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PREFACE

The interest in ultra-cold fermions has consistently grown over the years, in particular

because of the direct connection to condensed matter physics, and the ability to

control, essentially at the turn of a knob, many properties of the system including

its geometry, particle densities and atom-atom interactions. These knobs act as tools

used to investigate fermionic physics, but these tools are not readily available in

condensed matter, thus making ultra-cold fermions ideal simulators of fundamental

physics involving fermions. The use of these tools is particularly suited to reach

regimes that are simply not possible in condensed matter physics.

One of the big success stories of ultra-cold fermions as simulators of condensed

matter phenomena was the study of the evolution from Bardeen-Cooper-Schrieffer

(BCS) to Bose-Einstein-Condensate (BEC) superfluidity by tuning atom-atom inter-

actions, which was performed last decade. The tool that made these studies possible

was the existence of tunable scattering resonances between fermionic atoms, the so-

called Feshbach resonances. In this decade, another important research discovery

was achieved via the experimental realization of a new tool, the so-called artificial

spin-orbit coupling. The creation of synthetic spin-orbit coupling allowed for the

simulation of the effects of real spin-orbit coupling in electronic systems, with the ad-

vantage that the artificial spin-orbit coupling itself can be widely tuned in cold atoms.

This tunability again facilitates reaching regimes that are just not easily accessible

or impossible to reach in condensed matter systems. The engineering of artificial

spin-orbit coupling was realized first in bosonic systems, but very recently the same

effect was achieved for fermionic atoms.

In this thesis, I investigate the combined effects of the two aforementioned tools,
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artificial spin-orbit coupling and atom-atom interactions, on ultra-cold Fermi atoms.

By taking advantage of the experimental tunability of these tools, I study a few the-

oretical aspects of ultra-cold fermions in the presence of artificial spin-orbit coupling.

The first aspect covers the formation of two-body bound states for fermions with

two relevant hyperfine states, and the second aspect covers spectroscopic and ther-

modynamic properties of fermions with three relevant hyperfine states, as well as the

emergence of superfluidity.
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SUMMARY

In this thesis I present a few theoretical aspects of ultra-cold fermions in the

presence of artificial spin-orbit coupling, which are of direct experimental relevance.

The first aspect investigated is the formation of two-body bound states of fermions

when artificial spin-orbit coupling and artificial Zeeman fields are present. These

bound-states are analyzed for two-hyperfine-state fermions in free space and in a

harmonically confining potential. The second aspect explored is the study of spec-

troscopic and thermodynamic properties of three-hyperfine-state fermions. These

properties are investigated as a function of spin-orbit coupling and Zeeman fields for

non-interacting atoms, but when atom-atom interactions are also included, the many-

body system consisting of three-hyperfine-state fermions can exhibit exotic superfluid

phases.
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CHAPTER I

INTRODUCTION

My main goal in this thesis is to present a discussion of the effects of artificial spin-

orbit coupling and Zeeman fields in fermionic ultra-cold atoms. Part of the work

described here is inspired by the experimental realization of artificial spin-orbit cou-

pling (SOC) in the fermionic isotope 40K using a Raman technique [1]. The word

artificial is explicit here, because the emergent spin-orbit coupling is not due to rela-

tivistic effects, but rather due to some clever coupling of center of mass of the atoms

to light fields via Raman processes that connect different hyperfine states of the atom.

These atoms (40K) have several hyperfine states that can be trapped in a light field

using optical techniques. Once 40K atoms in different hyperfine states are trapped,

it is possible to control atom-atom interactions using scattering resonances, the so-

called Feshbach resonances [2]. The external control of interactions using scattering

resonaces lead to the formation of large diatomic molecules K2, also known as Fes-

hbach molecules. These molecules (paired fermions) can form a superfluid state at

sufficiently low temperatures [3].

I discuss in the introduction (chapter II) some general aspects of spin-orbit cou-

pling, and then I particularize to the case of artificial spin-orbit coupling created

experimentally in 40K. Then, in chapters II and III, I discuss the effects of artificial

spin-orbit coupling and Zeeman fields during the formation of Feshbach molecules,

when atom-atom interactions are changed. The results obtained are in good agree-

ment with recent experiments [1] involving two-hyperfine states of fermionic 40K. In

chapter IV, I investigate the effects of artificial spin-orbit coupling and Zeeman fields

in three-hyperfine states of fermionic atoms, first when atom-atom interactions are
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negligible, and then when atom-atom interactions are present.

1.1 Generic aspects of spin-orbit coupling

Ultra-cold atomic gases are extremely versatile systems that can be controlled with

great precision. They can be composed of bosons (particles with integer spin) or

fermions (particles with half-integer spin). And, similarly to electron gases, atomic

gases can be confined in a variety of environments, including harmonic potentials

and crystalline lattices. Furthermore, atom-atom interactions can be controlled, by

modifying atomic collisions, to mimic real solid-state systems, but with the added

control of interactions, which is not possible in standard condensed matter systems.

Using these tools, many experimental groups [4] were able to explore the fundamental

quantum physics of several standard condensed-matter phenomena, including super-

fluidity, quantum magnetism and insulating behavior.

However, exploring some of the remaining uncharted territory in condensed-matter

physics using cold atomic gases will require additional tools. One of the tools that was

missing from the toolbox until recently is the existence of controllable artificial spin-

orbit coupling, which was first created in bosonic atoms [5] and later with fermionic

atoms [1, 6]. The artificial spin-orbit created in these systems involves the coupling

between the momentum of the center of mass of a neutral atom and internal hyperfine

state of state, which is labeled by the word spin.

In order to appreciate this effect in the context of neutral ultra-cold atoms, it is

useful to review briefly how real spin-orbit coupling arises for charged particles. Let

me consider the simple example of the Hydrogen atom and recall that the motion

of electron orbiting the atom’s nucleus: the motion is altered by the spin of the

electrons owing to the electric field of the nucleus, and this gives rise to the atom’s

fine structure. Similar effects occur in free electrons moving through electric fields in

solids, for example the fields generated by the underlying crystalline lattice.

2



In the case of the Hydrogen atom, from the point of view of the nucleus, the

electron orbits the nucleus. However, from the electron’s point of view, the proton

orbits the electron and produces a magnetic field that couples with the electron’s

spin and alters its orbital motion [12]. It is this simple relativistic effect that leads to

the internal spin-orbit coupling of atoms. In the case of condensed matter crystalline

lattices, if the electron is travelling freely through a group of ions, from the electron’s

point of view it is the ions that move. The ions’ motion generates a magnetic field

that couples to the electron’s spin. In real solids, the coupling between the electron’s

spin and its motion is more complex, but the essence of the interaction is the same

as that depicted here.

The spin-orbit coupling found in condensed matter materials can take many forms

depending on the exact type of crystalline lattice, however there are two very common

forms of the magnetic fields, created by distribution of ions, that couple directly to

the electron’s spin. One of the types is called Rashba spin-orbit field [7]

hR = vR

(
k̂xey − k̂yex

)
, (1.1)

and the other is the Dresselhaus spin-orbit field [8]

hD = vD

(
k̂xey + k̂yex

)
, (1.2)

where k̂x, k̂y are momentum operators, vR, vD are characteristic velocities, and ex, ey

are unit vectors along the x and y directions of the crystal.

These types of spin-orbit fields are two-dimensional in nature, and a more general

Rasha-Dresselhaus field has the form

hRD = hR + hD = (vR + vD) k̂xey + (vD − vR) k̂yex, (1.3)

corresponding to a general linear combination of Rashba hR and Dresselhaus hD

fields, where the velocities vR and vD are different from each other. A very special
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linear combination of these two fields is the equal-Rashba-Dresselhaus (ERD) case

hERD = vk̂xey, (1.4)

where the two velocities vR and vD are equal to v/2. In this case, the spin-orbit

field points along the y direction, and is therefore one-dimensional. As it will be seen

shortly, it is this special ERD field that has been generated experimentally in the

context of ultra-cold atoms. The Rashba, Dresselhaus, general mixture and equal

mixture of Rashba and Dresselhaus fields are shown in Fig. 1.1.
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Figure 1.1: Spin-orbit fields for various type of couplings, Equal Rashba-Dresselhaus
(top left), Rashba (top right), Dresselhaus (bottom left) and arbitrary mixture of
Rashba and Dresselhaus (bottom right).
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There has been a revival of interest in spin-orbit coupling phenomena for con-

densed matter systems related due to the discovery of topological insulators [9, 10].

This revival occured in large due to theoretical proposals showing that Rashba type

spin-orbit fields could lead to the existence of Majorana fermions at the surface of

some insulating materials. These Majorana fermions are self-adjoint, that is, they are

their own anti-particle, and are believed to be topologically protected. This topolog-

ical protection supposedly can prevent decoherence effects and preserve a very high

fidelity of the quantum information carried by such a state, therefore it is a feature

highly desirable in a quantum computer.

Having discussed briefly the emergence of spin-orbit fields in the context of con-

densed matter physics, I will discuss next the creation of artificial spin-orbit coupling

in ultra-cold fermions.

1.2 Spin-orbit Coupling in Ultra-Cold Fermions

The creation of artificial spin-orbit coupling in ultra-cold atoms was accomplished

first in bosonic atoms 87Rb at the NIST group [5] using Raman processes. The same

technique was used by the NIST [1] and Chinese [6] groups to produce artificial spin-

orbit coupling in fermionic atoms, more specifically in 40K.

Here, I will describe briefly the Raman process that produces this artificial spin-

orbit coupling between the center of mass motion of the atom and its spin degree

of freedom. There is an important difference between the real spin-orbit coupling

and the artificial spin-orbit coupling created in ultra-cold atoms, which is important

to emphasize. Artificial spin-orbit coupling for cold atoms is not due to relativistic

effects, instead it arises due to the light-induced coupling of the center of mass mo-

mentum of the atom and its internal hyperfine states, which I will also call pseudo-spin

or even more loosely simply spin states.

To see how this artificial spin-orbit coupling arises in fermionic atoms, let me
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discuss briefly the fermionic isotope 40K, which has a nuclear spin I, with magnitude

I = 4 and and electronic spin S, with magnitude S = 1/2. The total spin of the

atom is F = I + S, with magnitude F = 9/2, where two of its hyperfine states

(|F = 9/2,mF = −9/2〉 = |1〉 and |F = 9/2,mF = −7/2〉 = |2〉) are shown in the

level diagram of Fig. 1.2a, where a two-photon Raman transition is also indicated by

the red and blue lines.

Figure 1.2: The schematic of the NIST experiment. Taken from reference [1].

In what follows, I will just describe physically the light-atom Hamiltonian created

by the Raman process shown in Fig. 1.2 and leave out the more detailed mathematical

analysis, which can be found in the literature [11, 12]. In the Raman process shown

there are two photons involved in the transition between hyperfine states 1 and 2. In

the transitions, there is the absorption of one photon and the second photon emerges

from induced emission, which implies that a net momentum is transferred to the

atom given that the total momentum of the system is conserved. The momentum

transferred from the photons to the atom in hyperfine state |1〉 is −kT and that the
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momentum transferred to to the atom in hyperfine state |2〉 is +kT . This means that

the diagonal matrix elements of the light-atom Hamiltonian HLA matrix are

〈k− kT , 1|HLA|k− kT , 1〉 =
(k− kT )2

2m
+ δ (1.5)

and

〈k + kT , 2|HLA|k + kT , 2〉 =
(k + kT )2

2m
− δ, (1.6)

where the state |k − kT , 1〉 describes the Fermi atom in hyperfine state 1 with mo-

mentum k − kT , and |k + kT , 2〉 describes the Fermi atom in hyperfine state 2 with

momentum k + kT . The energy δ = δ̃/2 is the detuning parameter, with δ̃ being

the energy detuning between the photon energies and the atomic energy difference

between the two hyperfine states.

The transition matrix element connecting the states |k−kT , 1〉 and |k + kT , 2〉, is

defined to be Ω = Ω̃/2, where Ω̃ is the conventional Rabi frequency, which is propor-

tional to the product of the two-photon electric field amplitudes. The variable Ω is

also called the time-averaged Rabi frequency or sometimes simply the Rabi frequency.

Throughout my thesis, I will make the choice of calling Ω the Rabi frequency. This

means that the off-diagonal terms of the light-atom Hamitonian matrix are simply

〈k + kT , 2|HLA|k− kT , 1〉 = Ω (1.7)

and

〈k− kT , 1|HLA|k + kT , 2〉 = Ω, (1.8)

since Ω is real. This means that the light-atom Hamiltonian matrix in the basis of

states {|k− kT , 1〉, |k + kT , 2〉} becomes simply

HLA =

 (k−kT )2

2m
+ δ Ω

Ω (k+kT )2

2m
− δ

 . (1.9)

A direct inspection of the diagonal matrix elements of this matrix already reveals

the presence of an artificial spin-orbit coupling, since the momentum transfer to the
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atom depends on the hyperfine (spin) state of the atom. This becomes more explicit

by writing

HLA =

(
k2

2m
+

k2
T

2m

)
1 + Ωσx +

(
δ − kT

m
kx

)
σz, (1.10)

where the momentum transfer kT is along the direction of the Raman beams taken to

be along the x-axis, that is, kT = kTex. Here, 1 represents the identity matrix, and

σx and σz represent Pauli matrices along the x and z directions. It is now evident

that the momentum dependent term appearing in front of σz is an artificial spin-orbit

coupling.

To make the connection to the real spin-orbit coupling, betwen the electron mo-

mentum and its spin, which is found in condensed matter physics, it is useful to

perform an SU(2) rotation in spin-space σx → σ̃z; σz → σ̃y; σy → σ̃x; and write

the light-atom Hamiltonian in a rotated or dressed basis corresponding to appro-

priate linear combinations of states of the original basis. The resulting light-atom

Hamitonian-matrix becomes of the form

H̃LA =

(
k2

2m
+

k2
T

2m

)
1 + Ωσ̃z +

(
δ − kT

m
kx

)
σ̃y, (1.11)

where the artificial spin-orbit field becomes

hERD =
kT
m
kxey, (1.12)

just like the equal-Rashba-Dresselhaus (ERD) field shown in Eq. (1.4). Notice that

the system is simultaneously under the presence of an artificial Zeeman field

hZee = −δey − Ωez. (1.13)

The component along ey can be turned off by having a resonant Raman transition,

where the detuning parameter δ = 0. The component along ez can be reduced to

small values, but if Ω = 0, then there is no Raman transition, and the momentum

transfer kT is also zero.
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The eigenvalues of H̃LA can be easily obtained analytically. In the simpler case of

zero-detuning, that is, hy = −δ = 0, the eigenvalues are

E±(k) = ε(k)±
√
v2k2

x + h2
z, (1.14)

where v = kT/m and hz = −Ω and

ε(k) =
k2

2m
+

k2
T

2m
. (1.15)

Notice that, when the Zeeman field and the spin-orbit coupling are turned off (hz =

v = 0), the energy dispersions of the fermions are degenerate. But when only the spin-

orbit field is turned on, the parabolic bands ε(k) are shifted along the kx direction,

leading to E+ = ε(k) + |vkx| and E− = ε(k)−|vkx|. As the Zeeman field hz is turned

on, the energy crossing at zero momentum is split, and the two bands acquire the

dispersion shown in Eq. (1.14) and illustrated in Fig. 1.3.
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Figure 1.3: Energy dispersions E±(k) versus momentum kx when v = 0 and hz = 0
(left panel); v 6= 0 and hz = 0 (middle panel); and v 6= 0 and hz 6= 0 (right panel).
The gray curve in the middle and right panels represents the same degenerate energy
dispersion illustrated in the left panel.

Having provided a simple introduction to the field of artificial spin-orbit coupling

in the context of ultra-cold atoms, I will present next a brief overview of chapters II,

III and IV of my thesis.
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1.2.1 Overview of the Thesis

In the remainder of this thesis, I will describe few-body and many-body aspects

of ultra-cold fermions in the presence of artificial spin-orbit and Zeeman fields. The

problems that I will tackle are motivated by experiments already performed [1], where

bounds states of two ultra-cold atoms of 40K were found in the presence of artificial

spin-orbit coupling, and by some experiments which are currently in the drawing

board to study a more complex system involving three-hyperfine-state fermions [13,

15].

In Chapter II, I describe the emergence of two-body bound states between two-

hyperfine-state fermions interacting via s-wave interactions and in the presence of

artificial spin-orbit coupling and Zeeman fields. I used a first quantization approach

to solve for the eigenvalues associated with bound-states of the resulting Schroedinger

equation. The only type of artificial spin-orbit coupling that has been created so far

is the ERD-type, but I also analyse the more complex case of Rashba, Dresselhaus or

a general linear combination of the two, given that it may be possible to create these

types of coupling using a more ellaborate arrangement of Raman beams [14].

In Chapter III, I discuss the emergence of bound states between two-hyperfine

state fermions in the presence of an ERD type of spin-orbit coupling in a harmonic

potential. The presence of the harmonic potential is an important element of the

problem, because ultra-cold atoms are typically harmonically trapped by laser beams,

rather than moving in free space. Analytical solutions of the corresponding two-

fermion Schroedinger’s equation are obtained in simpler situations where only the

spin-orbit field is present, and further approximate solutions are obtained when an

artificial Zeeman field is present but it is sufficiently small.

While light-atom Hamiltonians for two-hyperfine-state fermions, such as the one

described Eq. (1.11, provide the backbone for the analysis performed in Chapters II

and III, in Chapter IV, I describe a different system involving three-hyperfine-state
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fermions. In this last chapter, I study ultra-cold fermions with three hyperfine states,

under the influence of artificial ERD spin-orbit coupling and Zeeman fields. From

the light-atom Hamiltonian for three-hyperfine-state fermions, I analyse several spec-

troscopic properties, such as the resulting energy dispersion relations, Fermi surfaces,

momentum distributions and density of states of the system, when atom-atom in-

teractions are neglected. Furthermore, when atom-atom interactions are included, I

discuss the emergence superfluid phases and obtain a set of self-consistency relations

that can be used to obtain the phase diagram of such exotic three-hyperfine-state

superfluid.
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CHAPTER II

TWO-BODY BOUND STATES IN THE PRESENCE OF

ARTIFICIAL SPIN-ORBIT COUPLING

2.1 Introduction

In chapter I, I gave a brief introduction to the creation of artificial spin-orbit cou-

pling (SOC) for non-interacting Fermi atoms with two relevant hyperfine states. The

Hamiltonian for light-atom interactions in the presence of artificial spin-orbit and

Zeeman fields was explicitly given in Eq. (1.9). In that same chapter, I also discussed

a few different types of SOC in the context of fermions with two-internal spin states.

In this chapter, I will discuss the emergence of two-body bound states between two

Fermi atoms in the presence of spin-orbit coupling and Zeeman fields. The fermions

are assumed to have only two internal states and to have attractive contact (zero-

ranged) interactions. For such a system, I will describe the bound-state energies and

the effective mass of the bound-states as a function of spin-orbit and Zeeman fields,

and how these properties affect the Bose-Einstein condensation of such molecular

bound states. The natural momentum scale is the recoil momentum kR, which is

determined by the wavelength of the two counter-propagating Raman beams, and

the natural energy scale is the recoil energy ER = k2
R/2m, where m is the mass of the

atom.

In this and in the following chapters, I will, on occasions, either use the word

pseudospin or even more loosely use simply the word spin when referring to hyperfine

states of an atom. Thus, when I refer to a pseudospin-1/2 or spin-1/2 fermions in

the context of cold atoms, I will have in mind fermions with two relevant hyperfine

states.
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Currently, the only type of spin-orbit coupling that has been created artificially

in the context of cold atoms it the type equal-Rashba-Dresselhaus (ERD), realized

both in bosonic [5] and fermionic [1, 6]. However, more general optical methods for

constructing Rashba or Dresselhaus spin-orbit couplings have been proposed [14].

With that in mind, I will discuss the case of an arbitrary mixture of Rashba and

Dresselhaus terms, which can be particularized to Rashba-only, Dresselhaus-only and

equal-Rashba-Dresselaus (ERD).

In the context of ultra-cold atoms two-body bound states emerge, when scatter-

ing resonances, the so-called Feshbach resonances, are used to change the scattering

length of colliding atoms. These resonances arise due to the dependence of the inter-

atomic potentials on the hyperfine states of the atoms, and can be tuned via an

external real magnetic field that couples to the hyperfine states of the atoms. When

only two hyperfine states are relevant, the atom-atom interactions can be tuned via

the external magnetic field and the s-wave scattering length can change dramatically.

When the scattering length is tuned to positive values then two-body bound states

emerge. These states are also called Feshbach molecules due to the use Feshbach

resonances to produce them.

Having provided a brief introduction, I will discuss next the two-body Hamiltonian

in the presence of spin-orbit and Zeeman fields when s-wave contact interactions are

considered.

2.2 Two-particle Hamiltonian

To address the formation of two-body bound states (Feshbach molecules) in the pres-

ence of artificial spin-orbit coupling and Zeemans fields, I start from the Hamiltonian

matrix for two non-interacting fermions

H0 = H
(1)
0 + H

(2)
0 , (2.1)
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where H
(j)
0 represents the Hamiltonian matrix for particle j taking the form

H
(j)
0 = −

∇2
j

2m
1 + βi∂yjσx + γi∂xjσy − hyσy − hzσz. (2.2)

In the expression above, the terms involving the coefficients β and γ represent

generic a spin-orbit field involving Rashba and Dresselhaus contributions written in

real space, while the components {hy, hz} represent Zeeman fields. Notice that one

can define the spin-orbit field

hRD = −βi∂yjex − γi∂xjey = βk̂yjex + γk̂xjey, (2.3)

with β = vD − vR, and γ = vD + vR, where vR is the Rashba velocity and vD is the

Dresselhaus velocity, as described in chapter I.

In passing, I would like to comment that when both β and γ are non-zero the spin-

orbit field hRD resembles a non-Abelian gauge field. This can be seen by completing

the squares of the momentum operator giving

H
(j)
0 = −

(
∂xj1− imγσy

)2

2m
−
(
∂yj1− imβσx

)2

2m
+ ...

...−
∂2
zj

2m
1− 1

2
mγ21− 1

2
mβ21− hyσy − hzσz,

(2.4)

where it can be noticed that the terms Ax = −imγσy and Ay = −imβσx resemble

the components of a gauge field A = (Ax,Ay, 0), but since the matrices σx and σy

are non-commutative, the gauge field A is non-Abelian.

For calculational purposes, I will use the form of the single-particle Hamiltonian

matrix defined in Eq. (2.2), and from them construct the two-particle Hamiltonian

matrix

H2 = −∇
2
1

2m
1⊗ 1 + iγ∂x1σy ⊗ 1 + iβ∂y1σx ⊗ 1− hzσz ⊗ 1− hyσy ⊗ 1 + ...

−∇
2
2

2m
1⊗ 1 + iγ∂x21⊗ σy + iβ∂y11⊗ σx − hz1⊗ σz − hy1⊗ σy,

(2.5)

where the symbol ⊗ indicate Kronecker direct products, which are explicitly given in

Appendix I.
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The Hamiltonian matrix for two non-interacting fermions becomes

T̂ − 2hz ihy + βi∂y2 + γ∂x2 ihy + βi∂y1 + γ∂x1 0

−ihy + βi∂y2 − γ∂x2 T̂ 0 ihy + βi∂y1 + γ∂x1

−ihy + βi∂y1 − γ∂x1 0 T̂ ihy + γ∂x2 + βi∂y2

0 −ihy + βi∂y1 − γ∂x1 −ihy − γ∂x2 + βi∂y2 T̂ + 2hz


(2.6)

with the kinetic energy operator defined as

T̂ = −∇
2
1

2m
− ∇

2
2

2m
. (2.7)

When a zero-ranged attractive s-wave interaction HI = −gδ(r1− r2)δs,−s between

fermions with opposite spins is added to the Hamiltonian matrix in Eq. (2.1), it

acquires the two-particle extended matrix form

HI = − g√
2
δ1,2



0 0 0 0

0 −1 1 0

0 1 −1 0

0 0 0 0


. (2.8)

The abbreviation δ1,2 ≡ δ(r1 − r2) is used to represent the contact interaction. The

bare coupling constant g can be expressed in terms of the experimentally relevant

s-wave scattering length [24] via the relation

L3

g
= − m

4πas
+
∑
k

1

2εk
(2.9)

where L3 is the volume of free space, as = abg [1 + ∆B/(B −B0)] is three-dimensional

s-wave scattering length expressed in terms of the backgroung scattering length, the

real magnetic field B, the width ∆B of the Feshbach resonance, and the field B0

where the resonance is located.

To find the two-body bound state energies, it is necessary to solve the Schrodinger

equation

(H2 + HI) Ψ(r1, r2) = EΨ(r1, r2), (2.10)
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where Ψ(r1, r2) is a spinor (four-component vector wave function) in real space with

components

Ψ†(r1, r2) =
[
ψ∗↑↑(r1, r2), ψ∗↑↓(r1, r2), ψ∗↓↑(r1, r2), ψ∗↓↓(r1, r2)

]
. (2.11)

In each of the components of this spinor, the first spin index refers to particle “1”,

while the second spin index refers to particle “2”.

The first step to solve the Schroedinger’s equation defined in Eq. (2.10) is to

convert the two-particle Hamiltonian matrix H2 into the momentum space matrix

H̃2(k1,k2)

εk1k2 − 2hz ihy − βky2 + iγkx2 ihy − βky1 + iγkx1 0

−ihy − βky2 − iγkx2 εk1k2 0 ihy − βky1 + iγkx1

−ihy − βky1 − iγkx1 0 εk1k2 ihy − βky2 + iγkx2

0 −ihy − βky1 − iγkx1 −ihy − βky2 − iγkx2 εk1k2 + 2hz


(2.12)

and at the same time perform the same conversion in the two-particle interaction

matrix

H̃I = − g√
2



0 0 0 0

0 −1 1 0

0 1 −1 0

0 0 0 0


1

L3

∑
k

. (2.13)

The corresponding Fourier-transformed spinor is

Ψ†(k1,k2) =
[
ψ∗↑↑(k1,k2), ψ∗↑↓(k1,k2), ψ∗↓↑(k1,k2), ψ∗↓↓(k1,k2)

]
, (2.14)

whereas the two-particle kinetic energy in Eq. (2.12) is

εk1k2 =
k2

1

2m
+

k2
2

2m
. (2.15)

Both the two-particle Hamiltonian for non-interacting particles H̃2 shown in Eq. (2.12)

and the interaction Hamiltonian H̃I in Eq. (2.13) are written in the standard spin-

basis {| ↑, ↑〉, | ↑, ↓〉, | ↓, ↑〉| ↓, ↓〉} where the first entry (s) in the ket |s, s′〉 refers to

particle 1, and the second entry s′ refers to particle 2.
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However, to make further progress, it is very convenient to change the basis into

two-particle spin-singlet ket |0, 0〉, and two-particle spin-triplet kets |1, 1〉, |1, 0〉, and

|1,−1〉). This is achieved via the unitary matrix

U =



1 0 0 0

0 1/
√

2 1/
√

2 0

0 0 0 1

0 1/
√

2 −1/
√

2 0


, (2.16)

which transforms the spinor Ψ(k1,k2) into a new spinor in the singlet/triplet basis

defined by

UΨ(k1,k2) = Φ(k1,k2) =



φ1,1(k1,k2)

φ1,0(k1,k2)

φ1,−1(k1,k2)

φ0,0(k1,k2)


(2.17)

Notice that singlet/triplet wave functions are connected to the up/down wave func-

tions in the usual way, that is via the symmetric or antisymmetric combination of the

products of the up/down wavefunctions.

Additional progress can be made by writing down the wavefunctions of the spinor

Φ(k1,k2) as a function of the relative and center of mass momentum of the two

particle given respectively by k = (k1−k2)/2, and K = k1+k2. Such a transformation

results in the spinor components

φ1,1(K/2 + k,K/2− k) ≡ φ1,1(k,K) = ψ↑↑(k,K) (2.18)

φ1,0(K/2 + k,K/2− k) ≡ φ1,0(k,K) =
1√
2

[ψ↑↓(k,K) + ψ↓↑(k,K)] (2.19)

φ1,−1(K/2 + k,K/2− k) ≡ φ1,−1(k,K) = ψ↓↓(k,K) (2.20)

φ0,0(K/2 + k,K/2− k) ≡ φ0,0(k,K) =
1√
2

[ψ↑↓(k,K)− ψ↓↑(k,K)] .(2.21)

Next, I apply the unitary matrix U to the two-particle Hamiltonian matrix H̃2(k1,k2)

to obtain the new Hamiltonian matrix H0(k1,k2) = UH̃2(k1,k2)U†, which can be
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expressed in terms of the relative momentum k and center of mass momentum K as

H0(k,K) =



εk,K − 2hz h1,2 0 p1,2

h∗1,2 εk,K h1,2 0

0 h∗1,2 εk,K + 2hz −p∗1,2

p∗1,2 0 −p1,2 εk,K


. (2.22)

The off-diagonal matrix elements in Eq. (2.22) are characterized by the effective

fields

h1,2 = h(k1) + h(k2)/
√

2 = iγKx/
√

2− βKy/
√

2 + i
√

2hy, (2.23)

which involve only the center of mass momentum K, and the additional effective fields

p1,2 = h(k1)− h(k2)/
√

2 = −i
√

2γkx +
√

2βky (2.24)

that depend only on the relative momentum k. In the expressions above, I used the

relation h(ki) = ihy − βkyi + iγkxi to obtain the final forms of h1,2 and p1,2. The

diagonal terms in Eq. (2.22) contain the two-particle kinetic energies

εk,K = εk1,k2 = k2
1/2m+ k2

2/2m = k2/m+ K2/4m. (2.25)

The application of the same unitary transformation to the interaction matrix

matrix H̃I leads to

HI = UH̃IU
† =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − g
L3

∑
k


, (2.26)

which explicitly shows that the interactions between the two fermions only occurs in

the singlet channel corresponding to the last diagonal entry of the matrix HI above.

Now that all the terms of the two-particle Hamiltonian in the presence of spin-

orbit coupling, Zeeman fields and attractive contact interactions are written in a useful

form, I will discuss next the emerge of two-particle bound states (Feshbach molecules)

in the presence of an arbitrary mixture of Rashba and Dresselhaus spin-orbit fields.
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2.3 Bound State Energies

In this section, I will discuss the binding energy of two-body bound states (Feshbach

molecules) and their dependence on spin-orbit coupling strength, Zeeman field and

s-wave scattering length. I will present first the results for the case of equal-Rashba-

Dresselhaus (ERD) spin-orbit coupling, which is currently the most relevant type for

ultra-cold Fermi atoms. Second, I will analyse the Rashba case, and lastly, I will

investigate a more general mixture of Rashba and Dresselhaus spin-orbit fields.

2.3.1 Equal Rashba-Dresselhaus Case

Thus far, the experimentally relevant spin-orbit coupling type for ultracold atoms is

the equal Rashba-Dresselhaus (ERD) type. The ERD case corresponds to setting

γ = v and β = 0 in the Hamiltonian shown in Eq. (2.22), producing the ERD

Hamiltonian

H0 =



εk,K − 2hz i v√
2
Kx + i

√
2hy 0 −i

√
2vkx

−i
√

2hy − i v√2
Kx εk,K i v√

2
Kx + i

√
2hy 0

0 −i
√

2hy − i v√2
Kx εk,K + 2hz −i

√
2vkx

i
√

2vkx 0 i
√

2vkx εk,K


(2.27)

where the kinetic energies are again εk,K = k2/m + K2/4m, and the momentum

vectors three-dimensional k = (kx, ky, kz), and K = (Kx, Ky, Kz).

Notice that the off-diagonal terms depending on the center of mass momentum

variable Kx have also a similar dependence on the Zeeman field hy. This means that

for finite hy it is always possible to find a value of Kx that makes the off-diagonal term

i v√
2
Kx + i

√
2hy = 0. The value is is Kx = −2hy/v for all the equivalent off-diagonal

terms. This property of Hamiltonian will have interesting consequences later on, and

I will bring this property into discussion at the appropriate time.

To solve for the two-body bound states, I need to find the corresponding energy
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eigenvalues of the Schroedinger’s equation

(H0 + HI) Φ(k,K) = EΦ(k,K), (2.28)

where H0 is Hamiltonian of two non-interacting particles described in Eq. (2.27) and

HI is the attractive contact interaction with strength g in the singlet channel shown

in Eq. (2.26).

Notice that the action of the HI on the spinor Φ leads to

HIΦ(k,K) =



0

0

0

− g
L3 Σkφ0,0(k,K)


, (2.29)

which shows explicitly that only the singlet channel is included in the attractive

interaction term.

In order to obtain a formal solution of Eq. (2.28) and find the bound states eigen-

values E, it is useful to take advantage of the knowledge of eigenvalues of H0, which

give the eigenenergies of two free fermions, that is, these eigenvalues give the free con-

tinuum spectrum of two particles. When bound states emerge, their energy E has to

be lower the threshold energy of the two free particle continuum. For this purpose, I

introduce the unitary matrix V that diagonalizes H0, and define the diagonal matrix

H′0 = VH0V
† (2.30)

to describe the eigenergies corresponding to the continuum spectrum of two free

particles. The resulting diagonal matrix is

H′0 =



E⇓⇓ 0 0 0

0 E⇓⇑ 0 0

0 0 E⇓⇑ 0

0 0 0 E⇑⇑


, (2.31)
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where the eigenvalues Eαβ(k,K) are labeled by {α, β} = {⇑,⇓} representing a gen-

eralized helicity spin. The four eigenvalues are as follows

E⇓⇓(k,K) = εk,K + |h1 − h2| =
k2

m
+

K2

4m
+
√

4v2k2
x + 4h2

z (2.32)

E⇓⇑(k,K) = εk,K + |h1 + h2| =
k2

m
+

K2

4m
+

√
(vKx + 2hy)

2 + 4h2
z (2.33)

E⇑⇓(k,K) = εk,K − |h1 + h2| =
k2

m
+

K2

4m
−
√

(vKx + 2hy)
2 + 4h2

z (2.34)

E⇑⇑(k,K) = εk,K − |h1 − h2| =
k2

m
+

K2

4m
−
√

4v2k2
x + 4h2

z, (2.35)

where hi is the effective field experienced by particle i. For the ERD case, these fields

are h1 = (hy+vkx1)ey+hzez and h2 = (hy+vkx2)ey+hzez. Let me remind the reader

that hy represents the detuning, and hz represents the Rabi frequency in the starting

spin basis that used in this chapter. Also it is important to notice that the labelling

of the eigenvalues by {⇑,⇓} used above is correct only when |vKx + 2hy| ≤ |2vkx|,

such the order of eigenvalues in this case is E⇓⇓ ≥ E⇓⇑ ≥ E⇑⇓ ≥ E⇑⇑.

The energy eigenvalues Eαβ(k,K) have parabolic dependences on the relative

momentum components ky and kz, as well as parabolic behavior for the center of

mass momenta momentum components Ky and Kz. However, they present non-trivial

dependence as function of either the relative momentum component kx or as function

of the center of mass momentum component Kx. This non-trivial dependence on

the relative momentum kx is plotted and Zeeman fields hz are plotted in Fig. 2.1 for

various choices of parameters.

A formal solution of the Schroedinger’s equation

(H0 + HI) Φ(k,K) = EΦ(k,K) (2.36)

can be obtained by rearranging its terms as

(H0 − E1) Φ(k,K) = −HIΦ(k,K) (2.37)

and inverting the relation above to obtain

Φ(k,K) = − (H0 − E1)−1 HIΦ(k,K). (2.38)
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Figure 2.1: Plots of the generalized two-particle helicity bands E⇑⇑(k,K) (black
solid), E⇑⇓(k,K) (red dotdashed), E⇓⇑(k,K) (green dashed), and E⇓⇓(k,K) (blue
dotted) along the direction of relative momentum (0, 0, kx), for ERD spin-orbit
coupling v = kR/m, various values of detuning hy and Raman intensity hz, and
specific values of the center of mass momentum (0, 0, Kx). The parameters used are
a) hy = 0, hz = 0.5ER, and Kx = 0; b) hy = 0.5ER, hz = 1.0ER, and Kx = 0;
c) hy = 1.25ER, hz = 0.5ER, and Kx = 0; and d) hy = 0.5ER, hz = 0.5ER, and
Kx = 1.25kR. Notice the change in location of the minimum of E⇓⇓(k,K) from finite
kx in a) and b) to kx = 0 in c) and d).

In order to take advantage of the eigenvalues Eαβ(k,K), it is useful to convert the

expression the inverse matrix (H0 − E1)−1 in terms of the adjugate matrix and the

determinant of H0 − E1. Such standard tranformation leads to the formal solution

Φ(k,K) = −Adj [H0 − E1]

Det [H0 − E1]
HIΦ(k,K), (2.39)

which makes it explicit the eigenvalues Eαβ(k,K), since Det [H0 − E1] is nothing but

the characteristic polynomial (E⇑⇑ − E)(E⇑⇓ − E)(E⇓⇑ − E)(E⇓⇓ − E).

To gain insight, let me obtain the explicit form of the eigenvalue equation by
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setting the center of mass momentum to zero (K = 0), setting both Zeeman fields

(hy = hz = 0), and integrating Eq, (2.40) over relative momenta k. The explicit

derivation of the eigenvalue equation below can be found in Appendix II, the result

is

1

g
=

1

L3

∑
k

εk,0 − E
(εk,0 − E)2 − 4v2k2

x

. (2.40)

Using the relation between the attractive interaction strength g and the s-wave

scattering length as shown in Eq. (2.9), the eigenvalue equation above can be solved

exactly to give

E = EB = − 1

ma2
s

−mv2, (2.41)

where EB is the bound state energy. The derivation is given in Appendix III. This

result is not surprising, since the extra term present −mv2 is just the total Galilean

boost due to the existence of spin-orbit coupling. This boost is present because the

system is Galilean invariant when hy = hz = 0 and the spin-orbit coupling can be

gauged away. This means that the binding energy EBin defined as the energy difference

between the bound-state energy EB and the minimum of the two-particle continuum

of free particles −mv2 is simply

EBin = EB +mv2 = − 1

ma2
s

. (2.42)

Having discussed the case of hz = hy = 0 and K = 0 with finite ERD coupling

v 6= 0, let me add a non-zero Zeeman field hz corresponding to a finite Rabi frequency,

but still keep hy = 0 and K = 0. Using the same procedure into the formal solution

described in Eq. (2.39), I obtain the integral equation

1

g
=

1

L3

∑
k

(E − εk,0)2 − 4h2
z

(E − εk,0)3 − (E − εk,0) (4v2k2
x + 4h2

z)
. (2.43)

Numerical results regarding the bound state energy EB, the binding energy EBin,

the threshold binding energy EB,th and the threshold scattering length as,th, which

emerge by solving Eq. (2.43), are shown in Fig. 2.2.
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Figure 2.2: Plots of bound state energy EB/ER versus 1/(kRas) in ERD case with
K = 0, hz = 0, hy = 0 (a) for mv = 0 (blue dotted), mv = 0.5kR (red dot-dashed),
mv = 0.75kR (green dashed), mv = kR (black solid). Binding energy EBin/ER versus
1/(kRas) with K = 0, hy = 0, mv = kR are shown in (b) for hz = 0 (blue dotted),
hz = ER (green dashed), hz = 2ER (red dot-dashed), hz = 3ER (black solid). Plots
of the bound state energy threshold EB,th/ER and the scattering parameter threshold
1/(kRas,th) versus hz/ER are shown in (c) and (d), respectively, for parameters K = 0
and hy = 0 with mv = 0.25kR (blue dotted), mv = 0.5kR (red dot-dashed), mv =
0.75kR (green dashed), mv = kR (black solid)

In Fig. 2.2a, I show plots of the bound state energy EB, solution to Eq. (2.43),

in units of the recoil energy ER versus the scattering parameter 1/(kRas). The pa-

rameters used in Fig. 2.2a, are K = 0, hz = 0, hy = 0, with the different curves

corresponding to the following values of the spin-orbit coupling parameter mv = 0

(blue dotted), mv = 0.5kR (red dot-dashed), mv = 0.75kR (green dashed), mv = kR

(black solid). These curves just show the unit shift of the bound state energy by the

amount of −mv2. All these curves collapse into the binding energy curve EBin/ER
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shown in Fig. 2.2b corresponding to the for hz = 0 (blue dotted), because the mini-

mum of the free two-particle continuum is substracted.

In Fig. 2.2b, I show plots of the the binding energy curve EBin/ER versus the

scattering parameter 1/(kRas), where the minimum of the free two-particle continuum

is substracted. The binding energy measures how much energy is gained to form a two-

body bound state in comparison to the energy of two free particles. The parameters

used in Fig. 2.2b are K = 0, hy = 0, mv = kR with the different curves corresponding

to the following values of the Zeeman field hz = 0 (blue dotted), hz = ER (green

dashed), hz = 2ER (red dot-dashed), hz = 3ER (black solid). Notice that as the

Zeeman field hz is increased it becomes more difficult to form two-body bound states

in the presence of singlet s-wave attractive interactions, thus requiring a stronger

attraction, that is, larger scattering parameter 1/(kRas) for fermions to bind.

In Fig. 2.2c, I show plots of the bound state energy threshold EB,th in unit of

ER versus the Zeeman field hz also in units of ER. The parameters used in this

figure are K = 0 and hy = 0, with different curves corresponding to mv = 0.25kR

(blue dotted), mv = 0.5kR (red dot-dashed), mv = 0.75kR (green dashed), mv = kR

(black solid). These plots reveal that for fixed spin-orbit coupling parameter mv an

increasing Zeeman field tends to make the two-body bound state more difficult to form

in the singlet s-wave channel. However, they also reveal that two-body bound state

formation is facilitated for fixed hz and increasing mv. This effect can be understood

due to spin-flip capability of the spin-orbit coupling, which counteracts the tendency

that the Zeeman field hz has to align the spins. It is this competition between the

Zeeman field hz and the spin-orbit coupling that leads to substantial changes in the

required conditions for the emergence of two-body bound states (Feshbach molecules).

In Fig. 2.2d, I show plots of the the scattering parameter threshold 1/(kRas,th)

versus hz/ER The parameters used in this figure are K = 0 and hy = 0, with different

curves corresponding to mv = 0.25kR (blue dotted), mv = 0.5kR (red dot-dashed),
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mv = 0.75kR (green dashed), mv = kR (black solid). This figure tells again a similar

story. The threshold scattering parameter 1/(kRas,th) is an increasing function of

hz/ER, meaning that it becomes more difficult to form a two-body bound state from

singlet s-wave interactions, thus requiring stronger interactions as hz grows. However,

if spin-orbit coupling mv increases, it becomes easier to form these two-body bound

states because spin-orbit can always flip spins increasing the singlet component of the

spinor wavefunction of the bound-state. I note in passing that 1/(kRas,th) initially

grows quadratically with hz/ER for hz < mv2 and then linearly with hz/ER for

hz > mv2. This qualitative difference in behavior is due to the fact that the minimum

of the lowest band of the two-particle continuum E⇑⇑(k,K = 0) shifts from k 6= 0

when hz < mv2 to k = 0 when hz > mv2. See Fig. (2.1) for this qualitative change

in the lowest eigenvalue E⇑⇑(k,K = 0).

Lastly, the eigenvalue equation for K 6= 0, hz 6= 0 and hy 6= 0 can be obtained

from the formal solution described in Eq. (2.39), upon integration over the relative

momentum coordinate k, leading to

1

g
=

1

L3

∑
k

Ek,K
(
E2
k,K − (vkx + 2hy)

2 − 4h2
z

)
E4
k,K + 4k2

xv
2(vkx + 2hy)2 − E2

k,K [(vkx + 2hy)2 + 4v2k2
x + 4h2

z]
, (2.44)

where Ek,K = E − εk,K. Again, g can be replaced in favor of the s-wave scattering

length as, and the integral equation can be solved numerically to find the bound-state

energy EB as a function of K, hz, hy, v and as.

The main results for ERD coupling with K = 0, hz 6= 0 and hy 6= 0 are shown

in Figs. 2.3, while the main results for ERD coupling with with K 6= 0, hz 6= 0 and

hy 6= 0 are shown in Fig. 2.4.

In Fig. 2.3a the bound state energy EB/ER is shown for K = 0, hz = 0.5ER

and hy = 0.25ER with spin-orbi coupling parameters mv = 0.05kR (blue dotted),

mv = 0.25kR (green dashed), mv = 0.75kR (red dot-dashed), mv = kR (black solid).

Notice the expected shift downward in EB with increasing mv.

In Fig. 2.3b the binding energy EBin/ER is shown as a function of the scattering
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Figure 2.3: Bound state properties for ERD spin-orbit coupling with K = 0, but
with hz 6= 0 and hy 6= 0. a) Two-body bound state energy EB/ER for hz = 0.5ER
and hy = 0.25ER with mv = 0.05kR (blue dotted), mv = 0.25kR (green dashed),
mv = 0.75kR (red dot-dashed), mv = kR (black solid). b) Plots of EBin/ER versus
1/(kRas) with hz = ER, and mv = kR for hy = 0 (blue dotted), hy = ER (green
dashed), hy = 2ER (red dot-dashed), hy = 3ER (black solid). Plots of EB,th/ER and
1/(kRas, th) versus hy/ER with v = kR/m are shown respectively in c) and d) for
hz = 0 (black solid); hz = ER (red dot-dashed); hz = 2ER (green dashed); hz = 3ER
(blue dotted).

parameter 1/(kRas) with hz = ER, and mv = kR for hy = 0 (blue dotted), hy = ER

(green dashed), hy = 2ER (red dot-dashed), hy = 3ER (black solid). Notice, the clear

trends shown in the plots. First, for fixed hy, increasing the scattering parameter

1/(kRaS) (increasing attractive interactions) leads to a lowering of binding energy

EBin, as physically expected. Second, for fixed EBin, an increasing Zeeman field hy

(detuning) requires a stronger attractive interaction [larger 1/(kRas)] to produce the

same binding energy. This result is also expected physically, because the Zeeman field
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hy tends to supress the emergence of s-wave singlet bound states.

In Fig. 2.3c the bound-state energy threshold EB,th/ER versus hy/ER is shown

for fixed mv = kR/m and varying hz = 0 (black solid); hz = ER (red dot-dashed);

hz = 2ER (green dashed); hz = 3ER (blue dotted). Notice that the larger the Zeeman

field hz (Rabi frequency) the more difficult to form two-body bound states with zero

center of mass momentum K = 0, and the situation is made worse whenever hy is

turned on, that is whenever hy 6= 0. Again, this is somewhat expected, as Zeeman

fields tend to suppress the formation of s-wave single bound states.

In Fig. 2.3d the threshold scattering parameter 1/(kRas,th) versus hy/ER is shown

for fixed mv = kR/m and varying hz = 0 (black solid); hz = ER (red dot-dashed);

hz = 2ER (green dashed); hz = 3ER (blue dotted). Notice that these plots provide

essentially the same information as the plots shown in Fig. 2.3c, that is the larger

the Zeeman field hz (Rabi frequency) the more difficult to form two-body bound

states with zero center of mass momentum K = 0 leading to a large threshold value

1/(kRas,th). The situation is only made worse whenever hy is turned on, that is

whenever hy 6= 0. This is the expected physical behavior as Zeeman fields tend to

suppress the formation of s-wave single bound states.

The problem gets more interesting when the center of mass momentum is allowed

to be non-zero, that is, K 6= 0, while at the same hy 6= 0 and hz 6= 0. The new effect

that arises is that the binding energy dispersion EB(K) is no longer parity even in

K, or to more specific, does not have well defined parity in Kx. In Fig. 2.4 plots

of bound state threshold energies (solid black curves) and bound-state (Feshbach

molecule) energies (blue dotted curves) with 1/(kRas) = 0.75; (green dashed curves)

with 1/(kRas) = 1.25; and (red dot-dashed curves) with 1/(kRas) = 1.75) are shown

versus the center of mass momentum K = (Kx, 0, 0) for mv = kR and hz = 0.5ER,

with a) hy = 0; b) hy = 0.5ER; c) hy = 1.5ER; and c) hy = 2.5ER. Notice the

absence of inversion symmetry (parity) when hy 6= 0, and, in addition, that for hy
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sufficiently large and for 1/(kRas) sufficiently small, no bound-states with zero center

mass of mass momentum exist. This can be clearly seen in the blue dotted curve of

Fig. 2.4d with parameters 1/(kRas) = 0.75 and hy = 2.5ER, where only bound states

with Kx < 0 are allowed.
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Figure 2.4: All graphs refer to the ERD case. Plots of bound state threshold ener-
gies (solid black curves) and bound-state (Feshbach molecule) energies (blue dotted
curves) with 1/(kRas) = 0.75; (green dashed curves) with 1/(kRas) = 1.25; and (red
dot-dashed curves) with 1/(kRas) = 1.75) are shown versus the center of mass mo-
mentum K = (Kx, 0, 0) for mv = kR and hz = 0.5ER, with a) hy = 0; b) hy = 0.5ER;
c) hy = 1.5ER; and c) hy = 2.5ER. Notice the absence of inversion symmetry (parity)
when hy 6= 0.

Having discussed the emergence of two-body bound states for the experimentally

relevant ERD spin-orbit coupling, I will discuss next the existence of two-body bound-

states for the case Rashba spin-orbit coupling.
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2.3.2 Rashba Case

The Rashba type of spin-orbit coupling is the relevant case for condensed matter

physics, as it can be encountered on a variety of semiconductor materials. In con-

densed matter systems the Rashba type of spin-orbit coupling arises due to the in-

terplay between relativistic corrections of the motion of conduction/valence electrons

and the underlying crystallographic symmetry of the material. In the case of ultra-

cold atoms, however, the creation of artificial spin-orbit coupling of the Rashba-type

has been proposed theoretically [14], but has not been realized yet experimentally.

Nevertheless, it is possible that such a situation will arise in future experiments, and

thus I address the emergence of two-body bound states between fermions interacting

via s-wave singlet attractive interactions, and in the presence of artificial Rashba-type

spin-orbit coupling and Zeeman fields.

The emergence of two-body found states (Feshbach molecules) for the Rashba

type spin-orbit coupling can be studied by setting γ = β = vR in the Hamiltonian

described in Eq. (2.22), leading to

H0(k,K) =



εk,K − 2hz hR 0 pR

h∗R εk,K hR 0

0 h∗R εk,K + 2hz −p∗R

p∗R 0 −pR εk,K


, (2.45)

where, hR = vR (iKx −Ky) /
√

2 + i
√

2hy and pR =
√

2vR (−ikx + ky).

The integral equation for the bound-state energies, can be obtained from the

formal solution described in Eq. 2.39 using the same technique as in the ERD case,

that is, upon eliminating all the other spinor-components, except for φ0,0(k,K).

The simplest example to explore is the case where the center of mass momentum

K = 0, and the Zeeman fields hz = 0 and hy = 0. The corresponding integral equation

and the actual method to solve it is outlined in Appendix IV. Here, I just quote the
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result

exp

[
1

mvR

(
2
√
−mE − 2

as

)]
=

√
−mE +mvR√
−mE −mvR

(2.46)

which gives an implicit relation between the bound-state energy E, the scattering

length as and the Rashba velocity vR. The expression above is an agreement with an

independent derivation [17].

The main difference contained in Fig. 2.5 describing the Rashba case and Fig. 2.2

describing the ERD case in Fig. 2.2, is that there is no threshold for the formation of

two-body bound states in the Rashba case when hy = hz = 0 and K = 0.
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Figure 2.5: Plots of various quantities in related to the emergence of two-body bound
state in the case of Rashba spin-orbit coupling with hz = hy = 0 and K = 0. Plots
of Bound state energy are shown in (a) and Binding energy in (b) versus 1/(kRas)
for vR = kR/m (black solid), vR = 0.75kR/m (red dot-dashed), vR = 0.5kR/m (green
dashed), vR = 0.25kR/m (blue dotted). Threshold energies bound state energies are
shown in (c) and threshold s-wave scattering parameter are shown in (d) versus hz/ER
for vR = kR/m (black solid), vR = 0.75kR/m (red dot-dashed), vR = 0.5kR/m (green
dashed), vR = 0.25kR/m (blue dotted)

If the Zeeman field hz 6= 0, but hy = 0 the integral equation for the bound-state
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energy is given by

1

g
=

1

L3

∑
k

(E − εk,0)2 − 4h2
z

(E − εk,0)
(
(E − εk,0)2 − 4v2

Rk
2 − 4h2

z

) (2.47)

The main results the bound state energy, binding energy, bound state energy and

scattering parameter thresholds are shown in Fig. 2.6. The main trends are exactly

the same as in the ERD case, that is, Zeeman fields tends to suppress the formation

of two-body bound states created by s-wave singlet interactions, while the presence of

spin-orbit coupling and its spin-flipping ability tends to counter the trend imposed by

the Zeeman fields. Therefore, Fig. 2.6 reflecting the Rashba case tells a qualitatively

similar story as the ERD case.

The integral equation for the bound-state eigenvalue when hz 6= 0, and hy 6= 0 is

L3

g
=

∑
k

Ek,K
(
E2
k,K −K2

yv
2
R − 4h2

z − b2
)

E4
k,K + 4v2

R (kxb+ vRkyKy)
2 − E2

k,K

(
b2 + 4h2

z + v2
RK

2
y + 4v2

Rk
2
⊥
) (2.48)

where, b = vRKx + 2hy and Ek,K = E − εk,K.

Results for bound state energies for Rashba spin-orbit coupling with hz 6= 0 and

hy 6= 0 versus the center of mass momentum component Kx are shown in Fig. 2.7.

The main trends are exactly the same as in the ERD case, that is, when hy = 0 the

bound state dispersions have a well defined parity along the Kx direction, but when

hy 6= 0 parity is lost. Furthermore, when hy is sufficiently large and the scattering

parameter is sufficiently 1/(kRas) is sufficiently small, eventually there is no two-body

bound state at zero center of mass momentum. This again the same trend found in

the ERD case.

Having briefly discussed the case of artificial spin-orbit coupling for the Rashba

case, I will present next a few results regarding the more general case of an arbitrary

mixture of Rashba and Dresselhaus terms.

2.3.3 Arbitrary Mixture of Rashba and Dresselhaus Fields

An arbitrary mixture of Rashba and Dresselhaus terms can be tuned using the pa-

rameters β and γ in the Hamiltonian described in Eq 2.12. The integral equation for
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Figure 2.6: All graphs refer to the Rashba case, with K = 0 and mvR = kR. The
bound state energy is shown in (a), the binding energy is shown in (b) versus 1/(kRas)
with hy = 0.5ER for hz = 0.5ER (black solid), hz = ER (red dot-dashed), hz = 1.5ER
(green dashed), hz = 2ER (blue dotted). The threshold energy is shown in (c) and
the threshold s-wave scattering length is shown in (d) versus hy/ER for hz = 0.5ER
(black solid), hz = ER (red dot-dashed), hz = 1.5ER (green dashed), hz = 2ER (blue
dotted)

the two-body bound states can be obtained again via row reduction leading to the

intermediate relation

E4
k,K − E2

k,K (4a2 + b2 + 4h2
z) + 4 (a · b)

Ek,K
(
E2
k,K − 4h2

z − b2
) φ0,0(k,K) =

g

L3

∑
k′

φ0,0(k′,K), (2.49)

where the vectors appearing in the expression above are a = γkxex + βkyey and

b = (2hy + γKx) ex + βKyey.

This integral equation can be solved by isolating the wave function φ0,0(k,K) on

the left hand side and then integrating the resulting expression over relative momenta
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Figure 2.7: All graphs refer to the Rashba case with mvR = kR and hz = 0.5ER.
Plots of bound state threshold energies (solid black) and various bound state energy
curves [blue dotted with 1/(kRas) = 1; green dashed with 1/(kRas) = 0.75; red
dotdashed with 1/(kRas) = 0.5] versus center of mass momentum K = (Kx, 0, 0)
with (a) hy = 0; (b) hy = 0.5ER; (c) hy = 1ER; and (d)hy = 1.5ER. Notice the
absence of inversion symmetry (parity) when hy 6= 0.

k. The resulting eigenvalue equation is

L3

g
=
∑
k

Ek,K
(
E2
k,K − 4h2

z − b2
)

E4
k,K − E2

k,K (4a2 + b2 + 4h2
z) + 4 (a · b)

, (2.50)

corresponding to the most general case of K 6= 0, hz 6= 0 and hy 6= 0.

I discuss first the simplest situation corresponding to K = 0, hz = 0 and hy = 0,

in which case the general relation above simplifies to

L3

g
=
∑
k

Ek,0
E2
k,0 − 4a · a

. (2.51)

This integral equation is solved analytically in Appendix V, where a transcendental

equation between the bound state energy and the spin-orbit coupling parameters γ

and β is found.
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When the Zeeman field hz 6= 0, but still with K = 0 and hy 6= 0, the integral

equation for the eigenvalues can be obtained from the general form shown in Eq. (2.50)

leading to

L3

g
=
∑
k

(E − εk,0)2 − 4h2
z

(E − εk,0)3 − (E − εk,0) (4h2
z + 4a2)

. (2.52)

In Fig. 2.8 the bound state energy is shown in (a) and the binding energy is shown

in (b) versus the scattering parameter 1/(kRas) with hz = hy = 0, K = 0 and Rashba

parameter mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR (black

solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR (blue

dotted). While the bound state threshold energy is shown in (c) and the threshold

scattering length 1(kRas) is shown in (d) versus hz/ER with hy = 0, K = 0 and

Rashba parameter mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR

(black solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR

(blue dotted). The main information to be extracted from all the graphs in Fig. 2.8

is that the behaviour of the system is intermediate between the ERD and the Rashba

cases. But again the same qualitative trends are observed: Zeeman fields tend to

suppress the formation of two-body states due to s-wave singlet interactions, and

spin-orbit coupling tends to counter the detrimental effects of Zeeman fields due to

its spin-flipping ability.

In Fig. 2.9, the bound state energy is shown in (a) and the binding energy is shown

in (b) versus 1/(kRas) with hz = ER, hy = 0.5ER, K = 0 and Rashba parameter

mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR (black solid),

mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR (blue

dotted). The bound state energy threshold is shown in (c) and the threshold scattering

parameter 1/(kRas) is shown in (d) versus hy/ER for fixed values of hz = 0.5ER,

K = 0 and Rashba parameter mvR = 0.5kR and varying Dresselhaus parameters

vD = 0.0001kR/m (black solid), vD = 0.1kR/m (red, dot-dashed), vD = 0.2kR/m

(green, dashed), vD = kR/m (blue, dotted). The main information to be extracted
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Figure 2.8: All figures refer to the case of an arbitrary mixture of Rashba and
Dresselhaus fields. The bound state energy is shown in (a) and the binding energy is
shown in (b) versus the scattering parameter 1/(kRas) with hz = hy = 0, K = 0 and
Rashba parameter mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR
(black solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR
(blue dotted). The bound state threshold energy is shown in (c) and the threshold
scattering length 1(kRas) in shown in (d) versus hz/ER with hy = 0, K = 0 and
Rashba parameter mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR
(black solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR
(blue dotted)
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Figure 2.9: All figures refer to the case of an arbitrary mixture of Rashba and
Dresselhaus fields. The bound state energy is shown in (a) and the binding energy
is shown in (b) versus 1/(kRas) with hz = ER, hy = 0.5ER, K = 0 and Rashba
parameter mvR = 0.5kR for various Dresselhaus parameters mvD = 0.0001kR (black
solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = kR (blue
dotted). The bound state energy threshold is shown in (c) and the threshold scattering
parameter 1/(kRas) is shown in (d) versus hy/ER for fixed values of hz = 0.5ER,
K = 0 and Rashba parameter mvR = 0.5kR and varying Dresselhaus parameters
vD = 0.0001kR/m (black solid), vD = 0.1kR/m (red, dot-dashed), vD = 0.2kR/m
(green, dashed), vD = kR/m (blue, dotted)

from all the graphs in Fig. 2.9 is that the behaviour of the system is intermediate

between the ERD and the Rashba cases. But possesses the same qualitative trends

as found both in the ERD and Rashba cases, that is, Zeeman fields tend to suppress

the formation of two-body states due to s-wave singlet interactions, and spin-orbit

coupling tends to counter the detrimental effects of Zeeman fields due to its spin-

flipping ability.

Having discussed the emergence of two-body bound states (Feshbach molecules)

in the presence of artificial spin-orbit coupling of the ERD, Rashba and arbitrary
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mixtures of Rashba and Dresselhaus fields, I will discuss next how these spin-orbit

couplings affect the effective masses of the two-body bound states.

2.4 Effective Mass Tensor

In this section I will discuss the effective mass tensor for the two-body bound states

(Feshbach molecules) as a function of the artificial spin-orbit coupling, Zeeman fields

and interaction parameter.

The effective mass tensor can be easily found via the knowledge of the bound state

energy dispersion EB(K) by performing a Taylor expansion of this function near its

minimum. In this section, I will confine myself to the expansion near zero center of

mass momentum K = 0, meaning that the expansion will be justified so long as the

minimum of EB(K) indeed happens at K = 0. Whenever this is not the case, the

new minimum at finite K needs to be found, and the effective mass tensor needs to

be redefined in the neighboorhood of that finite K minimum.

With the caveat described in the preceeding paragraph, I perform the expansion

EB(K) ≈ EB(K = 0) +Ki
∂EB(K)

∂Ki

∣∣∣∣
K=0

+
1

2
KiKj

(
∂2EB(K)

∂Ki∂Kj

)∣∣∣∣
K=0

(2.53)

≡ EB(K = 0) +Kivi +
1

2
KiDijKj, (2.54)

where EB(K = 0) is the bound state energy found previously, the Einstein sum-

mation of repeated indices is understood, and the derivatives are defined as vi =

∂EB(K)/∂Ki|K=0 and Dij = ∂2EB(K)/∂Ki∂Kj. When vi = 0, then the dispersion

EB(K) is quadratic and Dij = (m−1)ij, meaning that the effective mass tensor is just

mij = (D−1)ij, with the indices {i, j} spanning the spatial directions {x, y, z}.

If the expression for EB(K) where known analytically, the task of determining the

effective mass tensor would be easy. However, the momentum dependence of EB(K) is

only known implicitly via the integral equations for the bound-state eigenvalue, which

I derived in the previous sections. Therefore, to obtain the effective mass tensor in
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the ERD, Rashba and more generally arbitrary mixture of Rashba and Dresselhaus

spin-orbit fields, I will make use of their respective eigenvalue equations.

The remainder of this effective mass section will follow a similar structure as the

one utilized in the previous section regarding the bound state energy. I will discuss

first the ERD case, then the Rashba case, and last the case of arbitrary mixture of

Rashba and Dresselhaus terms. The Mathematica codes to calculate effective mass

components are given in Appendix VI.

2.4.1 Equal Rashba-Dresselhaus Case

In order to calculate the effective mass tensor, it is important to obtain the derivatives

vi and Dij, by using the bound state eigenvalue integral equation from Eq. (2.44) for

the most general case of K 6= 0, hz 6= 0 and hy 6= 0, which I repeat here by defining

the function

F (K, E) =
L3

g
−
∑
k

Ek,K
(
E2
k,K − b2 − 4h2

z

)
E4
k,K + 4k2

xv
2b2 − E2

k,K (b2 + 4v2k2
x + 4h2

z)
, (2.55)

where, b = vKx + 2hy. When the implicit function F (K, E) = F (Kx, Ky, Kz, E) is

set equal to zero, then the bound state energy EB(K) is the solution of F (K, E) = 0.

The first derivative of EB(K) is then

vi =
∂E(K)

∂Ki

∣∣∣∣
K=0

= − ∂F (K, E)/∂Ki

∂F (K, E)/∂E

∣∣∣∣
K=0

≡ − Fi
FE

∣∣∣∣
K=0

, (2.56)

while the second derivative tensor is diagonal having the form

Dii =
∂2E (K)

∂Ki∂Ki

∣∣∣∣
K=0

= − ∂

∂Ki

(
FiF

−1
E

)∣∣∣∣
K=0

= −
(
FiiF

−1
E − FiFEiF

−2
E

)∣∣
K=0

, (2.57)

but in the limit of zero center-of-mass momentum, the derivative FEi in the second

term vanishes. This leads to the effective mass tensor

mii = (D−1)ii = −FE
Fii

(2.58)
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Now, I will start analyzing the effective mass tensor for the simplest case where

hy = 0, and hz = 0. In this case, the function

F (K, E) =
L3

g
−
∑
k

(εk,K − E)

(εk,K − E)2 − 4v2k2
x

(2.59)

and the effective mass expressions can be found straightforwardly. The first derivative

vi vanishes for all directions, and the effective mass tensor is diagonal mii = −FE/Fii

and has all components equal to 2m in the limit large scattering parameter. Further-

more, mii is independent of spin-orbit coupling. This is not surprising, because the

ERD spin orbit coupling field can be gauged away when Zeeman fields are absent.
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Figure 2.10: Effective mass tensor mxx/m plots for ERD type of spin-orbit coupling
mv = 0.25kR (black solid), mv = 0.5kR (red dot-dashed), mv = 0.75kR (green
dashed), mv = kR (blue dotted) with hy = 0, for (a) hz = 0.5ER and (b) hz = ER.
Effective mass mxx/m plots with mv = kR when hy = 0.5ER (black solid), hy = ER
(red dot-dashed), hy = 1.5ER (green dashed), hy = 2ER (blue dotted) for (c) hz =
0.5ER and (d) hz = 1.5ER.

Next, I will look at the effective mass tensor for case where hy = 0, but hz 6= 0. In

this case, the function vi also vanishes, and the effective mass tensor remains diagonal,
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with the components myy = mzz = 2m both independent of spin-orbit coupling and

scattering parameter. Non-trivial behavior occurs only in mxx and it is illustrated on

the top panels of Fig.2.10, where mxx remains always larger than twice the mass of

an individual fermion, that is mxx ≥ 2m, for any value of the scattering parameter.

Finally, I briefly discuss the effective mass tensor for case where hy 6= 0, but

hz 6= 0. In this case, the function vi does not vanish, but the effective mass tensor

remains diagonal, with the components myy = mzz = 2m both independent of spin-

orbit coupling and scattering parameter. Non-trivial behavior occurs again only in

mxx and it is illustrated on the bottom panels of Fig.2.10, where mxx ≥ 2m as as the

scattering parameter is varied for smaller values of hy/ER, but becomes mxx ≥ 2m

as the scattering parameter is varied for larger values of hy/ER.

Having discussed the behaviour of the effective masses of the two-body bound

states in the presence of ERD spin-orbit coupling and Zeeman fields hz, hy, I will

next discuss next the effective mass tensor for the Rashba case.

2.4.2 Rashba Case

The effective masses for the Rashba case are obtained using the same general method

outlined at the beginning of section 2.4.

When Zeeman fields are zero hy = hz = 0, but the Rashba velocity vR 6= 0, the

integral describing the bound state eigenvalue is

F (K, E) =
L3

g
−
∑
k

(εk,K − E)
(
(εk,K − E)2 − v2

RK2
⊥
)

(εk,K − E)4 + 4v2
R (k⊥ ·K⊥)− (εk,K − E)2 v2

R (K2
⊥ + k2

⊥)
,(2.60)

where the two-dimensional momentum K⊥ = (Kx, Ky) and k2
⊥ = k2

x + k2
y.

In this simpler case, the expressions for the effective masses can be calculated

analytically using the method developed in the introduction of section 2.4, and agree

with recent accounts [17]. The effective mass tensor is diagonal, with the effective
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masses mxx = myy = m⊥ given by

m⊥ = 2m

[
1 +
−E0 −

√
−mv2

RE0

(−E0)(−Ẽ0)

(
−mv2

R − Ẽ0 ln

(
−E0

−Ẽ0

))]
, (2.61)

where Ẽ0 = E0 +mv2
R, with E0 being the bound state energy at K = 0.

In the case where vR 6= 0, hz 6= 0 and hy = 0, the effective mass tensor remains

diagonal, and since the x and y directions remain equivalent, it is not too difficult to

shown that the effective masses mxx = myy = m⊥. This case is illustrated on the top

panels of Fig. 2.7.

In the case where vR 6= 0, hz 6= 0 and hy 6= 0, the effective mass tensor remains

diagonal, but the x and y directions are no longer equivalent, in which case the

effective masses mxx 6= myy. This case is illustrated on the bottom panels of Fig, 2.7.

Notice in Fig. 2.11 that the effective mass mxx/m diverges and becomes negative,

indicating for those values of parameters that the minimum of the bound-state energy

dispersion does not occur at zero center mass momentum K = 0, but rather at some

finite momentum K 6= 0.

Having discussed the effective mass for the Rashba case, when both artificial

Zeemans fields (detuning and Rabi frequency) are present, I discuss next the more

general case of arbitrary mixture of Rashba and Dresselhaus terms.

2.4.3 Arbitrary Mixture of Rashba & Dresselhaus Case

The effective masses for arbitrary mixtures of Rashba and Dresselhaus types of spin-

orbit coupling fields is interesting for both for ultra-cold Fermions and condensed

matter physics. But it is more likely that it can studied in a controlled way in ultra-

cold fermions, and that are already methods outlined that could artificialy engineer

such a mixture.

The function F (K, E) for this case is obtained directly from the integral equation

for the bound state energy given in Eq. 2.50. The Mathematica code to calculate the

effective mass tensor in this case is given in Appendix VI.
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Figure 2.11: Plots of the effective mass components mxx/m plots (a, b, c) and
myy/m for for Rashba type of spin-orbit coupling (vR 6= 0) when hy = 0 (a, b) and
when hy 6= 0 (c, d). Notice that when hy = 0 then mxx = myy, and when hy 6= 0 then
mxx 6= myy. In the top panels, where hy = 0, the values of hz are hz = 0.5ER (a)
and hz = 1.5ER (b), and the all curves are labeled by values of mvR corresponding
to mvR = 0.25kR (black solid), mvR = 0.5kR (red dot-dashed), mvR = 0.75kR (green
dashed), mvR = kR (blue dotted). In the bottom panels, where hy 6= 0, the parameter
hz = 0.5ER and mvR = kR and all the curves are labeled by hy = 0.5ER (black solid),
hy = ER (red dot-dashed), hy = 1.5ER (green dashed), hy = 2ER (blue dotted).
Notice that when hy 6= 0 the effective masses mxx (c) and myy (d) are not equal.

The effective mass tensor components when the Zeeman fields are turned off, that

is, hz = 0 and hy = 0, are plotted in Figs. 2.12a and 2.12c. The parameters used in

the figures are mvR = 0.5kR for the Rashba momentum and mvD = 0.0001kR (black

solid), mvD = 0.1kR (red dot-dashed), mvD = 0.2kR (green dashed), mvD = 0.3kR

(blue dotted) for the Dresselhaus momenta. Notice that the effective masses are

always larger than 2m in this case.

The effective mass tensor components when the Zeeman fields are turned on, that

is, hz 6= 0 and hy 6= 0, are plotted in Figs. 2.12b and 2.12d. The parameters used
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in the figures are hy = 1.5ER, hz = 0.5ER, with Rashba parameter mvR = 0.5kR

and Dresselhaus parameters mvD = 0.0001kR (black solid), mvD = 0.1kR (red dot-

dashed), mvD = 0.2kR (green dashed), mvD = 0.3kR (blue dotted). Notice that the

mxx can become negative, indicating that the minimum of the bound-state energy

dispersion does not occur at Kx = 0. The same effect does not happen for myy,

because the field hy does not alter the location of the minimum with respect to Ky.
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Figure 2.12: Effective mass plots for arbitrary mixture of Rashba and Dresselhaus
spin-orbit coupling. The figures on the left show the effective mass components mxx

(a) and myy (c) for no Zeeman fields (hy = hz = 0), but Rashba parameter mvR =
0.5kR and Dresselhaus parameters mvD = 0.0001kR (black solid), mvD = 0.1kR
(red dot-dashed), mvD = 0.2kR (green dashed), mvD = 0.3kR (blue dotted). The
figures on the right show effective mass components mxx (b) and myy (d) when the
Zeeman fields are hy = 1.5ER, hz = 0.5ER, with Rashba parameter mvR = 0.5kR
and Dresselhaus parameters mvD = 0.0001kR (black solid), mvD = 0.1kR (red dot-
dashed), mvD = 0.2kR (green dashed), mvD = 0.3kR (blue dotted).

Having discussed the effective mass tensor for the spin-orbit cases involving ERD,

Rashba and arbritrary mixture of Rashba and Dresselhaus terms, I will discuss next
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how the effective mass tensor affects the Bose-Einstein condensation temperature of

a dilute non-interacting gas of two-body bound states (Feshbach molecules) in the

presence of artificial spin-orbit coupling and Zeeman fields.

2.5 Bose-Einstein Condensation Temperature

In this section, I will discuss the Bose-Einstein condensation temperature of the two-

body bound states obtained for the various types of spin-orbit coupling discussed.

Given that the two-body bound states are really Feshbach molecules, these molecules

behave like bosons, as long as the separation between the molecules is much larger

than their size. Therefore, I will be making the assumption that the gas of bound

states (Feshbach molecules) is dilute and that the bound states do not interact with

each other, such that the usual approximations for Bose-Einstein condensation hold.

In the previous section, I showed that, in several cases, the energy of the bound-

states could be expressed as

E(K) = E0 +
K2
x

2Mx

+
K2
y

2My

+
K2
z

2Mz

, (2.62)

where E0 is the energy of the bound state at zero center of mass momentum K = 0,

(Kx, Ky, Kz) are the components of K and {Mx,My,Mz} are the effective masses

along the x, y, z axis respectively. These effective masses have the following corre-

spondence to the effective masses calculated in the previous section: Mx = mxx,

My = myy and Mz = mzz.

Considering a gas of dilute and non-interacting molecular bound states, the density

of these molecules is

nbs =
1

L3

∑
K

b(K) (2.63)

where L3 is the volume of free space, and

b(K) =
1

e[EK−µbs]−1
(2.64)
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is the Bose-Einstein distribution function. When the chemical potential µbs ap-

proaches the binding energy E0, then the bound states exhibit the phenomenon of

Bose-Einstein condensation. The present situation differs slightly from the standard

case with dispersion E(K) = E0 +K2/(2M), because the masses are anisotropic.

In the isotropic case (when there are no artificial spin-orbit and Zeeman fields)

condensation occurs when

nbs = CT
3/2
BECM

3/2, (2.65)

where the constant C = 0.132344. This leads to the standard BEC temperature

TBEC = C−2/3n
2/3
bs

M
. (2.66)

However, since each bound state is formed by two fermions, the density of bound

states is half of the fermions density, that is, nbs = nF/2, and the mass of the bound

state is twice that of the fermion, that is, M = 2m. These two statements put

together lead to the relation n
2/3
bs /M = 2−2/3n

2/3
F /(2m), which ultimately produces

the condensation temperature

TBEC = (2C)−2/3n
2/3
F

2m
= 0.218EF , (2.67)

where EF = k2
F/(2m) is the Fermi energy of a non-interacting gas of fermions with

two internal spin states. This standard result [24] showing that TBEC is proportional

to the Fermi energy EF is not surprising since each of the molecular bound states are

formed of two fermions.

In the anisotropic case (when artifical spin-orbit and Zeemans fields are present),

the only modification in the intermediate expression for the Bose-Einstein condensa-

tion temperature shown in Eq. (2.66) is to change the mass M of the bound-state

into the geometrical mean Mgm = (MxMyMz)
1/3, leading to the result

TBEC = C−2/3 n
2/3
bs

Mgm

. (2.68)
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If I define condensation temperatures of the anisotropic and isotropic cases to be

T aniBEC and T isoBEC respectively, then their ratio is simply given by

T aniBEC

T isoBEC

=
M

Mgm

. (2.69)

This result shows that in the limit that the artificial spin-orbit coupling and Zee-

mans fields are small in comparison to the interaction parameter, the effective masses

become isotropic, and the standard results are recovered, as expected. Some more

details of the derivation of these results are found in Appendix VII.

The Bose-Einstein condensation temperature TBEC in units of the Fermi energy

EF is plotted in Fig. 2.13 for several cases. However, instead of using really TBEC/EF ,

I plotted Tc/EF , where Tc is defined to be half of TBEC , that is Tc = TBEC/2. Using

this definition it means that when the scattering parameter is very large and positive

then Tc/EF → 0.218/2 = 0.109 as shown in the figure. The top panels refer ERD

case, the middle panels refer to the Rashba, and the lower panels refer to a more

generic mixture of Rashba and Dresselhaus terms. Any variations in Tc (or TBEC)

from the limiting case of 0.109 (or 0.218) is really due to variations in the geometrical

mean of the masses Mgm.

Having discussed the Bose-Einstein condensation temperature of a dilute gas of

two-body bound states (Feshbach molecules) of Fermi atoms in the presence of arti-

ficial spin-orbit coupling and Zeemans, I will make next a brief summary statement

for this chapter.

2.6 Conclusions

In summary, I described in this chapter the formation of bound states of two Fermi

atoms with two internal states by tuning their mutual interactions via Feshbach reso-

nances. Assuming that the fermions are in free space, I obtained the binding energy,

the effective masses and the Bose-Einstein condensation temperature of the result-

ing bound states (Feshbach molecules) as a function of the s-wave scattering length,
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artificial spin-orbit coupling and Zeeman fields.

These investigations were performed for the currently experimentally relevant

equal-Rashba-Dresselhaus (ERD) spin-orbit fields, but also for Rashba fields and

more generally for an arbitrary mixture of Rashba and Dresselhaus spin-orbit cou-

pling. The qualitative differences between these particular cases was emphasized in

the bulk of the chapter.

One important aspect that was not discussed in this chapter is that ultra-cold

fermions are typically trapped in a harmonic potential. Thus a more complete the-

oretical analysis would require the inclusion of a harmonically confining potential

in order to investigate its effect on the formation of two-body bound states in the

presence of artificial spin-orbit and Zeeman fields. This is done next in chapter III.
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Figure 2.13: Plots of Tc = TBEC/2, where TBEC is the Bose-Einstein condensation
temperature, in units of the Fermi energy EF . The top panels refer to the ERD case,
the middle panels refer to the Rashba case, and the bottom panels refer to a more
generic mixture of Rahsa and Dresselhaus terms. For the top panels the parameters
used are hz = 0.5ER [left] and hz = 1.5ER [right] with v = kR/m and hy = 0.5ER
(black-solid), hy = ER (green-dashed), hy = 1.5ER (red-dot dashed) and hy = 2ER
(blue-dotted). For the middle panels the parameters used are [left] hz = 0.5ER with
vR = kR/m and hy = 0.5ER (black-solid), hy = ER (green-dashed), hy = 1.5ER
(red-dot dashed) and hy = 2ER (blue-dotted); [right] hz = 1.5ER and hy = 0ER
with vR = 0.25kR/m (black-solid), vR = 0.5kR/m (red-dot dashed), vR = 0.75kR/m
(green-dashed), vR = kR/m (blue-dotted). For the bottom panels the parameters used
are vD = 0.0001kR/m (black-solid), vD = 0.1kR/m (red-dot dashed), vD = 0.2kR/m
(green-dashed) and vD = 0.3kR/m (blue-dotted) for the Dresselhaus velocities. For
the left panel, the Zeeman fields are hz = 0ER, hy = 0ER, and the Rashba velocity
vR = 0.5kR/m while for the right panel hz = 0.5ER, hy = 1.5ER, and vR = kR/m
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CHAPTER III

EFFECTS OF A HARMONIC TRAP ON TWO-BODY

BOUND STATES IN THE PRESENCE OF SPIN-ORBIT

COUPLING

In chapter II, I discussed the emergence of two-body bound states for fermions in the

presence of artificial spin-orbit coupling and Zeeman fields, but in free space. In that

case, I took advantage of translational invariance to derive a integral equation for the

bound-state eigenvalues in momentum space. However, to apply the previous results

more directly to ultra-cold fermions it is necessary necessary to include also the effects

of a harmonic potential, which is one of the typical potentials used experimentally to

trap atoms. Therefore, in this chapter I will add an isotropic harmonic potential in

three-dimensions and solve the resulting Schroedinger’s equation in real space.

Several methodological differences will be implemented in this chapter in com-

parison to chapter II. Given that I will be working always in real space when the

harmonic trap is added, the tools used to solve this problem are different that those

used in chapter II, when the harmonic trap was absent. For instance, I will introduce

the Fermi-Huang pseudo-potential to connect the contact interaction to the s-wave

scattering length. Furthermore, I will confine myself to the case of ERD (equal-

Rashba-Dresselhaus) spin-orbit coupling only, which is currently the most relevant

from the experimental point of view. Finally, I will also add the effects of a Zeeman

field, because in ultra-cold fermions, the artificial spin-orbit coupling is always created

in the presence of a finite Zeeman field, which can be made small, but not turned off

completely.

The remainder of this chapter is organized as follows, the Fermi-Huang potential
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is discussed in section 3.1, while the model Hamiltonian describing two fermions in

a harmonic potential and in the presence of ERD spin-orbit coupling is discussed in

section 3.2. The eigenvalues of Schroedinger’s equation in the presence of spin-orbit

coupling without Zeeman fields are obtained in section 3.3, and with Zeeman fields

are obtained in section 3.4. Lastly, I will present the main conclusions of this chapter

in section 3.5.

3.1 Derivation of Fermi-Huang Pseudo-Potential

In this section, I will derive the Fermi-Huang pseudo-potential, which connects the

amplitude of a contact potential between two atoms. Provided that the atoms interact

only via effective short-ranged forces, which is the case in neutral ultra-cold fermions,

the Fermi-Huang pseudo-potential is an excellent approximation to describe atom-

atom interactions in three dimensions.

I will briefly skecth the derivation of the Fermi-Huang potential for two interacting

particles (without including their spin degrees of freedom. Let me start from the

Hamiltonian

Ĥψ = (T̂ + V̂ )ψ = Eψ, (3.1)

where T̂ is the kinetic energy operator, V̂ is the two-particle potential, E is the energy

eigenvalue and ψ is the two-particle wavefunction. More explicitly the Schroedinger’s

equation becomes

Ĥψ(r1, r2) =

[
−∇

2
1

2m
− ∇

2
2

2m
+ V

(
|r1 − r2|

)]
ψ(r1, r2), (3.2)

where I chose to work with units ~ = 1.

A transformation of coordinates from r1 and r2 to relative r = r1− r2 and center-

of-mass R = (r1 + r2)/2 coordinates leads to the separable Schroedinger’s equation(
−∇

2
r

m
− ∇

2
R

4m
+ V (r)

)
ψ(r,R) = −Φ(R)

∇2
r

m
φ(r) + ...

...− φ(r)
∇2

R

4m
Φ(R) + V (r)Φ(R)φ(r),

(3.3)
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where I made use of the two-body wavefunction being written as ψ(r,R) = φ(r)Φ(R),

with Φ(R) being associated with the center of mass and φ(r) being associated with

the relative coordinate.

The energy eigenvalue can also be separated as in term of the relative energy Er

and the center of mass energy ER as E = Er + ER. The center-of-mass equation is

simply

− 1

φ(R)

∇2
R

4m
Φ(R) = ER, (3.4)

and the eigenfunctions are just plane waves. The resulting Schroedinger’s equation

for the relative coordinate becomes

− 1

m
∇2

rφ(r) + V (r)φ(r) = Erφ(r). (3.5)

To obtain the form of the pseudo-potential, it is convenient to look first at the

zero energy Er = 0 solutions of Eq. 3.5. If r 6= 0, our interaction potential V (r) = 0,

and s-wave solutions for zero energy become

− 1

m
∇2

rφ(r) = 0→ φ(r) = A− B

r
. (3.6)

The s-wave scattering length as is defined as the length at which the wavefunction

solution above vanishes. Therefore the wavefunction at zero relative energy reduces

to

φ(r) = A
(

1− as
r

)
(3.7)

where r = |r|, and A plays the role of a normalization constant.

The Fermi-Huang pseudo-potential is found from the Schroedinger’s equation

− 1

m
∇2

rφ(r) + V (r)φ(r) = 0 (3.8)

as r → 0. Using the wavefunction of Eq. (3.7) and the identity ∇2
r(1/r) = −4πδ(r)

the resulting relation is obtained

4πas
m

δ(r) + V (r)
(

1− a

r

)
= 0. (3.9)
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Notice that this relation is always satisfied if the potential is chosen to be

V (r) = −4πas
m

δ(r)
∂

∂r
(r...) , (3.10)

which is known as the Fermi-Huang potential.

Since I am interested in the formation of bound states between atomic fermions in

different hyperfine states (opposite spins) and in the presence of a harmonic potential,

the atom-atom interaction potential will take the form

ĤI(r) = −4πas
m

δ(r)
∂

∂r
(r...) |00〉〈00| = −gδ(r)

∂

∂r
(r...) |00〉〈00| (3.11)

where the bare coupling constant is g = 4πas/m, and the singlet sector “ket” is

|00〉 = (| ↑↓〉 − | ↓↑〉)/
√

2.

Having discussed the Fermi-Huang pseudo-potential, next I will make use of it to

analyse the eigenvalues of two-fermions confined in a harmonic potential and in the

presence of ERD spin-orbit coupling.

3.2 Model Hamiltonian: Two Fermions in a Harmonic Trap

In this section, I will discuss the Schroedinger equation for two fermions in a harmonic

trap and at the same time in the presence of ERD spin-orbit coupling. As discussed

in chapters I and II, the ERD spin-orbit field experienced by the ith spin-1/2 fermion

is

hi = vp̂xiey = −iv∂xiey, (3.12)

leading to a spin-orbit coupling Hamiltonian

Ĥso = −h1 · σ1 − h2 · σ2 (3.13)

where σ = σxex + σyey + σzez with {σx, σy, σz} being the standard Pauli matrices.

The harmonically confining potential in three dimensions is chosen to be spheri-

cally symmetrically

Hha(r1, r2) =
1

2
mω2

(
r2

1 + r2
2

)
(3.14)
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and independent of the internal degrees of freedom (spin) of the fermions. Here, the

vector ri = xiex + yiey + ziez represents the displacement of particle i from the origin

of the harmonic potential.

I will construct the Hamiltonian matrix for the system of two-particles by recalling

that the wavefunctions can be represented by the four component spinor

Ψ† =
(
ψ∗↑↑(r1, r2), ψ∗↑↓(r1, r2), ψ∗↓↑(r1, r2), ψ∗↓↓(r1, r2)

)
, (3.15)

where the ↑ represents hyperfine state up and the ↓ represents hyperfine state down.

In this case, the non-interacting part of the total Hamiltonian matrix corresponds to

Hnon = K + Hso + Hze + Hha, (3.16)

where the first term

K = − 1

2m
∇2

11⊗ 1− 1

2m
∇2

21⊗ 1 (3.17)

corresponds to the kinetic energy contribution,

Hso = −v (p̂x1σy ⊗ 1 + p̂x21⊗ σy) (3.18)

corresponds to the ERD spin-orbit coupling,

Hze = −hz(σz ⊗ 1 + 1⊗ σz, ) (3.19)

corresponds to the Zeeman term, and

Hha =
1

2
mω2

[
(x2

1 + y2
1 + z2

1)1⊗ 1 + (x2
2 + y2

2 + z2
2)1⊗ 1

]
(3.20)

corresponds to the harmonic potential experienced by the two particles. The symbol

⊗ denotes direct product.

The next step in making the Hamiltonian more treatable is to perform the trans-

formation from particle coordinates r1 and r2 to relative r = r1 − r2 and center of

mass coordinates R = (r1 + r2)/2, therefore leading to the Schroedinger’s equation

(Hnon + HI) Ψ(r,R) = EΨ(r,R). (3.21)
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It is more convenient to rearrange equation above to isolate the the interaction part

on the right hand side as

(Hnon − E) Ψ(r,R) = −HIΨ(r,R). (3.22)

The construction of all these matrices can be performed using the direct product rules

shown in Appendix I.

The simplest terms in the Hamiltonian matrix are those that do not contain Pauli

matrices, and are therefore spin independent involving the product 1⊗ 1 = 14. The

part of Hnon which is spin independent involves the sum of the kinetic energy matrix

K and the harmonic potential matrix Hha as shown in

H0 =

(
K̂ +

1

2
mω2(r2 + 4R2)− E

)
1⊗ 1, (3.23)

where K̂ = −∇2
r/m−∇2

R/(2m) is the kinetic energy operator.

The terms that contain the Pauli matrices are also easy to obtain with the direct

products shown in Appendix I. I will just illustrate below the explicit form of Hso,

while the matrix Hze can be obtained in a similar fashion. The spin-orbit Hamiltonian

matrix is

Hso = −vp̂x1σy ⊗ 1− vp̂x21⊗ σy, (3.24)

with the matrices representing the direct products given by

vp̂x1σy ⊗ 1 = vp̂x1



0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


; vp̂x21⊗ σy = vp̂x2



0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0


.

Before starting to solve the problem, it is convenient to convert the Hamiltonian

matrix Hnon described in Eq. (3.16 into the singlet-triplet basis, as it was done in

chapter II. The reason again is the same as before, the interaction part of the Hamil-

tonian involves only the singlet sector, while the spin-orbit part of the hamiltonian
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can cause transitions between the singlet and triplet sectors. Therefore, I perform

the basis change Φ = UΨ, which in matrix form corresponds to



ψ11

ψ10

ψ1−1

ψ00


=



1 0 0 0

0 1/
√

2 1/
√

2 0

0 0 0 1

0 1/
√

2 −1/
√

2 0





ψ↑↑

ψ↑↓

ψ↓↑

ψ↓↓


, (3.25)

where the matrix U is unitary having the property U†U = 14 and its determinant is

one, that is, DetU = 1.

Under this transformation the spin-independent part of the total Hamiltonian H0

is invariant since it is proportional to the identity matrix 14, that is to 1 ⊗ 1 = 14,

leading to the unitary transformation U14U
† = 14. However, the spin-dependent

part of the hamiltonian does not stay the same. For instance, the spin-orbit part Hso

transforms as UHsoU
† = H′so leading to the matrix

H′so = v



0 i√
2
(p̂x1 + p̂x2) 0 i√

2
(p̂x1 − p̂x2)

− i√
2
(p̂x1 + p̂x2) 0 i√

2
(p̂x1 + p̂x2) 0

0 − i√
2
(p̂x1 + p̂x2) 0 i√

2
(p̂x1 − p̂x2)

− i√
2
(p̂x1 − p̂x2) 0 − i√

2
(p̂x1 − p̂x2) 0


.

(3.26)

Notice that, as a bonus, this process also decomposes the spin-orbit part in term of

the center of mass and relative momentum operators, as can be seen explicitly from

the matrix elements above.

Using all the direct product matrices (see Appendix I) and appplying the unitary

transformation to rotate the matrices to a single-triplet basis lead to the Schroendinger’s
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matrix equation

Êr,R − 2hz
i√
2
vP̂x 0 i

√
2vk̂x

− i√
2
vP̂x Êr,R − i√

2
vP̂x 0

0 i√
2
vP̂x Êr,R + 2hz i

√
2vk̂x

−i
√

2vk̂x 0 −i
√

2vk̂x Êr,R





ψ11

ψ10

ψ1−1

ψ00


=



0

0

0

gδ(r)∂r(rψ00)


,(3.27)

where the operator appearing in the diagonal matrix elements is

Êr,R ≡ −
1

m
∇2
r −

1

4m
∇2
R +Hha − E, (3.28)

with Hha = mω2(r2+4R2)/2 being the sum of the harmonic potentials felt by particles

1 and 2 written in relative and center of mass coordinates. Here, P̂ is the center of

mass momentum operator and k̂ is relative momentum operator.

It is important to notice that after the introduction of spin-orbit coupling the rel-

ative and center-of-mass degrees of freedom are not separable, thus making a general

analytical solution of the problem difficult. However, progress can be made by solving

the problem in the center-of-mass momentum reference frame, where I set its origin

to be at R = 0 and where the center of mass momentum is set to zero (P = 0).

Having this in mind, I will first solve the resulting Schroedinger’s equation for the

case of zero Zeeman field (hz = 0) in the next section, and then in section 3.4 I will

add the Zeeman field back to the problem.

3.3 Energy Eigenvalues Without Zeeman Fields

In this section, I will obtain the eigenvalues of two fermions in the presence of a

harmonic potential and ERD spin-orbit coupling, but without Zeeman fields.

By applying the Gauss elimination method to the Schroedinger’s equation shown

in Eq. (6.8), I arrive at the differential equation

Êrψ00(r,0) + 4v2∂2
rx Ê
−1
r ψ00(r,0) = gδ(r)

∂

∂r
[rψ00(r,0)] (3.29)
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where the operator Êr ≡ − 1
m
∇2
r + 1

2
mω2r2−E. Notice that Eq. (3.29) reduces to the

previously known expression [18] when the spin-orbit coupling is set to zero, that is,

in the v = 0 limit.

Taking advantage of the hermiticity of Êr, I will write the operator Ê−1
r , appearing

in the spin-orbit term, via an integral representation over imaginary time leading to

Êrψ00(r,0) + 4v2∂2
rx

∞∫
0

dτe−τ Êrψ00(r,0) = gδ(r)
∂

∂r
[rψ00(r,0)] . (3.30)

To solve the differential equation above, I expand the unknown singlet ψ00(r,0)

wave function

ψ00(r,0) =
∑
N

cNφN(r) (3.31)

in terms of harmonic oscillator eigenfunctions, which satisfy the equation

Hha(r,R = 0)φN(r) = εNφN(r) (3.32)

where εN = ω(2n + ` + 3/2) are the energy eigenvalues for the three dimensional

harmonic oscillator. The quantum numbers are given by the set {N} = {n, `}, where

n is the principal quantum number and ` is the angular momentum quantum number.

Since the interactions between the fermions (Fermi atoms) occurs via an s-wave

singlet channel, as a first approximation, I will include only the ` = 0 contributions

in the expansion for ψ00(r,0). In this case, the eigenfunctions with ` = 0 are

φn(r) = Nne−ζr
2

L(1/2)
n (2ζr2) (3.33)

where Nn is a normalization constant, ζ = mω/4, and the functions L
(1/2)
n (x) are

generalized Laguerre polynomials with ` = 0, which obey the following orthogonality

condition

∞∫
0

L(k)
n (x)L(k)

m (x)xke−xdx =
(n+ k)!

n!
δnm. (3.34)
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The use of the recurrence relation

d

dx
L(k)
n (x) = x−1

(
nL(k)

n (x)− (n+ k)L
(k)
n−1(x)

)
(3.35)

and the orthogonality relation of Eq. (3.34) leads to the following normalization con-

stant

Nn =

(
π√

2ζ3/2

(n+ 1/2)!

n!

)−1/2

(3.36)

A substitution of the eigenfunctions φn(r) in Eq. (3.29), with posterior integra-

tion over imaginary time, and projection into the eigenfunction φ∗a(r) leads to the

intermediate result

ca (εa − E) + 4v2
∑
k

ck
εk − E

∫
drφ∗a(r)∂2

rxφk(r) = ...

... = g
∑
p

∫
drφ∗a(r)δ(r)∂r[rφp(r)],

(3.37)

where the integral appearing in the second term on the left hand side is evaluated in

Appendix X.

In the limit where the spin-orbit coupling energy mv2 is small in comparison to

adjacent energy levels of the harmonic oscillator, the expression above reduces to

ca

[
(εa − E)− mωv2

εa − E

(
4a

3
+

5

3

)]
= − 4π

m
asφ

∗
a(0)

[
∂

∂r

(
r
∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

,(3.38)

which corresponds to a infinite linear system of equations coupling the coefficient ca

of the harmonic oscillator state φa to all other coefficients cp, given by

ca = −4πas
m

φ∗a(0)

[
∂

∂r

(
r

∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

(
εa − E

(εa − E)2 − mv2ω
3

(4a+ 5)

)
. (3.39)

This linear system can be solved analytically to give

ca =
A

ω

(
B+

2a− ν+

+
B−

2a− ν−

)
φ∗a(0), (3.40)

where I used the relation εa = ω(2a+ 3/2). The coefficient A is obtained by normal-

ization of the overall wavefunction, while µ = mv2/3ω and ν± = E/ω + µ− 3/2± η,
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with η =
√
µ2 + 2µ+ 2µE/ω. leading to coefficients B± = (±µ + η)/(2η). Notice

that in the limit of v → 0 then B± → 1/2.

By making use of the solutions for the coefficents ca shown in Eq. (3.40) and

inserting them back into Eq. (3.39), an implicit relation between the scattering length

as, the spin-orbit coupling v and the eigenenergies E is revealed

− m

4πas
=
∑
λ=±

Bλ

[
∂

∂r

(
r
∞∑
p=0

φ∗p(0)φp(r)

2p− νλ

)]∣∣∣∣∣
r→0

, (3.41)

since νλ and Bλ are functions of v and E.

Using the explicit form of the eigenfunction φp(r) of the harmonic oscillators

in Eq. (3.33), taking the spatial derivative with respect to r and performing the

summation over the quantum numbers p leads to the final expression
√

2

as
√
mω

= B−
Γ(−ν−/2)

Γ(−ν−/2− 1/2)
+B+

Γ(−ν+/2)

Γ(−ν+/2− 1/2)
, (3.42)

which relates the scattering length as to the energy eigenvalues E for different values

of the spin-orbit coupling v, via the Gamma function Γ(z). It is this expression that is

the central result of this section, and its detailed derivation can be found in Appendix

IX.

Using the expression obtained in Eq. (3.42), I plot the inverse of the s-wave scat-

tering length 1/as versus energy in Fig. (3.1) for the case of zero spin-orbit coupling

v = 0. The units used in Fig. (3.1) and subsequent figures are such that the fermion

mass is m = 1 and the frequency of the harmonic oscillator is ω = 1. The result for

v = 0 coincides with previously known behavior [18]. Notice that when the spin-orbit

coupling effect is absent, divergences occur in the inverse scattering length 1/as pre-

cisely at energies E/ω = 3/2, 5/2, 7/2..., which correspond to the eigenvalues of the

harmonic oscillator. It is important to notice that when the harmonic potential is

present, the energy threshold for the formation of bound states is shifted from 0 in the

continuum case (no harmonic potential) to Eth/ω = 3/2. In addition, the presence of

the harmonic potential enhances dramatically (at the threshold energy) the density
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of states avaialable for the formation of two-body bound states. Therefore, two-body

bound states can be formed below this threshold for small and negative values of the

scattering length as, unlike in the continuum case that requires as ≥ 0 for bound

state formation. Notice also that when E → −∞, then E = −1/ma2
s, describing the

energy of the two-body bound state in that regime, since the energy of the harmonic

potential becomes irrelevant in that limit.
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Figure 3.1: Plot of the inverse s-wave scattering length (1/as) versus energy when
no spin-orbit coupling (v = 0) and Zeeman fields (hz = 0) are present.

Using again the expression obtained in Eq. (3.42), I plot the inverse of the s-

wave scattering length 1/as versus energy in Fig. (3.2) for the case of zero spin-orbit

coupling v 6= 0. In this case, the location of the divergences in 1/as are shifted with

respect to the location of harmonic oscillator energies εn = ω(2n+ 3/2). The energy

shifts are approximately equal to ±mv2/3 and the location of the divergences in 1/as

are moved to energy values E± = ω(2n+3/2)±mv2/3, with n being an integer. This

61



-4 -3 -2 -1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

E

1�
a

Figure 3.2: Plots of the inverse s-wave scattering length (1/as) versus energy with
ERD type of spin-orbit coupling with v = 0.2 (using units of mass m = 1 and
frequency ω = 1) and no Zeeman field, hz = 0.

splitting occurs because the presence of spin-orbit coupling fields lifts the degeneracy

between the spin up and the spin down states. Notice that even with level splittings,

the density of states available for bound state to form is sufficiently high, that even

a small and negative scattering length as can lead to their formation. This is in

constrast to the continuum case found in chapter II, where as ≥ 0 is required for

bound state formation for the ERD case. Furthemore, in the limit of E → −∞,

E = −1/ma2
s−mv2 describes the energy of the two-body bound state in that regime,

since the energy of the harmonic potential becomes unimportant.

Having described how the presence of a harmonic potential affects the bound

states between two fermions with attractive s-wave contact interactions and in the

presence of ERD spin-orbit coupling fields, I will next add the action of Zeeman fields.

This next step is important, because Zeeman fields are always simultaneously present
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in the experimental case where artificial ERD spin-orbit coupling have been created,

as they represent the Rabi frequency of the Raman process.

3.4 Energy Eigenvalues in the Presence of Zeeman Fields

In this section, I will discuss the added effects of an artificial Zeeman field hz rep-

resenting the Rabi frequency of the Raman beams that produce the ERD spin-orbit

coupling controlled by the parameter v.

Using the general Schroedinger matrix defined in Eq. (3.27) and working in the

center of mass reference frame as done in section 3.4 leads to

Êrψ00(r, 0) + 4v2∂2
rx

(
Ê2
r − 4h2

z

)−1

Êrψ00(r, 0) = gδ(r)
∂

∂r
[rψ00(r, 0)] , (3.43)

where the details leading to this expression are given in Appendix VIII.

I will employ the same technique used in section 3.4, where the singlet wave-

function ψ00(r,0) was expanded in terms of harmonic oscillator eigenfunctions as in

Eq. (3.31). In the present case the Schroedinger’s equation becomes∑
n

cn (εn − E)φn(r) + 4v2∂2
rx

∑
p

cp
εp − E

(εp − E)2 − 4h2
z

φp(r) = ...

...gδ(r)
∂

∂r

(
r
∑
k

ckφk (r)

)
,

(3.44)

where hz represents the added Zeeman field. When compared to Eq. (3.29), hz seems

to be harmless in order to make analytical progress, but unfortunately the corre-

sponding summations and integrations that were possible to perform analytically, in

part due to the spin-degeneracy of the harmonic oscillator eigenfunctions φn(r), are

no longer easy to perform. Therefore to make progress, I will treat the Zeeman en-

ergy hz as a perturbation in comparison to the energy spacing 2ω of the harmonic

oscillator and obtain the equation∑
n

cn (εn − E)φn(r) + 4v2∂2
rx

∑
p

cp

[
1

(εp − E)
+

4h2
z

(εp − E)3

]
φp(r) = ...

...gδ(r)
∂

∂r

(
r
∑
k

ckφk (r)

) (3.45)
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Projecting Eq. (3.45) into the harmonic oscillator function φ∗a(r), integrating over

the spatial coordinate r, and neglecting cross-level contributions, since hz/(2ω)� 1,

leads to

ca = −4π

m
asφ

∗
a(0)

[
∂

∂r

(
r
∑
p

cpφp(r, 0)

)]∣∣∣∣∣
r→0

× ...

...× (εa − E)3

(εa − E)4 − mv2ω
3

(4a+ 5) [(εa − E)2 + 4h2
z]
,

(3.46)

which corresponds to an infinite linear system connecting coefficient ca to all other

coefficients cp from the harmonic oscillator eigenfunction expansion. Notice that in

the limit of hz → 0, the equation above reduces to Eq. (3.39) discussed in section 3.3.

The solution of the linear system in Eq. (3.46) has the form

ca =
A

ω
φ∗a(0)

4∑
i=1

(λ0 + 2λi)
3

(a− λi)
βi. (3.47)

The parameters shown in the expression above are λ0 = 3/2− E/ω and

βi =
4∏
j 6=i

1

λi − λj

with λi being the roots of the dimensionless equation

(2a+ 3/2− ε)4 − µ(4a+ 5)
[
(2a+ 3/2− ε)2 + 4h̃2

]
= 0 (3.48)

where h̃ = hz/ω, ε = E/ω, µ = mv2/3ω.

Using the expression of coefficient ca back into the Schroedinger’s equation ex-

pressed by the linear system described in Eq. (3.46) leads to a relationship between

the scattering length as and the energy E, via the parameters λ0, λi and βi, given by

1√
2as
√
mω

=
4∑
i=1

βi (λ0 + 2λi)
3 Γ(−λi)

Γ(−λi − 1/2)
, (3.49)

where Γ(z) are Gamma functions of argument z. This is the central result of this

section. This expression reduces to that of Eq. (3.42) when hz → 0, recovering the

result found in section 3.3. It is important to mention that even if the λi are imaginary
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numbers, the right hand side in Eq. (3.49) is real, and the resulting scattering length

as is also real, but can be as usual positive or negative.

In Figs. 3.3 and 3.4, I show the effects of the Zeeman field for fixed spin-orbit

coupling v/(ω/m)1/2 = 0.2, in the of hz/ω = 0.01 and hz/ω = 0.1, respectively. In

these figures, I use again the units of mass m = 1 and energy ω = 1.

In Fig. 3.3, hz is sufficiently small to verify that indeed the relation obtained in

Eq. (3.49) indeed reduces to that of Eq. 3.42). The plots are, however, in a different

scale than that used in Fig. 3.2 corresponding to hz = 0 in section 3.4. Nevertheless,

the limiting results hold. The main effect of the Zeeman field is to split further the

energy states and to make the formation of two-body bound states in the singlet

channel a little more difficult.
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Figure 3.3: Plots of the inverse s-wave scattering length (1/as) versus energy with
ERD type of spin-orbit coupling with v = 0.2 (using units of mass m = 1 and
frequency ω = 1) and with Zeeman field, hz = 0.01.

In Fig. 3.4, hz is sufficiently large to show the further lifting of spin degeneracy.
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Figure 3.4: Plots of the inverse s-wave scattering length (1/as) versus energy with
ERD type of spin-orbit coupling with v = 0.2 (using units of mass m = 1 and
frequency ω = 1) and with Zeeman field, hz = 0.1.

The plots are, however, in a different scale than that used in Fig. 3.2 corresponding

to hz = 0 in section 3.4. The main effect of the Zeeman field is to split further the

energy states and to make the formation of two-body bound states in the singlet

channel more difficult.

Having discussed in this chapter the energy eigenvalues for two fermions confined

to a harmonic potential and subject to attractive contact interactions in the presence

of artificial ERD spin-orbit and Zeeman fields, I will present next the main conclusions

for this chapter.
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3.5 Conclusions

In this chapter, I have found the energy eigenvalues for two fermions trapped in a

harmonic potential and subject to attractive contact interactions, while simultane-

ously in the presence of artificial equal-Rashba-Dresselhaus spin-orbit coupling and

Zeeman fields.

The presence of the harmonic potential alters the typical spectrum when the

characteristic energy scale for the harmonic potential ~ω is much larger than the

Zeeman energy hz, and the spin-orbit energy mv2. The effects of spin-orbit coupling

and Zeeman fields were taken into account only in this regime, where the s-wave

scattering length was analysed as function of energy.

In this chapter, the main findings were that energy levels of two harmonically

trapped fermions with attractive interactions are split when the spin-orbit and Zee-

man fields are present, because they lift the spin degeneracy of the system, and thus

modify dramatically the relation between energy and s-wave scattering length. This

effect is more prominent for energies close to those of the harmonic oscillator potential

in the relative coordinate system.

Regarding the lowest possible two-particle bound state, the presence of the har-

monic potential shifts the energy threshold for binding to the zero point energy of the

oscillator, when no spin-orbit or Zeeman fields are included. When these latter fields

are present, but are still small, then the threshold energy remains near the zero point

energy. However, a small and negative scattering length is sufficient to produce the

lowest two-body bound states, while in contrast such bound states can only occur for

as > 0 in the three-dimensional continuum with or without ERD spin-orbit coupling

present.
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CHAPTER IV

ARTIFICIAL SPIN-ORBIT COUPLING IN ULTRA-COLD

FERMIONS WITH THREE HYPERFINE STATES

4.1 Introduction

The field of ultra-cold atoms has been a very prolific area of research with the exper-

imental realization of several fundamental theoretical ideas such as Bose-Einstein

condensation (BEC) [19, 20], the Mott-Insulator transition in the Bose-Hubbard

model [21] and the evolution from BCS to BEC superfluidity [22, 23, 24]. Strong

connections to standard condensed matter physics have been developed, specially in

the case of optical lattices, which are being used to simulate several properties of

standard solids [4].

Building on the success of early experiments [25, 26] where bosonic atoms in

two hyperfine states were trapped and investigated, a new class of experiments have

emerged targeting the trapping of bosonic or fermionic atoms with large integer or

half-integer spins, with many hyperfine states. Such experimental efforts have now

lead to the realization SU(N) invariant Hamiltonians, as evidenced experimentally in

the case of Strontium (Sr) atoms [27]. The realization of such exotic situations is

promoting the field of ultra-cold atoms beyond the stage of simulating known Hamil-

tonians from diverse areas of physics to the stage of creating novel Hamiltonians,

which may not have direct counterpart in any area of Physics. An important exam-

ple, as previously discussed, is the unusual case of two-hyperfine-state bosons in the

presence of artificial spin-orbit coupling, which was created experimentally [5, 28] and

its effects on Bose-Einstein condensation were studied thoroughly [29, 30, 31, 32].

In this chapter, I discuss the case of three-hyperfine-state (or pseudo-spin 1)
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fermions in the presence of artificial spin-orbit coupling, instead of the case of two-

hyperfine-state (or pseudo-spin-1/2) fermions that has been recently studied theo-

retically [33, 34, 35, 36, 37] and experimentally [38, 39, 1, 40]. The case of two-

hyperfine-state fermions with artificial SOC was discussed in chapter I in the context

of non-interacting fermions and in chapters II and III in the context of the forma-

tion of Feshbach molecules between two free fermions and two harmonically trapped

fermions, respectively.

A potential three-hyperfine state (pseudo-spin 1) Fermi system is the fermionic

isotope of Potassium (40K), which possesses several hyperfine states that can be

trapped [15]. For instance, (40K) was the system used to create artificial spin-orbit

with two-hyperfine-state fermions [38, 1]. However, other high spin Fermi atoms are

also potential candidates, such as Ytterbium (Yt) or Strontium (Sr), since they have

several hyperfines that can also be trapped.

The situation envisioned here is that three hyperfine states of the Fermi atom

are trapped, and these states are coupled via two-photon light-matter interactions,

that is, Raman transitions. The laser beams that produce these Raman transitions

generate artificial spin-orbit coupling in the fermionic system, in the same way as in

the two-hyperfine state case discussed previously. Thus, the present case is similar to

that encountered in Chapters II and III, but a basic difference is that one has three

internal levels, rather than two, and they are all coupled via Raman transitions. A

schematic diagram of the simplest non-trivial configuration is shown in Fig. 4.1. This

change from two to three hyperfine states introduces qualitatively different terms in

the Hamiltonian and generates new physics to be discussed in this chapter.

The interest in studying three-hyperfine-state fermions is driven in part by the

planning of the next generation of experiments involving artificial spin-orbit coupling,

and in part by theoretical questions related to the quantum phases of these systems

and their connection to color and multi-band superconductors.
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Figure 4.1: Schematic diagram of three hyperfine states interacting with Raman
beans. The energy levels in the presence of the Raman beams are labeled as 1, 2, 3
and the Rabi frequencies reflecting the transition matrix element between the states
are labeled Ω12, Ω13, Ω23. In this simpler configuration the states 1 and 3 are initially
degenerate, and state 2 can have either higher or lower energy with respect to states
1 and 2.

Even the non-interacting system of three-hyperfine-state fermions is interesting

when artificial spin-orbit coupling and Zeeman fields are introduced, because they

change the energy dispersions and strongly renormalize the effective mass of the

fermions. Furthermore, a specially simple can be engineered, where states 1 and

3 experience recoil during the Raman process, but state 2 does not. This is the

situation illustrated in Fig. 4.1, which leads to an effective Hamiltonian described by

spin-one matrices. At the independent particle level the Hamiltonian is identical to

that encountered in spin-one bosons, such as 87Rb, where interesting spinor physics

in the presence of spin-orbit coupling is now being studied [13]. However, even in
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the case of non-interacting fermions with three hyperfine states, the physics is very

different from that of non-interacting bosons. For pseudo-spin-1 fermions, the Pauli

exclusion principle leads to three Fermi surfaces, whose shape and size are strongly

affected by artificial spin-orbit and Zeeman fields. Furthermore, as we shall see later

in this chapter, topological changes in Fermi surfaces (Lifshitz transitions) may occur

as a function of the momentum transfer to the atoms.

The problem becomes even more interesting with the addition of interactions

between the fermions. For instance, after three-hyperfine-state fermions in states 1,

2 and 3 are trapped, one can envision the tuning of the interactions between atoms

in states 1 and 2, 2 and 3, as well as 1 and 3. That tuning may be possible using

available Feshbach resonances, which are specific to each type of atom. However,

it is difficult to tune all these interactions independently, because, most commonly,

Feshbach resonances are reached via the application of an external magnetic field,

which affects all internal states simultaneously. Nevertheless, it is relatively easy to

find resonances, for example, between states 1 and 3 without other nearby resonances

between states 1 and 2 or between states 2 and 3. So that the interactions between

states 1 and 3 can be tuned, while keeping fermions in states 1 and 2, as well as 2

and 3 essentially non-interacting.

The study of three-hyperfine-state fermions with attractive interactions has some

connections to color superconductivity, when the three different hyperfine states are

viewed as colors (red for state 1, green for 2 and blue for 3) [41]. A perfect connection

is difficult to make for several reasons, but let me outline just two. First, one would

have to add bosonic atoms to the system, such that they could play the role gluons

which binds different colored fermions. To simulate the gluon, the bosonic atom

would need to have spin-1, and to mediate an indirect interaction between different

three-hyperfine-states. The addition of a spin-1 boson makes experiments much more

difficult, specially if one has in mind to add artificial spin-orbit coupling to the mix.
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Second, even if one sidelines the addition of bosons to provide the glue between colored

fermions, it is also experimentally difficult using Feshbach resonances to make the

interactions gij between fermions in states i and j (with i 6= j) being all the same,

that is, g12 = g13 = g23. Even though, it may not be easy to simulate precisely

color superconductivity as envisioned in a QCD environment, where different colored

quarks bind into Cooper pairs mediated by gluons, one can expect a connection

between the superfluid phases that three-hyperfine-state Fermi superfluids possess

and color superconductivity, if interactions can be found to produce three sets of

Cooper pairs involving a) states 1 and 2 (red and green), b) states 1 and 3 (red and

blue), and c) states 2 and 3 (green and blue). This is the extent of the connection that

one intends to make to color superconductivity: three different types of Cooper pairs

in the superfluid state, without worrying about the origin/mechanism of pairing.

Three-hyperfine state (pseudo-spin-1) fermions are also related to multi-band su-

perconductors, which are materials that have Cooper pairing occuring in more than

one Fermi surface. This connection arises by thinking of the eigenstates of the three-

hyperfine state Fermi system as labelling different energy bands. If interactions can be

controlled to produce superfluidity, a multi-band superfluid should emerge in the pres-

ence of spin-orbit coupling and Zeeman fields. Several multi-band superconductors

are known to exist in condensed matter physics, such as Magnesium-Diboride [42],

Strontium Ruthenate [43] and a family of materials called Pcnitides [44].

It is important to emphasize that systems of three-hyperfine-state (pseudo-spin-

1) Fermions are not in violation of the spin-statistics theorem [45], as the hyperfine

states 1, 2 and 3 do not label true spin states, but rather internal states that represent

pseudo-spin degrees of freedom. In the same sense, the labels color or band index may

be used to represent either the internal states or the eigenstates of the Hamiltonian

corresponding to non-interacting three-hyperfine-state fermions. Having this in mind,
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I discuss several spectroscopic properties in section 4.2 for the case of many non-

interacting fermions in the presence of artificial spin-orbit coupling Zeeman fields and

quadratic Zeeman shifts. While, I set the stage for the study of the superfluid phases

of three-hyperfine-state fermions in section 4.3 when atom-atom interactions are also

included.

4.2 Non-interacting three-hyperfine-state fermions in the
presence of artificial spin-orbit and Zeeman fields

In this section, I discuss the effective Hamiltonian for three-hyperfine-state fermions in

the presence of artificial spin-orbit coupling and Zeeman fields. The effective Hamil-

tonian is obtained in the same way as for the case of two-hyperfine-state fermions,

that is, via Raman processes. The essential difference is that now one could have

three-hyperfine-states coupled via up to three Raman transitions from states 1 to 2,

2 to 3, and 1 to 3, instead of a single Raman transition connecting states 1 to 2 in

the case of two-hyperfine-state fermions.

I will study the simplest non-trivial case of three-hyperfine state fermions where

Raman processes couple states 1 to 2 and 2 to 3, such that only two Raman transitions

are needed. The effective Hamiltonian describing this situation is obtained as follows.

For the Raman transition from state 1 to 2, there is a net momentum transfer of Q12

from the photons to the atoms in state 1 and a net momentum transfer of −Q23 from

the photons to the atoms in state 3, resulting in the light-atom Hamiltonian matrix

HLA(k) =


ε1(k) Ω12 0

Ω∗12 ε2(k) Ω23

0 Ω∗23 ε3(k)

 , (4.1)

written in the rotating frame.

Each diagonal element (`th state) of the light-atom Hamiltonian matrix in Eq. (4.1)

has momentum k−k`, and energy dispersion ε`(k) = (k−k`)
2/(2m)+η` corresponding
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to the sum of the kinetic energy (k−k`)
2/(2m) of the `th hyperfine state after the net

momentum transfer k` and the internal energy η`. The transferred momenta k` are

explicitly k1 = Q12, k2 = 0 and k3 = −Q23. The terms Ω`m are the Rabi frequencies

describing the coupling of adjacent hyperfine states, which can be taken to be real

such that Ω12 = Ω∗12 and Ω23 = Ω∗23. As in the case of two-hyperfine states, the Rabi

frequencies are proportional to the intensity of the laser fields causing two-photon

transitions between two atomic states. We can define an energy reference via the sum∑
` η` = η, in this case we can set η1 = −δ, η2 = η and η3 = +δ, where δ represents

the detuning energy of the Raman transition.

When the beams for each Raman transition form an arbitrary angle, momentum

transfers can be parametrized as k1 = kT x̂, k2 = 0, and k3 = −kT x̂, where kT

is the magnitude of the momentum transferred to the atom by the photons. The

magnitude’s range is 0 ≤ kT ≤ 2kR, where kR = 2π/λ is the recoil momentum,

and λ is the photon wavelength. Assuming that all Rabi frequencies are the same

(Ω12 = Ω23 = Ω) the Hamiltonian of Eq. (4.1) reduces to

HLA(k) =


ε0(k)− hz(k) + bz −hx/

√
2 0

−hx/
√

2 ε0(k) −hx/
√

2

0 −hx/
√

2 ε0(k) + hz(k) + bz

 , (4.2)

where ε0(k) = k2/(2m) + η is a reference kinetic energy which is the same for all

hyperfine states, hz(k) = 2kTkx/(2m) + δ is a momentum dependent Zeeman field

along the z-axis, which is transverse to the momentum transfer direction (x-axis),

hx(k) = −
√

2Ω is the spin-flip (Rabi) field, and bz = k2
T/(2m) − η is the quadratic

Zeeman term.

It is important to mention that very recently, a similar Hamiltonian was created

experimentally in the NIST group for spin-one bosonic atoms [13], where two Ra-

man transitions were also used to couple three hyperfine states of 87Rb. This recent
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experimental report gives further justification to the theoretical work involving three-

hyperfine state fermions discussed in this chapter, as this is a natural next direction

of this rapidly evolving field.

The light-atom Hamiltonian matrix displayed in Eq. (4.2.2) can be expanded in

terms of a subset of the SU(3) Gell-Mann matrices that includes the identity 1 and

the spin-one angular momentum matrices Jx, Jz and J2
z. In compact notation, the

expansion reads

HLA(k) = ε0(k)1− hx(k)Jx − hz(k)Jz + bzJ
2
z. (4.3)

Written in this form the light-atom Hamiltonian matrix can be interpreted as

describing pseudo-spin-one fermions in the presence of momentum dependent Zeeman

field components hx(k), hz(k) and a quadratic Zeeman shift parametrized by the

coefficient bz.

4.2.1 Energy Spectrum

The next step in the analysis of the light-atom Hamiltonian matrix described in

Eq. (4.3) is to obtain its energy spectrum. The simplest situation encountered corre-

sponds to the vanishing of the quadratic Zeeman term, that is, to bz = 0. When this

happens, the light-atom Hamiltonian matrix HLA(k) reduces to that of pseudo-spin-

one fermions in the presence of a momentum-dependent Zeeman field with compo-

nents hx(k) and hz(k). In this case, the eigenvalues are

Eα(k) = ε0(k)−mα|heff(k)|, (4.4)

with mα = {+1, 0,−1}, where the effective momentum dependent Zeeman field am-

plitude is |heff(k)| =
√
|hx(k)|2 + |hz(k)|2.

The general solution for the eigenvalues of Eq. (4.3) can be obtained using Car-

dano’s method [46], even for bz 6= 0. The eigenvalues of this pseudo-spin-one fermion
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Hamiltonian can be obtained analytically from the zeros of the characteristic polyno-

mial P (ω) = det [ω1−HLA(k)] , which leads to the cubic equation:

ω3 − ω2Tr [HLA(k)]− ω

2

{
Tr [HLA(k)]2 − [Tr [HLA(k)]]2

}
− det HLA(k) = 0 (4.5)

but the general expressions are quite cumbersome and not particularly illuminating.

Thus, we also obtain the eigenvalues Eα(k) by direct diagonalization of HLA(k) to

validate the analytical results and order them such that E1(k) > E2(k) > E3(k).

From this point on, I will consider only the case where the detuning δ is set to zero,

which corresponds to the simplest experimental situation. However, I will keep non-

zero all the other experimentally tunable parameters kT , Ω, and bz (or η) appearing

in the light-matter Hamiltonian matrix HLA(k) of Eq. (4.3).

In Fig. 4.2, plots of eigenvalues Eα(k) versus momentum along the kx and ky

directions are shown. Qualitatively different situations are illustrated in this figure,

corresponding to momentum transfer kT = 0.5kR, Rabi frequency Ω = 0.35ER and

three different values of the quadratic Zeeman shift bz = {−ER, 0, ER}. Along the kx

direction, notice that a double minimum is present in E3(k) when bz < 0, and that a

double minimum appears in E2(k), when bz > 0, while E3(k) is very flat near kx = 0

and E2(k) has a single minimum when bz = 0.

If our system consisted of non-interacting spin-one bosonic atoms, a phase transi-

tion would take place at low temperatures between a Bose-Einstein condensate (BEC)

at finite and zero momentum as bz is increased from negative to positive values (see

Fig. 4.2). However, for three-hyperfine state fermions the Pauli exclusion principle

is important, and thus available energy states are filled up to the Fermi energy cor-

responding to the appropriate density of particles. This leads to the emergence of

Fermi surfaces, to be discussed next.
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Figure 4.2: (color online) Eigenvalues Eα(k) in qualitatively different situations
corresponding to momentum transfer kT = 0.5kR, Rabi frequency Ω = 0.35ER and
quadratic Zeeman shift bz = −ER (left); bz = 0 (middle); bz = ER (right). The
dashed-green line corresponds to E1(k), the dot-dashed-red line to E2(k), and the
solid blue to E3(k). The top and bottom panels corresponds to cuts along the (kx, 0, 0)
and (0, ky, 0) directions, respectively.

4.2.2 Fermi Surfaces

For three-hyperfine-state fermions, light-matter interactions produce three energy

bands with dispersions and corresponding Fermi surfaces that can be dramatically

modified by the tuning of the experimental parameters kT , Ω and bz.

In Fig. 4.3, the Fermi surfaces in qualitatively different situations corresponding

to kT = 0.5kR, Ω = 0.35ER and bz = {−ER, 0, ER} are shown. I define the effective

Fermi momentum kF via the total particle density n = 3k3
F/(6π

2), where the factor

of 3 indicates the presence of three internal states which lead to the three bands of
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the many-fermion system. I also define the effective Fermi energy as EF = k2
F/(2m)

and and remark that the Fermi surfaces shown in Fig. 4.3 correspond to a density of

n = 1014atoms/cm3.

Notice that in the middle panel of Fig. 4.3 there is no quadratic Zeeman shift

(bz = 0), but kT and Ω are non-zero. As described above, this implies that new

fermionic bands Eα(k) = ε0(k) − mα|heff(k)|, with mα = {+1, 0,−1}, emerge from

three degenerate bands ε0(k). As a result, identical spherical Fermi surfaces associ-

ated with ε0(k) become non-degenerate since the new energy dispersions are controlled

by |heff(k)|, which is a function of kT and Ω. With the exception of the central band

E2(k), which still produces a spherical Fermi surface, the other two bands possess

anisotropic Fermi surfaces due to |heff(k)|.
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Figure 4.3: (color online) Fermi surfaces are shown in qualitatively different situa-
tions corresponding to momentum transfer kT = 0.5kR, Rabi frequency Ω = 0.35ER
and three different values of the quadratic Zeeman shift bz = −ER (left); (b)
bz = 0 (middle); (c) bz = ER (right). The values of the chemical potential are
µ = 1.23ER (left), µ = 1.04ER (middle), µ = 0.68ER (right) for particle density
n = 1014atoms/cm3.

These effects are reminiscent of the Pomeranchuk [47] instability in condensed

matter physics, where deformations in Fermi surfaces may emerge spontaneously in

systems with anisotropic density-density interactions, without violating Luttinger’s
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theorem [48]. However, in the present case, it is important to emphasize that deforma-

tions of the spherical Fermi surfaces associated with ε0(k) are induced by the artifical

spin-orbit coupling, and therefore are not due to spontaneous symmetry breaking.

Nevertheless a connection can be made to the situation encountered in condensed

matter physics, where anisotropic interactions produce deformations of the Fermi

surfaces, making them incompatible with the underlying symmetry of the crystal.

The easiest way to see this connection is to analyze the toy Hamiltonian

H =
∑
k,α

[ε(k)n̂α(k)] +
1

2

∑
k,k′αβ

Fαβ(k,k′)n̂α(k)n̂β(k′)

where n̂α(k) = c†α(k)cα(k) is the number operator for spin α. The replacement of

n̂α(k) = 〈n̂α(k)〉+ δn̂α(k) leads to the mean-field Hamiltonian

H =
∑
k,α

[Eα(k)n̂α(k)] + C. (4.6)

The energy for internal state α is Eα(k) = ε(k) − hα(k), where ε(k) = k2/(2m), is

the kinetic energy of fermions of mass m, and

hα(k) = −
∑
β,k′

[Fαβ(k,k′) + Fβα(k′,k)] 〈n̂β(k′)〉, (4.7)

is the effective field affecting the α-band. Lastly, the constant energy reference is

C =
1

2

∑
k,k′αβ

Fαβ(k,k′)〈n̂α(k)〉〈n̂β(k′)〉. (4.8)

Notice that when hα(k) does not have spherical symmetry, then the Fermi surface

for state α is deformed. The eigenvalues of the mean field Hamiltonian displayed in

Eq. (4.6) have the same structure of eigenvalues at the Hamiltonian matrix describing

the spin-orbit coupled systems of three-hyperfine-state fermions.

In Fig. 4.3, a clear signature of the Pomeranchuk-like deformation can be seen for

the band with energy E2(k) shown as the red dot-dashed line. However, notice that for

fixed kT and Ω, what drives the Fermi surface deformations is the quadratic Zeeman
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coupling bz, that is, the Jz-Jz spinor coupling instead of density-density interactions.

When bz = 0, the Fermi surface corresponding to E2(k) is spherically symmetric,

however when bz > 0 (bz < 0) this Fermi surface suffers a predominant deformation

along the kx (ky) direction. The Ising-Nematic deformation parameter

N2 =

∫
dk
[
k2
y + k2

z − 2k2
x

]
〈φ†2(k)φ2(k)〉 (4.9)

becomes zero for bz = 0, positive for bz < 0 and negative for bz > 0, where φ†2(k) is the

creation operator for eingestate 2. Similar Pomeranchuk-type deformations occur for

E1(k) or E3(k), however deformations are already present even for bz = 0, because

the spin-orbit coupling contains non-spherically-symmetric contributions through the

effective field heff(k).

It is also important to notice the existence of a Lifshitz transition [49], which

for fixed momentum transfer kT and particle density n, can be tuned via the Rabi

frequency Ω and the quadratic Zeeman coupling bz. In Fig. 4.3, one can see a Lifsthitz

transition for fixed Ω and changing bz, as three Fermi surfaces (genus 3) for bz = 0

are reduced to two Fermi surfaces (genus 2) for bz = −ER. A phase diagram can

be constructed mapping out these topological changes in the Ω versus bz plane. In

Fig. 4.4, I show the behavior of the chemical potential µ in units of ER versus the

quadratic Zeeman shift parameter bz/ER for fixed values of the momentum transfer

kT . It is this change of µ as a function of bz that is responsible for the Lifshitz

transition in the Fermi surfaces of the system, eventhough the particle density is

fixed.

Having analysed the eigenvalues and the Fermi surfaces of three-hyperfine state

fermions, I will discuss next the eigenfunctions of the system and the unitary matrix

transformation that diagonalizes the Hamiltonian matrix HLA(k).
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Figure 4.4: Chemical potential versus bz/ER is shown for Ω = 0.35ER with kT = 0kR
(black solid), kT = 0.25kR (red dot-dashed), kT = 0.5kR (green dashed), for particle
density n = 1014atoms/cm3.

4.2.3 Eigenfunctions of three-component Fermions

The effects of artificial spin-orbit and quadratic Zeeman coupling, due to light-atom

interactions via the Raman scheme, can be further explored by investigating the

three-component spinor wavefunctions of the Hamiltonian

HLA =
∑
k

Ψ†kHLA(k)Ψk, (4.10)

where Ψk is a three-component spinor with Ψ†k =
(
ψ†1(k), ψ†2(k), ψ†3(k)

)
, where ψ†s(k)

represents the creation of a fermion in hyperfine state s. When s = 1, the atom has

momentum k − kT and m1 = +1; when s = 2, the atom has momentum k and

m2 = 0; and when s = 3, the atom has momentum k + kT and m3 = −1. The

Hamiltonian HLA can be diagonalized via the rotation Φ(k) = U(k)Ψ(k), which

connects the three-component spinor Ψ(k) in the original spin basis to the three-

component spinor Φ(k) representing the basis of eigenstates. The matrix U(k) is
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unitary and satisfies the relation U†(k)U(k) = 1. The diagonalized Hamiltonian is

HD(k) = U(k)HLAU†(k) (4.11)

with matrix elements [HD(k)]αβ = Eα(k)δαβ, where Eα(k) are the eigenvalues of

HLA(k) discussed above. The three-component spinor in the eigenbasis is Φ†(k) =(
φ†1(k), φ†2(k), φ†3(k),

)
, where φ†α(k) is the creation operator of a fermion with eigenen-

ergy Eα(k). The unitary matrix

U(k) =


u11(k) u12(k) u13(k)

u21(k) u22(k) u23(k)

u31(k) u32(k) u33(k)

 (4.12)

has rows that satisfy the normalization condition
∑

s |uαs(k)|2 = 1. The knowledge

of the unitary matrix elements uαs allows for an analysis of the spin-dependent mo-

mentum distribution of three-component Fermi gas to be discussed next.

4.2.4 Momentum Distribution

Using a Stern-Gerlach technique, another spectroscopic property that can be mea-

sured is the spin-dependent momentum distribution

ns(k) =
∑
α

|uαs(k)|2f [Eα(k)]. (4.13)

We can fix the average number of particles Ns =
∑

k ns(k) in each state s indepen-

dently, in which case chemical potentials µs for each state s are necessary. However,

when the total average number of particles N =
∑

sNs =
∑

s,α |uαs(k)|2f [Eα(k)] is

fixed, we need only one chemical potential µ. The use of the normalization condition∑
s |uαs(k)|2 = 1 leads to N =

∑
α f [Eα(k)].

In Fig. 4.5, we show ns(k) at low temperatures for the simpler case where there is

only one chemical potential. The cross sections along kx with ky = kz = 0 are shown

in Fig. 4.5 top panels, while the cross sections along ky with kx = kz = 0 are shown
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in Fig. 4.5 lower panels. In the top panels of Fig. 4.5, notice that ns(k) for states

s = 1 (m1 = +1) and s = 3 (m3 = −1) do not have well defined parity, but are

mirror images of each other. This is a reflection of the Hamiltonian invariance under

the transformation (kx,m1)→ (−kx,m3) and (kx,m3)→ (−kx,m1).
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Figure 4.5: Momentum distributions ns(k) for s = 1 (m1 = +1) (blue-solid curves),
s = 2 (m2 = 0) (red-dot-dashed curves) and s = 3 (m3 = −1) (green-dashed curves),
with T = 0.02ER ≈ 0.01EF . The parameter values are bz = −ER (left panels), bz = 0
(middle panels) and bz = +ER (right panels), with kT = 0.5kR and Ω = 0.35ER.

The momentum distributions shown in Figure 4.5 and Figure 4.6 can be under-

stood as follows. The momentum transfer along the kx direction shifts the center of

mass of the atom in state s = 1 with m1 = +1 (s = 3 with m3 = −1) to be around kT

(−kT ). While there is no momentum shift for the state s = 2 with m2 = 0. In the limit

of Ω → 0, ns(k) along kx have square shapes characteristic of degenerate fermions

for each state labeled by s. However, momentum transfer can only occur when the
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lasers are on, which means Ω 6= 0. This leads to mixing of states with different values

of s and to a modification of the trivial momentum distributions via the coherence

factors |uαs(k)|2. The dramatic effects of the coherence factors is seen on Fig. 4.5 (top

panels) where finite Ω causes strong deviations from square momentum distributions,

due to the momentum-dependent mixing states with different values of s. However,

ns(k) along the ky direction experience no momentum transfer and the distributions

are centered around ky = 0. For kx = 0, the light-atom Hamiltonian matrix is in-

variant under the transformations (ky,ms) → (−ky,ms), (ky,m1) → (−ky,m3), and

(ky,m3) → (−ky,m1), such that the corresponding ns(k) along ky for states s = 1

and s = 3 are identical. The square like structures that emerge are a consequence of

the less dramatic dependence of the coherence factors |uαs(k)|2 on ky. By symmetry,

the same square structures also appear along the kz direction.

Notice that as bz increases from negative to positive (left to right panels in

Fig. 4.5), ns(k) for state s = 2 along the kx and ky directions increase on average

at fixed Ω. This enhancement occurs because the energy of the s = 2 state becomes

increasingly lowered in comparison to the energy of the s = 1, 3 states, and spectral

weight is transferred from states s = 1, 3 to s = 2, causing a corresponding decrease

in the average ns(k) of the former states. When bz becomes large and negative, the

central state (s = 2) is pushed up in energy with respect to s = 1, 3, thus the system

reduces to effective spin-1/2 fermions for densities such that the Fermi energy crosses

only the two lowest states. However, when bz becomes large and positive, the central

state (s = 2) is pushed down in energy with respect to the s = 1, 3 states, and for

densities such that the Fermi energy only crosses the s = 2 state, the system reduces

to effective spin-zero (spinless) fermions.

The matrix elements uαs of the unitary matrix U(k) can also be used to analyse

the spin-dependent density of states to be discussed next.
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Figure 4.6: Contour momentum distribution of s = 1 (Top), s = 2 (Middle) and
s = 3 (Bottom), states with Ω = 0.35ER and kT = 0.5kR with bz = ER (left),
bz = 0ER (middle), bz = −ER (right).

4.2.5 Density of States

The last spectroscopic quantity that I would like to analyze is the spin-dependent

density of states (DOS)

ρs(ω) =
∑
k,α

|uαs(k)|2δ(ω − Eα(k)). (4.14)

Below the minimum of E3(k) there are no states available, that is, ρs(ω) = 0 for

ω ≤ ω∗(Ω, bz, kT ) = minkE3(k). The spin-dependent DOS for Ω = 0.35ER and

bz = {−ER, 0, ER} are shown in Fig. 4.7. Notice that for bz = −ER (left panel) the
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spin-dependent DOS is non-zero only when ω ≥ −0.09ER and that for small values

of γ = (ω − ω∗)/ER, the main contributions to the total DOS ρ(ω) =
∑

s ρs(ω)

come from states s = 1, 3. In addition, for bz = 0 (central panel), ρs(ω) ≥ 0 when

ω ≥ −0.27ER, and the DOS for each spin component are comparable for small values

of γ. However, for bz = +ER (right panel), ρs(ω) ≥ 0 when ω ≥ −1.00ER, and the

main contribution to ρ(ω) comes from ρ2(ω) for small values of γ, as state s = 2 has

the lowest energy.

0.0
0.2
0.4
0.6
0.8
1.0

Ρ�
sH
Ω
L

-1 0 1
Ω�ER

-1 0 1
Ω�ER

-1 0 1
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Figure 4.7: Density of states ρ̃s(ω) = ρs(ω)EF/N for s = 1 (m1 = +1) (blue-solid
lines), s = 2 (m2 = 0) (red-dot-dashed lines), and s = 3 (m3 = −1) (green-dashed
lines). N is the total number of particles and EF is the effective Fermi energy. We
use a line-width broadening δ`w = 0.01ER. The parameters used are bz = −ER (left
panel), bz = 0 (middle panel) and bz = +ER (right panel), with kT = 0.5kR and
Ω = 0.35ER and EF = 1.95ER.

Having considered the case of non-interacting fermions in the presence of artifi-

cial spin-orbit coupling and Zeemsn fields in the preceeding sections, I am ready to

discuss next a few preliminary aspects due to attractive interactions that can lead to

superfluid phases.

4.3 Superfluid phases

In this section, I will discuss on a preliminary basis the effects of atom-atom in-

teractions in systems of three-hyperfine-state fermions. I will consider the simplest

theoretical situation that could be, in principle, realized in the fermionic isotope of
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Potassium (40K). I will discuss the case of s-wave attractive contact interactions be-

tween hyperfine s = 1 and s = 3 with strength g13, between states s = 1 and s = 2

with strength g12 and between states s = 2 and s = 3 with strength g23. This means

that the interaction Hamiltonian can be written in momentum space as

HAA = −V
∑

k,k′,Q,s 6=s′
gss′ψ

†
s(k + Q/2)ψ†s′(−k−Q/2)ψs′(−k′ −Q/2)ψs(k

′ + Q/2),

(4.15)

where gss′ represent the strength of s-wave contact interactions between hyperfine

states s and s′, V is the volume, k and k′ are fermionic labels of momentum states

and Q is the center of mass momentum of the fermion pair operator

b†ss′(Q) =
∑
k

ψ†s(k + Q/2)ψ†s′(−k−Q/2). (4.16)

The fermionic operators ψs(q) describe exactly the same states that appear in the

light-atom Hamitonian HLA shown in Eq. (4.10). Finally, the atom-atom interaction

Hamiltonian in terms of the pair operators become simply

HAA = −V
∑
Qs 6=s′

gss′b
†
ss′(Q)bss′(Q), (4.17)

and the total Hamiltonian describing the effects of spin-orbit coupling, Zeeman fields,

and atom-atom interactions is described by the sum

HT = HLA − µN̂ +HAA, (4.18)

where HLA is the light-atom interaction Hamiltonian, −µN̂ is the chemical potential

term containing the number operator N̂ =
∑

k,s ψ
†
s(k)ψs(k) and the chemical poten-

tial µ, while HAA is the atom-atom interaction Hamiltonian. The chemical potential

term was added now because it will be necessary to fix the total number of particles

later, as the superfluid phase will be described within the Grand Canonical ensemble

in the same spirit of the conventional BCS theory.

Now that the Hamiltonian of our system is known, I will describe a few approxima-

tions that facilitate the search of superfluid phases of three-hyperfine state fermions
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in the presence of spin-orbit coupling and Zeeman fields. The mean-field approach to

three-hyperfine state superfluidity will be discussed next.

4.3.1 Mean Field Approach

The mean field approximation for the superfluid phase can be made by considering

pairing at zero center of mass momentum only, that is, Q = 0. This amounts physi-

cally to replacing the pairing operator bss′(0) by it quantum mechanical and thermal

average 〈bss′(0)〉. However, it is more convenient to define an order parameter for

superfluidity via the relation

∆ss′ = −gss
′

V
〈bss′(0)〉, (4.19)

which is the quantity that appears naturally in the mean field Hamiltonian to be

discussed shortly. The symbol V represents the volume of the system, such that the

order parameter defined above represents an energy scale associated with the momen-

tum sum of the paired fermionic states ψs(k) and ψs′(−k) with opposite momenta as

described mathematically by the expression

∆ss′ = −gss
′

V

∑
k

〈ψs′(−k)ψs(k)〉. (4.20)

The atom-atom interaction term HAA can now be written in terms of the order

parameter as

Hmf
AA = −V

∑
s 6=s′

|∆ss′ |2

gss′
+
∑
k,s 6=s′

[
∆ss′ψ

†
s(k)ψ†s′(−k) +H.C.

]
, (4.21)

where H.C. denotes Hermitian conjugation. To write the total mean field Hamiltonian

Hmf
T = HLA+Hmf

AA in standard form, it is convenient to introduce a generalized Nambu

spinor (GNS)

Ψ̃†(k) =
(
ψ†1(k), ψ†2(k), ψ†3(k), ψ1(−k)ψ2(−k), ψ3(−k)

)
, (4.22)

where the widetilde symbol is used to differentiate the GNS from the three-hyperfine

state spinor Ψ†(k) =
(
ψ†1(k), ψ†2(k), ψ†3(k)

)
defined previously. The GNS can then

be written in the compact form Ψ̃†(k) =
(
Ψ†(k),Ψ†(−k)

)
.
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In the GNS basis the mean field Hamiltonian can be written in the simple form

Hmf
T =

1

2

∑
k

Ψ̃†(k)Hmf
T (k)Ψ̃(k) +

1

2

∑
k,s

ξs(−k)−
∑
s 6=s′

|∆ss′ |2

gss′
, (4.23)

where ξs(k) = εs(k)− µ represent the kinetic energy term, where εs(k) is the energy

dispersion of hyperfine state s. The mean field Hamiltonian matrix is

Hmf
T (k) =



ψ1(k) ψ2(k) ψ3(k) ψ†1(−k) ψ†2(−k) ψ†3(−k)

ψ†1(k) ξ1(k) Ω 0 0 ∆12 ∆13

ψ†2(k) Ω ξ2(k) Ω −∆12 0 ∆23

ψ†3(k) 0 Ω ξ3(k) −∆13 −∆23 0

ψ1(−k) 0 −∆∗12 −∆∗13 −ξ1(−k) −Ω 0

ψ2(−k) ∆∗12 0 −∆∗23 −Ω −ξ2(−k) −Ω

ψ3(−k) ∆∗13 ∆∗23 0 0 −Ω −ξ3(−k)



,

(4.24)

where Ω is the Rabi frequency, and the basis in which the Hamiltonian matrix is writ-

ten is made explicit in order to facilitate visualization and interpretation of the terms.

The diagonal blocks of the matrix Hamiltonian Hmf
T (k) are simply the light-atom

interaction matrices HLA(k) (top diagonal block) and −HLA(−k) (lower diagonal

blocks). The off-diagonal blocks reflect pairing between different hyperfine states.

Now that the mean field Hamiltonian is known, I will analyse next the thermo-

dynamic potential and the system of self-consistent equations satisfied by the order

parameter ∆ss′ and the chemical potential µ.

4.3.2 Thermodynamic Potential and Self-Consistency Relations

The thermodynamic potential is

Q = −T (lnZ) , (4.25)

when expressed in terms of the Grand Canonical partition function

Z = Tr
(
e−HT /T

)
, (4.26)
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where T is the temperature (kB = 1) and HT is the total Hamiltonian of the system

(including the chemical potential term) defined in Eq. (4.18).

To obtain Q at the mean field level, it is necessary to find out the eigenvalues of

the Hamiltonian matrix Hmf
T (k) defined in Eq. (4.24). This matrix has six eigenvalues

Ej(k), and it is convenient to order them from highest to lowest energies as follows

E1(k) > E2(k) > E3(k) > E4(k) > E5(k) > E6(k). The three higher eigenvalues

(E1, E2, E3) are guaranteed to be positive and describe quasi-particle excitations,

while the three lowest eigenvalues (E4, E5, E6) are guaranteed to be negative and

describe quasi-hole excitations. In addition, Hmf
T (k) exhibits quasi-particle/quasi-

hole symmetry, which means that the quasi-particle and quasi-hole eigenvalues are

related by the following transformation E6(k) = −E1(−k), E5(k) = −E2(−k), and

E4(k) = −E3(−k).

These eigenvalues need to be obtained numerically, but the mean field thermody-

namic potential

Qmf = −T
2

∑
kj

ln
(
1 + e−Ej(k)/T

)
+

1

2

∑
ks

ξs(−k)−
∑
s 6=s′

|∆ss′|2

gss′
(4.27)

can be easily written in terms of Ej(k) with j = {1, 2, 3, 4, 5, 6}, the kinetic terms

ξs(−k) and the order parameters ∆ss′ , with {s, s′} = {1, 2, 3}.

In order to determine the phase diagrams of three-hyperfine-state Fermi super-

fluids and their excitation spectrum, it is necessary to establish self-consistently the

order parameter ∆ss′ for superfluidity and the chemical potential µ that fixes the

total number N of fermions. The order parameter equations for the potentially three

order parameters {∆12,∆13,∆23} are determined from the saddle-point condition

∂Q
∂∆∗ss′

=
1

2

∑
k

3∑
j=1

tanh

(
βEj(k)

2

)
∂Ej(k)

∂∆∗ss′
− V

gss′
∆ss′ = 0, (4.28)

while the number equation from the thermodynamic relation

N = −∂Q
∂µ

=
1

2

∑
k

[
3∑
j=1

tanh

(
βEi(k)

2

)
∂Ej(k)

∂µ
+ 3

]
. (4.29)
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In the expressions above, notice that the summations over eigenvalues only involve

the quasi-particle energies E1(k), E2(k) and E3(k), as the quasi-particle/quasi-hole

symmetry was used to elimminate the quasi-hole energies E4(k), E5(k) and E6(k).

Once these self-consistent equations are solved to determine the order parameters

∆ss′ and the chemical potential µ, then the quasi-particle/quasi-particle spectrum

can be obtained and several spectroscopic properties can be calculated. Furthermore,

all thermodynamic properties can be obtained from the thermodynamic potential Q,

within the mean field approximation. These calculations are currently in progress for

the simpler case where there is pairing only between hyperfine states 1 and 3, that is

when only ∆13 6= 0, and will reported as a separate publication in the future.

4.4 Conclusions

In this chapter, I have discussed a fermionic system involving three hyerfine states at

fixed Rabi frequency, but changing artificial spin-orbit fields and quadratic Zeeman

shifts induced by light-atom interactions using a Raman coupling scheme. By adjust-

ing the artificial quadratic Zeeman shift it was possible to tune through regimes where

only one, two or three-hyperfine states are important. Lifshitz transitions and Pomer-

anchuk deformations of the Fermi surfaces were studied for varying quadratic Zeeman

shifts. Several spectroscopic properties spectroscopic properties were studied includ-

ing energy dispersion, Fermi surfaces, spectral function, spin-dependent momentum

distribution and density of states.

The possibility of superfluidity in three-hyperfine state fermions was also discussed

at the mean field level. The mean field thermodynamic potential, as well as self-

consistent equations for the order parameter and particle number were obtained, but

not yet solved. It is hoped that in the immediate future, these equations will be

solved numerically to obtain the phase diagram of this rich system as a function of

the quadratic Zeeman shift and the Rabi frequency, as least in simpler cases, where
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possible topological phase transitions make take place.
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CHAPTER V

CONCLUSIONS

In this thesis, I have discussed the effects of artificial spin-orbit and Zeeman fields

in systems consisting of ultra-cold fermions. I explored two general aspects of such

systems. The first aspect was the exploration of few-body physics of fermions with

two relevant hyperfine states, and the second aspect was the investigation of many-

body physics of fermions with three relevant hyperfine states. My work was inspired

by the experimental realization of these artificial fields for Fermi atoms such as 40K.

Regarding the few-body physics aspect, I have analysed the existence of two-

body bound states as a function of spin-orbit coupling strength, Zeeman fields and

atom-atom interactions for fermionic atoms with two relevant hyperfine states. Such

systems were investigated in the regime where only s-wave interactions are important,

and where the two-particles reside either in free space or in a harmonically confin-

ing potential. In the case of free space, I have obtained the energies and effective

masses of the two-body bound states, which were used to calculate the Bose-Einstein

condensation temperature of these molecular states. In the case of a harmonically

confining potential, I have investigated the changes in the energy of two-body bound

states produced by this potential.

Concerning the many-body physics aspect of this thesis, I explored a novel direc-

tion corresponding to the physics of ultra-cold fermions with three relevant hyperfine

states in the presence of artificial spin-orbit and Zeeman fields. In the case of three

hyperfine states, it is also possible to have an additional term corresponding to an

artificial quadratic Zeeman shift. A possible experimental system corresponding to
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this situation is ultra-cold fermionic 40K, when these atoms are trapped in three dis-

tinct hyperfine states. In the case where the Fermi atoms where non-interacting, I

analysed spectroscopic properties such as energy spectrum, momentum distribution,

Fermi surfaces and density of states as a function of artificial spin-orbit coupling,

Zeeman fields and quadratic Zeeman shift. When interactions were included, I ex-

plored the possibility of superfluid phases, and derived self-consistency relations for

the order parameters and chemical potential of the system. Lastly, I found out that

these relations allow for a description of the quantum phases of three-hyperfine-state

fermions, which may include topological superfluidity.
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CHAPTER VI

APPENDIX

6.1 Appendix I: Kronecker Products for Pauli Spin Matri-
ces in Chapter II

In this appendix, I display the Kronecker products of 2× 2 Pauli matrices, which are

used to construct the Hamiltonian of two non-interacting fermions in chapter II.

The identity and individual Pauli matrices are

1 =

1 0

0 1

 σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 .

The corresponding Kronecker products of the relevant matrices are

1⊗ 1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

σx ⊗ 1 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, 1⊗ σx =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



σy ⊗ 1 =



0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


, 1⊗ σy =



0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0


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σz ⊗ 1 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


and 1⊗ σz =



1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


.

6.2 Appendix II: Derivation of Eigenvalue Equation in Chap-
ter II

In this appendix, I display the computer code written in Mathematica to perform

the symbolic manipulation of the Gaussian ellimination method that leads to Eqs.

(2.40), (2.43), (2.44), (2.48) and (2.50) in chapter II. I solve for the most general

case involving an arbitrary mixture of Rashba and Dresselhaus terms, as well finite

Zeeman fields hy and hz, from which all the particular case can be obtained.

After the Gaussian ellimination method is used or after the direct application of

the formal solution shown in Eq. (2.39), the Schroedinger’s equation becomes

φ00(k,K) = f(k,K, hz, hy, vR, vD, E)
g

L3

∑
k

φ00(k,K),

where I explictly showed all the important variable dependencies of the function f

to indicate that this derivation corresponds to the most general case where all the

external variables are non-zero, that is, {vR, vD, hy, hz} 6= 0.

A summation (integration) of the expression above over relative momenta k leads

to the relation

∑
k

φ00(k,K) =
∑
k

f(k,K, hz, hy, vR, vD, E)
g

L3

∑
k

φ00(k,K),

which produces the desired result

1

g
=

1

L3

∑
k

f(k,K, hz, hy, vR, vD, E),

upon cancellation of the common factor
∑

k φ00(k,K) on both sides of the equation.
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The most general form of the function f in compact notation is

f(k,K, hz, hy, vR, vD, E) =
Ek,K

(
E2
k,K − 4h2

z − b2
)

E4
k,K − E2

k,K (4a2 + b2 + 4h2
z) + 4 (a · b)

, (6.1)

where I used the notation Ek,K = E−εk,K, and the vectors appearing in the expression

above are a = γkxex + βkyey and b = (2hy + γKx) ex + βKyey. Recall that the

coefficients β = vD − vR and γ = vD + vR, relate directly to Rashba and Dresselhaus

velocities vR and vD.

The code written in Mathematica is shown in Fig. 6.1 and gives the inverse of the

function f defined above.

6.3 Appendix III: Derivation of the Bound State Energy
for ERD spin-orbit coupling in Chapter II

In this appendix, I solve analytically for the bound state energy for ERD spin-orbit

without the presence of Zeeman fields. I will use the general method outlined in

chapter II, which is more powerful for more complex cases. The reason for using this

more powerful method for this simpler case is to gain confidence in the method and

its results.

The unitarity matrix V used to diagonalize the Hamiltonian H0 described in

Eq. (2.27) contains the components of the eigenvector of H0 and has the form

V =



− isgn(kx)√
2

0 isgn(kx)
2

− isgn(kx)
2

0 1 0 0

isgn(kx)√
2

0 isgn(kx)
2

− isgn(kx)
2

0 0 1√
2

1√
2


,

when the center of mass momentum is set to zero, that is, K = 0. This matrix is

also used to diagonalize H0−E1, where E is the energy eigenvalue and 1 is identity,
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leading to the following result

V(H0 − E1)V† = H′0 − E1 =



εk,0 − E 0 0 0

0 εk,0 − E 0 0

0 0 εk,0 − E − 2vkx 0

0 0 0 εk,0 − E + 2vkx


.

The corresponding four-dimensional spinor in the rotated basis is Λ(k,K) =

VΦ(k,K), which in the case of K = 0, becomes

Λ(k,0) = VΦ(k,0) =



iφ1,1(k,0)−φ1,−1(k,0)√
2

φ1,0(k, 0)

1
2

(
−iφ1,1(k,0)− iφ1,−1(k,0) +

√
2φ0,0(k,0)

)
1
2

(
iφ1,1(k,0) + iφ1,−1(k,0) +

√
2φ0,0(k,0)

)


.

A similar transformation can be used for the action of the interaction matrix HI

on Φ(k,K) leading to the transformation HIΦ(k,K) → H′IΛ(k,K), where H′I =

VHIV
†. Therefore the transformation VHIV

†VΦ = H′IΛ, which is shown below as

VHIΦ(k, 0) = VHIV
†VΦ(k, 0) = H′IΛ(k,0) =



0

0

− g

L3
√

2

∑
k

φ0,0(k,0)

− g

L3
√

2

∑
k

φ0,0(k,0)


,

given that V satisfies the unitarity condition VV† = 1.

The corresponding Schroedinger’s equation for the ERD case can then be solved

using the method in appendix II, and leads to

(εk,0 − E)2 − 4v2k2
x

εk,0 − E
φ0,0(k,0) =

g

L3

∑
k′

φ0,0(k′,0),

which upon summation over the relative momentum coordinate k produces the inte-

gral equation

1

g
=

1

L3

∑
k

εk,0 − E
(εk,0 − E)2 − 4v2k2

x
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for the eigenvalues of the two fermion problem. Fortunately, this integral equation

can be solved analytically in the simple case that we are considering through a series

of standard calculus manipulations which are displayed below.

Starting from the relation

1

g
=

1

(2π)3

∫
dk

εk,0 − E
(εk,0 − E)2 − 4v2k2

x

, (6.2)

where summations over k were replaced by integrals over k, I replace the interaction

parameter g in favor of the scattering length on the left hand side of the previous

relation. At the same time I use cylindrical coordinates in momentum space to obtain

the expression

− m

4πas
+

1

(2π)3

∫
dk

1

εk,0
=

m

(2π)3

∫∫∫
dkxkdkdθ

k2 + k2
x −mE

(k2 + k2
x −mE)2 − 4m2v2k2

x

. (6.3)

The next step in the manipulations is to decompose the integrand in the right hand

side of the previous equation into partial fractions, while using the explicit form of

εk,0 on the left hand side. These operations lead to the intermediate expression

− m

4πas
+

m

(2π)3

∫∫∫
dkxkdkdθ

k2
x + k2

=
m

(2π)3

1

2

∫∫∫
dkxkdkdθ

∑
η=±

[
1

k2 + k2
x −mE + η2mvkx

]
.(6.4)

Integrations over the angle θ and kx lead to the final integral

− m

4πas
=

m

(2π)2

∫
kdk

(
1√

k2 −mE −m2v2
− 1

k

)
, (6.5)

which can be easily performed to give the simple result

1

as
=
√
−mE −m2v2

This result shows that as must be positive, since it is a real quantity. Furthermore,

squaring the previous relations gives the standard result for the bound state energy

E = EB = − 1

ma2
s

−mv2,

where mv2 is just the Galilean boost given to the atoms by the ERD spin-orbit

coupling which was not explicitly included in the Hamiltonian, thus changing the
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minimum energy of two free fermions to −mv2. However the binding energy EBin is

the difference between the bound state energy EB and the lowest energy of two free

fermions, leading therefore to the final result

EBin = EB +mv2 = − 1

ma2
s

, (6.6)

which shows that the binding energy is not affected by the ERD spin-orbit coupling,

when the Zeeman fields are not included. This is not surprising because in the case

of zero Zeeman fields, and ERD spin-orbit only, our system is Galilean invariant, and

the boost provided by the ERD field can be gauged away. However, this is not the

case of Rashba or Dresselhaus fields.

6.4 Appendix IV: Derivation of Bound State Energy for
Rashba spin-orbit coupling in Chapter II

In this appendix, I present the derivation of the bound state energy, at the zero center

of mass momentum (K = 0), for two fermions in the presence of Rashba spin-orbit

coupling vR, but without Zeeman fields. I use the same method outlined in chapter

II, and in Appendix III. The rotation matrix in the Rashba case is

V =



− kx+iky√
2(kx−iky)

0 1√
2

0

0 1 0 0

ikx−ky
2k⊥

0 ikx+ky
2k⊥

1√
2

−ikx+ky
2k⊥

0 −ikx−ky
2k⊥

1√
2


,

which I apply to the Hamiltonian H0 for the Rashba system leading to the diagonal

form

V(H0 − E1)V† = H′0 − E1 =



εk,0 − E 0 0 0

0 εk,0 − E 0 0

0 0 εk,0 − E + 2vRk⊥ 0

0 0 0 εk,0 − E − 2vRk⊥


,
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where k⊥ =
√
k2
x + k2

y is the magnitude of the relative momentum in the xy plane.

The corresponding four-dimensional spinor in the rotated basis is Λ(k,K) =

VΦ(k,K), which in the case of K = 0, becomes

Λ(k,0) = VΦ(k,0) =



− kx−iky√
2(kx+iky)

φ1,1 − ikx+ky
2k⊥

(φ1,−1 − φ0,0)

φ1,0

1√
2
φ1,1 + −ikx+ky

2k⊥
(φ1,−1 − φ0,0)

φ1,−1+φ0,0√
2


,

where I have dropped the momentum arguments (k,0) of the function φs,ms(k,0) for

the sake of symplifying the notation in the matrix.

The corresponding transformation for the interaction part of the Hamiltonian

leads to

VHIΦ(k, 0) = VHIV
†VΦ(k, 0) = H′IΛ(k,0) = −g



ikx+ky
2k⊥

0

ikx−ky
2k⊥

1√
2


∑
k

φ0,0(k, 0),

given that V satisfies the unitarity condition VV† = 1.

The resulting Schroedinger’s equation matrix for the Rashba case can be reduced

by Gaussian ellimination to the integral equation

(εk,0 − E)2 − 4v2
Rk

2
⊥

(εk,0 − E)
φ0,0(k,0) =

g

L3

∑
k′

φ0,0(k′,0),

where k⊥ =
√
k2
x + k2

y. Integration over the relative momentum k leads to the relation

1

g
=

1

L3

∑
k

(εk,0 − E)

(εk,0 − E)2 − 4v2
Rk

2
⊥
.

Transforming the summation over momenta into an integral produces

1

g
=

1

(2π)3

∫
dk

(εk,0 − E)

(εk,0 − E)2 − 4v2
Rk

2
⊥
,
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which in turn can be written in terms of cylindrical coordinates as k = (k⊥, θ, kz).

After a trivial integration over θ, I obtain the expression

1

g
=

m

4π2

∫∫
k⊥dk⊥dkz

k2
⊥ + k2

z −mE
(k2
⊥ + k2

z −mE)2 − 4m2v2
Rk

2
⊥
.

The next step is to replace the interaction g in favor of the scattering length and

to reorganize the relation in the form

− m

4πas
=
m

8π

∫
k⊥dk⊥

(
1√

k2
⊥ − 2mvRk⊥ −mE

+
1√

k2
⊥ + 2mvRk⊥ −mE

− 2

k⊥

)
,

which upon integration over k⊥ generates an expression relating the scattering length

as and the energy of the bound state E = EB given by

− m

4πas
= −
√
−mE
4π

− mvR
8π

ln

[√
−mE −mvR√
−mE +mvR

]
.

This last relation can be also be written in a equivalent form by exponentiating

the natural logarithm, giving the result

exp

[
1

mvR

(
2
√
−mE − 2

as

)]
=

√
−mE +mvR√
−mE −mvR

.

A simple graphical solution of the relation above shows that bound states occur

for all values of as, in sharp contrast to result found in the ERD case, where it was

necessary for as to be positive. In the Rashba case with no Zeeman fields, any value

of as gives a bound state. This means that an arbitrary small attractive interaction

g produces a bound state in three-dimensions when the Rashba spin-orbit is present.

Physically this occurs because the effective density of states of the system is modified

by the Rashba field to that of a one-dimensional system, where no critical value of g

is necessary to produce a bound state. A particularly interesting value for the bound

state energy occurs at unitarity, where as →∞. In this case the bound state energy

is

E = −(1.43923)mv2
R,

a result that is in agreement with an earlier paper [17].
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6.5 Appendix V: Derivation of Bound State Energy for Ar-
bitrary Mixture of Rashba and Dresselhaus spin-orbit
coupling in Chapter II

In this appendix, I will obtain the bound state energy for an arbitrary mixture of

Rashba and Dresselhaus spin-orbit coupling for zero center of mass momentum K = 0

and zero Zeeman fields hy = hz = 0.

In the case of an arbitrary mixture of Rashva and Dresselhaus terms the integral

equation for energy eigenvalues of the corresponding Schroedinger’s equation is

1

g
=

1

L3

∑
k

Ek,0
E2
k,0 − 4a · a

,

where the vector a = γkxex +βkyey, and Ek,0 = εk,0−E. A more explicit form of the

relation above is

1

g
=

1

L3

∑
k

(εk,0 − E)2

(εk,0 − E)2 − 4
(
k2
xγ + β2k2

y

) ,
which can have its sum over momenta converted into an integration leading to the

expression

1

g
=

m

(2π)3

∞∫
−∞

dkz

∞∫
−∞

dky

∞∫
−∞

dkx

(
k2
x + k2

y + k2
z −mE

)2(
k2
x + k2

y + k2
z −mE

)2 − 4m2
(
k2
xγ

2 + β2k2
y

) .
An integration over the variable kz gives a double integral in the momentum

components kx and ky given by

1

g
=

m

16π2

∞∫
−∞

dky

∞∫
−∞

dkx
∑
η=±

 1√
k2
x + k2

y −mE + η2m
√
k2
yβ

2 + k2
xγ

2

 ,

which can be further written in polar coordinates (kx, ky)→ (k, θ) as

1

g
=

m

16π2

∞∫
0

kdk

2π∫
0

dθ
∑
η=±

 1√
k2 −mE + η2mk

√
β2 sin2 θ + γ2 cos2 θ

 .

The replacement of g in favor of the scattering length and a subsequent integration

of the expression over radial momentum k leads to an integral over the angle θ in the

103



form

− m

4πas
= −m

2γ

16π2

2π∫
0

dθ

(
2ν +

√
1− µ sin2 θ ln

[
ν −

√
1− µ sin2 θ

ν +
√

1− µ sin2 θ

])
,

which, after a trivial integral of the first term on the right had side, can be rearranged

as

1

as
−mγν =

mγ

π

π/2∫
0

dθ

√
1− µ sin2 θ ln

[
ν −

√
1− µ sin2 θ

ν +
√

1− µ sin2 θ

]
.

A final division of the previous equation by the factor mγ/π leads to the expression

π

mγas
− πν =

π/2∫
0

dθ

√
1− µ sin2 θ ln

[
ν −

√
1− µ sin2 θ

ν +
√

1− µ sin2 θ

]
,

where I defined the parameters ν =
√
−mE/mγ and µ = 1− β2/γ2. Notice that the

ERD case corresponds to µ = 1 and Rashba case corresponds to µ = 0. Thus, I will

use the parameter µ to be in the range 0 < µ < 1.

This definition of parameters permits a series expansion of integrand in the right

hand side of the previous expression with respect to µ. This expansion takes the form√
1− µ sin2 θ ln

[
ν −

√
1− µ sin2 θ

ν +
√

1− µ sin2 θ

]
= ln

(
ν − 1

ν + 1

)
× ...

...×

[
1−

∞∑
n=1

(2n− 1)!!

(2n)!!(2n− 1)
sin2n θµn

]
+
∞∑
n=1

µn sin2n θ

(2n)!!

Pn(ν)

(ν2 − 1)n
,

which can be used to perform the integrations over θ. In order to perform this final

integration it is useful to recall the relation

π/2∫
0

dθ sin2n θ =
π

2

(2n− 1)!!

(2n)!!
,

and then utilize the power series expansion of the complete elliptic integral of the

second kind

E
( π

2

∣∣∣µ) =
π

2

{
1−

∞∑
n=1

[
(2n− 1)!!

(2n)!!(2n− 1)

]2

µn

}
,
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to produce the equation relating the s-wave scattering length and the energy E of the

bound state:

π

mγas
− πν = ln

[
ν − 1

ν + 1

]
E
( π

2

∣∣∣µ)+
π

2

∞∑
n=1

(2n− 1)!!

[(2n)!!]2
Pn(ν)

(ν2 − 1)n
µn.

Up to fifth order, the orthogonal polynomials Pn(ν) are

P1(ν) = 2ν,

P2(ν) = −2(ν + ν3),

P3(ν) = 6ν + 16ν3 − 6ν5,

P4(ν) = −2ν(15 + 73ν2 − 55ν4 + 15ν6),

P5(ν) = 2ν(105 + 790ν2 − 896ν4 + 490ν6 − 105ν8).

It is important to notice that for the practical purpose of estabilishing the relationship

between the s-wave scattering length as, the energy of the bound state E and its

dependence on the spin-orbit parameters β and γ, the expression containing a single

integral over the angular variable θ is more than sufficient.

6.6 Appendix VI: Computer code to calculate the effective
mass for ERD, Rashba and Arbitrary mixture Rashba
and Dresselhaus spin-orbit coupling in Chapter II

The computer code that uses symbolic manipulation to calculate the effective mass

tensor defined in chapter II is shown sequentially in Figs. 6.2, 6.3, and 6.4. I used

the symbolic manipulation routines from Mathematica to obtain the results for the

effective masses.

6.7 Appendix VII: Derivation the Bose-Einstein conden-
sate temperature in Chapter II

In this appendix, I will derive the Bose-Einstein condensation temperature of a dilute

and non-interacting gas of two-fermion bound states (Feshbach molecules).
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The density of bound states (Feshbach molecules), in the dilute and non-interacting

regime where these molecules are bosonic in nature, is given by

nbs =
1

L3

∑
K

b(K) =
1

(2π)3

∫∫∫
dKxdKydKz

1

exp [EK − µbs] /T − 1
,

where b(K) is the Bose function, and

EK = E0 +
K2
x

2Mx

+
K2
y

2My

+
K2
z

2Mz

(6.7)

is the bound state energy dispersion. Here, the masses Mi are directly related to the

effective mass tensors of chapter II by the relation Mi = mii, that is, Mx = mxx,

My = myy and Mz = mzz.

Bose-Einstein condensation occurs when the chemical potential µbs reaches the

lowest energy state available for the bound states, which corresponds to E0. The

temperature at which µbs = E0 is the Bose-Einstein condensation temperature TBEC ,

which can be obtained from the relation

nbs =
1

(2π)3

∫∫∫
dKxdKydKz

(
exp

[
K2
x

2Mx

+
K2
y

2My

+
K2
z

2Mz

]
/TBEC − 1

)−1

.

Using the scaling α = T
−1/2
BECKα/

√
2Mα, to elliminate the momentum variables Kα,

in favor of the dimensionless variables α, I can express the density of bound states as

nbs =
1

(2π)3
(2TBEC)3/2

√
MxMyMz

∫∫∫
dxdydz

ex2+y2+z2 − 1
.

Performing the triple dimensionless integral leads to the result

nbs = CT
3/2
BECM

3/2
gm ,

whereMgm = (MxMyMz)
1/3 is the geometrical mean of the three masses {Mx,My,Mz},

and the constant C =
√

2ζ(3/2)/π2, with ζ(3/2) being the Riemann zeta function

evaluated at 3/2.

To relate the Bose-Einstein condensation temperature with the Fermi energy of

the Fermi atoms that make the molecular bound state, it is sufficient to notice that
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there are two fermions per bound state. This means that the density of bound states

nbs is half of the density of fermions nF , that is

nbs =
nF
2

=
1

2

2

(2π)3

∫
|k|<kF

dk1.

Performing the integration above leads to

nbs =
k2
F

6π2
=
m3/2

6π2
E

3/2
F

when the relation EF = k2
F/(2m) between the Fermi energy EF , the Fermi momentum

kF and the mass m of the fermions is used.

Using the explicit relation between nbs and TBEC in terms of the Fermi energy

leads to the expression

CT
3/2
BECM

3/2
gm = E

3/2
F

(2m)3/2

6π2

which can be quickly rewritten as

TBEC
EF

=
2m

Mgm

(
1

6π2C

)2/3

corresponding to the desired result.

6.8 Appendix VIII: Derivation of Schroedinger’s equation
for harmonically trapped fermions with ERD spin-orbit
coupling and Zeeman fields in Chapter III

In this appendix, I present a derivation of the Schroedinger’s equation for harmoni-

cally trapped fermions in with ERD spin-orbit coupling and Zeeman fields described

in Eq. (3.43) of Chapter III. This equation is the relevant differential equation when a

Zeeman field hz added along z direction is added. The Schroedinger’s matrix equation

using the singlet-triplet basis is

Êr,R − 2hz
i√
2
vP̂x 0 i

√
2vk̂x

− i√
2
vP̂x Êr,R − i√

2
vP̂x 0

0 i√
2
vP̂x Êr,R + 2hz i

√
2vk̂x

−i
√

2vk̂x 0 −i
√

2vk̂x Êr,R





ψ11

ψ10

ψ1−1

ψ00


=



0

0

0

gδ(r)∂r(rψ00)


.
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Carrying out the matrix multiplication leads to the four coupled differential equa-

tions (
Êr,R − 2hz

)
ψ11 +

i√
2
vP̂xψ10 + i

√
2vk̂xψ00 = 0 (I)

− i√
2
vP̂xψ11 + Êr,Rψ10 −

i√
2
vP̂xψ1−1 = 0 (II)

i√
2
vP̂xψ10 +

(
Êr,R + 2hz

)
ψ1−1 = 0 (III)

−i
√

2vk̂x (ψ11 + ψ1−1) + Êr,Rψ00 = gδ(r)∂r(rψ00), (IV )

which can be manipulated by addition or subtractions of rows. Keeping in mind that

ψsms are functions defined in real space coordinates, that is, ψsms ≡ ψsms (r,R) , it is

convenient to make the row substitutions I + III → I and I − III → III leading to

the modified equations

Êr,R (ψ11 + ψ1−1)− 2hz (ψ11 − ψ1−1) + i2
√

2vk̂xψ00 = 0,

−i v√
2
P̂x (ψ11 + ψ1−1) + Êr,Rψ10 = 0,

Êr,R (ψ11 − ψ1−1)− 2hz (ψ11 + ψ1−1)− i 2v√
2
P̂xψ10 = 0,

−i
√

2vk̂x (ψ11 + ψ1−1) + Êr,Rψ00 = gδ(r)∂r(rψ00).

In the set of equations above, I divide the first row by 2hz, and apply the differ-

ential operator Ê−1
r,R from the left to the second row in order to obtain an expression

ψ10, which is substituted on the third row, thus producing only a set of three coupled

differential equations

(ψ11 − ψ1−1) =
Êr,R
2hz

(ψ11 + ψ1−1) +
iv
√

2k̂x
hz

ψ00,

Êr,R (ψ11 − ψ1−1) = 2hz (ψ11 + ψ1−1)− iv
√

2P̂x

(
Ê−1
r,R

iv√
2
P̂x (ψ11 − ψ1−1)

)
,

gδ(r)∂r(rψ00) = −i
√

2vk̂x (ψ11 + ψ1−1) + Êr,Rψ00.

These equations are strongly coupled and are very difficult to solve, but a sim-

plification occurs if solution is sought at the origin of the center of mass coordinate
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system R = 0, where only the relative motion is considered. To make additional

progress, I will make use of the commutation relation[
P̂x, Ê−1

r,R

]
= 0,

which is derived in Appendix XI.

Starting from the set of three equations above, substituting the term (ψ11 − ψ1−1)

from first row into the second row and using the vanishing derivatives involving P̂x,

converts the second row into the expression(
Ê2
r,R

2hz
− 2hz

)
(ψ11 + ψ1−1) = −Êr,R

hz
i
√

2vk̂xψ00,

which can immediately be written as

(ψ11 + ψ1−1) = −iv2
√

2
(
Ê2
r,R − 4h2

z

)−1

Êr,Rk̂xψ00

Finally, I can substitute (ψ11 + ψ1−1) into the third row of the last set of equations

to produce the differential equation

−4v2k̂2
x

(
Ê2
r,R − 4h2

z

)−1

Êr,Rψ00 + Êr,Rψ00 = gδ(r)∂r(rψ00).

This completes the derivation of the differential equation for ψ00 = ψ00(r,R = 0).

6.9 Appendix IX: Derivation of Eq. (3.42) at Chapter III

In this Appendix, I provide the derivation of Eq. (3.42) from Eq. (3.37). A substitution

of the Laguerre polynomials into Eq. (3.37) leads to

− mω
√
π

4
√

2asζ3/2
= B−

[
∂

∂r

(
re−ζr

2
∞∑
p=0

L
(1/2)
p (2ζr2)

2p− ν−

)]∣∣∣∣∣
r→0

+ ...

...+B+

[
∂

∂r

(
re−ζr

2
∞∑
p=0

L
(1/2)
p (2ζr2)

2p− ν+

)]∣∣∣∣∣
r→0

,

(6.8)

where I used the relation

L(1/2)
n (0) =

(n+ 1/2)!

n!(1/2)!
.
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I redefine the argument of Laguerre polynomials in terms of a new variable x2 =

2ζr2 to rewrite the expression above as

− 2mω
√
π

4
√

2asζ3/2
= B−

[
∂

∂x

(
xe−x

2/2

∞∑
p=0

L
(1/2)
p (x2)

p− ν−/2

)]∣∣∣∣∣
x→0

+ ...

...+B+

[
∂

∂x

(
xe−x

2/2

∞∑
p=0

L
(1/2)
p (x2)

p− ν+/2

)]∣∣∣∣∣
x→0

.

(6.9)

Next, I introduce the useful integral representation [18]

1

p− ν±/2
=

∞∫
0

dy

(1 + y)2

(
y

1 + y

)p−ν±/2−1

,

for the purpose of making use of a special property of Laguerre polynomials described

below. Using the integral just described in Eq. (6.9) gives

∞∑
p=0

L
(1/2)
p (x2)

p− ν±/2
=
∞∑
p=0

∞∫
0

dy

(1 + y)2

(
y

1 + y

)p−ν±/2−1

L(1/2)
p (x2),

which can be evaluated with the aid of the special property of Laguerre polynomials

∞∑
p=0

L(1/2)
p (x)zp = (1− z)−3/2 exp

(
xz

z − 1

)
.

All these substitutions lead to the result

∞∑
p=0

L
(1/2)
p (x2)

p− ν±/2
=

∞∫
0

dy√
1 + y

e−yx
2

(
y

1 + y

)−ν±/2−1

= Γ(−ν±/2)F (−ν±/2, 3/2, x2),

where Γ(z) is the Gamma function and F (z, 3/2, x2) is the confluent hypergeometric

function. In the asymptotic limit of x→ 0,

lim
x→0

Γ(−ν±/2)F (−ν±/2, 3/2, x2) = −
√
π

(
2Γ(−ν±/2)

Γ(−ν±/2− 1/2)
− 1

x
+O(x)

)
,

which can be used in Eq. (6.8) to obtain the equation for the bound state energy as

√
2

as
√
mω

= B−
Γ(−ν−/2)

Γ(−ν−/2− 1/2)
+B+

Γ(−ν+/2)

Γ(−ν+/2− 1/2)
,

which is the desired result of my derivation.
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6.10 Appendix X: Derivation of Eq. (3.37) in Chapter III

In this appendix, I discuss the derivation of the matrix element in Eq. (3.37) described

in chapter III.

The second derivative of the wave functions φk(r) of the harmonic oscillator in

the relative coordinates is

∂2
rxφk(r) = Nn2ζe−ζr

2
[
8x2ζL

(5/2)
n−2 (2ζr2) + (8x2ζ − 2)L

(3/2)
n−1 (2ζr2) + (2x2ζ − 1)L(1/2)

n (2ζr2)
]
,

where ζ = mω/4.

Projecting the second derivative above on the wavefunction φ∗a(r) and integrating

over real space gives ∫
drφ∗a(r)∂

2
rxφn(r) =

N2
n4π(2ζ)

∞∫
0

r2e−2ζr2L(1/2)
a (2ζr2)

[
ζr2

3

(
8L

(5/2)
n−2 (2ζr2) + 8L

(3/2)
n−1 (2ζr2) + 2L(1/2)

n (2ζr2)
)
− ...

...−
(

2L
(3/2)
n−1 (2ζr2) + L(1/2)

n (2ζr2)
)]
dr,

where I used spherical coordinates x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

performed angular integrals of the type

π∫
0

sin2 θd cos θ

2π∫
0

cos2 φdφ =
4π

3
.

Changing variables in the projection above using the relation 2ζr2 = x gives an

expression for the right hand side of the type

2π
N2
n√
2ζ

 ∞∫
0

x3/2e−xL(1/2)
a (x)

[
4

3
L

(5/2)
n−2 (x) +

4

3
L

(3/2)
n−1 (x) +

1

3
L(1/2)
n (x)

]
− ...

...−
∞∫

0

x1/2e−xL(1/2)
a (x)

[
2L

(3/2)
n−1 (x) + L(1/2)

n (x)
] .
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In this expression there are five different types of integrals that need to be evaluated,

namely

I1 =
∞∫
0

x3/2e−xL
(5/2)
n (x)L

(1/2)
m (x)dx ,

I2 =
∞∫
0

x3/2e−xL
(3/2)
n (x)L

(1/2)
m (x)dx ,

I3 =
∞∫
0

x3/2e−xL
(1/2)
n (x)L

(1/2)
m (x)dx ,

I4 =
∞∫
0

x1/2e−xL
(3/2)
n (x)L

(1/2)
m (x)dx ,

I5 =
∞∫
0

x1/2e−xL
(1/2)
n (x)L

(1/2)
m (x)dx .

The last integral I5 can be evaluated using the orthogonality condition of gener-

alized Laguerre polynomials

I5 =

∞∫
0

x1/2e−xL(1/2)
n (x)L(1/2)

m (x)dx =
Γ(m+ 3/2)

m!
δn,m =

(m+ 1/2)!

m!
δm,n,

while to evaluate the other integrals, it is necessary to utilize several recurrence prop-

erties of the the Laguerre polynomials, such as,

L(α+1)
n (x) =

n∑
j=0

L
(α)
j (x)

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x)

d

dx
L(k)
n (x) = x−1

(
nL(k)

n (x)− (n+ k)L
(k)
n−1(x)

)
.

With these relations at hand all the Ii integrals can be evaluated. The first integral

becomes

I1 =

∞∫
0

x3/2e−xL
(5/2)
n−2 (x)L(1/2)

a (x)dx =
n−2∑
i=0

(
Γ(i+ 5/2)

i!
δi,a −

Γ(i+ 5/2)

i!
δi,a−1

)
,

while the second integral takes the form

I2 =

∞∫
0

x3/2e−xL
(3/2)
n−1 (x)L(1/2)

a (x)dx =
Γ(n+ 3/2)

(n− 1)!
δn−1,a −

Γ(n+ 3/2)

(n− 1)!
δn−1,a−1.
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An evaluation of the third type of integral can also be performed to give

I3 =

∞∫
0

x3/2e−xL(1/2)
n (x)L(1/2)

a (x)dx =
Γ(n+ 5/2)

n!
δn,a + ...

...− Γ(n+ 5/2)

n!
δa,n−1 −

Γ(n+ 3/2)

(a− 1)!
δa−1,n +

Γ(a+ 3/2)

(a− 1)!
δa−1,n−1

,

and, similarly, performing the fourth and fifth kinds of integrals produce the following

results

I4 =

∞∫
0

x1/2e−xL
(3/2)
n−1 (x)L(1/2)

a (x)dx =
n−1∑
i=0

Γ(a+ 3/2)

a!
δa,i,

I5 =

∞∫
0

x1/2e−xL(1/2)
n (x)L(1/2)

a (x)dx =
Γ(a+ 3/2)

a!
δn,a.

In the limit where the spin orbit coupling is small in comparison to adjacent

energy levels of the harmonic oscillator, the coefficients coming from cross-terms can

be neglected. Adding all the contributions from the projection integrals described

above leads to an infinite set of linearly coupled equations between the coefficients ca

and various cp

ca

[
(εa − Eu) + 4

2πN2
a√

2ζ

v2

εa − Eu

(
1

3

Γ(a+ 5/2)

a!
− Γ(a+ 3/2)

a!
− Γ(a+ 3/2)

(a− 1)!

)]
= ...

...− 4π

m
asφ

∗
n(0)

[
∂

∂r

(
r
∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

,

which can be reorganized as

ca

[
(εa − Eu) + 4

2ζv2

(εa − Eu)

(
1

3

Γ(a+ 5/2)

Γ(a+ 3/2)
− 1− a

)]
= ...

...− 4π

m
asφ

∗
n(0)

[
∂

∂r

(
r

∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

.

Making use of the relations involving the Gamma function

Γ(a+ 1/2) =
(2n− 1)!!

2n
√
π and

Γ(a+ 5/2)

Γ(a+ 3/2)
=

2a+ 1

2

into the previous equation for ca, yields

ca

[
(εa − Eu)−

mωv2

εa − Eu

(
4a

3
+

5

3

)]
= − 4π

m
asφ

∗
n(0)

[
∂

∂r

(
r

∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

,
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which when reorganized gives the desired result

ca = −4πa

m
φ∗a(0)

[
∂

∂r

(
r
∞∑
p=0

cpφp(r)

)]∣∣∣∣∣
r→0

(
εa − Eu

(εa − Eu)2 − mv2ω
3

(4a+ 5)

)
.

This is the relation displayed in Eq. (3.38), while the previous expression for ca is

the relation displayed in Eq. (3.37).

6.11 Appendix XI: Derivation of Commutator Relation

In this appendix, I will outline the derivation of the commutation relation [∂rx , Ê−1
r ] =

0. This commutation relation above was neccessary to obtain the differential equation

described in Eq. (3.43).

Let me begin the derivation by noting the simpler commutation relation between

the center of mass momentum component Px and the kinetic energy term written in

center of mass and relative coordinates:
[
P̂x, Êr,R

]
= 0. Let me apply the commu-

tation that I want to prove to the harmonic oscillator eigenfunctions φ (r,R) such

that

[
P̂x, Ê−1

r,R

]
φ (r,R) =(

P̂xÊ−1
r,R − Ê

−1
r,RP̂x

)
φ (r,R) =P̂x ∞∫

0

ds e−s Êr,R −
∞∫

0

ds e−s Êr,RP̂x

φ (r,R) .

Notice that in the last line I used a simple integral representation of the inverse

operator Êr,R since it is Hermitian, and thus the integral is well defined.
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By performing an expansion of the exponential term used in the integral repre-

sentation of the operator  ∞∫
0

ds
[
P̂x, e

−s Êr,R
]φ (r,R) =

 ∞∫
0

ds

[
P̂x, 1− sÊr,R +

1

2
s2Ê2

r,R − ...
]φ (r,R) =

 ∞∫
0

ds

[P̂x, 1]︸ ︷︷ ︸
0

−s
[
P̂x, Êr,R

]
︸ ︷︷ ︸

0

+
s2

2

[
P̂x, Ê2

r,R

]
︸ ︷︷ ︸

0

−...


φ (r,R) = 0,

it is now self-evident that the commutators inside the integral vanish order by order,

thus leading to the final result

[∂rx , Ê−1
r ] = 0,

which was used to obtain the differential equation described in Eq. (3.43).
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� Find the self−consistent equation. The last line re turns the function f(k, K, , , , , L .

xa ® 
xb ® 

xc ® 
xd ® 

h ®  (Zeeman field along z)
hy ®  (Zeeman field along y)

vR ®  (Rashba type spin−orbit coupling)
vD ®  (Dresselhaus type spin−orbit coupling)
px ®  (Center of mass momentum along x)
py ®  (Center of mass momentum along y)

kx ®  (Relative momentum along x)
ky ®  (Relative momentum along y)

ener ®  (Kinetic energy − energy eigenvalue)

�  being the recoil energy.

In[1976]:= Clear@xa, xb, xc, xdD

In[1977]:= xa= xa�.SolveBHener - 2 hL xa+ ä HvR+ vDL

2

px-
HvD- vRL

2

py + ä 2 hy xb+

-ä 2 HvR+ vDL kx+ 2 HvD- vRL ky xd� 0, xaF@@1DD

In[1978]:= xb= xb�.SolveB -ä HvR+ vDL

2

px-
HvD- vRL

2

py - ä 2 hy xa+

ener xb+ ä
HvR+ vDL

2

px-
HvD- vRL

2

py + ä 2 hy xc� 0, xbF@@1DD

In[1979]:= xc = xc �.SolveB -ä HvR+ vDL

2

px-
HvD- vRL

2

py - ä 2 hy xb+

Hener + 2 hL xc + -ä 2 HvR+ vDL kx- 2 HvD- vRL ky xd� 0, xcF@@1DD

In[1981]:= FullSimplifyB

ä 2 HvR+ vDL kx+ 2 HvD- vRL ky xa+ ä 2 HvR+ vDL kx- 2 HvD- vRL ky xc + ener xd � xdF

Out[1981]= -Jener4 - ener2 I4 h2 + 4 hy2 + I4 ky2 + px2 + py2M vD2 - 2 I4 ky2 - px2 + py2M vD vR + I4 ky2 + px2 + py2M vR2 +
4 hy px HvD+ vRL + 4 kx2 HvD+ vRL2M + 4 Iky py HvD- vRL2 + 2 hy kx HvD+ vRL + kx px HvD+ vRL2M2N�

Iener I-ener2 + 4 h2 + 4 hy2 + py2 HvD- vRL2 + 4 hy px HvD+ vRL + px2 HvD+ vRL2MM

Figure 6.1: Computer code written in Mathematica with the purpose of finding the
function f(k,K, hz, hy, vR, vD, E)−1 defined in Appendix II.
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� This routine derives the expression for effective m ass tensors and calculates the integrals. The 
expression in the derivative function is taken as t he result of code at Appendix II. eb represents the  

energy eigenvalue. t ® k2�m represents the kinetic energy, which will be repla ced after deriving 

the expressions. This method is messy, but I have c hosen this method to see the whole 
expression, thus to avoid making clerical mistakes along the way. Also the integration is obviously 
faster comparing to numerical calculation of deriva tives directly from expression.

ener = t +
px2

4 m
+

py2

4 m
+

pz2

4 m
- eb;

� Derive the derivative with respect to energy eigenv alue (eb) at zero center of mass limit.

FullSimplifyBDB-Iener I-ener2 + 4 h2 + 4 hy2 + py2 HvD- vRL2 + 4 hy px HvD+ vRL + px2 HvD+ vRL2MM�
Jener4 - ener2 I4 h2 + 4 hy2 + I4 ky2 + px2 + py2M vD2 - 2 I4 ky2 - px2 + py2M vD vR+

I4 ky2 + px2 + py2M vR2 + 4 hy px HvD+ vRL + 4 kx2 HvD+ vRL2M +
4 Iky py HvD- vRL2 + 2 hy kx HvD+ vRL + kx px HvD+ vRL2M2N, ebF �.8px® 0, py ® 0, pz® 0<F

� Derive the second derivative with respect to KX  (center−of−mass momentum) around zero center of 
mass limit.

FullSimplifyBDB-Iener I-ener2 + 4 h2 + 4 hy2 + py2 HvD- vRL2 + 4 hy px HvD+ vRL + px2 HvD+ vRL2MM�
Jener4 - ener2 I4 h2 + 4 hy2 + I4 ky2 + px2 + py2M vD2 - 2 I4 ky2 - px2 + py2M vD vR+

I4 ky2 + px2 + py2M vR2 + 4 hy px HvD+ vRL + 4 kx2 HvD+ vRL2M +
4 Iky py HvD- vRL2 + 2 hy kx HvD+ vRL + kx px HvD+ vRL2M2N, 8px, 2<F �.8px® 0, py ® 0, pz® 0<F

� Derive the second derivative with respect to Ky  (center−of−mass momentum) around zero center of 

mass limit.

FullSimplifyBDB-Iener I-ener2 + 4 h2 + 4 hy2 + py2 HvD- vRL2 + 4 hy px HvD+ vRL + px2 HvD+ vRL2MM�
Jener4 - ener2 I4 h2 + 4 hy2 + I4 ky2 + px2 + py2M vD2 - 2 I4 ky2 - px2 + py2M vD vR+

I4 ky2 + px2 + py2M vR2 + 4 hy px HvD+ vRL + 4 kx2 HvD+ vRL2M +
4 Iky py HvD- vRL2 + 2 hy kx HvD+ vRL + kx px HvD+ vRL2M2N, 8py, 2<F �.8px® 0, py ® 0, pz® 0<F

Figure 6.2: Mathematica code to find the effective mass tensors in Appendix VI,
part 1.
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� These are the expressions after t was replaced with kinetic energy and scaled with recoil 
energy/momentum from above commands.
DerE ® Derivative for eb
DerPx ® Derivative for Kx

DerPy ® Derivative for Ky

DerE@x_, y_, z_, hy_, hz_, v_, vD_, eb_D :=
-J2 Ieb- 2 Ix2 + y2 + z2MM2 J4 hy2 + 4 hz2 + 16 v2 x2 + 16 vD2 y2 - 2 Ieb- 2 Ix2 + y2 + z2MM2N

J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2N + 2 Ieb- 2 Ix2 + y2 + z2MM2

J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N +
J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2N
J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4NN�

J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N2

DerPx@x_, y_, z_, hy_, hz_, v_, vD_, eb_D :=
K16 hy v I-eb+ 2 Ix2 + y2 + z2MM J128 hy v3 x2 - 8 hy v Ieb- 2 Ix2 + y2 + z2MM2N

J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N +
J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N2

J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2 + 2 I-eb+ 2 Ix2 + y2 + z2MM I-eb+ 2 I-2 v2 + x2 + y2 + z2MMN +
I-eb+ 2 Ix2 + y2 + z2MM J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2N
K2 J128 hy v3 x2 - 8 hy v Ieb- 2 Ix2 + y2 + z2MM2N2 - 4 J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M

Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N J32 v4 x2 - 2 v2 Ieb- 2 Ix2 + y2 + z2MM2 -
2 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M I-eb+ 2 Ix2 + y2 + z2MM + I-eb+ 2 Ix2 + y2 + z2MM3NOO�

J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N3

DerPy@x_, y_, z_, hy_, hz_, v_, vD_, eb_D :=
J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2 + 2 I-eb+ 2 Ix2 + y2 + z2MM I-eb+ 2 I-2 vD2 + x2 + y2 + z2MMN�
J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N +
JI-eb+ 2 Ix2 + y2 + z2MM J-4 hy2 - 4 hz2 + Ieb- 2 Ix2 + y2 + z2MM2N
J32768 hy2 v2 vD4 x2 y2 - 4 J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 +

Ieb- 2 Ix2 + y2 + z2MM4N J32 vD4 y2 - 2 vD2 Ieb- 2 Ix2 + y2 + z2MM2 -
2 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M I-eb+ 2 Ix2 + y2 + z2MM + I-eb+ 2 Ix2 + y2 + z2MM3NNN�

J64 hy2 v2 x2 - 4 Ihy2 + hz2 + 4 v2 x2 + 4 vD2 y2M Ieb- 2 Ix2 + y2 + z2MM2 + Ieb- 2 Ix2 + y2 + z2MM4N3

Figure 6.3: Mathematica code to find the effective mass tensors in Appendix VI,
part 2.
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� These are the integration routines.
efmassx ® Returns the effective mass tensor mxx �m
efmassy ® Returns the effective mass tensor myy �m

dE@hy_, hz_, v_, vD_, eb_D := NIntegrate@DerE@x, y, z, hy, hz, v, vD, ebD, 8x, 0, 10000<,

8y, 0, 10000<, 8z, 0, 10000<, Method® "MultidimensionalRule", AccuracyGoal® 6D

dPx@hy_, hz_, v_, vD_, eb_D := NIntegrate@DerPx@x, y, z, hy, hz, v, vD, ebD, 8x, 0, 10000<,

8y, 0, 10000<, 8z, 0, 10000<, Method® "MultidimensionalRule", AccuracyGoal® 6D

dPy@hy_, hz_, v_, vD_, eb_D := NIntegrate@DerPy@x, y, z, hy, hz, v, vD, ebD, 8x, 0, 10000<,

8y, 0, 10000<, 8z, 0, 10000<, Method® "MultidimensionalRule", AccuracyGoal® 6D

efmassx@hy_, hz_, v_, vD_, eb_D := -2
dE@hy, hz, v, vD, ebD

dPx@hy, hz, v, vD, ebD

efmassy@hy_, hz_, v_, vD_, eb_D := -2
dE@hy, hz, v, vD, ebD

dPy@hy, hz, v, vD, ebD

Figure 6.4: Mathematica code to find the effective mass tensors in Appendix VI,
part 3.
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Raman-Induced Interactions in a Single-Component Fermi Gas Near an s-Wave

Feshbach Resonance, Phys. Rev. Lett. 111, 095301 (2013).

[2] C. Chin et al., Feshbach resonances in ultracold gases, Reviews of Modern Physics

82, 1225 (2010).

[3] M. Greiner, C. A. Regal, D. S. Jin, Emergence of a molecular BoseEinstein con-

densate from a Fermi gas, Nature 426, 537 (2003).

[4] I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Re-

views of Modern Physics 80, 885 (2008).
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[12] M. Chapman, C.A.R. Sá de Melo, Atomic physics: Atoms playing dress-up,

Nature 471, 41 (2011).

[13] I. B. Spielman, private communication.

[14] D. L. Campbell, G. Juzelinas, I. B. Spielman, Realistic Rashba and Dresselhaus

spin-orbit coupling for neutral atoms, Phys. Rev. A 84, 025602 (2011).

[15] C. A. Regal, JILA, Doctoral Thesis (2006).

[16] S. D. Sarma, M. Freedman, C. Nayak, Topologically Protected Qubits from a

Possible Non-Abelian Fractional Quantum Hall State, Phys. Rev. Lett. 94, 166802

(2005).

[17] Z.-Q. Yu, H. Zhai, Spin-Orbit Coupled Fermi Gases across a Feshbach Resonance,

Phys. Rev. Lett. 107, 195305 (2011) .

[18] T. Busch, B.-G. Englert, K. Rzaewski, M. Wilkens, Two Cold Atoms in a Har-

monic Trap, Foundations of Physics, 28, 549 (1998).

[19] S. N. Bose, Plancks law and the light quantum hypothesis, Z. Phys 26 (1924).

[20] A. Einstein, Quantentheorie des einatomigen idealen Gases, Preuss, Akad. Wiss.

Berlin Ber. 22, 261 (1924).

[21] M.P.A. Fisher et al., Boson localization and the superfluid-insulator transition,

Phys. Rev. B 40, 546 (1989).

121

http://link.aps.org/doi/10.1103/RevModPhys.83.1057
http://link.aps.org/doi/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/471041a
http://link.aps.org/doi/10.1103/PhysRevA.84.025602
http://jilawww.colorado.edu/jin/sites/default/files/files/regal_thesis.pdf
http://link.aps.org/doi/10.1103/PhysRevLett.94.166802
http://link.aps.org/doi/10.1103/PhysRevLett.94.166802
http://link.aps.org/doi/10.1103/PhysRevLett.107.195305
http://dx.doi.org/10.1023/A%3A1018705520999
http://dx.doi.org/10.1007/BF01327326
http://dx.doi.org/10.1002/3527608958.ch27
http://dx.doi.org/10.1002/3527608958.ch27
http://link.aps.org/doi/10.1103/PhysRevB.40.546


[22] A. J. Leggett, Cooper pairing in spin-polarized fermi systems, J. Phys. Colloq.

41, 19 (1980).

[23] P. Nozières, S. Schmitt-Rink, Bose condensation in an attractive fermion gas:

From weak to strong coupling superconductivity, Journal of Low Temperature

Physics 59, 195 (1985).
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