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SUMMARY

In taking a di↵erent view of crystallization dynamics, this thesis reveals a new

framework for addressing a prevalent process engineering challenge: control over the

size of crystals produced by batch cooling crystallization.

The thesis divides roughly into halves. In the first half, the crystal size con-

trol problem is introduced and the proposed framework for addressing this prob-

lem—termed the mass-count (MC) framework—is developed. This new framework

is laid out along side the population balance (PB) framework, which is the prevail-

ing framework for modeling crystallization dynamics and addressing the crystal size

control problem.

In putting the proposed and established frameworks side by side, the intent is not

to say that one or the other is correct. Rather, the point is to show that they are

di↵erent perspectives that facilitate di↵erent control approaches. The PB framework

is built up from first principles; it is intellectually stimulating and mathematically

complete, but it has a drawback for application: it does not directly enable feedback

control. The MC framework, on the other hand, takes a less detailed view of crystal-

lization dynamics and does not connect to crystallization theory as directly; it is also

more conducive to application.

In the second half of the thesis, the utility of the MC framework is put to the

test. The framework is first applied to understand and model the crystallization

dynamics for two widely di↵erent systems: darapskite salt crystallization from water

and paracetamol crystallization from ethanol. Once the dynamics have been modeled,

the framework is then used to develop feedback control schemes. These schemes

are applied to both experimental systems and, in both cases, crystal size control is

demonstrated.
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INTRODUCTION

Batch cooling crystallization is widely applied to isolate high-purity chemicals and

pharmaceuticals. The operation is straightforward in principle: the temperature of a

solution is reduced to drive the crystallization of a target component, which can then

be filtered and isolated. Detailed examination, however, reveals complexity. Crystals

develop and evolve through a series of dynamic processes occurring at the molecular

level. These dynamics determine the size, shape, and purity of the product crys-

tals—leaving the process control engineer with the challenging task of figuring out

how to manipulate the input variable, temperature, to influence the underlying crys-

tallization dynamics and ultimately produce crystals with specific desired properties.

This thesis provides a useful framework for addressing such a task when

the objective is to control the mean crystal size.

Background on crystal size control. Crystal size control has taken a leading role

in research on crystallization operations. This is justified, to an extent, by the im-

portance of controlling the crystal size for both product quality and the performance

of downstream filtration and solids-handling operations.

Work on crystal size control was recorded in academic journals as early as the

1920’s [Gri�ths, 1924,Montillon and Badger, 1927,McCabe, 1929], but largely gained

prevalence in the 1960’s when the population balance equation was introduced [Hul-

burt and Katz, 1964,Randolph, 1964]. The population balance equation provided a
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mathematical framework for modeling the evolution of a crystal population and es-

tablished the primary paradigm from which crystal size control has been considered

since.

Initially, the population balance framework was used to predict the size of crys-

tals resulting from various process configurations under idealized steady-state opera-

tion—with emphasis placed on the mixed-suspension, mixed-product removal (MSMPR)

configuration [Randolph and Larson, 1988]. By the 1990’s, computing power had in-

creased substantially and new measurement tools enabled online monitoring of key

properties—notably, solution concentration [Dunuwila et al., 1994].

With these advancements, population balance models were extended to transient

operations [Rawlings et al., 1993,Miller and Rawlings, 1994] and control strategies

developed within the population balance framework became more applicable to indus-

trial practice [Nagy and Braatz, 2012]. Although useful for designing the operation,

these strategies were generally still implemented in an open-loop fashion and suscep-

tible to inconsistent results in the face of model-mismatch and process uncertainty.

At the start of the 21st century, the U.S. Food and Drug Administration initiative

promoted “innovation and e�ciency in pharmaceutical manufacturing and quality

assurance” through the use and real-time incorporation of online measurements [PAT,

2004, Yu et al., 2004, Simon et al., 2015]. This encouragement, along with ever-

increasing innovation in population balance modeling and computation, has ushered

in crystal size control strategies that are more robust and geared towards application

[Braatz et al., 2002, Braatz, 2002, Worlitschek and Mazzotti, 2004, Barrett et al.,

2005,Larsen et al., 2006,Corriou and Rohani, 2008,Nagy, 2009,Mesbah et al., 2010,

Mesbah et al., 2012,Nagy and Braatz, 2012,Nagy et al., 2013,Acevedo et al., 2015].

Nevertheless, crystal size control in industry remains an outstanding challenge.
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The point of this thesis. The persistence of the crystal size control problem

speaks, in part, to the di�culty of the task. But I also see another impedance: the

control problem is almost always approached from the same perspective—that estab-

lished by the population balance framework—and this perspective is not particularly

amenable to establishing control in practice.

The point of this thesis is to show that a di↵erent, less detailed, view of crystal-

lization dynamics yields a new framework that lets us directly address the crystal size

control problem.

OVERVIEW

This thesis is divided into two parts:

Part I—Theory and Frameworks—is made up of three chapters. Chapter 1

introduces key concepts of batch cooling crystallization and the crystal size control

problem. Chapters 2 and 3 respectively present two frameworks for addressing the

crystal size control problem: the established population balance (PB) framework

is presented in Chapter 2, while the mass-count (MC) framework—central to this

thesis—is developed in Chapter 3. In introducing the MC framework, a practical

route for achieving crystal size control is stated. This is put to the test in Part II.

Part II—Application—is also constructed from three chapters. Chapter 4 gives

two experimental crystallization systems and also describes the online measurement

tools that are instrumental to applying the MC framework. Chapter 5 illustrates

the application of the MC framework to understand and model the crystallization

dynamics. Finally, Chapter 6 gives control results. The results show that—using the

MC framework—we can achieve crystal size control in practice.
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A Framework for Understanding and

Controlling Batch Cooling Crystallization

PART I

Theory and Frameworks



CHAPTER 1

BATCH COOLING CRYSTALLIZATION:

KEY CONCEPTS AND THE CRYSTAL SIZE CONTROL PROBLEM

1.1 States of Matter and the Driving Force for Crystalliza-
tion

Collections of molecules exist in di↵erent states of matter or phases. In a gaseous

state, molecular density is low and the molecules are in constant random motion. In

a liquid state, the molecules are packed closer together and their motion is fluid. In a

solid state, the molecules are constrained, oscillating around fixed positions—if these

positions are arranged in a regular pattern, known as a lattice, the solid state is said

to be crystalline.

Thermodynamic variables dictate the equilibrium state. The equilibrium

or favored state of a collection of molecules is a function of the macroscopic ther-

modynamic variables, temperature and pressure. As a consequence, we can often

predictably manipulate the phase by changing these macroscopic variables. The ef-

fect of temperature on the state of water, for example, is ubiquitous and commonly

observed: solid states are favored at temperatures below 0 °C and gaseous states are

favored at temperatures above 100 °C (at atmospheric pressure).

The story is slightly more involved for solutions, which contain multiple di↵erent

types of molecules; for solutions the equilibrium state at a given temperature and

pressure may be multiphasic—having, for example, portions of the system in a solid

state and portions in a liquid state.
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Free energy. The concept of free energy is useful for describing the evolution of

a system towards equilibrium. A system in a given state has associated with it an

amount of energy “free for work”. The equilibrium state, or favored state, for a

system under set thermodynamic conditions has minimal free energy. Moreover, the

rate at which a system moves towards the equilibrium state appears to depend on

the magnitude of the reduction of free energy achieved. In this sense, the evolution

of a system towards the equilibrium state is driven by the reduction of free energy.

Batch cooling crystallization. Batch cooling crystallization operations start with

a liquid solution. Reducing the temperature changes the equilibrium, minimum-

energy state of the system—at some point favoring the formation of a solid crystalline

phase made of one or more of the solution components. Crystallization is the dynamic

process by which the new solid crystalline phase forms from the liquid solution.

Thermodynamic driving force for crystallization. For crystallization, it is

convenient to express free energy on a per-molecule basis. That is, in terms of chemical

potential, µ: the change in free energy associated with the addition or subtraction of

a single molecule.

The thermodynamic driving force for crystallization can then be expressed. It is

the di↵erence in chemical potential of the crystallizing component, i, in solution and

the chemical potential of that same component, i, in a pure crystalline state at the

same temperature and pressure:

�µ

cryst ⌘ µ

(L)

i

(C, T, P )� µ

(S)

i

(T, P ), (1.1)

where µ
(L)

i

is the chemical potential of component i in a solution of composition C at

temperature T and pressure P ; µ
(S)

i

is the chemical potential of i in a pure crystalline

state under the same temperature and pressure. The relevant states are illustrated

in Figure 1.1.
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Figure 1.1: Relevant states for expressing the thermodynamic driving force for crys-
tallization. Left : a solution containing component i in a liquid state at temperature
T and pressure P . Right : pure component i in a solid crystalline state at the same
temperature T and pressure P .

Solubility. For a multiphasic system that contains both a liquid solution phase and

a solid phase composed of pure component i (termed the solute), the concentration

of solute (i) in solution at equilibrium under a given temperature and pressure is the

solubility of that component in the given solution:

µ

(L)

i

(C⇤
i

, T, P ) = µ

(S)

i

(T, P ), (1.2)

where C

⇤ is the solubility of component i at the given temperature T and pressure

P .

Solubility curve. As the pressure has only a minor e↵ect, solubility is usually

expressed in terms of the equilibrium concentration of the solute in solution as a

function of temperature: C⇤
i

= C

⇤
i

(T ). This is the solubility curve.

Figure 1.2 shows a typical solubility curve. There is an important attribute of this

curve: the slope of the solubility-temperature relationship is positive. This attribute

is a prerequisite for running a batch cooling crystallization operation—only when the

solubility-temperature relationship is positive, will cooling create a driving force for

crystallization.
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Figure 1.2: Illustration of a typical solubility curve.

Supersaturation. A solution is said to be supersaturated when the concentration

of the crystallizing component, C
i

, is greater than the solubility concentration, C⇤
i

,

for the given temperature.

There are a number of measures of supersaturation, the most popular are simply

the concentration–solubility di↵erence and the normalized concentration–solubility

di↵erence:

�C

i

⌘ C

i

� C

⇤
i

(T ), and (1.3)

�

i

⌘ C

i

� C

⇤
i

(T )

C

⇤
i

(T )
. (1.4)

In this thesis, �C will be referred to as the concentration driving force and “super-

saturation” will be used in reference to �.

Supersaturation is a measure of the thermodynamic driving force for crys-

tallization. Supersaturation, �, is related to the thermodynamic driving force for

crystallization, µcryst. Under ideal solution thermodynamics, for example, it can be

shown that µcryst / T�, where T is the absolute solution temperature.

More generally, � provides a measure that at least gets the sign right: when a solu-

tion is supersaturated, there exists a driving force for crystallization; when a solution

is undersaturated, there exists a driving force for dissolution. Mathematically:

µ

cryst
> 0 () � > 0. (1.5)
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Temperature changes can be used to manipulate � and thereby influence

the crystallization dynamics. When the solubility curve is positive, tempera-

ture reductions create supersaturation and a driving force for crystallization. More-

over, the magnitude of a temperature change dictates the degree of supersaturation

achieved, which in turn a↵ects the crystallization dynamics. These dynamics, and

the e↵ect of supersaturation on them, will be discussed in more detail in the following

section.

1.2 Crystallization Dynamics

Crystallization occurs by nucleation and growth of individual crystals. Once formed,

crystals can subsequently dissolve, agglomerate, and break apart. These processes,

illustrated in Figure 1.3, collectively constitute crystallization dynamics.

nucleation growth

breakage

agglomeration

DISSOLUTION

CRYSTALLIZATION

Figure 1.3: Illustration of the underlying mechanisms by which crystals develop and
evolve.
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1.2.1 Nucleation and crystal growth

When a solution is supersaturated there exists a driving force for crystallization.

Another way of looking at this: supersaturation provides a driving force for the net

transfer of mass from liquid phase to solid crystalline phase, which occurs through

nucleation of new crystals and growth of existing crystals.

Nucleation. Nucleation refers to the initial formation of a new phase from an

existing one. In context: the formation of a new crystal from solution. Mullin

[Mullin, 2001] suggests categorizing nucleation as shown in Figure 1.4. This leaves

three di↵erent categories: homogeneous nucleation, heterogeneous nucleation, and

secondary nucleation.

NUCLEATION

PRIMARY SECONDARY
(catalyzed by crystals)

HOMOGENOUS HETEROGENOUS
(catalyzed by foreign surfaces)

Figure 1.4: Categorization of nucleation [Mullin, 2001].

Homogeneous nucleation. Homogeneous nucleation refers to the formation of a

new crystal nuclei from an evenly-mixed solution. Exactly how this occurs—that is,

how the solute elements aggregate in solution and arrange into a crystal lattice—is

not clear. In fact, there is substantial evidence of multiple pathways by which homo-

geneous nucleation may occur, even for the same system [Erdemir et al., 2009,Vekilov,

2010,Baumgartner et al., 2014,Erdemir et al., 2013,Nielsen et al., 2014].

Figure 1.5 illustrates two potential homogeneous nucleation pathways. In the

first, molecules aggregate and order at the same time; in the second, molecules first

aggregate and then order.
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The pathway has an important, albeit nebulous, e↵ect on the rate or likelihood of

nucleation. Nucleation is driven by solution thermodynamics and expected to occur

when the solution is supersaturated, but the rate of nucleation also depends on a

surface energy barrier to forming a new phase [Gibbs, 1876,Gibbs, 1878], which in

turn depends on the pathway [Vekilov, 2010].

one-step (classical) path

two-step path

time

time

Figure 1.5: Di↵erent homogeneous nucleation pathways: in the classical mecha-
nism, molecules condense and order simultaneously; this is opposed to the two-step
mechanism in which the molecules condense first and then order.

Heterogeneous nucleation. Heterogeneous nucleation refers to nucleation cat-

alyzed by the presence of a foreign surface (due to the vessel walls, mixing propeller,

dust particles, etc.). These foreign surfaces are expected to reduce the surface energy

barrier to nucleation, and thereby increase the rate of nucleation.

Secondary nucleation. Secondary nucleation refers to nucleation catalyzed by

the existence already-formed crystals. This catalysis may be caused simply by the

presence of the crystal surface, which reduces the energy barrier to nucleation, or by

a variety of breeding mechanisms in which small crystal fragments dislodge from the

existing crystals and serve as seeds for new nuclei.
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Growth. Once stable crystal nuclei have formed, they may grow. Crystal growth

is often considered to consists of two steps: di↵usion of the solute molecule from the

bulk solution to the surface of a crystal and incorporation of that solute molecule into

the crystal. Depending on the conditions, one of these steps may be rate limiting or

both steps may contribute. Lewis, Seckler, Kramer, and van Rosmalen [Lewis et al.,

2015] suggests categorizing crystal growth according to which step dominates the rate

of growth as shown in Figure 1.6.

Growth

integration-controlled diffusion-controlled combined

smooth growth

spiral birth and spread

rough growth

Figure 1.6: Categorization of growth by the rate-controlling mechanism [Lewis et al.,
2015].

Integration-controlled growth. When integration is the rate limiting step, growth

may be sub-categorized according to the surface-incorporation mechanism. There are

three prominent incorporation mechanisms suggested by [Lewis et al., 2015] that lead

to di↵erent integration-controlled growth categories: rough growth, spiral growth,

and birth-and-spread growth.

Rough growth is favored under high supersaturation and is characterized by the

rapid deposition of molecules onto the surface of an existing crystal. The placement of

these molecules in largely random. This is in contrast to spiral growth and birth-and-

spread growth, in which deposit at propagating ‘steps’ on the crystal surface. In spiral

growth, new molecules deposit on step edges that propagate in a spiral pattern; this
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type of growth is generally slow and observed under low supersaturation. In birth-

and-spread growth, molecules deposit on step edges that spread out radially from

one or more surface nuclei; this type of growth is generally observed under moderate

levels of supersaturation and occurs at more moderate rates.

Di↵usion-controlled growth. Under stagnant conditions, the incorporation of

molecules onto a crystal surface may occur more rapidly than new molecules di↵use

from the bulk solution. In such cases, the rate of growth depends primarily on the

concentration gradient (between the bulk fluid and the local solution region near the

crystal surface) and the di↵usion characteristics of the solution.

Combined growth. In other cases, both the integration and di↵usion steps may

contribute to the rate of growth. In such cases, the growth rate expressions are

more di�cult to pin down and are generally taken to be empirical functions of the

supersaturation.

Size-dependent growth and growth rate dispersion. In discussing the cate-

gories of growth given by Figure 1.6 it is tacitly assumed that grow rates depend on

the solution properties and not the characteristics of the crystals themselves. Em-

pirical observations, however, suggests that the crystal characteristics also influence

the growth rate. The growth rate, for example, may be size-dependent : with the size

of the crystal influencing the rate at which it grows. It can also depend on more

intricate details of the crystal that are harder to observe or control, such as degree of

disorder in the crystal lattice. This is supported by the observation that crystals of

the same size under the same solutions conditions, grow at varying rates—a phenom-

ena known as growth-rate dispersion [White and Write, 1971,Zumstein and Rousseau,

1987a,Zumstein and Rousseau, 1987b].
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1.2.2 Dissolution

When a crystal-containing solution is undersaturated there exists a driving force for

the net transfer of mass from the solid to the liquid phase. This occurs through

dissolution.

Dissolution, here, refers to the opposite of crystallization. This process, like crys-

tallization, is driven by thermodynamics: when a solution is undersaturated, there

exists a driving force for dissolution. The key di↵erence in the dynamics of dissolu-

tion, as compared to the exact mirror opposite of crystallization, is the absence of a

surface energy barrier in dissolution. Lacking an energy barrier, the rate of dissolution

is generally rapid, even at low levels of undersaturation.

1.2.3 Agglomeration and breakage

The dynamic mechanism discussed so far—crystallization and dissolution—cause a

change in the distribution of mass between the crystal phase and liquid phase: crys-

tallization occur when the solution is supersaturated and causes a net shift in mass

from the liquid phase to the crystal phase; dissolution, on the other hand, occurs when

the solution is undersaturated and causes a net shift in mass from the crystal phase

to the solution phase. But the characteristics of crystals may also change without a

net transfer of mass between phases. Two ways in which this can happen are crystal

agglomeration and crystal breakage.

Agglomeration. Crystal agglomeration is the process in which individual crystals

that have already formed in solution come in contact and fuse together. This dy-

namic process can be complex, with the rate or likelihood of agglomeration being a

multivariate function that depends on, at least: the solution agitation and flow fields;

the crystal number density; the size of the crystals; the inter-crystal forces; and the

thermodynamics of crystal bridge formation.
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Breakage. Crystal breakage is in many ways the opposite of agglomeration. It is

the division of a current single crystals into two or more crystal fragments. This

process is largely independent of the solution thermodynamic properties. Instead,

the rate or likelihood of crystal breakage depends heavily on the physical properties

of the crystals and the kinetic and physical environment: how fragile the crystal are

and how vigorously the solution is stirred.

1.3 The Crystal Size Control Problem (for unseeded batch
cooling crystallization)

The underlying dynamic processes by which crystals form and evolve—nucleation,

growth, dissolution, agglomeration, and breakage—collectively govern the number of

crystals and the size of those crystals. Crystal size control, then, comes down to

expertly inducing or suppressing these underlying processes and also tailoring the

relative rates at which they occur.

This can potentially be achieved through manipulation of supersaturation enacted

via temperature changes. But, as the previous section is intended to convey, the

underlying dynamic processes are complex and may depend on more than just the

solution thermodynamics. Moreover, multiple underlying processes, nucleation and

growth for example, may occur simultaneously. These complications convolute the

relationship between the process input—the temperature profile—and the control

variable—the mean size of the produced crystals. As such, the crystal size control

problem, illustrated in Figure 1.7, can be one of considerable di�culty.
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Figure 1.7: The crystal size control problem for unseeded batch cooling crystalliza-
tion.

A framework is needed to establish crystal size control. To address the crys-

tal size control problem, a framework is needed for modeling crystallization dynamics

and establishing the essential relationship between the input temperature manipu-

lations and the final control property—the crystal size. Two such frameworks are

described in the following two chapters: the first is the well-established population

balance (PB) framework; the second is the mass-count (MC) framework that is cen-

tral to this thesis. A key advantage of the MC framework, as will be described, is

that it is designed to directly facilitate feedback control.
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CHAPTER 2

THE POPULATION BALANCE (PB) FRAMEWORK

Modeling a dynamical system starts with characterizing the state of the system

at any given point in time. For crystallization, this means finding a way to characterize

both the state of the solution as well as the state of the dispersed crystals.

Provided that the solution is well-mixed and the pressure is fixed, it is straight-

forward to describe the solution state: the solution state is given by the composition

and temperature. Characterizing the state of a dispersed crystal population is more

di�cult and represents more of an open choice.

As described in this chapter, we might characterize the crystal state by a crystal

size distribution density function, n(L, t). This does not fully describe the crystal

state in the sense that it contains all of the information about the crystals and

perfectly represents reality. It does, however, capture the size of the crystals—the

property we aim to control—and it is also convenient because it yields a continuity

equation for the rate of change of the state: the population balance equation.

This strategy—characterizing the dispersed crystal state by the size distribution

and writing a population balance expression for the rate of change of the state—is

well-established and represents the orthodox framework for modeling crystallization

dynamics and approaching the crystal size control problem.

2.1 Describing the Crystal State by the Crystal Size Dis-
tribution

A full description of a population of crystals dispersed in solution would include the

position and velocity of each crystal—the so-called external properties—and also the
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size, shape, purity, and form of each crystal—the internal properties. Using such

a detailed description, however, would be overkill. Simplifications are required to

obtain a usable model.

In most applications, the crystal slurry is expected to be well mixed and the

spatial distribution of the crystals is therefore of little interest. Moreover, we are

often concerned with just one internal property—in this case, the crystal size.

When crystal size is of primary interest and the size of each crystal can be char-

acterized by a single length, L, the crystal state may be described more simply in

terms of the number of crystals and the size of each crystal. Figure 2.1 illustrates the

evolution of a crystallization system with the crystal state described in this way.

Figure 2.1: Characterizing the state of a crystallization system. At each instant in
time the solution state is indicated by the solution temperature, T , and composition,
c; the crystal state is indicated by the number of crystals and the size of each crystal,
L.

This representation has an associated numerical description: the dispersed crystal

state at each instant can be captured by a vector, ~L, with elements containing the

length of each crystal. This is illustrated in Figure 2.2.

With this representation, we can imagine a numerical scheme that models the

evolution of the crystal state: marching forward in time the nucleation of crystals

can be represented by the addition of new elements to the vector ~

L containing the

size L

� (assumed size of new nuclei), and the growth of crystals can be represented

by an increase in the sizes, L

i

’s, listed in the existing elements. This numerical
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2

1

Figure 2.2: Evolution of the crystal state in terms of the number of crystals and
the size of each of those crystals.

description of crystallization connects with the physical picture, but it also lacks

an easy mathematical description and is an ine�cient numerical scheme for large

numbers of crystals.

There is another perspective that admits a compact mathematical representa-

tion and a more elegant mathematical model of the dynamics: the crystal state can

represented by a crystal size distribution density function.

The crystal size distribution density function. Figure 2.3 displays information

in the vector ~L as a histogram that shows the number of crystals that fall into bins of

di↵erent size ranges. In showing the information as a histogram, we loose track of the

individual crystals. That is, we no longer distinguish between crystal 1 and crystal

10 if they are of the same size. But we still keep track of the important information,

which is the number of crystals and how these crystals are distributed according to

size.
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Figure 2.3: The crystal state, as represented by a size distribution histogram, at
di↵erent times during a hypothetical crystallization process.

We can go a step further in making the representation compact and mathemat-

ically convenient. Dividing the number of crystals in each size bin by the width of

that bin and treating this as a continuous variable, we arrive at a density function

description of the crystal state:

n(L, t), L 2 R
+

, t 2 R
+

,

where n(L, t)dL denotes the number of crystals with a size between L and L + dL.

This crystal state representation is illustrated in Figure 2.4.

crystal size, ! crystal size, !crystal size, !

"(
!)

tk+j tNtk

"(
!)

"(
!)

Figure 2.4: The crystal state, as represented by a size distribution density function,
at di↵erent times during a hypothetical crystallization process.
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2.2 Crystallization Dynamics Described by the Population
Balance Equation

Having chosen to represent the crystal state with a crystal size distribution density

function, the question is: how can we model the dynamics? That is, how can we

mathematically express the rate of change of the crystal state as characterized by the

size distribution density function?

Let me go back to the histogram representation of the crystal size distribution

for a moment. Taking a single bin, we can write a balance expression for the rate

of change of the number of crystals in the bin. The rate of change of the number

of crystals in the bin must be equal to the flux in, minus the flux out. Assuming

growth-only: the flux in equals the rate at which smaller crystals grow into the size

range, and the flux out equals the rate at which crystals already in the size range

grow to larger sizes. If other mechanisms are in play, such as agglomeration, the

expressions for flux in and out become more complicated, but we can nevertheless

write a balance on the rate of change of the number of crystals in the bin.

Here we see why a continuous crystal size distribution density function is a con-

venient state representation: under this representation, we can write a continuity

equation for the rate of change of the state [Hulburt and Katz, 1964, Randolph,

1964, Ramkrishna, 2000]—much as we would do to describe the rate of change of

mass or momentum in a given region in space [Bird et al., 2007].

Under the assumptions that n(L, t) is continuously di↵erentiable, the volume of

solution is fixed, and the crystals change size by growth only (and do not dissolve,

shrink, agglomerate, or break apart), the following continuity equation must hold:

@n(L, t)

@t

+
@

�

Gn(L, t)
�

@L

= 0. (2.1)

This is the so-called, growth-only 1D population balance equation, where G ⌘ @L/@t

is the crystal growth rate.
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To be used, Equation 2.1 must be supplemented with a boundary condition:

n(0, t) = J/G, (2.2)

where J is the nucleation rate giving the number of new nuclei formed per unit time;

and an initial condition:

n(L, 0) = 0.

(Here we assumed that no crystals are present initially).

The population balance equation given by (2.1) is the most common starting point

for modeling crystallization dynamics and addressing the crystal size control problem.

Mass balance: connecting the solution state and the crystal state. A mass

balance is used to connect the rate of change of the solution composition to the

crystallization dynamics. For an unseeded batch cooling crystallization operation

with a single-component solute, the mass balance can be expressed as follows:

C(t) = C(0)� 1

V

⇢k

v

Z 1

0

n(L, t)L3

dL

| {z }

total mass of crystals

, (2.3)

where C(t) is the concentration of the solute at time t, C(0) is the initial composition,

V is the solution volume, ⇢ is the crystal density, and k

v

is a shape factor.

2.2.1 Completing a population balance model.

The population balance equation is incomplete as a model of crystallization dynam-

ics. To fill in the model, expressions for the nucleation and growth rates must be

specified. (For more sophisticated population balance expressions that include other

mechanisms such as dissolution or agglomeration, the rates of these processes must

also be specified).
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Rate of nucleation as a function of � and T . The simplest and most widely used

theory that describes the rate of nucleation as function of the solution thermodynamic

variables comes from so-called classical nucleation theory (CNT). The theory predicts

the nucleation rate from a hypothetical free energy path originally derived for the

condensation of vapor by Gibbs in 1876 [Gibbs, 1876, Gibbs, 1878]. This line of

reasoning leads to an expression for the rate of nucleation as function of the solution

temperature and supersaturation:

J = J

0

exp(� b

0

T

3

�

2

), (2.4)

where J

0

and b

0

are constants.

Equation (2.4) makes the most sense for homogeneous nucleation occurring in a

one-step manner; nucleation by other paths should have di↵erent free energy land-

scapes and, consequently, di↵erent rates. The presence of a foreign surface, for ex-

ample, is expected to reduce the energy barrier to crystallization. Even more so if

the surface is due to another crystal or if the nuclei forms from an existing crystal

fragment. Heterogeneous primary nucleation and secondary nucleation are therefore

expected to occur at a faster rate under the same thermodynamic conditions.

For di↵erent nucleation pathways, di↵erent rate functions have been proposed.

Some have been developed from theoretical arguments, such as a rate for homoge-

neous nucleation occurring by a two-step mechanism [Vekilov, 2010], but the majority

take an empirical form. In general, the rate of nucleation from solution is given as

an increasing function of supersaturation, temperature, and the number of crystals

already present in solution:

J = J

0,1

exp(�E

1

/T )�b1

| {z }

primary nucleation

+ J

0,2

exp(�E

2

/T )�b2
Ac/Vs

| {z }

secondary nucleation

, (2.5)

where J

0,1

, E
1

, b
1

, J
0,2

, E
2

, and b

2

are parameters to be specified; Ac is the total

surface area of already-formed crystals and Vs is the total solution volume.
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Rate of growth as a function of � and T . Expressions for crystal growth rates

have been formulated for each of the categories given in Figure 1.6 [Lewis et al., 2015].

These are formulated considering the rate-limiting step: integration or di↵usion.

When integration is the rate-limiting step, rate expression are generally derived

via theoretical energy paths, much as the rate of nucleation was derived in CNT.

When di↵usion is the rate limiting step, the rate is generally derived via Fick’s law

for di↵usion. Without going through the derivations, simplified versions of commonly

used rate expressions are presented here:

• integration-controlled growth:

– rough growth: G = k

g

�

– spiral growth: G = k

g

� or G = k

g

�

2

– birth and spread growth: G = k

g

�

5/6 exp(�g/T

2

�)

• di↵usion-controlled growth: G = k

g

C

⇤
�

• combined: G = k

g

�

g

where G is the growth rate of a given crystal (rate of change of the characteristic

length per time); k
g

and g are unknown constants.

A complete population balance model. Once the underlying mechanisms (nu-

cleation, growth, agglomeration, etc.) have been specified along with their respective

rate equations and the solubility has been characterized, a complete population bal-

ance model is obtained. An example of a population balance model for nucleation-

and growth-only batch cooling crystallization is given below.
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Population balance model (PBM)

@n(L, t)

@t

+
@

�

G(�, T )n(L, t)
�

@L

= 0
| {z }

1D PB, nucleation- and growth-only

(2.6a)

n(0, t) =
J

�

n(L, t), �, T
�

G(�, T )
| {z }

boundary condition

, n(L, t) = 0
| {z }

initial condition

(2.6b)

� =
C � C

⇤(T )

C

⇤(T )
| {z }

sol. and sup.

(2.6c)

C(t) = C(0)� 1

V

⇢k

v

Z 1

0

n(L, t)L3

dL

| {z }

solid-liquid mass balance

(2.6d)

J

�

n(L, t), �, T
�

= J

0,1

exp(�E

1

/T )�b1 + J

0,2

exp(�E

2

/T )�b2
Ac/Vs

| {z }

nucleation rate model

(2.6e)

G(�, T ) = k

g

�

g

| {z }

growth rate model

(2.6f)

2.2.2 Reduction to moments: changing the state representation to ease
the computational burden

Solving a population balance model is computationally intensive. This is because

numerically solving a partial di↵erential equation (e.g. Equation 2.6a) requires both

spatial and temporal discretization. To make computation tractable, a common strat-

egy is to reduce the state representation while maintaining the model structure from

the population balance equation. The most used method for achieving this is termed

the method of moments.
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The method of moments: reducing the model complexity by reducing the

state representation. For the simple case of nucleation- and growth-only, like that

given above, a transformation can be used to reduce the state representation from the

crystal size distribution density function to a series of moments, and thereby reduce

the partial di↵erential equation to a series of ordinary di↵erential equations.

Moments of the size distribution are defined as follows:

µ

i

⌘
1
Z

0

n(L)Li

dL, (2.7)

where µ

i

is said to the the ith moment of the distribution n(L).

Applying the moment transform to Equation (2.6a) gives us a new representation

of the crystal state and lets us reduce the partial di↵erential equation to a series of

ordinary di↵erential equations. Assuming the growth rate is size independent:

1
Z

0

✓

@n(L, t)

@t

◆

L

i

dL = �G

1
Z

0

✓

@n(L, t))

@L

◆

L

i

dL,

commuting the integral and using integration by parts

@

1
R

0

n(L, t)Li

dL

@t

= �G

0

@

L

i

n(L, t)|1
0

� i

1
Z

0

n(L, t)Li�1

dL

1

A

,

assuming n(1, t) = 0 and applying the moment definition we arrive at

@µ

0

@t

= Gn(0, t), and

@µ

i

@t

= iGµ

i�1

for i � 1.

Using the boundary condition given by Equation (2.2), we get the following expres-

sions for the rate of change of the zeroth through third moments:
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Moments balance

@µ

0

@t

= J, (2.8a)

@µ

1

@t

= Gµ

0

, (2.8b)

@µ

2

@t

= 2Gµ

1

, (2.8c)

@µ

3

@t

= 3Gµ

2

. (2.8d)

Combined with the mass balance and nucleation and growth rate expressions, this

gives a new model of the crystallization dynamics.

Moments Model

@µ

0

@t

= J,

@µ

1

@t

= Gµ

0

,

@µ

2

@t

= 2Gµ

1

,

@µ

3

@t

= 3Gµ

2

| {z }

moments balance

(2.9a)

µ

0

(0) = 0
| {z }

initial condition

(2.9b)

� =
C � C

⇤(T )

C

⇤(T )
| {z }

sol. and sup.

(2.9c)

C(t) = C(0)� 1

V

⇢k

v

µ

3

| {z }

solid-liquid mass balance

(2.9d)

J = J

0,1

exp(�E

1

/T )�b1 + J

0,2

exp(�E

2

/T )�b2
µ

2

| {z }

nucleation rate model

(2.9e)

G = k

g

�

g

| {z }

growth rate model

(2.9f)
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The mathematical model given by (2.9) is easier to solve numerically—and this is a

big advantage for actually employing the model. But it is important to note that the

dynamics are now expressed in terms of a di↵erent crystal state representation: the

crystal state is now given by the zeroth through third moments of the size distribution.

In this reduced state representation we have lost information and can no longer extract

the full crystal size distribution.

Fortunately, the moments themselves have physical meaning. The zeroth moment

is the number of crystals and the third moment is proportional to the total, aggre-

gate volume of the crystals and therefore the mass of crystals. From the moments

we can also obtain measures of the mean crystal size, the property we aim to control.

2.3 Using the PB Framework to Establish Size Control

The PBE as a function that connects the input temperature to the output

crystal size distribution. To discuss the use of a population balance model for

crystal size control, it is convenient to introduce some notation. In particular, the

overall population balance model, which is actually composed of a series of equations

(e.g. Equations 2.6a–f), will be denoted more succinctly by the function FPBM.

This notation is used to suggest that the population balance model can be thought

of as a function. Indeed, provided we can obtain a solution to the series of equations,

the population balance model does act as a function—for unseeded batch cooling

crystallization, the population balance model serves a function that takes, as input, an

initial solution concentration and a temperature time profile, and outputs time profiles

for the crystal size distribution density function and the solution concentration:

[

output
z }| {

n(L, t), C(t)] = FPBM

�

T (t), C(0)
| {z }

input

�

. (2.10)

Another was of saying and expressing this is: the population balance model predicts
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the time evolution of the crystal size distribution and solution concentration from a

specified temperature profile and initial concentration

FPBM : T (t), C(0) 7! n(L, t), C(t).

This function is very useful for establishing control—provided that the population

balance model is an accurate representation of reality and can be solved. In practice,

these two qualifications are not always easy to meet. To be precise in our discussion

of the use of population balance models for control, two additions to the function

notation are needed.

The first is to signify the population balance model details. That is: the choice

of underlying crystallization mechanisms deemed important (nucleation, growth, ag-

glomeration, dissolution, etc.); the expressions chosen to represent the rate at which

each of these processes occur; and, finally, the parameters in these rate expressions.

The symbol M is used indicate the choice of rate expressions in the PBM; the set

of parameters is represented by ✓M. These are expressed in the function notation as

follows:

[n(L, t), C(t)] = FPBM

�

T (t), C(0)|M, ✓M
| {z }

details

�

. (2.11)

The second add-on needed, is to signify the computational method. As the set of

equations used to express a population balance model (e.g. equations 2.6a–f) can-

not be solved explicitly in most cases, a numerical solution is used. Sometimes this

represents an approximation that should be distinguished from exact solution. The

computational method and numerical solution are denoted with the following mark-

ings:

[ñ(L, t), C̃(t)] = F̃C
PBM

�

T (t), C(0)|M, ✓M
�

, (2.12)

where the tilde is meant to suggests an approximate solution and the symbol C signifies

the computation method.
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2.3.1 Population balance model development: choosing M and ✓M

Developing an accurate population balance model requires specifying which under-

lying crystallization mechanisms that are important and also specifying appropriate

expressions for these mechanisms. So how is this done? The underlying mechanisms

are selected prior to running experiments with the exception of specifying a set of

unknown parameters, which are found by fitting to data. In the notation given above,

M is chosen by the user, leaving the parameters ✓M to be identified.

Parameter identification. To identify the parameters, ✓M, the model is fit to

data. Usually this data comes in the form of a concentration profile for a batch

cooling crystallization or series of batch cooling crystallizations implemented using

select temperature profiles. Sometimes the concentration profile data is also supple-

mented with crystal size distribution data. Once the measurements are collected,

an optimization program, like the following, is used to specify the unknown model

parameters:

minimize
✓M

⇢

P

N

k=1

⇣

Ĉ(t
k

)� C̃(t
k

)
⌘

2

+ ⇢

P

N

k=1

||n̂(L, t
k

)� ñ(L, t
k

)||
�

subject to [ñ(L, t), C̃(t)] = F̃C
PBM

�

T̂ (t), Ĉ(0)|M, ✓M
�

,

where Ĉ(t) is the measured concentration profile, ⇢ is an adjustable parameter, n̂(L, t)

represents the measured or, more accurately, estimated crystal size distribution, and

||n̂(L, t
k

) � ñ(L, t
k

)|| expresses the di↵erence between the measured crystal size dis-

tribution and the model-predicted crystal size distribution at time t

k

.

2.3.2 Population balance model-based size control

Open-loop, programmed cooling. Provided it is accurate and can be computed

in a reasonable time, the population balance model function given by (2.12) is a very

useful function to have in optimizing operations to produce crystals of targeted sizes.
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It can, for example, be embedded in an optimization program to identify the right

temperature profile for producing crystals with desired size characteristics, such as a

target mean crystal size:

minimize

T (t), t 2 [0, tN ]

n

�

L̄(t
N

)� L̄

�
�

2

o

subject to L̄(t
N

) =
R1
0

ñ(L, t
N

)L dL,

[ñ(L, t), C̃(t)] = F̃C
PBM

�

T (t), C(0)|M, ✓M
�

,

C(0) = C

init
,

n(L, 0) = 0,

(2.13)

where L̄

� denotes the target mean crystal size.

This type of application—using a population balance model to find an optimal

temperature profile—is the most frequent application of the population balance model

framework for control of batch cooling crystallizations. It has been extensively investi-

gated in the literature dating back to the early 1970’s, when Mullin and Nyvlt [Mullin

and Nyvlt, 1971] and then Jones and Mullin [Jones and Mullin, 1974] established that

a programmed cooling profile (obtained via a population balance model) led to better

CSD characteristics in comparison with linear or natural cooling. There have been

numerous publications on variants of this strategy aimed at bringing the capability

from better CSD characteristics to tightly controlled CSD characteristics [Rawlings

et al., 1993,Miller and Rawlings, 1994,Matthews and Rawlings, 1998, Lang et al.,

1999,Worlitschek and Mazzotti, 2004,Hu et al., 2005].

But the above approach faces limitations that can stand in the way of reliable con-

trol. Solving the optimization problem given by (2.13) is computationally demanding,

even for the simplest population balance model. More detrimental: model-mismatch

and process uncertainty severely degrade the performance of the open-loop control

temperature profile when implemented on a real system.
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Closed-loop control. The open-loop strategy may be made more robust by op-

timizing with explicit consideration of the model uncertainty [Nagy and Braatz,

2004, Nagy, 2009]. But this can only go so far to alleviate the shortcomings. It

is more e↵ective to close the loop and use feedback from measurements to adjust the

control trajectory in real time.

Figure 2.5 illustrates a generic loop for PBM-based feedback control. The feed-

back loop has two key components: a state observer—required to infer the crystal

size distribution density function from incomplete measurements—and a PBM con-

troller, which requires an internal optimization around the population balance model

function.

temperature

jacket

state 
observer

PI 
temperature 

controller-

+
e

measurement

PBM
controller

temp. 
setpoint

! " ,	
%(',")

Figure 2.5: Diagram of a population balance model (PBM)-based feedback control
scheme.

Although there have been numerous publications developing population balance

model-based feedback control of crystallization in simulation as early as the 1980’s

[Chang and Epstein, 1987, Zhang and Rohani, 2003], experimental demonstrations

of population balance model-based feedback control are rare [Sheikhzadeh et al.,

2007,Mesbah et al., 2011,Mesbah et al., 2012] and especially sparse for batch cooling
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crystallization [Abbas and Romagnoli, 2006]. The lack of experimental demonstra-

tion speaks to the di�culty in applying the population balance framework to establish

feedback control over the size of crystals produced by unseeded batch cooling crys-

tallization.

2.3.3 Why I think it is di�cult to use the PB framework to establish
control

While the population balance framework seems a natural framework for understand-

ing and modeling crystallization dynamics, it is di�cult to apply this framework to

establish control in practice. In my mind, there is a clear reason for this: the frame-

work does not facilitate the straightforward development of feedback control and

feedback control strategies are far better suited to control the endpoint of a complex

dynamical system, like crystallization.

It is di�cult to establish accurate open-loop control over a complex dynam-

ical system like crystallization. Establishing accurate open-loop control over a

complex dynamical system requires a very accurate model of the dynamics. That is, it

requires a model that accurately predicts how the system will behave under all di↵er-

ent inputs. Although the population balance equation is mathematically rigorous and

elegant, the fidelity of a population balance model is wedded to assumptions about

the underlying dynamic mechanisms (e.g. nucleation and growth). With current

sensor limitations, figuring out the appropriate underlying mechanisms to include in

the model and identifying rate expressions that truely capture the dynamics of these

mechanisms is a challenge to say the least. As a result, it is common for population

balance models to show only limited predictive ability—ultimately, undermining their

use for reliable open-loop control.
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The PB framework does not easily admit closed-loop control. Limitations

of the population balance model predictive accuracy can potentially be overcome us-

ing feedback control. But this requires two things: online monitoring of the crystal

state (as represented by the model) and quick computation. With population bal-

ance models we run into problems on both fronts. Sensors for accurately monitoring

the crystal size distribution in real-time are limited. As a result, the state must be

estimated by an observer, which may be of limited accuracy. Further subverting the

application of population balance model-based feedback control is the complexity of

a population balance model: dynamic optimization using a such a model is com-

putationally demanding and cannot be completed in real time without significant

approximation.

2.4 Chapter Conclusions

From a stirred solution of any significant volume, crystallization occurs by the forma-

tion and subsequent evolution of many crystals—that is, a population of crystals. The

population balance provides a framework for modeling the time-evolution of a crystal

population as characterized by the crystal size distribution density function, n(L, t).

This gives us a way of connecting the input temperature profile to the crystallization

dynamics and, ultimately, the size of the produced crystals. So it seems to be an

appropriate strategy for addressing the crystal size control problem.

But achieving even moderate control over the crystal size using the population

balance framework requires real ingenuity. While I have seen this ingenuity out of

many industrial groups and it has been published by many academic groups of the

highest quality—including by former members of the research group I am a part of—,

accurate crystal size control using is still not common place.

I see a reason for this: with current sensor limitations and computational capa-

bilities, the population balance framework is not conducive to directly establishing
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feedback control, and feedback control is far better suited to address endpoint con-

trol of a complex dynamical system than open-loop control. The next chapter gives

an alternative framework for addressing the crystal size control problem—one that

directly enables the use of feedback.
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CHAPTER 3

THE MASS-COUNT (MC) FRAMEWORK

“All models are wrong, but some

are useful.”

— George E. P. Box

This statement, made by the late statistician George Box, has come to be one of

my favorite quotes. I like it because it is a reminder that you can always consider

alternatives: if you understand that no model is the truth, then you are more free to

search for a model or framework that suits the problem at hand.

In the spirit of George Box’s quote, this chapter describes an alternative framework

for considering crystallization dynamics and establishing crystal size control. Instead

of considering crystallization dynamics in terms of the evolution of a distributed

crystal population, the dynamics are expressed in terms of the evolution of just two

aggregate crystal state properties: the total mass of crystals and the total number of

crystals—referred to subsequently as the crystal mass and count.

The crystal mass and count serve as order parameters and give a reduced-dimensional

representation of the crystal state. In recording just these two properties, we lose in-

formation and we can no longer keep track of the full crystal size distribution, for

example. But the properties together do track the property we want to control:

the mean crystal size. What is more, representing the crystal state with these two

properties reveals a useful perspective that enables an intuitive understanding of the

crystallization dynamics and, more to the point, feedback control.
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Outline. It is worthwhile to pause here and outline how the mass-count (MC)

framework will be presented and draw a parallel to the presentation of the population

balance (PB) framework given in Chapter 2.

The PB framework was introduced in Chapter 2 as follows:

• the pertinent crystal state description was given (the crystal size distribution);

• followed by the perspective of crystallization dynamics that this revealed (the

population balance equation); and

• finally, the chapter ended with a description of how the PB framework has

been used to establish size control for batch cooling crystallization (model-based

open-loop control).

Presentation of the MC framework is given a parallel organization:

• the pertinent crystal state description is given (the crystal mass and count);

• followed by the perspective of crystallization that this reveals (crystallization

dynamics seen as movement in mass-count space); and

• finally, the chapter ends with a description of how the MC framework can be

used to establish size control (rule-based or empirical model-based feedback

control).

Following the same structure helps to link the two frameworks as di↵erent perspectives

on the same process, and also highlight how these alternative perspectives induce

di↵erent approaches to the crystal size control problem.
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3.1 Describing the Crystal State by the Crystal Mass and
Count

The population balance framework is predicated on representing the crystal state

with the crystal size distribution density function. Representing the crystal state

with a continuous distribution function is convenient because it admits a continuity

equation for the rate of change of the state: the population balance equation. But we

should not consider this the only way to represent the state—nor should we consider

population balance models to be the truth.

Here we propose a di↵erent representation: we propose representing the crystal

state with just two aggregate properties, the crystal mass and the crystal count (and

also making a slight change in representing the solution state, using supersaturation

in place of solute concentration). This representation is illustrated in Figure 3.1.

Figure 3.1: Mass-count characterization of the solution and crystal states as they
evolve. At each instant in time, the solution state is indicated by the temperature,
T , and the supersaturation, �; while the crystal state is indicated by two aggregate
properties: the total crystal mass, m, and the total crystal count, n.

Why this representation? The crystal mass and count do not fully capture the

crystal state in the sense that these properties contain all of the information needed

to fully describe the crystals. Indeed, these properties do not even capture many

details of the crystal size distribution. They do, however, specify the average crystal

size, and, we will find, the current crystal mass and count along with the prevailing

supersaturation are enough to predict the forward change in crystal mass and count.
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This means that we can write a state-determined dynamical system model, analogous

to the population balance model but with a di↵erent state representation.

Provided these criteria are met—specification of the control property and admit-

tance of a state-determined dynamical system model—there are clear advantages to

using a low-dimensional state representation, especially a two-dimensional state rep-

resentation. Using a two-dimensional state representation a↵ords easy computation

and also reveals an intuitive way to understand the dynamics: as movement in space.

Aside from being low-dimensional, representing the crystal state specifically by the

crystal mass and count has another big advantage for application, these properties—or

properties in close relation—can be measured online. And, online monitoring, along

with fast computation, facilitates feedback control.

Chapter 4 discusses online monitoring. The rest of this chapter reveals how the

proposed mass-count crystal state representation gives us an easy way to visualize

crystallization dynamics and also clarifies the route to achieving crystal size control.

3.2 Crystallization Dynamics Seen as Movement in MC
Space

Let me walk through a linear cooling crystallization and describe the dynamics in

terms of the evolution of the solution state properties, temperature and supersatura-

tion, and the aggregate crystal state properties, mass and count.

The run starts with a clear (unseeded) solution at a high temperature. Cooling

then creates supersaturation and, at some point, causes primary nucleation. At the

onset of nucleation, both the crystal mass and count increase from zero. Continued

cooling maintains supersaturation, driving crystal growth—possibly along with addi-

tional nucleation. This is seen as a further increase in the crystal mass and, possibly,

the count. We can capture these dynamics by plotting each of the properties against

time, as is done Figure 3.2.
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Plotting the information in this way—against time—gives us a sense of how the

solution state evolved and, in turn, how the crystal state evolved. But, viewed from

this perspective, it is not immediately clear how to make sense of the crystallization

dynamics, much less address the crystal size control problem.

solution state

crystal state

0

0 0

Figure 3.2: Hypothetical linear cooling crystallization as seen through time profiles
of the key solution state and crystal state properties: supersaturation, temperature,
crystal mass, and crystal count.

There is a better way to show the evolution of the crystal state properties—a

way that reveals an intuitive understanding of the dynamics and, ultimately, helps

us address the crystal size control problem. This is plotting the crystal mass against

the count and viewing crystallization as a trajectory in mass-count space. Figure 3.3

shows this perspective for the same linear cooling crystallization.
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Figure 3.3: Crystallization seen as a trajectory through mass-count space (data
points plotted at fixed time intervals).

Why is this perspective useful? The perspective is useful, foremost, because it

shows the dynamics as movement in space. A full third of our brains may be dedicated

to vision, and large portions also dedicated to space and movement. The crystalliza-

tion and dissolution dynamics, when viewed from this perspective, can therefore be

understood more intuitively.

Nucleation, which results in an increase in the number of crystals without a sig-

nificant increase in the crystal mass, is seen as movement to the right in MC space.

Growth, on the other hand, is seen as movement upwards. Conversely, dissolution is

seen as movement downward and to the left. In each case, the rate of crystallization

or dissolution is reflected in the rate at which the MC position changes—that is, the

speed of movement. (In static images, this is reflected in the distance between data

points, which are given at fixed time intervals).
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Figure 3.4: Crystallization dynamics seen as movement in MC space.

Seeing crystallization as movement in MC space can help us understand the

dynamics, but this visualization—as shown in Figure 3.3 and illustrated in Figure

3.4—does not show the connection with the solution state properties that drive the

dynamics. As was outlined at the end of Chapter 1, making this connection is key

to addressing the crystal size control problem. To capture the connection between

the solution state properties and the crystallization dynamics, we can layer the data

visualization: the solution temperature and supersaturation can be indicated at each

time with the color and size of the circle. This visualization is shown in Figure 3.5.
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Figure 3.5: MC trajectory for cooling crystallization with the solution state vari-
ables, temperature and supersaturation, indicated by the color and size of the points
(data points plotted at fixed time intervals).

Viewing the dynamics this way is not just inviting; it is also e↵ective. In showing

the crystal state evolution as a trajectory in space we are able to exploit our natural

ability to understand movement; simultaneously seeing the solution state properties

through color and size of the points lets us quickly connect the input action to this

movement. This visualization strategy is more powerful for control than it might

seem. Once we understand the crystal size control problem within the MC framework,

we will see how this type of visualization can be leveraged to quickly build a mental

model of the dynamics that facilitates the development of feedback control schemes.

3.2.1 Modeling movement in MC space

Although a mental model of the dynamics can take us a long way in establishing

control with feedback, we cannot use a purely conceptual understanding to perform

precise calculation or optimize the operation. For this, we need a mathematical

model. This can be built up from first principles or constructed empirically, using
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data. Here an empirical or data-driven modeling strategy is suggested as it allows

us to develop a mathematical model of MC movement that is better suited for the

intended application: to inform feedback control.

First-principles approach to modeling the dynamics. Within the population

balance framework, a mathematical model of the dynamics is built up from balance

principles and knowledge of the underlying crystallization mechanisms. We might

use this strategy to arrive at a mathematical model for the dynamics in terms of the

mass and count. As was seen in §2.2.2, a population balance model can be reduced

to a moments model, in which the crystal state is now represented by the zeroth

through third moments (e.g. Equation 2.9). Since the zeroth moment is the total

crystal count and the third moment is proportional to the crystal mass, this seems

like a reasonable route for establishing a mathematical model of the dynamics within

the MC framework.

But this modeling strategy is encumbered. As the moments model is derived from

the population balance model, the fidelity of the moments model, like the population

balance model it came from, is tied to the accuracy of the underlying models of

nucleation, growth, dissolution, etc. This model is also troublesome for feedback

control: the crystal state dimension is four in the moments model (rather than two

as designed with the mass-count representation) and the solution concentration is

taken to be a dependent variable. This state is more di�cult to monitor in real time

and, for dynamic optimization, the extra dimensions make real-time calculation more

demanding.

Empirical or data-driven modeling. We can instead develop a useful model (for

our control goal) by flouting first-principles-type modeling and employing an empirical

or data-driven approach. To set a structure for empirical modeling, we start with the

assumption that a state-determined, Markov model (i.e. a model that predicts the
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dynamics from the current state and input) can approximate the dynamics:
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Moreover, we assume that the supersaturation, as defined by Equation 1.4, can be

treated as the single input (manipulated by changing the solution temperature):

u = �(T ). (3.3)

The picture associated with this model is given in Figure 3.6.

crystal

Figure 3.6: Markov model of movement in mass-count space.

Presumption of the Markov model. Even in the general form, the model given

by Equation (3.1) is presumptive: it assumes that the forward movement in MC

space can be predicted from the current position (mass and count) and the current

supersaturation. These three properties clearly do not capture all details of the

current state, and this therefore represents an approximation.

Treating the supersaturation as an input. A comment should be made in

treating the supersaturation as an independent input, decoupled from crystal state.
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The supersaturation is, of course, a function of the current concentration, which is

coupled through a mass balance to the total crystal mass. However, if we can arbi-

trarily adjust the solution temperature and there is a one-to-one relationship between

the supersaturation and the temperature, then we can also arbitrarily change the su-

persaturation for any given concentration and accordingly treat it as an independent

variable.

Comparing the population balance model with the proposed empirical

Markov model. In comparing the mathematical model given by Equation (3.1)

with the population balance model given by Equations (2.6a–f), there is a stark con-

trast. In the population balance model, the state is infinite dimensional and the model

is composed of coupled algebraic integro-partial di↵erential equations. Moreover, the

form of these equations is rigid—with the user specifying all but a set of parameters

prior to running any experiments. In the proposed mass-count model, the state is

two dimensional and the mathematical model consists of two ordinary di↵erential

equations written for discrete time; the form of these equations is general, with one

restriction: the dynamics are a function of the current state and input.

This reduced state representation and empirical model structure does come with

costs: details of the size distribution are lost and first-principles-type knowledge can-

not be as easily utilized. But the model structure also pay dividends in application:

the model is easy to understand, it can be learned directly from data, and optimal

feedback control calculations are tractable.

3.3 Using the MC Framework to Establish Size Control

In addition to showing dynamics in an way that is intuitive to understand, the mass-

count perspective clarifies the route to crystal size control. To see this, the relationship

between the mass and count and the mean crystal size needs to first be made explicit.
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The mass-per-count provides a measure of the mean crystal size. The total

crystal mass divided by the total number of crystals—the mass-per-count—gives the

mean crystal volume:

V̄crys = (m/⇢crys)/n,

where V̄crys is the mean crystal volume, ⇢crys is the density of the crystal phase, m is

the total crystal mass, and n is the crystal count.

This provides a natural measure of the mean crystal size, which is proportional

to the cube-root of the mass-per-count:
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◆
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1/3

, (3.4)

where ks is a constant shape factor.

The crystal size control problem recast as a trajectory endpoint control

problem. The relationship given in Equation (3.4) indicates that the mean crystal

size can be expressed as a function of the mass and count. As illustrated in Figure

3.7(a), this means that di↵erent regions in MC space correspond to crystals of di↵erent

mean sizes. Moreover, the relationship suggests that a given position in mass count

space corresponds with a given mean crystal size and yield, as illustrated in Figure

3.7(b).

This may not seem like a central point, but realizing that a target mean crystal

size and yield corresponds a target position in mass-count space changes how we look

at the crystal size control problem: the crystal size control problem is now recast as

a trajectory endpoint control problem. And this conceptual framing of the problem

clarifies the route to control.
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Figure 3.7: (a) Illustration showing that di↵erent regions in mass-count space cor-
respond to crystals of di↵erent sizes. (b) Illustration showing that a given target yield
and mean crystal size corresponds to a single target position in mass-count space.

Route to achieving size control using the MC framework. Once the crystal

size control problem is seen as a trajectory endpoint control problem, the route to

achieving crystal size control becomes clear. We need to:

1. learn to move in MC space; and then,

2. establish feedback control policies for reaching target positions in MC space.
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Figure 3.8: The crystal size control problem as seen through the lens of the MC
framework.
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3.3.1 Learning to move in MC space

A basic understanding of crystallization gives us a grasp on how to move, generally,

in MC space. Cooling creates supersaturation and drives crystallization, which is

seen as movement up and to the right in MC space. Conversely, heating creates

undersaturation and drives dissolution, which is seen movement down and to the left

in MC space.

SUPERSATURATION

count

m
as
s

cooling heating

count

m
as
s UNDERSATURATION

Figure 3.9: Basic understanding of the movement in MC space driven by cooling
and heating.

The relationship between the speed of movement and magnitude of supersatu-

ration (undersaturation) is also suggested by crystallization theory. High levels of

supersaturation (or undersaturation) drive faster crystallization (dissolution), result-

ing in faster movement.

However, there are important details about MC space movement that we do not

know from a basic understanding of crystallization. How, for example, do we adjust

the angle of movement up and to the right during crystallization? And, what is the

precise relationship between supersaturation and speed of movement? And, can more

sophisticated movement be achieved through temperature cycling? Answering these

questions can help set up more e↵ective control. Fortunately, with online monitoring

we can learn the dynamics—and answer these questions—directly from experiments.

Learning the dynamics directly from measurements is critical to the success of the

MC framework; it allows us to avoid having to guess at the important underlying

mechanisms. Instead, we naturally include the important dynamics: incorporating

nucleation, growth, and dissolution dynamics as well as any other complex processes
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implicitly in the model of MC space movement we learn from experiments.

The learning process can be approached in two ways: through observation learn-

ing, in which we develop a mental model of the dynamics from visual observation; or

through machine learning, in which we develop a mathematical model of the dynamics

from a quantitative analysis of experimental data.

Observational learning. With real-time monitoring of the mass and count, the

connection between the manipulated variable—supersaturation by way of tempera-

ture changes—and the dynamics can be intuitively learned. That is, by iteratively

changing the solution conditions and watching the MC movement via visualizations

like the one given in Figure 3.5, a connection can be established in much the same way

that we might learn to drive. This type of intuitive learning process will be discussed

in greater detail in Chapter 5, where the process will be applied to understand the

dynamics of two real systems.

Machine learning. The Markov model proposed for capturing MC dynamics—i.e.

�x
⌧

= F (x
⌧

, u

⌧

)�t—predicts the forward change in MC position, �x
⌧

, from the

current MC position, x
⌧

, and degree of supersaturation, u
⌧

= �

⌧

. We can apply a

machine learning strategy to identify the function F , given experimental measure-

ments of the MC movement over fixed time intervals from di↵erent starting positions

under di↵erent inputs. That is, we can learn this model from training data of the

following form:
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In Chapter 5 a specific machine learning algorithm will be given and this strategy

applied to two experimental systems.
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3.3.2 Feedback schemes for controlling the trajectory endpoint and thereby
the crystal size

A key attribute of the MC framework is that it facilitates feedback control. Two types

of feedback control strategies can be developed: rule-based feedback control schemes

and model-based feedback control schemes.

Rule-based feedback control. With feedback, surprisingly accurate control of a

dynamical system can be achieved using only a conceptual understanding of the dy-

namics. There is an analogy to driving a car that brings this point home. In driving a

car we are not required to maintain precise, quantitative models of the car dynamics

in our head. It is enough to know the general e↵ect of our actions: turning the wheel

right alters our course in that same direction and pressing the gas peddle induces

acceleration. We then constantly use feedback to adjust our actions. The MC frame-

work enables this same type of strategy to be applied to control crystallization using

only a conceptual understanding of the dynamics (obtained through observational

learning).

To see this, consider the visual interface given in figure 3.10. Here the current

position is shown in relation to the target position, and we can observe the most recent

movement. With even the most basic understanding of movement—like, “cooling

drives movement up and to the right”—this interface can facilitate feedback control.

For example, we might develop a scheme in which we apply cooling whenever the

current position is below and to the left of the target and heating otherwise. In

Chapter 6, such rule-based feedback control algorithms are codified and tested.
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Figure 3.10: Visual interface for feedback control.

Model-based feedback control. Rule-based feedback control schemes can be

powerful, but we cannot say much about the optimality of these schemes. To iden-

tify optimal feedback control policies, we need to identify a mathematical model of

the dynamics (e.g. the proposed Markov state model) and then solve a dynamic

optimization problem like the following:

minimize
u
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� (x

⌧=1,...,N

, u

⌧=1,...,N

)
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x
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= xinit;

(3.5)

where � is the objective function, F is the discrete-time dynamic model, and ⇡

represents a state-feedback policy—i.e. ⇡(x
⌧

) 7! u

⌧

. The solution to this optimization

problem, ⇡⇤, is the so-called optimal explicit model-predictive control policy.

Here again, we find an advantage of the MC framework. With a low-dimensional

model of the dynamics (F ), we can apply dynamic programming to solve (3.5). The

resulting optimal feedback control policy can then be applied online. In Chapter

6, this type of model-predictive feedback control will also be developed and demon-

strated experimentally.
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3.3.3 Limitations of the MC framework

As with the PB framework, it should be recognized that the MC framework is a

perspective with limitations. Clearly, the aggregate crystal properties, mass and

count, do not capture all of the details of the crystal state. While controlling the final

mass and count gives us control over the mean crystal size, it does give us control

over other properties of potential interest, such as the crystal size distribution width

or crystal purity.

Also related to the lack of detail captured by the crystal state representation:

the MC models of crystallization dynamics are somewhat removed from theories of

crystallization developed at a more fundamental level. This makes it more di�cult

to utilize established theory to inform MC models and also more di�cult to use MC

models of crystallization dynamics to make inferences about the underlying mecha-

nisms.

3.4 Chapter Conclusions

Representing the crystal state with two aggregate properties—the crystal mass and

count—reveals a new framework for understanding and controlling batch cooling crys-

tallization. Within this framework, crystallization dynamics are seen as movement

in mass-count space and the crystal size control problem is re-cast as a trajectory

endpoint control problem.

This conceptualization clarifies the route to establishing control: we need to (1)

understand how to move in MC space and then (2) establish policies for driving

to target positions. Provided online monitoring of the crystal mass and count are

available, an understanding of movement in MC space can be established directly

from experimental data and feedback control policies can be be developed for driving

to di↵erent target positions. In Part II this strategy will be tested on two experimental

systems.
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CHAPTER 4

EXPERIMENTAL SYSTEMS AND MEASUREMENTS

4.1 Crystallization Systems Studied

Two crystallization systems are selected to demonstrate the use of the MC frame-

work for crystal size control. The first is darapskite salt (Na
3

NO
3

SO
4

·H
2

O) crystal-

lization from a multicomponent electrolytic solution. The second is paracetamol (or

acetaminophen) (C
8

H
9

NO
2

) crystallization from ethanol.

(Na3NO3SO4· H2O) PARACETAMOL

(C8H9NO2)

DARAPSKITE

(a) (b)

Figure 4.1: (a) Optical micrograph of darapskite salt (Na
3

NO
3

SO
4

·H
2

O) crystals.
(b) Optical micrograph of paracetamol (C

8

H
9

NO
2

) crystals.

4.1.1 Experimental System I: darapskite salt crystallization from water

An aqueous solution containing sodium nitrate and sodium sulfate is used as a model

multicomponent salt crystallization system. To be specific, 330 grams of NaNO
3

and 21.75 grams of Na
2

SO
4

added to 300 mL of water (⇡ 25:1 mol-NaNO
3

:mol-

Na
2

SO
4

). The initial conditions for batch cooling crystallization for this system were

standardized: all of our experiments started from a clear solution at 80 °C under

atmospheric pressure. From this initial point, cooling caused the crystallization of a

hydrated double salt, Na
3

NO
3

SO
4

·H
2

O, known as darapskite (Figure 4.1(a)).
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This model system came from the original motivating application for our research

on crystallization control [Gri�n et al., 2015d]. In particular, the relative concen-

trations of sodium nitrate and sodium sulfate were selected to be representative of

nuclear waste compositions at the Hanford site [Nassif et al., 2008].

Background on System I selection: clean salt removal from nuclear waste.

The United States Department of Energy is faced with extracting, vitrifying, and

encasing the hazardous constituents contained in 56 million gallons of nuclear waste

currently stored at the Hanford site in the state of Washington. Separating non-

radioactive components from the waste prior to vitrification can reduce costs and

expedite cleanup e↵orts. In particular, sodium salts—which are non-radioactive and

relatively innocuous by themselves—make up a significant portion of the unprocessed

waste and can potentially be removed with a crystallization-separation operation

[Herting, 1996,Nassif et al., 2008].

However, the viability of such a process hinges on the ability to e↵ectively partition

the solid crystals from the solution. This, in turn, requires that the crystallization

be controlled to produce large, separable salt crystals. Darapskite salt crystallization

from water represents a simple, but relevant waste simulant for testing salt crystal-

lization control strategies [Gri�n et al., 2015b].

4.1.2 Experimental System II: paracetamol crystallization from ethanol

The second crystallization system selected is paracetamol crystallization from ethanol.

Paracetamol, also known as acetaminophen, is a small molecule pharmaceutical that

is the active ingredient in Tylenol. This system was selected for it relevance to the

pharmaceutical industry.

As with system I, the initial conditions for batch cooling crystallizations or parac-

etamol from ethanol were standardized in this work: each run started with 200 g

of ethanol containing 30 g-paracetamol/100 g-ethanol fully dissolved at 45 °C under
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atmospheric pressure. From this initial point, cooling caused the crystallization of

paracetamol in the stable polymorphic form (Form I), which is shown in Figure 4.1(b).

A comparison of the two systems. Comparing the two systems, we see consid-

erable di↵erences. Darapskite is crystallized from a multicomponent electrolytic solu-

tion and forms plate-like crystals. Paracetamol is crystallized from a single-component

ethanolic solution and forms monoclinic (bulky) crystals. In using these two systems

as case studies, we aim to test the generality of the MC framework.

4.2 Equipment: Lab-Scale Batch Crystallizer

Batch cooling crystallizations were implemented using an OptiMaxTM workstation

from Mettler Toledo. This system, shown in Figure 4.2, lets us operate batch cooling

crystallizations at the liter scale with accurate control over the solution temperature.

In addition, the OptiMax system provides a platform for incorporating online

monitoring tools. For this work, the system was equipped with probes for focused

beam reflectance measurements (FBRM) and attenuated total reflectance Fourier

transform infrared (ATR-FTIR) measurements, as well as standard temperature sen-

sors. Measurements from these instruments were recorded with iCTM software, also

from Mettler Toledo, and exported in real-time to MATLAB® for processing.

4.3 Online Measurements

In the MC framework, the solution state is described by the solution temperature

and supersaturation, while the crystal state is described by the aggregate properties,

mass and count. Using ATR-FTIR, and FBRM, these properties—or a close relative

in the case of crystal count—can be monitored in real time.
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Figure 4.2: OptiMax system from Mettler Toledo equipped with probes for focused
beam reflectance measurements (FBRM) and attenuated total reflectance Fourier
transform infrared (ATR-FTIR) measurements.

4.3.1 Monitoring the solution supersaturation

The solution supersaturation can be monitored with ATR-FTIR measurements made

in conjunction with temperature measurements [Dunuwila and Berglund, 1997].

ATR-FTIR measurements. ATR-FTIR, illustrated in Figure 4.3, measures the

infrared absorbance spectrum of the solution even in the presence of suspended parti-

cles [Dunuwila et al., 1994]. As the infrared light absorbed by a solution is indicative

of composition of that solution, this measurement can be calibrated to give the solute

concentration.

IR-to-concentration calibration. Calibration consists of two main steps: data

collection and model regression. For solutions that contain only a single solute,

standard regression techniques can be applied to identify a model that correlates

a single spectral feature (e.g. absorbance peak height) with the solute concentra-

tion [Dunuwila et al., 1994,Lewiner et al., 2001,Gron et al., 2002,Doki et al., 2004].

While univariate calibration models can find physical interpretations, the concen-

tration prediction accuracy is typically improved with a multivariate calibration model
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Figure 4.3: Using ATR-FTIR the solution infrared absorbance spectrum is measured
in real time even in the presence of crystals.

that takes a number of spectral features into account [Togkalidou et al., 2001,Liotta

and Sabesan, 2004,Cornel et al., 2008]. Moreover, multivariate calibration models can

be used to establish concentration monitoring for multicomponent solutions [Togkali-

dou et al., 2002,Derdour et al., 2003].

Di↵erent types of multivariate regression algorithms are used here. To infer the

concentration of both sulfate and nitrate in the multicomponent electrolytic solution,

a tailored regression algorithm termed robust parameter support vector regression

(RPSVR) is used [Gri�n et al., 2014]. This regression algorithm, which can find

broader application and is especially useful for IR-to-concentration calibration in-

volving multicomponent solutions, is presented in detail in Appendix §A.1. To infer

the concentration of paracetamol in ethanol, partial least squares regression (PLSR)

is applied [Wold et al., 1984,Geladi and Kowalski, 1986].

Supersaturation from concentration and temperature measurements. For

a single-component solute system, such as paracetamol in ethanol, the supersatura-

tion, as defined in Chapter 1, is given by:

� ⌘ C � C

⇤(T )

C

⇤(T )
,
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where C is the current solution concentration and C

⇤(T ) is the solubility concentration

at the current temperature.

Given the solubility-temperature relationship, C⇤(T ), the supersaturation, can be

tracked from concentration measurements—made via ATR-FTIR—and temperature

measurements.

The definition of supersaturation is more complicated for multicomponent elec-

trolytic solutions, like that from which darapskite is crystallized. Nevertheless, the

molar supersaturation [Gri�n et al., 2015d]—a measure analogous to relative super-

saturation—can be tracked by monitoring concentration and temperature, provided

the more complicated solubility-temperature relationship is known. The molar su-

persaturation for darapskite is developed in Appendix §A.2.

Solubility trace. For both systems, the solubility-temperature relationship is iden-

tified using the solubility trace methodology [Barrett et al., 2010,Kee et al., 2011],

which is especially useful for quickly obtaining the solubility-temperature relationship

for a multicomponent solution [Gri�n et al., 2015d]. The procedure is as follows: the

solution is cooled to drive crystallization, allowed to equilibrate at a low temperature,

and then slowly heated. During the heating stage, the solution composition, which

should be approximately in equilibrium, is tracked by ATR-FTIR. The concentration-

temperature curve obtained during the heating stage—like those shown for the two

case systems in Figure 4.4—provides the solubility-temperature relationship.
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Figure 4.4: Solubility-temperature curves obtained using the solubility trace
methodology: (a) darapskite salt in aqueous solution and (b) paracetamol in ethanol.

4.3.2 Monitoring the crystal mass and chord count

The crystal mass is inferred from the solution concentration. Although it is

not usually done, the crystal mass can be monitored online without much additional

e↵ort provided solution concentration monitoring is already established. That is,

because batch cooling crystallization is a closed system, a mass balance can be applied

to infer the total crystal mass at any given time from the di↵erence between the

initial solute concentration and the current solute concentration (measured via ATR-

FTIR) [Gri�n et al., 2015a].

FBRM provides a measure related to the crystal count. Figure 4.5 illustrates

the focused beam reflectance measurement principle: a focused light beam is scanned

across the crystal-containing solution; when a crystal is in the path of the scanned

beam, light is reflected from the surface and detected by the instrument. (For our

particular instrument, the size limit of detection given by the vendor is 1 µm). The

number of discrete reflections detected over the measurement interval (30 s in our

case) is termed the chord count and denoted by the symbol c.
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Figure 4.5: FBRM measures light backscatter from crystals suspended in solution.

The chord count recorded by FBRM is strongly correlated to the number of crys-

tals per volume of solution—with experiments suggesting that the chord count is often

approximately proportional to the number of crystals in solution for slurries with low

to moderate densities [Heinrich and Ulrich, 2012, Li et al., 2013]. But the measure-

ment is not without complications. For example, even when the chord count is seen

to be proportional to the true crystal count, the proportionality constant can vary

widely from system to system. This can be explained by the fact that the sensitivity

of FBRM measurements to particles in solution depends on the shape of the particles

as well as the optical properties of the particles. For the two studied systems we see

this play out: in comparing FBRM measurements, we observe greater chord count

sensitivity to paracetamol crystals than darapskite crystals—as can be explained by

the fact that darapskite crystals are plate-like and more transparent.

To use the chord count measured by FBRM as a surrogate for the true crystal

count, one of two relationships must be established empirically: either the chord

count–crystal number relationship must be established or, more directly for our ap-

plication, the mass-per-count–crystal size relationship must established.
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4.4 O✏ine Crystal Size Measurement by Sieve Analysis

Sieve analysis is used to obtain a measure of the crystal size o✏ine. In running

this analysis, a simple two-step procedure was consistently applied: (1) the entire

crystal sample was filtered from solution with a Büchner funnel and washed sparingly

with cold solvent (water for darapskite and ethanol for paracetamol); (2) the crystals

were then distributed evenly across the top sieve tray and the stack was placed in a

RO-TAP sieve shaker for 100 min.

During shaking, the crystals are separated according to sieve diameter—with the

largest crystals remaining on the top sieve tray and the smallest falling to the bottom.

Weighing the mass of crystals in each sieve bin after shaking provides a measure of the

crystal size distribution. An example is provided for paracetamol crystals in Figure

4.6.

Figure 4.6: Example data from sieve analysis of paracetamol crystals.

From this data, we obtain a measure of the mass-weighted average crystal size:

s̄MW ⌘
P

Nbins
i=1

m

i

s

i

m

(4.1)

where s̄MW is the mass-weighted average crystal size measured by sieve analysis, s
i

is

the midpoint of the i

th bin (i.e. the midpoint of the size range for the i

th sieve bin),

m

i

is the mass of crystals in the i

th bin, and m is the total mass of crystals.
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4.5 Using the Chord Count as a Surrogate for the Crystal
Count

The MC framework is predicated on the mass-count position indicating the mean

crystal size. Here it is proposed that the chord count be used as a surrogate for the

true crystal count (the total number of crystals in solution). To confirm that the

chord count can be used as a surrogate for the crystal count, the relationship between

the mass-per-(chord)count and the mean crystal size was experimentally established

for the two studied systems.

4.5.1 Mass-per-count–size relationships for the experimental systems

Mass-per-count vs. mean size for darapskite crystals. Figure 4.7 shows the

mean crystal size measured by sieve analysis compared with the cube root of the

mass-per-count measured online for 30 di↵erent darapskite crystal samples. Despite

significant scatter, analysis of variance indicates that the correlation is significant

(p< 0.0001). This supports the use of chord count as a surrogate for the true crystal

count. Moreover, the empirical relationship that is established:

s̄MW = 1469(m/c)1/3, (4.2)

can be used to estimate the mass-weighted mean crystal size from online measure-

ments of mass and count made during subsequent darapskite crystallization runs.
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Figure 4.7: Empirical mass-per-count–size relationship observed for darapskite crys-
tals.

Mass-per-count vs. mean size for paracetamol crystals. For paracetamol

crystals, the correlation between the mean crystal size and the mass-per-count was

measured for 17 di↵erent crystal samples. This correlation is shown in Figure 4.8. As

with darapskite, there is some scatter in the data points. Nevertheless, analysis of

variance again indicates that the correlation is significant (p< 0.0001)—supporting

the use of chord count as a surrogate for the true crystal count. And, again, the

empirical relationship identified here:

s̄MW = 1305(m/c)1/3, (4.3)

can be used to estimate the mass-weighted mean crystal size from online mass and

count measurements made during subsequent paracetamol crystallization runs under

similar conditions.
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Figure 4.8: Empirical mass-per-count–size relationship observed for paracetamol

crystals.

4.5.2 Mass-chord count space for darapskite and paracetamol

With the chord count used in place of the true crystal count, MC space is scaled.

That is, the x-axis is now changed to the chord count for the particular crystallization

system. As confirmed empirically by the relationships captured in Figures 4.7 and

4.8, constant-size lines still span out radially from the origin, but the exact correlation

between mass and count and the size is system specific.

Figure 4.9 maps out the mass-chord count space for the two studied experimental

systems. Constant-size lines are indicated with blue dashes. For darapskite salt in

water, the associated mass-weighted mean crystal sizes are given by Equation (4.2);

for paracetamol in ethanol, the associated mass-weighted mean crystal sizes are given

by Equation (4.3).

The upper bounds of mass-count space are operation specific. The mass upper

limit is the maximum yield. This can be derived from thermodynamics given the
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initial composition, the temperature bounds, and the solubility. For System I (dara-

pskite salt from water), with the described initial condition and a lower temperature

bound of 50 °C, a maximum yield of approximately 16 g can be achieved. For Sys-

tem II (paracetamol from ethanol), with the described initial condition and a lower

temperature bound of 15 °C, a maximum yield of approximately 30 g can be achieved.

An exact upper limit for the chord count is less clear. The order of magnitude,

however, can be established. FBRM is more sensitive to paracetamol crystals and,

as a consequence, the chord count recorded for roughly the same number of crystals

will be higher—this is reflected in the scale of the x-axes in Figures 4.9 (a) and (b).

PARACETAMOL

DARAPSKITE

(a) (b)maximum theoretical yield maximum theoretical yield

50
0

µm

Figure 4.9: (a) Mass-chord count space mapped out for darapskite salt crystalliza-
tion. (b) Mass-chord count space mapped out for paracetamol crystallization.

4.6 Chapter Conclusions

Using ATR-FTIR, FBRM and temperature measurements, the key state properties

can be measured in real time. On the solution side: the supersaturation is monitored

using ATR-FTIR and temperature measurements in conjunction with a calibration

model and knowledge of the solubility. On the crystal side: the crystal mass can
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be inferred from solute concentration measurement made via ATR-FTIR and a close

measure of crystal count, termed the chord count, can be measured with FBRM.

For the two experimental systems studied in this work—darapskite salt crystalliza-

tion from water and paracetamol crystallization from ethanol—experimental results

indicate that the mass-per-(chord)count measured online provides an estimate of the

mean crystal size. This suggests we can apply the mass-count framework using the

chord count as a surrogate for the true crystal count.
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CHAPTER 5

LEARNING CRYSTALLIZATION DYNAMICS

Using the mass-count framework, it is clear what needs to be done to establish

size control: we need to learn how to move in MC space and then develop control

schemes for driving to target locations. This chapter is concerned with applying the

first step: learning how to move in mass-count space.

Crystallization and dissolution dynamics, as seen from the MC perspective, can be

learned in two ways. The first is observational learning—learning a set of qualitative

rules from observations. The second is machine learning—learning a mathematical

model for the dynamics from a set of training data. Both approaches are demonstrated

here.

5.1 Observational Learning: General Rules for Movement
in MC Space

In systems where temperature controls the supersaturation, movement in MC space is

induced by changing the solution temperature. A basic understanding of crystalliza-

tion and dissolution (c.f. Chapters 1 and 3) suggests some rules for this movement.

Cooling builds supersaturation, driving nucleation and growth, and thereby move-

ment up and to the right in MC space. On the other hand, heating drives dissolution,

and thereby movement down and to the left in MC space. Accurate control over the

final MC position, however, likely requires more detailed knowledge of the movement

than: “cooling drives movement up and to the right” and “heating drives movement

down and to the left.” For example, we need to understand how the rate of cooling
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influences the crystallization dynamics and the rate of heating influences the disso-

lution dynamics. We also need to understand what dynamics are induced by more

complex operations that switch between cooling and heating.

We are able to learn these details, in a qualitative manner, observing the MC

trajectories under varying temperature profiles.

5.1.1 Cooling operations: movement up and to the right

Linear cooling crystallization. Figure 5.1 shows the measured MC trajectory

for the crystallization of darapskite salt from water driven by linear cooling. At the

outset, cooling builds supersaturation, while the position remains at the origin (no

crystal mass or count). Eventually the supersaturation is enough to cause primary

nucleation—this is seen as movement to the right and slightly upwards in MC space.

As the run progresses, the supersaturation is depleted while crystals continue to

develop and grow. During this later stage, the trajectory turns upwards.
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Figure 5.1: Darapskite crystallization trajectory under linear cooling at a rate of
�0.25 °C/minute (positions indicated every 30 seconds).

Figure 5.2 shows a similar MC trajectory measured for paracetamol crystalliza-

tion also under linear cooling. Again, supersaturation first builds and then drives
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nucleation and growth, which is seen as movement away from the origin.
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Figure 5.2: Paracetamol crystallization trajectory under linear cooling at a rate of
�0.5 °C/minute (positions indicated every 30 seconds).

The two runs, shown in Figures 5.1 and 5.2, demonstrate that cooling drives

movement up and to the right in MC space, as expected. This is true for all linear

cooling crystallizations we have observed.

Linear cooling at di↵erent rates. The e↵ect of cooling rate on the crystallization

trajectory was probed for both systems. Figure 5.3 shows two trajectories recorded

for darapskite crystallization: the first recorded for slow linear cooling (-0.25 °C/min),

and the second recorded for fast linear cooling (-2.0 °C/min). Similarly, Figure 5.4

shows two trajectories recorded for paracetamol crystallization: the first under very

slow linear cooling (-0.04 °C/min), and the second under under moderate linear cool-

ing (-0.5 °C/min).
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Figure 5.3: MC trajectories recorded for darapskite crystallization under slow linear
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mean crystal size determined o✏ine by sieve analysis.
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mass-weighted mean crystal size determined o✏ine by sieve analysis.

70



These figures suggest an overall e↵ect of cooling rate on the crystallization tra-

jectory: slower cooling results in slower movement (the points are closer together)

and a steeper trajectory that ends at a higher mass-per-count position. The details

of the trajectories, however, suggests a slight refinement to this. In each run, linear

cooling is applied but the MC trajectories themselves are not linear. Instead they

curve upwards as the supersaturation decreases. This indicates that it is the prevail-

ing supersaturation, not the cooling rate itself, that dictates the speed and direction

of movement in MC space, and the rule is better stated as: slow cooling results in

low levels of supersaturation, which in turn results in slow movement that is directed

largely upwards; conversely, fast cooling results in high levels of supersaturation,

which in turn results in fast movement that is directed largely to the right.

Supersaturation control. To further confirm the e↵ect of supersaturation on the

movement in MC space, solution-state feedback control was applied to keep the super-

saturation constant during select crystallization runs [Fujiwara et al., 2002]. Also, to

eliminate non-linearity associated with primary nucleation, the solution was seeded.

Figure 5.5 shows the MC trajectory for seeded darapskite crystallization under a

constant supersaturation. This figure indicates that constant supersaturation results

in a fairly straight trajectory up and to the right, even as the cooling rate varies

somewhat.

To probe the manner in which the degree of supersaturation a↵ects the movement

in MC space, multiple (unseeded) batch cooling crystallizations were operated at

di↵erent levels of constant supersaturation.

Figure 5.6 shows the typical result. In this figure, crystallization trajectories are

shown for two unseeded paracetamol crystallization with supersaturation maintained

at 0.05 in one and 0.25 in the other. Here, it is clear that the level of supersatura-

tion, not the cooling rate, dictates the direction of movement. Both trajectories are
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relatively straight after the initial nucleation event, with the trajectory produced at

lower constant supersaturation being slightly steeper.
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Figure 5.5: MC trajectory recorded for seeded darapskite crystallization under
supersaturation control to maintain a constant supersaturation, �, of 0.1 (positions
indicated every 30 seconds).
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Figure 5.6: MC trajectories recorded for unseeded paracetamol crystallization with
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(label SSC:0.25).
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Summary of MC movement during cooling-only operations. The runs shown

in Figures 5.3–5.6 lead to an understanding of the MC movement induced by cooling:

cooling drives movement up and to the right in MC space; the direction and speed of

this movement is dictated by the prevailing level of supersaturation. Higher super-

saturation drives faster movement and pushes the MC trajectory to the right, lower

supersaturation results in slower movement and a steeper trajectory.

5.1.2 Heating operations: movement down and to the left

Heating creates undersaturation, causing dissolution of crystals. This is seen as move-

ment down and to the left in MC space.

Figure 5.7 shows dissolution trajectories measured for darapskite (a) and parac-

etamol (b) under linear heating. In both cases, the trajectories themselves are fairly

linear and movement progresses towards the origin. For crystallization, we observed

that the angle of the MC movement could be influenced by the cooling rate. A key

question is: can we influence the angle of movement down and to the left by adjusting

the heating profile?

Here we find, unlike crystallization dynamics, that the angle of movement dur-

ing dissolution is largely una↵ected by the rate at which temperature is changed or

the level of undersaturation. This is illustrated in Figure 5.8, which shows three

dissolution trajectories for paracetamol under di↵erent heating rates. In each case,

the trajectory follows the same linear path towards the origin; the heating rate only

influences the rate of movement in MC space, not the direction.
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Figure 5.7: Dissolution trajectories under linear heating (0.5 °C/min.) for: (a)
darapskite in water, and (b) paracetamol in ethanol. (Again, positions indicated
every 30 seconds).
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Figure 5.8: Dissolution trajectories for paracetamol under slow heating (0.1
°C/min.), moderate heating (1.0 °C/min.), and rapid heating (2.0 °C/min.).

Summary of MC movement during heating-only operations. The results in

Figure 5.7 and Figure 5.8 suggest a second rule for MC movement: heating drives

movement back towards the origin; this movement is faster under faster heating, but
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heating rate has little influence over the direction of movement.

5.1.3 Cycling between cooling and heating induces complex dynamics

The MC movement for cooling-only operations is always up and to the right. The

MC movement for heating-only operations is similarly constrained, but in the opposite

direction: it is always down and to the left. It turn out, however, that complex MC

dynamics in di↵erent directions can be induced by combining these operations—that

is, by applying cooling followed by heating and vice versa. Again, these dynamics are

probed by observing the trajectories for a few select operations.

Cycling between cooling and heating ratchets the MC position upwards.

Figure 5.9 shows the measured MC trajectory for darapskite when cooling was fol-

lowed by rapid heating. Cooling produced high supersaturation, which initially re-

sulted in a shallow crystallization trajectory o↵ to the right. On heating, the super-

saturation was quickly depleted and the trajectory curved upwards while the super-

saturation remains positive. Further heating eventually resulted in undersaturation

(at t = 38.5 minutes), causing dissolution and directing the trajectory back towards

the origin. However, the dissolution trajectory was markedly above the crystallization

trajectory.
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Figure 5.9: MC trajectory for the crystallization and subsequent dissolution of
darapskite (positions indicated every 30 seconds).

This trajectory demonstrates how an asymmetry between crystallization and dis-

solution dynamics can result in net movement upwards. To further explore this,

cooling-heating cycles were applied to induce crystallization and dissolution cycles

while the MC trajectory was monitored. Specifically, cooling-heating cycles were im-

plemented with feedback on the chord count following a simple rule: when the count

was below a pre-picked threshold value (as it is at the start of the run), linear cooling

was applied; when the count was above the threshold, linear heating was applied.

Figure 5.10 shows the MC trajectory observed for darapskite and Figure 5.11 shows

the MC trajectory observed for paracetamol under such operations.
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Figure 5.10: MC trajectory observed for darapskite when cooling-heating cycles
were applied (positions indicated every 30 seconds).
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Figure 5.11: MC trajectory observed for paracetamol when cooling-heating cycles
were applied (positions indicated every 30 seconds).

Summary of MC movement during cooling-heating cylces. The results given

in Figures 5.9, 5.10, and 5.11 suggest one final rule for movement in MC space: cycling

between cooling and heating tends to ratchet the MC position upwards.
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5.1.4 General rules for movement in MC space

The general rules learned from observations for both darapskite and paracetamol are

summarized in Figure 5.12. Cooling, drives movement up and to the right in MC

space. The rate of cooling dictates supersaturation, which influences the speed and

direction of movement: higher supersaturation results in faster movement more to

the right, lower supersaturation results in slower movement more upwards. Heating,

drives movement down and to the left in MC space. Here we have less actuator

authority: heating, at any rate, drives movement back towards the origin; this move-

ment is faster under faster heating, but the angle of movement is largely una↵ected

by heating rate. Finally, we learned that more complex trajectories can be obtained

by combining cooling and heating operations. In particular, cooling-heating cycles

tend to ratchet the MC position upwards—this is observed for both darapskite and

paracetamol.
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Figure 5.12: General rules for movement in MC space, observed for both darapskite
from water and paracetamol from ethanol.

78



5.1.5 Use of qualitative MC movement rules

The rules shown in Figure 5.12 provide guidance on how to move in MC space and,

combined with feedback, can be used to produce crystals of di↵erent sizes. In fact,

the rules for MC movement shown here underpin the two well-known feedback con-

trol strategies for producing larger crystals: supersaturation control (SSC) [Fujiwara

et al., 2002,Feng and Berglund, 2002,Gron et al., 2002,Liotta and Sabesan, 2004,Zhou

et al., 2006,Yu et al., 2006]—in which a low level of supersaturation is maintained to

promote growth over nucleation—and direct nucleation control (DNC) [Doki et al.,

2004,Chew et al., 2007,Woo et al., 2009,Bakar et al., 2009b,Bakar et al., 2009a]—in

which cooling-heating cycles are used to control the chord count and, ultimately, to

produce large crystals.

In Chapter 6, we will see that these simple rules for movement can be combined

with real-time feedback on both the mass and the count to direct the MC trajectory

to target positions with a high degree of consistency, resulting in crystal size control.

5.1.6 Limitations of a qualitative MC movement rules

The qualitative understanding of dynamics developed here has limitations. It does

not capture some of the more intricate details of the dynamics. For example, super-

saturation is not the only factor influencing the movement; the current crystal state

also influences the dynamics. As a clear example, the dynamics from the origin, in

which no crystals exist, will be significantly di↵erent from the dynamics observed at

a high mass-count position. These e↵ects are not as easy to learn and describe with

a few rules; a mathematical model is needed.

In addition, the rules provided in Figure 5.12 are for both of the studied sys-

tems. But the crystallization and dissolution dynamics—in terms of movement in

MC space—are not exactly the same for these two systems. For example, the ex-

act relationship between the prevailing supersaturation and the angle of movement
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is system-specific. To capture the system-specific intricacies, again a more rigorous,

mathematical approach is required.

5.2 Machine Learning: Developing a Mathematical Model
of Movement in MC Space

To capture finer details of MC movement and enable precise calculations, a machine

learning strategy is applied. In principle, this approach is similar to the observational

learning strategy presented: dynamic data is collected and used to learn a model.

Here, however, instead of learning qualitative rules or establishing a conceptual model,

a mathematical model of the dynamics is learned.

In introducing the MC framework, a Markov state model was suggested:

�x

⌧

= F (x
⌧

, u

⌧

)�t,

(5.1)

where x
⌧

and u

⌧

denote state and input at the current time interval ⌧ , and �x
⌧

represents the change in the state over the forward time interval �t. In practice, the

chord count is substituted for the crystal count

x =

2
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x
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chord count
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3

7

5

, (5.2)

and the input is taken to be supersaturation (manipulated by changing the solution

temperature):

u = �(T );

where � is defined by Equation (1.4) for paracetamol and defined by Equation (A.15)

for darapskite, and the solubility-temperature relationship is calculated using the

solubility trace methodology (c.f. §4.3.1 and §A.3).

The object is to apply machine learning to identify the function F from collected

run data for darapskite and paracetamol crystallization.
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5.2.1 Machine learning

The idea of learning a mathematical model from data is straightforward in concept, if

not always in practice: a training data set is first collected, then a learning algorithm

is applied to identify a model that captures a relationship in the training data [Abu-

Mostafa et al., 2012].

Training data. Training data, in this case, consist of chord count, crystal mass,

and supersaturation measurements recorded during batch cooling crystallizations of

the darapskite and paracetamol. The data is organized as a series of input-output

pairs for the function F :

(x̂>
j

, û

j

)
| {z }

model input

7! (�x̂>
j

)
| {z }

model output

where x̂
j

denotes the measured count and mass at a particular time, û
j

denotes the

measured supersaturation at that same time, and �x̂
j

denotes subsequent change in

count and mass measured over the next time interval (which is always 30 seconds in

this work).

Figures 5.13(a) and 5.13(b) show the input positions in the training data sets for

darapskite and paracetamol, respectively. For each of these data points, there is an

associated input, u = �, and an associated change in position, �x, recorded over the

next 30 seconds. This provides the information needed to learn a Markov state model

of the dynamics.
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DARAPSKITE PARACETAMOL

(a) (b)

Figure 5.13: (a) Input positions in the training data set for darapskite. (b) Input
positions in the training data set for paracetamol.

Learning algorithm. The learning algorithm is defined by the hypothesis set (i.e.

the pool of candidate functions) and the regression algorithm (i.e. the mechanism

for choosing among the candidate functions) [Abu-Mostafa et al., 2012]. Although

a number of strategies exist for learning general nonlinear functions from data, our

a priori knowledge of crystallization and dissolution motivates the use of a tailored

approach [Gri�n et al., 2016a]. This approach is expanded here.

Hypothesis Set

A priori we have a qualitative understanding of the crystallization dynamics that can

be used to inform the function choice. We assume that supersaturation (the input u

in the function F ) is the primary variable—driving crystallization when positive and

driving dissolution when negative. More specifically, we expect the rate of change of

mass and count to:

1. be zero when the solution is saturated;

2. be positive when the solution is supersaturated and negative when the solution

is undersaturated; and,
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3. increase monotonically with the level of supersaturation.

This suggests constraints on the hypothesis set. That is, only functions that meet

the following criteria should be considered:

1. F (x, u) = 0 if u = 0 for any x;

2. uF (x, u) ⌫ 0 for any x; and,

3. @F/@u ⌫ 0 for any any u at a fixed x.

These constraints narrow down the possible functions somewhat, but still leave an

uncountable number of di↵erent functions to choose from. To make the computation

possible, we have to choose a set of generic functions. For our application, a 6th-

order polynomial function of u provides enough flexibility and easy computation.

Taking this generic function class and adding the listed constraints yields the following

hypothesis set for F :

H =
n

F

�

�

F (x, u) = [u u

2

. . . u

6]�(x), �(x) 2 R2⇥6

, uF (x, u) ⌫ 0, and @F/@u ⌫ 0
o

.

Regression Algorithm

Once a hypothesis set of candidate functions has been selected, a regression algorithm

must be specified to pick the function that best represents past data. We use a

locally-weighted, least-squares regression algorithm. This algorithm can be expressed

as follows:

for a given position, x́

minimize
F

 

Ntrain
P

j=1

w(x́, x̂
j

;)||F (x́, û
j

)�t��x̂
j

||2
2

!

subject to F(x́, u) 2 H,
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where Ntrain is the number of samples in the training data set, w(x́, x̂
j

;) is a weight

function with one adjustable parameter denoted by , û represents the measured su-

persaturation, and�x̂ represents the measured change in state over the corresponding

forward time interval.

Overall Learning Algorithm

Combining the hypothesis set and the regression algorithm, the overall learning algo-

rithm can be written explicitly as follows:

for a given position, x́
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2⇥6
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⌫ 0, for all u.

(5.3)

Additional details on the training data, weighted least-squares regression, and the

solution method for (5.3) are given in Appendix C.1.
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5.2.2 Resulting mathematical models

The learning algorithm given by (5.3) identifies local model coe�cients, denoted �

[

´

x].

These coe�cients specify the local dynamic model around the position x́:

�x

�t

�

�

�

´

x

= F(x́, u) = �

[

´

x]

1

u+ �

[

´

x]

2

u

2 + · · ·+ �

[

´

x]

6

u

6

.

For di↵erent positions, these coe�cient change. As a result, a global model (F for

all x́) cannot be written in a compact form. This model can, however, be expressed

visually.

MC Markov state model identified for darapskite. Figure 5.14 provides a

visualization of the model of dynamics learned for darapskite salt crystallization and

dissolution in water. The arrows depict the model-predicted movement over a 30

second time interval at di↵erent levels of undersaturation and supersaturation.

As expected, the model predicts movement up and to the right when the solution

is supersaturated and predicts movement down and to the left when the solution

is undersaturated. It also indicates that the angle up and to the right becomes

more shallow (to the right) under higher supersaturation and the movement becomes

faster (the arrow is longer). When the solution is undersaturated, however, the an-

gle of movement is not noticeably a↵ected by the level of undersaturation; instead,

the angle seems to be a↵ected by the position (the crystal state) while the level of

undersaturation a↵ects the speed of movement, seen by the length of arrow.
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Figure 5.14: Visual representation of the MC Markov state model for darapskite
salt crystallization and dissolution. Arrows depict the model-predicted movement
over a 30 second time interval when the solution is (left) undersaturated or (right)
supersaturated.

MC Markov state model identified for paracetamol. Figure 5.15 uses the

same visualization to display the model learned for paracetamol crystallization and

dissolution in ethanol. Again, the model suggests movement up and to the right

when the supersaturation is positive and predicts movement down and to the left

when the solution is undersaturated. Here, however, we note a di↵erence: the model

for paracetamol indicates a smaller e↵ect of the level of supersaturation on the angle of

movement during crystallization. (The arrows all point in roughly the same direction

except for at very low levels of supersaturation). This suggests that we have less

influence over the MC space movement for the paracetamol system than we do for

the darapskite system.

86



chord count (x1)
0 1000 3000 5000 7000 9000

cr
y
st
al

m
as
s
(x

2
)
[g
]

0

5

10

15

20

25

supersaturated
σ = 0.40
σ = 0.30
σ = 0.20
σ = 0.05

chord count (x1)
0 1000 3000 5000 7000 9000

cr
y
st
al

m
as
s
(x

2
)
[g
]

0

5

10

15

20

25

undersaturated
σ = −0.075
σ = −0.050
σ = −0.035

Figure 5.15: Visual representation of the MC Markov state model for paraceta-
mol crystallization and dissolution. Arrows depict the model-predicted movement
over a 30 second time interval when the solution is (left) undersaturated or (right)
supersaturated.

5.2.3 Using the Markov model of dynamics to inform run design

The empirical models developed within the MC framework are intended to enable

optimal, model-predictive feedback control over the final mass-count position. Before

being applied for feedback control, however, they can also be used to calculate optimal

open-loop policies, evaluate reachability questions, and run stochastic simulations.

Results from these analyses can provide valuable insight for crystallization run design.

The main takeaways are reported here, with details given in Appendix §C.2.

Calculations with the MC model for darapskite salt crystallization reveal three

important points for run design:

1. temperature cycles are required to reach certain mass-count positions and pro-

duce crystals with a mean size greater than 750µm (Figure C.2);

2. there is a near linear tradeo↵ between the minimum batch time and the target
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crystal size (Figure C.6); and

3. feedback control can be used drive the system towards the target, even when

there is substantial measurement error, actuation delay, and a purely random

component in the dynamics (§C.2.3).

Similar calculations with the model for paracetamol crystallization reveals similar

conclusions, with two notes: temperature cycles are more crucial—that is, the use

of temperature cycles exapands the reachable region for paracetamol to a greater

extent—and producing paracetamol crystals of the same mean size takes longer.

5.2.4 Limitations of the MC model

Again, the mathematical models constructed here are built for a specific purpose:

to inform model-predictive feedback control over the final MC position (and thereby

control the mean crystal size). The adequacy of the models should be judged by their

utility for this purpose—and will be in Chapter 6—but it is also worthwhile to point

out some of the general limitations of the model framework and evaluate how well the

developed models align with experimental observations for the two systems studied.

The general Markov state model of dynamics, given by Equation (5.1), predicts

the forward change in the crystal mass and count from only the current mass, count

and supersaturation. Moreover, the function is constrained—by our choice of hy-

pothesis set—to predict an increase in both the mass and count when the solution

is supersaturated and a decrease in both the mass and count when the solution is

undersaturated. This is an approximation of reality.

In reality, crystal properties not captured by the mass and count may influence

the dynamics, and the system history may also have an e↵ect. In addition, although

thermodynamics suggests the crystal mass will increase when the solution is super-

saturated and decrease when the solution is undersaturated, it is less clear that the

change in chord count must follow these same constraints.
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We therefore expect the models predictions to deviate somewhat from the exper-

imentally observed dynamics. This is true for both models, but we find that the

model-experiment deviations are more evident for the paracetamol system.

5.2.5 Complex paracetamol dynamics: model-experiment mismatch

There are notable cases in which the observed dynamics for paracetamol deviate

significantly from the model. These deviations are associated with complex dynamics

that cannot be completely captured given the constraints placed on the model. In

particular, the MC dynamics for paracetamol are complex around cooling and heating

switch points at high-mass, high-count positions. Examples of these dynamics are

illustrated here.

Increase in count on heating. Fig. 5.16(a) shows a select portion of a trajectory,

in which a slurry was heated from 15 °C (after previously being cooled to from 45

°C to cause crystallization and generate the slurry). During heating, unexpected MC

movement was observed: as the supersaturation decayed towards zero (at t = 12

minutes) and eventually the solution became undersaturated, the trajectory turned

to the right and the chord count continued to increase.

This observation is di�cult to understand from first principles, but it is consistent;

that is, in every run that followed that same protocol, a jump in the chord count was

observed at the onset of undersaturation. The mathematical model proposed cannot

capture this phenomenon.
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Figure 5.16: Increase in count on heating. (a) MC trajectory resulting from heating
a slurry, with the solution initially supersaturated; (b) the temperature profile; (c)
the supersaturation profile.

Ostwald ripening. The increase in chord count on heating in not the only example

of complex MC dynamics observed for paracetamol around cooling-heating switches.

Fig. 5.17(a) shows the trajectory induced by heating and then cooling from a high-

mass, high-count position in which the solution is initially undersaturated.

Here, the initial heating, from t = 0 to t = 20 minutes, maintained undersatura-

tion and caused dissolution. From Figure we see that the initial heating resulted in

movement down and to the left, as expected. After this heating stage, cooling was

applied creating supersaturation (at t = 23 minutes); as the solution became super-

saturated the mass increased as expected but, counter-intuitively, the chord count

continued to decrease from 23 to 100 minutes. This observation was also consistent

from run to run. And, in this case, we can hypothesize a coherent explanation for the

complex MC movement: in switching to cooling after heating, small crystals continue

to dissolve and the solute redeposits onto growing larger crystals—a phenomenon

known as Ostwald ripening.
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Figure 5.17: Ostwald ripening. (a) MC trajectory resulting from the application
of a heating-cooling cycle starting from a high-mass, high-count position, with the
solution initially undersaturated; (b) the temperature profile; (c) the supersaturation
profile.

Dissolution of fines. A final example of complex paracetamol dynamics is demon-

strated by the run shown in Figure 5.18. This run started from a high mass-per-

count position—presumably indicating large crystals and no fines. Cooling from this

position induced significant secondary nucleation, moving the MC position up and

significantly to the right. From this point (at t = 87 minutes), heating then resulted

in very rapid movement to the left (as seen by the large space between points).

There is a logical explanation for this. At the high-mass, high-count position

reached at 87 minutes, there was a bi-modal crystal size distribution—some large

crystals that made up most of the mass and many fines that made up most of the

counts. Heating causes the fines to dissolve, drastically and rapidly reducing the count

without significantly reducing the crystal mass. In this case, although we might have

intuitively predicted such movement based on the history of the run, themodel cannot

as it only takes into account the current state.
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Figure 5.18: Dissolution of fines. (a) MC trajectory observed for paracetamol
when fines are generated to add to an existing population of large crystals and then
subsequently dissolved; (b) the temperature profile; (c) the supersaturation profile.

Complex dynamics can result in model-experiment mismatch. The com-

plex dynamics observed for paracetamol associated with cooling-to-heating and heating-

to-cooling switches, can result in a tortuous MC path. This may not be fully captured

by the mathematical model which predicts the movement from just the current MC

position and supersaturation, and is furthermore constrained to predict an increase

in mass and count when the solution is supersaturated and, vice versa, a decrease in

mass and count when the solution is undersaturated.

To provide a sense of the potential model-experiment mismatch, an example run

is shown against the model prediction.

Figure 5.19 shows the MC trajectory for paracetamol when a series of cooling and

heating cycles were implemented after reaching a high mass and count position. In

this run, the MC trajectory moves up to the right and then spirals to the left—again,

this type of trajectory is not fully captured by the model, as illustrated in Figure

5.20.
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Figure 5.19: Complex MC trajectory observed for paracetamol crystallization and
dissolution when temperature cycles are implemented from a high-mass, high-count
position (positions indicated every 30 seconds). Inset : temperature profile.

For this same run, the MC trajectory was predicted from the temperature profile. The

model-predicted MC trajectory is shown against the observed trajectory in Figure

5.20(a).

(a) (b) (c)

Figure 5.20: (a) Complex MC trajectory observed for paracetamol against the
model-predicted trajectory for the same temperature input. (b) Measured crystal
mass profile against the model-predicted profile. (c) Measured chord count profile
against the model-predicted profile.
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Separating out the mass profiles (Figure 5.20(b)) and count profiles (Figure 5.20(c))

we see where the model goes wrong: the predicted chord count profile deviates sig-

nificantly from measured chord count profile. Deviations in the count predictions

are typical for the complex paracetamol dynamics. As we will see in Chapter 6, this

model-mismatch can degrade the e↵ectiveness of model-based feedback control for

the paracetamol system.

5.3 Chapter Conclusions

This chapter demonstrated application of the first step in the route to control within

the MC framework: learning to move or drive in MC space.

A conceptual model of movement in MC space was first developed observing the

di↵erent trajectories that resulted from implementation of various temperature pro-

files. Given as a set of rules, this conceptual model provides a general understanding

that can be combined with feedback to establish control over the final MC position

(as will be demonstrated in the next chapter). But this type of model does not admit

precise calculation. Nor does it provide a clear distinction between the dynamics of

the two di↵erent systems studied.

To overcome these drawbacks, we saw that machine learning could be applied to

obtain a rigorous, mathematical model of the MC dynamics—specifically, a Markov

state model. Here we found a di↵erence in the dynamics of the two systems: the

Markov state model of paracetamol crystallization indicates only a small e↵ect of

supersaturation on the angle of MC movement during crystallization, where as su-

persaturation was seen to have a large e↵ect on the angle of MC movement during

darapskite salt crystallization. This suggests that we have better control over dara-

pskite salt crystallization than paracetamol crystallization. We also found that the

obtained Markov state models do not fit the observed dynamics for the two systems
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equally well. In certain cases, the observed dynamics for paracetamol obviously de-

viated from the mathematical model. Nevertheless, both models capture the main

e↵ects and can therefore potentially be used to facilitate model-predictive feedback

control over the MC position.
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CHAPTER 6

CRYSTAL SIZE CONTROL

Once the dynamics are understood in terms of movement in MC space, strategies

for driving to target locations—and thereby controlling the mean crystal size—can

be developed. Feedback control policies are particularly powerful for this application.

In this chapter, the mass-count framework is used to develop feedback control

policies, which are then applied to the studied experimental systems. The policies

fall into two categories: rule-based policies and model-based policies.

The first type of policy—rule-based—is developed using the conceptual under-

standing of movement developed from observational learning in Chapter 5 (c.f. Figure

5.12). This understanding is translated to simple feedback rules expected to guide

the MC trajectory towards the target from di↵erent locations in mass-count space.

The second type of policy—model-based—is developed with more precise calcu-

lation: the mathematical models of movement obtained from machine learning in

Chapter 5 (c.f. figures 5.14 and 5.15) are used to calculate optimal feedback strate-

gies. Both types of feedback strategies are shown to enable crystal size control.

6.1 Rule-Based Feedback Control

Feedback can often be leveraged to achieve remarkably good control over complex

dynamical systems, even when the dynamics themselves are not fully understood or

all that well characterized. We find the same to be true here. Given feedback on

the crystal mass and chord count during the run, we can control the final mass-count

position using only the most basic understanding of the dynamics.
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Feedback interface. The MC framework sets up a natural interface for feedback

control (c.f. §3.3.2). As shown again in Figure 6.1, the interface captures important

information, including the relation between the current MC position and the target

MC position. In combination with a general understanding of the movement, this

information can be used to select the appropriate input action for moving towards

the target.
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Figure 6.1: Visual interface for rule-based feedback control.

6.1.1 Fixed Zone Control

There are many ways to set up rule-based control. One simple way is what we call

Fixed Zone Control. As the name is meant to suggest, this strategy defines operating

rules based on fixed zones in mass-count space.

Fixed Zone Direct Nucleation Control (FZ-DNC). Figure 6.2 defines four

zones around a target. The most basic understanding of movement in MC space

suggests what we should do in Zones I and II to move towards the target: when

we are in Zone I we should apply cooling, when we are in Zone II we should apply

heating.

It is not quite as clear what should be done in Zones III and IV, but one option

is to apply heating to come back towards the origin, into Zone I. This leads to the
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straightforward rule-based feedback control scheme defined in Table 6.1. This scheme

is labeled Fixed Zone Direct Nucleation Control (FZ-DNC) in reference to a very

similar, and already well-established, control scheme named Direct Nucleation Control

(DNC) [Doki et al., 2004,Chew et al., 2007,Woo et al., 2009,Bakar et al., 2009b,Bakar

et al., 2009a]. (The relation between the two schemes will be expanded in a later

subsection).
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Figure 6.2: FZ-DNC Zones defined around a target position.

Table 6.1: Fixed Zone-Direct Nucleation Control (FZ-DNC) feedback algorithm.

Rule-Based Feedback Algorithm 1 FZ-DNC

repeat

1. measure current mass and count

2. if the mass count position is in Zone I⇤, cool

else if the mass and count position is in Zone II, III, or IV, heat

until the Target Zone is reached
⇤Zones defined in Figure 6.2

FZ-DNC applied to paracetamol crystallization. The FZ-DNC control scheme

was tested on paracetamol crystallization. The test strategy was simple and practical:

we picked out three targets in mass-count space—which correspond to the production

98



of crystals of three di↵erent sizes—and applied FZ-DNC to control the crystallization

towards each of these. The targets selected for testing the control scheme are listed

in Table 6.2.

Table 6.2: Run targets. FZ-DNC applied to paracetamol crystallization.

Run Target Position Target Crystal Size

(count, mass [g]) mass-weighted mean [µm]

1 (4000, 20) 223 (82–364)⇤

2 (1000, 20) 354 (211–497)

3 (275, 20) 544 (397–692)

⇤95% confidence interval based on mass-per-count–size correlation given in Figure 4.8

FZ-DNC control parameters. To apply the FZ-DNC scheme, the cooling and

heating rates and the size of the Target Zone must be specified. We arbitrarily

chose symmetric cooling and heating rates of �0.5°C/minute and 0.5 °C/minute; and

defined the Target Zone to be the mass-count region within 10% of the target.

FZ-DNC feedback loop. With these control parameters set, the FZ-DNC scheme

was applied using the cascade feedback loop shown in Figure 6.3. In the outer loop of

the cascade, the mass-count position is fed to the controller, which in turn specifies

the temperature setpoint based on the FZ-DNC algorithm. An internal proportional-

integral (PI) loop is then used to adjust the temperature jacket to reach the temper-

ature setpoint.

FZ-DNC results. Figure 6.4 shows the mass-count trajectory for paracetamol

crystallization under FZ-DNC towards Target 2. In this case, the controller fre-

quently switched between cooling and heating as the MC position moved between

Zones I and IV. The net e↵ect was the MC position ratcheting upwards towards the

Target Zone, eventually reaching it after approximately 200 minutes.

99



temperature

FBRM ATR-FTIR

jacket

chord 
count

Fixed-Zone Control

PI 
temperature 

controller

temperature

temperature 
setpoint

-

+
e

crystal 
mass

Figure 6.3: Schematic of the cascade feedback loop used to apply Fixed Zone feed-
back control.
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Figure 6.4: Mass-count trajectory realized in FZ-DNC Run 2 (positions indicated
every 30 seconds). Inset: implemented temperature profile.

Figure 6.5 shows the trajectories for each of the three runs under FZ-DNC towards

the three di↵erent targets. In every case, the feedback control scheme initiated linear

cooling followed by heating-cooling cycles to ratchet the MC position upwards. This
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moved the MC position close to the target position in Runs 2 and 3. In Run 1,

however, the controller did not move the MC position to the Target Zone and the run

was manually ended with the MC position outside (to the left) of the Target Zone.

Even so, application of the FZ-DNC scheme produced crystals of near target sizes:

• FZ-DNC Run 1 produced crystals with a measured mean size of 255 µm com-

pared to a target of 223 µm;

• FZ-DNC Run 2 produced crystals with a measured mean size of 336 µm com-

pared to a target of 354 µm; and,

• FZ-DNC Run 3 produced crystals with a measured mean size of 472 µm com-

pared to a target of 544 µm.
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Figure 6.5: Summary of the mass-count targets and trajectories achieved with FZ-
DNC. For each target, the measured mass-average crystal size is shown against the
target size. Inset: implemented temperature profiles.

The measured crystal size results show that reasonably accurate size control is

achieved with FZ-DNC (each measured crystal size is within the target size 95%
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confidence interval). But, Run 1 also points out a weak spot in the controller: the

run reached a position to the left of the target and then took little recourse to move

the position back towards the target.

To substantiate that this is a consistent weakness of the control scheme and not

just an artifact of the specific run, the FZ-DNC scheme was applied a second time

towards Target 1. Figure 6.6 shows the results.

Again the controller guided the run to a position left of the target. Once such

a position was reached, the controller implemented small temperature cycles as the

MC position bounced back and forth between Zones I and III. These cycles did little

to move the MC position to the right and so the run was again manually stopped at

a position left of the Target Zone—again producing crystals with a mean size larger

than the target size. As we will see in subsequent sections, the weakspot in the

controller can be addressed by changing the zones and using slightly di↵erent rules.
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Figure 6.6: Mass-count trajectory realized when FZ-DNC was applied towards Tar-
get 1 a second time (positions indicated every 30 seconds). Inset: implemented
temperature profile.

Relation to Direct Nucleation Control (DNC). The presented fixed zone con-

trol algorithm is labeled Fixed Zone Direct Nucleation Control to indicate its relation

to, and inspiration from, the already well-established strategy referred to by nearly

the same name: Direct Nucleation Control (DNC) [Doki et al., 2004, Chew et al.,

2007,Woo et al., 2009,Bakar et al., 2009b,Bakar et al., 2009a].

In the most straightforward implementation of DNC, a chord count target line is

picked; cooling is then applied when the count is below the target line and heating

when the count is above the target line (the run ends when a set temperature is

reached).

If the relation between mass-per-count and mean crystal size is known, DNC can

be used to achieve approximately the same control as FZ-DNC. As an illustration,

DNC was applied to paracetamol crystallization with target lines set at 4000 counts,
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1000 counts, and 275 counts. In each case the runs where ended when the temperature

reached 15 °C. The trajectories that resulted are shown in Figure 6.7.

(a) (b)

Figure 6.7: DNC applied to paracetamol crystallization. (a) MC trajectories for
three paracetamol crystallizations under DNC with di↵erent count targets; (b) tem-
perature profiles for the three runs.

Here we don’t have a target position, just a chord count target line. Nevertheless,

fixing the end temperature roughly controls the final crystal mass. DNC, as shown

in Figure 6.7, can therefore be used to achieving approximate size control (again,

provided the mass-per-count relationship is known ahead of time and the final tem-

perature is appropriately adjusted).

But, as with FZ-DNC, control is predicated on the MC position ratcheting up-

wards around the target count line and the controller has little recourse if this does

not happen. More accurate and potentially more e�cient control can be achieved

by applying schemes that utilize a more elaborate understanding of movement in

mass-count space and also leverage feedback on both the chord count and crystal

mass.

An alternative fixed zone strategy: Fixed Zone adjusted Direct Nucleation

Control (FZ-aDNC). The zones used for FZ-DNC are not the only zones we can
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define. Nor are they necessarily the most useful. Here we define a slightly adjusted

Fixed Zone Control strategy aimed at achieving more accurate control and reaching

the target position more e�ciently. The new zones are shown in Figure 6.8.

Instead of defining the zones to be the four quadrants around the target, three

triangular zones are defined. These zones are selected considering the conceptual un-

derstanding of MC movement for paracetamol crystallization and dissolution gained

in Chapter 5, taking into account the movement observed on the switch from heating

to cooling at high-mass, high-count positions (c.f Figure 5.17). Consequently, these

zones can be used to set up more reliable control.

The operation we propose using the zones in Figure 6.8 is straightforward: in Zone

I the solution is cooled quickly; in Zone II the solution is cooled slowly; and, finally,

in Zone III the solution is heated. The temperature is fixed and the run ends when

the Target Zone is reached. This algorithm, labeled FZ-aDNC, is given in Table 6.3.
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Figure 6.8: FZ-aDNC Zones defined around a target position.

FZ-aDNC control parameters and feedback loop. Cooling and heating rates

must be pre-specified to operate the FZ-aDNC strategy. In application, the fast

cooling rate was arbitrarily set to �1.0 °C/minute, the slow cooling rate set to �0.5

°C/minute, and the heating rate set to 0.5 °C/minute. The same cascade feedback
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Table 6.3: Fixed Zone adjusted Direct Nucleation Control (FZ-aDNC) algorithm.

Rule-Based Feedback Algorithm 2 FZ-aDNC

repeat

1. measure current mass and count

2. if the mass count position is in Zone I⇤, cool quickly

else if the mass and count position is in Zone II, cool slowly

else if the mass and count position is in Zone III, heat

until t > t

N

or the Target Zone is reached
⇤Zones defined in Figure 6.8

control loop shown in Figure 6.3 was then used to apply FZ-aDNC.

FZ-aDNC applied to paracetamol crystallization. The FZ-aDNC strategy is

tested on paracetamol crystallization for the same set of three targets given in Table

6.2.

Figure 6.9 shows the trajectory achieved under FZ-aDNC towards the first target.

Here, we see that the FZ-aDNC algorithm is able to quickly reach a position close to

the target. Compared to the FZ-DNC, the adjusted FZ-aDNC scheme appears to be

more e�cient and more accurate.
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Figure 6.9: Mass-count trajectory realized in FZ-aDNC Run 1 (positions indicated
every 30 seconds). Inset: implemented temperature profile.

The three trajectories under FZ-aDNC towards the selected targets are shown

together in Figure 6.10. In each case the scheme controlled the MC trajectory to

reach a position near the target. This resulted in the production of crystals of near

the target sizes:

• FZ-aDNC Run 1 produced crystals with a measured mean size of 259 µm com-

pared to a target of 223 µm;

• FZ-aDNC Run 2 produced crystals with a measured mean size of 323 µm com-

pared to a target of 354 µm; and,

• FZ-aDNC Run 3 produced crystals with a measured mean size of 577 µm com-

pared to a target of 544 µm.
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Figure 6.10: Summary of the mass-count targets and trajectories achieved with
FZ-aDNC. For each target, the measured mass-average crystal size is shown against
the target size. Inset: implemented temperature profiles.

Fixed Zone Control schemes are susceptible to high-frequency switching

and endless loops. Fixed-Zone (FZ) control schemes are simple—both to develop

and to implement. They also proved to be reasonably e↵ective in the examples given.

But the rigidity of these schemes can have a drawback: Fixed Zone schemes are sus-

ceptible to high-frequency switching and looping. Avoidance of these traps is reliant

on having appropriately delayed actuation and the system having an asymmetric re-

sponse to heating and cooling or showing hysteresis (or both). Let me expand on

this.

First, high-frequency switching: when the MC position moves from one zone to

another (for example, from Zone I to Zone IV in Figure 6.2), the controller may fall

into a trap, quickly switching between heating and cooling as the position moves

back and forth rapidly between zones. To avoid this type of rapid switching, there

must be some delay in the actuation—conferred by a slow sampling time or a slow
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temperature change response time or a delay in the dynamic response of the system.

As an example, consider the DNC action (as applied here). When the count is

below a threshold line, cooling is applied; when the count is above the threshold,

heating is applied. Cooling is expected to increase the count and heating is expected

to decrease the count—the control scheme would make no sense otherwise. But if

these e↵ects were enacted immediately then the control would switch rapidly between

heating and cooling as the count oscillated around the threshold line.

And high-frequency switching only one facet of the problem. Even if rapid switch-

ing is avoided by delayed actuation, to make progress using Fixed Zone Control also

requires the system to also have an asymmetric response to heating and cooling or

to show clear hysteresis—the time-based dependence of the systems response to an

input. That is, if the MC movement caused by heating is always just the mirror op-

posite of the movement caused by cooling, then applying cooling-heating cycles—like

those enacted by the Fixed Zone schemes—would simply cause the MC position to

move back and forth, retracing the earlier trajectory. The control would fall into an

endless loop.

The problem of high-frequency switching and looping was seen in the some of the

FZ-DNC control runs when the target was missed. In particular, if the MC position

reached a position to the left of the target zone, cooling was applied when the mass

was below the target threshold line and heating when it was above the threshold.

The dynamic response of mass to temperature change (in this region) was reasonably

quick. As a result, the controller quickly switched between cooling and heating.

Moreover, the e↵ect of heating was to roughly retrace the path taken by cooling and

so no progress was made.

Adaptive Zone schemes, as will be described in the next section, can be designed

to avoid high-frequency switching and reduce the risk of looping.
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6.1.2 Adaptive Zone Control

Here we develop a slightly more sophisticated rule-based scheme in which the zones

shift depending on the operating mode and, also, details of relation between the

current position and target are used within a zone to tailor the controller input. The

scheme is termed spatially-Guided Action, Trajectory Endpoint Control (sGATEC)

[Gri�n et al., 2015c].

The sGATEC scheme operates in two modes: Cooling Mode and Heating Mode.

Given the mode of operation, the spatial zones shown in Figure 6.11 are used to select

the appropriate temperature input as indicated in Table 6.4.

cr
ys

ta
l m

as
s 

[g
]

chord count

controlled cooling

Target Zone

target

COOLING MODE

cr
ys

ta
l m

as
s 

[g
]

chord count

Heating Zone

Target Zone

target

HEATING MODE

!H1

!H2

!P-T

linear cooling

Cooling Zone

mο

Heating-
Deactivation Zone

Figure 6.11: Spatial zones used to guide actions of the sGATEC rule-based feedback
control scheme.

The sGATEC scheme is somewhat involved, but becomes clear with a step-by-step

explanation. Starting in Cooling Mode, the sGATEC scheme works as follows:

• Cooling Mode. In Cooling Mode, the temperature is decreased. If the crys-

tal mass is below a select threshold (m0 in Figure 6.11), the temperature is

decreased linearly. Alternatively, if the crystal mass is above this threshold

value (but still within the cooling zone) the temperature is decreased in such a
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way that the supersaturation is maintained at a desired setpoint. This setpoint

is selected according to the angle between the current position and the target

position, ✓P-T (lower supersaturation setpoints are used for higher angles).

• Switch from Cooling Mode to Heating Mode. The mode switches from

Cooling Mode to Heating Mode if the MC position moves outside the Cooling

Zone and not into the Target Zone.

• Heating Mode. In Heating Mode, the operation is simple: linear heating is

applied.

• Switch from Heating Mode to Cooling Mode. If heating moves the MC

position out of the Heating Zone, but not into the Target Zone, Cooling Mode

in re-enacted.

The operation continues switching between Cooling Mode and Heating Mode unless

the MC position moves into the Target Zone. Once the Target Zone in reached, the

temperature is fixed and the run ends.
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Table 6.4: sGATEC feedback algorithm.

Rule-Based Feedback Algorithm 3 sGATEC

start in cooling mode

Cooling Mode

1. measure current mass and count

2. if the mass and count are in the Target Zone⇤,

hold temperature and end run

else if, the mass is below the threshold m

0,

apply linear cooling

else if, the mass and count are in the Cooling Zone,

apply supersaturation control with the setpoint

determined by the angle ✓P-T

else, switch to Heating Mode

Heating Mode

1. measure current mass and count

2. if, the mass and count are in the Target Zone,

hold temperature and end run

else if, the mass and count are in the Heating Zone,

apply linear heating

else, switch to Cooling Mode
⇤Zones defined in Figure 6.11

sGATEC control parameters. A number of control parameters must be specified

to apply the sGATEC scheme in practice, including: the mass threshold, the zone

angles, and the heating and cooling rates. The control parameters used in applying

the sGATEC scheme to darapskite salt crystallization were developed in [Gri�n et al.,

2015c]. These are listed in Appendix §D.1.

sGATEC feedback loop. Once the control parameters were defined, the sGATEC

control policy was applied with the cascade feedback control loop shown in Figure

6.12. This feedback loop is very similar to that used for Fixed Zone Control, with

one slight di↵erence: the solute concentration as well as the solubility is needed at
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each measurement interval to infer the temperature setpoint from the supersaturation

setpoint output by the sGATEC controller.
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Figure 6.12: Schematic of the cascade feedback loop used to apply the sGATEC

control policy.

sGATEC applied to darapskite crystallization. The sGATEC scheme was

tested on darapskite salt crystallization [Gri�n et al., 2015c]. As with the other tests,

three targets were picked in mass-count space, which correspond to the production

of crystals of three di↵erent sizes. These are listed in Table 6.5.

113



Table 6.5: Run targets. sGATEC control applied to darapskite system.

Run Target Position Target Crystal Size

(count, mass [g]) mass-weighted mean [µm]

1 (295, 7) 422 (213–643)⇤

2 (210, 12) 566 (357–790)

3 (75, 13) 819 (611–1050)

⇤ 95% confidence interval based on mass-per-count–size correlation given in Figure 4.7

Figure 6.13 shows the trajectory observed for darapskite salt crystallization un-

der the sGATEC scheme towards the second target. This highlights the action of

sGATEC: the controller automatically applies what can be interpreted as “internal

seeding” followed by adaptive supersaturation control to reach the target position.
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Figure 6.13: Mass-count trajectory realized in sGATEC Run 2 (positions indicated
every 30 seconds). Inset: implemented temperature profile.
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Figure 6.14 shows the trajectories observed under sGATEC when implemented to-

wards the three di↵erent targets. In each case, the sGATEC scheme varied the tem-

perature profile—again, applying supersaturation control and temperature cycles—to

produce trajectories that ended near the target positions. This resulted in the pro-

duction of crystals with mean sizes near the target sizes:

• sGATEC Run 1 produced crystals with a measured mass-weighted mean size of

460 µm compared to a target of 422 µm;

• sGATEC Run 2 produced crystals with a measured mass-weighted mean size of

671 µm compared to a target of 566 µm; and,

• sGATEC Run 3 produced crystals with a measured mass-weighted mean size of

915 µm compared to a target of 819 µm.
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Figure 6.14: Summary of the mass-count targets and trajectories achieved with
sGATEC. For each target, the measured mass-average crystal size is shown against
the target size. Inset: implemented temperature profiles.
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6.1.3 Summary of rule-based control

The MC framework yields a useful feedback interface that facilitates the development

of rule-based schemes. Of the many possible rule-based schemes we could think of,

three were developed and demonstrated here: FZ-DNC, FZ-aDNC, and sGATEC.

The first scheme, FZ-DNC, is a fixed zone scheme that operates in a manner similar

to Direct Nucleation Control. The second scheme, FZ-aDNC, is a variation of the

first—using di↵erent zones to generate feedback rules more in-tune with the observed

dynamics for paracetamol. The last scheme, sGATEC, is slightly more involved. It

uses zones that shift with operating mode and also selectively applies supersaturation

control. Figure 6.15 summarizes the experimental results obtained for these rule-based

schemes.
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Figure 6.15: Summary of the control achieved with rule-based feedback control.
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From this figure we see the power of feedback control. Built from a purely concep-

tual understanding of the dynamics, the rule-based feedback schemes are e↵ective for

achieving quantitative control: implementing complex temperature profiles to pro-

duce crystals of near target sizes for both systems.

Notwithstanding the success of the rule-based feedback schemes for producing

crystals of targeted sizes, there are drawbacks to model-free control. The batch times

are not know a priori and the optimality of the schemes cannot really be evaluated.

For this we need to utilize model-based control.

6.2 Model-Based Feedback Control

The MC space Markov state model of crystallization and dissolution dynamics given

by Equation (5.1) can be used to identify optimal feedback control policies. That is,

we can ask: “what is the best policy for reaching a target position, provided that the

dynamics behave exactly according to the mathematical model?” And then we can

use computational mathematics to come up with the answer.

6.2.1 Optimal control formulation

The optimization problem associated with state-feedback control has the form:

minimize
u
⌧

= ⇡(x
⌧

)
� (x

⌧=1,...,N

, u

⌧=1,...,N

)

subject to x
⌧+1

= F

�

x
⌧

, u

⌧

= ⇡(x
⌧

)
�

�t+ x
⌧

, ⌧ = 0, . . . , N � 1;

x
0

= xinit;

where � : Rd+1,N 7! R is the control objective function and ⇡ : Rd 7! R is the

state-feedback control policy.

Control objective function. We aim to produce crystals of select mean sizes in

set batch times. From the mass-count perspective, this primary control objective is

represented by a target mass-count position, x�, to be reached in a fixed batch time,
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t

N

. But there is an additional consideration: we would also like to operate e�ciently,

with minimal input energy. To express this multifaceted objective, two functions are

defined:

• an input-e↵ort function

"(u
⌧

) ⌘ u

2

⌧

; and

• a distance-to-target function

d(x
⌧

,x�) ⌘ (x
⌧

� x�))>Q(x
⌧

� x�), where Q =

2

6

4

1 0

0 �

2

3

7

5

.

The input-e↵ort function reflects the following: crystallization or dissolution will

spontaneously bring the system to saturation; maintaining undersaturation or super-

saturation during the operation requires a continual temperature change and, conse-

quently, the input of energy.

The distance-to-target function corresponds to the normalized, squared Euclidean

distance between the mass-count position and the target position. In this measure,

we scale the chord count by � (g/#) in order to provide approximately equal weight

to the chord count (#) and mass measurements (g).

Using these two functions we can write a weighted objective function:

� (x
⌧=1,...,N

, u

⌧=1,...,N

) =
weight
z}|{

⇢

N�1

X

⌧=0

"(u
⌧

)

| {z }

input energy

+ d(x
N

,x�)
| {z }

final distance from target

(6.1)

The optimization problem that minimizes this objective function roughly reads: “find

the optimal policy for bringing the system to the target position in the given batch

time with minimal energy input.”

This aligns with the conceptual objectives already specified, but it still misses at

least one practical consideration, which is that we want the system to be settled at
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the end of the run—i.e. we do not want the crystal mass and chord count to be

transient at the end of the batch.

In order to preferentially select trajectories that move towards the target as di-

rectly as possible and then settle, the time-varying term (t
⌧

/t

N

)�d(x
⌧

,x�) is added

to the running cost. This gives us a final objective function:

� = ⇢

N�1

X

⌧=0

{(t
⌧

/t

N

)�d(x
⌧

,x�) + "(u
⌧

)}
| {z }

running cost

+ d(x
N

,x�)
| {z }

terminal cost

, (6.2)

and a final optimization problem:

minimize
u
⌧
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⌧
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�t+ x
⌧

, ⌧ = 0, . . . , N � 1,

x
0

= xinit.

(6.3)

Applying dynamic programming to solve the optimization problem. The

optimization problem (6.3) is non-convex (F is non-linear), making it generally di�-

cult to solve [Boyd and Vandenberghe, 2009], especially for high-dimensional systems.

Here we see another advantage of having a low-dimensional model of the dynamics:

for a two-dimensional state, the state space can be discretized and dynamic program-

ming can then be applied to solve the state-feedback optimization problem. This is

described in detail in Appendix §D.2.

The state-feedback control policy. The solution to the optimization problem

(6.3) is denoted ⇡

⇤. This is the optimal state-feedback control policy that specifies

the supersaturation setpoint as a function of the current MC position and time:

⇡

⇤ : x
⌧

7! u

⇤
⌧

.

This solution will vary with a number of variables that the user chooses. These

include: the target position, x�; the final batch time, denoted by the index N ; and

the optimization parameters, ⇢ and �.
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Once obtained, the state-feedback policy can be represented simply as a lookup

table that gives the appropriate input (supersaturation setpoint) to apply for each

di↵erent position, x, in the discretized space at each di↵erent time interval. To give a

sense of these policies, the lookup tables can be displayed as color maps that show the

policy-suggested inputs by color. Figures 6.17 and 6.20, for example, display obtained

optimal control policies in this way.

The state-feedback control policy enacts explicit model predictive control

(MPC). In many fields, Chemical Engineering among them, a strategy labeled

model-predictive control (MPC) is the standard-bearer for model-based feedback con-

trol. The conventional MPC strategy is as follows. At each time interval, the current

state is measured, x̂
t

, and a finite-horizon optimal control problem is posed using a

model of the dynamics:

minimize
u
t

. . . uT �1

T �1

P

⌧=t

⇣

� (x
⌧

, u

⌧

)
⌘

subject to x
⌧+1

= F

�

x
⌧

, u

⌧

= ⇡(x
⌧

)
�

�t+ x
⌧

, ⌧ = t, . . . , T � 1;

x
t

= x̂
t

;

where � is the running cost over the time horizon, t, . . . , T � 1.

The solution to this optimization problem is the optimal open-loop input profile,

u

⇤
t

, . . . , u

⇤
T �1

. In application, the first input is applied and the process is repeated:

with each new measured state, the fixed-horizon control problem is re-solved and the

first input of the new solution sequence is applied. This, in e↵ect, is a state-feedback

control strategy, u⇤
⌧

= ⇡mpc(x̂⌧

).

So how does the MPC strategy relate to the state-feedback control policy we

obtain from solving the optimization problem (6.3)? They are the same, with two

qualifications: the time horizon, in our application, always extends from the current

time to the specified end-of-run time; and the feedback control input is found ahead

of time for each di↵erent position in the discretized space at each time interval. The
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strategy we apply is sometimes referred to as explicit model predictive control [Alessio

and Bemporad, 2009].

6.2.2 Applying the state-feedback control policy

Optimal state-feedback control policies, ⇡⇤, obtained o✏ine through dynamic pro-

gramming were applied online using a cascade feedback loop similar to that applied

for the rule-based control schemes. The cascade feedback loop is shown in Figure

6.16. In the outer loop, the mass-count position is fed to the state-feedback con-

troller, which uses the lookup table representation of ⇡⇤ (x
⌧

) to identify the appropri-

ate supersaturation setpoint. The inner loop then adjust the temperature to hit this

setpoint.

temperature
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Figure 6.16: Schematic of the cascade feedback loop used to apply optimal state-
feedback control policies.

6.2.3 Application to darapskite crystallization

The model-based feedback control strategy was tested experimentally on darapskite

salt crystallization. As was done to test the rule-based schemes, three targets were
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selected. In this case, the target batch times were also set, with run times selected to

be near optimal for the given targets (c.f. §C.2.2). Table 6.6 summarizes the selected

targets and times.

Table 6.6: Run targets. Model-based control applied to darapskite system.

Run Target Position Target Crystal Size Target Batch Time

(count, mass [g]) mass-weighted mean [µm] [min.]

1 (300, 7) 420 (210–641)⇤ 30

2 (200, 10) 541 (332–765) 60

3 (75, 11) 775 (566–1004) 120

⇤ 95% confidence interval based on mass-per-count–size correlation given in Figure 4.7

Control policies. For each given target and batch time, the optimization problem

(6.3) yields a di↵erent control policy. To inspect these policies, they can be visualized

as time-varying color maps that show the suggested input for each MC position at

di↵erent time intervals. Figures 6.17 and 6.18 show the optimal state-feedback control

policies obtained for Test Runs 1 and 2, respectively.
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Figure 6.17: Color maps of the optimal state-feedback policy, ⇡, for darapskite
crystallization towards Target 1 shown at representative times during the process
(during the control run the map updates every 5 minutes).
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Figure 6.18: Color maps of the optimal state-feedback policy, ⇡, for darapskite
crystallization towards Target 2 shown at representative times during the process
(during the control run the map updates every 5 minutes).
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In displaying the optimal state-feedback control policies we see that they have

many similarities to the rule-based schemes developed in the previous section. Below

and to the left of the target, the policies generally dictate the application of a positive

supersaturation setpoint (achieved by cooling). Above and to the right of the targets

the policies suggest the opposite: application of a negative supersaturation setpoint

(achieved by heating).

But the model-based policies di↵er from the rule-based control policies in the

details. For example, as the position approaches the target, the suggested super-

saturation (undersaturation) levels are more tempered. Moreover, complex series of

actions are suggested for positions below and to the right or above and to the left of

the targets. These details show foresight: tempering the supersaturation near the tar-

get slows down the movement and combats overshoot; complex actions are required

to move the position net up and left or net down and right.

The model-based policies also exhibit foresight in knowing when to quit. The

white region around the target can be thought of as an expanding target zone: If the

MC position happens to move into this zone, the policy suggests that any remaining

actions in the limited batch time remaining will be detrimental—moving the MC

position farther from the target.

Model-based control of darapskite crystallization. Figure 6.19 gives a sum-

mary of the experimental results for model-based control applied to darapskite crys-

tallization. In each of the test runs, the optimal state-feedback controller guided the

MC trajectory to reach a position near the target position in the pre-specified batch

time through the application of a unique temperature profile. This resulted in the

production of crystals of near target sizes:

• Run 1 under optimal control produced crystals with a measured mass-weighted

mean size of 386 µm compared to a target of 420 µm;

• Run 2 under optimal control produced crystals with a measured mass-weighted
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mean size of 517 µm compared to a target of 566 µm; and,

• Run 3 under optimal control produced crystals with a measured mass-weighted

mean size of 731 µm compared to a target of 775 µm.

(a)

(b)

crystal size key

target size

measured size

400 600 800 µm

final position

target position

Run 1

Run 2
Run 3

Figure 6.19: (a) Measured trajectories for darapskite salt crystallization under
model-based feedback control towards three separate targets. For each target, the
measured mass-average crystal size is shown against the target size. (b) Implemented
temperature profiles.
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6.2.4 Application to paracetamol crystallization

The model-based feedback control strategy was also tested experimentally on parac-

etamol crystallization. Again, three targets positions and batch times were selected.

Table 6.7 summarizes the selected targets and times for testing the optimal model-

based control strategy on paracetamol crystallization.

Table 6.7: Run targets. Model-based control applied to paracetamol system.

Run Target Position Target Crystal Size Target Batch Time

(count, mass [g]) mass-weighted mean [µm] [min.]

1 (4000, 20) 223 (82–364)⇤ 150

2 (1000, 20) 354 (146–497) 360

3 (275, 20) 544 (265–692) 360

⇤95% confidence interval based on mass-per-count–size correlation given in Figure 4.8

Control policies. As was the case for darapskite crystallization, the optimal state-

feedback control policies obtained for paracetamol can be shown as time-varying color

maps. For example, Figure 6.20 shows representative color maps of the optimal policy

for reaching Target 1.
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Figure 6.20: Color maps of the optimal state-feedback policy, ⇡, for paracetamol
crystallization towards Target 1 at three representative times during the process (dur-
ing the control run the map updates every 5 minutes).
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Here again we see some similarities with the rule-based schemes. Figure 6.21

illustrates this, showing the Zones used for FZ-aDNC overlaying the model-based

control policy at 145 minutes.

Zone I

Zone II

Zone III

!"∗

Figure 6.21: FZ-aDNC Zones overlaying the model-based policy, ⇡, for paracetamol
crystallization towards Target 1 at 145 minutes.

Although the model-based policy is similar in general concept to the rule-based

schemes, the details incorporated through the model again provide an extra level of

sophistication. The model-based controller here applies more advanced time-varying

control in the di�cult regions (above and to the left or below and to the right of

the target); it also varies the input level with the distance-to-target, slowing the

movement down as the target is approached, and it adjusts the e↵ective target zone

as the run progresses.

Model-based control of paracetamol requires tuning. In Section 5.2.5 we

pointed out that the Markov state model for paracetamol deviates markedly from

the observed dynamics in a number of situations. In addition, when comparing the

Markov model for paracetamol with that obtained for darapskite (Figure 5.15 com-

pared with Figure 5.14) we noted that we have less influence over the paracetamol
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crystallization trajectory. This has a consequence: the model-based control for parac-

etamol is less robust and requires the implementation of faster temeperature maniu-

plations. And this means we have to tune the model-based controller. In particular

we have to adjust the internal gains in the PI temperature loop.

The gains must be enough to inact fast temperature changes, but low enough to

avoid significant overshoot. Figure 6.22, for example, shows the measured MC tra-

jectory for a paracetamol crystallization under model-based control towards the third

target when the internal loop was poorly tuned. In this case, the controller initially

applied temperature cycles that caused crystallization followed by complete dissolu-

tion. After this initial period with no progress, the controller then applied a complex

temperature profile that moved the position towards the target but ultimately missed.

In this case, the PI feedback loop used to control temperature was made too aggres-

sive (in an attempt to achieve rapid temperature changes) and this had a side-e↵ect

that undermined the control performance: the temperature frequently overshot. A

clear example of this is seen at the start of the run given in Figure 6.22 where tem-

perature overshoot inadvertently causes the complete dissolution of crystals, bringing

the state back to the origin.

(a) (b)

Figure 6.22: Poorly tuned model-based control over paracetamol: (a) measured tra-
jectory for paracetamol crystallization under model-based feedback control towards
the third target; (b) implemented temperature profile.
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Model-based control of paracetamol crystallization. After some adjustments

to the internal loop we find that the model-based control strategy can be applied

to accurately control the final MC position. Figure 6.23 summarizes experimental

results of the model-based control strategy applied to paracetamol crystallization

towards the three di↵erent targets.

(a)

(b)

crystal size key

target size

endpoint size

final position

target position

Run 1

Run 2
Run 3

400 600 µm200

Figure 6.23: (a) Measured trajectories for paracetamol crystallization under model-
based feedback control towards three separate targets. For each target, the final
inferred crystal size is shown against the target size. (b) Implemented temperature
profiles.

In these runs, the optimal state-feedback controller guided the MC trajectory to

reach a position near the target position through the application of complex temper-

ature profiles. This presumably results in the production of crystals of near target
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sizes:

• Run 1 under optimal control produced crystals with an inferred mean size of

225 µm compared to a target of 223 µm;

• Run 2 under optimal control produced crystals with an inferred mean size of

382 µm compared to a target of 353 µm; and,

• Run 3 under optimal control produced crystals with an inferred mean size of

563 µm compared to a target of 544 µm.

(note that inferred sizes are listed here. These size are calculated from the final

mass-count position using the correlation given in Figure 4.8.)

6.2.5 Summary of model-based control

Model-based control was applied to darapskite salt crystallization to optimally pro-

duce crystals of target sizes in the specified batch times. The key result here is

the demonstrated MC endpoint control—and thereby size control—shown in Figure

6.19(a), but the input profiles themselves (Figure 6.19 (b)) are also worth remarking

on. There is a sharp di↵erence between these temperature profiles and the concave

temperature profiles that are usually obtained from optimal population balance model

calculations. Rather than simply adjusting the curve of a strictly decreasing temper-

ature profile, more complex profiles that include heating stages are generated. These

temperature profiles are the product of a model-based policy that leverages the asym-

metry between crystallization and dissolution and is also able to adapt to run-specific

dynamics to ultimately achieve better control.

Model-based control was also applied to paracetamol crystallization. Here we

find that the strategy is not as robust and the control loop must be tuned or cal-

ibrated to achieve reliable control. There are a few reasons why the model-based

strategy is more robust when applied darapskite crystallization than when applied to

paracetamol crystallization, namely: the MC space Markov model is a more accurate
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representation for darapskite crystallization than it is for paracetamol crystallization;

and, the model for paracetamol crystallization suggests that very rapid temperature

manipulations—which are di�cult to accurately implement—are required to achieve

optimal control over paracetamol crystallization.

6.3 Chapter Conclusions

The results presented in this chapter speak directly to the core utility of the MC

framework: the MC framework provides a useful paradigm for establishing feedback

control over the mean crystal size. To be specific, we have seen that—within the MC

framework—both rule-based and model-based feedback schemes can be developed and

these schemes can then be applied in practice using recently developed PAT tools;

in applying these schemes to the two experimental systems, explicit size control is

demonstrated—that is, the ability to pick out a specific target mean size prior to the

run and then hit this target. To our knowledge, crystal size control has not previously

been demonstrated (experimentally) to the same extent for unseeded batch cooling

crystallization.
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CHAPTER 7

THESIS SUMMARY

This thesis develops a framework for addressing a specific process engineering con-

trol task: control over the mean size of crystals produced by batch cooling crystal-

lization.

Depending on your perspective, this can seem like a simple task to address. On

one hand, we have a single input variable to adjust—temperature—in order to control

a single output variable—the mean crystal size. Closer inspection, however, reveals

complexity. The operation is dynamic: the temperature change over time drives ac-

tions at the molecular level—crystal nucleation, growth, dissolution, agglomeration

and breakage—and these underlying processes collectively dictate the number and

size of the crystals produced. This makes for a convoluted input-profile–output rela-

tionship that cannot be easily revealed with simple, trial-and-error-type experiments.

Instead, a framework is needed to understand the crystallization dynamics and es-

tablish the relationship between the input temperature profile, these dynamics, and

the crystal size.

One way to build this framework is to start from the bottom up: modeling the

evolution of the crystal population according to the underlying processes by which

individual crystals form and evolve. This line of development has led to the well-

established population balance (PB) framework, which is both conceptually stimu-

lating and mathematically complete. But it also has drawbacks for application—in

particular, it is not conducive to feedback control.

My intent in this thesis has been to show that an alternative perspective is useful.

Rather than attempting to model crystallization dynamics at the molecular or single-

crystal level and then build up, the collective dynamics can be viewed more simply

as the evolution of two key aggregate properties that can be measured : the crystal

mass and count. Taking this perspective reveals a framework—labeled the mass-count
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(MC) framework—that is well-suited to address the crystal size control problem.

Using the MC framework, crystallization dynamics are understood intuitively as

movement in a 2D space. What is more, the perspective shifts the conceptual un-

derstanding of the control problem: we now see the crystal size control problem as a

trajectory endpoint control problem. And this clarifies the route to achieving crystal

size control. To achieve size control we need to: (1) learn the dynamics or how to

move in MC space, and then (2) develop schemes for driving to a target positions in

the space—thereby controlling the mean crystal size. Because we can monitor the

crystal mass and a measure related to the crystal count, both tasks can be readily

achieved in practice. In particular, we are able to apply data-driven strategies to learn

the dynamics and then leverage real-time monitoring and the framework interface to

develop e↵ective feedback control schemes.

The applicability of the MC framework to establish control by this route was

demonstrated on widely di↵erent experimental systems: darapskite salt crystalliza-

tion from water and paracetamol crystallization from ethanol. For both systems,

we learned to move in MC space—the first step—using two data-driven strategies:

observational learning, in which a conceptual understanding of the movement was

revealed through visual observations of collected run data; and machine learning, in

which a low-dimensional mathematical model of the movement was identified from

collected run data. In parallel with the methods used to learn the dynamics, two

types of feedback control schemes were then developed: rule-based feedback schemes,

which utilized the conceptual understanding of the dynamics; and model-based feed-

back schemes, which utilized the mathematical model of the dynamics developed from

machine learning. Using these schemes, explicit crystal size control was demonstrated

for both experimental system. These control results provide the strongest support for

the utility of MC framework.
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CHAPTER 8

FUTURE WORK

My intention in sitting down to write this thesis was to provide a complete story

around the mass-count framework. There are, nevertheless, questions that remain

unanswered and topics relating the framework that I would have liked to explore

further. Listed here are a few lines of inquiry that I think could be particularly

useful for improving our understanding of crystallization dynamics, refining the MC

framework, and improving crystal size control.

8.1 Exploring the Relationship Between the Frameworks:
PBMs from the MC Perspective.

The PB and MC frameworks give di↵erent perspectives of the same dynamic process.

I would have liked to have spent more time reconciling these perspectives, as I expect

that work along these lines could reveal an improved understanding of crystallization

dynamics.

One way we might explore the relationship is by analyzing the mass-count (MC)

trajectories predicted by population balance (PB) models. This exploration could

help us understand how to interpret MC space movement from a theoretical or mech-

anistic vantage point—that is, this exploration could help us understanding what un-

derlying crystallization/dissolution mechanisms are responsible for certain MC space

movements. In addition, this line of inquiry might answer questions relating to PB

models and the MC framework that have repeatedly come up: can PB models be

translated to MC-movement models? If so, do such models line up with the empirical

Markov state models we have learned from data? And can the PB models then be
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used to establish model-based feedback control?

Preliminary (and incomplete) results showing the MC trajectories pre-

dicted by PB models.

Trajectories resulting from a crystallization-only PB model (reduced to moments)

Early in my PhD, I constructed population balance models of the crystallization dy-

namics for di↵erent salts and reduced these using the method of moments. For sodium

nitrate crystallization from water, I used the following expressions for nucleation and

growth:

J = J

0,1

exp

��E

J

/(T (T � TS))
2

�

+ J

0,2

�

b

µ

2

; and

G = k

g

exp (�E

g

/T ) �g;

where µ

2

is the second moment of the crystal size distribution and the parameters

J

0,1

, �E

J

, J
0,2

, b, k
g

, E
g

, and g were found fitting the model to concentration data.

We can explore this model from the MC perspective and try to learn what it says

about the dynamics. For example, Figure 8.1 shows the MC trajectories predicted

by the PB model for two linear cooling crystallizations—one under moderate cooling

and one under slow cooling.
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Figure 8.1: Mass-count trajectories predicted by a PB model (reduced to moments)
for sodium nitrate crystallization under slow linear cooling and moderate linear cool-
ing.

Here we see that the simple model constructed using the PB framework clearly

captures an empirical observation: slower cooling results in a steeper MC trajectory

and produces larger crystals. Further examination along these lines might reveal how

we can use the shape of the trajectory in MC space to make inferences about the

underlying nucleation, secondary nucleation and growth mechanisms.

Trajectories resulting from a PB model that includes both crystallization and

dissolution

A recent paper by Yang and Nagy [Yang and Nagy, 2015] puts forth a population

balance model (reduced to moments) that has been adapted from [Lindenberg et al.,

2009] to include dissolution:
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Nucleation, Growth and Dissolution [Yang and Nagy, 2015]

S =
C

C

⇤ (8.1a)
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growth rate model

, if S � 1 (8.1b)
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nucleation rate model

, if S � 1 (8.1c)
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dissolution rate model

, if S < 1 (8.1d)
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exp(�k
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/RT ) exp(�k

B3
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| {z }

extinction rate model

, if S < 1 (8.1e)

With this model, we can examine the MC trajectories predicted for di↵erent cooling-

heating operations. Two di↵erent simulated crystallization-dissolution runs are given

here.

The first is shown in Figure 8.2. In this simulated run, slow cooling is applied

initially, causing crystallization. This is then followed by slow heating to completely

dissolve the formed crystals. Here we see that the crystallization trajectory qualita-

tively aligns with what we have observed in experiments: it moves from the origin o↵

to the right and then upwards are the supersaturation is depleted. But the dissolu-

tion trajectory is markedly di↵erent from what we observe in experiments and also

di↵erent from what we would expect, physically: the crystal mass is reduced to zero

while the count is nearly unchanged and remains high at the end of the run after full

dissolution.
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Figure 8.2: Mass-count trajectory predicted by the moments model given by [Yang
and Nagy, 2015] for paracetamol crystallization when slow linear cooling is followed
by slow heating. Inset: applied temperature profile.

A second crystallization-dissolution simulation reveals further odd model-predicted

dynamics. Figure 8.3 shows the MC trajectory predicted by the model under faster

cooling followed by faster heating. Under cooling, the crystallization trajectory

roughly aligns with what we observe in experiments (although the counts are unex-

pectedly lower than what we observed for slower cooling in the previous simulation).

But, here again, the dissolution trajectory deviates from experimental observations

and physical expectations: the crystal count, in this case, is completely depleted while

the crystal mass remains high.
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Figure 8.3: Mass-count trajectory predicted by the moments model given by [Yang
and Nagy, 2015] for paracetamol crystallization when fast linear cooling is followed
by fast heating. Inset: applied temperature profile.

The MC trajectories shown here highlight a shortcoming of this PB model: the

current crystal state is not explicitly included in the rate expressions. (And, a brief

survey of other population balance models suggests that this is not unique to this

particular model). In experiments we observe that the current crystal state does have

a significant impact on the dynamics—especially the dissolution dynamics. This is

seen in the empirical Markov models we learn from data: Figures 5.14 and 5.15

indicate that crystal state (the mass and count) influence the forward movement.

Further work along these lines may reveal how to incorporate crystal state depen-

dence into rate expression for the underlying nucleation, growth and dissolution. In

addition, it may reveal what sort of underlying mechanisms are required to produce

the type of complex trajectories we observe in experiments when more complicated

temperature profiles are implemented (for example, Figures 5.17 and 5.19).
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8.2 Refining MC Control Schemes

The feedback control schemes presented in this thesis pass a practical test: they

worked when experimentally applied on a few test cases. But, additional examination

is needed to fully characterize the schemes and understand their limitations. In

addition, there is significant room for tuning, adjusting, and reworking the schemes

presented here in order to improve control performance.

Understanding the reliability of control: replicate runs. The feedback con-

trol algorithms developed here appear to be reliable (perhaps, with the exception of

the model-based scheme applied to paracetamol crystallization). But how reliable the

schemes are, and how much the results can be expected to deviate from run to run

remains an open question.

There are many ways this could be approached. One practical way is through

replicate runs—that is, applying the same scheme to control to the same target mul-

tiple time. Replicate runs of this nature were applied with the sGATEC scheme

towards Target 2, as shown in Figure 8.4.
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Figure 8.4: Replicate sGATEC runs towards Target 2
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In these replicate runs we see that the controller is able to guide the trajectory

to reach a position close to the target in each case and thereby produce crystals with

measured mean sizes close to the target size. But the path to the endpoint varies

from run to run—illustrating process variability and demonstrating why feedback is

essential.

To more definitively make claims on the reliability of the feedback schemes and

characterize the run-to-run variability, more extensive replicate studies should be

implemented.

Tuning the control loop and treating temperature as the input. The con-

trollers developed here often require specification of a number of control parameters.

In addition, each feedback control scheme developed in this thesis is implemented

with a cascade feedback loop, in which proportional-integral (PI) feedback control

over the temperature is implemented internally. I have not rigorously addressed how

the control parameters or the PI coe�cients should be selected. Developing a tuning

method here could improve the control. This is clearly seen with the model-based con-

troller applied to paracetamol crystallization. In addition, further refinement on the

model-based control could be achieved by treating the temperature as the true input

and explicitly incorporating the input dynamics in the optimal control calculations.

Alternative rule-based control schemes. Within the MC framework, it is easy

to dream up di↵erent rule-based control algorithms (and I have found this to be one

of the more enjoyable tasks in my PhD work). Those presented in Chapter 6 are only

a very small subset of the schemes that can likely be implemented.

Especially worth pursuing, in my opinion, are new rule-based schemes that incor-

porate knowledge of the recent movement. The recent movement in a run can be very

useful information in predicting the future movement but has not been incorporated

in the presented strategies.
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Alternative model structures and improved model-based control. We have

used a simple mathematical Markov model to capture the crystallization and disso-

lution dynamics in terms of MC movement. To be sure, there are advantages of this

type of model in performing computation mathematics. But it also is limited in that

must predict the dynamics from only the current state and input. This was seen to

be a shortcoming in modeling paracetamol crystallization and dissolution dynamics.

Other mathematical model structures that incorporate past history in predicting the

dynamics may show improved predictive capabilities. This, in turn, could lead to

improved model-based control.

8.3 Extending the MC Framework

The mass-count framework has received positive feedback from colleagues in academia

and industry. But the framework is also somewhat limited in its current application:

control of the mean size of crystals produced by unseeded batch cooling crystallization.

I see potential to extend the MC framework and broaden the application space.

8.3.1 Controlling more than just the mean crystal size

It may be possible to use the MC framework, or a slight variant, to control more than

just the mean crystal size.

Controlling the crystal size distribution by MC trajectory path control.

The final MC position specifies the mean crystal size. It does not, however, specify

the crystal size distribution. Figure 8.5 illustrates this: here we see three distributions

that are clearly di↵erent despite having the same mean size.
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Figure 8.5: Varying crystal size distributions with the same mean.

In some cases, just controlling the mean crystal size may not be the full objective.

It might, instead, be important to control the size distribution. The question is: can

the MC framework be used to establish control over more detailed properties of the

size distribution?

I think the answer is yes. But it requires more than endpoint control. To control

the size distribution, the MC trajectory path must be carefully controlled. For exam-

ple, the crystals size distributions shown in Figure 8.5 may be achieved by controlling

the MC trajectories as shown in Figure 8.6.
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Figure 8.6: Hypothetical MC paths that might be used to produce the size distri-
butions given in Figure 8.5.

Although this is hypothetical and should be experimentally confirmed, the idea
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seems sound. A bi-modal distribution can be produced by first generating a pop-

ulation of large crystals and then generating a number of small crystals on top of

those. This can potentially be achieved with the path traced out by the dashed line

in Figure 8.6.

Conversely, a narrow, mono-modal size distribution can be achieved by rapidly

producing crystal nuclei at the same time, then using temperature cycles to ratchet

the size of those crystals upwards while periodically dissolving any new fines. The

trajectory given by the light blue line should accomplish this.

Finally, a broad distribution can be achieved by slowly generated new crystals

while existing crystals grow. The path traced out by the solid black line is expected

to accomplish this.

Crystal state expansion: creating an MC+ framework. If additional relevant

crystal state properties could be measured online, the state representation could be

expanded and along with it the scope of the control. For example, if it were possible to

accurately measure the average crystal purity online, this could be treated as a third

state variable. The expanded (MC+) framework, would then view crystallization

dynamics through the evolution of the mass, count, and average crystal purity. Given

the right training data, it is possible that the same type of data-driven modeling

and dynamic programming strategy could be used to identify operating policies for

controlling the mean crystal size and purity.

While I expect this line of exploration would be fruitful—provided the online mea-

surements become available—there are certainly drawback to expanding the crystal

state representation. This is, after all, a key di↵erence between the population bal-

ance framework, which I claimed was hard to use, and the mass-count framework,

which I have claimed is conducive to application. Not least among the drawbacks:

if the crystal state is expanded to be greater than three-dimensional, we loose the

145



ability to easily visualize the dynamics. In addition to this, model-based computation

becomes more di�cult and control over the full state will likely be diminished.

8.3.2 Extending the MC framework to other crystallization operations

It is possible that the MC framework can be extended to operations other than

unseeded batch cooling crystallization. The biggest challenge in extending the MC

framework to these operations is in closing the mass balance so that the total crystal

mass may be monitoring in real time via solution concentration measurements. Given

a direct measure of the total crystal mass, this challenge can be largely avoided and

the extensions made more easily.

Seeded batch cooling crystallization. The easiest extension of the MC frame-

work—as presented in this thesis—is to seeded batch cooling crystallization. Seeding

simply jumps the MC position away from the origin. The mass jump must be in-

corporated through knowledge of the mass of seeds added. The count jump can be

monitored directly.

The MC framework can then be used in much the same way as it is for unseeded

batch cooling crystallization, with one exception: it is likely that the dynamics—as

seen by MC movement—in the instants immediately following seed addition will be

di↵erent from the dynamics at other points during the run. Revealing these post-seed

dynamics is important for crystal size control. It can also answer interesting question

related to processing the seeds. For example, how should the seeds be processed in

order to promote growth over secondary nucleation?

Continuous cooling crystallization. After seeded batch cooling crystallization,

the next easiest extension of the MC framework is to continuous cooling crystalliza-

tion. To close the mass balance and extend the MC framework to continuous cooling
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crystallization, streams into and out of the crystallizer must be characterized. Includ-

ing the flow rates, composition in, and solid fraction out. The flow rates are typically

measured and the composition in is usually known. The solid fraction out may be

inferred through well-mixed assumptions.

Provided the framework can be extended, the framework and feedback interface

might be used to maintain the MC position at a fixed location—adapting to distur-

bances and producing a consisting crystal product.

Batch antisolvent crystallization. The MC framework can also conceivably be

extended to antisolvent crystallization. In this case, the input in no longer the temper-

ature profile, but rather the anti-solvent/solvent addition profile. Again, to extend

the MC framework, the mass balance must be closed. Also, solute concentration

monitoring must be accurate at varying levels of solvent/antisolvent.

Here again there is an interesting potential use of the MC framework: we might

identify feedback control policies that indicate the appropriate anti-solvent/solvent

additions over time in order to control the dynamics and produce crystals of the target

size.

8.3.3 Beyond crystallization

The modeling and control strategy engendered by MC framework model-based ap-

proach to controlling crystallization—state reduction followed by data-driven mod-

eling and dynamic programming—has utility beyond crystallization. Indeed, this

is a strategy that has been frequently applied in the Grover Group to a variety of

complex systems with good practical success [Xue et al., 2014,Gri�n et al., 2016b].

The rigorous development of this approach as a general methodology is a worthwhile

pursuit.
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APPENDIX A

MONITORING MULTICOMPONENT ELECTROLYTIC

SOLUTIONS

Monitoring the solution composition and supersaturation is crucially important to

understanding and controlling batch cooling crystallization. This chapter outlines

the contributions we made in [Gri�n et al., 2014] and [Gri�n et al., 2015d] that

enable multicomponent solution monitoring.

Composition monitoring. The solution composition can potentially be monitored

online with ATR-FTIR, as outlined in §4.3. But this first requires the development

of a calibration model. For single-component crystallization systems this can usu-

ally be accomplished with well-established chemometric techniques, such a PLSR,

that are now widely available to be applied in an o↵-the-shelf manner. However,

tailored chemometric strategies may be required for multicomponent crystallization

systems—like darapskite salt crystallization from a multicomponent electrolytic solu-

tion. This section describes a tailored regression strategy, termed robust parameter

support vector regression (RPSVR), that is useful for establishing accurate multicom-

ponent concentration monitoring [Gri�n et al., 2014].

Supersaturation monitoring. The supersaturation for single component, non-

dissociating solutes is given by the simple expression

� ⌘ C � C

⇤(T )

C

⇤(T )
,

where C is the current concentration of the solute in solution and C

⇤(T ) is the solu-

bility concentration at the given temperature. This measure can be monitored online
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using ATR-FTIR and temperature measurements, provided that we have an IR-to-

concentration calibration model and the solubility-temperature relationship is known.

It is a little trickier to define supersaturation for multicomponent solute that

dissociates in solution. Obtaining the solubility-temperature relationship is also more

di�cult. This chapter gives the molar supersaturation—a measure of supersaturation

for dissociating salts—and also gives a method for quickly obtaining the solubility of

multicomponent solution, termed the solubility trace method [Gri�n et al., 2015d].

A.1 Robust Parameter Support Vector Regression (RPSVR)

In experimental System I—darapskite salt (Na
3

SO
4

NO
3

·H
2

O) crystallization from

water—we need to simultaneously monitor the concentration of the anions SO2�
4

and

NO�
3

. More generally, we have been interested in monitoring complex electrolytic nu-

clear waste solutions that contain many di↵erent anions, including those in darapskite

and also commonly nitrite, NO�
2

, and carbonate, CO2�
3

.

In building calibration models for inferring the concentration of each of these

anions in a multicomponent solution, we run into a challenge: the characteristic

infrared absorbance peaks for the di↵erent anions overlap. As a result, we are forced

to use minor spectral features to extract the information from a convoluted solution

spectrum, and this can be problematic when changing process conditions introduce

error in the measurement.

To achieve accurate concentration monitoring in this situation, we needed some

way of expertly separating the signal from the noise; Robust Parameter Support

Vector Regression (RPSVR) was the regression algorithm we came up with for doing

this [Gri�n et al., 2014].
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A.1.1 IR-to-concentration calibration model: notation

The goal of calibration, here, is to identify a function that accurately infers the

concentration of a given component in solution from the infrared absorbance spectrum

measured for that solution. To describe this function, and the process of learning it

from data, some notation needs to be introduced.

Input: features of the solution infrared absorbance spectrum. Figure A.1

shows an infrared absorbance spectrum measured by ATR-FTIR for a multicompo-

nent salt solution. The y-axis shows the absorbance (a measure of the amount of light

absorbed by the solution) for light of di↵erent frequencies, indicated by the x-axis.

!"

!#

Figure A.1: Infrared absorbance spectrum.

This information is conveniently represented as a vector

a ⌘

2

6

6

6

6

4

a

1

...

a

M

3

7

7

7

7

5

, (A.1)

where each element contains the measured absorbance for a particular frequency of

light.
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The input to a calibration model are features of the spectrum, denoted by x. A

feature, for example, might be the height of a select peak. Each feature may also

simply be a single element of the infrared absorbance spectrum vector, a. In any

case, the features must be a function of spectrum vector:

x = �(a). (A.2)

Output: concentration of a solution component. The output of the calibra-

tion model—what the model is trying to predict—is the concentration of a single

component in solution:

y = C.

For multicomponent solutions, multiple calibration models are needed—one for each

solution component of interest.

Calibration model. A calibration model infers or predicts the concentration from

the input features of the infrared absorbance spectrum. To distinguish this inference

from the true concentration, it is denoted with a hat:

ŷ = f(x),

where ŷ is the concentration predicted by the calibration model, f , for the input

features x. In this work, and for most IR-to-concentration calibration models, the

function f (the calibration model) is chosen to be a�ne—that is, a linear function of

x with an added constant. This type of function can be written succinctly:

ŷ = f(x) = wTx+ b, (A.3)

where w and b are parameters that must be learned through calibration.
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A.1.2 Calibration steps: training data collection, feature selection, and
regression

Calibration (i.e. the building of a calibration model) consists of three steps: (1)

training data collection, (2) input feature selection, and (3) regression. Each step is

important for building an accurate calibration model.

Training data. Training data consists of a series of spectrum-concentration pairs:

{(a[1]

, y

[1]), · · · , (a[N ]

, y

[N ])}. (A.4)

This data should be carefully collected to reveal the connection between the concen-

tration of the component of interest, y, and the infrared absorbance spectrum, a. As

such, y should be varied over the full experimental range and should be changed inde-

pendent of any disturbance variables—e.g. temperature. In addition, if the solution

has multiple components, the concentration of each should be varied independently.

Input feature selection. The task of selecting input features in not a simple

one. Nor one that can be made independently of the training data available and the

regression algorithm to be used. It often boils down to a judgment call, with the

guiding principles that the selected features should be minimal, clear and una↵ected

by disturbance variables. For single component solutions it is common to select a

characteristic peak and use the height or area of the peak as the only input feature.

For multicomponent solutions it is more common to use data-informed projection

methods, like principle component analysis, to automatically select the input features

or use the full spectrum as the input. In any case, once the features have been decided

on, the training data is converted to input–output (x–y) data.

Regression. The final step of calibration is regression. This is the process by which

the unknown calibration model is fit to the input–output training data. Regression
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is an optimization problem. For an a�ne calibration model, as given in (A.3), the

optimization problem is written as:

minimize
x, b

�
�

ŷ

[1],...,[N ]

, y

[1],...,[N ]

�

subject to ŷ

[i] = wTx[i] + b, for i = 1, . . . , N ;

(A.5)

where � is the objective function to be minimized.

A common objective function is the sum-squared-error :

i=N

X

i=1

�

ŷ

[i] � y

[i]

�

2

.

In which case the regression is termed least-squares regression.

But this is not the only objective function that can be used, and, as we will see

with the development of Robust Parameter Support Vector Regression (RPSVR), the

choice of objective function can have a significant impact on the general accuracy of

the calibration model learned.

A.1.3 The goal is to find a model with general accuracy, not necessarily
a tight fit to the training data.

On first pass, it might seem like we are trying to find a model that fits the training

data as closely as possible. Although this is roughly what is expressed by the least-

squares optimization, it is not the true objective of calibration. The objective of

calibration is to find a model that is accurate in general. That is, a model that

accurately predicts the concentration from arbitrary spectra measured in the future.

There is a minor distinction here. A model that fits the training data well, may

not be accurate in general. In other words, we can overfit the training data.

Overfitting. Overfitting occurs because there is error in the training data that

convolutes the true underlying relationship between x and y. If we are not careful,

and fit the training data very closely, our model will read into the idiosyncrasies of

the data (due to measurement error) and mistake noise for signal.
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Parsing the signal from the noise. Overfitting is avoided when the calibration

method accurately separates the signal in the training data from the noise. This can

potentially be accomplished changing any one of the three calibration steps: acquiring

more data at repeat and di↵erent points may reveal what underlying relationship

persists and what must have been measurement error; a di↵erent set of input features

may be less corrupted by noise and more parsimonious; the regression algorithm

objective function may be altered to yield a model that does not fit as tightly, but

generalizes and produces accurate predictions on unseen data. In developing RPSVR,

however, we have focused on avoiding overfitting by altering the regression algorithm.

A.1.4 Specific challenge: similar solution components and disturbance
variables

We aim to monitor the concentration of multiple similar anions, CO
3

, NO�
2

, SO2�
4

and NO�
3

, in complex electrolytic solutions. As shown in Figure A.2(a), the infrared

absorbance signals for these anions overlap and this leads to a convoluted solution

spectrum.

Working with a convoluted solution spectrum can make it more challenging to

separate the signal from the noise and avoid overfitting. In particular, we are forced

to rely on minor spectral features, like those shown in Figure A.2(b), to deconvolute

the spectrum. This is not such an issue as long as the error in the measurement

is minor and random so that it is uncorrelated with changes in composition in the

training data set. Here is where we run into a problem: for our instrument, in addition

to random error in the absorbance spectrum, there are also disturbance variables that

introduce significant structured variance into the absorbance measurements.

As illustrated in Figure A.3 the infrared absorbance spectrum is significantly in-

fluenced by at least two primary disturbance variables: (a) temperatures and (b)

probe alignments. It is also influenced in a minor way by two secondary disturbance

variables: (c) background spectra and (d) solution mixing intensity.
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Having structured variance, or error due to disturbance variables, is especially

disruptive to identifying an accurate calibration model. Here is why: some of the dis-

turbance variables cannot be controlled easily (exact probe alignment, for example)

and others must be changed throughout the experiments (temperature); if the distur-

bance variables change while collecting the training data and these changes happen to

align with changes in composition, the signal for concentration changes will be con-

voluted with the variance in the measurement due to disturbance variable changes.

In other words, the signal will be tangled with the disturbance-induced noise in the

training data.

A.1.5 Changing the regression algorithm to better separate the signal
from the noise

As already mentioned, each part of the calibration strategy—data collection, feature

selection, and regression—is important for producing an e↵ective calibration model

and, moreover, these steps operate together, not independently. Nevertheless, we will

single out the regression step as a key to addressing the multicomponent calibration

task and work o↵ a large fixed training set of 810 spectra–concentration pairs, with

the input feature vector taken to be subset of the infrared absorbance spectrum for

frequencies between 764 cm�1 and 1507 cm�1 (i.e. x ⇢ a).

The least-squares regression algorithm. The objective of the least-squares re-

gression algorithm

minimize
x, b

N

P

i=1

�

ŷ

[i] � y

[i]

�

2

subject to ŷ

[i] = wTx[i] + b, for i = 1, . . . , N

(A.6)

is to find the calibration model that best fits the training data. If the training data

is error free or has only normally distributed error in the concentration, this would

align exactly with our true objective of finding a calibration model that is generally

accurate.
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However, as we have noted, there is error in the spectral data. And, because

this error is structured and on the same order of magnitude as the signal, least-

squares regression is susceptible to overfitting. To make the regression algorithm less

susceptible to overfitting, we can adjust the objective function.

Adding a penalty term to avoid overfitting. We can add a penalty term to

the objective function to mitigate overfitting. This penalty term is a function of the

model itself and not the data. For a a�ne calibration model, the simplest penalty

term is the following:

p(w, b) = wTIw + b

2

, (A.7)

where I is the identity matrix.

Adding this penalty to the least-squares fit function we get a multi-objective

function and a regression algorithm termed ridge regression:

minimize
x, b

N

P

i=1

�

ŷ

[i] � y

[i]

�

2

+ �(wTIw + b

2)

subject to ŷ

[i] = wTx[i] + b, for i = 1, . . . , N,

(A.8)

where � is an adjustable optimization parameter.

The regression algorithm now reads, “find a calibration model that fits the data,

while also keeping the model parameters small.” Keeping the parameters small seems

arbitrary at first. But it actually serves an important purpose: the smaller the

parameters in the a�ne model, the more insensitive the model is to changes in the

input feature vector (which is good because these changes may be due to error).

Adding this penalty term can help us establish a more robust calibration model

that doesn’t overfit the data and is less sensitive to random error in the spectral

measurements. But it is does not take into account the structure of error due to

disturbance variables; in other words, it is not tailored to our specific calibration

challenge.
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The penalty term can be tailored to address the specific calibration chal-

lenge. In showing the variance induced by changes to disturbance variables (Figure

A.3) it is clear that there is structure to the disturbance-induced error. That is, the

disturbance variables do not induce random error. For example, probe alignment

changes tends to shift whole and scale whole regions of the spectum.

The penalty term used to create ridge regression does not take into account this

type of structured error: it assumes that the error in each input feature is independent

of the error in the other features and also that the error in each feature is on the

same order of magnitude. Because we can probe the spectral variance introduced by

changing disturbance variables, we can tailor the penalty term.

The disturbance-induced x-error covariance matrix. To characterize how the

input features collectively change with changing disturbance variables we can use a

covariance matrix. For this specific application, the matrix is termed the disturbance-

induced x-error covariance matrix.

To find this matrix, a number of spectra were recorded for the same solution

while the four identified disturbance variables were systematically changed. (This

experiment will be referred to as the Spectral Variance Experiment). Because the

solution composition was fixed for all of the measurements made during the Spectral

Variance Experiment, the collected data set has the following form:

{(x[1]

, y), · · · , (x[N ]

, y)},

where y is fixed throughout.

From this data set we can estimate the variance induced by the disturbance vari-

ables. If the measurements were perfect with no error, then every x[i] would be exactly

the same. We can therefore get a sense of the error in input features by comparing

how much each measurement deviates from the average:

e(x[i]) = x[i] � x̄.
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Combined, this data can be used to estimate an error-covariance matrix:

let �X ⌘ ⇥

e(x[1]), · · · , e(x[N ])
⇤

,

then the error-covariance matrix is defined as:

⌃ ⌘ �X

T�X.

The disturbance-induced x-error covariance matrix obtained in this way from data

collected during the Spectral Variance Experiment is distinguished by the notation:

⌃SVE.

Using the disturbance-induced x-error covariance matrix to create a tai-

lored penalty term. Replacing the identify matrix in the ridge-regression penalty

term (equation A.7) with ⌃SVE gives us a new, better-suited penalty term

p(w, b) = wT⌃SVEw + b

2

. (A.9)

In minimizing this term, we are identifying an a�ne calibration model that gives the

same, or close to the same, prediction for each of the spectra recorded during the

Spectral Variance Experiment. In other words, in minimizing the tailored penalty

term we can preference calibration models that are insensitive to changes in the

spectra caused by the disturbance variables.

The fit function can also be tailored to reduce overfitting. The fit function in

least-squares regression is the sum of squared error between the calibration-predicted

and the known concentrations across the training data. This is only one of many

di↵erent fit functions that could be used (although it is especially convenient for

computational mathematics).

In addition to adding and then tailoring a penalty function, we can also tailor the

fit function to adjust the regression algorithm. One type of fit function that makes
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some sense when minor error is expected to always persists and is not such a problem,

is a so-called dead zone fit function. In this type of fit function, no cost is given to

small errors in the model-prediction. For example, a dead zone linear fit function is

the following:

� =
N

P

i=1

�

[i]

,

where �

[i] ⌘

8

>

<

>

:

0 if |ŷ[i] � y

[i]|  ✏,

|ŷ[i] � y

[i]|� ✏ else,

9

>

=

>

;

(A.10)

and ✏ is an adjustable parameter that dictates the width of the dead zone.

A.1.6 The Robust Parameter Support Vector Regression Algorithm

Adding the penalty function given by Equation (A.9) to the dead zone linear fit func-

tion given by (A.10), creates a regression algorithm that we labeled Robust Parameter

Support Vector Regression:

minimize
x, b

N

P

i=1

�

[i] + �(wT⌃SVEw + b

2)

subject to �

[i] ⌘

8

>

<

>

:

0 if |ŷ[i] � y

[i]|  ✏,

|ŷ[i] � y

[i]|� ✏ else,

9

>

=

>

;

ŷ

[i] = wTx[i] + b, for i = 1, . . . , N.

(A.11)

By including the tailored penalty term and adding slack in the fit function, RPSVR

is able to better separate the signal from the noise: it produces a calibration model

that fits the training data while at the same time being insensitive to errors in the

spectrum measurements caused by the disturbance variables.

Additional benefits of the structure of the regression algorithm. The com-

bination of the dead zone linear fit function with the tailored penalty term was not

selected randomly. The regression algorithm was formulated in this way to produce

a regression algorithm that is very similar to the well-established Support Vector
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Regression (SVR). (Simply replacing the penalty term in RPSVR with the standard

ridge-regression penalty term gives SVR). Aside from making it easy to name the

regression algorithm, having nearly the same structure as SVR has a two key advan-

tages related to computation and fitting. The first is that the optimization problem

is convex. This lets us solve the optimization problem rapidly [Boyd and Vanden-

berghe, 2009]. The second is not as easy to see, but it is a powerful advantage: the

specific setup enables the use of the kernel trick [Smola and Scholkopf, 2004]. In

e↵ect, this enables us to find a calibration model that picks up on the intricacies in

the features and thereby fit the data better while at the same time suppressing the

risk of overfitting [Smola and Scholkopf, 2004,Abu-Mostafa et al., 2012].

A.1.7 Performance of RPSVR

Robust Parameter Support Vector Regression was compared against a number of

established regression algorithms, many of which are common for IR-to-concentration

calibration, including:

• Principle Component Regression (PCR),

• Partial Least Squares Regression (PLSR),

• Dead Zone Linear Regression (DZLR),

• (standard) Support Vector Regression (SVR), and

• Ridge Regression (RR).

To compare, a test data set was collected. Calibration models were then constructed

using set training data and input features, but with the di↵erent listed regression

algorithms. Each calibration model was then tested on the test set (not used in

training). A summary of these results is displayed in Figure A.4.
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Figure A.4: Comparison of calibration model accuracy. Each calibration model was
constructed from the same training data set and tested on the same test data set:
the di↵erences in prediction accuracy are due to the regression algorithms used.

Judging by accuracy of prediction, the calibration model obtained with RPSVR out-

performed each of the other calibration models. Also, comparing RPSVR side-by-side

with SVR, we see that the tailored penalty term does in fact make the model less sen-

sitive to the disturbance variables; the RPSVR is more robust, making consistently

accurate predictions even as the disturbance variables fluctuate. This is shown in

Figure A.5.

Figure A.5: Parity plot of calibration model predictions. Calibration models con-
structed with standard Support Vector Regression (SVR) and Robust Parameter
Support Vector Regression (RPSVR).
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A.1.8 Future work with RPSVR

The idea behind Robust Parameter Support Vector Regression can likely find appli-

cation outside of multicomponent calibration. Highlighted here are two promising

research directions.

Calibration maintenance. It is often the case that a calibration model becomes

less useful overtime. This is because the conditions under which the model was

originally developed are further and further removed from the current conditions

and, over time, the instrument may change or be replaced with a new instrument.

When this happens, calibration maintenance is required.

The goal of calibration maintenance is to use a small amount of new data to adjust

the existing model rather than gather a whole new training set and developing a whole

new model. The key idea behind RPSVR—using robust parameter penalty term—is

potentially very useful for calibration maintenance. In particular, a small amount

of new data can be gathered for a subset of the compositions used in the training

data. From this data an error-covariance matrix can be identified that characterizes

the di↵erences in the spectral measurements made when the calibration model was

originally developed and the spectral measurements made at the current time. This

error-covariance matrix can then be used—by way of the penalty term—to identify a

model that is insensitive to those measurement changes while still fitting the original

training data. Such a model should perform better on new measurements, achieving

the goal of calibration maintenance.

Classification: Robust Parameter Support Vector Machines. Support Vec-

tor Regression (SVR) is adapted from the Support Vector Machine (SVM) classifica-

tion algorithm. In this classification algorithm, groups are separated according to a

classification line the gives “maximum room for error”—under the assumption that
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the error is the distributed equally across all of the features. An example is shown in

Figure A.6(a).

The Robust Parameter penalty term gives us a way of modifying the Support

Vector Machine algorithm to find a line that gives maximum room for error when

the error is observed to be di↵erent for the di↵erent features. For example, if the

feature x

1

is measured very inaccurately while the feature x

2

is very accurate, then

a di↵erent dividing line is better: that shown in Figure A.6(b). Tailoring the penalty

function lets us find a dividing line that is more appropriate for the observed errors

in the features. This could improve accuracy over standard support vector machines.

!1

! 2

!1

! 2
(a) (b)

Figure A.6: Di↵erent classification lines. Two objects mapped according to features
x

1

and x

2

: circles represent examples of the first object, plus symbols represent
examples of the second object. In linear classification, we need to find a dividing line.
Figures (a) and (b) illustrate two di↵erent dividing lines: (a) the SVM dividing line,
(b) the RPSVM dividing line when x

1

is inaccurate.

Additional work on the robust parameter support vector machine algo-

rithm is required. The Support Vector Machine algorithm is one of the most

heavily used and widely successful algorithms for classification. A large part of this

success can be attributed to the fact that the algorithm facilitates the use of the

kernel trick [Abu-Mostafa et al., 2012], which lets us find non-linear dividing lines

without the same risk of overfitting. I expect that the Robust Parameter version
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also admits the application this same type of strategy—and if it does, the adjusted

penalty function can be of benefit to classification accuracy. But, I have been unable

to mathematically show this is true.

If I had more time in my PhD, I would further explore Robust Parameter Support

Vector Machines to determine if this idea has utility, whether or not it has already

been published, and examine the use of kernels with the adjusted penalty term.

A.2 Molar Supersaturation for Multicomponent Salts

In [Gri�n et al., 2015d] a measure termed the molar supersaturation was developed.

This measure is analogous to the supersaturation, � given by Equation (1.4), but

for a multicomponent salt that dissociates in solution. The development of molar

supersaturation is repeated here.

For the generic crystallization system consisting of solute A (non-dissociating) in

water illustrated in Figure A.7, the thermodynamic driving force for crystallization

is given by the di↵erence in chemical potential:

�µ

cryst ⌘ µ

(L)

A (xA, T, P )� µ

(S)

A (T, P ),

where µ

(L)

A is the chemical potential of the solute, A, in solution and xA is the mole

fraction of the solute in solution; µ
(S)

A is the chemical potential of the solute in a pure

solid state. (As described in §1.1, but with the mole fraction of the solute given in

place of the concentration).
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L

Liquid	composed	of
water	and	species	A

Solid	composed	
of	pure	species	A

system	bound	by	
dashed	line

S

Figure A.7: Illustration of a simple two-phase system: liquid composed of water
and solute A (non-dissociating); solid composed of pure solute A.

If a two-phase closed system is held at constant temperature and pressure, even-

tually an equilibrium state is reached. In this state the composition of each phase is

fixed and the chemical potential for a given species is uniform across the phases (ig-

noring any surface e↵ects). When pure component A in a solid phase is in equilibrium

with an aqueous solution containing A, the following expression must hold:

�µ

cryst = 0 = µ

(L)

A (x⇤
A(T, P ), T, P )� µ

(S)

A (T, P ),

where x

⇤
A(T, P ) is the equilibrium solution mole-fraction or solubility of solute A at

the given temperature and pressure.

Using this relationship, we can re-express the driving force for crystallization:

�µ

cryst = µ

(L)

A (xA, T, P )� µ

(L)

A (x⇤
A(T, P ), T, P ). (A.12)

At a fixed pressure (typical of cooling crystallizations), the driving force can be mea-

sured if the dependency of chemical potential on the solution temperature and com-

position is known. A classic expression for this dependency is:

µ

(L)

A (xA, T, P ) = µ

�
A +RT ln (�AxA) ,

where R is the ideal gas constant, µ�
A is the reference state chemical potential for
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solute A and �A is the activity coe�cient, which is a function of both the solute mole

fraction and the temperature.

The driving force for crystallization, as expressed in Equation (A.12), can now be

re-written again:

�µ

cryst =
⇥

µ

�
A +RT ln (�AxA)

⇤� ⇥

µ

�
A +RT ln

�

�

⇤
Ax

⇤
A(T )

�⇤

rearranging and canceling

�µ

cryst = RT ln

✓

�A

�

⇤
A

◆

+RT ln

✓

xA

x

⇤
A(T )

◆

.

If the activity coe�cient is independent of xA or only weakly depends on xA, then

for any xA close to the solubility mole fraction, x⇤
A:

�µ

cryst

RT

⇡ ln

✓

xA

x

⇤
A(T )

◆

⇡ xA � x

⇤
A(T )

x

⇤
A(T )

, (A.13)

where the second approximation results from the first-order Taylor expansion.

Equation (A.13) yields the following quantity as measure of the thermodynamic

driving force for crystallization of a non-dissociating solute from a single-component

solution:

�

[x]

A ⌘ xA � x

⇤
A(T )

x

⇤
A(T )

✓

⇡ �µ

cryst

RT

by above assumptions

◆

. (A.14)

In [Gri�n et al., 2015d] this quantity is referred to as the molar supersaturation.

In crystallization literature, the amount of solute in solution is often expressed in

terms of amount solute per mass solvent. From mole-fractions, concentration (in per

mass-solvent units) can be found and vice versa. In these units, the supersaturation

� =
C � C

⇤(T )

C

⇤(T )

is the more common measure (and is the measure that I refer to throughout the

thesis).

This expression is closely related to the expression given by Equation (A.14). The

reason for going through the trouble of developing �

[x] is to make assumptions clear
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and set the stage for a consistent measure of the driving force for the crystallization

of dissociated salts, like darapskite salt.

For multicomponent salts the supersaturation expressed simply by Equation (1.4)

may not be an appropriate expression for estimating the driving force for crystal-

lization. Instead of the concentration of a single solute in solution, it is solution

composition in terms of dissociated ions that must considered. Equations are given

here for the molar supersaturation of a generic salt, A
⌫AB⌫B , and also for darapskite.

Molar supersaturation for a generic salt, A
⌫

A

B
⌫

B

. For a generic salt of the

form A
⌫AB⌫B , the equilibrium between the solid phase and the dissociated ions in

solution can be expressed as follows:

A
⌫AB⌫B

| {z }

solid salt

⌦ ⌫AA+ ⌫BB
| {z }

ions in solution

.

A di↵erence in chemical potential of the ions in solution and the solid salt provides

the driving force for crystallization (dissolution):

�µ A⌫AB⌫B
= ⌫Aµ

L
A (T, xA, xB) + ⌫Bµ

L
B (T, xA, xB)

| {z }

chemical potential of ions in solution

+ µ

S

A⌫AB⌫B
(T )

| {z }

chemical potential of solid salt

.

Following the same line of arguments used to develop �

[x], but this time for the

multicomponent salt, yields the following expression:

�

[x]

A⌫AB⌫B
⌘ x

⌫A

A x

⌫B

B � �

x

⇤
A(T )

�

⌫A
�

x

⇤
B(T )

�

⌫B

�

x

⇤
A(T )

�

⌫A
�

x

⇤
B(T )

�

⌫B
.

From this expression we see that the molar supersaturation is expressed in terms of

the dissociated ions in solution rather than a single solute concentration.

Molar supersaturation expression for darapskite. For crystallization of dara-

pskite (Na
3

NO
3

SO
4

·H
2

O), the equilibrium expression is

Na
3

(NO
3

)(SO
4

) · H
2

O
| {z }

solid salt

⌦ 3Na+ +NO�
3

+ SO2�
4

+H
2

O
| {z }

components in solution

,
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and the molar supersaturation is written as

�

[x]

Na3NO3SO4·H2O ⌘
�

(xNa+)
3

xNO�
3
xSO2�

4
xH2O

��
⇣

(x⇤
Na+

)3 x⇤
NO�

3
x

⇤
SO2�

4
x

⇤
H2O

⌘

(x⇤
Na+

)3 x⇤
NO�

3
x

⇤
SO2�

4
x

⇤
H2O

, (A.15)

where each solubility mole fraction (x⇤) is a function of temperature.

From a the closed mass balance and stoichiometry, the composition of the solution

for System 1 (§4.1.1), can be specified by the mole fraction of nitrate (NO�
3

) and

sulfate (SO2�
4

). In other words, xNa+ and xH2O can be written as functions of xNO�
3

and xSO2�
4
. Moreover, the mole fractions of nitrate and sulfate can be inferred from

solution concentration monitoring made via ATR-FTIR (§4.3 & §A.1). The end

result is that the molar supersaturation of the darapskite in the model solution is just

a function of the concentration of nitrate and sulfate and the solubility curve:

�

[x]

Na3NO3SO4·H2O
| {z }

supersaturation darapskite

= �

[x]

Na3NO3SO4·H2O

�

CNO�
3
, CSO2�

4
,C⇤

Na3NO3SO4·H2O
(T )

�

, (A.16)

where C⇤
Na3NO3SO4·H2O

(T ) is the solubility curve of darapskite obtained from the solu-

bility trace methodology.

A.3 Solubility Trace Methodology for Multicomponenet So-
lutions

For a simple solution (non-dissociating solute in a solvent), the solubility is the amount

of solute dissolved when the two-phase system—pure solute in the solid phase, solute

and solvent in the liquid phase—is in equilibrium at a fixed temperature and pressure.

Thus, for a single-solute system at fixed pressure, the solubility can be expressed in

terms of the solute concentration as a function of temperature (as given in §1.1 and

shown in Figure 1.2):

C

⇤ = C

⇤(T )single-solute solution, fixed pressure.
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When multiple electrolytes exist in a solution, finding the solubility of a component

becomes more complex; multiple solid phases may be formed from the ions in the so-

lution, and the solubility of each salt is dependent on the concentration of all compo-

nents in the solution. Fully characterizing the solubility of a salt in a multicomponent

electrolytic system is therefore an experimentally arduous task, requiring equilibrium

solution composition data at varying temperatures and overall system compositions.

Fortunately, for batch-cooling crystallizations, the system is closed and maintained

at a constant pressure. Thus only the temperature dependence of solubility of the

crystallizing salt must be characterized to apply supersaturation control. Even so,

this must be done for each new batch if the feed composition changes (i.e. each dif-

ferent overall system composition). Therefore a methodology for e�ciently collecting

the requisite solubility data is desired.

An experimental procedure referred to as the polythermal method [Mullin, 2001]

is commonly employed to determine the solubility as a function of temperature prior

to controlled crystallization operations. This method does not require sophisticated

measurement techniques but does necessitate multiple experiments. Alternatively,

we propose taking advantage of in situ solution composition monitoring to more

e�ciently collect the solubility data. This new method is referred to as the solubility

trace method.

The polythermal method. For single-solute solutions, the solubility as a func-

tion of temperature is often identified with a series of cooling/heating operations at

varying solute concentration levels [Mullin, 2001, Fujiwara et al., 2002, Barrett and

Glennon, 2002]. This method has been termed the polythermal method. Starting

with an undersaturated solution of known composition, the temperature is reduced

until nucleation is observed. Once crystals have formed, the temperature is increased

until complete dissolution is observed. This marks a single point on the solubility
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curve. The procedure is illustrated in Figure A.8.
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Figure A.8: Solubility curve identified by the polythermal method. The arrows sug-
gest the order of operations: at each selected initial concentration, the solution is
slowly cooled until nucleation is observed (marking a point on the nucleation curve);
the solution and suspended crystals are then reheated until complete dissolution is
observed (marking a point on the solubility curve).

There are a number of variables that can a↵ect the degree of supersaturation

that builds before nucleation is observed (i.e. the width of the metastable zone)

including rate of temperature change, impurities, and even the solution history. The

temperature at which complete dissolution is observed is less variable, but can be

a↵ected by the heating rate. To obtain an accurate estimate of the solubility curve, the

heating rate must be slow enough such that solid-liquid equilibrium is approximately

maintained.

The solubility trace method. The solubility trace method is an alternative to

the polythermal method that takes advantage of on-line composition monitoring and

collects solubility data in a single experiment. A number of strategies similar to

the solubility trace methodology presented here have been previously discussed or

implemented [Woo et al., 2009,Barrett et al., 2010,Saleemi et al., 2012].
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For simplicity, the solubility trace methodology is introduced for the simple solu-

tion containing sodium nitrate (NaNO
3

) and water. The solubility of sodium nitrate

in water can be found by the polythermal method as shown in Figure A.9(a).

This, however, requires multiple experiments. Alternatively, the solubility curve

can be found more directly by applying in situ concentration monitoring during a sin-

gle cooling/heating operation. The technique is illustrated for sodium nitrate in Fig-

ure A.9(b). Cooling a solution initially containing 120 g-NaNO
3

/100 g-water causes

supersaturation to build until around 52.5 °C, at which point nucleation and rapid

crystallization is observed; on heating the solid-liquid slurry, the measured solution

concentration of sodium nitrate traces out the solubility curve over the temperature

range probed.
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Figure A.9: Slubility curve for sodium nitrate identified by the solubility trace
methodology. (a) Shows the curves obtained using the polythermal method; while
(b) shows the solubility curve for temperatures above 40 °C can obtained by the sol-
ubility trace method (solubility curve is traced out by the concentration-temperature
profile during heating stage)

The same solubility trace strategy can be employed to identify the solubility in

a multicomponent solution. That is, for a clear solution of a given composition, a

cooling-heating operation can be coupled with composition monitoring to trace out
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the solubility for a given salt within a specified temperature range. It is important to

note that such a curve is unique to the initial composition probed; di↵erent solubility

curves are expected for di↵erent initial compositions.

Depending on the number of independent components in solution, the solubil-

ity curve takes on additional dimensions. For the darapskite crystallizing from the

multicomponent electrolytic solution, the curve takes on a third dimension—with

coordinates of temperature, concentration of nitrate, and concentration of sulfate:

C⇤
Na3NO3SO4·H2O

(T ) =
h

C

⇤
NO�

3
(T ) C⇤

SO2�
4
(T )

i

.

Figure A.10 shows the solubility trace for darapskite crystallizing from a solution

initially composed of 330 grams of NaNO
3

and 21.75 grams of Na
2

SO in 300 mL of

water: cooling drives the crystallization of darapskite; these crystals are then dissolved

during heating and the profile during dissolution (grey) traces out the solubility curve.

Once the data is collected, the functional dependence of temperature can be captured

with a polynomial fit to the dissolution curve.
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Figure A.10: Solubility trace for darapskite. Profile in grey identifies the solubility
curve.
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APPENDIX B

SIEVE MEASUREMENTS AND THE

MASS-PER-COUNT–SIZE RELATIONSHIP

In introducing the MC framework, a measure of the mean crystal size was proposed

(Equation 3.4):

L̄ ⌘
✓

1

ks⇢crys

◆

1/3

⇣

m

n

⌘

1/3

,

where ks is a constant shape factor, ⇢crys is the density of the crystal phase, m is the

crystal mass, and n is the crystal count (that is, the total number of crystals).

This measure of average size is convenient: assuming the chord count is propor-

tional to the number of crystals, we can obtain a measure of it online

L̄ =

✓

1

ks⇢crys

◆

1/3

⇣

m

n

⌘

1/3

/
⇣

m

c

⌘

1/3

,

where c is the chord count measured by FBRM.

Ideally, we would use sieve analysis to directly obtain an independent measure of

L̄. However, sieve analysis gives the mass in each bin, m
i

, not the number of crystals

in each bin, n
i

. To obtain a measure of L̄ from sieve analysis we need to approximate

the number of crystals from the mass data. This can be done with an assumption

about the mean volume of the crystals in each sieve bin.

Let v̄
i

be a measure of the mean volume of a crystal in the i

th sieve bin, defined

as:

v̄

i

⌘
✓

m

i

/⇢crys

n

i

◆

. (B.1)

This mean volume should be related to the bin midpoint, s
i

—i.e. the midpoint of the

size range for the i

th sieve bin.
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Here, we will assume that the average volume of a crystal in the i

th bin is pro-

portional to the cube of the bin midpoint and that the following relation holds:

v̄

i

= kss
3

i

, (B.2)

where we ks is the same shape factor we introduce in defining L̄.

Rearranging Equation (B.1) we get

n

i

=

✓

m

i

/⇢crys

v̄

i

◆

,

and then, using Equation (B.2), we obtain an estimate of the number of crystals per

bin from the mass of crystals per bin

n

i

=

✓

m

i

/⇢crys

kss
3

i

◆

. (B.3)

Using this approximation, we obtain a measure of L̄ from sieve data:

L̄ =

✓

1

ks⇢crys

◆

1/3

 

P

Nbins
i=1

m

i

P

Nbins
i=1

n

i

!

1/3

=

✓

1

ks⇢crys

◆

1/3

0

@

P

Nbins
i=1

m

i

P

Nbins
i=1

⇣

mi/⇢crys

kss3i

⌘

1

A

1/3

.

Canceling out the constants to express this more succinctly:

L̄ =

 

m

P

Nbins
i=1

�

m

i

s

�3

i

�

!

1/3

. (B.4)

So we see that L̄ can be approximated with sieve analysis, which can be experimentally

verified: Figure B.1 compares L̄ estimated by sieve for paracetamol crystals against

the mass-per-count measured online by ATR-FTIR and FBRM.

But measuring the number-based mean size, L̄, can be problematic in practice,

especially for darapskite crystals. The reason is the sensitivity of this measure to mass

in the lowest sieve trays. Figure B.2 illustrates the wide range of aperture sizes in the

sieve stack. Comparing the top and bottom sieve trays: s3bottom << s

3

top. This means,

even a very small mass of crystals in the bottom tray is interpreted as a very large

number of crystals. Having such sensitivity would be OK if the measurements were
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Figure B.1: Mass-per-count–L̄ relationship observed for paracetamol crystals.

perfect. Unfortunately, the sieve measurements are not perfect: darapskite crystals

are fragile and break in the RO-TAP, resulting in non-negligible amounts of crystal

fragments in the lower sieve bins and significantly increasing the estimate of n
i

and

decreasing the estimate of L̄.

20 53 75 106150 212 250 300 355 425 500 600 850 1000 2000 !m

SIEVE STACK

bottom top

Figure B.2: Illustration of the size of the apertures of each sieve tray in the stack.

To avoid inaccuracies in the sieve measurement, the mass-weighted mean crystal

size has been used throughout this thesis. In this case, the relationship between the

mass and count measured online and mass-weighted mean size measured o✏ine is

empirical (c.f. Figures 4.7 and 4.8).
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APPENDIX C

COMPUTATION: MARKOV STATE MODEL

C.1 Machine Learning to Obtain an MC Dynamics Model

C.1.1 Training data

The training data for learning a mathematical model of MC space movement for

darapskite consists of 6162 (x, u)–�x data vector pairs, collected over 20 crystal-

lization runs. The training data for learning a mathematical model of MC space

movement for paracetamol consists of 7402 (x, u)–�x data vector pairs collected over

14 crystallization runs.

For both systems, there is a characteristic of the training data that is worth

pointing out: the data does not fill the input space fully or evenly. This can be seen

in Figure 5.13, and is even more evident when the training data is also spread out

according to the supersaturation level u. The key to learning from data with this

structure, was using the appropriate weighting scheme in the regression algorithm.

This is discussed subsequently.

C.1.2 ‘Non-parametric’ modeling strategy and the weight expression

The mathematical model we obtain from the proposed learning method is non-

parametric with respect to position x. That is, instead of identifying a fixed global

model that specifies the dynamics for any given x and u, we keep the training data

on hand and obtain a local model for each queried state, x́. Each local model then

specifies the dynamics for any u but only in the neighborhood of the queried state,

x́. The queried state influences the local model through the weight function:

w(x́, x̂
j

;) = exp

✓

� ||x́� x̂
j

||2
2



◆

,
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where  is an adjustable parameter termed the bandwidth.

By adjusting the bandwidth we can adjust the sensitivity of the local model to

the crystal state. And this gives us a way to learn a non-parametric model from data

that is sparse and unevenly spread out in the input space.

Case-based illustration of the local data-weighting strategy. As an illustra-

tion, it is informative to look at the weighting schemes used to learn local models

for di↵erent queried crystal states using di↵erent bandwidths (using training data for

darapskite). Three cases are enough to illustrate the main point:

Case a: x́ = (100, 4) using the bandwidth  = 5;

Case b: x́ = (200, 8) using the same bandwidth  = 5; and

Case c: x́ = (200, 8) using a broader bandwidth  = 10.

For each di↵erent case, the training data points are given di↵erent weight—this pro-

vides di↵erent e↵ective training data from which the local models are learned. This

is illustrated in Figure C.1 for the three highlighted cases.

From this figure, we see the e↵ect of the weighting scheme: the weighting scheme

allows local models to be learned from data collected in the same neighborhood, with

the size of the neighborhood determined by the selected bandwidth, .

Figure C.1: Visual representation of the weighted training data associated with
the example cases a, b, and c. The weight assigned to each training data point is
represented by the size and shade of the points.
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Scaling the bandwidth lets us learn from sparse, uneven data. In choosing

the bandwidth to use at di↵erent positions, we have to be cognizant of the data den-

sity, which in non-uniform. If we choose a small bandwidth and the queried position

is in a data-sparse region, the model may be overly influenced by measurement noise

in the few data points that happen to be in that region (i.e. we are in danger of

overfitting).

To avoid this the bandwidth is scaled according to the data-density around each

queried position in mass-count space. In particular, for each queried point, x́ we

adjusted the bandwidth according to the following expression:

|
´

x

= argmin


  

Ntrain
X

j=1

w(x́, x̂
j

,)/Ntrain

!

� fw

!

2

,

where fw is an adjustable parameter that we set to 0.25.

In selecting the bandwidth by this method we ensure that, at each queried point

the sum of weights—which range from 0 to 1—amounts to 25% of the training data.

C.1.3 Solving the learning algorithm

minimize
� 2 R

2⇥6

 

N

P

j=1

w(x́, x̂
j

;)||[û
j

, û

2

j

, . . . , û

6

j

]��t��x̂
j

||2
2

!
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⌫ 0, for all u 2 UD.

The constraints in the above optimization problem represent the practical implemen-

tations of the constraints uF (x, u) ⌫ 0 and @F/@u ⌫ 0. In these conditions, UD
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denotes the supersaturation domain of interest discretized with a constant di↵erence

of 0.001:

UD = {�0.150,�0.149, . . . , 0.500}

In writing the constraints in this way, we obtain an optimization problem that is

convex and can be solved in short order using CVX: MATLAB software for convex

optimization [Boyd and Vandenberghe, 2009,Grant and Boyd, 2012].

C.2 MC Model Calculations: Optimal Open-Loop Policies,
Reachability Analyses, and Stochastic Simulations

The MC model for crystallization and dissolution, expressed mathematically in equa-

tion (5.1), can be used to identify optimal open-loop control policies, answer design

questions through reachability analyses, and run stochastic simulations.

Optimal open-loop policies are shown for both darapskite and paracetamol. How-

ever, as the MC model for darapskite crystallization and dissolution captures real-

ity better than the MC model for paracetamol crystallization and dissolution, the

model-based strategy was utilized more fully for darapskite—reachability analyses

and stochastic simulations are therefore demonstrated just for darapskite.

C.2.1 Optimal open loop policy calculations.

Our primary control objective is to reach a target final mass-count (and, correspond-

ingly, produce crystals of a target mean size). Additionally, we would like to run

the operation with minimal energy input. The collective optimal open-loop control

objective can be formalized as:

minimize
u0, . . . , uN⌧�1

⇢

⇢

N�1

P

⌧=0

"(u
⌧

) + d(x
N

,x�)

�

subject to x
⌧+1

= F

�

x
⌧

, u

⌧

�

�t+ x
⌧

, ⌧ = 0, . . . , N � 1;

x
0

= xinit;

(C.1)
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whereN denotes the total number of time intervals and the objective function contains

tow terms, a running cost and a terminal cost :

• the running cost is given by the summation of an input-e↵ort function "(u) ⌘ u

2,

and

• the terminal cost is given by the distance-to-target function evaluated for the

final position, d(x
N

,x�).

Here, the input-e↵ort function reflects the following: crystallization or dissolution

will spontaneously bring the system to saturation; maintaining undersaturation or

supersaturation during the operation requires a continual temperature change and,

consequently, the input of energy. While, the distance-to-target function corresponds

to the normalized, squared Euclidean distance between the current MC position and

the target MC position [Gri�n et al., 2016a].

Solving (C.2.2) ( [Gri�n et al., 2016a]) yields the optimal open loop supersatura-

tion profile. With the supersaturation profile calculated, the MC model can then be

used to obtain the expected MC trajectory under optimal open loop control and the

solubility-temperature relationship can be used to obtain the corresponding optimal

temperature policy. Optimal open loop policies for di↵erent targets were calculated

for both darapskite and paracetamol.

Figure C.2 shows the predicted optimal open-loop trajectories for darapskite salt

crystallization for three targets. Figure C.3 likewise shows the predicted optimal

open-loop trajectories for paracetamol salt crystallization for three targets.

C.2.2 Answering design questions using reachability analyses

Prior to designing a crystallization run, there are general questions we would like to

answer, including: What targets are reachable? And, what is the minimum batch

time for a given target?
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(a) (b)

(c) (d)

target

predicted 
final position

Figure C.2: (a) Predicted trajectories for darapskite crystallization under optimal
open loop control towards three separate targets. (b) Predicted distance-to-target
profiles for each optimal run. (c) Optimal temperature profiles. (d) Optimal super-
saturation profiles.

These questions can be answered conducting reachability analyses. This section

illustrates these analyses for darapskite crystallization.

In doing so, two important properties of the system are revealed: a wider range of

size targets can be reached in a given batch time by appropriately applying dissolution

stages, and there is a nearly linear relationship between the target crystal size and

the minimum batch time required.

Reachable regions, darapskite. We aim to understand what regions (in MC

space) can be reached during batch cooling crystallization of darapskite salt from

water. In particular, we pose two versions of a reachability question:
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(a) (b)

(c) (d)

target predicted 
final position

Figure C.3: (a) Predicted trajectories for paracetamol crystallization under opti-
mal open loop control towards three separate targets. (b) Predicted distance-to-target
profiles for each optimal run. (c) Optimal temperature profiles. (d) Optimal super-
saturation profiles.

a What mass-count (size-yield) targets can be reached applying a positive super-

saturation setpoint profile (no dissolution) within a batch time of 150 minutes?

b And, what mass-count targets can be reached in the same batch time if negative

supersaturation is allowed?

The model gives us a way to obtain practically usable, albeit approximate answers

to these questions. In particular, the model can be used to determine whether or not

specific targets are reachable by an allowed series of inputs. The reachable region is

then approximately mapped out in probing a grid of targets:

X � =
�

x�|x�
1

= {50, 100, . . . , 350}; x

�
2

= {2, 4, . . . , 14} 
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To address Question a, we posed the following optimization problem for each target

in the grid:

minimize
u1, . . . , uN�1 2 U+

{d(x
N

,x�)}

subject to x
⌧+1

= F

�

x
⌧

, u

⌧

�

�t+ x
⌧

, ⌧ = 0, . . . , N � 1;

x
0

= [0 0]>;

(C.2)

where U
+

denotes a discrete set of allowed levels of positive supersaturation: {0, 0.05, . . . , 0.25}.
In solving this optimization problem, the state-space is discretized (c.f. §D.2), the

discrete time step is set to 5 minutes, and N is set to 30, such that t
N

= 150 minutes.

To address Question b., we pose almost the same optimization problem for each

target in the grid. The one di↵erence is the allowed the supersaturation setpoints: In

this second case, we allow the input to take both positive and negative values

minimize
u1, . . . , uN�1 2 U

{d(x
N

,x�)}

subject to x
⌧+1

= F

�

x
⌧

, u

⌧

�

�t+ x
⌧

, ⌧ = 0, . . . , N � 1;

x
0

= [0 0]>;

(C.3)

where U = {�0.15,�0.10, . . . , 0.25}.
Figure C.4 shows the target positions compared with the optimal final positions

when the supersaturation is constrained to be positive (Question a.). Most of the

target positions are reached (the final position overlays the target). However, some of

the targets in the upper-left of the mass-count space (large crystals) and lower-left of

the mass-count space (small crystals) could not be reached in 150 minutes applying

a strictly positive supersaturation profile.

In contrast, we find that all of the targets in the grid are reachable when undersat-

uration is allowed. Figure C.5 shows the target positions compared with the optimal

final positions obtained by solving (C.3) for every target in the grid. In this figure,

the optimal final positions overlay the target position. This reveals an important

property of the system: dissolution cycles can be used to achieve a wider range of

crystal sizes.
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Figure C.4: Restricting the operation to positive supersaturation restricts the reach-
able region. (a) Target mass-count positions compared with optimal final positions
when the supersaturation setpoint at each time interval is restricted to be positive or
zero and the batch time is set to 150 minutes; positions in the upper-left and lower-
right quadrants cannot be reached. (b) Corresponding size-yield targets compared
with the reachable size-yield positions.

Figure C.5: Allowing for selective application of undersaturation expands the reach-
able region. (a) Target mass-count positions compared with optimal final positions
when the supersaturation setpoint during the operation is allowed to take positive or
negative values and the batch time is set to 150 minutes; with this more flexible input,
each target position can be reached in the allotted batch time. (b) Corresponding
size-yield targets compared with the reachable size-yield positions.

Minimum batch times, darapskite. In addition to probing whether or not a

target is reachable, it is useful to identify the minimum time required to reach a
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desired target. For each target the minimum batch time is defined as:

t

⇤
N

(x�) = argmin {t
N

|t
N

= N�t, N = 1, 2, ...}
subject to d

�

x

N

�

u

⇤(x�
, N)

�

,x�
�

< ✏;
(C.4)

where d
�

x

N

�

u

⇤(x�
, N)

�

,x�
�

is the model-predicted final distance-to-target when the

system is under the optimal control profile, u⇤(x�
, N), found by solving () for a given

target, x� , and batch time defined by N ; ✏ represents a specified tolerance for the

endpoint-target mismatch, which is set to 1 for this illustration.

Minimum batch times were identified for the targets shown in Figure C.6(a).

These times are indicated next to the target and also in Figure C.6(b), which shows

the optimal batch time for each of the selected targets against the target average

crystal size. This analysis reveals a second important system property: there is a

strong, nearly linear tradeo↵ between the target crystal size and the minimum batch

time required.

(a) (b)

Figure C.6: Increasing the mean crystal size costs time. (a) Subset of targets over
which the minimum batch time for darapskite crystallization was evaluated; the opti-
mal batch time is shown adjacent to each target. (b) Optimal batch times for selected
targets shown against the target mass-weighted mean crystal size of darapskite crys-
tals.
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C.2.3 Stochastic simulations, darapskite.

The optimal model-based strategies are developed from a deterministic model. The

optimal open-loop control predictions, shown in figures C.2 and C.3, are made under

the assumption that the dynamics perfectly align with the model and there is no

error or delay in the input. These simulations do not tell us about the expected

performance of the state-feedback control when the dynamics are less predictable

and there are implementation errors. To probe the feedback control performance we

can run stochastic simulations. This is demonstrated for the darapskite system.

To run stochastic simulations, we simulate:

1. Stochasticity in the dynamics

x
⌧+1

= F (x
⌧

, u

⌧

) +W

⌧

,

where W is a random contribution to the dynamics, drawn from an unbiased

(zero-mean) multivariate normal distribution:

W

⌧

⇠ N

0

B

@

µ =

2

6

4

0

0

3

7

5

,⌃ =

2

6

4

430 2.32

2.32 0.26
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1

C

A

.

2. Error in the simulated measurements

x̂
⌧

= x
⌧

+ e

x

⌧

,

and

u

SP
⌧

= ⇡

⌧

(x̂
⌧

),

where x̂ denotes the measured state, ex

⌧

represents random error or noise in

the measurement, and u

SP
⌧

is the supersaturation setpoint selected based on the

measured state according to the state-feedback policy, ⇡.
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The measurement error at each time is drawn from an unbiased multivariate

normal distribution with no cross variance

e

x

⌧

⇠ N

0

B

@

µ =

2

6

4

0

0

3

7

5

,⌃ =

2

6

4

36 0

0 0.16

3

7

5

1

C

A

.

3. Delay and error in the actuation

u

⌧

= u

⌧�1

+ �(uSP
⌧

� u

⌧�1

) + e

u
⌧

,

where � 2 (0 1] is a user-specified parameter that adjusts delay in the actuation

(� = 1 corresponds to no delay) and e

u
⌧

represents random error in the actuation.

� is set to 0.5 and the random actuation error is drawn from an unbiased normal

distribution

e

u
⌧

⇠ N (µ = 0, � = 0.0055) .

The magnitude of the errors and random components used in these stochastic simu-

lations are based in experimental observations ( [Gri�n et al., 2016a]). However, as

it was di�cult to be exact in formulating the distributions, we aimed to err on the

side of overestimating the random contributions so that we obtained a conservative

estimate of the control performance.

Figure C.7 shows a single stochastic simulation of the crystal state trajectories

under each of the three feedback policies.
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(a) (b)

(c) (d)

target
final position

Figure C.7: Profiles for single stochastic simulations under each of the control poli-
cies: a.) crystallization trajectories; b.) distance-to-target profiles; c.) temperature
profiles; d.) supersaturation setpoint profiles.

While the distance-to-target does not decay as smoothly as in the deterministic

simulations, the policies do eventually move the mass-count position near the target

position in each case—suggesting that the feedback policies are robust and work even

with stochastic dynamics, measurement error, and actuation error. This is typical of

the stochastic simulations [Gri�n et al., 2016a].

As a whole, the stochastic simulation results suggest that the feedback control

policies can be expected to drive the system toward the target, even when there is

a significant random component to the dynamics, measurement error, and actuation

delay.

189



APPENDIX D

PARAMETERS AND COMPUTATION: FEEDBACK

CONTROL

D.1 sGATEC Control Parameters

Although the sGATEC scheme was constructed from a qualitative understanding of

the e↵ect of temperature manipulations on the movement in MC space, codification

requires quantitative control parameters to be specified. A list of the control param-

eters is given in Table D.1 along with the values we have used. These parameters

were selected considering the following constraints and heuristics:

• The mass threshold, m0, should be selected such that a crystal mass mea-

surement above this threshold clearly indicates the presence of crystals. We

have set m0 to 0.75g for darapskite.

• The Heating Zone angles, ✓H1 and ✓H2 must satisfy the following inequali-

ties:

0  ✓H1 < ✓H2  90°.

In addition, when selecting ✓H2 we have to consider the target position in rela-

tion to the origin and satisfy the constraint:

✓0-T < ✓H2,

where ✓0-T is the angle between the origin and the target.

To choose the Heating Zone angles from the set that satisfies the above con-

straints, we recognize that the angles define the width of the Heating-Deactivation
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Zone. The angles should therefore be selected to create a substantial Heating-

Deactivation Zone that is, at the same time, di↵erent from the Cooling Zone.

If the Heating-Deactivation Zone is too small—i.e. ✓H1 ⇡ ✓H2—we run the risk

of remaining in Heating Mode indefinitely. On the other hand, if the Heating-

Deactivation Zone is the same as the Cooling Zone—i.e. if ✓H1 is set to 0°and

✓H2 is set to 90°—we run the risk of excessive toggling back and forth between

cooling and heating. We have set ✓H1 to 10°and ✓H2 to 60–80°depending on the

target position.

• The Target Zone size should be selected considering the tradeo↵ between

the desired crystal size accuracy and control feasibility. We have specified the

Target Zone to be the MC area within ±10% of the selected target position.

• The linear heating and cooling rates should be achievable by the tem-

perature control system. We have selected “moderate” rates that can be eas-

ily implemented using our experimental system: the heating rate is set to 1.0

°C/minute and the cooling rate set to �0.5 °C/min.

• The supersaturation setpoint function, �SP = f (✓P-T), should be se-

lected such that higher supersaturation setpoints are implemented when the

angle, ✓P-T, towards the target is low. In this case, dynamic data at di↵erent

supersaturation levels is available that relates the crystallization angle to the

level of supersaturation—given in Figure D.1. A simple, discrete function was

used to capture the relationship.

The control parameters for sGATEC applied to darapskite crystallization are given

in Table ??.
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Table D.1: sGATEC control paramters.

Parameter Set Value

mass threshold m

0 0.75g

Heating Zone Angle 1, ✓H1 10°

Heating Zone Angle 2, ✓H2 60–80°

Target Zone size ±10%

linear cooling rate �0.5°C/min.

heating rate 1.0°C/min.

�SP = f (✓P-T)
⇤
�SP =

8

>

>

>

>

<

>

>

>

>

:

0.1 ✓P-T � 40°

0.2 40° > ✓P-T � 25°

0.3 else

9

>

>

>

>

=

>

>

>

>

;

⇤based o↵ data given in Figure D.1

supersaturation !

cr
ys

ta
lli

za
ti

on
 a

ng
le

 "
c

[d
eg

re
es

]

"c

m
as

s

count

Figure D.1: Average crystallization angle at di↵erent levels of positive molar su-
persaturation. Error bars represent the standard deviation of the experimentally-
observed crystallization angles.
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D.2 Dynamic Programming

D.2.1 Discretization: dynamics as a cell-to-cell mapping

The optimization problem given by (6.3) can be approximately solved by discretizing

the state space (MC space) and the input (supersaturation levels) and then applying

dynamic programming.

Let X denote a set of center points for the cells of the discretized state space.

And, let U denote a discrete set of inputs (supersaturation levels). F which previously

described the dynamics as a point-to-point mapping, can now be converted to a cell-

to-cell mapping [Bursal and Hu, 1989,Sun, 2013]:

x
⌧+1

= C(x
⌧

, u

⌧

,�t) ⌘ argmin ||x
⌧+1

� �

F (x
⌧

, u

⌧

)�t+ x
⌧

�||2
2

x⌧+1 2 X
,

where C maps the current position in the grid, x
⌧

2 X , under the input, u
⌧

2 U , to
a new position in the grid, x

⌧

2 X , over the time step �t. This change in dynamic

model is illustrated in Figure D.2.

Figure D.2: Math model representations: (a) point-to-point dynamics; (b) cell-to-
cell mapping.

D.2.2 Bellman or Dynamic Programming Principle

With the dynamics represented as a cell-to-cell mapping, we can apply the Bellman or

Dynamic Programming Principle to obtain the optimal state-feedback control policy
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[Bellman, 1952,Bellman, 1957]. This algorithm is outlined in Table D.2.

Table D.2: Dynamic programming algorithm for solving optimization problem (6.3).

Dynamic Programming Algorithm Optimal Feedback Policy

set V

N

(x
N

) = d(x
N

,x�) for each x
N

2 X
for ⌧ = N � 1, . . . , 0

for each x 2 X
�

⇤
⌧

(x) ⌘ u

⇤
⌧

|
x

= argmin {(t
⌧

/t

N

)�d(x,x�) + ⇢"(u
⌧

) + V

⌧+1

(x
⌧+1

)}
u

⌧

2 U
subject to x

⌧+1

= C�x, u
⌧

,�t

�

;

and

V

⌧

(x) = (t
⌧

/t

N

)�d(x,x�) + ⇢"

�

u

⇤
⌧

|
x

�

+ V

⌧+1

⇣

C�x, u⇤
⌧

|
x

,�t

�

⌘

.

combine to construct the optimal feedback control policy

⇡

⇤ = {�
0

(x), . . . ,�
N�1

(x)}
Note: the optimization problem posed at each step and state can be solved by enumeration.
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APPENDIX E

CODE FOR MACHINE LEARNING AND DYNAMIC

PROGRAMMING

Code for Machine Learning (c.f. §5.2.1) and dynamic programming was developed in

MATLAB. Some of this code has been made available online at:

http://dgri�n36.github.io/Crystallization-Control-Feedback-Policy-from-Data/.

Note: CVX, Software for Disciplined Convex Programming [Boyd and Vandenberghe,

2009,Grant and Boyd, 2012], is required to run the machine learning algorithm. This

must be installed and in the appropriate path: http://cvxr.com/cvx/download/. For

commercial use with non-free solvers, such as MATLAB, please obtain the appropriate

license (http://cvxr.com/cvx/licensing/).
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