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SUMMARY

In a parallel vertex-centered finite element multigrid solver, segmental refine-

ment can be used to avoid all inter-process communication on the fine grids. While do-

main decomposition methods generally require coupled subdomain processing for the

numerical solution to a nonlinear elliptic boundary value problem, segmental refine-

ment exploits that subdomains are almost decoupled with respect to high-frequency

error components. This allows to perform multigrid with fully decoupled subdomains

on the fine grids, which was proposed as a sequential low-storage algorithm by Brandt

in the 1970s, and as a parallel algorithm by Brandt and Diskin in 1994. Adams pub-

lished the first numerical results from a multilevel segmental refinement solver in 2014,

confirming the asymptotic exactness of the scheme for a cell-centered finite volume

implementation.

We continue Brandt’s and Adams’ research by experimentally investigating the

scheme’s accuracy with a vertex-centered finite element segmental refinement solver.

We confirm that full multigrid accuracy can be preserved for a few segmental re-

finement levels, although we observe a different dependency on the segmental re-

finement parameter space. We show that various strategies for the grid transfers

between the finest conventional multigrid level and the segmental refinement sub-

domains affect the solver accuracy. Scaling results are reported for a Cray XC30

with up to 4 096 cores. The segmental refinement multigrid implementation is based

on Jed Brown’s HPGMG finite element solver; the code is publicly accessible at

https://bitbucket.org/shenneking/hpgmg-fe-sr.

ix



CHAPTER 1

INTRODUCTION

Multigrid methods are among the fastest and most efficient algorithms known for

solving elliptic partial differential equations. Applying a multilevel hierarchy of dis-

cretizations and using solutions on coarse grids as an accelerator for the solution on

the finest grid is the idea behind a full multigrid method (FMG). Usually, one full

cycle of the FMG algorithm is sufficient to reduce the algebraic error to discretization

accuracy. FMG is provably work-optimal for many problems; on the other hand, it

entails large data dependencies due to its grid hierarchy.

In the context of modern computer architectures, memory efficiency becomes very

important as intra-process and inter-process data movement state a severe limiting

constraint to the runtime of an algorithm and also affect power consumption. Seg-

mental refinement, a low-memory technique developed by Brandt in the 1970s, can be

applied to a FMG full approximation scheme (FMG-FAS) algorithm to improve data

locality and reduce data dependencies in the algorithm. Brandt recognized that the

multigrid smoothing only serves to reduce high-frequency error components on the

grid. Additionally, by looking at multigrid from a “dual point of view”, fine grids can

be seen as a correction to the coarse grid problem instead of regarding the coarse grid

as an accelerator to the fine grid convergence. With this notion, relaxation can be

done separately in subdomains on the fine grid to resolve high frequencies that cannot

be resolved on the coarse grid. Errors from the interpolation cannot be eliminated at

the boundaries of the decoupled subdomains; to prevent that they degrade the accu-

racy of the solution, segmental refinement extends each subdomain with overlapping

buffer regions. Thus, the algorithm does redundant computation and requires extra-

storage in the overlapping parts of the grid. In 1994, this scheme was extended to a

parallel solver by Brandt and Diskin; decoupled processing of subdomains increases
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asynchrony by eliminating all inter-process communication on the finest grids.

We report the first numerical results from a vertex-centered multilevel segmental

refinement solver. The algorithm is presented in detail, including illustrations of the

overlapping segmental refinement spaces and the modified communication operators

on the transition level, which marks the transitioning from conventional multigrid to

segmental refinement. We investigate accuracy, computational work, communication

complexity, and scalability of the method. In particular, we show how these metrics

compare to a standard FMG-FAS solver. In the analysis, we focus on the scheme’s

accuracy that depends on variables such as the size of the subdomains, the process

grid, the size of the buffers, and the number of segmental refinement levels. We discuss

how decisions in the algorithm design affect the accuracy of the method; special

emphasis is given to the construction of the buffer regions and the grid transfers on

the transition level.
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CHAPTER 2

RELATED WORK

Most of the state of the art multigrid algorithms are based on Brandt’s work in the

1970s [6, 7, 8, 9]. Since then, various types of multigrid algorithms have been de-

veloped, and there exist many advanced techniques to apply geometric and algebraic

multigrid to different kinds of problems: from simple linear equations to complex non-

linear systems. Application areas involve, for example, sparse systems of algebraic

equations (typically arising from discretized elliptic boundary-value problems), flow

and elasticity problems, diffusion with discontinuous coefficients, or singular pertur-

bation [9, 12, 18]. Multigrid methods can be used on complex domains, and they can

solve source functions with highly localized features very efficiently by applying adap-

tive mesh refinement [14]. Especially for the numerical solution to discretized elliptic

partial differential equations (PDEs) multigrid is known as one of the fastest if not

the fastest solver. Often one full multigrid cycle is sufficient to reach discretization

accuracy. Additionally, multigrid has been proven to have optimal work complex-

ity of O(n) for solving Laplace’s equation with n unknowns [18]. This efficiency is

sometimes referred to as textbook multigrid efficiency [10].

In 1994, Brandt and Diskin presented a parallel multigrid algorithm [11]. Follow-

up work showed that parallel multigrid efficiency is much harder to obtain because of

the communication involved [15, 16], and several papers have studied domain decom-

position and parallelization techniques for multigrid [13, 17]. Though there has been

broad interest in parallel multigrid over the past decades, and a substantial body

of literature exists that shows its efficient applicability to many problems, segmental

refinement remains an open research field in which many problems have not been

solved or even addressed yet.

3



Segmental refinement was originally introduced by Brandt as a low-storage tech-

nique that uses decoupled subdomains on the fine grids [7, 8, 12]. The motivation for

such algorithms were problems where the fine grids are too large to fit in the computer

memory. As memory became cheaper, these methods attracted less interest - maybe

also due to the complexity involved with the implementation. Instead, a parallel al-

gorithm based on the same idea was proposed by Brandt and Diskin in 1994 [11]. The

algorithm’s inherent asynchrony, which comes from communication-avoiding vertical

processing of subdomains on the finer grids, makes it attractive for parallel distributed

memory computing when communication is a limiting constraint. Mohr und Rüde

discuss the Brandt-and-Diskin algorithm and analyze communication patterns [17].

Numerical experiments for a two-level segmental refinement scheme are conducted in

[11, 17]. In 2014, Adams presented the first published multilevel numerical results

of a cell-centered segmental refinement implementation [4]. Adams proposes a new

segmental refinement data model and shows experimental results from a finite volume

scheme analyzing the asymptotic exactness of the solver.

To the best of our knowledge, no numerical results have been published on mul-

tilevel segmental refinement methods that are vertex-centered.
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CHAPTER 3

MULTIGRID BACKGROUND

This chapter is meant to give a concise overview of the main components of a con-

ventional full multigrid solver, and it introduces the notation used for the relevant

operators in this work. An excellent in-depth introduction to multigrid methods is

given in [18].

3.1 Discretized Problem

We consider general elliptic boundary value problems of the form

Lu(x) = f(x) (x ∈ Ω) , (1)

where L is a linear or nonlinear operator, u the solution, and f is a forcing function

or simply called right-hand side in an open domain Ω with boundary ∂Ω. We assume

that Dirichlet boundary conditions are given on ∂Ω. The continuous differential

problem is discretized using a hierarchy of grids Ωh ⊂ Ω. The discretized problem is

Lhuh(i) = fh(i) (i ∈ Ωh) , (2)

where uh is the vector of unknowns, i = 1, 2, . . . , n, and the unknowns are stored at

grid nodes. The grid hierarchy is given by a sequence of M grids Ω1,Ω2, . . . ,ΩM ,

where Ω1 is the coarsest and ΩM the finest grid.

3.2 Grid Transfer Operators

To transfer the solution and the residual from one grid to another, grid transfer

operators are applied. A transfer from Ωk to Ωk−1 is usually called restriction and a

transfer from Ωk−1 to Ωk prolongation.
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3.2.1 Injection

Injection is a simple operator that can be used as a transfer operator in either direc-

tion: from coarse to fine or from fine to coarse grid. Injection transfers only values

from those grid points that exist on both coarse and fine grid. We call those points

C-points on the fine grid. Fine grid points that do not exist on the coarser grid –

F -points – do not participate in the operation. A restriction by injection is denoted

by

vk−1 = Îk−1k vk , (3)

where vk is a vector defined on Ωk. A prolongation by injection is

vk = Îkk−1vk−1 . (4)

3.2.2 Restriction

While injection can be used to restrict the numerical solution to the coarser grid level,

the residual is typically transferred using a weighted restriction:

vk−1 = Ik−1k vk .

That is, values from the F -points are taken into consideration as well. This can be

implemented by aggregating values into C-points from their local neighborhood on

the fine grid followed by an injection operation.

3.2.3 Prolongation

A prolongation operator is typically applied to make corrections to the fine grid

solution. For example,

vk = vk + Ikk−1ck−1 , (5)

where c is a correction to vk. In a full multigrid algorithm, a second operator is used

for setting the initial guess on the finer grid:

vk = Πk
k−1vk−1 . (6)
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Often, this is a higher-order prolongation, but it may also be the same as Ikk−1.

Prolongation can be implemented by doing an injection first and then applying an

appropriate interpolation to fill the F -points on the fine grid.

3.3 Smoother and Coarse Grid Solver

The smoother plays an important role for the multigrid algorithm. It smoothes the

solution by eliminating the higher-frequency errors on the respective grid. Forward

and Colored (e.g., Red-Black) Gauss-Seidel smoothers are a popular choice. Another

is polynomial smoothing, e.g., with Chebyshev polynomials. See [2] for a comparison

of different types of smoothers. In multigrid, smoothing is sometimes also called

relaxation. The coarse grid solver can be any appropriate iterative or direct solver.

Important is that the coarse grid is sufficiently coarse such that the application of the

solver is fast. Typical choices for coarse grid solvers are Krylov subspace methods.

3.4 Multigrid V-Cycle

The multigrid idea is to use coarse grids to compute far-field contributions to the solu-

tion while smoothers are used for computing near-field contributions. Most commonly,

the multigrid method is implemented recursively and computes the residual equation

to create coarse correction grids, which are then used to improve the solution on the

finer grids. This is called correction scheme, because coarser grids do not compute a

full solution to the original problem but only the residual equation. Coarse grids are,

roughly speaking, an accelerator to the fine grid convergence. The correction scheme

does not work for nonlinear problems, because solving the residual equation does not

return a valid correction to the full solution in this case. For this purpose, we can

use the so-called full approximation scheme (FAS). Instead of computing corrections

on the coarse grids during the multigrid cycle, this method computes solutions to the

original problem on all coarse levels. This allows to solve nonlinear problems as well.
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For linear problems, FAS and the correction scheme should compute the same solu-

tions in every stage of the algorithm. FAS also opens up the possibility to rewrite the

algorithm such that a defect correction, or τ -correction, is computed explicitly and

added to the coarse grid right-hand side. This is often called the dual point of view

[12]. Instead of regarding the coarse grid as an accelerator to the fine-grid convergence,

the fine grid is used as a correction to the coarse grid problem. τ -corrections are great

because they allow to inexpensively raise the order of accuracy by τ -extrapolation [5].

They also play an important role in low-memory segmental refinement. For parallel

segmental refinement, τ -corrections do not have to be explicitly computed and stored.

Algorithm 1 outlines a basic multigrid FAS algorithm.

Algorithm 1 Multigrid FAS V-Cycle

MGVCycle(Lk, uk, fk) {
if (k = 1) uk ← L−1k fk · Apply coarse grid solver
else

Sv1(Lk, uk, fk) · Pre-smoothing: v1 iterations
rk ← fk − Lkuk · Compute residual

uk−1 ← Îk−1k uk · Inject solution
rk−1 ← Ik−1k rk + Lk−1uk−1 · Restrict residual + FAS
ck−1 ← uk−1 · Store coarse-grid solution
MGVCycle(Lk−1, uk−1, rk−1) · Recursive call
uk ← uk + Ikk−1 (uk−1 − ck−1) · Prolongate FAS correction
Sv2(Lk, uk, fk) · Post-smoothing: v2 iterations

}

One iteration of this method is called multigrid V-Cycle. If the number of recursive

calls is two, then the method is called W-Cycle. The V-Cycle is applied repeatedly

until convergence or some stopping other criterion is reached. Thus, the standard

multigrid algorithm is an iterative solver.

3.5 Multigrid F-Cycle

A multigrid F-Cycle, on the other hand, starts solving on the coarsest grid and

successively proceeds on to finer grids, computing one or multiple V-Cycles for each

level. The F-Cycle can be seen as a direct solver, because one F-Cycle is applied

8



to solve the problem. Both recursive and iterative implementations are common.

Algorithm 2 shows the recursive algorithm. Note that multiple V-Cycles can be

performed on each level if necessary.

Algorithm 2 Multigrid F-Cycle

MGFCycle(Lk, uk, fk) {
if (k = 1) uk ← L−1k fk · Apply coarse grid solver
else

MGFCycle(Lk−1, uk−1, fk−1) · Recursive call
uk ← Πk

k−1uk−1 · Set initial guess
MGVCycle(Lk, uk, fk) · Perform V-Cycle

}

The main difference to an iterative multigrid V-Cycle algorithm is that the F-

Cycle sets an initial guess on the fine grids by prolongating full coarse grid solutions

before computing the V-Cycle. The F-Cycle is also called full multigrid (FMG)

algorithm. In this work, the term conventional multigrid solver refers to the full

multigrid algorithm. The sketch in Figure 1 illustrates the F-Cycle.

Figure 1: F-Cycle for five grid levels

9



CHAPTER 4

HPGMG FINITE ELEMENT

The High-Performance Geometric Multigrid (HPGMG) project is an HPC bench-

marking effort based on geometric multigrid methods1[1]. Currently, HPGMG has two

implementations: a finite volume solver (HPGMG-FV) developed by Sam Williams2,

and a finite element solver (HPGMG-FE) developed by Jed Brown3. This chapter

introduces the finite element solver which the segmental refinement implementation

is based on. HPGMG-FE is a FMG-FAS solver for constant- and variable-coefficient

elliptic problems on mapped coordinates using Q1 or Q2 elements. In this intro-

duction, we consider Q1 elements in the computational domain, and we assume a

grid refinement ratio of two. Similar concepts apply to Q2 or higher-order elements

and different refinement ratios as well. For Q1 and Q2, the code vectorizes across

elements, which is not necessary on current architectures for Q3 or higher. The Q1

reference element is shown in A.1. The implementation currently requires PETSc4.

4.1 Domain Decomposition

Subdomains have to be defined for every grid level in the multigrid hierarchy. In

a vertex-centered finite element solver, the grid partitioning can be viewed from an

element space or a vertex space. For example, the grid can be decomposed in non-

overlapping element partitions, which is done in this implementation, or in non-

overlapping vertex partitions. Additionally, the domain decompositioning depends

on the process grid on each level.

1http://hpgmg.org
2Computational Research Division, Lawrence Berkeley National Laboratory
3Mathematics and Computer Science Division, Argonne National Laboratory
4http://www.mcs.anl.gov/petsc
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4.1.1 Process Grids

In a conventional distributed multigrid algorithm, different process grids are typically

used to improve performance on different grid scales. This means that on coarse grid

levels, processors may be idle if they do not participate in the respective process grid.

The refinement ratio for process grids is two. The active process grid is restricted using

Z-order so that grid transfer operators mostly involve processes that are “nearby”.

If the process grid is the same for two grid levels, then the domain decomposition

looks the same as well. The domain decomposition describes a global view of the grid

partitioning; in addition to that, every processor has a process-specific local view of

its subdomain and its neighbors’ subdomains, which may include ghost layers at the

subdomain boundaries.

4.1.2 Global View vs. Local View

To illustrate the differences between global and local spaces, we are going to use a

one-dimensional example with a constant process grid of two processors and three

different grid levels Ω1,Ω2, and Ω3, of dimension (extent) 4, 8, and 16, respectively.

In the vertex-centered finite element scheme, computation is associated with cells

while degrees of freedom (dofs) are associated with vertices. Figure 2 depicts the

global view on each grid Ω1,Ω2, and Ω3. The dashed line that separates processor 0

(P0) and processor 1 (P1) marks the subdomains for a dof-partition. That means, for

example, on Ω3 – grid level three – vertex-based values are stored in P0 for vertices

{0, 1, . . . , 7}, and they are stored in P1 for vertices {8, 9, . . . , 16}.

But, as mentioned before, the partitioning used is a non-overlapping element

space. With respect to subdomains, it means that on Ω3, the subdomain “owned”

by P0 is [0, 8), and P1 owns [8, 16]. By convention, a processor owns the vertices at

the low boundary of its subdomain (Ω3: P0 owns node {0}, P1 owns node {8}). By

implication, a processor does not own the vertices at its high boundary (Ω3: P0 does

11



Figure 2: Global spaces

not own node {8}). An exception to that are the processors at the global high bound-

ary that do not have a “right neighbor”. They own the global boundary vertices, too

(Ω3: P1 owns node {16}).

As a consequence, overlapping writes for the vertex-based residuals are needed for

the grid nodes at the interface. This is illustrated with the local view of the processors’

subdomains shown in Figure 3. The local domains pΩk are the owned part of the grid

plus any ghost points. At the same time, we define a local computing domain pΩc
k,

which is essentially the same as the local domain except the global boundaries. For

example, on grid level three, P0 computes cells in 0Ωc
3 = (0, 8] (global space: (0, 8]),

which means that no vertex-based values are written to the global boundary node

{0}. P1 computes in 1Ωc
3 = [0, 8) (global space: [8, 16)), and vertex {8} (global

space: {16}) remains unchanged. To compute a correct vertex-based residual, the

values from P0 and P1 at node {8} (in global space) have to be added; this is the

overlapping write that was mentioned before. Thus, the algorithm switches from

global to local space to apply the discrete operator, and then it goes back to global

space and adds up vertex-based values at the inner boundaries of the non-overlapping

element partition. This notion changes for segmental refinement spaces (5.2), since

updating ghost points and overlapping writes both require communication between

neighboring processors.
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Figure 3: Local spaces

4.1.3 Communication

Communication is required for almost all operations in the full multigrid algorithm.

Switching from local to global or global to local space requires information from

neighboring processors, and so do the application of the preconditioner and discrete

operator, pre- and post-smoothing, prolongation of the solution or restriction of the

residual. For these communication routines, the multigrid solver uses PETSc Star

Forests ; a star being a simple tree consisting of a root connected to n ≥ 0 leaves.

This model is less general than an arbitrary bipartite graph, but it is sufficient for

the communication needed in HPGMG-FE. A Star Forest that can be used for pro-

longation and restriction is discussed in the next section. Additional Star Forests for

neighbor-scatter (exchange of ghost regions) and global injection are illustrated in

A.2.

4.2 Grid Transfer

Grid transfer operators are needed to switch between global and local space as well

as for prolongation and restriction. Injection (3.2.1) from local fine space to global

coarse space is done by the Star Forest depicted in Figure 4. The roots of this Star
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Forest are the coarse grid points in the global space and the leaves are the C-points on

the local fine grid, including those that are ghost points. This communication routine

can be used for prolongation where values are broadcasted from roots to leaves or for

restriction where values are reduced from leaves to roots.

Figure 4: Star Forest for local fine to global coarse injection

4.3 Problem and Solver Setup

The model problem is the Poisson equation. The coarse grid solver is the precondi-

tioned conjugate gradient method; preconditioning is done with the diagonal (Jacobi

preconditioner). The diagonal is precomputed during the setup phase and this is not

part of the timed benchmark. Smoothing is done with Chebyshev polynomials, pre-

conditioned by the diagonal. Furthermore, the implementation uses Gauss-Legendre

quadrature, which is 5th-order accurate for Q2 elements and 3rd-order accurate for

Q1 elements.

The Poisson test problems are constructed, smooth problems with known solu-

tions. The following three test cases are considered:
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Wave:

u(x1, x2, x3) =
3∏

i=1

(
x4i − x2i + 2x3i − 2x5i

)
(7)

Sine:

u(x1, x2, x3) =
3∏

i=1

sin (R(i)πxi) , R = {1, 2, 3} (8)

Hump:

u(x1, x2, x3) = (tanh(x1) + log(1 + x2) + exp(−x3))
3∏

i=1

sin (πxi) (9)

Two-dimensional plots of the exact solution with independent variables x1, x2 in

Ω = (0, 1)2 for Wave, Sine, and Hump are shown in Figure 5, 17, and 18, respectively.

Figure 5: Solution of the two-dimensional wave problem
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CHAPTER 5

SEGMENTAL REFINEMENT: IMPLEMENTATION

In this chapter, the segmental refinement multigrid scheme is introduced conceptu-

ally. Then, the scope of the implementation and the notation for segmental refinement

spaces are defined. The main part is a detailed description of the segmental refine-

ment implementation, including a discussion of the buffer schedule, the concept of

frozen nodes, and specifics of the grid transfer between segmental refinement and

conventional multigrid levels.

Figure 6: Segmental refinement F-Cycle

Figure 6 shows a sketch of the segmental refinement F-Cycle similar to the conven-

tional full multigrid scheme in Figure 1. In this example, the grid hierarchy consists

of five levels in total. The dashed line separates the three conventional levels Ω1,Ω2,

and Ω3 from the two segmental refinement levels Ω4 and Ω5. In general: let S denote

the number of segmental refinement levels. Then, there are M − S non-segmental

refinement or conventional levels, and the S finest levels are segmental refinement

levels, i.e., grid levels ΩM ,ΩM−1, . . . ,ΩM−S+1. The Transition Level is the finest con-

ventional level: ΩM−S, e.g., Ω3 in Figure 6. In addition to the normal grid index
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(k = 1, 2, . . . ,M), a segmental refinement index (q = 0, 1, . . . , S) is defined, which is

zero on the transition level by convention - as shown in Figure 6 on the left.

In this implementation, the dashed line also separates the part of the algorithm

where communication is allowed and where it is avoided. In fact, on the transition

level and below, the implementation computes the conventional algorithm without

any changes in the code. Segmental refinement only requires changes in the code

on segmental refinement levels and in the transfers between transition level and the

first segmental refinement level. Whether communication is allowed (or necessary) in

those grid transfers depends on the definition of the segmental refinement spaces and

the local spaces on the transition level. Here, communication is used for prolongation

and restriction between transition level and first segmental refinement level, which

will be discussed in more detail in 5.3.

5.1 Scope of the Implementation

The structural layout for the segmental refinement implementation should be similar

to the original HPGMG finite element code so that the conventional scheme and

segmental refinement can be run in the same framework. This approach drives the

scope and design of the implementation along with some additional restrictions for

this first version of the code:

· Segmental refinement is currently implemented for Q1 elements but not for

higher-order discretizations. Extending the implementation to Q2 elements will

be part of the second version.

· Results for one buffer strategy are presented: a maximum buffer schedule that

is fully defined by the size of the buffer on the transition level and which grows

corresponding to the multigrid refinement ratio. Additional static and dynamic

buffer strategies are discussed in 5.2.2. The setup principally enables the use of

advanced buffer schedules; preliminary results are not included in this work.
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· The buffer size is restricted such that the exchange of the buffer points between

the transition level and the first segmental refinement level can be done without

increasing the number of locally “known” processes defined for a conventional

multigrid solve. This is necessary to limit the scope of the Star Forest communi-

cation routines to communication within a local neighborhood of 27 processors.

Consequently, for every level and in each dimension, the buffer may not be

larger than the size of any neighboring (owned) subdomain in the respective

level and dimension. Note that, at least in the context of the maximum buffer

schedule, this is a reasonable restriction to the buffer size anyway.

· The process grid is not further refined on segmental refinement levels; that

is, one segmental refinement subdomain is assigned to exactly one processor

and will not be split between processes later during the computation. This

strategy eliminates all inter-processor communication on segmental refinement

levels but naturally it limits the total number of segmental refinement levels in

practice due to storage limitations for each individual process. An alternative

strategy would be a data model where the segmental refinement domain is split

up again on a local process grid, which is a compromise with regard to reducing

communication in the scheme, but it allows to further increase the number of

segmental refinement levels in practice.

5.2 Subdomains and Notation

Since grids on the transition level and below are defined as conventional multigrid lev-

els, the same subdomains and notation can be used for this part of the algorithm. On

segmental refinement levels, the global spaces introduced in 4.1 for the conventional

solver also remain unchanged. New spaces and notation only have to be introduced

for the local spaces that contain the buffer or ghost region.
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5.2.1 Local Space

In the conventional scheme, the local spaces were fully defined by the local domain

pΩk and the compute region pΩc
k. In segmental refinement, two new spaces are added:

the valid region pΩv
k and the ghost region pΩg

k. The valid region corresponds to the

owned part of the grid defined by the partitioning of the global space; it contains

the valid part of the global solution while the buffer region outside can be seen as

“outdated” during the computation. The ghost region contains everything of the

local domain outside the valid region, that is, pΩg
k ≡ pΩknpΩv

k. The definition of

the compute region and the local domain itself has not changed, but they are both

enlarged by the growth of the ghost region, which was previously only a single layer

of vertices at the high boundary. Table 1 gives an overview of the spaces that define

the subdomains on segmental refinement levels.

Table 1: Definition of global and local spaces on segmental refinement levels

Ωk Global domain on level k
pΩk Local domain of processor p on level k
pΩc

k Compute region
pΩv

k Valid region
pΩg

k Ghost region

Figure 7 is a sketch of three grid levels: a transition level Ω1 and two segmental

refinement levels Ω2 and Ω3. For Ω3, the definition of the local spaces is illustrated for

both processors P0 and P1. Compared to the original local spaces (cf. Figure 3), the

local segmental refinement spaces are extended by the new ghost region. The spaces

are element-partitioned, but values for the solution and residuals are vertex-based.

Thus, each space we compute on also defines whether vertex-based values at the low

and high boundary are included or excluded when writing values to vertices, which

is marked by a filled square or framed square, respectively, in Figure 7. For example,

the compute region excludes vertices at the global boundaries, because those values
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are not overwritten at any point and the vertex-based residuals are zero. A similar

case applies to frozen boundary nodes, which is discussed in 5.2.3. Table 2 shows the

exact numbers for P0’s spaces on all three grid levels in Figure 7.

Figure 7: Local spaces on segmental refinement levels

Table 2: P0’s global and local spaces on Ω1,Ω2, and Ω3 (Figure 7)

Ω3 [0, 16] Ω2 [0, 8] Ω1 [0, 4]
0Ω3 [0, 12] 0Ω2 [0, 6] 0Ω1 [0, 2]
0Ωc

3 (0, 12) 0Ωc
2 (0, 6) 0Ωc

1 (0, 2)
0Ωv

3 [0, 8) 0Ωv
2 [0, 4)

0Ωg
3 [8, 12] 0Ωg

2 [4, 6]

5.2.2 Buffer Schedule

Having defined the local spaces, we can now discuss one of the most important parts

of the segmental refinement multigrid scheme: The Buffer Schedule.

The buffer schedule defines the size of the ghost regions for each segmental refine-

ment level. Therefore, it impacts almost every aspect of the segmental refinement

solver. The solver accuracy depends on the errors that propagate from the finite
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buffer into the valid part of the domain, and the additional computational work di-

rectly corresponds to the overhead associated with buffer computation. The goal is to

find buffer schedules that minimize the computational overhead while still providing

an accurate multigrid scheme. We would also like to find a buffer strategy that allows

for an asymptotically exact solver, which is addressed in 6.2.

A general expression for the buffer schedule is

J(q) = a+ bq + cq2 + . . .+ e(mq),

where J(q) denotes the extent of the buffer in each dimension on the segmental

refinement level q. The “components” of the buffer schedule are defined in Table 3:

Table 3: Components of the buffer schedule

a Static buffer

bq Linear buffer

cq2 Quadratic buffer
...
e(mq) Exponential buffer

The coeffcients a, b, c, . . ., can be any integer number: positive, negative, or zero; in

practice, certain requirements have to be met to assert a valid buffer schedule. For

example, the buffer must not grow faster than the refinement ratio of the multigrid

scheme:

J(q + 1)

J(q)
≤ r ,

where r is the grid refinement ratio. Otherwise, the local domain on the segmental

refinement level would have to grow during the prolongation, which in turn required

communication. Thus, this simply means that for each processor the fine grid cannot

cover a larger subdomain than the coarse grid. Of course, the buffer must also not

be zero or negative. Additionally, we defined the requirement that the buffer must

not be larger than any neighboring processor’s valid region to limit communication
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to a local neighborhood on the process grid (cf. 5.1). One last requirement that is

not necessary but recommended is that the size of the buffer is a multiple of the grid

refinement ratio; in other words, the buffer region should end with a C-point. For

the common grid refinement ratio of two, this implies that the extent of the buffer

should be an even number. The reason for that has to do with the accuracy of the

frozen nodes and is discussed in 5.2.3.

The Maximum Buffer Schedule causes the buffer to grow at the same rate as the

grid refinement: J(q) = e(rq). This is simply a special case where all coefficients

a, b, c, . . . of J(q) are zero except for the exponential buffer (e > 0), and m = r. That

implies that each segmental refinement level spans the same subdomain of the grid.

Hence,

Maximum Buffer Schedule ≡ Constant Buffer Domain.

Any other buffer schedule can be called a dynamic buffer schedule, because the

part of the domain spanned by the segmental refinement buffer changes from level to

level:

Dynamic Buffer Schedule ≡ Variable Buffer Domain.

If a is the only non-zero coefficient, then we get a constant buffer size, that is,

the number of grid points in the buffer is constant for each level. If a dynamic buffer

schedule is selected, we need to define another local space in the segmental refinement

scheme, which may be called the support region
p
Ωf

k [4]. This would be the region of

the subdomain that is covered by both coarse and fine grid, i.e.,
p
Ωf

k ≡ pΩk ∩ pΩk+1.

The support region includes only a part of the segmental refinement buffer on pΩk,

since the next finer grid pΩk+1 has a smaller buffer domain than the grid on level k

due to the dynamic buffer schedule. It is called support region, because for this part

of the domain, the fine grid can support the coarse grid with information such as the

fine grid residual. The “unsupported” part of the buffer, which is given by pΩk\
p
Ωf

k ,

cannot compute τ -corrections or receive residuals from the fine grid, which may cause
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additional errors in the solution. From here on, only the maximum buffer schedule

will be considered, if not mentioned otherwise.

5.2.3 Frozen Nodes

A special case are the interior boundaries of the segmental refinement subdomains

which are not global boundaries. As any communication is avoided on segmental

refinement levels, the computation at segment boundaries has to be considered care-

fully, because this is where the additional errors originate due to the lack of updates.

For example, in the one-dimensional case (see Figure 7), at the right boundary of P0,

the computation of a vertex-based residual would require information from the ele-

ment to the left and the element to the right. Since the right element is not available

at this point, the residual cannot be computed correctly. To deal with this issue, the

value of the outer boundary points will be “frozen” during the segmental refinement

computation. That is, they are set during the prolongation from the transition level

to the first segmental refinement level and remain unchanged on finer levels. In the

implementation, this is realized by setting the vertex-based residual to zero at frozen

nodes and “pretending” that the solution there was accurate. The reason why the

frozen nodes should be C-points comes from considerations about the accuracy of the

scheme. Since values at the frozen nodes should be as accurate as possible, it is recom-

mended not setting those values by interpolation in order to avoid the interpolation

error. The frozen nodes are updated exactly once per V-Cycle in the prolongation

operator after receiving the corrected values from the neighboring processors during

the conventional solve on the transition level.

5.3 Transition Level

The transition level plays a special role in the segmental refinement scheme. While

the discretized problem on the transition level itself is solved with the conventional

multigrid algorithm, there are several points that need to be addressed in the grid
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transfer between the transition level and the first segmental refinement level.

5.3.1 Prolongation

In the finite element code, the prolongation operator is implemented by performing an

injection for the C-points followed by interpolation for the F -points on the fine grid.

The first special case is the initial guess on the first segmental refinement level. This

case is relatively simple to handle: the injection operator uses a modified Star Forest

that populates all C-points on the fine grid, including those in the ghost region and

the frozen nodes. The roots are the coarse grid points in the global space similar to the

conventional injection operation. An example is illustrated in Figure 8. Note that, in

this example, node {6} in 0Ω2 and node {0} in 1Ω2 are frozen nodes, which are set in

this prolongation and then kept throughout the computation until this prolongation

is done again in the FAS correction of the next V-Cycle. The FAS correction on the

first segmental refinement level is more subtle than setting the initial guess and is

discussed in detail in 5.3.3.

Figure 8: Injection between transition level and first segmental refinement level

5.3.2 Restriction

In the restriction, there are also two different cases that need to be considered: firstly,

the restriction of the state vector (solution u) by injection, and, secondly, the restric-

tion of the residual. In both cases, the restriction can be done entirely without
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communication or with some communication for the vertices at the interface. In Fig-

ure 8, node {2} on the global grid on the transition level Ω1 is at the interface between

P0 and P1. The state vector can be restricted by using either value {4} or {2} on the

local fine grids 0Ω2 or 1Ω2, respectively, or by averaging those values. Communica-

tion is only avoided completely by choosing the local fine grid value that resides on

the processor that owns node {2} on the transition level (P1). This corresponds to

injecting the C-points in the valid region of the local fine grid into the global coarse

grid. In the experiments, we could not find a significant difference in the accuracy of

the proposed techniques and hence decided to use the communication-avoiding op-

tion. This choice may be revisited if found to have an impact on the accuracy of the

scheme.

In the restriction of the residual, the point at the interface needs information from

the respective C-point on the fine grid and the neighboring F-points, too. For node

{2} in Figure 8, the information could be collected from vertices {3}, {4}, and {5}

on 0Ω2, or from vertices {1}, {2}, and {3} on 1Ω2, or from both grids in some way.

While using solely information from 1Ω2 would avoid all communication, it was found

in the experiments that the better results are obtained by aggregating values from

all subdomains at the interface. In this example, the vertex-based residual would be

calculated based on the values at node {3} on 0Ω2 as well as vertices {2} and {3} on

1Ω2.

The accuracy of the restriction in all these cases certainly depends on several

factors such as the buffer schedule or the smoothness of the solution at the interface.

A more detailed study on the effects of the different choices presented did not seem

justified due to the apparently small effect on the overall accuracy of the solver, at

least for linear problems. A much more significant impact appears to come from the

strategy for the FAS correction on the first segmental refinement level.
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5.3.3 FAS Correction

To discuss the issue with the FAS correction on the first segmental refinement level,

we need to revisit the multigrid FAS algorithm and look at what happens in this

specific case. Recall that, after restricting the solution, the FAS V-Cycle solves the

following equation on the transition level Ωk:

Lkuk = Lk(Îkk+1uk+1) + Ikk+1rk+1 , (10)

where rk+1 is the residual computed on the fine grid Ωk+1, which is the first segmental

refinement level in this case. Hence, new components in the solution uk will be

computed based on the restricted fine grid residual. After the V-Cycle, FAS correction

typically corrects the fine grid solution with the correction equation

uk+1 = uk+1 + Ik+1
k (unewk − uoldk ) , (11)

where uoldk and unewk are the solution before and after the V-Cycle, respectively. The

problem here are the segmental refinement buffers. We already discussed that the

frozen nodes should have a full update of the solution, but the remaining nodes in

the buffer may be inaccurate, too, if the FAS correction is applied this way.

Figure 9 illustrates the computation of the restricted fine grid residual for node

{5} on the transition level Ωk. Since the residual at that point is based on the residual

values at nodes {5}, {6}, and {7} in 1Ωk+1, the FAS correction computed at {5} in

Ωk is intended as a correction to the values at nodes {5}, {6}, and {7} in 1Ωk+1. The

old values in the ghost region of 0Ωk+1 at nodes {9}, {10}, and {11} receive the same

corrections in the prolongation operator (cf. Figure 8). But usually, the values in the

buffer region are significantly more inaccurate than the values in the valid region,

which means, they have different residuals and thus would need different corrections

than the values in the valid region.

In order to address this problem, one could either compute different corrections

for ghost and valid region or update the ghost values and apply the same corrections.
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Figure 9: Fine grid residual restriction on the transition level

In both cases, the ghost region would then receive accurate FAS corrections. In the

ghost update, one also has the choice to either only update the C-points and thereby

avoid communication on the first segmental refinement level but introduce additional

interpolation errors in the F -points or update the F -points in the ghost region as well

to set them equal to the nodes in the valid region for the best accuracy.

Based on the experiments, we recommend to do a full update of at least all the

C-points in the buffer region of the first segmental refinement grid instead of using

the conventional FAS correction.

5.4 Algorithm

Finally, the algorithm can be formally defined, including the spaces that each operator

works on. Both parts of the scheme, the recursive F-Cycle and the recursive FAS V-

Cycle, are executed on segmental refinement levels only, and they call the conventional

algorithm when they reach the transition level (k = M − S or q = 0). Note that

the details of restriction and prolongation on the transition level are not explicitly

dealt with in the V- and F-Cycle algorithms in 5.4.1 and 5.4.2 but are expected to

be implemented as part of the respective operator.
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5.4.1 Segmental Refinement V-Cycle

Algorithm 3 Multigrid segmental refinement FAS V-Cycle

MGVCycleSR(Lk, uk, fk, q) {
if (q = 0) MGVCycle(Lk, uk, fk) · Call conventional V-Cycle
else

Sv1(Lk, uk, fk) · Pre-smoothing, pΩc
k

rk ← fk − Lkuk · Compute residual, pΩc
k

uk−1 ← Îk−1k uk · Inject solution, pΩk−1
rk−1 ← Ik−1k rk + Lk−1uk−1 · Restrict residual + FAS, pΩc

k−1
ck−1 ← uk−1 · Store coarse grid, pΩc

k−1 ∪ pΩg
k−1

MGVCycleSR(Lk−1, uk−1, rk−1, q − 1) · Recursive call
uk ← uk + Ikk−1 (uk−1 − ck−1) · FAS correction, pΩc

k ∪ pΩg
k

Sv2(Lk, uk, fk) · Post-smoothing, pΩc
k

}

5.4.2 Segmental Refinement F-Cycle

Algorithm 4 Multigrid segmental refinement F-Cycle

MGFCycleSR(Lk, uk, fk, q) {
if (q = 0) MGFCycle(Lk, uk, fk) · Call conventional F-Cycle
else

MGFCycleSR(Lk−1, uk−1, fk−1, q − 1) · Recursive call
uk ← Πk

k−1uk−1 · Set initial guess, pΩc
k ∪ pΩg

k

MGVCycleSR(Lk, uk, fk, q) · Perform V-Cycle
}
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CHAPTER 6

SEGMENTAL REFINEMENT: ANALYSIS

In this chapter, we intend to provide insight into the relations and asymptotics of the

segmental refinement parameter space through collecting experimental data. We also

address the communication and computation complexity in the segmental refinement

algorithm. The Q1 finite element scheme is second-order accurate. The results pre-

sented in this chapter were computed for the three-dimensional Poisson wave problem

defined in 4.3, eq. (7).

6.1 Parameter Space

The results we are interested in are the accuracy, scaling, running time, and commu-

nication and computational work of the scheme. While the accuracy of the algorithm

fully depends on a set of independent variables specified in the segmental refinement

scheme, the scaling and running time for example both need to be considered in the

light of the machine model, which will be discussed in 7.

The independent variables of the scheme are the buffer schedule J(q), the process

grid P , the finest grid size M , and the number of segmental refinement levels S.

Because the buffer is the maximum buffer schedule, it is uniquely defined by the

size of the coefficient e (or the size of the buffer on the first segmental refinement

level: 2e). Hence the parameter space is four-dimensional. Other variables that may

be of interest, such as the subdomain size on the transition level, are unequivocally

specified through the other variables.

The accuracy of the scheme is measured with the error ratio er, defined as

er = esr/econv, (12)

where esr and econv are the error of the segmental refinement solver and the con-

ventional solver, respectively, in some norm. Note that the preferred method to
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determine the segmental refinement accuracy may be application-specific. Here, we

consider the solver to be sufficiently accurate, if the error of the segmental refinement

scheme is not more than 10% above the conventional solver error, i.e., er ≤ 1.1. The

error is computed as the difference between the numerical solution and the known

exact solution. The norm is not specified closer at this point and will be mentioned

explicitly for the presented results. Generally, the error norms used are a weighted

L2 norm and the maximum (L∞) norm. Both norms clearly show a reduction of

the error according to the second-order accuracy in the conventional scheme with a

V (3, 1)-Cycle. This choice is used for the computation in the conventional and the

segmental refinement solver.

6.2 Experiments and Observations

We first look at the results for a fixed process grid P = [2 2 2], three segmental

refinement levels, and a fixed small buffer schedule of e = 1. The results for varying

subdomain sizes are shown in Table 4. We show the size of the valid region of the

subdomain on the finest grid denoted by Mp. The global grid size is denoted by

M . Both variables represent the extent of the respective grid in each of the three

dimensions. That is, M = 32 refers to the global grid M = [32 32 32] that has 333

vertices. The variable p is used in the same way, i.e., p = 4 refers to the process grid

P = [4 4 4].

The dependency on the subdomain size follows a similar trend for all three prob-

lems and the range of tested process grids as well as different buffers and numbers

of segmental refinement levels. We observe that the relative error er increases with

increasing subdomain size.

Adams [4] observed a dependency on the subdomain size on the transition level,

too, but the dependence is just the other way around; that is, in [4], the error ratio er

improves for increasing subdomain sizes. Possible explanations for this discrepancy
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Table 4: Error ratio er = esr/econv in the L2 norm: S = 3, e = 1, P = [2 2 2]

M = 32 M = 64 M = 128 M = 256
Mp = 16 Mp = 32 Mp = 64 Mp = 128

1.00 1.10 1.23 1.46

could be that segmental refinement may be particularly sensitive to the order of

prolongation, because it is used to set the frozen nodes in the ghost region, or to the

computation of the segment boundaries. This point should therefore be investigated

further as it clearly affects the accuracy of the scheme.

The dependence on the subdomain size can be seen in Table 5 as well. This table

also shows some of the expected dependencies on the size of the buffer and the number

of segmental refinement levels: generally, the more segmental refinement levels are

used, the larger the buffer must be for the scheme to be accurate. Corresponding

to the subdomain size dependency, the buffer has to grow slightly for a constant

number of segmental refinement levels to accomodate the increase of the error ratio

for increasing M . For example, with three segmental refinement levels, the scheme

yields accurate results for M = 128, e = 3, but as the subdomain size is increased

and M = 512, the scheme needs a buffer of e = 4 to obtain sufficient accuracy.

Table 5: Error ratio er = esr/econv in the L2 norm: P = [4 4 4]

M = 64 M = 128 M = 256 M = 512

S = 1 S = 2 S = 2 S = 3 S = 2 S = 3 S = 3 S = 4

e = 1 2.3 2.6 3.4 10.4 6.1

e = 2 1.0 1.0 1.0 4.0 1.0 13.2

e = 3 1.1 1.0 2.1 4.8 6.9

e = 4 1.0 1.0
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Figure 10 shows for a process grid of eight processors how the error affects conver-

gence in the segmental refinement scheme. In this example, there are four segmental

refinement levels and the transition level subdomain size is 4 in each dimension. The

plot shows the error on a log-log scale with the grid dimension on the x-axis. The

segmental refinement solver with buffer e = 1 and e = 2 is compared to the 2nd-order

accurate conventional solver.

The final error ratios are 3.08 and 1.26 for the buffer with e = 1 and e = 2,

respectively. The plot shows that with the smaller buffer, the scheme is 2nd-order

accurate for two segmental refinement levels, then loses some accuracy on the third

and most of its accuracy on the very last level. The larger buffer yields similar

results: the scheme is accurate for three segmental refinement levels and differs from

the conventional scheme only on the finest grid level. This observation indicates that

the errors from the buffer region need a certain time to reach and affect the valid

region of the subdomains, and it matches the results we obtained with Adams’ finite

volume segmental refinement solver.

Figure 11 shows a similar plot for a refined process grid with 64 segments in total

and three segmental refinement levels. As indicated by the results in Table 5, the

solver needs the e = 3 buffer for sufficient accuracy. But the behavior we observed in

Figure 10 for the coarser process grid is alike: convergence starts to degrade somewhat

at some segmental refinement level and then degrades much stronger if the segmental

refinement is continued on finer grids.

With regard to the asymptotic exactness of the solver, we aim to find a buffer

strategy that theoretically allows unlimited adding of segmental refinement levels.

Consider the approach: M ′ = 4M , S ′ = S + 1, e′ = 2e, and a constant process grid.

This effectively doubles the subdomain size on the transition level, increases the

number of segmental refinement levels by one, and doubles the size of the buffer on

the first segmental refinement level which in turn preserves the ratio of buffer size to
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Figure 10: Error in the L2 norm for segmental refinement on process grid P = [2 2 2]

subdomain size and therefore has the same computational overhead on each segmental

refinement level as before.

For example: consider an accurate setting with S = 2 segmental refinement levels

and buffer e = 2 for a fine grid M = 256 with process grid p = 4. Then, a third

segmental refinement level can be added by using M = 1024, S = 3, e = 4, which has

the same computational overhead for each segmental refinement level as the two-level

segmental refinement previously. Continuing this approach, we would add a fourth

segmental refinement level for M = 4096, e = 8, then a fifth for M = 16384, e = 16,

and so on. This seems to yield an asymptotically exact solver based on the data

collected during the experiments. The approach is rather theoretical, because larger

problem sizes will usually be tackled with more processors due to memory and time

constraints. Thus, we now look at the error ratios for more practical scenarios where

the number of processors increases as well.
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Figure 11: Error in the L2 norm for segmental refinement on process grid P = [4 4 4]

In this scheme, scaling up the number of processors does not allow for an asymp-

totically accurate solver which is adding successively more and more segmental refine-

ment levels - at least not while having a constant subdomain size on the transition

level. The reason is that for an accurate solution, the buffer will have to be in-

creased when adding more segmental refinement levels, and this is only possible up to

a point where the buffer region on the transition level covers the entire neighboring

subdomain. Instead, we look at how the error depends on the process grid in the

scaling scenario. Table 6 shows the error ratios for two segmental refinement levels

and refined process grids with different buffer sizes. As expected, the refined process

grids require larger buffers to be accurate, since with every refinement, the number of

segments and segment boundaries with frozen nodes grows as well. In this example,

doubling the number of segment in each dimension requires an increase of 1 in the

buffer coefficient e.
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Table 6: Error ratio er = esr/econv in the L2 norm for S = 2

M = 64 M = 128 M = 256 M = 512

p = 2 p = 4 p = 8 p = 16

e = 1 1.2 3.4

e = 2 1.0 1.0 1.6

e = 3 - - 1.1 1.5

e = 4 - - - 1.0

For further refined process grids, this appears not to be necessary, because at

some point the buffer should be large enough to guarantee an accurate solution for a

certain number of segmental refinement levels independent of the process grid that is

used. Table 7 shows some indication of that; the scheme yields equivalently accurate

results for three segmental refinement levels for a buffer of e = 4 for both process

grids P = [8 8 8] and P = [16 16 16].

Table 7: Error ratio er = esr/econv in the maximum norm for S = 3

M = 128 M = 256 M = 512 M = 1024

p = 2 p = 4 p = 8 p = 16

e = 1 1.0 19.3

e = 2 1.0 8.1 38.6

e = 3 - 1.2 6.5 24.3

e = 4 - - 1.0 1.0

e = 5 - - - 1.0
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6.3 Communication and Computation Complexity

Clearly, the maximum buffer schedule is not a very practical buffer, because it grows

exponentially with the segmental refinement subdomain according to the grid refine-

ment ratio. On the other hand, the relative cost, i.e., the relative overhead for buffer

computation vs. computation in the valid part of the domain, does not increase. The

maximum buffer is interesting, since it provides sort of a baseline that more practical,

dynamic buffers should try to reach in terms of accuracy while doing substantially

less work.

For typical problem sizes per processor and with the maximum buffer schedule,

the subdomain size was usually extended by factors between 1.125 and 1.5 in the

experiments. For three-dimensional problems, this corresponds to an increase of

1.42 up to 3.38 in computational work on the first segmental refinement level. This

could likely be compensated by a non-exponential dynamic buffer schedule, where

the relative overhead decreases exponentially with every segmental refinement level;

with the maximum buffer schedule though, the overhead remains constant, which

corroborates that this buffer schedule should be thought of as a baseline for the

analysis of segmental refinement accuracy but not for improving the running time.

The relative computational overhead on a segmental refinement level could then be

written as (2J(q) + pΩv
M−S+q)

3/(pΩv
M−S+q)

3, where pΩv
M−S+q refers to the size of the

valid region of the subdomain on the q-th segmental refinement level per dimension,

assuming cubic subdomains.

Different segmental refinement data models have been proposed an analyzed by

Brandt [12], Mohr [17], and Adams [4], including more refined approaches to distin-

guish between far and near-communication for different memory partitions. Here, we

only briefly discuss the inter-process communication which is avoided but also added

by segmental refinement. A comprehensive memory complexity analysis for multi-

level segmental refinement supported by detailed timing data from different machine
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models is yet to be done.

Inter-process communication is avoided during the computation on all segmen-

tal refinement levels and in the grid transfers between segmental refinement levels.

Additional communication occurs in the prolongation between transition level and

the first segmental refinement level for filling (or correcting) the buffer values and

thus depends on J(1). For example, an update of the C-points on the first seg-

mental refinement level “costs” (pΩM−S + 2(J(1)/2))2(J(1)/2) for one “ghost face”

of a cube subdomain with refinement ratio two, assuming the same process grid on

transition level and first segmental refinement level. In the three-dimensional case,

for each transition level prolongation, the inter-process communication is slightly less

than six times that value. As discussed in 5.3, further communication may occur on

the transition level depending on the strategy for restriction of the residual and the

solution.
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CHAPTER 7

SCALING STUDIES

Scaling was tested on Edison1 (Cray XC-30 at NERSC). Each node of Edison has 2

sockets containing 12-core Intel “Ivy-Bridge” (E5-2695v2) processors. Each core has a

256 bits wide vector unit. Edison uses the Cray Aries network, a high-radix dragonfly

network; the MPI latency is between 0.25µs and 3.7µs and the MPI bandwidth is

about 8GB/s. With this configuration, Edison performs very well on conventional

multigrid algorithms in terms of scaling compared to other supercomputers that have

a slower network. For example, the HPGMG finite volume benchmark found that

Edison performs up to three times better than NREL’s Peregrine2 while the HPL

benchmark3 showed a difference of only 20% in performance. Both machines use an

identical Xeon-based node architecture, but where Peregrine uses an Infiniband fat-

tree network, Edison uses a Cray Aries Dragonfly network. Therefore, it is important

to consider which machine the communication-avoiding implementations are tested

on, because the scaling results may highly depend on it. In this section, we show

results only for Edison; for a larger scaling study, different machine models should be

taken into consideration.

In the HPGMG finite element implementation, the computation of the diagonal

has not been optimized and is not a timed part of the benchmark. For measuring

scalability, the solver is preloaded with one solve to “warm up” followed by eight

timed solves.

Figure 12 shows weak scaling results on Edison. In this weak scaling study, the

extent of the local fine grid per process is 323. The number of cores reaches from

1http://www.nersc.gov/users/computational-systems/edison/configuration
2http://hpc.nrel.gov/users/systems/peregrine
3http://www.netlib.org/benchmark/hpl
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64 to 4096. The y-axis shows parallel efficiency; process grid P = [4 4 4] serves as

a baseline, because it includes “interior” processes that do not reside at any global

boundary on the finest grid. Segmental refinement multigrid was run with two and

three segmental refinement levels. Adams [4] found that segmental refinement caused

a modest increase in scalability which appears to be the case for sufficiently large

process grids here as well. The cross-over between two and three segmental refinement

levels in Figure 12 may be due to limited sample size.

Figure 12: Weak scaling on Edison

For the same study, we show the running time in Figure 13. The plot shows

that for small subdomains (M = 32), the maximum buffer schedule increases the

runtime significantly, especially for three or more segmental refinement levels, because

of the computational overhead (cf. 6.3). Adams [4] finite volume solver, which is more

memory bandwidth-intensive, achieved better runtime results with the dynamic buffer

schedule on Edison, but the segmental refinement solver also does not outcompete

39



conventional full multigrid.

Figure 13: Runtime on Edison
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CHAPTER 8

CONCLUSION

We have showed that segmental refinement can be used to avoid inter-process com-

munication on the finest grids in a parallel multigrid F-Cycle algorithm. The first

version of the vertex-centered finite element implementation is publicly accessible1.

The implementation is currently under development; the second version will support

segmental refinement with higher-order discretization (Q2 elements) as well as a dy-

namic buffer schedule. A preliminary version of one-level evanescent data segmental

refinement - a low-memory version of the method - is also available.

An interesting approach for future work would be to quantify savings in time

from the avoided communication vs. the overhead in computational work for different

machine models that either reward compute-intense or memory bandwidth-intense

applications. This may allow to specify the range of machine models that are likely

to perform better for conventional or segmental refinement multigrid. The scaling

results that we observed indicate that a competitive segmental refinement solver would

probably require a dynamic buffer schedule.

Additional research is required to further investigate the dependency of the ac-

curacy on the segmental refinement parameters, particularly with regard to the sub-

domain size on the transition level, where we observed a different dependence than

Adams for the cell-centered finite volume solver. This could be approached by exam-

ining the effect of higher-order prolongation to set frozen nodes in the buffer region

and analyzing the propagation of errors in the buffer depending on different grid

transfer operators and the local smoothness of the solution. A comparable study for

nonlinear test problems may provide new insight as well.

1http://bitbucket.org/shenneking/hpgmg-fe-sr
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APPENDIX A

FINITE ELEMENT IMPLEMENTATION

A.1 Q1 Reference Element

Figure 14: Q1 reference element
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A.2 Star Forests

Figure 15: Star Forest for global injection

Figure 16: Star Forest for neighbor scatter: exchange of ghost regions
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A.3 Poisson Test Problems

Figure 17: Solution of the two-dimensional sine problem

Figure 18: Solution of the two-dimensional hump problem
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