
EFFICIENT RESOURCE SHARING FOR BIG DATA
APPLICATIONS IN SHARED CLUSTERS

A Thesis
Presented to

The Academic Faculty

by

Jack Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2016

Copyright c© 2016 by Jack Li

EFFICIENT RESOURCE SHARING FOR BIG DATA
APPLICATIONS IN SHARED CLUSTERS

Approved by:

Professor Dr. Calton Pu, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Dr. Edward R. Omiecinski
School of Computer Science
Georgia Institute of Technology

Professor Dr. Ling Liu
School of Computer Science
Georgia Institute of Technology

Professor Dr. Qingyang Wang
Department of Computer Science and
Engineering
Louisiana State University

Professor Dr. Shamkant B. Navathe
School of Computer Science
Georgia Institute of Technology

Date Approved: 27 April 2016

To my family

iii

ACKNOWLEDGEMENTS

My pursuit of a Ph.D. has been filled with many precious memories of both success

and failure. I want to personally thank everyone who has supported me during this

journey and apologize if I have not mentioned you by name.

I want to first thank my adviser Dr. Calton Pu for his patient guidance throughout

my Ph.D. years. I learned extremely valuable lessons from him that have and will

benefit my future professional career and personal life. Dr. Pu always strived to

understand me more as a person in order to better help me grow. Looking back,

although many times I did not fully understand his suggestions or complaints, I can

see now that what he said usually, and not surprisingly, turned out to be true and

correct. Under Dr. Pu’s tutelage, I have become not only a better researcher but a

better person.

Secondly, I want to thank my mentor and friend Dr. Yuan Chen. The majority of

this dissertation work was accomplished through his mentorship and the partnership

between Hewlett Packard Labs and Georgia Tech. Yuan’s brilliance and kindness

motivated me to become the researcher I am today. I am extremely grateful for his

guidance these past two years and fortunate to have collaborated with him.

I want to give thanks to my dissertation committee who also served on my qual-

ifying and thesis proposal committees—Dr. Ling Liu, Dr. Shamkant Navathe, and

Dr. Edward Omiecinski—for reading and commenting on my dissertation. Your in-

sightful comments and questions have challenged me to become a better researcher

and have helped me to improve my research and dissertation.

Additionally, I want to give thanks to the other mentors that have shaped my

Ph.D. career including Lidong Zhou, Gueyoung Jung, Tong Sun, Vanish Talwar, and

iv

Dejan Milojicic. These people have all guided me at various points in my journey

and have given me invaluable advice.

To my friends and colleagues at Georgia Tech, thank you for your companionship

and friendship along the way. I want to give thanks to the members of ELBA group:

Qingyang Wang, Junhee Park, Chien-An Lai, Tao Zhu, Josh Kimball, Yasuhiko Kane-

masa, Chien-An Cho, Aibek Musaev, De Wang, Deepal Jayasinghe, Simon Malkowski,

and Pengcheng Xiong. I want to give special thanks to Carol Shih for her profound

support and friendship. We have been through thick and thin, and I will cherish the

memories we had together and the ones we will make in the future.

Finally, I want to thank my parents, Tom and Sonia, and sister, Megan, for their

unconditional love and support throughout my life.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

1.1 Dissertation Statement and Contributions 4

II THE IMPACT OF KILL-BASED PREEMPTION IN MODERN
SHARED CLUSTERS . 8

2.1 Introduction . 8

2.2 Real-World Cluster Preemption . 9

2.2.1 Google Cluster Trace . 9

2.2.2 Google Trace Analysis . 12

2.2.3 Other Instances of Preemptive Scheduling 16

III IMPROVING PREEMPTIVE SCHEDULING WITH APPLICATION-
TRANSPARENT CHECKPOINTING 17

3.1 Introduction . 17

3.2 Checkpoint-based Preemption . 20

3.2.1 System Model . 20

3.2.2 Checkpoint-based Preemption 22

3.2.3 Evaluation . 25

3.3 Optimization . 35

3.3.1 Adaptive Policies and Algorithms 35

3.3.2 Benefits of Adaptive Policies 38

3.4 Hadoop YARN Implementation . 41

3.4.1 Overview of Hadoop YARN 42

vi

3.4.2 Architecture and Implementation 42

3.4.3 Evaluation . 46

3.5 Related Work . 52

3.6 Conclusion . 53

IV SUPPORTING ELASTICITY IN DISTRIBUTED DATA STREAM
PROCESSING . 55

4.1 Introduction . 55

4.2 Motivation . 58

4.3 Supporting Elasticity in Storm . 61

4.3.1 Overview of Storm . 61

4.3.2 Elastic Storm: Solution Overview 61

4.4 Design and Implementation Details 63

4.4.1 Global State Manager . 63

4.4.2 Automatic Congestion Detection 65

4.4.3 Topology-aware Scheduling 66

4.5 Storm on YARN . 67

4.5.1 YARN and Storm on YARN Overview 67

4.5.2 Elastic Storm on YARN . 68

4.6 Evaluation . 69

4.6.1 Experiment Setup and Workload 69

4.6.2 Results . 71

4.7 Related Work . 76

4.8 Conclusion . 76

V RELATED WORK . 78

VI CONCLUSION AND FUTURE WORK 81

6.1 Conclusion . 81

6.2 Future Work . 82

REFERENCES . 84

vii

LIST OF TABLES

1 Google cluster machine types. 12

2 Google cluster event types. 12

3 Task Eviction Sample Trace. 14

4 Preempted Tasks with Different Priorities. 16

5 Preempted Tasks with Different Latency Sensitivities 16

6 Hardware Configuration. 25

7 Benefits of incremental checkpointing. 39

8 Hardware Configuration. 69

viii

LIST OF FIGURES

1 Google trace job and task state transitions. 10

2 Preemption in Google Trace. 15

3 Suspend and Restore Performance on Local FS and HDFS. 21

4 HDFS Replication Factor. 21

5 Google Trace-driven Simulation: Comparison of Different Preemption
Policies. 23

6 PARSEC benchmark completion times. 28

7 PARSEC benchmark checkpoint size. 29

8 PARSEC benchmark checkpoint completion times. 30

9 PARSEC benchmark checkpoint bandwidth. 31

10 PARSEC benchmark restore completion times. 32

11 PARSEC benchmark restore bandwidth. 33

12 Comparison of Different Policies with Varying I/O Bandwidths. . . . 34

13 Performance Improvement with Adaptive Policies. 37

14 Performance Comparison of Adaptive Preemption and Basic Checkpoint-
based Preemption. 40

15 Comparison of Different Policies with Varying I/O Bandwidths. . . . 41

16 YARN Architecture. 43

17 Comparison of Different Preemption Policies on YARN. 44

18 YARN Workload Job Performance CDF. 47

19 Performance Comparison of Basic Checkpoint-based Preemption vs.
Adaptive Preemption. 48

20 Response Time CDF of Basic Checkpoint-based Preemption vs. Adap-
tive Preemption. 49

21 Overhead of Basic Checkpoint-based Preemption and Adaptive Pre-
emption. 50

22 A motivating example with a real-time security event detection workload. 59

23 Elastic Storm Streaming Architecture. 62

ix

24 Elastic Storm on YARN System Architecture. 68

25 Benefits of Elastic Storm compared with Default Storm. 70

26 Elastic Storm on YARN vs. Storm on YARN. 71

27 Elastic Storm on YARN without batch jobs vs. Elastic Storm on
YARN with batch jobs. 72

28 Elastic Storm on YARN Energy Efficiency. 74

29 Batch Job Throughput without Checkpointing vs. with Checkpointing. 75

x

SUMMARY

Modern data centers are shifting to shared clusters where the resources are

shared among multiple users and frameworks. A key enabler for such shared clusters

is a cluster resource management system which allocates resources among different

frameworks. One key problem in these shared clusters is how to efficiently share clus-

ter resources between multiple applications and users in an elastic and non-disruptive

manner. Current cluster schedulers typically utilize kill-based preemption to coordi-

nate resource sharing, achieve fairness and satisfy SLOs during resource contention

by simply killing low priority jobs and restarting them later when resources are avail-

able. This simple preemption policy ensures fast service times of high priority jobs

and prevents a single user/application from occupying too many resources and starv-

ing others; however, without saving the progress of preempted jobs, this policy causes

significant resource waste and delays the response time of long running or low priority

jobs. The issue of dynamic resource sharing becomes even more problematic when

there are different types of applications running on the same cluster (e.g., batch pro-

cessing systems running alongside real-time streaming systems). Different application

types will often have varying quality of service metrics (e.g., higher throughput versus

lower latency) which can make resource sharing among these applications contentious.

In this dissertation, we show the impact of kill-based preemption in modern shared

clusters and propose two solutions to more efficiently share resources in shared cluster

environments by utilizing checkpoint-based preemption and supporting elasticity in

distributed data stream processing systems.

xi

CHAPTER I

INTRODUCTION

Modern data centers are shifting to shared clusters where the resources are shared

among multiple users and frameworks [53, 27, 44, 5]. A key enabler for such shared

clusters is a cluster resource management system which allocates resources among

different frameworks. For example, Hadoop’s new generation platform—YARN (Yet

Another Resource Negotiator [53]) allows multiple data processing engines such as

interactive SQL, real-time streaming, and batch processing to share resources and

handle data stored in a single platform in a fine-grained manner. Other similar plat-

forms include Apache Mesos used at Twitter [27] and proprietary solutions deployed

at Google and Microsoft [5].

Current cluster schedulers typically utilize preemption to coordinate resource shar-

ing, achieve fairness and satisfy SLOs during resource contention. For example, if high

priority jobs share the same cluster with low priority jobs and a resource shortage

occurs, these schedulers preempt the low priority jobs and give more resources to high

priority jobs. The current mechanism to handle such preemption is to simply kill the

low priority jobs and restart them later when resources are available. This simple pre-

emption policy ensures fast service times of high priority jobs and prevents a single

user/application from occupying too many resources and starving others; however,

without saving the progress of preempted jobs, this policy causes significant resource

waste and delays the response time of long running or low priority jobs. Our analy-

sis of a publicly available Google cluster trace [54] found that 12% of all scheduled

tasks were preempted. If these tasks are simply killed with no checkpointing, it can

result in up to a 35% loss in total cluster usage. Similarly, Microsoft reported that

1

about 21% of jobs were killed due to preemptive scheduling in its Dryad cluster [1].

Long running, low priority jobs are also repeatedly killed and restarted in Facebook’s

Hadoop cluster [8].

There have been some efforts to address these issues recently. Instead of killing

a job, these methods checkpoint the state of preempted jobs and restart the job

from the checkpointed state when resources are available. For example, some recent

work for Hadoop MapReduce proposes to save the progress of certain Map tasks in

a MapReduce job during preemption [30]. However, these systems use application-

specific checkpoint mechanisms and only work for certain applications. Further, these

systems often need to modify application programs. As a result, the applicability of

these methods is very limited and the practical impact has not been significant.

In addition, there has been an increase in applications that require real-time pro-

cessing of data such as web analytics and intrusion detection systems. Stream pro-

cessing systems such as Storm [51] and Spark Streaming [57] have emerged to support

real-time and near real-time processing of live data. Both batch analytics and real-

time analytics are becoming centerpieces in today’s big data applications.

A major challenge facing distributed processing systems is how to manage these

applications in clusters or the Cloud while achieving good performance at low cost.

Specifically, two issues can arise when trying to tackle the issue of distributed pro-

cessing system management.

Elasticity in Stream Processing. Data stream processing systems often face

dynamic workloads where input data rates can vary drastically. In the face of dynamic

streams, stream processing systems need to be able to automatically handle fluctuat-

ing demands and scale accordingly while not disrupting existing requests. However,

state-of-the-art stream processing systems do not have the capabilities to dynamically

scale in a non-disruptive manner. (1) Most existing data stream processing systems

2

allocate a fixed amount of resources at the deployment time. Scaling an applica-

tion typically requires that the application first be shutdown, reconfigured and then

restarted. For applications that rely on real-time stream processing, this entails a sig-

nificant service interruption [55]. (2) Also, such scaling is often conducted manually

in an ad-hoc manner, which relies on users to detect bottlenecks in their applications

and to scale their applications manually. This requires users to constantly monitor

their applications and have expertise in detecting problems in the system, which is

cumbersome. (3) Additionally, application state may not be preserved during scaling

operations when the system is terminated, and thus, work may be lost and consumers

may receive erroneous results.

Co-locating Streaming Systems with Batch Processing in Shared Clus-

ters. Early deployments of big data applications were on dedicated clusters. In an

effort to improve cluster resource utilization and cluster management, a shift is tak-

ing place where these applications are now deployed on shared clusters where the

resources are shared between both batch and streaming systems. (1) Shared clusters

provide a great potential to elastically scale the resources to match demand from

different applications. For example, stream processing applications can obtain ad-

ditional resources when needed from the cluster and give them back when demand

subsides. Accordingly, batch jobs can ”steal” excess resources from streaming appli-

cations when the real-time workload is low. Elastic sharing of resources can greatly

improve application performance and cluster utilization. (2) Shared clusters enable

batch and stream processing systems to share data and minimize data duplication.

A key enabler for such shared clusters is a cluster resource management system (e.g.,

Hadoop YARN [53] and Mesos [27]) which allocates resources among the different

frameworks. Though these systems lay the groundwork to make this possible, but

several challenges still remain: (1) how to integrate and implement stream processing

3

elasticity with cluster resource management systems and (2) how to efficiently sched-

ule and coordinate resources between batch and streaming workloads to achieve good

performance, fairness and resource efficiency.

In this dissertation, we show an approach that uses system level, application-

transparent suspend-resume mechanisms to implement checkpoint-based preemption

and reduce the preemption penalty in cluster scheduling. Instead of killing a job or

task, we suspend execution of running processes (tasks) and store their state (e.g.,

memory content) for resumption at a later time when resources are available. To

reduce the preemption overhead and improve performance, our approach leverages

fast storage technologies such as non-volatile memory (NVM) and uses a set of adap-

tive preemption policies and optimization techniques. We implement the proposed

approach using the CRIU (Checkpoint/Restore In Userspace) [11] software tool with

HDFS and PMFS [19] and integrate our solution into Hadoop YARN [53].

1.1 Dissertation Statement and Contributions

Concretely, my thesis statement can be formulated as follows:

Thesis Statement: Simultaneously coordinating resource sharing and ensuring

application quality of service in shared clusters requires better resource management

and more scalable systems, which can be successfully addressed by improving the

preemption mechanism in shared clusters and by extending the elasticity of shared

cluster systems.

This thesis statement will be supported by the following key contributions:

• Analyzing the preemption penalty in modern shared clusters Our first

contribution is an analysis of the impact of state-of-the-art preemption in mod-

ern day clusters. We analyze the preemption penalty in the Google cluster using

a publicly available 29-day trace taken from one of Google’s data centers [54].

4

First, we show the costly effect kill-based preemption has on the performance

of low priority jobs within the Google cluster as well as the resource wastage

resulting in killing these jobs repeatedly. The findings found in this analy-

sis motivates our subsequent thesis work and our second contribution of using

non-killing preemption in shared clusters.

• Using application-transparent checkpointing mechanisms in cluster

scheduling. Our method leverages existing work from application-transparent

checkpointing mechanisms and uses them to implement non-killing preemption

in cluster scheduling. It can be applied to a wide range of applications without

needing to modify the application code. We evaluate the feasibility and appli-

cability of our approach using Google cluster trace-driven simulation and real

industry workloads with different configurations and scenarios.

• Adaptive preemption policies and optimization techniques. Application-

transparent checkpointing mechanisms (e.g., CRIU, BLCR, Linux-CR, SIGSTOP

and SIGCONT, etc.) are typically expensive because they save the entire state

of a running application and dump it to disk which may trigger a lot of memory,

I/O and network traffic. To address these issues, we develop a set of adaptive

preemption policies to mitigate these suspend-resume overheads. The adap-

tive policies dynamically select victim tasks and the appropriate preemption

mechanisms (e.g., kill vs. suspend, local vs. remote restore) according to the

progress of each task and its suspend-resume overhead. Instead of dumping

the entire memory region, memory usage is tracked, and only those memory

regions that were changed since the last suspend are saved to reduce the check-

point size and latency. The adaptive policies enable significant improvement in

application performance over the policy that always suspends or kills a job dur-

ing preemption. Furthermore, our approach can further reduce the preemption

5

overheads using emerging fast storage technologies such as non-volatile memory

(NVM) [32]. By efficiently storing application checkpoints on fast storage, our

approach can quickly suspend and resume applications and improve the effi-

ciency of checkpoint-based preemption. Our prototype implements checkpoints

with an NVM-based file system – PMFS (Persistent Memory File System) [19].

In our implementation, we leverage the CRIU software tool [11] to save check-

points to an emulated NVM-based file system using PMFS (Persistent Mem-

ory File System) [19]. Alternatively, we can use NVM as persistent memory

(NVRAM) and copy checkpoint data from DRAM to NVM using memory op-

erations. This method exploits NVM’s byte-addressability to avoid serialization

and uses operating system paging and processor cache to improve latency. To

improve performance, a shadow buffering mechanism can be used to explic-

itly handle variables between DRAM and NVRAM. For example, updates to

DRAM can be incrementally written to NVM. During resumption, an attempt

to modify the data would move the data back from NVRAM to DRAM.

• Implementation with Hadoop YARN. We implement the proposed non-

killing preemptive scheduling and adaptive preemption policies in Hadoop YARN

– the new generation Hadoop cluster resource manager. In particular, we imple-

ment application-transparent checkpointing to suspend and resume preempted

applications using CRIU. We extend CRIU to save checkpoints to HDFS so

that checkpointed tasks can restart from any node in the cluster. We conduct

extensive experiments to evaluate the applicability of our checkpoint-based pre-

emption and compare it with YARN’s current kill-based preemption on different

storage devices: HDD, SSD and NVM.

• Supporting Elasticity in Distributed Stream Processing. In order for

systems in shared clusters to fully utilize our checkpointing-based preemption

6

mechanisms, they need to be able to dynamically use cluster resources. In other

words, they need to be able to scale elastically—give resources away when the

system is under-utilized and request more resources when the system is over-

loaded. Many big data processing frameworks currently have no support for

this type of dynamic system elasticity, especially scaling jobs elastically with-

out killing or restarting them.

For our last contribution, we implement an elastic scaling mechanism for dis-

tributed data stream processing systems that dynamically scales applications

based on the workload in an efficient, non-disruptive manner. Our mechanism

includes automatic congestion detection which removes the need for user moni-

toring and manual intervention. Our scaling mechanism saves application state

so there is no loss of work and additionally reduces the interruption of scaling

operations so that application performance degradation is minimized.

These contributions are divided into three parts in this thesis document. Chap-

ter 2 details the impact of kill-based preemption that is used in today’s state of the

art cluster managers. In Chapter 3, I present a method of reducing the preemption

penalty of kill-based preemption by using checkpoint-based preemption. Chapter 4

illustrates the need for current distributed data stream processing systems to support

resource elasticity in shared clusters and proposes a system which addresses this need.

Related work regarding this dissertation is summarized in Chapter 5. Finally, I con-

clude in Chapter 6 by briefly summarizing the main contributions of my dissertation

and discuss possible future work and extensions to this dissertation.

7

CHAPTER II

THE IMPACT OF KILL-BASED PREEMPTION IN

MODERN SHARED CLUSTERS

Modern data center clusters are shifting from dedicated single framework clusters

to shared clusters. In such shared environments, cluster schedulers typically utilize

preemption by simply killing jobs in order to achieve resource priority and fairness

during peak utilization. This can cause significant resource waste and delay job

response time.

In this chapter, we show the impact of cluster schedulers that use kill-based pre-

emption on job performance and cluster utilization wastage.

2.1 Introduction

Modern data centers are shifting to shared clusters where the resources are shared

among multiple users and frameworks [53, 27, 44, 5]. A key enabler for such shared

clusters is a cluster resource management system which allocates resources among

different frameworks. For example, Hadoop’s new generation platform—YARN (Yet

Another Resource Negotiator [53]) allows multiple data processing engines such as

interactive SQL, real-time streaming, and batch processing to share resources and

handle data stored in a single platform in a fine-grained manner. Other similar plat-

forms include Apache Mesos used at Twitter [27] and proprietary solutions deployed

at Google and Microsoft [5].

Current cluster schedulers typically utilize preemption to coordinate resource shar-

ing, achieve fairness and satisfy SLOs during resource contention. For example, if high

priority jobs share the same cluster with low priority jobs and a resource shortage

8

occurs, these schedulers preempt the low priority jobs and give more resources to high

priority jobs. The current mechanism to handle such preemption is to simply kill the

low priority jobs and restart them later when resources are available. This simple pre-

emption policy ensures fast service times of high priority jobs and prevents a single

user/application from occupying too many resources and starving others; however,

without saving the progress of preempted jobs, this policy causes significant resource

waste and delays the response time of long running or low priority jobs. Our analy-

sis of a publicly available Google cluster trace [54] found that 12% of all scheduled

tasks were preempted. If these tasks are simply killed with no checkpointing, it can

result in up to a 35% loss in total cluster usage. Similarly, Microsoft reported that

about 21% of jobs were killed due to preemptive scheduling in its Dryad cluster [1].

Long running, low priority jobs are also repeatedly killed and restarted in Facebook’s

Hadoop cluster [8].

2.2 Real-World Cluster Preemption

2.2.1 Google Cluster Trace

To understand the impact of preemption in cluster scheduling, we analyzed the pub-

licly available cluster workload traces from the Google data center [54]. This trace

provides data from 12,500 machines for the month of May 2011. It contains cluster

scheduler requests and actions for 672,000 jobs.

A job is composed of one or more tasks. Each task has a scheduling priority

level from 0 to 11 and a scheduling class describing latency sensitivity (four latency

levels). The trace includes detailed task information such as per-task inter-arrival

time, CPU/memory demand and usage over time, priority, latency sensitivity, and

event type (e.g., submitted, scheduled, evicted or completed). In total, there are 144

million task events during the 29-day trace.

There are four different state events for jobs and nine different task event types in

9

Figure 1: Google trace job and task state transitions.

the trace. The state transitions for jobs and tasks is shown in 1. There are basically

two types of events: ones that affect the scheduling state (e.g., a job is submitted, or

it gets scheduled and becomes runnable, or its resource requests are updated), and

ones that reflect state changes of a task (e.g., the task exits).

Each job and task event has a value representing the type of event. The state of

the job or task after the event can always be determined from this event type. For

job or task deaths, the event type also contains information about the cause of the

death. The event types and descriptions are as follows:

• Submit. A task or job became eligible for scheduling.

• Schedule. A job or task was scheduled on a machine. (It may not start running

immediately due to code-shipping time, etc.) For jobs, this occurs the first time

any task of the job is scheduled on a machine.

• Evict. A task or job was descheduled because of a higher priority task or

job, because the scheduler overcommitted and the actual demand exceeded

the machine capacity, because the machine on which it was running became

unusable (e.g. taken offline for repairs), or because a disk holding the tasks

data was lost.

• Fail. A task or job was descheduled (or, in rare cases, ceased to be eligible for

scheduling while it was pending) due to a task failure.

10

• Finish. A task or job completed normally.

• Kill. A task or job was cancelled by the user or a driver program or because

another job or task on which this job was dependent died.

• Lost. A task or job was presumably terminated, but a record indicating its

termination was missing from our source data.

• Update Pending. A task or jobs scheduling class, resource requirements, or

constraints were updated while it was waiting to be scheduled.

• Update Running. A task or jobs scheduling class, resource requirements, or

constraints were updated while it was scheduled.

The job/task event tables include any jobs that are active (RUNNING) or eligible

to run but waiting to be scheduled (PENDING) at any point in the trace. For every

job in the trace, we will include at least one record for all its tasks, which will include

its scheduling constraints.

All jobs and tasks have a scheduling class that roughly represents how latency-

sensitive it is. The scheduling class is represented by a single number, with 3 represent-

ing a more latency-sensitive task (e.g., serving revenue-generating user requests) and

0 representing a non-production task (e.g., development, non-business-critical analy-

ses, etc.). Note that scheduling class is not a priority, although more latency-sensitive

tasks tend to have higher task priorities. Scheduling class affects machine-local policy

for resource access. Priority determines whether a task is scheduled on a machine.

Each task has a priority, a small integer that is mapped here into a sorted set

of values, with 0 as the lowest priority (least important). Tasks with larger prior-

ity numbers generally get preference for resources over tasks with smaller priority

numbers. There are some special priority ranges:

11

• “free” priorities these are the lowest priorities. Resources requested at these

priorities incur little internal charging.

• “production” priorities these are the highest priorities. The cluster scheduler

attempts to prevent latency-sensitive tasks at these priorities from being evicted

due to over-allocation of machine resources.

• “monitoring” priorities these priorities are intended for jobs which monitor

the health of other, lower-priority jobs

2.2.2 Google Trace Analysis

Table 1: Google cluster machine types.

Num of Machines Platform Type CPU Memory
6732 B 0.5 0.5
3863 B 0.5 0.25
1001 B 0.5 0.75
795 C 1 1
126 A 0.25 0.25
52 B 0.5 0.125
5 B 0.5 0.03
5 B 0.5 0.97
3 C 1 0.5
1 B 0.5 0.06

Table 2: Google cluster event types.

Event Type Occurrences (mil)
Submission 48.3
Schedule 47.35
Evict 5.86
Fail 13.83
Finish 18.22
Kill 10.35
Lost 0.008
Update Pending 0.008
Update Running 0.64

12

We first analyzed the machines and events that appeared in the Google trace.

The machine types and numbers are summarized in Table 1. The event types and

corresponding number of occurrences is shown in Table 2. As shown in the events

table, there is a significant number of evict events (5.86 million) which accounts for

12.4% of the scheduled events.

Our goal is to understand the resource efficiency and performance impact of pre-

emption using the Google cluster traces. Prior analysis [7] has shown that the task

eviction event in the trace (accounting for 93% of evictions) is primarily triggered by

priority scheduling in Google’s cluster scheduler to handle task congestion or resource

contention. For example, when a high priority job arrives and the available cluster

resources are not sufficient to meet its demand, active low priority jobs/tasks are

evicted to release the resources to the higher priority job. Preempted tasks are auto-

matically resubmitted to the scheduler and may experience multiple evictions before

successfully finishing. In our study, we focus on scheduling events in the Google trace,

specifically submit, schedule, eviction and finish events. According to the Google

trace description, a task is evicted for a variety of reasons including preemption by a

higher priority task or job, scheduler over-commitment whereby the actual demand

of a machine exceeds capacity, the machine which the task is running on becomes

unusable, or the data on the machine becomes lost. To determine preemption, we

use the following criterion proposed in [7]: if a higher priority task is scheduled on

the same machine within five seconds after the lower priority job was evicted, then

we count that the lower priority job was preempted due to preemptive scheduling.

Table 3 shows a sample trace from the Google task events table. We have omitted

the memory and disk request columns and shortened the The job ID and machine

IDs due to space constraints. The table shows all the events for a task 822 of job

153. The task gets scheduled at time 0 of the trace, but then gets evicted after 13.7

seconds. Less than 2 seconds later at time 15.2 seconds, it gets rescheduled. After

13

Table 3: Task Eviction Sample Trace.

Timestamp Job ID
Task
Index

Machine
ID

Event Type
Scheduling

Class
Priority CPU

0 153 822 0 Submitted 0 0 0.07

0 153 822 65 Scheduled 0 0 0.07

13.7093 153 822 65 Evicted 0 0 0.07

13.7093 153 822 0 Submitted 0 0 0.07

15.2124 153 822 611 Scheduled 0 0 0.07

1634.089 153 822 611 Evicted 0 0 0.07

1634.089 153 822 0 Submitted 0 0 0.07

1636.392 153 822 575 Scheduled 0 0 0.07

2169.126 153 822 575 Finished 0 0 0.07

running for almost 27 minutes, the task gets evicted again and rescheduled within two

seconds. Finally, the task finishes after approximately nine more minutes of being

rescheduled. We noticed in the trace that many tasks followed this similar pattern of

being scheduled, evicted, and rescheduled shortly after. Using the criterion described

above to determine whether a task was evicted due to preemptive scheduling, we were

able to obtain the following results discussed below.

Figure 2a shows the percentage of scheduled tasks that were preempted over time

during their execution. The results shows that many low priority scheduled tasks

were preempted during their execution. Table 2 summarizes the aggregated number

of tasks and preemption rate for each priority category. The results show that an

average of 12.4% of scheduled tasks were evicted due to preemptive scheduling in the

Google cluster and 20% of scheduled low priority tasks were preempted. Figure 2b

shows the preemption of low priority tasks (i.e., 0-1 priorities) account for over 90% of

the total preemptions. These tasks average four evictions per task-day, and a 100-task

job running at this priority will have one task preempted every fifteen minutes [41].

Additionally, a single task could be scheduled and preempted multiple times as shown

in Figure 2c. More than 43.5% of preempted tasks were preempted more than once,

and 17% of these tasks were even preempted ten times or more.

Without a proper mechanism to save the progress of preempted tasks, compute

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

P
re

em
pt

io
n

R
at

e
[%

]

Time [Day]

Low Priority
Medium Priority

High Priority

(a) Preemption Rate Timeline

0

25.0

50.0

75.0

100.0

 0 1 2 3 4 5 6 7 8 9 10 11

%
 o

f a
ll

P
re

em
pt

io
ns

Priority

(b) Preemption Rate Per Priority

 0

 250

 500

 750

 1000

1 2 3 4 5 6 7 8 9>=10

D
is

tin
ct

 T
as

ks
[th

ou
sa

nd
s]

Num. of Preemptions

(c) Preemption Frequency Distribution

Figure 2: Preemption in Google Trace.

resources such as CPU, memory and power will be wasted due to repeated execution

of these preempted tasks. Frequent and repetitive preemption causes even more

resource wastage. We analyzed the impact of preemption on resource wastage in

Google trace and found that kill-based preemption could result in a huge amount of

resource wastage. If we assume that the scheduler simply kills the preempted tasks

and there is no mechanism to save the progress of a preempted task, 130k CPU-hours

(up to 35% of total usage) could have been wasted during the trace period due to

preemptive scheduling. The amount of resources wasted is estimated as the amount

of CPU time spent on unsuccessful execution of tasks, i.e., the CPU time between

schedule and preempt events.

Further, although most of the tasks preempted are low priority tasks, we find

15

Table 4: Preempted Tasks with Different Priorities.

Priority Num. of Tasks Percent Preempted
Free(0-1) 28.4M 20.26%
Middle (2-8) 17.3M 0.55%
Production (9-11) 1.7M 1.02%

that tasks bound by latency were also preempted. Table 5 summarizes the number

of scheduled tasks and the percentage of preempted tasks for each latency sensitiv-

ity level. The result shows that a large number of highest latency-sensitive tasks

(14.8%) were still preempted. This can have a significantly negative impact on task

performance and application QoS.

Table 5: Preempted Tasks with Different Latency Sensitivities

Latency Sensitivity Num. of Tasks Percent Preempted
0 (lowest) 37.4M 11.76%
1 5.94M 18.87%
2 3.70M 8.14%
3 (highest) 0.28M 14.80%

2.2.3 Other Instances of Preemptive Scheduling

We also found similar issues reported with preemptive scheduling in Facebook and Mi-

crosoft’s shared clusters running big data applications [1, 8]. In Facebook’s 600 node

Hadoop cluster, 3% of its jobs needed map slots that exceeded 50% of the cluster’s

capacity and 2% of its jobs had map tasks that exceeded the capacity of the entire

cluster. During peak times, a large production job would arrive every 500 seconds

and kill all low priority map tasks [8]. During these busy periods, these jobs are re-

peatedly killed, wasting a significant amount of cluster resources. Similarly, Microsoft

reported that roughly 21% of jobs were killed due to preemptive scheduling [1].

In summary, our analysis of production workloads shows that kill-based preemp-

tion in shared cluster scheduling results in significant resource wastage and perfor-

mance loss.

16

CHAPTER III

IMPROVING PREEMPTIVE SCHEDULING WITH

APPLICATION-TRANSPARENT CHECKPOINTING

Modern data center clusters are shifting from dedicated single framework clusters

to shared clusters. In such shared environments, cluster schedulers typically utilize

preemption by simply killing jobs in order to achieve resource priority and fairness

during peak utilization. This can cause significant resource waste and delay job

response time.

In this chapter, we show the impact of cluster schedulers that use kill-based pre-

emption on job performance and cluster utilization wastage.

3.1 Introduction

In this chapter, we propose an approach that uses system level, application-transparent

suspend-resume mechanisms to implement checkpoint-based preemption 1 and reduce

the preemption penalty in cluster scheduling. Instead of killing a job or task, we

suspend execution of running processes (tasks) and store their state (e.g., memory

content) for resumption at a later time when resources are available. To reduce the

preemption overhead and improve performance, our approach leverages fast storage

technologies such as non-volatile memory (NVM) and uses a set of adaptive pre-

emption policies and optimization techniques. We implement the proposed approach

using the CRIU (Checkpoint/Restore In Userspace) [11] software tool with HDFS

and PMFS [19] and integrate our solution into Hadoop YARN [53].

The following key contributions differentiate the solution presented in this chapter

1We use suspend-resume and checkpoint-based preemption interchangeably.

17

from previous work.

• Using application-transparent checkpointing mechanisms in cluster

scheduling. Our method leverages existing work from application-transparent

checkpointing mechanisms and uses them to implement non-killing preemption

in cluster scheduling. It can be applied to a wide range of applications without

needing to modify the application code. We evaluate the feasibility and appli-

cability of our approach using Google cluster trace-driven simulation and real

industry workloads with different configurations and scenarios.

• Adaptive preemption policies and optimization techniques. Application-

transparent checkpointing mechanisms are typically expensive because they save

the entire state of a running application and dump it to disk which may trigger

a lot of memory, I/O and network traffic. To address these issues, we develop a

set of adaptive preemption policies to mitigate these suspend-resume overheads.

The adaptive policies dynamically select victim tasks and the appropriate pre-

emption mechanisms (e.g., kill vs. suspend, local vs. remote restore) according

to the progress of each task and its suspend-resume overhead. Instead of dump-

ing the entire memory region, memory usage is tracked, and only those memory

regions that were changed since the last suspend are saved to reduce the check-

point size and latency. The adaptive policies enable significant improvement

in application performance over the policy that always suspends or kills a job

during preemption.

• Leveraging fast storage. Our approach can further reduce the preemption

overheads using emerging fast storage technologies such as non-volatile memory

(NVM) [32]. By efficiently storing application checkpoints on fast storage, our

approach can quickly suspend and resume applications and improve the effi-

ciency of checkpoint-based preemption. Our prototype implements checkpoints

18

with an NVM-based file system – PMFS (Persistent Memory File System) [19].

In our implementation, we leverage the CRIU software tool [11] to save check-

points to an emulated NVM-based file system using PMFS (Persistent Mem-

ory File System) [19]. Alternatively, we can use NVM as persistent memory

(NVRAM) and copy checkpoint data from DRAM to NVM using memory op-

erations. This method exploits NVM’s byte-addressability to avoid serialization

and uses operating system paging and processor cache to improve latency. To

improve performance, a shadow buffering mechanism can be used to explic-

itly handle variables between DRAM and NVRAM. For example, updates to

DRAM can be incrementally written to NVM. During resumption, an attempt

to modify the data would move the data back from NVRAM to DRAM.

• Implementation with Hadoop YARN. We implement the proposed non-

killing preemptive scheduling and adaptive preemption policies in Hadoop YARN

– the new generation Hadoop cluster resource manager. In particular, we imple-

ment application-transparent checkpointing to suspend and resume preempted

applications using CRIU. We extend CRIU to save checkpoints to HDFS so

that checkpointed tasks can restart from any node in the cluster. We conduct

extensive experiments to evaluate the applicability of our checkpoint-based pre-

emption and compare it with YARN’s current kill-based preemption on different

storage devices: HDD, SSD and NVM.

We found that our approach can improve overall job response times by 30%, reduce

resource wastage by 67% and lower energy consumption by 34% over the current kill-

based preemption approach used in modern cluster schedulers. These savings can

result in more total jobs being scheduled, less energy consumption and reduced costs

in the long-term, which ultimately yields more profit.

The rest of chapter is organized as follows. Section 3.2 presents our suspend-

resume based preemption approach and evaluation results. The optimization policies

19

and techniques are discussed in Section 3.3. The Hadoop YARN implementation and

experimental results are discussed in Section 3.4. Section 3.5 reviews related work

and Section 3.6 concludes the chapter.

3.2 Checkpoint-based Preemption

In this chapter, we propose the use of an application-transparent suspend-resume

mechanism to implement checkpoint-based preemption. This improves current pre-

emption policies and mechanisms in cluster scheduling and reduces resource wastage.

3.2.1 System Model

We consider a cluster consisting of many nodes running jobs across multiple frame-

works, applications and users. Each node has a set of computing resources including

CPU, memory, storage, I/O and network bandwidth. Each job consists of multi-

ple tasks that are scheduled to run on nodes by a scheduler based on their resource

demand and scheduling policies. Tasks can share resources on nodes and achieve

performance isolation via “containers” or “slots”.

A cluster scheduler is in charge of scheduling the tasks of submitted jobs and

managing task resources. Users submit jobs to a queue in the cluster and each job

has a scheduling priority and resource requirement (amount of CPU and memory

it needs). In particular, the scheduler assigns a job’s tasks to specific nodes for

execution. When there are idle resources, the cluster scheduler can give a job’s tasks

these resources in excess to its capacity to improve cluster utilization. When a new

job arrives and there are no more resources available, the scheduler chooses active

jobs that are either of lower priority (priority scheduling) than the arriving job, or

jobs that are using more resources than their fair share (fair-share scheduling) or

guaranteed capacity (capacity scheduling). The tasks of the selected jobs are then

preempted to release their occupied resources. Multiple scheduling policies—such

as priority, fair-sharing and capacity scheduling—can be employed. To simplify the

20

 0
 100
 200
 300
 400
 500
 600

0 1.0 2.5 5.0 7.5 10.0

T
ot

al
 D

um
p/

R
es

to
re

T
im

e
[s

]

Checkpoint Size [GB]

HDD
SSD
NVM

(a) Local File System

 0
 100
 200
 300
 400
 500
 600

0 1.0 2.5 5.0 7.5 10.0

T
ot

al
 D

um
p/

R
es

to
re

T
im

e
[s

]

Checkpoint Size [GB]

HDD
SSD

PMFS

(b) HDFS

Figure 3: Suspend and Restore Performance on Local FS and HDFS.

discussion but without loss of generality, we assume priority scheduling is used in the

rest of the chapter.

The model described above is generic and employed by many frameworks such as

Google’s Omega [44], Hadoop YARN [53], Mesos [27] and Dryad [29].

 0

 10

 20

 30

 40

 50

 60

 70

 80

HDD SSD PMFS

T
im

e
[s

]

HDFS Media

1
2
3

Figure 4: HDFS Replication Factor.

21

3.2.2 Checkpoint-based Preemption

Most cluster schedulers preempt a job or task by simply killing it. Alternatively, we

propose to save the progress of a preempted task by suspending or checkpointing its

state and resuming it later when resources are available.

3.2.2.1 Application-transparent Suspend-Resume

While application-specific checkpointing mechanisms have been proposed in prior

work such as [1, 9], we focus on the use of application-transparent checkpoint suspend-

resume mechanisms such as CRIU (Checkpoint/Restore in Userspace) and OS check-

point mechanisms (e.g., SIGSTOP/SIGTSTP /SIGCONT). These mechanisms sus-

pend and checkpoint a running application as a collection of files. The suspended

application can then be resumed at any time and return to the point it was sus-

pended. Typically, suspending an application involves collecting and dumping the

entire name space information to files on disk, including kernel objects, process tree

via ptrace, /proc, netlinks, syscalls, signals, CPU register sets, and memory content.

To restore a suspended process, the process tree is rebuilt from the saved information,

pipes are restored and the memory mapping is recreated.

We implement suspend-resume-based preemption using CRIU [11]. CRIU is an

open-source Linux software tool that supports checkpoint-restore processes on x86 64

and ARM and works on unmodified Linux-3.11+ included in Debian, Fedora, Ubuntu,

etc. It has been tested for many applications including Java, Apache, MySQL and

Oracle DB and integrated with LXC/Docker/OpenVZ containers.

Our cluster scheduler uses CRIU to suspend a preempted task and adds it back

to the submission queue. The resubmitted task includes the information about the

task’s current progress, checkpoint location, etc. When a suspended task is scheduled,

the scheduler runs a CRIU restore and resumes the task from the saved state.

22

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

W
as

te
d

C
P

U
C

ap
ac

ity
 [c

or
e-

ho
ur

s]

Preempt Method

Kill
Chk-HDD
Chk-SSD
Chk-NVM

(a) Resource Wastage

 3800

 3850

 3900

 3950

 4000

 4050

 4100

P
ow

er
 [k

W
h]

Preempt Method

(b) Energy Consumption

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

(c) Performance

Figure 5: Google Trace-driven Simulation: Comparison of Different Preemption Poli-
cies.

3.2.2.2 Distributed Suspend-Resume

CRIU supports checkpoints only on the local file system due primarily to potential

name conflicts on a remote node. We enhance CRIU to save checkpoints on dis-

tributed file systems. In particular, we extend CRIU to work with HDFS to support

remote suspend-resume. This enables more flexible scheduling by resuming a sus-

pended task on any available node. We achieve this by leveraging libhdfs. Instead

of dumping checkpointed data to local file buffers, we perform a write and flush to

a system-specified directory in HDFS. Similarly during restore, CRIU reads the con-

tents of checkpointed data from HDFS instead of the local file system. Additionally,

23

some process information (e.g., linked files) that is originally checkpointed is modi-

fied to make resumption possible on a remote node. This way, remote resumption is

completely handled by HDFS without worrying about the migration and replication

of checkpointed data.

3.2.2.3 Suspend-Resume with NVM

Checkpointing a task can cause overhead, especially if written to slow HDD devices.

To reduce the overhead, we leverage fast storage technologies such as SSD and also

emerging byte-addressable non-volatile memory (NVM) technologies [32]. By effi-

ciently storing application checkpoints on faster storage devices, we can implement

fast mechanisms to suspend-resume applications at runtime.

NVM can be used as a fast disk with file system interfaces or as virtual memory.

Accordingly, there are two ways to save checkpoints in NVM. The first is to use

NVM as fast disks and save the checkpoints (images) in NVM-based file systems

such as Intel PMFS (Persistent Memory File System) [19] or BPFS [10]. PMFS is a

light-weight kernel-level file system and provides byte-addressable, persistent memory

to applications via CPU load/store instructions. PMFS offers low-overhead using a

variety of techniques. It avoids the block device layer by using byte-addressability

and mapping persistent memory pages directly into an application’s memory space.

We leverage PMFS in our prototype and evaluations to emulate an NVM-based file

system. To support suspend/resume in distributed environments, we use a local

PMFS mounted directory as the HDFS data storage. To use PMFS with HDFS, we

pre-allocate a contiguous area of DRAM before the OS boots for use as the file system

space. Then, we mount PMFS by pointing it to the memory address of the starting

region and specifying the total size of the file system. The PMFS-mounted directory

can then be used by HDFS. In our prototype, CRIU saves the checkpoints via the

HDFS interface; HDFS, in turn, stores it in PMFS across multiple nodes.

24

Table 6: Hardware Configuration.

Physical Machine

Processor 2 X Intel(R) Xeon(R) 5650 @ 2.66GHz (6-cores)
Memory 96GB (48GB allocated as NVM)
HDD 500GB
SSD 120GB (OCZ Deneva 2)
Operating System Ubuntu Linux 12.04 (precise)

Alternatively, we can use NVM as virtual memory (i.e., NVRAM). This method

exploits NVM’s byte-addressability to avoid serialization and uses OS paging and

processor cache to improve latency. In this case, checkpointed data is copied from

DRAM to NVM using memory operations. To improve performance, a shadow

buffering mechanism can be used to explicitly handle variables between DRAM and

NVRAM [30]. Updates to DRAM can be incrementally written to NVM. During

resumption, an attempt to modify the data would move the data back from NVRAM

to DRAM. Our current prototype has not yet integrated the mechanisms for using

NVM as virtual memory for checkpointing, but it is a topic for our future work.

3.2.3 Evaluation

3.2.3.1 Suspend-Resume Overhead

The overhead of suspend-resume is mainly determined by the storage media perfor-

mance (i.e., I/O bandwidth) and the application’s memory size. We run experiments

to evaluate the overhead of our application-transparent, suspend-resume mechanism

on different storage media. We suspend and resume a program, which allocates and

fills a specified size of memory and performs a simple computation. We vary the

program’s memory size and measure the time needed to suspend and resume the pro-

gram on different storage media: HDD, SSD and NVM (PMFS, in this case). The

hardware specifications for the experiment machine can be found in Table 6. Our ex-

periment machine has two Xeon 5650 CPUs, 96GB RAM, 500GB HDD and a 120GB

25

SSD (OCZ Deneva 2). The results on the local file system are shown in Figure 3a.

The time of suspending and resuming the program is linearly correlated with the

program’s memory footprint. The SSD is approximately 3-4x times faster than the

HDD, and NVM is 10-15x faster than SSD.

The results on HDFS are shown in Figure 3b. Similar to the local file system, the

suspend and restore time is mostly linearly correlated with the memory size, but it

takes more time to finish compared to the local file system due to the overhead added

by HDFS. Compared with the suspend/resume on a local file system, suspend/resume

with HDFS enables a suspended task to start on any node. Hence, it enables the

scheduler to schedule the task earlier and may actually reduce the overall response

time.

HDFS replication factor also have an impact on the checkpointing overhead. Fig-

ure 4 shows the performance of dumping a program with a 5GB memory footprint

while varying the replication factor from one to three. Replicating the checkpointing

data enables us to do remote resumption of checkpointed tasks but as shown in the

Figure, introduces significant overhead if the checkpointed data is large. For this pro-

gram with 5GB of checkpointed data, adding just one replica of the data more than

doubles the checkpointing time for each storage media; however, adding additional

replicas after the first seems to only slightly deteriorate performance.

3.2.3.2 Checkpointing PARSEC with CRIU

To further test CRIU, we conducted detailed experiments to measure the perfor-

mance of CRIU to checkpoint and restore PARSEC [4]. The Princeton Application

Repository for Shared-Memory Computers (PARSEC) is a benchmark suite com-

posed of multithreaded programs. The suite focuses on emerging workloads and was

designed to be representative of next-generation shared-memory programs for chip-

multiprocessors. PARSEC contains 13 different programs from varying areas such

26

as computer vision, video encoding, financial analytics, animation physics and image

processing. The programs and descriptions are described below:

• blackscholes Option pricing with Black-Scholes Partial Differential Equation

(PDE)

• bodytrack Body tracking of a person

• canneal Simulated cache-aware annealing to optimize routing cost of a chip

design

• dedup Next-generation compression with data deduplication

• facesim Simulates the motions of a human face

• ferret Content similarity search server

• fluidanimate Fluid dynamics for animation purposes with Smoothed Particle

Hydrodynamics (SPH) method

• freqmine Frequent itemset mining

• raytrace Real-time raytracing

• streamcluster Online clustering of an input stream

• swaptions Pricing of a portfolio of swaptions

• vips Image processing

• x264 H.264 video encoding

Figure 6 shows the completion duration in minutes for each benchmark running

with the “native” input data set that is provided by the benchmark suite. Fig-

ure 7 shows the checkpoint footprint size for each benchmark in megabytes. Figure 8

27

Figure 6: PARSEC benchmark completion times.

shows the total duration to checkpoint each benchmark on four different storage me-

dia: HDD, SSD, persistent memory (PMEM), and tmpfs and Figure 9 shows the

checkpointing bandwidth. Similarly, the restore from checkpoint results are shown in

Figure 10 and Figure 11.

These results show that the suspend-resume overhead varies significantly depend-

ing on the job size and storage performance. The overhead can be high for jobs with

large memory footprints (e.g., memory intensive applications) or on slow storage such

as HDD. The benefit of suspend-resume-based preemption will depend on the I/O

performance and workload characteristics. This raises the question: Is the proposed

suspend-resume-based preemption actually beneficial for real workloads and feasible in

practice? To answer this, we conduct experiments via Google cluster trace-driven

28

Figure 7: PARSEC benchmark checkpoint size.

simulation and with real applications.

3.2.3.3 Google Trace-driven Simulation

We develop a trace-driven cluster scheduling simulator. It follows the system model

detailed in Section 3.2.1 and implements different scheduling and preemption policies.

We use a one-day job trace data from the Google cluster trace in our simulation. The

one-day trace contains approximately 15,000 jobs (totaling over 600,000 tasks) re-

quiring over 22,000 cores. The jobs are split into three priority levels and preemption

decisions made by the scheduler are based on each job’s priority level. The system per-

formance parameters—such as I/O bandwidth and checkpoint overhead—on different

storage media are populated with the measurements obtained in Section 3.2.3.1.

We evaluate four policies. The kill-based policy kills lower priority jobs during

preemption. The other three policies checkpoint preempted tasks by saving the tasks’

states to different storage media (HDD, SSD and NVM) and resume them later when

29

Figure 8: PARSEC benchmark checkpoint completion times.

resources are available. Figure 12 shows resource wastage (e.g., the amount of CPU-

time wasted due to repeatedly killing jobs, and from preemption and checkpoint

overhead), the energy consumption and the job performance (job response time nor-

malized to that of the kill-based preemption) using the four different policies. A job’s

response time is defined as the total time the job spent queueing, plus the actual job

execution time.

The kill-based preemption, which is used by most cluster schedulers, wastes about

3,400 CPU-core hours (about 35% of the total capacity) by killing low priority jobs

to reclaim resources for higher priority jobs. Compared to kill-based preemption,

checkpoint-based preemption reduces the resource wastage to 14.6%, 11.1% and 8.5%

on HDD, SSD and NVM, respectively. This reduced resource wastage implies more

jobs can be scheduled in the same time period and lead to cost savings.

Energy consumption was calculated by taking the average CPU utilization of each

machine, converting it to a corresponding wattage and multiplying it by the total

experiment time. Based on this calculation, checkpoint-based preemption on HDD

30

Figure 9: PARSEC benchmark checkpoint bandwidth.

and SSD is similar to kill-based preemption, but the checkpoint-based approach on

NVM reduces the energy consumption by about 5%.

As far as performance is concerned, checkpoint-based preemption using HDD

gives low priority jobs better performance than preempt-kill, but performance for

medium and high priority jobs is worse due to the substantial checkpointing over-

head. Checkpointing on SSD offers comparable performance for high priority jobs to

the preempt-kill policy and also better performance for low priority jobs. The per-

formance of medium priority jobs is slightly worse than kill-based preemption. If we

use an NVM-backed file system, the response times of both low and medium priority

jobs are reduced significantly (by 74% and 23%, respectively), while achieving similar

performance for high priority jobs.

In summary, checkpoint-based preemption can significantly reduce resource wastage

even with slow storage like HDD, although there is a performance penalty for medium

and high priority jobs. As we use faster storage such as SSD, the penalty becomes

31

Figure 10: PARSEC benchmark restore completion times.

much smaller. With fast NVM, checkpoint-based preemption can reduce resource

wastage and energy consumption, and improve the performance of low and medium

priority jobs, while achieving comparable performance for high priority jobs; however,

there is a non-negligible performance penalty for higher priority jobs associated with

checkpoint-based preemption using slow storage. To further understand the effective-

ness and feasibility of application-transparent, checkpoint-based preemption and the

impact of storage performance, we conduct the following sensitivity analysis.

3.2.3.4 Sensitivity Analysis with Real Applications

The experiment involves two jobs each running a simple k-means program [12] with

a one-minute execution time and 5 GB memory size. The two jobs run on a real

machine with the following scenario. A low priority job starts executing for 30s before

32

Figure 11: PARSEC benchmark restore bandwidth.

a high priority job arrives and preempts it. We compare three different preemption

policies with different I/O bandwidth.In the first policy wait, the high priority job

waits for the low priority job to finish before executing. In the second policy kill, the

low priority job is immediately killed in favor of the high priority job and restarts

its execution from scratch when the high priority job has finished. In the third

policy preempt-checkpoint, the low priority job is suspended by saving its progress

and the high priority job starts executing after the checkpointing is finished. Once

the high priority job completes, the low priority job is restored from the state it was

checkpointed and continues execution. Varying the I/O bandwidth is accomplished

by saving checkpoints in PMFS and changing the value of the thermal control register

that is available in Intel Xeon E5-2650 CPUs, which throttles the memory bandwidth

to emulate different I/O performance.

33

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(a) High Priority Job Performance

 0
 1
 2
 3
 4
 5
 6

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(b) Low Priority Job Performance

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

E
ne

rg
y

C
on

su
m

pt
io

n

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint

(c) Energy Consumption

Figure 12: Comparison of Different Policies with Varying I/O Bandwidths.

Figures 12a and 12b show the normalized performance results for the high priority

and low priority jobs for each of the three policies with varying storage media band-

width. For the high priority job, killing the low priority job always yields the best

performance, while waiting for the low priority job to finish increases its response time

by more than one-half. When I/O bandwidth is slow, checkpointing the low priority

job actually yields worse response time than killing it and restarting from scratch.

As the I/O bandwidth increases, checkpoint-based preemption yields better perfor-

mance. The response times are comparable to the kill-based policy when the storage

bandwidth is very fast, e.g, using NVM. We also measure the energy consumption

based on the total response time of both jobs as shown in Figure 12c. The wait policy

34

yields the best energy consumption since no CPU cycles are wasted, while the kill pol-

icy wastes CPU resources and consumes more energy. Checkpoint-based preemption

results in higher energy consumption with slow storage than the kill policy.

These results confirm our observations from 3.2.3.1 that the effectiveness of checkpoint-

based preemption depends on the storage performance and job properties, and that

checkpointing may not always be beneficial. When the checkpointing overhead is low

(e.g., with fast storage or small job memory footprint), checkpoint-based preemption

can improve performance and energy efficiency; however, when the checkpointing

overhead is expensive (e.g., checkpointing large jobs on slow storage), the overhead

cost may outweigh the benefit and make checkpoint-based preemption worse than

simple kill or wait-based policies. This observation motivates the idea of using an

adaptive preemption policy, which dynamically chooses an appropriate preemption

mechanism conditional on the checkpointing overhead. We discuss optimizations to

the basic checkpoint-based preemption in Section 3.3.

3.3 Optimization

3.3.1 Adaptive Policies and Algorithms

As discussed in Section 3.2.3.4, the challenge of using application-transparent check-

pointing mechanisms is that they can be expensive with slow storage and large jobs

because such mechanisms typically collect and save the entire state of running pro-

cesses and memory content and dumps it to a storage device. Dumping a task’s full

state may trigger a lot of memory and I/O (and possibly network traffic if check-

pointing for remote resumption) and delay the relinquishment of resources to high

priority and critical workloads. Further, it can degrade other active tenant appli-

cations during checkpointing. Naive use of such methods to suspend and resume

applications in cluster scheduling with slow storage devices can be detrimental to

some jobs’ performance (e.g., high priority, production jobs).

35

To address these issues, we propose a set of adaptive policies to minimize the pre-

emption penalty. This will improve application performance in cluster scheduling by

choosing proper victim tasks and preemption mechanisms based on storage media per-

formance (i.e., I/O bandwidth), workload progress and checkpoint/restore overhead.

We also propose to use optimization techniques such as incremental checkpointing to

reduce the overhead.

1. Adaptive preemption dynamically selects victim tasks and preemption mecha-

nisms (checkpoint or kill) based on the progress of each task and its checkpoint/restore

overhead. Specifically, the total checkpointing overhead is estimated as the sum of

checkpointing and restoring a task, plus the queueing time to checkpoint. The time of

checkpointing and restoring a task is estimated according to the checkpoint size and

I/O bandwidth (size/bandwidth). If other checkpoint operations are occurring on the

machine, the queueing time is how long the task needs to wait for other checkpoint

operations to finish before it can dump its own state to storage. This total overhead

is compared with the current progress of the task. If the progress exceeds the to-

tal checkpointing overhead, the task is checkpointed. Otherwise, the application is

simply killed. The pseudo-code for our preemption algorithm is shown in Algorithm

1.

2. Adaptive resumption restores preempted jobs/tasks when resources are avail-

able according to their overheads which are calculated based on the checkpoint size,

available network and I/O bandwidth, etc. We use HDFS to store checkpoints, and

hence a preempted task can be scheduled on a local or remote node. It may seem that

the local restore overhead will always be lower than the overhead of remote restore,

but there can be extra costs for local restore depending on whether the restoring task

will need to preempt other running tasks or if it needs to wait in the preemption

queue for other checkpoint/restore operations to complete. The pseudo-code for our

resumption algorithm is shown below.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

Basic Adaptive

(a) HDD

 0

 0.2

 0.4

 0.6

 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

(b) SSD

 0

 0.2

 0.4

 0.6

 0.8

 1

Low
Priority

Medium
Priority

High
Priority

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

(c) NVM

Figure 13: Performance Improvement with Adaptive Policies.

3. Incremental checkpointing is used to checkpoint modified memory regions

only. A task may be suspended multiple times; for subsequent preemption after the

first checkpoint, we only need to checkpoint the task’s memory regions that have been

modified since the last checkpoint. This can significantly reduce checkpoint size and

latency, especially for read-dominant workloads. CRIU supports such incremental

checkpoints with memory change tracking by leveraging soft-dirty bits in the page

table. A soft-dirty bit tracks which pages a task writes to. When first enabling

incremental checkpoints for a task, CRIU clears all the soft-dirty bits and writable

bit from the task’s page table entries. Subsequently, if the task tries to write to a

portion of its page, a page fault occurs and the kernel sets the soft-dirty bit for the

corresponding page table entry. If the task needs to be dumped again after its initial

37

Algorithm 1: Preemption Algorithm

overheadchkpt = size
bwwrite

+ size
bwread

+ queue timedump

candidate victims = get candidate victims();
sort(candidate victims);
for Task t in candidate victims do

if t.progress > t.checkpoint overhead then
if t.previous checkpoint ! = null then

do incremental checkpoint(t);
else

do normal checkpoint(t);
end

else
kill(t);

end

end

checkpoint, it will only need to dump the pages which have its soft-dirty bit set.

Table 7 shows the results of checkpointing a program with 5 GB memory twice. 10%

of the memory region is modified between the first checkpoint and the second one. As

we can see, the second checkpoint operation is a magnitude faster than a full dump for

all three storage media. Our preemption utilizes incremental checkpointing whenever

possible to reduce the overhead. Similarly, depending on the amount of resources

that need to be released, the entire task memory partition, or only a portion of it,

needs to be checkpointed. For example, to reclaim resources for a CPU-intensive job,

we only need to suspend the running job and dump a portion of its memory region.

3.3.2 Benefits of Adaptive Policies

3.3.2.1 Google-trace driven Simulation

We integrate the adaptive policies into the trace-driven simulator described in Sec-

tion 3.3.1 and evaluate them using the one-day job trace from the Google cluster

traces similar to Section 3.2.3.3. Figure 14 shows the performance (response time

normalized to the basic policy) using adaptive preemption and basic checkpoint-based

preemption which always checkpoints a preempted job. The result shows that the

38

Algorithm 2: Resumption Algorithm

overheadlocal = size
bwread

+ queue timelocal
overheadremote = size

bwnet
+ size

bwread
+ queue timeremote

preempted tasks = get preempted tasks();
for Task t in preempted tasks do

if t.previous checkpoint == null then
restart task(t);

else
if t.local resume overhead <= t.remote resume overhead then

do local resume(t);
else

do remote resume(t);
end

end

end

Table 7: Benefits of incremental checkpointing.

Storage First Checkpoint Second Checkpoint
HDD 169.18s 15.34s
SSD 43.73s 4.08s
PMFS 2.92s 0.28s

adaptive policy is very effective and improves the performance for all three types of

jobs, in particular on slower storage like HDD and SSD. The response times of low

priority jobs on HDD, SSD and NVM are reduced by 36%, 12% and 3%, respectively.

The response times for medium priority are reduced by 55%, 17%, and 8% on HDD,

SSD and NVM, respectively. Adaptive policies also help improve the high priority

job performance on HDD and SSD by 29% and 8% respectively. The high priority

job performance using NVM is comparable to the kill-based policy’s performance, the

best possible performance for high priority jobs.

Our experiment results show that the adaptive approach also reduces energy con-

sumption for all three storage media compared to basic checkpoint-based preemption.

We omit this graph due to space constraints.

39

 0

 20

 40

 60

 80

 100

Low Medium High

R
ed

uc
tio

n
in

C
om

pl
et

io
n

T
im

e
[%

]

Job Priority

Chk-HDD
Chk-SSD
Chk-NVM

Figure 14: Performance Comparison of Adaptive Preemption and Basic Checkpoint-
based Preemption.

3.3.2.2 Sensitivity Analysis with Real Applications

We further evaluate and compare different policies with varying I/O bandwidths

using real applications. The experiment setup and scenario are the same as the one

described in Section 3.2.3.4.

Figures 15a and 15b show the performance results for high priority and low priority

jobs for each of the four policies (wait, kill, always checkpoint, adaptive) while varying

the checkpointing bandwidth. As we discussed in Section 3.2.3.4, the basic policy that

always chooses to checkpoint a job is not beneficial at low bandwidths and results

in performance even worse than just killing the job. The adaptive policy chooses to

kill the low priority job at low checkpointing bandwidths, but chooses to checkpoint

the low priority job when the checkpointing bandwidth is higher. As a result, the

performance of the high priority job is never worse than the wait approach. As the

available I/O bandwidth increases, the performance approaches the kill-based policy.

Similarly, the adaptive policy achieves better performance than the basic always-

checkpoint preemption policy at low bandwidths and obtains comparable performance

40

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(a) High Priority Job Performance

 0
 1
 2
 3
 4
 5
 6

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

R
es

po
ns

e
T

im
e

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(b) Low Priority Job Performance

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1.0 2.0 3.0 4.0 5.0

N
or

m
al

iz
ed

E
ne

rg
y

C
on

su
m

pt
io

n

Checkpoint Bandwidth [GB/s]

Wait
Kill

Checkpoint
Adaptive

(c) Energy Consumption

Figure 15: Comparison of Different Policies with Varying I/O Bandwidths.

to the wait policy at high bandwidths.

The energy consumption results are shown in Figure 15c. The basic checkpoint-

based preemption policy can result in higher energy consumption at lower bandwidths

than the kill policy. By contrast, the energy consumption of the adaptive policy is

never worse than the kill policy and is similar to the wait policy at higher bandwidths.

3.4 Hadoop YARN Implementation

We have integrated the proposed checkpoint-based preemptive scheduling and opti-

mization policies into Hadoop YARN. We describe the details of the implementation

below and also compare our system with YARN’s current kill-based preemption for

the DistributedShell application on different storage devices: HDD, SSD and NVM.

41

3.4.1 Overview of Hadoop YARN

YARN is the next generation cluster resource manager for the Hadoop platform that

allows multiple data processing frameworks—such as MapReduce, Spark [56], Storm,

HBase, etc.—to dynamically share resources and data in a single shared cluster.

YARN uses a global resource scheduler (YARN ResourceManager - RM) to arbi-

trate resources (CPU, memory, etc.) among application frameworks based on config-

ured per-framework resource capacities and scheduling constraints. A per-application

YARN ApplicationMaster (AM) requests resources from the RM and chooses what

tasks to run. It is also responsible for monitoring and scheduling tasks within an

application.

The YARN ResourceManager supports capacity scheduling and fair scheduling.

The scheduler allocates resources in the form of containers to applications based on

capacity constraints, queues and priorities. Like other popular cluster schedulers,

YARN scheduler relies on preemption to coordinate resource sharing, guarantee QoS

and enforce fairness as follows. When a new job or new container request arrives and

there is resource contention, the YARN ResourceManager determines what is needed

to achieve capacity balance and selects victim application containers according to

predefined policies (e.g., capacity sharing or priority scheduling). The ResourceMan-

ager then sends a request to those containers’ ApplicationMasters to terminate the

containers gracefully and, as a last resort, sends a request to the containers’ NodeM-

anagers to terminate them forcefully.

3.4.2 Architecture and Implementation

3.4.2.1 Checkpoint-based Preemption

Figure 16 shows the software architecture of our checkpoint-based preemption imple-

mentation on YARN. Preemption and checkpointing occurs in YARN in the following

42

YARN ApplicationMaster

Application Preemption
Manager

2. Preemption
Request

3. Suspend
6. Resume

3. Suspend
6. Resume

4. Suspend
Complete

YARN Resource Manager

YARN Cluster Scheduler

5. Container
Request

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task

dump restore

YARN NodeManager

HDD, SSD, NVM (PMFS)

HDFS

Task

CRIU

Task

dump restore

1. New
Job

Figure 16: YARN Architecture.

manner: (1) a new job or ApplicationMaster requests resources from the Resource-

Manager. (2) When there is resource contention, ResourceManager requests for an

ApplicationMaster to terminate its application container(s) so that resources can be

returned and given to an application with higher priority by dispatching a Container-

PreemptEvent. The ContainerPreemptEvent specifies a particular ApplicationMaster

and the containers to preempt. By default, the AM does not handle this event, so a

container managed by the AM will be forcefully killed by the NodeManager after a

certain timeout. (3) We implemented a new preemption manager for the AM (in our

current implementation we modify the DistributedShell ApplicationMaster) to han-

dle the ContainerPreemptEvent so that when such an event arrives, the preemption

manager can then make a preemption decision based on the specified preemption pol-

icy (discussed in the section below). For example, instead of killing the container, the

AM can suspend the task running on the container using the CRIU dump command

and save the state of the container to the Hadoop Distributed File System (HDFS).

(4) Once the checkpoint data has been successfully saved to HDFS, the resources of

the checkpointed task can be reclaimed by the RM. The ApplicationMaster notifies

the RM of the newly available resources. (5) The ApplicationMaster also submits

43

 0

 50

 100

 150

 200
C

P
U

 W
as

ta
ge

[c
or

e-
ho

ur
s]

Preempt Method

Kill
Chk-HDD
Chk-SSD
Chk-NVM

(a) Resource Wastage

 0

 2

 4

 6

 8

 10

P
ow

er
 [k

W
h]

Preempt Method

(b) Energy Consumption

 0
 2
 4
 6
 8

 10
 12
 14
 16

Low Priority High Priority

R
es

po
ns

e
T

im
e

[m
in

]

(c) Performance

Figure 17: Comparison of Different Preemption Policies on YARN.

a new request to the RM to allocate a new container for the checkpointed task when

resources are available. (6) Once resources are available, the RM allocates a new

container for the ApplicationMaster and the AM issues a command to restore the

saved checkpoints from HDFS and to resume computation from the saved state.

In our prototype, we validated the above steps by implementing it for the Dis-

tributedShell ApplicationMaster, which is included by default in the YARN distribu-

tion. A new component, the Preemption Manager, is added to the DistributedShell

ApplicationMaster that supports checkpointing during preemption. The Distributed-

Shell runs a shell command (or any program) on a set of containers in a distributed

and parallel manner. The DistributedShell AM first requests a set of resources for

44

containers from the RM and specifies a priority level for the request. Once the re-

source request is granted, it will start running the command on the container. The

DistributedShell AM also monitors each container and has the functionality to re-run

a container if it has failed or has been killed. Once each container has finished running

the command, the AM will finish and return the resources back to the RM. In our

scenario, in case of a resource insufficiency, the DistributedShell AM will checkpoint

existing containers and free up resources. On restore, instead of issuing a new shell

command, the checkpointed state is retrieved and computation resumed.

3.4.2.2 Adaptive Policies Implementation

We implemented the adaptive checkpoint-based preemption and resumption algo-

rithms described in Section 3.3:

• Checkpoint cost-aware eviction. Cost-aware eviction is implemented in the

ResourceManager. The RM calculates the checkpointing time for each candi-

date victim container by dividing the memory size of each container by the

checkpointing bandwidth available for that node. Then, the ResourceManager

selects the containers with the lowest ratios and sends a ContainerPreemptEvent

to those ApplicationMasters to be checkpointed.

• Adaptive preemption. When an ApplicationMaster receives a ContainerPre-

emptEvent, it will calculate its estimated checkpoint dump and restore time.

If this time is greater than the current progress of the task on the container,

the ApplicationMaster will just issue a kill command to the container instead

of checkpointing it. After the container is successfully killed, the Application-

Master will request resources from the RM for a new container to re-run the

killed task.

• Incremental checkpointing with memory trackers. We implement this by

enabling CRIU to track the soft-dirty bit of tasks that have been resumed from

45

checkpointed data. Subsequently, if any of these tasks are preempted again,

only regions which have been modified need to be checkpointed again.

• Cost-aware remote resumption. Our implementation supports both local

and remote resumption. A checkpointed task can specify a preference for local

resume, remote resume or no preference. If there is no preference, when there are

enough resources to run the checkpointed task, the ResourceManager chooses

an available node and missing blocks of checkpointed data are sent to the new

node before restoring the task.

• Our implementation uses sequential checkpoint/restore to limit the number

of concurrent checkpoints on each node to minimize the interference. The RM

maintains a list of checkpoint queues for each node. When the RM sends a

ContainerPreemptEvent to an AM, it will add the containers preempted to

their nodes’ checkpoint queues. When the RM acquires the resources from

preempted containers, it removes those containers from their respective queues.

When calculating the checkpointing overhead, the RM takes into account how

many containers are in each node’s checkpointing queue.

3.4.3 Evaluation

3.4.3.1 Kill-based vs. Checkpoint-based Preemption

We evaluated and compared our checkpoint-based preemption with Hadoop YARN’s

current kill-based preemption on three different storage devices: HDD, SSD, and

NVM in an eight node Hadoop cluster (node specifications described in Section 3.2.3.1).

Each node can support 24 concurrent containers each with 1 CPU core and 2 GB of

memory with 48 GB of NVM. We used a workload derived from a Facebook trace [9]

which contains 40 jobs (requiring 7,000 tasks). The jobs are split into either low prior-

ity or high priority. These two types of jobs are co-located and dynamically share the

46

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30

Response Time [min]

Kill
Chk-HDD
Chk-SSD
Chk-NVM

Figure 18: YARN Workload Job Performance CDF.

resources in the YARN cluster via DistributedShell. Each task runs a k-means ma-

chine learning program [12] that has a maximum memory footprint of approximately

1.8GB.

Figure 17 shows total resource wastage in terms of CPU time, total energy con-

sumption and average job response time (i.e., the elapsed time between submission

and completion time). The current YARN scheduler wastes about 28% of the total

capacity in terms of CPU time by killing low priority jobs to reclaim resources to high

priority jobs. Compared to kill-based preemption, our approach reduces the resource

wastage by 50% and 65% on HDD and SSD, respectively. This reduced resource

wastage may lead to more jobs being scheduled and increased energy savings in the

long run. In particular, our approach reduces the energy consumption by 21% and

29% on HDD and SDD, respectively. If we use an NVM-based file system (PMFS in

this case), the reductions of resource wastage and energy consumption go up to 67%

and 34%, respectively.

The response time CDF shown in Figure 18 shows that overall job performance is

improved with checkpoint-based preemption over the kill-based approach and using

47

 0
 2
 4
 6
 8

 10
 12
 14

Low Priority High Priority

R
es

po
ns

e
T

im
e

[m
in

]

Basic
Adaptive

(a) HDD

 0
 1
 2
 3
 4
 5
 6
 7
 8

Low Priority High Priority

R
es

po
ns

e
T

im
e

[m
in

]

(b) SSD

 0
 1
 2
 3
 4
 5
 6
 7

Low Priority High Priority

R
es

po
ns

e
T

im
e

[m
in

]

(c) NVM

Figure 19: Performance Comparison of Basic Checkpoint-based Preemption vs.
Adaptive Preemption.

NVM can achieve better performance. In terms of average performance, checkpoint-

based preemption reduces the average response time of low priority jobs by 18% and

53% on HDD and SSD, respectively; however, the performance of high priority jobs

with checkpointing on HDD and SSD is worse than the kill-based approach. By using

fast checkpoint with NVM, response time of low priority jobs is reduced by 61% while

the performance of high priority jobs is comparable to kill-based preemption.

3.4.3.2 Benefits of Adaptive Preemption

We ran another experiment to compare the basic checkpoint-based preemption that

always checkpoints a job with our adaptive preemption, which leverages our optimized

48

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30

Response Time [min]

Kill
Basic

Adaptive

(a) HDD

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30

Response Time [min]

Kill
Basic

Adaptive

(b) SSD

0

0.25

0.5

0.75

1.0

 0 5 10 15 20 25 30

Response Time [min]

Kill
Basic

Adaptive

(c) NVM

Figure 20: Response Time CDF of Basic Checkpoint-based Preemption vs. Adaptive
Preemption.

policies. The average response time is shown in Figure 19. Adaptive preemption re-

duces the response times of low priority jobs by 28%, 16% and 20% over the basic

checkpoint-base preemption on HDD, SSD and NVM, respectively. The performance

improvement for high priority jobs is 7%, 8% and 14%. With the improvement,

checkpoint-based preemption with NVM achieves similar performance for high pri-

ority job as the kill-based preemption while significantly improving low priority job

performance and reducing resource and energy usage. Figure 20 shows the response

time CDF of adaptive preemption and basic checkpoint-based preemption. Adaptive

preemption improves the overall job performance on all three storage medias over the

basic checkpoint-based preemption.

We also conducted a sensitivity analysis with our YARN implementation similar

49

 0

 20

 40

 60

 80

 100

HDD SSD NVM

C
P

U
 O

ve
rh

ea
d

[%
] Basic

Adaptive

(a) CPU Overhead

 0

 20

 40

 60

 80

 100

HDD SSD NVM

I/O
 O

ve
rh

ea
d

[%
] Basic

Adaptive

(b) I/O Overhead

 0
 2
 4
 6
 8

 10
 12
 14

HDD SSD NVM

S
to

ra
ge

 O
ve

rh
ea

d
[G

B
]

Basic
Adaptive

(c) Storage Overhead

Figure 21: Overhead of Basic Checkpoint-based Preemption and Adaptive Preemp-
tion.

to Section 3.2.3.4 and achieved similar results. The adaptive policy is never worse

than the basic policy and can achieve optimal performance and resource efficiency

with fast storage such as NVM. These results demonstrate that the adaptive policy

is a useful technique to improve checkpoint-based preemption.

3.4.3.3 Overhead of Checkpoint-based Preemption

We evaluated the checkpoint-based preemption cost in terms of CPU, storage and

I/O overhead and the results are shown in Figure 21. CPU overhead of preemption

is measured as the percentage of CPU time spent on checkpointing and restoring

preempted tasks and shown in Figure 21a. Basic checkpointing incurs a 17% CPU

overhead when used with HDD while the CPU overheads of checkpointing on SSD

50

and NVM are 4% and 0.4%, respectively. When using adaptive checkpointing, the

overhead of checkpointing to HDD and SSD drops to 5.1% and 2.3%, respectively.

Overall, the CPU overhead is acceptable. With adaptive preemption on NVM, the

CPU cost is negligible.

We use the worst-case scenario to estimate the I/O overhead of checkpointing. We

assume that while checkpointing a task, the checkpointing media’s entire bandwidth

is used. Using this estimation, the average bandwidth usage of basic checkpointing

is 37%, 14%, and 2.2% of the total available bandwidth for HDD, SSD and NVM,

respectively, as shown in Figure 21b. Adaptive preemption decreases this bandwidth

usage on HDD and SSD to 15.7% and 8.3%, respectively. This overhead reduction is

due to the combination of the adaptive policy checkpointing less frequently (opting

to kill recently started tasks instead) and also checkpointing less data by leveraging

incremental checkpointing. Similar to CPU overhead, bandwidth usage associated

with adaptive preemption on HDD and SSD are acceptably low, and the overhead is

negligible for NVM.

The average storage used for storing checkpoints during preemption as a percent-

age of total storage capacity on HDD and SSD is 5.1% and 7.6%, respectively. The

maximum size of storage required for storing the checkpoints during execution is the

total memory capacity of the cluster if we need to dump and store the entire cluster’s

memory state. For example, in our workload, there is a production job that is larger

than the capacity of the cluster; when this job is submitted and scheduled, it preempts

all non-production jobs running in the cluster and causes them to be checkpointed.

The storage requirement for our workload is about 10% of the total storage capacity.

The results can be seen in Figure 21c.

In summary, the overhead introduced by checkpointing-based preemption is mod-

erate or low. Additionally, while the adaptive policy can improve the overall job

performance, it can also greatly reduce the CPU and I/O overhead associated with

51

checkpointing.

3.5 Related Work

Some previous work has studied the negative effects of preemptive scheduling in

shared clusters [9, 30, 8]. Cavdar et al. [7] analyzed task eviction events in the

Google cluster and found that most evictions were caused by priority scheduling.

They developed task eviction policies to mitigate wasted resources and response time

degradation by imposing a threshold on the number of evictions per task; however,

their work is based on simulation and does not consider checkpointing overhead.

Harchol-Balter et. al [23] showed that preemptively migrating long-running processes

would reduce the mean delay time of incoming jobs.

Recently, application-specific checkpointing has been used to improve resource

management. For example, Hadoop checkpoint-based scheduling proposes to save

the progress of certain Map tasks in a MapReduce job during preemption [1, 9, 40];

however, these systems are limited to checkpointing only MapReduce applications.

Further, these systems often need to modify application programs. In contrast, our

proposed method is application-transparent and a system-level mechanism that can

suspend/resume any application without needing to modify the application code.

Traditional HPC or VM-based suspend/resume solutions are coarse-grained and

too expensive for emerging workloads, such as big-data applications, which require

fine-grained resource sharing and data locality. The most closely related work to ours

is SLURM which can checkpoint using BLCR [3]; however, BLCR is not portable

across platforms and is limited in the types of applications it can checkpoint. Yank [48]

and SpotCheck [45] offer high-availability to transient servers by storing VM state on

backup servers, but doing so can be expensive if revocations occur frequently.

Analysis of the Google cluster trace has been conducted by [15, 37, 41]. The focus

of these works was statistical analysis of the workload’s properties while our focus is

52

on characterizing and evaluating the resource efficiency and performance impact of

preemption in cluster scheduling.

System level checkpoint mechanisms such as BLCR, Linux-CR and CRIU use file

systems on disk to save checkpoints. Prior work on NVM checkpointing [18, 30] has

focused on optimization techniques and architectural enhancements for improving re-

liability and availability. Most of these mechanisms have been used for fault-tolerance

and none have been applied in the context of performance improvement and resource

efficiency in cluster resource management.

3.6 Conclusion

Resource management systems in shared clusters typically employ preemption to

recover from saturation and support the QoS among multiple tenants. Current pre-

emption mechanism is to simply kill preempted jobs. This can cause significant waste

and delay the response time of some jobs.

In this chapter, we present an alternative non-killing preemption that utilizes

system-level, application-transparent checkpointing mechanisms to preserve the progress

of preempted jobs in order to improve resource efficiency and application performance

in cluster scheduling. We implement a prototype including an implementation on the

Hadoop YARN platform and conduct an extensive experimental study via trace-

driven simulation and real applications. We demonstrate that (1) Preemption using

application-transparent checkpointing is feasible and able to reduce the resource and

power wastage and improve overall application performance in shared clusters, even

on slow storage like HDD. (2) Adaptive preemption that combines checkpoint and kill

can further improve the performance and reduce cost. (3) Checkpoint-based preemp-

tion with slow storage may hurt the performance of certain jobs. (4) By leveraging

emerging fast storage technologies such as NVM, checkpoint-based preemption can

53

improve application performance in all job categories while achieving significant sav-

ings in resource usage.

In the future, we plan to apply the proposed approach to a wider range of ap-

plications, including MapReduce and investigate how to implement more efficient

checkpointing and preemption using NVM as virtual memory. With the continued

advances in storage technologies and OS-level checkpointing support [11, 30], we

anticipate even more savings in the future as suspend-resume becomes faster and

cheaper.

54

CHAPTER IV

SUPPORTING ELASTICITY IN DISTRIBUTED DATA

STREAM PROCESSING

In Chapter 3, we discussed using checkpoint-based preemption to improve the overall

job performance and resource utilization in a batch processing system. In this chap-

ter, we present an approach for supporting elastic scaling of distributed data stream

processing applications and efficiently scheduling and coordinating stream processing

with batch processing in shared clusters.

Distributed data stream processing has become an increasingly popular compu-

tational framework due to many emerging applications which require real-time pro-

cessing of data such as dynamic content delivery and security event analysis. Stream

processing applications often face an elastic demands where the input rate can vary

drastically. The typical solution to solve workload elasticity is to guarantee enough

resources to the application, but this solution is not possible when resources are be-

ing shared among multiple applications. Our solution for supporting elasticity in a

data stream processing system consists of a congestion detection monitor which de-

tects bottlenecks in the streaming system and a global state manager that performs

non-disruptive, stateful scaling of streaming applications.

4.1 Introduction

The Big Data movement over the last decade has generated an unprecedented amount

of data and revolutionized the way we process information. Distributed batch pro-

cessing systems such as Hadoop MapReduce continue to play an important role in

processing large sets of static and historical data. However, there has been an increase

55

in applications that require real-time processing of data such as web analytics and

intrusion detection systems. Stream processing systems such as Storm [51] and Spark

Streaming [57] have emerged to support real-time and near real-time processing of

live data. Both batch analytics and real-time analytics are becoming centerpieces in

today’s big data applications.

A major challenge facing distributed processing systems is how to manage these

applications in clusters or the Cloud while achieving good performance at low cost.

Specifically, two issues can arise when trying to tackle the issue of distributed pro-

cessing system management.

Elasticity in Stream Processing. Data stream processing systems often face

dynamic workloads where input data rates can vary drastically. In the face of dynamic

streams, stream processing systems need to be able to automatically handle fluctuat-

ing demands and scale accordingly while not disrupting existing requests. However,

state-of-the-art stream processing systems do not have the capabilities to dynamically

scale in a non-disruptive manner. (1) Most existing data stream processing systems

allocate a fixed amount of resources at the deployment time. Scaling an applica-

tion typically requires that the application first be shutdown, reconfigured and then

restarted. For applications that rely on real-time stream processing, this entails a sig-

nificant service interruption [55]. (2) Also, such scaling is often conducted manually

in an ad-hoc manner, which relies on users to detect bottlenecks in their applications

and to scale their applications manually. This requires users to constantly monitor

their applications and have expertise in detecting problems in the system, which is

cumbersome. (3) Additionally, application state may not be preserved during scaling

operations when the system is terminated, and thus, work may be lost and consumers

may receive erroneous results.

Co-locating Streaming Systems with Batch Processing in Shared Clus-

ters. Early deployments of big data applications were on dedicated clusters. In an

56

effort to improve cluster resource utilization and cluster management, a shift is tak-

ing place where these applications are now deployed on shared clusters where the

resources are shared between both batch and streaming systems. (1) Shared clusters

provide a great potential to elastically scale the resources to match demand from

different applications. For example, stream processing applications can obtain ad-

ditional resources when needed from the cluster and give them back when demand

subsides. Accordingly, batch jobs can ”steal” excess resources from streaming appli-

cations when the real-time workload is low. Elastic sharing of resources can greatly

improve application performance and cluster utilization. (2) Shared clusters enable

batch and stream processing systems to share data and minimize data duplication.

A key enabler for such shared clusters is a cluster resource management system (e.g.,

Hadoop YARN [53] and Mesos [27]) which allocates resources among the different

frameworks. Though these systems lay the groundwork to make this possible, but

several challenges still remain: (1) how to integrate and implement stream processing

elasticity with cluster resource management systems and (2) how to efficiently sched-

ule and coordinate resources between batch and streaming workloads to achieve good

performance, fairness and resource efficiency.

In this chapter, we develop an approach for supporting elastic scaling of distributed

data stream processing and efficiently scheduling and coordinating stream processing

with batch processing in shared clusters. The contributions are as follows.

• We propose an elastic streaming method that dynamically scales streaming ap-

plications in an efficient, non-disruptive manner. Our method includes a state-

ful scaling mechanism to save application state, cost-aware scaling to minimize

the interruption of scaling operations, and automatic congestion detection to

remove the need for user monitoring and manual intervention.

• We develop a system for co-locating elastic streaming with batch processing in

57

shared clusters. Our system integrates elastic scaling with the Hadoop YARN

cluster resource manager and efficiently schedules and coordinates the resources

between stream and batch processing. By leveraging and improving YARN’s

resource management, our system allows real-time streaming, and batch pro-

cessing to share resources in a single cluster in a fine-grained, dynamic and

efficient way. A particular improvement over the current YARN resource man-

agement is that our system uses checkpointing-based preemption to handle re-

source crunches between streaming and batch applications and hence improves

application performance and resource efficiency.

• We implement the proposed elastic streaming and co-location of streaming and

batch applications with Storm and Hadoop YARN and conduct comprehensive

experiments with a real workload, which uses Storm for low-latency stream

processing and MapReduce for batch processing. The experimental results show

that our solution improves throughput by up to 49% while decreasing average

request response time by 58%.

The rest of this chapter is organized as follows. We present a motivational use case

in Section 4.2. Section 4.3 presents the design of our elastic streaming solution and its

implementation in Storm. Section 4.5 describes the integration of elastic streaming

with the Hadoop YARN cluster manager. The evaluation and experimental results are

discussed in Section 4.6. Section 4.7 reviews related work and Section 4.8 concludes

the chapter.

4.2 Motivation

Data stream processing systems face dynamic workloads where input data rates can

vary drastically. Thus, the ability to elastically scale the system to match demand

is critical. While current data stream processing systems have capabilities to scale

applications, they require that the applications first be shutdown before rescaling and

58

0

50000

100000

150000

0 50 100 150 200
Time (s)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

)

(a) Throughput

0

50

100

150

200

250

0 50 100 150 200
Time (s)

La
te

nc
y

(m
s)

Latency

(b) Preemption Rate Per Priority

0

5

10

15

20

25

0 50 100 150 200
Time (s)

of

 O
pe

ra
to

rs

(c) Preemption Frequency Distribution

Figure 22: A motivating example with a real-time security event detection workload.

then restarted. For applications that rely on real-time stream processing, this entails

a significant service interruption.

For example, in our motivating example and evaluation we use a ”Distributed

Real-time Event Analysis” system [49] which is a highly-scalable, distributed, rule-

based event evaluation system that models a real-world production workload from

industry. The DREA application works by analyzing and processing events that

arrive at a high input rate using complex operations (e.g., event evaluation and cor-

relation). For example, imagine a DREA system that monitors the health of the IT

infrastructure. It will have a set of rules in the rules engine that determine if a certain

event or a series of events match and then can signal in real time when a breach in

the system occurs. The consequences could be catastrophic if such a system needed

to be shut down in order to scale up and handle increased load.

59

The DREA application is implemented in Apache Storm [51], a popular dis-

tributed data stream processing system. In Storm, once an application is deployed

on the cluster, it can no longer be modified unless the application is stopped and

reconfigured. For this motivating example, we ran DREA with a replay trace from a

real-world security event analysis system. The trace contains three input rate periods:

60 seconds of low input rate, followed by 120 seconds of high input rate and finally

60 seconds back to the low input rate. The experimental results from this example

are shown in Figure 22.

For the first 60 seconds, the application functions normally; however, once the high

input rate period is reached, there is a spike in latency as shown in Figure 22b as

well as dropped events caused by insufficient processing power to handle the incoming

event request rate. To address this issue, the application must be scaled out which

requires reconfiguring and restarting the application with a higher operator count as

shown in Figure 22c. During this rescaling period, the application is down for 25

seconds and no events can be processed. We measured that this shutdown/restart

phase typically takes around twenty to third seconds in Storm depending on the

complexity of the application.

From this example, several key issues arise. First, the downtime caused by rescal-

ing is too disruptive and for an application as critical as security event analysis this

problem is intolerable. Additionally, application state may not be preserved during

scaling operations since the system is terminated, and thus, work may be lost and

users may receive erroneous results. Furthermore, data stream processing systems

rely on users to detect bottlenecks in their applications and to scale their applica-

tions manually. This requires users to constantly monitor their applications and to

know what actions to perform when a bottleneck is detected. A naive solution to

this problem would be to always configure the application to use as many resources

as possible as to never encounter a bottleneck due to resource shortage; however, this

60

causes resource wastage as shown in Figure 22c. Even when the application returns

back to the low input rate, the number of operators stays constant at the high input

rate which results in potentially a 67% waste in CPU for this example.

4.3 Supporting Elasticity in Storm

4.3.1 Overview of Storm

Apache Storm is a distributed data stream processing framework that can process

data in real-time. An application in Storm is a topology which consists of a directed

acyclic graph of data operators. The communication channel between operators is a

data stream which is composed of a sequence of tuples (i.e., a named list of values). An

instantiation of an operator is a Storm task. Operators in Storm can be parallelized

so that they can run multiple tasks. Storm workers consists of executors which each

run a single thread. These executors in turn can run one or more Storm tasks.

A basic operator in Storm ingests tuples from upstream operators, performs a

computation, and then outputs a tuple result. Storm provides basic operator prim-

itives such as filtering, joining, and aggregation and allows users to write their own

operators as well. When operators are parallelized into multiple tasks, these tasks

may be placed on different worker nodes and ingest different tuple data even though

the computational logic of each task will be the same. The placement of operators to

worker nodes is critical as we will discuss further in the next section.

4.3.2 Elastic Storm: Solution Overview

To solve the problems introduced in the previous section, we propose an elastic scaling

mechanism for distributed data stream processing systems that dynamically scales

applications in an efficient, non-disruptive manner. The system architecture of our

solution is shown in Figure 23. (1) When applications are first submitted to the

system, we analyze the application DAG in order to find a placement of the data

operators that minimizes intercommunication cost (e.g., tuple latency). (2) While

61

Load

Elastic Streaming System

1. New
application

Congestion Monitor

3. Congestion
detected in

operator

Elastic Streaming Scheduler

Topology-aware
Scheduling

Dynamic Load-aware
Scheduling

4. Dynamic
load-aware
scheduler
invokes
scaling

operation
Global State Manager

6. New
operator
is added

5. Stateful operators
store state to GSM

7. GSM sends
keys to new

operator

2. Workload
encounters sudden

increase

8. Scaling is
complete.
CM enters
monitoring

period

Figure 23: Elastic Storm Streaming Architecture.

the application runs, it faces a dynamic input rate. (3) The congestion monitor

detects if there is any congestion in the system. If congestion occurs, (4) then the

dynamic load-aware scaling mechanism can elastically scale-out congested application

components or scale-down components when resources are under-utilized. (5) The

stateful operators store their data to the global state manager (GSM) before scaling

and then (6) perform the scaling operation in a non-disruptive manner. (7) The

GSM repartitions stored data and sends it to new operators. Once this is complete,

the scaling operation is complete. Our mechanism includes automatic congestion

detection, which removes the need for user monitoring and manual intervention. Our

scaling mechanism saves application state so there is no loss of work and additionally

reduces the interruption of scaling operations to minimize application performance

degradation.

62

4.4 Design and Implementation Details

The following describes the design and implementation of our system which includes

a global state manager, congestion detection monitor, and topology-aware scheduler.

4.4.1 Global State Manager

Operators in Storm are stateless and the data that stored in the operator memory

is lost during rescaling when the operators shutdown unless the application creator

programs its operators to save its own state. We aim to minimize the service inter-

ruption of existing stream processing systems when scaling applications as well as

save the state of scaled operators.

During a rescaling operation, our system first saves the state of the application.

The saved state of each operator is stored as byte buffers and sent to a global state

manager. To further improve scaling efficiency, we can further compress the byte

buffers using a fast in-place algorithm (e.g., LZO). The global state manager stores

and manages operator state for each application. The main function of the GSM is

to coordinate the transfer of stored operator state during the scaling operation. For

example, if the scaling operation increases the total number of operators, the GSM

must first redistribute the stored state data to the new set of operators. To accomplish

this, we leverage a consistent hashing mechanism to redistribute stored operator data.

Consistent hashing works by assigning a hash value to each data operator as well as

each key where the range of the resulting hash values must match. Thus, when a new

data operator is added during scaling, new hash values for each data operator can

be computed. The GSM then begins the process of migrating keys to the new data

operators.

In addition to maintaining data operator state, our system is able to scale non-

disruptively by keeping the application running while scaling instead of killing and

restarting it. In the default implementation, the applications are running as threads

63

inside Java Virtual Machines (JVMs). These JVMs are killed during scaling and

then resumed after scaling is complete. We measured the cost of killing and restart-

ing JVMs in an experiment and found this time to be at least 25 seconds in our

distributed data stream system. Other researchers have reported similar results [55].

Storm uses Zookeeper to coordinate cluster information between Nimbus (the central

scheduler) and the supervisors (the workers). For example, the worker assignments

(which operator task/s should be run on which worker process) of every Storm ap-

plication is stored in Zookeeper. Changing these assignments in Zookeeper manually

is not allowed in Storm. To overcome this challenge, we modified the rebalancing

command of default Storm to allow assignment changes without shutting down ap-

plication operators. We reduce the cost of rescaling by preserving existing running

threads and JVMs and only instantiate new JVMs on new machines if necessary.

When new data operators need to be created, our system tries to run them as new

threads on existing JVMs if possible. When operators are added or deleted, the rout-

ing of tuples among operators is updated. In some cases, certain unprocessed tuples

in existing queues also must be migrated to the corresponding operator/worker. In

measured experiments, our elastic rescaling operation can take anywhere from a few

seconds to more than ten seconds depending on the amount of state that needs to be

migrated; however, during this time tuples are still being processed in our system in

comparison to default Storm where no tuples are processed.

• Rescale: the task assignments between operators and workers are reconfigured,

tuple routing is updated, and tuples in queues are migrated.

• Save: the memory content of stateful operators is saved to byte buffers and

sent to the GSM.

• Redistribute: the GSM uses a consistent hashing algorithm to assign stateful

data to existing or new operators.

64

4.4.2 Automatic Congestion Detection

A topology facing a dynamic load needs to be able to automatically detect load fluc-

tuations and changes in the topology’s quality of service metrics such as throughput

and latency. To this end, we designed an automatic congestion detection monitor.

The CDM works by monitoring machine (e.g., CPU, memory, network), system (e.g.,

communication channel input/output queues), and application-specific metrics (e.g.,

throughput, average latency). A congestion is detected if any of these metrics sur-

passes a pre-defined threshold for a set duration of time. For example, if the CPU

of a machine increases to more than 90% for more than ten seconds, we detect that

the machine is bottlenecked by CPU. After congestion is detected, our system takes

steps to alleviate the congestion by using our dynamic load-aware scheduling. Two

possible actions can then potentially occur. If the application shows an increase in

latency or an increase of tuples in arrival or outgoing queues without any obvious

bottlenecks in terms of resources, ”operator shuffling” occurs in which operators are

moved to different worker machines to reduce any machine or communication channel

bottlenecks. If the system exhibits resource bottlenecks, new workers are added to

the system and the parallelism of existing operators is increased. Once the appropri-

ate steps are taken, the CDM enters a monitoring period to see whether the move

has corrected the congestion. If the change has not fixed the issue, another round of

changes is applied until the congestion is gone. Similarly, our system can decrease

the number of workers or the number of operators if it detects that the application is

in a good state and that the system is under-utilized. The following operations define

actions that can be taken by the CDM.

• Scale-Up: the CDM will increase the number of workers in the topology if it

detects that both the queues of the topology are increasing and one or more

system metrics are bottlenecked (CPU/memory).

65

• Scale-Out: the CDM will increase the parallelism of a particular operator in

the topology if it detects that the queues of that operator are increasing but

none of the system metrics are overloaded.

• Scale-Down: the CDM will decrease the parallelism of a particular operator

in the topology if it detects that there are no queues in the operator and one

or more system metrics are overloaded.

• Scale-In: the CDM will decrease the number of workers in the topology if

it detects that both the queues of the topology are decreasing and no system

metrics are overloaded.

4.4.3 Topology-aware Scheduling

Existing distributed stream processing systems have very simplistic application schedul-

ing policies, which often makes data operator assignment suboptimal. For example,

Storm utilizes a pseudo-round robin scheduling policy, which places operators evenly

amongst all machines. While this policy incurs little scheduling overhead and at-

tempts to make the utilization of each machine uniform, it fails to consider the ap-

plication topology in its operator to worker assignment. As previously mentioned,

data stream processing applications are typically modeled as DAGs where edges are

communication channels between operators. When translating the DAG topology

into a physical placement of operators to machines these communication channels

can be of three types: inter-node via network (e.g., Ethernet, InfiniBand), intra-node

across processes, and intra-node same process. The three types are listed in order

of transmission throughput from slowest to fastest. Using the simplistic round-robin

scheduling policy, operators that communicate with each other may commonly be

placed on different machines which results in a unnecessarily large communication

overhead between them. In our elastic scaling mechanism, we employ an application

topology-aware scheduling policy. Our policy analyzes the application topology DAG

66

and attempts to place operators that share the same communication channel onto

the same machine and run them in the same JVM process. This policy attempts to

minimize the overall communication overhead incurred by the application; however,

this may lead to over-saturation of machines if the operators are using more resources

than the machine can handle. Further analysis of our topology-aware scheduling

mechanism is a topic for future work.

4.5 Storm on YARN

4.5.1 YARN and Storm on YARN Overview

YARN is the next generation cluster resource manager for the Hadoop platform that

allows multiple data processing frameworkssuch as MapReduce, Spark, Storm, etc.

to dynamically share resources and data in a single cluster. YARN leverages a global

resource scheduler (YARN ResourceManager) to arbitrate resources (CPU, memory,

etc.) among application frameworks based on configured per-framework resource con-

straints. A per-application YARN ApplicationMaster (AM) requests resources from

the RM and is responsible for monitoring and scheduling tasks within its containers.

The YARN ResourceManager supports capacity scheduling and fair scheduling.

The scheduler allocates resources in the form of containers to applications based on

resource constraints, queues and priorities. The YARN scheduler relies on kill-based

preemption to coordinate resource sharing, guarantee QoS and enforce fairness. When

a high priority job arrives and there is resource contention, the RM determines what is

needed to achieve capacity balance and selects victim application containers according

to pre-defined policies (e.g., capacity sharing or priority scheduling). The RM then

sends a request to the containers’ AMs to terminate and relinquish those containers

back to the ResourceManager.

67

4.5.2 Elastic Storm on YARN

This section describes the implementation details of how we deploy Storm on YARN

and Figure 24 illustrates the architectural diagram. Storm can run on YARN using

YARN Cluster

Node Manager

Storm Slider
AM

Slider Agent

Nimbus

Node Manager

Slider Agent

Storm Worker

Node Manager

Slider Agent

Storm Worker

MapReduce
AM

Map Task

Reduce Task

...

Resource
Manager

Figure 24: Elastic Storm on YARN System Architecture.

Apache Slider [50]. Slider is a tool that is used to deploy distributed applications

in YARN. With Apache Slider, a user can monitor their application, start and stop

applications, and expand/shrink the application instance on-demand while the ap-

plication is running. To run Storm on YARN requires creating a Storm Slider Ap-

plicationMaster and feeding it the necessary Storm cluster configuration files which

can be done using a series of scripts and templates provided by Slider. The user can

submit it along with the configuration file to the YARN scheduler to be scheduled on

the YARN cluster. Once the Storm Slider AM is created, the Storm AM will request

containers from the ResourceManager and launch Slider agents for each container.

These Slider agents are responsible for application management operations such as

launching new component servers (e.g., Nimbus server or worker server) or termi-

nating existing components. When all the containers are allocated and the Storm

components are started, the user can submit regular Storm jobs to the Storm Slider

ApplicationMaster, which will forward the requests to the Nimbus container to be

68

Table 8: Hardware Configuration.

Physical Machine

Processor 2 X Intel(R) Xeon(R) 5650 @ 2.66GHz (6-cores)
Memory 96GB
HDD 500GB
SSD 120GB (OCZ Deneva 2)
Operating System Ubuntu Linux 12.04 (precise)

scheduled. In order to allow our elastic Storm to scale on demand, we added a client

to the Nimbus server that could communicate with the Storm Slider Application-

Master. If Storm needed to rescale, it would use the client to communicate with the

Storm AM to ”flex” or modify the Storm application components. The Storm AM

then issues a request to the YARN ResourceManager to get more containers. To

further improve the performance of our elastic scaling system on YARN, we utilize

application checkpointing for our batch jobs [34]. When the stream processing sys-

tem needs its guaranteed resources from YARN that a batch processing application is

currently using, the YARN ResourceManager will checkpoint the state of preempted

containers before killing them. Utilizing checkpointing improves resource efficiency

and eliminates the need to recompute work done by reclaimed containers.

4.6 Evaluation

We evaluated and compared our Elastic Storm implementation with default Storm

using a real-time distributed security event processing system which is described in

Section 4.2. We also evaluated our Elastic Storm on YARN system with default YARN

on Storm. Finally, we introduced checkpointing YARN applications and showed the

benefits of including checkpointing in our elastic Storm scaling scenario.

4.6.1 Experiment Setup and Workload

In our experiments, we use a three node YARN cluster. Each worker has two Xeon

5650 CPUs, 96GB RAM, 500GB HDD and a 120GB SSD (OCZ Deneva 2) making

69

0

100

200

300

400

500

0 50 100 150 200
Time (s)

T
hr

ou
gh

pu
t

(t
ho

us
an

d
tu

pl
es

/s
)

Storm
Elastic Storm

(a) Throughput

0

100

200

300

400

0 50 100 150 200
Time (s)

La
te

nc
y

(m
s)

Storm
Elastic Storm

(b) Latency

0

20

40

60

80

0 50 100 150 200
Time (s)

N
um

be
r

of
 O

pe
ra

to
rs

Storm
Elastic Storm

(c) Number of Operators

Figure 25: Benefits of Elastic Storm compared with Default Storm.

the total resources available in the YARN cluster to be 72 CPU cores and 120 GB

memory. The hardware specifications for the experiment machine can be found in Ta-

ble 8. As mentioned, we use the DREA workload as our streaming application. Our

batch application is a K-Means clustering algorithm workload found in HiBench [28].

K-Means clustering is a popular machine learning algorithm used for sample classifi-

cation and data mining. The K-means workload first computes the centroid of each

cluster by running a MapReduce job iteratively (a maximum of five times). Then, it

runs one final clustering job that classifies each sample into its respective clusters.

70

0

100

200

300

400

500

0 50 100 150 200
Time (s)

T
hr

ou
gh

pu
t

(t
ho

us
an

d
tu

pl
es

/s
)

Storm
Elastic Storm

(a) Throughput

0

100

200

300

0 50 100 150 200
Time (s)

La
te

nc
y

(m
s)

Storm
Elastic Storm

(b) Latency

0

25

50

75

100

0 50 100 150 200
Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

Storm
Elastic Storm

(c) CPU

Figure 26: Elastic Storm on YARN vs. Storm on YARN.

4.6.2 Results

4.6.2.1 Benefits of Elastic Storm

In the first set of experiments, we compare the performance of default Storm with

our elastic Storm implementation using the DREA workload. The workload in both

lasts for 4 minutes with an initial low input rate period of 60 seconds, followed by a

high input rate for 120 seconds, and then back to the low input rate for a final 60

seconds. The results are shown in Figure 25. The throughput and latency as shown

in Figure 25a and 25b show that our elastic implementation has better throughput

and latency during the non-scaling periods. Counting the period of scaling when

the default implementation processes no tuples, the elastic Storm implementation

71

0

100

200

300

400

500

0 50 100 150 200
Time (s)

T
hr

ou
gh

pu
t

(t
ho

us
an

d
tu

pl
es

/s
)

(a) Throughput

0

50

100

150

200

0 50 100 150 200
Time (s)

La
te

nc
y

(m
s)

Standalone Elastic Storm
Elastic Storm co−located with batch jobs

(b) Latency

0

25

50

75

100

0 50 100 150 200
Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

(c) CPU

Figure 27: Elastic Storm on YARN without batch jobs vs. Elastic Storm on YARN
with batch jobs.

achieves 49% better throughput overall while decreasing latency by 58%. The per-

formance improvement is due to our non-disruptive scaling mechanism as well as

our topology-aware scheduling which tries to minimize the communication cost be-

tween operators performing the operator to worker assignment. Figure 25c shows the

number of operators running during the experiment. When scaling out the default

Storm application, the user must perform this task manually and must decide how

to increase the parallelism of the various operator types as well as workers.

4.6.2.2 Elastic Storm on YARN

Next, we ran default Storm and our elastic Storm in a shared YARN cluster. The

workload for both Storm applications is the same as in Section 4.6.2.1. The DREA

72

workload is run in a queue which has a guaranteed capacity of 80% of the entire

YARN cluster. While the streaming application runs, a K-Means application also

runs (consisting of several iterations of a MapReduce job) which has a guaranteed

capacity of 20% of the entire YARN cluster. If the streaming queue has idle resources,

they can be used by the batch queue; however, if at any moment the streaming queue

needs more containers, all containers above the batch queue’s guaranteed capacity will

be taken away immediately by the YARN scheduler and given back to the streaming

queue. The results for this experiment are shown in Figure 26.

The throughput graph in Figure 26a shows that elastic Storm on YARN has 45%

more throughput than default Storm. Similarly, elastic Storm reduces latency by 35%

over default Storm. The CPU utilization graph in Figure 26c shows several interesting

features. Around time 60 seconds, the default Storm goes into rescaling in which a lot

of CPU resources are left idle while the rescaling takes place, while the CPU utilization

of elastic Storm remains high. At around time 180 seconds, the streaming workload

enters a low input rate in which we see the CPU utilization for elastic Storm decrease

as it begins to relinquish resources; however, the CPU for default Storm remains high

since it keeps its resources from the rescaling period. At around time 190 seconds, one

of the batch jobs finishes for the streaming workload, and the CPU begins to increase

again. This occurs because the next k-means clustering job took more resources from

the streaming queue since elastic Storm has relinquished them. In contrast, we see

that for default Storm, the CPU utilization remains low. Even though the workload

for the streaming application is low, default Storm did not relinquish any containers

back to the YARN scheduler so the batch queue can only use up to 20% of the cluster.

The completion time for the entire K-Means batch job took 311 seconds for default

Storm and 255 seconds for elastic Storm, an improvement of 18%.

We also explored the impact of running the batch job with the DREA workload

on YARN and just running the DREA workload without the batch job. The results

73

from this experiment are shown in Figure 27. During the low input rate periods, the

throughput for both scenarios is the same as shown in Figure 27a. However, during

high input rate periods, the elastic Storm with batch shows lower throughput since

20% of the capacity is used for batch jobs. The latency for elastic Storm with batch

is comparable to elastic Storm without batch jobs. The CPU utilization in Figure 27c

shows that elastic Storm without batch uses 28% less CPU than with batch jobs.

0

400

800

1200

1600

Default Elastic w/ Batch Elastic w/o Batch

E
ne

rg
y

E
ffi

ci
en

cy
 (

tu
pl

es
/m

eg
aj

ou
le

)

Figure 28: Elastic Storm on YARN Energy Efficiency.

We also calculated the energy efficiency (throughput per watt or tuples per joule)

by measuring the application throughput (tuples/sec) and the total power consump-

tion (watt-hours) of the cluster. The results are shown in Figure 28. Default Storm

with batch has the lowest energy efficiency while elastic Storm with batch has an

energy efficiency that is 80% higher. This is due to the higher throughput of elastic

Storm while only having slightly more energy consumption. Elastic Storm without

batch further improved energy efficiency over elastic Storm with batch by 36%. Elas-

tic Storm without batch achieved higher throughput for the streaming system while

utilizing less overall CPU and power.

The batch processing application can use the resources of the streaming applica-

tion queue if the streaming application has idle resources; however, when the stream-

ing application needs those resources back due to an increase in the input workload,

74

0

10

20

30

40

50

Checkpointing No Checkpointing

B
at

ch
 J

ob
 T

hr
ou

gh
pu

t
(c

om
pl

et
ed

/h
ou

r)

Figure 29: Batch Job Throughput without Checkpointing vs. with Checkpointing.

the YARN schedule will kill running containers of the batch application until it does

not exceed its guaranteed resource capacity. This may cause a significant resource

wastage as well as wasted computing as results may need to be recomputed from

killed containers. One possible solution to this problem would be to checkpoint the

work before killing the containers of the batch application [34]. To explore to po-

tential performance improvement of checkpointing batch jobs, we ran the streaming

application continuously for one hour alternating between two minutes of low input

rate and two minutes of high input rate. During periods of low input rate, the elas-

tic Storm system relinquished idle containers back to YARN. During periods of high

input rate, elastic Storm would take back those containers to reach 80% guaranteed

cluster capacity. While the streaming application runs, batch jobs were continuously

submitted to YARN. In the first scenario, batch job containers were killed and the

work done in those containers had to be recomputed. In the second scenario, the batch

job containers were checkpointed before being killed. When resources were free, the

jobs could launch from their checkpointed state and resume. The throughput results

from this experiment is shown in Figure 29. With checkpointing, seven more batch

jobs were able to run and finish during this one hour period (an 18% performance

improvement).

75

4.7 Related Work

There has been a lot of previous work in both academia and industry focusing on how

to scale distributed stream processing systems [55, 43, 52]. Heinze et. al [25] investi-

gated how to detect when to scale-in or scale-out and which auto-scaling mechanism

to use. Fernandez et. al [6] uses upstream VMs to store the state of stateful, down-

stream operators and automatically scales out bottlenecked operators by allocating

new VMs. Gedik et. al [21] proposed a method to elastically auto-parallelizes oper-

ators during run-time as to achieve the best throughput without wasting resources.

Gusilano et. al [22] presents a scalable streaming system which allocates the workload

by breaking down queries into subqueries which can be run on multiple nodes. While

these contributions are similar to some of the proposed solutions in this chapter, we

specifically wanted to address the issue of elasticity in stream processing systems in

the context of a shared cluster.

Other past work has focused on scheduling and resource management of applica-

tions in clusters. Delimitrou et. al [14] presents a cluster management system that

dynamically allocates resources to all types of applications based on user constraints

and workload performance. Boyang et. al [39] designed a resource-aware scheduler

for Storm which aims to maximizing resource utilization while minimizing network

latency. Aniello et. al [2] proposed an online scheduler which continuously reschedules

the deployment of a streaming application by monitoring run-time performance. Our

work adds to existing work by focusing on the resource management of distributed

streaming applications and its impact on co-located batch applications.

4.8 Conclusion

In this chapter, we present an approach for elastic scaling in distributed data stream

processing and efficiently coordinating resources between stream processing and batch

processing in shared clusters. We implemented our elastic scaling solution in Storm

76

and show that our solution outperforms default Storm in throughput, latency and

energy efficiency. Furthermore, we co-located our elastic Storm with a batch K-means

clustering workload in a shared Hadoop cluster and showed that our elastic stream

processing can increase the throughput of both streaming and batch applications

while achieving better resource efficiency. Additionally, we can use checkpointing

to save the state of batch applications to further improve throughput and resource

efficiency.

In the future, we want to further address the issues of bottleneck detection in

stream processing systems as well as better understand the implications of operator

assignment and scheduling among nodes. While the work in this chapter focuses

on a shared cluster with multiple machines, in the future we would like to explore

shared clusters running on a single large-memory machine. This would allow certain

components in our system such as the global state manager to utilize architectural

features of large-memory machines such as shared persistent memory.

77

CHAPTER V

RELATED WORK

Some previous work has studied the negative effects of preemptive scheduling in

shared clusters [9, 30, 8]. Cavdar et al. [7] analyzed task eviction events in the

Google cluster and found that most evictions were caused by priority scheduling.

They developed task eviction policies to mitigate wasted resources and response time

degradation by imposing a threshold on the number of evictions per task; however,

their work is based on simulation and does not consider checkpointing overhead.

Harchol-Balter et. al [23] showed that preemptively migrating long-running processes

would reduce the mean delay time of incoming jobs.

Recently, application-specific checkpointing has been used to improve resource

management. For example, Hadoop checkpoint-based scheduling proposes to save

the progress of certain Map tasks in a MapReduce job during preemption [1, 9, 40];

however, these systems are limited to checkpointing only MapReduce applications.

Further, these systems often need to modify application programs. In contrast, our

proposed method is application-transparent and a system-level mechanism that can

suspend/resume any application without needing to modify the application code.

Traditional HPC or VM-based suspend/resume solutions are coarse-grained and

too expensive for emerging workloads, such as big-data applications, which require

fine-grained resource sharing and data locality. The most closely related work to ours

is SLURM which can checkpoint using BLCR [3]; however, BLCR is not portable

across platforms and is limited in the types of applications it can checkpoint. Yank [48]

and SpotCheck [45] offer high-availability to transient servers by storing VM state on

backup servers, but doing so can be expensive if revocations occur frequently.

78

Analysis of the Google cluster trace has been conducted by [15, 37, 41]. The focus

of these works was statistical analysis of the workload’s properties while our focus is

on characterizing and evaluating the resource efficiency and performance impact of

preemption in cluster scheduling.

System level checkpoint mechanisms such as BLCR, Linux-CR and CRIU use file

systems on disk to save checkpoints. Prior work on NVM checkpointing [18, 30] has

focused on optimization techniques and architectural enhancements for improving re-

liability and availability. Most of these mechanisms have been used for fault-tolerance

and none have been applied in the context of performance improvement and resource

efficiency in cluster resource management.

In addition, existing NVM checkpointing mechanisms have focused on system level

primitives or APIs for application-initiated checkpointing and lack the full support

and optimization necessary for resource management, e.g., application-agnostic and

flexible checkpointing that can save and restore the entire or part of the application

state without application involvement. As a result, they cannot provide the full

benefits of fast NVM checkpointing for resource management.

There has been a lot of previous work in both academia and industry focusing on

how to scale distributed stream processing systems [55, 43, 52]. Heinze et. al [25]

investigated how to detect when to scale-in or scale-out and which auto-scaling mech-

anism to use. Fernandez et. al [6] uses upstream VMs to store the state of stateful,

downstream operators and automatically scales out bottlenecked operators by allo-

cating new VMs. Gedik et. al [21] proposed a method to elastically auto-parallelizes

operators during run-time as to achieve the best throughput without wasting re-

sources. Gusilano et. al [22] presents a scalable streaming system which allocates

the workload by breaking down queries into subqueries which can be run on multiple

nodes. While these contributions are similar to some of the proposed solutions in this

chapter, we specifically wanted to address the issue of elasticity in stream processing

79

systems in the context of a shared cluster.

Other past work has focused on scheduling and resource management of applica-

tions in clusters. Delimitrou et. al [14] presents a cluster management system that

dynamically allocates resources to all types of applications based on user constraints

and workload performance. Boyang et. al [39] designed a resource-aware scheduler

for Storm which aims to maximizing resource utilization while minimizing network

latency. Aniello et. al [2] proposed an online scheduler which continuously reschedules

the deployment of a streaming application by monitoring run-time performance. Our

work adds to existing work by focusing on the resource management of distributed

streaming applications and its impact on co-located batch applications.

80

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Our research is motivated by the goal of achieving both good performance and high

cluster utilization in today’s modern shared clusters. In order to achieve this goal,

better resource sharing and resource elasticity is required in shared cluster schedulers.

For example, cluster schedulers need to be able to better delegate and manage re-

sources between tenant applications and tenant applications also need to better utilize

the resources given to them. The research in this dissertation aims to fulfill this goal

by presenting mechanisms which can efficiently increase cluster resource utilization

while improving overall application performance.

Our research shows that the kill-based preemptive scheduling used to coordinate

resource sharing in state of the art cluster schedulers not only wastes a significant

amount of cluster resources, but also degrades the performance of low priority jobs.

Kill-based preemption employed by cluster schedulers can repeatedly kill low priority

jobs during peak cluster usage which delays the completion time of those jobs while

wasting the resources already used by those jobs to perform partial computations.

We analyzed the cost of preemption in today’s modern clusters in Chapter 2 using

the Google cluster trace.

To mitigate this preemption penalty, we present an alternative non-killing preemp-

tion that utilizes system-level, application-transparent checkpointing mechanisms to

preserve the progress of preempted jobs in order to improve resource efficiency and

application performance in cluster scheduling in Chapter 3. We also demonstrate

that preemption using application-transparent checkpointing is feasible and able to

81

reduce the resource and power wasteage and improve overall application performance

in shared clusters, even on slow storage like HDD. We implemented a prototype in-

cluding an implementation on the Hadoop YARN platform and showed real-world

advantages of using checkpoint-based preemption in a real cluster.

Finally, we discuss supporting elasticity in a distributed data stream processing

system and showed how current systems are unable to scale well in the face of a

dynamic workload in Chapter 4. We propose an elastic streaming method that dy-

namically scales streaming applications in an efficient, non-disruptive manner and

implemented the system in Apache Storm. We colocated this system with a batch

processing system in Hadoop YARN and showed the benefits of our elastically scal-

ing streaming system versus a streaming system that does not scale elastically and

showed the gains in both application performance and cluster resource utilization.

6.2 Future Work

There are many interesting directions this work can lead to in the future. One po-

tential direction is to explore how to checkpoint using NVM as virtual memory. This

method exploits NVM’s byte-addressability to avoid serialization and uses OS paging

and processor cache to improve latency. In this case, checkpointed data is copied

from DRAM to NVM using memory operations. Another direction could be to ex-

plore scheduling policies in a shared cluster manager. For example, if different types

of applications were running on the same cluster such as a streaming system and

batch processing system, the cluster manager could better utilize this information

when it makes it scheduling and eviction decisions. Furthermore, we can also ap-

ply the proposed checkpointing approach to a wider range of applications, including

MapReduce.

In terms of future work related to distributed data stream processing systems, an

evaluation of different operator placement strategies and congestion detection policies

82

can yield improvements in resource utilization and application performance. Also,

having a cluster scheduler which is also application-aware is another topic of study

with many interesting problems.

With the continued advances in storage technologies, shared cluster systems, and

the different types of applications that can run on these systems (e.g., container

technologies like Docker), we believe that efficient resource sharing in shared clusters

will become even more important.

83

REFERENCES

[1] Ananthanarayanan, G., Douglas, C., Ramakrishnan, R., Rao, S., and
Stoica, I., “True elasticity in multi-tenant data-intensive compute clusters,”
SoCC ’12, (New York, NY, USA), pp. 24:1–24:7, ACM, 2012.

[2] Aniello, L., Baldoni, R., and Querzoni, L., “Adaptive online scheduling in
storm,” in Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, DEBS ’13, (New York, NY, USA), pp. 207–218, ACM,
2013.

[3] Auble, D. and Morris, J., “Simple linux utility for resource management,”
http://bit.ly/1FpdnQ1. 2013.

[4] Bienia, C., Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-
versity, January 2011.

[5] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu,
M., and Zhou, L., “Apollo: Scalable and coordinated scheduling for cloud-scale
computing,” OSDI’14, (Berkeley, CA, USA), pp. 285–300, USENIX Association,
2014.

[6] Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., and Piet-
zuch, P., “Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’13, (New York, NY,
USA), pp. 725–736, ACM, 2013.

[7] Çavdar, D., Rosà, A., Chen, L. Y., Binder, W., and Alagöz, F., “Quan-
tifying the brown side of priority schedulers: Lessons from big clusters,” SIG-
METRICS Perform. Eval. Rev., vol. 42, pp. 76–81, Dec. 2014.

[8] Cheng, L., Zhang, Q., and Boutaba, R., “Mitigating the negative impact
of preemption on heterogeneous mapreduce workloads,” CNSM ’11, (Laxenburg,
Austria, Austria), pp. 189–197, International Federation for Information Pro-
cessing, 2011.

[9] Cho, B., Rahman, M., Chajed, T., Gupta, I., Abad, C., Roberts, N.,
and Lin, P., “Natjam: Design and evaluation of eviction policies for supporting
priorities and deadlines in mapreduce clusters,” SOCC ’13, (New York, NY,
USA), pp. 6:1–6:17, ACM, 2013.

[10] Condit, J., Nightingale, E. B., Frost, C., Ipek, E., Lee, B., Burger,
D., and Coetzee, D., “Better i/o through byte-addressable, persistent mem-
ory,” SOSP ’09, (New York, NY, USA), ACM, 2009.

84

[11] CRIU, “Checkpoint/restore in userspace,” http://criu.org. 2014.

[12] Curtin, R. R., Cline, J. R., Slagle, N. P., March, W. B., Ram, P.,
Mehta, N. A., and Gray, A. G., “MLPACK: A scalable C++ machine learn-
ing library,” Journal of Machine Learning Research, vol. 14, pp. 801–805, 2013.

[13] Dean, J. and Ghemawat, S., “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[14] Delimitrou, C. and Kozyrakis, C., “Quasar: Resource-efficient and qos-
aware cluster management,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, (New York, NY, USA), pp. 127–144, ACM, 2014.

[15] Di, S., Kondo, D., and Franck, C., “Characterizing cloud applications on a
Google data center,” ICPP’13, (Lyon, France), Oct. 2013.

[16] Docker Inc., “Docker - build, ship, and run any app, anywhere,” Dec. 2014.

[17] Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., and Xie,
Y., “Leveraging 3d pcram technologies to reduce checkpoint overhead for future
exascale systems,” SC ’09, (New York, NY, USA), pp. 57:1–57:12, ACM, 2009.

[18] Dong, X., Xie, Y., Muralimanohar, N., and Jouppi, N. P., “Hybrid
checkpointing using emerging nonvolatile memories for future exascale systems,”
ACM Trans. Archit. Code Optim., vol. 8, pp. 6:1–6:29, June 2011.

[19] Dulloor, S. R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D.,
Sankaran, R., and Jackson, J., “System software for persistent memory,”
EuroSys ’14, (New York, NY, USA), pp. 15:1–15:15, ACM, 2014.

[20] Foundation, T. A. S., “hadoop-common.” https:

//github.com/apache/hadoop-common/tree/trunk/

hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/

hadoop-yarn-applications-distributedshell/src/main/java/org/

apache/hadoop/yarn/applications/distributedshell, 2014.

[21] Gedik, B., Schneider, S., Hirzel, M., and Wu, K.-L., “Elastic scaling for
data stream processing,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 25, pp. 1447–1463, June 2014.

[22] Gulisano, V., Jimnez-Peris, R., Patio-Martnez, M., Soriente, C., and
Valduriez, P., “Streamcloud: An elastic and scalable data streaming system,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 23, pp. 2351–2365,
Dec 2012.

[23] Harchol-Balter, M. and Downey, A. B., “Exploiting process lifetime dis-
tributions for dynamic load balancing,” ACM Trans. Comput. Syst., vol. 15,
pp. 253–285, Aug. 1997.

85

https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-distributedshell/src/main/java/org/apache/hadoop/yarn/applications/distributedshell
https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-distributedshell/src/main/java/org/apache/hadoop/yarn/applications/distributedshell
https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-distributedshell/src/main/java/org/apache/hadoop/yarn/applications/distributedshell
https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-distributedshell/src/main/java/org/apache/hadoop/yarn/applications/distributedshell
https://github.com/apache/hadoop-common/tree/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-applications-distributedshell/src/main/java/org/apache/hadoop/yarn/applications/distributedshell

[24] Hargrove, P. H. and Duell, J. C., “Berkeley lab checkpoint/restart (BLCR)
for Linux clusters,” Journal of Physics: Conference Series, vol. 46, pp. 494–499,
2006.

[25] Heinze, T., Pappalardo, V., Jerzak, Z., and Fetzer, C., “Auto-scaling
techniques for elastic data stream processing,” in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, DEBS ’14, (New
York, NY, USA), pp. 318–321, ACM, 2014.

[26] Heinze, T., Roediger, L., Meister, A., Ji, Y., Jerzak, Z., and Fetzer,
C., “Online parameter optimization for elastic data stream processing,” in Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, (New
York, NY, USA), pp. 276–287, ACM, 2015.

[27] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,
Katz, R., Shenker, S., and Stoica, I., “Mesos: A platform for fine-grained
resource sharing in the data center,” NSDI’11, (Berkeley, CA, USA), pp. 295–
308, USENIX Association, 2011.

[28] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B., “The hibench
benchmark suite: Characterization of the mapreduce-based data analysis,” in
Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Confer-
ence on, pp. 41–51, March 2010.

[29] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D., “Dryad:
Distributed data-parallel programs from sequential building blocks,” EuroSys
’07, (New York, NY, USA), pp. 59–72, ACM, 2007.

[30] Kannan, S., Gavrilovska, A., Schwan, K., and Milojicic, D., “Opti-
mizing checkpoints using nvm as virtual memory,” IPDPS’13, pp. 29–40, May
2013.

[31] Krueger, P. and Livny, M., “A comparison of preemptive and non-
preemptive load distributing,” in Distributed Computing Systems, 1988., 8th
International Conference on, pp. 123–130, IEEE, 1988.

[32] Lankhorst, M. H., Ketelaars, B. W., and Wolters, R., “Low-cost and
nanoscale non-volatile memory concept for future silicon chips,” Nature materi-
als, vol. 4, no. 4, pp. 347–352, 2005.

[33] Li, J., Wang, Q., Lai, C. A., Park, J., Yokoyama, D., and Pu, C.,
“The impact of software resource allocation on consolidated n-tier applications,”
in 2014 IEEE 7th International Conference on Cloud Computing, pp. 320–327,
June 2014.

[34] Li, J., Pu, C., Chen, Y., Talwar, V., and Milojicic, D., “Improving pre-
emptive scheduling with application-transparent checkpointing in shared clus-
ters,” in Proceedings of the 16th Annual Middleware Conference, Middleware
’15, (New York, NY, USA), pp. 222–234, ACM, 2015.

86

[35] Ltd., C., “Linux containers,” Dec. 2014.

[36] Menage, P. and Seth, R., “Cgroups,” http://bit.ly/1EINC8A. 2007.

[37] Mishra, A. K., Hellerstein, J. L., Cirne, W., and Das, C. R., “Towards
characterizing cloud backend workloads: insights from Google compute clusters,”
SIGMETRICS Perform. Eval. Rev., vol. 37, pp. 34–41, Mar. 2010.

[38] Ousterhout, K., Panda, A., Rosen, J., Venkataraman, S., Xin, R.,
Ratnasamy, S., Shenker, S., and Stoica, I., “The case for tiny tasks in
compute clusters,” HotOS’13, (Berkeley, CA, USA), pp. 14–14, USENIX Asso-
ciation, 2013.

[39] Peng, B., Hosseini, M., Hong, Z., Farivar, R., and Campbell, R., “R-
storm: Resource-aware scheduling in storm,” in Proceedings of the 16th Annual
Middleware Conference, Middleware ’15, (New York, NY, USA), pp. 149–161,
ACM, 2015.

[40] Quiane-Ruiz, J.-A., Pinkel, C., Schad, J., and Dittrich, J., “Rafting
mapreduce: Fast recovery on the raft,” ICDE’11, pp. 589–600, April 2011.

[41] Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., and Kozuch,
M. A., “Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
SoCC ’12, (NYC, NY, USA), ACM, 2012.

[42] Schelter, S., Ewen, S., Tzoumas, K., and Markl, V., “”all roads lead to
rome”: Optimistic recovery for distributed iterative data processing,” in Proceed-
ings of the 22Nd ACM International Conference on Information & Knowledge
Management, CIKM ’13, (New York, NY, USA), pp. 1919–1928, ACM, 2013.

[43] Schneider, S., Andrade, H., Gedik, B., Biem, A., and Wu, K.-L., “Elas-
tic scaling of data parallel operators in stream processing,” in Proceedings of the
2009 IEEE International Symposium on Parallel&Distributed Processing, IPDPS
’09, (Washington, DC, USA), pp. 1–12, IEEE Computer Society, 2009.

[44] Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., and Wilkes, J.,
“Omega: flexible, scalable schedulers for large compute clusters,” EuroSys’13,
(Prague, Czech Republic), pp. 351–364, 2013.

[45] Sharma, P., Lee, S., Guo, T., Irwin, D., and Shenoy, P., “Spotcheck:
Designing a derivative iaas cloud on the spot market,” in Proceedings of the
Tenth European Conference on Computer Systems, EuroSys ’15, (New York,
NY, USA), pp. 16:1–16:15, ACM, 2015.

[46] Shen, Z., Subbiah, S., Gu, X., and Wilkes, J., “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems,” in Proceedings of the 2Nd ACM Sym-
posium on Cloud Computing, SOCC ’11, (New York, NY, USA), pp. 5:1–5:14,
ACM, 2011.

87

[47] Shvachko, K., Kuang, H., Radia, S., and Chansler, R., “The hadoop
distributed file system,” MSST ’10, (Washington, DC, USA), pp. 1–10, IEEE
Computer Society, 2010.

[48] Singh, R., Irwin, D., Shenoy, P., and Ramakrishnan, K., “Yank: En-
abling green data centers to pull the plug,” in Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
13), (Lombard, IL), pp. 143–155, USENIX, 2013.

[49] Stephen, J., Gmach, D., Block, R., Madan, A., and AuYoung, A.,
“Distributed real-time event analysis,” in Autonomic Computing (ICAC), 2015
IEEE International Conference on, pp. 11–20, July 2015.

[50] The Apache Software Foundation, “Apache slider: Dynamic yarn appli-
cations,” Jan. 2016.

[51] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M.,
Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N.,
Mittal, S., and Ryaboy, D., “Storm@twitter,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, SIGMOD
’14, (New York, NY, USA), pp. 147–156, ACM, 2014.

[52] van der Veen, J., Van Der Waaij, B., Lazovik, E., Wijbrandi, W., and
Meijer, R., “Dynamically scaling apache storm for the analysis of streaming
data,” in Big Data Computing Service and Applications (BigDataService), 2015
IEEE First International Conference on, pp. 154–161, March 2015.

[53] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B.,
Curino, C., O’Malley, O., Radia, S., Reed, B., and Baldeschwieler,
E., “Apache hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th Annual Symposium on Cloud Computing, SOCC ’13, (New York, NY,
USA), pp. 5:1–5:16, ACM, 2013.

[54] Wilkes, J., “More Google cluster data.” Google research blog,
http://bit.ly/1A38mfR. Nov 2011.

[55] Yang, M. and Ma, R. T., “Smooth task migration in apache storm,” in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, (New York, NY, USA), pp. 2067–2068, ACM, 2015.

[56] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Sto-
ica, I., “Spark: Cluster computing with working sets,” HotCloud’10, (Berkeley,
CA, USA), USENIX Association, 2010.

[57] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and Stoica, I.,
“Discretized streams: Fault-tolerant streaming computation at scale,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, (New York, NY, USA), pp. 423–438, ACM, 2013.

88

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Dissertation Statement and Contributions

	Chapter 2 — The Impact of Kill-Based Preemption in Modern Shared Clusters
	Introduction
	Real-World Cluster Preemption
	Google Cluster Trace
	Google Trace Analysis
	Other Instances of Preemptive Scheduling

	Chapter 3 — Improving Preemptive Scheduling with Application-Transparent Checkpointing
	Introduction
	Checkpoint-based Preemption
	System Model
	Checkpoint-based Preemption
	Evaluation

	Optimization
	Adaptive Policies and Algorithms
	Benefits of Adaptive Policies

	Hadoop YARN Implementation
	Overview of Hadoop YARN
	Architecture and Implementation
	Evaluation

	Related Work
	Conclusion

	Chapter 4 — Supporting Elasticity in Distributed Data Stream Processing
	Introduction
	Motivation
	Supporting Elasticity in Storm
	Overview of Storm
	Elastic Storm: Solution Overview

	Design and Implementation Details
	Global State Manager
	Automatic Congestion Detection
	Topology-aware Scheduling

	Storm on YARN
	YARN and Storm on YARN Overview
	Elastic Storm on YARN

	Evaluation
	Experiment Setup and Workload
	Results

	Related Work
	Conclusion

	Chapter 5 — Related Work
	Chapter 6 — Conclusion and Future Work
	Conclusion
	Future Work

	References

