised

learning technique in a machine learning domain. The hybrid collision avoidance al-

gorithm is demonstrated by a numerical simulation. The numerical simulation results

present that the proposed hybrid method shows more outstanding performance than

the conventional optimal collision avoidance algorithms (PNORM, SCAA-1, SCAA-2,

and SCAA3).

The hybrid collision avoidance algorithm is a highly flexible structure. That is,

different collision avoidance algorithm can be implemented with the same cost func-

tion and dynamic constraints. In the machine learning part, diverse classification

algorithms can be applied to improve the classification performance that allows the

classification function to select a better strategy.

120

CHAPTER IV

COLLISION AVOIDANCE ALGORITHM IN AN URBAN

ENVIRONMENT

There are numerous studies investigating collision avoidance concepts and techniques

that can be generally divided into five groups: stochastic methods, road map meth-

ods, potential field approaches, geometric methods and optimization based methods.

Stochastic methods effectively search nonconvex high-dimensional spaces for global

or local obstacle avoidance paths based on the environment as perceived by airborne

sensors. The rapid random tree (RRT) [90][92] is a popular method of this kind.

Road map methods use visual graph characteristics and path-planning algorithms to

partition collision-free paths and create a piecewise linear path or curved path using

smoothing techniques [58]. Doebbler et al. have proposed a heuristic approach for

optimal path planning that is for General Aviation class aircraft [41]. The funda-

mental concept of artificial potential field methods is the creation of force map where

a waypoint generates an attractive force and obstacles generate repulsive forces [25].

Based on the resulting force map an algorithm generates an optimal collision-free

path.

Optimization-based and geometric methods are closely related, and have presented

a range of promising solutions. For instance, Chakravarthy and Ghose proposed

a collision cone technique to avoid a moving obstacle with irregular shape in two-

dimensional space [29]. Watanabe et al. extended this approach with a minimal-

effort optimization framework in three-dimensional space [150]. Another example is

that of Schouwenaars et al. [143] who suggested mixed-integer linear programming

(MILP) that incorporates binary constraints based on the area information outside

121

of an obstacle. However, this MILP approach is a two-dimensional approach that has

limitations in three-dimensional space. Yoshiaki et al. [88] expanded more precise

MILP algorithm for three-dimensional collision avoidance problem that includes two

phases: the construction of coarse cost map and detail trajectory optimization. These

MILP frameworks have been employed for real-time collision avoidance problem in

diverse platforms [100]. However, solving MILP is commonly implemented via the

branch and bound method which is computational expensive [145] [100].

Moon et al. [105] suggested a rule-based collision avoidance approach that defines

an optimal avoidance trajectory resulting from a safe position based on airborne sensor

information and a flight envelope protection function. However, when an unmanned

aircraft detects multiple obstacles at the same time they are interpreted as a single

obstacle, even when there is sufficient space to fly safely between them. As a result

highly energy-inefficient obstacle avoidance trajectories may be observed. Kang et

al. [80] expanded this framework to generate more efficient trajectories through a

global path searching function that is optimized by external sources having obstacle

information. Compared to a local-path optimization only, global-path searching and

local-path optimization provides more effective trajectories. However, this concept

is vulnerable to loss-link or surveillance interruption scenarios where the unmanned

aircraft cannot access external obstacle information sources, and is essentially reduced

to the same local-optimization approach it seeks to improve upon. In this paper we

address the question of how an optimal collision avoidance algorithm can produce

highly energy-efficient trajectories in a multiple obstacle environment while relying

solely on on-board sensors and capabilities.

The work here presented proposes a two-layer obstacle collision avoidance algo-

rithm that incorporates a global-path optimization and a local-path optimization. In

the global-path optimization, based on the detected obstacle information from an air-

borne sensor, an on-board system identifies a number of obstacles through a clustering

122

technique. This clustering problem solves a distance-based constraint optimization

problem that includes minimum-separation distance between pairs of adjacent obsta-

cles. Then, the system detects a cluster that is a potential threat. In the local-path

optimization we employ a multi-phase optimal obstacle avoidance problem to avoid

the cluster.

For the online trajectory optimization we employ a model predictive control

(MPC) scheme that produces computationally feasible solutions. That is, solving ac-

tual nonlinear constrained dynamics trajectory optimization is an NP-hard problem,

but MPC solves approximated linear dynamics and simplified constraints, and regu-

larly updates the results of the optimal trajectory in a real-time manner. This MPC

approach provides a computationally tractable solution for online optimal collision

avoidance problem and has been successfully implemented in the past [105][80][97].

We hypothesize that our two-layer collision avoidance algorithm yields more en-

ergy efficient trajectories without incurring in prohibitive computational burden rel-

ative to the single-layer approach. In the remainder of the paper we first present the

formulation and implementation of our algorithm, and then test the hypothesis via

direct comparison of numerical simulations.

4.1 New path planning architecture using a learning algo-
rithm

4.1.1 Two-level algorithm concept

The multi-obstacle avoidance problem is inherently challenging. In general the math-

ematical complexity computational expense of an optimal trajectory solution grows

quickly with the explicit treatment of multiple obstacle constraints. It follows that

most optimal trajectory frameworks in recent work do not explicitly consider multi-

ple obstacles scenarios [140][105][80]. Instead, existing algorithms employ the collision

avoidance framework for one obstacle regardless of the number of downstream trajec-

tory threats, producing inefficient trajectories whenever safe flight between obstacles

123

is feasible. To address this major shortcoming the new algorithm here proposed

features a two-layer structure accommodating online global-path and local-path op-

timization processes, illustrated in Figure 40. The global-path optimization uses

on-board sensor data to efficiently resolve multiple downstream obstacles based on

their relative location and separation. It then specifies a potential threat based on

the identified multiple clusters and vehicle state information.

The local path optimizer produces an optimal collision avoidance trajectory using

the selected global-path trajectory. To do so it solves a multi-phase optimal tra-

jectory problem based on vehicle dynamics, constraints, obstacle information, and

mission waypoints. Two fundamental phases are defined for this problem: obsta-

cle avoidance and recovery. In the obstacle avoidance phase the terminal trajectory

point is an intermediate waypoint that satisfies three linear constraints around the

obstacle, one above and one on either side, guaranteeing a minimum safe separation

distance between the aircraft and the obstacle. In the recovery phase the trajectory

takes the aircraft from the intermediate waypoint to a prescribed target, or final

waypoint. The avoidance path is continuously optimized based on updated airborne

sensor information and vehicle states.

4.1.2 Two-level algorithm in the guidance, navigation, and control archi-
tecture

The guidance navigation and control architecture employed in this work, illustrated in

Figure 41, is consistent with typical constructs in current practice. Optimal trajectory

generation realized with guidance and navigation elements, and application of aircraft

controller to the flight dynamics ensures adherence to said trajectory. In our two-level

concept guidance and navigation have an off-line block where the trajectory is defined

a-priori in accordance with a prescribed mission profile, pre-defined waypoints, and

available obstacle information (if applicable or available). The on-line counterpart

regularly updates the trajectory based on the current vehicle state and sensor data

124

Figure 40: Concept formulation and flow of the two-layer collision avoidance algo-
rithm

to compensate for perturbations or the avoidance of unknown obstacles. The global

and local components of the proposed trajectory optimization concept are realized

in this region of the architecture. As shown in Figure 41 sensor data corresponding

to detected obstacles in the operating environment are passed onto the global block

where distinct obstacles are resolved, selects a potential threat. The local component

then solves for the optimal trajectory based on the specified potential threat. The

aircraft controller generates input commands to follow the optimal trajectory, and

applies them to the vehicle flight dynamics. The aircraft controller loop monitors

vehicle states and updates control inputs with feedback rate fa. The guidance and

navigation loop updates the optimal trajectory with feedback rate fg given aircraft

states and the current global path approximation.

125

Figure 41: New path planning architecture using a machine learning algorithm

4.1.3 Global trajectory optimization

4.1.3.1 Obstacle resolution

The first step in the identification of an optimal global trajectory is the resolution of

multiple obstacles ahead of the aircraft’s current flight path. This function entails a

suitable characterization of obstacles based on their location relative to the aircraft

and each other, as detected by the on-board sensor. We adopt a general sensor

model that captures the fundamental mechanism underlying many such instruments.

The model features an array of distance-measuring rays originating at the sensor,

uniformly structured over the horizontal and vertical field of view. We assume the

field of view is symmetric about the x-axis in the vehicle coordinate system GV and

forward looking. The distance to an external body along any ray is known whenever

the ray intersects a surface of that body, unless it exceeds a detection range specified in

the model. The relative angular placement of all sensor rays within the field of view is

prescribed so that the angle of each the ray in the vehicle coordinate system is known.

Accordingly, with measured distances along known angles in GV the sensor data array

provides the location of all detection points. Sensor capabilities may be defined by

126

adjusting the vertical and horizontal field of view, density of distance-measuring rays,

and the detection range. We assume that instrument error and signal return time are

negligible, so that the model is deterministic and instantaneous. We also assume the

detection range is isometric so that no variation exists along vertical or horizontal

field of view directions.

Obstacle resolution is hence realized as an operation on the sensor data array

where separate objects must be characterized and distinguished. To this end we

consider the vast body of work in machine learning, pattern recognition, and data

mining. Techniques in this domain can be broadly categorized as supervised and

unsupervised. In the former a required a-priori data set is used as the basis upon which

some underlying relationship is inferred and applied to a posterior data set. This

approach is central in many techniques for set membership (classification), mapping,

and anomaly detection. Unsupervised techniques do not require an a-priori data

set, and instead establish high-level data structure and properties from those at a

lower-level. The most popular and well-known class of unsupervised techniques is

clustering, where pairwise similarity or proximity between data points is evaluated and

used as the basis to construct clusters. Clusters comprise high-level data structure,

whereas data point proximity is lower-level. Given that sensor data is comprised of

the location of all detection points, we assert that clustering is an ideal technique to

resolve multiple individual obstacles.

In general clustering techniques are appealing due to their simplicity and scalabil-

ity for a broad spectrum of applications. There are also many known shortcomings,

but continuing work to address them has resulted in a rich pool of algorithms. The

k-means algorithm, one of the most popular and classical clustering methods, parti-

tions a data set onto k clusters by sequentially assigning points to clusters based on

their proximity and updating the cluster definitions to reflect said point assignments.

Point proximity to a cluster can be evaluated with different measures of distance

127

in the parameter space, and relative to different points (e.g., cluster centroid, point

closest to the centroid, nearest/farthest point, etc.), which gives rise to the myriad of

variations of the method observed in the literature.

The main drawback of this clustering technique rests in the requirement to specify

the number of clusters k a-priori. Some approaches have been proposed to circumvent

this issue, for instance, by evaluating some top-level partition quality metric for dif-

ferent values of k and selecting that for which said metric is optimal (see for example

Ref. [118]). These approaches often fail to provide sufficiently tractable results and

are computationally expensive. Jia et al. posit that if the point cloud of each group

has a non-convex shape these clustering algorithms yield results that only guarantee

a local minimum [71].

For the obstacle avoidance trajectory problem the number of clusters k cannot be

user-specified. Moreover, resolution of clusters as separate objects must be pursuant

of an explicitly defined minimum separation distance. Ester et al. [45] proposed

DBSCAN, a density-based spatial clustering algorithm. In DBSCAN the number of

clusters are not defined a-priori but rather result form the clustering process itself,

driven by the grouping of points that meet a user-defined minimum density. The

latter is established by two parameters that define the ε-neighborhood of a point p:

the minimum number of points minPts that must be within a distance ε from point p.

These required user-defined algorithm parameters are lower-level data attributes that

are more intuitive, meaningful, and practical than emergent clustering characteristics

such as number of clusters. Point density also provides an ideal mechanism to resolve

adjacent clusters while guaranteeing that a minimum safety distance between them

exists. Specifically for the current application of obstacle resolution, ε can be used to

explicitly set the minimum distance between obstacles beyond which they are resolved

as separate objects.

Another approach that does not require prescription of the number of clusters is

128

spectral clustering. This technique is based on algebraic graph theory where a graph

partitioning problem is solved from similarity characteristics. The graph partitioning

problem can be solved with diverse methods: ratio cut, normalized cut, minimum

cut or graph cut using an optimization function. These methods as traditional par-

titioning techniques are NP-hard problems [71]. A more computationally attractive

alternative is found in the NJW algorithm, proposed by Ng. et al [113], while provid-

ing a classical spectral clustering method. In this approach the number of clusters k

can be determined from the top k eigenvalues of the Laplacian matrix L, generated

from the affinity matrix Ā where each of its elements is defined with the Gaussian

function

Āij = exp(
−‖xi − xj‖2

2σ2
) (105)

The vectors xi and xj denote data points, or vertices in the graph-theoretic sense, and

σ is a hyper parameter. Despite its implementation across a variety of applications

the NJW algorithm presents a major drawback, namely, that identification of the top

k eigenvalues is only tractable whenever they are distinctly greater than all remaining

eigenvalues starting with k + 1. In other words, a sharp drop past the kth eigenvalue

is a clear and tractable indication of k. However, such a sharp delineation across

eigenvalues is not always observed, and a more gradual progression of diminishing

eigenvalues is common. In that case determining the number k of clusters does not

have a tractable standard, and the top k eivenvectors do not always produce correct

clustering results [71]. To solve this shortcoming, the number of cluster k can be

determined from k-block diagonality of the Laplacian matrix L [49]. Once k is known,

clusters are resolved with any algorithm requiring k as an input, such as k-means. As

described, this approach does not feature a characteristic distance parameter to tune

the algorithm and set the minimum inter-obstacle distance for resolution as separate

clusters. To address this gap we utilize a distance based adjacency matrix A in lieu of

the affinity matrix Ā in Eq. 105. An adjacency matrix is binary and denotes pairwise

129

connectivity of nodes with a ”1”, and ”0” otherwise. We introduce a characteristics

distance d as the basis of distance-based adjacency and define elements in A as follows:

Aij = 1, if ‖xi − xj‖ ≤ d

Aij = 0, if ‖xi − xj‖ > d

(106)

The overall approach is summarized in Algorithm 2. Caution should be exercised

whenever noise is present in the data because it degrades k-block diagonality [49].

For applications where data features high signal-to-noise ratio, or in the extreme case

of completely deterministic data such as that produced by our deterministic sensor

model, concerns associated with k-block diagonality may be ignored.

Algorithm 2 Spectral clustering

Inputs: point cloud information P ∈ Rn×d, distance constraint between obstacles
Do

(1) Distance-based adjacent matrix Aij ∈ Rn×n, d = Do

(2) Degree matrix Dii =
∑

j Aij if i = j, otherwise Dij = 0
(3) Unnormalized Laplacian matrix L = D − A
(4) Solve for k with k-block diagonality: rank(L) = n - k
(5) Treat each row of L as a point in Rk, and cluster into k clusters via k-means
Outputs: Clustering result C1, C2, ... , Ck

We denote the distance Do as the user-defined minimum observed distance be-

tween obstacles for resolution via sensor data clustering. Accordingly, in our imple-

mentation of the two clustering approaches here discussed the characteristic distance

parameter, ε for DBSCAN and d for spectral clustering with k-block diagonality, are

set to guarantee that sensed obstacles that appear separated by a distance Do or more

are resolved as separate objects.

Each of the clustering algorithms is implemented in a two-dimensional domain

where the sensor data has been collapsed onto the yz plane of the vehicle coordinate

system. Eliminating obstacle depth affords significant computational efficiency in

two ways. First, it expedites runtime of the clustering function. Second, the need to

130

resolve obstacles based on depth (along the longitudinal x axis of the vehicle coordi-

nate system), and the need to incorporate this information in a more complex global

trajectory optimization, is circumvented altogether. As a result obstacles partially or

totally blocked by nearer obstacles are not resolved as separate objects. This informa-

tion reduction does not compromise the optimality of the global trajectory selection

nor does it degrade the efficacy of the local trajectory optimization or the overall

collision avoidance capability. On the contrary, even without depth data in obstacle

resolution clustering, the proposed approach is easily handles downstream obstacles

hidden by nearer ones, and provides energy efficient trajectories as illustrated by

results in Section 4.2.3.

4.1.3.2 Selection of a path

The second step in global trajectory optimization is to construct global path alterna-

tives commensurate with the obstacle information produced in the previous step. We

note however that there exists an infinite number of feasible trajectories that main-

tain a minimum safety distance from all obstacles. We propose a tractable approach

whereby a finite set of approximate global trajectories are defined as an ordered

sequence of waypoints [x0, xik, xt]. x0 is the current aircraft position, xik is an in-

termediate waypoint associated with the kth resolved obstacle, and xt is a posterior

target location. For the visualization purpose, let’s assume that the intermediate

waypoint is generated as the cluster average, or centroid, of the obstacle:

xik =
1

nk

∑
Pk, (107)

where Pk is the array of obstacle sensor data for the kth cluster, and nk is the number

of points in the kth cluster.

For instance, in Figure 42 three obstacles are individually resolved and three inter-

mediate waypoints, xi1, xi2, and xi3 are identified at the centroid of their respective

131

sensor data cluster. The three possible approximate trajectories are generated by

connecting the current vehicle position, x0, an intermediate point xik, and the target

position xt: x0 − xi1 − xt, x0 − xi2 − xt, and x0 − xi3 − xt.

Figure 42: Global path optimization

The next step is identifying one potential path among a potential path. The path

is selected by individual cluster information and vehicle velocity vector v = [vx vy vz].

To be more specific, we can project each point cluster onto each plane of which normal

vector is parallel to x-direction (vx) of velocity vector. The details of defining a project

plane is described in Figure 44. It then projects the velocity vector onto individual

plane. For instance, in the case of Figure 43, we projects the velocity vector onto

three planes (plane 1, plane 2, and plane 3). The projected velocity vector judges

a potential threat. In other words, if the projected vector on a plane is inside of

the plane boundary, that cluster is identifies as a potential threat. In the example,

the cluster on the plane 2 is potential threat. In some cases, it does not have any

potential threat. This case solves one phase optimal trajectory problem in the local

trajectory optimization.

132

Figure 43: Identification of a potential threat

4.1.4 Local trajectory optimization

4.1.4.1 General multi-phase optimal trajectory problem

The purpose of the local trajectory optimization is to avoid the obstacle resolved with

cluster C̃ and then reach the target position xt. We recognize that obstacle avoidance

and recovery towards a prescribed target encompass the two fundamental phases of

collision avoidance, and that a multi-phase approach to trajectory optimization is

therefore well suited for this problem.

In general the multi-phase problem divides the trajectory into n phases or seg-

ments (p ∈ 0, 1, 2, ..., n) and sequentially solves for the optimal trajectory in each

phase p. The formulation is predicated on the definition of a performance index

or cost function, dynamic constraints, path constraints, event constraints, and link

constraints. The cost function can be written as

min J(x̄(p),u(p), t) =
n∑
p=1

Φ(p)(x̄
(p)
f , t

(p)
f) +

n∑
p=1

∫ t
(p)
f

t
(p)
0

L(p)(x̄(p),u(p), t)dt, (108)

133

where the superscript p denotes the pth phase, x̄ is a state vector, u is a control

input vector, t is time, t0 is initial time, and tf is terminal time. Φ and L are

terminal and transient costs, also called Mayer and Lagrange costs in the optimal

control theory context. Inclusion of transient and terminal costs represents the most

general formulation of the cost function. However, for subclasses of optimal trajectory

problems only transient or terminal costs will suffice.

Vehicle state equations are captured as dynamic constraints, typically expressed

in the form:

dx̄(p)

dt
= f (p)(x̄(p),u(p), t). (109)

Path constraints are algebraic inequalities that capture vehicle flight performance

limitations such as velocity, acceleration, and thrust limits. These constraints can be

represented as follows

c
(p)
min ≤ c(p)(x̄(p),u(p), t) ≤ c(p)

max. (110)

Event constraints establish the conditions that must be satisfied at the final time

tf of each phase p, and are generally written in the form

E
(p)
min ≤ E(p)(x̄(p),u(p), t) ≤ E(p)

max. (111)

Phase link constraints ensure continuous state transition between phases. For the

link s between phases p− 1 and p, the constraints are expressed as:

χ(s)(x̄
(p−1)
f , x̄

(p)
0) = x̄(p−1)(tf)− x̄(p)(t0) = 0, (p = s+ 1) (112)

4.1.4.2 Two-phase trajectory optimization framework

To formulate the local-trajectory optimization we suggest a two-phase approach based

on the multi-phase optimal trajectory framework. The first phase (p = 1) is an

avoidance phase and the second phase (p = 2) is a recovery phase. The cost function

and constraints are defined accordingly.

134

Trajectory solutions can be time-optimal, effort- or energy-optimal, or hybrid

by combining the two. Other performance index formulations linked to the vehicle

dynamics are certainly possible, although time and energy are very commonly used

as the basis. The time-based approach minimizes trajectory duration, say in a hostile

operating environment, and has been employed in a number of studies [140][105][80].

Minimal-time trajectories however impose high energy requirements associated with

aggressive maneuvers and accelerations, which in turn strain energy management

requirements and can degrade mission feasibility. On the other hand a minimal-energy

solution emphasizes mission energy management and efficiency, and is not driven by

time or duration limitations. For this study we adopt an energy-based performance

index to assess effort-efficiency improvements attainable with the proposed collision

avoidance concept. The performance index is defined as:

J =
1

2

n=2∑
p=1

∫ t
(p)
f

t
(p)
0

u(p)TW(p)u(p)dt, (113)

where phase p (here limited to p = 1, 2) is denoted by the superscript, t0 and tf are

initial and final times respectively, u(p) ∈ R3 is the acceleration command input vector

[u
(p)
cx u

(p)
cy u

(p)
cz]T , and W(p) is a 3 × 3 weighting matrix presumed to be the same in

both phases. The 1/2 factor is inherent in the transient cost function L and is simply

placed outside the summation in Eq 113 above. The cost function here adopted is

based on the notion that work expended follows the commanded acceleration, squared

to ensure positive quantities, and has been used frequently in prior optimal trajectory

problems (see for instance Ref. [15]). In the present formulation the effort associated

with the trajectory is entirely captured in the transient cost expression, and a terminal

cost component is not necessary.

In general constraint complexity has a significant effect on the runtime perfor-

mance of the online obstacle avoidance algorithm, so the choice of constraints and

their inherent sophistication must be considered carefully. This is particularly relevant

135

for dynamic constraints where simplified flight dynamics can be adopted whenever

possible instead of complex non-linear alternatives. Moon and Kang [105][80] propose

first-order acceleration dynamic equations for simplified kinematics of an optimal tra-

jectory problem. We employ this first-order approximation for dynamic constraints to

achieve a computationally and dynamically feasible solution. This choice for low order

dynamics constraints is a practical one, driven by the present focus to demonstrate

the proposed two-layer approach in relation to the classical one-layer alternative. An

implementation of our method with higher order dynamics is immediately feasible,

but increased runtime should be expected as a result.

The simplified kinematic constraints are as follows:
ẋ(p)

v̇(p)

ȧ(p)

 =

0̃3×3 Ĩ3×3 0̃3×3

0̃6×6 Ĩ3×3

Ã

x(p)

v(p)

a(p)

+

0̃6×3

B̃

u(p), (114)

where x(p) is the position vector [x(p)y(p)z(p)]T , v(p) is the velocity vector [u(p)v(p)w(p)]T ,

a is the acceleration vector [a
(p)
x a

(p)
y a

(p)
z]T , and u(p) is the acceleration command

[u
(p)
cx u

(p)
cy u

(p)
cz]T . These states are expressed in a navigation coordinate system. Ĩ3×3

is a 3× 3 identity matrix, and Ã, B̃, and 0̃n×m are defined as

Ã =

− 1
τx

0 0

0 − 1
τy

0

0 0 − 1
τz

 ,

B̃ =

κx
τx

0 0

0 κy
τy

0

0 0 κz
τz

 ,

0̃n×n =

0 · · · 0

...
...

0 · · · 0

 .

(115)

136

τx, τy, and τz are time constants with respect to the three acceleration state

variables [a
(p)
x a

(p)
y a

(p)
z]T . κx, κy, and κz are the gains of the first order approximation.

These parameters are identified based on the least square technique from an aircraft

dynamic model.

Event constraints in the first phase prescribe the terminal vehicle states that

guarantee obstacle avoidance, and are therefore fundamental for the entire collision

avoidance trajectory problem. In our approach prescription of this terminal state is

predicated on two conditions. First, the aircraft is in unaccelerated level flight. This

flight condition has been commonly used in the past, for instance by Moon and Kang

[105]. It offers a simple and tractable state that is justifiable in most cases when the

target point after successful collision avoidance prescribes an altitude and velocity

comparable to that of the initial condition. We adopt this condition but note that it

is simply suggested here, and that other conditions may also be considered. Second,

to enforce a safety distance from any avoided obstacle we introduce the variable (rs).

Three linear inequality constraints are defined at a distance rs around the obstacle

cluster C̃, one to the left, one to the right, and one above, as shown in Fig 44.

Accordingly, we define the terminal state as

x(1)(tf) = [x(1)(tf) free free]T , (x(1)(tf) = min C̃x − rs)

v(1)(tf) = [u(1)(tf) 0 0]T

a(1)(tf) = [0 0 0]T ,

, (116)

where C̃x is x position information of C̃. Note that the safe position along the x axis

x(1)(tf) is prescribed according to rs too. The y and z positions are free variables

that are only restricted by the following inequality constraints, pursuant of the safe

distance from the obstacle for the avoidance trajectory:

137

Figure 44: Notional depiction of the three obstacle avoidance trajectory event con-
straints at a safety distance rs around the obstacle cluster C̃

y ≤ C̃ymin +Mt1

y ≥ C̃ymax −Mt2

z ≥ C̃zmax −Mt3

t = [t1 t2 t3], ti ∈ [1, 0]

M is a large number

(117)

C̃ymin and C̃ymax are minimum and maximum y position, and C̃zmax is the maximum

z position, in the point cloud C̃. The binary vector t identifies which of the three

obstacle avoidance constraints is active with vector element ti = 0, and tj 6=i = 1

otherwise. Identification of the active constraint, and therefore definition of the binary

vector t, is solved for as follows:

138

D = [
∣∣∣(min C̃y − rs)− yp

∣∣∣ , ∣∣∣(max C̃y + rs)− yp
∣∣∣ , ∣∣∣(max C̃z + rs)− zp

∣∣∣]
t = [0 1 1], if min D =

∣∣∣(min C̃y − rs)− yp
∣∣∣

t = [1 0 1], if min D =
∣∣∣(max C̃y + rs)− yp

∣∣∣
t = [1 1 0], if min D =

∣∣∣(max C̃z + rs)− zp
∣∣∣ .

(118)

Here, yp and zp are the vehicle position in y and z projected with the current veloc-

ity vector v
(1)
0 (t) onto a plane perpendicular to the velocity vector at a downrange

distance x(1)(tf).

Event constraints for the second phase dictate the terminal state at the target

position, for which we recommend unaccelerated level flight, as follows

t
(2)
f = free

x(2)(tf) =
[
x(2)(tf) y(2)(tf) z(2)(tf)

]T
v(2)(tf) = [v(2)x (tf) 0 0]

a(2)(tf) = [0 0 0]

(119)

Path and link constraints are defined equally for the avoidance and recovery

phases. Path constraints curtail vehicle dynamic performance and include limits

on velocity and acceleration, keeping the vehicle within the flight envelope to prevent

unfeasible maneuvers. Path constraints are defined as follows

0 ≤ u ≤ umax,

vmin ≤ v ≤ vmax,

wmin ≤ w ≤ wmax,

Vmin ≤
√
u2 + v2 + w2 ≤ Vmax.

(120)

umin, vmin, and wmin are the low speed limits, and umax, vmax, and wmax are the high

139

speed limits. The acceleration constraints are stated as simple load factor constraints:

|ax| < gxmax

|ay| < gymax

|az + g| < gzmax

(121)

gxmax, gymax, and gzmax are maximum allowable accelerations. We also adopt a min-

imum altitude constraint as a path constraint to guarantee flight above some opera-

tional minimum to prevent possible collision with other ground assets.

z ≥ zmin (122)

The last constraint is the linkage constraint at the phase transition point to enforce

state continuity across phases:

x̄(p−1)(tf) = x̄(p)(t0) (123)

Since the proposed framework of the optimal collision avoidance problem has two

phases, in the phase linkage constraint (Equation 123) p is two. The formulated

framework of the multi-phase optimal trajectory problem is solved by the Gauss

Pseudospectral method (GPM) provided by the open-source software GPOPS. This

Gauss Pseudospectral technique was developed by Benson [19][20], and advanced and

validated by empirical cases studies from Huntinton et al [62][61][63]. This GPM

technique employs an orthogonal collocation method based on the Legendre-Gauss

points. The GPOPS software provides MATLAB interface with non-linear program-

ming problem solver SNOPT [54][55].

4.2 Numerical simulation

4.2.1 Simulation of unmanned aircraft dynamics, controller, and sensor

For the numerical simulation we assume a small electric fixed-wing unmanned aircraft,

and adopt the Aerosonde specification taken directly from the literature [154] [18].

140

Table 22 summarizes airframe parameters, along with those assumed for the airborne

sensor and collision avoidance scheme. For simplicity the vehicle equations of motion

assume a point mass model as reported in previous work [94][102][30]. For the aircraft

tracking controller, we employ standard feedback control structure. The on-board

sensor is modeled as a generic light detection and ranging instrument, or lidar, with

no instrument uncertainties.

Table 18: Description of UAV parameters
UAV parameters Variable Value Unit

Vehicle parameter

Weight w 29.76 [lb]
Planform area S 6.1 [ft2]

Area swept out by the propeller Sp 0.1348 [ft2]
Propeller aerodynamic coefficient Cp 1
Efficiency constant of the motor Km 8

Lift coefficient at zero angle of attack CL0 0.28
Lift curve slope CLα 3.45

Aspect ratio AR 10.7
Span efficiency e 0.9

Zero-lift drag coefficient CD0 0.03

Sensor parameter

Distance range Sr 2000 [ft]
Azimuth range AZ 60 [deg]

Elevation range EL 45 [deg]
Sensor resolution θsen 2 [deg]

Collision avoidance parameter

Minimum distance constraint between obstacles Do 150 [ft]
Minimum separation distance between an obstacle and a vehicle rs 70 [ft]

Minimum altitude zmin 200 [ft]
Maximum acceleration gmax 3 [ft/s2]

Other parameters
Update rate of guidance and navigation loop fg 1 [Hz]

Update rate of aircraft control loop fa 10 [Hz]

4.2.2 Comparative analysis of clustering algorithms for obstacle resolu-
tion

We compare the DBSCAN and spectral clustering for the present application in terms

of prediction success rate and computational time. These figures of merit are evalu-

ated over a design of experiments based on the setup illustrated in Figure 45 where

two identical, generic, cuboid obstacles lay ahead of the aircraft flight path. The

x, y, and z axes shown are the vehicle coordinate system GV . The sensor data

collection is assumed instantaneous, and the clustering algorithms executed at that

instant only so that there is no trajectory optimization or flight simulation, only

clustering evaluation at the instant depicted. The distance 2D between obstacles,

referenced to the origin of the y axis, is sampled as follows: D = [20 40 60 80 100].

141

Similarly, the down-range distance between the unmanned aircraft and each of the

two obstacles is varied with the x axis location of the obstacle centroid as follows:

L1, L2 = [1100 1200 1300 1400 1500]. We combine the three independent factor

variations into a full factorial design of experiment with 125 samples. The UAV sensor

parameters and the minimum separation distance between obstacles Do are described

in Table 22. The parameter Do is mapped to the characteristic distance in the clus-

tering algorithm of choice, so that obstacles are resolved as separate objects only if

the distance between them is greater than Do. Note that to allow safe flight between

resolved obstacles the distance between them must be at least twice the minimum

separation distance between aircraft and any obstacle rs.

Do ≥ 2rs (124)

(a) Top view (b) Side view

Figure 45: Simulated experiment setup for comparative analysis of clustering algo-
rithms. (Aircraft not shown to scale)

This experiment was conducted in a commercially available desktop computer

with a 3.40GHz Intel(R) Core(TM) i7-2600 processor and a 8GB RAM. Results of the

clustering experiments are summarized in Table 19 and show that the both algorithms

accurately resolve clusters with a 100% success rate. That is, when the gap between

obstacles is larger than Do (i.e., 2D ≥ Do), both algorithms exactly resolve two

clusters regardless of variation of the distance L1 and L2.

142

In terms of computational efficiency, DBSCAN is faster and features lower variance

across experiments. We attribute greater runtime mean and variance of spectral

clustering in part to the use of k-means with random initialization for initial center

points. Figures 46 to 49 illustrate four representative cases in the evaluation of

clustering algorithms. Based on the results obtained we opt for DBSCAN as the

preferred clustering algorithm in the global-path optimization.

Table 19: Comparison assessment results of the clustering algorithms
DBSCAN Spectral method

Prediction success rate (%) Computational time (sec) Prediction success rate (%) Computational time (sec)
Average 100 0.1120 100 0.3412

Standard deviation 0 0.0268 0 0.1920

(a) Raw data (b) Clustering results

Figure 46: Clustering results (D = 20ft, L1 = 1100ft, L2 = 1100ft)

4.2.3 Assessment of two-layer collision avoidance with numerical simula-
tion

To test the hypothesis that our two-layer collision avoidance algorithm yields more

energy efficient trajectories without incurring in prohibitive computational burden

relative to the single-layer approach we conduct an experiment with numerical simu-

lations. The experiment is comprised of three use cases designed to be relevant and

representative for UAS applications of interest, and to capture critical arrangements

of relative obstacle placement in terms of on-board sensing and optimal avoidance

143

(a) Raw data (b) Clustering results

Figure 47: Clustering results (D = 40ft, L1 = 1100ft, L2 = 1500ft)

(a) Raw data (b) Clustering results

Figure 48: Clustering results (D = 100ft, L1 = 1500ft, L2 = 1100ft)

(a) Raw data (b) Clustering results

Figure 49: Clustering results (D = 100ft, L1 = 1500ft, L2 = 1500ft)

144

trajectory execution. Simulations for the three use cases are ran with both methods

using the same initial conditions, set to steady level flight at 600 feet altitude with

velocity 100 feet/sec.

The first use case is illustrated in Figure 50 with the trajectory simulation results

of the two collision avoidance methods. The obstacle-free trajectory between the

initial and final points is shown in red, and the executed collision avoidance trajectory

with each method is shown in dotted blue. The first scenario features two obstacles

of comparable altitude (∼1,000 ft) and footprint, located at the same downrange

distance (∼4,000 ft), and separated by a distance (∼250 ft) greater than twice the

safety distance defined for aircraft-to-obstacle separation. This initial scenario is

intended to characterize the benefits of safe flight between adjacent obstacles. Results

show that with the one-layer obstacle avoidance algorithm the aircraft maneuvers left

around the left obstacle, since that route is more energy efficient than flying over

the two obstacles or around the right obstacle. As expected, in this simulation the

aircraft treats both obstacles as a single object and executes the most energy-efficient

trajectory to avoid it and meet the final point. In contrast, the result of two-layer

obstacle avoidance algorithm shows that the aircraft flies a trajectory through the

gap between the two obstacles, with only a minor course correction too small to be

appreciated in the figure. Again, the result is reasonably expected as the gap between

the two obstacles exceeds the minimum separation, allowing the global optimizer to

resolve them as two separate objects, and for the local optimizer to produce an energy-

optimal avoidance trajectory between the two.

The second use case, depicted in Figure 51, builds upon the first one and is

designed to test cases when there is a third obstacle immediately behind the gap

between the first two obstacles. As before the one-layer algorithm avoids the first

two obstacles by maneuvering to the left of the left obstacle, and then keeping to the

left of the third obstacle in the back. The two-layer algorithm executes an avoidance

145

trajectory between the first two obstacles, and then around the right of the third

obstacle behind them.

The third use case, depicted in Figure 52, reverses the obstacle arrangement,

presenting first a single obstacle whose footprint and orientation are intentionally

chosen to significantly block the two obstacles behind it. This scenario is intended

to test the case where information about downrange obstacles cannot be acquired

until a closer obstacle is cleared. Moreover, it tests the feasibility and efficacy of

the proposed method with regards to our choice to cluster sensor data in a 2 − D

domain, that is, collapsed to the xy plane, so that obstacles are not resolved based

on depth data. Results shows that the two obstacle avoidance algorithms have the

same initial obstacle avoidance trajectory to avoid the first obstacle. After avoiding

the first obstacle the aircraft detects two downstream obstacles and from that point

on the two algorithms produce different avoidance trajectory solutions. In the one-

layer obstacle avoidance trajectory the aircraft flies above the two obstacles because

it computes the energy-efficient avoidance trajectory resolving the two obstacles as a

single object. The two-layer algorithm resolves two separate obstacles and executes

an energy optimal trajectory through the gap between them.

We quantitatively assess performance of both algorithms on the three scenarios

by estimating the work done by the aircraft, or conversely the energy required to exe-

cute each trajectory. We adopt the classical energy formulation for flight performance

where the work performed by the aircraft, i.e. the energy expended, is estimated as

thrust (force) applied over distance, where it is assumed that the thrust and veloc-

ity vectors are aligned so that thrust is always on the direction of motion. In this

formulation there is no work associated with lift as it is always perpendicular to the

trajectory. The work associated with drag is always an energy loss. Weight work

corresponds to the change in potential energy. The work associated with the imbal-

ance between trust, drag, and the component of weight aligned to them, resulitng in

146

longitudinal accelerations, corresponds to the change in kinetic energy. The latter is

often adjusted via thrust input. Accordingly,

T = D +Wsinγ + F

Tds = Dds +Wdssinγ + Fds

WT = WD +WW +WF

WT = WD + ∆PE + ∆KE

(125)

Here γ is the flight path angle, F is the thrust-controlled force imbalance between

thrust, drag, and the weight component aligned to the flight path, ds is an infinites-

imal segment along the flight trajectory, and WT denotes the work associated with

force T as is also the case for forces D, W , and F . Note that for cases where γ = 0

the work associated with weight is zero, and there is no change in potential energy

∆PE = 0. Similarly, for the case of null imbalance force F = 0, the work associated

with F is zero and there is no change in kinetic energy ∆KE = 0.

Recognizing that thrust, and the work it performs over ds, equate to changes in

kinetic and potential energy while overcoming drag, then the work performed (or

energy expended) in executing a trajectory is given by

WT =

∫
c

Tds, (126)

where T is thrust, c is an avoidance trajectory, and ds is the length of a discrete

segment along the avoidance trajectory.

Table 20 summarizes the measurement results of each method under the three

different scenarios. Results clearly indicate the proposed method requires less energy

than the one-layer collision avoidance method. It is worth noting too that both

algorithms establish energy-optimal trajectories around resolved obstacles, so that all

energy-efficiency benefits observed can only be attributed to the resolution of separate

objects from in the proposed two-layer approach.

147

Results clearly show that the proposed two-layer approach generates more energy-

efficient obstacle avoidance trajectory. The inclusion of the global trajectory layer

results in additional computational expense where the most demanding step is the

solution of the clustering problem. Based on our runtime assessments of DBSCAN

presented in Table 19 we find that this cost is acceptably low in comparison to the

typical runtime of the local trajectory optimization. Additional runtime benefits may

be attained via programming improvements or parallel computing techniques.

Table 20: Summary of numerical simulation
Scenario One-layer structure, W1 (lb ft) Two-layer structure (lb ft) Energy difference (lb ft)

W1 W2 W1 −W2

1 28,830 18,695 10,135
2 28,830 19,075 9,755
3 20,888 19,763 1,125

148

(a) One-layer obstacle avoidance algorithm

(b) Two-layer obstacle avoidance algorithm

Figure 50: Numerical simulation results of obstacle avoidance algorithms in the first
scenario

149

(a) One-layer obstacle avoidance algorithm

(b) Two-layer obstacle avoidance algorithm

Figure 51: Numerical simulation results of obstacle avoidance algorithms in the
second scenario

150

(a) One-layer obstacle avoidance algorithm

(b) Two-layer obstacle avoidance algorithm

Figure 52: Numerical simulation results of obstacle avoidance algorithms in the
third scenario

151

4.3 Conclusion

Many existing collision avoidance concepts using on-board sensor data fail to gener-

ate efficient trajectories because, even though multiple objects may be detected, the

collision avoidance algorithm treats them as a single conglomerate regardless of their

number and relative location. Resulting avoidance trajectories are therefore optimal

only in the context of a large avoidance region, and fail to exploit free space between

obstacles that may allow for more efficient solutions. The approach proposed in this

paper features a two-layer multi-phase optimal collision avoidance algorithm that

entails global- and local-path optimization. The purpose of the global-path optimiza-

tion is to resolve multiple obstacles as separate objects, given they satisfy a separation

minimum, with sensor data clustering. The global-path optimization also identifies a

finite and tractable set of candidate approximate trajectories using the cluster data of

resolved objects, and determines the approximate optimal path via the identification

of a potential threat based on a velocity vector. We identify two candidate clustering

techniques that allow for the parametric specification of cluster separation minimum

for obstacle resolution: DBSCAN and spectral clustering. A design of simulation

experiments is executed evaluate both techniques in terms of prediction success rate

and computational runtime. Although both methods are found to have 100% rates

for the simulations performed, DBSCAN featured lower runtime mean and variance,

thus emerging as the recommended clustering technique for the proposed concept.

Numerical simulations with status-quo one-layer collision avoidance and the pro-

posed two-layer concept are conducted to compare their performance in terms of

energy-efficiency of executed trajectories. Three relevant use cases are utilized to ex-

amine multi-obstacle placements of interest, and assess the feasibility of the proposed

concept, and test the main hypothesis of this work. Results indicate that trajec-

tory solutions with the two-layer avoidance method provide tangible energy efficiency

benefits while incurring in very small additional computational cost.

152

Collision avoidance with on-board sensors is a relatively new and quickly evolving

field where many areas of additional work are warranted. Regarding the work here

reported we argue in favor of a broader benchmarking study where a large set of

multi-obstacle scenarios is utilized, potentially with hardware-in the loop real-time

simulations. Moreover, this two-layer collision avoidance algorithm has a flexible

structure. In other words, the local trajectory optimization can be realized with

any of a myriad of obstacle avoidance formulations. That is, in the local-trajectory

optimization, the collision avoidance algorithm SCAA-1 is solved and demonstrated,

but instead of the SCAA-1, the PNORM, SCAA-2, or SCAA3 can be implemented

to generate the optimal multi-obstacle avoidance trajectory.

We also believe that extension to a probabilistic study is a natural next step so

that uncertainties associated with instrumentation, on-board computer runtime, and

flight dynamics and controls governing trajectory execution, are treated explicitly.

Ultimately, the work here presented outlines a new concept that offers the potential of

significant benefits for the rapidly growing field of UAS applications and the increasing

need to develop safety-assuring technologies.

153

CHAPTER V

CONSTRUCTION OF REALISTIC URBAN

ENVIRONMENTS

The construction of a realistic three-dimensional urban environment has gained at-

tention from diverse fields such as virtual city tourism, environment monitoring, a

rescue mission and a surveillance mission. The realistic urban environment is a critical

component to understand the UASNAS integration problem because many operation

concepts such package delivery and drone ambulance have to be planned to execute

a mission in an urban area. Therefore, to analyze an urban operation problem, a

modeling and simulation environment requires a capability of generating a realistic

urban environment. The realistic urban model needs to be generated rapidly and au-

tomatically since the UASNAS problem requires to explore diverse mission scenarios

with different UAS platforms in various urban areas.

In the obstacle avoidance problem in the UASNAS domain, many researchers have

built urban models to evaluate their obstacle avoidance algorithms [157][136][153][59][56].

Most existing urban models were created under assumptions that a building is a

cuboid, cylinder or simple shape structure. In addition, they failed to describe the

relationship between a generated artificial obstacle environment and the realistic ur-

ban environment. Stastny et al. have generated a sophisticated urban environment

to test their proposed obstacle avoidance algorithm, but they do not explain about

the details of a urban modeling process [136].

In the computer science field, considerable researches have been conducted about

154

building/urban modeling methods. The traditional approach to constructing an ur-

ban model is based on aerial images and other data sources. This image- and data-

based approach is a computational expensive and time consuming manual process.

To overcome the computational issues of the manual process, many urban modeling

methodologies have recently relied on airborne LiDAR (Light Detection and Ranging)

data that collects high fidelity information with centimeter precision. The drawbacks

of LiDAR data include uncertainties from inertial navigation errors, sensor noise and

reflection errors of some surfaces. These uncertainties degrade the precision qual-

ity of an urban model. On the other hand, LiDAR data can be collected quickly

and at low cost. Because the LiDAR information entails point cloud information,

a user can easily handle the point information to construct a urban model. Due

to these advantages, many urban modeling techniques have been recently developed

[75][60][158][159]. You et al.[158] suggested automatic process using LiDAR infor-

mation. This approach reconstructs LiDAR information through re-sampling, hole

filling, and tessellation. Then, the reconstructed information is applied to a classifi-

cation algorithm to judge either building or bare-land. The classified result is refined

by building primitives, and then the refined information is optimized by fitting and

filtering techniques. Based on the automatic process suggested by the You et al.,

Hu et al. [60] suggested an advanced urban modeling method combining airborne

LiDAR data and aerial imagery information. This additional imagery information

allows precise edge detection and improves computational complexity. Zhou et al.

[159] introduce a building modeling method that includes a classification algorithm

to distinguish between vegetation area and building area, a roof generation algorithm

from boundary detection, and also creates polygon meshes to construct a building

model.

These urban modeling methods in the computer science domain may not be ap-

plicable to an urban modeling of an obstacle avoidance problem since these methods

155

include detailed building/vegetarian models as unnecessary information.

In addition, the building model with polygon shape or mesh-type urban environ-

ment cannot be implemented on the introduced flight simulation model because the

simulation environment assumes that obstacle is a cuboid shape for a simplification of

a complex urban environment. Furthermore, our obstacle avoidance scenarios do not

consider near-ground operations. In other words, a building model does not require

specific ground models such as trees or other objects around ground area. These

observations and assumptions lead to the following research question: How can an

urban model be constructed to describe a realistic urban environment for UASNAS

obstacle avoidance problem?

To answer this research question, this paper proposes a rapid and data-driven

urban modeling approach using LiDAR data. The proposed approach has five steps:

resampling/refining data, classification, principal component analysis, grid genera-

tion, and urban modeling. In the following subsection, the details of each step and

the results of case studies will be introduced.

5.1 Data-driven grid-based urban modeling

Data-driven urban modeling method using LiDAR information is inherently challeng-

ing. In general, LiDAR information has error sources due to the GPS/INS error, in-

herent signal noise, and others. These error sources degrade the accuracy of an urban

model. Moreover, the data-driven urban modeling method to tackle the UASNAS

problem requires a rapid and realistic urban model with appropriate fidelity since

diverse mission scenarios with various UAS platforms should be explored to fully un-

derstand the UASNAS problem. Lastly, in the UAS simulation model developed in

this thesis, obstacles were assumed as a cuboid shape to simplify an actual build-

ing shape. This assumption enables us to accelerate numerical simulation time that

allows the execution of more experiment cases. To satisfy the obstacle assumptions

156

from the developed simulation environment, the urban model must be constructed

by a composite cuboid block.

To satisfy the objectives and the constraints, we propose a rapid, data-driven and

grid-based urban modeling method. Figure 53 illustrates the proposed urban model-

ing approach that entails five steps. The first step includes collecting LiDAR data,

resampling and refining original data to decrease the size of LiDAR information. The

second step is solving a clustering problem for the identification of individual building

components from unlabeled LiDAR data. The third step specifies the identification of

the principal directions of each building to define the rotational angle of each classified

building in terms of a global coordinate system. The fourth step is grid generation

that defines the fidelity of the identified buildings. The last step is urban genera-

tion that entails defining width, length, and height of all buildings. The following

subsections describe the details of each step.

Figure 53: A rapid, data-driven and grid-based urban modeling method

157

5.1.1 Collecting/Resampling/refining LiDAR data

For a rapid and data-driven approach, we use LiDAR information collected by air-

borne LiDAR sensor that includes point cloud information about ground objects. The

urban LiDAR data is provided from multiple organizations. Table 21 summarizes the

list of LiDAR resource websites [66][115][46][33][119]. The LiDAR data in this paper

is mostly from Open Topography and PAMAP LiDAR Elevation Data. The Open

Topography [115] is a web-based free open source that has a large database with

high-resolution topology data. PAMAP is digital base maps of Pennsylvania, which

is managed by the Pennsylvania Department of Conservation and Natural Resources,

and Bureau of Topographic and Geologic survey.

Table 21: Airborne LiDAR Resource
Name Website address
United States Interagency Elevation Inventory (USIEI) https: //coast.noaa.gov/inventory
Open topology http: //www.opentopography.org
USGS Earth Explore http: //earthexplorer.usgs.gov
PAMAP LiDAR Elevation Data http: //www.dcnr.state.pa.us/topogeo/pamap/lidar/index.htm
Indiana Spatial Data Portal http: //gis.iu.edu/datasetInfo/statewide/in 2011.php

Before collecting the LiDAR data from the introduced digital resources, the area

of interest was selected from Google Earth. The raw LiDAR data of the selected

region was collected by digital database introduced in Table 21. However, this raw

LiDAR data cannot be directly readable; thus, we use an open-source post-processing

program called Rapidlasso tool [125]. This software has diverse functions such as

converting raw LiDAR data into a variety of formats, filtering LiDAR data, and

checking the quality of the LiDAR data. Through using this software, the collected

raw data can easily be converted into the readable format of the raw LiDAR data.

Figure 54 illustrates the detailed steps of collecting point cloud information.

We select an example area that is downtown San Diego. The size of the selected

area is approximately 6000 by 3000 feet (length and breath). The collected LiDAR

information has a 2,508,951 point cloud that is not computationally tractable for

158

Figure 54: Collection of LiDAR data

data analysis and visualization purposes. To improve the computational issues, we

randomly resample the collected point cloud data. As a result, the resampled data

was reduced by 50 percent (1,254,476 points) of the original data.

An altitude constraint is also considered because our UAS mission scenarios do not

include near-ground operations. In other words, all the point cloud below the altitude

constraint is eliminated. This altitude constraint can minimize noise impact generated

by vegetation and complex ground facilities. Therefore, this concept helps individual

buildings to be identified from point cloud information. Moreover, this constraint is

beneficial for computational efficiency because we can reduce the amount of point

cloud information.

In our example model, we assume that the altitude constraint is 200 feet because

according to UAS NASA project document, ’Unmanned Aircraft System (UAS) Traf-

fic Management (UTM)’, they proposed an UAS operation airspace for low-altitude

drones between 200 feet and 500 feet [11]. They defined the airspace above 500 feet

that shares with manned aircraft as Integrated airspace.

The result of the resampling technique and the altitude constraint is that the

final size of the point cloud shrinks to 67,049 points presented in Figure 55, which is

159

approximately 2.67 percent of the initial LiDAR information.

(a) Resampled LiDAR point cloud in three-
dimensional space

(b) Resampled LiDAR point cloud as viewed
from above

Figure 55: Result of resampled point cloud in a densed urban example

5.1.2 Identification of building clusters

The next step is specifying individual building information from the resampled point

cloud that resulted from the previous step. Since the resampled point cloud does

not include any labels to indicate different objects, we apply a technique to identify

individual objects using a distance or similarity metric. The identification of build-

ing clusters can be applied by unsupervised learning clustering algorithms. Cluster-

ing algorithms have been actively researched in the commuter science community;

thus, many clustering techniques exist, but we skip the further explanation about

the overview of clustering techniques because we elaborate diverse types of cluster-

ing techniques in the two-layer collision avoidance algorithm section. In this section,

the density-based spatial clustering of applications with noise (DBSCAN) method

suggested by Ester et al. [45], which computes maximum group defined by density-

connected points is employed. The robustness of the DBSCAN technique is controlled

by considering the maximum radius of a neighborhood ε and the minimum number of

points p in the group to satisfy the maximum radius. The point density approach is

160

an ideal structure to group adjacent points and can also eliminates noise data. This

technique enables us to solve the non-linear clustering problem and provide a robust

solution against uncertainties. Therefore, we implement the DBSCAN technique on

the clustering problem from resampled LiDAR point cloud shown in Figure 55.

Figure 5.1.2 is the clustering result from the DBSCAN technique. For the DB-

SCAN technique, the maximum radius of a neighborhood ε and the minimum number

of points p were chosen to be 50 feet and 50 points, respectively. These parameters

are defined by observing characteristics based on the parameter variation to elimi-

nate noise points and precisely collect buildings. From these parameters, the identified

number of the clusters is 26. In other words, the identified number of buildings in

the given urban area is 26.

Figure 56: Clustering result of the DBSCAN technique

5.1.3 Identification of rotational angle and construction of a building

Based on the clustering results (C = [C1, C2, · · · , Ck]), we need to characterize an

individual building cluster. In order to capture the building features, we also need to

specify the rotation angle of each cluster information in the global coordinate system.

The rotational angle can be utilized to more precisely characterize building clusters.

161

Specifying the rotational angle of each cluster can be defined by Principal Com-

ponent Analysis (PCA) that provides most sensitive axes from given point cloud

information. In the mathematical context, the PCA technique is an orthogonal lin-

ear transformation method that changes the original coordinate system into a new

orthogonal coordinate system with the highest variance. This PCA technique has

been widely implemented in various fields such as pattern recognition, compressing

data structure, and reduction of dimensions minimizing the loss of the data informa-

tion [52] [23] [13]. This paper will briefly discuss an overall concept of the principal

component analysis based on the reference book written by Jolliffe [77].

It is assumed that data D are D = {x1, x2, · · · , xm}. xi indicates ith observa-

tion in n dimensional space x ∈ Rn×m. The matrix formulation of the data can be

written by

D =

xT1

xT2
...

xTm

=

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

(127)

From the given data, we can compute the mean and covariance according to the

following equations:

µ = E[x] (128)

Σ = E[(x− µ)(x− µ)T] (129)

The covariance matrix can be represented by a linear transformation equation

Σ = AΛAT , (130)

where A is the orthogonal linear transformation matrix that entails eigenvectors, and

Λ that is diagonal matrix includes eigenvalues Λ = {λ1, λ2, ..., λn}. The covariance Σ

162

can also be written, Σ = λ1a
T
1 a+λ2a

T
2 a2+· · ·+λnaTnan. Reducing the dimension of the

given data can be defined by introducing a transformation in a latent space. We select

a new transformation matrix Ak = {a1, a2, · · · , ak} ∈ Rn×k. The k eigenvectors,

which is k ≤ m, are specified from the first k largest eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ 0.

The physical meaning of this process is that we select k dimensional latent space with

k large variance. The covariance matrix can be represented by a linear transformation

equation

ν = ATkX, (131)

where the k orthogonal transformation matrix is Ak ∈ Rk×n and the result of the

latent variable is ν ∈ Rn×k. The inverse transformation onto the original space can

be defined as

X = Akν. (132)

Based on the PCA technique, we introduce transformation of the point cloud onto

the principal component axes through an example case. In the example case, the PCA

problem is formulated in two-dimensional space because the PCA result yields the

rotational angle of each building cluster in terms of z-axis in a building coordinate

system. As the example, we select one of the clusters resulting from the clustering

algorithm. Figure 57 is the point cloud example of a cluster that is Manchester Grand

Hyatt San Diego building. Although the actual hotel has two separated tall section,

the results of the previous process divides into two clusters. Note that the connection

part of the hotel is low height that is excluded due to the altitude constraint in the

resampling/filtering phase

Using the point cloud, all point cloud are projected onto a ground plane presented

in Figure 57(b), x̄ ∈ R2. Next, we compute the corresponding eigenvalues and eigen-

vectors. The physical meaning of computing eigenvalues indicate the sensitivity of

the point cloud information that describes the variance of the data. The eigenvectors

163

describe the direction of the vectors. The computed two eigenvectors are shown in

Figure 58.

(a) Three dimensional building ex-
ample (Manchester Grand Hyatt
San Diego)

(b) Raw point cloud information

Figure 57: Example of point cloud

Figure 58: Problem of the PCA using raw LiDAR information

The visual inspection of the result reveals that the PCA algorithm estimates the

principal coordinate that has the most variation of the point cloud, but the computed

two principal axes are slightly shifted from the axes with the most variance. The rea-

son of the shift is that the given point cloud information has some irregular patterns.

The point cloud on the bottom of the left side is more sparse than the point cloud in

the top of the right side. This irregular pattern may cause the misalignment result

of the actual principal axes. Therefore, we introduce additional steps to mitigate

164

this problem. The main idea of the additional steps is using uniformly spread point

cloud data instead of the irregular point cloud information to minimize bias resulting

from the irregular point density. The additional steps are edge detection, addition of

uniformly spread point cloud, and analysis of the principal axes. Figure 59 describes

the results of the suggested PCA process. The result presents that the estimated

principal axes detects the principal components more precisely. From this result, we

can conclude that the modified PCA algorithm helps reduce biased-rotation caused

by the irregular point density.

(a) Edge detection (b) Including uniformly
spreaded point cloud

(c) Analysis of the principal
axes

Figure 59: Modified PCA approach

165

5.1.4 Grid generation

From the principal component result, we transform the point cloud data into the

principal axes using Equation 131. The transformed point data are presented in

Figure 60.

Figure 60: Point cloud data in principal coordinate system

The next step is to characterize a composite cuboid building configuration. It

identifies width, length, and height based on the transformed point cloud information.

In this step, we introduce a grid-generation to adjust the fidelity of a building. The

grid generation controls the resolution of building details. Figure 61 shows examples

of the grid-generation.

In the example of a single grid case presented in Figure 61(a), we calculate width

and length directly from the point cloud information in the principal component

domain. In the multiple grid example, the entire building area is discretized by grids

with 10 [feet] by 10 [feet] (width and length) and identified a grid based on the point

cloud information in the principal component domain.

(a) One grid generation (b) Multiple Grid generation

Figure 61: Grid generation results

Next, we need to define the height of the given cloud to define the height of

166

individual grid. In other words, defining the height of the cloud specifies the height

of a building in the one grid case. In the multiple grid case, the height of the cloud

is the height of that particular part of the building.

For example, if we suppose that we have m grid, the point cloud in a grid can

be written Pc = [Pc1,Pc2, · · · ,Pcm] , (Pc = Rm×3), where Pci = [xci, yci, zci]. c is a

cluster index and i is the index for grid. If the number of point cloud in a kth cluster

is n, the height can be evaluated as

zck =
1

n

n∑
i=1

zcki, (133)

where zck is the height of kth grid in cth cluster, n is the number of point cloud

inside of each grid, and zcki is the height vector of ith point in the kth grid of cth

cluster.

Based on the results of length, width, and height, the cuboid can be fully con-

structed. After generating a cuboid, it requires a coordinate transform from the

principal axes system into the global coordinate system. The rotational angle can

be easily computed by an eigenvector of the first principal component. Then, we

can transform the cuboid shape onto the global coordinate system using Euler an-

gle transformation. Figure 62 shows example results of a building modeling. Figure

62(a) is the mesh grid of the building resulting from the raw point cloud that pro-

vides approximated building shape, Figure 62(b) is the urban modeling result using

the single grid approach, and Figure 62(c) is the result of the multiple grid approach.

The example studies show that higher number of grid points lead to more detailed

building model. To generate an entire urban environment, this process is repeated

until we build the building models of all clusters.

5.1.5 Examples of urban construction

This section discusses example studies of an introduced urban modeling methodol-

ogy. The quantitative evaluation of the urban modeling is not feasible since we do not

167

(a) Example of a building (b) Result of a building model
using one grid

(c) Result of a building model
using multiple grids

Figure 62: Grid generation results in three dimensional space

have the actual measurements of the selected cities. Many papers have also performed

qualitative analysis instead of quantitative evaluation about modeling accuracy be-

cause of the lack of actual measurements [60][146]. For the comparison of different

fidelities, we select single-grid and multiple-grid approaches. The first example is

downtown of San Diego as a dense urban area. Figures 63 and 64 are the results of

the urban modeling by multiple- and single-grid approaches. The both approaches

can successfully recognize the buildings that are higher than the altitude constraint.

The second example is downtown San Diego in the different region as a sparse urban

environment. Figures 65 and 66 present the results of the two urban modeling ap-

proaches about the sparse region. The results also show that the proposed modeling

method successfully captures the size and the location of the buildings.

Using the proposed urban modeling methodology, we generate eight different cities

shown in Figure 67. The results show that the buildings of all eight cities are success-

fully detected and characterized precisely. The results also show that this technique

could generate an urban model in a rapid and automatic manner.

168

(a) Result of dense urban modeling with
multiple grid

(b) Close-up view about result of dense ur-
ban modeling with multiple grid

Figure 63: Example of a dense urban modeling with multiple grid

(a) Result of dense urban modeling with
one grid

(b) Close-up view about the result of dense
urban modeling with one grid

Figure 64: Example of a dense urban modeling with single grid

(a) Result of sparse urban modeling with
multiple grid

(b) Close-up view about result of sparse ur-
ban modeling with multiple grid

Figure 65: Example of a sparse urban modeling with multiple grid

169

(a) Result of sparse urban modeling with
one grid

(b) Close-up view about result of sparse ur-
ban modeling with one grid

Figure 66: Example of a sparse urban modeling with single grid

5.2 Conclusion

This chapter introduces the data-driven rapid and automatic urban modeling tech-

nique which allows us to explore diverse collision avoidance scenarios in different

urban environments. The suggested method utilizes airborne LiDAR data and has

six steps: collection of LiDAR data, resampling data, identification of building clus-

ters, PCA analysis, grid generation, and construction of a urban model. Unlike urban

modeling techniques in computer science domain, this proposed methodology is more

tractable for obstacle avoidance problems in urban operations because of its rapid

process and appropriate level of fidelity. Experiment results show that the suggested

urban modeling precisely detects all buildings and accurately constructs all the de-

tected buildings.

170

Google image LiDAR source High fidelity Low fidelity

Dense San

Diego,

CA

Indianapolis,

IN

Sparse San

Diego,

CA

Portland,

OR

Salt Lake

City,

UT

Philadelphia,

PA

Pittsburgh,

PA

Louisville,

KY

Figure 67: Examples of realistic urban environments

171

CHAPTER VI

SYSTEM OF SYSTEMS LEVEL INTEGRATION

EXPERIMENT

This chapter describes the characterization of coupling and cross-coupling impacts

with different system/sub-system components through a virtual experiment using

the developed UAS modeling and simulation environment. For the characterization,

we will first introduce potential experimental UAS scenarios, explain the design of

experiments, and then analyze the experiment results. The potential scenario sec-

tion introduces possible scenarios that can be explored to characterize the UASNAS

problem through the introduced modeling and simulation environment. This section

also introduces one representative scenario that we will examine as an realistic UAS

problem. The following section will cover the experiment design, to discuss variable

selections/designs and to introduce the final experiment set-up. The final section will

be a discussion of the experiment results and illustrate crucial observations associated

with coupling and cross-coupling impacts. The system of systems level experiments

and understanding of coupling/cross-coupling effects in the collision avoidance prob-

lem is associated with Objective 2 of this thesis:

� Objective 2: This thesis aims to quantitatively characterize collision avoidance

as a critical element of separation assurance in terms of system behavior across

different levels of abstraction and multiple disciplines.

172

6.1 Potential experiment scenarios

The developed modeling and simulation environment includes models of a system,

sub-systems, and the environment. The system model includes UAV flight dynam-

ics, and the sub-systems model includes a sensor model, a flight controller, and a

collision avoidance algorithm. The environment model is an urban model built from

the proposed rapid, data-driven and grid-based urban modeling methodology. This

system of systems modeling and simulation environment allows the exploration of di-

verse experimental scenarios and even observe coupling/cross-coupling effects. This

section will discuss potential environmental scenarios and introduce a representative

experimental scenario that will be explored through the introduced modeling and

simulation environment.

The first potential scenario is observing the interactions between UAV character-

istics and sensor performance relevant to the coupling problem between a system and

a subsystem. The sensor capability and UAV maneuverability performance highly

affect the obstacle avoidance performance as a critical factor to safely avoid an ob-

stacle. The FAA literature [47] also poses a question “What is the required sensor

coverage (distance range, azimuth range and elevation range) to avoid a fixed obstacle

and a moving obstacle?” As an example of the coupling problem, a UAV with low

maneuverability may require a better sensor system that is capable of having larger

aperture area and longer detection range. Lower maneuverability requires an earlier

maneuver to completely avoid an upcoming obstacle. On the other hand, a UAV with

high maneuverability may need less stringent sensor requirements than the UAV with

low maneuverability because high maneuverability enables a quick and agile maneu-

ver to avoid an obstacle. Regarding the interactions between the sensor system and

the vehicle maneuverability performance, possible research questions are as follows:

� What are the sensitivities of collision avoidance safety and energy consump-

tion to execute an entire mission with respect to sensor parameters and UAV

173

maneuver characteristics?

� What is the strongest interaction between the variables related to vehicle per-

formance and the sensor parameters?

The second potential scenario is the exploration of the interaction between a sensor

system and a collision avoidance algorithm associated with the interactions between

subsystem components. The collision avoidance algorithm can have an impact on

avoidance characteristics depending on sensor specifications, such as distance range

and the field of view (i.e., field of vision). For example, a more relaxed collision

avoidance algorithm may require higher capabilities of the sensor system since the

relaxed collision avoidance algorithm generates an avoidance trajectory that operates

in close proximity to an obstacle. On the other hand, a more restrictive collision

avoidance algorithm may be less sensitive to the sensor performance since the collision

avoidance algorithm is likely to produce trajectories with a higher perception of safety.

Because of these relationships, it is necessary to characterize the interaction between a

sensor system and a collision avoidance algorithm. The following research questions

are associated with the coupling effects between a sensor system and an obstacle

avoidance algorithm:

� What are the sensitivities of mission safety and required energy with regard to

sensor specification and different obstacle avoidance algorithms?

� What is the interaction between parameters of a collision avoidance algorithm,

such as safe distance and minimum separation distance, and sensor parameters

(field of view and detection range)?

The third possible experimental scenario is examining the impact of an urban

environment with different building density levels. The level of the building density

may significantly impact the obstacle avoidance characteristics depending on the fea-

tures of the collision avoidance algorithm, the sensor system, and the types of UAV

174

platforms. To be more specific, if an urban environment has sparse obstacle density,

flying through obstacles will be done in a more energy efficient manner, but if an

urban environment has a high density of obstacles, avoiding the entire dense region

would be a more practical way to reduce energy consumption and to circumvent an

intense maneuver that minimizes collision possibilities. This possible experiment can

lead to the following questions:

� What are the sensitivities/interactions of safety and energy consumption with

respect to the characteristics of a collision avoidance algorithm and urban den-

sity level?

� What are the sensitivities/interactions of safety and energy consumption with

regard to UAV maneuverability and the level of urban density?

� What are the sensitivities/interactions of safety and energy consumption in

terms of the performance of a sensor system and the level of urban density?

Among the introduced potential scenarios, this thesis will explore the coupling

effects between the sensor performance and the collision avoidance algorithm as a

representative problem.

6.2 Characterization of an urban environment

This section discusses the characteristics of diverse cities and defines a representative

urban scenario. This characterization of cities enables an understanding of the density

level of the different cities and provides the density level of the representative urban

scenario.

From an obstacle avoidance perspective, the characteristics of the cities may be

depicted by how dense the urban environment is. This density description can be

defined by information about the building population level of the selected urban en-

vironment. Density level of an urban environment can be represented by diverse

175

metrics such as the number of buildings per unit area, or the area/volume obstacle

density of a given urban environment. To describe the density level of an urban en-

vironment, this thesis utilizes three different metrics. Before introducing the metrics,

it is necessary to first introduce the definition of an urban airspace that indicates

available airspace around a given city. This urban airspace will then allow for the

assessment of the density level of a given urban environment.

Figure 68 illustrates the definition of the urban airspace. The urban airspace in XY

space is specified by a safety margin the rightmost and leftmost of the given buildings.

Additional margin space on each side from the rightmost and leftmost buildings is

also considered in the XY axis. The urban airspace in the Z axis is defined by the

minimum altitude constraint, the maximum height of a given urban environment, and

the safety margin. The minimum altitude constraint is considered because UAVs are

not operated near the ground environment, which has complex ground structures,

such as transmission towers and elevated highways. The maximum height of the

urban airspace is defined by the sum of the safety margin and the height of the tallest

building in the given urban airspace area. In this thesis, the safety margin space is

assumed to be 50 [feet]. From this airspace definition, the urban airspaces of eight

different cities are defined in Figure 69. In the figures, the blue cuboid box indicates

the urban airspace. A visual inspection shows that the defined urban airspaces have

different features with respect to the area, the volume, and the height of the airspaces.

Based on the definition of the urban airspace, the urban density level is computed.

For the measurement of the density level, three metrics are applied. The first metric

is two-dimensional airspace ratio ρ2D, which is the occupied area by buildings in the

two-dimensional airspace. This metric can represent the population level with respect

to the two-dimensional space. The occupied building area Aocc is the total building

area on the cross-sectional plane at the minimum altitude. The two-dimensional

176

Figure 68: Definition of urban airspace (Example : Dense San Diego)

177

(a) Dense San Diego, CA (b) Sparse San Diego, CA

(c) Indianapolis, IN (d) Portland, OR

(e) Salt Lake City, UT (f) Philadelphia, PA

(g) Pittsburgh, PA (h) Louisville, KY

Figure 69: Available airspace of eight representative cities

178

airspace ratio can be mathematically written as

ρ2D =
Aocc

XairspaceYairspace
. (134)

The two-dimensional density cannot fully describe the urban density level since the

UAV flies in three-dimensional space. Therefore, this thesis suggests another metric,

three-dimensional airspace ratio ρ3D, which is the occupied volume by buildings in

a given urban airspace. In other words, it is the ratio of the buildings’ volume Vocc

within the given urban airspace to the entire urban airspace volume. Zairspace is the

height between the minimum altitude constraint and the maximum altitude of the

given urban airspace. This three-dimensional airspace ratio can be mathematically

written as

ρ3D =
Vocc

XairspaceYairspaceZairspace
. (135)

Although these two metrics can give density from a two- and three-dimensional

space perspective, they cannot provide the sense of the number of buildings. Knowing

the number of building can provide an idea of how complex airspace routes are in

the given urban environment. Hence, another metric that will be considered is the

number of buildings per square foot in the two-dimensional urban airspace. This

metric simply illustrates how many buildings exist in the given urban airspace.

Based on the definitions of three metrics, one can evaluate and compare the density

level of the eight different cities. Figure 70 summarizes the comparison results. Figure

70(a) is a three-dimensional graph to visualize the three metrics for the eight cities,

and the remaining graphs are the projected results onto each plane (XY, XZ, and

YZ planes). Visual inspection of the results reveals a linear trend. This linear trend

implies that a city with a higher 2D/3D airspace ratio is likely to have a higher number

of buildings per square foot. Among the eight cities, the densest city is Philadelphia,

while the sparsest city is Louisville.

All the cities are categorized into three groups, which are sparse, medium, and

179

dense with respect to the density level, in order to characterize the density trend of

all cities more easily according to the similarity feature. The results presented in

70(a) show that the sparse group includes Louisville only, the dense group consists of

Philadelphia only, and the rest are in the medium density group.

(a) 3D plot (b) 3D ratio vs. number of buildings per
square foot

(c) 2D ratio vs. number of buildings per
square foot

(d) Building ratio in 2D vs. building ratio
in 3D

Figure 70: Analysis results of urban environment

This section discussed the overall characteristics of the eight different cities ac-

cording to urban complexity. To characterize the urban density level, three different

metrics were introduced. From the analysis results using the metrics, the eight cities

were divided into three groups (sparse, medium, and dense) for categorization pur-

poses. Because of the limited LiDAR resources of cities, this categorization yields

a statistically weak conclusion, but it still provides a meaningful classification. To

180

achieve a statistically meaningful trend, more urban LiDAR data is necessary.

The analysis outcomes of the urban density are applicable to the problem of

random city generation with different density levels. In general, creating a realistic

urban environment using actual urban information is a highly challenging problem

because of the difficulty of collecting urban information (e.g., LiDAR and geometry

data). The density analysis of different buildings enables us to generalize the urban

density model. This generalized urban model is potentially implementable to create

an artificial but realistic urban environment without any actual urban information.

Based on the density studies of the eight different cities, the dense San Diego

urban area shown in Figure 71 was selected as a representative scenario because it

has a medium level of density.

Figure 71: Representative urban scenario (San Diego) - Google Earth image

181

6.3 System of systems level experimental design

The objective of the integrated experiment is to observe coupling and cross-coupling

effects between a system and a system, a system and a subsystem, and a subsystem

and a subsystem. The representative scenario of the integrated experiment (i.e.,

system of systems level experiment) is defined as the exploration of coupling and

cross-coupling effects between sensor and GNC parameters. With regard to exploring

these coupling and cross-coupling effects, the following fundamental questions can be

posed:

� Question 1: Which cases are the infeasible cases (collision cases)? What are the

key drivers which result in collision situations?

� Question 2: What are the sensitivity of the design variables (sensor parameters

and GNC parameters) with respect to the minimum distance and energy?

� Question 3: What are the interactions between sensor and GNC parameters?

These questions will be answered by the outcomes of the integrated experiment.

Before discussing the design process of the experiments, the experimental environ-

ment will be introduced to provide the entire simulation structure. The experimental

environment includes aircraft dynamics, an aircraft controller, a GNC algorithm, a

sensor model, and an urban environment. The aircraft dynamics are represented by

the point mass model described in Section 2.1.1, and the aircraft controller is an

application of the statistical gain-scheduling method described in Section 2.2. The

GNC algorithm employs the suggested Hybrid method illustrated in Section 3.3. The

urban environment model is constructed by the rapid, data-driven, and grid-based

urban modeling technique stated in Chapter 5.

The on-board sensor is defined as the general light detection and ranging equip-

ment with no uncertainties. The vehicle, sensor, collision avoidance, and other param-

eters are summarized in Table 22. The urban model is assumed to be the downtown of

182

San Diego with a single grid approach shown in Figure 64 since a single grid approach

is the simplest urban model, which will help accelerate the experiments.

183

F
ig

u
re

7
2
:

B
lo

ck
d
ia

gr
am

of
U

A
V

fl
ig

h
t

si
m

u
la

ti
on

184

Table 22: UAV parameters of the integrated experiment
UAV parameters Variable Value Unit

Vehicle parameters

Weight w 29.76 [lb]
Planform area S 6.1 [ft2]

Area swept out by the propeller Sp 0.1348 [ft2]
Propeller aerodynamic coefficient Cp 1
Efficiency constant of the motor Km 8

Lift coefficient at zero angle of attack CL0 0.28
Lift curve slope CLα 3.45

Aspect ratio AR 10.7
Span efficiency e 0.9

Zero-lift drag coefficient CD0 0.03
Sensor parameters Sensor resolution θsen 1 [deg]

Collision avoidance parameters
Minimum altitude zmin 200 [ft]

Maximum acceleration gmax 3 [ft/s2]

Other parameters
Update rate of guidance and navigation loop fg 1 [Hz]

Update rate of aircraft control loop fa 10 [Hz]

The experimental setup requires a reasonable amount of computational resources

and must have a large enough number of experiment cases to generalize the outcomes

from the experiments. However, due to the large number of variables, the integrated

experiment may require such a large number of experiments that there is no compu-

tationally feasible solution. Therefore, the experiment should tailor the number of

variables to achieve a reasonable number of experiments, which enables the sensitiv-

ity and interaction analysis. The issue of the large number of experiments will be

addressed through an example study and provide a solution to achieve a reasonable

number of experiments.

To examine this issue of experiment size, the design of experiments described in

Table 23 will be assumed. The experiment considers several key design variables such

as sensor parameters, a certain aircraft model, guidance and navigation parameters,

and initial/terminal conditions. Since the experiment provides the answers to the

three questions related to sensitivities and interactions between the sensor and the

GNC parameters, the experiment fixes the aircraft model and varies the sensor and

GNC parameters. The sensor parameters include a range of azimuth and elevation

angles, as well as distance. The guidance and navigation have two parameters, safe

distance and separation distance, which are parameters in global- and local- trajectory

185

optimizers. For the exploration to observe at least quadratic responses, each of these

variables needs four factors. Although the initial/terminal conditions exist as an

infinite number of conditions, we select 10 factors for simplicity. Based on these

assumptions and variable definitions, the result of the total number of DOE cases

is approximately 109, which is too many to be computationally suitable. Therefore,

to reach a reasonable number of experiments, it is necessary to strategically select

experiment cases. In this subsection, the detailed process of creating the experimental

design will be discussed.

Table 23: Example of infeasible DOE

Types of variable Variable name Factors

Input DOE variables

Sensor parameter AZ 4
EL 4

Distance 4
Aircraft 1

Guidance and navigation Safe distance 4
Separation distance 4

Initial position 10
Initial velocity 10

Initial acceleration 10
Terminal position 10
Terminal velocity 10

Terminal acceleration 10
Total number of cases 1.024E+09

6.3.1 Defining initial trajectories

Possible initial trajectories exist in the infinite number of trajectories according to

the initial/terminal conditions that may cause an increase in the computational ex-

pense. To fully explore the obstacle avoidance problem in a given urban environment,

the initial trajectories must be representative scenarios, not trivial cases that have

no obstacles along the trajectory. To generate representative trajectories and avoid

trivial cases, the most challenging trajectories that are a subset of the representa-

tive trajectories are selected. This section elaborates on the details of defining the

186

representative trajectories and specifying the most challenging trajectories.

To decrease the number of initial trajectories, this thesis makes several assump-

tions. First, the initial flight condition is assumed to be level flight, and then ten ini-

tial/terminal positions are defined that are equivalently spaced in the X and Y axis.

It is also assumed that the initial altitude is half of the height of the tallest building

in the given environment (Dense San Diego), which is 350 [feet], which satisfies the

minimum altitude constraint of 200 [feet]. This altitude requirement is determined

by the concept of air traffic management for low-altitude drones performed by NASA

[1].

The initial/terminal positions are located farther from the urban airspace because

this gap from the urban airspace prevents aggressive maneuvers near the initial/ter-

minal conditions due to close proximity to an obstacle. The initial velocity selected

is the normal cruise speed of the Aerosonde UAV, 70 [feet/sec]. The vectors of the

initial velocities are assumed to be parallel to the X and Y axis, which can be written

as [1 0 0] and [0 1 0] in the global coordinate system. Figure 73 illustrates the

initial/terminal conditions.

Figure 73: Initial/terminal conditions

Based on the ten initial/terminal conditions, vehicle dynamics, and constraints de-

scribed in Section 4.1.4, one solves the trajectory optimization problem to determine

initial trajectories. The trajectory optimization problem utilized by the optimization

187

framework was introduced in Chapter 3. The designed full-factorial trajectory op-

timization problem with respect to X and Y axis has 50 experimental cases. The

results of the initial trajectories are shown in Figure 74.

(a) 3D view (b) Top view

Figure 74: Initial and terminal conditions

Among 50 initial trajectories, the ten most challenging trajectories will be selected.

To evaluate the challenge level of a trajectory, the obstacle ratio along that trajectory

is calculated. The obstacle ratio is the ratio of obstacle area to the area of an entire

initial trajectory. The area of the initial trajectory is the area defined by a margin

on both sides of the initial trajectory because it is necessary to consider the size of

an aircraft. The area of the obstacle is the obstacle area within the area of the initial

trajectory in an urban airspace. Figure 75 depicts an example area. In the figure,

A indicates the area of an initial trajectory, and B is the area of obstacles along the

trajectory. The obstacle ratio along the initial trajectory is ρ = A/B.

The obstacle ratios of 50 initial trajectories are evaluated and presented as a

histogram in Figure 76. The trajectories on the right side, with a higher obstacle

ratio, have more obstacles along the trajectory compared to those on the left side of

the figure.

Using the calculated obstacle ratios, one can select ten initial trajectories with

the highest obstacle ratios, which implies that they are the most challenging trajec-

tories. The selected initial trajectories are depicted in Figure 77. This approach of

188

Figure 75: Example of computing the obstacle ratio along an initial trajectory

Figure 76: Distribution of the obstacle ratio

189

selecting ten initial trajectories avoids the computational expense of including trivial

trajectories, which have zero or few obstacles, in the experiment.

(a) 3D view (b) Top view

Figure 77: Selected ten initial trajectories

6.3.2 Defining sensor variables

This section describes a defining experiment of the sensor parameters (distance range,

ranges of azimuth and elevation angle). The experimental design of the sensor vari-

ables is determined by the representative LiDAR sensor specifications. Table 24

summarizes commercially available LiDAR sensors provided by Phoenix Aerial Sys-

tems [2]. The characteristics of these sensors are that a sensor with a longer range is

likely to have a small range of elevation angle while the sensors with a shorter range

have a larger field of view.

Table 24: Specifications of representative LiDAR sensors
VLP-16 HDL32E LUX4 LUX 8 VUX-1 High Accuracy VUX-1 UAV VUX-1 LongRange Min Max

Range(m) 120 120 200 200 400 920 1350 120 1350
Range (feet) 393.6 393.6 656 656 1312 3017.6 4428 393.6 4428

AZ(deg) 360 360 -60 to 50 -60 to 50 355 330 330 330 360
EL(deg) -15 to 15 -30 to 10 3.2 6.4 Single layer Single layer Single layer 15 20

Based on the LiDAR specifications, the sensor variables are designed. Table 25

represents the ranges and factors of each variable. The sensor parameters have four

factors in order to get a third order response.

190

Table 25: Experiment design of sensor parameters

Range Min. value Max. value Factors

Distance 400 (feet) 1300 (feet) (400 700 1000 1300)
AZ -80 (deg) 80 (deg) (100 120 140 160)
EL -35 (deg) 35 (deg) (5 15 25 35)

6.3.3 Defining a design of experiments for guidance and navigation pa-
rameters

In the proposed two-level obstacle avoidance algorithm, two parameters, which are

safe-distance rs and the minimum separation distance between buildings Do, are

critical variables to determine the performance of obstacle avoidance. Intuitively,

with a higher value of safe-distance, a UAV selects an avoidance trajectory with a

greater distance from a building. It means that the avoidance trajectory may have

a higher perception of safety. When there is a higher value of minimum separation

distance, multiple obstacles can be identified as one obstacle since the clustering

algorithm in the global-trajectory optimization recognizes individual clusters based

on the distance criterion. Therefore, a higher minimum separation distance results

in a more restrictive trajectory. Therefore, these two parameters may significantly

impact the obstacle avoidance performance. The selection of these two parameters is

also a challenging problem because if high values of these two variables are chosen to

enhance the perception of safety, the results of the avoidance trajectory may not fly

between buildings. On the other hand, if we choose very small values, many crashes

can happen because of the proximity to the obstacles. To avoid these problems, the

two variables are defined from the observations of the given urban environment (San

Diego). The main idea of defining two variables is that these variables are determined

from the average gap between the buildings in the given urban environment. To be

more specific, we assess the distribution of the distance between the buildings that is

computed in the two-dimensional urban map. For example, we project the San Diego

map onto the ground plane shown in Figure 78 and evaluate the minimum distances

191

between the two buildings. In the figure, each individual rectangular box describes a

building.

Figure 78: Building map in two-dimensional space

Figure 79 illustrates the distribution of the distance between the buildings. The

mean µd of the distribution is 57.5 [feet], and the standard deviation σd is 27.5

[feet]. From this analysis, the safe distance is defined as 30, 57.5 and 85 [feet] that

is respectively µd− σd, µd, and µd + σd. The minimum separation distance is defined

as two times the safe-distance, which are thus 60, 115, and 170 [feet] because in the

two-level algorithm, the minimum separation distance should satisfy the condition,

2rs ≤ Do.

6.3.4 Summary of the design of experiments

Table 26 summarizes the design of experiments based on the introduced assumptions

and designed experiments. The total number of experiments is 3840, which is much

more favorable to computational expense than the approximately one billion cases

required in the initial experiment design.

192

Figure 79: Distribution of the distance between buildings

Table 26: Summary of integrated experiment
Types of variable Variable name Factors Subfactor Min Max DOE

Input DOE variables

Sensor parameter

AZ 4 20 80 20 40 60 80
EL 4 5 35 5 15 25 35

Distance 4 400 1300 400 700 1000 1300
Aircraft 1

Guidance and navigation
Safe distance

6
3 50 150 (30 57.5 85)

Separation distance 3 100 200 (60 115 170)
Initial trajectory 10 The most challenging routes

Total DOE 3840

193

6.4 Results of the system of systems level experiments 1

The result of the experimental design yields 3840 cases with ten different initial tra-

jectories. This number of experiments is still large enough to be infeasible to run a

single desktop machine. To mitigate this computational issue, the designed experi-

ments were executed using the parallel computing resource that is provided by the

PACE (Partnership for an Advanced Computing Environment) cluster at the Georgia

Institute of Technology.

Figure 80 shows the results of the avoidance trajectories with ten different initial

trajectories. Each trajectory includes 384 cases according to the different experiment

parameters: sensor parameters and GNC parameters described in Table 26.

A visual inspection of the ten results shows that the avoidance trajectories have

high variability depending on the initial trajectories. Some trajectories present high

variability. Other trajectories have low variability. These trends imply that the

experiment may have a highly nonlinear trend.

194

F
ig

u
re

8
0
:

R
es

u
lt

s
of

in
te

gr
at

ed
ex

p
er

im
en

t

195

Based on the experiment results, one can analyze infeasible and feasible cases. The

infeasible cases identify the main drivers of the collision situation. The feasible case

studies characterize the sensitivities and interactions between the sensor parameters

and GNC parameters.

The analysis of the infeasible avoidance cases will be discussed to answer the

following questions: “What are the infeasible cases? What are the key factors that

yield a collision situation?” mentioned in Section 6.1. To answer the questions, the

histogram results are analyzed.

To investigate the infeasible case study, it is necessary to count the number of non-

collision cases and collision cases according to different sensor/GNC parameters. To

be more specific, a parameter of each variable in the sensor system includes 960 cases

with ten trajectories. In other words, each trajectory has 96 cases depending on the

design variables. The safe distance parameters [60 115 170] (feet) have [1920 1280 640]

experimental cases, and the parameters of the minimum separation distance [60 115

170] (feet) have [640 1280 1920] experiment cases. If one of the ten trajectories in a

design variable has a collision case, it specifies the collision case. To be a non-collision

case, the results of the ten trajectories in the design variable should not be collided.

Figure 81 shows the distribution of the non-collision cases. The results show that the

major drivers of achieving a non-collision maneuver are a sensor elevation angle and

range. When these two parameters are designed to be larger than 15 degrees and

700 feet, the avoidance performance can be significantly improved. The graph reveals

that the sensor azimuth angle is relatively insensitive because of the small variation

of collision cases. The parameters of safe distance and minimum separation distance

present a linear trend in the collision cases, but they do not imply any trend related

to avoidance performance since these two variables are dependent on each other, as

described in Equation 124. In other words, the minimum separation distance must

satisfy the condition, which is two times larger than the safe distance. To check the

196

sensitivity of two variables (safe distance and minimum separation distance), the heat

map that counts the number of collision and non-collision cases is plotted in Figure

82. It is important to note that the boxes in this figure which have zeros in them

violate the condition that the minimum separation distance must be greater than or

equal to double the safe distance, so they do not count. With that in mind, this heat

map shows that these two parameters are insensitive because all combinations of the

safe distance and minimum separation distance have a similar number of collision and

non-collision.

Figure 81: Non-collision distribution of design variables

To characterize the performance of the obstacle avoidance trajectory, two metrics

(minimum distance and energy consumption) are considered. The minimum distance

indicates the perception of the safety and the energy consumption describes the actual

energy consumption to perform the entire mission. The minimum distance, which

indicates the safety level, is computed by the minimum distance between the UAV

and obstacles along the entire trajectory. The work of an aircraft is calculated from

the classical energy formulation described in Equations 125 and 126. Figure 83 shows

the results of the two metrics from all avoidance trajectories except the collision cases.

197

(a) Collision case (b) Non-collision case

Figure 82: Heat map of safe distance and minimum separation distance

The results indicate that whereas most cases require low energy, some cases require

high energy.

Figure 83: Results of collision avoidance

Next, we discuss feasible case studies on sensitivity and interactions associated

with the question “What is the sensitivity of design variables (sensor and GNC pa-

rameters) with respect to minimum distance and energy?”. This study can be imple-

mented using various techniques, such as surrogate modeling, Analysis of Variance

198

(ANOVA), and screening tests. Sensitivity analysis using surrogate modeling is a typ-

ical approach for an early design phase. Lamoureux et al. have applied the kriging

surrogate modeling technique to their sensitivity analysis for the early phase analy-

sis of the health indicator of an aircraft engine’s pumping unit [110]. However, this

surrogate modeling approach is not a suitable technique for the sensitivity analysis

of the feasible cases for this thesis because the response of the two metrics are highly

nonlinear. Figure 84 shows the results of surrogate models using the second order

response surface modeling technique [110]. The graph shows the actual by predicted

plot that indicates the quality of the prediction model. It is obvious that the regres-

sion model cannot capture the actual response. Table 27 summarizes the quality of

the regression model using the common metrics. The results evidently illustrate that

the generated surrogate model cannot represent the actual response. Consequently,

the sensitivity analysis requires another approach without any prior models.

(a) Minimum distance (b) Normalized energy

Figure 84: Issues of surrogate models

Table 27: Summary of surrogate models

Min distance (feet) Normalized energy
RSquare 0.4292 0.1214
RSquare Adj 0.4261 0.1197
Root Mean Square Error 29.2526 0.2337

Figure 85 shows the response changes according to parameter variations in one

199

trajectory among ten initial trajectories that are for observing the non-linearity of the

response. Table 28 summarizes the parameter variations. The result shows that the

combination of a poor sensor and a restrictive GNC parameter requires more energy

to avoid obstacles. A better sensor leads to more energy efficient trajectories, and

a more restrictive GNC parameter results in a farther distance from the obstacles.

However, this result of the local sensitivity is only acceptable in this initial trajectory

because of the highly nonlinear response. To explore the trajectory variations on the

different levels of required energy, see Figure 86. The majority of the trajectories

are in the lower energy region, but a few trajectories are in the higher energy region.

The actual trajectory response indicates that the energy efficient trajectories have

monotonic maneuvers, but the trajectories with the high energy have more aggressive

maneuvers. From these two results, the responses of the avoidance trajectories are

highly non-linear and chaotic.

Table 28: Parameter definition of a local sensitivity analysis
Sensor GNC

AZ [degree] EL[degree] Range [feet] Safe distance [feet] Min. Sep. distance [feet]
Parameter 1 20 15 400 30 60
Parameter 2 20 15 1300 30 60
Parameter 3 80 35 1300 30 60
Parameter 4 80 35 1300 30 170
Parameter 5 80 35 1300 85 170

Using the experiment data, one way to perform the sensitivity analysis is a parti-

tion analysis. Partition analysis is one of the multivariable analysis techniques. The

partition method recursively partitions to generate a decision tree. When data have

input variables X and an output variable Y , the partition process splits the tree

structure based on the groupings of X. The grouping of X is judged by fitting the

result to the output Y. This partition process is typically repeated until the final

tree structure reaches the desired fit. The partition technique is a powerful technique

because it does not require any prior models like a response surface model to explore

the relationship between the input variables X, the results of the decision tree are

200

very intuitive, and it can also handle high-dimensional problems easily. The partition

analysis is provided by the statistical software JMP.

Because of the highly nonlinear response, we employ the partition analysis with

respect to three different views, risk averse, risk taken, and risk nominal. The risk

averse approaches mean that the worst case scenarios are always considered. The

risk taken approach utilizes low risk results. The risk nominal approach takes the

medium risk of the entire response. Therefore, the risk averse approach evaluates the

minimum value of the minimum distance among the ten trajectory results because

increasing the safe distance is more desirable in terms of the perception of safety. The

risk averse approach also assesses the maximum value of the energy result among the

ten trajectories since lower energy consumption means better avoidance trajectory in

terms of the energy perspective.

Using the same reasoning, the risk taken approach calculates the two metrics by

the maximum value of the minimum distance and the minimum value of the energy

consumption. The nominal concept uses the median value of the two metrics.

Figure 88 is the partitioning result by the risk averse approach. The result reveals

that the major improving factor is a safe distance greater than 57.5 [feet]. The second

factor is a sensor range that is greater than 700 [feet]. The results of the risk nominal

approach are shown in Figure 89. The analysis results illustrate that the biggest

hitters for improving the minimum distance are a safe distance and a sensor range

that are greater than 57.5 [feet] and 1000 [feet], respectively. Figure 90 presents the

analysis of the risk taken approach. The major variables enhancing the perception

of the safety are a sensor range, sensor elevation angle, and safe distance that are

higher than 1000 [feet], 15[degree], and 57.5 [feet], respectively. From the minimum

distance analysis with respect to the three different perspectives, the safe distance is

the common variable that includes all three partition analyses. Therefore, the safe

distance is a critical variable that enables higher safety perception.

201

Next, we discuss the results of the partition analysis of the energy consumption.

In the risk averse approach, the safe distance and sensor elevation angle are identified

as major contributors. These variables are lower than 57.5 [feet] and lower than 15

[degrees]. The risk nominal analysis also shows that the major variables minimizing

energy consumption are the same variables as the conservative approaches. The risk

taken approach reveals that the major factors are the safe distance and sensor eleva-

tion angles that are lower than 85 [feet] and 25 [degrees]. The energy improvements

in the optimistic results are minimal. In sum, safe distance and sensor elevation angle

are key variables to enhance the energy efficiency.

Based on the partition analysis, there is a trade-off because a higher perception

of safety requires a larger safe distance, but a lower energy needs a smaller safe

distance. Using different risk perspectives, the partition analysis allows a decision

maker to analyze the sensitivity.

202

Figure 85: Local sensitivity analysis

Figure 86: Trajectory variation according to two different levels of energy consump-
tion

203

Figure 87: Risk definition for a partition analysis

Figure 88: Partition analysis of minimum distance (Risk averse approach)

204

Figure 89: Partition analysis of minimum distance (Risk nominal approach)

205

Figure 90: Partition analysis of minimum distance (Risk taken approach)

206

Figure 91: Partition analysis of energy consumption (Risk averse approach)

207

Figure 92: Partition analysis of energy consumption (Risk nominal approach)

208

Figure 93: Partition analysis of energy consumption (Risk taken approach)

209

6.5 Results of the system of systems level experiments 2

The results of the first integrated experiments show that the given problem has a

highly non-linear trend, making it difficult to observe the sensitivity or interactions

of sensor and GNC parameters. Moreover, the results of the partition analysis do

not provide a statistically strong conclusion to answer the two questions: What is

the sensitivity of design variables (sensor and GNC parameters) with respect to the

minimum distance and energy?, and what is the interaction between sensor and GNC

parameters?

To answer those questions, an experiment should be redefined to reduce the vari-

ability of the response. To reduce the variability, the design of experiments is re-

designed by fixing one trajectory and selecting two of the GNC parameters (the safe

distance rs and the minimum separation distance, Do) that are restrictive and re-

laxed and two types of sensors that are a good sensor and a poor sensor. The relaxed

GNC parameter generates an avoidance trajectory and allows a UAV to fly near an

obstacle, and the restrictive GNC parameter generates an avoidance trajectory with

a higher perception of the safety. Figure 94 illustrates the experiment concept (full-

factorial design of experiments). The red dots indicate experiment points. Table 29

summarizes the definitions of GNC/sensor parameters.

Table 29: Parameters of the redesigned Experiment

Sensor parameter
Variable AZ(deg) EL(deg) Range (feet)

Poor sensor 20 15 700
Good sensor 80 35 1300

GNC parameter
Variable Safe Distance (feet) Min.Sep Distance(feet)

Relaxed GNC 30 60
Restrictive GNC 85 170

To obtain more statistically meaningful results, the designed experiments are re-

peated by perturbing the initial positions of a UAV in Y and Z direction. There

210

Figure 94: Concept of the redesigned experiment

are 200 repetitions for each of the four designed experiments. Therefore, the total

number of cases is 800. The experiment outcomes are characterized based on the two

metrics, minimum distance and energy consumption.

In Figure 29, the numbers (1 , 2 , 3 , 4) indicate the analysis order. The

first and second experiments fix the sensor parameters to a poor or good sensor and

then vary the GNC parameters. These experiments enable the sensitivity analysis of

the GNC parameters according to the fixed sensor. The third and fourth experiments

fix the GNC parameters to either relaxed or restrictive and then change the sensor

performance. The experiments also explain the sensitivity of the sensor parameter

according to the defined GNC parameter.

The result of the experiment 1 (Fixed poor sensor and varied GNC parameters)

is shown in Figure 95 with respect to the minimum distance and the normalized

energy. The trajectory response in terms of the minimum distance shows that the

avoidance trajectories with restrictive GNC keep a farther distance from an obstacle

because a higher safe distance in the GNC generates a higher perception of safety.

211

The results of both cases with regard to the energy are widely spread. Because of the

wide spread trend, both avoidance trajectories have high variability. To observe the

distribution, the histograms are plotted in Figure 96. The histogram results evidently

indicate that the restrictive GNC improves safety distance from an obstacle because

of the higher safe distance. However, the restrictive GNC worsens the required energy.

The reason is that the poor sensor, which has the narrow field of views, detects an

obstacle too late and the high safe distance generates a more aggressive avoidance

trajectory.

The second experiment 2 (Fixed good sensor and varied GNC parameters) is

depicted in Figure 97. The results of the minimum distance represent that more

restrictive GNC parameters improve the safety perception. The result of the energy

consumption reveals that both responses have low energy consumption. Figure 98

illustrates the distribution of both results. The histogram shows that a more restric-

tive GNC enhances the perception of safety, but it also yields a small decrease of the

energy efficiency.

The third experiment 3 (Fixed relaxed GNC and varied sensor performance) is a

comparison analysis of the impacts of the sensor capability according to different GNC

parameters. The experiment result is depicted in Figure 99. The results show that

a better sensor provides better energy efficiency since a better sensor allows earlier

trajectory generation to avoid upcoming obstacles, and the better sensor has a little

improvement of perception safety. To compare both good and poor sensors impacts

on the relaxed GNC parameters, the histograms are plotted in Figure 100. The

histogram results illustrate that a better sensor provides a better safety perception,

and a little improvement of the energy consumption.

The last experiment 4 is the comparison study of the sensor capability when

the GNC parameters are defined as a restrictive concept. The experiment results

shown in Figure 101 represent that the good sensor system provides lower variability

212

with respect to the energy consumption and generates energy efficient trajectories.

The results of the trajectories also demonstrate that the avoidance trajectories have

relatively less variability. The results also indicate that a better sensor yields a higher

perception of safety. Figure 102 is the histogram analysis to observe the distribution

changes. Similar to the previous observation, a better sensor results in a farther

distance from an obstacle since the mean value of the minimum distance shifts to the

right according to the sensor improvements, and the better sensor also provides more

energy efficient trajectories because the mean of the distribution moves towards lower

energy.

The previous analysis allows us to explore the response changes according to

different sensor/GNC parameters. However, these results still do not provide the

answers about the sensitivity and interactions between the variables. Therefore, for

the sensitivity and interaction analyses, the previous histogram results are used to

generate the contour surface plot shown in Figure 103. It illustrates the averages and

the quantile values (2.5%, 25%, 75%, 97.5%) of the two metrics. Using this contour

surface result, this thesis will present some key features and discuss the sensitivity

and interactions using the interaction profiler later this section.

The result shows that the restrictive GNC and good sensor generate more space

from an obstacle. In other words, a more restrictive GNC and better sensor systems

allow a better perception of safety. Another observation is that when the GNC

parameter with the poor sensor was put in the restrictive concept, the variability of the

minimum distance still increases. The reason is that due to the limited performance

of the sensor, the UAV detects the obstacle too late and the avoidance trajectory

also generates a more aggressive avoidance trajectory caused by the restrictive GNC

parameter.

In the case of the energy consumption, the better sensor system creates energy

efficient trajectories and decreases the variability of the energy consumption. The

213

quantile response shows that as the sensor capability increases, the variability im-

provements reach the point of diminishing returns. In Figure 103, the contour surface

has the mean value located outside of the distribution between 25% and 75% because

the actual response is skewed in the distribution.

Based on the results of the contour surface graph, this thesis will discuss the

sensitivity and interaction using an interaction profiler. To discuss them with respect

to different safety perspectives, three different terminologies like the previous partition

analysis are defined in Table 30. A risk taker pursues an optimistic approach that

always considers the best case scenario. Therefore, the risk taker approach uses 97.5 %

response in the minimum distance and 2.5 % response in the energy consumption. On

the other hand, a risk averse approach is totally opposite to the risk taker approach

and evaluates the worst case scenario. Thus, the risk averse approach utilizes 2.5 %

response in the minimum distance and 97.5 % response in the energy metric. The last

approach is risk nominal, which applies the mean values (µD, µE) of both responses.

Table 30: Definition of risk profiles

Risk profile
Minimum distance Energy consumption

Higher distance is better Lower energy is better
Risk Taker 97.50% 2.50%
Risk Averse 2.50% 97.50%
Risk Nominal µD µE

The first analysis of sensitivities and interactions will be in terms of the risk nom-

inal perspective. Figures 104 and 105 are interaction profiles. The profile of the

minimum distance displays weak interactions between the sensor and GNC param-

eters, as indicated by the similar slopes of the two curves. Moreover, to achieve a

higher perception of safety, it requires a better sensor and more restrictive GNC pa-

rameters. The result of the energy profile reveals that the poor sensor and restrictive

GNC are more sensitive, and for the energy efficient trajectories, a good sensor is

required regardless of the impact of GNC parameters because the impact of the GNC

214

parameter in the good sensor is significantly small. Because of the slope difference,

it shows a strong interaction between the two variables.

Second is the analysis of the results from a risk taker perspective. Figures 106

and 107 are the interaction profiler of the risk taker view. The outcome of the

minimum distance shows that the interaction between the two variables is weak. The

improvement of the perception of safety requires a better sensor and more restrictive

GNC parameters. The response of the minimum energy shows that the good sensor

system and restrictive GNC parameters are not relatively sensitive compared to the

poor/relaxed GNC. Because of the low energy variation regardless of the parameter

variations, the impact on the energy consumption is minimal.

The final perspective to analyze is the risk averse one. Figures 108 and 109 are

the interaction profiler. The result of the minimum distance indicates that a good

sensor and restrictive GNC parameters are more sensitive than a poor sensor and

relaxed GNC parameters. It also reveals that the good sensor and restrictive GNC

parameters yield a higher perception of safety. The energy response indicates that

the sensor parameters are more sensitive than the GNC parameters. The good sensor

generates energy efficient trajectories regardless of GNC parameters.

In sum, this thesis has analyzed the interactions and sensitivities based on three

different safety concepts. Depending on the different safety perspectives, the sensi-

tivities and interactions show different results. However, there is a consensus result

that the good sensor system provides a higher perception of safety regardless of the

types of GNC parameters. This sensitivity and interaction analysis allows one to

characterize the impact of the sensor system and GNC parameters.

215

Figure 95: Experiment results (Fixed poor sensor and varied GNC performance)

Figure 96: Distribution analysis (Fixed poor sensor and varied GNC performance)

216

Figure 97: Experiment results (Fixed good sensor and varied GNC performance)

Figure 98: Distribution analysis (Fixed good sensor and varied GNC performance)

217

Figure 99: Experiment results (Fixed relaxed GNC and varied sensor performance)

Figure 100: Distribution analysis (Fixed relaxed GNC and varied sensor perfor-
mance)

218

Figure 101: Experiment results (Fixed restrictive GNC and varied sensor perfor-
mance)

Figure 102: Distribution analysis (Fixed restrictive GNC and varied sensor perfor-
mance)

219

(a) Contour surface plot of the minimum dis-
tance

(b) Contour surface plot of the energy consump-
tion

(c) Contour surface plot of the minimum dis-
tance (Zoom In)

(d) Contour surface plot of the energy consump-
tion (Zoom In)

Figure 103: Contour surface plot

220

Figure 104: Interaction profiles (Risk nominal) of the minimum distance

Figure 105: Interaction profiles (Risk nominal) of the energy consumption

221

Figure 106: Interaction profiles (Risk taker) of the minimum distance

Figure 107: Interaction profiles (Risk taker) of the energy consumption

222

Figure 108: Interaction profiles (Risk averse) of the minimum distance

Figure 109: Interaction profiles (Risk averse) of the energy consumption

223

6.6 Conclusion

In this chapter, the second objective, ”to quantitatively characterize collision avoid-

ance as a critical element of separation assurance in terms of system behavior across

levels of abstraction and multiple disciplines”, is addressed by exploring integrated

experiments. The integrated experiment is designed to observe interactions/sensi-

tivities of the sensor system and GNC parameters, which are examples of coupling

between sub-system components.

To select an urban operating environment, eight different cities are analyzed with

respect to the level of the obstacle densities. This density level is characterized by

three metrics: two-dimensional airspace ratio, three-dimensional airspace ratio, and

the number of buildings per square foot in two-dimensional space. The result of the

urban characterization reveals a linear trend. In other words, a city with a higher

two- and three-dimensional airspace ratio is likely to have more buildings per square

foot. Based on the urban density analysis, San Diego downtown is selected as a

representative UAS problem.

The experiment design is a challenging problem because of the high number of

design variables that required an infeasible experiments with respect to the compu-

tational expense. Therefore, some assumptions such as initial flight conditions are

defined, and the initial trajectories are identified by selecting the most challenging

trajectories which include more obstacles along the initial trajectory. This results

in a total number of 3840 experiments, which is still a high number. To acceler-

ate the computation, the parallel computing technique using the PACE cluster is

implemented.

The results of the integrated experiments are analyzed with respect to infeasi-

ble/feasible cases. The exploration of the infeasible cases demonstrates that the sen-

sor elevation angle and sensor range are the main drivers to achieve a lower collision

probability. For the feasible study, we characterize the avoidance trajectories by the

224

minimum distance and the energy. The minimum distance implies the perception of

safety, and the energy indicates the avoidance trajectory efficiency. The study of the

feasible cases reveals that the problem is a highly non-linear problem where conven-

tional sensitivity/interaction analysis approaches are not applicable. Therefore, the

partition analysis is employed and analyzed with regard to three aspects: risk taker,

risk nominal, risk averse. The result of the partition analysis illustrates that the

safe distance is a crucial variable to increase the perception of safety and the energy

efficiency.

A new experiment with the reduced number of variables and repeated experiments

is designed to extract a more statistically meaningful trend. The reduced number of

variables is aimed at executing more repeated experiments with limited computing

resources. The experiment results are also analyzed according to three different per-

spectives, risk taker, risk nominal, and risk averse. As a result, the analysis shows that

to improve the perception of safety, a more restrictive GNC parameter is required,

and that more energy efficient avoidance routes require higher sensor performance.

In conclusion, this chapter addresses the integrated modeling and simulation envi-

ronment, introduces potential scenarios, and explores a canonical problem to answer

the main research questions that are the second objective of this thesis.

225

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Summary of thesis objectives and contributions

This dissertation provides insights on a new flight simulation environment to ad-

dress the integration of unmanned aircraft systems into the national airspace system.

Specifically, the new flight simulation environment developed in this thesis enables

the efficient examination of collision avoidance during fully autonomous flight within

an urban environment populated with fixed obstacles for which there is not a surveil-

lance data source. The new flight simulation environment provides improvements over

the existing conventional flight simulation scheme which typically includes, for high

fidelity simulations, a high order flight dynamics model, a filtering technique, and a

detailed sensor uncertainty model. This high fidelity model degrades the computa-

tional efficiency that limits fast-simulation environment. On the other hand, when

the conventional flight simulation environment has low fidelity, it entails trajectory

based on the simulation environment with a point mass assumption that cannot cap-

ture coupling that may exist between a system, its subsystems, and the operational

system of systems.. To capture these important coupling effects, this dissertation

defines two main objectives:

� OBJECTIVE 1: to study and develop improvements in modeling and simulation

of fully integrated UAS to address current gaps and enable systems analysis

across levels of abstraction and multiple disciplines

� OBJECTIVE 2: to quantitatively characterize collision avoidance as a critical

element of separation assurance in terms of system behavior across levels of

abstraction and multiple disciplines

226

To address the first objective, this thesis introduces improvements to the existing

modeling and simulation environment paradigm in three respects: aircraft controller,

obstacle avoidance algorithm in the guidance, navigation, and control, and realistic

urban modeling area.

In the aircraft controller, the statistical gain-scheduling method is introduced to

improve the conventional gain-scheduling techniques with respect to the computa-

tional efficiency. In the conventional gain-scheduling technique, the mechanism of the

online scheduling is computationally unfavorable. To improve this online computa-

tional issue, the thesis suggests the surrogate model based gain-scheduling method.

The hypotheses in this regard are as follows:

� HYPOTHESIS 1) The proposed statistic gain-scheduling method enables com-

putation runtime improvements without a loss of accuracy or fidelity and also

has a comparable stability performance

� HYPOTHESIS 2) The stability (gain-margin and phase margin) of the gain-

scheduling using surrogate modeling will be as good as the stability of the

conventional gain-scheduling methods using nearest neighbor interpolant and

linear interpolant

To demonstrate the first hypothesis, this thesis measures offline and online com-

putational times. The experiment results show that the proposed statistical gain-

scheduling method minimally increases offline computational time but improves the

online computational time significantly. To test the second hypothesis, the devia-

tion of the multivariate gain and phase margin analysis is measured and compared

with other conventional scheduling methods. The experiment results show that the

proposed gain-scheduling method provides the smallest deviation from the optimal

solution. These two results are evidence in support of the two hypotheses to improve

the conventional aircraft control scheme.

227

In the obstacle avoidance algorithm, four different optimal collision avoidance

algorithms are introduced to improve the benchmark collision avoidance algorithm.

The benchmark case may have a high trajectory cost when the next waypoint is

not considered in the trajectory optimization formulation. The formulation of the

trajectory optimization should produce a computationally fast solution to improve

the entire simulation performance. To meet those requirements (computation time,

optimal trajectory cost), the four different optimal collision avoidance algorithms

(Proposition 1 − Proposition 4) are introduced with the multi-phase optimal trajec-

tory formulation and different obstacle avoidance constraints. The performance of

the four obstacle avoidance algorithms depends on the weighting assigned to compu-

tational cost (W1) and trajectory cost (W2) respectively. The following hypotheses

are formulated based on the sample case studies.

� HYPOTHESIS 3) Waypoint based collision avoidance problem (SCAA-3) will

be a dominant solution with respect to the overall cost function when the weight

of W1 has low value.

� HYPOTHESIS 4) One-dimensional constraints (SCAA-1, SCAA-2) will improve

the performance of the collision avoidance with respect to the overall cost func-

tion with the medium value of W1.

� HYPOTHESIS 5) Two-dimensional constraints (PNORM) will improve the per-

formance with respect to the overall cost function with high W1 value.

The experiment results reveal that the SCAA-3 collision avoidance inequality yields

outstanding performance when W1 has lower value. The SCAA-1 and SCAA-2 colli-

sion avoidance inequalities have better performance when the weight W1 has a middle

value. When the W1 has a high value, the performance of the PNORM approach

is improved, but it is not the best method because of the iteration limitation in the

trajectory optimization function.

228

The hybrid collision avoidance method using a machine learning technique was

also formulated to improve the computational efficiency as well as the optimal cost.

The hybrid collision avoidance algorithm selects the best collision avoidance method

among the formulated alternatives through a multi-class classification algorithm. The

demonstration results show that the proposed hybrid method has better performance

than other conventional collision avoidance algorithms.

For the multi-obstacle avoidance problem, this thesis proposed a two-layer ob-

stacle avoidance algorithm to improve the drawback of the conventional trajectory

optimization where the inability to discern to adjacent obstacles results in energy

inefficient trajectories. The trajectory energy benefits of the proposed are stated in

the following hypothesis:

� HYPOTHESIS 6) Two-layer collision-free obstacle avoidance algorithm that

includes global- and local- path optimization structure generates more energy

efficient avoidance trajectory when facing multiple obstacles

The two-layer structure features a global- and a local- trajectory optimization

process. In the global optimization, a UAV detects and identifies the number of

objects based on the distance-based clustering algorithm, and then specifies a po-

tential upcoming threat. During the local optimization, this technique solves the

trajectory optimization algorithm for the resolved obstacle that minimizes an en-

ergy consumption. The experiment results demonstrate that the proposed two-layer

collision avoidance algorithm generates more energy efficient avoidance trajectory.

In the realistic urban modeling, this thesis proposes a rapid, data-driven, and

grid-based urban modeling methodology. For the exploration of the UAS obstacle

avoidance problem in an urban operation, the rapid and realistic urban environment

is a key component because of diverse urban mission scenarios. The proposed method-

ology includes six steps: collection of LiDAR data, data resampling, identification of

229

building clusters, principal component analysis, grid generation, and construction of a

building. The proposed methodology was successfully demonstrated by constructing

eight different urban models with two different levels of fidelity. This environment

construction also allows for additional analysis of urban environments in terms of

attributes relevant to the collision avoidance problem, such as obstacle density and

average inter-obstacle distance.

The last part of this thesis is a system-of-systems experiment that integrates all

the capabilities and improvements above mentioned, and addresses the second ob-

jective. A sensitivity and interaction analysis between a sensor system and a GNC

system for fixed-obstacle collision avoidance comprises the core application of this

experimental demonstration. Two key metrics are measured: the energy required for

the collision avoidance trajectory (normalized by the obstacle-free trajectory energy),

and the proximity to fixed obstacles as a proxy for perceived safety. The initial exper-

iment results show a highly non-linear response that is not able to present accurate

sensitivities and interactions pursuant of traditional techniques based on analysis of

variance. Never the less, the sensor and GNC characteristics associated with favorable

performance and unfeasible designs (collision cases) are delineated using discriminant

analysis. In addition, to further resolve the sensitivities and interactions relevant

to energy efficiency and proximity to obstacles, a new experiment was designed by

reducing the number of variables and repeating the experiments with small perturba-

tions in the initial conditions of the trajectories. The redesigned experiment leads to

the sensitivities and interaction analyses through a response surface model approach.

The results of the sensitivity/interaction analyses characterize the energy consump-

tion and the perception of a safety with respect to different three risk aspects: risk

taker, risk nominal, and risk averse.

The formulated UAV flight simulation environment and analysis methodology

can provide the rapid system of systems analysis in the collision avoidance problem

230

in an urban operation. Many UAV flight simulation environments have been devel-

oped to address different problems associated with a collision avoidance problem in

an urban environment. Stastny et al. introduces UAV collision avoidance simula-

tion environment in a realistic urban environment that includes six DOF dynamics

models, adaptive neural network for a UAV controller, potential field algorithm to

generate collision avoidance trajectory against moving and fixed obstacles [137][135].

However, this paper does not provide enough details of the urban model and sensor

model. Shanmugavel et al. simulates collision avoidance problem in a three dimen-

sional fixed obstacle environment and uses Dubins path algorithm to avoid obstacles

[133], but this paper is limited to the path planning problem to avoid obstacle. Orr et

al. have developed the framework for UAV collision avoidance algorithm in a realistic

urban environment [116]. The vehicle model has high fidelity six DOF models and a

realistic urban model that is the Fort Benning Georgia McKenna Military Operations

on Urban Terrain (MOUT) Site. This model includes a wind gust model and also

assesses the impact of the wind gust in the urban model. However, this flight simula-

tion model does not entail collision avoidance algorithm and sensor model. Cybyk et

al. have developed the UAV simulation environment with a wind gust model using

CFD analysis and six DOF high fidelity models [31], but this simulation environment

does not include a collision avoidance algorithm to avoid building obstacles. There-

fore, the existing simulation environments in the literatures do not provide enough

details about a system and subsystem level component. To fill the lacking details,

the introduced UAV flight simulation environment in this dissertation explains the

modeling information of system and subsystem components such as the statistical

gain-scheduling method, the guidance and navigation, the sensor model and the ur-

ban modeling methodology that enables us to explore the interactions and sensitivities

with different levels of abstraction.

231

7.2 Recommendations for further research

To analyze and explore the UAS integration problem in an urban environment within

the scope of this dissertation, flight dynamics, an aircraft controller, collision avoid-

ance algorithm, and realistic urban models were developed based on conventional

algorithms/models. The developed algorithms and models are computationally at-

tractive solutions that enable us to examine diverse UASNAS problems. There are,

however, several key issues or needed researches on modeling of system/subsystem

components, designing integrated experiment and experiment scenarios. The follow-

ing researches are the recommended future researches.

� The validation of the vehicle parameters and controller is the further research

topic. The current vehicle dynamics model and controller is not determined by

the actual flight data because of the lack of the validation process. Therefore,

the avoidance behavior of a simulated UAV model may be different charac-

teristics from a actual UAV platform. Thus, future work must consider the

validation process to achieve more realistic vehicle behavior.

� The generalization of a sensor model is one of the needed research fields. The ac-

tual LiDAR sensor is a probabilistic model that delivers different performance

depending on the distance and azimuth/elevation angle of a detected object.

To achieve the even sensor performance in the entire sensor operating region,

a multi-sensor fusion technique is commonly applied. However, this thesis as-

sumed that a LiDAR sensor model is deterministic that does not consider any

probabilistic models or a sensor fusion concept. To make the sensor model

more realistic, it requires a probabilistic sensor model, or the same determinis-

tic model that can represent a sensor fusion concept.

� In the hybrid collision avoidance algorithm, a neural network and ensemble

neural network are employed to solve a multi-class classification problem. As

232

an alternative, a fuzzy logic controller is also implementable to specify the best

strategy. d system would provide better experiments results and more general

trends.

� The impact of various obstacle avoidance techniques is also one of the further

research topics. Depending on the different obstacle avoidance algorithms, the

performance of the collision avoidance could be varied. For instance, some algo-

rithms may have outstanding performance in a sparse urban environment, but

others may have better performance in a dense urban environment. Therefore,

multiple collision avoidance algorithms should be studies to fully explore the

UASNAS collision avoidance problem.

� The analysis of the impact of different types of UAS platforms should be more

explored. This research only focused on exploring the interaction of sensor ca-

pabilities and a collision avoidance algorithm. However, the collision avoidance

performance also depends on the vehicle maneuverability. Hence, the integrated

experiment with different types of vehicles is a key UAS research area.

� The exploration of an urban environment with a different density level is also a

further research topic. The different urban environment with different obstacle

configurations may affect an obstacle avoidance capability depending on differ-

ent sensor systems or UAV platforms. In the UAV design perspectives, this

research enables an aircraft designer to design sensors and platform systems to

fly safely in a given urban environment without any collisions. In the regula-

tion/operational perspectives, this research can also provide the insights of the

interaction about the UAV platforms and sensor systems that enable decision

makers to understand the relationship between an urban density and different

system/subsystem components.

233

� The characterization of UAS collision avoidance trajectories in urban environ-

ments using chaos theory is a potential research topic. The results of the system

of systems level experiment show that the avoidance trajectories in an urban op-

eration present highly non-linear behaviors. These non-linear behavior leads to

a challenging problem for the global sensitivity and interaction analysis. There-

fore, the chaos theory whereby the simulation environment here developed may

help infer the underlying vector field from which key statistical properties may

be extracted using chaotic systems methods.

� In the urban operation, a UAV must maintain flight stability and maneuver-

ability under the variation of weather conditions. Because of geometrically

complex terrain and urban environment, the wind gust can significantly influ-

ence the performance of flight stability or maneuverability. Orr et al. have

researched the framework for the wind effect of the path planning for UAV

operation in an urban environment and observe the impact of the light breeze

[116]. The result clearly illustrates that the tracking performance of the UAV is

significantly affected by the wind gust profile. Therefore, the study of the wind

gust impact in a complex urban area is critical to reduce a collision risk. In

order to address the wind gust impact in an urban area, the time-varying airflow

environment must be included to assess the vehicle stability and maneuver per-

formance. Cybyk et al. capture 3D unsteady airflow in an urban environment

through using CFD analysis from a Large Eddy Simulation model [31]. Using

this 3D airflow model, this paper constructs a UAV flight simulation model to

explore coupled interactions between the UAV maneuverability characteristic

and the wind gust influence. This paper also analyzes a mission feasibility for

the intelligence, surveillance and reconnaissance (ISR) mission performance un-

der the wind gust. The 3D unsteady wind gust model can be applied to the

interaction/sensitivity analysis between systems, subsystems, or a system and

234

a subsystem using the formulated simulation model shown in Figure 111. The

wind gust profile can be computed by the Large Eddy simulation model using

the urban environment. The result of the wind gust profile produces force dis-

turbances to the UAV dynamics model. This updated UAV flight simulation

environment enables us to explore the impact of the wind gust profile.

Figure 110: Wind gust profile of Oklahoma city [31]

235

F
ig

u
re

1
1
1
:

B
lo

ck
d
ia

gr
am

of
U

A
V

fl
ig

h
t

si
m

u
la

ti
on

w
it

h
a

w
in

d
gu

st
m

o
d
el

236

� The thesis addresses collision avoidance problems against ground fixed obsta-

cles. In the urban operation, an UAV may meet fixed obstacles as well as moving

obstacles such as an unmanned aircraft system, a bird, and a commercial air-

plane. To explore more realistic urban operation problem, moving and fixed

obstacles must be studied. In order to incorporate moving and fixed obstacles,

the optimal collision avoidance algorithm should be reformulated since the cur-

rent formulated collision avoidance algorithm does not consider the obstacle’s

moving direction.

237

APPENDIX A

MULTI-CLASS CLASSIFICATION LEARNING

ALGORITHM

A.1 Neural network

To shift a traditional information process based on a rule-based approach motivated

from biological nervous systems, the neural network (i.e, artificial neural network)

has been introduced. The neural network has a highly complex structure with a

large number of elements called neurons or node. These nodes are interconnected

and produce approximation functions based on input and output data. Compared to

other machine-learning techniques such as linear regression, a support vector machine

and a decision tree, these approximation functions yield highly accurate predictions.

Therefore, neural network techniques have implemented in diverse fields such as pat-

tern recognition, medical domains for diagnostic, prognostic tasks, and stock market

forecasts [22][42][111]. In the aerospace community, the artificial neural network tech-

nique has been applied for aircraft system identification [86]. The neural network is

also powerful to solve a classification problem. Therefore, the neural network for

a classification problem is a suitable technique for a multi-class classification of the

introduced hybrid collision algorithm. This section introduces the mathematical for-

mulation of the neural network.

It is assumed that the labeled data are D = {(x1, y1), (x2, y2), ... , (xm, ym)}. xi is

the ith input vector in n dimensional space (x ∈ R(m×n)). yi is the class information

of the ith input vector x, which is (R(m×1)). We also assume that y has c classes.

Figure 112 illustrates a typical neural network structure with k layers. The neural

network structure with k layers includes an input layer, hidden layers, and an output

238

Figure 112: Neural Network structure

layer. The first layer of the neural network is the input layer, which has m + 1

perceptrons with a constant term for a bias effect. The hidden layers are layers from

the second to the k − 1th layers in the neural network structure. Each layer in the

hidden structure has r perceptrons and a constant term. The output layer is the

last kth layer, which provides prediction results. The outputs of each layer can be

computed from the perceptrons’ information of the previous layer, which involves

weights w and a non-linear function.

To optimize this neural network structure, a typical optimization technique is a

feedforward algorithm that computes perceptron information based on the previous

layer information: weights w, and perceptrons x{k}. This computation process is

continuously repeated until the outcomes of the last perceptrons are specified. That

is, perceptron results, x{n}, in the nth layer are defined by a weighted summation

of the previous perceptrons, x{n−1}. Then we evaluate a non-linear function, hw(·),

and an activation function. Notable activation functions are the hyperbolic tangent

function, the sigmoid function, the hard limiter function, and the ramp function.

239

These processes are repeated until the perceptrons on the last layer are estimated.

The mathematical expression of the feedforward algorithm is as follows,

x{1} = x

x{2} = hw(w{1}Tx)

x{3} = hw(w{2}Tx{2})

... (136)

x{k−1} = hw(w{k−2}Tx{k−2})

ȳ = x{k} = hw(w{k−1}Tx{k−1}),

where w{n} is a weight vector on the nth layer. The activation function hw is assumed

to be the sigmoid function:

hw(x) =
1

1 + e−wTx
(137)

For the optimization of the neural network output ȳ, we define an objective function

that minimizes the mean-square error:

E =
1

2m

m∑
i=1

(yi − ȳi)2. (138)

This neural network prediction model has an overfitting problem. For instance, when

the number of training data is small, this cost function is likely to lead to an overfitted

prediction model. To mitigate this overfitting problem, we can employ various tech-

niques: early stopping during the optimization process, curvature-driven smoothing,

and averaging over several plausible networks through the Bayesian approach [22]

[43]. Among several techniques for the overfitting issue, a popular approach is a regu-

larization method, which includes an additional penalty function in the cost function

[74]. The error cost function with the regularization term can be

E =
1

2m

m∑
i=1

(yi − ȳi)2 +
λNN
2m

wTw, (139)

where the first term is the prediction error, and the second term is the regularization

term. ȳi is the prediction results, λNN is the weight for the regularization factor (i.e.,

240

hyper-parameter), and w is the weight vector in the neural network. Based on the

error cost function, we can reconstruct an objective function for a neural-network

optimization that minimizes the error function:

Min E = Min
1

2m

m∑
i=1

(yi − ȳi)2 +
λNN
2m

wTw (140)

For the optimization, gradient information can be computed by a mathematically

simple and computationally efficient back-propagation method that provides gradient

information [91]. Gradient information with respect to weights in the neural network

by the backpropagation method is

∂E

∂w{k−1}
=

∂E

∂hw(w{k−1}Tx{k−1})

∂hw(w{k−1}Tx{k−1})

∂w{k−1}

∂E

∂w{k−2}
=

∂E

∂hw(w{k−1}Tx{k−1})

∂hw(w{k−1}Tx{k−1})

∂hw(w{k−2}Tx{k−2})

∂hw(w{k−2}Tx{k−2})

∂w{k−2}

... (141)

∂E

∂w{1}
=

∂E

∂hw(w{k−1}Tx{k−1})

∂hw(w{k−1}Tx{k−1})

∂hw(w{k−2}Tx{k−2})
· · · ∂hw(w{1}Tx{1})

∂w{1}
,

For example, the gradient of the (k − 1)th layer of the error objective function with

the regularization term is

∂E

∂w
{k−1}
0

=
1

m

m∑
i=1

(yi − ȳi)x{k−1}i , r = 0

∂E

∂w
{k−1}
r

=
1

m

m∑
i=1

(yi − ȳi)x{k−1}i +
λ

2m
w{k−1}r , r ≥ 1. (142)

When r in the hidden layer is zero, a perceptron as a constant term does not include a

regularization term, but other perceptrons (r 6= 0) in the hidden layer do. This gradi-

ent information by the backpropagation technique can be applied to the optimization

process of the neural network.

For a comparative study of the two neural networks without regularization and

with regularization, we perform sample case studies for a multi-class classification

problem. A data set of the sample problem has random numbers with three classes

241

that are assumed to be a two-dimensional Gaussian distribution:

P (x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)) (143)

Σ is a covariance matrix, µ represents mean values, and n is the number of dimensions

(n = 2). Through these Gaussian assumptions, we generate three-class training data

sets summarized in Table 31.

Table 31: Parameters of Gaussian random numbers with three classes

Class Variable name Value

1
mean µ1 =

[
−3
−2

]
covariance Σ1 =

[
6 3
3 6

]
2

mean µ2 =

[
3
1

]
covariance Σ2 =

[
5 2
2 4

]
3

mean µ3 =

[
2
−3

]
[2 -3]

covariance Σ3 =

[
3 2
2 5

]

Training data for the optimization process comprise 80 % of the data, and test

data for the validation process comprise 20 % of the data. Figure 113 shows the train-

ing data set with three classes from the definition of three Gaussian random numbers

with two dimensions. We assume that in a neural network prediction model, the

number of hidden layers is one, and the number of perceptrons (nodes) on the hid-

den layer is 100. Based on this neural network structure, we optimize two neural

networks without regularization and with regularization using the backpropagation

method. We assumed that the regularization parameter of the neural network with

regularization is one. Figure 114 is the classification results using the two neural net-

works. The first graph is the neural network without regularization, which has a 73.33

% success rate for the test data. The classification results without the regularization

242

Figure 113: Training data

term appears to be overfitted because the borders of the three classifications have a

highly non-linear pattern. The second graph presents the results of the neural net-

work with regularization, which shows a 76.66 % prediction success rate for the test

data. Because of the regularization term, unlike the neural network model without

the regularization term, the training results do not show a non-linear pattern. From

these results, we can observe that the neural network with regularization does not

lead to an overfitting problem for classification.

A.2 Ensemble learning

Classification algorithm using a neural network has more powerful method to have

a prediction model for non-linear classification problems than other learning algo-

rithms such as decision trees and k-nearest neighbors. In addition, constructing a

neural network is easier than support vector machine (SVM) [43]. However, when

training data includes a small number of samples and highly non-linear classifica-

tion problems, we might encounter overfitting problems or incomplete training issues

[72]. Non-linear classification problems with small training data in high dimension

space can easily produce overfitted prediction results. To prevent this overfitting,

we can add a regularization parameter with a high regularization weight, but this

243

(a) Neural network without regularization (b) Neural network with regularization

Figure 114: Comparison results of the neural network without regularization and
the neural network with regularization

regularization term with high weights can yield underfitting problems. To solve these

overfitting and incompleted training problems, researchers have suggested ensemble

learning techniques. The ensemble learning techniques combine weak learners to

create a strong learner. That is, these ensemble techniques build multiple predic-

tion models. The multiple prediction models can provide more accurate prediction

results through a combination of the prediction results from the multiple weak learn-

ers. Therefore, the ensemble learning approach improves generalization performance

through the combination of the multiple prediction models. The classical example of

the ensemble learning method is a simple average, a majority, and weighted sum of

prediction models. The challenge part of the ensemble learning method is training

individual neural network and integrating all neural networks to create the ensemble

prediction model. According to Islam, training techniques can be generalized as three

approaches: independent training, simultaneous training, and sequential training [67].

The independent training method optimizes individual neural networks to min-

imize a residual error. The optimized individual neural networks are combined to

244

construct a giant neural network through using weighted sum of each learner or

vote system. The drawback of this ensemble technique is a non-existing structure

that checks the effects of interactions between neural networks in a training phase.

The notable examples of the independent training method are bootstrap aggregation

(bagging) and ordinary least square (OLS) method. The bagging technique creates

multiple neural network learners based on a randomly selected subset of the train-

ing set [26]. The integrated ensemble structure of the bagging technique is built by

adding an equal weight to each learner. That is, the final prediction result is resulted

from the average of each learner’s outcome. However, this bagging technique does

not entails the prediction performance of the individual neural network model be-

cause the bagging technique only averages the outputs of multiple neural networks to

produce the ensemble prediction result without examining the performance of each

neural network. In order to handle this issue, Jia. et al [72] introduces OLS tech-

nique to reflect the performance of each neural network model in ensemble model.

This OLS technique trains multiple individual neural networks. Then, these trained

neural networks are integrated through a weighted summation process. These weights

for the integrated ensemble model are specified by the least square method. The OLS

technique yields better performances than the bagging technique, which averages the

outcomes from all neural networks since the OLS technique considers the individual

performances of neural networks through the weights.

In the sequential training method, the ensemble structure are sequentially trained

to minimize the error cost function. The benefit of this process is to avoid corre-

lation between a new neural network and previously trained neural network. The

representative sequential training methods are sequential bagging and boosting [68].

In the independent and sequential training method, the correlation and interac-

tion effects of individual network cannot be included in the ensemble model when

we construct the ensemble learning structure. For instance, once all trained neural

245

network models are exactly same, the ensemble model would not generate a more

accurate prediction model than a single neural network. To address this problem,

Liu. et al suggested a negative correlation method to design the ensemble network

[95] [96] because it trains multiple neural networks simultaneously to achieve better

the ensemble neural network model through learning various network parts/aspects.

Learning other aspects from different neural network models is implemented through

adding a penalty term including a correlation parameter.

In the training perspectives for the three training methods, the sequential training

method is not possible to parallelize the training process due to training dependency.

This difficulty of the parallelization yields high computational runtime. The simul-

taneous training method is required to train all design variables that cannot use the

training results of a single neural network. In other words, this simultaneous training

technique requires high computational resource. Therefore, this paper introduces the

details of the independent ensemble learning techniques.

A.2.1 Neural network ensemble using Ordinary Least Square (OLS)

This section overviews the ensemble learning method using ordinary least square

(OLS) proposed by Jia. et al [72]. The OLS ensemble technique yields better results

for a classification problem through optimizing multiple neural networks than a bag-

ging ensemble technique. The optimization of multiple neural networks is executed by

least square technique to minimize the sum of errors of the individual neural networks.

Figure 115 illustrates the typical architecture of the OLS ensemble learning method

using neural networks. Sub-classification structure includes multiple weak learners

(NN1, NN2, ..., NNn), which are composed by neural networks. The individual neu-

ral network is separately trained through the standard optimization process of the

neural network using the gradient based approach. In this optimization process, the

backprogation algorithm produces a gradient information.

246

To address more details about OLS ensemble algorithm, we assume we have a

data set, D = {(x1, y1), (x2, y2), ... , (xm, ym)}. xi indicates input vectors in n

dimension space (x ∈ R(m×n)), and m is the number of training data. i indicates ith

data point. yi, (R(m×1)), is a label information of the ith input vector x.

Figure 115: Ensemble architecture with neural network

The objective function for the optimization of each neural network is

Min ENk = Min
1

2m

m∑
i=1

(yNk,i − ȳi)2 +
λNN
2m

wT
NkwNk, (144)

where ENk is the error function of kth neural network, the first term in the right side

of the equation is a sum of a residual error, and the second term is a regularization

term. wNk is a weight vector of kth neural network. The standard gradient approach

using a backpropagation technique optimizes individual neural network. The outputs

from the optimization process are denoted by YN1, YN2, ..., YNn, which is called sub-

classifier. The outputs of these sub-classifiers are combined into an ensemble neural

network. The ensemble neural network is optimized by weighted least square method

to minimize the total residual error from all sub-classifiers. We assume the prediction

247

model is a function of weights and the outputs of sub-classifiers,

Ȳ = w1YN1 + w2YN2 + ...+ wnYNn, (145)

where YNn is the output vector of nth neural network and Ȳ is the predicted output

vector from the sub-classifiers. w1, w2, · · · and wn are the weights of each neural

network model. The sum of weights is one (
∑n

i wi = 1). The optimal weights wi can

be determined by linear regression model using ordinary least square method that

can be assumed as

Ȳ = c0 + cN1YN1 + cN2YN2 + ...+ cNnYNn + ε, ε ∼ N(0, σ2), (146)

where ε is an uncertainty term, and cN1, cN2 and cNn are the parameters of the partial

regression and c0 is a constant. These regression parameters can be identified from a

maximum likelihood estimation. For the maximum likelihood estimation, we define

a residual error function,

Er =
m∑
i=1

(yi − ȳi)2. (147)

The objective function, which minimizes the residual error function, can be rewritten

by the regression model expression from the equation 146:

Min Er =
m∑
i=1

(yi − {c0 + cN1yN1 + cN2yN2 + ...+ cNnyNn})2 (148)

The optimized candidate parameters minimizing this residual function can be identi-

fied by the first derivatives with respect to the parameters of the partial regression.

The following partial differential equations can be represented,

∂Er

∂cN1
=
∑m

i=1(yi − {c0 + cN1yN1 + cN2yN2 + ...+ cNnyNn})yN1i = 0

∂Er

∂cN2
=
∑m

i=1(yi − {c0 + cN1yN1 + cN2yN2 + ...+ cNnyNn})yN2i = 0

...

∂Er

∂cNn
=
∑m

i=1(yi − {c0 + cN1yN1 + cN2yN2 + ...+ cNnyNn})yNni = 0

∂Er

∂cN0
=
∑m

i=1(yi − {c0 + cN1yN1 + cN2yN2 + ...+ cNnyNn}) = 0.

(149)

248

To address simple mathematical form, we can rewrite the previous partial differential

equations by the following matrix expression,

Ax = Y. (150)

In the matrix formulation, the definitions of the matrix A and the vector x are

A =

1 yN11 yN21 · · · yNn1

1 yN12 yN22 · · · yNn2
...

...
...

...
...

1 yN1m yN2m · · · yNnm

, x =

c0

cN1

cN2

...

cNn.

(151)

Once AT is multiplied in both sides, we can obtain the following equation:

ATAx = ATY. (152)

From the above equation, if ATA is invertible, the regression vector x can be written

as

x = (ATA)−1ATY. (153)

The regression vector x yields the optimal weights wi according to the following

equation:

w1 =
cn1∑n
i=1 cni

, w2 =
cn2∑n
i=1 cni

, · · · , wn =
cnn∑n
i=1 cni

. (154)

Therefore, the prediction formula described in the equation 145 achieves the optimal

prediction model by the optimized weights shown in the equation 154.

To observe the performance of ensemble learning techniques, we execute case

studies on the two ensemble techniques: the ensemble learning method using the

bagging technique and the OLS ensemble learning. For the performance analysis of

the two ensemble techniques we generates sample data described in Table 31 that is

same as the experiment set-up in the previous section. Figure 116 is the sample data

249

including training and test data. To observe the effect of the two ensemble learning

algorithms, we assume that the number of the hidden layer is one, the number of

perceptrons in the hidden layer is 200, and the number of weak learners is five. Based

on this neural network structure, the individual learners are optimized by the gradient

approach through the backpropagation method. In the OLS ensemble model, all weak

learners use the same training data for the optimization. In the bagging ensemble

model, each weak learner uses different training data by splitting all training data

into groups so that its number is same as the number of the weak learners. In

this manner, the ensemble learning model can avoid a correlation problem. These

individual weak learners, which OLS and bagging ensemble learners, are integrated

into the ensemble learners by the ordinary least square method and the average of

all outputs, respectively. Figures 117 and 118 are the experiment results of the two

ensemble learners. In the Figure 117, the first five graphs are the test results of

each prediction model by the weak learners, and the last graph is the result of the

ensemble learner, which is combined by the five weak learners through the mean of

all prediction results. The visual inspection of the classification results present that

the ensemble learning techniques has shaped from the weak learners. Therefore, the

ensemble learning result has the most smooth boundaries. Unlike OLS weak learners,

the bagging has more diverse learners because of the splitting training data. 32 is the

summary of the classification results. The classification results represent that both

independent ensemble learning techniques improve the classification performance of

the single neural network. The results also present that the ensemble learning with

OLS has slightly better classification performance than the ensemble learning with

the bagging technique.

250

Table 32: Experiment results of the two ensemble methods : OLS and Bagging
Classification method Name Classification result (%)

OLS
Average performance of the five weak learners 76
Ensemble learner 83.33

Bagging
Average performance of the five weak learners 78.668
Ensemble learner 80

Figure 116: Training data

251

(a) First weak learner (b) Second weak learner

(c) Third weak learnern (d) Fourth weak learner

(e) Fifth weak learner (f) Ensemble learning model

Figure 117: Ensemble learning method using the bagging technique

252

(a) First weak learner (b) Second weak learner

(c) Third weak learner (d) Fourth weak learner

(e) Fifth weak learner (f) Ensemble learning model

Figure 118: Ensemble learning method using the ordinary least square

253

Bibliography

[1] “http://utm.arc.nasa.gov/index.shtml.”

[2] “http://www.phoenix-aerial.com/information/lidar-comparison.”

[3] NASA Systems Engineering handbook. NASA, 2007. NASA/SP-2007-6105.

[4] “Unmanned systems roadmap 2007 - 2032,” tech. rep., Department of Defense,

2007.

[5] “Certification of authorization or waiver,” 2008.

[6] “Federal actions needed to ensure safety and expand their potential uses within

the national airspace system,” tech. rep., United States Government Account-

ability Office, 2008. GAO-08-511.

[7] “NextGen UAS research development and demonstration roadmap,” tech. rep.,

Next Generation Air Transportation System, 2012.

[8] “Amazon prime air project: Online retailer investing in unmanned drones to

deliver goods,” ABC, 2013.

[9] “Unmanned aircraft system(UAS) service demand 2015 - 2035, U.S department

of transportation, research and innovative technology administration,” tech.

rep., Research and Innovative Technology Administration, 2013. DOT-VNTSC-

DoD-13-01.

[10] “FAA faces significant barriers to safely integrate unmanned aircraft systems

into the national airspace system,” tech. rep., FAA, 2014. AV-2014-061.

[11] “UTM: Air traffic management for low-altitude drones,” tech. rep., NASA, 2015.

254

[12] Afbca, E., USAF Test Pilot School. Performance Phase Textbook. Information

for the Defense Community, 1986.

[13] Alexander, I. and Raiko, T., “Practical approaches to principal component

analysis in the presence of missing values,” The Journal of Machine Learning

Research, vol. 11, pp. 1957 – 2000, 2000.

[14] Anderson, J., Aircraft Performance & Design. McGraw-Hill, 2010. ISBN-10:

0070019711.

[15] Anderson, M., Sverdrup, J., Lopez, J., and Evers, J., “A comparison of

trajectory determination approaches for small UAV’s,” in AIAA Atmospheric

Flight Mechanics Conference and Exhibit, (Keystone, Colorado), 2006.

[16] Balandat, M., Constrained Robust Optimal Trajectory Tracking: Model Pre-

dictive Control Approaches. PhD thesis, Technische Universitt Darmstadt, 2010.

[17] Barfield, F., “Autonomous collision avoidance. the technical requirements,”

in National Aerospace and Electronics Conference, (Dayton, OH), pp. 808 –

813, IEEE, 2000.

[18] Beard, R. W. and McLain, T. W., Small Unmanned Aircraft: Theory and

Practice. Princeton University Press, 2012.

[19] Benson, D., A Gauss Pseudospectral Transcription for Optimal Control, Ph.D.

Thesis, Dept. of Aeronautics and Astronautics. PhD thesis, Massachusetts In-

stitute of Technology, 2004.

[20] Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao,

A. V., “Direct trajectory optimization and costate estimation via an orthogonal

collocation method,” Journal of Guidance, Control, and Dynamics, vol. 29,

no. 6, pp. 1435 – 1440, 2006.

255

[21] BilGoerzen, C., Kong, Z., and Mettler, B., “A survey of motion plan-

ning algorithms from the perspective of autonomous UAV guidance,” Journal

of Intelligent Robot System, vol. 57, pp. 65 – 100, 2010.

[22] Bishop, C. M., Neural networks for pattern recognition. Oxford university

press, 1995.

[23] Bishop, C. M., Pattern recognition and machine learning. Springer, 2006.

[24] Brandt-Pollmann, U., Winkler, R., Sager, S., Moslener, U., and

Schlder, J. P., “Numerical solution of optimal control problems with constant

control delays,” tech. rep., CER-ETH - Center of Economic Research (CER-

ETH), 2006.

[25] Brooks, R. A., “A robust layered control system for a mobile robot,” IEEE

Robotics and Automation, vol. 2, no. 1, pp. 14 – 23, 1986.

[26] Brown, G., “Ensemble learning,” in Encyclopedia of Machine Learning,

Springer, 2010.

[27] Bryson, A. E. and Ho, Y.-C., Applied Optimal Control: Optimization, Es-

timation and Control. CRC Press, 1975. ISBN-10: 0891162283.

[28] Chakraborty, A., Seiler, P., and Balas, G. J., “Applications of linear

and nonlinear robustness analysis techniques to the F/A-18 flight control laws,”

in AIAA Conference on Guidance, Navigation, and Control, (Chicago, Illinois),

August 2009.

[29] Chakravarthy, A. and Ghose, D., “Obstacle avoidance in a dynamic envi-

ronment: A collision cone approach,” Systems, Man and Cybernetics, Part A:

Systems and Humans, vol. 28, no. 5, pp. 562 – 574, 1998.

256

[30] Choi, Y., Jimenez, H., and Mavris, D., “Statistical gain-scheduling method

for aircraft flight simulation,” Aerospace Science and Technology, vol. 46,

pp. 493 – 505, 2015.

[31] Cybyk, B. Z., McGrath, B. E., Frey, T. M., Drewry, D. G., Keane,

J. F., and Patnaik., G., “Unsteady airflows and their impact on small un-

manned air systems in urban environments,” Journal of Aerospace Information

Systems, vol. 11, no. 4, pp. 178 – 194, 2014.

[32] Dalamagkidis, K., Valavanis, K. P., and Piegl, L. A., “On unmanned

aircraft systems issues, challenges and operational restrictions preventing in-

tegration into the national airspace system,” Progress in Aerospace Sciences,

vol. 44, no. 7, pp. 503–519, 2008.

[33] Data, P. L. E., “http://www.dcnr.state.pa.us/topogeo/pamap.”

[34] Ding, X., Schild, A., Egerstedt, M., and Lunze, J., “Real-time optimal

feedback control of switched autonomous systems,” in IFAC Conference on

Analysis and Design of Hybrid Systems, pp. 108 – 113, 2009.

[35] DoD, “Department of defense dictionary of military and associated terms,”

tech. rep., Department of Defense, 2010. Joint Publication 1-02.

[36] DoD, “Department of defense final report to congress on access to national

airspace for unmanned aircraft systems,” tech. rep., Department of Defense,

2010.

[37] DoD, “Final report to congress on access to national airspace for unmanned air-

craft system, under secretary of defense(acquisition, technology and logistics),”

tech. rep., Department of Defense, 2010.

257

[38] DoD, “Defense acquisition guidebook,” tech. rep., Department of Defense,

2011.

[39] DoD, “Unmanned aircraft system airspace integration plan,” tech. rep., De-

partment Of Defense, 2011.

[40] DoD, “Unmanned systems integrated roadmap FY2011,” tech. rep., Depart-

ment Of Defense, 2013. 11-S-3613.

[41] Doebbler, J., Gesting, P., and Valasek., J., “Real-time path planning

and terrain obstacle avoidance for general aviation aircraft,” in In AIAA Guid-

ance, Navigation, and Control Conference and Exhibit, pp. 15 – 18, 2005.

[42] Dreiseitl, S. and Ohno-Machado, L., “Logistic regression and artifi-

cial neural network classification models: a methodology review,” Journal of

biomedical informatics, vol. 35, no. 5, pp. 352 – 359, 2002.

[43] Dreiseitl, S. and Ohno-Machado, L., “Logistic regression and artificial

neural network classification models : a methodology review,” Journal of

Biomedical Informatics, vol. 35, pp. 352 – 359, 2002.

[44] Ellliot, D., “DHL testing delivery drones,” CBSNEWS, 2013.

[45] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X., eds., A density-based

algorithm for discovering clusters in large spatial databases with noise, vol. 96,

International Conference on Knowledge Discovery and Data Mining (KDD-96),

1996.

[46] Explore, U. E., “http://earthexplorer.usgs.gov.”

[47] FAA, “Literature review on detect, sense, and avoid technology for unmanned

aircraft systems,” tech. rep., U.S Department of Transportation, Federal Avia-

tion Administration, 2009. DOT/FAA/AE-08/41.

258

[48] FAA, “Integration of civil unmanned aircraft systems(uas) in the national

airspace system(nas) roadmap,” tech. rep., U.S Department of Transporta-

tion(Federal Aviation Administration), 2013.

[49] Feng, J., Lin, Z., Xu, H., and Yan, S., “Robust subspace segmentation with

block-diagonal prior,” pp. 3818 – 3825, 2014.

[50] Gertler, J., “U.S unmanned aerial systems,” tech. rep., CRS Report for

Congress, 2012.

[51] Geyer, C. M., Singh, S., and Chamberlain, L. J., “Avoiding collisions be-

tween aircraft: State of the art and requirements for UAVs operating in civilian

airspace,” tech. rep., Carnegie Mellon University,, Pittsburgh, PA, CMU-RI-

TR-08-03 2008.

[52] Ghosh, S., Rancourt, D., and Mavris, D. N., “Principal component analy-

sis assisted surrogate modeling (pca-sm) of correlated loads for uncertainty anal-

ysis of design load envelopes,” in 16th AIAA/ISSMO Multidisciplinary analysis

and optimization conference, 2016.

[53] Gibbs, M. N., Bayesian Gaussian Processes for Regression and Classification.

PhD thesis, University of Cambridge, 1997.

[54] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algo-

rithm for large-scale constrained optimization,” tech. rep., SIAM Review, 2005.

[55] Gill, P. E., Murray, W., and Saunders, M. A., User’s Guide for SNOPT

Version 7: Software for Large Scale Nonlinear Programming. Stanford Univer-

sity, 2006.

[56] Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., and

259

Beard, R., “Obstacle and terrain avoidance for miniature aerial vehicles,” In

Advances in Unmanned Aerial Vehicles, 2007. Springer Netherlands.

[57] Hampton, M. E., “FAA faces significant barriers to safely integrate unmanned

aircraft systems into the national airspace system,” tech. rep., Federal Aviation

Administration (FAA), 2014. AV-2014-061.

[58] Ho, Y.-J. and Liu, J.-S., “Collision-free curvature-bounded smooth path

planning using composite bezier curve based on voronoi diagram,” in Com-

putational Intelligence in Robotics and Automation (CIRA), 2009 IEEE Inter-

national Symposium on, pp. 463 – 468, IEEE, 2009.

[59] Hrabar, S., “3D path planning and stereo-based obstacle avoidance for rotor-

craft UAVs,” in IROS 2008, pp. 807 – 814, IEEE, 2008.

[60] Hu, J., You, S., Neumann, U., and Park, K. K., “Building modeling from

lidar and aerial imagery,” in .” In Proceedings of ASPRS, 2004.

[61] Huntington, G. T., Benson, D. A., How, J. P., N. Kanizay, C. L. D.,

and Rao, A. V., “Computation of boundary controls using a gauss pseudospec-

tral method,” in 2007 Astrodynamics Specialist Conference, (Mackinac Island,

Michigan), 2007.

[62] Huntington, G. T., Benson, D. A., and Rao, A. V., “Design of opti-

mal tetrahedral spacecraft formations,” Journal of the Astronautical Sciences,

vol. 55, no. 2, pp. 141 – 169, 2007.

[63] Huntington, G. T. and Rao, A. V., “Optimal reconfiguration of space-

craft formations using the gauss pseudospectral method,” Journal of Guidance,

Control, and Dynamics, vol. 31, no. 3, pp. 689 – 698, 2008.

260

[64] Huntington, G. T., Advancement and analysis of Gauss pseudospectral tran-

scription for optimal control problems. PhD thesis, Massachusetts Institute of

Technology, 2007.

[65] Ibarrondo, F. and Sanz-Aránguez, P., “Integrated versus two-loop

guidance-autopilot for a dual control missile with high-order aerodynamic

model,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering, 2015.

[66] Inventory, U. S. I. E., “http://coast.noaa.gov.”

[67] Islam, M. M., Yao, X., and Murase, K., “A constructive algorithm for

training cooperative neural network ensembles,” Neural Networks, IEEE Trans-

actions on, vol. 14, no. 4, pp. 820 – 834, 2003.

[68] Islam, M. M., Yao, X., Nirjon, S. S., Islam, M. A., and Murase, K.,

“Bagging and boosting negatively correlated neural networks,” Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 3,

pp. 771 – 784, 2008.

[69] Jang, J., Annaswamy, A., and Lavretsky, E., “Adaptive control of time-

varying systems with gain-scheduling,” in American Control Conference, (Seat-

tle, WA), pp. 3416 – 3421, June 2008. ISSN:0743-1619.

[70] Jenie, Y. I., van Kampen, E.-J., de Visser, C. C., and Chu, Q.-P.,

“Selective velocity obstacle method for cooperative autonomous collision avoid-

ance system for UAVs,” in AIAA Guidance, Navigation, and Control, (Boston,

USA), AIAA, 2013.

[71] Jia, H., Ding, S., Xu, X., and Nie, R., “The latest research progress on

spectral clustering,” Neural Computing and Applications, vol. 24, pp. 1477–

1486, 2014.

261

[72] Jia, W., Zhao, D., Tang, Y., Hu, C., , and Zhao, Y., “An optimized clas-

sification algorithm by neural network ensemble based on pls and ols,” Mathe-

matical Problems in Engineering, 2014.

[73] Jianqiao, Y., Li, L., Hongxia, Z., and Chengdong, X., “Robust gain-

scheduled controller design for air defense missile,” in 25th Chinese Control

Conference, (Harbin, China), 2006.

[74] Jin, Y., Okabe, T., and Sendhoff, B., “Neural network regularization

and ensembling using multi-objective evolutionary algorithms,” in Evolutionary

Computation, 2004. CEC2004. Congress on, vol. 1, pp. 1 – 8, IEEE, 2004.

[75] Jinhui, H., Youand, S., and Neumann, U., “Approaches to large-scale ur-

ban modeling,” Computer Graphics and Applications, vol. 23, no. 6, 2003.

[76] Johnson, C., “UAS integration in the NAS project,” tech. rep., The National

Aeronautics and Space Administration(NASA), 2010.

[77] Jolliffe, I., Principal component analysis. John Wiley & Sons, 2002.

[78] J.R., W., “UAV roundup 2011,” tech. rep., American Institute of Aeronautics

and Astronautics, 2011.

[79] Kahale, E., Castillo, P., and Bestaoui, Y., “Minimum time reference

trajectory generation for an autonomous quadrotor,” in International Confer-

ence on Unmanned Aircraft Systems(ICUAS), (Orlando, FL), pp. 126 – 133,

IEEE, 2014.

[80] Kang, K., , and Prasad., J. V. R., “Development and flight test evalu-

ations of an autonomous obstacle avoidance system for a rotary-wing UAV,”

Unmanned Systems, vol. 1, no. 1, pp. 3 – 19, 2013.

262

[81] Kang, K., Online optimal obstacle avoidance for rotary-wing autonomous un-

manned aerial vehicles. PhD thesis, Georgia Institute of Technology, 2012.

[82] Katsuhiko, O., Modern Control Engineering. Prentice Hall, fourth ed., 2002.

[83] Keller, H. B., “Numerical solution of two point boundary value problems,”

in Society for Industrial and Applied Mathematics, 1976.

[84] Kim, N. and Calise, A. J., “Neural network based adaptive output feed-

back augmentation of existing controllers,” Aerospace Science and Technology,

vol. 12, no. 3, pp. 248 – 255, 2008.

[85] Kirk, D. E., Optimal Control Theory: An Introduction. Dover, 1998. ISBN-10:

0486434842.

[86] Kirkpatrick, K., Jr, J. M., and Valasek, J., “Aircraft system identifi-

cation using artificial neural networks.,” in In 51st AIAA Aerospace Sciences

Meeting including the New Horizons Forum and Aerospace Exposition, 2013.

[87] Knisely, N., Urcinas, A., Jimenez, H., and Mavris, D., “Unmanned air-

craft systems integration into the national airspace system - tradeoff analysis

for en route transit operations,” in 12th AIAA Aviation Technology, Integra-

tion, and Operations (ATIO) Conference, (Indianapolis, Indiana), AIAA, 2012.

AIAA 2012-5425.

[88] Kuwata, Y. and How, J., “Three dimensional receding horizon control for

UAVs,” in AIAA Guidance, Navigation, and Control Conference and Exhibit,

(Providence, Rhode Island), 2004.

[89] Lacher, A. R., Maroney, D. R., and Zeitlin, A. D., “Unmanned air-

craft collision avoidancetechnology assessment and evaluation methods,” in The

263

7th Air Traffic Managemtent Research & Development Seminar, (Barcelona,

Spain), 2007.

[90] LaValle, S. M., Planning algorithms. Cambridge university press, 2006.

[91] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R., “Efficient

backprop,” Neural networks: Tricks of the trade, pp. 9 – 48, 2012.

[92] Levine, D., Luders, B., and How, J. P., “Information-rich path planning

with general constraints using rapidly-exploring random trees,” in AIAA In-

fotech Aerospace Conference, 2010.

[93] Liberzon, D., Calculus of Variations and Optimal Control Theory. Princeton

University Press, 2012. ISBN: 9780691151878.

[94] Lin, W., “Distributed UAV formation control using differential game ap-

proach,” Aerospace Science and Technology, vol. 35, pp. 54 – 62, 2014.

[95] Liu, Y. and Yao, X., “Ensemble learning via negative correlation,” Neural

Networks, vol. 12, no. 10, pp. 1399 – 1404, 1999.

[96] Liu, Y. and Yao, X., “Simultaneous training of negatively correlated neural

networks in an ensemble,” Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, vol. 29, no. 6, pp. 716 – 725, 1999.

[97] Maniatopoulos, S., Panagou, D., and Kyriakopoulos, K. J., “Model

predictive control for the navigation of a nonholonomic vehicle with field-of-view

constraints,” in American Control Conference (ACC) (IEEE, ed.), pp. 3967 –

3972, 2013.

[98] Mathworks, Supervised learning algorithms, 2014.

264

[99] Mcfadyen, A., Durand-Petiteville, A., and Mejias, L., “Decision

strategies for automated visual collision avoidance,” in International Confer-

ence on Unmanned Aircraft Systems(ICUAS), (Orlando, FL), IEEE, 2014.

[100] Mellinger, D., Kushleyev, A., and Kumar, V., “Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams,” in IEEE

International Conference (Robotics and (ICRA), A., eds.), pp. 477 – 483,

2012.

[101] Melnyk, R. V., A framework for analyzing unmanned aircraft system inte-

gration into the national airspace system using a target level of safety approach.

PhD thesis, Georgia Institute of Technology, 2013.

[102] Menon, P. K., Sweriduk, G. D., and Sridhar, B., “Optimal strategies for

free-flight air traffic conflict resolution,” Journal of Guidance Control Dynamics,

vol. 22, no. 2, pp. 202 – 211, 1999.

[103] Mercer, J., Prevt, T., Jacoby, R., Globus, A., and Homola, J.,

“Studying nextgen concepts with the multi-aircraft control system,” in AIAA

Modeling and Simulation Technologies Conference and Exhibit, (Honolulu,

Hawaii), AIAA, 2008. AIAA 2008-7026.

[104] Miotto, P., Paduano, J. D., Feron, E., and Burken, J. J., “Modern

fixed structure control design part ii: Automated gain scheduling,” in AIAA

Conference on Guidance, Navigation, and Control, (New Orleans), August

1997.

[105] Moon, J. and Prasad, J., “Minimum-time approach to obstacle avoidance

constrained by envelope protection for autonomous uavs,” in Proceedings of

AHS 65th Annual Forum, (Grapevine, TX), 2009.

265

[106] Moon, J., Mission-Based Guidance System Design for Autonomous UAVs.

PhD thesis, Georgia Institute of Technology, 2009.

[107] Morelli, E., “Global nonlinear parametric modelling with application to f-16

aerodynamics,” in IEEE American Control Conference, vol. 2, pp. 997 – 1001,

1998.

[108] Morelli, E., “In-flight system identification,” AIAA, pp. 238 – 247, 1998.

[109] Murphy, J. and Kim, S. K., “Live virtual constructive distributed test envi-

ronment characterization report,” tech. rep., NASA, 2013. UAS-04.05.0001.01.

[110] Myers, R. H. and Montgomery, D. C., Response Surface Methodology:

Process and Product Optimization Using Designed Experiments. Wiley, sec-

ond ed., 2011.

[111] Naeini, M. P., Taremian, H., and Hashemi, H. B., “Stock market value

prediction using neural networks,” in Computer Information Systems and In-

dustrial Management Applications (CISIM), 2010 International Conference on,

pp. 132 – 136, IEEE, 2010.

[112] NASA, “Unmanned aircraft system gap analysis for national airspace system

access,” tech. rep., National Aeronautics and Space Administration, 2011. Ver.

1.1.

[113] Ng, A. Y., Jordan, M. I., and Weiss, Y., “On spectral clustering: Analysis

and an algorithm,” Advances in neural information processing system, vol. 2,

pp. 849 – 856, 2002.

[114] Nichols, R., Reichert, R., and Rugh, W., “Gain scheduling for H-infinity

controllers: a flight control example,” IEEE Control Systems Technology, vol. 1,

no. 2, pp. 69 – 79, 1993.

266

[115] Opentopography, “http://www.opentopography.org.”

[116] Orr, M. W., Rasmussen, S. J., Karni, E. D., and Blake, W. B., “Frame-

work for developing and evaluating mav control algorithms in a realistic urban

setting,” in American Control Conference, pp. 4096 – 4101, IEEE, 2005.

[117] Park, J. and Kim, Y., “Obstacle detection and collision avoidance of quadro-

tor UAV using depth map of stereo vision,” in AIAA Guidance, Navigation,

and Control, (Boston, MA), AIAA, 2013. AIAA 2013-4994.

[118] Pham, D. T., Dimov, S. S., and Nguyen, C. D., “Selection of k in k-

means clustering,” Proceedings of the Institution of Mechanical Engineers, Part

C: Journal of Mechanical Engineering Science, vol. 219, no. 1, pp. 103 – 119,

2005.

[119] Portal, I. S. D., “http://gis.iu.edu/datasetinfo.”

[120] Prevt, T. and Mercer, J., “MACS: A simulation platform for todays and

tomorrows air traffic operations,” in AIAA Modeling and Simulation Technolo-

gies Conference and Exhibit, AIAA, 2007. AIAA 2007-6556.

[121] Rademakers, N., Akmeliawati, R., Hill, R., Bil, C., and Nijmeijer,

H., “Modelling and gain scheduled control of a tailless fighter,” in 5th Asian

Control Conference, vol. 1, (Melbourne, Victoria, Australia), pp. 374 – 382,

July 2004.

[122] Rao, A. V., Extension of the Computational Singular Perturbation Method to

Optimal Control. PhD thesis, Princeton University, 1996.

[123] Rao, A. V. and Mease, K. D., “Dichotomic basis approach to solving hyper-

sensitive optimal control problems,” Automatica, vol. 35, no. 4, pp. 633 – 642,

1999.

267

[124] Rao, A. V., “A survey of numerical methods for optimal control,” Advances

in the Astronautical Sciences, vol. 135, no. 1, pp. 497 – 528, 2009.

[125] Rapidlasso, “http://www.rapidlasso.com.”

[126] Rasmussen, C. and Williams, C. K. I., Gaussian Processes for Machine

Learning. MIT press, 2006. ISBN:026218253X.

[127] Raymer, D. P., Aircraft Design: A conceptual Approach. AIAA, 2006. ISBN-

10: 1600869114.

[128] RTCA, “Operational services and environmental definition (OSED) for un-

manned aircraft systems,” tech. rep., FAA, June 2010. SC-203.

[129] Rugh, W. J. and Shamma, J. S., “Research on gain scheduling,” Automatica,

vol. 36, no. 10, pp. 1401 – 1425, 2000.

[130] Rugh, W., “Analytical framework for gain scheduling,” Control Systems,

vol. 11, pp. 79 – 84, Jan 1991. ISSN:1066-033X.

[131] Salmah, Sutrisno, Joelianto, E., Budiyono, A., Wijayanti, I. E., and

Megawati, N. Y., “Model predictive control for obstacle avoidance as hybrid

systems of small scale helicopter,” in International Conference on Instrumen-

tation Control and Automation, (Ungasan), IEEE, 2013.

[132] Schrage, D. and Mavris, D., “Technology for affordability - how to define,

measure, evaluate, and implement it?,” in 50th National Forum of the American

Helicopter Society, (Washington, D.C.), 1994.

[133] Shanmugavel, M., Tsourdos, A., and White, B. A., “Collision avoidance

and path planning of multiple uavs using flyable paths in 3d,” in In Methods

and Models in Automation and Robotics (MMAR), pp. 218 – 222, 2015.

268

[134] Shin, H.-H., Lee, S.-H., Kim, Y., Kim, E.-T., and Sung, K.-J., “Design

of a flight envelope protection system using a dynamic trim algorithm,” Inter-

national Journal of Aeronautical and Space Science, vol. 12, no. 3, pp. 241 –

251, 2011.

[135] Stastny, T. J., Garcia, G., and Keshmiri, S., “Robust three-dimensional

collision avoidance for fixed-wing unmanned aerial systems,” in AIAA Guid-

ance, Navigation, and Control Conference, 2015.

[136] Stastny, T. J., Garcia, G. A., and Keshmiri., S. S., “Collision and ob-

stacle avoidance in unmanned aerial systems using morphing potential field

navigation and nonlinear model predictive control,” Journal of Dynamic Sys-

tems, Measurement, and Control, vol. 137, no. 1, 2015.

[137] Stastny, T. J., Garcia, G. A., and Keshmiri, S. S., “Collision and obsta-

cle avoidance in unmanned aerial systems using morphing potential field navi-

gation and nonlinear model predictive control,” Journal of Dynamic Systems,

Measurement, and Control, vol. 137, no. 1, 2015.

[138] Stevens, B. L. and Lewis, F. L., Aircraft control and simulation. Wiley,

second ed., 2003.

[139] Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis. Springer,

2002. ISBN-13: 978-1441930064.

[140] Sundar, S. and Shiller, Z., “Time-optimal obstacle avoidance,” in Proceed-

ings of the IEEE International Conference on Robotics and Automation, vol. 3,

(Nagoya, Japan), 1995.

[141] Sutrisno, S., Joelianto, E., Budiyono, A., Wijayanti, I. E., and

Megawati, N. Y., “Model predictive control for obstacle avoidance as hybrid

269

systems of small scale helicopter,” in Instrumentation Control and Automation

(ICA), (Ungasan), IEEE, 2013.

[142] Suzuki, J. and Valasek., J., “Fuzzy logic based forebody vortex flow con-

trol.,” AIAA paper, pp. 1155 – 1165, 1997.

[143] Tom, S., Moor, B. D., Feron, E., and How, J., “Mixed integer program-

ming for multi-vehicle path planning,” in European control conference, vol. 1,

pp. 2603 – 2608, 2001.

[144] Tsukayama, H., “Google buys drone maker titan aerospace,” The Washington

Post, 2014.

[145] Vanderplaats, G. N., Multidiscipline Design Optimization. Vanderplaats

Research & Development, Inc., 2007.

[146] Verma, V., Rakesh, K., and Hsu, S., “3D building detection and modeling

from aerial lidar data,” in 2006 IEEE Computer Society Conference, vol. 2,

pp. 2213 – 2220, 2006.

[147] Vlassenbroeck, J., “A chebyshev polynomial method for optimal control

with state constraints,” Automatica, vol. 24, no. 4, pp. 499 – 506, 1988.

[148] Vlassenbroeck, J. and Doreen, R. V., “A chebyshev technique for solving

nonlinear optimal control problems,” IEEE Transactions on Automatic Control,

vol. 33, no. 4, pp. 333 – 340, 1988.

[149] von Stryk, O. and Bulirsch, R., “Direct and indirect methods for trajec-

tory optimization,” Annals of Operations Research, vol. 37, no. 1, pp. 357 –

373, 1992.

[150] Watanabe, Y., Calise, A. J., and Johnson, E. N., “Vision-based obstacle

270

avoidance for UAVs,” in AIAA Guidance, Navigation and Control Conference,

(Hilton Head, South Carolina), 2007.

[151] Weibel, R. E., Edwards, M. W., and Fernandes, C., “Establishing a

risk-based separation standard for unmanned aircraft self separation,” in 11th

AIAA Aviation Technology, Integration, and Operations (ATIO) Conference,

(Virginia Beach, VA), AIAA, 2011. AIAA 2011-6921.

[152] Weinstock, R., Calculus of Variations with Applications to Physics and En-

gineering. McGraw-Hill, 1974. ISBN-10: 0486630692.

[153] Wen, N., Zhao, L., Su, X., and Ma, P., “UAV online path planning al-

gorithm in a low altitude dangerous environment,” Automatica Sinica, vol. 2,

no. 2, 2015.

[154] Wieland, F., DeLaurentis, D., and Kubat, G., “Modeling and simulation

for UAS in the NAS,” tech. rep., NASA, 2012.

[155] Wise, K. A. and Roy., D. J. B., “Agile missile dynamics and control,”

Journal of Guidance, Control, and Dynamics, vol. 21, no. 3, pp. 441 – 449,

1998.

[156] Xu, N., Cai, G., Kang, W., and Chen, B. M., “Minimum-time trajectory

planning for helicopter uavs using computational dynamic optimization,” in In

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference,

pp. 2732 – 2737, IEEE, 2012.

[157] Xu, N., Cai, G., Kang, W., and Chen, B. M., “Minimum-time trajectory

planning for helicopter uavs using computational dynamic optimization,” in In

Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference

on, pp. 2732 – 2737, IEEE, 2012.

271

[158] You, S., Hu, J., Neumann, U., and Fox, P., “Urban site modeling from

lidar,” in ICCSA’03 Proceedings of the 2003 international conference on Com-

putational science and its applications, pp. 579 – 588, 2003.

[159] Zhou, Q.-Y. and Neumann, U., “Fast and extensible building modeling from

airborne lidar data,” in Proceedings of the 16th ACM SIGSPATIAL interna-

tional conference on Advances in geographic information systems, 2008.

272

VITA

Youngjun Choi is from Seoul, South Korea. He received Bachelor (2004) and Master

degree (2006) in Mechanical Engineering at Gachon University. He was a visiting re-

searcher at the Centre for Power Transmission and Motion Control at the University

of Bath in the United Kingdom, sponsored by the British Council and the National

Research Foundation of the South Korea. As a researcher, he joined the development

programs of two satellite systems and an airborne-radar system for an unmanned

aircraft application at the Agency for Defense Development (ADD) and researched

vibration suppression techniques using smart materials for a space application. He

joined the Aerospace Systems Design Laboratory at the School of Aerospace Engi-

neering at the Georgia Institute of Technology to pursue his doctoral studies. He

earned his Master degree in 2013, and his Doctor of Philosophy degree in August

2016.

273

