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SUMMARY

Metabolic pathways are series of enzyme-catalyzed chemical reactions that

take place within a cell. These biochemical pathways can be quite elaborate and

highly regulated with numerous positive or negative feedback or feed-forward mech-

anisms, which produce complex dynamical behaviors. Time series data have been

more readily available in recent years as a result of the development of new mea-

surement techniques. These techniques offer novel options for inferring the intricate

regulatory structure of the metabolic pathways, analyzing the design and function of

biological modules, as well as making predictions based on this analysis. The first

objective of the proposed research is to advance mathematical methodologies for the

study of metabolic and signaling pathways where time series data are available. The

second objective is the application of these methodological advances toward a deeper

understanding of the glycolytic pathway in the dairy bacterium Lactococcus lactis.
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CHAPTER I

INTRODUCTION AND OBJECTIVES

1.1 Objective

Metabolic pathways are series of enzyme-catalyzed chemical reactions that take place

within a cell. These biochemical pathways can be quite elaborate and highly regu-

lated with numerous positive or negative feedback or feed-forward mechanisms, which

produce complex dynamical behaviors. Time series data have been more readily avail-

able in recent years as a result of the development of new measurement techniques.

These techniques offer novel options for inferring the intricate regulatory structure of

the metabolic pathways, analyzing the design and function of biological modules, as

well as making predictions based on this analysis. The first objective of the proposed

research is to advance mathematical methodologies for the study of metabolic and

signaling pathways where time series data are available. The second objective is the

application of these methodological advances toward a deeper understanding of the

glycolytic pathway in the dairy bacterium Lactococcus lactis.

1.2 Motivation and Significance of the Investigated Organ-
ism

Lactococcus lactis is a relatively simple lactic acid bacterium that has been serving

as a model organism in molecular and biochemical studies for a long time. The

rather simple carbohydrate metabolism of L. lactis, which is employed primarily for

energy generation, makes it an attractive candidate to test metabolic engineering

strategies. The genome of L. lactis has been fully sequenced, and a large number

1



of physiological, enzymatic, proteomic, transcriptomic, and microarray studies have

been performed (e.g., [5, 4, 38, 39]) leading to the availability of a large number of

genetic tools, including food-grade cloning vectors and selection markers. Of special

importance here, the organism has been serving as the primary test bed for novel

non-invasive in vivo NMR techniques that generate time-series measurements of a

variety of metabolites under many different conditions. Even though L. lactis has

been the subject of intense research, a computational framework to integrate and

interpret this information is missing.

L. lactis is of considerable practical significance in the food industry, being a cru-

cial player in dairy fermentations and in the production of different cheeses, yoghurts,

buttermilk, and other products. This organism metabolizes glucose homofermenta-

tively to lactate, thereby providing an effective way of preserving the fermented prod-

ucts. In addition, traces of secondary metabolites can contribute to the flavor, texture

and sometimes the nutritional value of the dairy products. The bacterium has also

been used for the production pickled vegetables, bread, and beer and wine. Recently

it has even been suggested for biofuel production [57]. An entirely different future

application may be in therapeutics, if the organism can be genetically manipulated

to survive low pH levels in the stomach, which would permit its potential use as a

novel vehicle for the non-invasive delivery of vaccines and therapeutic proteins [65].

While the bacterium is a facultative aerobe, it typically lives in anaerobic conditions.

Its preferred substrate is glucose, which is naturally available or unavailable in erratic

time intervals. This uncertainty mandates that the organism is able to stop and start

glucose uptake and glycolysis very quickly.

Genetic engineering of L. lactis strains cannot be achieved without a deep un-

derstanding of the metabolic pathways and the interdependent relationships among

the different processes. A better understanding of cellular control and regulation can

be achieved by developing kinetic-dynamic models that are to be based on reliable

2



time series concentrations of metabolite pools along the metabolic pathways. For this

purpose, in vivo NMR is a technique of choice. NMR can provide unique information

on intracellular metabolites in a non-invasive way. For this study, in vivo NMR data

were provided by our collaborators , Drs. Helena Santos and Ana Rute Neves of the

Instituto de Tecnologia Qumica e Biolgica (ITQB) at the New University of Lisbon

(Portugal), who pioneered this type of experimentation.

1.3 Thesis Outline

The first goal of this thesis is the creation of methods to extract functional information

from time series measurements of metabolite concentrations. The second goal is the

application of these methods toward the analysis of the glycolytic pathway in the

bacterium Lactococcus lactis. This information is to be integrated into functional

models and subsequently utilized for explanations, predictions, manipulations, and

the optimization of this pathway system.

In order to achieve the outlined goals, the results of the method development

efforts as well as the biological insights are organized into the following Chapters:

Chapter 2 describes the tasks of model design, parameter estimation, and diag-

nostics for the glycolytic pathway in L. lactis. Chapter 3 utilizes the model developed

in Chapter 2, as well as novel computational techniques, to gain new insights into

the complex regulation of the glycolytic pathway in L. lactis. These two chapters,

together, offer a very detailed investigation and characterization of the control and

pathway regulation of central carbon metabolism in the dairy bacterium L. lactis.

Although this organism has been studied for several decades, its metabolism is still

not well understood. The studies here fill significant gaps in this understanding.

Chapter 4 focuses on the complicated task of system identification, which may be

considered the bottleneck of metabolic modeling. Over the past decades, great effort

has been devoted to the sub-task of parameter estimation. This chapter addresses
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the even greater challenge of inferring both the mathematical representation and

parameterization of metabolic flux systems from time series of concentrations and is

focused on extensions of the previously developed dynamic flux estimation (DFE). A

specific issue burdening this inference method is the prevalent scenario that pathway

systems contain fewer metabolite pools than reaction steps. This mismatch leads to

an under-determined stoichiometric system of equations within the flux space at each

time point. To alleviate this problem, the system will be subjected to optimization

strategies that will ensure positivity and functional continuity of all fluxes, as well as

other criteria of functional and biological validity and efficiency. These optimizations

will lead to constraints within the admissible parameter space and provide very strong

guidance for the following steps of parameter estimation. A subsequent section within

this chapter addresses issues of incomplete data and advanced auxiliary methodologies

for DFE.

Chapter 5 addresses the important task of data preprocessing by introducing

a new constrained iterative wavelet smoother. Experimentally obtained time series

data are always corrupted by noise to some degree. Most methods of data analysis

and information retrieval require smoothing and noise reduction to be performed on

raw data. This step is a crucial prerequisite for parameter estimation, but is currently

not satisfactorily solved.

Finally, Chapter 6 contains concluding remarks and suggestions for future re-

search in this area.

4



CHAPTER II

MODEL DESIGN FOR THE GLYCOLYTIC PATHWAY

OF L. LACTIS 1

2.1 Introduction

The grand challenge of computational systems biology is the translation of biological

systems into adequate mathematical models that permit analysis, prediction, ma-

nipulation, optimization, explanation, understanding, and the discovery of biological

design and operating principles. Recent technological advancements have facilitated

the generation of time series data that characterize the dynamics of genomic, pro-

teomic, metabolic, and physiological responses. Of particular interest for biochemical

pathway modeling and proteomics is the availability of relatively time-dense profiles

of metabolites or proteins through measurement techniques such as mass spectrom-

etry, nuclear magnetic resonance (NMR), protein kinase phosphorylation, or mass

cytometry (CyTOF). These data contain valuable, but implicit, information about

the structure and dynamics of the biological system under study. The availability of

dynamic data enables the use of top-down modeling approaches. These approaches

typically consist of minimizing the discrepancy between the measured data, i.e., the

time profiles, and the assumed model, which typically consists of a system of nonlinear

ordinary differential equations (ODE) that are to be parameterized ([9]).

This chapter focuses on the task of model design and parameter estimation for

the glycolytic pathway of Lactococcus lactis. In an effort to build a kinetic-dynamic

model using time-series data, the most challenging steps are the identification of suit-

able mathematical formats for all flux representations and the estimation of their

1MUCH OF THIS MATERIAL HAS BEEN SUBMITTED FOR PUBLICATION.
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unknown kinetic parameters. Central to these tasks is the methodology of dynamic

flux estimation (DFE), which is augmented here with various other auxiliary tech-

niques. The modeling effort culminates in a number of biological results and insights,

which will be described in detail in Chapter 3.

2.2 Data

The time series data on which this study is based were collected through in vivo

nuclear magnetic resonance (NMR) spectroscopy [47] from L. lactis cells that were

initially starved and then offered a pulse of labeled glucose at time zero. These data

contain extensive information about the structure, dynamics and regulation of the or-

ganisms metabolism, which in this method is essentially unadulterated by cell disrup-

tion, purification, centrifugation or other harsh experimental methods. The technical

aspects of the non-invasive determination of the concentrations of the intracellular

pools of intermediate metabolites using in vivo nuclear magnetic resonance spec-

troscopy (13C- and 31P-NMR) experiments was thoroughly discussed in [45, 46, 47].

A brief summary of the data follows below.

The measured time series include the external concentrations of glucose and of the

end product lactate in the medium, along with several of the more abundant inter-

mediate metabolites, namely glucose 6-phosphate (G6P), fructose 1,6-bisphosphate

(FBP), phosphoenol pyruvate (PEP), 3-phosphoglycerate (3PGA). The time series

reflect three experiments performed with 20, 40, or 80 mM of glucose input. Ad-

ditional time series are available for some ubiquitous cofactors, such as NAD+ and

NADH, which are detectable with somewhat limited detection capability due to the

required NMR acquisition time [46]. Finally, the level of NTP was measured using

31P-NMR. The datasets used for modeling are summarized in Table 1.

In Experiment 1, 20 mM of [6-13C] glucose was supplied to the cell suspension,

and time series of concentrations were recorded for glucose, G6P, FBP, 3PGA, and

6



Table 1: Data Overview

Experiment Condition Technique Metabolites Measured Time
1: 20 mM glucose
labeled on C6

Anaerobic,
pH 6.5

13C-NMR glc, G6P, FBP, 3PGA,
lac

30 sec

2: 40 mM glucose
labeled on C1

Anaerobic,
pH 6.5

13C-NMR glc, FBP, 3PGA, PEP,
lac, NAD+, NADH

2.2 min

31P-NMR ATP, Pi 2.75 min
3: 80 mM glucose
labeled on C1

Anaerobic,
pH 6.5

13C-NMR glc, FBP, 3PGA, PEP,
lac, NAD+, NADH

2.2 min

31P-NMR ATP, Pi 2.75 min

lactate with a resolution of 30 seconds. In Experiments 2 and 3, cells were supplied

beforehand with labeled [5-13C] nicotinic acid, a precursor of NADH, thus ensuring

this pool to be 100% labeled [46]. To start the in vivo NMR experiment, cells were

supplied with 40 and 80 mM of [1-13C] glucose, and time series of glucose, FBP,

PEP, 3PGA, lactate, NAD+ and NADH were recorded. The time resolution in these

experiments was 2.2 minutes, which was needed to accommodate NAD+ and NADH

determination with a reasonable signal-to-noise ratio. In a separate, comparable

experiment, cellular metabolism was investigated with 31P-NMR and thus allowed

the measurement of NTP (mostly ATP), Pi and pH with a time resolution of 2.75

min. Usage of [1-13C] glucose prevents the determination of G6P in these datasets,

due to the similarity in chemical shifts of [1-13C] glucose and [1-13C] G6P. Although

the data described above exhibit experimental noise and are incomplete, with some

metabolites or time points missing in each set, they are as good as a modeler can

presently hope for.

Under the given experimental conditions, cells are not able to synthesize ATP

(nor ADP) de novo, because they are suspended in phosphate buffer and supplied

only with glucose, which is insufficient for L. lactis to grow. Once the culture is

harvested and washed prior to the NMR experiment, the total amount of ATP+ADP

remains constant. This fact enables us to infer ADP from the ATP data where these
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are available (for Experiments 2 and 3), which is beneficial for the initial parameter

estimation.

In all datasets, the concentrations of 3PGA and PEP are covariant, due to the

fact that these two metabolites can be converted into 2PGA by two enzymatic steps

(phosphoglycerate mutase and enolase). These reactions are fast and reversible with

equilibria that favor 3PGA and PEP [11, 42, 51], thus maintaining 2PGA in a con-

centration range below the in vivo 13C-NMR detection level. Since this covariance

is maintained even during high glycolytic flux, we decided to aggregate these two

pools into one dependent variable (X4). Nonetheless, we are still able to calculate

the concentration of each intermediate from the constant proportionality of 0̃.6444

(3PGA/PEP).

The data seem to indicate an apparent absence of PEP and FBP at the beginning

of the experiment. However, these metabolites are present, but just not labeled and

therefore missed by the NMR detection. The concentrations of these metabolites

were measured in a control experiment [45]. Furthermore, it seems to be a reasonable

assumption that the cells re-enter a state of starvation at the end of the experiment

and that the residual values of now labeled PEP and FBP constitute a state that is

similar to the state at the beginning of the experiment.

2.3 Model Design

Generically, a mathematical model of a metabolic system consists of a system of

ordinary differential equations with three components: (1) its stoichiometric matrix;

(2) a vector of fluxes; and (3a) the functional forms of the fluxes and (3b) their

corresponding parameter values. The stoichiometric matrix represents the essentially

time-invariant wiring diagram of the pathway and shows which fluxes enter or leave

each pool. It is often assumed to be known from biochemical experimentation, and

the results of uncounted such studies are collected in databases like KEGG [37] and
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MetaCyc [7]. Kinetic details and regulatory features are represented by parameters

that are incorporated in appropriate functional forms representing the fluxes. The

structure of the pathway is presented in Figure 1.

Figure 1: Model structure of the glycolytic pathway in L. lactis. Of particular
importance are the PTS mechanism, which uses PEP for the initial phosphorylation
of glucose, and several regulatory signals, indicated here with dashed arrows.
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2.3.1 Dynamic Flux Estimation

The numerical characterization of an appropriate metabolic pathway model consists of

the identification of mathematical formats for all process steps, and the estimation of

optimal numerical parameter values in these process formulations. The determination

of optimal representations for the processes in the model is by no means trivial, as no

guidelines are available, but it is very important, because inadequate representations,

even if they fit a target dataset, run the risk of error compensation among flux terms

and of incurring problems during extrapolations [30, 31, 68].

We use for this important identification step an extension of Dynamic Flux Esti-

mation (DFE) [31]. The main attraction of DFE is the fact that this method does not

presuppose a functional form for any of the flux representations. This feature allows

us to test in an objective manner whether particular functions, such as power-laws,

Michaelis-Menten rate laws, or Hill functions, are capable of appropriately modeling

a specific flux, or if other formulations should be considered. Importantly, careful

analyses of all fluxes in this manner may suggest the existence of regulatory signals

that had been missing from the assumed pathway structure. Such a suggestion cor-

responds to a novel hypothesis that is in principle testable with lab experiments and

may lead to biological discoveries. An example is the case of glucose uptake, which

is discussed later in section 3.2.

In addition to its diagnostic capacities, DFE allows for a much more efficient

parameter estimation strategy in terms of computation cost associated with the in-

tegration of ODEs and global optimization. The parameters are estimated one flux

at a time, thereby avoidingor at least reducingthe integration of ODEs.

DFE, as depicted in Figure 2, consists of two phases, of which the first is model-

free and makes very few assumptions. It includes data preprocessing, time course

smoothing and the estimation of slopes of the smoothed time courses. The ultimate

result of this phase consists of numerical time series profiles of all fluxes; in other

10



words, one obtains plots of the fluxes against time or against contributing metabo-

lites, but no functional formats. The second phase is dedicated to the mathematical

characterization and parameterization of each process representation. This phase is

still difficult but much simpler than the estimation of ODE systems, because it targets

explicit functions of one or a few variables and with correspondingly few parameters.

Figure 2: DFE is a model characterization strategy and consists of two phases. In
the first, model-free estimation phase, it takes time series of concentration data as
input and estimates the dynamic flux profiles, which in turn are used as input to
phase 2, which consists of a model-based estimation. In this phase, functional forms
and regulatory assumptions are incorporated and parameters are estimated for each
flux separately.

As part of the first, model-free phase, DFE requires the estimation of slopes

from the metabolic time course data. Several methods have been proposed for this

purpose (e.g.., see discussion in [63]); as a further alternative, Chapter 5 introduces

a smoothing algorithm based on the wavelet transforms that ensures conservation of
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mass [23]. Once the data are smoothed, the differentials on the left-hand sides of

the differential equations are replaced with the estimated slopes at many time points.

Consequently, each differential equation is replaced with a set of algebraic equations,

and each of these sets can be evaluated independently of all other sets. Thus, the

entire system of equations is now purely algebraic [61, 71, 74]. The algebraic equations

are solved and result in numerical time series of fluxes. This process is particularly

straightforward if the number of independent fluxes equals the number of independent

variables for which data exist. If the stoichiometric matrix is not full-rank, which is

the situation here, a direct inversion is not possible. Instead, we look for a full-rank

subset of the identifiable fluxes, which we can subsequently use as constraints for the

identification of the remaining fluxes with auxiliary methods (see Chapter 4).

The second phase of DFE, shown in the lower panel of Figure 2, calls for the

identification of functional forms of all fluxes. We start this phase by assuming a

typical functional form for each process, such as a mass action, power law, Michaelis-

Menten, or Hill function, and estimate the corresponding parameters by minimizing

the error between the observed metabolite concentrations and the concentrations re-

sulting from the assumed functional forms. The best fit, along with typical regression

diagnostics, such as a run test for residuals [25], indicates whether the assumed func-

tional form might be appropriate or is obviously wrong. No generic strategies exist

at this point for selecting candidates or proving their optimality. For the special case

of the power-law format, it is feasible to use a logarithmic transformation and test

the appropriateness with diagnostic methods of multiple linear regression. In general,

such a test is difficult.

While DFE has substantial advantages, it requires that the stoichiometric matrix

of the system has full rank, which is frequently not the case. To extend the applica-

bility of DFE beyond this case, auxiliary methods have been proposed for using addi-

tional information to make the stoichiometric matrix invertible (e.g.., [10, 36, 70, 76];
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however, these methods are seldom general and often require very specific features

in the datasets. As an alternative Chapter 4 describes a generic flux identification

procedure for underdetermined systems.

2.3.2 Generic Issues of Parameter Estimation

Once functional forms for all processes are determined through DFE and appropriate

additional assumptions and settings, the model is to be fitted per optimization of

parameter values. This optimization generically calls for minimizing a cost function,

calculated as the sum of squared differences between the experimental data points

and simulated values, summed over all time points and metabolites, and over all three

data sets simultaneously. Although straightforward in principle, this optimization is

almost always difficult [9].

In our specific case, several factors render the estimation of system parameters

particularly challenging. First, the regulatory structure and reaction mechanisms of

the model are a priori unknown, and their identification is by itself non-trivial, even

if aided by DFE. Second, the error surface is embedded within a large parameter

space of 44 dimensions. This surface is complicated, and one has to expect numerous

local minima that severely confound steepest descent, evolutionary, or randomized

optimization techniques that are typically used for parameter estimation. Third,

datasets for some of the intermediate metabolites are not available, due to experi-

mental limitations and, in particular, of the NMR-technique, which include higher

detection limits for the various metabolites than would be desirable. Also, the 13C-

and 31P-NMR experiments, by their nature, must be executed separately and there-

fore both exclude some of the dependent variables. Missing data include time series

for pyruvate for all three datasets, G6P for datasets 2 and 3, and ATP, NAD+, and

NADH for dataset 1, as well as F6P, G3P, DHAP, 1,3GBP, 2PGA, and ADP for all
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datasets. Fourth, stiffness and other numerical issues associated with the model equa-

tions can lead to substantial algorithmic difficulties while integrating the differential

equations. While these issues may not even be present in the ultimate, optimized

model, they are frequently encountered when an estimation algorithm determines

inopportune combinations of settings during its scanning of a high-dimensional pa-

rameter space [71]. Finally, even if a good fit has been determined, one cannot be

sure of its uniqueness and must assume that the system might have a certain degree

of sloppiness [33, 34, 58, 64, 53]. Many of these issues can be addressed by employing

the methodologies of Chapter 4 as an extension of DFE. In the present case, incorpo-

rating three datasets in conjunction with DFE can alleviate the identifiability issues

and help reveal regulatory information about the pathway.

2.3.3 Functional Formats of Fluxes: Biochemical Systems Theory

Biochemical systems theory (BST) is a mathematical and computational framework of

ordinary differential equations (ODEs), which was originally developed for modeling

and simulating biochemical pathways but has been widely applied to other biological

systems ever since [69, 55, 75]. BST is considered canonical, which implies that the

construction of the system of ODEs, its analysis, and its diagnosis follow relatively

strict, well-structured guidelines. The power-law representation of each reaction is

the key ingredient of BST. It constitutes a multi-variate, linear approximation in a

logarithmic space and expresses a process as a product of power-law functions of all

variables that directly affect the process [54, 75]. It has been shown that these power-

law models are highly effective representations of biochemical kinetics [55, 67]. Power-

laws offer the flexibility of non-integer kinetic orders, which enable a representation

of situations commonly found in real biological systems. Additional support for the

richness of power-laws in presenting complex nonlinear dynamic behavior comes from

work showing that essentially any set of continuous nonlinear differential equations
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can be recast equivalently as a power-law system [56].

A generic reaction vk within the BST formalism is represented as vk = αk
∏n

j=1X
hkj
j

, k = 1, 2, · · · ,m, where the rate constant αk and the kinetic orders hkj are funda-

mental characteristics. The rate constant describes the turn-over of the process, while

the kinetic orders quantify the strengths with which reactants and regulators affect

the process. These parameters need to be estimated to provide a full description of

the metabolic pathway under study.

2.3.4 Details of the Mathematical Representation of the L. lactis Model

Our default for the functional forms of fluxes in the L. lactis model is a product

of power-law functions, so that the model is mostly in the generalized mass action

(GMA) format within the framework of BST. However, we allow for deviations from

this format if they are suggested by the DFE analysis. The result is presented in Eqs.

1 and 2. In addition to the typical BST parameters, namely rate constants and kinetic

orders, the equations contain the intracellular and extracellular volumes Vin and Vout.

The extracellular volume is 50 ml in all three experiments, while the intracellular

volume is calculated from the measured biomass in each case, using a conversion value

of 2.9µL/mg of protein for the intracellular volume [49]. The differential equations

need to account for these volume differences, because the amounts of biomass, MB,

differ among the experiments. B1 and B2 in Eqs. 2h and 2i are temporary buffers.
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Ẋ1 = − v1
Vout
− vP
Vout

(1a)

Ẋ2 =
v1
Vin

+
vP
Vin
− v2
Vin

(1b)

Ẋ3 =
v2
Vin
− v3
Vin

(1c)

Ẋ4 = 2
v3
Vin
− v1
Vin
− v4
Vin

(1d)

Ẋ5 =
v4
Vin

+
v1
Vin

+
v5
Vin
− v7 − v7r

Vin
− v8 − v8r

Vin
(1e)

Ẋ6 =
v5
Vout

(1f)

Ẋ7 =
v5
Vin
− 2

v3
Vin

+
v7 − v7r
Vin

(1g)

Ẋ8 = − v5
Vin

+ 2
v3
Vin
− v7 − v7r

Vin
(1h)

Ẋ9 = 2
v3
Vin
− v2
Vin

+
v4
Vin
− v6
Vin
− vP
Vin

(1i)

Ẋ10 = −2
v3
Vin

+
v2
Vin
− v4
Vin

+
v6
Vin

+
vP
Vin

(1j)

Ḃ1 =
v7 − v7r
Vin

− v7l
Vin

(1k)

Ḃ2 =
v8 − v8r
Vin

(1l)

While power-law functions appear to be adequate for most flux terms, they are in

general not defined for variables with values of zero, which do appear in our system

toward the end of the experiments. It is therefore beneficial to introduce switches

in the equations that set flux terms equal to zero before a variable becomes zero.

The equations below 2.a-2.i contain the model that includes such switches. These

switches are implemented by multiplying these fluxes by (X1 > 10−4), so that when

glucose drops below the concentration of 10−4 mM, these fluxes become zero. Only

two switches were considered for the fluxes out of glucose, namely the PTS flux (v1)

and the permease flux (vP ).
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v1 = α1MBX
h1,1
1 (

X4

X4 +KM4

)(1 +X4)
−h1,4(1− e−

t
T )X

h1,7
7 (2a)

vP = α0MBX
h0,1
1 X

h0,9
9 (2b)

v2 = α2MBX
h2,2
2 X

h2,9
9 (2c)

v3 = α3MBX
h3,3
3 X

h3,7
7 X

h3,10
10 (2d)

v4 = α4MBX
h4,4
4 X

h4,10
10 X

h4,2
2 X

h4,3
3 (2e)

v5 = α5MBX
h5,5
5 X

h5,8
8 X

h5,3
3 (1 +X4)

−h5,4 (2f)

v6 = α6MBX
h6,9
9 v

h6,1
1 (2g)

v7 = α7MBX
h7,5
5 X

h7,8
8 , v7r = α7rMBB

h7r,2
2 X

h7r,7
7 , v7l = α7lMBB

h7l,2
2 (2h)

v8 = α8MBX
h8,9
9 , v8r = α8rMBB

h8r,1
1 (2i)

The ODE solver utilized is ode15s in MATLAB, which is used for stiff ODE

systems.

Detailed analyses during the second phase of DFE suggest that the PEP: Carbo-

hydrate Phosphotransferase System (vPTS), is a function not only of its substrates

glucose and PEP, but that it also needs to be regulated by additional effectors. A de-

tailed analysis in Chapter 3 (Section 3.2) leads to the specific conclusion that NAD+

is a potential activator, that 3PGA is an inhibitor, or that both effectors are present.

These regulatory terms are included in the model (Eq. 2a) as X
h1,7
7 and (1 +X4)

−h1,4

respectively.

2.3.4.1 Modeling the First Two Minutes of Glucose Uptake

The initial rate of glucose uptake increases with decreasing substrate, i.e. glucose,

availability in the first two minutes. This phenomenon is counterintuitive, as more

substrate seems to suggest higher uptake. Section 3.2 will discuss various reasons that

could be responsible for this observation. Nonetheless, in order to model this so-far

unexplained observation, a black box module was used. Namely, instead of ignoring
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the first time period and starting the model at time 2 min, we multiply a term of the

form (1− e−t/T ) to the modeled PTS flux. This term exponentially approaches 1 and

loses its effect after a short period of time. For instance, at 3T minutes, it is equal to

1 − e−3 ≈ 0.9502. Thus, the term is ineffective for most of the experimental period.

Different T’s were allowed and fitted for different experiments.

2.4 Results

2.4.1 General Features of the Model

Based on literature information, we established an initial model diagram, determined

fluxes with methods of DFE, and subsequently performed parameter estimation. The

fully parameterized model was diagnosed with standard methods of stability, sensi-

tivity, and robustness analysis, and subsequently used for representative simulations.

The analysis led to several slight amendments of the original diagram (Fig. 1).

First, we observed that the actually measured total carbon mass decreases over time

for all three datasets, with about 7% -10% of the mass being unaccounted (see Fig.

4A), in spite of the fact that, outside glycolysis, the organism is metabolically inactive

under the given conditions [47]. The loss is biologically not very significant, but it

is immediately inconsistent with the model structure of the initial diagram, where

glucose is the only input substrate and lactate is the only output. The most reasonable

option for remedying this inconsistency is the addition of a minor efflux out of one or

more metabolite pools. A good candidate is pyruvate, because several reactions could

use pyruvate as a substrate and thereby be responsible for the diversion of material

[29]. Because these effluxes potentially affect the NAD+/NADH balance, we included

two types of leakage from pyruvate, one with and one without the consumption of

NADH. Optimization determined the magnitudes of these very-low-capacity fluxes.

We also considered alternative locations of leakage, such as PEP and G6P, but did

not find them beneficial. Other amendments are discussed in the following sections.
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The dots in Figure 4A show the total carbon mass calculated from the measured data,

and the lines show the calculated amounts resulting from the simulated model with

leakage terms.

The model contains twelve dependent variables. Six represent the main metabo-

lites glucose, G6P, FBP, the aggregated pool of 3PGA and PEP, pyruvate, and lac-

tate, four variables represent the cofactors ATP, ADP, NAD+, and NADH, and the

remaining two represent temporary buffers [75]. Eq. 1 of the previous section presents

ordinary differential equations describing the system connectivity, while Eq. 2 shows

the functional representations. The model is more complicated than earlier models

of glycolysis in L. lactis, as it addresses the pathway dynamics under anaerobic con-

ditions. In contrast to aerobic conditions, the organism cannot easily recycle NAD+

under anaerobic conditions, and the balance between NAD+ and NADH therefore

changes dynamically. These changes must be expected to affect the dynamics of

glycolysis and are therefore considered important for the model.

2.4.2 Fully Parameterized Model and Model fits

Methods of DFE, combined with numerous parameter estimation techniques, led to

the following set of parameter values, which lead to simultaneous fits for the three

available experiments.
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P = [α1 h1,1 KM4 h1,4 h1,7 · · ·

α0 h0,1 h0,9 · · ·

α2 h2,2 h2,9 · · ·

α3 h3,3 h3,7 h3,10 · · ·

α4 h4,4 h4,10 h4,2 h4,3 · · ·

α5 h5,5 h5,8 h5,3 h5,4 · · ·

α6 h6,9 h6,1 · · ·

α7 h7,5 h7,8 · · ·

α7r h7r,2 h7r,7 · · ·

α7l h7l,2 · · ·

α8 h6,9 · · ·

α8r h8r,1];

(3)
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P = [12.5290 0.1422 − 0.2547 0.2250 0.6469 · · ·

1.1208 1.9844 0.2742 · · ·

0.2403 1.0079 0.7114 0.0603 · · ·

0.1600 0.6192 0.8661 0.3715 0.7479 · · ·

0.6522 3.0000 − 0.5013 0.4867 0.8638 · · ·

0.3432 1.2558 0.4101 · · ·

0.1228 0.1720 0.0252 · · ·

0.3293 1.3664 1.4756 · · ·

0.1504 0.3026 0.1657 · · ·

0.0061 0.0764 · · ·

1.0528 0.4075 · · ·

0.1950 0.5500];

(4)

In addition, the model uses the following initial values for the dependent variables

and settings:

Y 080 = [80; 0.1; 4; 14.8; 0.1; 0.1; 5.74; 0.1; 0.1; 8.815; 0.1; 0.1];

Y 040 = [40; 0.1; 4; 14.8; 0.1; 0.1; 5.74; 0.1; 0.1; 8.815; 0.1; 0.1];

Y 020 = [20; 0.1; 4; 14.8; 0.1; 0.1; 5.74; 0.1; 0.1; 8.815; 0.1; 0.1];

T20 = 0.7124 min T40 = 0.7450 min T80 = 1.6661 min

MB20 = 13.92 mg protein/ml

MB40 = 17.11 mg protein/ml

MB80 = 19.53 mg protein/ml
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Equation 3 shows the parameter vector. These parameter settings lead to good

fits of the data, which are displayed in Panels A-C of Fig. 3. The capacity of a single

parameter set to capture different conditions is important, because it significantly

increases the predictive power of the model. Furthermore, since this parameter set

was derived from DFE, its extrapolation reliability is increased, because the risk of

error compensation among flux terms within the same or in different equations is

greatly reduced [31].

Nonetheless, in reality, different natural systems obviously exhibit a certain degree

of variability. We allowed the common parameter set, which fits the three experiments

simultaneously, to vary slightly in order to account for this variability among the

different cell populations (Eq. 6-7). The results are shown in Panels D-F of Figure

3. These model instantiations used the following parameter sets for the 20, 40, and

80 mM experiment. A parameter-by-parameter comparison demonstrates how close

the three sets are.
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P20 = [14.3646 0.0722 − 0.0858 0.1703 0.4805 · · ·

1.0071 1.4924 0.1773 · · ·

0.2032 1.0207 1.0117 0.1416 · · ·

0.1888 0.6645 0.7712 0.6590 0.7766 · · ·

0.5633 3.0000 − 0.6826 0.4946 1.0296 · · ·

0.3627 1.1649 0.3731 · · ·

0.0335 0.7391 0.1038 · · ·

0.3761 1.9952 0.9710 · · ·

0.1119 0.5980 0.7281 · · ·

0.0282 0.1696 · · ·

1.1080 0.5652 · · ·

0.1998 0.6500]; , T20 = 0.7391 min

(5)
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P40 = [11.6912 0.1790 − 0.3313 0.3439 0.4664 · · ·

0.9740 1.7155 0.4049 · · ·

0.2059 0.9700 0.8164 0.1410 · · ·

0.1830 0.4572 0.7985 0.4100 0.9091 · · ·

0.5838 2.9162 − 0.6379 0.3987 0.8822 · · ·

0.3335 1.1774 0.3556 · · ·

0.0231 0.8343 0.1026 · · ·

0.3624 2.0246 1.2299 · · ·

0.0702 0.5273 0.5884 · · ·

0.0238 0.2526 · · ·

1.0248 0.2501 · · ·

0.2021 0.6321]; , T40 = 0.5990 min

(6)

P80 = [12.4598 0.1422 − 0.2547 0.2250 0.7444 · · ·

1.2357 1.9157 0.2879 · · ·

0.2403 1.0079 0.7090 0.0603 · · ·

0.1600 0.6110 0.8661 0.3715 0.7479 · · ·

0.6522 2.9076 − 0.5013 0.4635 0.8638 · · ·

0.3432 1.2558 0.4101 · · ·

0.2000 0.1720 0.0252 · · ·

0.3293 1.4836 1.4756 · · ·

0.1475 0.3104 0.1740 · · ·

0.0061 0.0764 · · ·

1.0528 0.4717 · · ·

0.1950 0.5500]; , T80 = 1.5985 min

(7)
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Figure 3: Simulation results for glucose, lactate, G6P, FBP and PEP+3PGA, su-
perimposed on the corresponding data, for Experiment 1 (Panel A), Experiment 2
(Panel B), and Experiment 3 (Panel C). Note the different Y-scales. Accounting for
modest variability among cell populations, the common parameter set for Panels A-C
was allowed to vary slightly among experiments. The resulting fits are depicted in
Panels D, E, and F.

25



2.4.3 Simulation Results for Secondary Metabolites

NAD+, NADH, and ATP data are available only for Experiments 2 and 3. The

simulation results for these metabolites as well as pyruvate are shown in Figures 4B

and 4C. Although the fits are not as good as those for the main metabolites, they

capture the trends and timing. Also, their concentrations are comparatively very

small. For instance, no pyruvate was detected in the experiments. Therefore, the

simulation results need to be below the detection limit of each experiment, possibly

except for the first few minutes where unlabeled PEP and 3PGA are converted into

unlabeled pyruvate that remains undetected in NMR experiments. The simulation

results show a spike in the beginning; shortly afterwards, pyruvate decreases to below

2 mM for all experiments and stays below the detection limit until it approaches zero

toward the end of the experiment.

Figure 4: (A) Mass balance in mmol of lactate equivalents vs. time, calculated by
taking into account the appropriate stoichiometry and volume conversions. The mass
is plotted for the three datasets. (B) Data of NAD+, NADH and ATP are shown as
dots. Simulation results for NAD+, NADH and ATP are superimposed. No data are
available for pyruvate; simulation results are shown in dark blue.
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2.5 Conclusions

To shed light on the surprisingly complicated glycolytic control system, a dynamic

mathematical model was devised. This model accounts for the key glycolytic metabo-

lites, as well as the dynamics of such cofactors as NAD+, NADH, ATP, and ADP. As

with many modeling studies, the most difficult step of model development was the es-

timation of parameter values. In this case, this estimation was based on experimental

time series of glycolytic intermediates from three experiments with different substrate

availability. The technical difficulties of the estimation process were directly related

to the high dimensionality of the parameter space, the enormous complexity of the

landscape of residual errors between model and data, and the often ignored fact that

we do not really know what functions are best suited to represent each process within

a biological system. To address these issues, a combination of mathematical and

computational techniques were developed, including a custom-tailored Monte Carlo

algorithm, different optimization techniques and, most importantly, methods of dy-

namic flux estimation (DFE), which enabled me to reduce the admissible parameter

space and prevent flux terms from compensating errors in their representations.

For the first time, a single model fits all available metabolic time courses reason-

ably well with the same parameter set. Because this model reflects three independent

datasets, one might expect that it has a higher extrapolation potential than earlier

models that were based on single datasets. The next chapter will discuss key aspects

of the control of the pathway, which is crucially important for survival.
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CHAPTER III

NEW INSIGHTS INTO THE COMPLEX REGULATION

OF THE GLYCOLYTIC PATHWAY IN LACTOCOCCUS

LACTIS 1

3.1 Introduction

The dairy bacterium Lactococcus lactis has to master a complicated task. It must

control its essentially linear glycolytic pathway in such a fashion that, when the

glucose substrate runs out, it retains enough phosphoenolpyruvate and fructose-1,6-

bisphosphate to be able to restart glycolysis as soon as new glucose becomes available.

Although glycolysis is arguably the best-studied metabolic pathway, its details in L.

lactis are still unclear, and it is, in particular, not understood how the bacterium

manages the stop-and-start task. The primary purpose of this chapter is a clarification

of some of the details of the governing processes. The efforts described in Chapter

2 resulted in a fully kinetic, dynamic model, which constitutes a crucial prerequisite

for the analysis in this chapter. This analysis offers a good example demonstrating

how computational modeling can add genuine value to wet lab experimentation by

rendering it possible to convert data, which provide snapshots of reality, into dynamic

storylines that explain the strategies, which organisms employ to survive.

In contrast to previous models, which captured the dynamics of single datasets

(e.g., [35, 72, 32], Chapter 2 described a single aggregate model that combines three

data sets for different input glucose concentrations. This single model enables the

1MUCH OF THIS MATERIAL HAS BEEN SUBMITTED FOR PUBLICATION.
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assessment of several intriguing observations, which to date had not been explained

convincingly and are discussed in this chapter.

For instance, if the glucose availability in the medium is increased after a period

of starvation, one would expect a corresponding increase in the peak level of the

downstream metabolite fructose-1,6-bisphosphate (FBP). However, the data clearly

show that the peak concentration is largely independent of the external glucose con-

centrations. Specifically, comparing the different series of experimental results with

increasing glucose concentrations, the FBP accumulation shows a progressively more

noticeable plateau, whose duration, but not height, varies with substrate availability

(Fig. 5). For instance, a previous model for aerobic conditions [72] was able to fit gly-

colytic data for a single glucose concentration of 20 mM, but extrapolating the model

toward different glucose inputs, such as 40 or 80 mM, predicted almost a doubling or

quadrupling of the FBP peak height, which is in clear contrast to the experimental

measurements under anaerobic conditions.

While the earlier models had addressed the behavior of the organism under aerobic

conditions [72], we study here the glycolytic pathway under its preferred anaerobic

conditions. In this situation, no oxygen is available for the NADH-oxidase (NOX)

reaction and, as a consequence, the concentrations of NAD+ and NADH are exclu-

sively affected by the glyceraldehyde phosphate dehydrogenase (GAPDH) and lactate

dehydrogenase (LDH) steps of the glycolytic pathway. This restriction renders the

NAD+ and NADH concentrations pivotal for the timely shut-down of the pathway,

as we will discuss later. Although we focus primarily on anaerobic operation, it is

beneficial to compare the time courses under the two conditions (Fig. 6), because the

comparison helps explain differences in the response strategies that L. lactis applies

under different experimental conditions.

Figure 6 depicts the time profiles for the concentrations of glucose, FBP, PEP,

3PGA, end products lactate and acetate, as well as ubiquitous cofactors NAD+ and
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Figure 5: FBP data for three glucose concentrations in the medium under anaerobic
conditions. The peak level seems to be independent of the available substrate concen-
trations. One also notes that FBP does not vanish completely and instead maintains
some residual concentration.
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Figure 6: Comparison of the measured concentrations (mmol/l) of glucose, FBP,
PEP, 3PGA, lactate, acetate, ATP, Pi, NAD+ and NADH under aerobic (blue) vs.
anaerobic (red) conditions. In both experiments, 40 mM of glucose was provided to
the cells at time zero.

NADH, inorganic phosphate (Pi), and ATP under the two conditions. The two

datasets were acquired after giving 40 mM of glucose to starving L. lactis cells at

time zero. A comparison of the time profiles under the two conditions reveals some

differences that are obvious, while others are rather subtle. For instance, NAD+ drops

sharply only under anaerobic conditions when glucose is depleted (Panel I). Under

both conditions, PEP and 3PGA are closely correlated due to a fast equilibrium be-

tween the two metabolites. Nonetheless, the two exhibit concentrations of much lower

magnitudes in the anaerobic experiment (Panels C and D). Lactate accumulates to

somewhat lower amounts under aerobic conditions, due to channeling of some pyru-

vate toward acetate (Panels E and F). FBP becomes entirely depleted under aerobic

condition, while it retains a residual concentration under anaerobic conditions (Panel

B). This difference may appear to be minor, but our analysis later in this chapter will

identify this difference as very important. Glucose is depleted faster under anaerobic
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conditions (Panel A), and we will address this issue as well.

This study uses the computational model from Chapter 2 without changes. The

model will be explored to decipher the complex coordination of regulatory signals of

the pathway under both aerobic and anaerobic conditions and explain in detail the

complex chains of events required to stop and restart glycolysis, which are distinct

under aerobic vs. anaerobic conditions.

3.2 The PEP: Carbohydrate Phosphotransferase System
(PTS)

PTS drives the uptake and consumption of glucose. The process consists of two tightly

coupled components, namely the import of glucose and its immediate conversion

into G6P. For purposes of structure identification and parameter estimation, the

dynamics of this complex step can be derived directly with a simple form of DFE.

This computation just requires estimation of the slope of the glucose consumption

profile, which is not difficult as this profile is essentially error-free.

Intriguingly, the rate of glucose import rapidly increases during the first few min-

utes. This observation is structurally incompatible with any function whose rate

monotonically increases with substrate availability, which is the case for typical

Michaelis-Menten and power-law functions. The reason is that the glucose concentra-

tion is the highest at the beginning, which would suggest the highest uptake rate in

the first minutes. Galazzo and Bailey [27] suggested that G6P could be an inhibitor

of this step in yeast. But even if this were true in L. lactis, the initial rise could not

be explained, because the concentration of G6P is initially very small.

Several options are available to address the initial brief rise in PTS. First, one

could attempt to identify the true mechanisms leading to the initial increase in glucose

uptake, which corresponds to the sigmoidal shape of the glucose concentration curve.

For instance, one could explain this observation with the fact that the experimental
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set-up causes slight delays, which could affect the uptake profile. Also, it has been

argued that the cells might recover from starvation with some variability, which could

be due to cell-to-cell variation in the speed of glucose uptake or slight differences in

glucose availability to individual cells, or could be caused by the process of mixing

of glucose throughout the medium or other extraneous factors. Indeed, it was shown

with simulations that a narrowly distributed uptake profile can directly convert the

monotonic trend in glucose consumption, as predicted by the model structure, into

a sigmoidal trend, as it is observed [72]. Second, one could try to identify a “black-

box” fitting function without being constrained by mechanistic considerations. Third,

one could use the data directly as (“off-line”) inputs instead of representing them

functionally in the model [43]. As presented in Chapter 2, We decided on a hybrid

option, where we use a black-box adjustment function for the first two minutes (see

under Section 2.3.4.1) and dynamically model glucose uptake afterwards, starting at

t = 2 min.

It is possible during the first two minutes that insufficient amounts of FBP ac-

cumulate, thereby limiting the material flux into the pool of PEP and 3PGA. As a

consequence, the initial PEP concentration might not be able to produce the high

level of v1 that we directly, and in a model-free manner, computed through numerical

differentiation of the glucose consumption profile. This short-term discrepancy can

be resolved when we account for a small auxiliary permease flux (vP ), which has been

observed in this strain of L. lactis [8], but was never used in earlier models.

There is a more significant issue with the shape of the glucose uptake profile until

glucose is depleted. The issue might not be apparent simply by looking at the glucose

concentration curves. In fact, this delicate but significant problem was first diagnosed

and resolved with DFE techniques as outlined below.

The PTS flux (PTSf) can be assessed directly from the data, without a model

or particular assumptions. Under the simple supposition that PTSf is a function in
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the strict mathematical sense, i.e., that it has a unique value for each argument, it

is easy to show that the sole dependence of PTSf on glucose and PEP is insufficient.

Namely, the three graphs in Figures 7A and B should overlap if they were functions

of only glucose or PEP. However, they clearly do not.

Figure 7: (A) PTSf vs. glucose concentration for Experiments 1 (blue), 2 (green), and
3 (red), assuming a constant dependence of PTSf on PEP. If PTSf were a true function
of glucose, the plots would overlap. However, they clearly do not, thus demonstrat-
ing that PTSf is not a function solely of glucose. (B) PTSf plotted against PEP
concentrations for Experiments 1 (blue), 2 (green) and 3 (red), assuming a constant
dependence of PTSf on glucose. PTSf decreases with increasing concentrations of
PEP. (C) NADH curves are smoothed with GS-functions and subsequently used for
the analysis of PTSf. (D) NAD+ curves indirectly smoothed by a GS function. (E)
Plot of PTSFglch1,1 vs. NAD+/NADH. (F) PTSFglch1,1 vs. 3PGA concentrations
for duplicate experiments under aerobic conditions and for the same initial concen-
tration of glucose (20 mM) are shown is blue and green. The dots show the measured
data points and the thin lines connecting them are plotted to show the time adja-
cency of these points. The thick black line is a fitted a

1+b.[3PGA]
to these points, which

exhibits a similar trend.

The first step of this assessment is the smoothing and numerical differentiation
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of the glucose time courses from the three experiments. If one assumes that the

process is saturated with respect to glucose, which is available in high concentrations,

one may plot PTSf against the concentration of inferred PEP. One should note that

in vivo NMR could not detect the concentration of PEP at the beginning of the

experiment, until PEP starts to accumulate as glucose is being depleted. Therefore,

the corresponding data for PEP are missing. The reason is that PEP is initially

unlabeled and/or below the detection limit of in vivo NMR.

Neves [45] measured phosphorylated glycolytic metabolites in L. lactis MG5267

with in vivo NMR experiments, as well as using perchloric acid extracts obtained

during the metabolism of glucose under anaerobic conditions. These measurements

complement the NMR experiments and give a more comprehensive picture of the dy-

namics of PEP under anaerobic conditions in this organism. It was observed that the

concentration of PEP in the beginning of the experiment was essentially equal to its

final concentration. Within one minute into the experiment, the PEP concentration

dropped to 1.2 mM and stayed low until glucose started to get depleted, upon which

PEP started to accumulate.

L. lactis MG1363, which we model in this paper, shows a very similar dynamics

to MG5267. The measured PEP dynamics [45] can thus be used to infer missing data

points for PEP in our experiments. Figure 7B was plotted using the inferred PEP

data. This plot, for the three experiments, shows that PTSf is not solely a function of

PEP, because the trajectories from the three experiments would have to overlap, but

they do not. Even if we attribute this discrepancy to noise in the data and possible

inference errors, PTSf depends on PEP in such a fashion that a decrease in PEP

results in a higher flux, which is not to be expected from a substrate.

Plots of PTSf after subtracting the expected effect of glucose (taken from liter-

ature; not shown here) also showed a decreasing behavior with increasing PEP. A

possible explanation is that the dependence on PEP is rather weak and that simply a
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minimal amount of PEP is required to keep the PTS flux running. Expressed within

the conceptual framework of Michaelis-Menten kinetics, PTSf appears to have a very

low Michaelis constant (Km) for PEP. If so, the dependence of PTSf on PEP is es-

sentially constant, and PTSf depends almost exclusively on glucose. However, plots

of PTSf against glucose for the three datasets (Fig. 7A) demonstrate that PTSf is

not a function only of glucose either because, again, the plots would have to overlap,

but do not. The next sections describe potential means of resolving the issue.

3.2.1 NAD+ May Regulate the PTS Flux

The results described above lead to the conclusion that PTSf depends on an additional

variable. If we assume that PTSf depends on glucose in the form of a power-law

function, it is beneficial to plot PTSflux

glucoseh1,1
against all metabolites in the system, one

at a time, and thus to determine if any of them can lead to overlapping trajectories.

If so, it would make PTSf a true mathematical function of glucose and the candidate

metabolite. In our case, this analysis was done for different representative values of

h1,1.

As the most pertinent illustration, consider NAD+ as the candidate metabolite.

We smoothed the NADH trajectories, using a so-called GS-function [44] which seems

to offer good representations for Experiments 1 and 2, for which data are available

(Fig. 7C). This rather unbiased black-box choice also naturally replaces low con-

centration values below the detection limit with non-zero values. Under anaerobic

conditions, the NAD+ dynamics is closely linked to NADH, because their sum is

essentially constant. Using this fact, which is suggested by the biology of the sys-

tem under anaerobic conditions, NAD+ is easily inferred from NADH; the results

are shown in Figure 7D. We then plotted PTSflux

glucoseh1,1
vs. NAD+

NADH
, using a kinetic order

h1,1 = 0.14 for glucose, which was the result of optimization. The results are depicted
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inFigure 7E. With an appropriate scaling factor, they exhibit close to overlapping tra-

jectories, which means that the representation of PTSf becomes a true mathematical

function of glucose and NAD+

NADH
. In fact, screening all other metabolites in the system,

we identified NAD+, or alternatively the redox state of the system NAD+

NADH
, as one of

only two feasible metabolites, the other one being 3PGA.

From a biological point of view, an effect of NAD+ might be plausible, as the level

of NAD+/NADH is directly linked to the redox state of the system. While this con-

clusion is drawn directly from the data and without a specific mathematical model,

the potential regulatory effect is a pure prediction that will require experimental vali-

dation. Nonetheless, according to the literature [19, 20], NAD+ has been observed to

activate the PTS system in E. coli by modulating the activity of the ATP-dependent

Enzyme I-Kinase (EI-K), which reversibly phosphorylates Enzyme I at its active site

histidine; thus ATP and EI-K can replace PEP. Whether the same mechanism is

active in L. lactis is not known, but the ratios of NAD+/NADH in datasets 2 and 3

start ramping down while FBP is being depleted, and the proposed NAD+ regulation

is a valid candidate for eliminating the discrepancy in PTSf between the experimen-

tal data and the model. Since our argument is purely mathematical, any variable

outside the system that is strongly correlated with NAD+ could be substituted as

well. Whatever the case may be, the dynamics of PTSf involves more than glucose

and PEP and needs to be further investigated with experimental means.

3.2.2 Possible inhibition by 3PGA

A compelling feature of DFE is its ability to predict the shape of the dynamic trend of

a potential inhibitor throughout the experimental time period. The analysis of FBP

(see below: Section 3.3.1) requires that glucose uptake follows a saturating function,

such as a Michaelis-Menten function, with very low Km (Fig. 8B). However, such a

setting is not compatible with observations regarding the glucose uptake profile (Fig.
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8A). Specifically, we can compare the glucose dynamics in the three datasets (Fig. 8A)

with the glucose dynamics in the model. Here, we use a saturated Michaelis-Menten

rate law with Km = 0.013 mM , as reported in [8], and a Vmax that was set to the

maximum flux among the three experiments and all time points, but does not actually

affect the shape of the dynamic profile (Fig. 8B). The comparison allows us to infer

the dynamic trend of the posited regulator for the three experiments (Fig. 8C). One

candidate thus identified as exhibiting the correct trend is 3PGA. While the analysis

does not provide proof that 3PGA affects glucose uptake, it is a reasonable candidate,

because the molecule is structurally very similar to PEP. In addition, 3PGA has been

observed to be a potent competitive inhibitor for the PTS reaction in E. coli and

Salmonella typhimurium strains [52].

3.2.2.1 PTS Flux and 3PGA Dynamics under Aerobic Conditions

This section investigates the hypothesis that 3PGA could be an inhibitor of PTSf

under aerobic conditions. So far, I showed that under anaerobic conditions, and after

subtracting the effect of glucose from the PTS flux as characterized with parameters

from the literature [8], the inferred effect is U-shaped over time (Figure 8C). This

shape is similar to the dynamics of 3PGA.

To demonstrate the feasibility of 3PGA as an inhibitor, I use duplicate experimen-

tal data for 20 mM glucose input under aerobic conditions. Superimposing the plot

of PTSFglch1,1 vs. 3PGA concentration and the plot of a typical inhibitor function,

namely constant1/(1+constant2[3PGA]) vs. 3PGA concentration, demonstrates that

the two have similar shapes, which indicates that 3PGA could well be an inhibitor

(see Figure 7F).

Support for the role of 3PGA as potential inhibitor is indirectly provided by data

in Table 2, which were excerpted from Table 1 of [46]. Enzyme activities are ex-

pressed in micromoles per minute per milligram of protein and are means ± standard
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Figure 8: A: Glucose concentrations for the three experiments vs. time. B: Assuming
a saturating Michaelis-Menten function with low Km =0.013 mM for the PTS flux
[8], the computed glucose concentrations are shown as functions of time. C: DFE
analysis of the trends in panels A and B permits the prediction of the time trend of
a postulated inhibitor.
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Table 2: Comparison of enzyme specific activities in crude extracts of MG1363 cells
grown under anaerobic and aerobic conditions.

Strain Condition Total NADH
oxidase activity
(µmol.min−1.mg
of protein−1)

Glucose consumption
rate of (µmol.min−1.mg
of protein−1)

Concentration
(mM) of 3PGA

MG1363 Anaerobic 0.07± 0.01 0.41± 0.01 8± 2
Aerobic 0.22± 0.01 0.25± 0.03 33± 3

NOX+ Anaerobic 16.5± 0.23 0.35± 0.02 10± 2
Aerobic 17.0± 0.50 0.21± 0.02 36± 3

NOX- Anaerobic 0.03± 0.00 0.37± 0.03 3± 0.4
Aerobic 0.03± 0.00 0.23± 0.04 25± 3

deviations (n ≥ 4). The table shows that there is a negative correlation between

glucose consumption rate and the concentration of 3PGA at the end of the experi-

ment, which is assumed to be similar to its concentration at time zero where PTSf

is nonzero. This observation applies to different strains of L. lactis, including wild

type MG1363 grown under anaerobic and aerobic conditions, as well as strains where

NADH oxidase is knocked out (NOX-) or over-expressed (NOX+). The assumption

of 3PGA as an inhibitor of PTSf also appears to be reasonable judging by additional

data, which were obtained in vitro in perchloric acid extracts during the metabolism

of glucose under anaerobic conditions [45]. The data were obtained from L. lactis

MG5267 and only for the initial glucose concentration of 20 mM. Similar concen-

trations for both 3PGA and PEP in the beginning and end of the experiment were

reported. Of course, correlation does not prove causation, but these data are at the

very least consistent with our hypothesis.

Since trends in both NADH and 3PGA show strong resemblance to the predicted

trend of a putative inhibitor, I allowed both as potential candidates in the model

until targeted experimental confirmation or refutation is available. To illustrate this

conclusion, the dynamics of the hypothesized inhibitor in Figure 8C is replotted
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in Figure 9, where it is overlaid with the actual trends in 3PGA (Panel A) and

NADH (Panel B). As these panels indicate, there is good consistency between the

hypothesized and postulated inhibitors.

Figure 9: Panel A depicts the postulated inhibitor concentration trends (heavy lines;
see Fig. 8C) vs. time for the three experiments, superimposed on measurements of
3PGA, scaled by 1.5 to emphasize the similarity. The dashed lines show the smoothed
trends for 3PGA using the fact that 3PGA is non-zero in the beginning. Panel B
shows the same putative trend in inhibitor but superimposed on NADH data scaled
by 5. NADH data are only available for Experiments 2 and 3. Note that PTSf is zero
once glucose is depleted, so that the inhibitor trend can only be inferred for the time
points where glucose concentrations are nonzero. For these important time periods,
both candidates seem feasible.

3.3 Quasi-steady FBP peak

An intriguing observation among the three experiments is that FBP reaches more or

less the same peak level as long as a certain minimal level of glucose is available to the

system (Fig. 5). This observation has been puzzling for a long time but can now be
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explained with a detailed analysis of the model structure and the quantitative features

of its fluxes. The mathematical and biological details of the explanation are discussed

below. In a nutshell, the shapes of the peaks are driven by saturation of the PTS flux

(v1), while the subsequent production flux of FBP (v3) operates substantially below

saturation. The proposed relationship between v1 and v3 yields strong mathematical

constraints that restrict the admissible parameter space. In particular, the analysis

reveals that glucose must have a low kinetic order in the PTS flux.

3.3.1 Analysis of FBP Dynamics

To rationalize the counterintuitive peak dynamics of FBP, let us at first consider a

slightly simplified scenario where G6P is omitted as an explicit intermediate between

glucose (X1) and FBP (X2) and where the PTS flux v1 solely depends on X1 and v2

on X2. The dependence on NADH is not of importance here. This simplified diagram

is shown in Figure 10A.

Figure 10B visualizes the dynamics of fluxes of accumulation (v1) and consumption

(v2) of FBP relative to one another for the representative case of Experiment 3 with

80 mM of initial glucose. The horizontal top and bottom axes for the two curves are

different and color-coded with blue (glucose) and black (FBP). In the first phase of the

experiment, glucose is abundant and FBP accumulates (shown with a curved green

upward arrow) while glucose is being consumed at a more or less constant rate (shown

with the horizontal green arrow indicating that glucose is consumed at the same time

as FBP accumulates). The intersection of the curves represents a quasi-steady state

for FBP with a concentration of about 50 mM. At this state, accumulation and

consumption of FBP are in balance: v1 = v2. As the experiment proceeds, FBP

remains constant, whereas glucose is being consumed from about 50 mM down to

about 10 mM (color-coded with straight orange arrow). Since the value of v1 is

essentially constant, FBP remains at its quasi-steady state during this period. As
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soon as the glucose concentration drops below about 10 mM, FBP becomes depleted

while glucose is being used up as the two red arrows indicate. Panel C shows the

same three phases on a concentration vs. time plot of glucose and FBP for further

clarification.

Figure 10: (A) Simplified diagram of glucose (X1) conversion into FBP (X2). Panel
(B) depicts the relative shapes of v1 and v2 as functions of their substrate concentra-
tions. Colored arrows show different phases of the dynamic behavior if FBP. Green:
FBP accumulation (first 5 minutes);Orange: FBP constancy at peak level (1̃5 min-
utes); Red: FBP depletion. Panel (C) shows the same phases on a concentration vs.
time plot. The color coding is consistent between B and C.

The concepts outlined above were implemented in a simple model. We start by

representing the flux terms with Michaelis-Menten rate laws. In order to obtain the

same peak for different amounts of glucose, v1 needs to be saturated and equal to

Vmax1 for glucose with a value between about 10 to 80 mM for Experiment 1 and

between about 5 to 40 mM for Experiment 2. These numerical settings permit the

quasi-steady state and extended peak for FBP if v3 has a high Vmax and a low Km.

In fact, these values must be such that for the peak FBP concentration (about 50

mM), v2 equals v1 for the appropriate glucose concentrations.

These quantitative considerations can be converted into constraints for the model
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parameters. Specifically, the equation v2(FBP = 50) = v1(5 ≤ glucose ≤ 50) man-

dates the following: First, Km1 must be such that v1 is saturated for high glucose

values (above about 5mM); this ensures a similar FBP peak for all pertinent glu-

cose concentrations in the three experiments. Second, the FBP accumulation and

consumption fluxes v1 and v2 need to intersect. This requires Km2 > Km1 and

Vmax2 > Vmax1, and the values must be such that v2 is equal to v1 when FBP is at

the observed quasi-steady state of about 50 mM. A solution to these constraints is:

Vmax1 =
Vmax2 · (FBPpeakconc.)
km2 + (FBPpeakconc.)

An additional constraint can be derived from the speed with which glucose is

depleted. This constraint pertains to Vmax1. Taken together, we obtain the following

set of conditions:

km2 > km1 (8a)

Vmax2 > Vmax1 (8b)

Vmax1 =
Vmax2 · (FBPpeakconc.)
km2 + (FBPpeakconc.)

(8c)

Vmax1 ≈ 4 (8d)

Figure 11A shows the glucose and FBP dynamics resulting from a representative

example for which the inferred sets of constraints hold. The concentration curves are

very similar to the measurement data (Fig 5).

The relationships between fluxes are not dependent on the choice of the Michaelis-

Menten framework. To reproduce similar conditions for power-law representations,

we must simply require a low kinetic order and rate constant for glucose that results

in the correct dynamics for v1. The result is a similar flux value for different glucose

concentrations between 5 and 50 mM. Furthermore, v2 needs to have a higher kinetic

order so that the two flux curves intersect. Rate constants need to be calculated
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Figure 11: (A) Computed concentrations of glucose (blue) and FBP (green) for
the 20, 40, and 80 mM of initial glucose, using the constraints on parameters in a
Michaelis-Menten formulation with representative values of Vmax1 = 4, Vmax2 = 145,
Km1 = 0.5, Km2 = 25 and an input to output volume ratio of 25. (B) Corresponding
glucose and FBP trends vs. time for the Michaelis-Menten formulation in (A). (C)
Plots of flux vs. concentration for the v1 and v2 fluxes in power-law format. v1 has
a low kinetic order. (D) Corresponding glucose and FBP trends vs. time for the
power-law formula in (C). Experiment 1 with the highest amount of glucose input
results in the most extended FBP peak.
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such that v1 = v2 for the peak FBP concentration of about 50 mM. Similar to the

Michaelis-Menten case, the kinetic order and rate constant for v1 need to be set such

that they satisfy the speed for glucose depletion. Results for a representative, feasible

parameter set with power-law functions are illustrated with the fluxes in Figure 11C.

Figure 11D shows the corresponding glucose and FBP concentrations for the three

experiments with different initial glucose concentrations.

3.3.1.1 Including G6P in the analysis

The question arises of whether the above considerations are affected by the existence

of G6P as an intermediate between glucose and FBP. The short answer is no.

Unfortunately, the [1-13C] NMR experiments did not permit measurements of G6P

for the three experiments. However, it is likely that the G6P dynamics is similar to the

FBP dynamics, although with a lower peak value or a very low saturation threshold

as it is observed for Experiment 1 with initial glucose of 20 mM.

Supposing that v3 is a function of FBP only, we find: (i) at times when FBP is

constant, v3 is constant as well; and (ii) FBP being constant requires that v2 = v3.

(i) and (ii) are possible in the following two scenarios only when G6P and FBP are

constant simultaneously, or when v2 is saturated for the amount of G6P during that

time period, and therefore has a very low Km.

Furthermore, no matter whether G6P is constant or has a low Km , v1 = v2 = v3

must hold at the FBP peak, and v1 must thus be saturated for glucose values between

about 5 and 50 mM as reasoned before. Thus, the earlier conclusions regarding the

FBP dynamics hold, whether or not G6P is explicitly presented.

3.4 Regulation of Glycolysis

The model contains four feedforward mechanisms that were identified in the literature

as potential controllers of the glycolytic pathway in L. lactis [13, 14, 17, 15, 16, 28, 45,

66]. Model simulations with and without these regulatory signals confirm and explain
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the importance of their roles. Highlights of this part of the analysis are reported in

the following sections.

3.4.1 G6P and FBP activate PK

The critical enzyme pyruvate kinase (PK) is known to be regulated by G6P and FBP

[13, 14, 17, 16, 60]. The feedforward activation of PK by G6P and FBP enables the

accumulation of 3PGA and PEP when glucose becomes depleted (see Fig. 1 of Chap-

ter 2). Although the accumulation of intermediate metabolites in linear pathways is

generally considered disadvantageous, it here is obligatory for the cell to maintain a

relatively high concentration of PEP, because it allows the organism to restart glycol-

ysis through the PTS as soon as new glucose becomes available after starvation [66].

Also, the accumulation of G6P and its activation of PK use PEP, which indirectly

leads to the production of ATP, which in turn is needed for the conversion of G6P

into FBP. The activation of PK furthermore leads to the fast production of pyruvate

and then lactate, which is advantageous for the organism, as it sours the medium

and prevents or at least impedes the growth of competing species. In an analysis of

the pathway under aerobic conditions, it was previously decided to use FBP as the

sole, representative activator, because measurements of G6P were scarce, and the ac-

tivation by FBP was sufficient [66]. Indeed, under aerobic conditions and a relatively

low glucose supply (20 mM), FBP vanishes completely, together with G6P, and is

therefore able to shut down PK effectively. In anaerobic experiments, by contrast,

FBP is never completely exhausted (Fig. 5), but retains a residual concentration,

even long after glucose is depleted. Thus, FBP cannot complete shut off pyruvate

production. Because most upper glycolytic intermediates are activators of PK [45],

we used the corresponding model variables, FBP and G6P, both as regulators. This

choice is effective but raises the secondary question of how and why the cell retains

FBP. We discuss this question in a later section.
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3.4.2 PEP inhibits LDH

Under aerobic conditions, the concentrations of NAD+ and NADH remain essentially

constant, and conversions between the two are rapid [48]. However, in the absence

of oxygen, oxidation of NADH to NAD+ by NADH oxidases (NOXs) does not oc-

cur, because the step requires oxygen. Meanwhile, NAD+ is being consumed by the

GAPDH reaction. Thus, in contrast to aerobic oxidation, the cell under anaerobic

conditions critically depends on the recycling of NADH to NAD+ through the lactate

dehydrogenase (LDH) reaction, which now plays a limiting role.

3.4.3 Ready to Respond

The limiting role of LDH, together with a reduced activation of PK, leads to a chain

of events that ultimately stops glycolysis in a ready-to-respond state where the or-

ganism is perfectly positioned to restart glycolysis immediately once glucose becomes

available. This chain of events is depicted in Figure 12. In detail, our model suggests

the following. Very shortly after glucose runs out, the G6P concentration decreases

to zero. As a consequence, G6P and FBP no longer activate PK, which causes PEP

to accumulate to a relatively high concentration. The persistently high concentration

of PEP leads to strong inhibition of LDH. As a consequence, the production of NAD+

ceases, NAD+ depletes, the redox state is altered, and the GAPDH reaction (v3) can

no longer proceed without the cofactor. The result of this process is a residual amount

of FBP, even after external glucose is exhausted, which is not observed under aerobic

conditions. One notes that the retention of sufficient residual amounts of FBP and

PEP at the end of the experiment requires well-coordinated regulation, because the

v3 and PK fluxes must be shut down at just the right time.

3.4.4 Restarting glycolysis after starvation

As explained elsewhere [72], PEP is needed to provide the phosphate moiety for the

phosphorylation of glucose. Also, since the experiment starts without ATP, as shown

48



in Experiments 2 and 3, some initial amount of ATP is needed for the PFK reaction to

go forward and thus to start glycolysis. With the initial influx through PTS, G6P and

F6P start to accumulate, which leads to the activation of PK. This in turn provides

the initial ATP needed for PFK to proceed. By retaining PEP, the cell is ready to

take up glucose once it becomes available after starvation, both under aerobic and

anaerobic conditions. However, specifically under anaerobic conditions, once glucose

is depleted, some FBP is retained (Fig. 6B).

The residual amount of FBP is the result of v3 shutting off due to lack of NAD+ re-

cycling by v5, as discussed above. This component of the shut-down strategy contrasts

the aerobic conditions where v3 is not entirely turned off and all of the remaining FBP

is converted into PEP (Fig. 6C). Retaining some FBP under anaerobic conditions

furthermore provides the cells with a higher amount of ATP through the phospho-

glycerate kinase reaction, which could be used as a secondary mechanism to restart

glycolysis. Indeed, this mechanism might explain why glucose uptake is faster under

anaerobic conditions (Fig. 6A). Additionally, the lower 3PGA concentration at the

beginning of the experiment may contribute to the faster anaerobic metabolism of

glucose.

3.4.5 ATP dynamics is indirectly affected by glucose availability

DFE allows us to infer the dynamics of flux v6, which converts ATP into ADP and Pi.

Because the first phase of DFE is model-free and assumption-free, this flux estimate is

only minimally biased, if at all. Interestingly, the results indicate that no monotonic

function that depends exclusively on ATP as its substrate, including power-law and

Michaelis-Menten functions, can provide a good fit to the observed dynamics. In turn,

this analysis strongly suggests that another variable must modulate this flux. The

only variable in the model that has the right time profile to resolve the problem is

glucose. Of course, glucose is located outside the cell, and thus unavailable to regulate

49



intracellular processes directly. However, it is likely that cells have glucose sensors that

could allow the modulation of ATP usage. A candidate for this role is the component

EIIA-P of the PTS system. Since, the EIIA-P concentration is dependent on the flux

of glucose uptake and not on the external glucose, we included v1 as the regulator for

ATP usage (v6). This data-driven hypothesis, which was obtained independently from

the model, is very interesting in its biological implication, as it suggests that some or

all of the ATP consuming processes in the cell are regulated by glucose availability.

If so, the cells appear to be able to selectively shut off some of these ATP utilizing

processes when glucose is scarce. To the best of our knowledge, this type of regulation

has not yet been reported and seems worthy of further experimental investigation.

3.4.6 Comparison of aerobic and anaerobic operation of glycolysis

The model facilitates an explanation of the differences in the dynamic profiles of the

metabolites of the pathway under aerobic vs. anaerobic conditions. The main differ-

ence affects Step 4 in the two panels of Figure 12. Under aerobic conditions, NAD+

recycling is not a limitation for the GAPDH reaction, because oxygen is available

for NADH oxidase to produce sufficient quantities of NAD+. As a consequence, the

NAD+ concentration remains more or less constant and certainly never drops much.

Therefore, v3 is not shut off under aerobic conditions, and the cell continues to con-

sume FBP until it is entirely used up. The consumption of FBP, in turn, produces

more PEP and 3PGA, thus explaining the difference in Panels C and D of Figure 6.

An additional possible explanation for the stronger accumulation of PEP and 3PGA

under aerobic conditions appears to be the timing of the pathway events, which is

explicitly visible in the speed of glucose uptake.
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Figure 12: Cascades of events resulting in a well-coordinated system shut-down
under anaerobic and aerobic conditions. The shut-down leads to different ready-to-
respond states under the two conditions. The chain of events upon glucose depletion
rationalizes why some residual FBP is left at the end of the experiment (see Fig. 5),
but only under anaerobic conditions. In both conditions, the cells retain some 3PGA
and PEP when glucose runs out. Some fluxes, which are not directly pertinent to the
shut-down process, are omitted from this figure.
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3.5 Discussion

High-throughput dynamic data contain very valuable information about the function

and regulation of cellular systems in vivo. This is especially the case for time series

of concentrations that can be generated with in vivo NMR techniques. Here, we

analyzed such data in the context of intricate survival strategies with which L. lactis

stops and restarts glycolysis when glucose substrate is about to run out or becomes

available again.

For the first time, the model explains several observations that were made over

the past several decades. In particular, it captures the unusual and puzzling FBP

accumulation dynamics across different glucose inputs and offers an explanation for

the differences in the dynamic behavior of the pathway under aerobic vs. anaerobic

conditions. These differences are related to the fact that the dynamics of NAD+ and

NADH under anaerobic conditions is only affected by the activity of the glycolytic

pathway and the lactate dehydrogenase step, which makes the control task more

difficult than for aerobic conditions, where NADH is easily oxidized. The model also

posits new, experimentally testable hypotheses regarding the regulation of critical

steps in the pathway. Importantly, it reveals in detail the finely tuned timing of

events that lead to an orderly shutdown of the pathway when glucose in the medium

becomes depleted and to a metabolic resting state in which the cells are perfectly

positioned to utilize new glucose as soon as it becomes available.

Detailed model analysis revealed several differences in metabolic time trends be-

tween operation under aerobic and anaerobic conditions. Some of these differences

are quite subtle but, surprisingly, emerged as crucial. For example, FBP is consumed

more slowly under anaerobic conditions and retained at a residual concentration for

a long time. This observation is not new, but was by and large ignored, as it was

seen as coincidence or experimental noise. We demonstrate here, arguably for the

first time, why this residual amount is necessary: It directly affects the activity of the
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PK reaction, as well as the generation of ATP and is therefore very beneficial, if not

obligatory, for restarting glycolysis after a period of starvation.

A second set of observed differences between aerobic and anaerobic operation is

a faster consumption of glucose and a faster accumulation of lactate in the latter

case. Also, NAD+ dips down at about the same time when PEP and 3PGA peak,

because NADH oxidase is not operational without oxygen, while it stays more or

less constant under aerobic conditions. This effect is an important contributor to the

control of glycolysis after starvation. In particular, the difference in NAD+ constitutes

a limitation for the GAPDH reaction, which leads to the accumulation of FBP under

anaerobic, but not under aerobic conditions, where FBP is quickly depleted when no

more glucose is available. The result is a higher concentration of PEP and PGA.

The model provides a likely explanation for the slower glucose consumption under

aerobic conditions. Namely, glucose uptake must depend on more factors than its two

substrates, glucose and PEP. Detailed analysis identified 3PGA, as well as the state

of the redox system, as viable candidates for regulating this step. At this point, the

role of these components as inhibitors is purely speculative. Their inhibiting effect

has been documented in other bacteria, but it is yet to be confirmed with laboratory

experiments in L. lactis.

Taken together, the details of the dynamics of glycolysis in L. lactis portray an

intriguing and finely tuned system of signals regulating the pathway. The structure

of this control system emerged through a suitable representation in a mathematical

model, based on time series data.
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CHAPTER IV

EXTENSIONS OF DFE

As introduced in Chapter 2, DFE was proposed as a minimally biased identification

method for metabolic pathway models [31]. Among other features, this method tends

to prevent the compensation of errors among flux terms. A hallmark feature of DFE is

that it does not presuppose a functional form for the flux representations. This feature

allows us to test in an objective manner if particular functions, such as power-laws or

Michaelis-Menten rate laws, are capable of appropriately modeling each specific flux,

or if other formulations should be considered. In particular, analyses of DFE results

may suggest the likely existence of regulatory signals that had been missing from

the assumed pathway structure. Such a suggestion corresponds to a novel hypothesis

that is testable with further experiments and may lead to biological discoveries, as

was demonstrated in Chapter 3.

The main drawback of DFE is the fact that it applies directly only to systems

that contain as many independent fluxes as metabolites; in other words, when the

stoichiometric matrix has full rank. If this property does not hold, DFE cannot be

executed directly. To circumvent this obstacle, auxiliary methods for independently

determining some of the independent fluxes in certain scenarios have been proposed,

but they are only effective in specific situations and often cumbersome (e.g., [36, 76,

10]).

This chapter consists of two main sections. The first develops extensions to the

model-free phase of DFE for underdetermined pathway systems, while the second

section suggests strategies for dealing with missing data and proposes mixed param-

eter estimation strategies when DFE is only partially applicable. This second section
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involves the second, model-based phase of DFE and use the Lactococcus model as a

representative example.

4.1 Characterization of Metabolic Fluxes from Time Series
Data

The purpose of this section is to assess DFE for underdetermined pathway systems,

describe the space of feasible solutions, and suggest systematic ways to select from

among these solutions the most likely candidates. These should consist of non-

negative fluxes that are continuous over time and satisfy certain other conditions,

which will be discussed later. Along with the exploration of this space, whose dimen-

sion equals the degrees of freedom (DOF) of the problem at hand, useful strategies

will be introduced to visualize feasible candidate sets. Initially, no information about

the functional forms and the contributing metabolites and modulators of each flux is

assumed to be available. Later on, minimal generic features of metabolic fluxes are

used as constraints to improve the results. It is noted, though, that, even with these

constraints, the solutions are not necessarily unique. Finally, solutions in the form

of point-wise numerically defined fluxes will be suggested that are appropriate, if not

optimal, according to certain criteria of biological reasonableness.

4.1.1 Mathematical Formulation of the Problem

A dynamic representation of a metabolic pathway system is formulated in Eq. 9 in

general matrix and vector notation:

dX

dt
= Ẋ = A · v (9)

Here, X denotes a vector of n metabolite concentrations and v is a vector of

m fluxes, i.e. reaction rates, while A is the stoichiometric matrix. The vectors

change with time, and the functional forms governing the fluxes are functions of their

substrates and regulators. They are in general unknown or based on assumptions

55



that might or might not hold under the given experimental conditions or in vivo.

Moreover, in certain cases, regulators and cofactors are yet to be discovered and are

therefore falsely omitted. This uncertainty is the reason to use minimal assumptions

while executing the task of inferring flux profiles from metabolic time series data.

At the same time, DFE provides us in this phase with the option of testing and

challenging prior assumptions and possibly discovering missing regulatory effects.

Assuming that data smoothing and slope estimation had been conducted at each

time point ti, we replace the left-hand side of Eq. 9 with the vector of slopes at time

ti, which we call b(ti). Eq. 9 can thus be written as a set of algebraic equations.

Specifically, suppose that b(t) = [Ẋ1(t), · · · , Ẋn(t)]T is the vector of slopes of de-

pendent variables at time t and A is the n×m stoichiometric matrix, which is time

independent. Then we obtain directly the linear algebraic system:

A · v(t) = b(t) (10)

At a steady state, or when the numerical values of the derivatives are known, Eq.

10 has a solution that can be computed for every time point by matrix inversion, if

the system has full rank. However, most metabolic systems are under-determined, so

that a unique solution does not exist.

We can thus distinguish three situations. (1) When the system has maximal

rank, the solution is obtained with the regular inverse, so that v(ti) = A−1b(ti) is

the solution of the system of equations. (2) When the system is over-determined

and has more equations than unknowns (m < n), the Moore-Penrose pseudo-inverse

A+ of matrix A minimizes the sum of squared errors, argmin
v
‖Av(ti) − b(ti)‖ =

A+b(ti). This solution is equivalent to the result of linear regression. Finally, (3),

the case of under-determined systems (m > n) is the most common situation in

metabolic modeling, because most pathway systems contain more reaction steps than

metabolites. This common occurrence makes the under-determined case particularly

important for the model-free phase of DFE and suggests that we investigate if the
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pseudo-inverse solution v(ti) = A+b(ti) constitutes a biologically feasible, or even

optimal, solution.

Pseudo-inverses have been used to solve under-determined systems for a long time.

They are characterized by the minimum L2-norm within a one- or higher-dimensional

space of admissible solutions, i.e. argmin
v
‖Av(ti)−b(ti)‖ . While the best solution, in

terms of the smallest norm, is guaranteed by the pseudo-inverse, the resulting fluxes

are not necessarily positive, and there is no guarantee that they are smooth over

time and biologically meaningful, let alone optimal. In fact, experience shows that

minimum-norm solutions often include negative values, which are not biologically

feasible as flux values. The issue of under-determined systems in DFE has been

known since the inception of the method, and characterizability analysis, based on

pseudo-inverses, was introduced as an a priori check for the applicability of DFE given

a particular pathway system [70].

4.1.2 Compact Representation: Gamma-space and Gamma-trajectory

In order to characterize the space of admissible flux sets v(t) = [v1(t), · · · , vm(t)]T , t ∈

[0, inf) in an efficient manner, we need a more compact representation. For pathways

with m fluxes and n dependent variables, where m > n, let d be the number of degrees

of freedom (DOF): d ≥ m− n. At each time point t, the space of solutions satisfying

Eq. 10 can be written as:

v(t) = A+b(t) + (I − A+A)w(t) = A+b(t) + null(A)γ(t) (11)

Here, A+ = AT (AAT )−1 is the Moore-Penrose pseudo-inverse and A+b(t) is the

minimum-norm flux set at time t, which is not necessarily non-negative and in fact

often results in one or more negative fluxes for some time points. Furthermore, if

w(ti) is a vector of m arbitrary, real-valued elements, then the complete solution

v(ti) = A+b(ti)+(I−A+A)w(ti) represents all possible solutions, and spans the null

space of the stoichiometric matrix A.
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Expressed differently, the columns of null(A) = [vec1,vec2, · · · ,vecd] span the

null space of A, and γ(t) = [γ1(t), γ2(t), · · · , γd(t)]T is the corresponding vector of

coefficients at time t. Each feasible solution of Eq. 10 at time t can thus be uniquely

represented by γ(t). This representation allows us to explore the d-dimensional

“Gamma-space instead of the feasible subset of the m-dimensional space of fluxes,

whose visual representation is much more challenging.

For each time point t, the Gamma coefficients for a feasible flux set v(t) can be cal-

culated by finding coefficients that satisfy vnull(t) = null(A)γ(t) = [v1(t), · · · , vm(t)]T−

A+b(t). This equation can be assessed by projecting vnull(t) onto the vectors vec1,

vec2, · · · , vecd, which together span the null space of A. The vector [γ1(t), γ2(t), · · · ,

γd(t)]
T constitutes a point in the d-dimensional Gamma-space, representing time

point t. Over time, these points constitute a trajectory, which I call the “Gamma-

trajectory”. Each Gamma-trajectory represents a flux set traversing all time points,

as long as this trajectory corresponds exclusively to non-negative fluxes.

The illustration example of Figure 13A shows a simple network consisting of two

dependent variables and four fluxes. Suppose that metabolite concentrations X1(t)

and X2(t) have been measured every 0.5 minutes between 0 and 15 minutes. Finding

the slopes of the concentration trends directly yields b1(t) and b2(t) (Figure 13B).

The feasible space of solutions, in terms of fluxes, is a two-dimensional plane within

a 4-dimensional space, which is difficult to visualize directly. Figure 13C shows some

representative flux solutions. Even though they are very different, and several of them

have in fact little similarity to the fluxes in the model used to generate the “data”

(black curves in Fig. 13C), all these fluxes satisfy Eq. 12 exactly. The corresponding

Gamma-trajectories are depicted in Panel D of Figure 13. The fluxes and Gamma-

trajectory with which the concentration data were originally generated are shown in

black in Panels C and D.
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Figure 13: Illustration example used to demonstrate the core concepts of the flux
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characterization procedure. The pathway has a simple structure as depicted in Panel

(A). Panel (B) showsX1(t) andX2(t) on the left and the slopes ofX1(t) andX2(t) esti-

mated from noise-free measurements on the right. Panel (C) shows 7 examples of flux

sets exactly satisfying Eq. 12; for this illustration, all start at the same point, shown

with a magenta circle, as the original flux set (v(0) = [6.3271, 3.1588, 6.5486, 3.5486]

corresponding to γ(0)T = [8, 5]). The thicker black curves are the fluxes with which

the original data were produced. The corresponding Gamma-trajectories are depicted

with the same color code in Panel (D).

The solutions in Figure 13 are among the infinitely many admissible solutions

generated by the following procedure. A subset of these solutions can be generated

in the following manner. Starting at some initial point in the Gamma-space, a phase-

plane trajectory is computed according to a linear state-space model γ̇(t) = Bγ(t).

One should note that this is certainly not the only strategy for creating flux sets,

but it is among the simplest options that lead to continuous fluxes. A Monte-Carlo

approach is utilized, in which a 2×2 matrix B is randomly generated, but where only

those B are retained that have negative real eigenvalues and result in non-negative

fluxes for all time points. These resulting trajectories yield many different dynamical

characteristics for the fluxes. Figure 13C shows some feasible solutions for fluxes v1

through v4 in multiple colors in thin lines, superimposed on the flux of the actual

model, from which the concentration data were generated. These fluxes are shifted in

Panel C, so that their initial values match, in order to facilitate easier comparisons.

Interestingly, the resulting fluxes can possess behaviors ranging from simple shoulder

curves to oscillatory responses.

4.1.3 Admissible Subset of Gamma-space: the Subspace of Non-negative
Fluxes

For each time point t, let us determine the set of γ’s for which the corresponding

vector v(t) consists of non-negative values for all fluxes and all times. According to
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Eq. 11, the feasible space given by v(t) = A+b(t) + null(A)γ > 0 , is an intersection

of m half-spaces characterized by Eq. 13:

A+(i, :)b(t) + γ1vec1,i + · · ·+ γdvecd,i ≥ 0, i = 1, 2, · · · ,m (13)

Here, A+(i, :) denotes the ith row of the m by n Moore-Penrose pseudo-inverse

matrix. The inequalities are linear and thus constitute a bounded or unbounded

polytope.

4.1.4 Formulating the Problem as an Optimization Task

A biologically relevant constraint for the selection of meaningful flux profiles is the

overall minimization of flux magnitudes, which might be interpreted as a form of

metabolic energy minimization. Since the non-negativity constraints are already in

place, this sum of fluxes at all time points equals the so-called minimum L1- or

Manhattan- norm, which is defined as min
v>0
Av=b

‖v‖1 = min
v>0
Av=b

∑m
i=1 |vi| = min

v>0
Av=b

∑m
i=1 vi.

The optimization problem leading to this result in terms of γ is shown in Eq. 14.

The constraint Av = b is already taken into account, since the representation in Eq.

11 only allows for fluxes that satisfy this constraint. Thus, the optimization simplifies

to:

min
A+b(t)+null(A)γ(t)≥0

m∑
i=1

A+b(t) + null(A)γ(t)

= min
A+b(t)+null(A)γ(t)≥0

m∑
i=1

null(A)γ(t)

(14)

Eq. 14 shows that the linear program can be translated into a simpler linear pro-

gram in terms of γ(t), which can be solved using algorithms for linear programming,

such as the simplex method. In practice, testing the corner points of the feasible poly-

hedron for identifying the corner with the minimum sum is a very well established

way of arriving at the optimal solution [21].

61



An alternative optimization approach for minimizing the sum of squared flux

norms for all time points, i.e. the L2-norm of the flux vector at each point in time,

is depicted in Equation 15. Again, it represents in some sense the minimum-energy

flux set.

min
v>0
Av=b

‖v‖22 (15)

The optimization problem in Equation 15 can be reformulated as the optimiza-

tion problem of minimizing the L2-norm of the vector γ(t). Equation 16 shows this

reformulation.

min
A+b(t)+null(A)γ(t)≥0

(A+b(t) + null(A)γ(t))T (A+b(t) + null(A)γ(t)) =

min
A+b(t)+null(A)γ(t)≥0

(A+b(t))TA+b(t) + γ(t)Tnull(A)Tnull(A)γ(t)

+ γ(t)Tnull(A)TA+b(t) + (A+b(t))Tnull(A)Tnull(A)γ(t) =

min
A+b(t)+null(A)γ(t)≥0

γ(t)T Imγ(t)

min
A+b(t)+null(A)γ(t)≥0

‖γ(t)‖2

(16)

Here, null(A)Tnull(A) = Im is the identity matrix of dimension m, because

the columns of null(A) are orthonormal base vectors of the null space. Further-

more, the pseudo-inverse solution A+b(t) is orthogonal to the null space, and thus

null(A)TA+b(t) = (A+b(t))Tnull(A) = 0. Additionally, (A+b(t))TA+b(t) does not

change with γ(t), so that its removal from the optimization problem does not change

the result. Thus, Eq. 16 is equivalent to the quadratic program of Equation 15.

Other optimization problems could be formulated, but the challenge is that it

is not really known what optimality means for the fluxes in a biological system or

organism. Optimal solutions, with respect to various criteria, could be suggested,

but whether these solutions are compatible with additional information about the

functional form or about effectors of fluxes needs to be tested for specific problems.

Section 4.1.6.4 examines the minimum-energy solution for a realistic biological system
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and indeed challenges the validity of this particular solution. This discussion shows

that optimization, which at this stage does not assume any functional form for the

fluxes, may lead to fluxes that can become questionable later. At the same time,

these optimal solutions can be utilized for approaching solutions that appear to be

biologically meaningful.

4.1.5 Generic Information Regarding Alleged Flux Characteristics Can
Restrict the Feasible Space Further

After characterizing a feasible set of fluxes, as discussed in previous sections, optimiz-

ing the parameters for these fluxes yields a reasonable default solution. Nonetheless,

accounting additionally for generally expected features of fluxes can lead to more bio-

logically relevant flux sets. Such generic features may include knowing that a certain

flux is a function of only one variable, i.e., its substrate. Another piece of generic

information could be that, when a substrate of a flux is zero, the flux has to equal zero

as well. These types of constraints will be explained in more detail with an example.

In the following sections, the task of flux identification is performed with a realis-

tic example from the literature that has the right degree of complexity for illustrating

the methods described before. The example concerns the biosynthetic pathway of

aspartate-derived amino acids in the plant Arabidopsis thaliana. In reference to the

lead author of a model of this system, we will call it the Curien model. Since the

complete model and the fluxes are known, the pathway system constitutes a good

test case. The Gamma-trajectory for the Curien model will be plotted, the criterion

of non-negativity and its implication in Gamma-space will be investigated and deter-

mined, and the result of optimization will be studied and compared to the original

fluxes. Finally, auxiliary methods of flux improvement will be suggested.
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4.1.6 Flux Identification for the Biosynthesis of Aspartate-derived Amino
Acids in the Plant Arabidopsis thaliana

Curien and coworkers developed a regulated metabolic reaction network model of the

biosynthesis of aspartate-derived amino acids for the plant Arabidopsis thaliana [18].

This pathway is responsible for the distribution of the carbon influx into the synthesis

of threonine, lysine, methionine, and isoleucine (Figure 14). The kinetic model was

constructed based on in vitro kinetic measurements, using functional forms of the

fluxes in the tradition of Michaelis and Menten. The model contains seven dependent

variables, namely, X1 = [Aspartyl-phosphate], X2 = [Aspartate semialdehyde], X3 =

[Lysine], X4 = [Homoserine], X5 = [Phosphohomoserine], X6 = [Threonine], and X7 =

[Isoleucine] [18]. We additionally consider the output variable X8= [Threonyl-tRNA].

This specific case of a metabolic reaction network model is selected for the illus-

tration of the proposed techniques of flux identification, because it is representative

and of moderate complexity, and because it is fully known, which facilitates method

development and multiple diagnoses of problems that are likely to arise.

The equations for the model are directly taken from the original paper (Eq. 17).

The functional forms of the fluxes are presented in Eq. 18.

64



Figure 14: Metabolic reaction network of the biosynthesis of aspartate- derived
amino acids in Arabidopsis thaliana. Abbreviations are: Asp: L-Aspartate, AspP: L-
Aspartate-4-phosphate, ASA: L-Aspartate- semialdehyde, Lys: L- Lysine, Hser: Ho-
moserine, PHser: O-Phospho-L-homoserine, AdoMet: S-Adenosylmethionine, Thr:
L-Threonine, Ile: L-Isoleucine, Val: L-Valine. Lysyl-tRNA and Isoleucyl-tRNA are
shown here as end products, but they are not explicitly included in the model.
Adapted from [18].
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dX1

dt
= vAK − vASADH (17a)

dX2

dt
= vASADH − vDHDPS − vHSDH (17b)

dX3

dt
= vDHDPS − v(Lys)tRNAsth (17c)

dX4

dt
= vHSDH − vHSK (17d)

dX5

dt
= vHSK − vTS1 (17e)

dX6

dt
= vTS1 − vTD − v(Thr)tRNAsth (17f)

dX7

dt
= vTD − v(Ile)tRNAsth (17g)

dX8

dt
= v(Thr)tRNAsth (17h)
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vAK1 = [AK1] · 5.56− 1.6[AspP ]

1 +
[
[Lys]/

(
550

1+[AdoMet]/3.5

)]2 (18a)

vAK2 = [AK2] · 3.15− 0.86[AspP ]

1 + ([Lys]/22)1.1
(18b)

vAKI = [AKI −HSDHI] · 0.36− 0.15[AspP ]

1 + ([Thr]/109)2
(18c)

vAKII = [AKII −HSDHII] · 1.35− 0.22[AspP ]

1 + ([Thr]/109)2
(18d)

vAK1 = vAK1 + vAK2 + vAKI + vAKII (18e)

vASADH = [ASADH] · (0.9[AspP ]− 0.23[ASA]) (18f)

vHSDHI = [AKI −HSDHI] · 0.84 ·
(

0.14 +
0.86

1 + [Thr]/400

)
(18g)

vHSDHII = [AKI −HSDHI] · 0.64 ·
(

0.25 +
0.75

1 + [Thr]/8500

)
(18h)

vHSDH = vHSDHI + vHSDHII (18i)

vDHDPS1 = [DHDPS1] · [ASA] · 1

1 + ([Lys]/10)2
(18j)

vDHDPS2 = [DHDPS2] · [ASA] · 1

1 + ([Lys]/33)2
(18k)

vDHDPS = vDHDPS1 + vDHDPS2 (18l)

v(Lys)tRNAsth = V AaRS · [Lys]

25 + [Lys]
(18m)

vHSK = [HSK] · 2.8[Hser]

14 + [Hser]
(18n)

vTS1 = [TS1] ·

(
0.42+3.5[AdoMet]2/73

1+[AdoMet]2/73

)
[PHser][

250( 1+[AdoMet]/0.5
1+[AdoMet]/1.1)
1+

[AdoMet]2

140

](
1 + [Pi]

1000

)
+ [PHser]

(18o)

v(Thr)tRNAsth = V AaRS · [Thr]

100 + [Thr]
(18p)

vTD = [TD] · 0.0124[Thr]

1 +
[
[Ile]/

(
30 + 74[V al]

610+[V al]

)]3 (18q)

v(Ile)tRNAsth = V AaRS · [Ile]

20 + [Ile]
(18r)
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Equations (17a-17h) can equivalently be written in vector form as shown in Eq.

19, where vector v and matrix A are the corresponding vector of reaction rates (i.e.,

fluxes) and the stoichiometric matrix, respectively; they are shown in Eqs. 20 and

21.

dX

dt
= Ẋ = A · v (19)

v =[vAK , vASADH , vHSDH , vDHDPS, v(Lys)tRNAsth, vHSK ,

vTS1, v(Thr)tRNAsth, vTD, v(Ile)tRNAsth]
T

(20)

N =



1 −1 0 0 0 0 0 0 0 0

0 1 −1 −1 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0

0 0 1 0 0 −1 0 0 0 0

0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 1 −1 −1 0

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 1 0 0



(21)

4.1.6.1 Gamma-trajectory of the Curien model

The fluxes and metabolite concentrations for this system are known, which allows us

to plot the true Gamma-trajectory in the Gamma-space representation vs. time:

v(t) = A+b(t) + null(A)γ(t) (22)
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Here,

null(A) = [vec1,vec2] =0.5374 0.5374 0.1162 0.4212 0.4212 0.1162 0.1162 0 0.1162 0.1162

0.0534 0.0534 0.3914 −0.3380 −0.3380 0.3914 0.3914 0 0.3914 0.3914


T

spans the null space of A. This solution is easily found, as null(A) is a simple MAT-

LAB command that results in these two orthonormal vectors. γ(t) = [γ1(t), γ2(t)]
T is

the vector of coefficients. With this information, the two-dimensional Gamma-space

can be explored instead of the feasible subset of the 10-dimensional space of fluxes.

For each time point t, the gamma coefficients can be calculated by projecting

vnull(t) = v(t)− A+b(t) onto the vectors vec1 and vec2. The result is equivalent to

the dot product of null(A) and v(t), since A+b(t) is orthogonal to the null space and

the dot product would result in zero.

Figure 15 shows the trajectory starting at time zero and ending at steady state

shown with a red dot.

4.1.6.2 Feasible solutions

Similar to the introductory example, this model permits an infinite number of solu-

tions, which may be quite different. These feasible solutions are generated by starting

at some initial point in the Gamma-space and computing a phase-plane trajectory

according to the linear state-space model of γ̇(t) = Bγ(t). A Monte-Carlo approach

is utilized, in which a stable 2 × 2 matrix B is randomly generated and where only

those matrices are retained that result in non-negative fluxes for all time points, as

described before. The resulting trajectories exhibit a variety of different dynamical

characteristics for the fluxes. Panels 1 through 9 of Figure 16 show in multiple colors

a selection of feasible solutions for fluxes v1 through v10, with the exception of the

output flow v8. Flux v8 is not shown since it belongs to the only full rank subset of

the system and is fully determined by differentiating X8. The thin lines representing
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Figure 15: Gamma-trajectory for the Curien model. The spacing of arrows show the
progression of time. The steady state is shown in red.
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these solutions are superimposed on the actual flux (black) that is known from the

model. It is evident that some of the inferred fluxes are similar to the actual fluxes,

but that many are not even qualitatively of the same shape. In order to facilitate

easier comparisons, the fluxes shown are shifted so that their initial value matches.

Interestingly, the inferred fluxes show different behaviors ranging from monotonic to

various oscillatory shapes.

Figure 16: Sets of feasible solutions for each flux v1 to v7 and v9 to v10 is shown in
each panel. The actual flux from the model is superimposed as a thick black line for
comparison.
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One should note that these feasible solutions are representative examples if we

assume a trajectory from a linear state-space solution and by no means represent all

the possible trends.

An interesting observation is that one may add an equal amount to each flux in

Set 1 = {v1, v2, v4, v5} and/or Set 2 = {v1, v2, v3, v6, v7, v9, v10} without a change in

the metabolite concentration profiles. The reason is that these shifts cancel out in the

original differential equations and Ẋ(t) therefore stays the same. Figure 17 indicates

that the shape of the Gamma-trajectory in Figure 15 is shifted along the red line if one

adds different positive constant amounts to Set 1 and along the cyan line if one adds

different positive constant amounts to Set 2. One could also pick negative constant

values as long as the fluxes stay positive. This way, the whole Gamma-space can be

spanned by feasible solutions satisfying Eq. 19. This is an equivalent, and perhaps

more comprehensible, explanation of the two degrees of freedom for this pathway. As

an alternative to constant shifts, one could add the same function of time to all fluxes

in the sets.

4.1.6.3 Admissible subset of the Gamma-space: the subspace of non-negative
fluxes for the Curien model

For each time point t, we determine the set of s for which the corresponding v(t) con-

sists entirely of non-negative fluxes. From Eq. 13, the feasible space is an intersection

of 10 half spaces characterized by Eq. 23.

A+(i, :)b(t) + γ1vec1,i + γ2vec2,i ≥ 0, i = 1, 2, · · · , 10 (23)

Here, A+(i, :) denotes the ith row of the 10 × 8 Moore-Penrose pseudo-inverse

matrix.

In this example, only 2 out of the total of 10 inequalities happen to be active

inequalities, which results in a feasible subspace in the shape of an open triangle.

One should note, however, that b(t) changes with time, so that there is a new open

72



Figure 17: Adding a constant amount to the fluxes in Set 1 for all time points shifts
the Gamma-trajectory along the dark red line without any change in the concentration
profiles for all metabolites. Similarly, adding a constant amount to the fluxes in Set 2
for all time points shift the Gamma-trajectory along the cyan line without any change
in the concentration profiles for all metabolites.
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triangle for each time point. Expressed differently, the feasible region resulting in

non-negative flux sets varies with each time point. Figure 18 exhibits 7 of these

open triangles in different shades of red. There is one such triangle for each time

point; most of these triangles are not shown for the following time points to avoid

over-population of the plot.

The corners of these open triangles are shown as black dots, which lie on a curve.

The blue curve shows the actual Gamma-trajectory of Figure 15. One interesting

phenomenon is that, for the initial time points, the two curves (true and inferred) are

overlapping. For later time points the blue curves lie inside the corresponding open

triangle of non-negative solutions.

Any continuous trajectory whose points fall inside these non-negative open trian-

gles for all time points result is a feasible flux profile satisfying Eq. 19.

4.1.6.4 The minimum-energy flux set

Searching the solutions for the set of flux profiles that minimize the sum of squared

flux norms for all time points results in the minimum-energy flux. This procedure

is equivalent to solving the quadratic programming of Equation 16, and results in

the same flux profile as solving the linear programming of Equation 14. For the case

of Curien model, both of these methods yield the same set of fluxes as the corner

solution introduced in the previous section. This solution is also equivalent to the

result of a nonnegative least-squares optimization problem performed in MATLAB.

The minimum energy flux profiles set are plotted vs. time (depicted in red) to-

gether with the actual fluxes of the Curien model (blue) in Figure 19. It is clear that

the two solutions are different, although they match the metabolite data perfectly.

Next we will introduce strategies to alleviate this discrepancy.
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Figure 18: The Gamma-trajectory of the Curien model is depicted in blue color. The
black arrowheads shown halfway through the blue curve are equally spaced in time.
The open red triangles show the subset of the Gamma-space where the corresponding
flux set is non-negative at each point in time. Only the first 7 triangles are shown
for illustration purposes. The black doted curve shows the corners of these open
triangles for different time points. We will later see that, for the Curien model
example, this curve is the same as the minimum-energy curve as described in Section
4.1.6.4. Interestingly the blue and black curves are overlapping in the beginning but
then diverge.
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Figure 19: Fluxes v1 to v10 with the exception of v8 are plotted vs. time. Curves
in red are the min-energy fluxes, while the blue curves show the actual fluxes of the
Curien model. Flux v8 is not shown because it belongs to the full-rank subset of the
system and can be recovered exactly.
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4.1.6.5 Generally Expected Features Regarding Fluxes Can Restrict the Feasible
Space Further

In this section, general expectations regarding metabolic fluxes are examined to help

further constrain the feasible flux profiles.

Some fluxes are functions of one variable only- Let us start from the min-

energy solution and incorporate the additional piece of information that each of the

fluxes v5, v6, v7, and v10 is known to be a function of its substrate only. Using DFE as a

diagnostic tool, the min-energy fluxes vs. their substrate concentrations are depicted

in Figure 20. One notes that the plots of v6 vs. X4 and v7 vs. X5 show a behavior

that is not allowable, namely a folding-over. For example, if the concentration of X4

is 1.2 µM , flux v6 may take two values, and therefore cannot be a function in the

mathematical sense. Assuming that we know that no other variables affect this flux,

this folding-over phenomenon is not acceptable.

Figure 20: One-substrate fluxes of the system are plotted against their substrate
concentrations. The fluxes v6 and v7 exhibit a folding-over phenomenon.
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In an effort to ameliorate this problem, one may remove or cut the folded-over

section. Specifically, for the time points corresponding to those folded-over values,

let v6 take values according to the top branch. Using this technique, v6(t) becomes

uniquely determined and can be considered a known flux (see Section 4.1.6.4 for

details). Subsequently, a new min-energy response can be computed with exactly the

same methods as before.

For illustration purposes, Figure 21 shows all actual fluxes vs. their substrates

and effectors in blue, super-imposed on the min-energy fluxes vs. their substrates and

effectors in red. Fluxes v2, v3, v4, and v9 have two substrates/regulators, and v1 has

three. Figure 22 depicts the same plots after removing the folding-over phenomenon.

Interestingly, all fluxes in Set 2 = {v1, v2, v3, v6, v7, v9, v10}, as introduced in Section

4.1.6.2, are now fixed and almost equivalent to the actual fluxes. This means that the

number of degrees of freedom has decreased to 1 after incorporating the information

that one of the fluxes is a function of one variable only. The discrepancy between

fluxes in Set 1 = {v1, v2, v4, v5} remains unsolved, and there is no further folding-over

case among the one-variable fluxes.

In order to recover the fluxes in Set 1, additional information is needed. As

an example if it is known that v5 assumes a Michaelis-Menten functional and the

corresponding kinetic parameters km and Vmax can be extracted from the literature,

one could find v1, v2, v4, by the following simple procedure: Find fshift(t) = VmaxX3(t)
km+X3(t)

−

v5.min(t). fshift(t) is the shift function that needs to be added to the rest of fluxes in

Set 1 to find the actual fluxes.

vj(t) = vj.min(t) + fshift(t), j ∈ {1, 2, 4} (24)
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Figure 21: Panel (A) shows the one-variable fluxes vs. their substrates. Panel
(B) depicts the plots of fluxes that have two substrates/effectors vs. each variable
separately. Panel (C) shows flux v1 vs. its participating variables. In all plots, the
actual fluxes, as known from the original model, are plotted in red, while blue shows
the min-energy fluxes.
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Figure 22: This figure shows the same plots as in Figure 21 with the difference that
the plots in blue are the min-energy fluxes after fixing the folding-over problem. Panel
(A) shows the one-variable fluxes vs. their substrates. Panel (B) depicts the plots
of fluxes that have two substrates/effectors vs. each variable separately. Panel (C)
shows flux v1 vs. its participating variables. In all plots, the actual fluxes, as known
from the original model, are plotted in red, while blue shows the min-energy fluxes
after resolving the folding-over problem.
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Figure 23: Fluxes v1 to v10 with the exception of v8 are plotted vs. time. Curves in
red curves are the min-energy fluxes after solving the folding-over problem, while the
blue curves show the actual fluxes. It is evident that the fluxes v3, v6, v7, v9, v10 are
almost identical and overlapping and that our method has recovered these fluxes.
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4.2 Extension of DFE and Parameter Estimation for the
Lactococcus Model

In practical scenarios, some data are often missing, and a number of fluxes cannot

be determined fully even after employment of the techniques described in Section

4.1. When this situation arises, there is the need for additional strategies that make

maximal use of DFE's flux-by-flux parameter estimation capabilities and diagnostic

features, while also using with random search and global optimization techniques.

This section introduces a multi-step strategy that takes advantage of the diagnostic

and computational benefits that DFE offers as far as the data characteristics allow,

and augments them with auxiliary methods and global optimization approaches to

arrive at full-system parametrizations (Figure 24). These procedures are illustrated

with the construction of the model of the glycolytic pathway of Lactococcus lactis

from NMR data, as it was described in Chapters 2 and 3. Due to missing data and

other features of the data, this estimation of parameters for the Lactococcus model is

not straightforward.

In order to use DFE, we first identify full rank subsets of fluxes within the system

(see flux estimation module in Figure 24). For instance, supposing that the leakage

terms v7, v8, v7r, and v8r are negligible, the first six differential equations in Eq.

1 of the Chapter 2 are supported in Dataset 1 with time series representing the

concentrations of five of the six metabolites (X1, X2, X3, X4, X6). We can directly use

these to determine the shapes of the five fluxes v1+vP , v2, v3, v4, v5. For Experiments

2 and 3, G6P data are not available and additional strategies are needed and will be

discussed later.

If data for one or more of the variables in a flux vi are missing, the “missing

metabolite estimation modules” in Figure 24 is used. The goal is to constrain the pa-

rameters for the following steps of randomized search and global full system optimiza-

tion. This module involves a high-dimensional optimization task, which ideally yields
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Figure 24: Step-by-step procedure for the proposed extension of dynamic flux esti-
mation (DFE).
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valuable information regarding the likely profile of the missing data. The first step in

this module consists of selecting a metabolite pool for which the dataset includes a

concentration profile and whose influxes and effluxes have the least number of missing

data. For example, we select X3 to estimate missing data for X2 in Datasets 2 and 3,

because we have all data regarding v2 = α2X
h2,2
2 X

h2,9
9 and v3 = α3X

h3,3
3 X

h3,7
7 X

h3,10
10 ex-

cept for X2. One could theoretically use the flux profiles for this estimation procedure.

However, the errors in the estimated fluxes would propagate through the system and

could result in an inaccurately inferred time profile for the missing metabolite concen-

tration. Thus, we solve the optimization problem of minimizing the sum of squared

errors between the ODE simulation of X3 and the existing data for metabolite X3,

as well as other contributors to the fluxes v2 and v3, and simultaneously estimate X2

for all time points, along with the parameters α2, h2,2, h2,9, α3, h3,8, h3,7, h3,10.

The same procedure is performed for X5, where we select X6 as the target metabo-

lite. In some cases, measurements fall below the detection limit, so that no numerical

data are available, although the biology of the system mandates that the concen-

trations are not zero. The detection limit, mass conservation, and possibly other

considerations can serve as useful constraints for the optimization algorithm. The

outputs of this module thus consist of substitutes for some of the missing data pro-

files, along with their associated parameter values. In other parts of the workflow,

these are treated like experimental data.

The “validation of functional form and regulations” step assesses the appropri-

ateness of the functional formats for the flux representations. A first and obvious

criterion is the quality of the fit, which is necessary, although not sufficient [68]. A

second criterion is the detection or lack of “runs in residuals” [25]. If no appropriate

format and parameterization can be found, it is probable that important components

of the pathway are missing from the model. Beyond the quality of fit and run test, no

true validation is possible, because the fluxes are unknown. Nevertheless, this step
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ensures reasonableness and, for instance, flags fluxes that are computed as negative

or exhibit unduly high magnitudes. Similarly, this step assesses the pathway struc-

ture in terms of regulatory signals. As an example, the estimation may suggest a

formerly unknown inhibition signal, whose biological likelihood is to be evaluated in

collaboration with subject area specialists.

As an illustration of the workflow in Figure 24, and more specifically the “valida-

tion of functional form and regulation” module, let us focus on one set of fluxes for

one of the datasets, such as the 20 mM experiment of Dataset 1. For each flux in this

set we check if time profiles for all participating substrates and regulating metabolites

are available. If so, we select a functional format and directly estimate its parameters

using a simple optimization algorithm. Two examples of this situation are given for

v2, which is a function of G6P and ATP, and for v6, which is a function of ATP. If we

choose power-laws, it is beneficial to take logarithms, which allows us to use linear

regression techniques for estimating the coefficients.

In the first example, the dynamics of v2 appears to be captured well by a power-law

function of its substrates. By contrast, v6, which collectively represents all processes

that consume ATP outside glycolysis, cannot be modeled as a non-decreasing func-

tion of ATP only. In particular, neither a power-law nor a Michaelis-Menten or Hill

functional form can possibly yield an appropriate fit. As a result, we need to ex-

plore possible regulators. When scanning through all options within the system, the

availability of glucose, or more specifically the transport rate of glucose into the cell,

seems to be both mathematically and biologically relevant. Figure 25 shows how the

DFE-inferred fluxes (solid lines) are fitted as a power-law function of ATP and the

transport rate of glucose (dashed lines). Since v6 is an aggregate of the processes out-

side glycolysis, which we are not modelling, the assumption that ATP consumption is

regulated by glucose availability seems to be reasonable. Other interesting examples

of the application and effectiveness of DFE in elucidating missing regulations of this
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nature are presented in Chapter 2.

Figure 25: Flux v6 vs. glucose concentration for Experiments 1 (blue), 2 (green),
and 3 (red). The solid lines show the DFE-inferred fluxes v6. Power-law functions of
ATP and the glucose transport rate were fitted to these inferred fluxes (dots). These
functions fit the inferred fluxes well.

Once the functional forms and regulations are considered satisfactory and the cor-

responding parameters are estimated, it is necessary to test whether the estimated

parameter set is essentially unique or whether substantially different solutions exist.

This step is particularly pertinent if the data are noisy and some of the data were not

measured but inferred in earlier steps. This global analysis utilizes Monte Carlo sim-

ulations, in which a large-scale random search is anchored in the estimated, optimal

parameter set {Pi}, which serves as the starting point for the global optimization.

The differences in the sets of estimated parameter values for each flux and each ex-

periment are collectively used to determine admissible ranges for the parameters of

the system and starting values for global optimization. Specifically for our analy-

sis, missing parameters were at first allowed to vary within generous intervals. For

instance, kinetic orders in BST models were constrained within [0, 2] for positive ef-

fectors, and within [−2, 0] for inhibition signals, while the non-negative rate constants

were allowed to reach 100 times the value of the biggest estimated rate constant in

86



the system; in fact they could also have been kept unbounded.

The next step entails a combination of different optimization techniques including

evolutionary (genetic) and steepest descent algorithms. The objective function uti-

lized here is the sum of squared errors over all time points, metabolites, and datasets;

it also includes a relatively smaller penalty for metabolite concentrations that were

inferred rather than directly measured. A smaller penalty for the sum of squared

errors over all time points of fluxes, which were directly identified in the 1st phase of

the DFE module, was also added. The optimized parameters were first tested with

respect to biological reasonableness and, once attested as meaningful, used in model

simulations.

4.3 Conclusion and Outlook

The goal of this chapter was to extend the usage of DFE to the more common scenarios

when the algebraic system of fluxes are underdetermined (Section 4.1) or the time

series data are missing or incomplete (Section 4.2).

The important task of flux identification consists of inferring the fluxes of a

metabolic pathway systems using, as input, time series of metabolite concentra-

tions. More specifically, the purpose of this study was to develop a flux identification

procedure for metabolic pathway systems where the stoichiometric matrix is under-

determined. Initially, a lower-dimensional representation of a so-called Gamma-space

and a Gamma-trajectory was introduced. This representation is especially useful

when the degrees of freedom are low (between one and three) so that it can be used

as a helpful visualization technique. Reasonable conditions like smoothness over time

and non-negativity of fluxes were taken into account to constrain the feasible space

even further. Optimization problems were formulated using biologically relevant con-

ditions; in particular, a minimum-energy criterion was considered. The concepts

were illustrated with a model of aspartate metabolism in the plant Arabidopsis. The
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minimum-energy flux set did not match the actual flux profiles for this pathway.

However, the addition of biologically reasonable constraints improved the situation

considerably. Namely, knowing that a certain flux, v6, is a function of only its sub-

strate, helped in reshaping the min-energy flux, with the consequence that more than

half of the resulting fluxes matched the original flux profiles. More knowledgeor as-

sumptionsabout the fluxes translates into more constraints for the feasible space of

solutions and could potentially recover the original flux set. For example knowing

that a certain flux follows a specific functional form can potentially determine that

flux and decrease the degrees of freedom by one.

It is not clear what the optimal criteria or constraints are to reduce the feasible set

of solutions further, because all fit the concentration data exactly. But characteriza-

tion and a closer look at the set of feasible flux sets may lead to a better understanding

of the system and possibly the design of experiments to more efficiently and effectively

fill the gap and recover the true fluxes.

Guidance to further experiments should be given: All (most, many) X’s should

span as much of the relevant substrate range as possible.

On a different but complementary trajectory, incomplete or missing data render

the employment of DFE for the task of parameter estimation impossible. I introduced

a mixed strategy to alleviate the problem and take advantage of the computational

and diagnostic benefits of DFE maximally. This was explained in detail in Section

4.2.
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CHAPTER V

DATA PREPROCESSING: A CONSTRAINED WAVELET

SMOOTHER FOR PATHWAY IDENTIFICATION TASKS

IN SYSTEMS BIOLOGY1

As a necessary prerequisite for the tasks of model identification for metabolic pathway

systems is data preprocessing and smoothing. Smooth data are especially important

when this preprocessing is used as a first step of DFE, which requires slopes of the time

courses in the model-free phase. Furthermore, the use of slopes is very advantageous,

because parameter values may be estimated without the integration of differential

equations [61, 74, 73]. Indeed, the integration of a system of differential equations is

computationally expensive and prone to a host of technical challenges, associated with

complicated error surfaces that can contain numerous local minima [71]. Experience

shows that the slopes are rather sensitive to noise in the time courses, which renders it

necessary to smooth and balance the data. Smoothing reduces noise, while balancing

assures that there is no gain or loss of mass over time in a closed system.

Numerous methods have been proposed for smoothing time course data. They

include splines, moving average algorithms, finite difference approximations, and var-

ious types of nonlinear programming [26, 63, 78].These methods are time consuming

and need to be performed interactively, or at least in a closely supervised manner.

Furthermore, this type of smoothing process can lead to secondary issues. Especially

important for the purposes of metabolic pathway analysis is the potential problem

that the overall mass in a system may no longer be constant if the data are smoothed.

1THIS MATERIAL HAS BEEN PUBLISHED [23]
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To address these issues, we propose here an automated smoothing technique that takes

as input any given data set and estimates and removes noise while at the same time

satisfying the required mass balance within the system. The proposed approach is

iterative and called Constrained Iterative Wavelet-based Smoother (CIWS).

5.1 Background and Data

5.1.1 Multiresolution Analysis Using Wavelets

The proposed smoothing technique is built upon the notion of multiresolution analysis

(MRA) from wavelet theory, which we will briefly explain here.

Wavelets are becoming a standard data analysis tool that is excellent for tasks of

data compression as well as for denoising and smoothing. One of their advantages is

that they are flexible as well as local, which means that they do not ignore desirable

functional details. The reason is that the resolution in MRA can be adapted to the

situation at hand.

Mathematically speaking, wavelets are orthogonal basis functions which span the

space of all square-integrable functions (L2(R)). Thus, any element in L2(R) may

be represented as a possibly infinite linear combination of these basis functions. An

important property of this linear representation is that it may be partitioned into

orthogonal subspaces Wj = span[ψj,k(x)], each of which captures a certain level of

“detail” information. The key concept of orthogonal MRA is to partition a given

function f(x) into its components f (j)(x) ∈ Wj. Here, the space Wj consists of

functions with lower resolution than the ones in Wj+1 which means that if some

arbitrary function g(x) is in Wj, then g(2x) is in Wj+1 [59].

For example, in the traditional wavelet representation f(x) =
∑

k∈Z cJ0,kφJ0,k(x)+∑
j>J0,k∈Z dj,kψj,k(x), the second sum contains the terms which capture the higher

levels of detail (i.e., ∪(j ≥ J0)Wj , which is the union of all levels of detail greater

than or equal to J0). Choosing the appropriate coarsest resolution J0 gives rise to
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different transforms. We can also just approximate f(x) =
∑

k∈Z cJ0,kφJ0,k(x) . The

choice of J0 provides us with the flexibility of selecting the desired level of detail,

which is traded against the desired level of smoothness. In the above representation

of f(x), the functions φJ0,k(x) = 2j/2φ(2jx − k) and ψj,k(x) = 2j/2ψ(2jx − k) are

scaling and wavelet functions, which correspond to commonly called “smooth” and

“detail” coefcients, respectively; j is the dilation/scale index, and k indicates shift or

position [62].

In wavelet decomposition, the wavelet coefficients represent details, and if these

are small, they can actually be removed without affecting the general trend of the

data. In fact, wavelet transformations are known to be parsimonious in that they can

be well described by a relatively small number of “energetic” wavelet coefficients.

Wavelet thresholding is the process of removing the wavelet coefficients that are

smaller in magnitude than some threshold λ. The resulting signal, after the inverse

wavelet transformation, is expected to have its noise removed or at least reduced.

The characteristics of the data determine the magnitude of noise, and it is therefore

useful to specify the threshold value λ based on the variability of the data at hand.

Different thresholding policies and threshold values are discussed in Section 5.2.2 in

more detail.

All wavelet computations were performed in WaveLab, a MATLAB wavelet tool-

box available from the website of Stanford University [3] . Sample MATLAB codes

using the functions available in the WaveLab toolbox are available in the Appendix

B.

5.1.2 Description of data

The proposed smoothing method was tested with in vivo NMR time series data of

metabolite concentrations in the glycolytic pathway of the bacterium Lactococcus lac-

tis (see Chapter 2). The dataset, which is published in [6], consists of time courses
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of glucose, lactate, UDP-glucose (uridine diphosphate glucose), minor amounts of

ethanol and 2,3-butanediol, as well as intermediate metabolites including FBP (fruc-

tose 1,6-bisphosphate) and 3PGA (3-phosphoglyceric acid). These time courses were

obtained from non-growing cells of L. lactis, following a bolus of 40 mM of [1-13C]

glucose, at 30C. The experiments were executed under anaerobic conditions, and pH

was controlled at 6.5 and monitored online.

5.2 Constrained Iterative Wavelet-based Smoother (CIWS)

5.2.1 Basic Concepts of CIWS

During the model-free phase of DFE, noisy time courses are to be smoothed for

later slope estimation and balanced in such a fashion that no material is gained or

lost [31]. The latter aspect is not a triviality because the model is based on the

implicit assumption that all material is accounted for. Thus, if the (smoothed) data

do not maintain mass conservation, the model structure is immediately at odds with

the data, and the estimation process will introduce undesirable means of numerical

compensation.

While several advanced algorithms for general smoothing have been developed

(e.g., [26, 63, 71, 78]), they have not ascertained the need to conserve mass. The

task at hand here is therefore to smooth the time series fi(t), i = 1, · · · , n, con-

ditioned on the constraint that their sum remains constant in time. We approach

this task by constructing a wavelet transform of each fi(t) in the following form

fi(t) =
∑

k∈Z c
(i)
J0,k

φJ0,k(t) +
∑

j≥J0,k∈Z d
(i)
j,kψj,k(t). Again, the functions φJ0,k and

ψj,k are scaling and wavelet functions respectively, and (j, k) is standard scale/shift

wavelet indexing. The two sets of coefficients cJ0,k ,dj,k have a direct interpretation:

the smooth and coarse coefcients cJ0,k are responsible for trends and global features,

while the detail coefcients dj,k describe mostly the noise in the decomposed time series

fi(t). By thresholding the detail coefcients, that is, by setting to zero those coefcients
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small in magnitude, and inverting back to the domain of original data, the individual

functions are smoothed. We will discuss later how small this magnitude is to be set.

In the following, we will denote a smoothed version of fi as f ∗i . In practical appli-

cations, wavelet decompositions of a given sampled function f are found by Mallat’s

algorithm [40] . This algorithm consists of data filtering by two filters h and g which

are low pass and high pass wavelet filters. The form of filters is fully determined by

the choice of the scaling and wavelet functions.

Unless further precautions in the process of smoothing are introduced, the mass

balance among all metabolites will likely be violated, leading to
∑

i f
∗
i (t) = g(t) 6= C.

We propose to balance the sum by rescaling each f ∗i (t) to f ∗∗i (t) = Cf ∗i (t)/g(t) and to

repeat the process of wavelet-transforming, thresholding, back-inverting, and rescal-

ing. While a rigorous proof of convergence is not possible in generality, simulation

results with various representative examples (see later) suggest that this procedure

generally leads to a set of smooth metabolic time trend functions, while ascertaining

a constant mass balance over time. Indeed, as we will discuss later, the method leads

to smooth time courses in our application. Figure 26 depicts the concepts of this

procedure.

This Constrained Iterative Wavelet-based Smoother (CIWS) consists of an iter-

ated 3-step procedure.

Step 1. Construct wavelet transforms of each time series in terms of the

scaling and wavelet functions φ and ψ. For this task, we have a choice among

an infinite set of basis functions. As a default, we use the Daubechies, Symmlet, and

Coiflet families [22]:
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 fi(t), i = 1, 2, · · · ,m∑
i fi(t) = C, ∀t

Wavelet Transform−−−−−−−−−−−−−→

fi(t) =
∑
k∈Z

c
(i)
J0,k

φJ0,k(t) +
∑

j>J0,k∈Z

d
(i)
j,kψj,k(t)

(25)

Step 2. Threshold the detail wavelet coefficients and invert back to

smooth time-domain functions. Detail coefficients describe the noise in the de-

composed time series fi(t), while the smooth and coarse detail coefficients are re-

sponsible for trends and global features. Hard thresholding operates on the detail

coefficients by setting d
∗(i)
j,k =

 0, if |d(i)j,k| < λ

d
(i)
j,k, if |d(i)j,k| ≥ λ

The threshold λ is estimated

from the standard deviation of the time series data, as outlined before. Once step 2

is performed and the result inverted back to the time domain, one obtains time series

f ∗i (t), i = 1, 2, · · · ,m, which however are not mass conserving throughout time (i.e.,∑
i f
∗
i (tl) = g(t) 6= C)).

Step 3. Recover mass balance by appropriately rescaling each time

series. If the rescaled functions f ∗∗i (t) = Cf ∗i (t)/g(t) are sufficiently smooth, then

terminate the smoothing process. Otherwise return to Step 1. Here, sufficient smooth-

ness is defined as ~g − C < ε, where ε > 0 is an acceptable error for deviations from

mass conservation and ~g =
(
g(t1), g(t2), · · · , g(tN)

)
, g(tl) =

∑
i f
∗
i (tl) 6= C .

5.2.2 Estimating the appropriate threshold and wavelet functions

We consider N noisy time points of a function fi(t) sampled at time points tj, j =

1, · · · , N :

fi(tj) = yj + zj, j = 1, · · · , N (26)

Here the noise is assumed to be white zj ∼ WN(0, σ2); expressed differently the noise

is independent and identically distributed with

E{zj} = 0, V ar{zj} = σ2
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Figure 26: Diagram of the Constrained Iterative Wavelet Smoothing (CIWS) tech-
nique.

. Our goal is to estimate a smoothed vector of time points f ∗∗i = [y1, y2, · · · , yN ].

As a first step it seems that we need to specify a class F of sampled functions to

which yi, i = 1, · · · ,m are supposed to belong. However, we often have no a priori

knowledge about such a class F . Correspondingly, we assume no functional form for

the manner with which the concentrations of metabolites change over time. Instead,

determining the appropriate wavelet function, thresholding, and defining a threshold

value are central to the performance and convergence of the proposed CIWS smooth-

ing technique.

The process of thresholding wavelet coefficients may be divided into two steps.

First, we need to choose an appropriate thresholding rule. In the step-by-step de-

scription of the CIWS algorithm, hard thresholding was introduced as the method of

choice in principle, but other standard choices are available, including soft threshold-

ing [24], the non-negative garrote shrinkage [2], and others [62]. The most prominent

thresholding rules are represented in equations (1)-(3) below:
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THard(d, λ) = d1(|d| > λ) (27a)

T soft(d, λ) = (d− sgn(d)λ)1(|d| > λ) (27b)

T garrote(d, λ) = (d− λ2

d
1(|d| > λ) (27c)

, where 1(|d| > λ) =

 0 |d| ≤ λ

1 |d| > λ
. Both hard and soft thresholding have

advantages and disadvantages. Hard thresholding was discussed before as a viable

option. Soft shrinkage tends to have a higher bias since it shrinks large coefficients.

This tends to impair the convergence of our iterative method. The non-negative

garrote shrinkage function was first introduced by Breiman [2] in a different context

and tends to improve the performance of hard thresholding slightly while preserving

the convergence properties. No matter what thresholding policy is chosen, a threshold

value is to be determined. For each iteration of CIWS, the standard deviation of the

remaining noise is estimated directly from the data. The threshold λ is defined as a

linear function of the standard deviation of the sampled f ∗i (t) , because the noise is

expected to decrease as the number of iterations increases. Thus, we set λ = γ · σi

where σi is the standard deviation of the ith time series of concentrations. The

coefficient γ still needs to be determined in order for the smoothed function to have

the required and desired properties.

Because of implementation issues, the number of data points needs to be a power

of two. When this is not the case in a given dataset, we artificially do a mirror-image

extension of the last q data points so that the total length is a power of 2. This

strategy facilitates smoothness at the boundaries of the observed dataset and avoids

the so-called Gibbs effect associated with very short time series; it also yields more

robust standard deviation estimates. Assuming that noise in the data is white with

variance σ2
i , the universal threshold of λi =

√
2 log nσi was shown to remove noise
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with high probability, thus contributing to the visual quality of the reconstructed

signals [24].

5.2.3 Selecting an Appropriate Wavelet Function

For any wavelet generating multiresolution analysis (MRA), there is a trade-off be-

tween the smoothness of the wavelet and scaling functions on the one hand, and the

locality (that is, the accuracy of local representation) of the wavelets and wavelet

representations on the other. Since a wavelet representation of discrete data must

interpolate between the points with a shift of the scaling function, it is important

that the scaling function generating MRA is smooth, because the wavelet decompo-

sition represents a smooth physical process. However, a wavelet that is too smooth,

due to a long wavelet filter, is not sufficiently local and modifies possibly important

fluctuations far from the location that it wants to address. In the CIWS algorithm,

the functions are iteratively rescaled to ensure a constant sum after each iterative

smoothing step. This rescaling is driven point-wise, and for this reason it is impor-

tant that wavelets retain sufficient locality. Indeed, wavelets that are too smooth and

not sufficiently local may cause the CIWS algorithm to diverge. Details regarding the

selection of appropriate wavelet functions among the standard families (Daubechies,

Coiflet, Symmlet, and Pollen) are presented in Appendix A.

A traditional measure of smoothness of a function f is the Holder exponent α,

which is defined through the following inequality: (∀x, y) ∃C ≥ 0, α ≥ 0 : |f(x) −

f(y)| ≤ C|x−y|α. It was shown that the Holder exponent may be expressed in terms

of a large enough vanishing moment M, namely as αM = 0.2075M [62]. Here, the kth

moment of a wavelet function ψ is defined as
∫∞
−∞ x

kψ(x)dx, and the terminology that

“a wavelet function has M vanishing moments” means that this integral is zero for

k = 0, 1, · · · ,M − 1. For the Daubechies family, for example, M vanishing moments

are achieved by discrete wavelet filters that are of length 2M .
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One useful criterion for the choice of an adequate wavelet basis is entropy [12]:

Among different candidate wavelet functions, the most appropriate is chosen by mini-

mizing the maximum entropy among different time series of concentrations. Appendix

A describes how this criterion facilitates the identification of the best wavelet func-

tions for the purpose of smoothing. For our case of metabolic time series data, Coiflet

1 results in the lowest maximum entropy. This wavelet also well balances smoothness

and locality and is differentiable. Appendix Table 3 provides entropy values for our

case study.

5.2.4 Avoidance of Negative Concentrations During Back-conversion to
the Time Domain

A typical problem with any wavelet-based estimation of non-negative functions and

densities is the fact that the estimators may not be fully non-negative. Only the

so-called Haar wavelet has a non-negative scaling function and induced kernel, and

always results in a non-negative estimator; however, it is known that the convergence

rates for strictly positive kernels are inferior to general kernel-based methods, where

the kernels can be locally negative [77]. Wavelet-based kernels (except for the Haar)

are necessarily locally negative.

A common strategy to circumvent this issue is to fit and smooth log functions

or square root functions and, once fitting and smoothing are accomplished, use an

exponential transformation or square the results. For our case, this strategy poses

a problem with controlling the mass balance. Thus, instead of a transformation,

our solution uses a smooth wavelet and always curtails the negative components

when iterating. Beyond satisfying our needs, this strategy could be tailored toward

constraints other than mass conservation.
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5.3 RESULTS

5.3.1 Convergence of the Constrained Smoother

For the metabolic time series in our case study, CIWS converges in fewer than 40 steps

to smooth, mass-conserving time courses, and the degree of smoothness is adjustable

to our specifications.

A formal, general proof of convergence of CIWS seems not possible, as it would

require knowledge of the nature of the functions fi(t), constrained to some smoothness

spaces, and the interplay between thresholding strategies and types of wavelets. The

task might be feasible if the goal function, consisting of the residual error to be

minimized, were convex.

However due to the arbitrary nature of the functions to be smoothed and the

wavelets, the task of analytically optimizing the goal function is intractable. Instead

we assess convergence with Monte Carlo simulations and representative functional

shapes. Specifically, we use synthetic data from a battery of standard test func-

tions proposed by Donoho & Johnstone [24], known as Blocks, Bumps, Doppler and

HeaviSine. These functions had been selected because they portray significant spa-

tial inhomogeneity and mimic functions arising in signal processing tasks, including

imaging and NMR spectroscopy. An additional test function, Mishmash, is defined

as: Mishmash = C - ( Blocks + Bumps + Doppler + HeaviSine).

Here C is the constant sum of all five functions. In our case, Mishmash reflects

the need that the total mass remains constant over time. For simulation purposes,

the test functions are sampled at 2048 equally-spaced time points within the interval

[0, 1]. Choosing the Coiflet 1 wavelet function, CIWS applied to this set converges

after only two iterations for a smoothness parameter ε = 0.1, if the signal-to-noise

ratio (SNR) is set to either 5 or 15dB. Figures 27-29, show four of these functions

without noise, with added white (Gaussian) noise of SNR = 15dB, and the output

of the CIWS algorithm.
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Figure 27: Four of the set of five test functions, called Doppler, Bumps, HeaviSine,
and Blocks without noise.
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Figure 28: Four of the set of five test functions called Doppler, Bumps, HeaviSine,
and Blocks with additive white (Gaussian) noise of SNR = 15dB.
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Figure 29: Estimated test functions as output of the CIWS algorithm (compare to
Figure 28).
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The estimated functions in Figure 29 together with the smoothed Mishmash func-

tion preserve the balance of energy C, and at the same time have noise mostly elimi-

nated. Locally, the presence of some remaining noise is visible and it could be elimi-

nated at the expense of losing resolution at high frequency features (as in Doppler).

5.3.2 Data Analysis

CIWS was tested with different time series data of metabolites in the glycolytic path-

way of the bacterium Lactococcus lactis, which had been measured under anaerobic

conditions following a glucose pulse of 40 mM. The data were obtained with in vivo

Nuclear Magnetic Resonance (13C-NMR) techniques. The algorithm converged to

mass-conserving time courses, whose smoothness was adjustable to our specifications.

Extensive simulations with different datasets demonstrated that CIWS is very

time efficient and converges in quite a small number of iterations (between 2-60) if a

reasonable value for the mass conservation error constant is chosen, such as ε ∼ 0.01.

As an illustration, Figure 30 depicts the CIWS results for the glycolytic time series

data from L. lactis. The wavelet function used in this case is Coiflet 1. It converges in

28 iterations for ε = 0.1. Decreasing ε to 0.001 does not result in a significant visual

difference but increases the iterations until CIWS converges to 86. Note that CIWS

retains the observed drop in lactate around time 14, while smoothing the ascent in

this metabolite t ∈ (0, 10), as well as its more or less stationary phase t ∈ (16, 47).

5.4 Discussion

In this chapter, we propose a novel Constrained Iterative Wavelet-based Smoothing

method that permits noise reduction and smoothing, while assuring a mass conser-

vation constraint. Unlike curve fitting, where the main emphasis is on matching the

data as closely as possible, smoothing contains the somewhat vague concept of time

course values that are expected to change relatively slowly from one time point to

the next. This concept renders the performance criterion for smoothing techniques
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Figure 30: Results of CIWS applied to one sample set of time series data character-
izing the dynamics of the glycolytic pathway in Lactococcus lactis under anaerobic
conditions and with an input glucose pulse of 40 Mm. Circles represent the measured
time series data, while CIWS results are represented with lines of the corresponding
color.
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application dependent. For example, what might be considered as a good smoothing

technique in one application where removing of outliers is of interest, might not be

considered satisfactory in another application where one might be interested in local

artifacts and features of a signal. This data-adaptive interplay between smoothness

and local representation renders wavelets suitable tools for flexible smoothing tasks.

For the dataset of our case study, the primary purpose is to smooth the data and

prepare them for slope estimation while avoiding spurious spikes in the dynamics of

the data.

The main novelty of the proposed CIWS smoothing technique is the property of

mass conservation, which is practically important since it directly affects the consis-

tency between experimental data and the fitted model.

A secondary advantage with respect to computation and implementation is the

fact that CIWS does not require operator interaction or supervision and thus can be

automated. Finally, the fast convergence properties of the wavelet transform tech-

niques render this algorithm computationally very efficient. Mallats cascade algo-

rithm can be used in the implementation of each iteration, which results in computa-

tional complexity of order O(N). This fact is particularly beneficial when have larger

datasets with thousands of data points are to be smoothed. Such larger datasets,

which are increasingly more prevalent due to modern high-throughput experimental

techniques, will render the proposed CIWS smoothing method even more effective,

because short signals decompose in only a few multiresolution spaces and render the

thresholding ineffective due to the availability of limited number of scales.
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CHAPTER VI

CONCLUSIONS AND OUTLOOK

New types of data, obtained with methods of high-throughput experimental tech-

niques, have presented us with enormously exciting opportunities and challenges. Of

specific interest are omics time series data, which contain very valuable information

about the structure, dynamics and regulatory mechanisms governing biological sys-

tems and are as close to the organisms natural conditions as is presently achievable in

the lab. They offer a unique glimpse into the multi-level control of microorganisms.

While extraordinarily promising, these types of data pose the substantial challenge

of extracting novel, quantitative information and translating this information into

integrative dynamic models. At the core of this task is the identification of suitable

functions and the estimation of optimal (or at least suitable) parameter values.

In this thesis, I developed or advanced methods for these purposes and applied

them to the design of a comprehensive kinetic-dynamic model of the control of carbo-

hydrate metabolism in Lactococcus lactis. This model is an expansion of an existing

model of glycolysis in L. lactis under aerobic conditions [72], but is considerably more

complicated because it addresses the organisms preferred anaerobic conditions. This

switch between conditions mandated the consideration of the dynamics of NAD+

and NADH and of ATP and ADP. The use of an advanced modeling methodology,

namely DFE and its extensions, as well as the simultaneous account of three datasets

within one model instantiation, offered several novel insights into the complex control

strategies with which this organism controls glycolysis.

The model proposed in this work represents the available datasets well, but still

needs to be tested further against new data. In addition to bolus experiments, as
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they were analyzed here, one could imagine testing the model for fermenters under

continuous flow conditions, where glucose is constantly supplied. Such fermenters are

often preferred in industrial settings, as they yield product on an ongoing basis. An

entirely different potential use of the model could be the following scenario, which

is of great academic and practical interest, namely the exploration of the effect of

pH on glycolysis. If it became possible to manipulate L. lactis into quasi-normal

operation under low pH conditions, the organism could potentially survive the acidic

environment of the human stomach and be used as a non-invasive vehicle for the

delivery of proteins or drugs to the intestine [65]. Such a mechanism would be a

very welcome pharmaceutical tool for the treatment of diseases such as Crohns [1].

This use of the model would require the explicit inclusion of the driving biological

factors affecting the pH inside the cells. It would also require biological experiments

assessing the viability of altered cells under such hostile conditions. So far, methods

of molecular biology and genetics have resulted in L. lactis strains that can tolerate a

pH of about 4.8 for some time [6], but this tolerance is not sufficient for the purpose

outlined above. A major milestone toward these goals has been reached here, as the

model offers a rich array of explanations regarding the strategies that L. lactis uses

to survive under different conditions.

Another objective of this thesis was the refinement of methods of information

retrieval from metabolic time series data, including parameter estimation and struc-

ture identification beyond the applications of L. lactis. Dynamic flux estimation

methods were adapted to become applicable to incomplete and less than ideal data.

Finally, a roster of methods was developed for addressing and characterizing under-

determined flux systems. Future studies of systems with higher degrees of freedom

and characteristics should be assessed as they could lead to further insights into bet-

ter characterization strategies for metabolic flux systems. Another future direction

could be the exploration of additional, biologically relevant optimization problems
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and their constraints, as well as suggestions for experimental designs that would add

genuinely new information content and render the task of flux identification more

reliable, comprehensive, and possibly exact.

Methods for noise reduction and smoothing, constrained on mass conservation,

were developed. As part of the model-free phase of DFE, the estimation of slopes

from noisy time series data is crucial. An interesting possible future direction would be

the utilization of wavelet multi-resolution analysis for the direct estimation of slopes

of the time series data while maintaining mass balance. As a starting point for this

research, the chapters on wavelet calculus and connection coefficients by Reskinkoff

and Wells [50] and by Mallat [41] are recommended.

Finally, an interesting topic for future investigation could be the study of the

complex control mechanisms of L. lactis from a perspective of control theory and

synthetic biology. More specifically, one could examine if the nonlinear system un-

der study could be representable by an essentially equivalent linear system yielding

similar concentration data. This investigation could constitute a compelling system

identification task, which could potentially reveal further systems level details of this

particular pathway, and could also have intriguing implications for the manipulation

or synthesis of new organisms. A thought-provoking question could be if certain

behaviors of L. lactis, including its dynamics around the ready-to-respond state as

explained in Section 3.4.3, could emerge from linear system components and be used

to construct a biobrick for similar tasks.
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APPENDIX A

SELECTING APPROPRIATE WAVELET FUNCTIONS

Many different wavelets could be utilized for the smoothing task at hand. They

possess different smoothness, convergence, and locality properties. Smoothness is

a qualitative and somewhat subjective property. Nevertheless, different objective

measures, including Sobolev and Holder regularity exponents, have been proposed

to quantify the smoothness of scaling functions. The first step of the smoothing

process is the choice of an appropriate wavelet function; typical choices include wavelet

functions from the Coiflet, Daubechies, and Symmlet families. Among these, we need

to eliminate those that are not differentiable, since the initial motivation behind

smoothing the time series data is to calculate derivatives. For example, Daubechies

4 and Haar wavelets are not differentiable. As a consequence, functions that are

approximated with these wavelets are not truly representative of the physical and

biological processes under study.

There is a close relationship and tradeoff between the length of support and the

regularity index of the scaling functions [62]. The larger the support interval for

a wavelet function, the smoother it can be; however it tends to become less local.

The inherent locality-smoothness tradeoff becomes especially important due to the

observation that the CIWS method tends to diverge for wavelet functions that are

smoother than some value and have a large number of taps. For instance, using

Daubechies 10 (or higher) as the wavelet of choice for CIWS will lead to divergence

for our test dataset. This may be explained by the fact that the error resulting

from the smoothing process is repeatedly rescaled in a non-local manner to keep the

total mass constant for all time points. The error therefore propagates and causes
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Table 3: Members of the wavelet families Coiflet, Daubechies, Symmlet, and Haar,
for which CIWS converges. One can see that their maximum entropies in the wavelet
domain, as well as their means and variances, are quite similar.

Wavelet Max entropy Mean entropy Entropy variance
Coiflet 1 2.9707 2.3599 0.1590
Daubechies 4 3.0463 2.4323 0.1372
Daubechies 6 3.0142 2.5804 0.0918
Daubechies 8 2.8991 2.4430 0.0793
Symmlet 4 3.0343 2.4620 0.1326

the iterative method to diverge and deviate from the actual values at different time

points.

For the second step in choosing the most suitable wavelet function, considerations

of convergence necessitate the removal of those for which the iterative method diverges

on the other extreme of the spectrum of smoothness. This restriction leaves us with a

pool of candidates from which we are free to select the most appropriate functions for

our purposes. If we only consider the three aforementioned families, the remaining

pool of plausible candidates consists of Coiflet 1, Symmlet 4, and Daubechies 6 and

8. The smoothed datasets using all of these wavelet functions are depicted in Figure

10Figure 13. Other families of wavelets may also be considered. Again, it is then

necessary to eliminate family members that are not differentiable as well as the ones

for which CIWS converges.
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Figure 31: The result of smoothing using Coiflet 1, which converges in 28 iterations
for ε = 0.1.
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Figure 32: The result of smoothing using Daubechies 6, which converges in 6 itera-
tions for ε = 0.1.
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Figure 33: The result of smoothing using Daubechies 8, which converges in 6 itera-
tions for ε = 0.1.
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Figure 34: The result of smoothing using Symmlet 4 wavelet, which converges in 7
iterations for ε = 0.1. Entropy was utilized as the criterion for choosing between the
remaining functions in Section 5.2.3. Table 3 shows the admissible wavelets along
with the maximum entropy in the wavelet domain among different time series of
metabolite concentrations for each wavelet. Average entropy and the corresponding
variance is also included. Among the admissible wavelets Coiflet 1 exhibits the lowest
average and maximum entropy and was thus chosen as the wavelet of choice.
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APPENDIX B

MATLAB CODES

The MATLAB code for the CIWS technique is provided below. The test data

“wt104 ana40 1.mat” is also provided.

function y = CIWS(x,Type,Par,epsilon,Stoi Vol Vect)

% First we need to install the Wavelab toolbox from

%http://statweb.stanford.edu/~wavelab/Wavelab 850/download.html

% Then Run WavePath only for the first time you run this code in a

%MATLAB session

% USAGE

% y = CIWS(x,Type,Par,epsilon,exvol,invol)

% INPUTS

% x The time series data with the first column representing time

% and each of the following columns representing another time

% series of data.

% Type string, 'Haar', 'Coiflet', 'Daubechies',

% 'Symmlet', 'Vaidyanathan','Battle', 'Lemarie','Pollen'

% Par integer or angle(s), it is a parameter related to either

% the support and vanishing moments of the wavelets or

% the angle, explained below for each wavelet.

% epsilon low-pass filter corresponding to orthogonal WT

% Stoi Vol Vect The vector which includes the Stoichiometric as

% well as volume information for compartmental models
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% OUTPUT

% y The smoothed data.

%

% DESCRIPTION

% The algorithm was tested on the data matrix which had the following

% columns:

% 1)Time(min) Glucose: <-- 2)betta-glc 3)alpha-glc 4)Lactate ...

% 5)Ethanol 6)2,3-But 7)3PGA 8)1FBP + 9)6FBP -->FBP 10)UDP-Glc

% The following lines were added before calling the algorithm:

% load 'wt104 ana40 1.mat'

% x=wt104 ana40 1;

% exvol = 50;

% invol = 2.15;

% Stoi Vol Vect = [2*exvol 2*exvol exvol exvol exvol invol

% 2*invol 2*invol 2*invol];

% epsilon = 0.1;

% Type = 'Coiflet';

% Par = 1;

% x smoothed = CIWS(x,Type,Par,epsilon,Stoi Vol Vect);

% Extract number of data points from the input data matrix x

N = 2ˆ(ceil(log2(size(x,1))));

stoi vol = repmat(Stoi Vol Vect,N,1);

% Make the data matrix of size 2ˆN: Filling by mirroring

x mirrored = zeros(N,size(x,2)-1); %minus 1: time

x mirrored(1:size(x,1),:) = x(:,2:end);

x mirrored(size(x,1)+1:end,:) = x(end:-1:2*size(x,1)-N+1, 2:end);

x data = x mirrored;

x mirrored = stoi vol .* x mirrored;
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%Introducing the variable z to account for the lost data(keeps the mass

%constant)

tot mass = max(sum(x mirrored,2)); %total mass equals to the

% maximum of the sum

z = tot mass*ones(N,1)-sum(x mirrored,2);

exvol = 50;

x data = [x data z/exvol]; %z is considered as an internal(inside the

% cell) metablite

stoi vol = [stoi vol exvol*ones(N,1)];

% Choose the family of wavelet and make the corresponding quadrature

% mirror filter

if strncmpi(Type,'Haar',2),

wf = MakeONFilter('Haar',Par);

end

if strncmpi(Type,'Coiflet',2),

wf = MakeONFilter('Coiflet',Par);

end

if strncmpi(Type,'Daubechies',3),

wf = MakeONFilter('Daubechies',Par);

end

if strncmpi(Type,'Symmlet',3),

wf = MakeONFilter('Symmlet',Par);

end

if strncmpi(Type,'Vaidyanathan',2),

wf = MakeONFilter('Vaidyanathan',Par);

end
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if strncmpi(Type,'Battle',2),

wf = MakeONFilter('Battle',Par);

end

if strncmpi(Type,'Lemarie',2),

wf = MakeONFilter('Lemarie',Par);

end

if strncmpi(Type,'Pollen',2),

wf = MakeONFilter('Pollen',Par);

end

% Transformation Matrix of FWT PO: W = WavMat(h, N, k0, shift).

% Here, N is the size of matrix/length of data, which should be

% a power of 2.

% K0 is the depth of transformation. Ranges from 1 to J=log2(N).

% Default is J. We use J = log2(N)-2.

% shift: the matrix is not unique an any integer shift gives. We use 0.

W = Wavmat(wf,N,log2(N)-2,0); %N x N transformation matrix

%% Iterative method:

g1 = zeros(size(x data,1),1); %number of data points in time

g0 = ones(size(x data,1),1) * tot mass;

j = 0;

while norm(g1-g0)> epsilon && j<=1500

j = j+1;

D = W * x data; %This is the vector containing all coefficients

% Standard deviation estimation:

% sd = std(D)
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sd = mad(D,1)/0.6745; % This is more robust and less prone to

% outliers influence than the MATLAB std function.

%Threshold: according to universal thresholding

lam = repmat(sqrt(2*log(N)).* sd,N,1);

% Choice of thresholding rule:

D th = D .*(abs(D)> lam); %Hard thresholding

%D th = (abs(D)-lam.*ones(size(D))).*(abs(D)> lam); %Soft threshold

%D th = (D-lam.ˆ2.*D.ˆ(-1)).*(abs(D)> lam); %Non-negative garrotte

% thresholding

x s = W'*D th ;

x smoothed = x s .* (x s >= 0);

g1 = sum(stoi vol .* x smoothed,2);

g = repmat(g1,1,size(x data,2)); %Mass balance matrix

x data = tot mass * x smoothed./g;

end

if j>=1500

disp('CIWS does not converge!')

else

A = Type;

A1 = [Par;j];

formatSpec = 'CIWS algorithm using the %s %u converged in %u

iterations:')

fprintf(formatSpec,A,A1)

end

y = x smoothed;

figure(1)
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tmph = plot(x(:,1),[x(:,2:end)],'--o');

set(tmph,'linewidth',1.4);

legend('\beta-Glc','\alpha-Glc','Lactate','Ethanol','2,3-Butanediol', ...

'3PGA','1FBP', '6FBP','UDP-Glc');

hold on

tmph = plot(x(:,1),x smoothed(1:size(x,1),1:end-1));

set(tmph,'linewidth',3);

xlabel('Time', 'fontsize',16);

ylabel('Concentration [mM]','fontsize',16);

set(gca, 'fontsize', 10);

hold off

save smoothed x x smoothed

end
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