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SUMMARY 
Despite advances in the molecular regulators of cancer, patient survival rates have 

stagnated. Mechanical cues from the extracellular matrix can induce a malignant 

phenotype, and the spread of cancer which results in 90% of cancer-related deaths is also 

a mechanical process. This work first shows that metastatic ovarian cancer cells, which 

preferentially metastasize to soft tissue, become more malignant on soft matrices by 

increasing adhesion, growth, chemoresistance, and migration as well as undergoing 

epithelial-to-mesenchymal transition (EMT). However, most cancers such as breast 

become more malignant on stiff matrices, so we next contrasted metastatic ovarian cancer 

cells with breast cancer cells. We show that matrix preference is dependent on basal 

levels of cytoskeletal tension and can be reversed or blocked by modulating cytoskeletal 

tension. To understand the biophysical changes associated with the phenomena observed 

on soft substrates, we next utilized matched cell lines that were either chemoresistant or 

had undergone EMT independent of substrate rigidity. To analyze chemoresistance, cells 

resistant to microtubule-targeting Taxol were isolated from ovarian cancer cell lines. We 

found that these cells altered their adhesion to produce down-stream changes in 

microtubules culminating in Taxol resistance. Next, in a genetically-induced EMT model 

we found near-identical phenotypic changes as seen with substrate-induced EMT. 

Moreover, these studies also revealed that mesenchymal cells are softer and can no longer 

support solid stress. Finally, we identify an actin-sodium channel pathway responsible for 

supporting solid stress. Taken together, this biophysical analysis reveals key pathways 

associated with cancer progression and identifies multiple pathways that could be 

targeted to reverse these changes, paving the way for novel therapeutic strategies.   
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CHAPTER 1 
INTRODUCTION 

 

In Hanahan and Weinberg’s seminal review “The Hallmarks of Cancer” they 

summarize 25 years of advances in oncology to conclude that the cornerstone of cancer is 

dynamic genomic alterations, in particular oncogenes and tumor suppressor genes that 

undergo either gain or loss of function, respectively. They go on to predict that the next 

era of research will produce a vastly different type of science, not only technically, but 

also conceptually (1).  

Over a decade later their prediction remains accurate. New treatment strategies often 

target the tumor stroma, which is essential for tumor growth and metastasis. Angiogenic 

inhibitors, like bevacizumab, offered new hope for treating tumors, even those resistant to 

chemotherapy, by targeting their blood supply and starving the tumors of nutrients and 

oxygen. However, initially promising anti-angiogenic therapies have failed in part to a 

variety of factors including the onset of tumor hypoxia, which reduces chemotherapeutic 

delivery (2), enriches cancer stem cell populations (3), and contributes to tumor 

metastasis (4). These results have led to a paradigm shift from attempting to block the 

growth of new blood vessels to attempting to “normalize” the vasculature (5). 

In addition to changes in existing paradigms, entirely new fields have come to the 

forefront of research, most notably physical oncology. By analyzing the physical forces 

exerted on and by the cells, physical oncology utilizes a multi-disciplinary tool kit to 
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understand the complexities of cancer growth and metastasis. Some of the ideas could be 

seen as a resurrection of Stephen Paget’s 1889 ‘seed and soil’ hypothesis which sought to 

explain the observation that certain cancer cells, or seeds, seem to prefer specific 

metastatic sites, or soil (6). Mammary tumors are often stiffer than the surrounding tissue 

and can be detected by physical palpitation (7). Further investigation of this phenomena 

revealed that this increase in stiffness can directly induce malignant transformation (8) 

and promote breast cancer metastasis (9). Metastasis, ultimately responsible for 90% of 

cancer-related deaths (10), is also fundamentally a mechanical process orchestrated by 

the dynamic rearrangement of the cytoskeleton.  

This project began by seeking to understand the cause of this matrix-stiffness 

dependence by integrating cellular mechanics and molecular biology. It then evolved to 

further demonstrate how intracellular biophysical changes are important as cells become 

resistant to chemotherapeutics or undergo a switch to the metastatic phenotype known as 

epithelial to mesenchymal transition.  Finally, it concludes by documenting how distinct 

biophysical phenotypes are required for the metastatic process and solid tumor growth 

while elucidating the molecular drivers of both.  
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CHAPTER 2 
BACKGROUND 

In recent years a growing body of evidence has emerged highlighting the 

importance of mechanical cues in both normal tissue development and progression of 

diseases such as arteriosclerosis, muscular dystrophies, osteoporosis, and cancer (11). 

The ability of a cell to sense and interact with its local environment is so important that it 

is conserved across essentially all life from humans down to the simplest single-celled 

bacteria (12).  Despite highly divergent chemical signaling cascades, a highly conserved 

feature of mechanical signaling is that it requires transmission of force from the 

extracellular matrix (ECM) to the internal cytoskeleton which forms the structure of the 

cell.   

2.1 The Cytoskeleton 
The cytoskeleton of mammalian cells consists of three primary classes of 

polymeric proteins: actin microfilaments, intermediate filaments, and microtubules. Of 

these, actin and microtubules (shown in Figure 2.1) largely control key cell functions 

such as motility, polarity, and division (13). Though microtubules, which are largely 

responsible for intracellular trafficking, cannot bear significant stress, they are supported 

by the other cytoskeletal filaments (14). F-actin  provides the greatest structural integrity 

at commonly encountered stress levels, but at very high strains F-actin depolymerizes and 

more deformable intermediate filaments are required to maintain cell structure (15). 
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In addition to requiring these structural filaments cells must also be able to adhere to 

the external environment. This is accomplished through an array of cell adhesion 

molecules; here we will focus on cadherins and integrins, responsible for cell-cell and 

cell-matrix adhesion, respectively (16). Integrins are heterodimeric trans-membrane 

receptors composed of one α-chain and one β-chain that bind to specific ECM molecules. 

The α-chain is largely responsible for ECM specificity while the β-chain links to the 

actin cytoskeleton (17). After binding the ECM, integrins transduce signals either by 

direct binding with F-actin or via adapter proteins in focal adhesion complexes (18). 

Cadherins (calcium-dependent adhesion molecules) are responsible for cell-cell adhesion. 

They play key roles during tissue morphogenesis by controlling cell sorting, arrangement, 

and morphology (19). These molecules can bind directly to F-actin or interact through 

other intermediates (20), and can even bear force (21). Loss of cell-cell adhesions, in 

particular E-cadherin, along with increased integrin expression are indicative of epithelial 

   
Figure 2.1 Micrograph of cytoskeletal filaments. A human mesenchymal stem cell 
after staining for F-actin (red), β-tubulin (green), and nucleus (blue).  

Actin Microtubules Overlay 
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to mesenchymal transition (EMT), which plays a crucial role in normal development as 

well as cancer metastasis by enhancing cell migratory capacity (22).    

2.2 EMT, Cell Motility, and Metastasis  
Epithelial cells typically display a cuboidal morphology with high levels of E-

cadherin expression allowing the formation of tight junctions and cell monolayers. These 

cells tend to reside in more developed tissues, whereas during development cells may 

need to transition to the more migratory mesenchymal phenotype (22).   By shedding E-

cadherin responsible for cell-cell adhesion and increasing expression of ECM-binding 

integrins, EMT allows for cells to migrate in response to chemical or mechanical cues 

(23).  Furthermore, expression of ECM-degrading matrix metalloproteinases on their 

surface allows for degradation of the basement membrane and dissemination to other 

tissues (24).  

In order for cells to migrate in response to these cues, they must undergo a highly 

coordinated series of steps (25) as shown in Figure 2.2. First, actin monomers on the 

leading edge polymerize to form filaments leading to small protrusions known as 

filopodia or larger lamellipodia. As they do, integrins bind ECM molecules to form 

adhesions to stabilize the protrusions. As the adhesions connect to the actin cytoskeleton, 

the cell begins to exert force via actomyosin contraction, which propels it forward (26). 

Thus, in addition to controlling cell motility, this series of linkages may serve as 

mechanotransducers.  
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2.2 Mechanotransduction  
Cells convert mechanical cues into biochemical signals through a process known 

as mechanotransduction. Though cells must be able to sense a variety of mechanical cues 

such as shear stress, compression and tension forces, and pressure, this discussion will 

focus on the cell’s ability to sense matrix rigidity (28). Two primary mechanisms will be 

discussed: (1) force-induced confirmation changes in focal adhesion complexes and (2) 

actomyosin contraction via the Rho/ROCK pathway (Figure 2.3). 

 

 

 
Figure 2.2 Illustration of cell migration, adapted from (27) 
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 Focal adhesion complexes consist of an array of adapter and signaling proteins 

such as  α-actinin, FAK, talin, paxillin, and vinculin (29). It has been shown that 

increasing cytoskeletal tension, either through increased actomyosin contraction or 

increased matrix rigidity will increase vinculin recruitment and focal adhesion size (30). 

Though vinculin can support force, this tension was dispensable for vinculin recruitment 

(31). Instead, conformational changes in the protein talin were shown to reveal multiple 

cryptic vinculin binding domains allowing for increased vinculin recruitment (32). The 

tension required to induce this conformational change in talin is generated via actomyosin 

contraction. Thus, though adhesion proteins contribute to mechanotransduction, cell-

generated contractile forces ultimately control the mechanosensitivity of cells to their 

extracellular environment stiffness (33). 

 
Figure 2.3 Rho/ROCK pathway illustration. GTPase nucleotide exchange factors (GEFs) 
and GTPase activating proteins (GAPs) help regulate Rho activity by changing it from its inactive 
GDP-bound form to active GTP-bound form.  This active GTP-bound form can then act to 
phosphorylate Rho-associated protein kinase (ROCK). ROCK influences myosin contraction both 
by activating myosin light chain (MLC) and blocking MLC deactivation through myosin 
phosphatase. Myosin can also be activated directly through myosin light chain kinase (MLCK). 
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2.3 Matrix Stiffness and the Malignant Phenotype 
As illustrated by the groundbreaking work of Paszek et. al., this 

mechanotransduction pathway is not simply a passive, unidirectional response to matrix 

stiffness but can ultimately feed an autocrine loop and promote malignant transformation 

(8). Integrin binding to ECM results in guanidine exchange factors (GEFs) activating 

small GTPases such as RhoA (34). RhoA in turn activates rho-associated kinase (ROCK) 

ultimately leading to phosphorylation of myosin light chain (MLC), inactivation of MLC 

phosphatase, and increased actomyosin contractility (35). Moreover, RhoA can also serve 

to drive cell cycle progression, which may increase the proliferation of tumor cells (36). 

Once malignancies begin to develop, lysyl oxidase-driven matrix crosslinking promotes 

invasion of the cancer into surrounding tissues (37). As matrix stiffening continues, 

cancer cells must continually activate RhoA in order to maintain force equilibrium (38).  

The direct effects of actomyosin contractility on tumor progression were elegantly 

elucidated by Samuel et. al. using a murine squamous cell carcinoma (SCC) model (39). 

Skin is a mechanoresponsive tissue that must actively balance forces between cellular 

actomyosin tension and collagen fibrils (40). Noting that Rho and ROCK signaling are 

associated with SCC (41), the authors chose to directly investigate how actomyosin 

tension influences tumor progression.  They showed that increasing cellular tension by 

activating ROCK elevated tissue stiffness and led to hyperproliferation, which was 

reversible upon reducing actomyosin contractility via downstream effectors. Finally, 

ROCK activation increased overall tumor load, which was also inhibited by ROCK 

blockade, directly implicating actomyosin tension in cancer progression (39).  
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2.4 Mechanical Stresses in Tumor Progression 
In addition to altered matrix mechanics, the tumor mechanical microenvironment 

additionally has increased fluid and solid stresses. The former fluid stresses include 

interstitial fluid pressure (IFP), which is typically less than or equal to arterial 

intravascular pressures allowing for perfusion of fresh nutrients from the blood stream. 

As nutrients are consumed by the cells, lower pressures in venous capillaries and 

lymphatics then allows for recirculation of the fluid and resulting by products. As early as 

1950 it was recognized that this fluid pressure was elevated in tumors relative to normal 

tissue (42). Almost 40 years later Rakesh Jain proposed that this increased IFP may be a 

barrier to drug delivery (43, 44). In the coming years researchers would document 

elevated IFP in most solid tumors including head and neck, breast, melanoma, cervical, 

and colorectal (45). Moreover, increased IFP is linked with poor patient prognosis (46–

48) and normalization by enzymatic ablation of stromal components can radically 

improve survival (49).  

These fluid phase stresses are further complicated by solid phase stresses 

accumulated during tumor growth. As a tumor expands and comes into contact with local 

tissue, it must exert sufficient force to overcome resulting compressive stresses (50). 

These stresses typically represent mechanical loads of 50-200 mmHg (51, 52) which can 

prevents the growth of cancer cell spheroids (51).  This growth-induced stress co-evolves 

with IFP and may be a key factor controlling the increases in IFP seen in solid tumors 

(52). Furthermore, these mechanical stresses deform local blood vessels further hindering 
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drug delivery (53). Despite the importance of solid stress in tumor growth, few studies 

have explored how cancer cells physically support this stress.  

2.5 Chemotherapeutics and Evolution of Chemoresistance  
Though cancer survival rates have shown some improvement in recent years, this is 

largely due to earlier detection from improved screening. For those with later stage 

disease at detection, prognosis remains poor. Approximately one out of every twenty 

women in America will be diagnosed with breast cancer at stage II or later when the 

disease is no longer localized to the breast (54). At this stage, even in patients with 

operable breast cancer given advanced drug cocktails survival to five years does not often 

exceed 60% (55). In ovarian cancer, the situation is even more dire due to lack of early 

detection techniques. Here, more than 75% of the patients are diagnosed after the cancer 

spreads from the primary site (54). When the entire tumor cannot be excised, clinicians 

must rely on chemotherapeutic drugs to eradicate any disseminated tumor cells. In 

ovarian cancer, standard treatment protocol of tumor resection followed by dual agent 

chemotherapy consisting of platinum therapy plus Taxol (paclitaxel) have increased 

progression-free survival to nearly 18 months and overall survival to 38 months (56). 

However, just as bacteria can acquire resistance to antibiotics tumor cells acquire 

resistance to these drugs. Once refractory, the disease rapidly progresses with 

progression-free survival of 3-5 months and overall survival rarely exceeding a year even 

with new experimental treatments (57). 
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2.6 Objectives and Outline 
The overall goal of this project is to understand the role of biophysical changes during 

tumor progression and elucidate the molecular mechanisms to uncover next-generation 

targeted therapies. This begins in chapter 3 where we demonstrate that metastatic ovarian 

cancer cells become more proliferative, chemoresistant, and motile on soft surfaces and 

this corresponds with transitioning from a more epithelial phenotype to a more 

mesenchymal phenotype. This increased malignancy of soft matrices may explain 

ovarian cancer’s predisposition to metastasize to the soft omentum fat pad (58). This 

result runs counter to most previously studied cell lines, of which 70% grew better on 

stiff surfaces with the remaining displaying matrix-independent growth (59). To 

understand this discrepancy, in chapter 4 we use contrast these metastatic ovarian cancer 

cells which become more malignant on soft matrices with metastatic breast cancer cells 

which become more malignant on hard matrices and found that levels of basal cell 

contractility determine their matrix preference. In chapter 5, we utilized Taxol-resistant 

cells to demonstrate how biophysical changes in adhesions can be transmitted to 

microtubules causing chemoresistance. In chapter 6, we sought to understand how the 

epithelial to mesenchymal transition (EMT) observed in chapter 3 altered cancer cell 

mechanics. To decouple EMT from matrix stiffness, we used a genetically engineered 

model of EMT that would maintain its epithelial or mesenchymal character regardless of 

matrix stiffness. These studies revealed that EMT induced several pro-migratory 

biophysical changes such as cytoplasmic and nuclear softening. However, this increased 

plasticity to improve migration came at the cost of decreased structural stability, 
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ultimately leading to inability to support solid stress in 3D tumor spheroids. Building on 

this finding, in chapter 7 we sought to understand the precise mechanisms used by tumor 

spheroids to support solid stress. These studies revealed that while cytoskeletal filament 

polymerization is required to survive under solid stress, it is predominately to support the 

ability of cells to alter their osmotic pressure by effluxing sodium.  The overall findings 

are summarized in chapter 8 along with recommendations for future studies.  
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CHAPTER 3 
THE MALIGNANCY OF METASTATIC OVARIAN CANCER 

CELLS IS INCREASED ON SOFT MATRICES1 

3.1 Summary 
Though current treatments for localized ovarian cancer are highly effective, it still 

remains the most lethal gynecological malignancy, largely in part to late detection after 

tumor cells leave the primary tumor. Clinicians have long noted a clear predilection for 

ovarian cancer metastasis to the soft omentum. Here, we show that this tropism is due not 

only to chemical signals but also mechanical cues. Metastatic ovarian cancer cells 

(OCCs) preferentially adhere to soft microenvironments and display an enhanced 

malignant phenotype including increased migration, proliferation, and chemoresistance. 

To understand the cell-matrix interactions used to sense the substrate rigidity, we utilized 

traction force microscopy and found that OCCs increased both the magnitude of traction 

forces as well as their degree of polarization. After culture on soft substrates, cells 

underwent morphological elongation characteristic of epithelial-mesenchymal transition, 

which was confirmed by molecular analysis. Consistent with the idea that mechanical 

cues are a key determinant in the spread of ovarian cancer, the observed 

mechanosensitivity was greatly decreased in less metastatic OCCs. Finally, we 

demonstrate that this mechanical tropism is governed through a Rho/ROCK signaling 

pathway. 

                                                 
1McGrail DJ, Kieu QMN, Dawson MR. (2014) The malignancy of metastatic ovarian cancer cells is 
increased on soft matrices through a mechanosensitive Rho-ROCK pathway. J. Cell Sci. 127: 2621–6. 
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3.2 Introduction 
Ovarian cancer is the fifth leading cause of cancer deaths among women, largely 

because it is often diagnosed at late stages after metastasis with a 5 year survival rate of 

only 30% (60). In contrast to following the normal metastatic process of intravasation to 

the vascular system and extravasation at a distal site, ovarian cancer is more likely to 

disseminate through the intraperitoneal fluids. From there, it preferentially accumulates in 

soft tissues such as the adipocyte-rich omentum (58). Previous work suggests this is 

because adipocytes act as a rich energy source and actively promote ovarian cancer cell 

homing via cytokines such as interleukin-8 (58). However, these studies were based 

solely on chemical factors, whereas the burgeoning field of physical oncology has 

recently shown the mechanical environment a cell experiences can be of equal 

importance. For instance, pioneering studies by Weaver and colleagues demonstrated that 

increased matrix stiffness can induce a malignant phenotype in mammary epithelial cells 

by leading to increased Rho activation and actomyosin contractility (8), with further 

studies directly implicating contractility in increasing matrix stiffness and cancer 

progression (39). Though most of these studies linked increased matrix stiffness to tumor 

progression, breast cancer metastatic subclones with tropism for soft lung tissue in vivo 

exhibit growth advantages on soft substrates in vitro (61). Based on these results, we 

hypothesized that the preferential accumulation of ovarian cancer cells in soft tissues may 

be due to intrinsic mechanical properties of the environment. 
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To test this hypothesis, we utilized a series of biophysical and biochemical techniques 

to understand the response of ovarian cancer cells to a soft matrix similar to adipose 

tissue and a stiff matrix similar to tumor tissue (62, 63) using both the more metastatic 

SKOV-3 cell line and less metastatic OVCAR-3 cell line (64), both of which harbor 

either mutated or deleted p53 indicative of high grade serous ovarian carcinomas (65–

67). We found that ovarian cancer cells (OCCs) show increased adhesion on soft 

microenvironments. After engraftment, OCCs on soft matrices are more proliferative and 

resistant to standard chemotherapeutic drugs. In addition to these increases in growth, 

cells also displayed increased migratory capacity. Further immunocytochemistry and 

gene expression analysis revealed a shift from a more epithelial phenotype on stiff 

substrates to a more mesenchymal phenotype on soft matrices. Cell-matrix interactions 

were directly probed with traction force cytometry and revealed changes in both force 

magnitude and polarization on softer matrices. Moreover, use of small molecule 

modulators of the Rho/ROCK pathway demonstrates this signaling cascade plays a key 

role in determining this tissue tropism. This study reveals the previously undocumented 

role of mechanical cues in ovarian cancer metastasis which could lead to new methods to 

target metastatic disease.  

3.3 Results and Discussion 

3.3.1 Ovarian cancer cells preferentially engraft, expand, and migrate on soft 

substrates. 

Following dissemination from the primary tumor ovarian cancer cells frequently 

engraft onto the mesothelial lining of the soft omentum.  To probe if tissue stiffness plays  
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a role in OCC engraftment, we utilized two model systems. First, we tested the adhesion 

of OCCs on a monolayer of hMSCs differentiated into either soft adipocytes (E ≈ 0.9 

kPa) or stiffer osteoblasts (E ≈ 2.6 kPa) (72) which would both express ligands 

implicated in mesothelial engraftment such as VCAM-1 and CD44. We found that OCCs 

were significantly (p<0.001) more adherent on the softer adipocytes relative to stiffer 

osteoblasts. We next repeated this analysis on synthetic polyacrylamide substrates with 

elastic moduli mimetic of either adipose tissue (soft, 2.83 kPa) or tumor tissue (hard, 

34.88 kPa) and found near identical changes in adhesion (Fig. 3.2A). Though these 

substrates were coated with collagen I, additional studies showed equivalent adhesion and 

 
Figure 3.1 Ovarian cancer cells show equivalent adhesion and spreading on collagen I 
(COL) and fibronectin (FBN).  (A,B) Cells were incubated for specified period of time on TCP 
coated with desired molecule and blocked with BSA and normalized to average adhesion at 180 
minutes. (C,D) Cells spreading showed negligible differences on either ECM molecule.   
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spreading on fibronectin (Fig. 3.1), which taken together with the results on cell 

monolayers suggests this result is not adhesion-ligand dependent.  

After OCCs engraft into the secondary site, they must then survive and proliferate. 

Remarkably, after only 48 hours of culture there was nearly two times as many cells on 

the soft substrate as compared to collagen-coated glass, and significantly more than on 

hard substrates (p<0.01) (Fig. 3.2B). We hypothesized this increase in proliferation may 

lead to increased levels of chemotherapeutic-induced cell death, however treatment with 

carboplatin was significantly less effective on soft substrates (Fig. 3.2C), nearly 

replicating results seen previously when OCCs were cultured in a 3D environment (73). 

Finally, single-cell motility analysis revealed large increases in migration on soft 

substrates, as quantified by cell migration coefficient (Fig. 3.2D).  Though the overall 

average migration coefficient increased almost 5-fold, the fastest 1% of cells increased 

over 30-fold (Fig. 3.4A), which may represent the small tumor cell subpopulation capable 

of metastasis. 

After observing these functional alterations on soft substrates, we sought to probe 

cell-matrix interactions. To do so, we utilized traction force microscopy (TFM) to 

quantify the force exerted by cells on the underlying substrate (Fig. 3.2Ea). We found 

that when cultured on soft matrices, OCCs exerted more force (Fig. 3.2Eb), often 

indicative of increased metastatic phenotype (74). Previous work has demonstrated that 

during invasion into the sub-mesothelial environment ovarian cancer cells utilize myosin-

dependent traction force to clear the mesothelial cell layer (75) . Our results indicate this 
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key step in ovarian cancer invasion may be exacerbated by the mechanical properties of 

the omentum.  Additionally the cells were more capable of polarizing these forces on the 

soft substrates (Fig. 3.2Ec), a crucial step for effective cell migration. These changes in 

force profiles corresponded with changes in phosphorylated myosin light chain (pMLC) 

in both overall intensity and polarization (Fig. 3.2F). 
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Figure 3.2  Metastatic SKOV-3 ovarian cancer cells display increased malignant phenotype 
on soft matrices.  (A) Adhesion to soft microenvironments shows that OCCs are more adherent 
on soft adipocytes relative to osteoblasts, with near identical changes seen on soft and hard  
polyacrylamide substrates. (B) After engrafting, cells proliferated more on soft substrates relative 
to hard substrates, with both values being significantly greater than the collagen-coated glass 
control. (C) Cells on compliant matrices showed increased viability after treatment with 50μM 
carboplatin. (D) Analysis of cell motility tracks revealed significantly higher cell migration 
coefficient on soft substrates. (E) Heat maps of traction stresses in Pascals overlaid with black 
arrows showing cell-induced matrix displacements (E,a). The cell center of mass is shown by the 
circle (○) and the triangle (Δ) shows the force-weighted center of mass. Quantification of the cell-
exerted traction forces show increased peak traction stresses (E,b), as well as force polarization 
(E,c), defined as the difference in cell center of mass and force-weighted center of mass (scale bar 
= 10 μm) (F) Staining for pMLC revealed a increase in pMLC intensity and polarization. 
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3.3.2 Culturing OCCs on soft substrates induces more mesenchymal phenotype 

When grown on soft substrates or soft cells, OCCs displayed a more elongated 

morphology indicative of a mesenchymal phenotype, with cells cultured on adipocyte 

monolayers exhibiting the most elongation at nearly six times long as wide (Fig. 3.4A). 

This may be due in part to soluble factors released by the cells as polyacrylamide 

substrates of similar rigidities did not recapitulate this elongation entirely (Fig. 3.3B). 

Cell aspect ratio was near equivalent on osteoblasts and the soft matrix, both of which 

have similar elastic moduli. However, all evaluated culture substrates showed increased 

elongation over the collagen-coated glass control. Based on the elongated morphology 

and increased migration indicative of a mesenchymal phenotype, we hypothesized cells 

were undergoing epithelial-mesenchymal transition. To test this, we first stained cells for 

 
Figure 3.4 Most motile cells and elongation on softer substrates. (A) Metastatic SKOV-3 
motility shows a 5-fold increase on soft substrates relative to hard for the population average, but 
the most motile subpopulations show exponentially higher fold changes reaching an over 30-fold 
increase for the fastest 1% of cells.  (B) Culturing cells on polyacrylamide substrates with 
rigidities comparable to the differentiated adipocyte monolayers does not reproduce the observed 
elongation, suggesting soluble factors released by the cells are a contributing factor. 
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the intermediate filament cytokeratin which is preferentially expressed in epithelial cells. 

We found that OCCs cultured on soft substrates displayed nearly 5-fold less cytokeratin 

(p<0.01) than when cultured on collagen-coated glass (Fig. 3.4B). This finding was 

validated with qRT-PCR which showed increases mesenchymal markers (Fig. 3.4Ca) as 

well as decreases in epithelial markers (Fig. 3.4Cb) when OCCs were cultured on 

compliant matrices.  

 

3.3.3 Mechanosensitivity is decreased in less invasive OCCs. 

After finding that compliant matrices produced a more metastatic OCC phenotype, 

we next questioned if this mechanosensitivity was conversely decreased in a less 

 
Figure 3.4 Increased malignant phenotype correlates with epithelial-mesenchymal 
transition. (A) SKOV-3 cells show morphological elongation consistent with a more 
mesenchymal phenotype on soft matrices as well as on soft adipocyte monolayers (SKOV-3 cells 
labeled green with CFSE).  (B) Staining cells with pan-cytokeratin (green) and F-actin (red) 
shows decreased cytokeratin expression on softer substrates (scale bar = 50 μm) (C) Gene 
expression analysis shows both an up-regulation of mesenchymal markers (C,a) as well as down 
regulation of epithelial markers (C,b) relative to collagen-coated glass control. 
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metastatic cell line. To do so, we utilized poorly metastatic OVCAR-3 cells (64). In 

contrast to their more metastatic counterparts, these cells showed no significant 

advantage in adhesion, proliferation, chemoresistance, or migration on soft substrates 

(Fig. 3.5A). To test if this was due to altered interactions with the underlying substrate, 

we repeated the TFM and found a slight increase in traction stresses on soft matrices (Fig. 

3.5B), though the change was much smaller than that observed in more metastatic cells. 

In contrast to previously studied types of cancer (74), the peak traction forces exerted by 

the less invasive cells were actually higher than those exerted by the more metastatic 

cells. However, the more aggressive SKOV-3 cells showed a larger fold increase in 

traction forces on soft substrates suggesting that force modulation based on matrix 

stiffness may be a more relevant parameter for grading cell invasiveness than the absolute 

magnitude of the force (Fig. 3.5Bd). When evaluating changes in epithelial/mesenchymal 

character, we found that the less metastatic OCCs still showed decreases in cytokeratin 

expression, though even on soft substrates these values were still equivalent to SKOV-3 

on glass (Fig. 3.5Ca).  Confirmation with gene expression analysis showed similar 

changes (Fig. 3.5Cb).  
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3.3.4 OCC mechanical preference is controlled through a Rho/ROCK pathway 

Since Rho and Rho kinase (ROCK) have both been associated with matrix-stiffness 

induced malignancy (8, 39) and mechanotransduction (11) we hypothesized these 

molecules may play a role in the changes observed in this study.  To probe this, we 

treated metastatic OCCs either with LPA to activate Rho/ROCK or inhibited ROCK with 

Y27632 and H1152.   

Consistent with previous literature reports that LPA is often increased in ovarian 

cancer patients and leads to increased cell invasion (76), LPA induced marked migration 

 
Figure 3.5 Less metastatic OVCAR-3 ovarian cancer cells show decreased 
mechanosensitivity.  (A) Previously observed changes in adhesion (A,a), proliferation (A,b), 
carboplatin resistance (A,c), and migration (A,d) were no longer observed in the less metastatic 
cells. (B) Image of OVCAR-3 cells labeled with NucBlue on stiff substrates (B,a) and underlying 
traction forces in Pascals overlaid with black arrows to show matrix displacements (scale bar = 
10μm) (B,b). Quantification of peak traction stresses shows slight increase on soft substrates 
(B,c). Fold increase in traction force on soft substrates shows significantly larger changes in 
SKOV-3 cells relative to OVCAR-3. (B,d). (C) OVCAR-3 cells show decreased changes in 
epithelial/mesenchymal character by (C,a) quantitative image analysis of OVCAR-3 cells labeled 
with F-actin (red) and pan-cytokeratin (green) (values normalized to SKOV-3 on glass, scale bar 
= 50μm) and expression of EMT-associated genes (C,b). 
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on hard substrates with rigidities similar to the primary tumor (Fig. 3.6Aa). This LPA-

induced motility on hard substrates bore great phenotypic resemblance to that seen 

natively on soft matrices including cell elongation (Fig. 3.6Ab), increased traction forces 

and force polarization (Fig. 3.6C). In contrast to this, on soft matrices LPA drastically 

reduced migration and caused cells to collapse to a rounded morphology (Fig. 3.6Ab). 

TFM revealed similar peak traction stresses for LPA treated OCCs (Fig. 3.6B, Fig. 

3.6Ca), though the decreased spread area (Fig. 3.7A) did result in a significantly less total 

force exertion on soft matrices (Fig. 3.7B). We hypothesize that on the soft matrix the 

Rho activation by LPA led to hypercontractility and subsequent cell collapse, such as that 

observed in neuronal cells, suggesting it may be characteristic of cells that prefer softer 

environments (77).  

Inhibition of ROCK with either Y27632 or H1152 (Fig. 3.6Aa) produced rigidity-

independent motility, suggesting it plays a key role in OCC mechanosensitivity. 

Moreover, ROCK inhibition greatly mitigated changes in EMT-associated genes (Fig. 

3.6Ac). When grown on soft substrates Y27632 reduced traction forces (Fig. 3.6B, Fig. 

3.6Ca). Though Y27632 induced modest increases in force on hard substrates, treatment 

with the more specific H1152 produced completely rigidity-independent forces and 

corresponding decreases in pMLC (Fig. 3.7Cb). This disparity may either be due to 

incomplete ROCK inhibition with Y27632 (Fig. 3.7Ca) or off-target effects of Y27632 

(78). Despite the larger traction forces on hard substrates Y27632-treated OCCs showed 

no increase in motility, possibly due to the cell’s inability to properly polarize forces (Fig. 
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3.6Cb). The near-complete force inhibition with H1152 greatly mitigated OCC motility 

regardless of matrix rigidity (Fig. 3.6Ac).  

Our results are consistent with recent findings by Waterman and colleagues that 

below a threshold matrix stiffness cells utilize a subset of focal adhesions (FAs) for 

mechanosensing that undergo constant force fluctuations through a ‘tugging’ mechanism 

(79) and that these ‘tugging’ FAs exert larger forces than their stable counterparts. ROCK 

inhibition in tugging cells on soft matrices decreased pMLC and subsequent force 

exertion as observed here. In contrast to this, in ‘non-tugging’ cells on hard matrices 

ROCK inhibition induced tugging which could lead to the increased forces as seen on 

hard substrates (Fig. 3.6C). This theory would imply that ROCK inhibition essentially 

“decouples” the cell’s mechanosensing machinery, and indeed down-stream molecular 

and functional changes were largely mitigated with ROCK inhibition (Fig. 3.6A). Since 

cells on soft matrices can display biphasic behavior based on ECM density (80) future 

studies investigating the role of ECM density on Rho/ROCK mediated 

mechanosensitivity may help determine the interplay of these conditions required for 

ovarian cancer metastasis.  
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Figure 3.6 Mechanical tropism is governed by a Rho/ROCK pathway as demonstrated by 
Rho activation with 10μM LPA or ROCK inhibition with 10μM Y27632 and 1μM H1152.  
(A,a) LPA induced large increases migration on hard substrates, but inhibited migration on soft 
substrates. ROCK inhibition produced rigidity-independent migration with decreased migration 
on soft matrices and increased migration on hard matrices. (A,b) Similar trends in cell 
morphology were observed as quantified by cell aspect ratio. (A,c) ROCK inhibition with 
Y27632 mitigates changes in EMT-associated gene expression. (B) Tractions force maps as 
described in Figure 2 after treatment with small molecules. (C) Quantification of peak traction 
stresses (C,a) as well as traction force polarization (C,b).  (D) Proposed model of ovarian cancer 
cell metastasis where LPA in the hard environment of the primary tumor induces change from 
less migratory/more epithelial cells (blue) to more migratory/mesenchymal cells (green). After 
spreading into the ascites fluid, engraftment into the soft omentum likewise results in a more 
aggressive mesenchymal phenotype. 



 

 

27 
 

 

 

These findings hearken back to Stephen Paget’s 1889 ‘seed and soil’ hypothesis 

which sought to explain the observation that certain cancer cells, or seeds, seem to prefer 

specific metastatic sites, or soil (6). We posit that secreted soluble factors increase OCC 

homing to the omentum, and then mechanical cues from the matrix spur OCC 

engraftment, growth, and migration. Interestingly, nuclear lamin levels have recently 

been shown to scale with tissue stiffness (81), and microarray analysis of primary and 

metastatic ovarian tumors showed changes in lamin expression consistent with this result 

(82).  

 
Figure 3.7 Spreading and force production in presence of Rho pathway modulation. (A)   
Spread area of SKOV-3 cells after Rho activation with LPA and ROCK inhibition with Y27632 
or H1152. (B) Total force exerted by SKOV-3 cells after Rho activation with LPA and ROCK 
inhibition with Y27632 or H1152.  (C) SKOV-3 cells treated with Y27632 show significantly 
higher pMLC on hard matrices, with no differences observed with H1152. 
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In conclusion, this report demonstrates a previously undocumented mechanical 

tropism in metastatic ovarian cancer cells regulated through a Rho/ROCK pathway. 

Based on these observations, we propose a model as outline in Figure 3.6D whereby high 

local amounts of LPA around the tumor increase OCCs growth and migration out of the 

primary tumor. Once in the peritoneal fluid, cells preferentially adhere to the omentum as 

they come in contact with the soft matrix. After adhering, the compliant matrix causes an 

increase in malignant characteristics including growth, chemoresistance, and motility. 

Taken together with recent studies implicating ascitic fluid flow in ovarian cancer cell 

EMT (83), this work further highlights the crucial role of mechanical cues on ovarian 

cancer metastasis. By further understanding about the factors affecting ovarian cancer 

metastatic tropism this work may help address the void of effective therapies for 

advanced-stage disease.  

3.4 Materials and Methods 

3.4.1 Cell culture and substrate synthesis 

Ovarian carcinoma cells SKOV-3 and OVCAR-3 were cultured per manufacturer’s 

instructions. Human mesenchymal stem cells (hMSCs) acquired from TAMU were 

differentiated as described (68) into adipocytes and osteoblasts (Fig. 3.8A). 

Polyacrylamide substrates (63) were coated with equal densities of Collagen I (Fig. 

3.8B). 

3.4.2 Adhesion, proliferation, chemoresistance, and cell motility 
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Cells labeled with CFSE (Biolegend) were allowed to adhere for two hours in HBSS 

with divalents before taking an initial florescence reading. A final reading was taken after 

removing non-adherent cells by washing with HBSS to determine adherent fraction. Cell 

proliferation was quantified by cell number increase 48 hours after plating. 

Chemoresistance was quantified using a MTT assay on cells treated with 50 µM 

carboplatin. All three parameters are reported relative to a collagen-coated glass control. 

For cell migration coefficient quantification, cells were imaged on an environmentally-

controlled Nikon Eclipse Ti microscope and traces fit to the persistent random walk 

model (69). 

3.4.3 Traction force microscopy 

Cell-induced displacements were used to determine traction forces as previously 

described (70). To capture the traction forces of OVCAR-3 cells that grow in clumps and 

avoid inaccuracies arising from analyzing patches of cells, traction stress values are 

reported as the peak (95th percentile) of traction forces (Fig. 3.8C). Polarization was 

defined as the difference between the centroid of the cell and the force-weighted center of 

mass (Fig. 3.8Ea).  
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Figure 3.8 Differentiated hMSC monolayers, ECM conjugation to substrates, and traction 
force quantification. (A) Differentiation of human mesenchymal stem cells was confirmed by 
histological staining. (A,a) Osteoblasts were stained for both alkaline phosphotase (ALP) and 
calcium deposits with Alizarin Red S (ARS). (A,b) Adipocytes were stained with Oil Red O to 
label fat droplets. (A,c) After 24 hours of culture, SKOV-3 cells (labeled red with CM-DiI) do not 
invade hMSC monolayers (labeled green with CFSE) as verified by confocal microscopy. (B) 
Both substrates are conjugated with equal amounts of protein. (B,a) Surface protein quantification 
by staining with Coomassie G-250 and taking absorbance shows equal density on both substrate 
rigidities. (B,b) A similar trend was found by hydrolyzing surface proteins with 6N NaOH and 
then taking the absorbance of the release protein at 260 nm. (C) Traction forces of SKOV-3 
clusters and single cells on hard substrates show that though parameters such as total force (C,a) 
and median stress (C,b) depending on if the cells are quantified as single cells or a cell cluster, 
peak traction stress remains unchanged regardless of cell density (C,c). 
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3.4.4 Immunofluorescence and gene expression characterization  

Staining for cytokeratin was performed with anti-pan-cytokeratin (Biolegend) 

followed by incubation with rhodamine phalloidin and AlexaFluor 488 secondary 

(Invitrogen) before sealing with Vectashield with DAPI. Staining for pMLC was 

performed as described (71). Gene expression analysis normalized to 18s RNA are 

reported relative to collagen-coated glass  (68). 

3.4.5 Statistical Analysis 

All studies were performed in triplicate or and are reported mean ± SEM. Statistical 

analysis was carried out using a student’s t-test or ANOVA, considering p<0.05 to be 

significant (***p<0.001,**p<0.01,*p<0.05). For inhibitor studies, # signs compare 

samples to their untreated rigidity-matched controls.  
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CHAPTER 4 
ACTOMYOSIN TENSION AS A DETERMINANT OF 
METASTATIC CANCER MECHANICAL TROPISM2 

4.1 Summary 
Despite major advances in the characterization of molecular regulators of cancer 

growth and metastasis, patient survival rates have largely stagnated. Recent studies have 

shown that mechanical cues from the extracellular matrix can drive the transition to a 

malignant phenotype. Moreover, it is also known that the metastatic process, which 

results in over 90% of cancer-related deaths, is governed by intracellular mechanical 

forces. To better understand these processes, we identified metastatic tumor cells 

originating from different locations which undergo inverse responses to altered matrix 

elasticity: MDA-MB-231 breast cancer cells that prefer rigid matrices and SKOV-3 

ovarian cancer cells that prefer compliant matrices as characterized by parameters such as 

tumor cell proliferation, chemoresistance, and migration. Transcriptomic analysis 

revealed higher expression of genes associated with cytoskeletal tension and contractility 

in cells that prefer stiff environments, both when comparing MDA-MB-231 to SKOV-3 

cells as well as when comparing bone-metastatic to lung-metastatic MDA-MB-231 

subclones. Using small molecule inhibitors, we found that blocking the activity of these 

pathways mitigated rigidity-dependent behavior in both cell lines. Probing the physical 

forces exerted by cells on the underlying substrates revealed that though force magnitude 

may not directly correlate with functional outcomes, other parameters such as force 
                                                 

2McGrail DJ, Kieu QMN, Iandoli J a, Dawson MR. (2015) Actomyosin tension as a determinant of 
metastatic cancer mechanical tropism. Phys. Biol. 12: 026001. 
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polarization do correlate directly with cell motility. Finally, this biophysical analysis 

demonstrates that intrinsic levels of cell contractility determine the matrix rigidity for 

maximal cell function, possibly influencing tissue sites for metastatic cancer cell 

engraftment during dissemination. By increasing our understanding of the physical 

interactions of cancer cells with their microenvironment, these studies may help develop 

novel therapeutic strategies. 

4.2 Introduction 
The ability of a cell to sense and interact with its local environment is important in 

both normal tissue development such as directing cell lineage during stem cell 

differentiation as well as progression of diseases such as arteriosclerosis, muscular 

dystrophies, osteoporosis, and cancer (11). As illustrated by the groundbreaking work of 

Paszek et. al., this mechanotransduction pathway is not simply a passive, unidirectional 

response to matrix stiffness but can ultimately feed an autocrine loop and promote 

malignant transformation in breast cancer (8). Once malignancies begin to develop, lysyl 

oxidase-driven matrix crosslinking promotes the invasion of breast cancer into 

surrounding tissues (37). As matrix stiffening continues, cancer cells must continually 

activate the Rho/ROCK signaling pathway to increase cytoskeletal tension in order to 

maintain force equilibrium (38). The direct effects of actomyosin contractility on tumor 

progression were elegantly demonstrated by Samuel et. al. using a squamous cell 

carcinoma model showing ROCK activation catalyzed this transformation (39).  
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Despite this body of work, the literature is still unclear if this matrix stiffness-induced 

cancer progression is conserved throughout all cancers. Studies of larger sets of cancer 

cell lines have shown that 70% grew better on stiff substrates with the remaining 

displaying matrix-independent growth (59). Moreover, though the stiffness of metastatic 

site tissue in vivo has been shown to correlate with growth on rigidity-matched substrates 

in vitro (61), the mechanisms underlying this mechanical preference remain unknown. 

We recently demonstrated that ovarian cancer cells that preferentially metastasize to the 

soft omentum fat pad also become more malignant on soft matrices (84). Thus, we sought 

to compare these cells with metastatic MDA-MB-231 cells which become more 

malignant in hard environments in order to understand the drivers of this mechanical 

preference.  

To accomplish this, we cultured cells on soft (2.83 kPa) and hard (34.88 kPa) 

polyacrylamide substrates and found that matrix-dependent differences in spreading 

appeared within two hours of culture and continued culture increased proliferation, 

chemoresistance, and motility on substrates of preferred rigidity. Microarray analysis 

revealed breast cancer cells have significantly higher expression of genes associated with 

contractility such as myosin light chain, myosin heavy chain, RhoA, and myosin light 

chain kinase (MLCK). Chemical blockade of these molecules mitigated rigidity-

independent behavior. To probe how this inhibition was altering physical interactions 

with the underlying substrate, we performed traction force microscopy. Though inhibiting 

ROCK and MLCK produced equivalent functional outcomes this was accomplished 

through divergent changes in force profiles. This suggests a model that rigidity-dependent 
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cell function is determined by the ratio of relative contractility to substrate stiffness. If 

this ratio is too high, as seen for highly contractile MDA-MB-231 on soft, then the 

contractile forces overwhelm adhesive strength and cells collapse. Conversely, if this 

ratio is too low, as seen for the weakly contractile SKOV-3 cells on hard, cells do not 

have sufficient strength to spread. Alterations in the intrinsic level of contractility may be 

a necessary step to adapt to various tissue rigidities during metastasis as contractile gene 

expression signatures are shared with cells with in vivo tropism for tissues of different 

rigidities.  

4.3 Results 

4.3.1 Metastatic Breast and Ovarian Cancer Function Best on Opposite Matrix 

Rigidities  
To characterize matrix stiffness dependent function we considered three primary 

malignant characteristics on soft (2.83 kPa) and hard (34.88 kPa) substrates as well as 

collagen-coated glass control: (1) the ability of cells to grow, (2) the ability of cells to 

survive chemotherapeutics, and (3) the ability of cells to migrate. Utilizing BrdU 

incorporation as a marker of cell proliferation we found that consistent with previous 

reports(73, 85) there were significantly less (p<0.01)  proliferating MDA-MB-231 cells 

on soft substrates (Fig. 4.1A). Conversely, the fraction of SKOV-3 proliferating 

significantly increased on soft substrates over both hard substrates (p<0.05) and glass 

(p<0.01). Follow-up studies analyzing viability after 24 hour doxorubicin treatment 

revealed MDA-MB-231 cells on glass showed 20% higher viability than on soft 

substrates (Fig. 4.1B). SKOV-3 cells were more resistant to doxorubicin on both soft 
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(p<0.01) and hard (p<0.05) substrates. Finally, we sought to quantify the effects of 

substrate rigidity on cell migration. To do so, cells on substrates were labeled with a live- 

cell nuclear dye to track cell motion. MDA-MB-231 cells on hard substrates 

displayed higher velocities relative to those cultured on soft substrates with even larger 

gains in speed seen on glass (Fig. 4.1C). Though SKOV-3 cells exhibited overall lower 

velocities, they still were more motile on soft substrates than either hard substrates or 

glass. Analysis of additional less metastatic cell lines showed that this phenomenon was 

mitigated, suggesting it may be a property of metastatic cells (Fig. 4.2). 

 

 
 
 

 
Figure 4.1 Spreading and force production in presence of Rho pathway modulation. (A) 
Cells were grown on substrates for 24 hours before introducing BrdU for incorporation into 
dividing cells. MDA-MB-231 cells are more proliferative on either hard or glass substrates than 
on soft whereas SKOV-3 cells show less proliferation on both hard and glass. (B) After overnight 
equilibration, cells were treated with doxorubicin for 24 hours before quantifying viability 
relative to a rigidity-matched control for each cell line using MTT revealing cells remained viable 
on hard and soft substrates, for MDA-MB-231 cells and SKOV-3 cells, respectively. (C) 
Quantification of cell velocity by tracking individual cells as they migrated on each substrate 
showed similar trends, with higher MDA-MB-231 velocities on hard and glass whereas SKOV-3 
cells had higher velocities on soft substrates. All values plotted as mean ± SEM of >3 
independent experiments. * p<0.05, ** p<0.01, *** p<0.001 
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4.3.2 Adhesion and Spreading Dynamics 

Next, we tested if the observed differences were also present at early time scales during 

adhesion to the substrates. For MDA-MB-231 cells there was no statistical difference 

between hard and soft substrates at any time points (Fig. 4.3A), which may explain their 

ability to initially adhere to the soft bone marrow when undergoing bone metastasis. In 

contrast to this, SKOV-3 cells adhered significantly more to soft substrates until the 3 

hour time point after which differences were negligible (Fig. 4.3B). For both cell types 

 
Figure 4.2 Less metastatic cells are less sensitive to matrix rigidity. Less metastatic breast (A-
B), and ovarian (C-D) show greatly decreased response to matrix rigidity in terms of proliferation 
(A,C) and motility (B,D). . All values plotted as mean ± SEM of >3 independent experiments. * 
p<0.05, ** p<0.01, *** p<0.001 
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there was no difference in either weakly or strongly adherent fractions by the 3 hour time 

point, so any observed differences were not due to an inability of cells to adhere to the 

substrates. 

 

Since early adhesion was largely unaffected by matrix stiffness, we next investigated 

the time scale at which differences emerge by determining the rate at which cells spread 

 
Figure 4.3  Effect of substrate rigidity on cell adhesion and spreading. (A-B) Fluorescently 
labeled cells were allowed to adhere for the specified length, and then adherent fraction 
quantified by relative fluorescence intensity before and after washing away non-adherent cells. 
The adherent fraction showed no differences for MDA-MB-231 (A) between hard and soft 
substrates, though at early time points SKOV-3 were significantly more adherent to soft 
substrates (B). Cells were fully adhered to both substrates by three hours. (C-D) Quantification 
of cell spreading over equivalent time points shows significant differences in spread area 
occurring after two hours for both MDA-MB-231 (C) and SKOV-3 (D) and persists after 
overnight incubation. All values plotted as mean ± SEM of >3 independent experiments.  * 
p<0.05, ** p<0.01, *** p<0.001 
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on substrates of different rigidities through quantification of the area of stained 

filamentous actin. Through one hour, there was no significant difference in spreading. 

However, by two hours significant differences in spreading had emerged. Differences in 

the spread area persisted after cells reached their final size (Fig. 4.3C-D).  

4.3.3 Microarray Analysis Reveals Differences in Contractile Pathways  

To begin probing for differences between these two cell types, we utilized 

publically deposited microarray data sets to test for differences in gene expression. This 

analysis revealed that MDA-MB-231 cells showed significant higher expression of genes 

associated with actomyosin contraction (Fig. 4.4A). Notable differentially expressed 

genes include contractile genes such as RHOA, MYLK, and ARHGEF18, as well as MYL9 

and MYH9¸ subunits of non-muscle myosin II which we confirmed with RT-PCR 

verifying this trend held across rigidities to account for any potential lab to lab cell line 

variation (Fig. 4.4B). Interestingly, SKOV-3 cells expressed higher levels of genes 

associated with actin filament stabilization such as tropomyosin 2 (TPM2) (86) which 

may help compensate for the lack of cytoskeletal tension. Unsupervised hierarchal 

clustering of parental MDA-MB-231, as well as subclones that were selected in vivo to be 

bone metastatic or lung metastatic, showed that bone and lung cells form two unique 

clusters, and that parental cells clustered with bone-metastastic clones indicating they are 

most similar at the gene expression level (Fig. 4.5). Comparison of these sublcones that 

metastasize to either soft (lung) or hard (bone) microenvironments recapitulated many of 

the differences observed between SKOV-3 cells and MDA-MB-231 cells (Fig. 4.6).  Due 

to the importance of RhoA and actomyosin contraction in mechanotransduction we 
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hypothesized this differential expression could be responsible for the differential response 

to matrix compliance. 

 

 

 
Figure 4.4 Actomyosin tension is up-regulated on cells that prefer stiff matrices and 
inhibition mitigates this preference. (A) Microarray gene expression analysis reveals higher 
expression of several genes associated with actomyosin tension, including genes encoding for 
myosin heavy and light chains, myosin light chain kinase, and RhoA. (B) RT-PCR validation 
of MYH9 and MYL9 in MDA-MB-231 and SKOV-3 confirming higher gene expression in 
MDA-MB-231 cells regardless of substrate rigidity. 
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Figure 4.5 Unsupervised hierarchal clustering of lung metastatic, bone metastatic, and 
parental MDA-MB-231 cells shows that parental MDA-MB-231 cells cluster with the 
bone metastatic subclones, indicating they are genetically similar. Data were accessed from 
GEO accession GSE2603 and clustering performed in MATLAB GC-RMA background 
subtraction. Only probe sets with a standard deviation above 0.5 were used for clustering.   
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4.3.4 Modulation of Cytoskeletal Tension Alters Rigidity-Dependent Behavior 

Based on these observations, we sought to determine if blocking these differentially 

regulated pathways could mitigate the observed differences in mechanosensitivity. 

Analysis of spread area revealed that inhibiting either Rho-associated kinase (ROCK) 

with Y27632 or myosin light chain kinase (MLCK) with ML7 produced rigidity-

independent spread area in both MDA-MB-231 (Fig. 4.7A) and SKOV-3 (Fig. 4.7B) 

cells. Inhibition of non-muscle myosin with blebbistatin in MDA-MB-231 cells allowed 

for increased spreading on soft substrates whereas cells on hard substrates had decreased  

spread area (Fig. 4.7A), though we could not perform further studies due to phototoxcitiy 

(87).  If inhibiting contractility allowed for recovered MDA-MB-231 function on soft  

 
Figure 4.6 Differential gene expression between bone metastatic and lung metastatic 
MDA-MB-231 subclones. Data was processed as described in methods with data from GEO 
accession GSE2603. FC is defined as log2(bone metastatic/lung metastatic)  expression. ** 
denotes genes that were also differentially expressed between MDA-MB-231 and SKOV-3 
cells as shown in Figure 4.4A. 

 Gene FC Gene FC 
Up-Regulated Down-Regulated 

**MYH10 1.96 BIN1 -0.32 
**MYL9 0.99 DCTN3 -0.47 
WASF3 0.98 RACGAP1 -0.48 
SPTAN1 0.92 MYL6B -0.49 
**CDC42EP3 0.79 STK38L -0.49 
SPTBN1 0.77 **KLHL2 -0.50 
**ARHGEF18 0.71 ARHGDIB -0.51 
FLII 0.68 SVIL -0.52 
SSH1 0.59 RASA1 -0.58 
**ACTR1A 0.58 MYL6 -0.58 
CORO1C 0.51 **PRKCA -0.61 
DLG1 0.47 **SHROOM2 -0.72 
RND3 0.43 CLIC4 -0.75 
ROCK1 0.41 **TWF1 -0.78 
**FLNB 0.37 PLCB1 -1.70 
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substrates, we hypothesized increasing contractility in SKOV-3 cells may recover 

function on hard substrates. To test this, SKOV-3 cells were treated with Rho-activating 

LPA to increase contractility which increased their spread area on hard substrates but 

collapsed on soft substrates (Fig. 4.7B). Similarly, quantification of cell motility after 

treatment revealed that the ROCK and MLCK inhibition were sufficient to induce 

rigidity-independent migration in both cell lines (Fig. 4.7C-D), but Rho activation with 

LPA increased SKOV-3 motility on hard while decreasing it on soft (Fig. 4.7D). For both 

spreading and motility the changes were a result of the MDA-MB-231 cells gaining 

function on soft matrices as opposed to decreasing function on hard. Analysis of MDA-

MB-231 proliferation when exposed to inhibitors still produced substrate-independent 

proliferation in MDA-MB-231 cells, but this was due to both increases in soft substrates 

as well as decreases in hard substrates (Fig. 4.7E) as opposed to merely a gain of function 

on soft substrates. For SKOV-3 cells, the inhibitors decreased function on soft matrices 

(Fig. 4.7B,D,F). 
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4.3.5 Actomyosin Tension Determines Rigidity-Dependent Cancer Cell Function   

To investigate how cells were interacting with the underlying substrates, we 

performed traction force cytometry. For control cells, both MDA-MB-231 (Fig. 4.8) and 

SKOV-3 (Fig. 4.9) cells exerted more force on substrates where the function was best 

(hard and soft, respectively). This force increase was abrogated by ROCK inhibition for 

 
Figure 4.7 Manipulating cytoskeletal tension alters rigidity-dependent behavior. Cells 
were treated with 10 μM Y27632 (Y27) to inhibit Rho kinase, 10 μM ML7 to inhibit 
myosin light chain kinase, 50 μM blebbistatin (BLEBB) to inhibit myosin II, or 10 μM 
LPA to activate RhoA.  (A-B) Spread area of MDA-MB-231 (A) and SKOV-3 (B) after 
treatment with specified inhibitor. (C-D) Motility of MDA-MB-231 (C) and SKOV-3 (D) after 
treatment with specified inhibitor. Velocity index is defined as velocity normalized to cell 
speed on collagen-coated glass. (E-F) Proliferation index of cells following overnight inhibitor 
treatment defined as proliferation relative to a collagen-coated glass control for MDA-MB-231 
(E) and SKOV-3 (F). All values plotted as mean ± SEM of >3 independent experiments. 
Significance is indicated by *’s between substrate rigidities and # signs relative to untreated 
rigidity-matched controls. * p<0.05, ** p<0.01, *** p<0.001 
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both cell lines, but had no effect on forces exerted on less preferred matrices. Inhibiting 

MLCK with ML7 increased force exertion in MDA-MB-231 cells on both rigidities (Fig. 

4.8), whereas in SKOV-3 cells it decreased forces on the preferred soft matrix but had no 

effect for cells on a hard matrix (Fig. 4.9). Activation of contractility in SKOV-3 cells 

with LPA did increase force exertion on hard substrates as expected (Fig. 4.9), but similar 

to the trend observed with cell motility (Fig. 4.7D) it decreased total force exertion on 

soft substrates.  

 

 
Figure 4.8  Traction force cytometry in MDA-MB-231 cells reveals multiple force profiles 
with similar functional outcomes. (A) Maps of traction stresses in Pa after treatment with 
Y27632 and ML7 for cells overlaid with markers for the cell center of mass (○) and the force-
weighted center of mass (Δ). (Scale bar = 10 μm). (B) Quantification of total force exerted by 
MDA-MB-231 cells. (C) Polarization, defined as the distance between the cell’s center of mass 
(circle) and the force-weighted center of mass (triangle). All values plotted as mean ± SEM of 
>3 independent experiments with a total of 50-150 cells per condition. Significance is indicated 
by *’s between substrate rigidities and # signs relative to untreated rigidity-matched controls. * 
p<0.05, ** p<0.01, *** p<0.001 
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Figure 4.9 Traction force cytometry in SKOV-3 cells following inhibition of ROCK with 
Y27632, MLCK with ML7, and RhoA activation with LPA.  (A) Maps of cell traction 
stresses in Pa overlaid with markers for the cell center of mass (○) and the force-weighted 
center of mass (Δ). (Scale bar = 10 μm). (B) Quantification of total force exerted by SKOV-3 
cells. (C) Polarization, defined as the distance between the cell’s center of mass (circle) and the 
force-weighted center of mass (triangle). All values plotted as mean ± SEM of >3 independent 
experiments with a total of 50-150 cells per condition. Significance is indicated by *’s between 
substrate rigidities and # signs relative to untreated rigidity-matched controls. * p<0.05, ** 
p<0.01, *** p<0.001 
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Figure 4.10 Analysis of force polarization and proposed model. (A) Force polarization 
correlates with cell motility. Plotting the normalized cell velocity as a function of force 
polarization shows a strong positive correlation between the two values with a Pearson 
correlation coefficient of 0.86 (p = 0.0096). (B) Proposed model of cancer cell 
mechanosensitivity for MDA-MB-231 cells (left) and SKOV-3 cells (right) where cell function 
follows a normal curve based on a ratio of relative contractility to substrate stiffness, where we 
define a value of 1 as an optimum for this contractility to substrate stiffness ratio (CSR). Thus, 
highly contractile MDA-MB-231 on glass would be near their optimum (very high::very hard) 
with a CSR~1, as would weakly contractile SKOV-3 cells (low::soft). If the CSR gets too high, 
as seen in highly contractile MDA-MB-231 on soft (very high::soft>>1) or too low as in 
SKOV-3 on hard (low::hard<<1), then cells may contract too strongly against the substrate to 
form adhesions or not have sufficient force to spread, respectively. Modulation of relative 
contractility would thus shift what substrate rigidity cells could function on; tabulation of these 
inhibitors is included below the charts. 

 

These data demonstrated that motility could be increased both in absence of increased 

force or with increased force (for example, MDA-MB-231 on soft with Y27632 and 

ML7, respectively). To investigate this disparity, we also analyzed the polarization 
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distance, which describes the distribution of forces relative to the center of mass for each  

cell. Though following ROCK inhibition SKOV-3 cells exerted more force on hard 

substrates than soft, the force was not polarized (Fig. 4.9C) and motility unchanged (Fig. 

4.7D). MDA-MB-231 showed that regardless of whether force increased (ML7) or not 

(Y27632) cells were still capable of motility (Fig. 4.7C) with proper force polarization 

(Fig. 4.8C). While the total amount of force exerted by each cell did not correlate with 

cell motility, the polarization of these forces did. After normalizing velocity to the 

average of each respective cell type, the Pearson correlation coefficient showed a strong 

positive relationship with ρ = 0.86 (p<.01) (Fig. 4.10A). 

4.4 Discussion 
 In this paper, we sought to elucidate the determinants of how cells respond to 

matrix stiffness. In order to do so, we first identified cancers that show tropism to 

different environment rigidities. Clinicians have long noted that ovarian cancer often 

metastasizes to the omentum, a soft tissue predominately composed of adipocytes (88). 

Researchers have noted adhesion molecules (64) and soluble factors (58) that contribute 

to the colonization of the omentum, with similar to adaptions observed in metastatic 

breast cancer dissemination (89–91). Moreover, metastatic ovarian cancer cells display a 

more aggressive phenotype when cultured on soft substrates (84) and grow more in soft 

3D gels (73). In contrast to this, an array of studies have highlighted how breast cancer 

advances on stiff matrices through the Rho/ROCK signaling pathway (8, 37, 92, 93). 

Specifically, using a subcutaneous tumor metastasis model with parental MDA-MB-231 

cells, which grow more on hard matrices (59), researchers have found up to 31% 
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metastasis to rigid bone (89) but near 0% to softer lung tissue (91). Thus, parental MDA-

MB-231 cells were chosen as a model cell line with maximal function on stiff matrices. 

Though some subclones of MDA-MB-231 are capable of lung metastasis even from a 

subcutaneous tumor, these are not believed to be the majority of the population as 

unsupervised clustering of microarray gene expression analysis shows the parental cell 

line clusters with bone metastatic subclones (Fig. 4.5). It also notable the parent MDA-

MB-231 cells will typically form lung metastasis if injected via tail vein (94), however 

this may be largely due to passive trapping instead of active invasion.  

 First, we verified breast and ovarian cancer cell mechanical preference showing 

that when grown on soft (2.83 kPa) and hard (34.88 kPa) substrates these cells show 

opposite changes in proliferation, chemoresistance, and motility (Fig. 4.1) taken together 

as a metric of cancer cell ‘malignant phenotype’. This increase in proliferation could be 

controlled through alterations in cell metabolism (85) or possibly through crosstalk of the 

RhoA contractility pathway with the Erk proliferation pathway (8). Though the increase 

in concomitant chemoresistance and proliferation was somewhat surprising, we 

hypothesize these differences come downstream of many of the same pro-growth signals 

responsible for the increase in proliferation. In the time scale of our experiments, cells 

would not have time to significantly alter drug pumps to gain resistance by simple efflux 

of the drug, pointing to an intracellular signaling cascade. The precise mechanisms of 

doxorubicin action are complex and controversial (reviewed in (95)). These include a 

series of direct effects from DNA binding/intercalation, interference with topoisomerase, 

and free radical generation. Previous studies with MDA-MB-231 cells suggest that  
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increased resistance on stiff matrices may be dependent on the JNK signaling cascade 

(96). Though others have noted that some cell lines such as lung fibroblasts become 

increasingly resistant to chemotherapeutics on soft matrices, so the precise mechanism by 

which matrix rigidity influences chemoresistance remains unclear (97). This increase in 

resistance could also be downstream of the increased contractile forces seen in both cases 

which would increase integrin signaling, a known protector against oxidative stress (98). 

Similarly, a variety of studies have noted that cell motility can either be increased (71, 99, 

100) or decreased (101) with increasing matrix stiffness, though the reason for this 

discrepancy between cell lines remains unknown.  

To isolate the molecules responsible for this opposite mechanical response, we 

performed microarray analysis of both cell lines using gene networks associated with 

actin myosin dynamics responsible for regulating cytoskeletal tension. We found that 

MDA-MB-231 expressed higher levels of contractility-associated genes such as myosin 

light chain, myosin heavy chain, and myosin light chain kinase (Fig. 4.5A) and that this 

expression was conserved regardless of matrix rigidity (Fig. 4.5B). Treatment with 

inhibitors of these pathways targeting either ROCK (Y27632) or MLCK (ML7) produced 

rigidity-independent behavior in both SKOV-3 and MDA-MB-231 cells by reducing the 

ability of the former to spread and migrate on soft matrices (Fig. 4.5D,F) and increasing 

the ability of the latter (Fig. 4.5C,E). The gain of function on soft seen after inhibition of 

cytoskeletal tension in MDA-MB-231 is consistent with other cells including fibroblasts 

(102) and was further verified by looking at proliferation, where again the inhibitors 

improved the ability of the cells to proliferate on soft (Fig. 4.7E). 
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 Based on these findings we next investigated how these changes in genes 

associated with cytosketetal tension and their subsequent inhibition changed the forces 

cells transmitted to the underlying matrix by performing traction force cytometry. Both 

cell lines exerted approximately 100 nN of force on their less preferred substrates, 

increasing 2-3 folds on their preferred matrix (Fig. 4.8B, Fig. 4.9B). A similar trend has 

been observed where more metastatic cells exert larger traction forces than their less 

metastatic counterparts (74). As expected, inhibition of ROCK mitigated MDA-MB-231 

force exertion on hard matrices but slightly increased it on soft-matrices (Fig. 4.8B). 

Treatment with MLCK inhibitor ML7 also increased forces on soft as well as hard 

matrices. Previous work in fibroblasts demonstrated that though ROCK and MLCK 

activation both increase myosin phosphorylation, they act in different spatial regions with 

ROCK primarily in the center and MLCK predominately at the cell periphery (103). 

Analysis of SKOV-3 cells further revealed decreased forces on soft after treatment with 

either inhibitor (Fig. 4.9). Interestingly, when treated with LPA which activates this 

contractility pathway SKOV-3 cells show a phenotype similar to MDA-MB-231 (Fig. 

4.7D, Fig. 4.9), where cells exert higher overall force on hard and lower force on soft 

with higher function on the former as well. To understand how disparate levels of force 

transduction could produce equivalent levels of migration we instead looked at the 

distribution of forces, quantifying the spatial polarization of the exerted forces (Fig. 4.8C, 

Fig. 4.9C). This analysis revealed that though the absolute magnitude of exerted force did 

not correlate with cell motility, the polarization of these forces did (Fig. 4.10A).  
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Though the polarization of traction forces may help explain the counterintuitive 

motility results, it does not necessarily explain the altered spreading or proliferation 

observed. We hypothesize that intrinsic levels of cytoskeletal contractility positively 

correlate with the preferred matrix elastic modulus which allows for maximal cell 

function. In other words, SKOV-3 cells with low levels of contractility are more 

aggressive on a soft matrix whereas MDA-MB-231 cells with high levels of contractility 

are more aggressive on a harder matrix. Thus, taking this as a ratio of cell relative 

contractility to substrate stiffness there would be an optimum value. Here, we define this 

optimal value for contractility to substrate stiffness ratio (CSR) as one (low contractility 

on soft or high contractility on hard). Above this value cells may contract so strongly they 

cannot form stable adhesions; below this value cells may not be able to produce sufficient 

force to spread on the substrate. Thus, if a highly contractile cell was grown on a soft 

matrix the CSR would greatly exceed one leading to collapse, as seen with untreated 

MDA-MB-231 cells. Conversely, if a weakly contractile cell was grown on hard the CSR 

would be much less than one, such as untreated SKOV-3 cells. This is illustrated 

graphically in Figure 4.10B, where all of the various small molecules used in this study 

collapse directly onto this curve. For SKOV-3 cells, activation of RhoA with LPA 

increased contractility to allow for function on hard substrates (CSR~1), but cells became 

too contractile to function on soft substrates (CSR<<1). In other words, increasing 

contractility in these cells with low intrinsic contractility essentially reproduced the 

phenotype observed in the highly contractile MDA-MB-231 cells. Inhibition of 

contractility in SKOV-3 cells had little effect when cells were grown on hard matrices 



 

 

53 
 

because they were essentially already at the “minimum function.” In contrast, on soft 

matrices SKOV-3 cells no longer had sufficient contractility to function, similar to 

untreated SKOV-3 cells on hard. For the highly contractile MDA-MB-231 cells, reducing 

contractility with Y27632 or ML7 allowed for recovered function on soft (CSR~1). 

Following MLCK, but not ROCK, inhibition MDA-MB-231 increased motility on hard 

substrates to values seen previously on the more rigid collagen-coated glass (Fig. 4.1C, 

Fig. 4.7C).  Though neither MLCK nor ROCK inhibition decreased MDA-MB-231 

function on hard, further decreasing contractility by inhibiting their downstream target 

non-muscle myosin II with blebbistatin did eventually cause cell collapse (Fig. 4.7A). 

Taken together, these results demonstrate that intrinsic levels of cell contractility 

contribute to the optimal matrix for cell function. This may have implications for tissue 

tropism as cancer metastasizes as an equivalent contractile gene signature is seen in cells 

with in vivo tropism for soft or hard tissues (Fig. 4.6).   

This hypothesis is supported by previously proposed models of focal adhesion 

dynamics (104, 105). In agreement with experiment, these models predict that below a 

certain force threshold cells will fail to form focal adhesions. This may be further 

influenced by force-induced conformational changes in adhesion proteins that are 

required for adhesion maturation (29). These models also predict that as contractile forces 

become exceedingly large adhesions will begin to dissolve, and that the magnitude of this 

critical force for adhesion dissolution scales with matrix compliance thereby directly 

linking intrinsic contractility to optimal matrix rigidity for cell function. This critical 

force where cells become too contractile to form adhesion would also be altered by 
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adhesion protein phosphorylation, adding an additional level of regulation to cell 

mechanosensitivity (104). Other cytoskeletal changes may also contribute. For instance, 

it was recently discovered that actin displays catch-slip bond behavior (106). Catch-slip 

bonds are force dependent bonds where low levels of force increase bond lifetime (e.g. 

strength), but after a certain critical force bond lifetimes begin to decrease (107). Thus, 

this optimal rigidity could also be influenced by actin-binding proteins causing 

differences in actin catch-slip bond behavior, similar to previous studies showing myosin 

II mechanosensitive recruitment is altered by varying actin crosslinkers (108). If stresses 

exerted by MDA-MB-231 cells were too large to be supported by the matrix it could 

result in decreased actin polymerization (slip regime), which would subsequently be 

reversed by reducing cytoskeletal tension as observed here. Alternatively, actin binding 

proteins may stabilize the high-affinity state of actin in SKOV-3 cells reducing the need 

for force to increase bond lifetimes.  

In conclusion, this work demonstrates that in order for cancer to metastasize it must 

not only adapt to the molecular signature of the new environment but also the mechanical 

characteristics. Transcriptomic analysis indicated that higher intrinsic cytoskeletal tension 

increased malignant characteristics on hard substrates; whereas, lower basal tension 

allowed for increased malignancy on more compliant substrates. By further 

understanding the role of matrix stiffness in growth and metastasis as well as the 

mechanisms by which tumor cells may adapt to different mechanical properties of a 

secondary site, this work may provide new strategies to prevent this deadly spread.  
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4.5 Materials and Methods 

4.5.1 Cell Culture 

Human breast carcinoma MDA-MB-231 and SKOV-3 ovarian carcinoma were 

obtained from American Type Cell Culture (ATCC, Manassas, VA) and cultured in low 

glucose DMEM and McCoy’s 5A obtained from Mediatech (Herndon, VA), respectively,  

supplemented with FBS obtained from Atlanta Biologicals (Atlanta, GA). All cells were 

grown in a 37°C humidified incubator with 5% CO2. 

4.5.2 Substrate Synthesis 

Preparation of polyacrylamide substrates was carried out per previously published 

protocols (63) to obtain desired rigidities, with minor modifications. First, 0.1N NaOH 

was pipetted onto 12 or 18mm glass coverslips (Ted Pella, Redding, CA) and evaporated 

on a hot plate at 80°C. Next, coverslips were silanized by incubation for 10 minutes in 

1.0% (v/v) 3-aminopropyltrimethoxysilane (TCI America, Portland, OR). Residual silane 

was removed by extensive rinsing in distilled H2O, and then coverslips were activated by 

30-minute incubation in 0.5% glutaraldehyde (BioRad, Hercules, CA). Mixtures of 10% 

acrylamide with varying amounts bis-acrylamide were used to create soft (0.03%) and 

hard (0.3%) substrates with elastic moduli of 2.83 kPa and 34.88 kPa, respectively. For 

traction force experiments, solutions were mixed with 100nm carboxylated green or red 

florescent nanoparticles (Invitrogen, Carlsbad, CA). Polymerization was initiated with 

1:200 ammonium persulfate and 1:2000 TEMED then the solution was immediately 

pipetted onto the activated coverslips. To create a flat surface, this was topped with a 

glass slide (Ted Pella) and the entire assembly suspended to dry on a custom hanger. To 
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allow for cell adhesion, the photo-activated cross-linker sulfo-SANPAH (Thermo 

Scientific, Bremen, Germany) was diluted to 2 mg/mL in 50mM HEPES (pH 8.5), added 

to the top of each gel, and then activated for 5 minutes in close proximity to the UV light 

of a cell culture hood. Following extensive rinsing in HEPES, coverslips were incubated 

in 0.2 mg/mL collagen I with gentle agitation overnight at 4°C. Before use, coverslips 

were rinsed in PBS, UV sterilized, and equilibrated in cell media in a cell culture 

incubator. Microscopy indicated substrates ranged from 75 µm – 125 µm in thickness, 

sufficient to avoid surface effects on stiffness.  

4.5.3 Traction Force Microscopy 
Substrates were embedded with fluorescent nanoparticles which were used to 

determine cell-induced displacements from stressed and unstressed particle image with a 

freely available MATLAB particle tracking algorithm (MatPIV, 

http://www.math.uio.no/∼jks/matpiv/) and used for subsequent traction force calculation 

(70). Traction stresses are reported as the total force (integral of force magnitude over the 

cell area) exerted by each cell from 3 or more independent experiments with at least 10 

cells per experiment. Polarization is defined as distance between the cell center of mass 

and the stress-weighted center of mass (84). It is important to note that both calculations 

are based on the traction stress magnitude as the net sum of the forces within any cell is 

zero.  

4.5.4 Proliferation and Chemoresistance 
For these studies, cells were initially plated at 5,000 cells/cm2. Proliferation was 

quantified using BrdU staining as previously described (99). After culturing cells on 
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substrates for 24 hours, cells were incubated for four hours with 50 µM BrdU (Sigma). 

Cells were washed with PBS, fixed in formaldehyde and permeabilized with 1% Triton 

X-100 in PBS and 4N HCl, sequentially. Finally, cells were blocked with normal horse 

serum, stained with 1:100 biotinylated anti-BrdU (Biolegend) followed by either 

streptavidin-conjugated AlexaFlour 488 (Invitrogen) or Cy3 (BioLegend), and sealed 

with VectaShield with DAPI (Vector Labs). Cells were quantified by comparing number 

of BrdU+ nuclei with total number of nuclei.  

For chemoresistance, cells were allowed to adhere to substrates overnight before 

treating with Doxorubicin (Enzo Life Sciences, Farmdingdale, New York) for 24 hours at 

either 2 μM (MDA-MB-231) or 0.1 μM (SKOV-3) based on preliminary titration studies. 

To assess viability, a standard MTT assay was utilized. Cells were incubated in 1mg/mL 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) for four hours in 

standard growth conditions. The supernatant was then removed and replaced with acidic 

isopropanol with 4mM HCl to solubilize insoluble purple formazan product. This product 

was then moved to a 96 well plate for calorimetric analysis in a DTX-800 Multimode 

Detector microwell plate reader (Beckman Coulter) at 620 nm absorbance with 595 nm 

reference value. All conditions were normalized to rigidity-matched controls.  

4.5.5 Motility Quantification 
Cells were plated at 10,000 cells/cm2 and allowed to adhere overnight before labeling 

with NucBlue Live Cell Stain (Invitrogen, Carlsbad, CA) per manufacturer’s instructions. 

Imaging was performed on a Nikon Eclipse Ti inverted epifluorescent microscope 

equipped with an environmental chamber (In Vivo Scientific, St. Louis, MO) and 



 

 

58 
 

maintained at 37°C and 5% carbon dioxide throughout the experiment. Images were 

captured every 5 minutes for 8-16 hours at 10x magnification. Image stacks were then 

processed in MATLAB to track the x-y coordinates of cell nuclei to determine cell 

velocity (84).  

4.5.6 Adhesion Studies 
Cells were first labeled with 2µM Calcein AM (Anaspec), a transmembrane 

fluorescent marker, in PBS and 2mM dextrose for 20 minutes at 37°C. Next, cells were 

passed per standard procedure, resuspended in media, and incubated for 30 minutes at 

37°C to allow for integrin recovery before plating at 10,000 cells/cm2. Cells were 

incubated for the desired time period, and then an initial florescence reading was taken on 

a DTX-800 Multimode Detector microwell plate reader (Beckman Coulter). The media 

was then replaced and a second reading was taken to quantify the amount of attached 

cells. Finally, cells were washed extensively and a final reading was taken. End-point 

cells were fixed in formaldehyde, blocked with normal horse serum, stained with 1:50 

Rhodamine Phalloidin (Invitrogen), sealed with Vectashield with DAPI and imaged at 

20x magnification for quantification of spread area.  

4.5.7 Gene Expression Analysis 
Microarray data was acquired from NCBI GEO, accession numbers GSM803625, 

GSM803684, GSM803743, GSM803732, GSM803778, and GSM803662. Data were 

processed with the MATLAB Bioinformatics Toolbox by using the GC robust multi-

array average method. Fold changes of 1.5 with p<0.05 were considered significant. To 

narrow candidate genes, unique genes identified through Gene Ontology to be associated 
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with actin (GO:0003779, GO:0015629, GO:0030036) as well myosin 

(BIOCARTA_MYOSIN_PATHWAY) were selected for further analysis. Gene 

expression was confirmed by RT-PCR (109). High quality mRNA was isolated using 

Ribozol (Amresco, Solon, OH) then complimentary DNA was reverse transcribed using 

the BioRad iScript cDNA synthesis kit. Reverse transcriptase PCR was performed in a 

BioRad S1000 Thermocycler with PCR MasterMix (Promega) using following primers: 

MYH9 (forward) 5`- AGGACCAGAACTGCAAGCTG-3`, (reverse) 5`-GCGCTCT 

TCCAAGTCAGTGA-3`, MYL9 (forward) 5`-ACCCCACAGACGAATACCTG-3`, 

(reverse) 5`-AAAGGCGTTGCGAATCACAT-3`, and 18s RNA (forward) 5`-

GTAACCCGTTGAACCCCATT-3`, (reverse) 5`-CCATCCAATCGGTAGTAGCG-3` 

for an endogenous control. 

4.5.8 Modulation of Cytoskeletal Tension 

Cytoskeletal tension was inhibited by treatment with either 10 μM Y27632, 10 μM 

ML7, or 50 μM blebbistatin to inhibit Rho kinase, myosin light chain kinase, and non-

muscle myosin II, respectively. To increase cytoskeletal tension, cells were treated with 

10 μM LPA to activate RhoA. Cells were treated for at least one hour before analysis and 

remained in the media for the duration of the experiment. 

4.5.9 Statistics 
All studies were performed in triplicate or more with three individual batches of 

substrates. Data are reported as mean ± SEM. Statistical analysis was carried out using a 

student’s t-test or ANOVA, considering p < 0.05 to be significant 
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(***p<0.001,**p<0.01,*p<0.05). For inhibitor studies, # signs were used in place of * to 

compare samples to their untreated rigidity-matched controls.  
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CHAPTER 5 
ALTERATIONS IN OVARIAN CANCER CELL ADHESION 

DRIVE TAXOL RESISTANCE BY INCREASING 
MICROTUBULE DYNAMICS IN A FAK-DEPENDENT 

MANNER3 

5.1 Summary 
Chemorefractory ovarian cancer patients show extremely poor prognosis. 

Microtubule-stabilizing Taxol (paclitaxel) is a first-line treatment against ovarian cancer. 

Despite the close interplay between microtubules and cell adhesion, it remains unknown 

if chemoresistance alters the way cells adhere to their extracellular environment, a 

process critical for cancer metastasis. To investigate this, we isolated Taxol-resistant 

populations of OVCAR3 and SKOV3 ovarian cancer cell lines. Though Taxol-resistant 

cells neither effluxed more drug nor gained resistance to other chemotherapeutics, they 

did display increased microtubule dynamics. These changes in microtubule dynamics 

coincided with faster attachment rates and decreased adhesion strength, which correlated 

with increased surface β1-integrin expression and decreased focal adhesion formation, 

respectively. Adhesion strength correlated best with Taxol-sensitivity, and was found to 

be independent of microtubule polymerization but dependent on focal adhesion kinase 

(FAK), which was up-regulated in Taxol-resistant cells. FAK inhibition also decreased 

microtubule dynamics to equal levels in both populations, indicating alterations in 

                                                 
3McGrail DJ, Khambhati NN, Qi MX, Patel KS, Ravikumar N, Brandenburg CP, et al. (2015) Alterations 
in Ovarian Cancer Cell Adhesion Drive Taxol Resistance by Increasing Microtubule Dynamics in a FAK-
dependent Manner. Sci. Rep. 5: 1–11. 
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adhesive signaling are up-stream of microtubule dynamics. Taken together, this work 

demonstrates that Taxol-resistance dramatically alters how ovarian cancer cells adhere to 

their extracellular environment causing down-stream increases in microtubule dynamics, 

providing a therapeutic target that may improve prognosis by not only recovering drug 

sensitivity, but also decreasing metastasis.  

5.2 Introduction 
Ovarian cancer is a leading cause of cancer-related deaths in women. Due to lack of 

early detection techniques, more than 75% of the patients are diagnosed after the cancer 

spreads from the primary site (54). Though tumor debulking has proven extremely 

beneficial for patient survival (110), the successful use of chemotherapeutics is still 

critical to target the disseminated disease. The standard treatment protocol of tumor 

resection followed by dual agent chemotherapy consisting of platinum therapy plus Taxol 

(paclitaxel) have increased progression-free survival to nearly 18 months and overall 

survival to 38 months, though once the cancer returns it is often no longer sensitive to 

these chemotherapeutic agents (56). At this point, the disease rapidly progresses with 

progression-free survival of 3-5 months and overall survival rarely exceeding a year even 

with new experimental treatments (57). Thus, there exists a clear clinical need for 

improved understanding of recurrent disease.  

This chemotherapeutic resistance could occur through a variety of mechanisms, such 

as increased drug efflux, increased survival signals, blocking of death signals, or even 

changes in cell tubulin by either binding site mutations and expression of different 
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isoforms (111, 112). To understand these mechanisms a series of pioneering studies have 

been performed by isolating Taxol-resistant populations of cancer cell lines and 

comparing them to their parental controls verifying many of these changes take place 

including over expression of the P-glycoprotein (Pgp) drug efflux pump (113), alterations 

in stress response and survival cascades (114), increased microtubule dynamics (115), 

alteration in expression of tubulin isoforms (116), and mutations to Taxol binding sites 

(117). Of these studies, the former two were carried out on cells isolated to have super-

physiological resistance to Taxol with IC50 values in excess of 1 μM. In contrast, the 

latter studies that observed altered microtubules isolated cells by slowly ramping the 

Taxol concentration to nanomolar concentrations relevant in the clinic (118) produced an 

IC50 of approximately 20-45 nM, over two orders of magnitude more sensitive. 

Though chemoresistance is a key hurdle in the treatment of ovarian cancer, the 

majority of cancer deaths are ultimately caused by metastatic spread of the disease to 

distant sites (119). Ovarian cancer typically shows extensive metastasis following 

treatment with Taxol, and Taxol-resistant cell lines are more metastatic in mouse 

xenograph models (120). In order to metastasize, ovarian cancer cells must first detach 

from the primary tumor. After detaching, the cells disseminate through the peritoneal 

cavity before re-adhering to a secondary site, often the omentum. This adhesion 

represents the first rate-limiting step in ovarian cancer progression (121). Cell adhesion is 

controlled both by extracellular integrin domains which bind to the extracellular matrix 

(ECM), as well as intracellular focal adhesion adapter proteins such as paxillin and 

vinculin which act as linkers between the transmembrane integrins and internal 
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cytoskeleton (122). Integrin expression has been linked to progression in a variety of 

cancers, causing increased metastasis, increased tumor survival, and decreased patient 

prognosis (123). In ovarian cancer, expression of β1 integrin has been linked to ovarian 

cancer invasion and metastasis (124, 125). Additionally, specific integrin heterodimers 

α4β1 and αvβ5 have been shown to increase metastasis and proliferation, respectively 

(64, 126). Moreover, previous studies have demonstrated a bi-directional link between 

adhesion signaling and the microtubule dynamics targeted by Taxol where focal adhesion 

signaling can alter microtubules (127, 128) and microtubules can alter adhesion dynamics 

(129). Based on this, we hypothesized that ovarian cancer resistance to Taxol may lead to 

alterations in adhesion dynamics, which may contribute to the rapid progression 

following disease recurrence.  

To test this hypothesis, we isolated Taxol-resistant cell lines from parental ovarian 

cancer cell lines SKOV3 and OVCAR3 using a metronomic approach by repeated 

exposure to clinically relevant concentrations of Taxol (118) with intermediate recovery 

periods similar to therapeutic administration. This produced IC50 values of 20-45 nM, 

equivalent to the latter studies that observed alterations in microtubule dynamics (127, 

128). Initial studies suggested that these changes were not due exclusively to changes in 

drug efflux or other direct pro-survival adaptions but Taxol-resistant cells did show 

increased microtubule dynamics, including increased microtubule growth rates and 

decreased levels of polymerized tubulin. Analysis of attachment kinetics revealed that 

Taxol resistant cells adhered nearly two-fold faster, which correlated with higher integrin 

expression. In contrast, analysis of adhesion strength using a centrifugal-force based 
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adhesion assay revealed Taxol-resistant cells attached less strongly to the ECM. To 

understand the decreased adhesion strength despite increased attachment rate and integrin 

expression we stained for intracellular focal adhesions and found that Taxol resistance 

dramatically reduced both their size and number. Finally, we sought to determine if these 

changes in adhesion and microtubule polymerization occurred independently or if they 

were causally related. Though chemical perturbation of microtubule polymerization did 

not alter adhesion strength, inhibition of focal adhesion kinase (FAK) mitigated adhesive 

differences between parental and Taxol-resistant cells. Additionally, microtubule 

dynamics were also suppressed following FAK inhibition in both cell lines producing 

statistically identical growth rates in both the parent and Taxol-resistant cells. These 

results highlight a novel mechanism of ovarian cancer chemoresistance, and may provide 

therapeutic targets such as focal adhesion kinase to both slow metastatic cell engraftment 

and increase chemosensitivity.  

5.3 Results 

5.3.1 Taxol resistance is independent of drug efflux and does not confer additional 

chemoresistance 

After establishing populations of SKOV3 and OVCAR3 ovarian cancer cell lines 

capable of growing in Taxol, we first verified this correlated with an increase in IC50 by 

treating cells with Taxol at varying concentrations for 72 hours. Consistent with previous 

reports(130), SKOV3 and OVCAR3 parental populations (abbreviated as SKOV3-P and 

OVCAR3-P) showed IC50 values of 2.3 ± 0.3 nM and 4.1 ± 1.8 nM, respectively, which 

were increased an order of magnitude in the Taxol-resistant subpopulations (abbreviated 
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as SKOV3-T and OVCAR3-T)  to 22.1 ± 3.0 nM and 45.5 ± 4.9 nM (Fig. 5.1A). While 

parent populations show dose-dependent decreases in viability, Taxol-resistant cells  

 
Figure 5.1 Generation of Taxol-resistant populations and analysis of potential resistance 
mechanisms. (A) Viability of parental (-P) and Taxol-resistant (-T) populations of SKOV3 and 
OVCAR3 ovarian cancer cells in after incubation in varying concentrations of Taxol (* is 
significantly greater than solvent treated control, p<0.05, N=3). (B) Time-dependent rhodamine 
efflux over initial two hours was used to calculate efflux rates (k), which showed no significant 
difference among cell populations (N=3). (C) Long-term 24 hour efflux showed no significant 
difference between cell populations (N=3). (D) Viability after incubation with 25μM 
Carboplatin relative to solvent-treated control. Values given as mean ± SEM. 

 

showed significantly increased viability at concentrations of 5-10 nM Taxol beyond 

which viability decreased. To begin to investigate the mechanism of this resistance, we 

next evaluated the ability of the cells to efflux Rhodamine 123 as a model drug (Fig. 

5.1B-C), as both Taxol and Rhodamine 123 are substrates for P-glycoprotein mediated 
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efflux.(131) Evaluation of both efflux kinetics (Fig. 5.1B) and total efflux after twenty 

four hours (Fig. 5.1C) demonstrated no significant changes with Taxol resistance. 

Finally, to see if changes were the product of other pro-survival adaptions we assayed the 

ability of cells to survive in 25 μM Carboplatin and found no significant change in 

Carboplatin resistance in Taxol resistant subpopulations (Fig. 5.1D). These results 

suggest that alternative mechanisms must be underlying this Taxol resistance.  

5.3.2 Microtubule Alterations in Taxol-resistant cells  

Based on the increase in viability seen with low-dose Taxol in Taxol-resistant cells, 

we next evaluated if Taxol-resistant cells displayed enhanced microtubule dynamics. 

First, we performed a microtubule regrowth assay where microtubules were 

depolymerized with nocodazole and then allowed to regrow following washout (Fig. 

5.2A). By 10 minutes SKOV3-P cells had begun to nucleate whereas microtubule 

networks had already begun to form in SKOV3-T cells, which was not seen until 30 

minutes in the SKOV3-P cells. To verify this difference in live cells in absence of 

chemical perturbation we transfected cells with fluorescent end-binding protein (mApple-

EB3) which binds to the growing plus ends of microtubules allowing for quantification of 

microtubule growth rates (Supp. Vid. 1-2)(132). Not only were microtubule growth rates 

significantly faster in the SKOV3-T cells (p<0.0001, Fig. 5.2B), but they also showed an 

increased number of growing plus ends (p<0.0001, Fig. 5.2C), indicating significantly 

increased dynamics. Finally, we performed a microtubule pelleting assay to determine if 

the cells natively had different levels of polymerized microtubules revealing SKOV3-P 

cells had significantly more polymerized tubulin than SKOV3-T cells (Fig. 5.2D).  
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Figure 5.2 Microtubule dynamics are increased in Taxol-resistant cells. (A) Microtubules 
were depolymerized with nocodazole for four hours and then drug was washed out for 
indicated time at which point cells were immunostained for microtubules (green), actin (red), 
and nuclei (blue). Scale bar = 10 μm. (B-C) Live-cell microtubule dynamics as determined 
from plus-end tracking of fluorescent mCherry-EB3, to quantify growth rate (B) as well as 
growth density (C), defined as the total number of growing ends normalized to cell area. Each 
dot represents the average of over 100 tracked plus-ends from one cell collected from a total of 
4 independent experiments. (D) Taxol-resistant cells have less polymerized tubulin. Cells were 
lysed following 4 hour pretreatment with Taxol and separated into polymerized (P) and soluble 
(S) tubulin fractions for Western blot analysis. Percent polymerized tubulin was quantified as 
polymerized tubulin divided by the sum of polymerized and soluble tubulin. Values given as 
mean ± SEM; significance is indicated relative to control parent population unless otherwise 
noted, *P<0.05, **P<0.01,***P<0.001. 

 

Treating SKOV3-T with 10 nM Taxol returned levels of polymerized tubulin to those of 

parental cells, while 100 nM Taxol was required to increase tubulin polymerization above 
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parent levels. With similar findings in OVCAR3-T cells, these results indicate that Taxol-

resistant cells have decreased polymerized microtubules and increased microtubule 

growth rates consistent with previous reports (115–117).  

5.3.3 Increased attachment kinetics correlate with integrin expression in Taxol-

resistant cells 

Several recent studies have shown a strong link between microtubules and focal 

adhesions (127, 133, 134). Thus, we sought to determine if changes in Taxol sensitivity 

produced alterations in cell adhesion. To do so, we first analyzed the attachment kinetics 

as cells initially attached to a collagen-coated surface (Fig. 5.3A). Though SKOV3 cells 

adhered faster overall, the Taxol-resistant populations both adhered faster than their 

parental counterparts (Fig. 5.3B). This increase in attachment rate correlated with 

increased spreading (Fig. 5.4A) and was conserved on both fibronectin and Matrigel 

coated surfaces (Fig. 5.4B). Due to previous studies linking increased integrin expression 

and chemoresistance (123). we hypothesized the increased attachment rate in Taxol-

resistant cells may be due to integrin overexpression. Surface integrin expression was 

quantified using flow cytometry for β1 integrin responsible for binding to collagen I (Fig. 

5.3C). For both cell lines, surface integrin expression was increased in Taxol-resistant 

clones, though SKOV3 cells expressed higher overall levels of β1 integrin (Fig. 5.3D). 

These results directly correlated with observed attachment kinetics, showing a positive 

linear relationship between β1 integrin expression and attachment rate (R2 = .90, 

Pearson’s correlation coefficient ρ = 0.95, Fig. 5.3E). However, due to basal variations 

between SKOV3 and OVCAR3 neither attachment rate (R2 = 0.03, Fig. 3F) nor integrin 
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expression (R2 = 0.21, Fig. 5.3G) correlated with IC50, suggesting though this may be a 

contributing factor it was not a primary mechanism of Taxol resistance.  

 
Figure 5.3 Taxol resistance alters attachment kinetics through β1 integrin. (A) Cells 
fluorescently labeled green with Calcein AM were plated for specified period of time before 
removing non-adherent cells and quantifying the adherent fraction fluorometrically. Individual 
dots represent independent experiments; solid lines are fit curves with shaded region 
representing the 95% confidence interval. (B) Attachment rate determined from regression of 
each independent experiment. (C-D) Representative flow cytometry intensity histograms for 
cells labeled with PE-CD29 (β1 integrin) (C) as well as mean fluorescence intensity of surface 
β1 integrin (D), normalized to the mean of each individual experiment to account for any 
variations in laser intensity (N = 3). (E) Surface expression of β1 integrin shows direct linear 
correlation with adhesion rate (Pearson correlation coefficient β = 0.95, R2 = 0.902). (F-G) 
Neither β1 integrin (F) or adhesion rate (G) correlated with Taxol sensitivity. Values given as 
mean ± SEM; significance is indicated relative to control parent population unless otherwise 
noted, *P<0.05, **P<0.01,***P<0.001. 
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Figure 5.4 Adhesion differences are conserved across multiple ECMs.  Plates were coated 
either with 10 μg/mL Type I Collagen, 10 μg/mL fibronectin, or 100 μg/mL Matrigel and 
blocked with 1% heat-denatured BSA. (A) Cell spreading was analyzed by plating Calcein-
labeled cells for specify period of time before fixing and staining F-actin with Rhodamine 
Phalloidin and nuclei with DAPI to quantify cell area. (B)  Adhesion rate to various ECMs 
shows some baseline variation based on ECM, but increased adhesion rate in Taxol-resistant 
cells was conserved on all tested molecules. (C) Adhesion strength was also tested on all three 
ECMs with Taxol-resistant cells being more weakly adherent in all cases and no significant 
dependence on ECM. Values reported as mean ± SEM of three independent experiments, 
*P<0.05, **P<0.01,***P<0.001. 
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5.3.4 Taxol resistance decreases adhesion strength through diminished focal 

adhesion formation  

The increased integrin expression suggested that adhesion strength would be 

increased in Taxol-resistant cells, but inhibition of tubulin polymerization has previously 

been shown to effect focal adhesion formation and steady state adhesion strength (135, 

136). Since Taxol-resistant cells displayed decreased polymerized tubulin, we next 

quantified their adhesion strength using a centrifugal-force based adhesion assay to test if 

the integrin up-regulation in Taxol-resistant clones led to increased adhesion strength. 

After adhering overnight, the detached fraction following centrifugation in Taxol-

resistant population was nearly twice that of their parental lines (Fig. 5.5A), despite 

integrin overexpression. This result correlated well with changes in IC50 (Fig. 5.5B) 

suggesting alterations in Taxol sensitivity may be related to alterations in adhesion 

strength.  

Based on this, we hypothesized that Taxol resistance was decreasing focal adhesion 

formation; therefore, focal adhesions were visualized by staining for the focal adhesion 

protein paxillin (Fig. 5.5C). Cells from both parent populations contained large focal 

adhesions distributed throughout the cell periphery. In the Taxol-resistant populations 

these focal adhesions were smaller and more disperse. Quantification of paxillin localized 

to focal adhesions showed significant reductions in both Taxol-resistant cell lines 

compared to their respective parent lines (Fig. 5.5C). Similar results for the focal 

adhesion protein vinculin were observed in OVCAR3 cells; however neither population 

of SKOV3 showed significant vinculin positive focal adhesion expression with only  
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Figure 5.5 Taxol resistance decreases adhesion strength by altering focal adhesions. (A) 
Detached fraction of parent (-P) and Taxol-resistant (-T) cells allowed to adhere overnight 
before detachment by centrifugal force shows significantly decreased adhesion strength in 
Taxol-resistant clones (p<0.01,N=4). (B) Detached fraction of cells correlates directly with 
IC50 values (p<0.01), Pearson correlation coefficient ρ = 0.99.  (C) Immunofluorescent 
micrographs of cells labeled for paxillin (green), F-actin (red), and nuclei (blue) with zoomed 
versions of highlighted areas. Scale bar = 10 μm.  Focal adhesion density was quantified as the 
integrated density of segmented focal adhesions relative to cell area (N=3). (D-E) Total paxillin 
(D, N=4) and vinculin (E, N=3) expression, quantified by Western blot normalized to total 
protein, is decreased in Taxol-resistant cells but is also dependent on cell line. For total protein 
from Coomassie, a representative region of the quantified area is shown. (F) Vinculin 
expression inversely correlates with IC50 values (p<0.05), Pearson correlation coefficient ρ = -
0.97.     

 

disperse staining (Fig. 5.6A). Analysis of total paxillin expression by Western blot 

showed decreased expression in Taxol-resistant cells (Fig. 5.5D). Paxillin levels were 

equivalent between SKOV3-T and OVCAR3-P even though the latter exhibits 

significantly higher adhesion strength (Fig. 5.5A), indicating the decreased adhesion 
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strength is not solely due to decreased paxillin expression. Surprisingly, despite the lack 

of vinculin-containing adhesions in SKOV3 cells, expression of vinculin agreed best with 

adhesion strength results (Fig. 5.5E) and also inversely correlated with Taxol sensitivity 

(Fig. 5.5F).  

While total vinculin expression does seem to agree with adhesion strength, the 

disparate distribution of vinculin between SKOV3 and OVCAR3 cells suggests 

alternative molecules may be a larger determining factor. Since vinculin has been shown 

to inhibit paxillin interactions with focal adhesion kinase (FAK)(137), we also stained for 

FAK phosphorylated at Y397 (FAKp397). In parental cells FAKp397-positive adhesions 

tended to be larger but less numerous than paxillin-positive focal adhesions, whereas in 

Taxol-resistant cells FAKp397-positive adhesions tended to appear as more nascent 

adhesions both smaller in size and more disperse (Fig. 5.6B). Taxol-resistant cells also 

expressed higher overall levels of FAKp397 by Western blot (Fig. 5.6C). Consistent with 

the idea that parental cells tend to have larger more mature adhesions whereas Taxol-

resistant cells tend to have more nascent adhesions which are known to exert larger 

forces,(138) traction force cytometry revealed that Taxol-resistant cells exert nearly 2-

fold larger forces than their parental counter parts (Fig. 5.7). These results demonstrate 

that the decreased adhesion strength coincides with smaller nascent focal adhesions 

which exert higher forces as a result of changes in expression of adhesion proteins. These 

changes agree with decreased vinculin expression in Taxol-resistant cells, but do not 

correlate with paxillin expression or integrin expression suggesting additional 

intracellular signaling cascades contribute to the decreased adhesion strength. 
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Figure 5.6 Alterations in focal adhesions in Taxol-resistant cells.  (A) Cells were stained for 
vinculin (green), actin (red) and nuclei (blue). While OVCAR displayed several large vinculin 
positive adhesions in the parental population and small vinculin positive adhesions in the 
Taxol-resistant population, only parental SKOV3 cells showed any formation of vinculin 
adhesions with diffuse staining in the Taxol-resistant population. (B) Cells were stained for 
FAKp397 (green), actin (red) and nuclei (blue). Consistent with other stains, this revealed large 
focal adhesions in the parent population with smaller focal adhesions in the Taxol-resistant 
cells coinciding with an increase in diffuse cytoplasmic signal. Staining was largely negligible 
after four hour incubation with 10 μM PF228. Scale bars = 10 μm.   (C) Increased FAKp397 in 
Taxol-resistant cells demonstrated by Western blot, with inhibition to equivalent levels 
following four hour incubation with 10 μM PF228. Values reported as mean ± SEM of three 
independent experiments. Significance indicated relative to untreated control unless otherwise 
noted; *P<0.05, *P<0.01. 

 



 

 

76 
 

 
Figure 5.7 Increased Traction Forces in Taxol-resistant cells. (A) Heat maps of traction 
stresses in Pascals show larger forces in Taxol-resistant cells. (B) Quantification of peak stress 
shows a two-fold increase in traction forces as quantified by average peak traction stress 
(N=3). Values given as mean ± SEM; *P<0.05, **P<0.01,***P<0.001. 

5.3.5 Alterations in adhesion strength are dependent on focal adhesion kinase and 

upstream of microtubule dynamics 

We next sought to determine what intracellular signaling cascades could be 

responsible for the alterations in adhesion strength and microtubule dynamics. Based on 

our observations, we hypothesized that either (1) alterations in microtubule dynamics 

were decreasing focal adhesion formation or (2) decreased focal adhesion formation was 

altering microtubule dynamics. To determine which mechanism was ultimately altering 

the adhesive strength of Taxol-resistant cells we chemically modified both pathways and 

repeated the adhesion strength assay. First, to test if the decreased adhesion strength was 

due to increased microtubule dynamics we pre-incubated cells with either Taxol to 

stabilize (Fig. 5.8A) microtubules or nocodazole to depolymerize microtubules (Fig. 

5.8B) and repeated the adhesion strength assay. In both cases, there was no change in the 

adhesive strength of either the parent or Taxol-resistant cells across a wide array of 

concentrations indicating the changes in adhesion strength are not due to microtubule 

dynamics. To investigate if these changes were due to altered focal adhesion signaling we 
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inhibited the increased FAK phosphorylation observed in Taxol-resistant cells with 

PF228 (Fig. 5.6B-C), which has been shown to block focal adhesion turnover(139). In 

parental cells FAK inhibition did not alter adhesion strength at any tested concentration 

(Fig. 5.8C, black line). In contrast to this, the detached fraction was significantly lower 

than untreated control for all concentrations in Taxol-resistant cells and no longer 

significantly different than the parental cell line for all concentrations greater than 5 μM 

(Fig. 5.8C, red line). To probe if FAK inhibition could also reverse changes in attachment 

kinetics, we allowed cells to adhere for 30 minutes after pretreatment with PF228 and 

found FAK inhibition significantly reduced Taxol-resistant cell attachment with equal 

fractions of both parental and Taxol-resistant cells adhering in this short time scale (Fig. 

5.8D). Finally, to verify that changes in adhesive signaling were the up-stream cause we 

repeated the microtubule plus-tip tracking with EB3 after FAK inhibition and found a 

significant (p<0.001) decrease in microtubule growth rate for both SKOV3-P and 

SKOV3-T cells (Fig. 5.8E). Notably, this produced equivalent growth rates in both cell 

populations through a larger growth rate decrease in the Taxol-resistant cells (45% vs. 

28%). Taken together, these results suggest a model where changes in focal adhesion 

signaling cause alterations in microtubule dynamics leading to increased resistance to 

microtubule-stabilizing drugs such as Taxol.  
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Figure 5.8 Alterations in in adhesion and microtubule dynamics in Taxol-resistant cells 
are reversible with FAK inhibition. (A) SKOV3 parent (-P) and Taxol-resistant (-T) were 
pre-incubated with Taxol for 4 hours to stabilize microtubules before repeating the adhesion 
strength assay and displayed no change from the untreated controls (shaded region). (B) The 
adhesion strength assay was repeated using 4 hour nocodazole pre-treatment to depolymerize 
microtubules. In order to prevent changes from increased Rho activity upon nocodazole upon 
washout the experiment was carried out in the drug-containing media instead, producing a 
slightly higher baseline for SKOV3-T. (C) To inhibit focal adhesion signaling cells were pre-
incubated with focal adhesion kinase inhibitor PF228 for 4 hours before running the adhesion 
strength assay demonstrating selective recovery of adhesion force in Taxol-resistant cells 
relative to their untreated controls (red shaded region) to become equivalent with parent control 
cells (gray shaded region). (D) To determine the effects of FAK inhibition on attachment 
kinetics, cells were pre-incubated with 10 μM PF228 and allowed to adhere for 30 minutes 
revealing FAK inhibition decreased attachment kinetics in Taxol-resistant cells (N=3). (E) 
Cells transfected with mCherry-EB3 were imaged and then treated with 10 μM PF228 for four 
hours before re-imaging revealing a significant (p<0.0001) decrease in both parent and Taxol-
resistant cells to a statistically equal value. Values listed in parenthesis are given as mean ± std. 
All other values given as mean ± SEM; significance is indicated relative to matched parent 
population with *’s and relative to solvent treated control #’s. *P<0.05, **P<0.01,***P<0.001. 
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5.4 Discussion 
Taxol is clinically effective in treating a variety of cancers, including breast and 

ovarian cancer, but eventual acquired resistance limits its long-term efficacy. Some 

studies suggest this may be through increased drug efflux or altered survival signals (111, 

114). For instance, early evidence showed Taxol resistance can cause over expression of 

the P-glycoprotein (Pgp) drug efflux pump (113). Indeed, highly Taxol resistant 

populations of ovarian cancer show increased expression of multiple drug resistance 

pumps(140). Despite this extremely promising in vitro data, clinical trials of drug pump 

inhibitors have failed to meet general clinical end points (141). High early Pgp expression 

is an indicator of poor prognosis; therefore targeting of these patients with high de novo 

expression may yield more positive results (142). 

One potential reason for the lack of success of drug pump inhibitors is many studies 

on chemoresistance were conducted in populations resistant to concentrations much 

greater than occur therapeutically (118). Resistance to such high concentrations may 

activate alternative chemoresistance mechanisms that would not be relevant in the clinic. 

Moreover, isolation of Taxol-resistant ovarian cancer cells with high initial Taxol 

concentrations confers cross-resistance to other chemotherapeutics that is minimized 

when isolated with initially lower concentrations (143). The Taxol-resistant cells isolated 

here using our metronomic approach of repeated exposure and withdrawal of clinically 

relevant concentrations of Taxol (118) produced lines with IC50 values of 20-50 nM. 

These Taxol resistant populations that showed no difference in ability to efflux 

Rhodamine 123 (Fig. 5.1B-C), which is also effluxed by the multidrug transporter P-
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glycoprotein responsible for Taxol efflux (131). Moreover, the lack of change in 

resistance to carboplatin suggests the resistance is not due to either increased survival 

signals or decreased sensitivity to death signals (Fig. 5.1D). Another potential mechanism 

lies in modifications to microtubule isoforms and dynamics (144). Several of these 

studies, like ours, used less resistant clones with IC50 values in the 20-40 nM range (115–

117). In agreement with their findings, we found decreased levels of polymerized tubulin 

and increased microtubule dynamics within our Taxol-resistant cells (Fig. 5.2). Treatment 

of Taxol-resistant cells with 10 nM Taxol returned level of polymerized tubulin to those 

of untreated parental populations (Fig. 5.2D). This result may explain the increased 

viability in Taxol-resistant cells that peaks at similar Taxol concentrations (Fig. 5.1A), 

which could act to stabilize the hyper-dynamic microtubules in Taxol-resistant cells to 

normal levels. In the absence of Taxol, the resistant cells’ microtubules may not have the 

stability necessary to properly form the mitotic spindle for division, which is then 

recovered by low-dose Taxol.  

Since microtubules have been shown to regulate focal adhesion assembly and 

disassembly (129) and focal adhesions have also been shown to alter microtubule 

dynamics (127, 128), we hypothesized that Taxol resistance may result in altered cell 

adhesion. While both attachment kinetics (Fig. 5.3A-B, Fig. 5.4B) and strength (Fig. 

5.5A, Fig. 5.4C) were altered, only adhesion strength correlated with Taxol sensitivity 

(Fig. 5.3F, Fig. 5.5B), whereas attachment kinetics were more strongly correlated with 

integrin expression (Fig. 5.3E). As expected, this decreased adhesion strength coincided 

with smaller focal adhesions in Taxol-resistant cells (Fig. 5.5C, Fig. 5.6). Early studies 



 

 

81 
 

into the effects of microtubules on focal adhesions demonstrated that microtubules are 

critical for focal adhesion disassembly and their stabilization with Taxol results in 

increased focal adhesion size (145). Consistent with this, parental cells with more 

polymerized and less dynamic microtubules (Fig. 2) displayed larger focal adhesions 

(Fig. 5.5C, Fig. 5.6). Recent studies have also shown focal adhesion dissolution may be 

facilitated by CLASP proteins which bind microtubule plus-ends to adhesion sites where 

they secrete MMPs to degrade the underlying matrix expediting focal adhesion 

turnover(146). The higher density of microtubule plus-ends in Taxol-resistant cells (Fig. 

5.2C) may thus expedite focal adhesion turnover leading to less large adhesions. 

In another classic work, depolymerization of microtubules with nocodazole in serum-

starved fibroblasts was shown to increase formation of focal adhesions, which then 

dissolve and turn over following drug washout as microtubules regrow (133). In this 

model, though FAK null and FAK expressing fibroblasts formed focal adhesions during 

depolymerization to a similar degree, only cells expressing FAK were able to dissolve 

focal adhesions following microtubule regrowth. This microtubule depolymerization also 

corresponds to increased traction forces, which occurred in absence of FAK or myosin II 

activation, but was blocked by simultaneous inhibition of both (134). Here, we likewise 

saw larger traction forces in Taxol-resistant cells with more dynamic microtubules (Fig. 

5.7). However, consistent with previous reports (147) we found no difference in adhesion 

strength upon stabilizing (Fig. 5.8A) or depolymerizing microtubules (Fig. 5.8B) 

suggesting an alternative microtubule-independent signaling pathway was controlling the 

phenomena.   
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Focal adhesion turnover is FAK-dependent (133, 139), so we next inhibited FAK 

with PF228 to attempt to recover adhesion strength. We found it selectively increased 

adhesive strength in Taxol-resistant cells (Fig. 5.8C) and likewise recovered differences 

in attachment kinetics (Fig. 5.8D). Similar trends were found by Michael et. al. using 

FAK-null fibroblasts expressing tetracycline-regulated FAK where FAK expression 

increased adhesion kinetic parameters but decreased steady-state strength(148). Finally, 

we verify that FAK is acting up-stream of changes in microtubule dynamics by tracking 

microtubule plus-ends before and after FAK inhibition. We found significantly decreased 

microtubule growth rates in both parent and Taxol-resistant populations (Fig. 5.8D) with 

statistically equal growth rates in both treated populations (p = 0.37). Conversely, others 

have shown that active FAK acts via Rho signaling to facilitate the formation stable Glu-

microtubules from the more dynamic tyrosinated microtubules(127). This suggests that 

FAK inhibition should increase microtubule dynamics; however, these studies in fixed 

cells may not be able to fully capture microtubule dynamics. Other researchers have 

noted similar differences when comparing live-cell microtubule dynamics to results 

quantified from fixed cells stained for Glu-microtubules(149). One potential explanation 

is that ovarian cancer cells, which are known to overexpress Rho(150), have sufficient 

basal Rho signaling to circumvent the need for FAK activity to form stabilized 

microtubules. As noted by Salaycik and colleagues, this may also be because stabilized 

Glu-microtubules only represent a relatively small fraction of microtubules within the 

cell, primarily localized to the perinuclear region and not the lamella, or that these signals 

are required for the generation, but not maintenance of, Glu-microtubules(149). The 
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increased formation of stable Glu-microtubules also does not preclude the remaining 

majority of microtubules from exhibiting increases in dynamics.  

The hypothesis that FAK intracellular signaling pathway is altering adhesion 

formation is further supported by the increase in β1 integrin expression in Taxol-resistant 

populations (Fig. 5.3D). We observed decreased adhesion strength despite higher levels 

of integrin expression (Fig. 5.5A). Though this result is somewhat counterintuitive, focal 

adhesion strengthening is largely dependent on both integrin clustering and focal 

adhesion formation, but can occur without additional binding of integrins to the 

extracellular matrix (151). Modeling of focal adhesion bond strength indicates that focal 

adhesion assembly alone can double adhesion strength in absence of integrin binding or 

clustering (152), in good agreement with our observations. Additionally, the collagen I 

receptor integrin α2β1 is known to activate FAK, so increased β1 expression may lead to 

higher FAK activity promoting focal adhesion dissolution (153). There may be additional 

defects in focal adhesion formation/maturation due to vinculin down-regulation in Taxol-

resistant cells (Fig. 5.5E). Loss of vinculin has been shown to increase paxillin-FAK 

interactions leading to higher phosphorylation of both(137), causing increased focal 

adhesion disassembly rates (154).  

This finding adds to a body of work suggesting that FAK inhibition may be an 

effective treatment for advanced ovarian cancer (155–157). Previous work has 

demonstrated that decreasing FAK activity through either FAK silencing (155) or 

inhibition (156) increases ovarian cancer sensitivity to taxanes. This suggests a causal 
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role for focal adhesion dynamics in Taxol resistance. In addition to altering microtubule 

dynamics as shown here, FAK  has also  been shown to act through additional pathways 

such as YB1 (156). Furthermore, FAK is significantly up-regulated in ovarian cancer (p = 

1.71e-5), more than any other tumor site (158) and FAK overexpression has been linked 

to poor prognosis with an over two-fold decrease in median survival (157). Completed 

phase I trials of FAK inhibitors in multiple solid tumors show promise (159), and phase 

I/Ib trials of FAK inhibitors with Taxol are currently underway in patients with advanced 

ovarian cancer (NCT01778803).  

In addition to changes in chemoresistance, these changes in adhesion dynamics may 

also contribute to cancer metastasis, which is ultimately responsible for 90% of cancer 

deaths (119). In order to metastasize, cells must first escape the primary tumor. Decreases 

in focal adhesion strength could increase the frequency of this event, making it easier for 

cells to begin spreading to distant sites. Moreover, during this process focal adhesion 

turnover is critical for effective migration; if focal adhesions grow too large the excessive 

adhesion prevents cell translocation (160). In ovarian cancer, altering these processes by 

blocking FAK inhibits tumor cell migration and invasion (157). Once reaching the 

secondary site, the faster attachment kinetics from increased integrin expression could 

increase the rate at which cells engraft. The interaction of mesothelial VCAM-1 with its 

ligand α4β1 integrin is critical for mesothelial cell clearance and ovarian cancer 

metastasis (64). This process additionally requires cell-generated traction forces found to 

be up-regulated in Taxol-resistant cells (Fig. 5.7)(75). These findings indicate blocking 

integrin signaling may also be a successful adjuvant therapeutic in ovarian cancer. Early 
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clinical trials of anti-integrin therapeutics have already shown success in glioblastoma 

with minimal toxicity (123), and promise with ovarian cancer as well (161). Several 

studies also suggest increased integrin expression can lead to general chemoresistance 

(162) and is a marker of poor patient prognosis (163). The integrin up-regulation may 

also act synergistically with FAK, as integrin-dependent FAK activation from the ascites 

can also protect ovarian cancer cells from death by Akt phosphorylation (164).  

In conclusion, this study demonstrates previously unknown changes in adhesion 

properties of cells resistant to chemotherapeutics. These alterations correlated with an 

increase in microtubule dynamics, but were unaffected by chemical perturbation of 

microtubule dynamics. FAK inhibition not only mitigated adhesive differences between 

parent and Taxol-resistant cells, but also normalized microtubule dynamics. Thus, FAK 

could potentially be therapeutically targeted to not only increase chemosensitivity, but 

also block metastasis to improve the extremely poor prognosis of chemorefractory 

ovarian cancer.  
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5.5 Materials and Methods 

5.5.1 Cell Culture and Isolation of Taxol-Resistant Cells 

Human ovarian carcinoma SKOV-3 cells were acquired from ATCC and OVCAR-3 

cells were the generous gift of Dr. John McDonald. Both cell lines were cultured in 

RPMI 1640 (Corning) containing 10% FBS (Atlanta Biologicals) and 1% penicillin 

streptomycin (Corning). To isolate Taxol resistant cell lines, cells were plated at 20% of 

confluence and treated with 10 nM Taxol (Enzo) for 48 hours before returning to growth 

media. After reaching 40% of confluence, cells were again treated with 10 nM Taxol for 

48 hours before returning to growth media. This process was repeated until the Taxol 

could no longer maintain cell growth (approximately 4 months for OVCAR3 and 6 

months for SKOV3), at which time cells were fed with standard growth media with a 

maintenance concentration of 5 nM Taxol added at least once per week. Four 

independent viability assays were performed over the course of the study with no 

significant change in IC50.  

5.5.2 Viability Assay 

Cells were plated at 20% of confluence before treating with varying concentrations of 

Taxol, 25 μM carboplatin (approximately the IC50 for both cell lines)(165), or a DMSO 

solvent control (<0.1% v/v). After 72 hours, cells were incubated in 1mg/mL MTT 

reagent for four hours in standard growth conditions. The supernatant was then removed 

and replaced with isopropanol acidified with 4mM HCl to solubilize insoluble purple 

formazan product. The absorbance of this product was then measured in DTX-800 

Multimode Detector microwell plate reader (Beckman Coulter) at 620 nm absorbance 
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with 595 nm reference value. Since low-dose Taxol showed a significant increase in 

Taxol-resistant cell viability we chose to interpolate the IC50 in the linear region of the 

plot instead of a standard sigmoidal fit which may not accurately model the data. 

5.5.3 Attachment Kinetics 

All plates were coated with 10 μg/mL Collagen I (Corning) and blocked with 1% 

heat-denatured BSA (Rockland) unless otherwise noted. Cells were first labeled with 2 

µM Calcein AM (AnaSpec), a transmembrane green fluorescent marker, in HBSS with 

divalents (Corning) for 20 minutes at 37°C. Next, cells were passed per standard 

procedure, resuspended in media, and incubated for 30 minutes at 37°C. Cells were then 

pelleted and resupsended in adhesion buffer (140 mM NaCl, 2.5 mM KCl, 1.8 mM 

CaCl2, 1.0 mM MgCl2, 20 mM HEPES, 20 mM dextrose, pH 7.4) before plating at 20% 

of confluence. At each time point, non-adherent cells were removed to a new plate. At the 

end of the experiment, the fluorescence of the plates containing both the adherent and 

non-adherent fractions was read at 485nm excitation, 535nm emission in a DTX-800 

Multimode Detector microwell plate reader. Adherent fraction was then defined as the 

reading of the adherent cells over the sum of the adherent cells and non-adherent cells. 

Attachment was modeled by the differential equation 𝑑𝐶𝐴𝐴ℎ 𝑑𝑑⁄ = 𝑘𝐶𝑁𝑁𝑁−𝑎𝐴ℎ where C is 

the concentration of cells and k is the adhesion rate. This equation can be reduced to 

𝑑𝑑 𝑑𝑑⁄ = 𝑘(1 − 𝑑)  where A is adherent fraction calculated as 

𝑑 =  𝐶𝐴𝐴ℎ (𝐶𝐴𝐴ℎ + 𝐶𝑁𝑁𝑁−𝑎𝐴ℎ)⁄  and solved using boundaries of A=0 and A=1 at t=0 and 

as t→∞, respectively, to yield 𝑑(𝑑) = 1 − 𝑒−𝑘𝑘. The equation was linearized, yielding R2 

values for individual experiments ranging from 0.92 to 0.99.  
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5.5.4 Adhesion Strength 

Adhesion strength was quantified in a centrifugal force-based adhesion assay(68). 

Cells were allowed to adhere overnight to a collagen-coated (unless otherwise noted) 96 

well plate and then labeled with Calcein AM. The media was replaced with adhesion 

buffer before taking an initial fluorescence reading, and then plates were inverted and 

centrifuged at 29 rcf for 5 minutes. After washing with adhesion buffer, a final reading 

was taken. Detached fraction was determined as one minus final fluorescence divided by 

initial fluorescence. In some experiments, cells were pre-incubated with Taxol, 

Nocodazole (Sigma), or PF-573,228 (PF228, Sigma) 4 hours before performing the 

experiment.  

5.5.5 Rhodamine Efflux 

Cells in a 96 well plate were loaded with 0.5 μg/mL Rhodamine 123 for 60 minutes 

and then washed extensively with adhesion buffer. At desired time points, supernatant 

was removed for fluorescence quantification at 485 nm excitation, 535 nm emission. To 

account for variations in loading, rhodamine efflux was determined as [effluxed 

rhodamine / (effluxed rhodamine + rhodamine in cells)]. Rate constants were fit as 

described in attachment kinetics. For 24 hour efflux, a similar procedure was performed 

except cells were incubated in growth media.  

5.5.6 Flow Cytometry 

To determine levels of surface integrin expression, cells were analyzed with a BD 

LSR-II flow cytometer. Briefly, cells were detached with 5 mM EDTA, centrifuged, and 

separated into 100μl aliquots then labeled with PE-conjugated anti-human CD29 (integrin 
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β1, Clone TS-2/16, BioLegend) per manufacturer’s instructions. Mean fluorescence 

intensity was determined after subtraction of a respective negative control.  

5.5.7 Focal Adhesion Staining and Image Analysis 

For immunostaining all cells were plated on collagen I coated coverslips. For focal 

adhesion staining, cells were fixed in 4% formaldehyde, permeabilized with 0.5% Triton 

X-100, and blocked with 5% horse serum before staining with either 1:200 anti-paxillin 

(Clone Y113, GeneTex), 1:500 anti-vinculin (Invitrogen), or 1:200 anti-FAKp397 

(Genetex) diluted in PBS with 1% BSA. Cells were then washed, incubated with 1:100 

rhodamine phalloidin (Invitrogen) and anti-rabbit Alexa Fluor 488 (Invitrogen), 

counterstained with DAPI (AnaSpec), and sealed with Vectashield (Vector Labs). All 

images were captured at 40x magnification on an inverted Nikon Microscope with a 

CoolSNAP camera (Photometrics). For each experiment, all images were captured in one 

session and normalized to the average for that session to account for any differences in 

light brightness. To quantify focal adhesions, paxillin images were first convolved with a 

low pass Gaussian filter before applying a morphological top hat filter to correct for 

differences in basal paxillin expression. Pixels within the cell area (determined based on 

F-actin fluorescence) that exceeded the cell background by 2 standard deviations were 

considered positive. After thresholding, pixel noise of less than 10 pixels (~0.25 μm2) 

was discarded. The remaining segmented focal adhesions were used for analysis, with 

pixel intensity values taken from the original, unfiltered image after background 

subtraction (background defined as the average intensity value of the non-cell area). 
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Focal adhesion density was calculated as the integrated focal adhesion intensity 

normalized to cell area.  

5.5.8 Western Blot Analysis 

Cells were lysed in radioimmunoprecipation buffer containing a protease inhibitor 

cocktail and separated on either 10% (paxillin/tubulin) or 7.5% (vinculin/FAKp397) 

polyacrylamide gel before transferring to a PVDF membrane. Membranes were blocked 

in 5% milk, and incubated overnight at 4°C in primary antibodies against tubulin (1:3000, 

Rockland), paxillin (1:500, BioLegend), vinculin (1:1000, Invitrogen), or FAKp397 

(1:1000, Genetex). Bands were visualized following incubation with 1:1000 HRP-

conjugated anti-rabbit IgG (Rockland) using Novex ECL chemiluminescent substrate 

(Invitrogen). Since typical loading controls such as cytoskeletal elements (tubulin/actin) 

or metabolic enzymes (GAPDH) are often differentially expressed in cancer, we utilized 

total protein as a loading control by staining the membranes with Coomassie G250 

(BioRad). Quantification of total protein has been not only been shown to be more 

consistent across different cells than typical loading control proteins, but also offer 

improved detection linearity (166, 167). All analysis was performed using built-in blot 

analysis tools in ImageJ (NIH) as described in the user manual 

(http://rsbweb.nih.gov/ij/docs/guide/, Section 30.13).  

5.5.9 Tubulin Polymerization Assay 

A microtubule pelleting assay was used to quantify fraction of polymerized tubulin as 

previously described(168). Cells that had been in absence of Taxol for 5-7 days were 

grown to 80% confluence in a 24-well plate. Cells were lysed with 100μL hypotonic lysis 
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buffer (20 mM Tris-HC1, pH 6.8, 0.5% Nonidet P-40, 1 mM MgC12, 2 mM EGTA) for 5 

minutes. Lysates were transferred to a 1.5 mL microcentrifuge tube, wells were washed 

1x with 100μL hypotonic lysis buffer, and the entire 200 μL volume was vortexed before 

pelleting the insoluble fraction by room temperature centrifugation at 12,000 rcf for 10 

minutes. Meanwhile, any remaining cytoskeletal elements in the wells were dissolved in 

the above buffer with addition of 0.5% SDS. Finally, supernatants were transferred to a 

new tube and pellets re-suspended in the SDS-containing buffer with the remaining 

insoluble tubulins. Equal volumes were loaded for immunoblotting as described above.  

5.5.10 Microtubule Recovery Assay 

To visualize microtubule regrowth, microtubules were first depolymerized by 

treatment with 20 μM nocodazole for 4 hours and then allowed to regrow following 

washout for specified periods of time. To ensure accurate washout times all coverslips for 

each cell line were initially contained within the same 10cm dish which was then washed 

four times with fresh media before returning to media that had been pre-equilibrated in 

the cell incubator to 5% CO2 for regrowth in normal culture conditions. At desired time 

points, coverslips were removed for processing. Cells were stained for F-actin and 

microtubules as previously described (169). In brief, cells were Triton-extracted before 

fixing in glutaraldehyde, which was then neutralized with sodium borohydride before 

blocking in horse serum and incubating with rhodamine phalloidin and FITC-conjugated 

anti-α-tubulin (Sigma, clone DM1a). The α-tubulin isoform has been shown to be 

unchanged with Taxol-resistance (116). 
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5.5.11 EB3 Microtubule Tracking 

To visualize live-cell microtubule dynamics, cells were transfected with mApple-

EB3, a gift from Michael Davidson (Addgene plasmid #54892), using the TransIT-LT1 

transfection reagent (Mirus Bio) per manufacturer’s instructions. Cells were imaged with 

a Nikon Eclipse Ti inverted epifluorescent microscope, maintained at 37° C and 5% 

carbon dioxide throughout the experiment using an In Vivo Scientific environmental cell 

chamber and Bioscience Tools CO2 controller. A Photometrics QuantEM CCD camera 

(Princeton Instruments) was used to minimize exposure time while imaging with a Nikon 

CFI Apochromat TIRF 100X oil-immersion lens. Videos were captured at 1 Hz for 2 

minutes and quantified using the open source u-track software as described (132, 170).  

5.5.12 Traction Force Cytometry 

Cell-exerted forces were quantified by traction force cytometry as previously 

described (84, 109) by culturing cells on an elastic 10 kPa collagen-coated 

polyacrylamide substrate embedded with 200 nm fluorescent nanoparticles as fiduciary 

tracers. After capturing an initial image of the cells and particles, cells were removed by 

trypsinization and a final particle image captured. The embedded beads were used to 

determine gel displacement, which could then be used to calculate forces(70).  

5.5.13 Statistics 

The data are reported as mean ± standard error of the mean (SEM) from three 

independent experiments unless otherwise noted. Statistical analysis was carried out 

using a student’s t-test or analysis of variance (ANOVA) followed by post-hoc analysis 

with Student–Newman–Keuls test, considering p < 0.05 to be significant 
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(***p<0.001,**p<0.01,*p<0.05).  Pearson correlation coefficients (ρ), ranging from -1 

for perfectly inversely correlated to +1 for perfectly positively correlated, were 

determined in MATLAB. 
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CHAPTER 6 
EPITHELIAL-MESENCHYMAL TRANSITION PRODUCES 

CONCERTED BIOPHYSICAL CHANGES FROM ALTERED 
CYTOSKELETAL GENE EXPRESSION4 

6.1 Summary 
A growing body of evidence suggests that the developmental process of epithelial-to-

mesenchymal transition (EMT) is coopted by cancer cells in order to metastasize to 

distant sites. This transition is associated with morphological elongation and loss of cell-

cell adhesions, though little is known about how it alters cell biophysical properties 

critical for migration. Here, we use multiple-particle tracking microrheology and traction 

force cytometry to probe how genetic induction of EMT in epithelial MCF7 breast cancer 

cells changes their intracellular stiffness and extracellular force exertion, respectively, 

relative to an empty-vector control. This analysis demonstrated that EMT alone was 

sufficient to produce dramatic cytoskeletal softening coupled with increases in cell-

exerted traction forces. Microarray analysis revealed that these changes corresponded 

with down-regulation of genes associated with actin crosslinking and up-regulation of 

genes associated with actomyosin contraction. Finally, we show that this loss of structural 

integrity to expedite migration could inhibit mesenchymal cell proliferation in a 

secondary tumor as it accumulates solid stress. This work demonstrates that not only does 

EMT enable escape from the primary tumor through loss of cell adhesions, but it also 

                                                 
4McGrail DJ, Mezencev R, Kieu QMN, McDonald JF, Dawson MR. (2014) SNAIL-induced epithelial-to-
mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene 
expression. FASEB J. 29: 1280–9. 
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induces a concerted series of biophysical changes enabling enhanced migration of cancer 

cells after detachment from the primary tumor. 

6.2 Introduction 
The problem of cancer metastasis is undoubtedly one of the biggest hurdles facing 

cancer clinicians, as this deadly process is currently responsible for over 90% of cancer-

related deaths. A large body of evidence suggests that epithelial-to-mesenchymal 

transition (EMT), whereby less motile regularly shaped polygonal epithelial cells 

transition into elongated invasive mesenchymal cells, is critical for cancer cells to leave 

the primary tumor to spread to distant sites (171). This increased invasiveness is largely 

attributed to loss of E-cadherin responsible for cell-cell adhesion and increasing 

expression of matrix-binding integrins (23). Furthermore, increased expression of matrix-

degrading matrix metalloproteinases allows for degradation of the basement membrane 

and dissemination to other tissues (24).   

In addition to these molecular changes, the emerging field of physical oncology has 

highlighted that cells modulate their mechanical properties in order to disseminate 

effectively (119). Moreover, during the morphological rearrangement the epithelial cells 

lose their apical-basal polarity causing dissolution of cortical actin structure as the cells 

gain the more elongated mesenchymal morphology with front-rear polarity (172). Despite 

extensive study into EMT over the past three decades, how it affects these critical 

biophysical properties remains largely unknown. Environmental factors used to induce 

EMT, such as soluble factors, matrix stiffness, or adhesive ligands (22), alter other 



 

 

96 
 

biophysical and biochemical properties confounding the analysis of the effects of EMT 

alone. These pathways use a variety of intermediate signaling molecules, but in all 

studied cases of EMT they converge on the activation of SNAIL genes (173). SNAIL is a 

transcriptional repressor primarily thought to induce EMT from direct repression of E-

cadherin leading to nuclear β-catenin accumulation and activation of WNT signaling 

(171), but E-cadherin knockdown fails to recapitulate SNAIL-induced EMT suggesting 

that SNAIL plays a broader role in EMT (174). Thus, in order to directly examine EMT 

in isolation without confounding environmental cues we utilized a robust genetically-

engineered model of EMT in epithelial MCF7 breast cancer cells. To do so, we chose a 

SNAIL variant modified to be stable and localized within the cell nucleus, which was  

recently shown to be a superior model of EMT  compared to overexpression of wild-type 

SNAIL (175). 

Here, we demonstrate that EMT directly produces biophysical changes resulting in a 

pro-metastatic phenotype and further elucidate the underlying alterations in gene 

expression by microarray transcriptomic analysis. SNAIL-transformed cells were 

significantly more compliant than an empty-vector control, both softening their 

cytoplasm by an order of magnitude and relaxing their nucleus approximately 5-fold to 

allow for navigation of the extracellular environment. These mechanical changes 

coincided with structural changes including decreased polymerized actin and abnormal 

nuclear morphology, correlating with decreased expression of actin crosslinkers such as 

FLNA (Filamin A) and structural nuclear proteins such as LMNA (Lamin A). In addition 

to these changes in intracellular compliance and structure, EMT also increased 
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extracellular force exertion and contractile gene expression to further expedite migration. 

We show these changes allow for increased motility regardless of extracellular 

mechanics, possibly helping cells adapt to their new environment as they disseminate. 

However, more migratory mechanically compliant SNAIL cells lacked the structural 

stability to form large spheroids analogous to secondary tumors. Taken together, this 

work not only demonstrates that biophysical changes associated with cancer progression 

are produced by EMT, but integrates this mechanical analysis with gene expression 

profiling for a more complete portrait of this key process in cancer metastasis.  

6.3 Results 

6.3.1 SNAIL transformation induces a mesenchymal phenotype and increased 

malignant character.  

After transformation with SNAIL-6SA, MCF7 breast cancer cells exhibited a more 

mesenchymal phenotype than their empty vector transformed controls. This was 

confirmed both by cell morphology, where SNAIL cells showed a two-fold increase in 

aspect ratio (Fig. 6.1A-B), as well as gene expression which revealed classical changes 

associated with EMT such as down regulation in E-cadherin (CDH1) as well as up-

regulation of N-cadherin (CDH2) and vimentin (VIM) (Fig. 6.1C). To understand the 

functional consequences of this transformation, we next evaluated the migratory and 

proliferative capacity of the transformed cell lines. We tracked the migration of over 500 

cells per condition (Fig. 6.1D) and found mesenchymal SNAIL-transformed cells showed 

a large (p<1e-5) increase in motility relative to their control counterparts with an over 

two-fold increase in cell speed (Fig. 6.1E). Moreover, SNAIL cells utilized a different 
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migratory phenotype characterized by “bursty” migration as opposed to persistent 

migration over time. We quantified this difference by the coefficient of variation (176), 

which increases as the velocity of a cell becomes less consistent, to find a significant  

 
Figure 6.1 MCF-7 cells transformed with SNAIL-6SA show increased mesenchymal 
phenotype and malignant characteristics. Empty-vector transformed MCF7-CTRL (A) 
display a cobblestone morphology whereas MCF7-SNAIL (B) are more elongated, with a two-
fold increase in aspect ratio (AR). (C) SNAIL transformation induces changes in CDH1 (E-
cadherin), CDH2 (N-cadherin), and VIM (Vimentin) gene expression associated with EMT. 
(D) Exemplary traces of control and SNAIL cells color-coded by time, each dot representing a 
10 minute interval.  (E) Average instantaneous velocity of SNAIL cells is significantly greater 
than control cells. (F) Coefficient of variation, defined as the standard deviation of a cell’s 
instantaneous velocity over the average instantaneous velocity, is significantly increased in 
SNAIL cells indicating more bursty migration. SNAIL increases proliferation quantified both 
in a 2D system by BrdU incorporation (G) and in a 3D anchorage-independent spheroid assay 
(H). Motility is increased and altered by SNAIL transformation.  When cultured on either soft 
(2.83 kPa) or hard (34.88 kPa) substrates SNAIL cells remain more proliferative (I) and more 
motile (J) regardless of matrix stiffness. 
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increase following SNAIL transformation (Fig. 6.1F).  Finally, we evaluated proliferation 

in both 2D and 3D. When grown on a 2D surface, the proliferation was significantly 

increased in SNAIL-transformed cells (Fig. 6.1G). Proliferation was also increased in 3D, 

as determined with an anchorage-independent spheroid formation assay in agarose (Fig. 

6.1H). This increase in proliferation and migration indicative of a more aggressive 

phenotype are conserved across multiple substrate rigidities by repeating the proliferation 

(Fig. 6.1I) and motility (Fig. 6.1J) experiments on soft (2.83 kPa) and hard (34.88 kPa) 

substrates. 

6.3.2 Increased traction forces during SNAIL-induced EMT  

Due to the major role of actomyosin contraction in cell migration, we utilized traction 

force cytometry to quantify alterations in cell-exerted traction forces after EMT. Traction 

force maps of control (Fig. 6.2A) and SNAIL (Fig. 6.2B) cells show altered force 

arrangement. Control cells have forces distributed throughout the cell body whereas 

SNAIL forces are more localized to the tips of the cell. In addition to this altered 

intracellular distribution, SNAIL cells also exerted significantly (p<0.01) higher forces 

(Fig. 6.2C). Due to the increased “bursting” migration in the SNAIL cells, we 

hypothesized that this would translate to capturing some cells “post-burst” and others 

“pre-burst” resulting in a larger variance within the population compared to the control 

cells that moved more consistently. Supporting this idea, we found that the coefficient of 

variance for traction stress within each individual experiment was increased almost two-

fold in the SNAIL cells (Fig. 6.2D). Microarray analysis of gene expression data revealed 

that this force increase coincided with up-regulation of genes that promote actomyosin 
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contraction such as MYLK (myosin light chain kinase) and MYH10 (myosin IIb) as well 

as down-regulation of genes that reduce contractility such as PPP1R12B (myosin 

phosphatase) (Fig. 6.2E).  

 
Figure 6.2 SNAIL-induced EMT increases cell-exerted traction forces. Traction heat maps 
in units of Pascals ranging from 0 (dark blue) to 850 (dark red) overlaid with matrix 
displacements (black arrows). Scale bars are 10 μm.  (A) Control cells forces are located 
predominately in the cell interior (inset heat map is rescaled to a max value of 300 Pa for 
visualization). (B) SNAIL cells exert forces closer to the cell periphery. (C) Peak traction 
stresses in SNAIL cells were 3-fold higher than those exerted by control cells. (D) Coefficient 
of variation, defined here as the standard deviation of the cells within each experiment over the 
average of all the cells within the experiment, is increased as seen with motility results in 
Figure 1. (E) Microarray analysis shows differential regulation of contractile markers between 
SNAIL and control cells. 
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6.3.3 EMT softens the cytoplasm and alters actin structure 

In order to investigate how EMT altered intracellular mechanics, we utilized multiple 

particle tracking microrheology (MPT) to determine rheological information from the 

thermal motion of ballistically injected fluorescent nanoparticles (177). Larger mean 

squared displacements (MSDs) of particles in SNAIL cells indicate less resistance to 

particle motion within their cytoplasm. At all evaluated time scales, SNAIL cells 

displayed a higher MSD (Fig. 6.3A).  This result translated to a 5-fold higher effective 

diffusion coefficient (Fig. 6.3B) and an order of magnitude increase in cytoplasmic 

compliance (Fig. 6.3C). Calculation of viscoelastic parameters further revealed that 

control cells have an appreciable elastic moduli of 29±5 dyn/cm2, but this value is almost 

negligible for SNAIL cells at 0.6±0.4 dyn/cm2 (Fig. 3D) with similar trends in viscosity 

(Fig. 6.3E). Moreover, though control cells maintained some elastic character over all 

frequencies, SNAIL cells became entirely viscous (phase angle of 90°) at frequencies 

higher than 1 Hz (Fig. 6.3F).   
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Figure 6.3 Analysis of intracellular microrheology reveals greatly softened cytoplasmic 
space by SNAIL transformation through loss of polymerized actin. (A) Mean-squared 
displacements (MSDs) of 200 nm particles injected into the cytoplasmic space are increased by 
nearly half a decade across all time lags. (B) Intracellular diffusion coefficient at τ = 1 s is 
decreased over five-fold in SNAIL cells. (C) Creep compliance of cytoplasm is also decreased 
by an order of magnitude at τ = 1 s. (D) Elastic moduli at a frequency of 1 Hz is significantly 
decreased in SNAIL cells. (E) Shear viscosity shows similar decrease in SNAIL cells. (F) 
Evaluation of the phase angle, δ, which quantifies the relative ratio of viscous to elastic 
character shows that at frequencies above 0.3 Hz SNAIL cells show significantly lower elastic 
character. 

We hypothesized that these changes in cytoplasmic mechanics were largely due to 

decreases in actin polymerization. To test this hypothesis, we stained cells for F-actin, 

which showed that control cells had organized actin filaments and that tension from these 

cortical actin stress fibers helps create a more uniform, flat cell shape (Fig. 6.4A). 

Overexpression of SNAIL dissolved these stress fibers (Fig. 6.4B) and produced  more 

rounded, three dimensional cells (Fig. 6.4B). SNAIL cells also displayed enhanced 

lamellipodial ruffling at either pole (blue arrows), as well as additional filopodial 

structures extending from the cell body (red arrow). We additionally characterized 

intermediate filaments cytokeratin and vimentin which are known to be down- and up-
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regulated during the EMT (22), respectively, and are known to play a role in cell 

mechanical properties (178–180). Though control cells display robust keratin networks, 

these are completely lost following EMT in SNAIL cells (Fig. 6.4D). Conversely, ectopic 

SNAIL expression increased the expression of vimentin (Fig. 6.4E). To quantify these 

changes we took the integrated fluorescence density of each filament, revealing that 

SNAIL cells have a 3-fold decrease, 10-fold decrease and a 4-fold increase in F-actin, 

cytokeratin, and vimentin, respectively (all p<0.001, Fig. 6.4F). This was further 

confirmed by gene expression data showing the up-regulation of vimentin as well as 

down-regulation of several keratin isoforms (Fig. 6.4G).  
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Figure 6.4 Cytoskeletal architecture is altered by EMT. To visualize corresponding changes 
in cytoskeletal structure, cells were stained for F-actin and visualized via confocal microscopy. 
Three dimensional confocal reconstruction color-coded by Z-distance for (A) control cells and 
(B) SNAIL cells shows not only cortical actin structure present in control cells (black arrows) 
but also increased ruffling (blue arrows) and actin protrusions (red arrow) in SNAIL cells. (C) 
Microarray analysis of gene expression data reveals significant dysregulation of genes 
associated with actin cytoskeletal structure. To visualize intermediate filaments cells were 
stained for cytokeratins (D) and vimentin (E) both shown in green, and then counterstained for 
F-actin (red) and nuclei (blue). (F) Quantification of fluorescence intensities show that SNAIL 
cells have decreased levels of F-actin and cytokeratin but increased level of vimentin (all 
values reported normalized to the average of both cell types). (G) Gene expression analysis 
shows up-regulation of vimentin and down-regulation of several cytokeratins consistent with 
protein expression findings.   All scale bars are 10 μm in length. 
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To determine the molecular mechanism for this loss of mechanical structure, we 

utilized several approaches to analyze microarray gene expression data. The GSEA 

analysis, which does not depend on an arbitrary selection of differentially expressed 

genes revealed that the “Actin Polymerization and/or Depolymerization” (M2403) and 

“Rho Protein Signal Transduction” (M7069) gene sets were significantly enriched in the 

control phenotype (q-values 0.223 and 0.196, respectively). Since Rho GTPase is known 

to regulate actin cytoskeleton remodeling during cell morphogenesis and motility (181), 

our data suggest that phenotypic differences between mesenchymal-like SNAIL and 

epithelial-like control cells likely include Rho-mediated reorganization of actin 

cytoskeleton. Consistent with this finding, pathway enrichment analysis by MetaCore 

suite identified alterations in several actin cytoskeleton-related gene signaling networks 

including “Regulation of Cytoskeletal Rearrangement” (p=5.06×10-7, FDR q=2.70×10-5) 

and “Cytoskeleton Actin Filaments” (p=3.55×10-6, FDR q=1.14×10-4). Moreover, 

analysis by David 6.7 functional annotation tool identified KEGG pathway “Regulation 

of Actin Cystoskeleton” (hsa04810, Fig. 6.5A) as significantly enriched (p=4.7×10-3, 

FDR q=0.00092) for genes down-regulated in SNAIL cells.  
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Figure 6.5 Changes in actin cytoskeleton and cell rheology. (A) Regulation of Actin 
Cytoskeleton – Homo sapiens (KEGG pathway hsa04810) with mapped color-coded genes 
identified as differentially expressed between SNAIL and control cells. Red: up-regulated in 
SNAIL cells; blue: down-regulated in SNAIL cells; pink: both up- and down-regulated genes 
were identified for given KEGG entry; green rectangles: genes not identified as differentially 
expressed. Changes in cell rheology following treatment with actin-stabilizing Jasplakinolide 
(Jas). (B) The elastic moduli of SNAIL cells is partially recovered following actin treatment, 
increasing an order of magnitude from untreated levels. (C) Shear viscosity is also partially 
recovered in SNAIL cells treated with Jasplakinolide increasing 2-fold. 
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To verify that these changes were primarily caused directly through SNAIL-induced 

EMT and not through down-stream modulation of non-EMT genes, we compared 

microarray results from other related perturbation experiments with MCF7 cells. Since 

the loss of estrogen receptor-alpha (ERα) is associated both with breast cancer 

progression and SNAIL expression (182), we analyzed changes in MCF7 cells induced 

by siRNA-mediated knockdown of the expression of ESR1 gene  that encodes ERα. This 

analysis revealed minimal changes in the expression of EMT-associated genes and no 

enrichment of the actin-related processes seen in the SNAIL cells. Furthermore, analysis 

of vimentin knockdown only revealed one conserved actin-related gene, the cross linker 

cingulin, indicating it may have some effect on the actin cytoskeleton in isolation.    

For brevity, a subset of actin cytoskeleton-related genes is displayed in Figure 6.4C. 

There was no clear trend in actin severing proteins, but several actin crosslinking genes 

such as filamins A and B were down-regulated along with a series of actin stabilizing 

proteins. This implies that the loss of actin structure was largely mediated via decreased 

expression of actin cross-linking, not an increased rate of disassembly. We further tested 

this hypothesis by treating cells with membrane permeable jasplakinolide, which acts to 

polymerize and stabilize actin filaments, and found that this treatment was only able to 

partially recover cell mechanical properties (Fig. 6.5B-C). This incomplete recovery may 

be due to the lack of filamins to crosslink the actin fibers in SNAIL cells, or because 

some of the mechanical stability originates from keratin intermediate filaments which 

were lost following SNAIL transformation. Though actin severing proteins showed no 

direct relation to actin cytoskeletal architecture, the large down-regulation of gelsolin is 
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notable since reduced expression in breast cancer is associated with poor patient 

prognosis (183, 184). This indicates decreased gelsolin may be a conserved feature of 

breast cancer progression. Moreover, several genes associated with filopodia formation 

such as CDC42, ACTR3, and PARVB were up-regulated suggesting these regulate the 

protrusion formation in SNAIL cells. Interestingly, Snail cells also overexpress the 

WASF3 gene encoding WAVE3 member of WASP/WAVE protein family known to 

regulate actin cytoskeleton remodeling through Arp2/3 and enhance invasive and 

metastatic potential of breast cancer cells in vitro and in vivo (185).        

6.3.4 SNAIL relaxes nuclear stiffness and produces defects in nuclear morphology  

Though relaxing cytoskeletal rigidity may help cells navigate through tight pores in 

the extracellular matrix, the nuclear deformation is often the rate limiting step for 

effective invasion (186). Thus, we sought to probe if SNAIL-induced EMT would 

likewise soften nuclear mechanics by performing particle tracking in the nucleus but 

instead of using injected nanoparticles utilizing Hoechst-labeled chromatin as tracer 

particles (187). Consistent with previous studies, we found at short time-scales the nuclei 

of both cells behaved as elastic solids, corresponding to a MSD slope close to zero (Fig. 

6.6A). However, at later time scales nuclei began to transition to more viscous behavior 

indicated by an increasing MSD slope approaching one for a perfectly viscous material. 

The time for this transition, or relaxation time, was 5-fold faster in SNAIL cells (Fig. 

6.6B). This relaxation produced a significantly softer nucleus after SNAIL 

transformation, quantified by an effective diffusion coefficient nearly an order of 

magnitude higher than control cells (Fig. 6.6C).   
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Figure 6.6 Nuclear structure is compromised by SNAIL-induced EMT. (A) Mean-squared 
displacements (MSDs) of Hoechst-labeled chromatin show that while at low scales nuclei 
behave primarily as an elastic solid regardless of cell line, at later time MSDs begin to increase 
indicative of more viscous diffusion. (B) Quantification of the time until this relaxation from 
elastic to viscous character shows that it happens over 3-fold faster in SNAIL cells. (C) The 
nuclei of SNAIL cells show a nearly order of magnitude increase in effective diffusion 
coefficient at 10 seconds. Loss of nuclear integrity was verified by examining three 
dimensional reconstructions of confocal micrographs where control cells (D) show some 
elongated nuclei (red arrow), but SNAIL nuclei (E) show several abnormal structural 
deformations (blue arrows). Scale bars are 10 μm in length.  (F) This structural abnormality 
was quantified by nuclear shape factor, or 4·π·Area/Perimeter2 ranging from 0 for a line to 1 
for a perfect circle showing a significant decrease in SNAIL cell nuclei.  (G) Gene expression 
analysis shows down-regulation of several genes associated with nuclear structure in SNAIL 
cells. 
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Based on this loss of mechanical stability, we sought to determine if this produced 

alterations in bulk nuclear structure. Though there were some visually elongated nuclei in 

both the control cells (Fig. 6.6D, red arrow) as well SNAIL cells, the latter additionally 

displayed frequent aberrations in nuclear morphology including elongation, but also 

excessive creasing and folding within the membrane (Fig. 6.6E, blue arrows). 

Morphological quantification based on nuclear shape factor (188), defined as 

4·π·Area/Perimeter2 ranging from 0 for a line to 1 for a perfect circle, demonstrated that 

control nuclei were significantly more circular (Fig. 6.6F). Analysis of microarray gene 

expression data by David 6.7 functional annotation tool revealed enrichment of the  

nuclear lumen (GO:0031981; p=3.5×10-16, FDR q=3.5×10-15), nucleoplasm 

(GO:0005654; p=3.6×10-11, FDR q=5.5×10-10) and nuclear pore (GO:0005643; p=1.0×10-

3, FDR q=1.5×10-2) cellular component gene ontologies for genes up-regulated in SNAIL 

cells. This result provides an evidence for molecular differences between SNAIL and 

control cells in their nuclear compartments and implies the role of nuclear compartments 

in phenotypic differences between these two cell types. Notably, several genes coding for 

nuclear structural proteins were differentially expressed including lamin A/C, Nesprin 2 

and several Sun proteins (Fig. 6.6G). Down-regulation of lamin A was recently shown to 

decrease nuclear stiffness and enhance cancer cell migration (189).  

6.3.5 Epithelial phenotype supports higher levels of solid stress during tumor 

growth  

To expand against agarose gels cells must have structural stability to maintain the 

induced solid stress, so we sought to test if increasing this solid stress would 
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differentially block proliferation between control and SNAIL cells by doubling the 

percentage of agarose used during spheroid growth. Control cell spheroids showed a 

slight but insignificant decrease in spheroid area in 1.0% gels, whereas SNAIL cell 

spheroids in 1.0% agarose were 5-fold smaller than in 0.5% agarose (p<0.001, Fig. 6.7A). 

This indicated that the induced solid-stress affected mesenchymal SNAIL cells (86±6.2% 

growth inhibition) significantly more than the epithelial controls (18±1.4% growth 

inhibition) (Fig. 6.7B). Quantification of the solid stress exerted by the spheroids 

demonstrated that SNAIL cells were able to withstand a peak solid stress of ~35 mmHg 

regardless of gel concentration, whereas control cells were able to withstand at least 80 

mmHg in stiffer gels (Fig. 6.7C).  

 
Figure 6.7 Mesenchymal SNAIL cells do not support solid stress. (A) Spheroid cross 
sectional area after four weeks growth in either 0.5% or 1.0% (w/v) agarose gels shows no 
significant difference between the two concentrations for control cells, but a dramatic decrease 
for SNAIL cells. (B) Four-fold higher growth inhibition from increasing solid stress by altering 
gel concentration in SNAIL cells. (C) Calculation of radial stress during spheroid growth 
shows that control cells are able to support at least 80 mmHg, whereas SNAIL cells plateau at 
about 50% of this value.   
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6.4 Discussion 
Epithelial to mesenchymal transition is hypothesized to be a key step in cancer 

metastasis, predominately through loss of cell-cell adhesions leading to escape of cells 

from the primary tumor (171). However, recent studies have shown that biophysical 

changes may be equally important for cancer metastasis (190). To bridge the gap between 

these observed molecular and biophysical changes, we utilized a genetically induced 

model of EMT in epithelial MCF7 breast cancer cells transformed to a mesenchymal 

phenotype with a stable SNAIL mutant (175). As previously observed when comparing 

invasive and non-invasive cells (74), we found that the more motile (Fig. 6.1D-F) SNAIL 

cells exerted larger traction stresses on their underlying matrix (Fig. 6.2A-C). Although 

this result was somewhat surprising considering the decreased level of polymerized actin, 

we find it to be consistent with results reported by other investigators. For instance, more 

aggressive cancer cells are known to be soft with decreased actin polymerization (191–

193) and exert larger traction forces (190). Analysis of relevant gene expression revealed 

key changes, consistent with those previously observed in other models of EMT, such as 

a concomitant up-regulation of MYH10 (myosin IIb) and down-regulation of MYH14 

(myosin IIc) (194).We further observed up-regulation of genes that would increase 

contractility including myosin light chain kinase and ARHGEF3 as well as decreased 

expression of contractility inhibitors such as myosin phosphatase and ARHGAP1 (Fig. 

2E).  

In addition to the extracellular forces exerted by cells, the intracellular mechanics of 

cancer cells have also been shown to correlate with metastatic potential with softer cells 
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displaying a higher degree of invasiveness (192, 193). To determine if EMT could be 

responsible for this loss of cytoskeletal stiffness, we probed intracellular mechanical 

properties using multiple particle tracking microrheology. This analysis revealed that 

across all time lags particles within SNAIL cells had higher mean squared displacements 

indicative of a softer cytoplasm (Fig. 6.3A). Quantification of creep compliance 

demonstrated that SNAIL cytoplasm is deformed nearly an order of magnitude easier 

than their control counterparts (Fig. 6.3C). Moreover, increased effective diffusion 

coefficient within SNAIL cells may allow for more rapid transport of chemical signals or 

actin retrograde flow (Fig. 6.3B). Control cells had elastic moduli and shear viscosity 

mirroring other epithelial cancer cells (195), but both parameters were nearly totally 

abrogated following EMT (Fig. 6.3D-E).  

Consistent with this loss of mechanical structure, SNAIL cells also displayed 

decreased polymerized actin (Fig. 6.4F). Though SNAIL cells lost this internal actin 

structure, they did display increased filopodium-like protrusions (Fig. 6.4B). The 

formation of these protrusions has been shown to be governed largely through β-parvin 

(PARVB) which we found to be up-regulated as a result of EMT (Fig. 6.4C). This effect 

was most likely further enhanced by increased expression of several actin 

nucleating/branching proteins such as ARP3 (Fig. 6.4C). Based on transcriptional 

analysis, the loss of actin structure was largely mediated via decreased expression of actin 

crosslinking proteins, not increases in actin severing proteins (Fig. 6.4C), supported by 

the stabilization of actin filaments only being able to partially recover the mechanical 
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stability of control cells (Fig. 6.5B-C). This may open the possibility for new therapeutic 

approaches to reduce metastatic potential of cancer cells.  

Although cytoplasmic deformation is required to navigate the extracellular 

environment, the nuclei is the largest organelle and it’s deformation is often the rate 

limiting step in migration (186). The nuclear relaxation following EMT (Fig. 6.6), may 

be important in allowing cells to navigate through small pores during migration, and in 

uncovering cryptic binding sites during transcription for increased gene expression (196). 

This nuclear softening has also been observed in stem cells (197) and supports the 

proposition that EMT creates stem cell-like cells (198). 

Despite the body of evidence supporting the importance of  EMT for cancer cells to 

migrate to distant sites, a continuing critique of this theory is the lack of mesenchymal 

signatures within secondary tumors (199). Recent studies have demonstrated that tumors 

in vivo are under mechanical solid stress and that this stress accumulates as tumors grow 

(52).  Based on this, it reasons that softer cells would show impaired growth as this stress 

accumulates. Our results demonstrate that below a critical solid stress threshold, the 

mesenchymal SNAIL cells showed increased spheroid growth akin to the increased 2D 

BrdU incorporation (Fig. 6.1G-H). However, increasing the solid stress against the 

growing spheroids by doubling the agarose concentration effectively blocked SNAIL 

spheroid growth, whereas the area of control spheroids was unaffected (Fig. 6.7A). 

Calculation of the accumulated solid stress revealed SNAIL cells grew until reaching a 

maximum stress of approximately 35 mmHg regardless of gel composition, whereas 
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control cells were able to withstand at least 80 mmHg of stress (Fig. 6.7C). One potential 

mechanism for this observation is that the reduced actin cytoskeletal structure from 

changes in crosslinking proteins does not allow the SNAIL-transformed cells to generate 

enough force to push the gel out allowing for further cell division. Alternatively, this 

could be a byproduct of decreased LMNA expression which has been shown to not only 

expedite 3D migration, but also make cells more prone to stress-induced apoptosis (189).  

This inability to survive in high-stress environments could potentially explain the 

inability to detect mesenchymal signatures in metastatic tumors, as stress acts as a 

selective pressure mitigating the presence of mesenchymal cells in favor of epithelial 

cells that can support the growing tumor. 

In conclusion, this report demonstrates that the biophysical changes including 

increased traction forces and loss of cytoskeletal and nuclear structure associated with 

cancer metastasis are directly induced by epithelial to mesenchymal transition in absence 

of any extraneous environmental cues. Microarray gene expression analysis revealed 

concerted topographical alterations in gene expression networks associated with these 

phenomena. Finally, we show that these pro-metastatic biophysical changes may come at 

the cost of survival as secondary tumors progress in size, with accumulating solid stress 

only allowing for the survival of cells that return to a more mechanically stable epithelial 

phenotype. Further understanding of this complex interplay between changes in gene 

expression and cell biophysical properties with implications for cancer metastasis may 

help develop novel targeted therapeutics.    
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6.5 Materials and Methods 

6.5.1 Cell Culture and Phenotype Verification 

Human breast carcinoma MCF7 stably transformed with either SNAIL-6SA (mutated 

for internuclear stability (175)) or empty vector control, both encoding for Neomycin 

resistance, were cultured in RPMI 1640 (Mediatech, Herndon, VA) containing 10% FBS 

(Atlanta Biologicals, Norcross, GA) and 400 μg/mL G418 (Sigma Aldrich, Carlsbad, 

CA). Cell aspect ratio was determined by manually tracing cells in ImageJ (NIH). Gene 

expression analysis using RT-PCR was performed using primers as previously described 

(68, 200). All experiments were performed on glass coated with 10μg/mL Collagen I or 

compliant substrates coated with Collagen I synthesized as previously described (84) 

with either 10% acrylamide and 0.3% bisacrylamide (hard, 34.88 kPa) or either 10% 

acrylamide and 0.03% bisacrylamide (soft, 2.83 kPa).  

6.5.2 Cell Function Analysis 

Proliferation was quantified using BrdU staining as previously described (99) by 

labeling with 50 µM BrdU (Sigma) for 90 minutes before staining. For motility 

quantification, cells were labeled with NucBlue (Invitrogen, Carlsbad, CA) per 

manufacturer’s instructions and then imaged every 5 minutes on a Nikon Eclipse Ti 

inverted epifluorescent microscope equipped with an environmental chamber (In Vivo 

Scientific, St. Louis, MO) for 6-12 hours. Nuclei were tracked in MATLAB and traces 

used to determine mean velocity, defined as the average velocity over each 30 minute 

time interval, directional velocity, defined as the net change in position over total 

tracking time, and straightness, defined as the total path length over the net displacement. 
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Spheroids were formed by creating single-cell suspensions in either 0.5% or 1.0% low-

gelling agarose and allowing them to grow for 4 weeks before labeling live cells with 

green fluorescent Calcein AM to quantify spheroid area. Only spheroids isolated from 

other spheroids by at least 2 radii were imaged. Solid stress was calculated as described 

(201) using a linear poroelastic model assuming no initial stress at time 0 and that stress 

goes to zero at an infinite distance. Spheroids with elongated morphologies were 

discarded as symmetric assumptions were no longer valid; the remaining population had 

equivalent average area (t-test p=0.52) and variance (F-test for equality of variances, 

p=0.41).  

6.5.3 Microarray Analysis 

After achieving about 80% of confluency, cells from triplicate cultures of both cell 

types were harvested by trypsinization; total RNA was isolated, processed to fragmented 

biotin-labelled cDNA, hybridized on Human Genome U133 Plus 2.0 Array (Affymetrix, 

Santa Clara, CA) and scanned as described in detail in the Gene Expression Omnibus 

repository (GEO, http://www.ncbi.nlm.nih.gov/geo/) dataset under the accession number 

GSE58252. Data were processed with the Expression Console software Build 1.2.1.20 

(Affymetrix) using the Affymetrix default analysis setting for PLIER algorithm. 

Probesets that displayed absent detection calls (MAS5.0 algorithm) across all chips were 

removed and PLIER16 values were used to identify genes differentially expressed 

between SNAIL and empty vector control cells using the Significance Analysis of 

Microarrays (SAM) version 4.01 (202). Genes were reported as differentially expressed 

between SNAIL and control classes at FDR=2.12% and absolute fold change (FC) ≥1.5. 
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Probesets corresponding to differentially expressed genes were employed for enrichment 

analysis using the MetaCore suite 6.18 build 65505 (Thomson Reuters). Briefly, 

significantly perturbed pathways and process networks were identified by mapping 

differentially expressed genes onto manually curated GeneGO canonical pathway maps 

and process networks (203). Additionally, functional enrichment for up-regulated and 

down-regulated genes was determined using David 6.7 functional annotation tool 

(Laboratory of Immunopathogenesis and Bioinformatic, SAIC-Frederick, Inc.) (204, 

205). In order to test for the statistical significance of enrichment, p-values were 

calculated based on hypergeometric distribution and corrected for multiplicity using the 

false discovery rate (FDR) procedure. Complementary to the differential expression and 

pathway enrichment analysis, the Gene Set Enrichment Analysis (GSEA) (206) was 

performed on PLIER16 processed data without any pre-filtering of probe sets for SNAIL 

and control cells, using categorical phenotype labels and signal-to-noise metrics to 

identify gene sets significantly enriched in specific phenotypes. Gene set permutation 

type and GO Biological Processes (BP) gene sets (Molecular Signatures Database v4.0; 

825 gene sets) were the parameters used in this GSEA. Gene sets were considered to be 

significantly enriched in a given phenotype, if their q-values were ≤ FDR threshold, for 

which the expected number of false positive gene sets was ≤ 1. The analysis of gene 

expression data presented in this report is focused on solely on cell mechanics and details 

relevant to other functional contexts will be reported elsewhere.  

6.5.4 Traction Force Cytometry 
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Substrates (34.88 kPa) were synthesized as above except embedded with 200nm red 

fluorescent particles (Invitrogen). Cells were first labeled green fluorescent with Calcein 

AM (Anaspec) and NucBlue (Invitrogen) per manufacturer’s instructions. An initial 

image of the cells and the stressed gel were captured, and then the cells were lysed with 

0.5% SDS before capturing a final unstressed gel image. An average of 100 cells per 

experiment were captured, values represent average of 3-5 experiments. Cell-induced 

displacements from particle images, a freely available MATLAB particle tracking 

algorithm (MatPIV, http://www.math.uio.no/∼jks/matpiv/) was used with minor 

modifications and used to determine traction forces as previously described (70).  

6.5.5 Intracellular Mechanics 

Multiple particle tracking microrheology (MPT) was used to quantify intracellular 

rheology based on the thermal motion of nanoparticles (Reviewed in (177)). Cells were 

injected as described (169) on collagen-coated 35mm dishes and then immediately passed 

to collagen-coated 35mm glass bottom dishes (MatTek). Cells were allowed to adhere 

overnight and imaged the following day in the live-cell chamber described above with a 

Nikon CFI Apochromat TIRF 100X oil-immersion lens and QuantEM CCD (Princeton 

Instruments, Trenton, NJ) at 30 frames per second for 20 seconds. Particle displacements 

were tracked in MATLAB based on previous established algorithms (207) by first using a 

bandpass filter to isolate particles and the sub-pixel accuracy centroid was determined 

based on the intensity-weighted centroid. After building tracks using a Hungarian linker 

algorithm the time-dependent 2D particle mean squared displacements (MSDs) were 

calculated as <∆r2(∆t)> = <[x(t+∆t)-x(t)]2+[y(t+∆t)-y(t)]2>, which can then be used to 
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determine rheological properties including diffusion coefficient, creep compliance, as 

well as the viscous (G''(ω)) and elastic (G'(ω)) moduli (195). The ratio of viscous to 

elastic moduli is represented by the phase angle (δ, where δ = arctan (G''(ω)/ G'(ω)), 

which ranges from 0° for an elastic solid to 90° for a viscous liquid  (208). To quantify 

nuclear mechanics, we tracked Hoechst-labeled chromatin (187) using techniques as 

described above for MPT. The relaxation time was determined as when the logarithmic 

slope of the MSD was equal to 0.5, indicating a transition from a viscoelastic solid to a 

viscoelastic liquid.   

6.5.6 Cytoskeletal Staining and Image Analysis 

Cells were stained for F-actin with Rhodamine Phallodin (Invitrogen) as previously 

described (169). Images were captured at 20x magnification on an inverted Nikon 

Microscope with a CoolSNAP camera (Photometrics) and quantified in MATLAB. For 

quantification, image histograms were first adjusted to fill the entire range before 

applying a median filter and then segmenting by Otsu’s method. Actin intensity was 

defined by taking the average intensity of the segmented region (cells) minus the average 

intensity of the non-segmented region (background) of the original, unmodified image. 

Confocal images were captured on a Zeiss LSM 700 confocal microscope equipped with 

a 63x lens and rendered in ZEN 2012 software.  

6.5.7 Statistics 

All studies were performed in triplicate or more. The data are reported as mean ± 

standard error of the mean. Statistical analysis was carried out using a student’s t-test for 

comparison considering p < 0.05 to be significant (***p<0.001,**p<0.01,*p<0.05).  
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CHAPTER 7 
INTERPLAY OF ACTIN FILAMENTS AND SODIUM 

EFFLUX IS REQUIRED FOR TUMOR CELLS TO 
SUPPORT SOLID STRESS 

7.1 Summary 

In order for a solid tumor to grow, it must be able to support the compressive stress 

generated as it presses against the surrounding tissue. Though the literature suggests a 

role for the cytoskeleton in counteracting these stresses, there has been no systematic 

evaluation of which filaments are responsible or to what degree. Here we show that 

cytoskeletal filaments are not actively supporting compressive loads in a three 

dimensional spheroid model. However, modulation of tonicity could induce alterations in 

spheroid size. We find that under compression tumor cells actively efflux sodium to 

decrease their intracellular tonicity and that this is reversible by blockade of sodium 

channel NHE1. Moreover, though polymerized actin was not actively supporting the 

compressive load, it is required for sodium efflux. Compression-induced cell death was 

increased both by sodium blockade and actin depolymerization, whereas increased actin 

polymerization offered protective effects and increased sodium efflux. Taken together, 

these results demonstrate that cancer cells modulate their tonicity to survive under 

compressive solid stress. 
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7.2 Introduction 

Solid tumors grow under stress from the local tissue. This growth results in further 

accumulation of compressive stress in the tumor. To remain viable and grow, the tumor 

cells must be able to survive under these compressive stresses, which correspond with 

mechanical loads of 50-200 mmHg (51, 52). Previous work has shown that this solid 

stress prevents the growth of cancer cell spheroids (51). Moreover, as this stress 

accumulates in vivo it can lead to further adverse effects such as blood vessel 

compression hindering drug delivery (52). Despite the importance of solid stress in tumor 

growth, few studies have explored how cancer cells actually support this stress.  

Most literature suggests that the ability of cells to resist deformation largely emanates 

from the cytoskeleton (209). A series of studies have demonstrated that actin, 

microtubules, and intermediate filaments all contribute to support of external 

compressive stresses (14, 180, 210). Supporting this, in a genetically engineered model of 

epithelial-mesenchymal transition we recently found that mesenchymal cells could 

support less stress than their epithelial counterparts, which correlated with decreased 

polymerized actin and cytoplasmic stiffness (109). Here we show that compressive stress 

is not actively supported by cytoskeletal filaments, but induces NHE1-dependent sodium 

efflux from the tumor cells. While actin polymerization did not actively support solid 

stress, depolymerization of actin also mitigated the ability of cells to efflux sodium. 

Taken together, this work shows that regulation of intracellular tonicity is required for 

cells to maintain viability under compressive stress.  
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7.3 Results 

7.3.1 Supporters of solid stress 

To analyze how cancer cells support compressive solid stress we cultured tumor 

spheroids from single MCF7 breast cancer cells in inert agarose gels, resulting in the 

accumulation of solid stress (51, 201). Next, to elucidate the roles of cytoskeletal 

filaments in supporting this stress we treated the spheroids with a variety of cytoskeletal 

stabilizing and destabilizing molecules and tracked changes in spheroid cross-sectional 

area using live-cell microscopy as described in the Supporting Material. Unexpectedly, 

depolymerization of actin filaments using Cytochalasin D resulted in an increase in 

spheroid size and increasing actin polymerization with Jasplakinolide had no effect, 

suggesting actin was not primarily responsible for supporting solid stress (Fig. 1 A). 

Modulation of microtubule polymerization did not alter spheroid diameter (Fig. 1 B) and 

depolymerization of intermediate filaments with 4 mM acrylamide (211) produced a 

slight increase in spheroid area (Fig. 1 C). Since none of these treatments produced 

significant decreases in spheroid area indicative of actively supporting stress, we 

hypothesized the stress may instead be supported by osmotic pressure. Decreasing media 

tonicity caused spheroid swelling while increasing media toncitiy with a variety of 

solutes caused spheroids to shrink (Fig. 1 D). Finally, to ascertain if cells in steady state 

spheroids have higher or lower tonicity than their surrounding media we permeabilized 

cells with 0.0025% Triton-X100. Following permeabilization, spheroids increased in area 

over 25% (Fig. 1 E). Based on osmotic models of cell size this implies that cells inside 

stressed spheroids have lower tonicity than their surrounding media, such that following 
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permeabilization extracellular ions enter the cells, inducing an inward water flux (and 

consequential spheroid swelling) to equilibrate (212). 

 
Figure 7.1 Change in spheroid area after 6 hours of treatment. All values normalized to 
initial area before treatment. (A) Depolymerization of actin with Cytochalasin D (Cyt) and 
enhanced polymerization with Jasplakinolide (Jasp). (B) Microtubule depolymerization with 
Nocodazole (Noc) and stabilization with Taxol (Txl). (C) Depolymerization of intermediate 
filaments with acrylamide. (D) Altering media osmolarity with water (hypo-osmotic), and 250 
mM xylose, sucrose, NaCl, or PEG400 (hyper-osmotic). (E) Spheroid permeabilization with 
0.0025% Triton-X100 (TTX). Values given ± SEM, *P<0.05, **P<0.01. 

 

7.3.2 Sodium efflux under compressive solid stress 

To ascertain how cells were decreasing their intracellular tonicity, we utilized a 2D 

model of solid stress. Here, instead of allowing spheroids to accumulate solid stress from 

growth, we used weights to directly apply a controlled stress to a monolayer of cells 

(213). Quantification of intracellular sodium with CoroNa Green revealed cells effluxed 

sodium following mechanical compression (Fig. 2 A). While blockade of sodium channel 

NKKC1 did not produce a statistically significant difference in sodium efflux under 

stress, inhibition of the sodium-hydrogen channel NHE1 with EIPA did significantly 

block sodium efflux (p<0.05, Fig. 2 B). This is consistent with previous studies showing 

hydrostatic pressure induces sodium efflux (214). Repeating this experiment with 

modulation of actin filaments revealed that actin depolymerization blocked sodium efflux 
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to a similar degree as NHE1 blockade. Consistent with this, actin stabilization with 

Jasplakinolide produced a slight but statistically insignificant (p=0.063) increase in 

sodium efflux (Fig. 2 C). These results suggest that while polymerized actin may not be 

actively supporting stress, it is required for cells to function properly under compression. 

This is consistent with recent studies showing the importance of NHE1 for confined cell 

migration where it colocalizes with polymerized actin (215).  

 
Figure 7.2 Cancer cells efflux sodium under solid stress. (A) A 2D monolayer of MCF7 cells 
was loaded with CoroNa Green sodium tracer and compressed with 5 mmHg solid stress for two 
hours. CoroNa intensity was measured using a plate reader, values are reported relative to the 0 
time point. (B) Intracellular sodium under 5 mmHg stress in  presence of NHE1 inhibitor EIPA 
and NKCC1 inhibitor Bumetanide (Bum). (C) Intracellular sodium under 5 mmHg stress in  
presence of Jasplakinolide (Jasp) to enhance actin polymerization and Cytochalasin D (Cyt) to 
depolymerize actin. (D) In 3D tumor spheroids, blockade of sodium channels NHE1 (EIPA) and 
NKCC1 (Bum). Values given ± SEM, *P<0.05, **P<0.01. 

 

To verify that these results would translate into our 3D spheroid model, we repeated 

the spheroid assay. Blockade of NKCC1 with Bumetanide did cause modest swelling, but 

consistent with the sodium efflux findings NHE1 blockade with EIPA produced a larger 

increase in spheroid cross-sectional area (Fig. 2 D) identical to that seen with actin 

depolymerization (Fig. 1 A).  
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7.3.3 Sodium efflux, tonicity, and actin polymerization contribute to cell viability 

under stress 

To test that the observed stress-induced sodium efflux was actually protective, we 

finally analyzed viability of cells under compression. In our 2D system, we found that 

compression with 5 mmHg induced significant cell death (Fig. 3 A). While cells in 

hypertonic media did show increased death without compression, 5 mmHg of  

compression did not significantly increase this death suggesting it may have been 

protective to the surviving cells (Fig. 3 A). Increasing actin polymerization with 

Jasplakinolide was more protective under stress, significantly decreasing cell death 

relative to the compressed control. Conversely, decreasing media tonicity, blocking 

sodium efflux, or actin depolymerization all significantly increased the amount of cell 

death under compression (Fig. 3 A).  

 To verify that these mechanisms were conserved in our three dimensional model, we 

repeated the analysis of viability following addition of EIPA and Cytochalasin D. These 

results are presented as the resulting cell death as a function of radial stress, (Fig. 3 B). If 

these molecules induce compressive stress-dependent toxicity, then we should see 

increasing cell death as a function of radial stress in the spheroids. In the control 

condition, there is a weak positive correlation between radial stress and cell death, which 

is subsequently increased by NHE1 inhibition and even further by actin depolymerization 

demonstrating the both are required for tumor cells to survive under stress.  
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Figure 7.3 Sodium efflux and actin polymerization are required for viability under solid 
stress. (A) Quantification of cell death based on ratio of propidium iodide to Calcein AM after 
4 hours of compression of 2D monolayer. Hyper (250 mM Xylose); Hypo (25% H2O); 
Cytochalasin D (Cyt); Jasplakinolide (Jasp). (B) Cell death in 3D tumor spheroids versus radial 
stress. Stress-dependent toxicity is indicated by slope value. Values given ± SEM, # indicates 
significance to stressed control, *P<0.05, **P<0.01, ***P<0.001 

 

7.4 Discussion 

Cells use ion pumps to maintain a constant volume by modulating their tonicity and 

subsequently osmotic pressure (216). Here, we document that when under compressive 

stress multi-cell spheroids as well as cell monolayers will similarly efflux sodium, 

decreasing intracellular tonicity, and increasing viability under stress. This finding is 

consistent with the work of Hui et. al. who found that increased hydrostatic pressure 

induced active sodium efflux (214). Recent studies using C. elegans suggest these 

organisms may have an absolute internal pressure set point (217). This could be 

consistent with the model of cell volume and pressure regulation present by Jiang et. al., 
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which relates changes in cell volume to water flux, controlled by the differences in 

hydrostatic and osmotic pressure across the cell membrane (212). The lower steady state 

intracellular tonicity under stress implies a negative pressure change across the cell 

membrane from osmotic pressure. This negative pressure change may help offset the 

compressive stress. Taken together, this work demonstrates that to survive under 

compressive stress cells must be able to modulate their tonicity by effluxing sodium, and 

that polymerized actin is necessary for this process.  

7.5 Materials and Methods 

7.5.1 Cell Culture and Spheroid Generation 

Human breast carcinoma MCF7 (ATCC, Manassas, VA) were cultured in RPMI 1640 

(Mediatech, Herndon, VA) containing 10% FBS (Atlanta Biologicals, Norcross, GA). 

Spheroids were generated by creating a single-cell suspension in 0.75% low-gelling 

agarose (Type VIIA, Sigma-Aldrich, St. Louis, MO) and allowing them to grow for 3 

weeks (201).  

7.5.2 Chemical Perturbations 

For hypotonic media, DI water was added to 25-50% v/v, for hypertonic media 

Xylose (Spectrum), Sucrose (BDH), NaCl (Amresco) or PEG400 (TCI) were added to 

final concentration of 250 mM.  Chemical inhibitors were used at the following 

concentrations:  
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Table 7.1 Chemical inhibitors used in study 

Chemical Manufacturer Concentration Effect 

Cytochalasin D Enzo 1 μM Depolymerize actin 

Jasplakinolide  Enzo 100 nM Increase actin polymerization 

Nocodazole Sigma 20 μM Depolymerize microtubules 

Taxol Enzo 100 nM Stabilize microtubules 

Acrylamide Acros Organics 4 mM Depolymerize intermediate filaments 

Triton-X100 BioRad 0.0025% Permeabilize cells 

EIPA Enzo 50 μM Blocks sodium channel NHE1 

Bumetanide Enzo 20 μM Blocks sodium channel NKCC1 

7.5.3 3D Spheroid Compression Model 

After 3 weeks of growth to accumulate solid stress, spheroids were analyzed by live-

cell microscopy on a Nikon Eclipse Ti inverted epifluorescent microscope, maintained at 

37° C and 5% carbon dioxide throughout the experiment using an In Vivo Scientific 

environmental cell chamber and Bioscience Tools CO2 controller. After capturing initial 

images of spheroids, spheroids were treated with inhibitors described above and returned 

to the microscope for continued imaging. Spheroid areas were manually traced, the value 

given represents the spheroid area 6 hours post treatment normalized to the initial area. 

Solid stress was determined as previously described (201). In brief, the deformation in 

the gel is determined from the final spheroid size relative to the initial radius of the single 

cells they originated from (taken to be 5 μm), and this deformation can be used to 

determine stresses based on the known mechanical properties of agarose.   

7.5.4 2D Compression Model 
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Cells were grown as a monolayer and then compressed with weighted pistons as 

previously described (213). After reaching 80% of confluence, monolayers were washed 

with PBS and a 2% agarose solution and flattened using a custom well plate insert. After 

polymerization, this agarose cushion was topped with media and allowed to equilibrate in 

standard culture conditions. To apply stress, custom pistons that applied 5 mmHg of solid 

stress (piston weight divided the piston surface area) were then added and incubated for 

desired period of time. Unstressed controls were topped with coverslips of equal size to 

the pistons to account for differences in oxygen diffusion.  

7.5.5 Live-Dead Quantification 

In order to quantify cell viability, cells were labeled with 10 μg/mL propidium iodide 

and 2 µM Calcein AM (Enzo) to identify dead and live cells, respectively. Images were 

then collected on a Nikon Eclipse Ti inverted epifluorescent microscope as described 

above. Image analysis was then performed in MATLAB, taking cell death as total 

propidium iodide signal normalized to total Calcein signal. For 2D studies, cells were 

pre-treated with inhibitors for 2 hours before applying stress for 4 hours. For 3D studies, 

spheroids were incubated with inhibitors for 6 hours before performing analysis.  

7.5.6 Intracellular Sodium 

Intracellular sodium was measured using CoroNa Green (Invitrogen, Carlsbad, CA) 

per manufacturer’s instructions. Individual aliquots were solubilized to 1 mM in DMSO.  

Cell monolayers were washed twice with HBSS before incubation in 10 μM CoroNa 

green in HBSS for 45 minutes. Cells were washed two more times before returning to 
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growth media, and then treated as described in the 2D compression model. For 

quantification, wells were read on a DTX-800 Multimode Detector microwell plate 

reader (Beckman Coulter) at 485nm excitation, 535nm emission. An initial reading was 

taken before applying 5 mmHg stress (or coverslip control) and then a final reading taken 

two hours later after removing weights. Values are reported as final CoroNa signal 

normalized to initial signal after blank subtraction. 

7.5.6 Statistics 

All studies were performed in triplicate or more. The data are reported as mean ± 

standard error of the mean. Statistical analysis was carried out using a student’s t-test for 

comparison considering p < 0.05 to be significant (***p<0.001,**p<0.01,*p<0.05).  
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CHAPTER 8 
CONCLUSIONS 

8.1 Ovarian Cancer Tropism for Compliant Matrices 
Although extensive studies have focused on improving the detection and treatment of 

ovarian cancer, it remains the fifth leading cause of cancer deaths among women (60). 

Ovarian cancer is not detected until after spread from the primary site in 85% of patients 

(54). Once it has spread, or metastasized, most therapies often fail to cure even patients 

with initially chemosensitive tumors (218). As the cancer disseminates from the primary 

tumor, it almost universally metastasizes to the soft peritoneal fat pad (219), but there 

remains a scarcity of studies understanding the mechanisms underlying this metastatic 

tropism. This study offers new mechanistic insight into the process of ovarian cancer 

metastasis.  

Previous studies have offered chemical explanations for ovarian cancer’s 

predisposition to metastasize to soft tissues (58). However, our results show that it might 

also be the mechanical properties of the soft tissue influencing this tropism. This 

hypothesis is supported by other work showing growth on matrices of varying rigidities is 

indicative of tissue tropism (61). Moreover, microarray analysis between ovarian 

carcinomas and metastases to the omentum show few genetic perturbations (220). 

Though this could be explained by the more passive mechanism by which ovarian cancer 

cells enter the peritoneum, our findings suggest that ovarian cancer simply does not need 

additional genetic mutations to thrive in soft tissues; it already prefers the decreased 
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rigidity. This latent ability for ovarian cancer to thrive in the surrounding soft tissues may 

also help explain why ovarian cancer is often diagnosed late stage.  

Previous work using 3D scaffolds noted ovarian cancer cells showed decreased 

chemosensitivity in 3D compared to 2D (73), attributed to the difference in 

dimensionality. However, these scaffolds were also much more compliant than 2D tissue 

culture plastic which could imply the altered mechanosensitivity is merely due to changes 

in matrix stiffness. Notably, the decreased chemosensitivity observed moving from 2D to 

3D closely mirrored that observed in our study. This result suggests that more accurate 

models may be created using only two dimensional substrates allowing for easier 

screening while maintaining the more realistic results found with compliant 3D scaffolds. 

In order for drug screening on compliant substrates to be feasible, it would require 

synthesis of substrates directly in a 96 or 384 well microplate as opposed to the 

individual glass coverslips used in this study. While some effort has been made to 

produce these gels in microplates (97), it still required the use of glass bottom dishes that 

would be prohibitively expensive for any meaningful scale up. A cheaper alternative 

synthesized in standard tissue culture plastic dishes would be required. Tissue culture 

plastic is polystyrene that has been surface oxidized by plasma treatment. This surface 

could be reacted with the strong reducing agent hydrazine (N2H4) resulting in 

presentation of free amine groups on the surface. Once free amine groups are present, 

standard substrate synthesis protocols could be followed starting at the glutaraldehyde 

step. In the simplest case, microplates could be synthesized with a single substrate 

rigidity to test a larger number of drugs. Alternatively, microplates could be synthesized 
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with a gradient of rigidities to test how drug efficacy varies across multiple substrate 

rigidities. The gradient may be created by varying the gel composition, or by use of a 

photomask and photo-activated cross-linker. These compliant substrates could allow for 

drug screening more representative of in vivo at a cost economical enough to allow for 

large-scale drug testing.  

8.2 Mechanisms of Cancer Mechanosensitivity 
An array of studies have highlighted how breast cancer advances on stiff matrices 

through Rho/ROCK (8, 37, 92, 93), and this study as well as others (73) shows that 

ovarian cancer cells grow better on soft matrices. This disparity poses the question that 

originally motivated these studies: what is the difference? Initial analysis of microarray 

data showed differential regulation of contractile pathways, with higher latent 

contractility being linked with a preference for a stiffer matrix. Chemical perturbation of 

these pathways verified that that a “hard-tropic” or “soft-tropic” phenotype could be 

induced by activation or blockade of these contractile pathways.  

In a broader context, this work further supports the idea of matrix stiffness as an 

additional ingredient in the ‘soil’ (or microenvironment) required for growth of the seeds 

(or metastatic cancer cells), as proposed by Stephen Paget nearly a century ago (221). 

The past decade has produced monumental advances in our knowledge of what specific 

molecular factors contribute to these observed tissue affinities, or tropism, of metastatic 

cancer cells. Notably, a series of studies by Massagué and colleagues compared breast 

cancer subclones that preferentially accumulate in one of the three main breast cancer 
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metastatic sites (brain, lung, bone) to their parent lines to understand what gave these 

cells the ability to colonize specific sites (89–91). These studies revealed location-

specific adaptations like higher expression of key molecules for adhesion and 

extravasation into the secondary site as well as growth factor receptors that aid in homing 

and survival. Interestingly, in these isolated subclones we see similar higher expression of 

contractile genes in the clones that metastasized to bone compared to those that 

metastasized to lung tissue (Fig. 4.5). Based on these findings taken together, we 

postulate that after gaining the ability to invade the secondary site, adhere to the 

surrounding ECM, and respond to local growth factors metastatic cells must also adapt to 

the rigidity of the secondary site, largely through regulation of cytoskeletal tension.  

While we found that cells from different systems (e.g. MDA-MB-231 vs SKOV-3, bone 

metastatic vs lung metastatic cells, etc.) up-regulated contractility through some 

conserved pathways they also used many unique pathways to increase or decrease 

contractility.  

Future studies aimed at developing a “tropic gene expression signature” using these 

contractility pathways, along with relevant adhesive ligands and other adaptions 

necessary for metastasis may prove useful in predicting and targeting metastasis from 

primary tumor biopsies. Alternatively, since many of these pathways are regulated by 

activity a proteomics such as reverse-phase protein array approach looking at 

phosphorylation of relevant proteins may produce a more accurate metastatic signature  

(222). Moreover, additional mechanistic studies focused on understanding how these 

signals from the extracellular matrix and translated into growth signals may illuminate 
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novel therapeutic targets. This also may be accomplished using proteomic approaches to 

identify differentially regulated proteins, or by using siRNA screening of cells grown on 

soft and hard substrates to determine what pathways are important for mechanosensitive 

growth. Integrating the rigidity-dependent siRNA screen with the cell motility assay 

would enable a high-throughput automated method to analyze entire cell populations. 

Preliminary studies to demonstrate the feasibility of high-throughput motility screening 

were performed using serial dilutions of pre-clinical cancer drugs (Fig. 8.1). When 

culturing ovarian cancer cells on soft substrates, we observed the largest increases in the 

top 1% most motile cells (Fig. 3.4A), which may represent the subpopulation capable of 

metastasis. These cells may be difficult to detect using bulk molecular methods, but could 

easily be identified using single cell motility analysis.  

 

 
Figure 8.1 High-throughput motility analysis proof of concept. Cells were treated with 
serial dilution of inhibitors for focal adhesion kinase (PF228), SYK (BAY3606) and JNK 
(SP600125) in a 96 well plate and tracked as described in section 4.5.5 except images were 
collected every 15 minutes. Values represent the average of 100-300 cells from duplicate wells, 
all values normalized to solvent-treated control cells.  
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8.3 EMT and 3D Solid Stress 
Despite the body of evidence supporting the importance of  EMT for cancer cells to 

migrate to distant sites, a continuing critique of this theory is the lack of mesenchymal 

signatures within secondary tumors (199). Recent studies have demonstrated that tumors 

in vivo are under mechanical solid stress and that this stress accumulates as tumors grow 

(52). Our results demonstrate that below a critical solid stress threshold, the mesenchymal 

SNAIL cells showed increased spheroid growth akin to the increased 2D proliferation 

(Fig. 6.1G-H). However, increasing the solid stress against the growing spheroids by 

doubling the agarose concentration effectively blocked SNAIL spheroid growth, whereas 

the area of control spheroids was unaffected (Fig. 6.7A). Calculation of the accumulated 

solid stress revealed SNAIL cells grew until reaching a maximum stress of approximately 

35 mmHg regardless of gel composition, whereas control cells were able to support at 

least 80 mmHg of stress (Fig. 6.7C).  

One potential mechanism for this observation is that the reduced actin cytoskeletal 

structure from changes in crosslinking proteins does not allow the SNAIL-transformed 

cells to generate enough force to push the gel out allowing for further cell division. 

Follow-up studies tested this hypothesis by depolymerizing cytoskeletal filaments in 

spheroids under solid stress, but found that neither actin nor any other filament was 

actively supporting this compressive stress (Fig. 7.1). Instead, we found that cells actively 

modulated their tonicity under compressive stress by effluxing sodium (Fig. 7.2). 

Notably, while actin was not directly supporting solid stress actin polymerization it was 

required for proper sodium efflux, validating the role of cytoskeletal integrity in 
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supporting solid stress. This finding is consistent with the work of Hui et. al. who found 

that increased hydrostatic pressure induced active sodium efflux (214) and Stewart et. al. 

who showed osmotic pressure is critical for mitotic rounding and cell division (223). 

Additional work should be performed to determine if the osmotic regulation to solid 

stress observed here in cancer cells is also present in non-malignant cells. This could 

have implications in diverse fields such as tissue engineering when trying to re-create 

cartilage, as chondrocytes are also routinely exposed to high levels of stress. Moreover, 

this work observed a disparate toxicity response to inhibitors such as EIPA and 

Cytochalasin D under solid stress compared to normal culture conditions. Introducing this 

3D spheroid model during cancer drug screening could help recapitulate mechanical 

factors of the tumor microenvironment and lead to more accurate pre-clinical testing.  

Future studies analyzing the role of stromal cells in support of tumor solid stress 

would be required before transitioning to animal models. Not only can stromal cells 

deposit matrix which may help support stress (224), they are also naturally stiffer than 

cancer cells and undergo further stiffening when exposed to tumor secreted soluble 

factors (68, 109). A final follow-up study analyzing this phenomenon in vivo could verify 

osmotic regulation as a therapeutic target. Sodium channel blockade using EIPA, a 

derivative of the clinically used diuretic amiloride, was sufficient to induce cell death 

under solid stress in this 3D model.  Either EIPA or amiloride could be used to test the 

effects on tumor growth in vivo using a xenograft model, and with previous FDA 

approval would be easy to translate to the clinic if successful.   
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