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SUMMARY 

 

Deep brain stimulation (DBS) is a procedure used to treat movement disorders 

such as Parkinson's disease. The current procedure for programming the parameters for 

DBS is time consuming and prone to error. The DBS programming procedure can be 

significantly improved using a closed-loop optimization approach. Due to recent 

advances in quantitative assessment metrics, the capability to translate a closed-loop 

optimization procedure for DBS programming from simulation to clinic has become 

more possible. Previous literature has presented closed-loop approaches that utilize 

evolutionary algorithms. It is very difficult to implement an evolutionary algorithm in the 

clinic because they typically require a large number of parameter evaluations. A 

parameter evaluation is testing how well a certain set of DBS parameters work. It is 

difficult to do a large number of parameter evaluations due to time constraints and patient 

fatigue. A response surface based closed-loop optimization approach for DBS 

programming is presented that has higher potential to be translated to the clinic because it 

requires much less parameter evaluations.  
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CHAPTER 1 

INTRODUCTION 

Parkinson's is a neurodegenerative disease where dopamine producing cells in the 

substantia nigra are lost. The causes for this disease are not well understood, and there is 

currently no cure for the disease. Treatments focus on alleviating symptoms such as 

tremor. The two main types of treatment are drugs like Levodopa, a chemical that can 

enter the brain where it is converted to dopamine, and Deep Brain Stimulation (DBS), a 

procedure where electrodes are implanted inside the brain and send electrical impulses to 

certain nuclei of the brain, like the subthalamic nucleus (STN) or the globus pallidus pars 

interna (GPi). This thesis will focus on DBS.  

Deep Brain stimulation has been shown to alleviate symptoms associated with 

Parkinson's and was first used in 1997 to replace thalamotomy in treating the tremor 

associated with Parkinson's disease [1, 2]. The drug that is used to treat Parkinson's, 

Levodopa, can have long term complications such has dyskinesia,  so an alternative, DBS, 

is also used to treat Parkinson's [2]. The current procedure for programming DBS 

parameters is very inefficient and time consuming. One study found that the mean time for 

programming and assessment of a patient with Parkinson's disease from the preoperative 

period to one year post operation was between 27 and 36.2 hours [3]. The current 

programming procedure is shown in Figure 1. An initial set of parameters is chosen, and 

then one parameter is varied until the side effect limit is reached [4]. Once that side effect 

limit is reached, then a different parameter is varied. This procedure is inefficient and only 

attempts to find a satisfactory set of parameters, not an optimal set. In addition, there are 

cases when the programming is so poor that dramatic improvement can be found with 
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reprogramming [5]. A study that looked at 41 patients who complained of suboptimal 

results from DBS found that 15 of those patients (37%)  were poorly programmed, and 

these patients experienced significant improvement upon reprogramming [5]. 

Having an automated standardized approach to DBS programming would also be 

very beneficial. Currently, a specially trained individual is required to program stimulators. 

This can require individuals to travel quite far to find a center that can program stimulators. 

Therefore an automated computer guided approach would also be very beneficial. To 

perform such an approach, an automated method for assessing disease symptoms is also 

necessary, and it was found that motion sensors could be useful in assessing parkinsonian 

symptoms [6]. Using a motion sensor strategy, a recent study has been able to do open-

loop parameter tests automatically and search for an optimum within those open loop 

tests[7].  A closed-loop optimization approach could further improve upon that approach.  

This computational study will investigate the application of closed-loop 

optimization to automate the DBS programming procedure in a computational model 

(Fig. 2). In a closed-loop optimization scheme, a set of parameters is determined by an 

optimization algorithm, and then those parameters are tested on the system. The efficacy 

of those set of parameters is then fed back into the algorithm to determine the next set of 

parameters to test. This loop is continued until a stopping criterion is met. A good 

stopping criterion, in this application, ends the procedure when continuing only provides 

negligible or no extra relief to symptoms. Previous work on closed loop optimization for 

DBS programming has focused on using evolutionary algorithms like the genetic 

algorithm [8, 9]. However, it is difficult to implement an evolutionary algorithm in 

practice because they require a large number of parameter tests. A parameter tests in DBS 
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programming involves choosing a set of parameters and then evaluating the efficacy of 

those parameters. Performing a parameter test consumes time and fatigues the patient; 

therefore, a large number of parameter tests cannot be performed. A model-based 

optimization approach requires less parameter tests than an evolutionary approach; 

however, they are more computationally expensive. But, since the limiting factor here is 

parameter tests and not computational time, a model-based optimization would be better 

suited for DBS programming currently. This thesis will present a model based closed-

loop optimization approach for DBS programming and begin exploring its feasibility in a 

computational model.   
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Figure 1: Conventional procedure to program a DBS device. This flowchart 

demonstrates the typical procedure for programming a DBS device[4]. An initial 

set of parameters is set, and then one parameter is varied until a side effect limit is 

reached. Then a different parameter is varied. This process is repeated, and if 

monopolar stimulation fails, then bipolar stimulation is attempted. This procedure 

is inefficient and does not attempt to find an optimal set of parameters. 
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Figure 2: Closed-loop Optimization Scheme for DBS. A general overview of 

how a closed-loop optimization scheme would be applied to DBS is shown. A set 

of parameters are chosen by the algorithm which are tested on the patient, and 

then the efficacy of those parameters is fed back into the optimization algorithm. 

Then the algorithm can determine the next set of parameters to test to reach the 

optimum. 
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CHAPTER 2 

METHODS 

 

 This computational study will begin exploring the feasibility of a model based 

closed-loop optimization approach for DBS programming. This section will present the 

model of Parkinson’s that was used and the closed-loop optimization approach for DBS 

programming.  

Model 

A Hodgkin Huxley type model of the basal ganglia was used to model 

Parkinson’s [10]. This model is a further modified version of the original Rubin and 

Terman model [11, 12]. The nuclei modeled are the subthalamic nucleus (STN), globus 

pallidus internus (GPi), globus pallidus externus (GPe), and the thalamus (Th).  The 

sensory motor cortex (SMC) is not explicitly modeled. The SMC fires at a certain 

frequency with noise so that it is not exactly periodic. Below are the equations for the 

neurons in this model.  

CmV’
Th = - (IL + INa +IK + IT + IGPiTh) + ISMC                                    

CmV’
STN = - (IL + INa +IK + IT + ICa + Iahp + IGPeSTN) + Iapp + IDBS                            

CmV’
GP = - (IL + INa +IK + IT + ICa + Iahp + ISTNGP +  IGPeGPe/GPi) + Iapp            

 

The thalamus should relay the signals of the SMC in this model, but in the 

Parkinsonian condition the thalamus is unable to correctly transmit the signals from the 

SMC. Figure 3 shows the connectivity of the model and figure 4 shows the model’s 

response to different conditions in the model. To switch from the healthy to the 
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Parkinson’s condition, the applied current (Iapp) which is the net current input from other 

sources is lowered. In the parkinsonian condition, the GPi cells fire in a more burst-like 

nature which prevents the thalamus from successfully relaying signals from the SMC 

(indicated by asterisks in figure 4). However, DBS (figure 3) applied to the STN is able 

to successfully restore the thalamus’s ability to relay signals from the SMC.  

 

Figure 3: Stimulus parameters for DBS current. The DBS current waveform is a 

square waveform with an adjustable amplitude, pulse width, and period.  

 

 

Figure 4: Connectivity of Model. The plus signs indicate excitatory connections 

and negative signs indicate inhibitory connections.  
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Figure 5. The model’s response in different conditions. In the healthy 

condition, the GPi fires irregularly and the Th successfully relays all signals from 

the SMC. In the Parkinson’s disease (PD) condition, the GPi will become more 

burst-like and the Th is unable to relay all signals from the SMC. Asterisks 

indicate a failure in thalamic transmission which is a burst (firing twice for one 

input), firing without an input, and not firing when an input is given. DBS 

entrains the STN and GPI to fire at the stimulation frequency which restores 

thalamic transmission.   

Closed-Loop Optimization 

The closed-loop optimization procedure utilized here is based off of the Efficient 

Global Optimization (EGO) algorithm [13]. A detailed overview of EGO is given in 

Appendix A. In this closed-loop scheme, first several open loop responses are recorded 

using a method such as a Latin hypercube. Then those open loop responses are used to 

build a model or response surface of the system using the DACE (Design and Analysis of 

Computer Experiments) model [14]. After constructing the DACE model, a criterion 
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known as the maximum expected improvement (max EI) is computed. The max EI is an 

estimate of what location in the parameter space will lead to the greatest improvement 

upon the current minimum. After determining where the EI is maximized, those 

parameters are tested on the system. Then a feedback term (or the cost function) is 

calculated and used to update the model. Two feedback terms are independently explored 

here. One feedback term used here is thalamic fidelity which is the number of incorrectly 

relayed signals over total signals to be transmitted, figure 6. The second feedback 

(GPiPow) term is two times the power in the GPi cells in the 1-20 Hz frequency range, 

figure 7. Another term that can be incorporated into the feedback is power consumption. 

The term used for battery consumption here is called BattC and is the integral of the 

current over one period which is equal to the pulse width * amplitude * frequency 

multiplied by a weighting term α. The point of the weighting term is balance how much 

to emphasize saving battery. If too much emphasis is put on minimizing battery 

consumption, then the patient may not see enough benefit; therefore, α must be chosen to 

promote solutions that save battery and do not reduce efficacy. In this study, α is set to 

0.001. The Max EI also is useful as a stopping criterion. Whenever the max EI is less 

than a certain threshold, the best set of parameters evaluated to that point are returned and 

the loop is terminated. One parameter test is setting a set of DBS parameters and 

evaluating how well those parameters worked, so going through one complete loop is one 

parameter test.  
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Figure 6. The Closed-Loop Optimization Procedure. A depiction of the closed-

loop optimization scheme. The expected improvement (EI) is a metric that helps 

determine where to sample next by estimating where the most improvement can 

be found upon the current optimum.  

 

Figure 7. Feedback Parameter Thalamic Fidelity. Above is a display of the 

voltage trace for the thalamus during the Parkinson’s condition. The asterisk 

denote incorrect relays. The feedback parameter thalamic fidelity is the number of 

errors (asterisk) divided by total inputs from the SMC.  
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Figure 8. Feedback Parameter GPi Power. Above is a display of the voltage 

trace for the GPi during the Parkinson’s condition. As can be seen in the power 

spectrum, the GPi fires much more synchronously in the Parkinson’s condition 

making the power in the 1-20 Hz band a useful feedback parameter.   
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CHAPTER 3 

RESULTS 

The ability of the DACE model to estimate the true response for both feedback 

terms is depicted in figure 8. It can qualitatively be seen that the DACE estimate can 

reasonably predict the true response with a limited number of samples. The estimate will 

typically improve as more parameter tests are done. For all simulations, there were 33 

open loop runs executed using a Latin hypercube. The stopping criterion was the Max EI 

falling less than 5%. An example optimization is shown in figure 9 where the Max EI is 

plotted over 60 closed loops. Results from 25 simulations for each feedback term are 

tabulated in Table 1. The power saved is calculated from the percentage of power saved 

from the worst case (max amplitude, pulse width, and frequency).  
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Figure 9. Response surface estimate of parameter space. On the left is a plot of 

the true parameter space for each respective objective function (feedback 

parameter). On the right are the response surfaces built with 20 parameter tests 

depicted by blue Xs using the DACE model. The DACE model serves as the 

response surface that estimates the DBS space in the closed-loop optimization 

procedure presented here.  

 



14 

 

 

Figure 10. Example Optimization. The maximum expected improvement across 

60 closed loop iterations is show for one optimization simulation where the 

feedback term was GPpow + BattC.  

 

Feedback Average Power Saved Closed-Loop iterations Thalamic Errors 

Thalamic Fidelity 63.5 ± 18.5 %  62.8 ± 16.9 0 ± 0 

Thalamic Fidelity 
+ BattC 85.6 ± 2.1 % 63.8 ± 16.1 0 ± 0 

GpiPow 70.5 ± 16.9 % 63.3 ± 12.8 0.3 ± 0.3 % 

GpiPow + BattC 81.1 ± 5.6 % 67.4 ± 15.8 0.3 ± 0.3 % 

 

Table 1. Optimization Results. Results are shown as mean ± standard deviation. 
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CHAPTER 4 

DISCUSSION 

The current approach for DBS programming can be time consuming and 

suboptimal. This work puts forward a model based closed-loop optimization approach as 

an alternative way to program DBS devices for Parkinson’s disease.  A model based 

approach is better suited than alternative approaches like evolutionary algorithms that 

have been proposed previously for DBS Programming. The primary advantage of the 

model based approach is that it will require less parameter tests. An evolutionary 

algorithm will typically beat a model based optimization approach in computation time; 

however, a model based approach will typically need less samples or parameter tests to 

find a reasonable optimum. For DBS programming, the primary limiting factor is how 

many parameters you can test. Testing a parameter is time consuming and fatigues the 

patient; therefore any programming approach for DBS needs to require as few parameter 

test’s as possible. The constraint on parameter tests makes a model based approach better 

suited for DBS programming.  

The goal of this study was to show through computational simulations the 

potential of a model based closed loop optimization algorithm to improve the DBS 

programming procedure to motivate more computational and clinical studies. As can be 

seen from figure 9, the Max EI can be quite volatile. This volatility is due to the model 

finding a new region of interest after sampling at a particular point. For the stopping 

criterion used in this paper of .05, the optimization would have stopped around iteration 

20. But, perhaps, the new area of the model sampled at around iteration 47 found an area 

of interest with a better optimum. Therefore, it would be useful to explore different 
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stopping criteria to balance finding the best point possible in as few parameter tests as 

possible. The results from Table 1 show that the feedback terms that accounted for power 

consumption did save more power than the feedback terms that did not account for 

power. Accounting for battery consumption did take more closed-loop iterations, but not 

many more and the benefit of using less battery may be worth requiring a few extra 

parameter tests. Also when accounting for battery consumption, it has to be carefully 

considered how much to emphasize battery consumption. If battery consumption is 

emphasized too strongly then the efficacy of the treatment may suffer (figure 11). 

Thalamic errors were not completely removed for some simulations where GPiPow was 

in the feedback. This is likely due to GPiPow being a more indirect measurement of 

disease state. One drawback of these results is that they are only from 25 simulations in 

each feedback term. For a better indication of the efficacy of this approach, a larger 

number of simulations should be done.   

The primary barrier to implement the proposed closed-loop optimization within 

the clinic is an automated way to measure some type of feedback. The feedback 

parameters used in this work are not currently measurable in the clinic. Therefore, 

identifying an objective function that is quantitative and easy to measure is necessary to 

implement this procedure. Recent clinical work has utilized an automated quantitative 

method to assess Parkinson’s symptoms in an open loop fashion [7]. It would be possible 

to implement the closed-loop optimization proposed here within that setup; however, 

there is still much work to be done in identifying objective functions to optimize against 

in Parkinson’s and other neurodegenerative diseases.  
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Another interesting way to implement this methodology in the clinic may be by 

utilizing the biophysical model used here in conjunction with the black box model. 

Physiological measurements made from an individual could be used to adapt the 

biophysical model to better fit that individual. Then this optimization approach could be 

used to build an estimate of the parameter space in the fitted model. Then the optimum of 

the estimated parameter space can be used as a possible set of parameters to test.   

This computational study focused on the monopolar case for DBS. Accounting for 

stimulation with more poles would be useful for DBS since multipolar stimulation can 

better localize the stimulating current which can help limit side effects. To account for 

the multipolar case in simulation, a finite element model would be required to better 

model the effects of multiple poles. Also, certain aspects of the proposed optimization 

scheme can be further optimized such as the number of open loops that are initially run 

and the best threshold for maximum expected improvement to stop the optimization.  
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Figure 11. Effect of incorporating battery consumption into the feedback. 

The parameter space for thalamic fidelity without any power incorporated into it 

can be seen on the left. The middle figure shows the effect of weighing the battery 

consumption term by .001. This weighting helps discriminate between equally 

effective parameters by penalizing parameters that consume more battery. On the 

far right is weighing the battery consumption term by .01. This weighting now 

allows parameters at a frequency of 60 Hz which are clearly not as effective at 

reducing symptoms as higher frequencies appear to be the better choice because 

they consume less battery. The weighting of the battery consumption term must 

be carefully chosen so to find parameters that provide the most benefit and 

consume the least amount of power.   
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CHAPTER 5 

CONCLUSION 

The current procedure for DBS programming is time consuming and sub optimal. 

To improve the current procedure, a model based closed-loop global optimization 

approach was presented. Model based approaches can typically require much less 

parameter tests to find an optimum than evolutionary approaches, the primary approach 

investigated for DBS previously. For an optimization to be used in the clinic currently, it 

must use as few parameter tests as possible because it is time consuming and fatiguing to 

the patient to test a parameter set. Therefore, model based approaches currently are more 

advantageous than evolutionary approaches to do a closed-loop optimization of DBS 

programming. This work shows that the model based approach presented here can be 

effective for DBS programming and should be investigated further through computation 

and clinical studies. 
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APPENDIX A 

THE EFFICIENT GLOBAL OPTIMIZATION ALGORITHM (EGO) 

 

The algorithm that will form the foundation of the closed-loop optimization done 

in this study is the efficient global optimization algorithm (EGO) (Fig. 12) [13]. An 

overview of EGO will be given here. For a more detailed description of EGO, readers are 

suggested to [13]. In EGO,  a model is built that treats each point as the result of a 

stochastic process known as the DACE (Design and Analysis of Computer Experiments) 

model [14]. By treating points this way, it provides tools for quantifying the amount of 

uncertainty at points that have not been evaluated which can help in determining where in 

the design space to search next. Also in this model, it is assumed that points that are 

spatially closer to each other have a higher correlation in their errors than points that are 

farther away from each other, which is intuitive. The following formulas are used to 

calculate a distance, which is not the usual Euclidean distance, between two points, and 

this distance is used to calculate the correlation of the error between the two points.  

𝑑(𝒙1, 𝒙2) = ∑ 𝜃|𝑥1(ℎ) − 𝑥2(ℎ)|
𝑝

       𝑘
ℎ=1 𝜃 ≥ 0  𝑝 ∈ [1,2] 

𝐶𝑜𝑟𝑟(𝑥1, 𝑥2) =  𝑒−𝑑(𝑥1,𝑥2) 

K represents the number of variables, or dimensions, h. In my case, k is 4 (amplitude, 

frequency, pulse width, and electrode). Depending on how the space is parameterized, k 

could be greater than 4. θ is a measure of the 'sensitivity' of a variable. So if a variable, 

like amplitude, has a large sensitivity, then a small change in amplitude would lead to a 

large change in the value of the objective function, and if amplitude has a small 

sensitivity, then a large change in amplitude would lead to a small change in the value of 

Eq.1 

Eq.2 
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the objective function. The parameter 𝑝 is related to the smoothness of the function. The 

correlation matrix, 𝑹, is a 𝑛 by 𝑛 matrix which at row i and column j has the value 

𝐶𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗), and 𝑛 is the number of observed points.  Then values for μ and 𝜎2 can be 

estimated by maximizing the likelihood function (Eq.3).  

1

(2𝜋)𝑛/2(𝜎2)𝑛/2|𝑹|1/2 exp [−
(𝒚−𝟏𝜇)′𝑹−1(𝒚−𝟏𝜇)

2𝜎2 ] 

�̂� =
𝟏′𝑹−1𝒚

𝟏′𝑹−1𝟏
 

�̂�2 =
(𝒚 − 𝟏�̂�)′𝑹−1(𝒚 − 𝟏�̂�)

𝑛
 

The vector 𝒚 is the n observations of the objective function values. The vector 𝟏 is a n 

long vector of ones. Then the values of �̂� and �̂�2 are plugged back into the likelihood 

function to find estimates of θ and 𝑝. Then the following equation can be used as a 

predictor of the objective function. 

�̂�(𝑥∗) = �̂� + 𝒓𝑹−1(𝒚 − 𝟏�̂�) 

 

The parameter 𝑥∗ is the point at which the prediction is being done. The vector 𝒓 is a n 

length vector of correlation of errors between the point of prediction,  𝑥∗ , and the already 

sampled points, 𝒙 , so element i in  𝒓  can be calculated as 𝒓𝑖(𝑥∗) = 𝐶𝑜𝑟𝑟(𝑥∗, 𝑥𝑖).  The 

mean squared error for this predictor, s2(𝑥∗) can be determined as shown below. 

𝑠2(𝑥∗) =  �̂�2 [1 − 𝒓′𝑹−𝟏𝒓 +  
(1−𝟏′𝑹−𝟏𝒓)

𝟐

𝟏′𝑹−𝟏𝟏
] 

The root mean squared error (RMSE) is designated as follows 𝑠(𝑥) =  √𝑠2(𝑥∗). This 

completes the DACE model. Next, a criterion known as expected improvement is 

calculated to determine where to sample for the next point. Expected improvement 

Eq.4 

Eq.5 

Eq.6

 
 Eq.5 

Eq.7 

 
 Eq.5 

Eq.3 
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combines the uncertainty of not knowing what the objective function is at a certain point 

along with the probability that a particular point could improve upon the current best 

point for the minimum, fmin. The expected improvement is calculated as shown below 

where PDF is the probability density function and the CDF is the cumulative distribution 

function.  

𝐸𝐼(𝒙) = (𝑓𝑚𝑖𝑛 − �̂�(𝒙))𝑃𝐷𝐹 (
𝑓𝑚𝑖𝑛−�̂�(𝒙)

𝑠(𝒙)
) + 𝑠(𝒙)𝐶𝐷𝐹 (

𝑓𝑚𝑖𝑛−�̂�(𝒙)

𝑠(𝒙)
) 

The expected improvement also provides a good stopping rule. For example, if the 

expected improvement is less than 0.1%, then return the current optimum. This is just an 

example of a stopping rule and not necessarily the stopping rule that will be used in this 

study.  An overview of the EGO algorithm has been given. For a more detailed overview 

of EGO, readers are recommended to the following paper [13]. The EGO algorithm has 

been further enhanced to account for stochastic systems[15]. A stochastic system here is a 

system that gives different results each time an experiment is repeated. This study will 

look at employing another modified version of EGO that can account for stochastic 

systems and an objective function that changes with time.  

 

 

 

Eq.8

 
 Eq.5 
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Figure 12: The efficient global optimization (EGO) algorithm.  In the EGO 

algorithm, first a set of parameters for the DACE model are found using 

maximum likelihood estimation. Then, after the DACE model is built, a criterion 

known as expected improvement is maximized. Then a sample is taken where the 

EI is maximum, and the process iterates until a stopping criterion is met. In this 

figure, the stopping criterion is that the maximum EI is less than 0.1%.  
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