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SUMMARY

In the information age, many real-world applications such as biosurveillance, manufac-

turing systems, physical and computer experiments often involve data that are massive,

high-dimension or have complicated structures. In some cases it is cheap to collect large-

scale data, while in other cases it may be costly or time-consuming to collect them. In

either case, it is often non-trivial to extract information from these types of data to make

useful decisions.

This dissertation makes methodology contributions to three important subfields of statis-

tics: (i) Large-scale multi-stream quickest change detection, (ii) multichannel profile moni-

toring and (iii) global optimization of expensive functions. A common feature of the thesis

work is the use of shrinkage to the respective subfields to address the challenges of high-

dimensional or complicated data. However, since different subfields and applications have

different features and challenges, details of the shrinkage techniques vary with the subfield.

This dissertation consists of three chapters. In Chapter 1, we study the problem of

online monitoring large-scale data streams, which has many important applications from

biosurveillance and quality control to finance and security in modern information age. While

many classical quickest change detection methods can be extended from one-dimensional to

any K-dimensional, their performances are rather poor when monitoring large K of data

streams. This motives us to investigate the effects of dimensionality on the performance

of quickest change detection methods. We found out through theoretical analysis that the

classical quickest change detection methods often over-emphasize the first-order term of

the detection delays and overlook the second-order terms of the detection delays, where

the latter often increases linearly as a function of the dimension K. When K is large (e.g.,

hundreds), the second-order term of the detection delay will likely be comparable to the

first-order term, which implies that the nice first-order asymptotic optimality properties
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have little practical meaning for large K. We propose a novel approach to lessen the

dimensionality effects by introducing some shrinkage estimators of the unknown post-change

parameters. In addition, we also illustrate the challenge of Monte Carlo simulation of

the average run length to false alarm in the context of online monitoring large-scale data

streams. Most of the material in Chapter 1 was published in 2015 in IEEE Transactions on

Information Theory.

In Chapter 2, we consider the problem of monitoring multichannel profiles that has

important applications in manufacturing systems improvement. A concrete motivating ex-

ample of this work is from a forging process, in which multichannel load profiles measure

exerted forces in each column of the forging machine. While various methods have been

developed for univariate profile monitoring, they often cannot easily be extended to mul-

tichannel profiles. There are two main challenges when monitoring multichannel profiles.

The first one is that profiles are high-dimensional functional data with intrinsic inner- and

inter-channel correlations, and the second, probably more fundamental, challenge is that

the functional structure of multi-channel profiles might change over time, and thus the di-

mension reduction method should be capable of taking into account the potential unknown

change. We develop a novel thresholded multivariate principal component analysis (PCA)

method for multi-channel profile monitoring. Our proposed method consists of two steps

of dimension reduction: It first applies the functional PCA to extract a reasonable large

number of features under the in-control state, and then uses the shrinkage techniques to

functional PCAs to further select significant features capturing profile information in the

out-of-control state. The choice of tuning parameter for soft-thresholding is provided based

on asymptotic analysis, and extensive simulation studies are conducted to illustrate the

efficacy of our proposed methodology.

In Chapter 3, we study the problem of global optimization of expensive functions. In

modern physical and computer experiments, one often deals with expensive functions in

the sense that it may take days or months to evaluate their values at a single input setting.

An important problem is how to choose an appropriate setting of the input variables so as

to optimize the output. To tackle this question, our proposed method involves two main

xii



components: one is the construction of a surrogate model to approximate the true function

with much cheaper computation, and the other is the determination of a new input setting

for function evaluation based on the surrogate model. After iteratively updating these two

components, we optimize the latest surrogate model, which yields the approximation to the

optima of the original expensive function. To be specific, we propose an adaptive Radial

Basis Function (RBF) based global optimization framework via uncertainty quantification.

For the surrogate model, we construct an adaptive RBF-based normal mixture Bayesian

surrogate model, where the parameters in the RBFs can be adaptively updated each time a

new point is explored. It is crucial to employ the normal mixture Bayesian structure which

leads to a more stable surrogate model and avoid over-fitting. Its use can be regarded as

a ridge-type regression estimate of model coefficients. For the selection of input setting,

we propose a novel criterion to assess the input setting based on the surrogate model, and

we choose the inputs that maximize the criterion. Our criterion incorporates the expected

improvement (EI) of the function prediction to effectively identify promising areas for the

global optima, and its uncertainties to efficiently explore the unknown regions. We conduct

numerical studies with standard test functions to understand and compare the empirical

performance of our proposed method with a prominent existing method.

xiii



CHAPTER I

LARGE-SCALE MULTI-STREAM QUICKEST CHANGE

DETECTION VIA SHRINKAGE POST-CHANGE ESTIMATION

1.1 Introduction

The problem of online monitoring large-scale data streams has many important applications

from biosurveillance and quality control to finance and security in modern information age

when the rapid development of sensing technology allows one to generate large-scale real-

time streaming data. In many scenarios, one is often interested in the early detection of

a “trigger” event when “sensors” are deployed to monitor the changing environments over

time and space, see Lawson and Kleinman [32]. From the theoretical or methodological

viewpoint, this is a quickest change detection or sequential change-point detection problem,

where the case of monitoring K = 1 data stream has been extensively studied in the past

several decades, see the books by Basseville and Nikiforov [3] and Poor and Hadjiliadis [44]

for the review. Also see Page [39], Shiryaev [52], Lorden [33], Pollak [42], Moustakides [37],

Lai [31] for some early classical contributions. In addition, the case of online monitoring a

not so large number K (e.g., tens) of data streams has also been studied in the literature,

see Lorden and Pollak [34], Tartakovsky et al. [54], Zamba and Hawkins [59], Veeravalli

and Bangerjee [55].

Unfortunately research on the problem of online monitoring a large number K (e.g.,

hundreds or more) of data streams is rather limited, see Siegmund [53] and the discussions

therein. While many classical quickest change detection methods are based on likelihood

ratio statistics, and can be extended from one-dimensional to K-dimensional, their per-

formances are rather poor when monitoring a large number K of data streams, despite

holding the so-called first-order asymptotic optimality properties for any fixed dimensional

K in the sense of asymptotically minimizing the detection delay for each and every possible

post-change hypothesis as the average run length (ARL) to false alarm constraint goes to
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∞. The main reason is that these classical quickest change detection methods often over-

emphasize the first-order performance for each and every possible post-change hypothesis

in the K-dimensional space, and thus the price they paid is on the second-order terms of

the detection delays which are often linearly increasing as a function of K. This is not an

issue when the number K of data streams is small, but it has a severe effect when K is

large (e.g., hundreds): under a reasonable practical setting, the second-order term of the

detection delay will likely be comparable to the first-order term, which implies that the

nice first-order asymptotic optimality properties have little practical meaning for large K!

This led Mei [35] to raise an open problem whether one can develop new methods that can

reduce the coefficient in the second-order term of the detection delay from K to a smaller

number to yield quicker detection.

The primary objective of this paper is to tackle this open problem, and propose a

systematic approach to develop efficient methodologies for online monitoring a large number

K of independent data streams. Our proposed methods do not aim for each and every

possible post-change hypothesis in the K-dimensional space, and the main assumption

we make is that for each individual local data stream, either there are no local changes,

or there is a local change that is larger than some pre-specified lower bounds. The key

novelty of our proposed methodologies is to apply shrinkage estimators to incorporate such

prior knowledge of the post-change hypothesis to develop efficient quickest change detection

methodologies. To illustrate our main ideas, we will focus on the problem of monitoring K

independent normal data streams with possible changes in the means of some data streams,

and two different scenarios will be investigated: one is the sparse post-change case when the

unknown number of affected data streams is much smaller than the total number of data

streams, and the other is when all local data streams are affected simultaneously although

not necessarily identically, i.e., different local data streams may have different unknown post-

change mean parameters. It is useful to think that for a given total information for changing

event, the former scenario corresponds to the case of a few “large” local changes, whereas

the latter scenario corresponds to the case of “relatively small” local changes in all data

streams. Given the same total information of changing event, the classical quickest change

2



detection methods will have similar (first-order) performance under these two scenarios,

although intuitively one may feel that these two scenarios should be different. Our proposed

methods combine the hard thresholding estimators with the linear shrinkage estimators

to simultaneously estimate unknown post-change mean parameters, and will indeed show

that these two scenarios should be treated differently. In the process of investigating the

properties of the proposed methods, we also demonstrate the challenge of Monte Carlo

simulation of the average run length to false alarm for large dimensional K due to the curse

of dimensionality, which seems to be overlooked in the quickest change detection literature.

Note that the usefulness of shrinkage or thresholding in high-dimensional data is well-

known in the modern off-line statistical research since the pioneering work of James and

Stein [23], also see Candés [8] and references therein. However, the application of shrinkage

or thresholding to quickest change detection is rather limited. Unlike other off-line works

that deal with high-dimensional statistics, the asymptotic analysis in this paper fixes the

dimension K (or the number of data streams) as the ARL to false alarm is taken to infinity.

Our aim is on the development of asymptotic results that are useful for the practical setting,

and thus our focuses are on the effects of the dimension K on the second-order term of the

detection delays, and on how shrinkage or thresholding can lessen such effects. As far as

we know, it remains an open problem in quickest change detection when the dimension K

is taken to infinity.

In the present paper, we will demonstrate how to combine shrinkage estimators with the

classical Shiryaev-Roberts procedure to yield an efficient global monitoring scheme. Note

that the Shiryaev-Roberts procedure is chosen as a demonstration here, since it allows us

to simplify our mathematical arguments by borrowing the results in Lorden and Pollak

[34] that develops the Shiryaev-Roberts-Robbins-Siegmund (SRRS) scheme based on the

method of moments (MOM) estimators or the maximum likelihood estimators (MLE) of

unknown post-change parameters. Besides the different estimators of unknown post-change

parameters, another main difference between our research and Lorden and Pollak [34] is that

we explicitly investigate the effect of the number of data streams on the detection delay

performance of the schemes. We want to emphasize that our use of shrinkage estimators can

3



easily be combined to other popular quickest change methods such as the CUSUM procedure

proposed by Page [39] from the methodology or algorithm point of view, although the

corresponding theoretical asymptotic analysis seems to be nontrivial. Hopefully our useful

of shrinkage estimation opens new directions to develop more efficient methodologies for

online monitoring of large-scale or high-dimensional data streams.

From the information theory viewpoint, the asymptotic performance of our proposed

shrinkage-based schemes is characterized by the new information number defined in (1.4.4)

below. In a simple setting for normal distributions when the ωk’s are the smallest meaning-

ful bounds on the post-change mean parameters µk’s, the new information number has the

form of 1
2

∑
k:|µk|>ωk

(µk)
2, whereas the classical Kullback-Leibler divergence is 1

2

∑K
k=1(µk)

2.

Thus our proposed new information number can be thought of as the shrinkage approxi-

mation of the classical Kullback-Leibler divergence between pre-change and post-change

distributions. In the context of monitoring large-scale data streams, we feel that our pro-

posed new information number in (1.4.4) provides more meaningful bounds than the classi-

cal Kullback-Leibler divergence, since it takes into account of the second-order term of the

detection delay performance and the spatial uncertainty associated with which local data

streams are affected.

We should acknowledge that Xie and Siegmund [57] studies a similar problem by taking

a semi-Bayesian approach under the assumption that the fraction of affected data streams

is known. Here we did not make such an assumption, and our formulation assumes that the

lower bound of the post-change parameters are given, i.e., we are only interested in detecting

certain large local changes for individual local data streams. In addition, Tartakovsky et

al. [54] and Mei [35] consider the special case when all post-change parameters for affected

data streams were identical or completely specified. Here our underlying assumption is

that the post-change parameters are unknown and not necessarily identical. In addition,

the problem of monitoring K > 1 data streams is also studied in the offline setting when

the full information is available during decision-making, e.g. Zhang, Siegmund, Ji and Li

[61], and Cho and Fryzlewicz [12]. Our setting here is online where we observe the data

sequentially over time, and we cannot use future observations to make current decision.

4



The remainder of this paper is organized as follows. In Section 1.2, we state the mathe-

matical formulation of monitoring K > 1 data streams and review shrinkage estimators in

offline point estimation that will be used later. In Section 1.3, we propose our shrinkage-

based monitoring scheme for the problem of online monitoring of independent normal data

streams with possible changes in some of the means. Section 1.4 develops asymptotic prop-

erties of our proposed monitoring schemes. In Section 1.5, we report numerical simulation

results to illustrate the usefulness of our proposed shrinkage-based schemes and the chal-

lenge of Monte Carlo simulation of the average run length to false alarm in the context of

online monitoring large-scale data streams. Section 1.6 contains some concluding remarks.

1.2 Problem Formulation and Background

1.2.1 Problem Formulation

Assume we are monitoringK independent normal data streams in a system. Denote byXk,n

the observation of the k-th data stream at time n for k = 1, ...,K and n = 1, 2, .... The Xk,n’s

are assumed to be independent not only over time within each data stream, but also among

different data streams. Initially, all Xk,n’s are independent and identically distributed (iid)

N(µ0, 1) random variables. At some unknown time ν ∈ {1, 2, 3, . . .}, an event may occur to

the system, and affect some data streams in the sense that the distribution of the Xk,n’s may

change to N(µk, 1) for n = ν, ν+1, ..., if the k-th data stream is affected for k = 1, . . . ,K. To

simplify our notation, here the post-change mean µk = µ0 implies that the corresponding

data stream is not affected, whereas µk ̸= µ0 corresponds to an affected data stream.

Following the literature of quickest change detection, we assume that the pre-change mean

µ0 is completely specified, and without loss of generality, we assume µ0 = 0, as otherwise

we can monitor Xk,n − µ0 instead of Xk,n’s themselves. Thus µ0 and 0 are interchangeable

below for normal distributions.

In this article, we tackle the case when the post-change means µk’s are only partially

specified, e.g., we do not know which data streams are affected and do not know the exact

values of the post-change means µk’s for affected data streams. In practical situations when

monitoring large-scale data streams, one is often interested in only detecting “big” local
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changes in individual data streams. This motivates us to assume that the post-change

hypothesis set for the post-change mean vector µ = (µ1, . . . , µK)T is given by

Ω = {µ ̸= 0 ∈ RK :

K∑
k=1

|µk|1{|µk| ≤ ωk} = 0}, (1.2.1)

where the lower bounds ωk’s are pre-specified positive constants that are the smallest dif-

ference meaningful for detection. The post-change hypothesis set Ω in (1.2.1) implies that

for any local data stream, either there are no local changes (i.e., µk = 0), or there is a big

local change (i.e., |µk| > ωk). In addition, µ ̸= 0 implies that at least one µk ̸= 0, i.e., at

least one data stream should be affected under the post-change hypothesis. Also note that

the post-change hypothesis set Ω in (1.2.1) assumes the true post-change mean µk ̸= ±ωk

for any k. This is a technical assumption to simplify our theoretical analysis, since other-

wise careful arguments are needed to take care of those data streams with |µk| = ωk > 0

which could be thought of as affected data streams only with probability 1/2. For any given

post-change mean vector µ, it is natural to define the number of affected data streams as

r =
∑K

k=1 1{µk ̸= 0} where 1{A} is the indicator function of event A. Clearly, when µ ∈ Ω

in (1.2.1), this becomes

r =
K∑
k=1

1{|µk| > ωk}, (1.2.2)

which will play an important role on the detection delay performance of quickest change

detection schemes in our context. Note that the main scheme in Xie and Siegmund [57]

assumes that the number of affected data streams, or the r value in (1.2.2), is known and

the lower bound ωk = 0 for all k. In this article, we assume that the lower bounds ωk’s in

(1.2.1) are known positive constants for all k = 1, . . . ,K. Two scenarios will be studied:

one is the sparse post-change hypothesis case when the value r in (1.2.2) is an unknown

constant that is much smaller than K, and the other is when r = K, i.e., when all data

streams are affected simultaneously.

To provide a more rigorous mathematical formulation, denote by Pµ,ν and Eµ,ν the

probability measure and expectation of {(Xk,1, Xk,2,...)}pk=1 when the change occurs at

time ν and the true post-change mean vector µ = (µ1, . . . , µp)
T . Denote by P∞ and E∞
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the same when no change occurs, i.e., the change-time ν = ∞. Loosely speaking, we want to

develop an online global monitoring scheme that can raise a true alarm as soon as possible

when the event occurs while controlling the global false alarm rate. Mathematically, an

online global monitoring scheme is defined as a stopping time T, which is an integer-valued

random variable. The event {T = n} represents that we will raise an alarm at time n at

the global level and declare that a change occurs somewhere in the first n time steps. Note

that the decision {T = n} is only based on the observations Xk,i’s up to time n.

The standard minimax formulation of quickest change detection problem can then be

formally stated as follows: Find a stopping time T that asymptotically minimizes the “worst-

case” detection delay proposed in Lorden [33]

Dµ(T ) = sup
1≤ν<∞

ess sup Eµ,ν(T − ν + 1|T ≥ ν,Fν−1)

for all possible post-change mean vectors µ ∈ Ω in (1.2.1) subject to the constraint on the

average run length (ARL) to false alarm

E∞(T ) ≥ A. (1.2.3)

Here Fν−1 denotes all information up to time ν − 1, and the constraint A > 0 in (1.2.3) is

pre-specified.

1.2.2 Review of Shrinkage Estimation

Let us now review some well-known fact regarding offline shrinkage estimation procedures,

which will be used in our proposed methodologies for online monitoring K > 1 data streams

in the next section. Suppose that there are K ≥ 3 independent normal random variables,

say, {Y1, . . . , YK}, where Yk ∼ N(µk, σ
2) with unknown mean µk and known variance σ2

for k = 1, . . . ,K. Suppose we are interested in estimating the K-dimensional mean vector

µ = (µ1, . . . , µK)T and want to find a good estimator µ̂ = (µ̂1, · · · , µ̂K)T under the mean

squared error (MSE) criterion MSE(µ̂) = E||µ̂− µ||2 = E
(∑K

k=1(µ̂k − µk)
2
)
.

It is trivial to see that the method of moment estimator (MOM) or maximum likelihood

estimator (MLE) of µk is µ̂MLE
k = Yk for k = 1, . . . ,K, since each µk corresponds to only

one normal variable Yk. A surprising result in a remarkable paper by James and Stein [23]
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is that there are uniformly better estimators than MOM or MLE in the sense of smaller

MSE when simultaneously estimating K ≥ 3 unknown parameters! Since then shrinkage

estimation has become a basic tool in the analysis of high-dimensional data, especially when

the object to estimate holds sparsity properties.

Many kinds of shrinkage estimators have been developed in the literature, see Candés [8]

for the review and more references. Below we will review two kinds of shrinkage estimators

that will be used in our proposed quickest change detection schemes. The first one is the

linear shrinkage estimator of µk’s defined by

µ̂k = aYk + (1− a)ζ

= aYk + b, (1.2.4)

where 0 ≤ a ≤ 1 is the shrinkage factor, ζ is a pre-specified real-valued constant (e.g.,

ζ = 0), and b = (1− a)ζ. This corresponds to shrinking the observed vector (Y1, · · · , YK)T

to the pre-specified vector (ζ, · · · , ζ)T as the shrinkage factor a goes to 0 (note that in a

more general setting, ζ can be different for different k). Observe that the linear shrinkage

estimator µ̂k in (1.2.4) has the common shrinkage factor a for all k, and intuitively this

works well when all true µk’s are nonzero, or better yet, have similar values. The second

kind of shrinkage estimator is the hard-thresholding estimator defined by

µ̂k =

 Yk if |Yk| ≥ ωk

µ0 = 0 if |Yk| < ωk

. (1.2.5)

Intuitively, the hard-thresholding estimator in (1.2.5) works when only a (small) subset of

µk’s are different from µ0 = 0. In such scenario, it makes more sense to shrinking non-

significant MOM or MLE estimators of µk’s directly to 0. Indeed, the optimality properties

of hard-thresholding estimators in (1.2.5) were established in the context of offline point

estimation, see, for example, Donoho and Johnstone [14].

1.3 Our Proposed Monitoring Schemes

In the problem of online monitoring of K independent normally distributed data streams

with possible mean changes, if we completely knew each and every post-change parameter

8



µk, then many classical quickest change detection procedures for monitoring one-dimensional

data stream can be easily adapted to develop global monitoring schemes, and one of them

is the well-known Shiryaev-Roberts procedure (Shiryaev [52] and Roberts [49]) that can be

defined as follows in our context. Let ΛSR
n,m be the likelihood ratio statistic of all observations

up to time n in the problem of testing H0 : no change against H1 : a change occurs at time

m(≤ n), i.e.,

ΛSR
n,m =

n∏
ℓ=m

K∏
k=1

fµk
(Xk,ℓ)

fµ0(Xk,ℓ)
, (1.3.1)

where fµ(·) is the probability density function of N(µ, 1). At time n, the Shiryaev-Roberts

procedure computes the global monitoring statistics

RSR
n =

n∑
m=1

ΛSR
n,m, (1.3.2)

which can be thought of as assigning a uniform prior on the potential change-point values

ν = m ∈ {1, 2, · · · , n}. Then the Shiryaev-Roberts procedure raises a global alarm at time

NSR
B = inf{n ≥ 1 : RSR

n ≥ B}, (1.3.3)

where the threshold B > 0 is chosen to satisfy the ARL to false alarm constraint in (1.2.3).

When the post-change parameters µk’s are unknown, one natural possibility is to re-

place them by their corresponding estimators from the observed data. In the quickest

change detection literature, it is standard to use MLE or MOM to estimate the unknown

post-change parameters, though there are generally two different approaches, depending on

whether or not to use the same estimate for all n−m+ 1 post-change parameters µk’s for

ℓ = m,m + 1, . . . , n in the likelihood ratio ΛSR
n,m in (1.3.1) at time n(≥ m). The first one

is to replace all n −m + 1 µk’s by the same estimator based on all observations from the

putative change-point time m to the current time step n, and thus it often leads to the

generalized likelihood ratio type statistic, see Xie and Siegmund [57].

The second approach, adopted by Lorden and Pollak [34], is to use different estimates

to the n−m+ 1 µk’s. To be more concrete, for each k = 1, . . . ,K, Lorden and Pollak [34]
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considers n−m+ 1 MLE/MOM estimates of µk :

µ̂k,m,ℓ = X̄k,m,ℓ (1.3.4)

=


Xk,m+...+Xk,ℓ−1

ℓ−m , if ℓ = m+ 1, . . . , n

µ0 = 0, if ℓ = m

and then proposes to plug these µ̂k,m,ℓ’s into (1.3.1)-(1.3.3) to yield the quickest change

detection scheme. It is important to note that at time ℓ, the estimate µ̂k,m,ℓ = X̄k,m,ℓ

in (1.3.4) only uses the observations, Xk,m, . . . , Xk,ℓ−1, to estimate µk at time ℓ, which

allows one to reserve the observation Xk,ℓ only for detection of a change. By doing

so, we keep two important properties of ΛSR
n,m in (1.3.1): (i) the recursive form ΛSR

n,m =

ΛSR
n−1,m

∏K
k=1[fµk

(Xk,n)/fµ0(Xk,n)], and (ii) the nice property of E∞(ΛSR
n,m) = 1 which leads

to a useful fact that RSR
n − n is a martingale under the pre-change hypothesis. Lorden and

Pollak [34] termed their scheme as Shiryaev-Roberts-Robbins-Siegmund (SRRS) scheme, as

similar idea has been used earlier in Robbins and Siegmund [48] for sequential hypothesis

testing problems. Below the scheme of Lorden and Pollak [34] will be called as the original

SRRS scheme, and will be denoted by Norig
B . It was shown in Lorden and Pollak [34] that the

original SRRS scheme Norig
B is first-order asymptotically optimal when monitoring K = 1

data stream as the ARL to false alarm constraint A in (1.2.3) goes to ∞. After a careful

analysis, it can also be shown that the first-order asymptotic optimality properties of Norig
B

can be extended for any fixed dimension K, but unfortunately the second-order term of the

detection delay of the original SRRS scheme Norig
B is a linear function of K. In other words,

the original SRRS scheme Norig
B of Lorden and Pollak [34] suffers the same problem of

many classical schemes mentioned in Mei [35] that the coefficient of the second-order term

of detection delay is of order K, and thus its first-order asymptotic optimality properties

can be meaningless in the practical setting of monitoring large-scale data streams.

In this paper, we propose to develop a global monitoring scheme by combining the

shrinkage estimators with the SRRS scheme of Lorden and Pollak [34]. Our motivation

is fueled by the fact that we need to estimate K post-change means µk’s simultaneously:

if we let Yk = µ̂k,m,ℓ in (1.3.4) for all k = 1, . . . ,K, then existing research in the offline

point estimation suggests that the shrinkage estimators in (1.2.4) or (1.2.5) should lead a
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better estimation of the true unknown post-change means µk’s, which might lead to a better

quickest change detection scheme.

Inspired by the linear shrinkage estimator in (1.2.4) and the hard thresholding estimator

in (1.2.5), we propose a systematic approach that performs the linear shrinkage for values of

MLE/MOM X̄k,m,ℓ’s in (1.3.4) that are not thresholded. Specifically, we propose to consider

the shrinkage estimators of the form

µ̂k,m,ℓ =


aX̄k,m,ℓ + b if ℓ = m+ 1, · · · , n, and

|X̄k,m,ℓ| ≥ ωk

c otherwise.

, (1.3.5)

where a, b, c are three constants to be specified later. Note that a = 1, b = 0 and c = 0

correspond to the hard-thresholding estimators in (1.2.5), which will be shown later to be

one of reasonable good choices under the post-change hypothesis Ω in (1.2.1).

Our proposed shrinkage-based SRRS schemes are defined by plugging the shrinkage/thresh-

olding estimators µ̂k,m,ℓ in (1.3.5) into (1.3.1)-(1.3.3). To be more concrete, define

Λn,m =

n∏
ℓ=m

p∏
k=1

fµ̂k,m,ℓ
(Xk,ℓ)

fµ0(Xk,ℓ)
(1.3.6)

= Λn−1,m

p∏
k=1

fµ̂k,m,n
(Xk,n)

fµ0(Xk,n)
for n > m,

where Λn,n = 1 for all n = 1, 2, . . . , and

Rn =

n∑
m=1

Λn,m, (1.3.7)

with R1 = 1. Then our proposed shrinkage-based SRRS scheme raises an alarm at the first

time

NB = inf{n ≥ 1 : Rn ≥ B}, (1.3.8)

where B > 0 is a pre-specified threshold.

Note that the original SRRS scheme in Lorden and Pollak [34] can be thought of as

a limiting case of our proposed shrinkage-based scheme NB in (1.3.8) when a = 1, b = 0

and ωk → 0 in (1.3.5). In addition, many arguments in the asymptotic analysis of the
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original SRRS scheme in Lorden and Pollak [34] for K = 1 dimension such as martingale

properties and non-linear renewal theory for overshoot analysis can be applied to the pro-

posed shrinkage-based scheme NB, subject to a careful analysis of the shrinkage estimators

in (1.3.5). Our major contribution is to introduce the shrinkage estimators to the quickest

change detection problem and demonstrate its usefulness to lessen the dimension effects

when the number K of data streams is large.

1.4 Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed shrinkage-based

SRRS scheme NB in (1.3.7) and (1.3.8) when the estimators µ̂k,m,ℓ’s of the post-change

means µk’s are the shrinkage estimators in (1.3.5). The following discussion is divided

into three subsections. The first two subsections address two properties of the proposed

shrinkage-based SRRS scheme under the general setting: the ARL to false alarm and de-

tection delay, respectively. The third subsection focuses on the suitable choice of tuning

parameters in our proposed shrinkage-based SRRS scheme.

1.4.1 The ARL to False Alarm

To derive the ARL to false alarm of the proposed shrinkage-based SRRS scheme NB in

(1.3.7) and (1.3.8), it is crucial to observe that its global monitoring statistic Rn is the

Shiryaev-Roberts-type statistics and thus Rn − n is a martingale under the pre-change

hypothesis. By the well-known Doob’s optional stopping time theorem (see Theorem 10.10

of Williams [56]), for the stopping time N = NB defined in (1.3.8), we have E∞(N) =

E∞(RN ) ≥ B, as RNB
≥ B by the definition of NB. Also see the proof of Theorem 4 of

Lorden and Pollak [34] for more detailed arguments. The following theorem summarizes

this result.

Theorem 1. Consider the proposed shrinkage-based SRRS scheme NB in (1.3.7) and

(1.3.8) with µ̂k,m,ℓ being the shrinkage estimators in (1.3.5). For any B > 0,

E∞(NB) ≥ B.
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While Theorem 1 is applicable regardless of the value of the dimension K (the number of

data streams), it is important to point out that the Monte Carlo simulation of E∞(NB) is a

different story due to the curse of dimensionality. If the dimension K is small, say K = 1 or

5, then a Monte Carlo simulation with runs of thousands will provide a reasonable estimate

of E∞(NB) for a moderately large threshold B, say B = 104. However, the number of

necessary runs is exponentially increasing as the dimension K increases, as the scheme

NB is highly skewed for large K, and the sample mean or median based on 105 or 106 of

realizations of NB can be a very poor estimate of E∞(NB).

The reason is that the likelihood ratio Λn,m(m < n) in (1.3.6) and the global monitoring

statistic Rn in (1.3.7) are typically highly skewed to 0 and 1 for large dimensional K,

respectively. To see this, consider the likelihood ratio Λn,m when µ̂k,m,ℓ is the MLE/MOM

estimates in (1.3.4). On the one hand, for a fixed n and any given 1 ≤ m ≤ n− 1, we have

E∞(Λn,m) = 1 and E∞(Rn) = n. On the other hand, for normal distributions,

E∞ log(Λn,m)

=
n∑

ℓ=m

K∑
k=1

E∞

(
E∞(µ̂k,m,ℓXk,ℓ −

1

2
(µ̂k,m,ℓ)

2
∣∣∣µ̂k,m,ℓ

)
= −1

2

n∑
ℓ=m

K∑
k=1

E∞(µ̂k,m,ℓ)
2 (as E∞(Xk,ℓ) = 0)

= −1

2

K∑
k=1

n∑
ℓ=m+1

1

ℓ−m
(as µ̂k,m,m = 0)

= −1

2
K(1 +

1

2
+ · · ·+ 1

n−m
).

Here the third equation uses the fact that when µ̂k,m,ℓ is the MLE/MOM estimates in (1.3.4),

it has a N(0, 1/(ℓ−m)) distribution. Now when K = 100, we have E∞ log(Λn,n−1) = −50,

implying that Λn,n−1 is concentrated around e−50 = 1.9×10−22, even though E∞(Λn,n−1) =

1. For all other m < n, the likelihood ratios Λn,m’s will be concentrated around an even

smaller value. Hence, for a fixed time n, when we simulate the global monitoring statistic

Rn of the original SRRS scheme, we will mostly likely observe Rn ≈ 1 (recall that Λn,n is

defined as a constant 1), although E∞(Rn) = n.
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The above argument can also be extended to the proposed SRRS scheme with the shrink-

age estimators in (1.3.5), and our numerical experiences seem to suggest that the Monte

Carlo estimate of E∞(NB) works poorly and is highly biased unless the linear shrinkage

factor a is of order O(1/
√
K). As mentioned in Rubinstein and Glynn [50], the curse of

dimensionality is one of the central topics in Monte Carlo simulation due to the degeneracy

properties of likelihood ratios, and the importance sampling technique does not help in the

high dimensional problem unless we can reduce it to an equivalent low-dimension prob-

lem. It remains an open problem how to overcome the curse of dimensionality to simulate

E∞(NB) effectively for our proposed SRRS scheme NB in the general context of monitoring

a large number K of data streams.

A challenging practical question is how to find the threshold B of the proposed shrinkage-

based SRRS scheme NB in (1.3.7) and (1.3.8), so that it satisfies the pre-specified ARL to

false alarm constraint A in (1.2.3). The good news is that Theorem 1 provides a theoretical

bound: a choice of B = A will guarantee that the proposed shrinkage-based SRRS scheme

NB satisfies the ARL to false alarm constraint in (1.2.3). For that reason, in our numerical

simulations below, we will set B = A and report the impact of shrinkage estimation on the

detection delays of the proposed shrinkage-based SRRS scheme NB.

1.4.2 Detection Delay

In this subsection, we derive the asymptotic expression of the detection delay of the pro-

posed shrinkage-based SRRS scheme NB in (1.3.7) and (1.3.8) under the setting when the

dimension K is fixed and the threshold B goes to ∞. In this subsection and only in this

subsection, we assume that a change occurs to the k-th data stream at time ν and the

true post-change mean of the k-th data stream is µk for all k = 1, . . . ,K. That is, the true

post-change mean vector µ = (µ1, . . . , µK)T . Recall that if µk = µ0 then no changes occur

to the k-th data streams.

To present the results on the detection delays, we need to first introduce some new

notation. For each k = 1, . . . ,K, denote by µ∗
k the limit of the shrinkage estimators µ̂k,m,ℓ

in (1.3.5) as ℓ → ∞, i.e., µ∗
k = limℓ→∞ µ̂k,m,ℓ under the post-change hypothesis. Note that
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the limit µ∗
k does not depend on the initial time m of the estimators, and for the shrinkage

estimator µ̂k,m,ℓ in (1.3.5), it is easy to see that

µ∗
k =

 aµk + b if |µk| > ωk

c if |µk| < ωk

, (1.4.1)

for each k = 1, . . . ,K. Here we purposely do not consider the cases of µk = ±ωk, as the

corresponding analysis is complicated since the corresponding limit µ∗
k can be either aµk+b

or c, either with probability 1/2. This is also the reason why the post-change hypothesis

set Ω in (1.2.1) makes a technical assumption that the post-change mean µk ̸= ±ωk so as

to simplify our theoretical analysis.

Denote the vector of the limits µ∗
k’s in (1.4.1) by µ∗ = (µ∗

1, . . . , µ
∗
K)T . It is important

to note that in Lorden and Pollak [34], or more generally in the quickest change detection

literature, the limit vector µ∗ is always the same as the true post-change mean vector µ.

Hence, the asymptotic analysis on the detection delay of the schemeNB in (1.3.7) and (1.3.8)

is closely related to the classical Shiryaev-Roberts procedureNSR
B that detects a change from

µ0 to the known post-change µ. However, for our proposed shrinkage estimators in (1.3.5),

it is no longer true that µ∗ = µ. Hence, we need to compare NB with the Shiryaev-Roberts

procedure that mis-specifies the post-change means, i.e., the one that is designed to detect

a change from µ0 to µ∗ but the true post-change mean vector is actually µ.

For that reason, we define a new information number

I(µ∗, µ0;µ) = Eµ

p∑
k=1

(
log

fµ∗
k
(Xk,ℓ)

fµ0(Xk,ℓ)

)
. (1.4.2)

When fµ0 and fµk
are normal distributions with common variance 1, it becomes

I(µ∗, µ0;µ) = −1

2

p∑
k=1

µ∗
k(µ

∗
k − 2µk). (1.4.3)

Plugging the limits µ∗
k’s in (1.4.1) directly into (1.4.3) yields that

I(µ∗, µ0;µ) = −1

2

∑
k:|µk|>ωk

(
aµk + b

)(
(a− 2)µk + b

)
−1

2

∑
k:|µk|<ωk

c(c− 2µk). (1.4.4)
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In the special case when (a, b, c) = (1, 0, 0), the new information number I(µ∗, µ0;µ) in

(1.4.4) has a simpler form:

I(µ∗, µ0;µ) =
1

2

∑
k:|µk|>ωk

(µk)
2. (1.4.5)

If we further let ωk go to 0, this becomes a more familiar form

Itot =
1

2

K∑
k=1

(µk)
2, (1.4.6)

where we change the notation to Itot to emphasize its special meaning as the Kullback-

Leibler divergence between the pre-change and post-change hypotheses. In Information

Theory and Statistics, the Kullback-Leibler divergence Itot in (1.4.6) has been regarded as

a measure to characterize the distance between pre-change and post-change distributions,

or equivalently, as a measure how difficulty it is to detect the change. However, in the

context of monitoring a large K number of data streams, Itot in (1.4.6) might no longer be

as informative as one thought, since it ignores the spatial uncertainty associated with which

subset of data streams are affected. A more meaningful measure that takes into account

such a spatial uncertainty will be I(µ∗, µ0;µ) in (1.4.5), or more generally those in (1.4.4) or

(1.4.2), which can be thought of as the shrinkage version of the Kullback-Leibler divergence

Itot in (1.4.6).

With the notation in (1.4.4)-(1.4.6), we are ready to present our main result on the

detection delays of the proposed shrinkage-based SRRS scheme NB in (1.3.7) and (1.3.8).

Theorem 2. Consider the proposed shrinkage-based SRRS scheme NB in (1.3.7) and

(1.3.8) with the estimators µ̂k,m,ℓ’s defined in (1.3.5). Assume that the information number

I(µ∗, µ0;µ) in (1.4.4) is positive. Then, as B → ∞, the detection delay of NB satisfies

Dµ(NB) ≤ logB

I(µ∗, µ0;µ)
+

ra2

2I(µ∗, µ0;µ)
×

× log
( logB

I(µ∗, µ0;µ)

)
+ o(r log logB), (1.4.7)

where r is defined in (1.2.2) and represents the true number of affected data streams with

“big” local changes.
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The detailed proof of this theorem will be provided later, and we would like to discuss

more on the theorem result first. Note that the original SRRS scheme Norig
B proposed in

Lorden and Pollak [34] can be thought of as the special case of our proposed scheme NB

in (1.3.7) and (1.3.8). By Theorems 1 and 2, or by extending the proof of Theorem 4 in

Lorden and Pollak [34] from one-dimensional to K-dimensional, we can establish the first-

order asymptotic optimality of the original SRRS scheme Norig
B in Lorden and Pollak [34]

as follows:

Corollary 1. As B → ∞, the original SRRS scheme Norig
B satisfies

Dµ(N
orig
B ) ≤ logB

Itot
+

K

2Itot
log

( logB
Itot

)
+o(K log logB), (1.4.8)

where Itot is defined in (1.4.6). Moreover, if we let B = A, then the original SRRS scheme

Norig
B is first-order asymptotically optimal in the sense of asymptotically minimizing the

detection delay Dµ(N
orig
B ) for each and every post-change mean vector µ subject to the false

alarm constraint in (1.2.3) when K is fixed and the constraint A in (1.2.3) goes to ∞.

Proof. For the original SRRS scheme Norig
B , the limit µ∗

k in (1.4.1) becomes the true post-

change mean µk itself, and thus it is clear that the original SRRS scheme Norig
B can be

thought of as the special case of our proposed scheme NB in (1.3.7) and (1.3.8) with a =

1, r = K and I(µ∗, µ0;µ) = Itot. Relation (1.4.8) then follows directly from Theorem 2. By

Theorem 1, the choice of B = A makes sure that the original SRRS scheme Norig
B satisfies

the false alarm constraint in (1.2.3). Then the asymptotic optimality properties of Norig
B

follows at once from a well-known lower bound on the detection delay of any scheme N

satisfying the false alarm constraint in (1.2.3): Dµ(N) ≥ (1 + o(1))(logA)/Itot, see Lorden

[33].

While Corollary 1 establishes the first-order asymptotic optimality property of the orig-

inal SRRS scheme Norig
B , it can be meaningless in practical setting when the dimension K

is large and B is only moderately large. This is because the second-order term (log log(B))

in the right-hand side of (1.4.8) has coefficient K and can be significant as compared to
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the first-order term log(B). A comparison of (1.4.7) and (1.4.8) shows that shrinkage esti-

mators impact the detection delays in two different places: one is the information number

I(µ∗, µ0;µ) in (1.4.4) on the first-order term, and the other is the factor ra2 in the second-

order term. These will allow us to illustrate in the next subsection how a suitable choice of

shrinkage estimators in (1.3.5) can reduce the overall detection delay.

Now let us turn back to the proof of Theorem 2.

Proof: To prove Theorem 2, the crucial technical tools are from those of Theorem 3 and

part (iii) of Theorem 4 in Lorden and Pollak [34], which deals with K = 1 data stream

without shrinkage. Below we will highlight the main difference with the dimension K ≥ 1

and shrinkage.

To simplify the arguments, let us consider the hypothesis testing version of the quickest

change detection problem, and assume that we want to test the null hypothesis H0 : no

change against the alternative hypothesis H1 : a change occurs exactly at time ν = 1. In

such a problem, the corresponding sequential hypothesis testing version of the proposed

scheme NB in (1.3.7) and (1.3.8) is defined by

τB = inf{n ≥ 1 : Λn ≥ B}, (1.4.9)

where the likelihood ratio

Λn =
n∏

ℓ=1

K∏
k=1

fµ̂k,ℓ
(Xk,ℓ)

f0(Xk,ℓ)
, (1.4.10)

and the estimate µ̂k,ℓ is a short-handed notation for µ̂k,m=1,ℓ in (1.3.5).

It is useful to mention that the quickest change detection scheme NB in (1.3.7) and

(1.3.8) is closely related to the sequential hypothesis testing procedure τB in (1.4.9) and

(1.4.10), and such a close relation was first discovered in Lorden [33]. More specifically, for

t = 1, 2, . . . , denote by τ
(t)
B the new stopping time that applies the sequential hypothesis

testing procedure τB to the data starting from time t, i.e., {(X1,i, . . . , XK,i)} for i = t, t +

1, . . . . Then the quickest change detection scheme NB = mint≥1{τ (t)B + t− 1}. This relation

allows one to show that the detection delay D(NB) is asymptotically equivalent to Eµ(τB)

under the alternative hypothesis H1 when µ = (µ1, · · · , µK)T is the true post-change mean
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vector. To emphasize the dependence on the true µ, denote by Pµ and Eµ the corresponding

probability mean and expectation under the alternative hypothesis H1. Then it suffices to

show that Eµ(τB) satisfies the right-hand side of (1.4.7).

Recall that in Section 1.4.2, we denote by µ∗
k the limit of µ̂k,ℓ under Pµ for each k =

1, . . . ,K as ℓ → ∞, and define µ∗ = (µ∗
1, . . . , µ

∗
K)T . A key step of the proof is to relate Λn

in (1.4.10) to the likelihood ratio Λ∗
n which mis-specify the true post change parameter µk

of the k-th data stream as µ∗
k for all k = 1, . . . ,K. Since log Λn = 0 when n = 1, we can

define the mis-specified log-likelihood ratio by

log Λ∗
n =

n∑
ℓ=2

K∑
k=1

log
fµ∗

k
(Xk,ℓ)

f0(Xk,ℓ)
.

for n ≥ 2 and log Λ∗
1 = 0. Then under Pµ, log Λ

∗
n is a random walk with iid increments that

have finite variance and mean I(µ∗, µ0;µ) in (1.4.3).

For the stopping time N = τB in (1.4.9), applying Wald’s equation to the random walk

log Λ∗
n yields

I(µ∗, µ0;µ)Eµ(N) = Eµ(log Λ
∗
N )

= Eµ(log ΛN ) +Eµ(log Λ
∗
N − log ΛN ).

For the notational convenience, let b = logB. Then the standard renewal theorem for over-

shoot analysis shows that Eµ(log ΛN ) = b + O(1) for N = τB in (1.4.9), where the O(1)

term is the over-shoot effect and may depend on the dimension K, see Theorem 3 of Lorden

and Pollak [34]. Thus

I(µ∗, µ0;µ)Eµ(N) = b+O(1) +Eµ(log Λ
∗
N − log ΛN ). (1.4.11)

Hence it suffices to investigate the property of

log Λ∗
N − log ΛN =

N∑
ℓ=2

K∑
k=1

log
fµ∗

k
(Xk,ℓ)

fµ̂k,ℓ
(Xk,ℓ)

when N = τB in (1.4.9) and Xk,ℓ ∼ N(µk, 1) under Pµ.

To do so, note that this involves the likelihood ratio of the form fµ∗
k
(Xk,ℓ)/fϕk

(Xk,ℓ)

when Xk,ℓ’s are iid N(µk, 1) for each k, and the ϕk’s may vary and converge to µ∗
k. Thus
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for any given ϕ = (ϕ1, . . . , ϕK), we need to define another information number:

I(µ∗, ϕ;µ) = Eµ

K∑
k=1

(
log

fµ∗
k
(Xk,ℓ)

fϕk
(Xk,ℓ)

)

=

K∑
k=1

(
(µ∗

k − ϕk)µk −
1

2
(µ∗

k)
2 +

1

2
(ϕk)

2
)

=
K∑
k=1

(
(µ∗

k − µk)∆k +
1

2
(∆k)

2
)

(1.4.12)

where ∆k = ϕk − µ∗
k for k = 1, . . . ,K. It is useful to compare this new information number

with I(µ∗, µ0;µ) in (1.4.2). On the one hand, they are defined similarly except that ϕk ≡

µ0 = 0 for all k. On the other hand, I(µ∗, µ0;µ) in (1.4.2) is related to the first-order term

of the detection delay of τB, whereas I(µ
∗, ϕ;µ) in (1.4.12) contributes to the second-order

term of the detection delay when we let ∆k = ϕk − µ∗
k go to 0 for all k.

For any given ℓ = 2, 3, . . . , let µ̂ℓ = (µ̂1,ℓ, . . . , µ̂K,ℓ)
T , and let I(µ∗, µ̂ℓ;µ) be the informa-

tion number defined in (1.4.12) when ϕ = µ̂ℓ. As in Lorden and Pollak [34], the application

of the martingale optional sampling theorem to log Λ∗
n − log Λn −

∑n
ℓ=2 I(µ

∗, µ̂ℓ;µ) yields

that

Eµ

(
log Λ∗

N − log ΛN

)
= Eµ

N∑
ℓ=2

I(µ∗, µ̂ℓ;µ). (1.4.13)

By (1.4.12), if we suppress the notation ℓ for the sake of convenience and let ∆k = µ̂k,ℓ−µ∗
k,

then

Eµ

(
I(µ∗, µ̂ℓ;µ)

)
=

K∑
k=1

(µ∗
k − µk)Eµ(∆k)+

+
1

2

K∑
k=1

Eµ(∆
2
k), (1.4.14)

and thus the proof of Theorem 2 relies on the analysis of Eµ(∆k) and Eµ(∆
2
k).

In a high-level description, we may expect that ∆k = µ̂k,ℓ−µ∗
k converges to 0 as ℓ → ∞.

Hence, for large ℓ, we should expect that Eµ(∆k) ≈ 0 becomes negligible, and the term

Eµ(∆
2
k) ≈ V ar(∆k) may or may not be significant. Indeed, for a given ℓ, we will show

below that as ℓ → ∞,

Eµ(∆k) = o(
1

(ℓ− 1)2
) (1.4.15)
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and

Eµ(∆
2
k) ∼

 a2/(ℓ− 1), if |µk| > ωk;

o( 1
(ℓ−1)2

), if |µk| < ωk.
(1.4.16)

Let us postpone the proof of (1.4.15) and (1.4.16) in a little bit, and apply them directly to

(1.4.14), we have

Eµ

(
I(µ∗, µ̂ℓ;µ)

)
=

K∑
k=1

o
( 1

(ℓ− 1)2

)
+

1

2

∑
k:|µk|>ωk

a2

ℓ− 1
+

+
1

2

∑
k:|µk|<ωk

o
( 1

(ℓ− 1)2
))

=
r

2

a2

ℓ− 1
+ o(

1

(ℓ− 1)2
)

as ℓ goes to ∞, where r is defined in (1.2.2). Plugging this into (1.4.13), we have

Eµ

(
log Λ∗

N − log ΛN

)
=

ra2

2
(1 + o(1))Eµ

N∑
ℓ=2

1

(ℓ− 1)
.

The summation of the above relation can then be estimated as in Theorem 3 of Lorden and

Pollak [34] by

(1 + o(1))

n0∑
ℓ=2

1

(ℓ− 1)
≈ (1 + o(1)) log(n0)

where n0 = the largest integer ≤ Eµ(N). Combining this with (1.4.11) yields

I(µ∗, µ0;µ)Eµ(N)

= b+O(1) +Eµ(log Λ
∗
N − log ΛN )

= b+O(1) + (1 + o(1))
ra2

2
log(Eµ(N)).

This gives an equation for Eµ(N), and thus Eµ(N) can be found by solving the equation of

the form x = α + β log(x) for large α > 0 and possibly large β > 0. Taking logarithms of

both sides yields

log(x) = log(α+ β log(x)) = logmax{α, β log(x)}+O(1)

= max{logα, log β}+ o(log x),
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where we use the fact that max(x, y) ≤ x + y ≤ 2max(x, y) for x > 0, y > 0 and O(1) =

O(log log x) = o(log x) for large x. Plugging this relation back to x = α + β log(x) yields

that

x = α+ (1 + o(1))βmax{logα, log β}.

Using the above arguments to derive Eµ(N) and absorbing all insignificant terms to the

o(1) term, we have

Eµ(N)

=

(
b+ (1 + o(1))

ra2

2
log

max{b, ra2/2}
I(µ∗, µ0;µ)

)
/I(µ∗, µ0;µ)

which becomes the right-hand side of (1.4.7) as b = log(B) goes to ∞. Thus the theorem

holds.

It remains to prove (1.4.15) and (1.4.16). The details can be simplified to the following

elementary probability question. Given two real numbers µ and ω > 0, and |µ| ̸= ω. Assume

Y = (Xk,1+ . . .+Xk,ℓ−1)/(ℓ−1) ∼ N(µ, σ2 = 1/(ℓ−1)), and define a new random variable

Y ∗ =

 aY + b, if |Y | ≥ ω;

c, if |Y | < ω.

and a new constant

µ∗ =

 aµ+ b, if |µ| > ω;

c, if |µ| < ω.

Let ∆ = Y ∗ − µ∗, and we want to show the asymptotic properties of E(∆) and E(∆2)

satisfy (1.4.15) and (1.4.16) as σ2 = 1
ℓ−1 → 0.

We need to consider three cases, depending on the relationship between µ and ±ω.

Following the traditional notation, let Z = (Y − µ)/σ ∼ N(0, 1), and denote by ϕ(z)

and Φ(z) for the probability density function (pdf) and cumulative distribution function

(cdf) of N(0, 1), respectively. Also define λ1 = (−ω − µ)/σ and λ2 = (ω − µ)/σ. Then

Y ∗ = (a(µ+ σZ) + b)(1{Z ≤ λ1}+ 1{Z ≥ λ2}) + c(1{λ1 ≤ Z ≤ λ2}).
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Let us focus on the case when µ > ω. In this case, we have µ∗ = aµ+ b and λ1 < λ2 →

−∞ as σ → 0. Hence,

∆ = Y ∗ − µ∗ = aσZ(1{Z ≤ λ1}+ 1{Z ≥ λ2})

+(c− aµ− b)1{λ1 < Z < λ2}.

Since λ1 < λ2 → −∞ as σ → 0, the event 1{Z ≥ λ2} is dominant whereas the other two

events are rare events. Thus we should expect that ∆ ≈ aσZ, and thus E(∆) ≈ o(σ4) and

E(∆2) ≈ V ar(aσZ) = a2σ2. To be more rigorous,

E(∆) =

∫ λ1

−∞
aσzϕ(z)dz +

+

∫ ∞

λ2

aσzϕ(z)dz +

∫ λ2

λ1

(c− aµ− b)ϕ(z)dz

= −aσϕ(|λ1|) + aσϕ(|λ2|) +

+(c− aµ− b)P(|λ2| ≤ Z ≤ |λ1|)

where we use the fact
∫ λ
−∞ zϕ(z)dz = −ϕ(|λ|) = −

∫∞
λ zϕ(z)dz when λ < 0. By the well-

known fact that x
1+x2ϕ(x) ≤ P(Z > x) ≤ ϕ(x)

x for all x ≥ 0, it is clear that E(∆) =

O(σϕ(|λ1|))+O(σϕ(|λ2|)) = o(σ4) as σ goes to 0, since O(ϕ(x/σ)) = O(exp(− x2

2σ2 )) = o(σ4)

for any x ̸= 0.

In addition,

E(∆2) =

∫ λ1

−∞
(aσz)2ϕ(z)dz +

+

∫ ∞

λ2

(aσz)2ϕ(z)dz +

∫ λ2

λ1

(c− aµ− b)2ϕ(z)dz

= a2σ2[P(Z > |λ1|) + |λ1|ϕ(|λ1|)]

+a2σ2[1−P(Z > |λ2|) + |λ2|ϕ(|λ2|)]

+(c− aµ− b)2P(|λ2| ≤ Z ≤ |λ1|)

= a2σ2 + o(σ4).

Here in the second equation, we use the fact that
∫ λ
−∞ z2ϕ(z)dz = P(Z > |λ|) + |λ|ϕ(|λ|) =

1 −
∫∞
λ z2ϕ(z)dz for λ < 0, which follows from the integration by parts for z2ϕ(z) =

−z(ϕ(z))
′
. Thus (1.4.15) and (1.4.16) hold for the case when µ > ω.
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The above arguments can be easily extend to the other cases when µ < −ω or −ω <

µ < ω. For instance, when −ω < µ < ω, we have µ∗ = c and λ1 → −∞, λ2 → ∞ as σ → 0.

Thus ∆ = Y ∗ − c = (a(µ + σZ) + b − c)(1{Z ≤ λ1) + 1{Z ≥ λ2}). Since the probabilities

of both events 1{Z ≤ −λ1} and 1{Z ≥ λ2} go to 0 exponentially as σ goes to 0, the above

arguments can show that both E(∆) and E(∆2) are negligible (order o(σ4)), completing

the proof of the theorem.

1.4.3 How to Choose Suitable Shrinkage Estimators?

In our proposed shrinkage-based SRRS scheme NB in (1.3.7) and (1.3.8) with the estima-

tors µ̂k,m,ℓ’s defined in (1.3.5), there are two sets of tuning parameters: one is the lower

bounds ωk’s and the other is the constant (a, b, c). The choices of the lower bounds ωk’s

are straightforward, as they are pre-specified in the post-change hypothesis set Ω in (1.2.1).

Below we will focus on the suitable choice of tuning parameter (a, b, c).

By Theorem 2, if we want to minimize the first-order term of the detection delay of the

proposed shrinkage-based scheme NB, then it suffices to maximize the information number

I(µ∗, µ0;µ) in (1.4.4). Hence, it is natural to define the “first-order” optimal choice of

(a, b, c) as the one that maximizes I(µ∗, µ0;µ) in (1.4.4). The following theorem provides the

corresponding “first-order” optimal choice of (a, b, c) among all possible shrinkage estimators

µ̂k,m,ℓ’s in (1.3.5):

Theorem 3. Under the post-change hypothesis set Ω in (1.2.1), the choice of a = 1, b =

0, c = 0 is “first-order” optimal for the proposed SRRS scheme among all possible shrinkage

estimators µ̂k,m,ℓ’s in (1.3.5).

Proof. It suffices to show that a = 1, b = 0, c = 0 maximizes I(µ∗, µ0;µ) in (1.4.4). Note

that the right-hand side of (1.4.4) is a quadratic function of a, b, c and thus the optimal

values can be found by taking derivatives of the right-hand side of (1.4.4) with respect to
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a, b, c. Following the definition of r in (1.2.2), define

D1 =
K∑
k=1

µk1{|µk| > ωk}

D2 =

K∑
k=1

µ2
k1{|µk| > ωk}

D3 =

K∑
k=1

µk1{|µk| < ωk}.

Then the derivatives of the right-hand side of (1.4.4) with respect to a, b, c can be rewritten

as

D1(a− 1) + rb = 0;

D2(a− 1) +D1b = 0;

(K − r)c−D3 = 0.

Clearly, under the post-change hypothesis Ω in (1.2.1), the post-change mean µk = 0

whenever |µk| ≤ ωk, implying that D3 = 0. Hence, (a∗, b∗, c∗) = (1, 0, 0) is the unique

optimal choice of (a, b, c) when (D1)
2 ̸= rD2 and r ̸= K, and is one of infinitely many

optimal solutions otherwise. Thus the theorem holds.

When a = 1, b = 0, c = 0, the shrinkage estimators µ̂k,m,ℓ’s in (1.3.5) become the hard-

thresholding estimators

µ̂k,m,ℓ =


X̄k,m,ℓ if ℓ = m+ 1, . . . , n, and

|X̄k,m,ℓ| ≥ ωk

µ0 = 0 otherwise

, (1.4.17)

where X̄k,m,ℓ’s are the MLE/MOM estimates of µk in (1.3.4). Denote by Nhard
B the cor-

responding SRRS scheme NB in (1.3.7) and (1.3.8) when the estimators µ̂k,m,ℓ’s being the

hard-thresholding estimators (1.4.17). The following corollary summarizes its first-order

asymptotic optimality properties:

Corollary 2. For any fixed dimension K, the hard-thresholding scheme Nhard
B with B = A

asymptotically minimizes the detection delay Dµ(N
hard
B ) (up to first-order) for each and
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every post-change mean vector µ ∈ Ω in (1.2.1) subject to the false alarm constraint A in

(1.2.3) as the constraint A goes to ∞.

Proof. By Theorem 2 and Corollary 1, it suffices to show that for the hard-thresholding

estimators in (1.4.17), I(µ∗, µ0;µ) in (1.4.5) is the same as Itot in (1.4.6) when µ ∈ Ω

in (1.2.1). From the definition of Ω in (1.2.1), we have µk = 0 if |µk| < ωk. Thus∑
k:|µk|>ωk

(µk)
2 =

∑K
k=1(µk)

2 and it is clear from (1.4.5) and (1.4.6) that I(µ∗, µ0;µ) = Itot

for any µ ∈ Ω. Hence the corollary holds.

It is useful to compare the original SRRS scheme Norig
B in Corollary 1 with the hard-

thresholding scheme Nhard
B in Corollary 2. On the one hand, the first-order asymptotic

optimality property of Norig
B is applicable to all possible post-change mean vectors µ no

matter whether µ ∈ Ω or not, whereas Nhard
B is first-order asymptotically optimal only

for those µ ∈ Ω in (1.2.1). On the other hand, for these two schemes, the coefficients in

the second-order terms of the detection delays are different: K for Norig
B , and r in (1.2.2)

for Nhard
B . This is exactly the reason why the hard-thresholding estimators can reduce the

detection delay in the sparse post-change case of Ω in (1.2.1) when the number of affected

data streams is much smaller than the total number of data streams, e.g., when r = 20 out

of K = 100 data streams are affected.

Corollary 2 also provides a partial answer to an open problem raised on page #426

of Mei [35] whether we can develop new methods to reduce the coefficient in the second-

order term of the detection delay from K to a smaller number while keeping the first-order

asymptotic optimality properties. Our results show that such coefficient can be reduced to

the number r of affected data streams in the sparse post-change case. We conjecture that

r in (1.2.2) is the smallest possible coefficient for the second-order term in the Gaussian

model, but we do not have a rigorous proof.

Besides the sparse post-change case, another interesting case of Ω in (1.2.1) is when

all data streams are affected simultaneously. In this case, we have r = K, and thus the

hard-thresholding scheme Nhard
B does not necessarily work efficiently, and to the best of our

knowledge, no methodologies have been developed to improve the original SRRS scheme
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Norig
B or other classical quickest change detection schemes when the unknown local post-

change means might be different for different local data streams. Below we will demonstrate

how to use Theorem 2 to derive a good choice of the linear shrinkage factor a that can

balance the tradeoff between the first-order and second-order of the detection delay.

To highlight our main ideas, let us focus on a by setting b = c = 0. Then the estimators

µ̂k,m,ℓ’s in (1.3.5) becomes

µ̂k,m,ℓ =


aX̄k,m,ℓ if ℓ = m+ 1, . . . , n, and

|X̄k,m,ℓ| ≥ ωk

µ0 = 0 otherwise

(1.4.18)

for some 0 ≤ a ≤ 1, where X̄k,m,ℓ’s are the MLE/MOM estimates of µk in (1.3.4). Then

I(µ∗, µ0;µ) in (1.4.4) becomes I(µ∗, µ0;µ) = a(2 − a)Itot. By Theorem 2, when r = K,

minimizing the detection delay of NB is asymptotically equivalent to minimizing

logB

a(2− a)Itot
+

Ka

2(2− a)Itot
log

( logB
Itot

)
(1.4.19)

if we only keep the key terms containing the factor a and ignore the 1/(a(2 − a)) factor

inside the logarithm of the second term. Clearly, a = 1 maximizes a(2 − a), and this is

equivalent to the first-order asymptotic optimality properties of Norig
B or Nhard

B . However,

a better choice of a is to find 0 < a ≤ 1 that minimize the summation in (1.4.19), not just

the first term in (1.4.19). Note that a choice of 0 < a ≤ 1 will make sure that the factor

a/(2− a) in the second term of (1.4.19) is less than 1. The corresponding optimal value of

a will depend on Itot, logB, and K. For instance, when B = 5000,K = 100 and Itot = 2.5,

the summation in (1.4.19) becomes

3.407

a(2− a)
+

24.516a

2− a
.

This summation has the value 46.2 when a = 1, and is minimized at a = 0.25 with the small-

est value 13.9. This suggests that a suitable choice of linear shrinkage estimators in (1.4.18)

can greatly reduce the overall detection delay as compared to the original SRRS scheme,

although the price we pay is to sacrifice the first-order asymptotic optimality properties.
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1.4.4 More Theoretical Results

In this subsection, we provide some refiner asymptotic results that are not included in

our published paper in 2015 on IEEE Transactions on Information Theory. Recall that in

Theorem 1, we only provide a lower bound for ARL to false alarm rate for a general µ̂k,m,ℓ

defined in eq. (1.4.1). In this subsection, we improve the result in Theorem 1 under a

special case of the linear shrinkage estimator:

µ̂k,m,ℓ = aX̄k,m,ℓ + b

= aX̄k,m,ℓ + (1− a)ζ. (1.4.20)

Here 0 ≤ a ≤ 1 is the shrinkage factor, ζ(= b/(1 − a) for a ̸= 1, = 0 otherwise) is a

pre-specified real-valued constant.

The main result of the this subsection is summarized in the following theorem.

Theorem 4. Consider the proposed shrinkage-based SRRS scheme NB in (1.3.7) and

(1.3.8) with µ̂k,m,ℓ being the linear shrinkage estimators in (1.4.20). Then, as B → ∞,

lim
B→∞

E∞(NB)/B = 1/γ (1.4.21)

where the over-shoot factor

γ =

 ν(
√
pζ) when 0 ≤ c < 1;∫∞

−∞ . . .
∫∞
−∞ ν(∥y∥)dG(y1) . . . dG(yp) when c = 1.

(1.4.22)

and ∥x∥ =
√

x21 + ...+ x2p, G(·) is cdf of N(0,
∑∞

i=1
1
i2
) = N(0, π

2

6 ), and ν(·) is a function

that often appears in the overshoot analysis in renewal theory:

ν(µ) = 2µ−2 exp{−2
∞∑
n=1

n−1Φ(−1

2
|µ|

√
n)}

The γ value in (1.4.22) for the case c = 1 can be further simplified from multiple integral

to single integral, but we keep the current form so as to better understand its probability

and statistical meaning.

Theorem 4 is useful to answer the following question: how to choose the threshold B for

the stopping time NB in (1.3.8) with µ̂k,m,ℓ defined in (1.4.1) and ωk = 0, so that it satisfies

28



the false alarm constraint in (1.2.3). It is clear from Theorem 4 that a more accurate choice

is B ≈ A× γ, whereas Theorem 1 yields a more conservative choice B = A.

In order to prove Theorem 4, a crucial step is to introduce a one-sided stopping time τB

defined in (1.4.9) and (1.4.10), where µ̂k,ℓ is a short-handed notation for linear-shrinkage

µ̂k,m=1,ℓ in (1.4.20). We need to investigate the properties of P∞(τB < ∞), which can be

done by the change of measure techniques, see [34]. To do so, let Q be a probability measure

on {Xk,1, Xk,2, . . .} such that for each k = 1, . . . ,K,

Xk,n|Xk,1, . . . , Xk,n−1 ∼ N(µ̂k,n, 1), µ̂k,n = aX̄k,n + (1− a)ζ, n = 1, 2, . . . .

In other words, under the new probability measure Q, Xk,n = µ̂k,n +Zk,n, where the Zk,n’s

are i.i.d. N(0, 1) distributed.

An important technical detail is to investigate the asymptotic behavior of µ̂k,n under

the new probability measure Q as n → ∞. The case of a = 1 was studied on page 1442

in [34], and it was shown that {µ̂k,n} converges to a random variable with distribution

G = N(0,
∑∞

i=1
1
i2
) = N(0, π

2

6 ). However, similar arguments and conclusions do not work

for the case of 0 ≤ a < 1. For instance, when a = 0, we have µ̂k,n ≡ ζ for all n. It turns out

that when 0 < a < 1, the properties of µ̂k,n under Q are similar to the case of a = 0 rather

than to the case of a = 1.

The following proposition summaries our results when 0 ≤ a < 1.

Proposition 1. Assume 0 ≤ a < 1. Then the sequence {µ̂k,n} converges almost surely to

the real number ζ under measure Q for all k = 1, . . . ,K.

Proof of Proposition 1: To prove Proposition 1, it suffices to prove it when 0 < a < 1 for

a fixed k. To simplify our notation, we drop the subscript k, and without loss of generality,

assume ζ = 0 (otherwise let x∗k,n = xk,n − ζ, µ̂k,n = µ̂k,n − ζ). In other words, we focus on a

single sequence of random variables X1, X2, . . . , whose conditional distribution are defined

by

Xn|X1, ..., Xn−1 ∼ N(µ̂n, 1)
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and

µ̂n = a
(X1 + . . .+Xn−1

n− 1
) (1.4.23)

It remains to show that for 0 < a < 1, the sequence {µ̂n} in (1.4.23) converges to 0

a.s.. At the high-level, we want to show that E(µ̂n) = 0 and V ar(µ̂n) → 0 as n → ∞.

For that purpose, the essential idea is to re-write µ̂n’s in terms of N(0, 1)’s so that we can

avoid difficult conditional probabilities. Let Xn = µ̂n + Zn, and then µ̂n+1 in (1.4.23) can

be rewritten as

µ̂n+1 = a
1

n

n∑
i=1

Xi =
a

n
[
µ̂n

a
(n− 1) + µ̂n + Zn]

=
n− 1 + a

n
µ̂n +

a

n
Zn = · · · =

= cn0µ̂1 +
n−1∑
i=1

cniZi + cnnZn

where

cn0 =
(n− 1 + a)(n− 2 + a) · · · (a+ 1)a

n(n− 1) · · · 1

cni =
a

n

n−1∏
k=i

(1 +
a

k
), for 1 ≤ i ≤ n− 1, (1.4.24)

cnn =
a

n

From this new representation of µ̂n+1, it is clear that EQ(µ̂n+1) = 0 and V arQ(µ̂n+1) =∑n
i=1 c

2
ni, as µ̂1 = 0. Thus the Proposition 1 holds as long as we can prove that

n∑
i=1

c2ni → 0 as n → ∞. (1.4.25)

Note that this is also true for any arbitrary initial value of µ̂1 when 0 ≤ a < 1, since we

have cn0 goes to 0 as n → ∞.

It remains to prove (1.4.25) for 0 < a < 1. This requires us to approximate cni and∑n
i=1 c

2
ni via some classical calculus arguments for sufficiently large n. Let us fix (sufficiently

large) n, and by abuse the notation, we write ci for cni in (1.4.24). Note that

log ci = log
a

n
+

n−1∑
k=i

log(1 +
a

k
).
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Clearly,
x

x+ 1
< log(1 + x) < x for x > 0, and thus

a

k + 1
<

a

k + a
< log(1 +

a

k
) <

a

k
.

Hence,

log
a

n
+ a

n−1∑
k=i

1

k + 1
≤ log ci ≤ log

a

n
+ a

n−1∑
k=i

1

k
.

Observe that c1 ≥ c2 ≥ · · · ≥ cn when 0 < a < 1, and let us first approximate

the largest value c1. By the well-known fact that
∑n

k=1
1
k − log n converges to the Euler’s

constant β ≈ 0.5772 (here we do not use the traditional notation γ, which unfortunately

has already been used for the overshoot in (1.4.22) in Theorem 4), we have

log
a

n
+ a(−1 + log n+ β + o(1)) ≤ log c1 ≤ log

a

n
+ a(log n+ β + o(1))

and thus c1 = O(n−(1−a)), where O(1) depends on a but not on n. Next, while it is nontrivial

to get a good estimate of ci for all 2 ≤ i ≤ n, it is easy to do so when i is large, say, i = ns

for some fixed 0 < s < 1 :

log(cns) ≤ log
a

n
+ a

n−1∑
k=ns

log(1 +
a

k
) = log

a

n
+ a(log n− log ns + o(1))

and thus cns = O(n−(1−a+as)), where O(1) does not depend on n.

The key idea in the proof of (1.4.25) is to split [1, n] into subintervals. Let us first try

to split it into two subintervals [1, ns] and [ns, n] for some 0 < s < 1. Since the ci’s are

decreasing, we have

n∑
i=1

c2i =

ns∑
i=1

c2i +

n∑
i=ns

c2i

≤ ns(c1)
2 + (n− ns)(cns)2

≤ nsO(n−2(1−a)) + nO(n−2(1−a+as))

= O(n−2+s+2a) +O(n−1+2(1−s)a),

which converges to 0 as n goes to∞ as long as a < 1− s
2 and a < 1

2(1−s) . If we choose s = 1/2,

then this approach was able to prove (1.4.25) for 0 < a < 1−1/4 = 0.75. Or a better choice

is s = (3−
√
5)/2, which can prove (1.4.25) for 0 < a < (

√
5+1)/4 ≈ 0.809. In other words,
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splitting [0, 1] into two subintervals, we are able to prove (1.4.25) for 0 < a < 0.809. It is

natural to see what happens if we extend this approach to more than two subintervals.

Let us consider the case of three subintervals. Recall that when s = 1/2, the above

simple arguments of two subintervals work fine on the subinterval [
√
n, n] but lead a poor

estimate on the subinterval [1,
√
n]. Hence one can further split [1, n] into three intervals:

[1, nr], [nr,
√
n] and [

√
n, n] for some 0 < r < 1/2, then

n∑
i=1

c2i ≤ nr(c1)
2 + (

√
n− nr)(cnr)2 + (n−

√
n)(c√n)

2

≤ nrO(n−2(1−a)) +
√
nO(n−2(1−a+ar)) + nO(n−2(1−a+a/2))

= O(n−2+r+2a) +O(n−1.5+2(1−r)a) +O(n−1+a),

which converges to 0 as long as a ≤ min(1− r
2 ,

3
4(1−r) , 1) for some 0 ≤ r < 1/2. In particular,

let r = 1/4, then the arguments with three intervals was able to prove (1.4.25) for 0 < a <

1− 1/8.

To prove (1.4.25) for any fixed 0 < a < 1, let m = the smallest integer that a < 1−2−m,

and define the m + 1 exponents rt’s as rm = 1, rt−1 = 1
2rt for t = m,m − 1, . . . , 1, and

r0 = 0. In other words, rt = (12)
m−t for t = 1, . . . ,m. Then we split the interval [1, n] into m

subintervals, [nrt−1 , nrt ] for t = 1, . . . ,m. By an abuse of notation, let c∗t = ci when i = nrt .

Then c∗t = O(n−(1−a+art)) for t = 0, 1, . . . ,m and

n∑
i=1

c2i ≤
m∑
t=1

(nrt − nrt−1)(c∗t−1)
2

≤
m∑
t=1

nrtO(n−2(1−a+art−1))

=

m∑
t=1

O(nrt−2+2a−2art−1))

= O(nr1−2+2a) +

m∑
t=2

O(n−2(1−a)(1−rt−1)),

which converges to 0 as n → ∞, since all O(1) terms do not depend on n, and our choice of

m and the definition of rt’s make sure that r1 − 2+ 2a < 0 and (1− a)(1− rt−1) > 0 for all

t ≥ 2. This shows that (1.4.25) indeed holds for any given 0 < a < 1, completing the proof

of Proposition 1.
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Now we are ready to to prove Theorem 4. It is well known that there is a natural corre-

lation between one-sided hypothesis testing problem and sequential change-point detection

problem, see [43] and [58]. Recall τB is defined in (1.4.9) and (1.4.10). In order to prove

Theorem 4, we only need to show that as B → ∞,

P∞(τB < ∞) = (1 + o(1))γ/B, (1.4.26)

where γ is the same as in (1.4.22). Using the change of measures technique, we will consider

the properties of τB under the measure PQ in Proposition 1. First, we need to show that

PQ(τB < ∞) = 1 for 0 ≤ a < 1. Similar as in Lemma 2 of [34], the key observation is

that the conclusion holds if
∑n

ℓ=1

∑K
k=1(µ̂k,ℓ)

2 → ∞ a.s. under probability measure Q. By

Proposition 1, when 0 ≤ a < 1, µ̂k,ℓ → ζ a.s., and thus
∑n

ℓ=1

∑K
k=1(µ̂k,ℓ)

2 ∼ n
∑K

k=1 ζ
2 →

∞ under Q as long as ζ ̸= 0. Hence PQ(τB < ∞) = 1 for 0 ≤ a ≤ 1.

For simplification of notation, we temporarily denote b = logB. By the standard change-

of-measure argument,

PH0(τB < ∞) = e−bEQ(exp{−(log ΛτB − b)}),

where Λn is defined in (1.4.10).

Relation (1.4.26) is proved in Theorem 1 of [34], and the key idea is a renewal-theoretical

analysis of EQ(exp{−(log ΛτB − b)}) under PQ. A high-level rough sketch is as follows. Let

us consider another stopping time T = τeb−c for some constant c > 0 that is sufficiently large

but relatively smaller than b. On the one hand, log ΛT ≥ b− c by definition. On the other

hand, we can choose c large enough as compared to the overshoot so that log ΛT ≤ b− c/2

with a high probability. In such a case, let µ̂k,T = yk for k = 1, . . . ,K, then for n ≥ T,

µ̂k,n ≈ yk and the increments of log Λn acts like i.i.d. random variables:

log Λn − log ΛT ≈
n∑

ℓ=T+1

p∑
k=1

log
fyk(Xk,ℓ)

f0(Xk,ℓ)

=

n∑
ℓ=T+1

p∑
k=1

(ykXk,ℓ −
y2k
2
) ≈ ∥y∥N(0, 1) +

∥y∥2

2
.

The last approximation holds as EQ(Xk,ℓ) = µ̂k,n ≈ yk. Note that (log Λn − log ΛT ) is

reduced to a one-dimensional random walk with increments of the form ||y||Zi + (1/2)||y||2

33



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
80

85

90

95

100

105

110

ω

D
et

ec
ti

o
n

 D
el

ay

Figure 1: The sparse post-change case with the hard-thresholding scheme Nhard
B (ω) that

sets the common lower bound ωk ≡ ω for all k = 1, . . . ,K. The x-axis is the common lower
bound ω, and the y-axis is the simulated detection delay of Nhard

B (ω) when B = 5000. Here

ω = 0 corresponds to the baseline scheme Norig
B without hard-thresholding.

with Zi ∼ N(0, 1). Thus the standard linear renewal theory can be applied to show the

corresponding (conditional on T = τeb−c) overshoot factor is ν(∥y∥). Meanwhile, if µ̂k,n

converges a.s. to a random variable whose distribution is G(·) under Q, then the yk = µ̂k,T ’s

have a distribution G. Combining them together yields the formula of γ in (1.4.22), see

Theorem 1 of [34] for the detailed proof for a = 1. The proof for 0 ≤ a < 1 is identical,

except that Proposition 1 now shows that µ̂k,n converges to a real number ζ, i.e., the

probability measure G will degenerate to Dirac measure δ0 which defined only at a single

atom (ζ, ..., ζ)T , and thus (1.4.22) also holds for 0 ≤ a < 1. This concludes the proof of

equation (1.4.26) in Theorem 4.

1.5 Numerical Simulations

In this section, we report numerical simulations to illustrate the usefulness of shrinkage or

thresholding in the context of quickest change detection in Section 1.5.1, and demonstrate

the challenge of Monte Carlo simulations of the ARL to false alarms when monitoring

large-scale data streams in Section 1.5.2.

1.5.1 Shrinkage Effects

Assume we are monitoring K = 100 independent normal data streams whose initial distri-

butions are N(0, 1) with possible changes in the means of some data streams. The ARL

to false alarm constraint in (1.2.3) is assumed to be E∞(N) ≥ A = 5000. As mentioned in
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Figure 2: The case when all data streams are affected, and we consider the SRRS scheme
NB(a) with varied linear shrinkage factor a while fixing b = c = 0 with two different choices
of fixed lower bounds ωk’s: the upper plot is when ωk = 0 for all k, and the bottom plot is
when ωk = 0.01 for all k. The x-axis is the value of linear shrinkage factor a, and the y-axis
is the simulated detection delay of NB(a) when B = 5000. Here a = 1 corresponds to the
scheme without linear shrinkage.

35



subsection 1.4.1, we set all thresholds B = 5000 for all schemes NB’s to avoid poor Monte

Carlo estimates of E∞(NB).

We have conducted extensive simulations for different schemes under different kinds of

post-change hypothesis Ω in (1.2.1), but will only report the results of two specific post-

change hypotheses so as to highlight our findings. The first one is the sparse post-change

hypothesis case when r = 20 out of K = 100 data streams are affected, and the other is

when all K = 100 data streams are affected. In both cases, we fix the overall information,

Itot =
1
2

∑K
k=1 µ

2
k, to be 2.5. To be more specific, we consider two cases: (1) when r = 20

out of K = 100 data streams are changed with the post-change mean µk = 0.5 whereas

there are no changes to the other remaining K − r = 80 data streams; and (2) when all

µk =
√

5/100 = 0.2236 for all k = 1, . . . ,K. In both two cases, Itot = 1
2

∑K
k=1 µ

2
k = 2.5.

However, when we design the monitoring scheme, we will only know that the post-change

mean vector µ is in (1.2.1), and will not use any other information of the true post-change

parameters. As shown in the second remark on Page 1435 in Lorden and Pollak [34], the

worst-case detection delays of the SRRS scheme NB occurs at time ν = 1, and thus we will

report the detection delay performance of NB=5000 under the post-change hypothesis when

the change occurs at time ν = 1. All simulation results are based on 2500 replications.

For the purpose of comparison, the baseline scheme is the original SRRS scheme Norig
B

proposed by Lorden and Pollak [34]. In the sparse post-change case when r = 20 out of

K = 100 data streams are affected, we consider several different kinds of hard-thresholding

schemes Nhard
B ’s in Corollary 2. For the convenience of comparison, we set ωk ≡ ω for all

k, and then vary ω from 0 (baseline) to 0.5 with step size 0.01. For each hard-thresholding

scheme with a given threshold ω, we then plot the detection delay of Nhard
B = Nhard

B (ω)

as a function of ω in Figure 1. It is evident from Figure 1 that the detection delay of the

scheme Nhard
B (ω) is reduced from 104.9 at ω = 0 (baseline Norig

B ) to 83.8 at ω = 0.35. This

illustrates the usefulness of hard-thresholding estimators in the sparse post-change case.

In the case when all K = 100 data streams are affected with the post-change mean

µk = 0.2236 for all k, we consider two choices of the lower bound ωk’s: one is ωk = 0

for all k and the other is ωk = 0.01 for all k. The former choice of ωk = 0’s allows us to
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see the performance of the original SRRS scheme Norig
B . For each of these two choices of

ωk’s, we vary the linear shrinkage factor a from 0.01 to 1, and then plot the detection delay

of NB as a function of a in Figure 2. It is clear from Figure 2 that the linear shrinkage

can reduce detection delay from 104.8 at a = 1 (baseline Norig
B ) to 14.0 at a = 0.17 when

the lower bound ωk ≡ 0 for all k, and can reduce detection delay from 56.6 at a = 1 to

11.1 at a = 0.22 when the lower bound ωk ≡ 0.01 for all k. Thus both hard-threshold ωk’s

and linear shrinkage factor a can reduce the detection delay in this case, though the linear

shrinkage factor a seems to be able to play more significant role. This is consistent with

our asymptotic results in Section 1.4.3.

It is interesting to compare the sparse post-change case in Figure 1 with the simultaneous

local changes case in Figure 2. In both cases, the overall Kullback-Leibler divergence Itot =

2.5 are the same, and thus it is not surprising that the original SRRS scheme Norig
B of

Lorden and Pollak [34] has similar detection delays in these two cases (i.e., 104.9 versus

104.8). However, the smallest detection delay (i.e., 83.8) in Figure 1 in the sparse post-

change case is much larger than the smallest detection delay (i.e., 11.1) in Figure 2 when

all data streams are affected. In other words, given the same amount of Kullback-Leibler

divergence information, it is much easier to detect simultaneous “small” local changes in all

data streams than to detect “big” changes in a few unknown data streams if we incorporate

relevant prior knowledge appropriately. This is consistent with our intuition since the latter

has to deal with the uncertainty of the subset of affected data streams, which can be very

challenging when the dimension K is large.

1.5.2 More Simulation About ”Curse of Dimensionality”

In this section, we conduct Monte Carlo simulations to compare the empirical pre-change

distributions of the global monitoring statistics Rn in (1.3.7) under two different dimensions:

K = 1 and K = 100, thereby illustrating the challenge of Monte Carlo simulation of the

ARL to false alarm when monitoring large K > 1 number of data streams.

We again assume to monitor K independent normal data streams, and each data stream

follows distribution N(0, 1). We focus on the performance of the original SRRS scheme
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Norig
B of Lorden and Pollak [34] and the corresponding Rn in (1.3.7) under the pre-change

hypothesis (i.e. ν = ∞). For each scenario of K = 1 and K = 100, and for each time step

n = 1, ..., 1000, we ran Monte Carlo to simulate Rn with 2500 replications.

Figure 3 shows the histogram of Rn at a fixed time n = 500 for both K = 1 and K = 100

cases based on 2500 replications. As we can see, the empirical distribution of Rn is highly

skewed for K = 1 with values in the range of [0, 4000], but Rn seems to be empirically

normally distributed for K = 100 with values in the range of [0.998, 1.003]. Theoretically

the empirical mean of Rn with n = 500 should be 500 no matter whether the dimension

K = 1 or K = 100. This suggests that 2500 replications might be sufficient for K = 1

dimension, but definitely not large enough for K = 100.

To further explain this issue, we also investigate the dynamic evolution of Rn over time

n. To better illustrate, Figure 4 plots 2500 simulated log(Rn) versus log(n) for both K = 1

and K = 100 cases. From Figure 4, there is a clear linear trend of log(Rn) versus log(n)

when the dimension K = 1, which matches the martingale property E∞(Rn) = n. On the

other hand, when the dimension K = 100, most of log(Rn) are 0, which implies that 2500

replications are not large enough to represent the property of Rn. The situation is similar

even if we increase the number of Monte Carlo runs from 2500 to a larger number such as

104. All these simulations results are consistent with our theoretical results.

1.6 Conclusions

In this article, we investigated the quickest change detection problem in the context of

monitoring independent large-scale normally distributed data streams when the post-change

means are unknown. The key assumption we make is that for each individual local data

stream, either there are no local changes, or there is a “big” local change. Our main

contribution is to introduce the shrinkage estimators to quickest change detection, and

show that the shrinkage estimators of the unknown post-change parameters can reduce the

overall detection delays by balancing the tradeoff between the first-order and second-order

terms of the asymptotic expression on the detection delays. Specifically, hard-thresholding is

attractive in the sparse post-change case when the unknown number of affected data streams
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Figure 3: Histogram of 2500 simulated Rn with n=500 under two scenarios. Upper Panel:
K = 1, and Lower Panel: K = 100.
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Figure 4: Plot of (log n, logRn) for n = 1, .., 1000 with 2500 replications under two scenarios.
Upper Panel: K = 1, Lower Panel: K = 100.
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is much smaller than the total number of data streams, whereas the linear shrinkage can

be useful when all local data streams are affected simultaneously though not necessarily

identically. Moreover, we illustrate the challenge of Monte Carlo simulation of of the ARL

to false alarm when monitoring a large K number of data streams.

While the classical quickest change detection problems have been studied for several

decades, further research on the quickest change detection for monitoring large-scale data

streams is needed. For instance, in this paper we focus on the Gaussian model with known

variances, and it will be interesting to extend the shrinkage estimators to a more general

Gaussian model when the variances in the different data streams are different and un-

known under the post-change hypothesis, or to other distributions such as Poisson. The

corresponding theoretical analysis will likely be more challenging, e.g., the definition of r

in (1.2.2) will need to be modified for other distributions such as Poisson. Moreover, it

remains an open problem how to overcome the curse of dimensionality to conduct Monte

Carlo simulations of the ARL to false alarm efficiently in the context of large-scale data

streams. Hopefully this article can stimulate further research on quickest change detection

problems in high-dimensional data streams.
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CHAPTER II

THRESHOLDED MULTIVARIATE PRINCIPAL COMPONENT

ANALYSIS FOR MULTI-CHANNEL PROFILE MONITORING

2.1 Introduction

Profile monitoring plays an important role in manufacturing systems improvement (Noorossana

et al. [38], Qiu [45]), and a standard setup is to monitor a sequence of profiles (e.g. curves

or functions) over time to check whether the underlying functional structure of the pro-

files changes or not. Extensive research has been done for monitoring univariate profile or

real-valued functions in the area of statistical process control (SPC) in the past decades,

and standard approaches are to reduce the univariate profiles in the infinite-dimensional or

high-dimensional functional spaces to a low-dimensional set of features (e.g., shape, mag-

nitude, frequency, regression coefficients, etc.). See, for instance, work by Jin and Shi [27],

Ding et al. [13], Jeong et al. [25], Jensen et al. [24], Berkes et al. [4], Chicken et al. [10],

Qiu et al. [46], Abdel-Salam et al. [1].

Nowadays manufacturing systems are often equipped with a variety of sensors capable

of collecting several profile data simultaneously, and thus one often faces the problem of

monitoring multichannel or multivariate profiles that have rich information about systems

performance. A concrete motivating example of this paper is from a forging process, shown

in Figure 5 and 6, in which multichannel load profiles measure exerted forces in each col-

umn of the forging machine. Here each data is a four-dimensional vector function or four

curves that have similar but not identical shapes when the machine is operating under the

normal state. While various methods have been developed for univariate profile monitoring,

they often cannot easily be extended to multichannel profiles, and research on monitoring

multivariate/mutichannel nonlinear profiles is very limited. For some exceptions, see Jeong

et al. [26], Paynabar et al. [40], Grasso et al. [18], and Paynabar et al. [41]. There are

two main challenges when monitoring multichannel profiles. The first one is that profiles
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Figure 5: Left: A forging machine with 4 tonnage sensors. Right: A single run sample of
four-dimensional functional data.

Figure 6: Left: Shape of workpieces at each operation. Right: Tonnage profile for normal
and missing operations.

are high-dimensional functions with intrinsic inner- and inter-channel correlations, and one

needs to develop a dimension reduction method that can deal with such intricate correla-

tions. The second, probably more fundamental, challenge is that the functional structure

of multi-channel profiles might change over time, and thus the dimension reduction method

should be able to take into account the potential unknown change.

The primary goal of this paper is to develop an effective statistical method for monitoring

multichannel profiles. Our methodology is inspired by the functional Principal Component

Analysis (PCA), which has been successfully applied by Paynabar et al. [40], Grasso et al.

[18], and Paynabar et al. [41] to deal with intrinsic inner- and inter-channel correlations

of profiles. These existing methods follow the standard PCA approach to select a few

principal components (projections or eigenvectors) that contain a large amount of variation

or information in the profile data under the normal operational or in-control state. This

kind of dimension reduction approach might be reasonable from the estimation or curve

fitting/smoothing viewpoint under the in-control state, but unfortunately it is ineffective

in the context of process monitoring, especially for multivariate or multichannel profiles.

This is because it does not reflect the possible change, and often fail to capture the profile

information under the out-of-control state. Here we propose to develop a PCA method that
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can automatically take into account the change information under the out-of-control state.

Note that there are two different phases of profile monitoring: one is Phase I for offline

analysis when a retrospective data set is used to estimate and refine the underlying model

and its parameters, and the other is Phase II when the estimated model in Phase I is used for

online process monitoring. Here we focus on the Phase I analysis, and hopefully our results

can shed new light for Phase II monitoring of multichannel profiles as well. In addition,

we should acknowledge that the importance of dimension reduction and feature selection

for high-dimensional data via thresholding or shrinkage is well-known in modern statistics,

including the profile monitoring literature. Jeong et al. [25] incorporated the hard thresh-

olding into the Hotelling T 2 statistics in the context of online monitoring of single profiles,

and Jeong et al. [26] proposed a hard thresholding method to obtain projection informa-

tion by optimizing “overall relative reconstruction error”. Zou et al. [62] applied LASSO

shrinkage in linear model coefficients for online monitoring linear profiles problem. How-

ever, these existing methods use thresholding or shrinkage to conduct one-shot dimension

reduction, whereas our proposed methodology splits the dimension reduction process into

two steps using two different methods: PCA for the in-control state, and soft-thresholding

for the out-of-control state.

The remainder of this paper is organized as follows. In Section 2.2, we present the

mathematical formulation of multichannel profile monitoring. In Section 2.3, we propose

our thresholded PCA method, and provide a guideline on how to select the corresponding

tuning parameters. In Section 2.4, we use the real forging process data and simulations

to illustrate the usefulness of our proposed thresholded PCA method. Concluding remarks

and future research directions are presented in Section 2.5.

2.2 Problem Formulation and Background

Suppose that a random sample of m multichannel profiles, each with p channels, is collected

from a production process. Mathematically, each of the m multichannel profile observations

is a p-dimensional curve denoted by Xi(t) = (X
(1)
i (t), ..., X

(p)
i (t))T , where t ∈ [0, 1], for

i = 1, · · · ,m. We assume that the process is initially in-control and at some unknown time
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τ, the process may become out-of-control in the sense of the mean shifts of the profiles

Xi(t)’s. Specifically, we assume that the data are from the change-point additive noise

model

Xi(t) =

 µ1(t) +Yi(t), when i = 1, ..., τ,

µ2(t) +Yi(t), when i = τ + 1, ...,m,
for 0 ≤ t ≤ 1, (2.2.1)

for some unknown 0 ≤ τ < m, where the Yi(t)’s are independent and identically distributed

(i.i.d.) p-dimensional “noise” curves with mean 0, i.e., Yi(t) = (Y
(1)
i (t), · · · ,Y(p)

i (t))T and

E(Y
(j)
i (t)) = 0 for all dimension j = 1, · · · , p and for all observations i = 1, · · · ,m.

In Phase I profile monitoring, µ1(t) and µ2(t) are two unknown p-dimensional mean

functions, and we want to utilize the observedXi(t)’s to test the null hypothesisH0 : µ1(t) =

µ2(t) (i.e., no change) against the composite alternative hypothesis Ha : µ1(t) ̸= µ2(t) (i.e.,

a change occurs at some unknown time). In addition, we also impose the classical Type I

probability error constraint

PH0(reject H0 : µ1(t) = µ2(t)) ≤ α, (2.2.2)

for some pre-specified constant α, e.g., α = 5%.

To test the hypothesisH0 : µ1(t) = µ2(t) under model (2.2.1) subject to the Type I error

constraint in (2.2.2), it is important to make suitable assumptions of the correlation of both

within and between profile channels. To characterize these correlations, as in [41], we apply

Karhunen-Loeve expansion theorem to the p-dimensional noise curves Yi(t): there exists a

set of orthonormal (orthogonal and unit norm) basis functions V = {vk(t) ∈ L2[0, 1], k =

1, 2, ...}, such that

Yi(t) =
∑
k∈V

ξikvk(t), for i = 1, ...,m, (2.2.3)

where the number of elements of V could be either finite or infinite, and the coefficient

ξik = (ξik1, · · · , ξikp) is a p-dimensional vector. The key assumption we made is that the

coefficients {ξik}’s are i.i.d. p-dimensional random vectors with mean 0 and covariance

matrix Σk over all i = 1, · · · ,m data points for each base k ∈ V . Under this assumption, it

is evident from (2.2.3) that the p× p covariance matrix Σk satisfies

Σk = E(ξikξ
T
ik) = E{

∫ 1

0
Yi(t)vk(t)dt

∫ 1

0
Yi(t)

T vk(t)dt}, (2.2.4)
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since the basis functions vk(t)’s are orthonormal for each k ∈ V.

It is useful to briefly discuss the implication of (2.2.3) on the correlations of multichannel

profiles. As in the standard functional data analysis, the real-valued basis functions vk(t)’s

are closely related to the inner-channel correlation of the profiles. Meanwhile, since the p-

dimensional curve is decomposed into the same real-valued basis functions vk(t)’s in (2.2.3),

the inter-channel correlations of the p-channel profiles are characterized by the correlation

matrices Σk’s in (2.2.4) of the coefficients {ξik}’s. In practice, both the basis functions

vk(t)’s and the covariance matrices Σk’s are unknown and needed to be estimated, see next

section.

When testing the hypotheses under the change-point model in (2.2.1), it is well-known

that the edge effect exists when the true change time τ occurs at the boundary of [1,m),

and this can be circumvented by an additional assumption that ρ1m ≤ τ ≤ ρ2m for two

constants 0 < ρ1 < ρ2 < 1. To highlight our main ideas, we will not discuss this subtle edge

effect here: we will develop our proposed test under the assumption when the change time

1 ≤ τ < m is unknown, but will investigate its power properties when both τ and m − τ

are moderately large, e.g., τ = [m/2].

2.3 Our Proposed Thresholded PCA Methodology

In this section, we propose a thresholded multivariate functional PCA methodology for

Phase I monitoring of multichannel profiles. For the purpose of easy understanding, this

section is subdivided into three subsections. In Subsection 2.3.1, we review the multivari-

ate functional PCA method that estimates the basis vk(t)’s in (2.2.3) and the covariance

matrices Σk’s in (2.2.4). This allows us to reduce the data from the space of p-dimensional

profiles Xi(t)’s to the space of the coefficients ξik’s in (2.2.3) under the in-control state. In

Subsection 2.3.2, our proposed method is developed as a hypothesis test for the change-point

model in (2.2.1) augmented by soft-thresholding technique that has a nature semi-Bayesian

interpretation and is closely related to the generalized likelihood ratio test. Here the soft-

thresholding technique selects significant coefficients ξik’s in (2.2.3) that are likely affected
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by the change, and thus can be thought of as a further dimension reduction under the out-

of-control state. In Subsection 2.3.3, based on asymptotic analysis, we provide a guidance

on the choice of tuning parameters in our proposed thresholded PCA methodology.

2.3.1 Basis and Covariance Estimation

To have a better understanding of the basis and covariance matrix estimation under the

change-point model in (2.2.1), we first consider the estimation under the unrealistic case

when the noise functions Yi(t)’s in (2.2.3) were observable. Recall that the p-dimensional

functions Yi(t)’s are decomposed into the same real-valued basis functions vk(t)’s in (2.2.3),

this motivates us to evaluate the inner-channel correlation of Yi(t)’s by the following co-

variance function:

c(t, s) = Cov{Yi(t),Yi(s)} =

p∑
j=1

E(Y
(j)
i (t) · Y (j)

i (s)) for 0 ≤ t, s ≤ 1, (2.3.1)

since Yi(t) is a p-dimensional function with mean 0. When p = 1, the covariance function

c(t, s) in (2.3.1) is well studied, and it is well-known that the bases vk(t)’s are the eigenfunc-

tions of c(t, s). Below we will show that similar conclusions also hold under our definition

of the covariance function c(t, s) in (2.3.1) for the general p ≥ 2 case.

To see this, since the basis functions vk(t)’s are orthonormal, it follows from (2.2.3) that

c(t, s) =

∞∑
k=1

p∑
j=1

E[ξ2ikj ]vk(t)vk(s),

and ∫ 1

0
c(t, s)vk(s)ds = λkvk(t),

where λk =
∑p

j=1E[ξ2ikj ], and ξikj is the j-th component of the p-dimensional random

vector ξik for j = 1, · · · , p. Hence, the basis vk(t)’s are the eigenfunctions of c(t, s) for any

dimension p ≥ 2.

It suffices to estimate the covariance function c(t, s) in (2.3.1) from the observable pro-

files Xi(t). While the noise terms Yi(t)’s are unobservable, a good news of the change-point

additive noise model in (2.2.1) is that the differences Yi+1(t)−Yi(t) = Xi+1(t)−Xi(t) are
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observable for all 1 ≤ i ≤ m− 1 except i = τ (the change-point). Thus the covariance func-

tion c(t, s) in (2.3.1) can be estimated by Yi+1(t)−Yi(t), which yields the approximation:

ĉ(t, s) =
1

2(m− 1)

m−1∑
i=1

(Xi+1(t)−Xi(t))
T (Xi+1(s)−Xi(s)). (2.3.2)

Note that the denominator is 2(m−1), and since the Yi(t)’s are i.i.d. over i = 1, · · · ,m, the

estimated function ĉ(t, s) in (2.3.2) is consistent under the reasonable regularity assumption

of the alternative hypothesis, see Remark #2 in Paynabar et al. [41].

Next, the estimates of basis functions v̂k(t)’s can be found as the eigenfunctions of ĉ(t, s)

in (2.3.2). As for the estimation of the covariance matrix Σk in (2.2.4) of coefficients ξik,

we again take advantage of the differences Yi+1(t)−Yi(t) under the change-point additive

noise model in (2.2.1), and approximate it by

Σ̂k =
1

2(m− 1)

m−1∑
i=1

∫ 1

0
{Xi+1(t)−Xi(t)}v̂k(t)dt

∫ 1

0
{Xi+1(t)−Xi(t)}T v̂k(t)dt. (2.3.3)

We follow the standard PCA literature to focus on the first d largest eigenvalues of the

function ĉ(t, s) in (2.3.2), and consider the corresponding d eigenfunctions v̂k(t)’s. However,

our choice of the actual value of d will be different here. From the dimension reduction

viewpoint, the standard PCA methods often reduce the data directly to a low-dimensional

space, and thus the value of d is often chosen to be relatively small. Meanwhile, for our

proposed method, the dimension reduction process is split into two steps that correspond

to the in-control state and the out-of-control state, respectively. The PCA is used only in

the first step to reduce the data from the infinitely functional (or super-high-dimensional)

space to an intermediate space of Rd, which will be further reduced to a lower-dimensional

space in the second step. As a result, the number d of the chosen principal components of

the PCA can be moderately large for our proposed method, e.g., fifties or hundreds.

2.3.2 Thresholded PCA for Monitoring

We are ready to present our proposed method that utilizes the observed profiles Xi(t)’s to

test H0 : µ1(t) = µ2(t) under the change-point additive noise model (2.2.1). Intuitively,

it is natural to construct a test statistic based on the estimation of µ1(t) − µ2(t). This
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suggests us to compare the difference of profile sample means before and after a potential

change-point ℓ = 1, 2, ...,m− 1,

∆ℓ(t) =

√
ℓ(m− ℓ)

m

{
1

ℓ

ℓ∑
i=1

Xi(t)−
1

m− ℓ

m∑
i=ℓ+1

Xi(t)

}
. (2.3.4)

Here the term
√

ℓ(m− ℓ)/m scales the difference and standardizes the variance of profile

difference. Note that the function ∆ℓ(t) in (2.3.4) would have mean 0 when H0 : µ1(t) =

µ2(t) is true, but have non-zero mean under Ha : µ1(t) ̸= µ2(t) when ℓ = τ (the change-

point).

Next, with the estimated orthonormal basis v̂k(t)’s and estimated covariance matrix

Σ̂k in (2.3.3), we apply the PCA decomposition in (2.2.3) to project the functions ∆ℓ(t)’s

in (2.3.4) from the functional space to a d-dimensional space, which essentially conducts

a dimension reduction under the in-control state. Specifically, for each candidate change-

point ℓ = 1, 2, ...,m − 1, define the projection to each of the first d principal components,

ηℓk =
∫ 1
0 ∆ℓ(t)v̂k(t)dt, and then compute the corresponding real-valued statistic

Uℓ,k = ηT
ℓkΣ̂

−1
k ηℓk (2.3.5)

for k = 1, 2, · · · , d, where Σ̂k is defined in (2.3.3).

Note that the statistics Uℓ,k’s in (2.3.5) are motivated from the scenario when the basis

νk(t) and Σk are known: if the estimates v̂k(t) and Σ̂k are replaced by their true values,

it is straightforward from (2.2.1) to show that ηℓk ∼ N(0,Σk) under the null hypothesis

H0 : µ1(t) = µ2(t) but ηℓk ∼ N(
∫ 1
0 ∆ℓ(t)vk(t)dt,Σk) under the alternative hypothesis

Ha : µ1(t) ̸= µ2(t). Hence, when the basis νk(t) and Σk are known, the Uℓ,k’s in (2.3.5) are

χ2
p-distributed under H0 but should be stochastically larger than χ2

p under Ha. When the

estimates v̂k(t) and Σ̂k are used, we expect that similar conclusions also hold approximately,

e.g., whether the value of Uℓ,k in (2.3.5) is large or small indicates whether there is a change

along the principal component v̂k(t) or not.

Finally, our proposed thresholded PCA methodology considers the soft-thresholding

transformation of the Uℓ,k’s in (2.3.5), so as to smooth out those noisy principal component

v̂k(t)’s that do not provide information about the change under the out-of-control state. To
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be more rigorous, we propose a test statistic defined by

Qm = max
1≤ℓ<m

d∑
k=1

(Uℓ,k − c)+, (2.3.6)

for some pre-specified “soft-thresholding” parameter c ≥ 0. Here (u− c)+ = max(u− c, 0).

Then we reject the null hypothesis H0 : µ1(t) = µ2(t) if and only if

Qm > L (2.3.7)

for some pre-determined threshold L. The choices of the constants c and L will be discussed

in more detail in the next section. When Qm > L, we not only claim that there exists a

change point, but also can estimate the change point by

τ̂ = arg max
1≤ℓ<m

d∑
k=1

(Uℓ,k − c)+. (2.3.8)

It is informative to provide some high-level insights of the test statistic Qm in (2.3.6).

Since we do not know the true change-point τ, it is natural to maximize (2.3.6) over all

candidate change-points τ = ℓ for 1 ≤ ℓ < m from the maximum likelihood estimation

or generalized likelihood ratio test viewpoints. The summation of the soft-thresholding

transformation (Uℓ,k − c)+ in (2.3.6) is more fundamental and can be interpreted from

the following semi-Bayesian viewpoint. For a given candidate change-point ℓ, let Zk be

the indicator whether the k-th principal component is affected by the change in the out-of-

control state or not, for k = 1, . . . , d. Assume that all principal components are independent,

and each has a prior probability π getting affected by the changing event. That is, assume

that the changing indicators Z1, . . . , Zd are iid with probability mass function P(Zk = 1) =

π = 1 − P(Zk = 0). When Zk = 1, the k-th principal component is affected, and Uℓ,k in

(2.3.5) represents the evidence of possible change in the log-likelihood-ratio scale. Treating

Zk’s as the hidden states, and then the joint log-likelihood ratio statistic of Zk’s and Xk,n

when testing H0 : Z1 = . . . = Zd = 0 (no change) is

LLR(n) =
d∑

k=1

{Zk(log π + Uℓ,k) + (1− Zk) log(1− π)} −
d∑

k=1

log(1− π)

=

d∑
k=1

Zk{Uℓ,k − log((1− π)/π)}.
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Since the Zk’s are unobservable, it is natural to maximize LLR(n) over Z1, . . . , Zd ∈ {0, 1}.

Hence, the generalized log-likelihood ratio becomes
∑d

k=1max{Uℓ,k − log((1 − π)/π), 0},

which is exactly our test statistic Qm in (2.3.6).

We should acknowledge that from the mathematical viewpoint, the multivariate func-

tional PCA-based monitoring method in Paynabar et al. [41] is the special case of Qm in

Paynabar et al. (2.3.6) when the soft-thresholding parameter c = 0, which is reasonable in

that context because the number d of principal components is small (e.g., d = 15). However,

our proposed method is a non-trivial extension of Paynabar et al. [41] from the statistical or

dimension reduction viewpoint: we consider a moderately large value d of principal compo-

nents (e.g., d = 45), and a suitable choice of the soft-thresholding parameter c > 0 in (2.3.6)

is essential to conduct another level of dimension reduction to smooth out those principal

components that do not provide information of the change under the out-of-control state.

2.3.3 The Choices of Tuning Parameters

There are two tuning parameters in our proposed thresholded PCA methodology based on

the test statistic Qm in (2.3.6): one is the soft-thresholding parameter c in (2.3.6), and

the other is the threshold L in (2.3.7). Practically, one needs to determine c first before

selecting L, but below we will present the choice of L first for a given c since it is easier to

understand from the statistical viewpoint.

In order to find the threshold L for our proposed methodology to satisfy the Type I

error probability constraint in (2.2.2), assume, for now, that the constant c in (2.3.6) is

given. Then the constraint in (2.2.2) becomes PH0(Qm > L) ≤ α. Hence, the threshold L

should be the upper α quantile of the distribution of Qm in (2.3.6) for a given c under H0,

and thus it is sufficient to approximate or simulate the distribution of Qm under H0.

There are a couple of numerical ways to do so by generating a large number of Monte

Carlo simulates of Qm under H0. The first one is when there exists “retrospective profiles”

dataset that are collected from an in-control process performing under normal operating

conditions. Then in each Monte Carlo run, we can randomly select m profiles and compute
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the corresponding values of Qm. Alternatively, when “retrospective profiles” are not avail-

able, as suggested in Paynabar et al. [41], one can use the fact that Qm under H0 has the

same distribution as

Gm = max
1≤i<m

∑
1≤k≤d

[(
(m− i)i

m
)(z̄k,1,i − z̄k,i+1,m)T Σ̂−1

zk (z̄k,1,i − z̄k,i+1,m)− c]+(2.3.9)

where {zk,i} is a set of independent standard normal multivariate observations of dimension

p, z̄k,ℓ1,ℓ2 = (ℓ2− ℓ1+1)−1
∑ℓ2

i=ℓ1
zk,i, and Σ̂zk = 1

2(m−1)

∑m−1
i=1 (zk,i+1− zk,i)(zk,i+1− zk,i)

T .

Then the threshold L is chosen as the upper α quantile of simulated statistics Gm’s.

Let us now discuss the choice of soft-thresholding parameter c in (2.3.6). The baseline

choice of c is c0 = 0, which yields the approach of Paynabar et al. [41] for the scenario

when the number d of selected principal components is small. Intuitively, when the number

d of principal components are large, the soft-thresholding parameter c > 0 in (2.3.6) should

be large enough to filter out those non-changing bases v̂k(t)’s, but cannot be too large to

remove some changing principal components and lower the signal-to-noise ratios. Hence, a

suitable choice of c will depend on the specific Ha and its effects on the basis projections.

Below we will discuss two different heuristic choices of the soft-thresholding parameter

c > 0. For that purpose, by (2.3.6), we have

P(
d∑

k=1

(Uℓ,k − c)+ > L) ≤ P(Qm > L) ≤
m−1∑
ℓ=1

P(
d∑

k=1

(Uℓ,k − c)+ > L), (2.3.10)

which becomes (m− 1)P(
∑d

k=1(Uℓ,k − c)+ > L), as the data are iid over ℓ = 1, · · · ,m− 1.

Hence, from the asymptotic viewpoint, P(Qm > L) and P(
∑d

k=1(Uℓ,k − c)+ > L) go to 0

at the same rate when m is fixed. In particular, when the Type I error constraint α goes

to 0, the main probability of interest is to estimate

PH0(

d∑
k=1

(Uℓ,k − c)+ > Lc), (2.3.11)

where Lc is chosen so that this probably ≤ α. Our proposed choices of c correspond to two

different methods to approximate the distribution of
∑d

k=1(Uℓ,k − c)+ under H0 : one is the

central limit theorem (CLT) when c is small, and the other is the extreme theorem when c

is large. Since these two methods yield different results on c, we present them separately in

Proposition 1, which assumes that χ2
p approximation applies to Uℓ,k’s.
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Proposition 1. Assume that Uℓ,k ∼ χ2
p under H0, for all k = 1, ..., d;

(a) (The CLT approximation when c is small). Assume further that under Ha, exactly d0

out of d principal components are affected in the sense that Uℓ,k ∼ χ2
p(δ

2p) = ϵTℓkϵℓk

with ϵℓk ∼ N(δ, Ip) for k = 1, ..., d0, and Uℓ,k ∼ χ2
p for k = d0 + 1, ..., d. Then when

both d0 and d− d0 are large, an appropriate choice of c is

c1 = arg minc≥0

− (µ
(1)
c − µc)d0√

d0(σ
(1)
c )2 + (d− d0)(σc)2

+

√
dσc√

d0(σ
(1)
c )2 + (d− d0)(σc)2

zα

 , (2.3.12)

where µc = E0(Uℓ,k − c)+ and (σc)
2 = Var0(Uℓ,k − c)+ when Uℓ,k ∼ χ2

p; µ
(1)
c =

E1(Uℓ,k − c)+ and (σ
(1)
c ))2 = Var1(Uℓ,k − c)+ when Uℓ,k ∼ χ2

p(δ
2p).

(b) (The extreme theory approximation when c is large). For fixed p channels, as d → ∞,

the soft-thresholding parameter c can be chosen as

c2 ≈ p+ 2 log(d). (2.3.13)

The detailed proof of this Proposition will be given later in this subsection. Roughly

speaking, in Part (a), the c1 value maximizes the power of the test under the alternative

hypothesis Ha subject to the Type I error constraint α in (2.2.2), and the CLT is used to

approximate these error probabilities. That is the reason why we need some prior informa-

tion on d0 and δ under the alternative hypothesis Ha. In our numerical studies, when such

prior information of Ha is not available, our experiences suggest that δ = 1 and d0 = d/3

yield a good robust result under our simulation numerical setting. The rationale of Part

(b) is completely different, and is similar to use the following well-known fact to choose the

soft-thresholding parameter of
√

2 log(d) for d iid N(0, 1) random variables, see [15],

lim
d→∞

max1≤k≤d |Zk|√
2 log(d)

= 1 almost surely

when the Zk’s are iid N(0, 1). Here we extend the critical value from
√

2 log(d) for the i.i.d.

N(0, 1)-distributed Zk’s to c2 for the i.i.d. χ2
p-distributed Uℓ,k’s for fixed p as d → ∞, and

these two critical values are asymptotically equivalent when p = 1.

52



It is also useful to comment on the main assumption of Proposition 1, which is the χ2
p-

approximation for Uℓ,k’s in (2.3.5). We acknowledge that this holds rigorously only when

the basis νk(t)’s and Σk’s are known. However, we shall emphasize that we only need the

approximation of the distributions of Uℓ,k’s in (2.3.5) to derive an approximation choice of

the soft-thresholding parameter c. For this reason, the assumption of χ2
p-approximation for

Uℓ,k’s in (2.3.5) is not bad when the PCA is used to estimate νk(t)’s and Σk’s.

Now let us turn to the proof of Proposition 1.

Proof of Proposition 1: Let us first prove part (a) when the central limit theorem (CLT)

is applicable to
∑d

k=1(Uℓ,k − c)+. This can occur when the soft-thresholding parameter c is

small and the number d of bases is large. By the notation in part (a), the terms (Uℓ,k − c)+

are i.i.d. with mean µc and variance (σc)
2. Hence,

∑d
k=1(Uℓ,k − c)+ ≈ N(µcd, σ

2
cd) under

H0 for any given ℓ, and the probability in (2.3.11) can be approximated by

PH0

(
N(0, 1) >

Lc − µcd

σc
√
d

)
. (2.3.14)

Hence, in order to satisfy the Type I error probability constraint (2.2.2) with small α, the

threshold L = Lc can be approximated by Lc ≈ µcd + σc
√
d zα, where zu = z such that

P(N(0, 1) > z) = u.

Likewise, we can also derive the relationship of power function of the proposed test.

Under the alternative hypothesis Ha with the change time τ, the term (Uτ,k − c)+ has

mean µc and variance (σc)
2 if the k-th component is unaffected, and has mean µ

(1)
c and

variance (σ
(1)
c )2 if affected. Recall that there are d0 components are affected. When both

d0 and d − d0 are relatively large, the CLT is applicable to both
∑d0

k=1(Uτ,k − c)+ and∑d
k=d0+1(Uτ,k − c)+. Hence, the power function of the proposed test is of the order of

PH1(

d∑
k=1

(Uτ,k − c)+ > Lc) = PH1(

d0∑
k=1

(Uτ,k − c)+ +

d∑
k=d0+1

(Uτ,k − c)+ > Lc)

≈ PH1(d0µ
(1)
c +

√
d0σ

(1)
c Z1 + µc(d− d0) +

√
d− d0σcZ2 > µcd+ σczα

√
d)

= PH1

N(0, 1) > − (µ
(1)
c − µc)d0√

d0(σ
(1)
c )2 + (d− d0)(σc)2

+

√
dσc√

d0(σ
(1)
c )2 + (d− d0)(σc)2

zα

 ,

where Z1 and Z2 are independent N(0, 1) random variables, and the last equation is from

the fact that aZ1 + bZ2 ∼ N(0, a2 + b2). To maximize the power function under Ha, a
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natural choice of c is the one that maximizes the above expression, and this leads to the c1

value in (2.3.12), and thus part (a) holds.

Now let us prove part (b) by using the extreme theory approximation when c is large.

In this case, the CLT usually gives a poor approximation to
∑d

k=1(Uℓ,k − c)+, and we will

explore the following facts:

PH0(

d∑
k=1

(Uℓ,k − c)+ > Lc) < PH0

(
max
1≤k≤d

Uℓ,k > c
)
<

d∑
k=1

PH0

(
Uℓ,k > c

)
= dP

(
χ2
p > c

)
.

Here the first equality follows from the simple fact that (Uℓ,k − c)+ > 0 for some 1 ≤ k ≤ d

when
∑d

k=1 Uℓ,k − c)+ > Lc > 0, and the last equality uses the main assumption of the

proposition that Uℓ,k ∼ χ2
p under H0. To satisfy Type I error constraint in (2.2.2), it suffices

to find c such thatP
(
χ2
p > c

)
≈ α

d for fixed p and α as d → ∞, i.e., logP
(
χ2
p > c

)
≈ − log(d).

When p = 1, for large c > 0, we have

P
(
χ2
1 > c

)
= 2P(N(0, 1) >

√
c) ≈ 2

ϕ(
√
c)√
c

=
2√
2πc

exp
(
− c

2

)
,

where we use the well-known fact that 1
u+1/uϕ(u) ≤ P(N(0, 1) > u) ≤ 1

uϕ(u) for all u > 0.

Taking logarithm both sides, we have c ≈ 2 log(d) to satisfy Type I error constraint in (2.2.2)

for fixed α as d goes to ∞. This is consistent with the well-known fact that
√

2 log(d) is the

critical soft-thresholding value for the d iid N(0, 1) random variables, see Fan [15].

Now we need to extend the above arguments from p = 1 to any p > 1. The crucial step

is to approximate P(χ2
p > c) for large c > 0. By Lemma 1 of Inglot and Ledwina [22], we

have

1

2
E(c) ≤ P(χ2

p > c) ≤ 1√
π

c

c− p+ 2
E(c),

for p ≥ 2 and c > p− 2 and

E(c) = exp

{
−1

2

(
c− p− (p− 2) log(c/p) + log p

)}
.

This implies that logP(χ2
p > c) is asymptotically equivalent to log E(c) ≈ −(c − p)/2 for

fixed p as c → ∞, also see Theorems 4.1 and 5.1 in Inglot [21]. Thus in order to satisfy

Type I error constraint in (2.2.2), we have c ≈ p + 2 log(d) if we ignore all non-essential

constants when α and p are fixed, and d goes to ∞. Hence, part (b) is proved.
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2.4 Case Study

In this section, we apply our proposed thresholded PCA method to the real forging man-

ufacturing process dataset in Figures 5 and 6 in the Introduction. This dataset includes

207 normal profiles under the in-control state and 69 different fault profiles under the out-

of-control state. It was analyzed in Paynabar et al. [41] whose method can be thought of

as the special case of our proposed method with the specific soft-thresholding parameter

c0 = 0. Below the choice of c0 = 0 will be regarded as the baseline method, and we will focus

on whether the values of c1 and c2 in Proposition 1 for the soft-thresholding parameter c in

(2.3.6) can improve the performance or not as compared to the baseline value c0 = 0.

First, we consider a specific case study setting in Paynabar et al. [41] where 207 normal

profiles are followed by the 69 fault profiles, i.e., the change-point τ = 207 for the change-

point model in (2.2.1), and the baseline method c0 = 0 was shown to successfully detect the

true change-point. When our proposed method with either c1 or c2 is applied to this setting

of real forgoing data, it can also correctly detect the change-point. Our interpretation is

that if the change is significantly large, then all reasonable profile monitoring algorithms,

including our proposed methods with any of the three c values in (2.3.6), will be able to

detect the change correctly.

Below we will conduct extensive simulation studies that focus on detecting different

kinds of smaller changes. A high-level description of our simulation setting is as follows.

In each Monte Carlo simulation run, we generate m = 200 “observable” profiles from the

change-point model in (2.2.1). Under the null hypothesis H0, all m = 200 profiles are

simulated from the generative model under the in-control state. Under the alternative

hypothesis Ha, we will generate m = 200 profiles from the change-point model in (2.2.1)

with change-point τ = 100, i.e., the first 100 profiles, X1(t), ...,X100(t), are simulated from

the generative model under the in-control state, and the last 100 profiles, X101(t), ...,X200(t)

are simulated from the generative model under one of many different out-of-control states.

Our proposed thresholded PCA methods with three different soft-thresholding parame-

ters c0, c1, c2, are applied to each set of m = 200 simulated “observable” profiles. For each

method, we choose the threshold L in (2.3.7) to satisfy Type I error constraint α = 0.05 by
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using the profiles generated from the null hypothesis H0. For profiles generated under the

alternative hypothesis, each method is applied to see whether it is able to correctly detect

the change time τ = 100 or not. This process is repeated for 200 times, and the average

performances are reported and compared for three different parameters c0, c1, c2. It is impor-

tant to emphasize that our proposed thresholded PCA methods do not use any information

or knowledge of the profile generative models under the in-control or out-of-control states

below, which are only used to generate the m = 200 “observable” 4-dimensional vector

profiles Xi(t)’s.

For better presentation, the remainder of this section is divided into two subsections.

In subsection 2.4.1, we use the real profiles and B-splines to present the generative models

of profiles under the in-control state and 2× 3× 7 = 42 different out-of-control states. This

allows us to generate observed profiles Xi(t)’s from the change-point additive noise model

in (2.2.1). In subsection 2.4.2, our proposed thresholded PCA methods are applied to the

generated profiles Xi(t)’s, and the performance of the values of c1 and c2 in Proposition 1

is then compared with that of the baseline value c0 = 0.

2.4.1 Profile Generative Models

The generative model for profiles under the in-control state is built from the 207 normal

profiles, X1(t), ...,X207(t), in the real forging dataset, and we propose to do so by using

B-splines. To be more specific, we generate an unevenly spaced set of 66 B-spline basis in

[0, 1], and after orthogonalization and normalization we obtain basis B1(t), ..., B66(t) using

the “orthogonalsplinebasis” Package in the free statistical software R 3.1.2. Based on our

experiences, the choice of 66 basis yields the best tradeoff to balance the fitting of normal

profiles and the computational simplicity, but it can easily be changed to another number.

Then our proposed generative model for normal profiles is of the form

X(t) =

66∑
i=1

θ̃iBi(t), (2.4.1)

where the 4-dimensional vectors θ̃i’s are assumed to be multivariate normally distributed.

It remains to estimate the distribution of θ̃i’s in (2.4.1) under the in-control state from

the observed 207 normal profiles in the real forging dataset. Note that in the original
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Figure 7: This figure plots the simulated in-control single profile X
(1)
m (t) based on an average

of 200 replications. Interval [0, 400] in the x-axis corresponds to t ∈ [0/400, 400/400].

forgoing dataset, each normal profile Xi(t) is observed at 1200 different t points, i.e., t =

j/1200 for j = 1, · · · , 1200. To speed up our computation and to reduce the profile noises,

we first apply a non-overlapping moving average function with the window size of 3 to

each profile, resulting in 207 “smoothed” 4-dimensional normal profiles X(t)’s with t ∈{
j

400 ; j = 1, ..., 400
}
. Next, we fit each of 207 normal profiles X(t) with B-spline basis

B1(t), ..., B66(t) using the least square estimation method, i.e.,

min
θ1,...,θ66

∥X(t)−
66∑
i=1

θ̂iBi(t)∥2.

Hence, for each given B-spline basis i = 1, · · · , 66, we obtain 207 fitted values for the

4-dimensional vector θ̂i, which allow us to compute the corresponding sample mean and

sample covariance matrix, denoted by θi and Σθi, respectively. Therefore, when we use

(2.4.1) to generate normal profiles under the in-control state, we assume that the in-control

distribution of θ̃i is N(θi,Σθi). To illustrate that this generative model for normal profiles

is reasonable, we simulated 200 normal profiles, and computed the average profiles. Figure

7 plots the average profile for the first channel X(1)(t), and clearly it is consistent with the

observed normal profiles in Figure 6.

For profiles under the out-of-control (OC) state, we assume that the generative OC

model is the same as (2.4.1) but the means of θ̃i’s might be different. We will consider

a total of 2 × 3 × 7 = 42 different OC cases, depending on three different factors. First,

we consider two different scenarios, depending on how many components/channels of the

4-dimensional random vector (θ̃
(1)
i , θ̃

(2)
i , θ̃

(3)
i , θ̃

(4)
i ) are involved with the change:
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(A) All 4 components/channels have new OC mean; and

(B) Only the first 2 components/channels, θ̃
(1)
i and θ̃

(2)
i have OC mean.

Note that our proposed methods are not designed for Scenario B, and we run simulation to

see their performance nevertheless. Second, we consider three cases, depending on which

subset of the 66 different θ̃i in the model (2.4.1) changes their means, or equivalently, which

location or subinterval of [0, 1] changes at the original profile scale of Xi(t) for 0 ≤ t ≤ 1:

(I) a local change of θ̃i for 30 ≤ i ≤ 37, i.e., over the interval 200
400 ≤ t ≤ 300

400 ;

(II) a local change of θ̃i for 16 ≤ i ≤ 29, i.e., over the interval 99
400 ≤ t ≤ 149

400 ; and

(III) a global change of θ̃i for all 1 ≤ i ≤ 66, i.e., over the interval 0 ≤ t ≤ 1.

Third, we consider seven different magnitudes of the change so as to have a better under-

standing of the detection power as a function of change magnitudes. Note that given the

same magnitude of the change, it is the most difficult to detect the local change of Case

(I) (where the peak of the profile occurs), and it is the easiest to detect the global change

of Case (III). Hence we assign different magnitudes so that the detection powers of these

cases are comparable: we assume that the real-valued mean of an affected component θ̃
(j)
i ’s

changes from the in-control value θi to the out-of-control value θi+0.005+0.005∗∆, where

we set ∆ = h + 1 for local change in Case (I), ∆ = h for local change in Case (II), and

∆ = 0.1 ∗ h for global change in case (III), and where seven different values of h will be

considered: h = 1, 2, · · · , 7. In summary, there are 2 × 3 × 7 = 42 OC cases depending on

the channel, location, and magnitude of the changes, and all numerical values are inspired

from the real forging dataset.

2.4.2 Performance Comparison

In this subsection, we report the performance of our proposed thresholded PCA method

with three different choices of the soft-thresholding parameter c, and our objective is to see

whether the c1 and c2 in Proposition 1 will yield a better performance as compared to the

baseline c0 = 0 in the sense of detecting those 2× 3× 7 = 42 OC cases.
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Table 1: The value of d0 and soft-thresholding parameters c’s

c0 d0 c1 c2

OC-case (I) 0 15 4.9 11.6

OC-case (II) 0 9 7.0 11.6

OC-case (III) 0 12 4.5 11.6

In order to have a fair comparison, we fix the number of principal components as d = 45

for all three choices of soft-thresholding c values, since on average that will explain more

than 90% of the profiles variance. In addition, for each method, we choose the threshold

L in (2.3.7) to satisfy Type I error constraint α = 0.05. Also our proposed methods were

developed under the assumption that all 4 components/channels are affected, and the mag-

nitudes of the changes are unknown. Table 1 lists the specific values of c0, c1, c2 used in our

study. Note that the value of c0 = 0 and c2 do not depend on the location of the change,

but the value of c1 depends on the location of the change.

It is useful to explicitly discuss the value d0 in Table 1. When computing the c1 value in

Proposition 1, we need to know the value of d0, the number of affected principal components

that are relevant to the change among a total of d = 45 principal components. Here

the value d0 in Table 1 is chosen by the following data-driven method: We first obtain

UH0
ℓ,k {k = 1, ..., d}’s under H0 using the simulated in-control profiles and record the value

A as the top 10% value of UH0
ℓ,k ’s. Then, we compute UH1

ℓ,k {k = 1, ..., d}’s under H1 using

simulated out-of-control profiles, and count how many UH1
ℓ,k ’s are greater than such threshold

A. This gives an estimate of d0 since it indicates the number of altered Uℓ,k’s if a specific fault

occurs. For the purpose of easy computation and comparison, the out-of-control scenario

was conducted when all 4 components of affected θi are changed, and the same d0 and c1

values were used in the scenario when only 2 out 4 components are changed.

Figure 8 plots the detection power of our proposed methods with three different choices

of soft-thresholding c values as functions of change magnitudes when all 4 components/chan-

nels of θi are actually changed simultaneously. The top panel deals with the OC-case (I)

where a local change affects the rise, peak, and fall segments of the profiles, and all three
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Figure 8: When all 4 channels/components are affected. The three plots correspond to three
OC cases, depending on which subset of the 66 different θ̃i in the model (2.4.1) changes
their means. Upper: case (I) with a local change for 30 ≤ i ≤ 37; Medium: case (II) with a
local change for 16 ≤ i ≤ 29 and Bottom: case (III) with a global change for all 1 ≤ i ≤ 66.
In each figure, each curve represents our proposed method with a specific soft-thresholding
c values: Red line with circle (c0); blue line with square (c1); and black line with star (c2).
The detection power of each method is plotted as the function of the 7 different change
magnitudes.
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methods seem to have comparable detection powers, although c0 = 0 is slightly worse. The

middle panel shows that under the OC case (II), both c1 and c2 can greatly improve the de-

tection power as compared with the baseline c0 = 0, especially when the change magnitude

is small (e.g., h ≤ 5). For large change magnitudes, all three methods have detection power

close to 1, implying that all reasonable methods should be able to detect large changes.

A surprising observation of Figure 8 is the bottom panel that considers the OC case

(III) when a global change occurs over [0, 1]. Intuitively, for a global change, one would

expect that the change affects all principal components and hence thresholding might not

help. However, the bottom panel of Figure 8 is counter-intuitive, as both c1 and c2 seem to

yield a larger detection power than c0 = 0, especially for small magnitude h. To gain a deep

understanding, Figure 9 plots the box plot of Uℓ=100,k under the both IC and OC-case(III)

states for all d = 45 principal components. From the box plots, for the global change, it is

surprising that almost half of Uℓ,k’s have a similar or smaller median value under OC than

IC. We feel that this is the reason why soft-thresholding help improve the detection power

in the global change case, as it can filter out those Uℓ,k’s that have smaller OC values.

We also evaluate the performance of our proposed method in terms of estimating the

change-point τ . When the true τ = 100 is estimated as τ̂ , we consider three different

measures: E(|τ̂ − τ |), P (|τ − τ̂ | ≤ 1) (denoted by P1) and P (|τ − τ̂ | ≤ 3) (denoted by

P3). Table 2 reports the Monte Carlo simulation results under these three criteria based

on 200 runs. In general all three values c0, c1 and c2 yield comparable results in terms

of estimating τ, and it is interesting to note that the thresholding values c1 and c2 often

have larger P1 and P3 than the baseline c0 = 0 for the OC case (II) with the local-mean

shift cases. This suggests that thresholding might be able to locate the small, local change

more precisely. One “strange” observation in Table 2 is that E(|τ̂ − τ |) is not necessarily

monotone as a function of the change magnitude h. We do not have a deep insight, and one

possible explanation is because |τ̂ − τ | takes on the integer values, 0, 1, 2, · · · , 100, and τ̂ is

a biased estimator.

Figure 10 plots the detection power of our proposed methods when only 2 out of 4

channels/components are affected. It is clear from the top and middle panels of Figure 10
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Figure 9: Box plots of Uℓ=τ=100,k under the H0 hypothesis and H1 hypothesis for case
(III) under all 4 channels affected scenario with h = 4 based on 1000 replications. X axis
with k = 1, ..., 45 represents the projection on the k’th principal components. This plot
implies that even for the global change, the OC distribution of the Uℓ,k’s is not necessarily
stochastically larger than those IC distribution over all k = 1, · · · , 45 principal components.
We feel that this is the reason why soft-thresholding can improve the detection power in
the global change case, as it can filter out those Uℓ,k’s that have smaller OC values.
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Table 2: Comparison of detection biases for each algorithms under 3 different out-of-control
cases for all 4 channels affected scenario.

E(|τ̂ − τ |) P(|τ − τ̂ | ≤ 1) P(|τ − τ̂ | ≤ 3)

h c0 c1 c2 c0 c1 c2 c0 c1 c2

Case 1 5.18 ± 1.71 1.14 ± 1.89 0.86 ± 2.09 0.18 0.15 0.19 0.40 0.44 0.36

(I) 2 1.57 ± 1.33 1.89 ± 1.35 2.65 ± 1.73 0.22 0.22 0.22 0.51 0.50 0.39

3 0.95 ± 1.21 1.51 ± 1.27 0.59 ± 1.38 0.27 0.26 0.25 0.54 0.54 0.47

4 0.81 ± 1.10 1.03 ± 1.02 0.59 ± 1.26 0.31 0.36 0.33 0.57 0.63 0.54

5 0.28 ± 0.86 0.30 ± 0.88 0.09 ± 0.77 0.38 0.36 0.42 0.63 0.63 0.63

6 0.13 ± 0.73 0.13 ± 0.79 0.58 ± 0.47 0.41 0.42 0.46 0.65 0.68 0.66

7 0.14 ± 0.54 0.63 ± 0.46 0.29 ± 0.49 0.47 0.46 0.49 0.70 0.72 0.70

Case 1 2.15 ± 2.37 0.16 ± 2.45 2.30 ± 2.30 0.09 0.22 0.22 0.24 0.36 0.36

(II) 2 1.98 ± 1.64 0.78 ± 1.57 0.18 ± 1.50 0.24 0.35 0.35 0.48 0.51 0.53

3 1.12 ± 0.88 0.76 ± 1.08 1.19 ± 1.23 0.39 0.40 0.42 0.60 0.61 0.63

4 0.11 ± 0.70 0.67 ± 0.78 0.43 ± 0.71 0.48 0.53 0.56 0.72 0.76 0.76

5 0.51 ± 0.62 0.02 ± 0.54 0.24 ± 0.57 0.58 0.67 0.65 0.78 0.83 0.86

6 0.22 ± 0.53 0.51 ± 0.49 0.49 ± 0.49 0.70 0.76 0.73 0.86 0.91 0.90

7 0.50 ± 0.48 0.02 ± 0.14 0.07 ± 0.16 0.77 0.81 0.80 0.90 0.95 0.95

Case 1 0.07 ± 1.13 0.16 ± 1.07 1.18 ± 1.25 0.35 0.34 0.31 0.57 0.57 0.50

(III) 2 0.58 ± 1.11 0.37 ± 1.01 0.52 ± 1.07 0.39 0.35 0.34 0.60 0.61 0.54

3 0.85 ± 1.05 0.67 ± 0.94 0.51 ± 0.84 0.43 0.39 0.38 0.64 0.61 0.56

4 0.15 ± 0.90 0.11 ± 0.73 0.43 ± 0.82 0.45 0.41 0.40 0.67 0.64 0.61

5 0.13 ± 0.84 0.11 ± 0.66 0.27 ± 0.55 0.47 0.45 0.45 0.69 0.68 0.66

6 0.44 ± 0.79 0.04 ± 0.58 0.03 ± 0.52 0.49 0.48 0.46 0.70 0.71 0.67

7 0.39 ± 0.63 0.15 ± 0.54 0.01 ± 0.53 0.51 0.49 0.47 0.72 0.72 0.67
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Figure 10: When only 2 out of 4 channels/components are affected. The three plots cor-
respond to three OC cases, depending on which subset of the 66 different θ̃i in the model
(2.4.1) changes their means. Upper: case (I) with a local change for 30 ≤ i ≤ 37; Medium:
case (II) with a local change for 16 ≤ i ≤ 29 and Bottom: case (III) with a global change
for all 1 ≤ i ≤ 66. In each figure, each curve represents our proposed method with a specific
soft-thresholding c values: Red line with circle (c0); blue line with square (c1); and black
line with star (c2). The detection power of each method is plotted as the function of the 7
different change magnitudes.
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that the c1 and c2 values greatly outperforms the baseline c0 = 0 value for almost all shift

magnitudes in the OC case of local changes. In the bottom panel for the OC case (III)

of the global change, the detection power improvement is significant for c2 as compared to

the baseline c0 = 0. We feel this might be due to the new spatial sparsity where the profile

means of only two channels have shifted. While our proposed thresholded PCA method

is not designed specifically for the spatial sparsity, the thresholding can actually take care

of spatial sparsity to yield better detection power. In addition, as compared to Figure 8,

Figure 10 implies that the detection powers when only 2 out of 4 components have changed

are less than those when all 4 components have changed.

2.5 Conclusion and Future Work

In this paper, we proposed a thresholded multivariate PCA for multichannel profile mon-

itoring. The novelty of our proposed method is to conduct dimension reduction in two

steps: We first apply multivariate PCA to reduce high dimensional multichannel profiles to

a reasonable number of features under the in-control state, and then use soft-thresholding

techniques to further select informative features under the out-of-control state. These two

steps allow us to include only those principal components that are informative to the change

and smooth out the noisy ones, thereby yielding efficient monitoring. We also give a couple

of suggestions on how to select tuning parameters based on asymptotic analysis. Moreover,

we used real forging process dataset and B-splines to build generative methods for multi-

channel profiles under the in-control state and 2× 3× 7 = 42 different out-of-control states,

depending on the channel, location, and magnitude of the changes. Our numerical studies

demonstrate that the soft-thresholding technique can significantly increase the detection

power as compared to the baseline value c0 = 0.

There are a number of interesting problems that have not been addressed here. From

the theoretical point of view, it will be useful to investigate the efficiency of our proposed

methods, and to find an optimal value of soft-thresholding parameter c that can adaptively

adjust for different out-of-control states. Another direction is to investigate how to extend

our proposed method to Phase II online profile monitoring. That will be more challenging,
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partly because it is more difficult to select informative principal components due to fewer

out-of-control profiles since one observes profiles one at a time. Therefore, our research

should be interpreted as a starting point for further investigation.
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CHAPTER III

GLOBAL OPTIMIZATION OF EXPENSIVE FUNCTIONS USING

ADAPTIVE RBF-BASED SURROGATE MODEL VIA

UNCERTAINTY QUANTIFICATION

3.1 Introduction

In this paper, we consider the problem of global optimization of expensive functions, i.e.,

functions which require large computational costs to evaluate. For physical and compu-

tational experiments, these functions represent the relationship between input and output

variables, and may require days or even weeks to evaluate at a single input setting. One

example is the simulation of flow dynamics for rocket engine injectors, which requires numer-

ically solving a large, coupled system of partial differential equations, see Huo and Yang [20].

Even when computation is parallelized over thousands of processing cores, the simulation

of a single injector may take months to complete. An important problem about expensive

functions is how to optimize the output/response by choosing appropriate settings of the

input variables. This problem can be challenging for two reasons. First, it is not feasible to

conduct extensive runs of function evaluations to find the optimal input settings, since each

function evaluation is expensive. It is thus desirable to identify the optimal input settings

with as few runs as possible. The second challenge comes from the complicated nature of

the functional relationship. They are usually regarded as “black-boxes”, because there is

no explicit relationship between the output and input. Although various local optimization

methods are available when the derivatives of the functions are known or can be easily

obtained, see Boyd and Vanderberghe [6], such methods are not applicable in the present

scenario.

In the literature, a widely used practice for global optimization of expensive functions

is to sequentially select input settings for function evaluations based on some criterion.

The approach consists of two steps. First, it constructs a surrogate model to approximate
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the true function based on all the observed function outputs. The advantage of employing

surrogate model is that it can provide predictions at any input settings with much cheaper

computation. Second, it identifies a new input setting for function evaluation according

to some surrogate model based selection criterion. With this approach, it is feasible to

approximate the global optimizer of the true function via the surrogate model optimization.

For more details along these lines, see Jones et al. [29], Gutmann [19], Regis and Shoemaker

[47], etc.

The primary objective of this paper is to propose a novel global optimization framework

for optimizing expensive functions. Our approach is motivated by Regis and Shoemaker

[47], in which they utilize Radial Basis Functions (RBF) to build a deterministic surrogate

model and guide the selection of the next explored point based on the predicted response

and some distance criterion. The rationale of using RBFs is that they can capture the

nonlinear trend of functions. However, the RBFs they use are pre-determined and lack

the flexibility of modeling. Also, it is less efficient to perform function evaluation from

their surrogate model, because they use RBFs in a deterministic way without providing

prediction uncertainties. Although a distance criterion is used to avoid trap at local optima,

it does not incorporate few response information, and thus tends to select new points more

“randomly” . To address these issues, we propose to construct surrogate model with RBFs

that are chosen adaptively based on the updated outputs, and to select new points based

on surrogate models with quantified uncertainties.

There are other approaches for global optimization of expensive functions in the liter-

ature. Jones et al. [29] propose a global optimization scheme by constructing a surrogate

model with the kriging method. Our approach is different from theirs in that they make

strong assumptions on the correlation structure between explored points while ours does

not. A detailed review related to the kriging model in global optimization can be found

in Jones [28]. Chen et al. [9] propose a global optimization scheme that builds a mean

prediction model with linear basis functions selected from a dictionary of functions, and

then imposes a Bayesian structure over the mean model to quantify the uncertainty of the
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prediction. Our approach is also different from Chen et al. [9]. Instead of using a pre-

determined discrete function dictionary with a large number of linear functions, we use a

moderate number of RBFs that can be adaptively updated based on observed data.

The paper is organized as follows. In Section 3.2, we give a mathematical formulation

of the global optimization problem, and provide a review of the RBFs. In Section 3.3,

we present the proposed global optimization framework that utilizes adaptive RBF-based

Bayesian surrogate model. In Section 3.4, we conduct simulation studies to validate and

compare our proposed method with the method by Regis and Shoemaker [47]. Concluding

remarks and future research directions are presented in Section 3.5.

3.2 Problem Formulation and Review of RBFs

Suppose f(x) is an expensive function of interest, where x = (x1, ..., xp)T ∈ V, and V is a

convex domain. The objective is to identify an optimal input setting xopt that maximizes

f(x),

xopt = argmax
x∈V

f(x). (3.2.1)

Because it is not practical to evaluate f(x) over V to search the global maximizer due to

the huge computational cost, a well-established practice is to sequentially select a few input

settings for function evaluation using a two-step strategy. Suppose a set of N function

evaluations {(xi, f(xi))}Ni=1 are taken. In step 1, a surrogate model is constructed and the

resulting model approximation is denoted by fN (x). Note that the model approximation

may not necessarily be an interpolator of the observed points, i.e., fN (xi) ̸= f(xi). Unlike

the true function f(x), the surrogate model is much cheaper to build and evaluate, and

thus it is feasible to predict function values over all x ∈ V. In step 2, the next input setting

xN+1 is selected for function evaluation via certain criterion based on the surrogate model

from step 1. Steps 1 and 2 iterate until the total computational budget is met. Then the

problem of searching for global maximizer xopt can be transformed as finding that of the

model approximation fN (x), i.e., approximate xopt by

x̂opt = argmax
x∈V

fN (x). (3.2.2)
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In the next section, we will follow this two-step strategy and present our proposed opti-

mization framework in detail.

In the remaining part of this section, we give a brief review of the RBFs, which will be

used in the proposed framework for the surrogate model construction. In the literature, the

RBF is popularly deployed in applied mathematics and neural networks. See Buhmann [7]

and Bishop [5]. Several commonly used functions are: (1) Gaussian functions: r(x;µ, s) =

exp{−s2||x − µ||2}; (2) generalized multi-quadric functions: r(x;µ, s) = (||x − µ||2 + s2)β

with s > 0, 0 < β < 1; (3) generalized inverse multi-quadratic functions: r(x;µ, s) = (||x−

µ||2+s2)−β with s > 0, β > 0; (4) thin plate spline functions: r(x;µ) = ||x−µ||2 ln(||x−µ||).

In our work, we will focus on the Gaussian RBFs. The Gaussian RBFs have two type of

parameters: the center parameter µ ∈ V that determines the location of the RBFs, and the

scale parameter s that measures the degree of fluctuation of the function. One advantage of

using the Gaussian RBFs over other basis functions is that it can capture different trends of

response by choosing different centers and scales. For example, a larger s indicates a more

concentrated change in the surface, and vice versa.

3.3 General Global Optimization Framework

In this section, we propose a global optimization framework that utilizes adaptive RBF-

based surrogate model via uncertainty quantification. In Section 3.3.1, we propose a novel

hierarchical normal mixture Bayesian surrogate model with RBFs to approximate the true

function, where the model coefficients are sparsely represented to avoid over-fitting, and the

parameters of the RBFs are adaptively updated each time a new point is explored. This

allows us to predict the function value at any given candidate point. In Section 3.3.2, we

propose a model-guided selection criterion that incorporates the expected improvement (EI)

of function prediction and its uncertainties. A new point can then be selected to identify

either a more promising area of global maximizer or a more uncertain area for further

function evaluation. A summary of algorithm and some discussions will be presented in

Section 3.3.3.
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3.3.1 Normal Mixture Surrogate Model with RBFs

Suppose we observe N explored points Pexp = {x1, . . . ,xN}, and its function values y =

(y1, ..., yN )T = (f(x1), ..., f(xN ))T . Without loss of generality, we assume E(yi) = 0, as

otherwise we can approximate (yi− ȳ)’s instead of yi’s. We propose to construct a surrogate

model by a summation of N Gaussian RBFs r(x;µi, si) = exp{−s2i ||x−µi||2} and an error

term ϵ(x).

f(x) = fN (x) + ϵ(x) =

N∑
i=1

βir(x;µi, si) + ϵ(x), (3.3.1)

Here, an error term is used to model the discrepancy between the model approximation

fN (x) constructed by the RBFs and the true function f(x). We assume that ϵ(x) follows

the normal distribution ϵ(x) ∼ N(0, σ2). Note that if the center parameters µi’s and the

scale parameters si’s are known and fixed, then the surrogate model in (3.3.1) is exactly

the same as linear regression.

3.3.1.1 Prior Distributions

Because both µi’s and si’s are unknown, the proposed modeling approach can handle highly

nonlinear functions. A uniform prior over a rectangular region is used for µ = (µ1, ...,µN ),

µi ∼ Uniform(Ω), i = 1, ..., N, (3.3.2)

where Ω =
∏p

j=1[min(xj1:N ),max(xj1:N ))], and it is adaptively changed with the addition of

new explored points, see [2].

A gamma prior is used for the scale parameters s = (s1, ..., sN )T ,

si ∼ Gamma(as, bs), (3.3.3)

where as and bs are common to all i’s.

We also impose a hierarchical structure on the coefficients βi’s. Define a latent variable

γ = (γ1, ..., γN )T to indicate whether a certain basis function is active or not: γi = 1

indicates that the ith basis is important and should be included in the model, while γi =

0 indicates the opposite. Specifically, we set βi|(γi = 0) ∼ N(0, τi) with small τi, and
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βi|(γi = 1) ∼ N(0, Cτi) with relatively large C. This hierarchical setting is first employed

in the Stochastic Search Variable Selection (SSVS) scheme by George and McCulloch [17].

Indeed, it is one type of the “g-prior” (see Zellner [60]) for avoiding over-fitting. Now the

mixture normal prior of the model coefficient β = (β1, ..., βN )T can be written as follows:

β|γ ∼ N(0, D2
r), where Dr = diag(a1τ1, ..., aNτN ), (3.3.4)

with ai = 1 if γi = 0 and = C if γi = 1, and a binomial prior for the latent variable γi,

P (γi = 0) = pi, P (γi = 1) = 1− pi, i = 1, ..., N. (3.3.5)

We also impose an inverse-gamma prior for the residual variance σ2,

σ2 ∼ IG(
ν0
2
,
γ0
2
). (3.3.6)

By combining (3.3.1)-(3.3.6), we obtain the full posterior distribution of {β,µ, γ, σ2, s}

p(β,µ, γ, σ2, s|x, y) ∝ p(y|β,µ, γ, σ2, s,x) · p(β|γ,µ) · p(γ) · p(s) · p(µ) · p(σ2)

=
[
(2πσ2)−N/2 exp{− 1

2σ2
(y −D(µ, s) · β)T (y −D(µ, s) · β)}

][N+p∏
i=1

pγii (1− pi)
(1−γi)

]
[
det(2πD2

r)
−1/2 exp{−1

2
βTD−2

r β}
] N∏
i=1

[ bass
γ(as)

sas−1
i exp(−bssi)

][1Ω(µ1:N )

V (Ω)

]
[
(σ2)−(ν0/2+1) exp{− γ0

2σ2
}
]
, (3.3.7)

where the coefficient matrix D(µ, s) is defined as

D(µ, s) =


r(x1;µ1, s1) · · · r(x1;µN , sN )

...
. . .

...

r(xN ;µ1, s1) · · · r(xN ;µN , sN )

 ,

and the indicator function 1Ω(x) = 1 if x ∈ Ω, = 0 if x /∈ Ω.

3.3.1.2 Posterior Sampling

The posterior distribution defined in (3.3.7) is computationally intractable. Markov Chain

Monte Carlo (MCMC) method is utilized to solve this problem, see Andrieu et al. [2]
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and Koutsourelakis [30]. Specifically, we use the Gibbs sampler to estimate the poste-

rior distribution for the parameters β, γ, σ2, and the Metropolis-Hasting algorithm to esti-

mate the posterior distribution for the parameters µ and s, because there is no explicit

formula for the posterior distributions of µ and s. Start with the posterior distribu-

tions for β, γ, σ2. Denote M = (D(µ, s)TD(µ, s)/σ2 + D−2
r )−1, h = MD(µ, s)T y/σ2, and

P = I −D(µ, s)MD(µ, s)T /σ2. Then, the posterior samples of β can be generated by

β|µ, σ2, γ, s,x, y ∼ N(h,M). (3.3.8)

The posterior samples of σ2 can be generated by

σ2|β,µ, γ, s,x, y ∼ IG(
ν0 +N

2
,
γ0 + |y −D(µ, s)β|2

2
). (3.3.9)

The posterior samples of γi can be generated by

P (γi = 1|β,µ, σ, γ(−i),x, y) = a/(a+ b), (3.3.10)

where

a = f(β|γi = 1, γ−i,µ)f(γi = 1, γ−i) ∝ det(Σ∗)−1/2 exp{−1

2
βT (Σ∗)−1β}(1− pi)

with Σ∗ = Di+
r , and Di+

r is Dr with γi = 1,

b = f(β|γi = 0, γ−i,µ)f(γi = 0, γ−i) ∝ det(Σ∗)−1/2 exp{−1

2
βT (Σ∗)−1β}pi

with Σ∗ = Di−
r , andDi−

r isDr with γi = 0.And the notation γ−i = (γ1, ..., γi−1, γi+1, ..., γN )T

represents the vector of all γ’s except γi.

Now we turn to the posterior distribution of the parameters µ and s. The posterior

density form of µi is given by

p(µi|µ−i, β, s, σ,x, y) ∝ exp{− 1

2σ2
(y −D(µ, s)β)T (y −D(µ, s)β)}1Ω(µ1:N ), (3.3.11)

where µ−i = (µ1, ...,µi−1,µi+1, ...,µN ) denotes the vector of all µ’s except µi. We use the

Metropolis-Hasting algorithm to generate posterior samples for µi. Specifically, at a new

step (k+1), we set the proposed density to be a mixture of two densities, and a temporary
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sample µ∗
i can be obtained from the whole domain Ω with uniform probability, or it can be

a perturbation of the current iteration µ
(k)
i within its local neighborhood, i.e.,

q1(µ
∗
i ) = Uniform(Ω), with probability ω,

and q2(µ
∗
i ) = N(µ

(k)
i , σ2

µ) with probability 1− ω. (3.3.12)

And we accept this temporary sample µ∗
i with the acceptance rate

A(µi,µ
∗
i ) = min{1, (exp{−1/(2σ2)|y −D(µ∗, s)β|2}

exp{−1/(2σ2)|y −D(µ, s)β|2}
)1Ω(µ1, ..,µ

∗
i , ...,µN )}

where µ∗ = (µ1, ...,µ
∗
i , ...,µN )T .

Similarly, we can use the Metropolis-Hasting algorithm to generate samples of si. At

step (k + 1), we choose a temporary s∗i as a perturbation of the current sample s
(k)
i by the

proposed density

q3(s
∗
i ) = N(s

(k)
i , σ2

s). (3.3.13)

And we accept such sample s∗i with the acceptance rate

A(si, s
∗
i ) = min{1, (exp{−1/(2σ2)|y −D(µ, s∗)β|2}

exp{−1/(2σ2)|y −D(µ, s)β|2}
· (s

∗
i )

as−1 exp(−bss
∗
i )

sas−1
i exp(−bssi)

)}

where s∗ = (s1, ..., s
∗
i , ..., sN ).

From (3.3.8)–(3.3.13), we generate posterior samples for γ, β, σ,µ, s iteratively based the

updated estimate for the remaining parameters. For example, we generate β
(k)
1 at step k

from p(β
(k)
1 |γ(k), β(k−1)

(−1) ,µ(k−1), σ(k−1),x, y), and generate β
(k)
2 from p(β

(k)
2 |γ(k), β(k)

1 , β
(k−1)
3:N ,

µ(k−1), σ(k−1),x, y), etc. Then, the Gibbs sequence

γ(0), β(0), σ(0),µ(0), s(0), ..., γ(k), β(k), σ(k),µ(k), s(k), ..., γ(K), β(K), σ(K),µ(K), s(K)

can be obtained, where K is the total number of iterations. The posterior sample f
(k)
N (x̃)

for model approximation at a candidate explored point x̃ can be calculated by

f
(k)
N (x̃) =

N∑
i=1

β
(k)
i r(x̃;µ

(k)
i , s

(k)
i ).
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The function prediction fN (x̃) can then be calculated as the average of f
(k)
N (x̃)’s after

discarding the first say 40% samples, and the prediction uncertainties can be calculated as

the sample variance of f
(k)
N (x̃)’s.

Finally, we note that the mean value of the posterior density of β in (3.3.8) is h =

((D(µ, s)T · D(µ, s)/σ2 + D−2
r )−1)D(µ, s)T y/σ2, which is a biased estimator of β with a

nugget value D−2
r . Hence, this estimate of β can be regarded as a ridge-type regression

estimate. It is deployed to prevent the model coefficients from being too large. Its use can

lead to a more stable surrogate model.

3.3.1.3 Tuning Parameters

A remaining issue in the Bayesian computation is the tuning of the hyper-parameters,

which is critical for the model performance. For the hyper-parameters related to the RBF,

we adopt the settings in Andrieu [2] and Koutsourelakis [30]. Specifically, for the proposed

density of the RBF centers µi in (3.3.12), we set σ2
µ = 0.001. For the prior of the RBF

scales si in (3.3.3), we set as = 2, bs = 0, and for the proposed density of si in (3.3.13),

we set σ2
s = 0.5. For the hyper-parameters related to model coefficients and residuals, we

follow the settings in Chipman et al. [11]. Specifically, for τi and C, we suggest to set

τi = ∆y/(3∆x), C = 50, where ∆x = max(x1:p
1:N ) − min(x1:p

1:N ), i.e., the largest change in

x1:N , and ∆y =
√

V ar(y)/5. For the prior of the indicator variable γi, we set pi = 0.5, i.e.,

the probability of selecting a variable is 50%. For the hyper parameter ν0 and γ0 in (3.3.6),

we set ν0 = 2, and ν0γ0 to be the 99% quantile of the inverse gamma prior that is close to√
V ar(y).

3.3.2 A New Point Selection Criterion

In this section, we propose to select new explored points that has the best weighted score

based on two surrogate-model guided criteria: (1) Expected Improvement (EI) for searching

a promising area of global maximizer, and (2) uncertainty of the response prediction for

exploring uncertain regions. More precisely, each candidate will be evaluated based on the

above two criteria with a score in [0, 1]. A desirable point should have a large score in both

criteria. Ideally, a good candidate should have both large EI value and large uncertainty.
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Because these are two competing criteria, we should consider a weighted version to balance

them. A detailed development is given next.

3.3.2.1 EI Criterion

The EI criterion, initially proposed by Mockus and Zilinskas [36], is used to select points

close to the global maxima based on a chosen surrogate model. Using this criterion, an

explored point is selected to maximize the expected improvement over the best observed

response

E(I(x)) = E(max{y − fmax, 0}), (3.3.14)

where fmax = max{y1, ..., yN} is the maximum of the observed model outputs. It is pointed

out in Jones et al. [29] that under the Gaussian assumption of y ∼ N(µ, s20), E(I(x)) has

the following closed form expression:

E(I(x)) = (µ− fmax)Φ(
µ− fmax

s0
) + s0ϕ(

µ− fmax

s0
). (3.3.15)

By examining the terms, we see that the expected improvement is large for those x having

either (i) a predicted value at x that is much larger than the maximum of outputs obtained

so far, i.e., µ ≫ fmax, or (ii) having much uncertainty about the value of y(x), i.e., when s0

is large.

In our scenario, since the proposed surrogate model does not satisfy the Gaussian as-

sumption, there is no analytical form for y, and thus it is not practical to calculate E(I(x))

directly. Instead, we calculate the Sampled Expected Improvement (SEI) as suggested in

Chen et al. [9], i.e., to estimate E(I(x)) based on the posterior samples of y,

Ê(I(x)) =
K∑
k=1

(max{y(k)(x)− fmax, 0}), (3.3.16)

where y(k)(x) = f
(k)
N (x) is the posterior sample at the kth iteration, and K is the total

number of MCMC iterations. Unlike in the Gaussian case, the SEI value in (3.3.16) cannot

be expressed as a weighted sum of the improvement term and the prediction uncertainty

term. From its definition, only the prediction posterior samples y(k)(x) that are larger

than the current best value, fmax, are taken in the summation. Thus SEI first identifies
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the possible “improvement” area, {x|y(k)(x) > fmax for some k}, and then sums over these

terms.

Next, we scale the SEI to be within [0, 1]. Denote by χ the set of the candidate

explored points, which is a discretized grid. Denote EImin = min{Ê(I(x)),x ∈ χ},

EImax = max{Ê(I(x)),x ∈ χ}. Then we can scale Ê(I(x)) as

V EI
N (x) =


(Ê(I(x))− EImin)/(EImax − EImin), if EImax − EImin ̸= 0

1, otherwise.

3.3.2.2 Prediction Uncertainties Criterion

Although the SEI criteria can help identify the explored points to expedite the local search

for optima, it lacks flexibility in practice in locating the unexplored regions where a global

maximizer may exist, and thus may get trapped at local optima. Therefore, we propose

to incorporate the prediction uncertainties into the selection criterion for the new explored

points. Specifically, we quantify the prediction uncertainties by the 95% confidence interval

bandwidth of fN (x):

CIB(fN (x)) = UCI(fN (x))− LCI(fN (x)), (3.3.17)

where UCI(fN (x)), LCI(fN (x)) are the upper CI and lower CI calculated as the 97.5% and

2.5% quantiles of the posterior samples f
(k)
N (x).

Similarly, denote CIBmin = min{CIB(fN (x)),x ∈ χ}, CIBmax = max{CIB(fN (x)),x ∈

χ}. Then CIB(fN (x)) can be scaled as

V CIB
N (x) =


(CIB(fN (x))− CIBmin)/(CIBmax − CIBmin), if CIBmax − CIBmin ̸= 0

1, otherwise.

3.3.2.3 The Weighted Selection Criteria

Now we are ready to present the proposed selection criterion, which is a weighted average

of V EI
N (x) and V CIB

N (x),

VN (x) = (1− ωN )V EI
N (x) + ωNV CIB

N (x), (3.3.18)
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where ωN ∈ (0, 1) is a weight coefficient that depends on the number of the current explored

points N. A new explored point xN+1 at step N+1 is then selected to maximize the selection

criterion VN (x)

xN+1 = arg max
x∈χ/Pexp

VN (x). (3.3.19)

Note that a larger ωN is more likely to lead to new points in a region with large uncertainty,

while a smaller ωN leads to a new point closer to a local optimum. It is usually helpful to

explore the whole domain in the beginning when N is small, and refine the approximation in

local area when N is large. Thus, the ω value should decrease as N increases. For example,

suppose the initial number of explored points is Nmin, and the total number of explored

points is Nmax. Then a proper weight can be selected as

ωN = |N −Nmax|d/|Nmin −Nmax|d, (3.3.20)

where d is a positive constant, say d = 1 or 2. When N is small, ωN ≈ 1, the selected

xN+1 has larger uncertainty about the value of y(x). When N increases, ωN decreases, the

selected xN+1 has a larger predicted value.

3.3.3 The Proposed Algorithm and Remarks

In the first part of this section, we will present a summary of the algorithm and the flexible

usage of the proposed adaptive RBF-based global optimization framework. For abbrevia-

tion, we will refer to the proposed method as aRBF. In the second part, we will compare

our proposed method with the baseline method proposed in Regis and Shoemaker [47].

Algorithm 1 summarizes our proposed global optimization method by combining the

surrogate model construction in Section 3.3.1 and the point selection criterion in Section

3.3.2. Note that the proposed aRBF can be flexibly used in different scenarios. For example,

when the number of available function evaluations is small to moderate, there may be

not enough observations to estimate all the parameters. In this case, we only need to

update some part of the RBF parameters, say the scale parameter s by setting all the

scale parameters si ≡ s(i = 1, ..., N), and do not update the µi parameters. Whether

to update all parameters or part of them can be decided based on the magnitude of the
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Algorithm 1 Global Optimization Algorithm

1: Choose a small set of initial explored points Pexp = {x1,x2, ....xNmin} using a

maximin Latin hypercube design

2: for N = Nmin, ..., Nmax do

3: Evaluate f(x) on Pexp

4: Construct a Bayesian surrogate model f(x) =
∑N

i=1 βir(x;µi, si) + ϵ(x)

as in Section 2.2 based on {(xi, f(xi)), i = 1, ..., N}

5: Calculate the SEI in (3.3.16) and uncertainty CIB in (3.3.17), and select a new

explored point xN+1 via selection criterion in (3.3.18)-(3.3.19) over χ \ Pexp

6: Update Pexp = Pexp ∪ xN+1

7: end for

8: Return the approximated global optimal point x̂opt = argmaxx fN (x)

model residuals at the initial stage (i.e., N ≤ Nmin). If updating all parameters leads to

relative large model residuals, then we can fix certain parameters instead. The formulas of

the posterior distribution in (3.3.7)-(3.3.13) need some minor changes accordingly if certain

RBF parameters are fixed. For the above example, one only needs to set si in eq. (3.3.7)

to be the same s, and update only one s in (3.3.13), and does not need to update the µi’s

in (3.3.11) and (3.3.12).

For the remaining part of this section, we will compare our aRBF with the Global metric

stoch-RBF (GRBF) algorithm proposed by Regis and Shoemaker [47] from a theoretical

perspective. The GRBF method will be regarded as the baseline method from now on.

First we give a brief review. The GRBF employs a surrogate model sN (x) using RBFs,

sN (x) =

N∑
i=1

λir(x;xi, s). (3.3.21)

The RBFs parameters in (3.3.21) are pre-specified, i.e., the RBF centers are set at the

explored points xi, and s is pre-calculated at the initial stage of optimization. The model

coefficients λi in (3.3.21) are estimated by solving a deterministic linear system of equa-

tion Φλ = F, where Φij = r(xi;xj , s), F = (f(x1), ..., f(xN ))T . And their point selection
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criterion

WN (x) = (1− ωG
N )V R

N (x) + ωG
NV D

N (x). (3.3.22)

is a weighted average of the scaled response prediction V R
N (x) with

V R
N (x) =


(sN (x)− smin

N )/(smax
N − smin

N ) for smax
N ̸= smin

N ,

1 o.w,

(3.3.23)

and the maximin distance criterion V D
N (x) with

V D
N (x) = (dN (x)− dmin

N )/(dmax
N − dmin

N ), (3.3.24)

where smax
N = max{sN (x)}, smin

N = min{sN (x)}, dN (x) = min1≤i≤N ||x − xi||2, dmin
N =

min dN (x), dmax
N = max dN (x). The ωG

N can take values in {1, 0.8, 0.6, 0.4, 0.2} periodically.

For example, if at time N = 20, ωG
N = 0.8, then at the next time N = 21, ωG

N = 0.6. Then a

new point xN+1 is selected to maximize WN (x), and the global maximizer is approximated

by x̂opt = argmax sN (x).

Although both methods use RBFs, there are two main differences. First, the surrogate

model is different. The aRBF uses a Bayesian surrogate model that provides not only

predictions but also its uncertainties, while the GRBF utilizes a deterministic surrogate

model that only provides predictions. Because our proposed surrogate model is similar to

the ridge regression, the approximation of response is more robust and smooth compared to

the interpolation surrogate model of the GRBF. The second difference lies in the choice of

the selection criterion for new explored points. Both methods utilize a weighted average of

two criteria for points selection, one for local refining and the other for global exploration.

For the purpose of local refining, we utilize the expected improvement criterion E(max{y−

fmax, 0}), which can be regarded as a soft-thresholding version of E(y). Note that E(y) is

the function prediction, which is the same to the sN (x) in (3.3.21), the surrogate model

of GRBF. As previously discussed, thresholding the prediction makes it easier to identify

global optimum. For the purpose of global exploration, we select points in (3.3.19) that

have larger confidence band (as defined in (3.3.18)), as larger prediction uncertainty is

more likely to indicate unexplored regions. In this way, our selection of points utilizes
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response information V CIB
N (x) for exploration, and thus is more stable and informative

than only using the maximin distance criterion V D
N (x) as in GRBF. A simulation study will

be presented in Section 3.4 to further understand and compare the empirical performance

of the two methods.

3.4 Simulation Study

To assess the performance of the aRBF, we compare it with the GRBF, which is regarded

as the baseline method. The details of simulation settings are presented in Section 3.4.1

and the simulation results are discussed and summarized in Section 3.4.2.

3.4.1 Simulation Setup

We consider the standard 2d test function “Brainin function”, which has been widely used

in the global optimization literature, e.g. Jones et al. [29]. The scaled version of “Brainin

function” we use here is defined as follows,

f(x) =
−1

51.95
[(x̄2 −

5.1x̄21
4π2

+
5x̄1
π

− 6)2 + (10− 10

8π
) cos(x̄1)− 44.81], (3.4.1)

where x̄1 = 15x1 − 5, x̄2 = 15x2, and x1 ∈ [0, 1], x2 ∈ [0, 1]. We further restrict this function

on an evenly spaced grids χ = [0, 0.01, ..., 1]2, so that there will be three local maxima and

only one global maximum on [0.96, 0.16] with maximum value 1.0473. The contour plot of

the Brainin function is given in Figure 11.

The objective is then to find x that maximizes f(x) in (3.4.1) with as few evaluations

as possible. We quantify the efficiency of algorithms by |x̂opt − xopt|, the distance between

the approximate global maximum x̂opt and the true xopt. We randomly choose a small set

of Nmin(= 16) initial explored points using a maximin Latin hypercube design (Santner

et al. [51]). Both methods start the same set of xi’s. Each time the surrogate model is

updated by incorporating the f value of a new explored point, we calculate and update the

x̂opt value. For each algorithm, new explored points are selected and evaluated sequentially

until the total number of explored points reaches Nmax(= Nmin +30) = 46. This process is

repeated 100 times, and the average performances are reported and compared for the two

methods.
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Figure 11: The contour plot of the Brainin function on [0, 1]2 with grid size 0.01. The red
triangle represents the global optimum.

For fair comparison, we set the initial sampler of RBF parameters in aRBF to be the

same as the fixed RBF parameters in GRBF, Specifically, we use Algorithm 1 in Fasshauer

and Zhang [16] to select an optimal value of s in GRBF that minimizes a cost function that

collects the errors for a sequence of partial fits to the data. The center parameters µi’s are

set as the explored points xi’s.

From the simulation study, we find out that for the Brainin test function, updating all

parameters in aRBF will lead to relatively large model residuals that do not converge. This

might be caused by the small number of function evaluations. Thus we only update one

scale parameter s with all si ≡ s and fix the center parameter µi’s to be the explored points.

We iterate MCMC 20000 times, and we checked the 20000 iterations of σ2 to make sure

that the MCMC algorithm converges. Also, we discard the first 40% of the samples, and

take 1 out of every 5 samples in the remaining 60% of the samples, in order to obtain stable

and less correlated posterior samples for model fitting.

3.4.2 Performance Comparison

In this subsection, we first illustrate the proposed aRBF with one particular simulation

sample, and then compare it with the GRBF based on 100 simulation samples.

Figure 12 plots the contour of the surrogate model in aRBF and the locations of the
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new selected points using aRBF for a simulation sample. It is clearly seen that the first

new 10 points are added to explore the unknown region, and after N ≥ 31, more points are

added around the global optimum (i.e., the red triangle).

We report the performance of the aRBF and the GRBF based on 100 random simula-

tions. Our objective is to see whether the aRBF provides a more accurate approximation to

the global maximum compared with the GRBF, for the same number of function evaluation.

Specifically, we plot in Figure 13 the median value as well as the 10% and 90% quantiles of

|x̂opt − xopt| based on the 100 samples for both methods over N ∈ [Nmin, Nmax]. Its upper

panel is for the GRBF and the lower panel is for the aRBF. In the upper panel, the median

value of |x̂opt − xopt| decreases slowly and reaches 0.1 around N = 43. The variance of x̂opt

remains about the same large as N increases, which indicates that the approximation does

not converge to the true global maximizer. This is mainly due to the use of the selection

criterion in GRBF. Note that the GBRF only uses the distance information among the xi’s

for unknown region exploration without considering the function response. As a result, the

selected points spread more randomly, which provides little information on the trend of

the function and its peaks. In the lower panel, in the initial stage with 16 ≤ N ≤ 32, the

median value of |x̂opt−xopt| stays around 0.5, but at N = 33, it drops down to 0.1. Also its

10% and 90% quantiles curves are narrower than in the upper panel, suggesting that the

variance of x̂opt decreases as N becomes large.

Note that our selection criterion is a weighted combination of SEI and CIB with weight

function, wN . From the definition of wN in (3.3.20), wN starts from 1 and decreases to 0 as

the total number of the explored point, N , becomes large. Hence in the first few iterations

of the sequential procedure, it puts more weight on the prediction uncertainty term, CIB,

i.e., it focuses on the surrogate fitting. And this may explain why |x̂opt − xopt| in Figure

13 decreases slowly initially. After certain iterations, wN gets closer to 0, i.e., 1 − wN is

closer to 1. Then it puts more weight on the SEI term in (3.3.18). The purpose of using

SEI is to choose the next explored point to potentially improve the search of the optimal

point. This may explain why the median value of |x̂opt − xopt| in Figure 13 drops suddenly

after certain iterations. As N becomes large, the weight ωN in (3.3.20) goes down, and
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Figure 12: The contour of the surrogate model using the aRBF with the existing explored
points (green square), new explored points (blue square), and the global maximum (red
triangle) for a simulation sample. Each plot corresponds to a surrogate model with N =
16, 21, 26, 31, 36, 41 respectively.
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more weight is given to expectation improvement via SEI in (3.3.16), thereby forcing the

selected points to focus on refining the local optimum region. Adding the CIB criterion is

indeed necessary for exploring more regions and avoid getting trapped in local optima. In

other simulations, not presented here, we found that use of EI as the sole selection criterion

will keep the values of |x̂opt − xopt| around 0.5 for all N ∈ [Nmin, Nmax], which suggests

that the optimization algorithm cannot locate the global maximizer. Therefore, combining

both the EI and CIB criteria will be beneficial for searching the global maximum, and can

outperform the GRBF.

3.5 Conclusion and Future Work

We have proposed a global optimization framework that iteratively utilizes adaptive RBF-

based Bayesian surrogate model to approximate the true function, and to guide the selection

of new points for function evaluation. There is novelty in both steps of the optimization

strategy. First, the construction of a hierarchical normal mixture surrogate model, where the

parameter in the RBFs can be automatically updated to best approximate the true function.

Second, the selection criterion for new points by using the EI criterion together with its

prediction uncertainty. We have conducted some extensive numerical studies (some not

reported here) with standard test functions, and the results demonstrate that the proposed

aRBF is more efficient and stable for searching the global maximizer compared with the

GRBF.

There are some remaining problems for future research. For example, in the point

selection criterion, we predetermine the weight ωN to balance the trade-off between refining

regions and exploring unsampled area. It will be interesting to study how to adaptively

select ωN based on the response values.
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Figure 13: The median value (solid line) as well as 10% and 90% quantiles (dashed line) of
|x̂opt − xopt| based on 100 replications. Its upper panel is for the baseline GRBF method
and the lower panel is for the proposed aRBF.
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