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SUMMARY 

Metal organic frameworks (MOFs) are an emerging class of nanoporous materials 

that have shown promise in applications including gas storage, separations, and catalysis. 

The complexity and diversity of MOF chemical space frustrates experimental efforts to 

examine even a representative subset of the thousands of known MOFs. High-throughput 

computational screening can guide experimental efforts by identifying top candidate 

structures for applications of interest. These screening efforts require a database of 

crystallographic structural information that has been prepared for molecular simulations by 

removal of solvent molecules, partially occupied atoms, and disordered atoms. In this 

thesis, we describe algorithms to automatically prepare MOF structures for molecular 

simulations. The outcome of this work was a publicly available database of over 5,000 

computation-ready MOF structures. As an example of using our database, we perform 

simulations of CH4 adsorption in each material and identify key thermodynamic parameters 

influencing adsorbed natural gas storage. In additional, we assign framework charges to 

nearly 3,000 structures using periodic density functional theory calculations. These DFT 

derived point charges were used to identify materials potentially useful in the adsorptive 

removal of a corrosive sulfurous odorant (tert-butyl mercaptan) from methane. 

Detailed atomistic simulation can be used to understand the properties of the most 

promising materials identified by computational screening. Of particular interest are 

adsorbate diffusivities, which are an important predictor of material performance in both 

equilibrium and kinetic separation applications. We describe methods to measure adsorbate 

diffusion in flexible nanoporous materials at timescales inaccessible to conventional 

molecular dynamics. These methods are applied to a novel class of porous molecular cage 

compounds that crystallize in the solid state without intermolecular covalent or 

coordination bonds. Our results show that cage crystal 3 has promise in the diffusive 

separation of rare gases and aromatics.
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1  

INTRODUCTION 

1.1 Emergent Nanoporous Adsorbents 

Metal–organic frameworks (MOFs) are a class of nanoporous crystalline polymers 

synthesized by bonding ionic metal nodes to organic bridging ligands. Thousands of unique 

MOFs structures have been synthesized in the past two decades owing to the combinatorial 

possibilities afforded by selection of different building blocks, synthesis conditions, and 

activation procedures.[1] For many reasons, MOFs can be fascinating from a pure science 

perspective. For example, MOFs have been synthesized that exhibit properties including 

ferroelectricity[2], ferromagnetism[3], proton conduction[4], ion conduction[5], and 

luminesce[6].[7] Study of the complexities of MOF framework geometries has led to 

advances in the mathematical classification of periodic reticular (“net like”) structures.[8] 

Several hundred different net topologies have been observed among experimentally 

synthesized MOFs, some of which are unknown in any other type of crystal.[9] MOFs often 

undergo phase transitions between crystalline phases upon initial desolvation or guest 

adsorption into activated structures.[10] This can lead to interesting gas adsorption behavior 

including isotherms with substantial hysteresis.[11]  

MOFs have been investigated for a wide range of potential applications including 

catalysis[12], molecular sensing[13], drug delivery[14], and optoelectronics[7]. Much applied 

academic and commercial research into uses of MOFs has focused on the possibility of 

using MOFs as nanoporous adsorbents in gas storage[15] and separations[16] applications. 

Among MOFs are example of materials with the highest surface areas (7140 m2/g) and 

lowest densities (0.126 g/cm3) among all known adsorbents.[17] MOFs have a wide range 

of internal pore and aperture dimensions, which can lead to high diffusion selectivities in 

membrane separations. Chemical properties of some MOFs are also uniquely suited to 

sorption applications. Many MOFs have coordinatively unsaturated “open” metal nodes 

that interact favorably with adsorbate multipoles, increasing heats of adsorption.[18] MOFs 

have the potential to be modified after synthesis, which can increase adsorbate saturation 

capacities and equilibrium adsorption selectivities.[19]  
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MOFs are candidate adsorbent materials for the storage of natural gas and hydrogen 

fuel. As nanoporous adsorbents in vehicle fuel tanks, MOFs have the potential to 

dramatically lower pressures needed to achieve energy densities comparable to compressed 

natural gas (CNG) at 250 bar in tanks without adsorbent fillers. This could increase safety, 

reduce fuel compression costs, and allow for conformable tank geometries in place of 

current bulky spherical or cylindrical CNG tanks.[20] Hydrogen gas is an attractive energy 

carrier because of its high gravimetric energy density, but suffers from low volumetric 

density and standard temperature and pressure. Physisorption of hydrogen gas into MOFs 

has been extensively investigated as an alternative to chemical storage in metal hydrides, 

cryogenic compression, or ultra-high pressure storage for increasing the volumetric density 

of H2.[21] Early studies of H2 storage in MOF-5 showed considerable improvement (66 g/L) 

over the volumetric density of pure hydrogen (31 g/L) at 100 bar and 77 K.[22] MOFs also 

have some promise for use in the storage of acetylene[23] and oxygen gases[24].  

Adsorption-based separation processes such as simulated moving bed 

chromatography are used extensively used to purify chemical mixtures. Examples include 

the UOP Parex® process for separation of xylene isomers and the Molex® process for 

separation of n-paraffins from branched and cyclic hydrocarbons.[25] These technologies 

use nanoporous aluminosilicate zeolites as adsorbents.[26] MOF adsorbent materials with 

greater equilibrium selectivities, better adsorption capacities, or more favorable mass 

transfer properties than currently employed zeolites could save huge amounts of energy in 

these processes. More importantly, MOFs may play a role in replacing thermally driven 

separations such as distillation of alkenes from alkanes and ethanol from water with much 

more energy efficient membrane separation processes. Experimental and theoretical 

reports have confirmed the molecular sieving potential of MOFs such as ZIF-8 for short-

chain hydrocarbons[27] and Zn2(BDC)2(TED) for alcohol in water[28]. MOF based 

membrane processes could be revolutionary, as distillation processes account for nearly 

half of the total energy spent on all chemical separations, which together comprise 10-15% 

of global energy consumption.[29]  

Unfortunately, MOFs have a number of drawbacks that have hampered their 

widespread industrial application in the 20+ years since they were first synthesized. 

Foremost, MOFs are currently extremely expensive relative to commodity nanoporous 
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sorbents such as activated carbons and zeolites as vehicles for raw surface area. Although 

progress has been made in scaling up MOF synthesis, the organic ligands present in MOFs 

are inherently costly.[30] The economic viability of MOF depends on finding applications 

that exploit chemical and physical properties not found in other types of nanoporous 

materials. Furthermore, some MOF structures are structurally unstable when exposed to 

water vapor[31] or used in repeated cycles of adsorption and desorption, which precludes 

many practical applications. Finally, the sheer number of extant MOF structures is a 

significant obstacle to identifying the best material for a given application of interest.[32]  

Atomistic simulation methods may assist in current efforts to commercialize 

MOFs. First, detailed simulations of individual materials contribute to fundamental 

understanding of the chemistry that governs structural stability in MOFs and emergent 

material properties. Second, simulations of adsorbate-framework interactions within MOFs 

can reveal details responsible for materials performance that are challenging or impossible 

to capture with experimental techniques such as x-ray diffraction.  Third, high-throughput 

computational screening of the thousands of synthesized MOF structures can identify 

materials promising for a given application of interest prior to time consuming and 

expensive experimental testing. Finally, analysis of simulations of large numbers of MOF 

structures can reveal structure-property relationships common to high performing 

materials.  

1.2 Atomistic Simulation Methods 

Prior to any atomistic simulation, the atomic positions of experimentally 

synthesized structures must be crystallographically resolved. Most nanoporous crystals are 

resolved through either single crystal x-ray diffraction or powder x-ray diffraction. The 

Cambridge Structural Database (CSD)[33] hosts the majority of organometallic crystal 

structures, while zeolites are primarily stored in the International Zeolite Association (IZA) 

database[34]. MOF structures reported in the CSD often include solvent molecules and 

partially occupied or disordered atoms. These features are crystallographically meaningful 

but must be removed prior to computer simulations of fully activated, solvent-free 

structures. This is of little consequence for simulations of individual materials, but is a 

significant impediment to applying high-throughput computations to thousands of 

materials. In Chapter 2, I describe algorithms to automatically prepare MOF structures for 
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molecular simulations. We applied these algorithms to over 5,000 nanoporous MOF 

structures from the CSD, and then made these computation-ready structures publicly 

available.[35] 

Using only the experimentally resolved atomic coordinates of a MOF structure, a 

number of important textural properties can be mathematically determined that have a 

direct analog with an experimental measurement.[36] The experimentally determined BET 

surface area is usually in reasonably good agreement with the accessible surface area 

created by rolling a spherical probe nitrogen molecule of each atom of the computer model 

structure.[37] Significant disagreement between experimentally derived BET or Langmuir 

surface areas and the geometric value may indicate MOF framework collapse upon 

desolvation or an incompletely activated experimental sample. Similarly, the pore volume 

of an in-silico (computer model) MOF structure can be determined with trial insertions of 

a helium atom. This directly corresponds to experimental helium porosimetry.[36] The in-

silico model also yields the pore limiting diameter (PLD), which is the size of the largest 

spherical probe accessible to continuous nanopores within the material. The PLD is a 

reasonable upper limit on the size of adsorbate molecules that can be accommodated by a 

MOF.[32] In Chapter 2, I discuss calculation of these textural properties for each MOF in 

our Computation-Ready Experimental MOF (CoRE MOF) database.  

Characterization of electrical and magnetic properties, as well as rigorous 

description of interactions between adsorbates and framework atoms, requires 

consideration of the distribution of electrons within MOFs. All computational electronic 

structure methods applicable to MOFs use the Born-Oppenheimer approximation, which 

decouples total electronic energy from the nuclear repulsion in approximate solutions to 

the Schrodinger equation.[38] These methods are broadly divided into two different 

approaches for considering electron correlation. Density functional theory (DFT) 

approximates electron correlation in terms of the three dimensional electron density.[39] 

DFT is routinely applied to periodic MOF structures with unit cells consisting of hundreds 

of atoms. Wave function theory (WFT) methods, such as Møller-Plesset perturbation 

theory and coupled cluster theory, are usually more accurate but too computationally 

expensive to use on fully periodic models of MOF structures.[38] WFT methods have been 
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used independently[40] and in concert with DFT[41] to parameterize first-principles derived 

classical force fields for describing interactions between adsorbates and MOF frameworks.  

Density functional theory can be used directly to investigate adsorbate-framework 

interaction energies in MOFs. For example, the energetics of water[41] and CO2 

adsorption[42] in the well-known MOF copper benzene-1,3,5-tricarboxylate (CuBTC) have 

been calculated using periodic DFT. It is computationally infeasible, however, to use 

electronic structure methods to simulate phenomena such as adsorbate diffusion occurring 

over time scales of nanoseconds or longer. Similarly, grand canonical Monte Carlo 

(GCMC) simulations of adsorption within nanopores require thousands or millions of 

computational iterations to converge and thus cannot be directly simulated with electronic 

structure methods. For these reasons, simulations of MOFs often rely on classical force 

fields  parameterized using DFT. Examples include DFT-derived force fields for modeling 

hydrocarbon adsorption in MIL-47(V)[43] and CO2 adsorption in MOF-74 variants[44]. 

Classical force-fields for modeling adsorbate framework interactions typically 

decompose electronic interactions into a Lennard-Jones potential to model dispersion and 

a pairwise Coulombic term to model long range electrostatic forces.[45] The pairwise 

Coulombic energy is almost always calculated by assigning point charges to the nuclei of 

each framework atom. These point charges are most accurately assigned by partitioning 

the electron density from a fully periodic DFT calculation. This represents a significant 

computational investment for large numbers of materials. In Chapter 2, I describe our 

works towards creating a nearly comprehensive, publicly available database of atomic 

point charges for a large number of experimental MOF structures.[46] 

In high-throughput screening studies, a generic force field such as the Universal 

Force Field[47] or DREIDING[48] is typically used to model Lennard-Jones dispersion. A 

recent study by McDaniel et al. compared these generic force fields to more sophisticated 

polarizable models and found that while generic force fields are often quantitatively 

inaccurate in regimes of low adsorbate loading, they were typically able to reproduce 

correct rankings of MOFs in terms of adsorbate saturation capacities.[49] In Chapter 3, I 

describe using generic force fields to predict the deliverable capacity of methane in each 

CoRE MOF structure for adsorbed natural gas applications using GCMC simulations.[35] 

We also used generic force fields in concert with our DFT derived atomic point charges to 
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identify materials suitable for the adsorptive removal of a potentially corrosive sulfurous 

odorant from natural gas.[46]  

Almost all GCMC simulations of adsorption treat the nanoporous framework as 

rigid. However, in simulations of adsorbate diffusion, experiments and classical molecular 

dynamics (MD) simulations have demonstrated that local framework flexibility associated 

with rotation of organic ligands, oscillation of coordination bonds, and variation in pore 

aperture dimensions is quite significant.[50] This is particularly true when adsorbate 

dimensions are comparable to the size of pore apertures. Members of the Sholl group have 

found that considering framework flexibility in MOFs[51] and zeolites[52] can result in 

simulated adsorbate diffusivities orders of magnitude higher than in rigid experimentally 

derived crystal structures. Despite this, studies of adsorbate diffusion in large numbers of 

MOF materials typically still use the rigid crystal structures because of the paucity of 

classical force fields that model MOF framework flexibility.[53] 

For some highly studied MOFs such as CuBTC[54], MOF-5[55], and ZIF-8[56], force 

fields have been parameterized using DFT calculations to describe internal flexibility with 

classical bond, angle, and torsional parameters. However, even with the benefit of a custom 

flexible force field, classical MD simulations of slow adsorbate diffusion can be 

computationally prohibitive. In Chapter 4, I demonstrate classical transition state theory 

methods to resolve this “MD timescale problem” that complicates measuring slow 

adsorbate diffusion in MOFs and other nanoporous materials.[57] These methods were 

applied to light gas diffusion in porous organic cage crystal 3 (CC3)[58], a highly flexible 

molecular crystal that has shown promise in gas separation applications.[59] In chapter 5, 

these methods are applied to measure the diffusivities of aromatics in additional 

diamondoid topology porous organic cage compounds. 

In Chapter 6, I conclude this thesis by speculating on potential future directions in 

simulations of nanoporous materials41. In particular, I discuss how the methods I have 

used for high-throughput screening of MOFs can be used in conjunction with strategies to 

incorporate MOF framework flexibility into simulations of adsorption.  
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2  

DEVELOPMENT OF THE COMPUTATION-READY 

EXPERIMENTAL METAL-ORGANIC FRAMEWORK DATABASE* 

2.1 Introduction 

In principle, the metallic nodes and organic linkers that comprise MOFs can be 

rationally selected to tailor structures for given applications. In practice, it is difficult to 

predict the complex relationship among the building blocks, the resulting framework 

structures, and the emergent physical properties prior to synthesis.[1] Before attempting de 

novo design of a new structure for a particular application, it is wise to consider whether 

any existing MOFs might be suitable.[2] However, synthesis, characterization, and 

experimental testing of thousands of MOFs to find the best material for a given application 

would be prohibitively time-consuming and expensive. 

High-throughput computational screening can guide experimental efforts by 

identifying top candidate structures for applications of interest.[3] For example, 

experimental MOF crystal structures from the Cambridge Structural Database (CSD)[4] 

have been computationally screened to identify top-performing MOFs for applications in 

light gas[5], noble gas[6], and CO2/N2
[7] separations. These large-scale computational 

screening efforts require a computation-ready database with the crystallographic 

information for each structure. However, experimentally refined crystal structures reported 

in the CSD often include solvent molecules and partially occupied or disordered atoms. 

Such features are crystallographically meaningful but must be removed prior to computer 

simulations of fully activated, solvent-free structures. Prior to this work, the lack of a 

publicly available database of computation-ready crystal structures was a major 

impediment to applying high-throughput computations to MOFs, because each research 
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group interested in such an approach had to first construct an appropriate database of 

materials. 

Prior to our work detailed here, Goldsmith et al.[8] developed an in-house database 

of computation-ready MOF structures derived from the CSD. In their database, solvents 

were removed, mislabeled structures were identified, and some notable MOF structures 

(e.g., PCN-610 and NU-100) were manually repaired. These structures were used to predict 

the theoretical upper bound for hydrogen storage in MOFs. In their database, structures 

with interpenetrated frameworks and charge-balancing ions were not included. 

Furthermore, neither the software they used to prepare the MOF structures for simulations 

nor their final database was made available to the public. 

The central result of this work is the availability of a nearly comprehensive set of 

porous MOF structures that are derived directly from experimental data but are 

immediately suitable for molecular simulations or visualization.[9] Our computation-ready, 

experimental (CoRE) MOFs have several characteristics that make them broadly useful. 

First, each structure in the database was desolvated by the efficient graph-labeling 

algorithm described by Goldsmith et al.[8] Additional solvent molecules were removed that 

were bound to unsaturated metal atoms. Second, charge-balancing ions were retained 

where necessary, so each CoRE MOF structure is charge neutral overall. Third, 

interpenetrated structures were also retained on the basis of a graph-labeling algorithm. 

Finally, important geometric properties including the helium void fraction, pore-limiting 

diameter, and largest cavity diameter were reported alongside each computation-ready 

structure. 

Not all MOFs that have been reported experimentally are included in the CoRE 

MOF database. In some instances, incomplete data or a high degree of disorder makes it 

challenging to generate a plausible computation-ready crystal structure in an automated 

procedure. Despite not including materials of this kind, the first version of the CoRE MOF 

database includes over 5,000 porous structures with a pore-limiting diameter of at least 2.4 

Å. A subset of these structures (2,932 total) were published with accompanying atomic 

point charges derived from periodic DFT calculations.[10] These point charges are highly 

useful for modeling Coulombic interactions between MOF framework atoms and adsorbate 

molecules – necessary, for instance, in any classical simulation of the adsorption or 
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diffusion of polar or quadrupolar adsorbates within MOFs. The CoRE MOF structures, 

including the subset with DFT derived atomic point charges, are available at 

http://dx.doi.org/10.11578/1118280.  

2.2 CoRE MOF Database Construction 

2.2.1 Collection of 3-D MOF Structures 

The procedure for generating the CoRE MOF database is shown schematically in 

Figure 2.1. First, potential MOF structures were collected from the CSD, version 5.35, 

which includes submissions through February 2014.[4] The CCDC Conquest program was 

used to search for structures with more than one bond between metals and the elements O, 

N, B, P, S, and C. Additionally, we required the structures to form any kind of bond from 

these six elements to C, N, P, or S atoms. This search yielded over 60,000 candidate MOF 

structures. 

 

Figure 2.1 Schematic illustration of the CoRE MOF database construction. Chemical 

bond analysis was performed using the CCDC Conquest program, 3D framework 

detection and pore characterization were performed using the Zeo++ Open Source 

Software, and cleaning protocols were implemented in Python using the ASE and 

SciPy libraries. All structures in the CoRE MOF database have pore-limiting diameters 

(PLDs) >2.4 Å. 

 

This set of structures includes 1-D coordination polymers and 2-D hydrogen-

bonded “planar MOFs” in addition to 3-D MOF structures. We identified the 3-D MOF 
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structures in this set by applying an algorithm previously used to determine the 

dimensionality of void channels.[11] Here, bonded components in a molecular graph of the 

structure are analyzed to determine the dimensionality of the basis vectors that describe the 

connection between the bonded component and its images in neighboring simulation cells. 

A bonded component of a molecular graph refers to a connected set of atoms based on an 

internal bond criterion from the Zeo++ software.[11] Two atoms are considered bonded if 

the distance between them is less than the sum of their covalent radii plus a skin distance. 

This procedure yielded over 20,000 3-D MOF structures that were further considered for 

inclusion in the CoRE MOF database. 

2.2.2 Structure Preparation 

An automated text editor was then used to remove all atoms marked by special 

characters (“*” and “?”) in the crystallographic information file for each structure. The 

atoms marked with “*” are symmetry-related copies of atoms already present in the 

structure. The atoms marked with “?” are atoms with partial occupancy. In most cases, 

removing one copy of these partially occupied atoms leaves a single representation of 

chemical moieties such as aromatic rings. Note that this procedure introduces a degree of 

order which may not exist in the experimental structure. Each structure was then converted 

to its primitive unit cell, and the symmetry was set to P1 using a Perl script that interfaces 

with the Materials Studio software. 

2.2.3 Categorizing Structures 

The chemical formulas associated with each structure were searched for “+” and   

“-” symbols to find MOF frameworks that have associated charge-balancing ions. About 

half of these charged structures were flagged in the CSD as “disordered” and were 

discarded after visual inspection showed that most of these structures contain major 

disorder in the framework atoms or lack resolved ionic coordinates. 

Some of the MOF frameworks without associated charge-balancing ions that are 

flagged as disordered only contain disorder in the solvent molecules and were retained in 

the database. These structures were identified by searching the CSD entries for phrases 

such as “a N, N-dimethylformamide solvent molecule is disordered”. Each of these 
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structures was visually checked for disorder in the framework atoms, and manual editing 

was done where appropriate by referring to the literature. For example, the disordered 

benzene rings in PCN-68 (CSD: HABRAF)[12] were manually corrected. The structures 

without associated charge-balancing ionic species were passed directly to the solvent 

removal step. 

2.2.4 Retention of Charge-Balancing Ions 

Many MOF structures with associated charge-balancing ions also contain 

undesirable neutral solvent molecules. To discriminate between ionic species and neutral 

solvent molecules, the elemental compositions of the bonded components in a molecular 

graph of each structure were compared to the chemical formulas reported by the CSD. The 

bonded components are the independent “molecules” within each structure; these include 

the MOF framework, the ionic species, and any neutral solvent molecules. First, the Atomic 

Simulation Environment[13] NeighborList module was used to construct the periodic 

adjacency matrix for each structure. Two atoms are considered bonded if the distance 

between them is less than the sum of their CSD covalent radii[14] plus a skin distance of 0.3 

Å. The skin distance is chosen to be slightly smaller than the CSD definition (0.4 Å), so 

that the terminal atom connected to the metal atom does not form another bond with other 

nearby atoms. The adjacency matrix was then passed to the SciPy connected components 

module to identify the bonded components in each structure. The bonded components with 

elemental compositions matching the composition of the ions reported by the CSD were 

exempted from deletion in the solvent removal step. 

2.2.5 Solvent Removal 

In the solvent removal step, all bonded components in the molecular graph of each 

structure other than the MOF framework and charge-balancing ions were removed (Figure 

2.2). The MOF framework was defined as the highest molecular weight bonded component 

of the graph. Interpenetrated MOF frameworks were retained by identifying the number of 

atoms, N, in the largest bonded component in the structure and retaining all additional 

components having at least 0.5 N atoms. 
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Figure 2.2 Illustration of solvent removal from a candidate MOF structure (CSD 

REFCODE NADZEZ): (a) original structure from CSD. Atoms shown with the CPK 

model are free solvents; (b) structure with free solvent removed; (c) structure with both 

free and bound solvent removed. The pore-limiting diameter (PLD), largest cavity 

diameter (LCD), and gravimetric accessible surface area (ASA) are shown for each 

structure. 

 

The bonded component corresponding to the MOF framework often includes 

undesirable solvent molecules bound to unsaturated metal centers. To remove these 

coordinated solvent molecules, we performed a trial “cut” on all bonds between metal 

centers and oxygen atoms. If the number of bonded clusters detected by the connected 

component algorithm remained constant, the bond was restored. If the number of bonded 

components increased, the entire new component was considered a solvent molecule and 

removed. For example, the dimethylformamide solvent molecules in the MOF JUC-64 

(CSD: OFODET)[15] that are bonded to manganese metal centers were automatically 

removed in this step. An exception was built into the algorithm to retain hydroxyl groups 

bonded to metal centers. In some cases, these solvent molecules are necessary to stabilize 

the MOF frameworks. Our desolvation procedure simply removes these molecules without 

considering whether the structural integrity of the framework would be retained upon 

removal of all solvent molecules. 

2.2.6 Manual Structure Editing 

Structures flagged as disordered were retained if the CSD comment field indicated 

that only the uncharged solvent atoms have disordered coordinates or if the comment field 

did not explicitly state that the structure is disordered. Each of these structures was visually 

examined to confirm that the framework atoms are not disordered. This process identified 
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106 MOF structures with minor framework disorder that were fixed manually by referring 

to the original literature for the MOF crystal structures. Missing hydrogen atoms were 

added automatically to an additional 63 structures using Materials Studio (Accelrys, San 

Diego, CA). Following manual editing, a geometric optimization was run using the 

Materials Studio Forcite module. The positions of each atom were allowed to relax to a 

tolerance of 0.002 kcal/mol, while the simulation cell was fixed at the experimental lattice 

constants. Universal force field parameters[16] were assigned to each atom in the simulation 

cell to model all bonded and nonbonded interactions. 

2.2.7 Geometric Characterization 

Each CoRE MOF structure was characterized with Zeo++[11] using the high-

accuracy setting[17], which uses Voronoi decomposition to identify probe-accessible 

regions of void space and calculate the accessible surface area, accessible volume, largest 

cavity diameter (LCD), and pore-limiting diameter (PLD).[5] All Zeo++ calculations used 

a probe of radius 1.86 Å (corresponding to N2)[18] and covalent radii from the Cambridge 

Crystallographic Data Centre for all framework atoms. The reported accessible surface 

areas only include pore regions accessible through windows large enough to admit N2. 

Helium void fractions were calculated via random Widom particle insertions with a 

Lennard-Jones helium atom at 298 K. 

2.3 Atomic Point Charge Calculation 

2.3.1 Background 

Electronic structure calculations such as density functional theory (DFT) and other 

quantum chemistry methods have been shown to reliably match experimental 

measurements of properties of MOFs such as adsorbate interaction energies.[19] It is 

computationally infeasible, however, to use electronic structure methods to simulate 

phenomena such as adsorbate diffusion occurring over time scales of nanoseconds or 

longer. Similarly, grand canonical Monte Carlo (GCMC) simulations of adsorption within 

nanopores require thousands or millions of computational iterations to converge and thus 

cannot be directly simulated with electronic structure methods. For these reasons, 
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simulations of MOFs often rely on classical force fields, especially in efforts to examine 

large numbers of materials.[6, 20-23] 

In essentially all force field calculations with MOFs, Coulombic interactions 

between atoms in a MOF and also between those atoms and adsorbate molecules are 

modeled by assigning point charges to each atom of the framework. Because there is no 

unique solution to the task of assigning point charges to represent the full three-dimensional 

distribution of charge in a material[24], multiple methods have been explored for assigning 

charges in MOFs. Semiempirical methods such as charge equilibration have been used 

because they can be applied without performing an electronic structure calculation.[25-26] 

When possible, it is preferable to use atomic charges derived from the electron density 

calculated from an electronic structure calculation for either discrete clusters cleaved from 

MOF structures or fully periodic representations of MOF crystals.[27] Methods for 

assigning charges based on partitioning the electron density of MOF clusters include 

ChelpG[28] and more recent charge model techniques[29]. Cluster techniques have been used 

to screen small numbers (∼20 MOFs) of experimentally synthesized MOFs for CO2 

storage.[30-31] Fully periodic methods for partitioning the electron density such as DDEC[24], 

fitting the local electrostatic field around atoms such as REPEAT[32], or period population 

analysis such as CM5[29] avoids the problem of ambiguous bond termination inherent to 

cluster-based methods.[27, 33] Both the DDEC and REPEAT methods were designed in part 

to accurately reproduce the electrostatic potential energy surface for locations outside the 

van der Waals radius of atoms in the material, a property that is desirable in modeling 

adsorption in MOFs. Other methods that have been widely used to assign point charges to 

periodic materials such as Bader charges do not have this property.[24, 34] Unlike the Bader 

method, DDEC incorporates spherical averaging and uses reference ion densities to 

enhance the transferability and chemical meaning of the charges.  

2.3.2 Computational details 

A single self-consistent ionic step was attempted in the VASP 5.3.5 plane-wave 

DFT package for each CoRE MOF structure without charge compensating ionic species to 

generate the electron and spin density distributions used as inputs for point charge 

assignment.[35] Nazarian et al. have previously shown that there is a negligible difference 
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in the DDEC-derived atomic point charges from electronic densities generated with the 

PBE, PW91, M06L, or vdw-DF2 functionals for a diverse test set of MOF structures.[36] 

This is consistent with earlier results of Manz and Sholl for a broad range of materials.[24] 

The PBE functional was used throughout this work to minimize computational expense. 

Calculations on the same test set of MOFs mentioned above also indicated negligible 

differences in point charges between calculations using the experimental structures 

reported in the CoRE MOF database and structures that were fully geometrically optimized 

with DFT.[36] As a result, geometric relaxation of the MOFs was not employed for any of 

the calculations described below. For most structures, the Brillouin zone was sampled with 

a 1000 points per atom density Monkhorst–Pack grid. For ∼200 structures, calculations 

with a Gamma grid were necessary for proper convergence. Spin polarization was included 

for all calculations, adopting ferromagnetic high-spin states for magnetic elements.[37-38] 

While there are many structures in the database that exhibit antiferromagnetic spin 

ordering, it is difficult to efficiently identify these structures a priori. We have found that 

for Cu-BTC, which includes a copper dimer with a ground state antiferromagnetic spin 

state[39-40], a ferromagnetic calculation results in a Cu charge that is different by <0.02 

electron from that of the antiferromagnetic structure. This observation suggests that using 

ferromagnetic states is sufficient for assigning point charges. 

The electron density was successfully computed for ∼75% of the structures in the 

starting data set. Of the calculations that did not converge in VASP, approximately half 

exceeded the maximal virtual memory imposed by our computing resources, and most of 

these calculations were for the largest CoRE MOF structures, with primitive cells of several 

hundred atoms or more. The remaining calculations failed because of other VASP errors, 

including issues with k-point grid density requirements and unresolved segmentation 

faults.  

The converged electron densities from VASP were used as inputs to the January 

2014 version of the Density Derived Electrostatic and Chemical (DDEC) charge 

assignment code distributed by Manz et al.[24, 34, 41] Atomic point charges were successfully 

calculated for 2,932 structures. All charges below are reported in units of electron charge. 

A small number of these structures (14 MOFs, including nine with silver atoms) were 

assigned unphysical negative charges to cationic metal centers. These MOFs were found 
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to be missing bound solvent atoms in the proximity of metal centers that were removed in 

the construction of the CoRE MOF database. In these cases, restoring the bound solvent 

molecules to their crystallographically refined positions produces realistic positive charges 

for the cationic metal atoms. To remain consistent with the structures in the CoRE MOF 

database, we excluded these 14 structures from further analysis. 

2.4 Results and Discussion 

2.4.1 Geometric and Physical Characteristics of CoRE MOFs 

The CoRE MOF database contains 5,109 3-D MOF structures with pore-limiting 

diameters greater than 2.4 Å, which corresponds to approximately the diameter of a 

hydrogen molecule. We note that some MOF structures are duplicated in our database 

because multiple representations of the same MOF are reported in the CSD. Notably, there 

are at least 13 entries for IRMOF-1 and 50 entries for HKUST-1 in the CSD. The authors 

of new MOF structures often report more than one crystal structure at different activation 

conditions and different temperatures or with different guest molecules inside. Additional 

crystal structures may also be reported by investigators interested in different applications 

of the same MOF. The lattice constants of these “duplicate” representations often vary, and 

this may have an effect on simulated adsorption properties. Since the different structures 

may be of interest to different researchers, we have not removed duplicates from the CoRE 

MOF database.  

The number of structures in the CoRE MOF database does not represent the number 

of unique porous MOFs synthesized so far because there are duplicate MOF structures in 

our database and highly disordered structures are not included. Nevertheless, the CoRE 

MOF database captures a great deal of the chemical and structural diversity in 

experimentally synthesized MOFs. To assess the structural diversity of the structures, we 

determined the underlying topology of more than 2,000 CoRE MOF structures with the 

TOPOS program (Appendix A.1)[42]. Over 350 unique topologies were observed in this 

subset of the database. Among the structures to which we assigned nets, the most common 

are pcu (16%), dia (12%), ths (3%), sql (3%), rtl (3%), srs (3%), and bcu (3%). This 

distribution of underlying nets qualitatively agrees with the topological analysis performed 
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by Proserpio and co-workers, who found that the most common topologies in 4,709 

noninterpenetrating MOFs are pcu (9%) and dia (6%).[43] In contrast, only six topological 

nets are represented in a recent database of hypothetical MOFs[44], where over 90% of 

structures have the 6-coordinated pcu topology.[45] 

We determined the 3-D space group of each structure using the pymatgen library’s 

Symmetry Finder module after the structure went through the cleaning procedure.[46] The 

CoRE MOF database contains structures with 190 of the 230 possible 3-D space groups. 

This represents a remarkable degree of structural diversity. The most common space groups 

are P21/c (17%), C2/c (14%), P1 (12%), R3 (3%), and Fm3m (3%). We also find that 297 

out of 5109 structures have space groups that are different from what was reported in the 

CSD following our cleaning procedure. We have also tabulated the metals associated with 

each structure in the CoRE MOF database. The database includes over 50 types of metal 

clusters, including lanthanides. The most common metal species in the database are Zn and 

Cu, which is not surprising given the widespread use of Zn4O and copper and zinc 

paddlewheel metal centers for the synthesis of metal–organic frameworks. 

Figure 2.3 shows the distribution of calculated volumetric and gravimetric 

accessible surface areas in the CoRE MOF database (a, b) and in the database of 

hypothetical MOFs from Wilmer et al.[44] (c, d). The plots show that the structures from 

the CoRE MOF database have a flatter distribution for the volumetric surface area but a 

more peaked distribution for the gravimetric surface area. Synthesis of large surface area 

MOFs has been an active area of research for the past decade[47-50], and the skewed 

distribution of gravimetric surface areas in the CoRE MOF database might be attributed to 

the lower stability of MOFs with large surface areas and the difficulty in synthesizing such 

structures. 
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Figure 2.3 Probability distribution of calculated volumetric and gravimetric accessible 

surface areas: (a) volumetric accessible surface area from the CoRE MOF database; (b) 

gravimetric accessible surface area from the CoRE MOF database; (c) volumetric 

accessible surface area from the hypothetical MOF database of Wilmer et al.; (d) 

gravimetric accessible surface area from the hypothetical MOF database of Wilmer et 

al. All properties were calculated using Zeo++ with a probe radius of 1.86 Å 

(corresponding to N2). 

 

2.4.2 Comparison of DFT/DDEC to Charge Equilibration 

Electronic structure methods for calculating atomic point charges require 

significant computational investment. Generating the electron and spin density distribution 

for a single MOF using DFT typically requires between tens and hundreds of hours of CPU 

time. Semiempirical methods such as extended charge equilibration (EQeq)[26] and periodic 

charge equilibration (PQeq)[51] that use tabulated elemental properties such as 

electronegativity and ionic affinity to estimate point charges are orders of magnitude more 

computationally efficient. This enables point charges to be assigned to very large numbers 
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of structures quickly. For example, the EQeq method has been used to assign point charges 

to a database of more than 137,000 hypothetical MOFs.[52] To evaluate the accuracy of 

these methods, we compared the EQeq charges to DDEC charges for each MOF in our data 

set. EQeq charges were computed with the stand-alone code distributed by NuMat 

Technologies using default metallic oxidation states. This stand-alone code was found to 

produce charges consistent with the EQeq equilibration method implemented in RASPA 

1.0.[53] 

Figure 2.4 shows the comparison between DDEC and EQeq for each of the more 

than 10000 distinct metal atoms in our data set. A small number of neodymium and 

uranium metals with unrealistically large (> +4) EQeq charges are excluded from this plot. 

 

Figure 2.4 Charges from EQeq charge equilibration compared to DDEC-derived 

charges for more than 10000 distinct metal atoms in MOFs. Rare earth metals include 

lanthanides and actinides. 

Figure 2 shows that EQeq predicts charges for metals higher than those predicted 

by DDEC on average. This observation has previously been made by Haldoupis et al.[25]  

EQeq predicts highly unrealistic charges for many structures containing alkali metals. 

While DDEC charges for alkali metals cluster around the +1 oxidation state expected from 

their position on the periodic table, EQeq predicts a range of alkali charges from −2 to +4 

electrons.  
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2.5 Conclusions 

We have constructed a database of over 5,000 computation-ready porous MOF 

structures that were derived directly from experimental crystal data. Efficient algorithms 

were used to retain charge-balancing ionic species and remove solvent molecules bound to 

unsaturated metal centers. Physical and chemical properties of each structure including 

surface areas and pore characteristics are tabulated in the online supplemental information. 

In addition, we have produced a set of high-quality point charges for nearly 3,000 of these 

experimentally synthesized MOF structures using plane-wave DFT calculations and the 

DDEC charge partitioning method. By using a periodic representation of each MOF, these 

charges avoid problem of ambiguous bond termination inherent to cluster-based methods. 

Because the DDEC method was designed in part to accurately reproduce the electrostatic 

potential energy surface for locations outside the van der Waals radius of atoms in the 

material, our data set of charges is well suited for modeling adsorption in MOFs. These 

data are publically available online (http://dx.doi.org/10.11578/1118280).  
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3  

HIGH-THROUGHPUT SCREENING OF MOFS:  

NATURAL GAS STORAGE AND PURIFICATION* 

3.1 Introduction 

Natural gas (primarily CH4) is both more abundant worldwide and cleaner burning 

than gasoline derived from crude oil.[1] This makes natural gas an attractive potential fuel 

for passenger vehicles. Compressed natural gas (CNG) is already widely used to power 

buses for public transit. However, conventional CNG requires compression of natural gas 

to pressure of up to 250 bar to achieve required energy densities. This necessitates the use 

of heavy, thick walled tanks of a cylindrical or spherical geometry.[2] MOFs adsorbents 

have the potential to dramatically lower pressures needed to achieve energy densities 

comparable to conventional CNG and allow for conformable tank geometries.  

As an illustration of the utility of the CoRE MOF database, we performed grand 

canonical Monte Carlo (GCMC) simulations of methane adsorption in each structure to 

determine the storage capacity at 65 bar and the deliverable capacity from 65 to 5.8 bar. 

These pressures correspond to the DOE ARPA-E targets for methane storage in adsorbed 

natural gas fuel tanks within passenger vehicles.[2] Similar GCMC simulations were 

previously conducted on a database of over 137,000 hypothetical MOFs (hMOFs) to find 

structural properties that govern methane storage[1, 3] and deliverable capacity[1]. The best 

performing hMOF structures were found to have helium void fractions of around 0.8 and 

methane heats of adsorption between 10 and 15 kJ/mol. Our GCMC simulations of 

methane storage and delivery in the CoRE MOF database demonstrate that the structure–

property relationships identified using the hMOF database are also found in real structures. 
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As an example of applying our data set of atomic point charges described in Chapter 

2, we screened each MOF in our data set for potential use in the adsorptive removal of tert-

butyl mercaptan from methane. TBM is one of the principal gaseous sulfur odorants used 

in pipeline natural gas. Combustion of TBM in natural gas produces undesirable SOx 

compounds that can corrode turbines. Removal of TBM from natural gas fuel streams is 

traditionally accomplished by a two-step catalytic hydrodesulfurization process.[4] 

Recently, three common MOFs and the zeolite NaY were experimentally tested for use in 

the selective adsorption of TBM from natural gas.[5] UiO-66(Zr) was found to have 

promising properties that make it a good candidate material for this application. Below, we 

use a hierarchical high-throughput screening approach based on GCMC simulations to 

identify additional MOF materials with high selectivity for TBM over CH4 and a high 

saturation capacity for TBM. 

3.2 Methods and Computational Details 

3.2.1 GCMC Simulations of MOF Adsorption Capacity: CH4 Storage for 

Adsorbed Natural Gas Applications 

Classical grand canonical Monte Carlo (GCMC) simulations of methane adsorption 

were conducted on all CoRE MOF structures in the RASPA 1.0 molecular simulation 

package. Methane adsorption was simulated at 0.01, 5.8, and 65 bar at T = 298 K. Fugacity 

values necessary to impose equilibrium between the system and the external gas reservoir 

at each pressure were calculated with the Peng- Robinson equation of state.[6] Methane-

methane and methane-framework interactions were modeled with the Lennard-Jones (LJ) 

12-6 potential: 

𝑉𝑖𝑗 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]            (1) 

Here, i and j index the interacting atoms, rij is the distance between atoms i and j, and 𝜀 and 

𝜎 are the LJ parameters. LJ interaction parameters between atoms of different types were 

calculated using the Lorentz-Berthelot mixing rules: 

𝜎𝑖𝑗 =
𝜎𝑖 + 𝜎𝑗

2
           (2) 

𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗                (3) 
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Framework atoms were held fixed in the positions reported in the CoRE MOF 

database. LJ parameters for all framework atoms were obtained from the Universal Force 

Field (UFF).[7] LJ parameters for methane (ε/kB = 148.0 K; σ = 3.73 Å) were obtained 

from the TraPPE force-field.[8] In the TraPPE model, methane is modeled as a single sphere 

with one LJ interaction site. LJ parameters for helium (ε/kB = 10.9 K; σ = 2.64 Å) were 

taken from Talu and Myers. All LJ interaction potentials were truncated at 12.8 Å. 

Accordingly, the simulation cells were replicated to at least 25.6 Å along each axis to 

satisfy the minimum image convention. 

All GCMC simulations included a 1,000-cycle equilibration period followed by a 

5,000- cycle production period. A cycle consists of N Monte Carlo steps, where N is the 

number of atoms in the system. GCMC simulations included random insertion, deletion, 

translation, and re-insertion moves with equal probabilities. 

The isosteric heats of adsorption were calculated based on the fluctuation method[9]: 

𝑄𝑠𝑡 = 𝑅𝑇 −
〈𝑉𝑁〉 − 〈𝑉〉〈𝑁〉

〈𝑁2〉 − 〈𝑁〉2
          (4) 

Here, N is the number of methane molecules in the system, V is the potential energy per 

adsorbed methane, R is the ideal gas constant, and T is the temperature. The angled brackets 

indicate an ensemble average over the Monte Carlo steps. The heat of adsorption is 

calculated at low loading (P = 0.01 bar) to exclude contributions from methane-methane 

interactions. 

The helium void fraction of each structure was calculated using the Widom particle 

insertion method by probing the structure with a Lennard-Jones helium atom at 5000 

random points at T = 298 K.[10] The energy difference with and without the helium atom 

was calculated, and the average Boltzmann weight resulting from the energy difference 

corresponds directly to the helium void fraction. 

3.2.2 GCMC Simulations of MOF Adsorption Selectivity: tert-Butyl Mercaptan 

Removal from CH4  

A hierarchical high-throughput screening approach using grand canonical Monte 

Carlo simulations was used to identify candidate MOF structures for selective adsorption 

of trace tert-butyl mercaptan (TBM) from methane (CH4). MOFs were evaluated on the 
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basis of selectivity for TBM in Henry’s regime, the saturation capacity of TBM, the binary 

selectivity for trace TBM over CH4, and synthetic and structural properties. 

All GCMC simulations of adsorption were performed in the RASPA 1.0 molecular 

simulation package.[11] The configurational bias Monte Carlo (CBMC) method was used 

to model the internal flexibility of TBM molecules as described by the TraPPE force 

field[12], while CH4 was modeled a single TraPPE united atom. Dispersion forces between 

adsorbates and the MOF were described by combining Lennard-Jones parameters from the 

Universal Force Field[7] (MOF atoms) and TraPPE (adsorbates) with the Lorentz–Berthelot 

mixing rule. Electrostatic interactions were modeled by using our DDEC-derived atomic 

point charges for MOF atoms and TraPPE charges for TBM and CH4 molecules. All 

Lennard-Jones interactions were truncated at 16 Å; all electrostatic interactions were 

computed pairwise to 16 Å, and a long-range Ewald summation scheme was used 

thereafter. 

Henry’s constants of TBM and CH4 were calculated from 5 × 105 Widom particle 

insertions. The adsorption selectivity in Henry’s regime was defined as the ratio of the 

single-component TBM and CH4 Henry’s constants.[13] The single-component saturation 

capacity of each MOF structure for TBM was calculated by performing GCMC at a very 

high fugacity (5 × 104 bar) using 3 × 104 initialization and 4 × 105 production Monte Carlo 

cycles. The binary selectivity for TBM over CH4 was calculated at a composition 

representative of a natural gas pipeline composition (10 ppm TBM in CH4) and pressure 

(18.1 atm) using 2 × 105 initialization cycles and 5 × 105 production cycles. The binary 

selectivity was defined as 

𝑥𝑇𝐵𝑀

𝑥𝐶𝐻4

𝑦𝐶𝐻4

𝑦𝑇𝐵𝑀
          (5)  

where x and y are the concentrations in the adsorbed phase and vapor phase, respectively.[5] 

Pipeline natural gas can contain a range of other species at low concentrations[14], including 

low-molecular weight hydrocarbons and CO2; these components have not been considered 

in our screening calculations. 
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3.3 Results and Discussion 

3.3.1 Methane Uptake Capacity of CoRE MOFs 

Figure 3.1 shows the simulation results for the absolute methane uptake at 65 bar 

and the deliverable capacity from 65 to 5.8 bar. We found over 800 structures with methane 

capacity predicted on the basis of our model of greater than 200 volSTP vol–1 at 65 bar. 

 

Figure 3.1 Methane deliverable capacity from 65 to 5.8 bar as a function of absolute 

methane uptake at 65 bar calculated from GCMC simulations for the structures in the 

CoRE MOF database at 298 K. The data point at the intersection between the vertical 

and horizontal dotted lines is for CSD: HAFQOW (MIL-53(Al)). HAFQOW is the best 

MOF in terms of methane storage (267 volSTP vol–1) but not in terms of methane 

deliverable capacity (∼100 volSTP vol–1). 

 

The GCMC simulations predict that the top-performing structure in the CoRE MOF 

database for absolute methane uptake is MIL-53(Al) (CSD: HAFQOW)[15], with an uptake 

at 65 bar of 267 volSTP vol–1, which exceeds the current methane storage target set by the 

ARPA-E MOVE program (263 volSTP vol–1), if the packing efficiency loss is ignored.[2] 

This was a surprising result, since this is a well-known MOF and only moderate methane 

uptake has previously been reported for this material up to 30 bar.[16] We speculated that if 

special attention were paid to activating the MOF and maximizing its surface area, we 

might see very high methane uptake in the laboratory as predicted by simulation. To test 

this, our experimental collaborators synthesized MIL-53(Al) and activated it with a 
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procedure designed to remove solvent and unreacted organic ligands to produce a high-

quality sample (SBET = 1530 m2/g).[17] Details of the synthesis are given in Appendix A.2. 

However, as shown in Appendix A.3, subsequent experiments with this high-quality MIL-

53(Al) sample failed to confirm the simulation prediction, with the methane uptake 

measured at 65 bar and 298 K being only 190 volSTP vol–1. To assess the origin of this 

discrepancy, we identified all of the MIL-53(Al) structures in the CSD and computed full 

methane isotherms from 0 to 65 bar. There are 13 different crystal structures for MIL-

53(Al) with somewhat different experimentally resolved lattice parameters and atomic 

coordinates. We found that there are large variations in the simulated methane isotherms 

in the 13 MIL-53(Al) structures. At 65 bar and 298 K, the methane storage capacity of 

these structures varies from 180 to 267 volSTP vol–1. Further discussion about methane 

adsorption in MIL-53(Al) is provided in Appendix A.3. This case study serves as a 

cautionary example in using the CoRE MOF structures. 

Figure 3.2 shows a parity plot between experimental (Brunauer–Emmett–Teller 

(BET) or Langmuir) surface areas from the literature and our calculated accessible surface 

areas for the 53 MOFs ranked highest for methane storage and delivery in our GCMC 

simulations. As found by Goldsmith et al., the correlation between calculated surface areas 

and experimentally measured surface areas is poor.[18] Only 16 out of the 53 MOFs 

examined have experimental surface areas larger than 85% of the calculated value. The 

discrepancy may be a result of defects in the experimentally synthesized MOFs or 

incomplete removal of solvents. Our computational analysis assumes that every material 

can be completely desolvated without resulting in framework collapse. For some materials, 

it may not be possible to access the porosity at all due to framework collapse (experimental 

surface areas near zero), while in others the experimental synthesis and activation 

conditions may not have been optimized. Activation of MOFs is an active area of research, 

and the activation conditions of MOFs often need to be varied to yield high-quality MOF 

samples.[19] For example, the correlation between the experimental and theoretical surface 

areas of IRMOF-1 has improved as better activation protocols have been introduced.[20]  



  

32 

 

Figure 3.2 Comparison between gravimetric surface areas from the experimental 

literature and those calculated geometrically from the crystal structures for structures 

with methane deliverable capacity greater than 180 volSTP vol–1 or methane uptake 

greater than 240 volSTP vol–1. CSD reference codes are shown next to the data points: 

purple for top methane deliverable capacities, blue for top methane uptake values, and 

black for both. If the experimental BET surface area is not reported, the Langmuir 

surface area was used. 

 

3.3.2 Comparison between CoRE MOFs and Hypothetical MOFs for Methane 

Uptake 

In Figure 3.3, we compare the simulated methane uptake values at 65 bar with those 

from the hypothetical MOF (hMOF) database of Wilmer et al.[3] Both the hMOFs and the 

CoRE MOFs span a wide range of textural properties (surface area, LCD, etc.), but the 

CoRE MOFs are much more topologically diverse. Nevertheless, as shown in Figure 3.3, 

the trends for how methane uptake correlates with different textural properties are 

remarkably similar for the two sets of MOFs. For example, Figure 3.3c shows that the 

simulated methane adsorption capacity at 65 bar shows a pronounced maximum at a helium 

void fraction of around 0.8 for both databases. 
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Figure 3.3 Absolute methane storage capacity at 65 bar for the CoRE MOF structures 

(blue) and the hMOF structures (gray) plotted as a function of (a) gravimetric 

accessible surface area, (b) volumetric accessible surface area, (c) helium void fraction, 

and (d) largest cavity diameter. 

 

Figure 3.3d shows that IRMOF-74-XI (CSD: RAVXOD)[21], IRMOF-74-IX (CSD: 

RAVXIX)[21], MOF-399 (CSD: BAZGAM)[22], and PCN-21 (CSD: YUSWEP)[23] have 

LCDs greater than those of all of the structures in the hMOF database because large organic 

linkers in these MOFs were not included by Wilmer et al. in the library of building blocks 

used to construct the hMOF database.[3] 

Figure 3.4 shows that the two databases also produce similar trends for methane 

deliverable capacity versus heat of adsorption, with the highest methane deliverable 

capacities occurring at heats of adsorption between 10 and 15 kJ/mol (vertical lines in 

Figure 3.4). Figures 3.3 and 3.4 suggest that a wide range of textural properties may be 

more important for developing structure–property relationships for methane storage in 

MOFs than a wide range of topologies. This is an unexpected result and suggests future 

work to see if this tentative conclusion holds for other performance properties of MOFs. 
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Figure 3.4 Methane deliverable capacity from 65 to 5.8 bar for the CoRE MOF 

database (blue) and the hMOF database of Wilmer et al. (gray) as a function of the heat 

of adsorption (Qst) at 0.01 bar. 

 

3.3.3 High-throughput Screening for TBM/ CH4 Selectivity 

In Chapter 2, we discussed comparing point charges assigned with periodic DFT 

calculations and the DDEC charge partitioning method with results from the semiempirical 

EQeq method. While this comparison is useful, it is equally useful to remember that point 

charges are not a direct experimental observable, so the implications of the charge density 

in a material for its physical properties are typically more important than the numerical 

value of a given charge. The availability of the charges we have reported above for the 

CoRE MOF database immediately opens the possibility of screening the materials in this 

database for physical properties that involve nonpolar adsorbate species. As an initial 

illustration, we have examined the selective adsorption of tert-butyl mercaptan (TBM) 

from methane. As mentioned above, TBM is ubiquitous in pipeline natural gas at parts per 

million levels as an odorant. We know of no previous simulations of TBM adsorption in 

MOFs. Below, we report on the predicted adsorption properties of TBM and methane in 

the MOFs in our data set. Although there are 2234 unique MOFs in our data set, we 

performed adsorption calculations on all 2932 MOFs, so these calculations include 

multiple experimental structures of several MOFs. 

First, we calculated Henry’s constant and isosteric heats of adsorption of CH4 and 

TBM in each structure in the data set. These quantities are computationally inexpensive to 

compute for large numbers of materials using Widom insertions in RASPA. The Henry’s 
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regime selectivity in each MOF was defined as the ratio of the TBM and CH4 Henry 

constants, where values above 1 indicate preferential adsorption of TBM in the Henry 

regime. Approximately one-quarter of structures exhibited very low Henry regime 

selectivities (< 10–12) and were excluded from further analysis. Most of these structures 

have a largest cavity diameter (LCD) of < 4.5 Å, indicating nanopores too small to 

accommodate a TBM molecule. Even if these structures are excluded, our results have 

MOFs that span an enormous range of selectivities. Figure 3.5 shows the Henry regime 

selectivities for the remaining structures plotted as a function of the largest cavity diameter 

and TBM isosteric heat of adsorption. 

 

Figure 3.5 Henry’s regime selectivity vs TBM heat of adsorption, where negative heats 

indicate energetically favorable adsorption. More lightly colored data points are 

associated with structures with larger LCDs. 

 

The results in Figure 3.5 allow a relatively simple description of the competing 

effects that control selective adsorption of TBM relative to CH4. Structures with very small 

pores cannot easily accommodate the TBM molecule but readily adsorb CH4, leading to 

Henry’s regime selectivities of < 1 and positive TBM heats of adsorption. For materials 

with slightly larger pores (LCD ∼ 5–6 Å), steric repulsive forces become less important 

than energetically favorable electrostatic and dispersive forces. This regime is associated 
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with negative heats of adsorption for TBM and high Henry’s regime selectivities for TBM 

over CH4. The lowest TBM heats of adsorption (less than −70 kJ/mol) are associated with 

LCDs of 6–6.5 Å. In structures with LCDs in this range, the TBM molecules fit optimally 

into the largest pore within each MOF. Although these MOFs exhibit very high Henry’s 

regime selectivities (> 108), the adsorption of TBM is likely irreversible within these 

materials and access of TBM into the pores may be subject to severe kinetic limitations. At 

LCDs of > 8 Å, TBM molecules experience somewhat weaker energetic interactions with 

nearby MOF atoms, although these interactions are still typically considerably stronger 

than for CH4. The structures with the largest LCDs (> 20 Å) have relatively modest Henry’s 

regime selectivities (< 104). 

Next, we evaluated the correlation between these Henry’s regime selectivities and 

selectivities computed from binary GCMC calculations at a representative pipeline 

composition of natural gas (10 ppm TBM in CH4, 18.1 atm total pressure).[24] Binary 

GCMC simulations simulate competitive adsorption effects at finite loadings that single-

component Henry’s regime calculations cannot capture. However, these simulations are 

considerably more computationally expensive than calculations in Henry’s regime. We 

first performed these binary calculations for a subset of around 100 MOFs with Henry’s 

regime selectivities ranging from 1 to 1010. The 100 MOFs were chosen to represent a 

range of selectivities for TBM and produced well-converged results within 5 × 105 Monte 

Carlo cycles. Figure 3.6 shows the binary selectivity (eq 5) as a function of Henry’s regime 

selectivity for these 100 materials. With the bulk phase condition we considered a binary 

selectivity of 105 corresponds to an equimolar adsorbed mixture of TBM and CH4. 
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Figure 3.6 Binary GCMC selectivity at a representative pipeline composition of natural 

gas (10 ppm TBM in CH4, 18.1 atm) compared to Henry’s regime selectivity for 100 

MOFs. At values above 104, selectivities from binary GCMC deviate significantly 

from Henry’s regime. 

 

Figure 3.6 shows that when the Henry’s regime selectivity is less than ∼104, 

Henry’s regime selectivity is strongly correlated with the binary selectivity. For Henry’s 

regime selectivities above ∼104, the Henry’s regime prediction tends to strongly 

overestimate the binary selectivity. It is challenging to achieve complete numerical 

convergence in binary GCMC for the most selective materials, and we observed relatively 

large fluctuations in the observed GCMC selectivity for some structures because of the 

very small amounts of CH4 observed. Nevertheless, the uncertainties associated with this 

effect are small enough to allow us to conclude that the trend shown in Figure 3.6 for high-

selectivity materials is a physical effect. This effect arises because the TBM adsorption is 

not accurately described by Henry’s law in these highly selective materials under the bulk 

phase conditions we examined, meaning that the adsorbed amount of TBM is 

overestimated by using Henry’s regime results. Although this means that using binary 

GCMC calculations is necessary to quantitatively describe adsorption of the TBM/CH4 

mixture in the most selective materials we have considered, Figure 3.6 shows that using 
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the Henry’s regime selectivity is a useful way to order materials using computationally 

efficient methods. 

On the basis of the results described above, we narrowed our attention to materials 

with Henry’s regime selectivity of >103. While MOFs with high selectivity for TBM are 

desired, MOFs with a large TBM heat of adsorption are likely to irreversibly adsorb TBM. 

To include the feature in our calculations in a simple way, we also eliminated MOFs with 

a Henry’s regime heat of adsorption for TBM more favorable than −70 kJ/mol. We also 

removed all MOFs containing lanthanide metals from further consideration. For the 

remaining 1497 distinct MOFs, we performed calculations to evaluate each material’s 

capacity for TBM and the binary selectivity under the natural gas pipeline conditions 

defined above. The TBM saturation capacity was calculated using single-component 

GCMC at a fugacity (50 kPa) above the vapor pressure of TBM at 25 °C.[25] As expected, 

these results correlate strongly with the MOF pore volume. Figure 3.7 shows the saturation 

TBM loading of each MOF as a function of selectivity at the natural gas pipeline 

composition calculated using binary GCMC. 

We anticipate that top-performing MOFs for TBM removal will have a saturation 

loading for TBM of > 200 mg/g. We found 354 MOFs from the CoRE MOF database 

meeting these criteria. Among these promising candidates are multiple representations of 

the commonly studied MOFs reported in different experimental reports. Among these 

common MOFs are MIL-53 and Cu-BTC, which were identified by Chen et al. as being 

highly selective but structurally unstable during TBM adsorption.[5] ZIF-8, a commonly 

studied and readily available MOF that is stable under humid conditions, is predicted to 

have a binary selectivity of 1.17 × 104 and saturation loading of approximately 270 mg of 

TBM/g of adsorbent. It has been shown in both experiments and using molecular modeling 

that ZIF-8 can adsorb molecules that are considerably larger than its nominal pore diameter 

because of flexibility in the small windows that control molecular diffusion in this 

material.[26-28] These observations mitigate concerns that TBM adsorption in ZIF-8 would 

be limited by kinetic considerations. Other less studied but water stable and promising 

candidates include BIBXUH, a nickel-based MOF with a 691 mg/g capacity for TBM, and 

MFU-4, a zinc- and chlorine-based MOF with a 6.85 × 105 selectivity for TBM over 

methane. 
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Figure 3.7 TBM/CH4 selectivity at the pipeline composition as a function of saturation 

loading of TBM in 1497 MOFs. Cu-BTC and MIL-53, two MOFs studied 

experimentally for TBM adsorption by Chen et al., are highlighted. Three other 

promising and water stable MOFs are also highlighted. 

 

We have not attempted in these screening calculations to pick a single “winning” 

material for the challenge of selectively adsorbing TBM from CH4. Finding appropriate 

materials for practical use must involve considerations that are beyond the scope of our 

current calculations, including the long-term stability of materials, the cost and ease of 

synthesis of materials, etc. Nevertheless, the observation that our calculations have 

identified a large number of materials with appealing adsorption selectivities and 

adsorption capacities for TBM provides a strong basis for continued development of high-

performance materials for this application. 

3.4 Conclusions 

Simulations of methane adsorption in the CoRE MOF database show that the 

predicted structure–property relationships agree well with those predicted in a database of 

hypothetical MOFs, even though the hypothetical MOFs are much less topologically 

diverse. Notably, both the CoRE MOF and hypothetical MOF databases predict that 
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methane storage capacity is optimized at a helium void fraction of around 0.8 and that 

methane deliverable capacity is maximized at heats of adsorption between 10 and 15 

kJ/mol. Future work is needed to better understand the role of topology on structure–

property relationships in MOFs. For example, are certain combinations of textural 

properties only accessible with certain topologies? We anticipate that the CoRE MOF 

database will be useful in answering these questions, in facilitating high-throughput 

identification of candidate MOFs for future applications, and in revealing structure–

property relationships that could suggest design principles for optimum materials. 

As an example of applying our data set of atomic point charges, we have screened 

each MOF in our data set for potential use in the adsorptive removal of tert-butyl mercaptan 

from methane. Our efficient screening procedure has identified hundreds of MOFs with 

high selectivity and capacity for TBM. These results suggest multiple directions for future 

experimental efforts, including the identification of some well-known materials as 

potential candidates for this separation. 

The high selectivities of MOFs in our study reveal a potential challenge with the 

application of MOFs for methane storage. In the original CoRE MOF report, MIL-53 was 

found to have among the highest capacities for methane storage.[17] In our study, we find 

that MIL-53 is highly selective for TBM and most likely for other polar components of 

natural gas. This selectivity may drastically reduce methane capacity during cyclic 

adsorption, especially if TBM accumulates over the many cycles in the lifetime of the 

material. Zhang et al. have studied the adsorption and shown the accumulation of ethane, 

propane, and butane in some common MOFs,[14] but there has yet to be a study of the 

impact of adsorption of trace components such as TBM and other polar species such as 

H2O and CO2 in natural gas. 
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4  

TRANSITION STATE THEORY METHODS TO MEASURE 

DIFFUSION IN FLEXIBLE NANOPOROUS MATERIALS: 

APPLICATION TO A POROUS ORGANIC CAGE CRYSTAL* 

4.1 Introduction 

Adsorbates within nanoporous materials such as zeolites and MOFs experience 

strong confinement effects that can result in transport properties dramatically different than 

bulk phases. Atomistic simulations of these adsorbed phases can provide insight into the 

kinetics of transport in nanopores where experimental characterization would be 

challenging.[1] For example, molecular dynamics (MD) simulations can give adsorbate 

diffusivities, which are an important predictor of material performance in both equilibrium 

and kinetic separation applications.[2] These MD simulations frequently treat the crystalline 

framework as a rigid body.[3-4] This approach greatly reduces the computational cost of 

MD because adsorbate–framework potential energies can be mapped to a grid and do not 

need to be recomputed over the course of a simulation. 

The rigid framework assumption may be reasonable for stiff frameworks or where 

adsorbate dimensions are significantly smaller than pore apertures.[5] In highly flexible 

materials or where adsorbates are comparable in size to pore apertures, framework 

flexibility has a significant influence on diffusion.[6] This presents a technical challenge, as 

including flexibility dramatically increases the cost of MD simulations of nanoporous 

materials because many framework degrees of freedom must be updated with each MD 

step. It is computationally expensive to capture enough rare diffusive hops in 

straightforward molecular dynamics simulations to make accurate measurements of a 

diffusion coefficient. In rigid systems, a practical lower bound for diffusivities that can be 

captured using straightforward molecular dynamics is 10-7 cm2/s, corresponding to about 

1 hop between nanopores per 50 nanoseconds of simulation time.[6] In flexible simulations, 
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this value is perhaps an order of magnitude higher due to the additional expense associated 

with computing framework motions. 

Adsorbate diffusion by activated hopping between nanoporous cavities through 

small apertures (windows) is an example of a “rare event” in molecular simulations. 

Systems with rare events are characterized by regions of phase space separated by energetic 

barriers such that mean residence times in each stable region are much longer than the 

timescale of transitions between regions.[7] The prototypical method for studying rare 

events is transition state theory (TST), developed in the 1930s by Eyring and Wigner.[8] 

Central to TST is the concept of the dividing surface, which partitions phase space into two 

regions along some reaction coordinate. TST reduces the dynamical problem of rate 

constant calculations to the equilibrium problem of finding the reversible work to reach the 

dividing surface from a stable state.[9]  

In the context of diffusion in nanoporous materials, the hopping rate between 

adjacent cavities is calculated by finding the reversible work necessary to move an 

adsorbate from its energy minimized location within a cavity to the window. This free 

energy profile can be computed by sampling adsorbate positions with MD or Monte Carlo 

and then histogramming these positions over the reaction coordinate.[10] This method is 

computationally expensive because the adsorbate rarely visits the high energy regions of 

phase space. Various methods have been developed to overcome this problem including 

Widom particle insertions[11], umbrella sampling[12], and thermodynamic integration[13]. If 

entropic contributions to the energetic barrier are neglected, the problem reduces to 

calculation of the minimum potential energy path through the window. The method of 

Haldoupis et al.[14] calculates this minimum energy path on a spatially discretized energy 

surface, while nudged elastic band calculations[15] use the continuous energy surface. 

Transition state theory methods have been applied extensively to the diffusion in 

rigid zeolites[16] and metal-organic frameworks[17]. However, few reports have used TST 

in the study of flexible nanoporous materials.[18] The primary objective of this work is to 

demonstrate two numerically efficient TST methods that are broadly applicable to 

measuring slow diffusion in highly flexible nanoporous materials that is computationally 

inaccessible to direct MD. These methods are an alternative to more complicated transition 

path sampling methods used to simulate slow diffusion in flexible nanoporous materials.[19] 
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We also describe techniques to analyze the relationship between pore aperture (window) 

sizes, adsorbate hopping activation energies, and adsorbate hopping rates. 

 

4.2 Porous Organic Cages 

Porous organic cages (POCs) crystallize in the solid state without forming 

intermolecular covalent or coordination bonds.[20-21] The weak nature of these 

intermolecular forces makes POCs inherently flexible.[22] One of the first POCs 

synthesized, known as “cage crystal 3” (CC3),[23] has a number of desirable properties that 

make the material potentially useful in kinetic separation applications. CC3 forms a 3-D 

diamondoid pore network with a BET surface area[24] of 409 m2 g–1 which is thermally 

stable to 398 C,[23] stable in boiling water,[25] and reversibly adsorbs over 20 wt % water[25]. 

MD simulations of adsorbates within isolated cage molecules were used to predict that 

mesitylene molecules cannot overcome a reorientational barrier to diffusion in CC3 while 

smaller aromatics such as 4-ethyltoluene can. These predictions were consistent with single 

phase gas uptake experiments which demonstrated that CC3 can adsorb a significant 

amount of 4-ethyltoluene, but no mesitylene.[26] Subsequent MD studies of diffusion in 

crystalline CC3 at 300 K showed that 4-ethyltoluene molecules hop between cages and 

intercage voids several times over the course of a 20 ns simulation, but mesitylene 

molecules are completely immobile. Recently, CC3 was reported to have attractive 

performance in the adsorptive separation of Kr, Xe, and Rn from air.[27] 

Although qualitative insights from MD can be valuable, typically hundreds of 

adsorbate hops must be observed in MD to yield a well-converged diffusion coefficient. 

This “MD time scale problem” is a well-known challenge in the simulation of diffusion in 

nanoporous materials.[10] In CC3, this challenge is also relevant for smaller spherical 

adsorbate molecules. Evans et al. performed MD simulations of light gas diffusion to 

evaluate the performance of mixed-matrix membranes with CC3 and other porous organic 

cage additives.[28] The diffusion coefficient of CH4 in CC3 measured in that study at 298 

K and 10 bar adsorbate loading pressure was 2.16 × 10–6 cm2 s–1, which corresponds to 

only a few CH4 hops per nanosecond.[28] Similarly, Holden et al. found that the diffusion 

coefficient of Xe in CC3 at 298 K is 1.83 × 10–6 cm2 s–1. It is computationally expensive 
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to measure diffusion coefficients on this order of magnitude using MD, particularly at low 

adsorbate loadings. Larger adsorbates of interest in CC3 such as 1-phenylethanol[29] are 

expected to diffuse orders of magnitude slower, making direct MD simulation of diffusion 

infeasible. Here, we apply two efficient TST methods to compute the self-diffusivities of 

light gases in CC3 in the regimes of low temperature and infinite dilution where diffusion 

is inaccessible to direct MD simulation.  

4.3 Modeling Diffusion in CC3 

4.3.1 Structure and Force Fields 

A 2 × 2 × 2 supercell of the homochiral CC3-R structure (Cambridge Structural 

Database: PUDXES)[30] was used throughout this work. All window sizes reported here 

were calculated by the arene carbon method described by Chen et al.[27] for consistency 

with window sizes previously reported in CC3.[27, 31] This approach is convenient but less 

rigorous than a definition of window size based on percolating sphere diameters[14] or 

Voronoi decomposition.[32] 

Cage Adsorption Force Field (CAFF) 

The cage-adsorption force field (CAFF)[27] was used to model adsorbate–cage 

interactions for CH4 and the noble gases. CAFF is based upon DREIDING[33] with rescaled 

epsilon parameters to fit experimental adsorption data. United atom models of carbon 

disulfide (CS2) and sulfur hexafluoride (SF6) were represented using experimentally 

derived 12–6 Lennard-Jones parameters from the literature.[34] Parameters from EPM2[35] 

and UFF[36] for CO2 and the framework, respectively, were combined with the Lorentz–

Berthelot mixing rules to model carbon dioxide–framework dispersion interactions. CSFF 

partial charges were used to model electrostatic interactions with CO2. CAFF parameters 

were also used to model adsorbate–adsorbate interactions. All adsorbate–cage and 

adsorbate–adsorbate interactions were truncated at 10 Å. 

Cage Specific Force Field (CSFF) 

CSFF was parametrized by Holden et al.[37] to describe the framework dynamics of 

CC3 and other porous organic cages. In CSFF, intramolecular nonbonded interactions are 
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completely excluded, meaning that the 168 atoms within individual cage molecules do not 

interact by Lennard-Jones or Coulombic forces. To describe intermolecular forces between 

individual cage molecules, CSFF uses partial charges and scaled 9–6 Lennard-Jones 

parameters from the polymer consistent force field (PCFF).[38] Following the original CSFF 

report, the dispersive portion of Lennard-Jones potential was scaled by a factor of 1.20. All 

CSFF intermolecular Lennard-Jones interactions were truncated at 10 Å. Coulombic 

interactions were computed pairwise to 10 Å, and a long-range particle–particle mesh 

Ewald correction was used thereafter. Bonded forces were applied as described in the 

original CSFF report with the following exceptions: two angle and three torsion parameters 

absent from the original CSFF report[37] were adapted directly from PCFF by Holden and 

co-workers and used throughout this work. These parameters are necessary to reproduce 

the geometry of the cyclohexyl groups on the CC3 molecules. The coefficient leading the 

class2 trigonometric dihedral potential was also modified, as described in Appendix B. 

4.3.2 Energy Minimization of the CC3 Structure 

The atomic positions of the CC3 structure were minimized with the CSFF force 

field using a damped dynamics algorithm[39] to a tolerance of 10–11 kcal mol–1. Independent 

minimization runs were performed at variable lattice constants created by isotropically 

scaling the CC3 atomic positions by factors ranging 0.97 to 1.03 (corresponding to changes 

in unit cell volumes between −9% and +9%). 

 

Figure 4.1 Energy minimized CC3 window sizes and potential energies as a function of 

unit cell volume scaling. 
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Figure 4.1 shows the energy minimized window sizes and total potential energies 

for unit cell volumes ranging from 9% smaller to 9% larger than the experimental CC3 

structure. At the experimentally refined lattice constants (0% volume scaling), the CC3 

windows relax to 3.80 Å, about 5% larger than the window size of the experimental 

structure (3.62 Å). The potential energy of the relaxed CC3 structure at the experimental 

unit cell volume is slightly higher (0.05%) than the relaxed CC3 structure found after 

applying a 1.5% volumetric contraction in the unit cell. Over the range of unit cell volumes 

considered, small differences in potential energy (less than 1.5%) are associated with 

significant changes in the relaxed CC3 window size (3.49–3.97 Å). In molecular dynamics 

simulations using the flexible CSFF force field frameworks, the CC3 windows assume 

many different conformations as the simulation progresses. 

 

Figure 4.2 Normalized histogram of CC3 window sizes in fully flexible NVT MD at 

300 K. The experimental window size (3.62 Å) is indicated with an arrow. 

 

After 10 ps of NPT equilibration at 300 K, the CC3 structure contracts by 4.2%. 

Figure 4.2 shows the normalized window size distribution at 300 K in the empty CC3 

structure over a 100 ps NVT production period at these NPT equilibrated lattice constants. 

The window size distribution observed in NPT simulations is essentially identical to the 

NVT results shown in Figure 4.2 (data not shown). The window size distribution is very 

well fit by a normal distribution, which is a common feature of many nanoporous 

materials.[6, 28] The window size of the energy minimized structure at the corresponding 

lattice parameters (3.61 Å at 4.2% contraction) is close to the mean of the distribution (μ = 

3.59 Å). The fit parameters are in reasonably good agreement with the CC3 window size 

distribution reported in the original CSFF publication, which is centered near μ = 3.75 Å.[37] 
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4.3.3 Diffusion Coefficients by MD 

The diffusion coefficients of Kr, CH4, and CO2 were measured with NVT molecular 

dynamics at 300 K using a Nosé–Hoover thermostat and a 0.5 fs time step. For the other 

adsorbates and temperatures considered below, diffusion was too slow to be readily 

simulated with straightforward MD. Each of the adsorbates simulated with MD was loaded 

to a concentration of 2 adsorbate molecules per unit cell, which each contain 8 CC3 

molecules. This corresponds to a total of 16 adsorbate molecules in a 2 × 2 × 2 CC3 

supercell, or a ratio of 1 adsorbate atom for every 4 porous organic cage molecules. The 

experimentally measured saturation loading of CC3 for Kr and Xe is 2.1 and 2.69 adsorbate 

atoms per cage, respectively, at room temperature.[27] We expect that our simulated loading 

of 0.25 adsorbates per cage results in negligible adsorbate–adsorbate interaction effects on 

self-diffusivities measured by MD. This facilitates comparison to TST calculations 

performed at infinite dilution. 

The loaded structure was subject to a 20 ps NPT equilibration period at a pressure 

of 1 bar followed by a 20 ps NVT equilibration at the equilibrated cell volume. Twenty-

eight (28) independent 1 ns NVT simulations were averaged and then fit to the Einstein 

relation to give the self-diffusivity, Ds. In each case, the MSD vs time curve was 

renormalized to zero by subtracting 4 Å2 from the MSD, which is associated with the 

ballistic movement of adsorbate atoms within individual cage molecules. The mean-

squared displacements plots and the associated fits are shown in Appendix B. 

4.3.4 Calculating Diffusion Coefficients by TST Hopping Rates 

Diffusion in CC3 proceeds by activated adsorbate hopping of molecules between a 

cage and the void space separating adjacent cages, also known as “window cavities”.[27] 

The self-diffusion coefficient is given by weighting the hopping rates out of the 4-

coordinated cage sites (kC→V) and the 2-coordinated void sites (kV→C) by the equilibrium 

probability of occupying cages or voids (PC and PV, respectively):[40] 

𝐷𝑠 =
1

6
𝜆2(4𝑘𝐶→𝑉𝑃𝐶 + 2𝑘𝑉→𝐶𝑃𝑉)     (1) 

Here, λ is the hopping distance between cages and voids, which is 5.32 Å in the 

NPT equilibrated structure at 300 K. Since the likelihood of occupying a cage or void is 
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directly proportional to the residence time in each site (the inverse of the hopping rate), the 

occupancy probabilities can be eliminated from eq 1, giving 

𝐷𝑠 =
1

6
𝜆2 (4 (

𝑘𝑉→𝐶

2𝑘𝐶→𝑉 + 𝑘𝑉→𝐶
) 𝑘𝐶→𝑉 + 2 (

2𝑘𝐶→𝑉

2𝑘𝐶→𝑉 + 𝑘𝑉→𝐶
) 𝑘𝑉→𝐶)      (2) 

The hopping rates kC→V and kV→C were calculated using the 1-dimensional TST methods 

described below. 

4.4 Computing Hopping Rates Using TST 

4.4.1 TST in the Rigid Experimental Structure 

The local framework flexibility associated with window size deformation is 

understood to strongly influence diffusion in CC3.[28, 41-42] We first performed simulations 

of spherical adsorbate diffusion in the rigid experimental structure to construct an 

appropriate reaction coordinate and to establish a basis of comparison for our fully flexible 

simulations. The 1-dimensional reaction coordinate (denoted q) used in all of our 

simulations is coincident with the vector that connects the centers of mass of two adjacent 

cage molecules. The coordinate system along this line is centered (q = 0) at the midpoint 

between these positions in the void space that spans adjacent cages. Along this line, the 

centers of mass are located at q = ± 5.4 Å in the experimental structure and each window 

is centered at q = ± 2.5 Å. For convenience, we constructed a reaction coordinate between 

two cage molecules that do not span periodic boundaries in the 2×2×2 CC3 supercell.  

To determine the free energy profile, F(q), for adsorbate hopping along this reaction 

coordinate, we calculated the mean energy of insertion of spherical adsorbate molecules 

using CAFF parameters in planes orthogonal to the reaction coordinate: 

𝐹(𝑞) = −𝑘𝐵𝑇 ln〈𝑒−𝛽∆𝑈〉𝑞   (3) 

Here, the brackets denote averaging the Boltzmann factor over square grids of 0.2 Å 

resolution perpendicular to the reaction coordinate at positions along q. Each of these 

squares is 11.4 × 11.4 Å across (57 × 57 insertions) to fully enclose the cage cavities. These 

square planes were positioned at 0.2 Å intervals to form a contiguous 3-dimensional 

rectangular cuboid grid oriented parallel to q. Figure 4.3 illustrates the construction of the 

square grid “slices” orthogonal to the reaction coordinate. 
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Figure 4.3 TST reaction coordinate superimposed on the experimental CC3 structure. 

Every 15th slice is shown by an orange square. 

 

The cage to void hopping rate kC→V was calculated by applying 1-dimensional TST[10]: 

𝑘𝐶→𝑉 = 𝜅√
𝑘𝐵𝑇

2𝜋𝑚

𝑒−𝛽𝐹(𝑞∗)

∫ 𝑒−𝛽𝐹(𝑞)𝑑𝑞
𝑐𝑎𝑔𝑒

       (4) 

Here, m is the mass of the adsorbate molecule and κ is the Bennett–Chandler 

dynamic correction factor. We have assumed a dynamic correction factor of 1 throughout 

this work, which was shown to be a good approximation for spherical adsorbates in LTL 

and LTA-type zeolites.[10] F(q*) is the free energy at the transition states, which correspond 

to the two local maxima in F(q). The denominator of eq 4 was evaluated by integrating 

over the points on the reaction coordinate associated with the respective cage microstates. 

F(q) is symmetric in the rigid experimental structure (Figure 4.4b), meaning that kcage 1→void 

and kcage 2→void are equal. We evaluated the void to cage hopping rate kV→C by integrating 

over the void microstate, corresponding to the points on F(q) between q1
* and q2

*. 

To visualize the cage and void microstates in CC3, we applied the Fernand–Meyer 

watershed segmentation algorithm[43] to the 3-dimensional adsorbate potential energy grid 

described above. In 2D image processing, this algorithm is used to segment images into 

regions based on pixel intensity. For example, a 2D grayscale image can be considered a 

3D topographic map where altitude at each point is proportional to pixel intensity. The 

Fernand–Meyer algorithm identifies the 2D “catchment basins” and 1D “ridge lines” that 

separate adjacent regions in this topographic projection. In our 3-dimensional application, 

the adsorbate potential energy grid in each voxel is mapped to a grayscale pixel intensity. 
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The Fernand–Meyer algorithm then identifies the 3D microstates and 2D dividing surfaces 

in potential energy space. This procedure is similar to the algorithm of Henkelman et al. 

for grid-based Bader decomposition of charge density.[44] 

 

Figure 4.4 (a) Microstates in the rigid experimental CC3 structure revealed by the 

watershed segmentation algorithm. The 4-coordinated cage sites are shown in blue 

while the 2-coordinated void sites are shown in red. (b) One-dimensional free energy 

profile for Xe hopping at 300 K in the rigid experimental structure. 

 

Figure 4.4a shows the result of watershed segmentation of the Xe potential energy 

grid between adjacent CC3 cages calculated with eq 3 for the experimental CC3 structure. 

The dividing surfaces that separate the cage microstates (shown in blue) and the void 

microstates (shown in red) are associated with the transition state free energies F(q*) on 

the corresponding 1-dimensional Xe free energy profile shown in Figure 4.4b. 

In the rigid experimental structure, the free energy profile, F(q), and associated 

hopping rates for a given adsorbate can be calculated at arbitrary temperatures by changing 

T in eqs 3 and 4. Between any two temperatures T1 and T2, the cage to void hopping rates 

kV→C can be fit to the Arrhenius equation to yield to activation energy for cage to void hops 

EA,C→V: 

𝐸𝐴,𝐶→𝑉 = −𝑅
ln(𝑘𝑉→𝐶(𝑇1)) − ln(𝑘𝑉→𝐶(𝑇2))

𝑇1
−1 − 𝑇2

−1
       (5) 
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The Arrhenius prefactor is computed in a similar way. The same procedure is used to 

determine the activation energy for void to cage hops EA,V→C. 

 

4.4.2 Flexible Implicit Ligand Sampling TST 

To calculate adsorbate hopping rates in the fully flexible CC3 structure, we first 

applied a variation of the implicit ligand sampling method[45] developed to study diffusion 

in flexible nanoporous materials.[6] In this approach, hopping rates are determined by TST 

in an ensemble of rigid frameworks (“snapshots”) captured from a fully flexible MD 

trajectory of the empty porous material. The overall flexible hopping rates are then 

calculated by averaging the hopping rates calculated in each individual framework 

conformation. Awati et al. have shown that this approach is quantitatively accurate for 

diffusion of light gases in small pore zeolites.[46] This method assumes that adsorbates do 

not significantly influence the motion of the crystalline framework. 

Snapshots of the fully flexible CC3 structure were generated by running 20 ps of 

NPT equilibration at 1 bar followed by a 100 ps NVT production period. Snapshots were 

saved at 100 fs intervals, producing ensembles of 1000 snapshots at temperatures of 200, 

250, and 300 K. The NPT equilibration period results in contraction of the CC3 framework 

by 5.3% at 200 K, 4.9% at 250 K, and 4.2% at 400 K relative to the experimental structure. 

The brief molecular dynamics production period used here means that the ensemble of 

snapshots will capture only local flexible framework vibrations, such as changes in CC3 

window sizes, not possible phase transitions that occur at longer time scales. CC3 is not 

known to undergo any large changes in the structure of its unit cell, but deformations of 

this type could pose a challenge to applying implicit ligand sampling to materials such as 

cage crystal 1, which can switch from a porous to a nonporous phase.[47] 

In each flexible snapshot, we calculated the free energy profile, F(q), by the same 

grid method as described above for the rigid experimental structure. The hopping rates in 

each snapshot were determined by 1-dimensional TST using eq 4. Within each snapshot, 

we calculated two independent cage to void hopping rates (kcage 1→void and kcage 2→void) and 

two independent void to cage hopping rates (kvoid→cage 1 and kvoid→cage 2) in each of 16 cage–

void–cage pairs that do not cross periodic boundaries. This yielded samples of 32,000 kC→V 
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and 32,000 kV→C hopping rates when performed over 1000 snapshots. Independent rate 

samples must be calculated for each adsorbate at each temperature. 

 

 

Figure 4.5 (a) Microstates revealed by the Fernand–Meyer algorithm in a snapshot 

from flexible NVT dynamics at 300 K. (b) Corresponding 1-dimensional free energy 

profile for Xe hopping. 

 

Figure 4.5a depicts the cage and void microstates in a snapshot collected from NVT 

dynamics at 300 K using CSFF. The void microstate spanning cage 1 on the left and cage 

2 on the right is deformed with respect to the symmetrical void microstate in the rigid 

experimental structure shown in Figure 4.3a. The cage 1 window coincident with the 

dividing surface between cage 1 and the void is 3.08 Å in diameter in this snapshot. This 

leads to a wide dividing surface between cage 1 and the void relative to the CSFF 

experimental structure, which has windows of 3.62 Å in diameter. In the corresponding 1-

dimensional free energy profile in Figure 4.5b, the free energy barrier for Xe hops from 

cage 1 is 74 kJ mol–1 compared to 23 kJ mol–1 in the experimental structure. In contrast, 

the window between cage 2 and the void is 3.92 Å in diameter, leading to a lower free 

energy barrier (13 kJ mol–1) for hops between cage 2 and the void. The difference in free 

energy barriers gives a kcage 1→void hopping rate 10 orders of magnitude slower than kcage 
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2→void in the CC3 framework conformation represented by this snapshot. This enormous 

difference in rates hints at the important role of framework flexibility in determining the 

overall diffusivity of species like Xe in CC3. 

The overall flexible hopping rates kC→V and kV→C can be estimated from the sample 

average of the 32,000 independent rates collected for each adsorbate and temperature 

condition. This approach can lead to numerical uncertainty, however, when a few 

exceptionally high rate observations have a dominant influence on the overall hopping rate. 

For example, in our sample of SF6 kC→V rates collected at 200 K, the two highest 

observations (out of 32,000) contributed over 80% to the numerator of the sample average. 

This high sample variance leads to unacceptably large numerical uncertainty in the sample 

average. We addressed this problem by inferring the structure of the distribution of hopping 

rates from each hopping rate sample as described below. 

Histograms of the various kC→V and kV→C hopping rate samples collected were not 

related to an obvious statistical distribution. We investigated further by calculating the 

activation energies, EA, underlying each hopping rate in our kC→V and kV→C samples with 

eq 5 in the same way as in the rigid experimental structure. In this case, T1 is the physically 

meaningful temperature associated with the NVT snapshot collection while T2 is an 

arbitrary second reference temperature. The Arrhenius prefactor, A, underlying each rate 

was computed in a similar way. For example, in the snapshot shown in Figure 4.5, the Xe 

kcage 2→void hopping rate is 2.51 × 109 s–1 at 300 K, which can be decomposed into a hopping 

activation energy of 8.28 kJ mol–1 and an Arrhenius prefactor of 6.94 × 1010 s–1. This 

activation energy is significantly lower than in the experimental structure (17.3 kJ mol–1) 

because of the favorable window geometry between cage 2 and the void in this snapshot. 

The resulting histograms of 32,000 hopping activation energies underlying each 

sample of 32,000 kC→V and kV→C rates are well described by log-normal distributions. 

Figure 4.6 shows the distribution of Xe kC→V hopping activation energies at 300 K and the 

associated fit to a log-normal distribution computed with the MATLAB maximum 

likelihood estimation function.[48] Similar distributions were fit to each of the kC→V and 

kV→C rate samples collected for each adsorbate at different temperature conditions. The 

log-normal location parameter μ and scale parameter σ for each rate sample with associated 

95% confidence intervals are given in Appendix B. 
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Figure 4.6 Distribution in activation energies for krypton cage to void hops at 300 K 

with associated fit to a log-normal distribution. Quantities in parentheses indicate 95% 

confidence intervals. 

 

With the parameters μ and σ for a given rate sample, the expectation value of the 

overall fully flexible hopping rate kC→V or kV→C was found by integrating the Arrhenius 

rate equation over the respective log-normal probability density function: 

𝑘 = �̅� ∫
1

𝑥√2𝜋𝜎
exp (

−(ln 𝑥 − 𝜇)2

2𝜎2
) exp (

−𝑥

𝑅𝑇
) 𝑑𝑥         (6)

∞

0

 

Here, A̅ is the Arrhenius prefactor averaged over the 32,000 individual Arrhenius prefactors 

calculated for each rate sample. This method neglects the effect of covariance between A 

and the hopping activation energy, which was found to be small (Appendix B). 

Uncertainties in the overall flexible hopping rates were estimated by recomputing kC→V or 

kV→C at the low and high values of μ and σ from the 95% confidence intervals. 

When this fitting procedure is applied to fast moving adsorbates such as Kr, the 

overall flexible hopping rate from eq 6 (kC→V = (6.28 × 109) ± (0.04 × 109) s–1 at 300 K) is 

close to the sample average of 32,000 kC→V rates ((7.33 × 109) ± (0.25 × 109) s–1) . For 

larger adsorbates, flexible hopping rates from eq 6 have much lower numerical uncertainty 

than given by simple sample averages. For example, the activation energies for SF6 cage 

to void hopping at 300 K were fit to a log-normal distribution with μ = 11.89, σ = 0.4742, 

and A = 2.12 × 1011 s–1. Here, μ and σ are normalized to a base unit of 1 J mol–1 such that 

eμ yields the most probable diffusion activation energy in units of J mol–1. The expectation 

value of the kC→V hopping rate for this activation energy distribution given by eq 6 is 6500 

s–1. The population variance σ2
k of the rate distribution calculated from the cumulative 
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distribution function of kC→V is 1.662 × 1012 s–2 (Appendix B).[49] By the central limit 

theorem, the sample averages of samples of 32,000 rates randomly drawn from this rate 

distribution would have a standard deviation of 7200 s–1. Therefore, the means of many 

such rate samples would be deviate from the expectation value by over an order of 

magnitude. Using our maximum likelihood estimates of the 95% confidence intervals on 

μ and σ, we calculate an uncertainty of 6500 ± 500 on the value of the SF6 cage to void 

hopping rate at 300 K. This is a significant improvement over sample averages. 

4.4.3 Flexible Umbrella Sampling TST 

In the implicit ligand sampling method described above, the dynamical problem of 

rate constant calculations in the fully flexible CC3 structure is reduced to a series of static 

rate constant calculations in framework conformations sampled from fully flexible 

dynamics. This method makes the assumption that interactions between adsorbates and the 

CC3 framework are negligible. This precludes a cooperative diffusion mechanism in which 

the CC3 window dynamics are influenced by the presence of adsorbates. This assumption 

may be invalid for adsorbate molecules significantly larger than the size of the CC3 

window in the experimental structure. 

To overcome this limitation of the implicit ligand sampling method, we must 

calculate a free energy profile, F(q), that takes into account adsorbate–framework 

interactions in the fully flexible CC3 structure. This free energy profile could in principle 

be calculated by histogramming the position of an adsorbate over a very long fully flexible 

MD simulation to yield the adsorbate probability density function along the reaction 

coordinate P(q), which is directly proportional to F(q).[50] However, since the adsorbate 

rarely visits the high energy regions near the transition state, this method would be no more 

computationally efficient than computing diffusivities with straightforward MD. 

Umbrella sampling is a technique to improve computational sampling of systems 

with high free energy barriers by means of (typically harmonic) restraint forces.[51] At 

intervals along the reaction coordinate known as “umbrellas”, these spring forces constrain 

the motion of the adsorbate (or other component of interest) to a region near the spring 

center. In each umbrella, an independent molecular dynamics simulation is performed to 

histogram adsorbate positions under the influence of the spring. The unbiased probability 
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distribution is then reproduced from the overlapping histograms from each window, 

yielding the free energy along q. Umbrella sampling has been used, for example, to study 

benzene diffusion in rigid[4] and flexible[18] zeolites. 

We implemented umbrella sampling using the LAMMPS collective variables 

library.[52] To reconstruct the free energy profile F(q), we histogrammed the adsorbate 

position over 24 umbrellas distributed over evenly spaced intervals from q = −6.4 to q = 

6.4 Å. The adsorbate atom was confined to each umbrella by a 5 kcal mol–1 Å–2 harmonic 

restraint acting along q. In each umbrella, the adsorbate atom was placed at the harmonic 

restraint center, velocities were initialized from the Maxwell–Boltzmann distribution, and 

a 10 ps fully flexible NVT equilibration was run. Following equilibration, the positions of 

the adsorbate along q within each umbrella was recorded at 0.5 fs intervals over a 100 ps 

NVT production period. 

Figure 4.7a depicts the 24 histograms of Xe positions used to determine F(q) for 

Xe hopping at 300 K. The free energy profile reconstructed was reconstructed from these 

histograms with the Grossfield et al. Weighted Histogram Analysis Method (WHAM) 

code.[53-54] The free energy profile for Xe hopping at 300 K is shown in Figure 4.7b. At 300 

K, the free energy barrier for Xe cage to void hops (16 kJ mol–1) is lower than in the 

experimental structure (23 kJ mol–1, shown in Figure 4.3b). This is not surprising; it reflects 

the observation that hopping is dominated by framework conformations where the hopping 

barrier is considerably lower than the barrier in the rigid structure. The overall fully flexible 

hopping rates kC→V and kV→C from umbrella sampling were calculated with the 1-

dimensional TST (eq 4). 
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Figure 4.7 (a) Frequency histograms (umbrellas) for a Kr atom confined to 24 windows 

along the reaction coordinate by harmonic potentials at 300 K.  

(b) Reconstructed Kr free energy curve F(q). 

 

TST calculations on polyatomic adsorbates are expensive using the implicit ligand 

sampling method because many rotational orientations must be integrated over at each grid 

voxel. In umbrella sampling, these rotational degrees of freedom are efficiently sampled 

by molecular dynamics. We used umbrella sampling to determine the free energy profile 

F(q) for CO2 diffusion in CC3 (Figure 4.8). In this case, we found that CO2 has a 

qualitatively different diffusion mechanism than spherical adsorbates. The free energy 

maxima are not located at the windows but significantly closer to the midpoint between the 

adjacent cages. A similar energy profile is seen for CO2 diffusion in 8-member ring 

zeolites. The shallow energy minima at the void results in a high void to cage hopping rate 

kV→C. 
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Figure 4.8 Free energy profile F(q) for CO2 diffusion at 300 K by umbrella sampling. 

 

4.5 Results and Discussion 

4.5.1 Infinite Dilution Diffusion Coefficients 

The three 1-dimensional TST methods we used make different simplifying physical 

assumptions that reduce computational costs relative to straightforward MD. The simplest 

method we applied is 1-dimensional TST in the rigid experimental structure. The most 

physically realistic method we used is umbrella sampling of the fully flexible structure, 

since this approach considers all degrees of freedom relevant for diffusing molecules. Table 

4.1 shows Ds from the two fully flexible TST methods at 300 K and the ratio of the flexible 

umbrella sampling TST Ds to Ds in the rigid experimental structure. The smallest spherical 

adsorbates we considered, Kr and CH4, have flexible umbrella sampling (US) and ILS TST 

self-diffusivities only a factor of about 2 higher in the flexible CC3 structure versus the 

rigid CC3 structure at 300 K. In the cases of Xe and Rn, consideration of framework 

flexibility results in over an order of magnitude faster diffusion than in the rigid 

experimental structure. CS2 and SF6 are essentially immobile in the CSFF rigid 

experimental structure but diffuse readily in the fully flexible CC3 structure. These results 

show that considering framework flexibility can be crucial for capturing even the 

qualitative nature of adsorbate diffusion in CC3. 
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Table 4.1 Ds for adsorbates in CC3 at 300 K computed by  

umbrella sampling (US), implicit ligand sampling (ILS),  

and by TST in the rigid experimental structure. 

 
adsorbate 

(CAFF) 

flexible US 
Ds at 300 K 

(cm2/s ) 

flexible ILS 
Ds at 300 K 

(cm2/s ) 

ratio of 
flexible US 
Ds to rigid 

exp. Ds 

Kr 1.81×10-5 1.49×10-5  1.7 

CH4 5.08×10-5 3.20×10-5 2.3 

Xe 2.87×10-6 1.38×10-6 26 

Rn 1.12×10-6 4.03×10-7 170 

CS2 6.02×10-8 1.47×10-8 1.6×106 

SF6 3.49×10-10 2.53×10-11 1016 

 

Straightforward MD is the most rigorous description of diffusion for a given 

classical force field because no mechanistic assumptions are made about adsorbate 

diffusion dynamics. To test the quantitative accuracy of ILS and US TST, we compared 

each method to MD at 300 K (Figure 4.9). For each adsorbate at 300 K shown in Figure 

4.9, the numerical uncertainties in the MD and TST self-diffusivities are on the order of 

the symbol size. 

 

Figure 4.9 Comparison between TST diffusion coefficients from umbrella sampling 

(filled symbols) and implicit ligand sampling (empty symbols) and straightforward MD 

at 300 K. 

 

 

Umbrella sampling and implicit ligand sampling TST overpredict the diffusion 

coefficients of Kr, CH4, and CO2 by factors ranging from 1.2 to 2.4. This systematic 
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overprediction of Ds makes sense because TST hopping rates uncorrected by a Bennett–

Chandler transmission coefficient, κ, should typically be greater than or equal to the true 

value eq 4. The ILS TST measurements of Ds are consistent with transmission coefficients 

(κ) of approximately 0.85 for the overall kC→V and kV→C flexible hopping rates. The higher 

US TST Ds values are consistent with transmission coefficients (κ) of approximately 0.6, 

which are reasonable for flexible simulations where the precise location of the dividing 

surface is expected to vary during the simulation. Overall, both TST methods give 

reasonable approximations of these fast moving adsorbates. 

 

Figure 4.10 (a) Self-diffusion coefficients by umbrella sampling. (b) Ratio of US TST 

Ds to ILS TST Ds. 

 

Figure 10a shows Ds from US TST for each adsorbate as a function of inverse 

temperature. Each set of data in CC3 is well described by an Arrhenius equation. Figure 

4.10b gives the ratio of Ds from US TST to ILS TST. For adsorbates other than CS2 and 

SF6, there is only an insignificant difference between the US TST and ILS TST 

measurements. In each case the US TST measurement is higher, but this could be 
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attributable to a lower Bennett–Chandler correction in the US TST method. For CS2 and 

SF6, umbrella sampling TST gives self-diffusivities significantly higher than ILS TST 

across the temperatures considered. This discrepancy may be due to the ILS TST 

assumption that adsorbates do not influence the motion of the CC3 framework. This 

precludes a concerted mechanism in which CC3 windows expand in the presence of nearby 

adsorbate molecules, lowering the EA for adsorbate hopping. TST based on umbrella 

sampling does not make any assumptions about decoupling between adsorbate and 

framework motions. By comparing the US derived Ds (which accounts for adsorbate–

framework interactions) to the ILS derived Ds (which assumes framework motions are 

independent of adsorbates), we can quantify the importance of these interactions on 

diffusion. For SF6, this factor contributes to up to an order of magnitude difference between 

US TST and ILS TST derived self-diffusivities. Adsorbate–framework interactions could 

be more significant for larger polyatomic adsorbates such as aromatics and in materials 

more flexible than CC3. 

4.5.2 Influence of CC3 Window Size on Diffusion 

Analysis of individual framework conformations from our ILS TST calculations 

(Figure 4.5) suggests that adsorbate hopping rates are a strong function of CC3 window 

size but do not reveal the functional form of the relationship. To investigate this issue, we 

plotted a large number of Xe EA,C→V values calculated with the implicit ligand sampling 

TST method described above as a function of the corresponding CC3 window sizes (Figure 

4.11). 
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Figure 4.11 EA for cage to void Xe hops at 300 K as a function of the CC3 windows 

size. The black curve shows the associated fit to an exponential function. 

 

Figure 11 shows a scatter plot of Xe cage to void hopping activation energies 

(EA,C→V) as a function of the CC3 window size. The relationship between EA and window 

size is well described by the exponential dependence suggested by Haldoupis et al.[6] The 

associated fit to EA = ae–bdw, where dw is the window diameter and a and b are fitted 

parameters, is show in Figure 4.11. This exponential dependence on the CC3 window sizes 

(which are normally distributed) explains the log-normal structure of the activation energy 

distributions collected during our ILS TST calculations (Figure 4.6). As a consistency 

check, we used the normal distribution fit parameters for CC3 window sizes at 300 K 

(Figure 4.2 inset) and the exponential fit parameters for the dependence of Xe EA,C→V 

values on window size (Figure 4.11) to reproduce the log-normal μ and σ parameters shown 

in Figure 4.4. This yields μ = 9.89 and σ = 0.533, which are within the uncertainty of the 

direct log-normal fit to the distribution in Xe EA,C→V observations from implicit ligand 

sampling at 300 K. 

Comparisons of adsorbate size to pore geometry can often predict the qualitative 

nature of diffusion through nanoporous materials. In CC3, the arene carbon window size 

is a reasonable approximation to the pore limiting diameter (PLD) found by Voronoi 

decomposition with Pore Blazer[55] or Zeo++[27, 56]. Adsorbates larger than the PLD 

generally diffuse slowly through the tightest constrictions in rigid nanoporous materials. 

For example, in our TST calculations in the rigid experimental CC3 structure, adsorbates 

with Lennard–Jones σ parameters (such as Rn, where σ = 4.17 Å) significantly larger than 

the experimental window size (3.62 Å) have very slow kC→V hopping rates. 
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In more physically realistic fully flexible CC3 models, a single PLD value 

calculated from the experimental atomic coordinates does not describe the fluctuating 

nature of the window that restrict adsorbate diffusions. A more descriptive metric is the 

“pore limiting envelope”, which is the distribution in pore limiting diameters observed in 

flexible pores similar to the window size distribution. Holden et al. calculated the pore 

limiting envelope in the flexible CC3 structure with Zeo++.[32] From this distribution, they 

calculated the percentage of flexible CC3 configurations with a transient PLD that exceeds 

the size of several light gases. Of the CC3 configurations sampled at 300 K, 58.7% have 

PLDs larger than the van der Waal diameter of Kr, while only 7.3% of configurations have 

PLDs which exceed the size of Xe. 

Using the pore limiting envelope analysis, the mechanism of adsorbate diffusion is 

transient pore connectivity which allows for opportunistic gas percolation. Holden et al. 

found that these transient pore connections are common for adsorbates comparable to the 

size experimental pore limiting diameter (such as Kr) but infrequent for larger adsorbates 

(such as Xe and Rn).[31, 41] The pore limiting envelope provides a simple mechanism for 

the phenomena of “porosity without pores” observed for Xe and Rn diffusion in CC3. 

However, the quantitative predictions of this approach are strongly dependent on what 

techniques are used to calculate PLDs and adsorbate radii. This model is not consistent 

with the treatment of Xe and Rn as soft Lennard-Jones particles rather than hard spheres in 

MD simulations. 

Our results suggest a technique for interpreting our ILS TST calculations which 

explains opportunistic activated hopping of adsorbate molecules in CC3 without presuming 

the binary, “open–shut” mechanism characteristic of the pore limiting envelope construct. 

This analysis quantifies the importance of rare, highly favorable framework configurations 

to adsorbate diffusion. In our implicit ligand sampling TST calculations described above, 

the distributions in hopping activation energies EA,C→V and EA,V→C were fit to log-normal 

distributions as shown in Appendix B. From these distributions, the expectation values of 

the overall fully flexible hopping rates were calculated with eq 6. In eq 6, the interval [0, 

∞] is integrated over to incorporate contributions from the entire distribution of activation 

energies to the overall hopping rate kC→V. If we instead integrate over the finite interval [0, 

EA], we find the partial expected value of the overall hopping rate from activation energies 
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below EA. The quotient of the overall hopping rate kC→V (from eq 6), and this partial 

expectation gives f, the fractional contribution of activation energies below some threshold 

EA to the overall rate: 

𝑓(𝐸𝐴) =
�̅�

𝑘𝐶→𝑉
∫

1

𝑥√2𝜋𝜎
exp (

−(ln(𝑥) − 𝜇)2

2𝜎2
) exp (

−𝑥

𝑅𝑇
) 𝑑𝑥      (7)

𝐸𝐴

0

 

The value of f asymptotically approaches 1 as the EA approaches ∞.  Figure 4.12 shows f 

plotted for the distributions of EA,C→V collected at 300 K by implicit ligand sampling. The 

x-axis of Figure 4.12 is transformed to reflect the standardized scores of ln(EA,C→V) in the 

respective log-normal ILS TST activation energy distribution. 

 

 

Figure 4.12 Fractional contribution f to the overall ILS TST derived hopping rate kC→V 

for adsorbate hopping at 300 K. 

 

Figure 4.12 demonstrates that as adsorbate size increases from Kr to SF6, the left 

tail of the ILS TST activation energy distribution becomes increasingly important to the 

expected value of the overall hopping rate. For example, about 80% of the overall implicit 

ligand sampling TST derived kC→V for Xe and Rn comes from values of EA,C→V more than 

1 standard deviation below the mean (Z score < −1) in the respective ILS TST activation 

energy distribution. A limitation of this analysis is that it neglects the influence of 

adsorbate–framework interactions on diffusion. We have shown (Figure 4.10) that these 

interactions may have a considerable influence on the TST derived diffusion coefficients 

in CC3 for larger adsorbates such as CS2 and SF6. Nonetheless, this analysis is a useful to 

way qualitatively understand the connection between adsorbate size and hopping rate. 
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4.5.3 Comparison to Published Results 

Table 4.2 shows a comparison between our US TST derived values of Ds and MD 

derived Ds values from Holden[41] and Evans et al.[28] This work and Holden et al. measured 

these diffusion coefficients at infinite dilution using CSFF and CAFF parameters. Evans et 

al. measured the diffusion coefficients at 10 bar adsorbate loading and 298 K using 

universal force field (UFF) parameters to describe all CC3 degrees of freedom.[36] 

 

Table 4.2 Comparison to room temperature diffusion  

coefficients from Holden et al.[41] and Evans et al.[28] 

 

Gas Temp. (K) 
Ds   

(cm2/s ) 
Reference 

CH4 UA 300 5.08×10-5 this work 

CH4 UA 298 2.1×10-6 Evans et al. 

CH4 300 9.6×10-5 Holden et al. 

CO2 300 2.49×10-5 this work 

CO2 298 3.45×10-6 Evans et al. 

CO2 298 2.6×10-5 Holden et al. 

Kr 300 1.81×10-5 this work 

Kr 298 2.4×10-5 Holden et al. 

Xe 300 2.87×10-6 this work 

Xe 298 1.8×10-6 Holden et al. 

 

 

Our data is in reasonable agreement with Holden et al, despite differences in the 

implementation of the adsorbate – framework interaction potentials for CO2 and CH4. Our 

results do not agree with the Evans et al. MD results. This discrepancy arises from Evan’s 

use of the Universal Force Field to model framework flexibility in CC3, which causes a 

significant difference in the CC3 window size distribution.[28] Given the exponential 

dependence of CC3 diffusion EA on window size (Figure 4.11), relatively small differences 

in window size distributions can cause large differences in measured diffusivities. 

4.5.4 Computational Cost of Methods 

CSFF was implemented in the LAMMPS GPU accelerated molecular dynamics 

package, which accelerates molecular dynamics by a factor of 3–4 relative to CPU only 

implementations for systems the size of CC3.[57-59] Each of our umbrella sampling 

simulations for a particular adsorbate and temperature condition consisted of 110 ps of 

dynamics in each of 24 independent umbrellas. Therefore, less than 3 ns of molecular 
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dynamics was needed to measure the diffusivity of SF6 at 300 K in this work with US TST 

(Ds = 3.5 × 10–10 cm2 s–1). In contrast, about 1 μs would need to be run to measure 

diffusivities on this order of magnitude with straightforward MD. The computational cost 

of implicit ligand sampling is even lower than umbrella sampling, but we have shown that 

this method may be inaccurate for larger, slow moving species such as CS2 and SF6 where 

adsorbate–framework interactions could have a significant effect on diffusion. The 

computational advantages of US TST will become even more marked for slower diffusing 

species. 

4.6 Conclusions 

In this work, we have detailed two transition state theory (TST) methods for 

measuring infinite dilution diffusion in flexible nanoporous materials at time scales 

inaccessible to straightforward molecular dynamics (MD). These methods were applied to 

measure the diffusion of light gases in cage crystal 3 (CC3),[23] a promising porous organic 

cage materials. Simulations[28, 41] and experiments[26] have confirmed that framework 

flexibility strongly influences adsorbate transport in CC3. We have described the flexibility 

of CC3 using a variant of the cage-specific force field (CSFF)[37] that does not include 

intramolecular nonbonded interactions. 

When using these TST methods, diffusion in CC3 is modeled as series of 

uncorrelated hops between 4-coordinated cavity sites (denoted C) inside cage molecules 

and 2-coordinate void sites (denoted V) between adjacent cages. To calculate the hopping 

rates kC→V and kV→C between these microstates, we applied a variant of the implicit ligand 

sampling (ILS) method first used to study CH4 diffusion in zeolites[46] and ZIFs[60]. In ILS 

TST, hopping rates are calculated in an ensemble of rigid framework snapshots captured 

from a fully flexible MD trajectory of the empty CC3 structure. We have introduced a 

maximum likelihood estimation approach to calculate the overall flexible rates kC→V and 

kV→C from ILS TST that significantly reduces numerical uncertainty relative to simple 

ensemble averaging. The ILS method assumes the influence of adsorbate–framework 

interactions on diffusion in CC3 is negligible. An advantage of this method is that in 

principle it can be used for porous materials for which no reliable force field exists by 

obtaining snapshots from ab initio MD.[6] 
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The second TST method we applied is umbrella sampling (US). In US TST, the 

free energy profile is reconstructed from a series of biased MD simulations at intervals 

along the reaction coordinate known as “umbrellas”. The umbrella sampling TST method 

fully accounts for the influence of cooperative interactions between adsorbates and the CC3 

framework on diffusion. Umbrella sampling is readily extendable to polyatomic adsorbates 

such as CO2, which was found to have a qualitatively different free energy profile than 

spherical adsorbates in CC3. 

The TST methods described here are orders of magnitude more computationally 

efficient than straightforward MD for simulating the diffusion of large, slow-moving 

adsorbates in CC3 and other nanoporous materials. For simulations of larger adsorbates 

such as aromatic compounds that span the window of CC3, it will likely be important to 

implement the Bennett–Chandler dynamic correction to account for adsorbate recrossing 

at the transition state.[61] With the dynamic correction factor, we anticipate that this method 

could be readily applied to more complex adsorbates known to adsorb in CC3[26-27] and 

TST simulations of diffusion at finite loadings. 
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5  

DIFFUSION OF ARMOATICS IN CAGE CRYSTAL 3 

5.1 Introduction 

Separation of hydrocarbons of equal or similar molecular weight is an 

intrinsically difficult problem because of the comparable physiochemical properties, such 

as boiling points, of these compounds.[1] Separation of paraffins from olefins and xylene 

isomers from each other was first accomplished at industrial scales by energy-intensive 

cryogenic distillation.[2] Alternative processes based on adsorption in zeolites such as the 

UOP OLEX® and PAREX® simulated moving bed processes have since supplanted 

cryogenic distillation to a large degree.[2-4]  These processes could potentially be 

improved by identification of novel adsorbents with enhanced selectivity for hydrocarbon 

components over currently used zeolites. For example, Gee et al. performed simulations 

and experiments to identify metal-organic frameworks that could be more selective for 

para-xylene than the barium exchanged zeolites currently used in the PAREX® 

process.[4]  

Porous organic cages have shown similar promise in the separation of aromatic 

hydrocarbons in liquid phase breakthrough experiments.[5] Mitra et al. attributed the 

adsorptive selectivity of CC3 for 4-ethyltoluene over mesitylene to size exclusion of 

mesitylene from CC3 cages.[5] Porous organic cages have also shown experimental 

promise in the separation of rare gases[6], chiral molecules[6], and SF6 from N2
[7]. Porous 

organic cages, as discrete molecules, have a practical advantage over extended 

nanoporous frameworks such as MOF because they can be dissolved in solution. This 

strategy was used to solution cast porous organic cages into composite membranes [8] and 

chromatographic stationary phases.[9] 

Adsorbate diffusivities are the key predictor of the usefulness of a given adsorbent 

in separation processes. In the case of membrane based kinetic separations, diffusion 

coefficients predict which component will preferentially elute. In equilibrium adsorption, 

adsorbate diffusion coefficients are correlated with the amount of time necessary to 

complete a single adsorption cycle. In this chapter, we demonstrate the feasibility of 



  

74 

using the TST methods we described in Chapter 4[10] to measure characterize the 

diffusion of aromatic molecules in flexible nanoporous materials. These methods were 

applied to C8 and C9 aromatic diffusion in porous organic cage crystals CC3. We 

anticipate that these results can be extended to other aromatic molecules in flexible 

porous organic cages and metal-organic frameworks. 

5.2 Methods and Computational Details 

5.2.1 Cage Crystal Structures 

The rhomohedral primitive unit cell of the homochiral CC3-R structure (CSD: 

PUDXES) was used throughout this work.[11] Each rhomohedral primitive cell (a = b = c = 

17.536 Å, α = ß = γ = 60°) contains two CC3 molecules compared to eight CC3 molecules 

in the F4132 symmetry cubic unit cell. All window sizes reported here were calculated by 

the arene carbon method described by Chen et al.[6] for consistency with window sizes 

reported in Chapter 4. 

5.2.2 Ab-initio Molecular Dynamics 

Ab-initio molecular dynamics simulations (AIMD) were performed in the cp2k 

Born-Oppenheimer MD package using the BLYP exchange correlation functional with the 

Grimme D3 dispersion correction.[12] The energy cutoff for calculation of the electronic 

density was set to 65 Ry. During AIMD, the lattice constants were kept at the 

experimentally derived values. A Nose-Hoover thermostat with a time constant of t = 100 

fs was used to maintain temperature at 300 K. Window size distributions were derived from 

5 independent 3 ps MD production periods following 1 ps NVT equilibrations.  

5.2.3 Force Fields 

Cage molecule flexibility was described using the all-atom Optimized Potentials 

for Liquid Simulations (OPLS) force field of Jorgenson et al.[13] OPLS uses harmonic bond 

potentials, harmonic angle potentials, and class2 trigonometric torsional potentials to 

describe bonded interactions. OPLS intramolecular and intermolecular Lennard-Jones 

interactions were truncated at 10 Å. Atomic point charges were derived from Holden et al. 

Cage Specific Force Field (CSFF).[14] Coulombic interactions were computed pairwise to 
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10 Å, and a long-range particle–particle mesh Ewald correction was used thereafter. 

Intramolecular nonbonded interactions between bonded atoms and second nearest 

neighbors were ignored, while 1-4 nonbonded interactions were scaled by a factor of 0.5. 

A full description of OPLS-AA functional forms and parameters is published at 

http://dasher.wustl.edu/ffe/distribution/params/oplsaa.prm. 

Aromatic hydrocarbons (benzene, toluene, xylene isomers, and mesitylene) were 

described using rigid TraPPE force field united atom models with bond lengths of 1.4 Å 

and bond angles of 120° between each carbon within aromatic rings.[15] Each CH united 

atom in these molecules is described by a 12-6 Lennard Jones potential with ε/kB = 50.5 K 

and σ = 3.695 Å. All methyl group united atoms (ε/kB = 98.0 K and σ = 3.750 Å) are 

separated from aromatic C atoms (ε/kB = 21.0 K and σ = 3.880 Å) by a bond length of 1.54 

Å. All atomic point charges are equal to 0, so there were no electrostatic interactions 

between adsorbates or between adsorbates and framework atoms. Intermolecular 

interactions between adsorbates and between adsorbates and cage framework atoms were 

described by combining OPLS-AA and TraPPE Lennard-Jones parameters with the 

Lorentz—Berthelot mixing rules. 

5.2.4 Classical MD Simulations 

Classical molecular dynamics simulations were performed in DL_POLY4[16] to 

verify that the OPLS-AA force field as correctly implemented for production runs using 

LAMMPS[17]. Close agreement between the window size distributions at the experimental 

CC3 lattice constants demonstrated that these codes give equivalent cage framework 

dynamics.  

In NVT umbrella sampling simulations, reaction coordinates were established 

between the centers of mass of adjacent cage molecules using the LAMMPS collective 

variable library as described in Chapter 4.[18]  To reconstruct the free energy profile F(q), 

we histogrammed the adsorbate position over 24 umbrellas distributed over evenly spaced 

intervals from q = −6.4 to q = 6.4 Å. The adsorbate atom was confined to each umbrella by 

a 5 kcal mol–1 Å–2 harmonic restraint acting along q. Prior to initialization of dynamics, a 

damped dynamics algorithm was used to energy minimize the adsorbate and cage degrees 

of freedom. During minimization, adsorbate geometries were kept constant by the use of 
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very stiff (50,000 kcal/mol Å2) harmonic bond, angle, and torsional potentials. After 

minimization, these harmonic restraints were removed and adsorbates were kept rigid using 

the LAMMPS fix/rigid/nvt/small command. All NVT umbrella sampling simulations were 

equilibrated for 10 ps followed by a 100 ps production period at 300 K.  

During umbrella sampling, the orientation of adsorbate molecules with respect to 

the reaction coordinate was tracked using the “spinAngle” and “tilt” collective variables 

defined by the LAMMPS colvar library.[18-19] These collective variables are based on the 

optimal rotation matrix[19] that best superimposes current adsorbate coordinates onto the 

starting adsorbate coordinates. The “spinAngle” collective variable calculates the 

projection of the optimal rotation matrix orthogonal to reaction coordinate. The “tilt” 

collective variable calculates the projection of the optimal rotation matrix coincident to the 

reaction coordinate. The “spinAngle” variable is defind from -180:180° while the “tilt” 

variable is reported in terms of the cosine of the angle (ranging from -1:1)  rather than the 

angle itself.[18]  

The Bennett-Chandler transmission coefficients[20] were calculated using the 

procedure described by Anderson.[21] Briefly, initial configurations are collected by 

molecular dynamics by confining the adsorbate to the transition state by a very stiff 

harmonic potential (50,000 kcal/mol Å2). NVT molecular dynamics is run for 0.5 ns to 

yield 1,000 adsorbate configurations at the transition state at 500 fs intervals. For each 

transition state configuration, forward and reverse trajectories (with respect the reaction 

coordinate) are initialized b removing the spring restraint. Forward trajectories are 

terminated upon either recrossing the dividing surface or by successfully thermalizing in 

the product state. Reverse trajectories are terminated upon either successfully returning to 

the reactant state or thermalizing in the product state. The transmission coefficient is the 

fraction of trajectories out of the 1,000 initially that meet the successful forward and reverse 

termination conditions. 
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5.3 Results  

5.3.1 Force Field Validation 

The simulations we described in Chapter 4 used the Cage Specific Force Field 

(CSFF), a bespoke potential parameterized specifically for CC3 by Holden et al.[14] Holden 

is a collaborator and co-author on this work in progress. Holden and coworkers have found 

that OPLS is comparably accurate to CSFF, but more broadly applicable to cage materials 

outside the CSFF training set. To validate our forcefield selection, we ran ab-initio 

molecular dynamics on the 336 atom CC3 rhombohedral primitive cell and compared these 

dynamics to classical MD using both the CSFF (Chapter 4) and OPLS force fields. Figure 

5.1 shows the window size distributions at the experimental lattice constants at T = 300 K 

using these different potentials: 

 

Figure 5.1 Window size distributions for CC3 at 300 K at the experimentally derived 

lattice constants 

 

Figure 5.1 shows the window size distribution for CSFF is centered closer to the 

experimental window size of 3.62 Å. However, OPLS (either in LAMMPS or DL_POLY) 

is in better agreement with the results from AIMD. For this reason, we applied OPLS 

throughout this work. 
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5.3.2 Free Energy Profile for Benzene in CC3 

Figure 5.2 shows F(q) derived from umbrella sampling and the associated umbrella 

histograms for benzene in CC3 at 300 K.  

 

Figure 5.2 Umbrella sampling histograms and the reconstructed free energy profile 

F(q) for united atom benzene in CC3 at 300 K 

 

Benzene has a free energy profile similar to large, slow moving spherical adsorbates 

such as Xe in CC3 (Chapter 4). Mechanistically, this means that benzene molecules diffuse 

by hopping from cage cavities to the voids between adjacent cage molecules. To evaluate 

the Bennett-Chandler dynamic correction for benzene, we calculated the transmission 

probability over 1000 independent trajectories initiated from the dividing surface. A total 

of 571 trajectories successfully thermalized in the product state without recrossing the 

dividing surface, yielding a correction factor of 0.571. Using this correction, we used 1-

dimensional TST (eq 4.4) to find kcage→void = 2.37 × 104 s-1 and kvoid→cage = 1.49 × 106 s-1. 
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In Chapter 4, we derived a simple analytical model (eq 4.2) to relate these hopping 

rates to infinite dilution adsorbate diffusivities. A key assumption made when using this 

equation is that successive hops from cage cavities are uncorrelated. For this to be true, 

adsorbates must be able to reorient within cage cavities on timescale that are fast relative 

to the characteristic frequency of activated hops. To test whether this is true for benzene, 

we tracked the “tilt” and “spin” orientations of benzene relative to the reaction coordinate 

over each 100 ps umbrella sampling simulation. Figure 5.3 shows a box and whisker plot 

representation of the tilt collective variable over each of the 24 umbrella sampling 

simulations: 

 

Figure 5.3 Tilt colvar for benzene in CC3. Observations between the 25th and 75th are 

represented by blue bounding boxes. Outlier observations are shown in red. 

 

Figure 5.3 shows that benzene readily adopts all tilt angles over 100 ps of dynamics. 

The “spin” angle demonstrates similar free rotation (data not shown). Analysis of recorded 

molecular dynamics trajectories further confirms that benzene easily reorients within cage 

cavities. These rotations occur on timescales < 100 ps, which is very fast relative to the 

average time between hops from cages (~ 107 ps). Consequently, we can use eq 4.2 to 

derive the self-diffusivity of benzene from the cage to void and void to cage hopping rates. 

This yields Ds = 5.2 × 10-11 cm2/s for benzene at 300 K. This is about 1 order of magnitude 

lower than the diffusion coefficient for SF6 in CC3 at 300 K derived in Chapter 4.  
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5.3.3 Free Energy Profile for para-Xylene in CC3 

Figure 5.4 shows F(q) derived from umbrella sampling and the associated umbrella 

histograms for para-xylene in CC3 at 300 K.  

 

Figure 5.4 Umbrella sampling histograms and the reconstructed free energy profile 

F(q) for united atom para-xylene in CC3 at 300K 

 

Para-xylene has a qualitatively different free energy profile to benzene and 

spherical adsorbates in CC3. Para-xylene is at an energetic minimum within the void 

spanning adjacent cage molecules. This agrees with in-situ crystallographic data showing 

that para-xylene prefers void cavities to cage cavities.[5] The rate equation derived in 

Chapter 4 is inapplicable to para-xylene. Instead of diffusing between cage cavity and void 

cavity microstates, para-xylene hops between the voids separating adjacent cage 

molecules. This implies that a linear reaction coordinate may not fully capture the diffusion 

of para-xylene because the adsorbate must negotiate a “turn” within each cage molecule. 
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Figure 5.5 Spin colvar for para-xylene in CC3 

 

Figure 5.5 shows that the spin angle of para-xylene is greatly restricted when in the 

void cavity. Para-xylene is able to freely rotate near the cage windows at q = ± 3.5  

 

Figure 5.6 Tilt colvar for para-xylene in CC3 

 

Figure 5.6 shows that the tilt angle of para-xylene is greatly restricted within CC3. 

This means that the major axis of para-xylene prefers to orient parallel to the reaction 

coordinate.  
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5.3.4 Free Energy Profile for meta-Xylene in CC3 

Figure 5.7 shows F(q) derived from umbrella sampling and the associated umbrella 

histograms for meta-xylene in CC3 at 300 K.  

 

Figure 5.7 Umbrella sampling histograms and the reconstructed free energy profile 

F(q) for united atom meta-xylene in CC3R at 300K 

 

Meta-xylene has a qualitatively different free energy profile to both benzene and 

para-xylene in CC3. Meta-xylene exhibits a strong preference for localization within cage 

cavities rather than voids between cages. This agrees with in-situ crystallographic data 

showing that meta-xylene molecules are found in CC3 cages .[5] The rate equation derived 

in Chapter 4 is inapplicable to meta-xylene. Instead of diffusing between cage cavity and 

void cavity microstates, meta-xylene hops directly between adjacent cage molecules over 

a diffusive energy barrier spanning the void. Meta-xylene has a transmission coefficient of 

0.193, much lower than found for benzene in CC3. Trajectories of up to 100 picoseconds 

from the dividing surface are necessary to reach thermalization. 
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Figure 5.8 Spin colvar for meta-xylene in CC3  

 

Figure 5.8 shows that meta-xylene is more restricted in its spin angle than para-

xylene. The tilt collective variable is similar to that shown for para-xylene in Figure 5.6. 

5.4 Conclusions and Future Work 

We have shown that the methods developed in Chapter 4 can be applied to the 

diffusion of rigid aromatic molecules in CC3. Initial results show that while benzene 

diffuses by a similar mechanism to spherical adsorbates in CC3, para-xylene and meta-

xylene do not. This necessitates the development of new models to connect hopping rates 

to diffusivities for these molecules that may incorporate reorientational barriers to 

diffusion. We plan to derive these models are verify them by performing standard 

molecular dynamics at high temperatures. Furthermore, we plan to apply this class of 

methods to study the diffusion of ortho-xylene, mesitylene, and ethyl-toluene diffusion in 

CC3. These methods may be further applicable to other diamondoid porous organic cages 

such as cage crystal 3 and co-crystals of cage crystal 1 and cage crystal 3. 
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6  

OUTLOOK 

6.1 Impact and Related Work 

We have created a database of over 5,000 MOF structures that are immediately 

useful for atomistic simulations.[1] We demonstrated the utility of the CoRE MOF database 

by evaluating each structure for its utility in the storage methane for adsorbed natural gas 

(ANG). During the preparation of the CoRE MOF manuscript, these results became of 

interest to other researchers within the Department of Energy Nanoporous Materials 

Genome Center, which funded our work. Simon et al. used our experimentally derived 

MOF structures as a basis of comparison with over 100,000 hypothetical zeolites, MOFs, 

zeolitic imidazolate frameworks (ZIFs), and porous polymer networks (PPNs) for 

performance in methane delivery from 65 to 5.8 bar.[2] These results are shown in Figure 

6.1: 

 

 

Figure 6.1 Distribution of the deliverable capacity for different materials; the vertical 

line marks the deliverable capacity of an empty tank (calculated from the density of 

bulk CH4 at 65 bar minus that at 5.8 bar using the Peng–Robinson equation of state). 

  

These high-throughput GCMC results demonstrate that experimentally derived MOF 

structures (from the CoRE MOF database) are predicted to be among the best performing 

nanoporous materials for adsorbed natural gas storage. The best performing materials in 

both atomistic simulations and experiments converge on a maximum methane deliverable 
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capacity of approximately 200 v STP/v.[2]  This suggests that top experimentally tested 

adsorbents may already be approaching thermodynamic and materials performance 

limits.[2] 

The CoRE MOF database has been cited over 25 times since its publication in 2014. 

For example, the CoRE MOF database has been used to study the influence of higher 

hydrocarbon co-adsorption on natural gas storage.[3] Ethane and propane were shown to 

accumulate over successive cycles of adsorption and desorption, which could decrease tank 

capacity over time. Altintas and Keskin used the CoRE MOF structures to screen for 

methane-ethane and ethane-ethene separations and identified several MOF as highly 

selective adsorbents for these separations.[4] The CoRE MOFs have also been used to 

identify materials selective for xylene separations[5] and xenon over krypton[6]. Outside of 

adsorption applications, the CoRE MOF structures have been geometrically analyzed for 

potential electrical conduction through molecular infiltration.[7] Recently, Evans et al. 

identified 481 potential organic porous molecular crystals using similar methods to those 

used to create the CoRE MOF database.[8] 

During our development of the transition state theory methods to measure diffusion 

in flexible nanoporous materials described in Chapter 4, related methods were applied by 

members of the Sholl group to other systems. Verploegh et al. used dynamically corrected 

TST to measure the loading dependent diffusion of C1-C4 alkanes in the flexible ZIF-8.[9] 

Simulation results agreed well with experimentally derived diffusion coefficients from the 

literature. Boulfelfel et al. used path sampling methods to simulate the diffusion of linear 

alkanes in flexible LTA zeolite.[10] Ongoing work has shown that the results from these 

path sampling methods agree well with umbrella sampling TST.   

Recently, experimental evidence has demonstrated that sulfur hexafluoride readily 

diffuses through CC3 in room temperature gas phase breakthrough experiments.[11] Our 

umbrella sampling TST simulations described in Chapter 4 predicted that SF6 has a self-

diffusivity of DS = 3.5 × 10-10 cm2 s-1 at 300 K in CC3.[12] In contrast, Holden predicted 

that SF6 is completely immobile in CC3 by analyzing direct molecular dynamics 

simulations. This illustrates the potential usefulness of our methods for simulating slow 

adsorbate diffusion.  
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6.2 Suggestions for Future Work 

6.2.1 Framework Flexibility and Adsorption 

MOF framework flexibility can be broadly divided into two classes of phenomena. 

Most often in the literature, “flexibility” refers to large reversible changes in porosity in 

response to adsorption, desorption, or temperature changes which is often associated with 

steps and hysteresis in adsorption isotherms.[13]  Materials exhibiting such phenomenon are 

known as “soft porous crystals”.[14]  A common example is the transition of MIL-53 from 

a closed-pore structure to a highly porous open structure with increasing temperature.[15]  

These phase transitions may be undesirable in applications when porosity is lost, but there 

are examples where large phase transitions are mechanistically essential to effect a 

separation. A phase transition in DynaMOF-100 has been shown to result in selective 

adsorption of styrene from ethyl benzene.[16]  Although there are example in the literature 

of predictions of phase transitions in MOFs with computational tools such as first principles 

molecular dynamics[17], such approaches are infeasible to perform for thousands of 

materials in high-throughput screening. 

In screening studies, phase transitions are neglected unless the starting database of 

materials contains an experimentally derived crystal structure for each unique phase. In 

some instances, this may result in overlooking promising materials with phase transitions. 

In Chapter 3, we screened several thousand MOFs for use in adsorptive storage of natural 

gas.[1] The most promising MOF we identified was UTSA-76a, which has a predicted 

deliverable CH4 capacity from 65 to 5.8 bar of 189 cm3 STP cm-3. This prediction closely 

matched experiments for UTSA-76a, which is not known to undergo phase transitions.[18]  

Recently, a flexible MOF exhibiting a phase transition at 15 bar was reported to have a 

higher methane storage capacity of 197 cm3 STP cm-3.[19]  This high pressure phase was 

not in our starting database of materials, which illustrates one limitation of current 

computational screening approaches. 

The second class of flexibility phenomena in MOFs is associated with local 

framework vibrations such as rotation of organic ligands, oscillation of coordination bonds, 

and variation in pore aperture dimensions. This class of framework flexibility was 

considered in Chapters 4 and 5 in the context of adsorbate diffusion in flexible porous 
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organic cages.[12] In simulations of adsorption, the influence of local framework flexibility 

is not well understood. In high throughput simulations of adsorption, the rigid framework 

assumption may be justified on the basis of studies which have shown good agreement 

between simulated isotherms and experiments.[20-21] However, there are examples in the 

zeolite literature where local framework flexibility has a considerable influence on 

adsorption. Simulations of adsorption in two different experimentally resolved 

orthosilicalite structures with slightly different lattice constants showed significantly 

different Henry’s constants for benzene.[22]  These results suggest that small variations in 

crystal structures due to framework flexibility may have a substantial influence on 

thermodynamic observables. Vlugt et al. used a hybrid Monte Carlo approach to directly 

observe this phenomenon in simulations of isobutane and heptane adsorption in MFI 

silicalite.[23]  

There is a critical need for broader understanding of the influence of MOF 

framework flexibility on properties of adsorbed phases. In particular, it is important to 

understand how the standard practice of assuming framework rigidity may influence results 

in high-throughput simulations of adsorption in MOFs. Here, I outline three research 

directions for improving our understanding of MOF flexibility with special emphasis on 

development and application of methods for use on large numbers of materials. 

6.2.2 Integration of the CoRE MOF Database with Experimental Adsorption Data 

The National Institute of Standards and Technology (NIST) maintains a database 

of experimental adsorption isotherms for several hundred MOFs.[24]  The database serves 

as a reference for assessing the accuracy of experiments and simulations and could help 

avoid redundant experiments on known materials. Each isotherm stored in the NIST 

database is associated with the name of the adsorbent material, but not the crystallographic 

structural information for these MOFs. Linking the NIST experimental adsorption database 

to the CoRE MOF structural database would be broadly useful to the MOF community. 

For example, the CoRE MOF database contains over 40 CuBTC structures and 

many duplicate structures for other common MOFs. These structures were originally 

deposited in the Cambridge Structural Database (CSD)[25] by different research groups 

using different synthesis, activation, and x-ray diffraction procedures. Researchers working 
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in collaboration with NIST have observed that minor geometric differences between these 

CuBTC structures can have a significant influence on simulations of noble gas 

adsorption.[26]  By comparing experimental data from NIST to simulations of adsorption in 

duplicate CoRE MOF structures, it may be possible to determine which structure is best 

for use in high-throughput screening. The reverse is also be true – where there is conflicting 

experimental data in the NIST database, GCMC simulations in CoRE MOF structures 

could provide insight on which experiments are most reliable. 

Linking information between the NIST database and the CoRE MOFs could be 

accomplished by cross referencing the digital object identifiers used in both databases. This 

would have the additional benefit of associating CoRE MOF structures with the common 

names MOFs are called in the literature. Most CoRE MOF structures are currently 

categorized by a meaningless CSD reference code – an example is “VELVOY” for ZIF-8. 

This is problematic because there is no obvious way to collate structures that represent 

different phases of the same material. Associating each CoRE MOF structure with its 

common name such as “MIL-53” would address this problem. 

6.2.3 Benchmark DFT Methods for Modeling MOF Framework Dynamics 

The lack of force fields that have been tailored to represent the flexibility of specific 

MOFs is a significant impediment to understanding of how framework dynamics influence 

adsorbed phases. Parameterization of custom force fields with DFT calculations for new 

materials is a labor intensive and computationally expensive process. Software has been 

written to assist in the process, but users are still required to manually cleave discrete 

clusters from periodic MOF structures.[27]  Transferrable force fields have been proposed 

for MOFs, but there is not clear evidence that these force fields are applicable outside of 

their set of training materials.[28]   

Ab-initio molecular dynamics (AIMD) is an attractive method for studying MOF 

framework flexibility without the need to parameterize a classical force field. In AIMD 

simulations, forces between atoms are computed between each molecular dynamics step 

by electronic structure calculations (typically DFT). Unfortunately, a significant 

disadvantage of AIMD is that computing just a few picoseconds of dynamics for a MOF 

can take over 24 hours on a typical computer cluster. This severely restricts the range of 
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physical processes that can be feasibly investigated with AIMD. However, local framework 

flexibility associated with thermal vibration in MOF occurs on these timescales. 

Experimental and theoretical evidence shows that MOF linker rotations can have a period 

of less than 10 ps.[29]  Simulations of a few picoseconds are long enough to determine the 

temporal distribution of pore aperture diameters in ZIF-8, which is a key parameter for 

evaluating the influence of flexibility on adsorbate diffusion.[30]    

Researchers using density functional theory for metal-organic frameworks must 

choose between a wide array of available exchange-correlation functionals, 

pseudopotential basis sets, and possible dispersion corrections. Nazarian et al. recently 

minimized the atomic positions and lattice constants of 12 chemically diverse MOF 

structures with 6 different DFT functionals.[31]  All functionals used did a reasonably good 

job of predicting key geometric features of high-quality experimentally derived crystal 

structures. However, there is evidence that AIMD calculations using DFT may not be 

similarly insensitive to choice of functional. The M06-2X and B3LYP functionals give 

dramatically different energy barriers for rotation of dicarboxylate ligands.[32]  Constant 

pressure AIMD simulations of breathing behavior in MIL-53 (Sc) show that equilibrium 

cell parameters are sensitive to the choice of dispersion correction.[33]   

A benchmark of DFT-based AIMD methods on several well-known MOF 

structures could provide valuable information on best practices for application of AIMD to 

large numbers of materials. It is important to understand whether MOF dynamics are highly 

sensitive to the choice of exchange-correlation functionals and dispersion corrections. To 

start, a comparison could be made between probability distributions for key structural 

parameters such as cell volumes, cavity dimensions, and pore aperture diameters over short 

AIMD trajectories using different pseudopotential basis sets and functionals. 

6.2.4 Evaluate the Influence of MOF Framework Flexibility on High Loading 

Adsorption 

Equilibrium based industrial separations typically operate at high pressures, leading 

to conditions of adsorbate saturation within nanopores. In these liquid-like adsorbed 

phases, the entropic thermodynamics of adsorbate packing become more important to 

overall adsorption selectivities than binding energies at the most favorable adsorption 
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sites.[34]  Recently, Gee et al. conducted GCMC simulations of C8 aromatic adsorption in 

both a rigid model of MIL-47(V) and an ensemble of snapshots from a molecular dynamics 

trajectory of the flexible MIL-47(V) framework.[35]  Adsorption selectivities for o-xylene 

over m-xylene and ethylbenzene in the flexible model of MIL-47(V) matched experimental 

observations much better than simulations in the rigid crystal structure. This may be 

attributable to lower adsorbate packing efficiency in the flexible material, which has been 

shown to influence the high-loading adsorption of styrene.[36]  

Efforts are underway to apply the method of Gee et al. using AIMD to generate the 

ensemble of framework snapshots. The aim of this work is to assess whether or not the 

changes in selectivity observed in MIL-47(V) is a unique feature of this material / adsorbate 

combination or a more general property of high loading adsorption in flexible MOFs. 

However, the validity of the Gee et al. methodology should be investigated before general 

conclusions are drawn. A key assumption of this method is decoupling between framework 

dynamics the adsorbed phase. Each flexible framework configuration is generated from a 

molecular dynamics trajectory of the empty material, while adsorption properties are 

calculated by GCMC at conditions near pore saturation. To investigate this, it would be 

interesting to compare distributions in structural parameters such as linker torsion angles 

in AIMD trajectories in a structure pre-loaded with adsorbates versus an empty framework.  
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APPENDIX A 

1. Topology Analysis Using TOPOS 

In order to assign the underlying nets using TOPOS[1], we identified the bonds for 

all structures using a general cut-off distance specified by the TOPOS software, where 

atoms below that cut-off were considered bonded. Following the procedure, TOPOS was 

used to determine ring groups present inside the structure and to separate those ring groups 

from one another. For example, in IRMOF-1, the organic linker’s aromatic ring would be 

one ring group and the metal corner (including the oxygen atoms from the linker) would 

be the second ring group. These ring groups are then transformed into a single pseudo-

atom placed at the center of the ring. The metal corners from IRMOF-1 would be simplified 

to pseudo-atom MC (as in Metal Corner) and the organic “rings” simplified down to OL 

(as in Organic Linker). Connectivity between the simplified groups remains following the 

procedure, so that the pseudo-atom MC is connected to three other OL’s and each OL is 

connected to two MC pseudo-atoms. The edges do not play an important role, so we have 

removed them for net simplification purposes and for determining topology. Edges were 

removed by simply removing all pseudo-atoms with connectivity of 2 or less. For example, 

the MC corner in IRMOF-1 has a connectivity of 3 (or 6 with periodic boundary 

conditions), and each OL has a connectivity of 2; thus this simplification method removes 

the OL pseudo-atoms. Then by taking the locations of the remaining pseudo-atoms, 

TOPOS can assign a matching topology by comparing that structure to structures within 

various databases.  

In determining the topology using the method described above, the connectivity of 

atoms plays an important role. Ideally, a standard method would be able to correctly assign 

bonds to correct pairs of atoms; however, this was not the case for all structures in the 

CoRE MOF database. Given the large number of structures and the need for an automated 

procedure for identifying the topologies, the frameworks could not be checked on a 

structure-by-structure basis to ensure correct bonding of the atoms. Therefore, the 

structures that failed during the analysis in TOPOS or structures considered to have a “new 

topology” by TOPOS were discarded from the analysis, leaving a resulting set of ~2,000 

structures. A random sampling of ~10 failed and “new topology” structures were checked 
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for consistency, and we found incorrectly assigned bonding to be the source of failure of 

the incorrect (i.e., new topology) topological classifications. 

2. Synthesis, Activation, and Nitrogen Isotherm Measurements of MIL-53(Al) 

We synthesized MIL-53(Al) to test our prediction of a high methane uptake 

capacity of 267 volSTP vol-1 at 298 K and 65 bar. To obtain the highest methane uptake, 

special care was taken to avoid trapping of ligands and solvents in the pores. The synthesis 

and activation procedures are described below. This procedure yielded a sample with a 

surface area and pore volume higher than any reported in the literature for MIL-53(Al)[2], 

with SBET = 1,530 m2/g and Vpore = 0.56 cc/g. 

General experimental procedures 

Aluminum nitrate nonahydrate (Aldrich, 98%), terephthalic acid (Aldrich, 98%), 

N,N-dimethylformamide (DMF) (Macron, 99.8%), ethanol (EtOH) (Macron, 99.8%), and 

pyridine (Aldrich, 99%) were used as received without further purification. Powder X-ray 

diffraction (PXRD) patterns of MIL-53(Al) were recorded on a Rigaku ATXG 

diffractometer equipped with an 18 kW Cu rotating anode, MLO monochromator, and a 

high-count-rate scintillation detector (measurements made over a range of 2° < 2θ < 30° in 

0.05° step width with a 3 deg/min scanning speed). Thermogravimetric analyses (TGA) 

were performed on a TGA/DSC 1 system (Mettler-Toledo AG, Schwerzenbach, 

Switzerland), which runs on a PC with STAR software (version 9.10). Samples placed in 

alumina pans were heated from 25⁰C to 700⁰C at 10⁰C/minute under nitrogen flow. Before 

sorption measurements, samples were desolvated on a Micromeritics SmartVacPrep. 

Nitrogen isotherms were measured on a Micromeritics TriStar II 3020 at 77 K. All high-

pressure isotherm measurements were performed at the NIST Center for Neutron Research 

using a computer controlled Sieverts apparatus, details of which have been published 

elsewhere.[3] 

 

Synthesis of MIL-53(Al) 

A sample of MIL-53(Al) was prepared according to a previously reported 

procedure.[2] This material was designated as MIL-53(Al)crude. 
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Activation procedure for MIL-53(Al) 

A portion of as-synthesized MIL-53(Al)crude (0.200 g) was placed in a vial with 5 mL of 

pyridine, sealed with a screw-cap and kept in a 100⁰C oven for 12 hours. Then the liquid 

phase was separated, and the solid was washed several times with DMF and ethanol to 

remove pyridine. The sample was then soaked in ethanol for 8 hours. The solid material, 

MIL-53(Al)EtOH, was vacuum filtered, briefly dried in air, and then activated at 200⁰C for 

24 hours under vacuum on a SmartVacPrep. The activated material was designated as MIL-

53(Al)desol.  

 

Figure A.1 PXRD patterns of MIL-53(Al): a) desolvated sample MIL-53(Al)desol, b) 

sample before thermal activation MIL-53(Al)EtOH, c) as synthesized material MIL-

53(Al)crude, d) simulated MIL-53(Al).[4] 
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Figure A.2 TGA curves of MIL-53(Al) for sample before thermal activation 

MIL-53(Al)EtOH (black) and desolvated sample MIL-53(Al)desol (red). 

 

Figure A.3 Nitrogen adsorption-desorption isotherms (T=77 K) for MIL-53(Al)desol. Total 

pore volume of the material is 0.56 cm3/g. 
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Figure A.4 Measured methane isotherm at 298 K for MIL-53(Al)desol. The results 

obtained from methane adsorption measurements were converted to volSTP vol-1 using a 

framework density of 0.955 cm3/g and density of gas at STP (T = 273.15 K and P = 

101.325 kPa). 

 

3. Discrepancy between MIL-53(Al) GCMC Simulations and Experiment 

MIL-53(Al) is a flexible MOF, composed of corner-sharing AlO4(OH)2 metal 

clusters and 1,4-benzenedicarboxylate ligands.[5] The structure has two distinct 

conformational phases – lp (large pore) and np (narrow pore). MIL-53(Al) has been 

studied extensively in the past decade because the structure assumes different 

conformations depending on the current temperature[6], the thermal history of the sample[7], 

and the type and concentration of adsorbates.[5, 8] Therefore, it is possible that the crystal 

structures for MIL-53(Al) in the CSD could have different atomic coordinates and lattice 

constants, which might influence the simulation outcome. 

To examine this issue, we searched the CSD to find additional MIL-53(Al) 

structures based on chemical bond characteristics of MIL-53(Al) and computed the 

methane uptake at 65 bar in each structure. There are 13 different MIL-53(Al) structures 

in the CSD, with each having different experimentally resolved lattice parameters and 

atomic coordinates. We note that not all of these MIL-53(Al) structures were included 
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during the construction of the CoRE MOF database because many of these structures are 

highly disordered. Disordered structures were manually repaired and geometrically 

minimized prior to carrying out these GCMC simulations, and added to the final list of the 

CoRE MOF database. 

 

Figure A.5 Simulated absolute methane uptake at 65 bar and 298 K as a function of 

helium void fraction for a set of 13 MIL-53 (Al) structures obtained from the CSD. The 

blue dashed line is the experimental methane uptake at 65 bar from Figure A4. 

 

We found that there is a large variation in predicted methane uptake among the 13 

different structures, and the variation is correlated with the variation in the helium void 

fraction among these structures (Figure A5). The helium void fraction varies from 0.67 to 

0.74 in these structures (a change of 10%), but the total methane uptake varies from 180 to 

267 volSTP vol-1 (a change of 48%). Therefore, the variation in helium void fraction alone 

cannot account for the large variation in methane uptake. 
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Another possible source for the large variation in methane uptake in these structures 

is an enthalpy-entropy correlation, which has been studied previously with a simplified 2-

D model.[9] In this description, the proximal framework atoms provide potential overlap, 

which makes more favorable adsorption sites. However, if the proximal framework atoms 

become too close to one another, repulsion takes effect and the site becomes less favorable 

for adsorption. As a result, it is possible that changes in the pore size strongly affects the 

energy landscape inside the pore in addition to the free volume for methane occupancy. 

Figure A6 shows the density distributions of methane molecules for two different 

MIL-53(Al) structures at 65 bar. These two structures have the highest and lowest absolute 

methane loading at 65 bar: SABVOH has the lowest methane uptake (~180 volSTP vol-1), 

and HAFQOW has the highest methane uptake (~267 volSTP vol-1).  

 

 

Figure A.6 Probability densities of methane for two MIL-53(Al) structures at 298 K and 

65 bar. (a) HAFQOW and (b) SABVOH. White spheres are hydrogen atoms, bright green 

spheres are aluminum atoms, and light blue spheres are carbon atoms.  Arrows in the 

picture indicate the location of the favorable adsorption site that have disappeared in (b). 

 

Figure A6 (a) shows that there are 4 preferential adsorption sites for methane at 65 

bar near the corner-sharing aluminum atoms (bright green spheres) in HAFQOW. Together 

with other proximal framework atoms, the aluminum atoms create favorable adsorption 

sites. Figure A.6 (b), on the other hand, shows that there are only 2 preferential adsorption 

sites for methane in SABVOH.  
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As discussed above, the proximal framework atoms provide potential overlap, 

which creates favorable adsorption sites. The energy landscape inside the pore can be 

affected by subtle changes in the positions of these proximal framework atoms, and if the 

framework atoms become far apart (instead of too close), the potential overlap decreases. 

Figure A6 suggests that this leads to the disappearance of the adsorption sites. The 

framework atoms are located slightly further apart for SABVOH, and the sites that were 

favorable for methane adsorption in HAFQOW become less favorable for methane 

adsorption in SABVOH. Based on this, we conclude that the disappearance of favorable 

adsorption sites in combination with changes in the void fraction are responsible for the  

large variation of overall methane uptake for nominally similar MIL-53(Al) structures, as 

shown in Figure A5. 
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APPENDIX B 

1. Flexible CC3 Force Field Parameters 

The cage specific force field (CSFF) was used to model all nonbonded interactions 

between atoms in neighboring cage molecules.  CSFF uses a 9-6 Lennard Jones potential. 

A 10 Å cutoff was applied to all CSFF Lennard–Jones interactions:  

𝐸𝐿𝐽 = 𝜖 [2 (
𝜎

𝑟
)

9

− 3𝑠 (
𝜎

𝑟
)

6

]           𝑟 < 10Å     𝐁𝟏 . 

Here, s is a scale factor applied to the dispersive portion of the potential to reproduce the 

experimental cell volumes at 300 K. We used a scale factor of s = 1.20 following the 

original CSFF report.  

The CSFF atom types and Lennard-Jones σ and ε parameters were adopted directly from 

the polymer-consistent force field (PCFF)[1-2]:  

Table B.1 CSFF nonbonded potential parameters 

atom type description[2] σ (Å) ε (kcal mol-1) 

c generic sp3 carbon 4.010 0.0540 

c=1 non-aromatic, next to end doubly 

bounded carbon 

4.010 0.0640 

cp sp2 aromatic carbon 4.010 0.0640 

h generic hydrogen bonded to C 2.995 0.0200 

n= non aromatic end doubly bonded 

nitrogen 

3.800 0.0800 

 

The following 6th power mixing rules were used to describe interactions between 

different CSFF atom types: 

𝜎𝑖𝑗 =  [
𝜎𝑖

6+𝜎𝑗
6

2
]

1
6⁄

    𝐁𝟐 𝜀𝑖𝑗 =
2√𝜀𝑖𝜀𝑗𝜎𝑖

3𝜎𝑗
3

𝜎𝑖
6+𝜎𝑗

6      𝐁𝟑 

In CSFF, the partial charges on CC3 framework atoms are the sum of the charge bond 

increments:  
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Table B.2 Partial charges 

𝑞𝑖 = ∑ 𝛿𝑖𝑗

𝑗

     𝐁𝟒. 

i j δij  δji 

c c 0.0000 0.0000 

c c=1 0.0000 0.0000 

c cp 0.0000 0.0000 

c h -0.0530 0.0530 

c n= 0.3000 -0.3000 

c=1 cp 0.0000 0.0000 

c=1 h -0.1268 0.1268 

c=1 n= 0.3000 -0.3000 

cp cp 0.0000 0.0000 

cp h -0.1268 0.1268 

cp n= 0.1993 -0.1993 

 

For example, the c=1 carbons which are bonded to 1 aromatic cp carbon, 1 n= nitrogen, 

and  1 hydrogen have a net partial charge of 0.1732. All Coulombic interactions were 

computed pairwise to 10 Å and a long range particle-particle mesh Ewald correction was 

used thereafter. All intramolecular (within an individual cage molecule) nonbonded 

forces were excluded using the LAMMPS command “neigh_modify exclude molecule 

all”. 

 

CSFF bonded forces are described by a class 2 harmonic potential in units of kcal mol-1: 

 

𝐸𝑏𝑜𝑛𝑑 = 𝑘2(𝑟 − 𝑟0)2 − 𝑘3(𝑟 − 𝑟0)3−𝑘4(𝑟 − 𝑟0)4   𝐁𝟓. 
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Table  B.3 Bonds 

i j r0 (Å) k2 k3 k4 

cp cp 1.3838 465.2720 -1230.7532 1460.3640 

cp h 1.0787 421.9058 -1038.8437 1199.9151 

c=1 cp 1.4556 353.8001 -741.6000 936.9211 

c=1 h 1.1005 365.7679 -725.5404 781.6621 

c=1 n= 1.2700 758.1000 -1675.0000 2153.0000 

c n= 1.4329 324.7000 -218.0000 3030.0000 

c h 1.1010 345.0000 -691.8900 844.6000 

c c 1.5360 250.2000 -503.2000 400.9000 

 

CSFF angle parameters are described by a class2 harmonic potential in units of kcal/mol:  

𝐸𝑎𝑛𝑔𝑙𝑒 = 𝑘2(𝑟 − 𝑟0)2 − 𝑘3(𝑟 − 𝑟0)3−𝑘4(𝑟 − 𝑟0)4     𝐁𝟔. 

Table B.4 Angles 

Parameters in bold were missing from the original CSFF report and were adopted directly 

from PCFF.  

i j k θ k2 k3 k4 

cp cp h 117.9400 35.1558 -12.4682 0.0000 

cp cp cp 119.9000 62.0226 -0.9931 0.0000 

c= cp cp 115.4201 37.1311 0.6510 1.3200 

cp c= h 117.4110 31.5039 -11.1174 -10.4170 

cp c= n= 123.6700 57.0000 -20.7468 38.2873 

h c= n= 122.0000 34.0000 -9.0000 -15.0000 

c= n= c 110.5000 57.9000 -67.0001 51.7001 

c c n= 110.0047 53.4431 -59.0000 0.0000 

h c n= 109.7000 36.0247 1.0032 0.0000 
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c c h 109.7700 37.4530 -10.6040 5.1290 

h c h 107.6600 39.6410 -12.9210 -2.4318 

c c c 112.6700 39.5160 -7.4430 -9.5583 

 

CSFF dihedrals are described by a class 2 trigonometric potential in units of kcal mol-1:  

𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙(𝜑) =  ∑
𝑉𝑛

2

3

𝑛=1

(1 − cos (𝑛𝜑 − 𝛿𝑛))      𝐁𝟕. 

The original CSFF report1 uses a factor of ½ in the coefficient leading the class 2 

trigonmetric potential (shown in red above). This is inconsistent with the functional form 

reported in PCFF, which does not scale the Vn parameters by a factor of ½. This factor 

was omitted throughout this work because the orginal PCFF functional form better 

reproduces the reported window size distribution in CC3.[3] 

 Table B.5 Dihedrals 

Parameters in bold were missing from the original CSFF report and were adopted directly 

from PCFF.  

 

i j k l V1 δ1 V2 δ2 V3 δ3 

h cp cp h 4.5000 0.0000 1.8769 0.0000 0.0000 0.0000 

cp cp cp h -7.0000 0.0000 2.0661 0.0000 0.0000 0.0000 

cp cp cp cp 8.3667 0.0000 4.1932 0.0000 0.0000 0.0000 

c=1 cp cp cp -3.0000 0.0000 3.3072 0.0000 0.9700 0.0000 

c=1 cp cp h 7.0000 0.0000 2.5072 0.0000 0.0000 0.0000 

h c=1 cp cp 1.0000 0.0000 1.1097 0.0000 0.0000 0.0000 

cp cp c=1 n= 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 

c n= c=1 cp -1.0000 0.0000 7.9000 0.0000 -0.8000 0.0000 

c=1 n= c h 1.4300 0.0000 -1.1200 0.0000 0.8629 0.0000 

c=1 n= c c 0.8000 0.0000 0.0400 0.0000 0.2000 0.0000 

n= C c n= 0.5071 0.0000 0.2349 0.0000 -0.2349 0.0000 
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h C c n= -0.0228 0.0000 0.0280 0.0000 -0.1863 0.0000 

h C c h -0.4432 0.0000 -0.2617 0.0000 -0.1283 0.0000 

c n= c=1 h 3.0000 0.0000 5.5000 0.0000 0.4000 0.0000 

c C c c 0.0000 0.0000 0.0514 0.0000 -0.1430 0.0000 

c C c h 0.0000 0.0000 0.0316 0.0000 -0.1681 0.0000 

c C c n= 0.0972 0.0000 0.0722 0.0000 -0.2581 0.0000 

 

2. Adsorbate – cage interaction potentials 

Cage-adsorption force field (CAFF)[4] parameters were used to model interactions 

between CC3 framework atoms and Kr, CH4, Xe, and Rn adsorbate atoms. CAFF uses a 

12-6 Lennard Jones potential: 

𝐸𝐿𝐽 = 4𝜖 [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

]           𝑟 < 10Å           𝐁𝟖.  

Interactions between adsorbates and framework atoms are described by the Lorentz–

Berthelot mixing rules: 

𝜎𝑖𝑗 =
𝜎𝑖+𝜎𝑗

2
            𝐁𝟗.          𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗        𝐁𝟏𝟎. 

Table B.6 Cage-adsorption force field parameters 

Atom atom type σ (Å) ε/kB (K) 

Carbon framework C 3.4730 32.97 

Hydrogen framework H 2.8464 5.27 

Nitrogen framework N 3.2626 26.83 

Krypton Kr 3.69 170.0 

methane CH4 united atom 3.73 148.0 

xenon Xe 4.10 211.0 

radon Rn 4.17 300.0 

Interactions between CC3 framework atoms and united atom models of CS2 and SF6 were 

modeled by combining CAFF parameters for carbon, hydrogen, and nitrogen with 

parameters from Svehla (1962).[5] 
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atom atom type σ (Å) ε/kB (K) 

carbon disulfide CS2 united atom 4.483 467 

sulfur hexaflouride SF6 united atom 5.128 222.1 

   

3. Implicit ligand sampling data 

In our implicit ligand sampling TST calculations, we fit the activation energy ensemble 

for each adsorbate and temperature condition to independent log-normal distributions 

using maximum likelihood estimation. The fit parameters for these distributions are 

shown below with associated 95% confidence intervals: 

Table B.7 Lognormal distribution fits to EA for Kr cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 8.684 (8.678, 8.689) 0.498 (0.495, 0.502) 5.31e+10 

250 8.750 (8.744, 8.756) 0.531 (0.527, 0.535) 5.62e+10 

300 8.821 (8.815, 8.827) 0.565 (0.560, 0.569) 5.96e+10 

Table B.8 Lognormal distribution fits to EA for Kr void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 8.621 (8.616, 8.626) 0.478 (0.474, 0.482) 1.56e+11 

250 8.677 (8.671, 8.683) 0.514 (0.510, 0.518) 1.62e+11 

300 8.739 (8.733, 8.745) 0.553 (0.548, 0.557) 1.65e+11 

Table B.9 Lognormal distribution fits to EA for CH4 cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 8.737 (8.731, 8.742) 0.489 (0.485, 0.492) 1.24e+11 

250 8.799 (8.793, 8.805) 0.522 (0.518, 0.526) 1.31e+11 

300 8.866 (8.860, 8.872) 0.557 (0.553, 0.561) 1.39e+11 
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Table B.10 Lognormal distribution fits to EA for CH4 void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 8.659 (8.654, 8.664) 0.477 (0.474, 0.481) 3.61e+11 

250 8.713 (8.708, 8.719) 0.514 (0.510, 0.518) 3.75e+11 

300 8.775 (8.769, 8.781) 0.552 (0.548, 0.557) 3.80e+11 

 

Table B.11 Lognormal distribution fits to EA for Xe cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 9.815 (9.810, 9.820) 0.463 (0.459, 0.466) 5.57e+10 

250 9.848 (9.842, 9.853) 0.509 (0.505, 0.512) 5.80e+10 

300 9.884 (9.878, 9.890) 0.556 (0.552, 0.561) 6.08e+10 

 

Table B.12 Lognormal distribution fits to EA for Xe void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 9.633 (9.627, 9.638) 0.512 (0.508, 0.516) 1.60e+11 

250 9.667 (9.661, 9.673) 0.563 (0.558, 0.567) 1.64e+11 

300 9.713 (9.706, 9.719) 0.608 (0.603, 0.612) 1.64e+11 

 

Table B.13 Lognormal distribution fits to EA for Rn cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 10.147 (10.142, 10.152) 0.459 (0.455, 0.462) 4.73e+10 

250 10.176 (10.170, 10.181) 0.505 (0.501, 0.509) 4.90e+10 

300 10.209 (10.203, 10.215) 0.555 (0.550, 0.559) 5.13e+10 
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Table B.14 Lognormal distribution fits to EA for Rn void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 9.950 (9.944, 9.955) 0.516 (0.512, 0.520) 1.38e+11 

250 9.982 (9.975, 9.988) 0.569 (0.565, 0.574) 1.41e+11 

300 10.025 (10.018, 10.032) 0.616 (0.611, 0.620) 1.40e+11 

 

Table B.15 Lognormal distribution fits to EA for CS2 cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 11.044 (11.039, 11.049) 0.428 (0.425, 0.431) 1.34e+11 

250 11.067 (11.062, 11.072) 0.473 (0.469, 0.477) 1.36e+11 

300 11.093 (11.087, 11.099) 0.523 (0.519, 0.527) 1.40e+11 

 

Table B.16 Lognormal distribution fits to EA for CS2 void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 10.793 (10.787, 10.799) 0.515 (0.511, 0.519) 3.95e+11 

250 10.822 (10.816, 10.828) 0.569 (0.565, 0.574) 3.96e+11 

300 10.863 (10.856, 10.870) 0.617 (0.612, 0.622) 3.87e+11 

 

Table B.17 Lognormal distribution fits to EA for SF6 cage to void hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 11.851 (11.847, 11.855) 0.389 (0.386, 0.392) 2.14e+11 

250 11.871 (11.867, 11.876) 0.430 (0.427, 0.434) 2.11e+11 

300 11.890 (11.885, 11.895) 0.474 (0.471, 0.478) 2.12e+11 
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Table B.18 Lognormal distribution fits to EA for SF6 void to cage hops 

T µ (95% CI) σ (95% CI) mean prefactor A (s-1) 

200 11.529 (11.524, 11.535) 0.512 (0.508, 0.516) 5.96e+11 

250 11.559 (11.552, 11.565) 0.567 (0.563, 0.572) 5.87e+11 

300 11.599 (11.592, 11.606) 0.611 (0.606, 0.616) 5.61e+11 

 

Figure B.1 shows the Arrhenius prefactor A as a function of EA for Xe cage to void hops 

at 300 K.  

 

Figure B.1 Arrhenius prefactor vs. EA for Xe cage to void hops at 300 K 

 

There is no significant covariance here so the mean prefactor of 6.08 × 1010 s-1 was used 

in the hopping rate calculation (Eq. 6 in the text). The covariances between A and EA 

were assumed to negligible for the other activation energy distributions shown in Tables 

S7-S18. 
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Population variance of ILS hopping rate distributions 

The cumulative distribution function for hopping rates (k) as a function of µ, σ, and A is 

given by: 

𝐹𝑘(𝑘) =  
1

2
+

1

2
erf [

ln 𝑥 − 𝜇

√2𝜎
]  where  𝑥 =  −𝑅𝑇 ln (

𝑘

�̅�
)       𝐁𝟏𝟏. 

From this cumulative distribution function, the population variance of rates is given by: 

𝜎𝑘
2 = 2 ∫ 𝑘(1 − 𝐹𝑘(𝑘))𝑑𝑘 − (∫ 1 − 𝐹𝑘(𝑘) 𝑑𝑘

∞

0

)

2∞

0

     𝐁𝟏𝟐. 

 

4. Direct MD data 

The diffusion coefficients of Kr, CH4, and CO2 were evaluated by NVT MD at 300 K as 

described in section Chapter 4 of the text.  In each case, the MSD vs. time curve was 

renormalized to zero by subtracting 4 Å2
 from the MSD, which is associated with the 

ballistic movement of adsorbate atoms within individual cage molecules. The diffusivity 

was found using the Einstein equation: 

𝐷𝑠 =
𝑀𝑆𝐷

6𝑡
      𝐁𝟏𝟑. 

The MSD plots for Kr, CH4, and CO2 are shown in Figures B.2-B.4 below. Each MSD 

within the figure insets is given in units of Å2 s-1. These MD simulations for each 

adsorbate were averaged over 28 independent simulations. The standard uncertainties in 

the mean MSDs of each adsorbate were calculated by dividing these 28 simulations into 4 

blocks of 7 independent simulations. This yields 8.16±0.45×1011 Å2 s-1 (Ds = 

1.36±0.076×10-5
 cm2 s-1) for Kr, 1.56±0.016×1012 Å2 s-1 (Ds =  2.60±0.027×10-5

 cm2 s-1) 

for CH4, and 6.55±0.30×1011 Å2 s-1     (Ds =  1.09±0.05×10-5
 cm2 s-1) for CO2. These 

uncertainties from block averaging are somewhat larger than suggested by the 95% 

confidence intervals on fits to the Einstein equation. 
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Figure B.2 Kr diffusion by NVT MD at 300 K 

 

Figure B.3 CH4 diffusion by NVT MD at 300 K 
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Figure B.4 CO2 diffusion by NVT MD at 300 K 
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