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Abstract—State-of-the-art techniques for simultaneous local-
ization and mapping (SLAM) employ iterative nonlinear opti-
mization methods to compute an estimate for robot poses. While
these techniques often work well in practice, they do not provide
guarantees on the quality of the estimate. This paper shows that
Lagrangian duality is a powerful tool to assess the quality of a
given candidate solution. Our contribution is threefold. First, we
discuss a revised formulation of the SLAM inference problem.
We show that this formulation is probabilistically grounded and
has the advantage of leading to an optimization problem with
quadratic objective. The second contribution is the derivation
of the corresponding Lagrangian dual problem. The SLAM
dual problem is a (convex) semidefinite program, which can be
solved reliably and globally by off-the-shelf solvers. The third
contribution is to discuss the relation between the original SLAM
problem and its dual. We show that from the dual problem,
one can evaluate the quality (i.e., the suboptimality gap) of a
candidate SLAM solution, and ultimately provide a certificate
of optimality. Moreover, when the duality gap is zero, one can
compute a guaranteed optimal SLAM solution from the dual
problem, circumventing non-convex optimization. We present
extensive (real and simulated) experiments supporting our claims
and discuss practical relevance and open problems.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is an en-
abling technology for many applications, including service and
industrial robotics, autonomous driving, search and rescue,
planetary exploration, and augmented reality.

The last decade has witnessed several groundbreaking re-
sults in SLAM, and state-of-the-art approaches are now tran-
sitioning from academic research to industrial applications.
Standard techniques compute an estimate (e.g., for robot
poses) by minimizing a nonlinear cost function, whose global
minimum is the maximum likelihood estimate (or maximum
a posteriori estimate in presence of priors). The optimization
problem underlying SLAM is commonly solved using itera-
tive nonlinear optimization methods, e.g. the Gauss-Newton
method [1], [2], [3], the gradient method [4], [5], trust region
methods [6], or ad-hoc approximations [7], [8].

Despite the success of state-of-the-art techniques, some
practical and theoretical problems remain open. While iterative
approaches are observed to work well in many problem in-
stances, they cannot guarantee the correctness (global optimal-
ity) of the estimates that they compute. This is due to the fact
that the optimization problem is non-convex, hence iterative
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Fig. 1. This paper exploits Lagrangian duality to evaluate the quality
of a SLAM solution. For instance, our verification techniques are able to
certify the optimality of the solutions in the first row of the figure, while
they reject as suboptimal the estimates shown in the bottom row.

techniques may be trapped in local minima1 (Fig. 1), which
correspond to wrong estimates. Recent work [9], [10] shows
that iterative techniques fail to converge to a correct estimate
even in fairly simple (real and simulated) 3D problems. Recent
research efforts have addressed the issue of global convergence
from several angles. Olson et al. [4], Grisetti et al. [5],
Rosen et al. [6], and Tron et al. [11] study iterative techniques
with larger basins of convergence. Carlone et al. [8], [12], and
Rosen et al. [10] propose initialization techniques to bootstrap
iterative optimization. Huang et al. [13], Wang et al. [14],
Carlone [15], and Khosoussi et al. [16] investigate the factors
influencing local convergence and the quality of the optimal
SLAM solution. While these techniques provide remarkable
insights into the problem, and working solutions to improve
convergence, none of them can guarantee the recovery of a
globally optimal solution to SLAM.

The motivation behind this work is that the transition of
SLAM from research topic to industrial technology requires
techniques with guaranteed performance. In autonomous ve-
hicle applications, failure to produce a correct SLAM solution
may put passengers’ lives at risk. In other applications, SLAM
failures can possibly cascade into path planning failures (if the
plan is computed using a wrong map), and this may prevent
the reliable operation of mobile robots.

Therefore, in this paper we address the following question:
Verification Problem: Given a candidate SLAM estimate
(e.g., returned by a state-of-the-art iterative solver), is it
possible to evaluate the quality of this estimate (e.g., its sub-
optimality gap), possibly certifying its optimality?

To address this problem, we introduce a powerful tool,

1We use the term “local minimum” to denote a stationary point of the cost
which does not attain the optimal objective.



Lagrangian duality, borrowing the corresponding theory from
the optimization community. Duality was first applied to 2D
SLAM by Carlone and Dellaert [9]. In this work, we provide
a nontrivial extension of [9] to 3D SLAM.

This paper contains three main contributions. The first
contribution is a revised formulation of the SLAM inference
problem. Our formulation is a probabilistically grounded max-
imum likelihood (ML) estimator, and has the advantage of
leading to an optimization problem with quadratic objective,
which facilitates the derivation of the dual problem. Our
revised SLAM formulation is presented in Section II.

The second contribution is the derivation of the Lagrangian
dual problem. A key step towards this goal consists of
rewriting the 3D SLAM problem as a quadratic optimization
problem with quadratic equality constraints. Intuitively, the
constraints impose that the pose estimates are members of
SE(3), while the objective minimizes the mismatch w.r.t.
the measurements. The dual SLAM problem, introduced in
Section III, is a (convex) semidefinite program (SDP), and
can be solved globally by off-the-shelf solvers.

The third contribution is to provide verification techniques
to assess the quality of a given SLAM solution, leveraging the
relation between the standard SLAM problem and its dual.
We show that solving the dual problem allows us to bound
the sub-optimality gap of a given candidate solution, hence
we are able to quantify how far the candidate solution is
from being optimal. Since current SDP solvers do not scale
well to large problems, we also propose a second verification
technique that does not require solving the SDP. As a by-
product of our derivation, we show that, when the duality gap
is zero, we can compute an optimal SLAM solution directly
from the dual problem. Our verification techniques, presented
in Section IV, can be seamlessly integrated in standard SLAM
pipelines. Experimental evidence (Section V) confirms that
these techniques enable the certification of globally optimal
solutions in both real and simulated experiments. Extra results
and visualizations are given in the supplemental material [17].

II. 3D POSE GRAPH OPTIMIZATION REVISITED

We consider the pose graph optimization (PGO) formu-
lation of the SLAM problem. PGO computes the maximum
likelihood estimate for n poses x1, . . . ,xn, given m relative
pose measurements x̄ij between pairs of poses i and j. In a
3D setup, both the unknown poses and the measurements are
quantities in SE(3)

.
= {(R, t) : R ∈ SO(3), t ∈ R3}. We

use the notation xi = (Ri, ti) and x̄ij = (R̄ij , t̄ij) to make
explicit the rotation and the translation of each pose. PGO
can be visualized as a directed graph G(V, E), in which we
associate a node i ∈ V = {1,. . ., n} to each pose xi and an
edge (i, j)∈E to each relative measurement x̄ij .

In this section we propose a revised PGO formulation.
The key difference w.r.t. related work is the use of the
chordal distance to quantify the rotation errors (more details
in Section II-B). To lay the groundwork for this formulation,
we begin with a generative model for our measurements, and
then derive the corresponding ML estimator.

A. Generative Noise Model
We assume the following generative model for the relative

pose measurements (R̄ij , t̄ij)
2:

t̄ij = RT
i (tj−ti)+tε tε ∼ gaussian(03, ω

2
t I3)

R̄ij = RT
i RjRε Rε ∼ vonMises(I3, ω

2
R)

(1)

where “gaussian(µ,Ω)” denotes a Gaussian distribution with
mean µ and information matrix Ω, while “vonMises(S, κ)”
denotes the isotropic von Mises-Fisher distribution, with
mean S ∈ SO(3) and concentration parameter κ. The key
difference w.r.t. to measurement models in other PGO formu-
lations lies in the use of the von Mises-Fisher distribution as
the model for the rotational measurements errors Rε ∈ SO(3).

The isotropic von Mises-Fisher (or Langevin) [18] distri-
bution on SO(n) with mean S ∈ SO(n) and concentration
parameter κ ≥ 0 can be written explicitly as:

P (Rε) =
1

cn(κ)
exp

(
κ tr

(
STRε

))
, (2)

where tr (·) is the matrix trace and cn(κ) is a normalization
term. Closed-form expressions for cn(κ) are given in [18];
these are inconsequential for our derivation. For κ → 0, the
distribution tends to the uniform distribution over SO(n). For
κ→∞, Rε = S with probability one. Roughly speaking, one
may think at κ in terms of information content.

We are now ready to introduce the maximum likelihood
estimator for the poses, given the measurement model (1).

B. Maximum Likelihood Estimator
The ML estimate corresponds to the set of poses maxi-

mizing the likelihood of the measurements, or, equivalently,
minimizing the negative log-likelihood:

f?ML = min
{xi∈SE(3)}

∑
(i,j)∈E

− logL(R̄ij |x)− logL(t̄ij |x). (3)

The negative log-likelihood of the Cartesian measurements can
be easily computed from the Gaussian distribution:

− logL(t̄ij |x) = ω2
t ‖tj−ti−Rit̄ij‖2 + const. (4)

Using (2), the negative log-likelihood for R̄ij is:

− logL(R̄ij |x) = −ω2
R tr

(
RT
jRiR̄ij

)
+ const.

=
ω2
R

2

∥∥Rj −RiR̄ij

∥∥2

F
+ const.

(5)

where ‖·‖2F is the Frobenius matrix norm (sum of the squares of
the entries), and we used ‖S −R‖2F =tr

(
(S−R)(S−R)T

)
.

The norm ‖S −R‖2F is usually referred to as the chordal
distance between two rotations S and R [19].

Plugging (4) and (5) back into (3) we obtain our ML
estimator:

f?ML = min
{ti∈R3}
{Ri∈SO(3)}

∑
(i,j)∈E

ω2
t ‖tj−ti−Rit̄ij‖2 (PGO)

+
ω2
R

2

∥∥Rj−RiR̄ij

∥∥2

F
(6)

2To keep notation simple, we consider measurements with the same
distribution. The extension to heterogeneous ω2

R and ω2
t is trivial.



The main difference between (6) and formulations in re-
lated work is the use of the chordal distance (related work
instead uses the geodesic distance

∥∥Log
(
R̄T
ijR

T
i Rj

)∥∥2
).

References [9], [19] show that for small residual errors
1
2

∥∥Rj −RiR̄ij

∥∥2

F
≈
∥∥Log

(
R̄T
ijR

T
i Rj

)∥∥2
, making the for-

mulations equivalent from a practical standpoint.
The advantage of the formulation (6) is that it has a

quadratic objective function. This facilitates the derivation of
the Lagrangian dual problem, as shown in the next section.

III. LAGRANGIAN DUALITY IN 3D PGO

The main goal of this paper is to provide tools to check if
a candidate SLAM solution x̂ is globally optimal. If we knew
the optimal cost f?ML this would be easy: calling fML(·) the
objective function of (6), if fML(x̂) = f?ML then x̂ is optimal.
Unfortunately, f?ML is unknown. Our contribution is to show
that we can compute close proxies of f?ML using duality theory.
To make the derivation easier, we first rewrite the problem as
a quadratic problem with equality constraints (Section III-A),
and then derive the dual (Section III-B).

A. Quadratic Problem with Quadratic Equality Constrains

In this section, we rewrite (6) in order to (i) have vector
variables (the rotations Ri are matrices), and (ii) formulate
the constraints Ri ∈ SO(3) as quadratic equality constraints.

We define ri ∈ R9 as the vectorized version of Ri:
ri

.
= [R

(1)
i R

(2)
i R

(3)
i ]T, where R(k)

i is the kth row of
Ri. We use the shorthand ri = rows(Ri) to obtain the
vector representation ri of a 3 × 3 matrix Ri. Using this
parametrization, each summand in the objective in (6) becomes
(using that ‖R‖F= ‖RT‖F in the first expression):

ω2
t ‖tj−ti−Rit̄ij‖2 +

ω2
R

2

∥∥RT
j −R̄T

ijR
T
i

∥∥2

F

= ω2
t ‖tj−ti−Tijri‖

2
+
ω2
R

2
‖rj−Qijri‖2 (7)

where Tij
.
= I3 ⊗ t̄Tij ∈ R3×9, Qij

.
= I3 ⊗ R̄T

ij ∈ R9×9, and
⊗ is the Kronecker product.

We cannot choose arbitrary vectors ri ∈ R9, but have to
limit ourself to choices of ri that produce meaningful rows of
a rotation matrix Ri ∈ SO(3). The rotation group SO(3) is
defined as SO(3)

.
= {R ∈ R3×3 : RTR = I3,det(R) = 1},

which, written in terms of the rows of Ri, becomes:

RT
i Ri = I3 ⇔ (R

(u)
i )TR

(v)
i =

{
1 if u = v,
0 if u 6= v,

u, v =
1, 2, 3

det(Ri) = 1 ⇔ R
(1)
i ×R

(2)
i = R

(3)
i (8)

where × is the cross product. In other words, the rows of a
rotation matrix have to be orthonormal, and have to satisfy
the right-hand rule. To derive the dual problem we relax the
second condition (det(R) = 1), which amounts to performing
estimation in O(3) rather than SO(3) (i.e., resulting matrices
can have determinant det(R) = ±1). Then in Proposition 4
we show how to reconcile our verification techniques to work
directly on the original PGO problem (6).

Using (7) and (8) and relaxing the determinant constraints,
we rewrite the PGO problem (6) as:

f? = min
{ri,ti}

∑
(i,j)∈E

ω2
t ‖tj−ti−Tijri‖

2
+
ω2
R

2
‖rj−Qijri‖2

subject to rTi Euvri = 1, u = v
rTi Euvri = 0, u 6= v

}
u, v = 1, 2, 3
i = 1, . . . , n

(9)

where Euv is a 9×9 selection matrix composed of 3×3 blocks
that are zero everywhere except the 3 × 3 block in position
(u, v), which is the identity matrix. The matrices Euv are
built such that rTi Euvri = (R

(u)
i )TR

(v)
i , hence the constraints

in (9) correspond to the orthonormality constraints in (8).
In order to write (9) is a more compact matrix notation,

we define the vector x̆ = [tT1 , . . . , t
T
n, r

T
1 , . . . , r

T
n ]T ∈ R12n.

Using this notation, (9) becomes:

f? = min
x̆

‖Ăx̆‖2 (10)

subject to x̆TĔiuvx̆ = 1, u = v

x̆TĔiuvx̆ = 0, u 6= v

}
u, v = 1, 2, 3
i = 1, . . . , n

where the matrices Ă and Ĕiuv are obtained by stacking
the coefficient matrices in (9), with suitable zero blocks for
padding; ω2

t and ω2
R are included in the definition of Ă.

Finally, since absolute poses are not observable from relative
measurements, we fix a pose to be our reference frame.
Without loss of generality we fix the pose of the first node
to the identity pose (t1 = 03 and R1 = I3, or, equivalently
r1 = rows(I3)). This process is usually called anchoring.
Fixing the first pose modifies (10) as follows:

f? = min
x

‖Ax− b‖2 (11)

subject to xTEiuvx = 1, u = v
xTEiuvx = 0, u 6= v

}
u, v = 1, 2, 3
i = 1, . . . , n− 1

where x ∈ R12(n−1) is obtained by removing the first pose
from x̆, A is obtained by removing from Ă the columns
corresponding to the first pose, and b is the known right-hand-
side arising from anchoring; Eiuv are the same as Ĕiuv but
without the rows and columns corresponding to the first pose.

We conclude this section by transforming (11) into an
equivalent problem with homogeneous objective (i.e., without
constant terms in the squared cost). For this purpose, we note
that solving (11) is the same as solving:

f? = min
x,y

‖Ax− by‖2 (primal problem)

subject to xTEiuvx = 1, u = v
xTEiuvx = 0, u 6= v

}
u, v = 1, 2, 3
i = 1, . . . , n− 1

y2 = 1 (12)

meaning that the two problems have the same optimal ob-
jective, and the corresponding solutions can be mapped to
each other. Intuitively, if the solution of (12) is [x?H 1], then
x? = x?H is also optimal for (11), while if the solution
is [x?H − 1], then x? = −x?H will be optimal for (11).
The inclusion of the slack variable y is often referred to as
homogenization. We refer to (12) as the primal problem.



B. The dual problem

In this section we apply Lagrangian duality to the primal
problem (12), borrowing the corresponding theory from the
optimization community [20], [21]. We begin by recalling
basic properties and notions about duality theory and then we
tailor these concepts to our SLAM problem.

The key insight of duality is that for every constrained
optimization problem of the form:

f? = minx f(x) (13)
subject to ci(x) = 0 ∀i ∈ C

(where C is a set indexing the constraints ci(x)), there is an
associated unconstrained optimization problem:

d? = max
λ

( d(λ)︷ ︸︸ ︷
inf
x
f(x) +

∑
i∈C

λici(x)

)
(14)

called the dual problem. The scalar variables λi appearing in
(14) are called Lagrange multipliers or dual variables, and the
function d(λ) is called the dual function; λ is a vector stacking
all dual variables. With reference to the dual problem (14),
problem (13) is referred to as the primal problem. Intuitively,
the minimization (“inf”) in d(λ) can be understood as a
relaxation of the original problem (13) in which the constraints
are transformed into penalty terms in the objective, whose
“importance” is controlled by λ; hence, the maximization
(w.r.t., λ) tries to make this relaxation as tight as possible.

The dual problem (14) has two important properties. First,
since the dual function d(λ) is the pointwise infimum of a
family of affine functions of λ, it is always concave, and
therefore the dual maximization problem (14) is a convex
program [20, Sec. 5.2]. Its convexity guarantees that the dual
problem can always be solved globally optimally using local
search techniques. Second, given any feasible x for (13) (for
which ci(x) = 0), the definition of d(λ) in (14) shows that
d(λ) ≤ f(x) for any choice of λ. In particular, this must also
hold at the optima x? and λ? in (13) and (14), so that:

d? ≤ f?. (15)

The inequality (15) is referred to as weak (Lagrangian) duality,
and it enables us to lower-bound the optimal value f? of the
(possibly very difficult, nonconvex) primal problem (13) using
the optimal value d? of the (convex) dual problem (14). For
some problems, the inequality (15) is tight (i.e. d? = f?),
for which we say that strong (Lagrangian) duality holds. The
quantity f? − d? ≥ 0 is called the duality gap.

Using weak duality, it is easy to show that, given a primal
feasible point x̂ and a dual point λ̂, the following chain of
inequality holds:

d(λ̂) ≤ d(λ?)
.
= d? ≤ f? .

= f(x?) ≤ f(x̂) (16)

where the first inequality stems from the fact that λ? attains the
maximum over all λ, and the last follows from the optimality
of f? (which is the global minimum among all feasible x).

Therefore, in this work we exploit a simple idea: given a
candidate solution x̂, if we are able to find a λ̂, for which

d(λ̂) = f(x̂), then the chain of inequalities (16) becomes
tight (d(λ̂) = d? = f? = f(x̂)), which implies that x̂ is
an optimal solution. Equation (16) thus provides a means of
certifying the global optimality of a candidate solution x̂ for
(13) and enables our derivation of algorithmic approaches for
certifying the correctness of SLAM solutions.

We are now ready to apply duality to our primal prob-
lem (12). From (12) and (14), the dual function is:

d(λ) = inf
x,y
‖Ax− by‖2 +

n−1∑
i=1

[ ∑
u=1,2,3

λiuu(1− xTEiuux)

+
∑

u,v=1,2,3
u6=v

λiuv(−xTEiuvx)

]
+ λy(1− y2), (17)

where λ is the vector of Lagrange multipliers λiuv and λy , as-
sociated with the orthonormality and homogeneity constraints
in (12), respectively. We observe that the quadratic terms
in (17) can be written more compactly as:

‖Ax− by‖2 − xT

[ n−1∑
i=1

3∑
u,v=1

λiuvEiuv

]
x− λy y2

=

[
x
y

]T [
H(λ) −ATb
−bTA bTb− λy

] [
x
y

]
, (18)

where

H(λ)
.
= ATA−

n−1∑
i=1

3∑
u,v=1

λiuvEiuv. (19)

Calling M(λ) the matrix in (18), the dual function (17) can
thus be written as:

d(λ) = inf
x,y

[
x
y

]T
M(λ)

[
x
y

]
+

∑
i=1,...,n−1
u=1,2,3

λiuu + λy. (20)

Now in the dual problem (14) we try to maximize d(λ);
however, from (20) we see that d(λ) = −∞ if M(λ) has a
negative eigenvalue (by letting [x, y] lie in the corresponding
eigenspace). Consequently, we can safely restrict our search
to the vectors λ that preserve positive semi-definiteness of
M(λ) [20, Sec. 5.1.5]. Moreover:

M(λ) � 0 ⇒ inf
x,y

[
x
y

]T
M(λ)

[
x
y

]
= 0, (21)

as the minimization over [x y] in the homogenized problem
(21) is unconstrained. The dual problem (14) thus becomes:

d? = maxλ
∑
i=1,...,n
u=1,2,3

λiuu + λy (dual problem)

subject to M(λ) � 0. (22)

The dual SLAM problem turns out to be a semidefinite
program (SDP), for which specialized solvers exist [22]. In the
following section we discuss the relations between the primal
and the dual problem, and elucidate on its practical use.



IV. RELATION BETWEEN THE PRIMAL AND
THE DUAL PROBLEM AND PRACTICAL USE

In this section we present two powerful applications of the
dual problem (22). Section IV-A deals with the case in which
one is given a candidate PGO solution, and wants to evaluate
its quality, possibly certifying its optimality. Section IV-B
shows that in particular cases (when the duality gap is zero)
one can obtain an optimal solution of the primal problem from
the solution λ? of the dual.

In both sections, we use the following property.
Lemma 1 (Primal optimal solution and zero duality gap):

If the duality gap is zero (d? = f?), then any primal optimal
solution [x? 1] of (12) is in the null space of the matrix
M(λ?), where λ? is the solution of the dual problem (22).

Proof: When the duality gap is zero, any minimizer of
the primal problem is also a minimizer for the infimum in the
dual function (14) [20, Sec. 5.5.5]. Consider a primal optimal
solution [x? 1]. We already observed than any such minimizer
annihilates the quadratic term in (20), and therefore it holds
that [x? 1]TM(λ?)[x? 1] = 0, which implies that [x? 1] is in
the null space of M(λ?), proving the claim.

We give an alternative proof, which does not require prior
knowledge on duality, in the supplemental material [17].

A. Verification

In this section we consider the case in which we are given
a candidate solution x̂ for the primal problem, and we want
to evaluate the quality of this solution. For brevity, we denote
with f(x̂) the objective evaluated at x̂, for both (11) and its
homogeneous form (12) (for the latter we imply y = 1).

We begin with the following proposition, whose proof easily
follows from (16) and the discussion in Section III-B.

Proposition 2 (Verification of Primal Optimal Objective):
Given a candidate solution x̂ for the primal problem (12), if
f(x̂) = d?, then the duality gap is zero and x̂ is an optimal
solution of (12). Moreover, even if the duality gap is nonzero,
f(x̂) − d? ≥ f(x̂) − f?, meaning that f(x̂) − d? is an
upper-bound for the sub-optimality gap of x̂.

Proposition 2 ensures that the candidate x̂ is optimal when
f(x̂) = d?. Moreover, even in the case in which we get
f(x̂) > d?, the quantity f(x̂)−d? can be used as an indicator
of how far x̂ is from the global optimum.

While Proposition 2 already provides means of verifying a
candidate solution, it requires solving the dual problem, to
compute d?. The following proposition provides a technique
to verify the optimality of x̂ without solving the SDP.

Proposition 3 (Verification of Primal Optimal Solution):
Given a candidate solution x̂ for the primal problem (12), if
the solution λ̂ of the linear system

M(λ̂)

[
x̂
1

]
= 0 (to be solved w.r.t. λ̂) (23)

is such that M(λ̂) � 0 and d(λ̂) = f(x̂), then the duality
gap is zero and x̂ is a primal optimal solution.

Proof: From Lemma 1, we know that when the duality
gap is zero, it must hold M(λ?)[x? 1] = 0. Therefore,

in Proposition 3 we solve the linear system (23), trying to ob-
tain λ?. When M(λ̂) � 0, the solution λ̂ of (23) is such that
d(λ̂) ≤ d? (recall that d? is the maximum over λ). Therefore,
it holds that (i) d(λ̂) ≤ d? ≤ f? ≤ f(x̂) (by weak duality
and optimality of f?). However, if d(λ̂) = f(x̂), the chain
of inequalities (i) becomes tight, d(λ̂) = d? = f? = f(x̂),
implying that x̂ attains the optimal objective f?.

In practice, iterative SLAM solvers optimize (6), rather than
the primal problem (12). A natural question is then how to
use the results in Propositions 2-3 (which relate f? and d?) to
verify the solution of (6), whose optimal value is f?ML ≥ f?.
This extension is given by the following proposition, which
essentially states that Propositions 2-3 can be applied directly
to check the solution of (6).

Proposition 4 (Verification techniques for PGO): The fol-
lowing statements hold true:

(V1) Given a candidate solution x̂ for the PGO problem (6),
if fML(x̂) = d?, then x̂ is an optimal solution of (6).
Moreover, fML(x̂)− d? ≥ fML(x̂)− f?ML, i.e., fML(x̂)− d?
is an upper-bound for the sub-optimality gap of x̂.

(V2) Given a candidate solution x̂ for the PGO problem (6),
if the solution λ̂ of the linear system (23) is such that
M(λ̂) � 0 and d(λ̂) = fML(x̂), then the duality gap is
zero and x̂ is an optimal solution of (6).
Proof: The first claim can be proven by observing that

the following chain of inequalities holds (i) d? ≤ f? ≤
f?ML ≤ fML(x̂), hence fML(x̂) = d? implies that d? = f? =
f?ML = fML(x̂), which implies that x̂ is optimal. The inequality
fML(x̂)−d? ≥ fML(x̂)−f?ML easily follows from (i). The second
claim can be proven in the same way, noting that (ii) d(λ̂) ≤
d? ≤ f? ≤ f?ML ≤ fML(x̂): if we are able to compute a λ̂ that
is dual feasible (M(λ̂) � 0) and such that d(λ̂) = fML(x̂),
then it must hold d(λ̂) = d? = f? = f?ML = fML(x̂), which
implies that fML(x̂) is optimal.

B. Primal Optimal Solutions

In this section, rather than verifying the quality of a given
candidate solution, we show how to use duality to compute
a primal optimal solution directly. We focus on the particular
case in which the duality gap is zero. This case is of interest
as we observe that the duality gap is often zero in practice.

From Lemma 1 we know that an optimal solution must
be in the null space of M(λ?). This motivates the following
proposition, which provides a way to compute a primal optimal
solution directly from the solution λ? of (22).

Proposition 5: If the duality gap is zero and λ? is an
optimal solution of (22), then an optimal solution x? of (12)
can be computed by solving the following linear system:[

H(λ?)
bTA

]
x? =

[
ATb

λ?y − bTb

]
(to be solved w.r.t. x?)

(24)

Proof: From Lemma 1, we know that when the duality
gap is zero, it holds M(λ?)[x? 1] = 0. Then, recalling the
structure of M(λ?) from (18), it’s easy to see that (24) only
rewrites the condition M(λ?)[x? 1] = 0, moving the constant
terms to the right-hand side.
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Fig. 2. Statistics regarding the verification technique V1 (first row), the computation of the primal solution via the dual (second row), and the verification
technique V2 (third row). Results are shown for different levels of translation noise σT (first column), rotation noise σR (second column), and size of the
problem (third column). The rightmost column shows the CPU time required by V1 and V2 and the datasets used for the Monte Carlo simulations.

Note that Lemma 1 ensures that the linear system (24)
admits a solution. Proposition 5 allows finding an optimal
solution to the primal problem (12). If this satisfies the
determinant constraints in (6), it follows that this solution is
also optimal for the original PGO problem (6). While currently
we cannot prove that the determinant constraints are always
satisfied, this was always the case in our experiments.

V. EXPERIMENTS

In this section we show that the first verification technique in
Proposition 4 (referred to as V1) enables accurate quantification
of the sub-optimality gap of a candidate SLAM solution, but
that current SDP solvers do not scale well with increasing
problem size. The second verification technique in Proposi-
tion 4 (referred to as V2) provides a convenient alternative for
large-scale problems: it is reliable and less computationally
demanding. Finally, we provide empirical evidence that when
the duality gap is zero we can compute an optimal solution
from the solution of the dual problem, as suggested by
Proposition 5. The SDP (22) is solved using SDPA [22].

Effectiveness of V1. Proposition 4(V1) ensures that for any
candidate solution x̂, fML(x̂) − d? represents an upper-bound
on the sub-optimality gap fML(x̂) − f?ML of x̂. However, it is
possible that this bound is very loose, in which case it would
be of little practical utility. In this section, we show that d?

is close to f?ML in practice, hence fML(x̂) − d? is a very good
measure of the sub-optimality gap of the candidate x̂.

In our experiments we compute the “optimal” solution f?ML
of (6) by refining the chordal initialization of [23], [24] with 10

Gauss-Newton (GN) iterations. While one cannot guarantee a
priori that this approach always produces the optimal estimate,
using the results of this paper we will be able to check
optimality a posteriori.

We evaluated how close d? is to f?ML on the cube dataset of
Fig. 2(b4). In this dataset, the odometric trajectory is simulated
as the robot travels on a 3D grid world, and random loop
closures are added between nearby nodes, with probability
0.3. Relative pose measurements are obtained by contaminat-
ing the true relative poses with zero-mean Gaussian noise,
with standard deviation σT and σR for the translational and
rotational noise, respectively. Statistics are computed over 10
runs: for each run we create a cube with random connectivity
and random measurement noise. We consider an example with
n = 53 poses and varying noise levels σT and σR.

Fig. 2(a1) shows d? and f?ML for different translational noise
levels, fixing σR = 0.05rad. The figure shows that d? = f?ML
(zero duality gap) independently on the translational noise
level, hence d? is a very good proxy of f?ML.

Fig. 2(a2) shows d? and f?ML for different rotational noise,
fixing σT = 0.1m. In this case the duality gap f?ML−d? is more
sensitive to the noise level, and for large rotational noise d?

becomes smaller than f?ML. However, the gap f?ML−d? remains
small, and is within 20% of f?ML in all cases.

Fig. 2(a3) shows d? and f?ML for different sizes of the cube
dataset, fixing σR = 0.05rad and σT = 0.1m. Again in this
case d? = f?ML (zero duality gap) independently of the size of
the dataset. However, we observe that the SDP (22) becomes
intractable for larger problem sizes, as shown in Fig. 2(a4).



Primal optimal solution via the dual. Here we demonstrate
experimentally that one can recover a primal optimal solution
x? for the SLAM problem from the dual optimal solution λ?

of (22) whenever strong duality holds.
For each of the experimental trials described previously, we

also computed an estimate x̂ for the SLAM solution directly
from the optimal solution λ? for the dual program (22) using
equation (24). Figs. 2(b1)-(b3) compare the value f(x̂) of
this estimate against the value f?ML of the solution obtained
by solving the SLAM problem directly using the chordal
initialization, and against the cost of the odometric guess.

We can see that for those experimental conditions in which
strong duality holds (those experiments in Figs. 2(a1)-(a3) for
which the green and red bars are the same height), the estimate
x̂ in fact achieves the (certified) globally optimal cost f?ML and
is therefore a globally optimal solution for the SLAM problem,
as guaranteed by Proposition 5. More interestingly, we also
find that even in those cases when strong duality does not
hold (in which case Proposition 5 no longer guarantees that
x̂ is a primal optimal solution), the quality of the candidate
x̂ degrades gracefully (i.e. the gap f(x̂) − f?ML increases
gradually) with increasing noise levels. In particular, we find
that x̂ outperforms the odometric guess in all tested cases.

These experiments confirm that we can extract a primal
optimal solution x? for the SLAM problem directly from
the solution λ? of the convex dual problem whenever strong
duality holds. However, this approach is unfortunately not
currently practical as a general-purpose SLAM technique, due
to the high computational cost of solving large scale SDPs.

Effectiveness of V2. In this section we show that V2
is a computationally tractable verification approach, and it
preserves the desirable properties of V1, i.e., it is able to
discern optimal estimates from suboptimal ones. In contrast
to V1, V2 does not quantify the sub-optimality gap, but can
only give a binary answer: either it certifies that the estimate
x̂ is optimal (by producing a dual certificate λ̂), or it is
inconclusive. Before moving to the real tests, we consider the
cube scenario discussed in the previous section.

We perform the following test: for each realization of the
cube scenario, we compute the optimal solution x? (attaining
f?ML) as in the previous tests, and a sub-optimal solution
x† (attaining f† > f?) by bootstrapping the Gauss-Newton
method with a random initial guess. Then, we apply the
verification technique to both x? and x† and see if they pass
the optimality test. Using the results we can compute the
precision and recall of our classification:

precision =
|X x?|

|X x?|+|X x†|
recall =

|X x?|
|X x?|+|X x?|

(25)

where |X x?| denotes the number of tests in which an optimal
solution x? was accepted as optimal by V2, |X x†| is the
number of tests in which a suboptimal solution was accepted
as optimal, and |X x?| is the number of tests in which V2 was
not able to certify the optimality of an optimal solution.

We point out that Proposition 4(V2) guarantees that our cer-
tification approach always has precision equal to 1; however,
recall may be less than 1, and will be for cases in which strong
duality does not hold. We plot precision/recall for different

fML(x̂) d(λ̂) µ Time V2

sphere Init. 5.7595·102 5.75·102 −1.80·10−4 609 X
n=2500
m=4949 Odom. 5.8019·102 4.38·102 −1.45·10−4 597 X
sphere-a Init. 1.2485·106 1.25·106 −9.64·10−3 332 X
n=2200
m=8647 Odom. 3.0413·106 3.04·106 −1.01·102 2.5 X
torus Init. 1.2114·104 1.21·104 −7.85·10−2 39 X
n=5000
m=9048 Odom. 2.7666·104 2.76·104 −1.04·102 3.7 X
cube Init. 4.216·104 4.22·104 −1.24·10−2 1646 X
n=8000

m=22236 Odom. 2.7465·105 2.74·105 −9.98·101 68.2 X
garage Init. 6.2994·10−1 6.11·10−1 −6.78·10−2 12.3 X
n=1661
m=6275 Odom. 6.2997·10−1 3.53·10−1 −6.75·10−2 11.2 X
cubicle Init. 6.2481·102 6.25·102 −4.76·10−1 16.8 X
n=5750

m=16869 Odom. 6.2484·102 6.16·102 −4.75·10−1 15.5 X
rim Init. 1.235·104 1.23·104 −9.77·101 7.7 X
n=10195
m=29743 Odom. 1.6985·104 −2.8·104 −9.38·101 7.1 X

TABLE I
VERIFICATION TECHNIQUE V2 ON LARGE-SCALE SLAM DATASETS.

levels of translational and rotational noise, and for different
sizes of the dataset, as shown in Figs. 2(c1)-(c2)-(c3). We
observe that only for larger rotational noise Fig. 2(c2) the
recall decreases; these are exactly the cases in which the
duality gap is nonzero. (For σR = 0.2rad, V2 was not able to
certify optimality in any case, which means that the precision
becomes undefined ( 0

0 ) and for this reason we do not show
the corresponding data point in Fig. 2(c2).) Finally, Fig. 2(d2)
shows the CPU time required by V2. This is the time required
to solve the linear system (23), and check if M(λ̂) � 0. V2 is
computationally cheap, as it does not require solving the SDP.

We conclude the experimental part of this paper by testing
the performance of the verification technique V2 on large-scale
SLAM datasets. We consider the same datasets as [23]: the
sphere, sphere-a, torus and cube are simulated datasets, while
the garage, cubicle and rim are real datasets. For the results in
this paper we substituted the covariances in the datasets of the
scenarios sphere, sphere-a, garage, cubicle and rim with isotropic
ones, as required by the PGO formulation (6).

Table I shows the results of the application of V2 to the
SLAM datasets. The first column shows the cost obtained by
applying a GN method starting from the initialization [23]
(rows “Init.” in the table) and from the odometric guess
(rows “Odom.”). These are the candidate solutions that we
want to check, using V2. The columns “d(λ̂)” and “µ” show
intermediate results of V2. In particular, d(λ̂) is the same
one described in Proposition 4(V2), while µ is the smallest
eigenvalue of M(λ̂). Recall that V2 certifies optimality when
fML(x̂) = d(λ̂) and µ ≥ 0 (if the smallest eigenvalue
is non-negative, then M(λ̂) � 0). We specify a tolerance
in these tests, since the GN estimate x̂ will not attain the
optimal solution x? exactly. Consequently, the solution λ̂
of (23) is not exact, so we consider that fML(x̂) = d(λ̂)
if |fML(x̂) − d(λ̂)|/fML(x̂) < 20%. Similarly, we add some
tolerance to the condition µ≥0, and accept µ≥−1. Recall that
µ is expected to be slightly negative, as the objective in (22)
tends to push M(λ) towards the boundary of the positive
definite cone, and the SDP is solved numerically.

Let us start our analysis from the sphere dataset. When
using the initialization (“Init.” row), the GN method attains
an objective 5.7595 · 102. In this case, the two conditions
for V2 are satisfied and we can certify the optimality of the
resulting estimate (green check-mark in the rightmost column).



When using the odometric initialization the resulting cost is
larger (red entry in the column fML(x̂)), hence the estimate
is suboptimal. V2 is able to identify the suboptimality, since
d(λ̂) becomes much smaller than fML(x̂). Hence V2 correctly
decides not to certify the optimality of the odometric estimate
(red “X” in the last column). Similar considerations hold for
the second scenario, the challenging sphere-a: in this case the
initialized estimate (shown in Fig. 1, top left) is accepted
as optimal. The odometric estimate, instead, is trapped in a
local minimum (Fig. 1, bottom left), and the optimality test V2
correctly rejects the estimate since it leads to a very negative µ.
Similar considerations hold for the torus, cube, and the cubicle
datasets: our technique is able to discern optimal solutions
from suboptimal estimates in all cases.

For the garage dataset, the initialized estimate is classified as
optimal, while the odometric estimate, which has a similar cost
(6.2997·10−1 vs 6.2994·10−1), is rejected as suboptimal. We
observed the corresponding trajectory estimates (see [17]) and,
while they are are both visually correct and have very similar
costs, they do not overlap. This may indicate the presence of
regions in the cost functions that are nearly flat, i.e., for which
different estimates can have similar cost. Allowing for extra
GN iterations, the odometric estimate converges to the same
cost as the initialized one, and our technique is able to certify
its optimality. Empirically, we observed that estimates that are
suboptimal because they need extra iterations to converge tend
to fail the check on d(λ̂) (compare with sphere and garage),
while estimates that converge to a wrong minimum tend to
fail the check on µ (compare with sphere-a, torus, and cube).

For the rim dataset, both estimates (“init” and “odom”)
are rejected by V2. While the initialized estimate is visually
correct, currently, we cannot conclude anything as it might
be that there exists a better estimate (i.e., GN failed), or our
technique failed because the duality gap was nonzero.

Finally, in the column “Time”, we report the CPU time (in
seconds) required to perform the second verification technique.
Most of the time here is spent computing the smallest eigen-
value µ of M(λ̂), which was obtained using Matlab’s eigs,
specifying −100 as guess for the eigenvalue. The CPU time
depends on the size of the problem, but also depends on the
distance between our guess (−100) and the closest eigenvalue.
We leave a more thorough investigation of these computational
aspects for future work.

VI. CONCLUSION

We show that Lagrangian duality is an effective tool to
assess the quality of a given SLAM estimate. We propose two
techniques to judge if an estimate is globally optimal (i.e., it
is the ML estimate), and we show that when the duality gap
is zero one can compute an optimal SLAM solution from the
dual problem. The performance of our verification techniques
is extensively tested in real and simulated datasets, including
large-scale benchmarks. Many theoretical questions remain
open, e.g., under which conditions the duality gap is zero?
is it possible to derive bounds on the duality gap? We also
leave as future work more practical problems, such as the one
of exploring more efficient solvers for large SDPs, possibly
exploiting problem structure.
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