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SUMMARY

In this thesis:

• The primary powertrain components of a power split hybrid electric vehicle are

modeled. In particular, the dynamic model of the energy storage element (i.e.,

traction battery) is exactly linearized through an input transformation method

to take advantage of the proposed optimal control algorithm.

• A new dynamic programming approach called interval back propagation is in-

troduced. This involves quantization of the energy storage states (i.e., states of

charge) into a set of computed intervals.

• A closed form globally optimal solution is obtained for the optimal input under

certain conditions.

• The procedure used for real time implementation of the algorithm is elucidated

• The fuel economy results are compared with those from standard rule based

techniques to confirm improvement.

A lipschitz continuous and nondecreasing cost function is formulated in order to

minimize the net amount of consumed fuel. The globally optimal solution is obtained

using a dynamic programming routine that produces the optimal input based on the

current state of charge and the future power demand. it is shown that the global

optimal control solution can be expressed in closed form for a time invariant and

convex incremental cost function utilizing the interval back propagation approach.

The global optimality of both time varying and invariant solutions are rigorously

proved. The optimal closed form solution is further shown to be applicable to the

xi



time varying case provided that the time variations of the incremental cost function

are sufficiently small. The real time implementation of this algorithm in Simulink is

discussed and the fuel economy results obtained are compared to the existing rule

based methods.

xii



CHAPTER I

INTRODUCTION

1.1 Motivation

Personal Transportation has become a defining feature in American lifestyle over the

past few decades. As of 2015, the number of personal vehicles plying on US roads

stands at 257.9 million [1]. In addition, the number of cars sold in the United States

is a little over 7.7 million [2]. Over the last decade (2001-2010), vehicle sales have

increased by 20% [1]. In 2015, the average American drove 13476 [3] miles. It is

evident that since cars are so popular (and often a necessity) among the public,

consumers are expecting a higher level of performance, reduced cost of maintenance,

and improved fuel efficiency.

The average fuel economy of a 2014 model car made in the US stands at 34.2 mpg

[4]. This improvement in fuel economy is due to 2 prominent reasons:

• Car manufacturers have figured out methods to reduce the effect of disturbances

and improve engine performance characteristics

• Consumers are shifting towards purchase of hybrid and electric vehicles

Given the current sociopolitical scenario, it is likely that the second reason is a more

compelling for increase in average fuel economy. It is known that electric vehicles pro-

vide spectacular fuel economy, due to the absence of an ICE (Internal Combustion

Engine). However, one must come to a realization that the specific energy provided by

electrochemical reactions in the battery is far lower than that of petroleum. There-

fore, they have inadequate range compared to ICE powered vehicles. In addition,

the current infrastructure does not permit sufficiently quick charging time. Hybrid
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Electric Vehicles (HEV’s) have the niche advantage, since they can sustain a range

equivalent to that of an ICE powered vehicle, provide higher fuel economy, and do not

need to be charged for long periods of time. The Data below shows that the number

of hybrid vehicles driven has increased to 458,994 [5] as of 2013. The average fuel

economy provided by a hybrid vehicle is about 47.41 mpg [6] according to 2015 data,

which is significantly higher than the typical ICE powered vehicle. A brief description

of HEV configurations and their operation has been described below.

1.2 HEV Configurations

Hybrid vehicles use an Internal combustion engine combined with an electromechan-

ical system to operate the vehicle powertrain. The electromechanical system consists

of an electric motor and may include a generator depending on the HEV architec-

ture. An electric motor (EM) complements the engine by distributing its load when

instantaneous power demand is very high. This leads to engine downsizing while

maintaining the desired level of performance, thereby resulting in more efficient oper-

ation. In addition, the motor tends to act like a generator system when the vehicle is

braking (corresponding to negative power demand) by regenerating electricity from

heat developed due to friction forces. This is known as regenerative braking. There

are 3 main types of Hybrid vehicle architectures, namely Series, Parallel, and Power

split Hybrid Electric vehicles. A brief description of each is provided below, and a

more detailed explanation of the power split HEV is provided in the next chapter.

1.2.1 Series HEV

A series HEV is one in which the power produced by the engine and motor are in

series. The power flow path is from the engine which powers a generator that in turn

charges the battery (if charge is low) which powers the motor, and eventually provides

torque to the wheels. There is no mechanical linkage between the powertrain unit and

wheels in a series HEV, hence the engine can run at its most efficient operating point.
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However, the power produced by the engine and size of electromechanical components

has to be fairly large, which increases the overall weight. In addition, the large number

of electromechanical conversions lead to inefficiencies. The ICwork/EMwork is about

1. The series HEV has superior Idling stop, efficiency, energy recovery. However, it

lacks in providing sufficient output and acceleration [7]. This HEV architecture is

used in Fisker Karma [8]. A simple illustration of the series HEV is shown below [9]:

Figure 1: Series HEV

1.2.2 Parallel HEV

A parallel HEV is one in which the power produced by the engine and motor are

in parallel. The power flow path is from the engine which is directly linked to the

wheels by a transmission system, and the motor which uses the battery to power the

wheels. There is no generator in a parallel HEV, However, the motor doubles up as

a generator through regenerative braking to recharge the battery. The motor essen-

tially complements engine operation during high power demand situations to provide

the desired power output. The ICwork/EMwork is much greater than 1. The parallel
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HEV has superior Idling stop, acceleration, energy recovery. However, it lacks in

providing sufficient output and slightly lacks in efficiency. This HEV architecture is

most commonly used in the Honda Insight, Civic Hybrid, CR-Z [10], and Hyundai

Sonata Hybrid. One should note that the EM’s used by Hyundai are much larger

than those for Honda, and can individually drive the wheels. A simple illustration of

the Parallel HEV is shown below [9]:

Figure 2: Parallel HEV

1.2.3 Power Split HEV

In a power split HEV, the Power demanded is met by providing the necessary torque

requested at the wheels by using the motor alone, or a combination of the engine

and motor. Henceforth, one benefits from the advantages presented for the series

and parallel HEV architectures. A power split HEV has a ring and sun gear sys-

tem within its powertrain which distributes power between the engine, motor, and

generator systems. However, since a power split model has two degrees of freedom

for control [11], its performance is highly dependent on the control algorithm which
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monitors the operation of thermal and electrical power sources. A simple illustration

of the power split HEV is shown below [9]:

Figure 3: Power Split HEV

1.3 Control methods

As mentioned in the previous section, a key parameter in any Power Split Hybrid

vehicle is to decide the proportion of engine power to electromechanical power based

upon the driving condition (typically dependent on power demand) that will minimize

fuel consumption. This will define the engine’s operating condition, from which the

fuel economy can be easily determined. To identify the proportion, a control algorithm

is necessary. There are two major classification of such optimization algorithm’s,

namely Rule Based (RB) and Optimization based (OB). A brief overview of existing

optimization algorithm’s belonging to both categories has been presented below:
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1.3.1 Rule Based Control

Rule based control systems are those which are implemented instantaneously, and

do not take future driving conditions into consideration. They are mostly based off

heuristics, intuition, or prior experience. Rule based systems are very suitable for

real time operations. They can be categorized into deterministic rule based control

and fuzzy logic rule based control.

Deterministic rule based control is typically based off human experience, and

implemented using look up tables. For HEV’s, rule based control can be subdivided

into on/off control and Power follower control. In on/off control, state of the engine is

determined by the Battery SOC, which lies between a minimum and maximum value.

Clearly, this control strategy is not capable of handling power demanded under all

operating conditions. Hence, it is only useful for a series HEV following a regular

commute pattern. Power follower control is used to control the Electric motor in

situations where power demand is high. While this helps decrease load on the engine,

it does not optimize efficient operation of the drive train, or take into account emission

improvements.

Fuzzy logic rule based control is similar to deterministic, but it is designed to take

into account inaccuracies in measurements. Fuzzy logic control attempts to mimic

the human behaviour process [12, Ch. 1, Pg. 9]. Hence, Fuzzy logic Control tends

to be more robust. Fuzzy logic control is subdivided into 3 subcategories, namely

conventional Fuzzy control, Fuzzy Adaptive control, and Fuzzy Model Predictive

control.

Conventional Fuzzy control is based off a set of heuristic control rules, and these

rules are evaluated using fuzzy sets and fuzzy logic as described by Mamdani and As-

silian [13, Ch. 1 Pg. 2]. Conventional Fuzzy control algorithms are readily accepted

for many engineering applications due to their simplicity and ease of implementation.
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In HEV’s, conventional fuzzy logic has been used for powertrain control [14]. Specifi-

cally, it has been used to determine engine power demand, given the battery state of

charge and input power demand.This has helped achieve better engine and battery

efficiency while extending the battery life. However, this method assumes a desirable

state of charge, to achieve higher efficiency, which may not always be the case in an

actual HEV. Conventional Fuzzy logic control has also been implemented in designing

a torque control strategy for a parallel HEV [15]. This has led to improvements in fuel

economy and maintains the Battery SOC within the specified range more effectively.

However, this method fails to maximize efficiency of components when the battery

SOC drops too low.

In contrast, Fuzzy Adaptive control takes advantage of partially known systems.

It involves approximating the non linear functions in a nonlinear system using fuzzy

logic, describing the unknown parameters, and solving for the parameters using well

known adaptive control techniques [13, Ch. 1 Pg. 7]. Fuzzy adaptive control has been

used for intelligent energy management in hybrid electric vehicles [16] Essentially, it

takes into account the driving conditions, drivers style of operating the vehicle, and

operating mode to determine the power split strategy that improves fuel economy and

reduces emissions. However, this method does not incorporate drive line efficiencies.

Fuzzy Model Predictive Control is a methodology in which a non linear system is

composed of several quasi linear systems which are regulated by fuzzy logic [17].It has

been used for developing an effective torque split control strategy while incorporating

the transient characteristics in engine operation [18]. However, it is heavily influenced

by the input initial conditions, due to the fact that the range of optimal inputs used

for implementing Model Predictive Control are locally optimal.

Although Rule Based strategies are implementable in real time, they require ex-

tensive tuning which can result in sub optimal strategies. Hence, we shall shift our

focus to finding effective optimal control strategies used for a power split HEV.
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1.3.2 Optimization Based Control

Optimization based control strategies primarily involve finding the optimal input and

trajectory which minimizes a cost function in the presence of constraints imposed on

system dynamics and parameters. Hence, prior knowledge regarding system operation

is necessary. Consequently, optimization algorithms can’t be implemented directly in

real time. However, the results produced by these algorithms can be used in real time

systems to optimize performance. Commonly used optimization algorithms involve:

• Linear Programming

• Optimal Control Theory

• Sequential Quadratic Programming

• Dynamic Programming

A brief description of the above methods had been described below, followed by its

application pertaining to HEV’s.

A general Linear programming problem involves finding an optimum solution for

the problem of minimizing a given linear objective function, subject to a system of

linear constraints [19, Ch. 1]. In HEV’s The fuel economy optimization is considered

as a convex nonlinear optimization problem, which is finally approximated by linear

programming method. Linear programming has been used for fuel efficiency opti-

mization in series HEV’s [20]. It has also been used for powertrain optimization in

parallel HEV’s [21] However, the drawback is that this algorithm is highly dependent

on the initial and final states of charge, and reducing emissions has not been taken

into consideration.

Optimal Control theory is a popular approach for solving most optimization prob-

lems. The advantage is that it usually leads to a closed form analytical expression.

Pontriagyin’s minimum principle is the most commonly used method used to solve
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optimization problems with dynamic and parameter constraints. It says that given

a set of differential equations described by continuous functions, and a set of initial

conditions, one can find an optimal input within the admissible range of inputs and

corresponding performance index that minimizes the cost function and Hamiltonian.

For a HEV fuel minimization problem, the cost function is usually given by a BSFC or

fuel consumption function, while constraints are imposed by vehicle dynamics, engine

model, and battery model. However, this method only guarantees local optimality

and is highly dependent on the nature of constraints. An illustration of how this

approach is used for our HEV algorithm is shown later, and its shortcomings are

discussed.

Sequential Quadratic Programming is a common approach used to solve con-

strained optimization problems. It approximates the cost function as a quadratic

function, while the constraint functions are approximated by linear functions. In

HEV’s, it is primarily used for optimizing power distribution [22]. The primary aim

is to maximize system efficiency while meeting the power requirements. However, this

method only uses an approximation to the continuous variables considered in a HEV

transmission. In addition, this method isn’t guaranteed to converge to a globally

optimal solution.

Dynamic programming is the most popular and most commonly used method

for HEV fuel minimization problems. Dynamic programming is essentially divided

into 3 subcategories, namely forward, backward, and backward-forward strategies.

Dynamic programming always guarantees global optimality. The following section

provides a brief overview of dynamic programming and its applications in HEV fuel

optimization.
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1.3.3 Dynamic Programming Basics & ECMS

Dynamic Programming is essentially based off Bellman’s Principle of Optimality,

which states that an optimal policy has the property that no matter what the pre-

vious decisions have been, the remaining decisions must constitute an optimal policy

with regards to the states resulting from those decisions [23, Ch. 6, Pg. 260]. In other

words, when one follows an optimal trajectory between two points, the previous deci-

sions taken to reach an intermediary point do not matter, as long as states resulting

from the intermediary point to the end point form an optimal trajectory. For discrete

dynamic programming problems, Bellman’s method can be directly applied by using

the functional equation of dynamic programming [23, Ch. 6, Pg. 264], which is given

by:

J∗k (xk) = min
uk

(Lk(xk, uk) + J∗k+1(xk+1)) (1)

This allows us to optimize over one control vector at a given time. For continuous

nonlinear systems, the Hamilton Jacobi Bellman (shown below) equation is typically

used to represent the functional equation of dynamic programming:

−∂J
∗

∂t
= min

u(t)
(L(x, u, t) +

∂J∗

∂x
f(x, u, t)) (2)

However, we must realize that this equation is very rarely solvable in analytical form

[][Ch. 6, Pg. 278]syrmos3, hence it is of little validity for finding optimal control solu-

tions to most non linear systems. For HEV fuel consumption minimization problems,

we will concern ourselves with the discrete form presented above.

There are 3 ways to solve discrete dynamic programming problems. One method

is forward dynamic programming, where the first step starts from the state’s initial

condition. Another is backward dynamic programming where the final condition is

considered as the first step. The conditions required for solving an optimization

problem with dynamic programming are listed in [24, Sec. 2.2.2]. Note that all of

these criteria are met for the HEV fuel minimization problem. A newly developed
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novel approach is called backward forward dynamic programming, which computes

the cost function of each state with respect to the initial and final conditions. This

is a more efficient method than the other two presented above, due to a reduction in

the number of calculations [25].

Backward dynamic programming has been used extensively used to optimize

Power management and fuel consumption in hybrid electric vehicles. In [26], the

power split strategy between fuel and electrical sources along with constraints due

to vehicle dynamics has been posed as a dynamical optimization problem with con-

straints, and it has been solved using backward dynamic programming methods to

optimize fuel consumption. A significant reduction in energy consumed has been ob-

served in the above case. Similarly, in [27] it is seen that fuel economy improved by

21% using a backward dynamic programming algorithm to optimize the power split

operation.

Traditionally, backward dynamic programming routines cannot be implemented

in real time as they are computationally prohibitive. One such method for dealing

with this issue is Adaptive dynamic programming. Adaptive dynamic programming

is an on-line tuning method, which controls the system while simultaneously learning

its characteristics in real time [28]. Doing so, one sees that this control approach

outperforms conventional rule based strategies by 12.3 % across the UDDS, HWFET,

US06, and LA92 cycles.

Another commonly used method to solve the HEV fuel minimization problem with

dynamic programming is the Equivalent Cost Minimization strategy (or ECMS). The

ECMS strategy is used as it is an instantaneous minimization algorithm [29]. In the

ECMS strategy, one modifies the cost function to incorporate operation of the system

when subject to inequality constraints. The general form of our cost function C is:

Ck(x) =
n∑
i=1

siLi(xk, uk) (3)

11



Here, si represents the equivalence weighting factors, and Li(xk, uk) is the perfor-

mance index. The aim here is to optimize the equivalence factors such that the fuel

consumption can be minimized. Another way to visualize the ECMS technique is

shown in [30], where the Cost function is divided into 2 parts, those arising from en-

gine operation and those from constraints on electrical components. An equivalence

factor is adjoined along with the cost due to constraints on the electrical system, and

as mentioned earlier, the aim is to optimize this equivalence factor.

On implementing this strategy, it is seen that the fuel economy deviates by less

than 1% from the optimal value. In addition, it has been observed that fuel consump-

tion can be improved by 17.5% for the CEN cycle [31].

Optimal solutions HEV fuel minimization problem can be further enhanced by

combining Adaptive dynamic programming and ECMS strategies into one supervi-

sory control unit. This algorithm is called the A-ECMS. It attempts to minimize

fuel consumption, while simultaneously ensuring that the battery charge is within

specified bounds [32]. This method also shows an improvement in performance over

the standard ECMS method across a variety of commonly used controllers [33]

However, a major drawback of the A-ECMS algorithm is that it significantly

complicates the cost function based on the number and nature of the constraints,

and makes the cost to go highly non convex. Its been proven in [34, Ch. 8] that for

a convex function, the local and globally optimum solutions will coincide, and the

A-ECMS method does not take advantage of this property.

The offline dynamic programming approach that is usually used for solving HEV

problems is exhaustive search. In this method, the design approach is to exhaustively

search all admissible states and minimize an instantaneous cost function based on

engine power and battery power, at each time instant of the drive-cycle [35]. However,

this can prove to be a slow and time consuming process for a complicated drive cycle

if a large number of states are considered. In addition, this method cannot effectively
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deal with excessive switching between states.

In this thesis, we shall show that the convexity property of our cost function

can be used to derive a globally optimal solution by employing an interval back

propagation approach along with the dynamic programming routine, while satisfying

all the necessary inequality constraints. An additional advantage of this method is

that it provides us with a closed form solution, which can be implemented in real

time. Subsequently, we shall show that the fuel economy is significantly improved in

comparison to standard rule based techniques.

1.4 Contribution

• The primary powertrain components of a power split hybrid electric vehicle are

modeled. In particular, the dynamic model of the energy storage element (i.e.,

traction battery) is exactly linearized through an input transformation method

to take advantage of the proposed optimal control algorithm.

• A new dynamic programming approach called interval back propagation is in-

troduced. This involves quantization of the energy storage states (i.e., states of

charge) into a set of computed intervals.

• A closed form globally optimal solution is obtained for the optimal input under

certain conditions.

• The procedure used for real time implementation of the algorithm is elucidated

• The fuel economy results are compared with those from standard rule based

techniques to confirm improvement.
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CHAPTER II

POWER SPLIT SYSTEM MODELLING

From chapter 1, recall that the power split hybrid electric vehicle comprises of an

engine, motor, and generator. The power demanded can be delivered in series mode

with the motor alone, or parallel mode with the engine and motor operating in tan-

dem. It is also important to realize that a power split hybrid electric vehicle has no

transmission component, hence losses due to transmission are nonexistent. A ring

and sun gear system helps redistribute the power between the engine, motor, and

generator. The motor and generator in a power split hybrid electric vehicle receive

power from the battery. A detailed description of how each power source is modeled

will be discussed in this chapter, and the nature of their overall interaction will also

be presented. Finally, the dynamics will be modeled into a linear system of the form:

xk+1 = xk + uk − pk (4)

We will briefly discuss on how the fuel consumption rate is calculated, and its rela-

tionship with the cost function. The above system will be the dynamical constraint

for our optimization problem, which attempts to minimize the amount of consumed

fuel as given by the cost function.

2.1 Engine Model

The internal combustion engine (ICE) is currently the most commonly used power

plant in motor vehicles. An ICE uses a predetermined mixture of combustible fuel and

air which flows into the engine during the intake stroke. Through chemical reactions,

it releases energy when subject to heat and pressure. The heat is caused by a spark

ignition, while high pressure is due to the compression stroke.
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During the expansion stroke, the fuel air mixture supplies power to move the

piston and operate our power split gear system linked to the engine through a sun

gear and shaft. Realize that the lack of a transmission system in a Power split HEV

means that power losses are greatly reduced. In conventional vehicles and parallel

HEV’s, losses tend to be exacerbated by a transmission system. Another advantage

of ICE’s in HEV’s is that the engine can be downsized since the Electrical system

provides a fraction of the power. Therefore, the engine’s displacement can be reduced

significantly, thereby resulting in less power loss while moving the piston.

During the exhaust stroke, the byproducts resulting from combustion are emitted

from the engine. An emission detector and catalytic converter are used to minimize

the ejection of harmful oxides into the environment. In addition, HEV engines use

lesser fuel during each cycle in comparison to conventional vehicles, due to their

reduced power requirement and smaller size, thereby making them more fuel efficient.

The engine model we used was based off the 1.5 L 2007 Toyota Prius. A cross

section of this engine is shown in figure 4 [36]:

Figure 4: Toyota prius 2007 1.5 L Engine

This engine achieves high efficiency using the Atkinson cycle, one of the most
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heat-efficient, high-expansion ratio cycles. Because the expansion ratio is increased

by reducing the volume of the combustion chamber and the chamber is evacuated only

after the explosion force has sufficiently fallen, this engine can extract all of the ex-

plosion energy. Consequently,trying to increase the expansion ratio also increases the

compression ratio, resulting in unavoidable knocking and placing a limit on increases

in the expansion ratio. To get around this problem, the timing for closing the intake

valve is delayed, and in the initial stage of the compression stroke, part of the air that

has entered the cylinder is returned to the intake manifold, in effect delaying the start

of compression. In this way, the expansion ratio is increased without increasing the

actual compression ratio. Since this method can increase the throttle valve opening,

it can reduce the intake pipe negative pressure during partial load, thus reducing

intake loss. VVT-i (Variable Valve Timing-intelligent) is used to carefully adjust the

intake valve timing according to operating conditions, which guarantees maximum

efficiency. [36].

The maximum engine power and engine speed as a function of engine speed was

obtained from [37]. A piecewise cubic, and piecewise quadratic relationship was used

to model the engine torque, subject to derivative constraints on maximum torque,

and the torque at point of transition. Consequently, power would be represented by

a piecewise quartic and piecewise cubic polynomial, subject to derivative constraints

on maximum power, and power at the point of transition. In addition, we have

constraints based off the data points obtained from torque Vs. speed data for this

specific engine. The equations and constraints that constitute our engine model are

as described below:

Polynomial Equations:

w =
ω − ωmid

ωmax − ωmid
(5)
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T =


a0 + a1w + a2w

2 + a3w
3 ωmin ≤ w ≤ ωmid

Tmid + (Tmax − Tmid)4w(1− w) ωmid ≤ w ≤ ωmax

(6)

P = Tω (7)

Constraints:

T (ωi) = Ti (8)

dT

dω
(ωmid) =

4Tmax − Tmid
ωmax − ωmid

= a1 + 2a2ωmid + 3a3ω
2
mid (9)

dT

dω
(ωmaxtrq) = 0 (10)

In equations (5-10), ω, ωmid, ωmaxtrq, ωmax are the engine speeds corresponding to

the minimum value, transition value between our polynomial equations, maximum

torque value, and maximum value as described by engine parameters. Meanwhile,

w represents the normalized engine speed, T, Tmid, Tmax represent the torque val-

ues, transition torque, and maximum torque values, i represents the number of data

points, and P represents the engine power. The coefficients given by a0, a1, a2, a3 are

calculated using curve fitting methods when subject to the above constraints.

Figure 5: Toyota prius BSFC map
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Table 1: Table of Engine Parameters

Parameter Value

Maximum power 57 kW
Tmax 115 Nm
Tmid 110 Nm
ωmax 5000 rpm
ωmid 3000 rpm
ωmin 250 rpm
ωmaxtrq 4200 rpm
a0 72.5
a1 116.25
a2 -180
a3 101.25
U∗ 20.9809 kW

Our fuel consumption map is a look up table which contains the mass flow rate

of fuel ṁf for any given engine speed and torque value. In simulation, linear interpo-

lation is used to evaluate the fuel consumption rate for values not listed in the table.

The fuel consumption map for our engine is as shown in figure 5 [38].

Knowing the Torque and engine speed, one can calculate the Brake specific fuel

consumption (BSFC) using a fuel consumption map. Recall that BSFC is given by:

BSFC =
ṁf

Teωe
(11)

For this engine, power level corresponding to the minimizing BSFC value is chosen as

one of the optimal control inputs, denoted by U∗. This parameter will play a critical

role in formulating the dynamic programming method, and interval back propagation

algorithm. For our engine model, the parameters are given in table 1. The U∗ value

presented accounts for efficiency losses.
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2.2 Battery Model

The battery used for powering the electrical system was a Lithium ion battery, as

opposed to the conventional nickel metal hydride battery. The reason for making this

choice was due to high energy density and less hysteresis losses. A lithium ion battery

has 2.5 times the energy density of a Nickel Metal Hydride battery. Also, a nickel

metal hydride battery has significant hysteresis losses, which is negligible in the case

of a lithium ion battery. In addition, a lithium ion battery also has the following

advantages compared to other existing batteries:

• Lighter than other rechargeable batteries for a given capacity

• Delivers a high open circuit voltage

• Low self discharge rate

A Lithium ion battery has 3 major components:

• Anode: The anode usually gives up electrons during the charging process, and

therefore is oxidised in the electrochemical reactions. In lithium ion battery,

the anode usually consists of carbon or graphite based compound of lithium,

denoted by LixC6

• Cathode: The Cathode usually accepts electrons during the charging process,

and therefore is reduced in the electrochemical reaction. In a lithium ion battery,

this is usually a transition metal oxide or phosphate, such as LiCoO2

• Electrolyte: The electrolyte used is usually an inorganic non aqueous inorganic

lithium salt solution

During the charging process, Li+ ions are released from the cathode, move across

the electrolyte, and deposit in between the graphite layers on the anode. This is an
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electrochemical reduction reaction at the anode. Meanwhile, during the discharge

process, Li+ ions are released from the anode, move across the electrolyte, and de-

posit at the cathode. Subsequently, the cathode accepts these ions to reform LiCoO2

material that was lost during the charging process. This is an electrochemical reduc-

tion reaction at the cathode. The basic structure of a Lithium Ion Battery is depicted

in figure 6 [39]:

Figure 6: Lithium Ion Battery

Typically, the discharge capacity Cdis for any battery is a function of the discharge

current Idis and discharge time Tdis. It is governed by a relationship referred to as

Peukert’s law, which says that:

Cdis = IkdisTdis (12)

Here, k is the Peukert’s constant which usually varies between 1 and 1.28 for lead acid

batteries. However, as mentioned in [40] one must be note that this discharge rela-

tionship using Peukert’s law is only valid for a limited current range, and a constant

working temperature. For our operating purposes, the temperature will remain fairly

constant, but the current will vary quite a bit. Therefore, we shall use the discharge
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equation shown below [41]:

f1(it, i
∗, Ib) = E0 −

KQbi
∗

Qb − it
− KQbit

Qb − it
+ Ae−Bit (13)

Similarly, for charging we have:

f2(it, i
∗, Ib) = E0 −

KQbi
∗

0.1Qb + it
− KQbit

Qb − it
+ Ae−Bit (14)

Here, it, i∗ represent the Extracted capacity and low frequency current dynamic also

called as the filtered current, Ib represents the battery current, E0 Represents the

nominal voltage, Qb represents the battery capacity, K is the polarization constant, A

and B are the exponential voltage and capacity respectively. From equations (13) and

(14), realize that the term KQi∗

0.1Q+it
represents the charging dynamic, KQi

∗

Q−it represents the

voltage discharge dynamic KQit
Q−it is the no load voltage, and Ae−Bit is the exponential

voltage. The presence of a filtered current helps achieve a sufficiently slow voltage

dynamic for a current step response. However, it is important to note that the above

charge and discharge relationship only holds true if the current is limited within

reasonable bounds for the HEV electrical system. In addition, note that the battery

current can be represented in terms of the battery capacity as:

Q̇b = Ib (15)

The above relationship is a consequence of net power flow through the battery. Note

that open circuit voltage Voc is a function of battery capacity from the charge and

discharge relationships shown in equations (??-??). In addition, the polarization

resistance also varies as a function of battery capacity. Here, R+(Qb), R−(Qb) shall

denote the polarization resistance during the charge and discharge process. From

equations (13-14), we observe that for our battery:

R+(Qb) =
KQb

0.1Qb + it
(16)

R−(Qb) =
KQb

Qb − it
(17)
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Hence, the battery power Pb can now be represented as

Pb = Voc(Qb)Ib +R±(Qb)I
2
b (18)

Realize that Pb and Ib are positive when battery gets charged (gains energy), and

negative during discharge (loses energy). Let us denote internal energy of our battery

as:

Sb = U(Qb) =

∫ Qb

0

Voc(Q)dQ (19)

Then, from equations (14),(18), and (19) we have:

Voc(Qb)Ib =
dU(Qb)

dQb

dQb

dt
=
dU(Qb)

dt
= Ṡb (20)

R±(Qb)I
2
b =

R±(Qb)

Voc(Qb)2
Ṡb (21)

Now, defining ε±(Sb) = R±(Qb)
Voc(Qb)2

we can express the power demand as:

Pb = Ṡb + ε±(Sb)Ṡ2
b (22)

For a lithium ion battery, notice that the voltage as a function of SOC remains linear

from 20 to 80 % state of charge as shown in the figure below [42].

This is the range within which our interval back propagation algorithm will be ap-

plied to optimize the fuel economy. Within this range, the open circuit voltage Voc(Qb)

is assumed constant. Therefore, from equation (19) we can say that U(Qb) ≈ VocQb,

and so Qb ≈ Sb
Voc

. Also, notice that the nonlinear function ε±(Sb) in equation (22)

remains constant over our selected operating range. Therefore, we shall approximate

it as εb ∈ [0, 1] for the remainder of this chapter. In addition, a physical power limit

of 25 kW for the discharge process has been imposed on the battery. It is important

to remember that during operation, the amount of power that the motor can deliver

or generator can accept is subject to the battery power limit, even if either electronic

component has a higher maximum power rating. The operational constraints for our

battery are as stated in table 2.
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Figure 7: Li-Ion battery Discharge Curve

Table 2: Table of Battery Parameters

Parameter Value

E0 220 V
εb 7.25 ∗ 10−4

Rb 0.0347 Ω
Qb 8.1 Ah
Imaxb,dis 130 A

Pmax
b,dis 25 kW

2.3 Motor and Generator Dynamics

For our power split HEV, an AC synchronous motor and generator are used. An AC

synchronous motor or generator is essentially a high efficiency brush less DC motor or

generator. The performance advantages in using a brushless DC motor (or generator)

over a brushed DC motor are:

• More accurate position control due to electronic commutation using hall effect

sensors

• Ability to deliver higher torques at a given speed

23



• Higher power output and speed range

• Higher efficiency due to less voltage drop

• Superior Thermal characteristics due to better heat dissipation

[43]

Figure 8: Torque speed curves for motor and generator

For the Motors, permanent magnets are arranged in a V formation, along with a

rotor made of stacked electromagnetic plates to help improve the torque and power

output [36]. Meanwhile, rotor strength enhancements to the generator enable it to

rotate at high speeds of up to 10000 rpm. This allows it to supply sufficiently high

power to the motor, which in turn meets the torque demanded at the wheels. Hence,

the operation of the HEV is optimized for low and medium speed applications, as the

engine does not have to supply power to satisfy the power demanded, unless state of

charge is significantly low.

The final motor torque delivered is dependent on the torque requested at the

wheels and torque limits imposed by the motor speed controller. We have limited the
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maximum and minimum torque output of the motor between 400 and -300 Nm. The

motor speed is directly related to the vehicle speed as it is connected to the axle.

The maximum power for the motor is 50.26 kW and that of the generator is 52.35

kW. The motor and generator losses are characterized by the single measurement

efficiency model is given by η = P
P+keT 2 where P is the mechanical power and T is

the shaft torque. This equation is very similar to the one presented in [44] where all

power losses have been lumped into keT
2. The efficiency constant ke is calculated

such that η is equal to the nominal efficiency at a certain output speed and torque.

The mechanical power P is treated as the positive output power for a motor, and

negative input power for the generator. Also, realize that for a generator, η is actually

inverse of the true efficiency. The nominal efficiencies for the motor and generator

is 90%,resulting in a ke value of 0.1164. However, it is important to realize that

efficiency of these components are a decreasing function of torque delivered. The

torque Vs. speed curves for the motor and generator systems are shown in figure 8.

2.4 Interaction of Engine, Motor, and Generator through
Power Split

A planetary gear is used as the primary power split device, and consists of a ring gear,

sun gear, carrier gear, and pinion gears. The ring gear is connected to the generator

and motor, while the carrier gear is connected to the engine. Let ωg, ωm, ωe, represent

the generator, motor, and engine speeds respectively. Also, let r, s represent the ring

gear and sun gear radius. Then, due to the mechanical connections we can say that:

ωe =
r

r + s
ωm +

s

r + s
ωg (23)

Also, let the carrier and sun gear input torques be denoted by Tc and Ts, respectively,

and the ring gear output torque by Tr . Ignoring the pinion gear inertia and lumping

the ring, carrier, and sun gear inertias with the motor, engine, and generator inertia’s,

respectively, we may assume without loss of generality that the power split device has
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zero inertia. Therefore, we have that

Tc
r + s

=
Tr
r

=
Ts
s

(24)

Realize that a power split gear system shown in figure 9 [45] has two paths for power

flow. One is the mechanical path and the other is an electrical path. The mechanical

path transfers engine power into the carrier gear, which is linked with the ring gear

directly connected to the motor axle. The electrical path uses the remaining engine

power to operate the generator, which usually charges the battery [46]. The dynamic

equations have been described in [47] and are as summarized below.

ω̇eIe = Te − Tc (25)

ω̇gIg = Ts − Tg (26)

ω̇mIm = Tm −
Td
K

+ Tr (27)

Td = Tf +mgfrRt + 0.5ρACdv
2Rt +mv̇Rt +mgRtsin(θ) (28)

Here, Te, Tg, Tm represent engine, generator, and motor torques respectively, Rt is the

tire radius, K is the final drive ratio, Im, Ig, Ie are the inertia’s of the motor combined

with ring gear, generator combined with sun gear , and engine combined with carrier

gear, m, g, fr, ρ, A, Cd are the mass, rolling friction coefficient, density of air, Frontal

Area, and drag coefficient. These parameters are described in table 3.

In addition, vehicle dynamics terms that constitute the torque demand Td from

the system above can be classified into 3 categories:

• Aerodynamic resistance: This resistive force is due to the flow of turbulent

air across a vehicle surface. As the vehicle moves forward, it breaks up the

flow of air and creates a region of low pressure air behind its body, called

as a wake. The high pressure air around the wake then moves into the low

pressure region, thereby exerting a force opposite to the direction of motion [48].
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Table 3: Table of Power Split Parameters

Parameter Value

Im 0.0233 kg/m2

Ig 0.0233 kg/m2

Ie 0.18 kg/m2

Rt 0.3 m
m 1250 kg
ρ 1.225 kg/m3

A 2.16 m2

Cd 0.26
r
s

2.6

Aerodynamic resistance is generally represented as a function of vehicle velocity

and air density. From equation (28), the term 0.5ρACd(ωr/K)2R2
t represents

aerodynamic resistance. Note that the vehicle speed is given by (ωr/K)Rt.

From this relationship, it is clear that the aerodynamic resistance will increase

significantly if vehicle speed is high.

• Rolling resistance:Rolling friction mainly results from tire deformation, wheel

slip, and surface compression which act against the vehicle’s direction of motion.

For our dynamical system, it has been represented as mgfrcos(θ). However,

since longitudinal motion is considered in this case, θ = 0 and so the rolling

resistance becomes mgfr.

• Grade Resistance: The grade resistance is primarily due to gravity, and can

be represented as mgsin(θ). Note that if we assume a flat road, θ = 0 and

consequently the Grade resistance is zero.

Considering vehicle dynamics along the longitudinal direction, governing equations

for the power split are:

(Ie + (
r + s

s
)2Ig)ω̇e − (

r(r + s)

s2
)Ig)ω̇m = Te −

r + s

s
Tg (29)
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Figure 9: Toyota HEV Power Split System

(Im + (
r

s
)2Ig)ω̇m − (

r(r + s)

s2
)Ig)ω̇e = Tm −

1

K
Td +

r

s
Tg (30)

Realize the engine and generator form a coupled system of differential equations. In

matrix form, this differential equation can be described as:(Ie + ( r+s
s

)2Ig) −( r(r+s)
s2

)Ig)

(Im + ( r
s
)2Ig) −( r(r+s)

s2
)Ig)


 ω̇e
ω̇m

 =

 Te − r+s
s
Tg

Tm − 1
K
Td + r

s
Tg

 (31)

Notice that we represent ω̇m in terms of ω̇e by elimination of ω̇g from the coupled

engine-generator system present for power split HEV’s. Also, total kinetic energy of

the engine and generator system is denoted by:

E(ωg, ωe) =
1

2
(Igω

2
g + Ieω

2
e) (32)

Realizing that rate of change of energy corresponds with power, we have that:

Ė(ωg, ωe) = Igωgω̇g + Ieωeω̇e (33)

Ė = Pe − Pg − Pr (34)

In a power split HEV, the engine can be decoupled from the vehicular load, which

proves to be especially useful in city cycles with frequent stop and go situations.
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Essentially the engine is controlled by the motor and generator. When the vehicle is

accelerating or maintaining a constant speed, the motor acts as the torque controller,

while the generator is in speed control mode. When the vehicle is braking, the

motor essentially acts as a generator and uses regenerative braking till it reaches the

set torque limit, and if the torque limit’s exceeded, the remaining braking force is

provided by the mechanical braking system.

A divide and conquer approach has been suggested by Toyota [49] to decouple the

multiple input control design. The system optimization specifies the required engine

power and the engine optimization selects the optimal steady–state (ω̇e = 0) engine

speed and torque. The desired engine speed is then achieved by manipulating the

generator speed ωg. With the help of engine data, one can determine the desired

engine torque. Thus, from the power split relationship shown earlier, one can obtain

generator torques. This engine speed may or may not be achieved depending on the

torque limits imposed on the generator. In such a case, the power surplus is then

supplied by the motor [46]. In our case, we shall assume that the engine operates

along predetermined curves such that the engine torque is given by Te = he(ωe),

where he(ωe) is a non negative continuous function. Defining ρ = r
r+s

, the generator

power and motor power according to the power split and power balance equation can

be expressed as:

Pg = Pe − Pr − Ė (35)

Pm = Pd − Pr (36)

where:

Pd = Tdωm + Imωmω̇ (37)

Pr = ρ(he(ωe)ωm) (38)

Note that the power split incorporates the series and parallel power modes. Suppose

ρ = 0, then Pg = Pe−Ė, Pm = Pd, and the vehicle essentially operates in series mode.
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On the other hand, if ρ = 1 then Pg = Pe−he(Pe)ωm = 0, Pm = Pd−he(Pe)ωm = Pd,

and the vehicle essentially operates in parallel mode.

2.5 Modeling the Dynamical System and Cost Function

The control input is defined as the sum of net power flowing into the battery, and

modified power demand P̃d. In other words:

U = Voc(Qb)Ib + P̃d (39)

Realize from equation (19) that Ṡb = Voc(Qb)Ib, therefore:

Ṡb = U − P̃d (40)

Recall that due to battery limitations during the discharge process, the input U must

be applied such that |U − P̃d| ≤ Pmax
b is satisfied. The power flow into the battery

can also be represented as:

Pb = Pg − Pm − keT 2
g − keT 2

m (41)

where keT
2
g and keT

2
m denote the generator and motor torque losses, respectively.

Note that the power flow represented in the above equation is bidirectional, since

either motor power or generator power can be positive or negative. Observe that

the generator power that flows into the battery is reduced by keT
2
g if Pg > 0, and

the motor power that the battery/generator needs to supply is increased by keT
2
m if

Pm > 0

Using the power split relationships from equation 25 in Pe, Pm provided by equa-

tions (35-36), and substituting it in equation 41, one obtains:

Pb = Pe − Pd − Ė − ke(T 2
g + T 2

m) (42)

Also, note that from equation (22)

Pb = Ṡb + εbṠ2
b = U − P̃d + εb(U − P̃d) (43)
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Hence, from equations (42-43) along with the expression for Ė assuming a constant

engine speed from equation (34) we have that:

Pe − Pd +
r

s
Igωgω̇m − ke(T 2

g + T 2
m) = U − P̃d + εb(U − P̃d)2 (44)

where Tg = s
r+s

Te + r
s
Igω̇m, Tm = Td− r

r+s
Te, and Td = Pd/ωm is the torque demand.

Letting ω∗e denote the engine speed that minimizes the BSFC, the modified power

demand P̃d is chosen such that:

Pe = P ∗e := he(ω
∗
e)ω

∗
e ⇔ U = U∗ = P ∗e − keh(ω∗e)

2 (45)

Therefore, we have:

εb(P̃d − U∗)2 − (P̃d − U∗)− P ∗b = 0 (46)

where:

P ∗b = P ∗e − Pd +
r

s
Igω

∗
g ω̇m − ke(T ∗2g + T ∗2m ) (47)

T ∗g =
s

r + s
he(ω

∗
e) +

r

s
Igω̇m, T

∗
m = Td −

r

r + s
he(ω

∗
e) (48)

ω∗g =
r + s

s
ω∗e −

r

s
ωm (49)

Solving the above equation for P̃d, we get:

P̃d = U∗ − 2P ∗b
1 +

√
1 + 4εbP ∗b

(50)

Setting the engine power Pe to zero in (44) and letting

P 0
b = −(Pd + (

r

s
)2Igωmω̇m + ke(

r

s
Igω̇m)2 + keT

2
d ) (51)

gives us:

εb(U − P̃d)2 + (U − P̃d)− P 0
b = 0 (52)

from which the control input U0 corresponding to the engine off state is:

U0 = P̃d +
2P 0

b

1 +
√

1 + 4εbP 0
b

(53)
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It can be easily seen that U0 < U∗ since P ∗b > P 0
b and the fact that 2P

1+
√
1+4εbP

=
√
1+4εbP−1

2εb
is an increasing function of P for εb 6= 0 and P > −1

4εb
.

If we assume 100% efficiencies (i.e., ke = 0), ε = 0, and constant vehicle speed

(ω̇m = 0), then, we can say that Pe = U . More generally we can characterize Pe as a

continuous function ψ : R4 → R of ωm, ω̇m, P̃d, and U according to (44) and (50):

Pe = ψ(ωm, ω̇m, P̃d, U) (54)

Finally, the discrete state of charge equation is obtained by integrating the state of

charge equation in terms of U over a sampling time period τs. Therefore, we obtain:

δSb = τs(U − P̃d) (55)

Where δSb is the change in state of charge over the given sampling period. Now,

we define the normalized state of charge, input (as normalized engine power), and

normalized power demand as:

x =
Sb − smaxb

Smaxb

, u =
τsU

Smaxb

, p =
τsP̃d
Smaxb

, u∗ =
τsU

Smaxb

(56)

we have the discrete state of charge of equation as:

xk+1 = xk + uk(xk)− pk (57)

which has been used in the subsequent chapter for deriving a closed loop optimal

solution. To derive the incremental cost function, let the function φ : R2 → R denote

the fuel consumption rate in terms of engine speed and torque. Recall that fuel

consumption rate can be represented in terms of the mass flow rate ṁf , which is

provided by a look up table. Thus, the corresponding cost function given by:

Lk(u) = τsφ(ωek, Tek) = τsφ(ωek, h(Pek)ωmk) (58)

Also, recall that for the discrete system:

Pek = ψ(ωmk, ω̇mk,
pkS

max
b

τs
,
ukS

max
b

τs
) (59)
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We shall elucidate the properties of this cost function in the subsequent chapter,

which are vital to deriving a closed form optimal solution.
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CHAPTER III

OPTIMIZATION USING INTERVAL

BACK-PROPAGATION

3.1 Problem Setup

From the previous chapter, it is seen that through an input transformation method,

the Power split system of a hybrid electric vehicle vehicle can be modelled using the

system expressed in equation (57), which says that:

xk+1 = xk + uk(xk)− pk

Here, xk, pk, and uk refer to the normalized state of charge, engine power, and

power demand. The normalized state of charge is constrained between xmin and xmax,

and normalized input lies between umin and umax such that umink ≥ pmin & umaxk ≤

pmax. Hence, the goal is to find uk over a time window k = 0....N − 1 that minimizes

the cost function.

F =
N−1∑
k

Lk(uk(xk)) (60)

Subject to xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

Where Lk is the incremental cost function defined by the input. The following

properties must hold true for the incremental cost function:

• The incremental Cost function is Lipschitz Continuous on k. i.e |Lk(u2) −

Lk(u1)| ≤ l|u2 − u1| ∀[u1, u2] ∈ [umink , umaxk ]

• There exists a unique u∗k that minimizes L(uk)/uk, and L(uk)/uk is non-decreasing

on [u∗k, u
max
k ]

The normalized incremental fuel cost L(u)/u is equivalent to the Brake Specific

Fuel Consumption (BSFC) which is minimized at u∗k. Also, note that the optimal
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value of L(u∗k)/u
∗
k is time independent, hence it will be expressed in the cost to go

function as l.

To incorporate for these trends, it is easier if the cost function is modified to

remove linear trends in Lk, and create a dead-zone for the non linear component

between [umink , u∗k]. Hence, we redefine the cost function as:

L̃(uk(xk)) = Lk(uk(xk))− luk (61)

From the State Equation (57) we have:

uk(xk) = xk+1 − xk + pk (62)

Hence, the original Cost Function becomes:

F =
∑N−1

k L̃(uk(xk)) +
∑N−1

k l(xk+1 − xk + pk)

The above expression simplifies to:

F =
N−1∑
k

L̃(uk(xk)) + l(xN − x0 +
N−1∑
k

pk) (63)

Realize that other than the modified incremental cost function and final state, all

other quantities are constant and do not affect the optimal control solution. The

effect of xN is to minimize the final state of charge. Recall that our aim is to optimize

the amount of consumed fuel from any initial to final state over a moving time window,

not to minimize the final state of charge since battery charge can be recoverable for

future tasks. Hence, the dependence on xN is not necessary for our cost function,

thereby making our modified cost function:

F =
N−1∑
k

L̃(uk(xk)) + lpk (64)

Hence, our control strategy will involve optimizing
∑N−1

k L̃(uk(xk)). Additionally,

we need to consider how our constraints will be imposed. The lower bound for the

state of charge is a hard constraint, therefore x ≥ 0. However, the upper bound,

defined as x ≤ xmax is treated as a ”soft constraint” and the extra charge is stored in
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an auxiliary battery once the main battery reaches maximum charge. The auxiliary

battery is only used in cases where the input has to be between u0 and u∗k. Denoting

the Auxiliary battery charge by zk and the engine state by ek, one can use the following

charge/discharge strategy to make sure the battery charge lies between 0 and zmax:

zk+1 = zk + Auxk(zk, uk, ek) (65)

ek+1 =


1 Auxk(zk, uk, ek) > 0 or uk ≥ u∗k

0 otherwise

(66)

Auxk(zk, uk, ek) =


u∗k − uk if u ∈ (0, u∗k)& z < u∗k or (z ≤ zmax − u∗k & ek = 1)

−uk if u ∈ (0, u∗k)& z > zmax − u∗k or (z ≥ u∗k & ek = 0)

0 otherwise

(67)

The above strategy ensures that zero incremental cost is incurred when the engine

power input lies between u0 and u∗k. It also accommodates for any negative inputs by

turning off the engine i.e.L̃k(u
∗
k) = 0 and making use of the mechanical braking action

instead of regenerative braking. Hence, without loss of generality, we can define:

gk(uk(xk)) =


L̃k(uk(xk)) uk > u∗k

0 uk ≤ u∗k

(68)

Henceforth, the cost function becomes:

J =
N−1∑
k

gk(uk(xk)) (69)

Also, from the properties of L, it follows that the function gk(uk(xk)) will be non-

decreasing, non-negative, and Lipshitz continuous with Lipschitz constant l.

3.2 Pontriyagin’s Minimization Principle and Its Shortcom-
ings

A commonly used method from optimal control theory to solve optimization problems

is Pontriyagins Minimization principle. Pertaining to the fuel minimization problem,
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this method has been used alongside with ECMS to obtain a real time implementable

optimal solution [50]. It states that Given a set of differential equations and accompa-

nying initial conditions, find an optimal input within the admissible range of inputs

and corresponding optimal trajectory that minimizes the Hamiltonian H and cost

Function J. The Hamiltonian essentially consists of the performance index adjoined

with Lagrange multipliers λ to constraints imposed by the system dynamics [51, Pg.

51-52]. In our case, the performance index is:

L = gk(uk(xk)) (70)

while the dynamic constraints are given by our state equation. Additionally, we

impose a fixed final state of charge xN = sf . Therefore, our Hamiltonian is:

Hk = gk(uk(xk)) + λTk (xk + uk − pk) (71)

And our Final Cost is just Φ = µ(xN − sf ) where µ is the associated Lagrange

multiplier.

We seek an input uk which minimizes the Hamiltonian and Cost Function intro-

duced in the Previous section. Thus, from Pontriyagin’s Minimum Principle [52, Pg.

48-50], we have the following conditions:

Optimality Condition:

min
umin≤ uk≤ umax

H (72)

Co-state Equations:

λk =
∂Hk

∂xk

T

λk+1 (73)

λN =
∂Φk

∂xk

T

(xN) (74)

Using the Above Conditions, we have determined that λk = λN = µ. Assuming a

k-invariant incremental cost gk = g, it follows that the criteria to be satisfied is

min
umin≤ u≤ umax

(g(u) + µu)
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The above equation leads to a constant value of u. Subject to the state equation

constraint, the input satisfying our criteria is given by:

u∗k(xk) =
1

N − k

N−1∑
j=k

pj +
sf − xk
N − k

(75)

provided that uk(xk) ∈ [umin, umax]. Recall that we also seek to minimize the cost

function J. This is not yet possible to ascertain since the convexity properties of

gk(uk) have not been established. In addition, we need to ensure that the optimizing

inputs for the Hamiltonian satisfy the simultaneous constraints on xk in [xmin, xmax]

and uk in [umin, umax]. Also, realize that gk(uk) is time varying, which is not dealt

with appropriately in this method. Furthermore, Pontriyagin’s minimization principle

only guarantees a locally optimal solution. Therefore, we resort to backward dynamic

programming for finding a globally optimal solution. In the following sections, it will

be shown that if state constraints are satisfied and gk(uk) is convex, then the globally

optimal solution is indeed very similar to the one stated above.

3.3 Dynamic Programming Method

The backward search dynamic programming algorithm starts from the final step. At

each step, one computes the optimal input which minimizes the incremental cost and

cost to go function for a specified state of charge.Subsequently, it updates the cost to

go function for the steps to follow.

At the final step, one must find uN−1 which minimizes g(uN−1) = JN−1(u) while

keeping xN ≥ 0 and umin ≤ uN−1 ≤ umax. This is given by:

u∗N−1(x) =


pN−1 − x x < pN−1 − u∗

min(u∗, pN−1 − x+ xmax) x = pN−1 − u∗

min(u0, pN−1 − x+ xmax) x > pN−1 − u∗

(76)

Subsequently, the cost to go function is given by:

J∗N−1(x) = g(pN−1 − x) (77)
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Now, Let’s define the following variables to simplify our notation:

p∗k = min(pk, u
∗
k), p̃k = pk − p∗k, qk =

∑N−1
l=k p̃l, q̃k = qk+1 − pk, and ξ = qk − x

Let fk be a function sequence in (−∞, qk]→ R+ satisfying:

fk(ξ) = inf
u∈[ξ−q̃k, ukmax]∩[ukmin, ξ−q̃k+xmax]

(gk(u)+fk+1(ξ−u+p∗k)) ∀ξ ∈ (qk−xmax, qk) (78)

where fN−1(ξ) = gN−1(ξ + p∗N−1). We want to show that J∗k (x) = fk(ξ) through

mathematical induction. First, we establish the case for k=N-1, which has been

shown earlier. We now assume that the relationship holds for k, and then prove that

the same relationship holds true for k+1.

Let us define U as follows:

Uk(x) = [pk−x, ukmax]∩ [ukmin, pk−x+xmax] = [ξ− q̃k, ukmax]∩ [ukmin, ξ− q̃k+xmax]

Therefore, for x ∈ [0, xmax] we have:

J∗(x) = inf
u∈U(x)

(gk(u) + J∗k+1(x+ u− pk)) (79)

Recall that J∗k+1(x) = fk(qk+1 − x). Therefore, we have

J∗k = inf
u∈U(x)

(gk(u) + fk+1(qk+1 − x− u+ pk))

Note that qk+1 =
∑N−1

l=k+1 p̃l =
∑N−1

l=k p̃l − pk + p∗k, which gives us

J∗k = inf
u∈U(x)

(gk(u) + fk+1(qk − x− u+ p∗k))

Substituting ξ = qk − x, we obtain

J∗k = inf
u∈U(x)

(gk(u) + fk+1(ξ − u+ p∗k)) = fk(ξ) (80)

Therefore, we can say that the optimal cost to go function in equation (80) is entirely

described by the properties of fk(ξ). Hence, we need to make sure that fk(ξ) satisfies

the following desirable properties to ensure convergence of cost to a minimal value:

1. Each function fk(ξ) is non decreasing i.e. fk(ξ1) ≤ fk(ξ2), ∀ξ1 ≤ ξ2 ≤ qk

2. Each function fk(ξ) is Lipschitz Continuous with the same Lipschitz constant l

39



3.3.1 Proof of Non-decreasing property for f(ξ)

The proof for showing that fk(ξ) is non decreasing is carried out by mathematical

induction. at k=N-1, we see that:

fN−1(ξ) = gN−1(ξ + p∗N−1)

In Addition, we know that since pN−1 > u∗N−1:

p∗N−1 = min(pN−1, u
∗
N−1) = u∗N−1

Therefore:

fN−1(ξ) = gN−1(ξ + u∗N−1) (81)

The above function is clearly non decreasing owing to the properties of gk. Now,

suppose that f(ξ)l, l ∈ [k + 1, N + 1] is non decreasing, we need to consider the

following cases:

1. ξ2 ≥ ξ1 ≥ q̃k − xmax + umax

From the induction hypothesis, we have:

fk(ξ1) = inf
u∈[ξ1−q̃k, ukmax]∩[ukmin, ukmax]

(gk(u) + fk+1(ξ1 − u+ p∗k)) (82)

Recall that since ξ2 − q̃k ≥ ξ1 − q̃k:

fk(ξ1) ≤ inf
u∈[ξ2−q̃k, ukmax]∩[ukmin, ukmax]

(gk(u) + fk+1(ξ1 − u+ p∗k))

Thus, we can say with certainty that:

fk(ξ1) ≤ inf
u∈[ξ2−q̃k, ukmax]∩[ukmin, ukmax]

(gk(u) + fk+1(ξ2 − u+ p∗k)) = fk(ξ2) (83)

Hence, we have proved that fk(ξ1) ≤ fk(ξ2)

2. ξ1 ≤ ξ2 ≤ q̃k − xmax + umax

We see that fk(ξ2) can be represented as follows:

fk(ξ2) = inf
u∈[umin, ξ2−q̃k+xmax]

(gk(u) + fk+1(ξ2 − u+ p∗k)) (84)
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Note that the intersection has been omitted since a hard constraint is imposed

as ξ2 − q̃k + xmax < umax. Now, lets consider u∗2 ∈ [umin, ξ2 − q̃k + xmax], and

u1 := ξ1 − q̃k + xmax ≤ u∗2. We see that fk(ξ2) is simplified to:

fk(ξ2) = gk(u
∗
2)− fk+1(ξ2 − u∗2 + p∗k)) (85)

Representing fk(ξ1) as: fk(ξ1) = inf
u∈[umin, ξ1−q̃k+xmax]

(gk(u) + fk+1(ξ1 − u + p∗k))

Note that fk(ξ1) is bounded by u1, hence it must satisfy:

fk(ξ1) ≤ gk(u1) + fk+1(ξ1 − u1 + p∗k)) (86)

Finally, from the inequality we can confirm that:

fk(ξ1) ≤ gk(u
∗
2) + fk+1(ξ2 − u∗2 + p∗k)) ≤ fk(ξ2) (87)

Proving that fk is non decreasing owing to the non decreasing nature of gk

3. ξ1 ≤ q̃k − xmax + umax and ξ2 ≥ q̃k − xmax + umax

Let η1 = q̃k − xmax ≤ ξ2, then from case 1 we have that f(η1) ≤ f(ξ2).

Similarly, if ξ1 ≤ η1 = q̃k − xmax, then from case 2 we have f(ξ1) ≤ f(η1).

Therefore, one can confirm that fk(ξ1) ≤ fk(ξ2).

3.3.2 Proof of Lipschitz Continuity for f(ξ)

The proof for showing that fk(ξ) is Lipschitz Continuous with Lipschitz constant l is

also carried out by induction. At k=N-1, we know:

fN−1(ξ) = gN−1(ξ + u∗N−1) (88)

The above is Lipschitz continuous owing to the properties of gk(uk). Now, suppose

f(ξ)l, l ∈ [k + 1, N + 1] is Lipschitz continuous on [−∞, qk], we would like to show

that :

f(ξ2)− f(ξ1) ≤ l(ξ2 − ξ1) ∀ξ1, ξ2 ∈ [−∞, qk] ξ1 ≤ ξ2 (89)
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There are 3 cases arising from the possibility stated above for which lipschitz conti-

nuity must be established, which are identical to the criteria mentioned for satisfying

the non decreasing property.

1. ξ2 ≥ ξ1 ≥ q̃k − xmax + umax

Recall that fk(ξ1) is represented as:

fk(ξ1) = inf
u∈[ξ1−q̃k, ukmax]∩[ukmin, ukmax]

(gk(u) + fk+1(ξ1 − u+ p∗k))

Now, lets introduce u∗1 ∈ [ξ1− q̃k, ukmax]∩ [ukmin, u
k
max]. Hence, fk(ξ1) simplifies

to:

fk(ξ1) = gk(u
∗
1) + fk+1(ξ1 − u∗1 + p∗k) (90)

Also, note that fk(ξ2) can be represented as:

fk(ξ2) = inf
u∈[ξ2−q̃k, ukmax]∩[ukmin, ukmax]

(gk(u) + fk+1(ξ2 − u+ p∗k))

Suppose that u∗1 ∈ [ξ2 − q̃k, u
k
max] ∩ [ukmin, u

k
max], we can say that fk(ξ1) is

bounded by u∗1, thereby it must satisfy

fk(ξ2) ≥ gk(u
∗
1) + fk+1(ξ2 − u∗1 + p∗k) (91)

Note that by the lipschitz condition, fk+1(ξ2 − u∗1 + p∗k) ≥ fk+1(ξ1 − u∗1 + p∗k) +

l(ξ2 − ξ1). Hence, we get:

fk(ξ2) ≥ gk(u
∗
1) + fk+1(ξ1 − u∗1 + p∗k) + l(ξ2 − ξ1) = fk(ξ1) (92)

This proves that f(ξ2)− f(ξ1) = l(ξ2 − ξ1)

If instead, u∗1 ∈ [ξ1− q̃k, ξ2− q̃k], then let u2 = ξ2− q̃k ≥ u∗1. Then, we see that

by lipschitz continuity of gk

gk(u2) = gk(u
∗
1) + l(u2 − u∗1) (93)

Also, note that since ξ1−u∗1 ≤ q̃k = ξ2−u2 we have the following by induction

hypothesis:

42



fk+1(ξ2 − u2 + p∗k) = fk+1(ξ1 − u∗1 + p∗k) + l(ξ2 − xi1 − u∗1 + u2)

Also note that

fk(ξ2) ≤ g(u2) + fk+1(ξ2 − u2 + p∗k)

From convexity of gk, we have that

fk(ξ2) ≤ g(u∗1) + fk+1(ξ2 − u2 + p∗k) + l(u2 − u∗1)fk(ξ2)

≤ g(u∗1) + fk+1(ξ1 − u1 + p∗k) + l(ξ2 − ξ1)fk(ξ2)

fk(ξ2) ≤ fk(ξ1) + l(ξ2 − ξ1) (94)

Therefore, we have once again proved that f(ξ2)− f(ξ1) = l(ξ2 − ξ1)

2. ξ1 ≤ ξ2 ≤ q̃k − xmax + umax

We see that fk(ξ2) can be represented as follows:

fk(ξ2) = inf
u∈[umin, ξ2−q̃k+xmax]

(gk(u) + fk+1(ξ2 − u+ p∗k))

fk(ξ2) ≤ inf
u∈[umin, ξ1−q̃k+xmax]

(gk(u) + fk+1(ξ2 − u+ p∗k))

fk(ξ2) ≤ inf
u∈[umin, ξ1−q̃k+xmax]

(gk(u) + fk+1(ξ1 − u+ p∗k)) + l(ξ2 − ξ1)

fk(ξ2) ≤ fk(ξ2) ≤ fk(ξ1) + l(ξ2 − ξ1) (95)

Thereby completing the proof

3. ξ1 ≤ q̃k − xmax + umax and ξ2 ≥ q̃k − xmax + umax

Let η1 = q̃k− xmax + umax ≤ ξ2, then from case 1 we have that f(ξ2)− f(η1) =

l(ξ2 − η1). Similarly, if ξ1 ≤ η1 = q̃k − xmax + umax, then from case 2 we have

f(η1) − f(ξ1) = l(η1 − ξ1). Therefore, one can confirm that f(ξ2) − f(ξ1) =

l(ξ2 − ξ1).

3.4 Convexity of Cost Function

The solution to our optimal control problem can be expressed in closed form for all

set of states within the defined constraints if an additional convexity assumption is
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imposed for the incremental cost function Lk. Note that convexity of a function

implies the following.

For some λ ∈ [0, 1], we have that ∀[u, v] ∈ [a, b]:

g(λu+ (1− λ)v) ≤ λg(u) + (1− λ)g(v) (96)

The following Lemma indicates that a non decreasing and lipschitz continuous cost

to go function fk(ξ) inherits the convexity properties of gk.

Lemma 1:The incremental cost function gk and non decreasing cost to go func-

tion fk(ξ) are convex on (−∞, umaxk ) and (−∞, qk) respectively if Lk is convex on

[u∗k, u
max
k ]

Proof of Lemma 1:

If u ≥ u∗ or v ≤ u∗, then by virtue of convexity in Lk, we have convexity for gk,

since gk(uk) = L̃(uk(xk)) over the specified domain, and L̃(uk(xk)) = Lk(uk(xk))−luk.

Otherwise, if u ≤ u∗ or v ≥ u∗ then gk(uk) = 0, which also satisfies the convexity

assumption. Suppose that u ≤ u∗k < v ≤ 1, then we know that gk(u) = 0. In

addition, due to the bounds on u and v:

gk(λu+ (1− λ)v) ≤ gk(λu
∗
k + (1− λ)v)

gk(λu+ (1− λ)v) ≤ L̃k(λu
∗
k + (1− λ)v)

Owing to the convexity of Lk and subsequently L̃(uk(xk)), we have that:

gk(λu+ (1− λ)v) ≤ λL̃k(u
∗
k) + (1− λ)L̃k(v)

Henceforth, we can establish that gk is convex since the above expression simplifies

to the convexity criteria shown below:

gk(λu+ (1− λ)v) ≤ λgk(u
∗
k) + (1− λ)gk(v) (97)

From 3.3.1, it is seen that fk is decreasing. Also, note that due to the convexity for

gk, we can establish that fN−1(ξ) = gN−1(ξ+u∗N−1) is convex for case k=N-1. For the

remaining cases, we shall use mathematical induction to ascertain convexity. Suppose
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that fl l ∈ [k,N − 1] is convex on [−∞, gk], for k ≥ 1. We should now show that

fk−1(ξ) is convex :

fk−1(ξ) = inf
u∈[ξ−q̃k, ukmax]∩[ukmin, ξ−q̃k+xmax]

(gk−1(u) + fk(ξ − u+ p∗k−1)) (98)

Let us consider that for a given ξs ∈ (−∞, qk] we have u∗s ∈ [ξ− q̃k, ukmax]∩ [ukmin, ξ−

q̃k +xmax] s=1,2 which is the optimal input for gk(u)−fk(ξs−u+p∗k−1). Then, owing

to the compact input search domain and lipschitz continuity of gk and fk (proof 3.3.2),

we have that:

fk−1(ξs) = gk−1(u
∗
s) + fk(ξs − u∗s + p∗k−1) (99)

Now, lets define uλ = λu∗1 + (1 − λ)u∗2 and ξλ = λξ∗1 + (1 − λ)ξ∗2 for some λ ∈ [0, 1].

Then, we have that u∗λ ∈ [ξ− q̃k, ukmax]∩ [0, ξ− q̃k+xmax]. Also, observe that fk−1(ξλ)

becomes:

fk−1(ξλ) = gk−1(uλ) + fk(ξλ − uλ + p∗k−1) (100)

By the convexity gk and fk, one obtains that

fk−1(ξλ) ≤ λgk−1(u
∗
1) + (1− λ)gk−1(u

∗
2) + λfk(ξ1 − u∗1 + p∗k−1)

+ (1− λ)fk(ξ2 − u∗2 + p∗k−1)

fk−1(ξλ) ≤ λ(gk−1(u
∗
1) + fk(ξ1 − u∗1 + p∗k−1)) + (1− λ)(gk−1(u

∗
2) + fk(ξ2 − u∗2 + p∗k−1))

fk−1(ξλ) ≤ λfk(ξ1) + (1− λ)fk(ξ2) (101)

Hence, we have proven that gk is convex owing to convexity in Lk, and that fk inherits

the convexity properties of gk. Now, since the convexity of gk is confirmed, we can

derive a closed form globally optimal solution using dynamic programming.

3.5 Globally optimal solution using Interval Back propaga-
tion

To formulate a closed form globally optimal solution, let us initially assume a time

invariant cost to go function gk(u) = g(u). Let ν := max(0 ≤ k ≤ N : pN−1 > u∗.
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Then, αk ∈ [0, xmax] is the state that can be transferred to xν = 0 through uk = u∗

using the backward recursion equation shown below starting at αν = 0.

αk−1 = αk + u∗ − pk−1 (102)

Hence, at the initial step k = ν, our optimal control can be described using the results

from section 3.2. For x ∈ [αν−1, xmax], the optimal control is u∗k = u0 or u∗k = u∗ while

the cost to go is zero. Meanwhile, for x ∈ [0, αν−1] we have u∗k = pν−1 − x.

Now, lets consider the case where k < ν. As discussed before, the optimal control

sequence is ul = pl − x l ∈ [k, ν − 1]. Also, recall from 3.2 that since the cost-to-go

may be nonzero, we need to satisfy the additional constraint
∑ν−1

l=k g(ul) must be

minimized. Due to the convexity of g, we see that:∑ν−1
l=k g(ul) ≥ (ν − k)g(

∑ν−1
l=k ul
ν−k ) = (ν − k)g(

∑ν−1
l=k pl−x
ν−k )

Defining pνk =
∑ν−1
l=k pl
ν−k , we have:

ν−1∑
l=k

g(ul) ≥ (ν − k)g(pνk −
x

ν − k
) = J∗k (x) (103)

The equation above represents the cost to go. In addition, one can see that the

optimal input sequence is a set of equal inputs, which are given by:

uk = uk+1 = · · · = uν−1 = pνk −
x

ν − k
(104)

Knowing the nature of our optimal input sequence and optimal cost, we will now

employ the backward recursion algorithm to obtain a more generalized form for the

globally optimal solution

3.5.1 Algorithm

Let the lower bound for all trajectories resulting from the optimal input and cost-to

-go functions derived in the previous section be denoted by α
′

k ∈ [0, xmax]. Notice

that this lower bound itself is an optimal trajectory when inside [0, xmax], and reaches
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zero prior to k = ν. Henceforth, the backward recursion of α
′

k starting at α
′
ν−1 = 0 is

given by α
′

k−1 = max(0, β
′

k) where:

β
′

k = α
′

k − (pνk −
α
′
k

ν−k ) + pk−1

Simplifying, we have:

β
′

k =
ν − k + 1

ν − k
α
′

k − pνk + pk−1 (105)

The intervals [0, α
′

k][α
′

k, αk] and [αk, xmax] which partition [0, xmax] are relevant pro-

vided that 0 ≤ α
′

k ≤ αk ≤ xmax. Else, they are discarded. Also, note that new

lower bounds are added at each step k.

Now lets consider the case where αk exceeds xmax. A new upper bound, denoted

by αk is generated at k = µ. These optimal trajectories are distinct from those

that reach the lower bound at k = ν. Using backward recursion, one can represent

αk−1 = max(βk, xmax) where:

βk =
ν − k + 1

ν − k
αk − pνk + pk−1 αµ = 0 (106)

Similar to the arguement presented for the lower bound, one can say that for x ∈

(αk, xmax) the optimal control sequence and cost to go functions are:

u∗k = pµk −
x− xmax
µ− k

(107)

J∗k (x) = (µ− k)g(pµk −
x− xmax
µ− k

) + J∗µ(x) (108)

The upper bounds for all trajectories resulting from the optimal input and cost to

go functions presented above are denoted by α
′

k ∈ [0, xmax]. Notice that this upper

bound itself is an optimal trajectory when inside [0, xmax], and reaches xmax prior to

k = µ. Henceforth, the backward recursion of α
′

k starting at α
′
µ−1 = 0 is given by

α
′

k−1 = max(0, β
′

k) where:

β
′

k =
µ− k + 1

µ− k
(α
′

k − xmax)− p
µ
k + pk−1 α

′

µ−1 = xmax (109)
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Additional upper bounds are added at every instant where k > µ. The backward

recursion algorithm of our controller presented above can be generalized into the

following steps.

1. Initialize the set of interval boundaries, their starting values, their time steps,

and the value of their predecessors to AN = [0, xmax], NN = [N,−N ], MN =

[∞,−∞]

2. For k = N,N − 1, . . . , 2, Update AN , NN , andMN as follows:

(a) Let αjk and mj
k, j ∈ [1, jmaxk ] be the jth members of AN , MN respectively.

Let ν = |mj
k|, & σ =

1−sgn(mjk)
2

. Compute:

βkj =
ν − k + 1

ν − k
αjk −

σ

ν − k
xmax − pνk + pk−1 (110)

(b) Let jmaxk = |Ak Jk = [1, jmaxk ] Defining J +
k = [jk ∈ Jk : βjkk > 0], and J −k =

[jk ∈ Jk : βjkk ≤ 0] we evaluate:

j+k =


max(J −k ) Jk 6= ∅

0 Jk = ∅
j−k =


min(J +

k ) Jk 6= ∅

jmaxk + 1 Jk = ∅
(111)

(c) Update AN , NN , and MN as AN = [0, β
j−k +1

k , . . . , β
j+k −1
k , xmax], NN =

[k−1, n
j−k +1

k , . . . , n
j+k −1
k , 1−k], andMN = [mmin,m

j−k +1

k , . . . ,m
j+k −1
k ,mmax]

where:

mmin =


m
j−k
k n

j−k
k ≥ 0

n
j−k
k n

j−k
k < 0

mmax =


m
j+k
k n

j+k
k < 0

n
j+k
k n

j+k
k ≥ 0

(112)

Where n0
k = m0

k = n1
k and n

jmaxk +1

k = m
jmaxk +1

k = n
jmaxk
k . An illustration of

how m and n are quantified will be presented in the following section
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3. The optimal control law u∗k(x) for x ∈ [αjk, α
j+1
k ] is given by

u∗k(x) =


min(uopt, xmax − x+ pk) ν =∞

pνk − x−σxmax
ν−k ν <∞

(113)

Where

ν = min(|mj
k|, |m

j+1
k |)

uopt =


u0 x > αjk + u∗

u∗ otherwise

σ =


0 |mj

k| ≤ |m
j+1
k |

1 |mj
k| > |m

j+1
k |

Now, suppose we are in the free space region which lies in between the top lower bound

trajectory, and bottom upper bound trajectory. Then, we haveMN = [∞,−∞], and

so ν = ∞. Therefore, the optimal solution is one that switches between uopt & u∗

provided that x − pk < xmax. Our switching criteria is identical to the one shown

for uopt. In a physical sense we saying that if the state of charge exceeds the top

interval bound α1
k by a value greater than the optimal normalized engine power, then

the engine must be switched off. Else, the engine must operate at optimal normalized

engine power to adequately charge the battery.

3.5.2 Optimal input and Optimal Cost to go derivation

The following lemma states some key properties of the intervals spanned by Ak and

the general form of the optimal input and optimal cost to go based off those properties

Lemma 2: Consider the sets AN , NN , and MN as generated in the above

algorithm. Let µ = min(|mj
k0
|, |mj+1

k0
|), and σµ =

1−sgn(mjk0 )
2

for k0 ∈ [0N ]. Then:

1. There exists a jk ∈ [1, jmaxk ] such that |mjk
k | = |mjk+1

k | = µ or |mjk−σµ
k | =

|njk+1−σµ
k | = µ for k ∈ [k0, µ − 1] such that βjk introduced in the algorithm is
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given by:

βjk+ik =
µ− k + 1

µ− k
αjk+ik − σµ

µ− k
xmax − pµk + pk−1 i = 0, 1 (114)

Proof :

The Lemma statement above will be proved using mathematical induction. Let

us start with k = µ−1. In this case one sees that for jk = 1 +σk(j
max
k −2), one

obtains that m1
k = n2

k & µ = min(|m1
k0
|, |m2

k0
|) for σk = 0 and

jmaxk
k =

jmaxk
k & µ =

min(|mjmaxk
k0
|, |mjmaxk +1

k0
|) for σk = 1. Therefore, one can say that |mjk−σµ

k | =

|njk+1−σµ
k | = µ. Subsequently, since αjk+1−σµ

k = 0 we also have that: βjk+1−σµ
k =

pk−1 + σµxmax

Suppose that |mjl−σµ
k | = µ and |njl+1−σµ

k | = µ or |mjl+1−σµ
k | = µ for µ−1 ≤ l ≤

k+1 and 1 ≤ jl ≤ jmaxl . we shall show that the assertion above is true for l=k.

If [β
jk+1

k+1 , β
jk+1+1
k+1 ] ∈ [0, xmax] then we have that αjkk = β

jk+1

k+1 & αjk+1
k = β

jk+1+1
k+1 .

Therefore, m
jl+1−σµ
k n

jl+1−σµ
k n

jl−σµ
k m

jl−σµ
k are determined as explained in the

algorithm step 2 c by equations (112-113).

Suppose that β
jk+1

k+1 ≤ 0 & β
jk+1+1
k+1 ∈ [0, xmax], then we say that n

jk+1

k+1 =

n
jk+1+1
k+1 , njkk = k, m

jk+1

k+1 = m
jk+1+1
k+1 and mjk

k = σµn
jk+1

k+1 + (1 − σµ)m
jk+1

k+1 . In

other words, if the interval bound trajectory violates our lower bound criteria,

then n
jk+1

k+1 and mjk
k are assigned to their previous values, unless the interval

bound trajectory approaches from the upper bound, in which case σµ = 1

and so mjk
k = n

jk+1

k+1 . Similarly, if β
jk+1

k+1 ∈ [0, xmax] & β
jk+1+1
k+1 ≥ xmax then

njkk = n
jk+1

k+1 n
jk+1
k = −k mjk

k = m
jk+1

k+1 while m
jk+1

k+1 = σµm
jk+1+1
k+1 + (1−σµ)n

jk+1+1
k+1 .

Hence, m
jk+1

k+1 = n
jk+1+1
k+1 and njk is assigned to its previous value if the interval

bound trajectory violates our upper bound criteria, unless that interval bound

trajectory is approaching from the lower bound. In such a case, m
jk+1

k+1 is as-

signed to its previous value as σµ = 0. A clearer illustration of this has been

provided in figure 9:
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Figure 10: Illustration of m’s and n’s

Observe that for the above cases, our algorithm generates jk which at most

takes on a value of jk+1 +1 depending upon the constraints. Also, note that the

two cases [β
jk+1

k+1 , β
jk+1+1
k+1 ] ≤ 0 & [β

jk+1

k+1 , β
jk+1+1
k+1 ] ≥ xmax have not been taken

into consideration, as they violate µ = min(|mj
k0
|, |mj+1

k0
|). Hence, we can say

that |mjk+σµ
k | = µ, for k = k0 . . . µ. In addition, due to constancy in m

jk+σµ
k

arising from algorithm 1, we can say that the above lemma is proven for i = σµ.

According to Algorithm 1, one can also say there exists a k1 ≥ k0 for which

|njk+1−σµ
k | = µ, for k = k1 + 1 . . . µ, and provided that k1 6= k0 we also have

that |mjk+1−σµ
k | = µ for k = k0 . . . k1.

To establish the lemma for i = 1 − σµ, we consider xk = αjk+1−σµ
k and define

ν = |mjk+1−σµ
k |. At k = µ − 1, we know that u = pnuµ is the optimal input for

xν−1 based on our earlier assertions. Now, suppose that

xl−1 =
µ− l + 1

µ− l
xl +

σnuxmax
µ− l

+ pl−1 − pµl l ≤ k + 1 (115)

for some k1 ≤ k ≤ µ. One can see that in the case where l = k + 1 we have

that:
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xk = µ−k
µ−k−1xk+1 − σνxmax

µ−−k−1 + pk − pµk+1

The above equation can be represented in discrete differential equation form as:

xk+1 =
(µ−k−1)(xk−pk+pµk+1)−σνxmax

µ−k

Simplifying, we have:

xk+1 = xk + σνxmax−xk
µ−k + µ−xk

µ−k (pµk+1 − pk)

Now, noting that µ−xk
µ−k (pµk+1 − pk) = pµk − pk one gets:

xk+1 = xk + pµk +
σνxmax − xk

µ− k
− pk (116)

Also, from our algorithm we have concluded that m
jk+1−σµ
k and n

jk+1−σµ
k . Hence,

it follows that 0 < β
jk+1−σµ
k < xmax and therefore xk−1 = α

jk−1+1−σµ
k−1 = β

jk+1−σµ
k

for k = k1 + 2, . . . , µ. Therefore, from the algorithm we have:

xk−1 = ν−k+1
ν−k αjk − σν

ν−kxmax − p
ν
k + pk−1

Hence, for xk+1, one obtains the following using the above relationship:

xk+1 =
(ν−k−1)(xk−pk+pνk+1)−σνxmax

ν−k

As shown in deriving equation (116), this will simplify to:

xk+1 = xk + pνk +
σνxmax − xk

ν − k
− pk (117)

Now, equating the relationships obtained in (116) and (117), one gets:

pνk +
σνxmax − xk

ν − k
= pµk +

σµxmax − xk
µ− k

(118)

for k = k1 + 1, . . . , µ− 1. Now, using the above relationship in xk−1 = βjk+1−σν
k

we get:

xk−1 = βjk+1−σν
k = ν−k+1

ν−k xk + σνxmax
ν−k + pk−1 − pνk

βjk+1−σν
k = xk − (pνk −

σνxmax−xk
ν−k ) + pk−1 = xk − (pµk −

σµxmax−xk
µ−k ) + pk−1

β
jk+1−σµ
k =

µ− k + 1

µ− k
xk −

σµxmax
µ− k

+ pk−1 − pµk (119)
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for k = k1 + 1, . . . , µ− 1 thereby completing the induction argument and proof

for this lemma. If k1 6= k0 we also have that ν = |mjk+1−σµ
k | = |mjk+σµ

k | = µ

and thereby the above lemma will satisfy the criteria put forth in the algorithm

for computing βjk+1−σν
k

2. The optimal input and corresponding cost to go for the dynamical system in

equation (57) minimizing the cost function in equation (69) subject to con-

straints mentioned in 3.1 is given by:

u∗k(x) = pµk −
x− σµxmax
µ− k

(120)

J∗k (x) = (ν − k)g(pµk −
x− σxmax
µ− k

) + J∗µ(σµxmax) (121)

Proof : In the previous lemma, it has been proven that there exists a jk ∈

[1, jmaxk ] such that |mjk
k | = |mjk+1

k | = µ or |mjk−σµ
k | = |njk+1−σµ

k | = µ for k ∈

[k0, µ − 1], and βjk+1−σν
k can be computed from the algorithm provided that

k1 6= k0.

In this lemma, we will prove the above statement using an induction argument.

At k = ν − 1, we know the optimal input using lemma hypothesis is given

by u∗k(x) = pk − xk + σµxmax, and therefore the corresponding optimal cost

is J∗k (x) = g(pk − xk + σµxmax) + J∗µ(σµxmax) for x ∈ [αjkk , α
jk+1
k ] where jk =

1 + σk(j
max
k − 2) as mentioned in the previous lemma.

Now, suppose that u∗l (x) = pµl −
x−σµxmax

µ−l and J∗l (x) = (ν − l)g(pµl − x−σxmax
µ−l ) +

J∗µ(σµxmax) for l ∈ [µ− 1, k + 1], x ∈ [αjlk , α
jl+1
k ], jl ∈ [1, jmaxl ]. We shall show

that the assertion indeed holds true for l=k.

Owing to the convexity of g, we have:

J∗k (x) = inf
u∈[pk−x,umaxk ]∩[umink ,pk−x+xmax]

(g(u)− (µ− k − 1)g(pµk+1 −
x+ u− pk
µ− k − 1

))

= (µ− k) inf
u∈[pk−x,umaxk ]∩[umink ,pk−x+xmax]

(
g(u)

µ− k
− µ− k − 1

µ− k
g(pµk+1 −

x+ u− pk
µ− k − 1

))
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J∗k (x) ≥ (µ− k)g(
(µ− k − 1)pµk+1 + pk − xk

µ− k
)

J∗k (x) ≥ (µ− k)g(

∑µ
i=k+1 pi + pk − x

µ− k
) = (µ− k)g(pµk −

x

µ− k
) (122)

provided that x+ ∈ [α
jk+1

k+1 , α
jk+1+1
k+1 ] and u ∈ [umink , umaxk ] where:

x+k = xk + u(x)− pk =
µ− k + 1

µ− k
xk +

σµxmax
µ− k

− pk + pµk (123)

Therefore, it is seen that the optimal input generating J∗k (x) is u∗k(x) = pµk− x
µ−k .

Furthermore, we can see that:

u∗k+1(x
+) = pνk+1 − x+

ν−k−1

From the expression for x+, the above equation simplifies to:

u∗k+1(x
+) = pνk+1 −

x±σνxmax
ν − k − 1

= u∗k(x) (124)

Thus, one can say that the input u∗k(x) is governed by a constant expression from

x ∈ [αjkk , α
jk+1
k ] to xν = σnuxmax. Therefore, if σnu = 0 then u∗k(x) = pµk − x

µ−k ,

which is the condition to be satisfied for any lower bound trajectory. On the

other hand σnu = 1 gives u∗k(x) = pµk − x−xmax
µ−k , which is the condition to be

satisfied for any upper bound trajectory. To show that x+ ∈ [α
jk+1

k+1 , α
jk+1+1
k+1 ], we

use the results obtained from our previous lemma, which states that:

βjkk =
µ− k + 1

µ− k
αjkk −

σµxmax
µ− k

+ pk−1 − pµk (125)

Realize for the upper bound that αjk+1
k = min(β

jk+1+1
k+1 , xmax). So, according to

the previous lemma, we can represent β
jk+1+1
k+1 as:

α
jk+1+1
k+1 = µ−k−1

µ−k β
jk+1+1
k+1 + σµxmax

µ−k − pk + pµk

α
jk+1+1
k+1 ≥ µ− k − 1

µ− k
αjk+1
k +

σµxmax
µ− k

− pk + pµk (126)

Now, the difference α
jk+1+1
k+1 − x+ can be represented as:

α
jk+1+1
k+1 − x+ ≥ µ− k − 1

µ− k
(αjk+1

k − x) ≥ 0 (127)
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Similarly, for the lower bound, we know that αjkk = min(0, β
jk+1

k+1 ), therefore:

α
jk+1

k+1 = µ−k−1
µ−k β

jk+1

k+1 + σµxmax
µ−k − pk + pµk

α
jk+1+1
k+1 ≤ µ− k − 1

µ− k
αjkk +

σµxmax
µ− k

− pk + pµk (128)

This implies that:

x±α
jk+1+1
k+1 ≥ µ− k − 1

µ− k
(x− αjkk ) ≥ 0 (129)

Thus confirming that x+ ∈ [α
jk+1

k+1 , α
jk+1+1
k+1 ]. We also need to ensure that u∗k(x) ∈

[pmin, pmax] & umink ≤ u∗k(x) ≤ umaxk . To prove this, lets consider xl for

k ≤ l ≤ µ to be generated by the optimal control sequence u∗l (x). Therefore:

xl+1 = xl + u∗l (x)− pl (130)

As mentioned earlier, this control sequence has a constant expression, therefore

u∗k(x) = u
(
µ−1xµ−1) = pµ−1 − xµ−1 + σnuxmax. Lets now consider the case where

σν = 0, which is conducive with a lower bound trajectory, which means that

u∗k(x) ≤ pµ−1 < 1. Then we have:

u∗k(x) = u
(
µ−1xµ−1) = pµ−1 − xµ−1 (131)

From the algorithm with α2
µ = 0, we have that

β2
µ = pµ−1 −

σν
ν − µ

xmax − pνµ (132)

where ν = |m1
ν |. For the lower bound, one realizes from our algorithm that

α2
µ−1 = max(0, β2

µ). Therefore, one can claim that:

pµ−1 − xµ−1 ≥ pµ−1 − α2
µ−1 = pµ−1 − β2

µ

On simplifying further, this becomes

pµ−1 − β2
µ =

σν
ν − µ

xmax + pνµ ≥ pνµ (133)
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Therefore, u∗k(x) ≥ umink . Similarly σµ = xmax for the upper bound and so

u
(
kx) ≥ pµ−1 > umink . Also, from the algorithm with α1

µ = xmax, we have that

β1
µ =

ν − µ− 1

ν − µ
xmax + pµ−1 −

σν
ν − µ

xmax − pνµ (134)

For the upper bound, one realizes from our algorithm that α1
µ−1 = min(β1

µ, xmax).

Therefore, one can claim that:

pµ−1 − xµ−1 ≥ pµ−1 − α1
µ−1 + xmax = pµ−1 − β1

µ + xmax

On simplifying further, this becomes

pµ−1 − β1
µ =

σν − 1

ν − µ
xmax + pνµ ≥ pνµ (135)

thereby proving that u∗k(x) ∈ [umink , umaxk ] minimizes h(x, u) := g(u) + J∗k+1(x+

u− pk) subject to x+ = x+ u− pk ∈ [α
jk+1

k+1 , α
jk+1+1
k+1 ]. Furthermore, u∗k(x) is the

local minimum for unconstrained h(x,u) for a fixed x ∈ [αjkk , α
jk+1
k ]. However,

the convexity of g and J∗k+1(x) as described in lemma 2 imply that h(x,u) is a

convex function. Therefore u∗k(x) is also the global minimum for h(x,u). Thus:

h(x, u∗k(x)) = (ν − k)g(pµk −
x

µ− k
) + J∗µ(σµxmax) (136)

coincides with the cost to go function J∗k (x) on [αjkk , α
jk+1
k ] thereby completing

the proof for our lemma.

3.5.3 Resulting Theorem

This Theorem results from the algorithm and lemma above. It asserts that the

optimal solution obtained does indeed minimize the modified cost function globally,

when subject to the dynamics of the system as defined by the state equation.

Theorem 1: Suppose L and g are convex on [u∗, umax], and the intervals [αj+kk , αjk+1
k ]

partition the region [0, xmax], then the optimal control law for u∗k(x) as introduced in

the algorithm minimizes the modified cost function in equation (69) when subject to
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the dynamics of the system as defined in equation (57). Moreover the Optimal Cost

to go for x ∈ [αj+kk , αjk+1
k ] is described by:

J∗k (x) =


0 ν =∞

(ν − k)g(pνk − σνxmax
ν−k ) + J∗ν (σνxmax) ν <∞

(137)

Proof:

Let us first prove the theorem for ν = ∞. This case only occurs before any of

the interval bounds exceed the upper limit, such that mjk
k = ∞ and αjk+1

k = xmax.

The claim obviously holds true at k = N . Using an inductive argument, suppose our

argument holds true for N ≤ l ≤ k + 1, we must show that the above also holds

true at k.

To this end, let αjk ≤ x ≤ xmax. Suppose that xmax− x+ pk < u0, we know that

from the algorithm u∗k(x) = xmax − x + pk. Noting that x+ = x + u∗k(x) − pk, and

using the previous result we get x+ = xmax. Now, suppose xmax − x+ pk ≥ u0, then

from our algorithm u∗k(x) = u0 and therefore x+ = x+ u0 − pk. Since x+k is bounded

by xmax, the criteria x+ u0 − pk ≤ xmax must be met.

Now, consider the switching criteria x ≥ αjk + u∗ and x < αjk + u∗. In the first

case, u0 = 0, and therefore x+ = x − pk ≥ αjk + u∗ − pk must be satisfied. In the

other case, u0 = u∗, and so x+ = x + u∗ − pk ≥ αjk + u∗ − pk must be satisfied. By

induction hypothesis, note that J∗k+1(x
+) = 0. Therefore, J∗k (x) = g(u∗k) + J∗k+1(x

+),

and since g(u) = 0 ∀u ≤ u∗, we can say that J∗k (x) = 0

To complete the induction proof for ν < ∞, suppose the results hold for ν =

ν1, . . . , νi. We need to show that the same argument holds true for µ = ν − 1. Recall

that:

J∗k (x) = inf
u∈[pk−x,umaxk ]∩[umink ,pk−x+xmax]

(g(u) + J∗µ(x+ u− pk)) (138)

Now, letting k = µ− 1, and x ∈ [α1
k, α

2
k], we have

J∗µ(x) = (ν −mu)g(pνk −
σνxmax
ν − µ

) + J∗ν (σνxmax) (139)
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However, realize that the input u∗k = pνk− σνxmax
ν−k that minimizes g(u) +J∗µ(x+u−pk)

is infeasible, since the bounds for x+ are not met for σν = 0 or σν = 1.

x+ = x+ u∗k(x)− pk =
µ− k + 1

µ− k
x− σν

µ− k
xmax + pµk − pk (140)

For σν = 0, we have that

x+ = µ−k+1
µ−k x+ pµk − pk

Noting that x ≤ α2
k at k = µ− 1, and along with the fact that α2

µ = 0, we have:

x+ ≤ µ− k + 1

µ− k
α2
k + pµk − pk =

µ− k + 1

µ− k
α2
µ + pµk − pk = 0 (141)

Similarly, for σν = 1, we have that

x+ = x+ u∗k(x)− pk = µ−k+1
µ−k x− xmax

µ−k + pµk − pk

Noting that x ≥ α1
k at k = µ − 1, and along with the fact that α1

µ = xmax, we

have:

x+ ≥ µ− k + 1

µ− k
α1
k−

xmax
µ− k

+pµk−pk =
µ− k + 1

µ− k
α1
µ+pµk−pk−

xmax
µ− k

= xmax (142)

Also, realize that the function g(u) + J∗µ(x+ u− pk) is a convex function, since both

g(u) and J∗µ(x) = fN−µ(qN−µ − x) are both convex from the lemma proven in 3.4.

Consequently, u∗k(x) = pk−x+σνxmax is the optimal solution resulting in x+ = σνxmax

and minimizes the cost to go function J∗k (x) = g(pk − x + σνxmax) + J∗µ(σνxmax).

Therefore, the hypothesis presented in the second part of lemma 2 for u∗k(x) is satisfied,

and induction argument is complete thereby completing the proof.

3.6 Transitioning to a time varying cost

The interval back propagation routine we applied assumes a constant gk = g. There-

fore, it is necessary to show that the difference between optimal and resulting subop-

timal solutions are sufficiently small, such that the solution derived from considering

time invariant cost can be extended to the time varying case. The following theorem

and proof will elucidate how this criteria is met.
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Theorem 2: Let each incremental cost function gk : [umink , umaxk ]→ R be convex.

Now, suppose that sup
u∈U

(gk(u)− gk′(u)) ≤ ε ∀[k, k′] ∈ [0, N − 1] and U ∈ [umink , umaxk ],

then the resulting suboptimal cost-to-go for any given state of charge x is Jk(x) =∑N−1
l=k gl(u∗) is within ε of J∗k (x), where u∗ and J∗k (x) are as specified in the algorithm.

Proof:

Let g : U → R+ be given by g = max
0<k≤ N−1

gk(u). It is seen that g is a convex

function on U . Now, let u∗k(x) be the optimal input that minimizes the control

sequence
∑N−1

l=1 gl(ul). Defining g̃k(u) = g(u) − gk(u) u∗k ∈ [pmin, pmax] for umink ≤

u∗k ≤ umaxk we have:

Jk(x) =
N−1∑
l=1

gl(u∗l ) ≤
N−1∑
l=1

g(u∗l ) ≤
N−1∑
l=1

g(u∗l ) (143)

Due to the fact that gk(u) ≤ g(u), and u∗k(x) minimizes the control sequence∑N−1
l=1 gl(ul). Using g̃k(u

∗
k) = g(u∗k)− gk(u∗k) we have that:

Jk(x) ≤
N−1∑
l=1

gl(u
∗
l ) +

N−1∑
l=1

g̃k(u
∗
l ) ≤ J∗k (x) +

N−1∑
l=1

g̃k(u
∗
l ) (144)

The proof now follows the form g̃k(u) = g(u)− gk(u) ≤ ε ∀u ∈ U ∀k ∈ [0, N − 1]

Realize that even though it is possible to obtain a closed form solution assuming

a time varying gk(u), the above proof shows that the largest variation that occurs in

gk(u) is bounded by ε. Therefore, in cases where ε is sufficiently small, one can use

the back propagation results derived in section 3.5 assuming a constant g to obtain

the optimal solution with less computational effort.
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CHAPTER IV

REAL TIME CONTROL STRATEGY

4.1 Control Implementation

Net Power Demand is assumed as the primary input parameter. By Theorem 2 we

may use the gk–independent controller with Intervals, Cost to go, and optimal input

functions are calculated using the Dynamic Programming algorithm discussed earlier

without any significant increase in fuel economy as long as the variations in gk induced

by the vehicle speed and power demand are sufficiently small.

Knowing the power demand, input constraints, and state of charge constraints

ahead of time, the Interval back propagation algorithm can be easily implemented

on line. Using the interval data, one calculates the corresponding optimal inputs

as described in the algorithm. The entire process of calculating the intervals and

obtaining the optimal input for 800 steps takes around 15 microseconds on a 1.4

GHz Intel Core i5 Processor running MATLAB, which confirms that the algorithm

is computationally effective for real time implementation. Recall that Interval bound

calculation involves performing elementary operations on the power demand, state of

charge, and known interval bounds from the previous step while satisfying a set of

conditionals to ensure that the system constraints are met. Meanwhile, Optimal input

is an elementary function of the power demand, state of charge, and time step which

makes decisions based upon the interval data provided. Thus, neither operation is

computationally intensive for the CPU to perform.

Recall that from section 2.5, the engine power can be expressed as a function Pe =

ψ(ωm, ω̇m, Pd, U). Consequently, one can also calculate the engine speed. However, it

is quite cumbersome to obtain an exact solution to we in the functional form described.
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This is due to the circular dependence between we & Te. Therefore, we have to make

an approximation to obtain a viable solution for the optimal engine speed. One

method of approximation involves using a look up table. Another method involves

using an approximate equation to model the engine speed and engine power in terms

of engine torque. We decided to proceed with the latter approach. From [46], it

has been observed that the Optimal Engine torque Vs. Engine speed curve can be

approximated by using a linear model. Therefore, we can model ωe = h−1(Te), as:

ωe = h−1(Te) = ω0 + ω1Te (145)

where ω0 and ω1 are constant coefficients. Consequently, the engine power is:

Pe = Tewe = ω0Te + ω1T
2
e (146)

Therefore, the equation for input in terms of engine power from equation (44):

aT 2
e + bTe + c = 0 (147)

where the coefficients a,b, and c are determined based on the efficiency functions,

motor speed, and power demand. as shown below.

a = ω1 − ke
s2 + r2

(r + s)2
(148)

b = ω0 − 2ke
r

r + s
(Igω̇m − Td) (149)

c =
r

s
Igωmω̇m − Pd + P̃d − U − εb(U − P̃d)2 − ke(T 2

d +
r2

s2
I2g ω̇m

2) (150)

Solving for Te from the above equation, we have:

Te =
−b± (b2 − 4ac)1/2

2a
(151)

In the above equation, we select the positive root for Te since engine speed is always

non negative. Consequently, one can calculate the corresponding engine torque based

off our earlier assumption.
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The optimal engine speed demand (in rpm), and optimal engine torque is used

as a set point for the engine speed controller and generator controller which jointly

control the throttle levels. A complete schematic of our controller is seen in figure 11.

The MATLAB Function block takes in the current state of charge, Power Demanded,

and time step to generate the interval data and subsequently compute the optimal

input. This optimal input is sent to the MATLAB Function1 block. Here our optimal

engine torque is calculated in terms of the motor speed, motor acceleration, power

demand, and optimal input as shown in equations (145-151). Correspondingly, one

obtains the optimal engine speed using equation (145). This information is sent to the

engine speed, motor speed, and generator controllers, which are linked to the engine

and electrical system. We will now discuss the design of our engine speed controller,

generator controller, and motor speed controller in further detail.

Figure 11: HEV Control Design using Simulink
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4.1.1 Engine speed Controller

The Engine controller takes in the current Engine rpm, along with the optimal en-

gine speed & torque, which depends on the optimal input calculated by our algorithm.

Using this information, it calculates the required throttle levels. First off, it verifies

whether the engine speed demanded is greater than the minimum engine speed re-

quired for turning on the engine. This physical constraint must be satisfied to make

sure the engine does not operate under unfavorable conditions. Based on this, the

controller decides whether the engine should be turned on or off.

A PI controller is then used to control the engine speed or engine torque based off

information from the generator controller, which determines whether the engine will

operate in speed control or torque control mode. Note that this is a consequence of

the coupled system effect explained in section 2.5. For controlling the engine torque

feedback loop, our optimal torque is normalized by the maximum torque for a given

engine speed. Using engine speed or engine torque, one determines the desired throttle

angle which is then communicated to the IC engine. A schematic of our engine speed

controller is shown in figure 12

Figure 12: Engine Speed PI controller
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4.1.2 Generator Controller

The generator Controller requires current engine rpm, engine speed demanded, and

generator torque demanded as inputs. It then calculates the required generator torque

for operating the engine. The generator controller follows a Proportional control

architecture. As mentioned earlier, the engine speed demanded is checked against the

physical constraints.

The torque Vs. Speed modes are based on the engine’s operating condition. Under

low rpm condition’s it is used as a reference for the speed controller. This speed

controller is used to calculate a reference value for the generator torque and does so

based off the decision between speed versus torque control modes. It operates on a PI

controller architecture. At higher rpm, engine rpm demand is used to calculate the

reference generator torque using proportional control. This reference value is then

compared with the generator torque demand. Subsequently, this generator torque

demand is communicated to the electrical system. A schematic of our generator

controller is shown in figure 13

Figure 13: Generator Controller
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4.1.3 Motor Speed Controller

In a power split system, the motor is distinct from the engine and the generator, as it is

decoupled from both and linked directly to the external environment. This is apparent

from the dynamical equations presented in section 2.5. The motor speed controller

takes in the current motor rpm and motor speed demanded. The motor rpm demand

is determined using linear interpolation based off the vehicle acceleration, since it is

directly linked to the wheels. It then uses a PI speed control architecture to ensure

that the desired rpm is met, and calculates the corresponding motor torque. This is

then communicated to the electrical system. A schematic of our motor controller is

shown in figure 14

Figure 14: Motor PI Controller

4.2 Algorithm Testing and Results

4.2.1 Drive Cycles and Algorithm Results

In order to test the DP algorithm proposed in this thesis the simulations are carried

out on six different custom drive cycles namely Highway, City to Suburb, High Speed
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Test, City, Urban Dynamometer Driving Cycle (UDDS), and Japanese1015. We

assume that there is no road slope across all cycles. A detailed description of each

drive cycle and the corresponding results obtained on implementing the algorithm are

shown below:

Highway This cycle was developed by the EPA to represent the operation of

vehicles under typical freeway conditions in the United States. The length of this

cycle is 765 seconds, average speed for this cycle is 52.06 mph and total distance

travelled is 11.06 miles. The power demand and speed profiles, intervals along with

optimal trajectories, incremental and cost to go functions, and optimal inputs are

seen in figures 15 a to 15 d respectively. Notice that there are very few intervals due

to low power demand. Consequently, the optimal input is greater than u∗ for very few

cases. From the optimal input profile, we expect the engine to turn on twice across

the length of this cycle, which happens initially and at 300 seconds. In addition,

notice that the optimal trajectories with different initial conditions get closer to each

other over time.

City to Suburb This drive cycle is a section based off the typical city to suburb

commute pattern in an American city. It involves a mixture of arterial road and free-

way driving, with highly variable speeds due to erratic variations in traffic conditions.

The length of this cycle is 1000 seconds, average speed for this cycle is 41.75 mph and

total distance travelled is 11.6 miles. The power demand and speed profiles, intervals

along with optimal trajectories, incremental and cost to go functions, and optimal

inputs are seen in figures 16 a to 16 d respectively. Notice that there are very few

intervals due to low power demand. Consequently, the optimal input is greater than

u∗ for very few cases. From the optimal input profile, we expect the engine to turn

on 8 times across the length of this cycle. The switch happens initially and periodi-

cally between 200 to 600 seconds where the power demand is increasing. In addition,

notice that the optimal trajectories with different initial conditions converge beyond
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal Inputs

Figure 15: Highway Drive Cycle
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal Inputs

Figure 16: City to Suburb Cycle

300 seconds and the final state of charge is around 27 % regardless of the initial SOC.

High Speed Test Cycle: This drive cycle is used to test the high speed perfor-

mance of the vehicle. The length, average speed, and distance traveled during this

cycle are 800 seconds, 70.92 mph, and 15.76 miles respectively. The power demand

and speed profiles, intervals along with optimal trajectories, incremental and cost to

go functions, and optimal inputs are seen in figures 17 a to 17 d respectively. Notice

that there are a significant number of intervals due to high power demand. Conse-

quently, the optimal input is greater than u∗ at several instances. Notice that the

engine is only switched on once, but the time for this switch depends on our initial

state of charge. Also, for states of charge greater than 55 % note that the optimal

input is greater than u∗ to turn on the engine. This allows us to take advantage of the
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal Inputs

Figure 17: High speed Testing Drive Cycle

intervals for minimizing the control effort, and subsequently the fuel consumption.

City: This drive cycle is representative of a large American metropolis with high

pedestrian traffic and surface level public transit. This cycle involves a mixture of

narrow streets, crowded arterial roads, and urban freeways. Variations in speed are

highly erratic with frequent stop and go situations. The length of this cycle is 1000

seconds, average speed for this cycle is 24.22 mph and total distance travelled is 6.73

miles. The power demand and speed profiles, intervals along with optimal trajectories,

incremental and cost to go functions, and optimal inputs are seen in figures 18 a to

18 d. respectively. Notice that there are very few intervals due to low power demand.

Consequently, the optimal input is greater than u∗ for very few cases. From the

optimal input profile, we expect the engine to turn on twice across the length of this
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal Inputs

Figure 18: City Drive Cycle

cycle. The instant for our first switch depends on the initial state of charge. However,

it is seen that the second switch occurs at 750 seconds for all optimal trajectories. In

addition, notice that the optimal trajectories with different initial conditions start to

converge towards the end.

UDDS: This drive cycle was developed by the EPA and simulates erratic varia-

tions in speed, high acceleration rates, and frequent stop & go situations synonymous

with city driving. The length of this cycle is 1370 seconds, average speed for this

cycle is 19.56 mph and total distance travelled is 7.44 miles. The power demand and

speed profiles, intervals along with optimal trajectories, incremental and cost to go

functions, and optimal inputs are seen in figures 19 a to 19 d respectively. Notice

that there are very few intervals due to low power demand. Consequently, the optimal
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal input

Figure 19: UDDS Drive Cycle

input is greater than u∗ for very few cases. From the optimal input profile, we expect

the engine to turn on 9 times across the length of this cycle. The switch happens at

190, 350, 420, 470, 780, 960, 1050, 1150, and 1260 seconds respectively. In addition,

notice that the optimal trajectories with different initial conditions converge beyond

400 seconds and the final state of charge is around 60 % regardless of the initial SOC.

Japanese1015: This drive cycle was developed to test the fuel economy provided

by cars designed in Japan. It simulates moderate variations in speed and acceleration

rates with frequent stop & go situations synonymous with suburban driving condi-

tions. The length of this cycle is 892 seconds, average speed for this cycle is 32.02

mph and total distance travelled is 7.935 miles. The power demand and speed pro-

files, intervals, incremental and cost to go functions, and optimal inputs are seen in
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(a) Power Demand and Speed Profile (b) Intervals and Optimal Trajectories

(c) Incremental and Cost to go Functions (d) Optimal Input

Figure 20: Japanese 1015 Drive Cycle

figures 20 a to 20 d respectively. Notice that there are very few intervals due to

low power demand. Consequently, the optimal input is greater than u∗ for very few

cases. From the optimal input profile, we expect the engine to turn on 5 times across

the length of this cycle. The switch happens at 80, 340, 470, 600, and 740 seconds

respectively. In addition, notice that the optimal trajectories with different initial

conditions converge beyond 450 seconds and the final state of charge is around 55 %

regardless of the initial SOC.

4.2.2 Fuel Economy

One can compute the fuel consumption rate (in gal/s) knowing optimal engine speed

and corresponding minimized BSFC. The fuel economy (in mpg) is then obtained as:

MPG∗ = 0.788V (t)/FC(ωe(U, t)) (152)
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Table 4: Fuel Economy Comparison

Drive Cycles Rule Based Control
mpg

Interval Back prop-
agation mpg

Percent Change

Highway 60.35 102.7 70.17
City to Suburb 52.54 73.34 39.59
High Speed Test 50.27 57.65 14.7
City 48.94 68.6 40.17
UDDS 45.86 57.08 24.47
Japanese1015 49.72 62.8 26.31

Since we want fuel economy over an entire cycle, its average value over the time

window Tw is computed using:

MPG
∗

=
0.788

Tw

∫ Tw

0

V (t)

FC(ωe(U, t))
dt (153)

The Fuel Economy Performance for these cycles was tested using mode logic control

and Interval back propagation based dynamic programming algorithm. Initial state

of charge is 30% for highway and City to Suburb drive cycles, 55% for Japanese1015

cycle, and 60% for UDDS, City, and High Speed Test cycles. From the Table below,

its seen that using the Interval Back propagation algorithm helps achieve significant

improvements in fuel economy over all cycles. The average fuel economy is 70.36 mpg

over all cycles, which is a 35.9% improvement over the fuel economy obtained using

rule based mode logic control. The fuel economy results are presented in table 4.

4.2.3 Effect of Maximum Battery Discharge Rate

It is important to realize that we are using a battery with a significantly large dis-

charge rate. We have imposed a discharge power limit of 25 kW, as this remains

consistent with the power limits mentioned in [46]. Subsequently, fuel economy for

the highway drive cycle is unusually high, since power demand is low outside the

two acceleration periods since velocity is fairly constant. Therefore, our battery is

capable of running the HEV in electric mode, while meeting the power and current
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(a) Battery Power 25 kW discharge (b) Battery Current 25 kW discharge

(c) Battery Power 10 kW discharge (d) Battery Current 10 kW discharge

Figure 21: Battery power and Current for Highway Drive Cycle

limits as shown in Figure 21 a) and b) under steady state conditions (when the engine

isn’t switching between on and off states). The battery power momentarily spikes at

instances where the engine switches between off to on, because it has to reach 2450

rpm within a short period of time, and this requires a significant amount of energy.

However, earlier HEV’s may not have such powerful batteries. Therefore, we

repeated our simulation for the highway drive cycle by imposing a lower discharge

power limit of 10 kW. From Figure 21 c) and d), it is seen that this power limit is met

under steady state conditions. Subsequently, the engine has to remain on for a longer

period of time to satisfy the power requirements. Thereby, one sees a substantial

decrease in fuel economy to 76.45 mpg.
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For a HEV with less than 10 kW of battery bower, any optimization based al-

gorithm would contribute very little to improvement in fuel economy. In essence,

both energy sources are greatly unbalanced in terms of capacity as the electrical sys-

tem is underpowered and the engine must run much of the time to satisfy the power

requirements.

4.2.4 Control Accuracy & Implementation on Vehicles

Our controller ensures that the desired velocity is reached by taking advantage of the

power split device to ensure that engine operation is optimized by operating at the

optimum engine speed, which is decided based upon our optimal power level. The

battery we use has a sufficiently high charge capacity (8.1 Ah). Therefore, while

testing our controller with our drive cycle mentioned earlier, we limited the state of

charge to a maximum of 62 % such that one can observe the charge and discharge

cycles and corresponding operation of the engine in such cases. A comparison between

the Actual Vs. Desired Vehicle speed (in kmph), State of Charge (SOC (%)), and

Engine Speed (rpm) for each drive cycle are shown in figure 21:

It is clearly seen that the optimal solution for these drive cycles is such that

the engine is switched on during the charging period, and off otherwise. This is in

accordance with what the algorithm predicts when one remains above all intervals.

In addition, the engine is used to satisfy the power requirements. For the cycles

shown above, it is seen that the engine effectively handles erratic changes in power

demand. The engine speed during this period of operation is around 2450 rpm, which

corresponds to the optimal engine power level U∗ of 20.9809 kW. It also has the

capability of operating at a Higher rpm by taking advantage of intervals as seen for

part of the High Speed Cycle. The actual and desired values vary by an average of

0.0397 kmph for vehicle speed, 13.5286 rpm for engine speed, and 3.22 ∗ 10−9 % for

SOC over all cycles. Hence, our optimal controller maintains a sufficiently high level
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(a) Highway (b) City to Suburb

(c) High Speed Cycle (d) City

(e) UDDS (f) Japanese1015

Figure 22: Accuracy of Controller across drive cycles
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of accuracy.

To implement this on an actual vehicle, it is important to realize that power

demand data must be known before implementing the interval back propagation al-

gorithm. There are two ways this information can be obtained.

• Using real time GPS data, one has information about the traffic conditions

ahead and distance to destination. Therefore, we can estimate the velocity

profile, and provided with vehicle data it is possible to compute the power

demand for our route. The important issue to consider here is that we must

continuously update the power demand calculation within a sufficiently small

period to take into account the traffic variations over time.

• With the help of a learning algorithm embedded in the vehicle controller, one

can predict the power demand along a particular route based off information

obtained from previous sets of data while traversing the same route. One such

example has been shown in [53]. Here, two distinct neural network algorithms

are used to optimize HEV performance. One is used to obtain data with re-

gards to the driving environment, while the other is used for optimizing the

power split operation through Dynamic programming. In our case, the dy-

namic programming algorithm used to optimize the power split will use interval

back propagation. One of the neural network systems will repetitively run our

algorithm over a variety of drive cycles and learn the optimal solution corre-

sponding to each cycle. Meanwhile, the other neural network will learn the

necessary power demand data corresponding to each cycle.
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CHAPTER V

CONCLUSION

This thesis has presented an Optimization based dynamic programming strategy to

improve the fuel economy in Hybrid electric vehicles. The salient feature with this

method is that it gives a closed form globally optimal solution for the optimal input,

and can be implemented in real time.

The convexity assumption we make on the cost function in Lemma 1 is critical

to ensuring that we can derive a closed form globally optimal solution using interval

back propagation based dynamic programming. In addition, realize that with this

algorithm, we are able to enforce state and input constraints at each and individual

step without impacting the convex nature of our cost function. This is a key advantage

of Interval back propagation over ECMS. In addition, note that we are able to limit

our calculation of the optimal input within interval bounds specified by the states at

each time step, rather than compute the optimal input for each state at each time

step. Thereby, we save significant computation time in comparison to exhaustive

search. Also realize that grouping the discrete states within specified interval bounds

would help deal with excessive switching between states.

We Observed that while operating within the constraints imposed by state of

charge and maximum engine power, the closed form globally optimal solution for

the input is either zero, u∗, or linearly dependent on the state of charge and the

average power demand. The simple nature of our optimal input greatly enhances its

ability to be implemented in real time. Also, note that when one operates above the

top lower bound interval, and the bottom upper bound interval, the optimal input

essentially switches between 0 during the discharge cycle and u∗ during the charging
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cycle. In addition, notice from the results and properties of f(ξ) that the modified

cost function decreases with respect to state of charge, which means that at higher

states of charge, the vehicle essentially operates in electric vehicle mode, while at

lower states of charge, both the engine and motor power the vehicle.

We mentioned that the algorithm takes 15 microseconds to run online when timed

using MATLAB for 800 steps of future power demand on a 1.4 GHz Intel Core i5

processor, which proves that it is indeed real time implementable. While implement-

ing our algorithm in real time, we assume a linear relationship between the engine

torque and engine speed. Consequently, this yields a quadratic relationship between

the engine speed and engine power. We make use of equation (44) to relate the engine

speed to the optimal input, and subsequently solve for the engine torque and speed.

We have explained how the interval back propagation algorithm is incorporated

within real time optimal controller on the HEV, and briefly discuss the design of

engine speed, motor speed, and generator controllers.

We have explained the 6 drive cycles used for testing the algorithm in detail, and

observed that fuel economy improves significantly on using the interval back propaga-

tion algorithm. Over 6 distinct cycles, a 35.9 % improvement is seen when compared

to rule based mode logic control methods under flat road conditions. The unusually

high fuel economy for our highway cycle is due to high limits on the battery discharge

rate. If this limit is lowered, its seen that fuel economy is reduced considerably since

the engine must be switched on more often to meet the cycle power requirement. Our

controller also proves to be sufficiently accurate as the speed following and state of

charge management coincides with our expectations.

Future work on this topic will involve obtaining the necessary power demand

data, as the interval back propagation algorithm needs prior information regarding

the power demand. Two methods have been proposed to achieve this goal, namely

parsing the GPS data and using neural network based learning algorithms.
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