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56 Percentage RMSECV/ȳ values for the ordinary kriging models fitted
using best sequential designs with n = 12 to 24, red dotted line shows
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SUMMARY

Computer experiments are widely-used in analysis of real systems where physical

experiments are infeasible or unaffordable. Computer models are usually complex

and computationally demanding, consequently, time consuming to run. Therefore,

surrogate models, also known as emulators, are fitted to approximate these compu-

tationally intensive computer models. Since emulators are easy-to-evaluate they may

replace computer models in the actual analysis of the systems. Experimental de-

sign for computer simulations and modeling of simulated outputs are two important

aspects of building accurate emulators.

This thesis consists of three chapters, covering topics in design of computer exper-

iments and uncertainty quantification of complex computer models. The first chapter

proposes a new type of space-filling designs for computer experiments, and the sec-

ond chapter develops an emulator-based approach for uncertainty quantification of

machining processes using their computer simulations. Finally, third chapter extends

the experimental designs proposed in the first chapter and enables to generate designs

with both quantitative and qualitative factors.

In design of computer experiments, space-filling properties are important. The

traditional maximin and minimax distance designs consider only space-fillingness in

the full-dimensional space which can result in poor projections onto lower-dimensional

spaces, which is undesirable when only a few factors are active. On the other hand,

restricting maximin distance design to the class of Latin hypercubes can improve one-

dimensional projections but cannot guarantee good space-filling properties in larger

xi



subspaces. In the first chapter, we propose designs that maximize space-filling prop-

erties on projections to all subsets of factors. Proposed designs are called maximum

projection designs. Maximum projection designs have better space-filling properties

in their projections compared to other widely-used space-filling designs. They also

provide certain advantages in Gaussian process modeling. More importantly, the de-

sign criterion can be computed at a cost no more than that of a design criterion which

ignores projection properties.

In the second chapter, we develop an uncertainty quantification methodology for

machining processes with uncertain input factors. Understanding the uncertainty in

a machining process using the simulation outputs is important for careful decision

making. However, Monte Carlo-based methods cannot be used for evaluating the

uncertainty when the simulations are computationally expensive. An alternative ap-

proach is to build an easy-to-evaluate emulator to approximate the computer model

and run the Monte Carlo simulations on the emulator. Although this approach is

very promising, it becomes inefficient when the computer model is highly nonlinear

and the region of interest is large. Most machining simulations are of this kind be-

cause the output is affected by a large number of parameters including the workpiece

material properties, cutting tool parameters, and process parameters. Building an

accurate emulator that works for different kinds of materials, tool designs, tool paths,

etc. is not an easy task. We propose a new approach, called in-situ emulator, to over-

come this problem. The idea is to build an emulator in a local region defined by the

user-specified input uncertainty distribution. We use maximum projection designs

and Gaussian process modeling techniques for constructing the in-situ emulator. On

two solid end milling processes, we show that the in-situ emulator methodology is

efficient and accurate in uncertainty quantification and has apparent advantages over

other conventional tools.

Computer experiments with quantitative and qualitative factors are prevalent.

xii



In the third chapter, we extend maximum projection designs so that they can ac-

commodate qualitative factors as well. Proposed designs maintain an economic run

size and they are flexible in run size, number of quantitative and qualitative factors

and factor levels. Their construction is not restricted to a special design class and

does not impose any design configuration. A general construction algorithm, which

utilizes orthogonal arrays, is developed. We have shown on several simulations that

maximum projection designs with both quantitative and qualitative factors have at-

tractive space-filling properties for all of their projections. Their advantages are also

illustrated on optimization of a solid end milling process simulation. Finally, we pro-

pose a methodology for sequential construction of maximum projection designs which

ensures efficient analysis of systems within financial cost and time constraints. The

performance of the sequential construction methodology is demonstrated using the

optimization of a solid end milling process.
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CHAPTER I

MAXIMUM PROJECTION DESIGNS FOR COMPUTER

EXPERIMENTS

1.1 Introduction

Space-filling designs are commonly used in deterministic computer experiments.

The maximin and minimax distance designs (Johnson, Moore and Ylvisaker 1990)

are two such designs, can be defined as follows. Suppose we want to construct an

n-run design in p factors. Let the design region be the unit hypercube X and let

the design be D = {x1,x2, . . . ,xn}, where each design point xi ∈ X = [0, 1]p. The

maximin distance design tries to spread out the design points in X by maximizing

the minimum distance between any two design points:

max
D

min
xi,xj∈D

d(xi,xj), (1)

where d(xi,xj) is the Euclidean distance between the points xi and xj. On the other

hand, the minimax distance design tries to reduce the gaps in X by minimizing the

maximum distance between any point x ∈ X and the design:

min
D

max
x∈X

d(x,D), (2)

where d(x,D) = minxi∈D d(x,xi).

The maximin distance criterion tends to place a large proportion of points at

the corners and boundaries of the hypercube [0, 1]p, and thus, unlike Latin hyper-

cube designs (McKay, Beckman and Conover 1979), maximin distance designs do not

have good projection properties for each factor (similar problem exists with minimax

distance designs). Morris and Mitchell (1995) proposed to overcome this problem

by searching for the maximin distance design within the class of Latin hypercube

1



designs. They used the criterion

min
D

{
n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj)

}1/k

, (3)

for finding the maximin Latin hypercube design (MmLHD), where k > 0 is chosen

large enough to achieve maximin distance. Although MmLHDs ensure good space-

filling in p dimensions and uniform projections in each dimension, their projection

properties in 2, . . . , p− 1 dimensions are not known. By the effect sparsity principle,

only a few factors are expected to be active (e.g., Wu and Hamada 2009). Since the

active factors are unknown before the experiment, good projections to all subspaces

of the factors are important. However, little research has been done in trying to find

space-filling designs that ensure good projections to subspaces of the factors. Tang

(1993) and Owen (1994) proposed orthogonal array-based LHDs, which can ensure

good t-dimensional projections by using an orthogonal array for strength t. However,

the number of runs can explode as t increases and therefore, orthogonal arrays with

more than strength two is difficult to use in practice. Moon, Dean and Santner (2011)

proposed a design that maximizes the minimum distance in two dimensional projec-

tions. Although it has good performance in two- and three- dimensional projections,

its performance quickly deteriorates for the larger projection dimensions. This clearly

shows that focusing on lower dimensional projections alone is not enough for creating

a good design. Draguljic, Santner and Dean (2012) proposed a criterion incorporating

projection properties in (3):

min
D

 1(
n
2

)∑
q∈J
(
p
q

)∑
q∈J

(p
q)∑

r=1

n−1∑
i=1

n∑
j=i+1

{
q1/2

dqr(xi,xj)

}k
1/k

, (4)

where dqr(xi,xj) is the Euclidean distance between points xi and xj in the rth

projection of q factors, q ∈ J ⊆ {1, 2, . . . , p}. However, (4) is difficult to compute

for large p, so Draguljic, Santner and Dean (2012) had to focus their attention to

subspaces with no more than two factors.

2



A uniformity measure is another type of space-filling criterion (Fang, Li and Sud-

jianto 2006, ch. 3). The idea is to spread the design points in the space so that the

empirical distribution of the points is uniform on [0, 1]p. Hickernell (1998) proposed

the centered L2-discrepancy (CL2) criterion, which ensures good projections to all

subspaces. It can be computed using the following simplified formula:

min
D

(
13

12

)p
− 2

n

n∑
l=1

p∏
j=1

(
1 +

1

2
|xlj − .5| −

1

2
|xlj − .5|2

)

+
1

n2

n∑
l=1

n∑
j=1

p∏
i=1

(
1 +

1

2
|xli − .5|+

1

2
|xji − .5| −

1

2
|xli − xji|

)
. (5)

Although uniform designs (UDs) are useful for approximating integrals, it is not

clear if they are as good as MmLHDs for approximating functions. In fact, Dette

and Pepelyshev (2010) have shown that placing more points in the boundaries than

around the center can minimize the prediction errors from Gaussian process (GP)

modeling. They proposed a logarithmic potential energy criterion for finding optimal

LHDs, which is similar in spirit to the MmLHDs. In fact, their criterion can be

obtained as the limit of the criterion in (3) with k → 0.

In this chapter we propose a new space-filling criterion that incorporates projection

properties to all subspaces of factors. Our criterion is closely related to (4), but much

simpler to compute. In fact, our criterion can be computed at a cost no more than

that of (3) and hence we are able to efficiently construct our proposed designs.

The chapter is organized as follows. In Section 1.2, we develop our design criterion

and in Section 1.3, we discuss a computational algorithm for finding the optimal

designs. Some numerical comparisons using distance and uniformity measures are

done with MmLHDs, generalized maximin Latin hypercube designs (GMmLHDs)

(Dette and Peppelyshev 2010) and UDs in Section 1.4. In Section 1.5, we investigate

the performance of the proposed designs in GP modeling and we conclude with some

remarks in Section 1.6.
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1.2 Maximum Projection Designs

When a design is projected onto a subspace, the distances between the points are

calculated with respect to the factors that define the subspace. Therefore, define a

weighted Euclidean distance between the points xi and xj as

d(xi,xj;θ) =

{
p∑
l=1

θl(xil − xjl)2

}1/2

,

where θl = 1 for the factors defining the subspace and θl = 0 for the remaining factors.

It makes sense to use weights between 0 and 1, which can be viewed as measures of

importance for the factors. Let 0 ≤ θl ≤ 1 be the weight assigned to factor l and let∑p
l=1 θl = 1. Then, the criterion in (3) can be modified to

min
D

φk(D;θ) =
n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj;θ)
, (6)

where θ = (θ1, . . . , θp−1)
′
and θp = 1−

∑p−1
l=1 θl. We omit the power 1/k in (3) because

we are interested only in finite values of k. Unfortunately, we have no idea about the

importance of the factors before the experiment, so there is no easy way to choose

θ. One approach to overcome this is to adopt a Bayesian framework, i.e., to assign

a prior distribution for θ and then to minimize the expected value of the objective

function.

Assuming equal importance to all factors a priori, we take the prior distribution

for θ to be

p(θ) =
1

(p− 1)!
,θ ∈ Sp−1, (7)

where Sp−1 = {θ : θ1, . . . , θp−1 ≥ 0,
∑p−1

i=1 θi ≤ 1}. Thus, our design criterion becomes

min
D

E{φk(D;θ)} =

∫
Sp−1

n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj;θ)
p(θ)dθ. (8)

In general, this is not easy to evaluate. However, we can perform the integration

analytically for a special case of k as shown below. All the proofs are given in the

Appendix.
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Theorem 1. If k = 2p, then under the prior in (7)

E{φk(D;θ)} =
1

{(p− 1)!}2

n−1∑
i=1

n∑
j=i+1

1∏p
l=1 (xil − xjl)2

. (9)

Thus, we propose a new criterion:

min
D

ψ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏p
l=1 (xil − xjl)2

}1/p

. (10)

For any l, if xil = xjl for i 6= j, then ψ(D) = ∞. Therefore, the design that

minimizes ψ(D) must have n distinct levels for each factor. Furthermore, because

the denominator of (34) has products of squared distances from all the factors, no

two points can get close to each other in any of the projections. Thus, the design

that minimizes ψ(D) tends to maximize its projection capability in all subspaces

of factors. Therefore, we call the optimal design a maximum projection (MaxPro)

design.

We need to make some comments about the choice of k in Theorem 1. Audze and

Eglais (1977) proposed a criterion similar to (3) with k = 2, which is motivated by

an analogy to minimizing the total force among electrically charged particles. On the

other hand, Morris and Mitchell (1995) suggested to use small but large enough value

of k in the range of 1 to 100 to obtain maximin distance designs with minimum index.

The simulations (for low dimensional cases) performed in Joseph et al. (2014) show

that k = 4p gives approximately uniform designs. Thus, the choice k = 2p used in the

Theorem 1 is quite reasonable and is not just made for mathematical convenience.

Before discussing the computational algorithm for finding the optimal MaxPro

designs, we would like to mention about an extension of the proposed criterion. Con-

sider a generalized weighted distance measure:

d(xi,xj;θ) =

{
p∑
l=1

θl|xil − xjl|s
} 1

s

,

where s = 2 gives the previous weighted Euclidean distance. Now proceeding as

before, we obtain a new criterion:

min
D

ψs(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏p
l=1 |xil − xjl|s

} 2
ps

.

5



As s→∞, this criterion becomes

max
D

min
i,j

p∏
l=1

|xil − xjl|.

The similarities of the foregoing two criteria to those in (1) and (3) are very interesting.

However, in this paper, we prefer to use the criterion in (34) because we found ψs(D)

to be numerically unstable for large values of s. Moreover, the choice s = 2 has some

optimality properties for using in Gaussian process modeling, which will be explained

in section 1.5.

1.3 Optimal Design Construction Algorithm

Although ψ(D) in (34) is easy to compute, finding the MaxPro design by mini-

mizing it is not an easy problem. First, the number of variables in the optimization,

np, is extremely large even for moderate-sized problems. Second, the objective func-

tion has many local minima because it becomes infinite whenever xil = xjl for any

l = 1, . . . , p and i 6= j. Moreover, the design remains the same under the reordering

of rows or columns, which produces many local minima. Thus, optimization of (34)

directly using a continuous optimization algorithm can easily terminated at a local

optimum.

Because a MaxPro design will have n distinct levels for each factor, it can be

viewed as a Latin hypercube design, but not necessarily with equally spaced levels.

Therefore, we can make use of the algorithms for the construction of optimal Latin

hypercube designs such as simulated annealing (Morris and Mitchell 1995). The

simulated annealing algorithm starts with an initial LHD, and tries to improve the

MaxPro criterion in (34) iteratively. In each iteration a new design, Dnew, is obtained

by swapping two randomly chosen elements in a randomly chosen column of D and

it replaces D if it brings improvement. Otherwise, it replaces D with probability

π = exp−[ψ(Dnew)− ψ(D)]/t, where t corresponds to “temperature” which is a

user-defined parameter. Because a short-cut formula can be developed for efficiently

computing the objective function after the swapping of two elements, this algorithm

can be efficiently implemented.
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After obtaining the optimal maximum projection Latin hypercube design (Max-

ProLHD), we apply a continuous optimization algorithm to find the locally optimal

MaxPro design in the neighborhood of the optimal MaxProLHD. For doing this,

first we use a logit transformation to map the variable in [0, 1] to the real line:

zrs = log{xrs/(1−xrs)}. This allows us to remove the box constraints on the variables.

The gradient of the objective function under this transformation can be obtained as

∂ψp(D)

∂zrs
=

2(
n
2

)∑
i 6=r

1∏p
l=1(xil − xrl)2

xrs(1− xrs)
(xis − xrs)

,

which can be used to implement a fast derivative-based optimization algorithm. An

interesting point to note is that such an algorithm cannot be applied for finding

MmLHD because of the Latin hypercube constraints. We are able to use an uncon-

strained optimization algorithm because our objective function automatically satisfies

the Latin hypercube constraints. This can be advantageous in certain applications.

As an example, we constructed a MaxPro design with n = 30 and p = 3. Their

two-dimensional projections are shown in Figure 4 along with those of an MmLHD

and UD. We can see that the MaxPro designs are visually very appealing. Its design

points are spread out evenly in every two-dimensional projections. On the other hand,

large blank areas and close points are observed in both MmLHD and UD, which are

undesirable. More careful comparisons are made in the next section.
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Figure 1: Two-dimensional projections of 30-run 3-factor MmLHD, UD, and MaxPro
design, respectively

1.4 Numerical Results

In this section, we compare the performances of MaxPro designs and MaxProL-

HDs and other popular space-filling designs such as MmLHDs, UDs, and generalized

maximin Latin hypercube designs (GMmLHDs) (Dette and Pepelyshev 2010), on

nine simulation settings with p = 5, 10, 20 and n = 5p, 10p, 15pand20p. Because the

conclusions from all the nine cases are similar, we report results only for the 100-

run 10-factor design. The simulation results for the cases p = 10 and n = 5p and
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n = 15p are given in Appendix in sections 1.7.2 and 1.7.3, respectively. The MmLHD

is constructed using the R package SLHD (Ba 2015), the UD is constructed using the

software JMP, and the GMmLHD is constructed using the arc-sine transformation of

the MmLHD (Dette and Pepelyshev 2010).

Designs are compared on three measures: minimum distance among the design

points, maximum distance from any point in the design space to the nearest design

point, and CL2. These three criteria are summarized for each sub-dimensional projec-

tion. For a given sub-dimension q, a measure is computed for
(
p
q

)
possible projections

and the worst case is used for comparison.

The minimum of minimum distances among the projections are shown in Fig-

ure 20. As expected, MmLHD and GMmLHD have the largest minimum distances

in the full design space. On the other hand, the MaxPro design outperforms others

when the projection dimension is reduced by one except for one- and two-dimensional

projections for MmLHD and one-dimensional projection for GMmLHD. Compared

to the MmLHD and GMmLHD, the minimum distances are larger by a factor of

1.48 to 3.43 for dimensions 3-9 and by a factor of 1.20 to 3.09 for dimensions 2-9,

respectively, which is a significant improvement. The one- and two-dimensional min-

imum distances are slightly smaller for MaxPro design because the factor levels are

not equally-spaced and are close to each other near the boundaries. This problem is

avoided for MaxProLHDs. They have smaller minimum distances compared to the

MaxPro design in dimensions 3-9, but they are uniformly better than MmLHD and

GMmLHD except for the full dimension. Since CL2 criterion accounts for projec-

tions, UD exhibits better performance than MmLHD and GMmLHD, but still much

worse than the MaxPro design and MaxProLHD. The minimum distance measure

does not account for the index of the design, i.e., the number of pairs with the mini-

mum distance. A better maximin measure in projection q that also incorporates the

maximin index of the design is

Mmq = min
r=1,...,(p

q)

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1

d2q
qr(xi,xj)

}−1/(2q)

,

where dqr(xi,xj) is the Euclidean distance between points xi and xj in the rth
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Figure 2: Minimum of minimum distances (larger-the-better)

projection of dimension q. This measure is plotted in Figure 21. Same observations are

valid for Mmq measure. In other words, although the MmLHD and GMmLHDs have

the largest Mmq values in the full design space, the MaxPro design and MaxProLHD

has significantly better performance for the lower dimensional projections.

Now consider the maximum distance measure. Its computation is cumbersome

because we need to search over the whole space [0, 1]q to find the point having max-

imum distance to the nearest point in the design. For doing this, we sample Nq

points from [0, 1]q and approximate the minimax measure by the observed maximum

distance between the points and the design. We use a union of 3q factorial design

with levels {0, 0.5, 1} and 216 run Sobol sequence for the sample. Thus, in the full

dimensional space, Np = 310 + 216 = 124, 585. The maximum of maximum distance

among the projections are shown in Figure 22. There is no clear winner in this case as
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Figure 3: Mmq (larger-the-better)

the differences among the four designs on this measure are minor. A better minimax

measure that also incorporates the minimax index of the design is

mM q = max
r=1,...,(p

q)
max
u∈Xq

{
1

n

n∑
i=1

1

d2q
qr(u, xi)

}−1/(2q)

,

where Xq is the set of sample points with size Nq = 3q +216. As can be seen in Figure

23, the conclusions from this measure remains the same as before. Overall, the

MaxPro design and MaxProLHD are slightly better in lower dimensional projections

and slightly worse in higher dimensional projections compared to MmLHD and UD.

Finally, consider the uniformity measure, CL2, defined in 5. The maximum CL2

values among the q-dimensional projections are shown in Figure 24. As expected,

the UD performs best under this criterion because it is obtained by minimizing CL2.

The performance of the MaxPro design is significantly worse for the CL2 criterion
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Figure 4: Maximum of maximum distances (smaller-the-better)

compared to UD, but much better than that of the GMmLHD. This is because both

MaxPro design and GMmLHDs favor more points towards the boundaries than at

the center, which affects the overall uniformity of the points in the design space. In-

terestingly, the MaxProLHD has much better uniformity than the MaxPro design,

over all dimensions. This is surprising because the Latin hypercube restriction only

makes the spacing of the levels equal, but somehow it improves the uniformity in

all subspaces. We believe that uniformity is not as important as the maximin and

minimax distance measures in a computer experiment. This is because the primary

objective of a computer experiment is in approximating a computationally expensive

computer model. Uniformity becomes important only when we want to approximate

an integral using sample averages, which is rarely the objective of a computer exper-

iment. In fact, in many cases, the integrals computed using the approximated model
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Figure 5: mMq (smaller-the-better)

can outperform the sample averages. Thus, the poor performance of MaxPro designs

under the uniformity measure is not of a great concern.
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1.5 Gaussian Process Modeling

The space-filling designs discussed earlier are model-independent, which allows

the experimenter to fit a wide variety of models to the data. On the other hand,

better designs can be developed for a specified model class. In computer experi-

ments, Gaussian process modeling or kriging is widely used for approximating the

response surface (Sacks, Welch, Mitchell and Wynn 1989; Currin, Mitchell, Morris

and Ylvisaker 1991). The ordinary kriging model is

Y (x) = µ+ Z(x), (11)

where x ∈ Rp, µ is the overall mean, and Z(x) is a stationary Gaussian process with

mean zero and covariance function σ2R(·). A popular choice for R(·) is the Gaussian

correlation function,

R(xi − xj;α) = exp

{
−

p∑
l=1

αl(xil − xjl)2

}
, αl ∈ (0,∞), l = 1, . . . , p. (12)
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A popular model-based design is the maximum entropy design (MED) (Shewry

and Wynn 1987) is given by

max
D

det(R(α)), (13)

where R(α) is the correlation matrix with ijth element R(xi − xj;α). A major

drawback with such a model-based design is that we need to specify the value of α

for finding the optimal design, which is unknown before conducting the experiment.

One can use a guessed value of α for finding the optimal design, but the designs can

be very poor if the guess is badly wrong. One way to mitigate this problem is to

assign a prior distribution for α and optimize the expected value of the objective

function. Let us assume a noninformative prior for α:

p(α) ∝ 1,α ∈ Rp
+. (14)

The following is an optimality result for MaxPro designs relating to GP modeling.

Theorem 2. For the Gaussian correlation function and the noninformative prior for

α in (14), MaxPro designs minimize

E{
n∑
i=1

∑
j 6=i

Rγ
ij(α)}

for any γ > 0.

In other words, MaxPro designs minimize the expected sum of off-diagonal ele-

ments (or any power of them) of the correlation matrix. Although this result is not

directly related to the maximum entropy criterion, there seems to be some connec-

tions. An application of Hadamard’s inequality and Gershgorin’s theorem gives the

following bounds on the det(R(α))

n∏
s=1

(1−
∑
j 6=is

Risj(α)) ≤ det(R(α)) ≤ 1,

where i1, . . . , in ∈ {1, 2, . . . , n}. Thus, minimizing the off-diagonal elements of the

R(α) matrix tends to increase the lower bound on the det(R(α)), and the upper

bound is achieved when all of the off-diagonal elements are 0. Therefore, the MaxPro
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designs are expected to perform well on the maximum entropy criterion. The nice

thing is that we do not need to specify any value for the correlation parameters to

obtain MaxPro designs.

To compare the performance of MaxPro design with MED, we generated a 100-run

10-factor MED using the software JMP, where the correlation parameter αl is set to

be equal to 5 for l = 1, . . . , 10. Now we compute the minimum determinant among

the q-dimensional projections, minr log det(Rq,r(α)), where Rq,r is the correlation

matrix calculated for the rth q-dimensional projection. As seen in Figures 25 and

26, the MaxPro design is better than the MED in lower dimensional projections and

has comparable performance in higher dimensional projections. MaxProLHD is worse

than MaxPro design but is uniformly better than MmLHD.
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The ordinary kriging predictor is

ŷ(x) = µ̂(α) + r(x;α)
′
R−1(α){y − µ̂(α)1},

where µ̂(α) = 1
′
R−1(α)y/1

′
R−1(α)1, r(x;α) is an n × 1 vector with ith element

R(x−xi;α), y = (y1, . . . , yn)
′
is the experimental data, and 1 is a vector of 1’s having

length n. We can see that the predictor involves the inverse of the correlation matrix

at the optimal value of α. The optimal value of α is estimated using likelihood or

cross validation based methods. For example, the maximum likelihood estimate can

be obtained by minimizing negative log-likelihood (Santner, Williams and Notz 2003,

p. 66)

log detR(α) + n log σ̂2(α)

with respect to α, where σ̂2(α) = {y − µ̂(α)1}′R−1(α){y − µ̂(α)1}/n. This again

requires the computation of R−1(α), but now for many values of α. The matrix
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inverse operation can become difficult and unstable at some values of α, so it will be

good to use an experimental design that avoids this for all values of α. The instability

of a matrix inverse can be assessed using its condition number. Figure 27 shows the

maximum of condition numbers among the q-dimensional projections after adding a

small nugget, 10−6, to the diagonals of R(α), where αl = 5 for l = 1, . . . , 10. We can

see that MaxPro design has superior performance over the other designs.
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Figure 9: Maximum of condition numbers of R(α) (smaller-the-better)

The maximum prediction variance in the design space can be used as another

criterion for evaluating a design. For ordinary kriging, the prediction variance is

proportional to

1− r(x;α)
′
R−1(α)r(x;α) +

{1− r(x;α)
′
R−1(α)1}2

1
′
R−1(α)1

.

The maximum prediction variance among the q-dimensional projections can now be

approximated using the same set of Nq points used earlier in approximating the
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minimax measure and is plotted in Figure 28 for projection dimensions 1 to 6. The

MaxPro design and the GMmLHD are the two winners on this performance measure.
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Figure 10: Maximum of prediction variance of ordinary kriging (smaller-the-better)

1.6 Conclusions

In this work we have proposed a new experimental design for computer experi-

ments, namely MaxPro design, which ensures good projection properties in all sub-

spaces of the factors. Through several simulations and various types of measures we

have shown that they perform better or at least as good as the popular space-filling

designs such as maximin Latin hypercube design (MmLHD) and uniform design (UD).

Their advantages for use in Gaussian process modeling are also established.

In our numerical studies, we found that MaxProLHD has close performance to

MaxPro design. In fact, it has surprisingly better performance under uniformity
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measures, although uniformity may not be of great importance in many applications.

However, due to its simpler construction and better one-dimensional projections,

MaxProLHD may be a more attractive choice than MaxPro design in most applica-

tions.

1.7 Appendix

1.7.1 Proofs of Theorems 1 and 2

Proof of Theorem 1

Proof. For k = 2p, we have

E{φk(D;θ)} =
1

(p− 1)!

n−1∑
i=1

n∑
j=i+1

∫
Sp−1

{
p∑
l=1

θl(xil − xjl)2

}−p
dθ.

Let

Qp(p, a) =

∫
Sp−1

{
p−1∑
l=1

θldl + (1−
p−1∑
l=1

θl)a

}−p
dθ.

For a 6= dp−1, integrating with respect to θp−1,

Qp(p, a) =
1

(p− 1)(a− dp−1)
{Qp−1(p− 1, dp−1)−Qp−1(p− 1, a)} . (15)

Assume

Qp−1(p− 1, a) =
1

(p− 2)!d1 . . . dp−2a
. (16)

Then, from (15), Qp(p, a) = 1/{(p − 1)!d1 . . . dp−2dp−1a}. This result holds for all a

including a = dp−1. Since Q2(2, a) = 1/(d1a), by mathematical induction, (16) is true

for all p. Now the result follows because Qp(p, dp) = 1/{(p− 1)!d1 . . . dp}.

♦

Proof of Theorem 2
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Proof. For any γ > 0, we have

E(
n∑
i=1

∑
j 6=i

Rγ
ij) =

n∑
i=1

∑
j 6=i

E

{
p∏
l=1

e−γαl(xil−xjl)2
}

=
n∑
i=1

∑
j 6=i

{
p∏
l=1

∫ ∞
0

e−γαl(xil−xjl)2dαl

}

=
1

γp

n∑
i=1

∑
j 6=i

1∏p
l=1 (xil − xjl)2

,

which is minimized by a maximum projection design. ♦

1.7.2 Numerical results for case 2: p=10 and n=5p=50
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Figure 11: Case 2: Minimum of minimum distances (larger-the-better)
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Figure 12: Case 2: Mmq (larger-the-better)
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Figure 13: Case 2: Maximum of maximum distances (smaller-the-better)
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Figure 14: Case 2: mMq (smaller-the-better)
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Figure 15: Case 2: Maximum of Centered-L2-Discrepancies (smaller-the-better)
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Figure 16: Case 2: Minimum of log-determinant for projection dimensions 1 to 4
(larger-the-better)
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Figure 17: Case 2: Minimum of log-determinant for projection dimensions 5 to 10
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Figure 18: Case 2: Maximum of condition numbers of R(α) (smaller-the-better)
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Figure 19: Case 2: Maximum of prediction variance of ordinary kriging (smaller-the-
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1.7.3 Numerical results for case 3: p=10 and n=15p=150
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Figure 20: Case 3: Minimum of minimum distances (larger-the-better)
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Figure 21: Case 3: Mmq (larger-the-better)
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Figure 22: Case 3: Maximum of maximum distances (smaller-the-better)

27



Projection dimension (q)

m
M

q

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 MaxProLHD
MaxPro
MmLHD
UD
GMLHD

Figure 23: Case 3: mMq (smaller-the-better)
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Figure 24: Case 3: Maximum of Centered-L2-Discrepancies (smaller-the-better)
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Figure 25: Case 3: Minimum of log-determinant for projection dimensions 1 to 4
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CHAPTER II

UNCERTAINTY QUANTIFICATION IN MACHINING

SIMULATIONS USING IN SITU EMULATOR

2.1 Introduction

Uncertainty is all but certain in machining processes. A machining process is

subject to uncertainty from various sources such as the inherent random variation

in the material and tool geometry. In general, uncertainties in machining simulation

fall into two main categories: aleatory and epistemic. Aleatory uncertainty which

is irreducible arises naturally from inherent variation and randomness in the system

and its environment. On the other hand, epistemic uncertainty occurs due to lack

of knowledge about the system and is reducible (Parry 1996). Understanding and

identifying the uncertainties in a system is an important step before starting further

analysis. In this work, our focus is on the aleatory uncertainty in machining processes.

This work is motivated by the uncertainty quantification problem in a solid end

milling simulation which is performed using a deterministic computer model of the

Production Module software of Third Wave Systems. This software takes as input the

material properties, tool geometry, cutting conditions, and a tool path, and simulates

the cutting force components as output. Process is intrinsically characterized with

user specified material and tool geometry parameters for a given tool path and work-

piece material. These process-specific parameter values are called nominal values.

First, process is simulated at the nominal values of the input parameters to obtain

the nominal output. However, in reality, output of the process could deviate from

the nominal output due to the uncertainties in some of the input parameters, such

as hardness of the material, rake angle, helix angle, relief angle, and corner radius.

Uncertainties in these parameters are characterized with probability distributions. In

this problem, the objective is to quantify the uncertainty in peak tangential force due

31



to the uncertainty in the input parameters. Figure 29 shows the nominal output and

four realizations of the peak tangential force. As seen in Figure 29 peak tangential

forces vary around the nominal output. Basically, uncertainties in inputs propagate

to the output. In a solid end milling process, uncertainty quantification is critical
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Figure 29: Four realizations of the peak tangential force and the peak tangential
force at the nominal setting

for decision making problems such as tool path optimization, identification of poten-

tial areas for improvement and determination of power requirements which are also

valid for other machining processes. Therefore, for better informed decision making,

reliable and efficient uncertainty quantification is of great importance.

Uncertainty quantification methods can be classified into two categories: intru-

sive and non-intrusive, according to their fundamental approach. Intrusive methods

formulate and solve the stochastic version of the computer model to account for un-

certainties. Some intrusive methods include perturbation method (Tang and Pinder

1977; Dettinger and Wilson 1981), Neumann series expansion (Zeitoun and Braester

1991) and stochastic Galerkin method (Ghanem and Spanos 1991). Intrusive methods

can provide physical interpretation and customization since they are directly applied
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on the original mathematical model underlying the computer model. However, in

real life, implementation of intrusive methods is a challenging and computationally

intensive task because of the requirements for extensive modifications and verification

of the codes.

On the other hand, non-intrusive methods consider the computer model as a black

box and only require multiple solutions of the computer model. An intuitive and sim-

ple non-intrusive method for uncertainty quantification is the well known Monte Carlo

(MC) method. MC method collects a sample of outputs by running random realiza-

tions of the inputs on the computer model and further, extracts the relevant statistics

from the sample of outputs. A major drawback of MC is its slow convergence rate.

In other words, especially in high dimensional cases, a large number of runs (run size

> 1000) should be evaluated to obtain meaningful statistical measures of the output.

Considering the fact that a machining simulation takes seconds to hours to even days,

the MC method can take several hours or days for even a simple machining process

simulation. More intelligent sampling techniques such as Quasi Monte Carlo (QMC)

(Fang, Li and Sudjianto 2006) can decrease the computational burden. Using low

discrepancy sequences with better uniformity, QMC requires much less simulations

for convergence. Still, for a computationally expensive computer model, QMC may

become a computational bottleneck. For a comprehensive understanding of sampling-

based methods for uncertainty propagation see Helton and Davis (2003) and Helton,

Davis and Sallabery (2006).

Despite their simplicity, sampling-based methods end in the grim reality of eval-

uating the computer model for a prohibitively large number of times. One way to

alleviate this problem is to replace the computer model with an easy-to-evaluate meta-

model or emulator. Differential analysis (Tomovic and Vukobratovic 1978; Lewins

and Becker 1982; Rabitz, Kramer and Dacol 1983; Ronen 1988; Turanyi 1990) and

response surface methodology (Kim, Lee, Kim and Chang 1986; Lee, Kim and Chang

1987; Aceil and Edwards 1991) are two of the conventional metamodeling approaches.

However, these approaches may not work well if the system is higly nonlinear and

the input uncertainty is large. Kriging (Sacks, Welch, Mitchell and Wynn 1989), on
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the other hand, is a modern tool for metamodeling; it utilizes Gaussian processes

to capture nonlinearity in the systems. Kriging emulators have been very popular

and used in different application areas for uncertainty quantification (Dwight and

Han 2009; DiazDelaO, Adhikari, Flores and Friswell 2013; Xia and Tang 2013; Wana,

Mao, Todd and Ren 2014).

Emulators are only an approximation of the computer model. Therefore, for

reliable uncertainty quantification, accurate emulators have to be built. Classical

approach is to build an emulator for the whole computer model. However, due to the

broad region defined by the large number of variables, building generic emulators for

machining simulations is a difficult task. Consider the task of building an emulator

for the Production Module as an example. Hundreds of material types and tens of

tool types with inherent tool geometry parameters define a very large design region.

Building an emulator for this region requires extensive number of simulations and

computational effort. Moreover, fitting an emulator for the whole region can be

inefficient because in a machining process, uncertainty quantification is only needed

for the local region defined by the uncertain parameters around the instance which

characterizes the process. Thus, a good alternative is to fit an emulator for the local

region defined by the given process for which uncertainty quantification is requested.

We call it “in situ emulator”. It is constructed locally around user-specified nominal

and uncertainty values.

2.2 In Situ Emulator Methodology for Uncertainty Quan-
tification

For a given tool path and input parameters with no uncertainties, let

y = f(u, t),

where y is the output of the computer model, u = (u1, u2 . . . , up)
′

is a vector of p pa-

rameters with uncertainties, and t ∈ {t1, t2, . . . , tM} denote the time points. The time

points with either axial depth of cut (ADoC) or radial depth of cut (RDoC) equal to

0 can be eliminated because there is no cutting at those time points. Without loss
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of generality, let t = 1, 2, . . . ,m, where m is the number of time points left after the

elimination. It is important to note that in the proposed in situ emulator methodol-

ogy, we do not consider modeling the output as a function of input parameters with

no uncertainties. Since the emulator is built for a user specified process, the input

parameters stay fixed at their specified values. Therefore, we only need to model

the output with respect to the input parameters with uncertainty. This significantly

simplifies the modeling task.

Let the uncertainties in u be characterized with known probability distribution

p(u) and let u0 be the nominal values of these parameters. Obviously, u0 represents

a center value of the probability distribution p(u) such as the mean, median, or

mode. The objective of this study is to quantify the uncertainties in y caused by the

uncertainties in u.

Ordinary kriging is a widely used emulator, which is given by

y = µ+ Zt(u), (17)

where µ is the overall mean and Zt(u) is a Gaussian process (GP) with mean zero

and stationary covariance function σ2
tRt(·) (Santner, Williams and Notz 2003). We

assume Zt(u) to be independent over time. A more common approach in the literature

to model functional responses is to assume a separable covariance function for u and

t but with a constant variance σ2 (Hung, Joseph and Melkote 2015). Our initial

attempt to model this process followed this standard approach, but we found that it

requires higher computational cost and leads to a predictor with less accuracy. The

only problem of ignoring the correlations over time is that we will not be able to

predict the output at time points other than the observed time points, but this is not

a disadvantage in our case because the output is observed at a very large number of

time points and we only need to predict the outputs at those time points.

In metamodeling of machining simulations, instead of using a constant mean, we

can develop an emulator which incorporates the output of the simulation at u0. In

practice, one first obtains the nominal output by simulating the process at the nominal

setting u0, and then requests uncertainty analysis if needed. Thus, the output of the
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simulation at u0 is always available. In general, especially when the uncertainty is not

large, u takes a value around its nominal value with a high probability. Therefore,

we can expect output values to have similar trend with the ones obtained from the

nominal setting, u0. For example, in Figure 29, trends of the realizations and the

nominal output match well for the solid end milling process. Thus, we propose

ψ(f(u, t)) = ψ(f(u0, t)) + δt(u), (18)

where ψ(·) is an appropriate transformation on the output, f(u0, t) is the evaluation of

the computer model at the nominal setting u0 and δt(u) is a function which captures

the discrepancy between ψ(f(u, t)) and ψ(f(u0, t)). Since there is no discrepancy at

the nominal setting u0,

δt(u0) = 0 for all t ∈ {1, 2, . . . ,m}. (19)

In formulation (18), a transformation is considered because we expect a suitable trans-

formation on the response would scale down the discrepancy term substantially for

simpler modeling. Models for machining processes are usually sophisticated, there-

fore, discrepancy term must be properly specified. To satisfy (19), we let

δt(u) = Zt(u)− Zt(u0), (20)

where Zt(u) and Zt(u0) are GPs with correlation function R(·). Thus, δt(u) is also a

GP with mean 0 and covariance function σ2
tR(·) where correlation function is given

by

Rt(ui − uj) = corr (δt(ui), δt(uj))

= corr (Zt(ui)− Zt(u0), Zt(uj)− Zt(u0)) ,

= Rt,u(ui − uj)−Rt,u(ui − u0)−Rt,u(uj − u0) + 1. (21)

Commonly used Gaussian correlation function is chosen for Rt,u(·),

Rt,u(ui − uj) = exp{−
p∑

k=1

θt,k(uik − ujk)2}.
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The use of a nominal function in (18) and the nonstationary correlation function in

(21) are two novel parts of our proposed in situ emulator methodology.

Suppose we have an n-run p-factor experimental design Du = {u1,u2, . . . ,un}.

For the emulator in (18), we define the output as a vector yt = (y1,t, . . . , yn,t) with jth

element yjt = f(uj, t). In addition, for the nominal setting, y0,t = (y0,t, . . . , y0,t) by

replicating y0,t = f(u0, t) n times. Lastly, let the transformed outputs be wt = ψ(yt)

and w0,t = ψ(y0,t). Then, the correlation parameters θt, t = 1, . . . ,m, are found by

minimizing the negative log-likelihood function [?]

m∑
t=1

{n log σ̂2
t + log |Rt|}, (22)

where Rt is an n × n matrix with ijth element Rt(ui − uj) and σ̂2
t = 1

n
(wt −

w0,t)
′
R−1
t (wt − w0,t). In a machining simulation, m can range from thousands to

millions. Therefore, optimization problem in (22) can be very time-consuming which

makes uncertainty quantification of the machining process inefficient. To simplify

the computation, we assume that the effect of a parameter is independent of time.

Therefore, we let θt = θ for all t ∈ {1, 2, . . . ,m}. Now, the common set of correlation

parameters, θ, can be found by minimizing,

n
m∑
t=1

log σ̂2
t +m log |R|, (23)

where R is an n × n matrix with elements calculated using θ and σ̂2
t = 1

n
(wt −

w0,t)
′
R−1(wt −w0,t).

The discrepancy function is given by

δ̂t(u) = r(u)
′
R−1(wt −w0,t), (24)

where r(u) =(R(u−u1), · · · , R(u−un))′. Thus, the in situ emulator is obtained by

substituting (24) into (18),

f̂(u, t) = ψ−1[ψ(f(u0, t)) + r(u)
′
R−1(wt −w0,t)]. (25)

Succinctly, predictions for the whole process can be calculated by

f̂(u) = ψ−1[ψ(f(u0)) + r(u)
′
R−1W ], (26)
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where f̂(u) and f(u0) are vectors of length m with jth elements equal to f̂(u, tj) and

f(u0, tj), respectively, and W is an n×m matrix with jth column equal to wj−w0,j.

Uncertainty quantification of a machining process requires predictions on a large

set of simulation settings. Let Duq is an N × p matrix with each row corresponding

to a simulation setting, then, predictions for N settings can be done efficiently by

F̂ uq = ψ−1[ψ(F 0) +RuqR
−1W ], (27)

where F 0 is an N ×m matrix with each row equal to f(u0), Ruq is an N × n matrix

with jth row equal to r(uj), and ψ(·) is applied on each element of the matrix.

2.3 Uncertainty Quantification in Solid End Milling Pro-
cesses

End milling is one of the most commonly used cutting processes for precise ma-

chining of complicated parts in the aerospace industry. In this section, first, we

illustrate the approach and carry out an uncertainty analysis on the 3-axis solid end

milling process in Figures 30 and 31 with the proposed methodology, which is based

on the widely used Production Module software of Third Wave Systems. Later, our

approach is also applied on a complex 5-axis cutting process simulated in Production

Module as well. Our objective is to quantify the uncertainty in the output arising

from uncertain input parameters. Production Module simulates the solid end milling

process with a computer model based on physics-based material models. In the com-

puter model, the user defines the process by setting the several material and tool

properties. Some of these properties are hardness of the material, cutter diameter,

rake angle, helix angle, relief angle, corner radius, number of flutes, flute length and

tool length. In the process, process variables, feed rate, radial depth of cut (RDoC)

and axial depth of cut (ADoC) vary as a function of time but they remain the same

for any input setting. The computer model is deterministic and it produces a set of

outputs for a specified setting and tool path. Peak tangential force is one of the key

outputs in the solid end milling process, which is studied in this application. Finally,

the material used in the process is AISI-1020 steel.
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Figure 30: The cutting tool, toolpath and the workpiece

In the process, four input parameters are identified with uncertainty: hardness of

the material (u1), rake angle (u2), helix angle (u3), and corner radius (u4). Table 1

provides nominal values and the probability distributions of the four input parame-

ters. We specify hardness of material and helix angle to follow a normal distribution

with means equal to their nominal values and standard deviations equal to 15% of

their nominal values. Rake angle is assumed to vary around its nominal value with

exponential distribution with the distribution parameter λ = 100. Last, corner radius

comes from a beta distribution, which has the distribution parameters α = 50 and

β = 1, scaled by 0.5 to comply with the range of corner radius. These distributions

can be changed by the user depending on the particular process and problem un-

der consideration. As seen in Figure 31, the computer simulation spans around two

minutes over which 3373 force values are collected.

The in situ emulator is given by

log f(u, t) = log f(u0, t) + δt(u), (28)

where u can vary around u0 based on its specified probability distribution and all
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Figure 31: Peak tangential forces over time at the nominal setting

other input parameters are held constant at their specified values. We use log-

transformation in (28) because the cutting force can usually be approximated by

a multiplicative functional form of input variables which makes log-transformation

an appropriate transformation for the output.

Design of experiments is a critical step for obtaining an accurate emulator. We use

space-filling designs which are commonly used in deterministic computer experiments.

In practice, it is highly likely that only a small set of inputs are significant (Wu and

Hamada 2009), therefore, it is preferable to adopt a design which is space filling for all

possible input combinations. We employ maximum projection designs (Joseph, Gul

and Ba 2015) for the experimentation since they are both space filling in the original

design space, spanned by all input parameters and also in the lower dimensional

projections, spanned by subsets of input parameters. We generate 10 experimental

settings which are evenly spread in the full design space and around the nominal

40



Table 1: Nominal values and the probability distributions of the input parameters
with uncertainty

Parameter Nom. Value Probability Dist.
u1:Hardness 111 Bhn N(111, (0.15× 111)2)
u2:Rake Angle 0 deg Exp(λ = 100)
u3:Helix Angle 20 deg N(20, (0.15× 20)2)
u4:Corner Radius 0.5 in Beta(α = 50, β = 1)/2

Table 2: 11-run 4-factor experimental design
Hardness Rake Ang. Helix Ang. Corner Rad.

u1 u2 u3 u4

111 0 20 0.5
82.85 0.001 21.42 0.492
92.74 0.005 16.71 0.497
98.55 0.014 23.29 0.499
103.13 0.006 20.70 0.470
107.17 0.020 18.58 0.494
114.83 0.009 14.93 0.489
118.87 0.003 25.07 0.495
123.45 0.031 22.24 0.486
129.26 0.002 17.76 0.481
139.15 0.011 19.31 0.498

setting to maximize the information collected about the process. Accordingly, a 11-

run 4-factor maximum projection Latin hypercube design is generated in [0, 1]4 with

the first run fixed at the nominal setting. Since maximum projection Latin hypercube

design is approximately uniform (Joseph, Gul and Ba 2015), the design in the original

input space is obtained with inverse probability transformation and it is given in Table

2.

After the experimentation, the time points where there are no cuttings (RDoC =

ADoC = 0) are eliminated and we are finally left with m = 2283 time points. The

correlation parameters are found as θ̂ = (0.416, 0.019, 4.569, 0.031)
′

by minimizing

(23). Now, the peak tangential forces can be predicted using

f̂(u) = exp[log(f(u0)) + r(u)
′
R−1W ]. (29)

Prediction performance of the in situ emulator is tested on 40 simulations. Simulation

settings are constructed with a 40-run 4-factor uniform design generated using the
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Figure 32: Average CV E and computational time with respect to number of simu-
lations

statistical software JMP 11. The coefficient of variation of the root mean square error

(CV E) is used as a performance measure:

CV Ej = 100×

√∑m
t=1 (f̂(uj, t)− f(uj, t))2/m

f̄(uj)
(30)

where f̄(uj) =
∑m

t=1 f(uj, t)/m for j = 1, . . . , 40. We found that CV E values have a

mean of 3.30. In other words, on average, the force predictions for a setting will have

a root mean square error 3.30% of the mean of the forces obtained from the computer

model, which is very small. Therefore, the in situ emulator accurately predicts the

peak tangential forces.

Modeling with larger designs increases the prediction capability of in situ emulator,

however, it also increases the computational time. Figure 32 shows the average CV E

values and computational times for different design sizes on a 2.9 GHz computer.

As seen in Figure 32, if we double the number of simulations in the current design,

average CV E improves 15%, on the other hand, computational time increases more

than two times. Thus, in this example, current design with 10 simulations is a good

compromise between prediction accuracy and computational efficiency.
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We quantify the uncertainty by constructing the confidence interval on the peak

tangential force. Confidence interval for the in situ emulator is constructed from the

predictions of 40 input settings. We also compute the confidence interval using the

QMC method from 40 simulations. Figure 33 shows the 95% confidence intervals on

the peak tangential force by both methods. Results show that the confidence interval

constructed by the in situ emulator reasonably agrees with that of the QMC method.
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Figure 33: 95% Confidence intervals constructed by QMC and in situ emulator for
the solid end milling process

For validation, we perform uncertainty quantification for a more complex solid end

milling process. It is a 5-axis CNC cutting process for which cutting tool, toolpath,

workpiece, and a portion of the peak radial forces at the nominal setting are shown in

Figures 34 and 35. In this process, uncertainty in peak radial force is to be quantified.

Hardness of the material (u1), rake angle (u2), helix angle (u3), and corner radius

(u4) are the uncertainty sources for this process. Table 3 provides nominal values
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Table 3: Nominal values and the probability distributions of the input parameters
with uncertainty for 5-axis CNC cutting

Parameter Nom. Value Probability Dist.
u1:Hardness 111 Bhn N(111, (0.15× 111)2)
u2:Rake Angle 5 deg N(5, (0.15× 5)2)
u3:Helix Angle 30 deg N(30, (0.15× 30)2)
u4:Corner Radius 0.09 in N(0.09, (0.15× 0.09)2)

and the probability distributions of these four input parameters, where all follow

normal distribution with means equal to their nominal values and standard deviations

equal to 15% of their nominal values. Computer simulation predicts the process to

take around 10 minutes and collects 155, 107 force values over time. For a better

visualization, Figure 35 shows the first 80 seconds of the computer simulation where

20, 000 force values are plotted. The peak radial force of the whole 5-axis CNC cutting

process is made up of cycles as seen in Figure 35.

Figure 34: The cutting tool, the toolpath, and the workpiece for 5-axis CNC cutting

44



Time (sec)

P
ea

k 
R

ad
ia

l F
or

ce
 (

N
)

0 10 20 30 40 50 60 70 80

0

1

2

3

4

5

6

7

Figure 35: Peak radial force over time for 5-axis CNC cutting

We proceed as before and obtained the in situ emulator for the 5-axis CNC cutting

using an 11-run 4-factor maximum projection Latin hypercube design. The mean

CV E is found to be 4.10, which shows that the in situ emulator has good prediction

accuracy for the 5-axis CNC cutting as well. Figure 36 has the 95% confidence

intervals on the peak radial force obtained by the in situ emulator and QMC method

using 40 simulations. For the 5-axis CNC cutting as well, we observe a satisfactory

match between the confidence intervals by both methods.

In order to obtain reliable results, uncertainty quantification should be done with

larger sample of input settings. In practice, uncertainty in output can be quantified

with say, 2000 evaluations. In that case, for the 3-axis solid end milling process,

uncertainty quantification takes only eight minutes for the in situ emulator on a 2.9

GHz computer. Estimation of the correlation parameters and evaluation of the 2000

settings constitute 45 and 3 seconds of the total eight minutes, respectively. The

remaining computational time is the experimentation on the 10 simulation settings.
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Figure 36: 95% Confidence intervals constructed by QMC and in situ emulator for
the 5-axis CNC cutting

On the other hand, uncertainty quantification with 2000 evaluations will take more

than a day for the QMC method. For 5-axis CNC cutting, the in situ emulator takes

only one hour (53.5 minutes for 10 simulations, 5 minutes is for the estimation of

the correlation parameters, and 1.5 minutes for the evaluation of the 2000 settings),

whereas the QMC method will require nine days for 2000 simulations. Therefore, the

in situ emulator provides huge computational savings for these two applications.

2.4 Conclusions

In this chapter, we present an efficient uncertainty quantification methodology for

machining simulations. In real life applications, computer models tend to be com-

plex and high dimensional. Therefore, brute force implementation of sampling-based

methods are not affordable. Besides, fitting a comprehensive emulator for machin-

ing processes is also not practically feasible. On the other hand, in the proposed
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approach, we build a local in situ emulator for a given process when an uncertainty

quantification is demanded. Because of the local nature, the response surface can be

approximated using a few simulations, which makes our approach very fast. On the

down side, a new set of simulations are needed for each new process or change in

the uncertainty variables and their probability distributions. One approach to over-

come this deficiency is to augment the previous set of simulations with a few new

simulations, but a complete development of this idea needs further research.

The proposed methodology is applied to two solid end milling processes for the

quantification of uncertainty in the force outputs. In the application, the in situ

emulators are estimated with only ten more machining simulations over the nominal

simulation. Accuracy of the in situ emulators are tested on a set of simulations.

According to the results, the in situ emulator is an accurate approach with significant

computational savings. Consequently, the in situ emulator is an attractive alternative

to sampling-based approaches for the uncertainty quantification of complex machining

process simulations.
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CHAPTER III

MAXIMUM PROJECTION DESIGNS WITH

QUANTITATIVE AND QUALITATIVE FACTORS

3.1 Introduction

Real-word phenomena have been increasingly studied virtually due to the ad-

vances in high performance computation and impracticable and infeasible physical

experimentation. This virtual experiments is called computer experiments. In de-

terministic computer experiments, space-filling designs are widely used and one of

the intuitive and popular approach for achieving space-fillingness is to maximize the

minimum pairwise distance in a design (Johnson, Moore and Ylvisaker 1990). Let

X = [0, 1]p be the experimental region defined by p factors. Suppose we want to

construct an n-run design D = {x1, . . . ,xn} where each point xi ∈ X . The maximin

distance design can be obtained as,

max
D

min
xi,xj∈D

d(xi,xj), (31)

where d(xi,xj) is the Euclidean distance between the points xi and xj. Another

approach is to minimize the maximum distance between any point x ∈ X and the

design. The minimax distance design is defined as,

min
D

max
x∈X

d(x,D), (32)

where d(x,D) = minxi∈D d(x,xi).

Computer models are usually deterministic; there is no random error. Therefore,

in computer experiments, replications are unnecessary and a good design should not

have replications when projected onto any subspace of the input factors. Although

maximin and minimax distance designs are space-filling in X = [0, 1]p, they may have

replications when projected onto any factor. Morris and Mitchell (1995) proposed to

construct maximin distance designs with Latin hypercube structure which ensures n
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equally spaced points for each factor. They introduced the maximin Latin hypercube

design (MmLHD) which is given by

min
D

φk(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1

dk(xi,xj)

}1/k

, (33)

where k is large enough to achieve maximin distance. MmLHD criterion ensures

space-fillingness in full dimensional space and uniformity in one dimensional space,

however, it does not guarantee good projections onto the subspaces with dimensions

2, . . . , p − 1. Joseph et al. (2015) proposed maximum projection designs (MaxPro)

which have good projections for all subspaces of the factors. The MaxPro design is

obtained with the criterion:

min
D

ψ(D) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏p
l=1 (xil − xjl)2

}1/p

. (34)

If two points have the same coordinate for a dimension, MaxPro criterion becomes

∞. Therefore, MaxPro criterion automatically possesses Latin hypercube structure.

They also proposed maximum projection Latin hypercube design (MaxProLHD) with

equally spaced points in each dimension. MaxPro design tends to put more points

towards the boundaries which increases prediction capability in Gaussian process

modeling (Dette and Peppelyshev 2010). Therefore, MaxPro design is a better choice

for prediction purposes, whereas, MaxProLHD with better uniformity is preferable

for integration purposes. Several other works have been also done on finding space-

filling designs with different optimality criteria. Some of these space-filling designs

are uniform designs (Fang 1980), orthogonal array-based LHD (Tang 1993; Owen

1994), orthogonal LHD (Ye 1998), uniform LHD (Jin, Chen and Sudjianto 2005),

orthogonal-maximin LHD (Joseph and Hung 2008) and generalized MmLHD (Dette

and Peppelyshev 2010).

All the designs discussed so far assume all the factors are quantitative. How-

ever, computer models may have both quantitative and qualitative factors (Qian,

Wu and Wu 2008; Han, Santner, Notz and Bartel 2009; Hung, Joseph and Melkote

2009). Thus, we extend our notation to include qualitative variables. Let, D =
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(Dx,Dz) is an n-run design, where Dx is the sub-design for p quantitative factors

and Dz = {z1, . . . ,zn} is the sub-design for q qualitative factors with l1, . . . , lq levels

and L =
∏q

i=1 li. Constructing a design with both types of factors is a challeng-

ing task. For instance, a fundamental design concept, Latin hypercube structure is

very hard to apply because number of levels for a qualitative factor is usually less

than n. Qian (2012) proposed sliced space filling Latin hypercube design (SLHD)

for computer experiments with both quantitative and qualitative factors. An n-run

p-quantitative factor SLHD is generated to have t slices each of which corresponds

to a factor level combination. Each slice with m = n/t runs is also an LHD. SLHD

enables evaluation of computer models in batches and being LHD for each slice it

can also be used for separate analysis of each batch. However, a random SLHD only

has good one dimensional projections for the whole design and each slice. Ba et al.

(2015) discussed that a good SLHD should be space-filling for the whole design as

well as each slice. They proposed the maximin distance SLHD which is found by

minimizing a weighted average of φr(Dx), for the whole design, and φr(Dx,i), for

each slice (i = 1, . . . , t), where Dx,i is an m-run design corresponding to the slice i.

Maximin distance SLHD is given by

min
Dx

φMm(Dx) =
1

2

{
φr(Dx) +

1

t

t∑
i=1

φr(Dx,i)

}
, (35)

where Dx = (Dx,1
′
, . . . ,Dx,t

′
)
′
. Criterion in (35) can also be used with other space-

filling criteria, for instance, replacing MmLHD criterion with MaxPro criterion gives

the MaxPro SLHD. Finally, SLHD criterion gives more emphasis to space-fillingness

of the whole design than that of the slices. Maximin distance SLHD provides Dx

and it ideally visions that all factor level combinations can be accommodated by

slices. An L × m-run SLHD is required in order to assign each level combination

to a slice, however, this run size increases extremely with the number of qualitative

factors. In addition, for the case, t < L, level combinations for each slice needs to

be determined by the experimenter. Deng et al. (2015) proposed marginally coupled

designs (MCDs) which can be constructed with economical run sizes. In an MCD,
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Dz is an orthogonal array (OA) and Dx and corresponding design points of Dx to

any qualitative factor levels are LHD . For generation of an MCD, first, an OA should

exist for Dz otherwise MCD cannot be constructed. Assume that Dz is determined

with an OA, next, Dx is constructed such that for each level of any qualitative factor,

corresponding design points of Dx is an LHD. They discussed the existence of MCDs

and proposed several construction methods for different OA structures. Although

MCDs can maintain smaller design sizes, their generation has restrictions: first, an

OA is required for Dz, if an OA exists, second, there should be a costruction method

for constructing Dx. Furthermore, MCDs are only space-filling in one dimensional

projections and there is no guarantee that they are space-filling in higher dimensional

projections. Another space-filling design with both types of factors is Fast Flexible

Filling design (Leviketz and Jones 2015) which is available in JMP 12. Leviketz and

Jones (2015) used clustering-based algorithm to find the FFF designs. To generate a

design with only quantitative factors, first, they randomly sample a large number of

points on X and then select the n points with hierarchical clustering. However, we are

not aware of how the design algorithm is extended to incorporate qualitative factors

as well. One apparent advantage of FFF designs is their generation speed; they can

be efficiently generated even for high dimensions, however, they do not possess special

design properties as SLHD and MCD.

In this chapter, we propose MaxPro designs for computer experiments involving

qualitative factors as well. Design criterion for MaxPro designs with quantitative fac-

tors is redeveloped to include qualitative factors. MaxPro designs generated according

to the extended criterion are space-filling for all projections. A general and efficient

construction method, which also uses OAs or full factorial designs, is developed.

3.2 Maximum Projection Designs with Quantitative and
Qualitative Factors

In computer experiments, often, primary objective is to fit an easy-to-evaluate

predictor to the output data. Gaussian process modeling, or kriging, is commonly

used for modeling the predictor (Sacks, Welch, Mitchell and Wynn 1989). In the
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classical framework with only quantitative factors, well known ordinary kriging model

is defined by,

Y (x) = µ+ Z(x), (36)

where µ is the overall mean and Z(x) is a Gaussian process (GP) with mean zero and

covariance function σ2R(·) (Santner, Williams and Notz 2003). Gaussian correlation

function is a popular choice for R(·) and it is given by

Rx(xi − xj) = exp{−
p∑
l=1

αl(xil − xjl)2}, (37)

where αl ∈ (0,∞) for l = 1, . . . , p.

The maximum entropy design (Shewry and Wynn, 1987) is one of the well known

design proposed for the class of Gaussian process models. Maximum entropy design

is given by

max
Dx

det(Rx(α)), (38)

where Rx(α) is the correlation matrix with ijth element Rx(xi − xj;α). Joseph et

al.(2015) showed that MaxPro designs minimize the expected sum of off-diagonal el-

ements of the correlation matrix for a non-informative prior distribution for α. They

also inferred that minimizing the expected sum of off-diagonal elements tend to max-

imize the lower bound on the determinant of the correlation matrix. Hence, MaxPro

designs are expected to perform well in terms of maximum entropy criterion which is

supported by simulation results in Joseph et al. (2015). This result leads the way to

the MaxPro including qualitative factors as well. To be more precise, a well-defined

prior on the correlation parameters can provide a space-filling design criterion with

quantitative and qualitative factors. The key to the development of this criterion is

the proper definition of the correlation function. Qian, Wu and Wu (2008) proposed

several correlation construction schemes along with a general framework for building

Gaussian process models with both types of factors. We assume exchangeable cor-

relation structure: correlation between two different levels of any qualitative factor

is equal which is also adopted by Joseph and Delaney (2007) and Qian, Wu and Wu

(2008). The correlation function for quantitative and qualitative factors is given by
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R(wi −wj;α,γ) = exp

{
−

p∑
l=1

αl(xil − xjl)2 −
q∑

k=1

γkI[zik 6= zjk]

}
, (39)

where wi = (xi
′
, zi

′
)
′
, αl ≥ 0 for l = 1, . . . , p, γk > 0 for k = 1, . . . , q, and I[zik 6= zjk]

is the indicator function that takes 1 if zik 6= zjk and 0 otherwise. In the context of

deterministic computer experiments, response is expected to be a smooth function

of the factors. Accordingly, we let each correlation parameter corresponding to the

quantitative or qualitative factors has exponential distribution as priors: αl ∼ exp(λx)

and γk ∼ exp(λz). Then, using Bayesian approach,

E{
n∑
i=1

∑
j 6=i

Rij} =
n∑
i=1

∑
j 6=i

λx
p∏p

l=1 {(xil − xjl)2 + λx}
λz

q∏q
k=1 {I(zik 6= zjk) + λz}

. (40)

Thus, we extend (34) and propose MaxPro criterion in generic form,

min
D

ψ(D) =
1(
n
2

) n∑
i=1

∑
j 6=i

1∏p
l=1 {(xil − xjl)2 + λx}

∏q
k=1 {I(zik 6= zjk) + λz}

. (41)

Proposition 1. For an n−run design with p quantitative factors and one qualitative

factor with t levels,

ψ(D) =
1

λz + 1

{
ψ(Dx) +

1

λz

(
m
2

)(
n
2

) t∑
i=1

ψ(Dx,i)

}

m = n/t where Dx,i is the sub-design of Dx corresponding to the level i, i = 1, . . . , t.

Proposition 1 shows that for a design with one qualitative factor is MaxPro cri-

terion has a similar for with SLHD criterion in (35) proposed by Ba et al. (2015).

For λz = (m − 1)/(n − 1), which is approximately equal to 1/t, MaxPro criterion is

equivalent to the SLHD MaxPro criterion. This relation shows that MaxPro design

tries to achieve good projections for the whole design and also for the sub-designs

corresponding to each level without forcing Latin hypercube structure.
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Before the experimentation, parameters λx and λz should be specified in (41). As

n distinct levels are preferred for each factor in Dx, we take λx = 0. On the other

hand, number of levels for a qualitative factor is mostly less than n, therefore, λz

should be greater than 0, otherwise ψ(D) = ∞ whenever zik = zjk for any k and

i 6= j. It is hard to put a value on λz in advance. Thus, we adopt Bayesian frame-

work for the selection of λz. By the definition in (39), correlation between zik and zjk,

R(zik − zjk) = exp {−γkI(zik 6= zjk)} takes two values: 1 if zik = zjk and exp {−γk}

otherwise. Let ρ = exp {−γk} and assume ρ v U(0, 1), then by change of variables

technique γk v exp(1) for all k = 1, . . . , q which gives λz = 1. After the selection

of the parameters λx = 0 and λz = 1, we propose maximum projection designs with

quantitative and qualitative factors with the criterion,

min
D

ψ(D) =
1(
n
2

) n∑
i=1

∑
j 6=i

1∏p
l=1 (xil − xjl)2

∏q
k=1{I(zik 6= zjk) + 1}

. (42)

Before discussing the construction algorithm we would like to explore the optimality

of Dz. For a simple computer experiment with one qualitative factor, we find that

optimal Dz is a balanced design with equal number of levels. Now, consider the

problem of finding the n-run and q-qualititative factor optimal design, where n =

L. In this case, the optimal design is the full factorial design. Design region for q

qualitative factors is a regular grid in q dimensions with L nodes where each node

represents a combination of levels across all factors. Since full factorial design has

a design point on every node of the regular grid; it evenly fills the design space,

therefore, it is space-filling. As optimal design should be balanced for each factor,

OAs perform well in (42) for the problem n < L. This result is due to OAs’ balanced

structure and good projection properties in all t dimensional projections, where t

is the strength of the OA. In other words, when an OA of strength t is projected

onto subspace of size t, it has equal number of design points from each possible level

combinations of the factors defining the subspace. Projected OA evenly covers the

regular grid defined by the subspace. Thus, every t dimensional projection of an OA

of strength t is space-filling. Observations on Dz are employed in finding the optimal
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MaxPro designs.

3.3 Optimal Design Construction Algorithm

Finding the optimal maximum projection design is a challenging task. Since xs are

continuous and zs are discrete, minimization of ψ(D) is a mixed integer nonlinear

programming problem which is very hard to solve. Moreover, number of variables

n(p + q) is very large. Therefore, direct optimization of ψ(D) is not a viable option

for finding the optimal design.

In computer experiments, a widely used optimization approach is to consider

the optimal design as a Latin hypercube design and then optimize the design with

exchange algorithms such as simulated annealing (Morris and Mitchell 1995) which

is also used by Joseph et al.(2015) for generating the MaxPro designs with only

quantitative factors. We adop the same strategy by using the findings on optimal Dz

in the initialization step.

Initial design is important for the success of exchange algorithms because a good

initial design mostly results in better designs in lower computation time. We initialize

Dx with MaxProLHD and take Dz as an OA or a full factorial design if it exists,

otherwise Dz is initialized with a balanced design. When Dz is an OA or a full

factorial design, optimal design is constructed with a row-exchange algorithm which

couples the rows of Dx and Dz such that ψ(D) is minimized. In row-exchange

algorithm, we fix Dz and in each iteration we generate a Dnew = (Dxnew ,Dz) where

Dxnew is obtained by exchanging two randomly selected rows of Dx. Next, we replace

D with Dnew, if Dnew is better than D in (42), otherwise we keep D. Algorithm

terminates after some stopping condition. In the second case, where there are no

readily available designs for Dz, we first improve a random balanced design with a

fast point-exchange algorithm and use the resulting design as the initial design forDz.

Point-exchange algorithm generates a new design by swapping two random elements of

a design column and keeps the new design as the best design if new design improves

(42) otherwise discards the new design. After initialization, D is optimized with

simulated annealing algorithm. Finally, in both cases, designs are further improved
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to find locally optimal MaxPro-OA and MaxPro designs. These designs are obtained

with an efficient derivative-based algorithm which is implemented using the gradient

of the objective function,

∂ψ(D)

∂xrs
=

2(
n
2

)∑
i 6=r

1∏p
l=1(xil − xrl)2

∏q
k=1 {I(zik 6= zjk) + 1}

1

(xis − xrs)
. (43)

As an example, 12-run MaxPro-OA is constructed for 2 quantitative and 2 qualitative

factors each with 2 levels. In Figure 37, distribution of qualitative factors are shown

on two dimensional projection of the quantitative factors. Although MaxPro designs

do not necessarily posses SLHD or MCD properties, MaxPro design shown in Figure

37 is an SLHD.

0 0.2 0.4 0.6 0.8 1

x1

x 2

0

0.2

0.4

0.6

0.8

1

z1: 0 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x1

x 2

z2: 0 1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(z1,z2):

x1

x 2

(0,0) (0,1)
(1,0) (1,1)

Figure 37: Projections of a 12-run MaxPro-OA

3.4 Numerical Results

In this section, we compare the performance of MaxPro designs with MCD, SLHD

and fast flexible filling (FFF) designs for two different cases:

Case 1: n = 25, p = 3 quantitative and q = 3 qualitative factors each with 5

levels

Case 2: n = 100, p = 5 quantitative and q = 5 qualitative factors each with 5

levels
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In case 1, an OA(25, 56) with 25 runs and six 5-level factors is used for constructing

an MCD. First three columns are used for qualitative factors and the last three

columns are transformed to a random LHD using the construction procedure for s-

level OAs with s2 runs proposed in Deng et al.(2015). However, in case 2, MCD is not

included in comparison; it cannot be constructed because there is no available OA.

FFF designs are constructed on JMP with 1000 random starts for both cases. Finally,

SLHDs are constructed using the R package SLHD (Ba 2015) with 1000 random starts.

Then, we determine the level combinations for each slice as follows. First, for both

cases, we consider each slice has 5 runs so that each slice has enough runs to achieve

space-fillingness. Thus, there are 5 and 20 slices for cases 1 and 2, respectively.

Originally, there is no defined scheme on selection of level combinations for each

slice. We determine the level combinations using maximin distance criterion. For

case 1, we optimize a 5-run 3-qualitative factor design by maximizing the minimum

Hamming distance between any two level combinations. For zi and zj, Hamming

distance is calculated with d̃(zi, zj) =
∑q

k=1 I(zik 6= zjk). In the last step, SLHDs are

constructed by randomly assigning level combinations to each slice. For generation of

MaxPro designs, in both cases, Dx is initialized with MaxProLHDs generated by the

R Package MaxPro (Ba and Joseph 2015). On the other hand, for the first case, Dz

is initialized with the same OA which is used for MCD. For the second case, as there

is no available OA, Dz is initialized with an improved balanced design. Next, initial

designs are optimizated with row-exhange algorithm for the first case and simulated

annealing algorithm for the second case. Finally, MaxPro-OA and MaxPro designs are

obtained with continuous optimization algorithm in the last step of the construction

algorithm.

3.4.1 Numerical Results for Case 1

Case 1 designs are first compared in two space-filling criteria: maximin and min-

imax distance. In order to incorporate index of the design, we use Mmk, maximin,

and mMk, minimax distance criteria defined by Joseph et al. (2015). For a design

with only quantitative factors, these measures are calculated for each projection of a
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given subdimension k, k = 1 . . . , p. Then the worst case of all possible k-dimensional

projections is compared. Mmk is given by

Mmk = min
r=1,...,(p

k)

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1

d2k
kr(xi,xj)

}−1/(2k)

,

where dkr(xi,xj) is the Euclidean distance between points xi and xj in the rth projec-

tion of dimension k. Since distance definitions of quantitative and qualitative factors

are not compatible, Mmk is separately defined and reported for quantitative and

qualitative parts of the design. Then,
∼

Mmk is defined as,

∼
Mmk= min

r=1,...,(q
k)

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1

d̃2k
kr(zi, zj) + 1

}−1/(2k)

,

where d̃kr(zi, zj) is the Hamming distance between points zi and zj in the rth projec-

tion of dimension k, k = 1, . . . , q. There may be some replications in some projections,

therefore, we add one to the denominator of
∼

Mmk to prevent it to become infinity.

Figure 38 shows the Mmk and
∼

Mmk measures. MaxPro-OA performs the best in

Mmk. Having OA for qualitative part of their designs, MaxPro-OA and MCD per-

form equally well and they are significantly better than SLHD and FFF designs in
∼

Mmk. Although MCD is not optimized with a space-filling criteria, it does better

than FFF in both criteria. SLHD also performs better FFF in Mmk, however, it

performs significantly worse in
∼

Mmk because it has many replications in each projec-

tion which significantly deteriorates the space-fillingness. Next, the minimax distance

measure, mMk is given by

mMk = max
r=1,...,(p

k)
max
x∈Xk

{
1

n

n∑
i=1

1

d2k
kr(x,xi)

}−1/(2k)

,

where Xk is the set of sample points used to find the approximate maximum weighted

distance between the design points and the design region. It consists of 3k factorial

design with levels {0, 0.5, 1} and 216-run Sobol sequence. Similarly, mMk measure is
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Figure 38: Mmk and M̃mk for case 1 designs (larger-the-better)

modified for qualitative factors and
∼

mMk is defined as

∼
mMk= max

r=1,...,(p
k)

max
z∈Zkr

{
1

n

n∑
i=1

1

d̃2k
kr(z, zi) + 1

}−1/(2k)

,

where Zkr is a full factorial design of the factors defined by the rth projection of

subdimension k. In case 1, Zkr is a 5k factorial design. These two measures plotted

in Figure 39. In both mMk and
∼

mMk, MaxPro-OA is superior to other designs. FFF

is the worst in mMk because it has big gaps in the design region. On the other hand,

MCD has comparable performance to SLHD and it has the best performance in
∼

mMk

as MaxPro-OA.

After comparing designs in space-filling criteria, we further assess the performance

of the designs in Gaussian process modeling criteria. As discussed earlier maximum

entropy design maximizes the determinant |R(α,γ)|, where R(α,γ) is the correlation

matrix with (i, j) element is R(wi − wj;α,γ). For a subdimension k, designs are

compared in minimum correlation matrix determinant, minr log |Rk,r(α,γ)|, where

Rk,r is the rth projection. In order to compare designs in maximum entropy criterion

we need to set the correlation parameters α and γ. The mean of prior for qualitative
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Figure 39: mMk and m̃Mk for case 1 designs (smaller-the-better)

factors being equal to 1, as a reasonable choice, correlation parameter γl is set to 1

for l = 1, . . . , q. In all reason, first choice for αl should also be 1 for l = 1, . . . , p,

however, this creates a large discrepancy between the distance values of qualitative

factors and quantitative factors in correlation function (39). Consequently, assuming

equal values αl and γl gives more importance to qualitative factors. In order to

balance the importance of the factors, we take αl = 3 and αl = 4 for the first and

second cases, respectively. Minimum log-determinants of the designs are plotted in 40.

As seen in Figure 40, MaxPro-OA outperforms other designs. MCD performs better

than SLHD and FFF designs. SLHD performs bad in projection dimensions 2 and 3

since in these dimensions projections with only qualitative factors have significantly

small determinant values because of the replications.

Ordinary kriging model for a computer experiment with both types of factors is

given by,

Y (w) = µ(α,γ) + Z(w), (44)

where wi = (xi
′
, zi

′
)
′
, µ is the overall mean and Z(w) is a GP with mean zero and

covariance function σ2R(·). The ordinary kriging predictior is

ŷ(w) = µ̂(α,γ) + r(w;α,γ)′R−1(α,γ){y − µ̂(α,γ)1n},
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Figure 40: Minimum log-determinant for case 1 designs (larger-the-better)

where µ̂(α,γ) = 1′nR
−1(α,γ)y/1′nR

−1(α,γ)1n, r(w;α,γ) is a vector of length n

with ith element R(w −wi;α,γ), y = (y1, . . . , yn)′ is the experimental data, and 1n

is a vector of 1’s having length n. Prediction is done at the optimal values of (α,γ)

which are found by minimizing the negative log-likelihood (Santner, Williams and

Notz 2003 pp. 66),

log |R(α,γ)|+ n log σ̂2(α,γ)

with respect to (α,γ), where σ̂2(α,γ) = {y−µ̂(α,γ)1n}′R−1(α,γ){y−µ̂(α,γ)1n}/n.

Usually, an iterative optimization algorithm is used and it requires the evaluation of

R−1(α,γ) for hundreds of times. For some values of (α,γ), computation of R(α,γ)

can be cumbersome and unstable, therefore, a design which avoids this problem for

all values of (α,γ) is preferable. Condition number of a matrix is a commonly used

criterion for assessing the instability of its inverse. Maximum condition numbers for

each projection dimension are plotted in Figure 41. MaxPro-OA design is the best in

all projection dimensions. SLHD and FFF designs are the worst performers in this
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criterion.
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Figure 41: Maximum condition number for case 1 designs (smaller-the-better)

Our last Gaussian process modeling criterion is the maximum prediction variance

in the design space. The prediction variance for ordinary kriging is proportional to,

1− r(w;α,γ)′R−1(α,γ)r(w;α,γ) +
{1− r(w;α,γ)′R−1(α,γ)1n}2

1′nR
−1(α,γ)1n

.

For a given projection, the maximum prediction variance is approximated by merging

the set of points which are used for approximation of minimax measure for quantita-

tive and qualitative parts of the designs. For a given subdimension k, 5k full facto-

rial design for qualitative factors is replicated to match the size of set of points for

quantitative factors. Maximum prediction variances are plotted in Figure 42 where

MaxPro-OA is the winner.
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Figure 42: Maximum prediction variance for case 1 designs (smaller-the-better)

3.4.2 Numerical Results for Case 2

In this section, MaxPro design, SLHD and FFF design are compared in a bigger

design setting: 100-runs with 5 quantitative and qualitative factors where each qual-

itative factor has 5 levels. First, Figure 43 shows the Mmk and
∼

Mmk measures for

the designs. SLHD has the highest Mmk for the full design since it behaves like a

maximin Latin hypercube design, whereas, MaxPro design is better than SLHD and

FFF design in lower dimensional projections. When we compare designs in
∼

Mmk, we

see that MaxPro design has the best performance. On the other hand, performances

of SLHD and FFF design deteriorate as projection dimension increases. Next, de-

signs are compared in minimax measures in Figure 44. MaxPro design and SLHD

have comparable performance in mMk, whereas, FFF design is significantly worse

than others. On the other hand, MaxPro design is uniformly better than SLHD and

FFF design in
∼

mMk.
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Figure 43: Mmk and M̃mk for case 2 designs (larger-the-better)
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Figure 44: mMk and m̃Mk for case 2 designs (smaller-the-better)

Now, case 2 designs are compared in Gaussian process modeling criteria. Max-

imum entropy measure is plotted in Figure 45. As in case 1, MaxPro design is the

winner in maximum entropy criterion. Similar to case 1, SLHD underperforms in

lower dimensional projections from 2 to 5 due to the replications in the qualitative

part of the design. Figure 46 shows the maximum condition numbers for all subdi-

mensions. MaxPro design has the smallest maximum condition numbers for every
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Figure 45: Minimum log-determinant for case 2 designs (larger-the-better)

projection dimension. Finally, maximum prediction variances are plotted in Figure

47 where MaxPro design is superior to SLHD and FFF design.
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Figure 46: Maximum condition number for case 2 designs (smaller-the-better)
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3.5 Example: Solid End Milling Process

We illustrate the performance of MaxPro designs using a simulation conducted for

optimization of a 5-axis solid end milling process. End milling is a widely used cut-

ting process in aerospace industry. Precise and fast end milling of aerospace structure

components is of great importance. We will optimize a solid end milling process sim-

ulation of a component belonging to an aerospace structure. Six factors are selected

for the optimization. Four of the factors are quantitative and they are all related to

the cutting tool: rake angle (x1), helix angle (x2), relief angle (x3) and corner radius

(x4). Cutting tool parameters are shown in Figure 48. Two qualitative factors are

titanium alloy (z1) and tool path optimization type (z2). Six different titanium alloys,

which are commonly used in aerospace in industry (Donachie 2000, 2nd Chapter), and

four available optimization types are considered for the optimization. Qualitative fac-

tors and their levels are given in Table 4. The simulation is done on the Production

Module of Third Wave Systems (Minneapolis, MN). One output of the end milling

process simulation and the workpiece is shown in Figure 49.

Figure 48: End milling cutting tool parameters

In cutting processes, a commonly used objective in process optimization is to maxi-

mize the tool life and prevent the tool breakages by lowering the maximum tangential
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Table 4: Qualitative Factors and Levels

Level Titanium Alloy Tool Path Optimization

0 Ti-6AI-4V None

1 Ti-6AI-2Sn-4Zr-6Mo In-Cut

2 Ti-6AI-2Sn-4Zr-2Mo Air-Cut

3 Ti-6AI-6V-2Sn Both

4 Ti-4AI-4Mo-2Sn

5 Ti-10V-2Fe-3AI

Figure 49: Solid end milling process simulation on the Production Module: Work-
piece and the tangential force output

force. Thus, the objective of the experiment is to find factor settings which mini-

mizes the maximum tangential force. Ranges for quantitative factors are selected as

follows: x1 ∈ [3.5, 6.5] deg, x2 ∈ [21, 39] deg, x3 ∈ [7, 13] deg, x4 ∈ [0.063, 0.117] mm.

A 24-run MaxPro-OA is generated where Dz is a full factorial design. We fit an ordi-

nary kriging model to the data. The correlation parameters are estimated efficiently

as MaxPro design provides well-conditioned correlation matrix. For this simulation

data, correlation parameters are estimated as α̂ = (0.009, 1.588, 0.001, 0.068)′ and

γ̂ = (0.724, 0.029)′. In order to provide an insight about the model, main effects for

six factors are derived using functional analysis of variance decomposition. Main ef-

fects of the four quantitative factors are given in Figure 50 and two qualitative factors

are given in Figure 51. We see that helix angle (x2) and titanium alloy type (z1) have

the largest effects. Next, optimal factor settings minimizing the maximum tangential
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Figure 50: Main effects of the four quantitative factors

force are found as x∗1 = 0, x∗2 = 1, x∗3 = 1, x∗4 = 1, z∗1 = 0, and z∗2 = 1. The predicted

maximum tangential force at the optimal setting is 11.57 N and the actual maximum

tangential force is 11.45 N. The model is also validated by running Production Module

at 40 settings. Fixing z1 = 0 and z2 = 1, quantitative factor settings are determined

with a 40-run uniform design generated using JMP software. Coefficient of variation

of the root mean square error, (RMSE/ȳ), where ȳ is the mean of the maximum tan-

gential forces, is calculated as 0.47%. Therefore, the ordinary kriging predictor is a

very accurate metamodel for the actual computer model. Another alternative design

for modeling is the SLHD. However, a large SLHD needs to be generated since there

are 24 slices corresponding to the total level combinations of the two qualitative fac-

tors. If we reasonably consider 10 runs for each slice, then it forms a 240-run SLHD

which is hard to generate and model. On the other hand, MaxPro design with much

less number of runs ensures accurate and efficient modeling.
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3.6 Sequential Construction of Maximum Projection De-
signs

In many industries, improvement of a product/process with lower financial cost

and in minimum time is crucial to remain competitive. Thus, design and modeling

of computer experiments should be efficient. In general, computer experiments are

modeled with a nominal design size. A common approach in practice is to take

n = 10(p + q). However, this one-shot-approach has two main drawbacks. First, the

design can be large such that prediction accuracy of the model is over the requirements

which means waste of resources and unnecessary increase in cost. Second, the design

can be small to achieve a model with desired prediction capability. A solution for these

problems is to construct designs sequentially and stop at the design which provides

a model with desired prediction accuracy.

Maximum projection designs do not have any restrictions in their construction,

therefore, they can be constructed sequentially which is not possible for SLHDs or

70



MCDs. In sequential construction of designs, a commonly used approach is to start

with an initial design or a point and add points one-at-a-time or in batches according

to a criterion. Some of the proposed sequential designs may also have desired prop-

erties. Recently, Xu et al. (2015) proposed a sequential construction approach which

adds design points in batches and preserves Latin hypercube structure at any stage of

the construction. Similarly, Duan et al.(2015) introduced an batch sequential design

algorithm using sliced full factorial-based Latin hypercube designs which is also an

LHD in every step of the design and has good projection properties at some stages.

In general, next design points are selected adaptively using the data generated

until that time. However, in our approach we add the next point based on a distance-

based criterion. We start with an initial point and add points one-at-a-time according

to the criterion. Candidate sets are generally employed for selecting the next point to

add to the design. Usually, a large ensemble (size > 10000) of quasi-random sequences

is used as a candidate set. However, using large size of quasi-random sequences can

be time-consuming and may not quarantee a competent design for maximum af-

fordable design size N which is dictated by our budget. An intelligent alternative

is to use an N -run optimal design as the candidate set. By doing so sequential

construction is faster and guarantees that final design is an optimal design. Let

D = {(x1
′
, z1

′
)
′
, . . . (xN

′
, zN

′
)
′} be an N -run (p + q)-factor MaxPro design. Points

of D constitutes a candidate set of size N which is large enough to obtain good de-

signs through the sequential construction. Starting with a random point inD, we add

N−1 points one-at-a-time. Suppose that we have generated (x1
′
, z1

′
)
′
, . . . (xn

′
, zn

′
)
′
,

then we can find (xn+1
′
, zn+1

′
)
′

as

(xn+1
′
, zn+1

′
)
′
= argmin

(x′ ,z′ )′∈D

n∑
i=1

1∏p
l=1 (xl − xil)2

∏q
k=1 {I(zk 6= zik) + 1}

. (45)

After adding N − 1 points to a random point, we obtain an N -run design whose first

n runs is the n-run sequential design where n = 1, . . . , N . Although each starting

point reaches optimal design at the end of the algorithm, some of them may generate

bad designs for intermediate design sizes. In practice, N experiments can be afforded,

71



however, it is desired to choose the starting point which achieves the model require-

ments with the smallest design size. A naive approach for finding the best starting

point is to find the smallest design size for each starting point and then get the best

starting point as the one with minimum smallest design size. However, this approach

requires fitting many models, and so, it can be very computationally intensive. As

an alternative approach, we can use a nominal design size, n̄, and choose the starting

point with the best n̄-run sequential design. Then, the best starting point can be

found as

(x
′

∗, z
′

∗)
′
= argmin

(x′ ,z′ )′∈D
ψ(Dn̄(x, z)), (46)

where Dn̄(x, z) is the n̄-run sequential design generated with the starting point

(x
′
, z
′
)
′
. ThenD∗N andD∗n̄ are the best sequential N -run and n̄-run designs generated

with (x
′
∗, z

′
∗)
′
.

Optimality criterion (46) ensures that we obtain a n̄-run sequential closest to

the optimal n̄-run MaxPro design. Design size, n̄ can be considered as the size of

the nominal design use we use in one shot approach, thus, n̄ = 10(p + q) can be

a reasonable choice. We expect a well-constructed n̄-run design will generate good

designs until the end of the sequential construction. Therefore, n̄ should be large

enough to reach a well-located and robust design so that it will perform good in the

rest of the construction and it should be small enough to not to miss good designs

for moderate design sizes. Proposed methodology is demonstrated on two examples.

3.6.1 Example 1

Suppose that we want to construct a sequential design with p = 2 quantitative

factors and q = 1 qualitative factor with 3 levels. An N = 90-run optimal MaxPro-

OA design is generated as the candidate set and n̄ is taken as 30. Sequential designs

are constructed with (45) and the best sequential design is determined using (46).

Figure 52 shows the MaxPro criterion values of the optimal n̄ and N -run MaxPro

designs andthe best sequential design and the range of MaxPro criterion values of all

designs throughout the sequential construction. As seen in Figure 52, after n̄ best

sequential design continues to have small criterion values until N .
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Figure 53: Two dimensional projections of the best design for n = 30, 60 and 90

Two dimensional projections of the best design onto the quantitative factors are

plotted in Figure 53 for n = 30, 60 and 90. Projections seem space-filling for each

level of the qualitative factors in Figure 53. In order to understand space-fillingness
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of sub-designs corresponding to each level, we plot the minimum distances of the sub-

designs for n = 2, . . . , N in Figure 54. It is seen in Figure 54 that none of the levels

are dominating and they are similarly space-filling after n = 20 with respect to the

minimum distance criterion. In the next example, we apply sequential construction

methodology on the optimization of solid end milling process studied in section 3.5.
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Figure 54: Minimum distances of the design points corresponding to each level of
the qualitative factor

3.6.2 Example 2

Although we modeled solid end milling process with a 24-run MaxPro-OA in sec-

tion 3.5, our budget allows us to conduct 60 simulations. Thus, sequential construc-

tion methodology is performed with N = 60 and n̄ = 24. MaxPro criterion values

for the best design and minimum and maximum criterion values for n = 2, . . . , 60 are

plotted in Figure 55. Again, the best starting point yields good designs at n̄ = 24 and
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forward in MaxPro criterion. In optimization of the solid end milling process, we want

to build a competent kriging model with the lowest number of simulations. There-

fore, we sequentially fit ordinary kriging models and obtain the best model as the first

model with RMSECV/ȳ value smaller than or equal to 1%, where RMSCEV is root

mean square error of cross validation. Figure 56 shows the percentage RMSECV/ȳ

for the models built using sequential designs with n = 12 to 24. According to Figure

56, the first model which meets the prediction criterion is achieved at n = 20. Thus,

using sequential design methodology we obtain a good model with lesser number of

runs than the 24-run design we used in section 3.5. As a result, using sequential

MaxPro designs computer simulations can be modeled with an economical run size.

Proposed methodology can be further improved by incorporating the data in the

design criterion which enables efficient exploration of the response surface. We will

study this extension of the sequential design criterion in a future work.
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Figure 55: Example 2: Best sequential design and range of MaxPro criterion values
throughout the sequential construction, red crosses show the MaxPro criterion values
for the n̄ and N -run MaxPro designs
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3.7 Conclusions

In this chapter, we have proposed MaxPro designs for computer experiments in-

volving both quantitative and qualitative factors. Unlike SLHDs, MaxPro designs can

accommodate large number of qualitative factors with an economic run size. More-

over, construction of MaxPro designs is not restricted to a special design class which

is the case for MCDs. More importantly, MaxPro designs are generated with an op-

timality criterion which enables designs can be constructed for any run size, number

of quantitative factors and qualitative factors and number of levels for qualitative

factors. Although MaxPro design does not require a particular design structure, we

make use of OA and full factorial designs in the construction algorithm for obtaining

better designs. MaxPro designs have good space-filling properties in all subspaces

of the factors. We have shown their superiority in space-fillingness and Gaussian

76



process modeling with several simulations on different cases. Performance of Max-

Pro designs is also illustrated on a solid end milling process optimization using its

simulation. Finally, a fast sequential construction methodology is proposed for Max-

Pro designs. On a solid end milling process simulation, we demonstrated that the

computer simulations can be analyzed with minimum resources using the sequential

MaxPro designs.

3.8 Appendix

Proof.

ψ(D) =
1(
n
2

) n∑
i=1

∑
j 6=i

1∏p
l=1 {(xil − xjl)2 + λx}{I(zi 6= zj) + λz}

.

Let, for k 6= r, k, r = 1, ..., t and m = n/t

ψ(Dx,k,Dx,r) =
1

m2

m∑
i=1

m∑
j=1

1∏p
l=1 {(xil − xjl)2 + λx}

,

where Dx,k and Dx,r are the sub-designs of Dx corresponding to the qualitative

factor level k and r, respectively. Let C is the set with 2-combinations of the set

1, . . . , t.

ψ(D) =
1(
n
2

)
 m2

1 + λz

∑
(k,r)∈C

ψ(Dx,k,Dx,r) +

(
m
2

)
λz

t∑
i=1

ψ(Dx,i)

 .

ψ(D) =
1(

n
2

)
(1 + λz)

m2
∑

(k,r)∈C

ψ(Dx,k,Dx,r) +

(
m

2

) t∑
i=1

ψ(Dx,i) +

(
m
2

)
λz

t∑
i=1

ψ(Dx,i)

 .

ψ(D) =
1

(1 + λz)

{
ψ(Dx) +

1

λz

(
m
2

)(
n
2

) t∑
i=1

ψ(Dx,i)

}
.

♦
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