
INTERACTIONS IN MULTI-ROBOT SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Yancy J. Diaz-Mercado

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2016

Copyright© 2016 by Yancy J. Diaz-Mercado



INTERACTIONS IN MULTI-ROBOT SYSTEMS

Approved by:

Dr. Magnus Egerstedt, Advisor
Schlumberger Professor
School of ECE
Georgia Institute of Technology

Dr. Yorai Wardi
Professor
School of ECE
Georgia Institute of Technology

Dr. Anthony Yezzi
Julian T. Hightower Chair Professor
School of ECE
Georgia Institute of Technology

Dr. Hao Min Zhou
Professor
School of Mathematics
Georgia Institute of Technology

Dr. Aaron D. Ames
Associate Professor
Woodruff School of ME
School of ECE
Georgia Institute of Technology

Date Approved: March 30, 2016



To my wife and parents. Thank you for your support.



ACKNOWLEDGMENT

As the African proverb states that “it takes a village to raise a child,” the work in this disser-

tation was only possible due to the support of many individuals and the fruitful discussions

and collaborations that we held.

I want to first acknowledge my research advisor, Dr. Magnus Egerstedt. During my

PhD studies he was more than an advisor – he was a mentor and role model. He taught me

as much about doing research and the state-of-the-art as he taught me how to carry myself

professionally, teach, mentor others, and have fun doing what I do.

Many of the results presented here were achieved thanks to collaboration with brilliant

individuals who were gracious enough to share their research with me, and which led us

to achieve more than the sum of the parts. Jun Lu, who was a PhD student in the math

department, for allowing me to implement his beautiful stochastic difference equations on

our Quadcopters. Austin Jones, who was a momentarily a visiting PhD student and later

a post-doc at our lab, for bringing his formal methods expertise to my motion planning

framework and enabling perhaps the most interesting and extendable component of it. And

my good friend Sung Gun Lee, who pioneered our first results on coverage of time-varying

densities and allowed me to test my human-swarm interactions ideas using these results.

I want to thank the members of our lab, the Georgia Robotics and InTelligent Systems

Laboratory (GRITS Lab), for the many fruitful discussions through the years. I especially

appreciate the conversations I maintained with Thiagarajan Ramachandran, Daniel Pickem,

and Matt Hale, which often helped me out of mental roadblocks. I also want to thank the

more senior members who served as an inspiration and role models earlier in my studies:

Smriti Chopra, J.-P. de la Croix, Greg Droge, and Philip Twu.

Last, but most definitely not least, I want to thank my parents, Jose Diaz and Nilda

Mercado, for always believing in me, and Liz Bricel, my wife and world, for her constant

and unyielding support through this arduous process.

iv



TABLE OF CONTENTS

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Multi-Robot Systems and Applications . . . . . . . . . . . . . . . . . . . 4
2.2 Human-Swarm Interactions & Coverage Control . . . . . . . . . . . . . . 6
2.3 Multi-Robot Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 3 HUMAN-SWARM INTERACTIONS . . . . . . . . . . . . . . . 12
3.1 The Coverage Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Centralized Coverage of Time-Varying Densities . . . . . . . . . . . . . . 18
3.3 Distributed Coverage of Time-Varying Densities . . . . . . . . . . . . . . 23
3.4 Designing Density Functions . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Robotic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 4 MULTI-ROBOT MOTION PLANNING . . . . . . . . . . . . . 38
4.1 Inter-Robot Interactions in Multi-Robot Systems Using Braids . . . . . . 38
4.2 Braid Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Formal Synthesis of Braid Strings . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Non-Rectangular Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Implementing Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

CHAPTER 5 ROBOT NAVIGATION . . . . . . . . . . . . . . . . . . . . . . . 79
5.1 Shortest Path through 3D Cluttered Environments . . . . . . . . . . . . . 79
5.2 Trajectory Generation from Reference Paths . . . . . . . . . . . . . . . . 89

CHAPTER 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

v



LIST OF TABLES

Table 1 Complexity comparison to other algorithms . . . . . . . . . . . . . . . . 87

Table 2 Constraint compliance during Monte Carlo runs . . . . . . . . . . . . . . 96

vi



LIST OF FIGURES

Figure 1 Human-swarm interactions via coverage control . . . . . . . . . . . . . 14

Figure 2 Graphical user interface used to generate density shapes . . . . . . . . . 30

Figure 3 Approximation of desired density shape . . . . . . . . . . . . . . . . . . 31

Figure 4 User observes position of swarm and redirects it with the use of a tablet. . 33

Figure 5 Robotic implementation: coverage control using Gaussian functions . . . 34

Figure 6 GRITSBots influenced by the control of Gaussian functions HSI scheme 35

Figure 7 Robotic implementation: coverage of drawn densities . . . . . . . . . . . 36

Figure 8 Two-robot interactions and corresponding symbolic braids . . . . . . . . 41

Figure 9 Concatenated braids generators . . . . . . . . . . . . . . . . . . . . . . 42

Figure 10 Geometric interpretation of braid string . . . . . . . . . . . . . . . . . . 44

Figure 11 Hybrid STOP-GO-STOP braid controller . . . . . . . . . . . . . . . . . 48

Figure 12 Lower bound on the mixing limit using the Stop-Go-Stop braid controller 49

Figure 13 Braid string σ = σ1 · σ3 · σ2 taking place in varying number of braid steps 52

Figure 14 Safety separation region for three different geometry braids . . . . . . . 54

Figure 15 Upper bound on the mixing limit . . . . . . . . . . . . . . . . . . . . . . 57

Figure 16 Example product automaton . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 17 Shortest braid satisfying example specification . . . . . . . . . . . . . . 65

Figure 18 Agents braiding on a region that curves . . . . . . . . . . . . . . . . . . 66

Figure 19 Rectangular and non-rectangular regions . . . . . . . . . . . . . . . . . 67

Figure 20 Agents executing a braid over curved region . . . . . . . . . . . . . . . . 68

Figure 21 Robots executing an inter-agent interaction strategy . . . . . . . . . . . . 77

Figure 22 Braid controller robotic implementation data . . . . . . . . . . . . . . . 77

Figure 23 A robot’s footprint is approximated by a ball of radius r . . . . . . . . . 81

Figure 24 Shortest path with obstacles example . . . . . . . . . . . . . . . . . . . 81

Figure 25 Illustration of geodesic tangent direction . . . . . . . . . . . . . . . . . 83

vii



Figure 26 Step function example . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 27 Three shortest and the longest paths in an environment with obstacles . . 87

Figure 28 Shortest reference and actual robot’s paths . . . . . . . . . . . . . . . . 88

Figure 29 Robotic implementation of shortest paths in cluttered environments . . . 88

Figure 30 Tube representation of RNP constraints . . . . . . . . . . . . . . . . . . 90

Figure 31 ERLIN ONE arrival navigation chart . . . . . . . . . . . . . . . . . . . 95

Figure 32 Trajectories obtained from Monte Carlo simulations . . . . . . . . . . . 97

viii



SUMMARY

The objective of this research is to develop a framework for multi-robot coordination

and control with emphasis on human-swarm interactions and inter-agent interactions. We

focus on two problems: in the first we address how to enable a single human operator to

externally influence large teams of robots. By directly imposing density functions on the

environment, the user is able to abstract away the size of the swarm and manipulate it as

a whole, e.g., to achieve specified geometric configurations, or to maneuver it around. In

order to pursue this approach, contributions are made to the problem of coverage of time-

varying density functions.

In the second problem, we address the characterization of inter-agent interactions and

enforcement of desired interaction patterns in a provably safe (i.e., collision free) manner,

e.g., for achieving rich motion patterns in a shared space, or for mixing of sensor infor-

mation. We use elements of the braid group, which allows us to symbolically characterize

classes of interaction patterns. We further construct a new specification language that al-

lows us to provide rich, temporally-layered specifications to the multi-robot mixing frame-

work, and present algorithms that significantly reduce the search space of specification-

satisfying symbols with exactness guarantees. We also synthesize provably safe controllers

that generate and track trajectories to satisfy these symbolic inputs. These controllers allow

us to find bounds on the amount of safe interactions that can be achieved in a given bounded

domain.

ix



CHAPTER 1

INTRODUCTION

The objective of the research in this dissertation is to develop a framework for multi-robot

coordination and motion planning with emphasis on human-swarm and inter-agent inter-

actions. We focus on two problems: in the first we address how to enable a single human

operator to externally influence an arbitrarily-sized team of robots, e.g., so as to achieve

a specified geometric configuration, or to maneuver the swarm as a whole. In the second

problem we focus on the characterization of inter-agent interactions and enforcement of de-

sired interaction patterns in a provably safe (i.e., collision free) manner, e.g., for achieving

rich motion patterns in a shared space, or to exchange sensor information.

There are a number of applications and scenarios that motivate this work in control of

multi-robot systems. In Section 2.1, we present a number of multi-robot applications that

have been explored in the literature during the last few decades. Many of these applications

and technological trends have in common is the need for some form of coordination among

the agents in the multi-robot team. Further, in many of these situations there is a need for

adapting to changes in the environment or the mission parameters. Although robots can be

good at low-level control objectives (e.g., stabilization, formation maintaining, tracking),

they lack the capacity humans possess of making high-level decisions on-the-go.

The human-swarm interactions (HSI) paradigm allows for a human operator to influ-

ence a swarm of robots at a high-level while the swarm continues their operations and

low-level control. This allows for a combination of high-level and low-level decision mak-

ing. Human operators can for example: switch swarm behavior, change overall location,

or inject new objectives into the robot swarm low-level control. Section 2.2 provides a

representative sample of the literature on human-swarm interactions and coverage control,

the mechanism that allows us to formulate a human-swarm interactions scheme. In Section

2.3, we discuss motion planning for multi-robot systems and the general approaches found
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in the literature. Crucial to the development of the research in this dissertation will be the

notions of symbolic approaches to motion planning and braids in robotics. The literature

on these is also found in Section 2.3.

In Chapter 3, we present a novel approach of influencing a team of robots using cover-

age algorithms for general time-varying density functions. This has potential implications

for how human operators can interact with large teams of mobile robots, where one of

the main challenges is the construction of suitable abstractions that make the entire team

amenable to human control. For such abstractions to be useful, they need to scale gracefully

as the number of robots increases. Density functions are promising abstractions as they are

independent of the swarm’s size and are instead directly affect the environment where the

robot swarm operates. We construct methods for HSI to influence teams of robots tailored

for obtaining desired geometric configurations and for quick manipulation of the swarm as

a whole. These methods are tested through robotic implementation.

As agents in the team of robots realize rich motion patterns in a shared space, collision

avoidance begins to play a bigger role. In certain applications there is also a need to sat-

isfy desired levels of interaction between agents, e.g., for coordinated sensing, information

exchange, collaborative task completion. In Chapter 4, we focus on the characterization of

inter-agent interactions for the sake of multi-robot motion planning. By introducing hierar-

chical levels of abstractions, we are able to enforce desired interaction patterns in a prov-

ably safe (i.e., collision free) manner while conforming with the provided specifications.

We first take the problem from the high-level specifications to a symbolic representation of

interaction and motion patterns. In particular, we characterize interaction patterns through

elements of the so-called braid group. This allows us to not focus on a particular pattern

per se, but rather on the problem of being able to execute whole classes of patterns. These

symbols become an input to motion planners, coined braid controllers, which generate

specification conforming trajectories for the multi-robot system. The result from such a
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construction is a hybrid system driven by symbolic inputs that must be mapped onto ac-

tual paths that both realize the desired interaction levels and remain safe in the sense that

collisions are avoided. In order to represent meaningful motion tasks in terms of interac-

tions between agents and achieved configurations, we define a novel specification language,

called Braid Temporal Logic (BTL), that allows us to specify rich, temporally-layered tasks

involving agents’ locations in an environment, their relative ordering, and frequency of lo-

cation swaps. We use techniques from formal methods to generate symbolic inputs that

conform to a given BTL specification and use the developed hybrid optimal control syn-

thesis techniques to safely enact the synthesized pattern.

The main contributions of this work are found in Chapters 3 and 4. In addition to these,

Chapter 5 presents results on robot navigation and control. In particular, contributions are

made on two fronts. In Section 5.1, we present an algorithm that is implementable online

to find the (globally) shortest path connecting two points in a three-dimensional cluttered

environment. This is achieved by leveraging recent results on intermittent diffusion that

allow us to inject sufficient noise in fast-converging local solvers to “kick” them out of

locally short paths and onto the globally shortest path with a specifiable probability. A

brief complexity analysis and comparison is also provided, as well as data for an online

implementation. In Section 5.2, we discuss optimal trajectory generation to follow a ref-

erence path while satisfying required navigation performance criteria and required times

of arrival. Using an optimal control framework, we are able to perform a reparameteriza-

tion of the given reference path to accommodate the system dynamics and optimize criteria

such as fuel consumption, deviations from the reference path, and arrival at spatio-temporal

constraints. This work was performed in an effort to facilitate concepts for next generation

air traffic control systems. Simulation results are shown for a nonlinear, six degrees-of-

freedom aerodynamical model based on an arrival segment at the Hartsfield Jackson in-

ternational airport. Monte Carlo simulations demonstrate the robustness of the approach

under weather forecast uncertainty.
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CHAPTER 2

LITERATURE REVIEW

This research in this dissertation explores the topic of human-swarm interactions where a

single operator is able to externally influence a large team of robots. To characterize and en-

force interactions between agents that arise from rich movement patterns in a shared space,

a framework is also developed for multi-robot motion planning based on symbolic inputs.

In this chapter, we provide a representative sample of the existing literature in human-

swarm interactions, coverage control, and motion planning of multi-robot systems. We

further identify where the research in this dissertation makes contributions to the existing

body of work in the literature.

2.1 Multi-Robot Systems and Applications

Multi-agent and swarm robotics has received increased research interest in the last few

decades. There are a number of benefits for considering the use of multi-robot systems:

incorporating redundancy into a system for increased robustness [1, 2], task and resource

allocation [3], and complementing heterogeneous capabilities [4, 5]. On the other hand,

increasing the number of agents can lead to problems with the scalability of algorithms

[6, 7], emergence of unaccounted artifacts in local rules at a global level (e.g., deadlocks

[8], local optima and local traps [9]), and considerations on coordination and collision

avoidance [9, 10].

A number of applications have been approached from a multi-robot system perspective.

In the multi-robot foraging paradigm, agents wander around an environment searching for

items of interest [11,12]. These items are then collected and returned to specified locations.

Foraging is of interest from a biology standpoint, as many species forage for food (e.g., ants

[13], birds [14]). However, the foraging task can also relate to many real-world problems,

such as waste or specimen collection in hazardous environments, explosive detection and
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disposal, and search and rescue operations after a crisis such as floods and earthquakes.

Another application of interest in the research community and in industry is coopera-

tive assembly [15, 16] and self-assembly [17, 18]. In the cooperative assembly scenario,

multiple robots need to coordinate their motion in order to cooperatively assemble a struc-

ture using a possibly heterogeneous set of tools, end effectors, skills, or parts. Similarly,

in the self-assembly scenario, multiple robots need to coordinate their motion in order to

collectively form a structure or achieve a geometric configuration. In either scenario, kine-

matic and other constraints, such as skill or tool compatibility, play an important role in

the multi-agent coordination. Real-world applications include the automotive assembly

industry, space structure assembly [19], and collective construction [20, 21].

There has been a recent push for robotic farming and precision agriculture [22, 23],

where a fleet of robots is sent to gather data on the status of crops, tend to and harvest

them. Mobile sensor networks take advantage of sensor node mobility to relocate sen-

sors in order to enhance sensing and maximize coverage [24, 25], provide robustness to

sensor node failure [26, 27], and reduce overall energy consumption by the network [28].

In some communication architectures, mobile agents called data MULEs or message fer-

ries [29–31] are used to transport data between sensors, access points, or base stations,

in situations where it is impractical to establish physical communication. Multi-robot si-

multaneous localization and mapping (SLAM) takes advantage of the robot team’s size to

attain a more complete (or more detailed) map faster than with a single robot by combining

information from multiple sources and coordinating motion [32, 33]. Other applications

include transportation systems (e.g., intelligent highways, air traffic control) [34], and the

convoy protection scenario (e.g., surveillance, coverage) [35].

A factor in this increased research effort is how miniaturization of technology has al-

lowed for a rise in cost-effective but powerful microprocessors and micro-controllers, facil-

itating the study of multi-robot systems. In [36], a low-cost and fully scalable robot called

the Kilobot was introduced that moves via the use of two vibration motors, sliding along
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surfaces. This led to the first 1000-robot swarm to operate without human intervention [37].

A swarm of 20 micro-quadrotors was developed and programmed in [38] to achieve tight

formations and trajectory following. The experiments demonstrate agility and coordination

among the robots in real time. In [39], a low-cost and scalable differential-drive micro-robot

called the GRITSbot was presented as a part of a robotic ecosystem. This modularity of

sensing and actuation capabilities allows for high adaptability to environmental constraints,

as well as to the functional requirements of the application setting.

What all these applications and technological trends have in common is the need for

some form of motion planning and coordination among agents in the multi-robot team. In

some instances, there is also the need for some form of interaction between a human op-

erator and the multi-robot system. The research in this dissertation makes contributions to

these subjects by finding novel solutions to the coverage control problem and by providing

a novel symbolic characterization of interactions for multi-robot systems. There is already

a wealth of existing literature on these subjects. In the next sections, we provide a rep-

resentative sample of the existing literature on human-swarm interactions and multi-robot

motion planning, and how it compares to the research presented in this dissertation.

2.2 Human-Swarm Interactions & Coverage Control

The human-swarm interactions (HSI) paradigm allows for a human operator to introduce

high-level decision making into a robot swarm low-level control objectives. The subject

has been approached from different aspects in the literature. One approach allows human

operators to guide the swarm in the environment by injecting information through inter-

faces. In [40], a set of trials was performed on a swarm that was autonomously performing

radiation search and localization in which human input injected various levels of guidance

into the swarm. These trials suggested that injecting appropriate levels of guidance infor-

mation allowed the swarm to achieve its objective more efficiently. In [41], an architecture

was proposed to allow the human operator to guide the swarm by introducing attraction
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and repulsion points for the sake of obstacle avoidance. In [42], they studied the effect of

providing additional information, such as haptic feedback, to the human operator in order

to help navigate the swarm around obstacles.

Other approaches focus on the converse – the swarm aids the humans achieve their

tasks. For example, in [43], assistive swarm robotics was used to help navigate firefighters

and support them with search and rescue operations. In [44, 45], they used the swarm of

robots to obtain multiple views of human gestures, which provided multiple samples for

machine learning algorithms on gesture recognition. Practical considerations for HSI were

explored in [46], where the foraging paradigm was explored under bandwidth restrictions,

such as one might experience in underwater missions or on other remote locations.

There have also been approaches which focus on finding a medium that affords the con-

trol and manipulation of a swarm of robots. In [47], they used clay as a deformable medium

to specify the desired geometric configuration of the swarm. The desired configuration was

then processed using image recognition algorithms and distributed formation controllers

were used to achieve desired configurations. In our work, we take this latter approach –

enabling human-swarm interactions by providing the human operator a mechanism that

affords the manipulation of the swarm and that scales with the number of agents in the

robot swarm. In particular, we will impose the desired concentration, or density, of agents

directly on the environment. This way, the robots’ task is to spread or concentrate in the

different parts of the environment in order to satisfy the desired density of agents imposed

by the user. We will achieve this by performing coverage control over a human-provided

density function.

We extend the work of [48] on optimal coverage for mobile robots as a mechanism

to externally influence a swarm of robots. The coverage problem over static densities has

been extensively studied before. In [49], it was proposed that for a Voronoi partition of

the space, the center of mass locations of each region provides the best coverage. There

it was proposed to set the location of the Voronoi seeds to the center of mass of each cell
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at every iteration, what later came to be known as Lloyd’s algorithm. For the static case,

it is shown in [50] that the center of mass locations of each cell in a Voronoi tessellation

are critical points to the so-called locational cost. Further, if the locational cost is locally

strictly convex around the center of mass locations, then the center of mass locations sat-

isfy the necessary conditions to be contraction points. In [48] it was shown that for static

densities, a continuous version of Lloyd’s algorithm asymptotically achieves a centroidal

Voronoi tessellation, a necessary condition for optimality with respect to the locational

cost. However, relatively little work has been done on coverage of time-varying densi-

ties. Cortes et al. also proposed in [48, 51] the use of a distributed control law to achieve

centroidal Voronoi tessellations for the time-varying density case. However, these control

laws require that the density be designed in a way not amenable to human-swarm interac-

tions. We construct distributed approximations to a centralized control law that provably

achieves centroidal Voronoi tessellations, translate human-provided time-varying densities

into robotic movement, scale with the number of robots, and do not make stringent assump-

tions on the provided densities.

2.3 Multi-Robot Motion Planning

In previous sections we presented a number of applications proposing the use of multi-robot

systems. At a certain level of abstraction, most of the tasks therein can be described as a

coordinated effort between agents to collaboratively achieve some motion or geometric

configuration, while satisfying a set of constraints such as kinematic constraints, spatio-

temporal constraints, and collision avoidance. Motion planning of multi-agent systems

has been approached from a number of different ways in the literature. We now present a

representative sample of these approaches. In [52], motion planning methods are grouped

under three general approaches:
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Roadmap Approaches: These methods consist of capturing the connectivity of a net-

work of one-dimensional curves in the robot’s free space, i.e., a network of connect-

ing paths that do not intersect with the interior of any obstacle. Schemes like visibil-

ity graphs, Voronoi diagrams, and silhouette fall under this category. As an example,

in [53], paths were represented as the set of junction points between the robot’s free space

and the boundary of obstacles, reducing the problem of finding the shortest path from an

infinite-dimensional problem to a finite-dimensional one. By evolving these junctions with

computationally-efficient algorithms, they are able to obtain the (global) shortest path be-

tween two points within a prescribed probability, and without the standard assumption of

polyhedral obstacles, or having to discretize the environment into a grid.

Cell Decomposition: As the name suggests, these approaches consist of decomposing

the robot’s free space into simple regions such that paths can be generated between re-

gions. A connectivity graph is then constructed describing the adjacency relation between

regions, and this graph is searched for a path that satisfies the constraints. Cell decomposi-

tion is one of the most popular methods in robot motion planning. For example, in [54] they

use cell decomposition and model the robot’s motion between cells as a Markov decision

process. They then inform the model’s transition probabilities using probabilistic compu-

tation tree logic and linear temporal logic such that the robot mission space accommodates

for increased expressivity in the specification language, e.g., in addition to “go to A without

colliding with obstacles,” the robot should also “visit location B before arriving at A.”

Potential Fields: By introducing an artificial potential over the environment, these

methods allow a robot to be influenced by the goal and obstacles locations with attrac-

tive and repulsive potential, respectively. A typical approach is to flow along the negated

gradient direction of the potential field. Since no search is required, these methods tend to

be very computationally efficient. However, they also tend to suffer from problems such

as getting stuck in local minima. To get around these issues, the use of powerful mecha-

nisms have been suggested to escape from local minima [55], or alternatively, it has been
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suggested to design the potential field such that there is a unique minimum [56].

The research on multi-robot motion planning in this dissertation focuses on two as-

pects. The first problem is that of characterizing inter-robot interactions for the sake of

coordination and collision avoidance. This will be done within the setting of symbolic ap-

proaches and trajectory tracking. Symbolic inputs allow us to abstract away the geometry

and physical constraints involved in the multi-robot motion planning. As described in [57],

this provides the advantage of hierarchical abstractions that are typically broken into three

stages: at the top layer is the specification level, which describes the motion tasks (such as

robots A and B should interact, and arrive at the goal simultaneously). The second layer is

the execution level, which describes how to obtain the motion, e.g., by using an optimality

condition that penalizes deviations from a path. The bottom layer is the implementation

level, which concerns itself with constructing the robot controller, e.g., to track a reference

trajectory.

The second aspect extends the notions presented in [58] for trajectory tracking of virtual

vehicles. This idea requires the physical vehicles to track a virtual vehicle, as opposed to

a path (or trajectory) itself. The virtual vehicle, which is being controlled directly with

simplified dynamics, can be controlled in order to track a reference path while satisfying

the constraints, compensating for the physical vehicle’s dynamics and other disturbances.

Assuming the virtual vehicle always remains on the reference path, this problem may be

viewed as finding the optimal parameterization of the given reference path (thus turning the

path into the desired trajectory) while the physical vehicle performs trajectory tracking.

We will use elements of algebraic topology, namely the braid group [59,60], as the sym-

bols describing interactions and motion plans. The use of braids for robot motion planning

has been considered before. In [61], they used the graph braid group as the fundamen-

tal group of the configuration space of graphs that describe robot motion (e.g., roadmaps,

as described above). There, each graph in the configuration space represents discretized

collision-free robotic motion, where at each discrete time the graph vertices represent the
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positions of robots and (possibly moving) obstacles, and the edges represent fixed tracks

connecting these vertices. They presented an algorithm to construct the presentation of the

graph braid group of n agents, where the group generators (i.e., the braids) represent ac-

tual paths between configurations of robots on the graph, i.e., the motion plan to transition

from one configuration to another. However, they only considered zero-size robots where

they relied on a “one edge separation” between points at all times to avoid collisions, and

as such, their approach is purely theoretical and mainly focuses on the combinatorics of

ideal robots moving on a graph. We use the braid group’s generators as symbolic inputs

to multi-robot hybrid controllers which characterize and enforce collision-free interactions,

take into account kinematic and geometric constraints, and are executable on actual robotic

platforms. To the best of our knowledge, this is the first approach that uses braids in multi-

robot motion planning to symbolically characterize and enforce rich interaction patterns,

implementable on actual robotic platforms.
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CHAPTER 3

HUMAN-SWARM INTERACTIONS VIA COVERAGE OF
TIME-VARYING DENSITY FUNCTIONS

Coverage control is one area of multi-agent control that has received significant attention

lately, e.g., [62], [63], and it is concerned with how to position agents in such a way that

“surveillance” of a domain of interest is maximized. In this context, an idea that has been

widely adopted to describe how interesting a “domain of interest” is, is to associate a den-

sity function to the domain, as was done in [48, 51, 62, 64–66]. However, the focus of

previous coverage algorithms has largely been on static density functions, which does not

provide enough flexibility when human operators are to adaptively interact with a team

through a dynamic re-shaping of the density functions.

To enable this line of inquiry, we require an algorithm that can guarantee multi-robot

optimal coverage given general time-varying density functions. Applications to this beyond

the means for multi-robot influence can be found in a number of domains. For example,

in search and rescue scenarios, the density function could represent the probability of a

lost person being at a certain point in an area, e.g., [67]. Additionally, optimal coverage

of density functions for multi-robot surveillance and exploration was used in [66], where

the density function was modeled to be a function of the explored “frontier.” (For other

examples, see [68] and references therein.)

To date, relatively little work has been done on coverage with time-varying density

functions. In [51], the time-varying case was investigated under a set of simplifying as-

sumptions on the density functions. Another stab at the problem was pursued in [65], where

time-varying density functions where used as a means to tracking moving targets. While

simulations and experiments verified that coverage was indeed achieved, formal guarantees

were absent.

In contrast to [51] and [65], in this paper we derive an algorithm that guarantees optimal
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coverage with quite general, time-varying functions [69]. As with the algorithms for time-

invariant density functions, centroidal Voronoi tessellations (CVT) will play a key role. A

CVT is a configuration where the positions of each robot coincide with the centroids of

their Voronoi cells, given a so-called Voronoi tessellation of the domain of interest. The

CVT may result in the optimality of a commonly used metric on the coverage of a domain

by the robot swarm. To that end, the control laws presented here seek to drive the agents

into a CVT given a user-provided density describing the areas of importance.

We further find decentralized approximations to the control laws presented here that

allow the individual agents in the swarm to compute their update law with only local in-

formation. The fact that only adjacency information is required in their update law means

that a single operator could potentially influence arbitrarily large number of agents. Due to

the scalability of the algorithm, and the level of abstraction that the generation of density

functions offers (in that it does not care for the number of agents performing the coverage),

we consider these decentralized update laws as tools for HSI [70]. The idea presented here

is to allow a human operator to influence teams of robots by generating density functions,

letting robot swarm perform coverage over this density.

In subsequent sections, we offer two different means of generating density functions for

HSI. The first method allows the user to easily specify the geometric configuration of the

swarm and “move” them around, but at an added computational cost. The second method

reduces computational cost by using predefined Gaussian functions to allow the human

operator to quickly assign importance to the area of interest. It is fast and allows the user

to “move” the team of robot easily, but is not as amenable to “shaping” the swarm as the

first method. Figure 1 illustrates how these approaches allow a user to manipulate a team

of robots to drive to certain areas of the environment. Towards the end of the chapter, we

present more discussion on the robotic implementation of these HSI methods.
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Figure 1. A team of five Khepera robots are influenced by a human operator to drive to certain parts of
the environment. The tablet is representative of the robot environment. An overhead projector allows
us to overlay the broadcasted density on the environment in real-time.

3.1 The Coverage Problem

We are on the hunt for decentralized update laws that allow a human operator to influence

the swarm of agents by providing a density function characterizing the areas of importance

within the domain. The agents in the robot swarm will seek to optimize their coverage over

the domain under the influence of the user-provided density. In order to discuss optimal

coverage, one first has to associate a cost to a robot configuration that describes how well

a given area is being covered. For this, we will follow the construction of this so-called

locational cost, as was done, for example, in [51].

Let D ⊂ R2 be the two-dimensional1 convex domain representing the robot workspace.

Moreover, let φ : D × [0,∞) → (0,∞) be the associated density function, which we will

assume is bounded and continuously differentiable in both arguments, and where φ(q, t)

captures the relative importance of a point q ∈ D at time t. For the sake of HSI, this density

1Here we focus on the two-dimensional case, but note that the math also extends to higher dimensional
spaces as well.
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function will be an user-provided input to the robot swarm.

The coverage problem involves placing n robots in D, and we let pi ∈ D, i = 1, . . . , n

be the position of the ith robot. Moreover, the domain itself will be divided into regions of

dominance, e.g., [48], P1, . . . , Pn (forming a proper partition of D), where the idea is to let

robot i be in charge of covering region Pi. One can then ask how good the choice of p and

P is, where p = [pT
1 , . . . , pT

n ]T , and P = {P1, · · · , Pn}. The final piece needed to answer

this question is a measure of how well a given point q ∈ D is covered by robot i at position

pi ∈ D (see [50] and references therein). In the most general setting, one can consider the

locational cost given by

H(p, P, t) =

n∑
i=1

∫
Pi

f (‖q − pi‖)φ(q, t)dq.

for f : R → [0,∞). As the performance of a large class of sensors deteriorate with a

rate proportional to the square of the distance, [71, 72], here we will instead consider the

locational cost given by

H(p, P, t) =

n∑
i=1

∫
Pi

‖q − pi‖
2 φ(q, t)dq. (1)

At a given time t, when a configuration of robots p together with the partition P min-

imize (1), the domain is said to be optimally covered with respect to φ. However, it is

possible to view the minimization problem as a function of p alone, [51], by observing that

given p, the choices of Pi that minimize (1) is

Vi(p) = {q ∈ D | ‖q − pi‖ ≤
∥∥∥q − p j

∥∥∥ , i , j}.

This partition of D is a Voronoi tessellation — hence the use of Vi to denote the region.

With this choice of region, we can remove the partition as a decision variable and instead

focus on the locational cost

H(p, t) =

n∑
i=1

∫
Vi(p)
‖q − pi‖

2 φ(q, t)dq (2)

where φ(q, t) is the user-provided input to the system.
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In [50, 73] it was shown that

∂H
∂pi

=

∫
Vi

−2(q − pi)Tφ(q, t)dq, (3)

and since φ > 0, one can define the mass mi and center of mass ci of the ith Voronoi cell, Vi,

as

mi(p, t) =

∫
Vi(p)

φ(q, t)dq, (4)

ci(p, t) =

∫
Vi(p)

qφ(q, t)dq

mi
. (5)

For convenience, we will stack the masses into a single diagonal (positive-definite) matrix

denoted by

M =

 m1
m2

...
mn

 ⊗ Id, (6)

where “⊗” is the Kronecker product and Id is the d× d identity matrix where d corresponds

to the dimension of the domain (d = 2 is considered here). We also group the centers of

mass as a single vector c =
[
cT

1 , . . . , c
T
n

]T
. As was shown in [50, 73], using these quantities

allows us to rewrite the partial derivative in (3) as

∂H
∂pi

= 2mi(pi − ci)T . (7)

From this expression, we can see that a critical point of (2) is

pi(t) = ci(p, t), i = 1, · · · , n, (8)

and a minimizer to (2) is necessarily of this form, [74]. Moreover, when (8) is satisfied, p

is a so-called centroidal Voronoi tessellation (CVT).

The robots being in a CVT configuration does not, however, imply that the global min-

imum of (2) is attained, e.g., [50]. In fact, the CVT is in general not unique given a density

function φ. Finding the globally minimizing configuration is a difficult problem due to the

nonlinearity and nonconvexity of (2), as discussed in [75]. As such, in this paper, we are

interested in designing algorithms that guarantee convergence to local minima with respect
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to time-varying density functions (as our goal is to merely be able to influence the swarm),

and we make no claims about finding the global minimum.

In light of (7), the gradient direction (with respect to pi) is given by (pi−ci)
‖pi−ci‖

. As such, a

(scaled) gradient descent motion for the individual robots to execute would be

Lloyd:

ṗi(t) = −κ(pi(t) − ci(p, t)) (9)

where κ is a positive gain. This is a continuous-time version of Lloyd’s algorithm [49] for

obtaining CVTs as long as φ does not depend on t. The way to see this, as was done in [48],

is to take H(p) in (2) (note that we assume that H only depends on p and not on t for the

purpose of this argument) as the Lyapunov function,

d
dt
H(p) =

n∑
i=1

∂

∂pi
H(p)ṗi = −2κ

n∑
i=1

mi ‖pi − ci(p)‖2 .

By LaSalle’s invariance principle, the multi-robot system asymptotically converges to a

configuration {‖pi − ci(p)‖2 = 0, i = 1, · · · , n}, i.e., to a CVT ( [48]).

However, if φ is time-varying, the same control law does not stabilize the multi-robot

system to a CVT. This point can be hinted at by investigating the evolution of a time-

dependent H(p, t),

d
dt
H(p(t), t) =

n∑
i=1

∂

∂pi
H(p(t), t) ṗi +

∂

∂t
H(p(t), t)

=

n∑
i=1

∫
Vi

‖q − pi(t)‖2
∂φ

∂t
(q, t)dq − 2κ

n∑
i=1

mi ‖pi(t) − ci(p(t), t)‖2 .

There is no reason, in general, to assume that this expression is negative since we do not

want to impose assumptions on slowly varying, or even quasi-static, density functions.

Instead, what is needed is a new set of algorithms for handling the time-varying case.

To get around the problem associated with non-slowly varying density functions, timing

information must be included in the motion of the robots. In [51], this was done through
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the assumption that φ(q, t) is such that

d
dt

 n∑
i=1

∫
Vi

‖q − ci‖
2 φ(q, t)dq

 = 0.

Letting

ṁi =

∫
Vi

φ̇(q, t)dq, ċi =
1
mi

(∫
Vi

qφ̇(q, t)dq − mici

)
,

the algorithm in [51] for time-varying density functions is given by

Cortes:

ṗi = ċi − (κ +
ṁi

mi
)(pi − ci). (10)

Under the previously mentioned assumption on φ, H(p, t) again becomes a Lyapunov func-

tion when the agents move according to (10), and convergence to a time-varying CVT is

established.

Unfortunately, the assumption required to make (10) work is rather restrictive for the

sake of HSI as it basically states that the density function must be designed in such a way

that the locational cost achieves a minimum that remains constant as the agents move.

Thus, for the remainder of the paper, we will develop new methods for handling time-

varying density functions that do not impose major assumptions on φ(q, t). In fact, if the

density function is to be thought of as an external, human-generated input to the system,

there are no a priori reasons why the human operator would restrict the interactions to

satisfy particular regularity assumptions on φ.

3.2 Centralized Coverage of Time-Varying Densities

We are now in pursuit of a control laws that allow us achieve a CVT, even if the density

function is time-varying. In order to move forward with our analysis, we need to understand

some of the properties associated with the center of mass of a given Voronoi tessellation.

We first note that the partial derivatives of the center of mass with respect to the agents
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positions has eigenvalues bounded by one, as long as the agents are close enough to a CVT,

and under the assumption that at the CVT the locational cost is locally strongly convex.

Lemma 1. If the CVT is locally strongly convex, then there exists δ > 0 such that if

‖p(t) − c(p(t), t)‖ < δ then Re(λ) < 1 for all λ ∈ eig( ∂c
∂p ).

Proof. As it was shown in [76], under the assumption that the locational cost is locally

strongly convex around the CVT, we have that

∂2H
∂p2

∣∣∣∣
p=c
= 2M(I −

∂c
∂p

) � 0

⇒ M1/2(I −
∂c
∂p

)M−1/2 � 0

⇒ (I − M1/2 ∂c
∂p

M−1/2) � 0

where M is the positive-definite diagonal matrix of Voronoi cell masses defined in (6),

which implies that for all λ ∈ eig( ∂c
∂p ) we have that Re(λ) < 1.

Let f (λ) = det
(
λI − ∂c

∂p

)
=

∑2N
i=1 aiλ

i be the characteristic polynomial for ∂c
∂p , whose

roots (λ such that f (λ) = 0) are the eigenvalues of ∂c
∂p . The coefficients ai, i = 1, . . . , 2N−1,

are themselves polynomials of the entries of ∂c/∂p, with a2N = 1.

Since mi > 0 for all i, the different entries of ∂c/∂p are continuous (as we will see

below). Further, since the roots of any polynomial vary continuously with all but its highest

order coefficient [77], we have that the eigenvalues of ∂c/∂p are continuous.

One can apply a chain of continuity arguments to show that for any ε > 0, there exists

δ > 0 so Re(λ) < 1 whenever ‖p(t) − c(p(t), t)‖ < δ.

Corollary 1. As long as the agents are close enough to a CVT configuration for which the

locational cost is locally strongly convex, the matrix inverse (I − ∂c
∂p )−1 exists.

We use this corollary to obtain our first result on maintaining a CVT for all time, as

originally stated in [69].
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Theorem 1 (Maintaining CVT [69]). Let p (t0) = c (p (t0) , t0). If

ṗ =

(
I −

∂c
∂p

)−1
∂c
∂t
, t ≥ t0

then

‖p (t) − c (p (t) , t)‖ = 0, t ≥ t0

as long as the inverse (I − ∂c/∂p)−1 is well-defined.

Proof. Assume the agents begin from a CVT configuration, i.e., p (t0) = c (p (t0) , t0). We

need to ensure that

d
dt

(p (t) − c (p (t) , t)) = 0, ∀t ≥ t0.

But this implies that ṗ = ċ = ∂c
∂p ṗ + ∂c

∂t , which can be rearranged into the form

ṗ =
(
I − ∂c

∂p

)−1
∂c
∂t

as long as the inverse is well-defined. From Lemma 1, a sufficient condition for this is that

the initial CVT makes the locational cost locally strongly convex.

In order for this theorem to be meaningful, we require that the agents first achieve a

CVT configuration which is then maintained. This control law also assumes the agents will

be able to instantaneously accelerate to the required velocities, which may not be possible

in practice. In order to compensate for saturation, modeling errors and deviations from

the CVT, in [69] a proportional term is introduced that forces the agents into a CVT. This

update law was called the TVD-C which stands for time-varying densities, centralized case.

ṗ(t) =

(
I −

∂c
∂p

)−1 (
−κ (p(t) − c(p(t), t)) +

∂c
∂t

)
(11)

where κ > 0 is a proportional gain. It is noteworthy that this proportional term influences

the team of robots to move towards a (scaled) gradient descent direction to achieve a CVT
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configuration, and that once a CVT is achieved the proportional term does not contribute

to the update law and Theorem 1 holds.

As long as the inverse is well-defined, this update law will drive the agents into a CVT.

This is encapsulated in the following theorem.

Theorem 2 (Convergence of TVD-C). If 1 < eig
(
∂c
∂p

)
and we let

ṗ =

(
I −

∂c
∂p

)−1 (
−κ (p − c) +

∂c
∂t

)
, t ≥ t0

then ‖p(t) − c(p(t), t)‖ → 0 as t → ∞ with rate of decrease exp (−κ(t − t0)).

Proof. Consider the total derivative for ‖p(t) − c(p(t), t)‖2 below

d
dt

(
‖p − c‖2

)
= 2 (p − c)T ( ṗ − ċ) = 2 (p − c)T

(
ṗ −

∂c
∂p

ṗ −
∂c
∂t

)
= 2 (p − c)T

((
I −

∂c
∂p

)
ṗ −

∂c
∂t

)
= 2 (p − c)T

(I − ∂c
∂p

) (
I −

∂c
∂p

)−1 (
−κ (p − c) +

∂c
∂t

)
−
∂c
∂t


= −2κ ‖p − c‖2

which tells us that

d
dt

(
‖p − c‖2

)
= −2κ ‖p − c‖2

This is a homogeneous linear differential equation. For initial condition ‖p(t0) − c(p(t0), t0)‖

it is known to have a unique solution given by

‖p(t) − c(p(t), t)‖2 = exp(−2κ(t − t0)) ‖p(t0) − c(p(t0), t0)‖2

⇒ ‖p(t) − c(p(t), t)‖ = exp(−κ(t − t0)) ‖p(t0) − c(p(t0), t0)‖ .
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Hence ‖p(t) − c(p(t), t)‖ → 0 as t → ∞. Further, we see that

‖p(t) − c(p(t), t)‖ = exp(−κ(t − t0)) ‖p(t0) − c(p(t0), t0)‖

⇒
‖p(t) − c(p(t), t)‖
‖p(t0) − c(p(t0), t0)‖

= exp(−κ(t − t0))

such that the rate of decrease is given by exp (−κ(t − t0)).

Recalling Lemma 1, as long as the agents are close enough to a CVT and the locational

cost is locally strongly convex around the CVT, the inverse in control law TVD-C will drive

the agents to the CVT. However, note that it is not necessary for the locational cost to be

locally strongly convex at a CVT. Indeed, in [76] they present several CVT configurations

that result in saddle points instead. What has been observed in robotic implementations

of these algorithms (Section 3.5) is that the addition of the gradient descent term seeks to

reduce the overall locational cost. It is also observed that all the disturbances seem to drive

the agents into stable CVT configurations. This in turn suggests the achieved CVT are in

fact local minimizers to the locational cost, as opposed to saddle points.

It is also noteworthy that Theorem 2 only requires that 1 < eig(∂c/∂p), and as such the

agents are driven into a CVT even if Re(λ) > 1 for any λ ∈ eig(∂c/∂p). If this is the case,

then the problem lies in that due to the continuity of these eigenvalues, we will inevitably

obtain 1 ∈ eig(∂c/∂p). In practice, however, these ill-conditioned matrices are hardly a

problem as the set {t|1 ∈ eig( ∂c
∂p (p(t), t))} seems to often be a zero-measure set.

We would still like to avoid the case of ill-conditioned matrices all together, and perhaps

more importantly, this matrix inverse has a dense structure, which makes this a centralized

approach — which will not scale well, and will hinder our effort in manipulating large

teams of robots. We will address these issues in the following section where we proceed to

obtain distributed approximations to our centralized update laws.
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3.3 Distributed Coverage of Time-Varying Densities

In order to implement update law (11), we need to deal with two subtle difficulties associ-

ated with it. The first is the computation of the deceivingly innocent looking terms ∂c/∂p

and ∂c/∂t , the second is addressing the computation of the matrix inverse (I − ∂c/∂p)−1. We

will address the matrix inverse difficulty in Section 3.3.2. In the next section we address

the issue of the computation of the partial derivatives.

3.3.1 Computing the Partial Derivatives

Recall that by combining equations (4) and (5), we have that

ci (p, t) =

∫
Vi(p)

q φ(q, t) dq∫
Vi(p)

φ(q, t) dq
,

which depends on p in the boundary of the area over which the two integrals are taken.

In order to compute these partials, we first need to make use of Leibniz rule, e.g., [76].

Lemma 2. Let Ω(p) be a region that is a smooth function of p such that the unit outward

normal vector n is uniquely defined almost everywhere on ∂Ω, which is the boundary of Ω.

Let

F =

∫
Ω(p)

f (q)dq.

Then
∂F
∂p

=

∫
∂Ω(p)

f (q)
∂q
∂p
· n(q)dq

where ∂q
∂p is the derivative of the points on ∂Ω with respect to p.

In [76], it was investigated how Voronoi cells changed as functions of pi. In fact, it was

shown in [76] that for any point q ∈ ∂Vi j (the boundary between adjacent cells Vi and V j),

∂q

∂p(b)
j

· (p j − pi) =
1
2

eb · (p j − pi) − eb ·

(
q −

pi + p j

2

)
,

∂q

∂p(b)
i

· (p j − pi) =
1
2

eb · (p j − pi) + eb ·

(
q −

pi + p j

2

)
,
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where p(b)
j denotes the bth component of the vector p j and eb is the bth elementary unit

vector. Note that in this chapter, b = 1, 2 since we are considering the case D ⊂ R2 only.

Substituting this into Leibniz rule, we obtain

∂c(a)
i

∂p(b)
j

= −

∫
∂Vi j

φq(a)
q(b) − p(b)

j∥∥∥p j − pi

∥∥∥ dq

 /mi

+

(∫
Vi(P)

φq(a)dq
) ∫

∂Vi j

φ
q(b) − p(b)

j∥∥∥p j − pi

∥∥∥ dq

 /m2
i (12)

where a = 1, 2, b = 1, 2 and where i , j. When i = j we must consider the contribution

from all neighbors

∂c(a)
i

∂p(b)
i

=
∑
k∈NVi

[∫
∂Vik

φq(a) q(b) − p(b)
i

‖pk − pi‖
dq

 /mi

−

(∫
Vi(P)

φq(a)dq
) ∫

∂Vik

φ
q(b) − p(b)

i

‖pk − pi‖
dq

 /m2
i

]
. (13)

We can rewrite these equations more compactly using block matrix notation[
∂c
∂p

]
i j

=
∂ci

∂p j
= −

∫
∂Vi j

(q − ci)(q − p j)Tφ dq

mi

∥∥∥p j − pi

∥∥∥ , (14)

[
∂c
∂p

]
ii

=
∂ci

∂pi
=

∑
k∈NVi

∫
∂Vik

(q − ci)(q − pi)Tφ dq

mi

∥∥∥p j − pk

∥∥∥ . (15)

where [·]i j corresponds to the ith, jth d × d block matrix.

It is noteworthy that given a continuously differentiable density function φ, computing

∂c
/
∂p at any given time t becomes an exercise in finding line and area integrals. In im-

plementation, it suffices to use numerical approximations to compute these integrals (e.g.,

Riemann sums, Gaussian quadrature rule).

One more partial derivative is required for update law (11), namely ∂c
/
∂t. Another

application of Leibniz rule results in

∂ci

∂t
=

mi

∫
Vi

q∂φ

∂t (q, t) dq −
∫

Vi
qφ(q, t) dq

∫
Vi(p)

∂φ

∂t (q, t) dq

m2
i

(16)

or more compactly

∂ci

∂t
=

∫
Vi

(q − ci)
∂φ

∂t dq

mi
. (17)
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with ∂c
∂t

T
= [∂c1

∂t
T
, . . . , ∂cn

∂t
T
].

When implementing the update law, it suffices to numerically compute the integrals in

∂c/∂t. However, unlike with the computation of the integrals in ∂c
/
∂p, we require knowl-

edge of ∂φ
/
∂t. If φ is not provided analytically in t, then one could:

1. Utilize a finite difference scheme to approximate ∂φ
/
∂t. This could however give rise

to difficulties with noisy measurements.

2. Alternatively, the user could provide the time evolution of the density function di-

rectly via a continuous function ∂φ/∂t such that φ(q, t) =
∫ t

t0
∂φ

∂t(q, τ) dτ. In the im-

plementations found in Section 3.4, the “shape” of the density is defined as a con-

tinuously differentiable function φ(q, t0) defined over D, and the as the user provided

input corresponds to ∂φ/∂t.

As a final implementation note, finding the integrals over Vi may be computationally in-

tensive. However, the expanded versions of these partial derivatives reveal that only a few

integrals actually need to be computed per agent. To compute all expressions it suffices to

compute the integrals of φ, dφ/dt, qφ, and qdφ/dt over Vi, which may be computed once

for each agent (and may be computed in a distributed fashion).

3.3.2 Circumventing the Matrix Inverse Computation

The second subtle difficulty with update law (11) is ensuring that the inverse (I − ∂c/∂p)−1

is well defined, which is generally difficult. Lemma 1 provides us with a sufficient condition

for the existence of this matrix. In [76] it was also shown that in the time-invariant case, the

inverse is well-defined as long as φ(p) is a log-concave function of p. We would also need

φ to be continuously differentiable in both arguments, so these two conditions are enough

to ensure that the inverse exists. Since the motivation for this work is to have a human

operator influence the team of robots by generating these density functions, the former

constraint is quite an unsatisfying one, for it would greatly reduce the types of density

functions allowable. Moreover, the computation of this 2n × 2n matrix inversion does
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not scale well with increase in number of agents, and requires information on every agent

which makes it a centralized scheme. Fortunately, it is possible to alleviate these concerns

by performing a distributed approximation of update law (11). The desired approximation

can be found by using the Neumann series, e.g., [78].

Lemma 3 (Neumann series). Let A be a square matrix. If limk→∞ Ak = 0, then I − A is

invertible and

(I − A)−1 = I + A + A2 + A3 + . . . .

Moreover, for a m × m square matrix A, limk→∞ Ak = 0 if and only if |λi| < 1 for all

i = 1, 2, · · · ,m, where λi are the eigenvalues of A. As such, let λmax denote the eigenvalue

with the largest magnitude of the matrix ∂c/∂p. Using the Neumann series, we can express

(I − ∂c/∂p)−1 as (
I −

∂c
∂p

)−1

= I +
∂c
∂p

+

(
∂c
∂p

)2

+ . . . (18)

as long as |λmax| < 1.

Our goal will be to truncate this series to obtain the well-defined approximation to the

matrix inverse, but then the question arises: how many terms should be kept? The answer

lies in the sparsity structure of ∂c
/
∂p.

Given a Voronoi partition of the area of interest, we denote the boundary between the

two cells Vi and V j by ∂Vi j. Since we are only considering the planar case, there are three

possibilities for ∂Vi j:

1. ∂Vi j is empty, meaning that cells Vi and V j do not intersect.

2. ∂Vi j consist of a single point, meaning that cells Vi and V j share a single vertex.

3. ∂Vi j is a line, meaning that cells Vi and V j share a face.

We will denote NVi to be set of indexes pertaining to the agents whose Voronoi cells V j

share a face with agent i’s Voronoi cell Vi.
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Lemma 4. j < NVi =⇒
∂ci

∂p j
= 0.

Proof. For the first two cases, i.e., ∂Vi j is either empty or consists of a singleton, from (12)

and (13) we see that the integrals over ∂Vi j would be zero. Note that for these two cases,

this will be true for all four elements in ∂ci
/
∂p j. Since these two cases correspond to agents

i and j not sharing a face, we conclude that j < NVi implies that ∂ci
/
∂p j = 0.

This lemma tells us that ∂c
/
∂p actually encodes adjacency information of the graph

induced by the Voronoi tessellation. This induced graph is known as the Delaunay graph.

To obtain a distributed update law, we must insist that the update for ṗi depends only

on information from itself (pi and φ(q, t) for q ∈ Vi) and information on neighboring agents

(p j and φ(q, t) for q ∈ V j, for all j ∈ NVi). To this end, we truncate the Neumann series in

(18) after just two entries, i.e.,
(
I − ∂c

/
∂p

)−1
≈ I + ∂c

/
∂p. By modifying update law (11)

with this approximation, we obtain the update law

ṗ =

(
I +

∂c
∂p

) (
−κ (p − c) +

∂c
∂t

)
,

which at the individual robot level results in the update law called TVD-D1 for Time-

Varying Densities, Distributed case with 1-hop adjacency information:

ṗi =
∂ci

∂t
− κ (pi − ci) +

∑
j∈NVi

∂ci

∂p j

(
∂c j

∂t
− κ

(
p j − c j

))
(19)

where NVi is the closed neighborhood set to Voronoi cell i in the Delaunay graph.

It should be noted that (19) is always well defined (as long as φ is continuously differen-

tiable). In other words, even if the Neumann series is not convergent or if the inverse does

not exist, the entries in (19) are well defined. In fact, it turns out that during the robotic

experiment, even in cases where |λmax| > 1, the robots consistently evolve in a manner that
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achieves coverage. In [69], a comparison is made between both the centralized and decen-

tralized approaches shown here to other available techniques for coverage of time-varying

densities — we refer the readers to it for a discussion on how they compare.

One can now investigate what happens when higher order terms are kept in the Neu-

mann series. For this, we let dist(i, j) denote the edge distance, or number of edges in the

shortest path, between i and j in the Delaunay graph induced by the Voronoi tessellation.

And, as ∂c/∂p is a (block) adjacency matrix, we have that

[
(∂c/∂p)k

]
i j
, 0 ⇒ dist(i, j) = k, k = 0, 1, 2, . . .

where [ · ]i j denotes the block corresponding to cell ci and robot position p j.

The k-hop version of TVD-D1 thus becomes

ṗ =

k∑
`=0

(
∂c
∂p

)` (
−κ(p − c) +

∂c
∂t

)
. (20)

3.4 Designing Density Functions

At the heart of our HSI implementation lies update law (19) which allows a human operator

to influence the position of the swarm by broadcasting the time-varying density φ defined

over the domain D. In this section, we describe two different design methods that allow a

human operator to generate the density function based on simple inputs such as the general

shape of the density or its position in the domain.

3.4.1 Diffusion of Drawn Geometric Configurations

We now present an approach that allows the user to specify the geometric configuration

of the swarm. The process consists of allowing the human operator to draw the desired

shape in the tablet-like interface. This drawing, taken as a binary image over the area of

interest Ψ : D → {0, 1}, can be made smooth and turned into a continuously differentiable

function in the spatial argument by evolving it as a diffusion process [79]. The result is a

smooth, non parametric density function with the pixels determining the density intensities.
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One could then simply pass the image to the numerical integrating tools to obtain update

law for the agents, interpolating between pixel values as needed. Figure 2a illustrates a

potential graphical user interface to provide the input density to the swarm by allowing a

user to draw the desired configuration. Figure 2c illustrates an example of the smoothed

drawing that represents the desired density.

However, in order to reduce the amount of information needed to be communicated

to the agents, it is possible to use the level sets of the resulting image to come up with

a Gaussian Mixture Model (GMM), which would collapse the dimensionality from the

pixel count (which could be significant) to k centroids and covariances, k being the amount

of Gaussian functions desired to approximate the non parametric density, thus reducing

significantly the amount of information required to represent the density. A GMM is given

in the form

φshape(q) =

k∑
i=1

fi (q) =

k∑
i=1

αi

2π
√
|Σi|

exp
(
−

1
2

(q − µi)T Σ−1
i (q − µi)

)
where µi, Σi and αi are the mean, covariance and weight of the ith mixture, with

∑
αi = 1

and
∑
µi = 0.

In [80], a process to obtain a GMM from a data set with redundancies over the data

is presented. This process can be utilized to obtain a parametric approximation of the

desired density. In order to generate the required redundant data sets, sample points can be

selected from the contour level sets of the desired density (Figure 3a). The points in this

data set are then grouped into k clusters, where the design parameter k is the number of

Gaussian models used in the GMM. A larger k can be used for a finer approximation of

the desired density whereas a smaller k can be used for coarser approximation. The data

from each cluster is used to determine the parameters for each of the Gaussian models.

Figure 3b illustrates the data set obtained from the original drawing with the redundant

data points obtained from the level set contours of the desired density function. Figure 3b

also illustrates the GMM found to approximate the density with the use of ten Gaussian

functions.
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(a) Graphical user interface allows the human operator to draw the desired density
shape.

(b) The drawn shape is parsed as a binary image over
the domain.

(c) Binary image is turned smooth by a diffusion pro-
cess.

Figure 2. Graphical user interface allows the user to generate density shapes.
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(a) Level sets of desired function. (b) GMM approximation of the desired density shape.

Figure 3. GMM approximation of desired density shape based on level sets obtained from the diffused
image.

In order to move the density around, one could evolve the mixture means to track the

desired user-provided position, e.g.,

φ(q, t) =

k∑
i=1

fi (q − v(t)) ,
∂φ

∂t
=

k∑
i=1

fi (q − v(t)) (q − v(t) − µi)T Σ−1
i v̇(t)

where v(t) is the solution to v̇(t) = −κ (v(t) − r(t)) given v(t0) ∈ D for some κ > 0, and

r(t) ∈ D is the human-operator provided desired location of the density at t.

3.4.2 Control of Gaussian Functions

The previous approach allows an user to generate a density function that captures the im-

portant areas to be covered by simply drawing over the domain. In order to reduce the

amount of information required to describe the generated non parametric density, this was

approximated by a Gaussian Mixture Model (GMM) with k Gaussian functions. If the geo-

metric shape the swarm takes is not as important as actively manipulating the swarm, then

the GMM concept from the previous method can be modified by discarding the a priori

weights and fixing the general “shape” of the Gaussian functions.

In this method the human operator “taps” on the desired location of the swarm on a

tablet representative of the domain D. Influence on the team of robots is achieved by
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performing coverage of the density function made of Gaussian functions in the form

φ(q, t) = ε0 +

R∑
i=1

`i(t)e−
1
2 (q−µi(t))T Σ−1(q−µi(t))

∂φ

∂t
(q, t) =

R∑
i=1

[
`i(t) (q − µi(t))T Σ−1µ̇i(t) + ˙̀i(t)

]
e−

1
2 (q−µi(t))T Σ−1(q−µi(t))

where Σ is a positive-definite two-dimensional matrix that determines the “shape” for the

the Gaussian functions (e.g., Σ = σI2, σ > 0, provides a circular “shape”), R is the number

of fingers the user is tapping with, ε0 is a small positive constant so that φ > 0 even if there

are no fingers presents, and µi(t) is the solution to

µ̇i = −κ(µi − ri(t))

for some κ > 0 and where ri(t) ∈ D is the location of the ith desired location in D (provided

by the number of “taps” on the tablet-interface) which directly influences the centroid of the

individual Gaussian functions, i = 1, . . . ,R. The Gaussian terms are weighted by transition

functions in order to smoothly introduce and remove them from the domain of interest.

These are of the form

`i(t) =
1

1 + e−α((t−τi,1)− 1
2 )
−

1

1 + e−α((t−τi,2)− 1
2 )

˙̀i(t) =
αe−α((t−τi,1)− 1

2 )(
1 + e−α((t−τi,1)− 1

2 )
)2 −

αe−α((t−τi,2)− 1
2 )(

1 + e−α((t−τi,2)− 1
2 )
)2

where τi,1 corresponds to the time at which the ith Gaussian term is added, τi,2 corresponds

to the time at which the ith Gaussian term is removed (τi,1 < τi,2), and α > 0 (e.g., α = 10)

determines the rate of transition.

3.5 Robotic Experiments

Both design methods where implemented on robotic platforms to validate the approaches

to HSI. For every agent, only it and its neighbors’ state and density information in their

respective Voronoi cells were used to compute the update laws. Line integrals were approx-

imated by Riemann sums, whereas Gaussian quadrature rule was used for area integrals.
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Figure 4. User observes position of swarm and redirects it with the use of a tablet.

The human operator used an iPad to input the density locations. Figure 4 illustrates the

user observing the swarm and redirecting it with the use of the tablet interface. These were

transmitted over WiFi and UDP to a central computer which calculated the update law for

each agent. Even though a central computer is used for the computation, the control is

computed for every agent only using adjacency information, and then it is transmitted to

the pertinent robot via WiFi and UDP.

The density design method described in Section 3.4.2 was implemented on an Ubuntu

computer with an Intel dual core CPU 2.13GHz and 4GB of memory, running ROS (Robot

Operating System, version Diamondback). This computer also received state information

from ten OptiTrack S250e motion capture cameras that were used to provide position and

orientation data for the state information of an agent and its neighbors was used to compute

the Voronoi tessellation. The robotic platforms used for the experiments were Khepera III

robots from K-team. The Khepera III robots each have a 600MHz ARM processor with

128Mb RAM, embedded Linux, differential drive wheeled robots equipped with a wireless

card for communication over a wireless router. The rviz package in ROS was used for

visualization of the user-provided density function. The visualization was overlapped with

the real physical environment to give a real-time visual representation of the user-provided

density function. This is shown in Figure 5.
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(a) User influencing swarm to center of domain.

(b) User influencing swarm to corner of domain.

(c) User splits the swarm by introducing multiple locations of interest.

Figure 5. Robotic implementation of HSI via coverage of Gaussian functions. A tablet is used to directly
influence the location of the swarm formation. An overhead projector is used to visualize the user-
provided density function in real-time over the robot workspace.
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Figure 6. Nine GRITSBots being influenced by the control of Gaussian functions HSI scheme.

Both density design methods described in Section 3.4.2 and Section 3.4.1 were imple-

mented on a smaller and lower-cost multi-robot system to compare the effectiveness of the

methodology across platforms. For these experiments, the computer handles tracking of

the robots based on standard webcams (1280 x 720 resolution) that detect ArUco tags for

tracking (also used for virtual reality applications), and that runs at approximately 25 Hz.

The tracking system was used to provide position and orientation data to the agents, and

was also used to compute the Voronoi tessellation. The robotic platforms used for these

experiments were GRITSBots2 [39]. The GRITSBots possess a main processor that runs at

80 MHz and handles user code and WiFi data processing, and a co-processor for handling

motor control running at 8 MHz, stepper motors for differential drive, odometry that does

not require wheel encoders, and WiFi-based communication IEEE 802.11 B/G/N (up to 54

MBit/s) that uses UDP-based sockets. Matlab is used for visualization of the user-provided

density function, the Voronoi tessellation, and the location of the density centroid. An over-

head projector is used to project the visualization onto the real physical environment of the

2For more information on the GRITSBots and their testbed, visit www.robotarium.org.
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robots to give a real-time visual representation. Figure 6 illustrates the control of Gaus-

sian functions HSI scheme described in 3.4.2, whereas Figure 7 illustrates the diffusion of

drawn geometric configurations HSI scheme described in 3.4.1.

(a) t = 0 s (b) t = 5 s

(c) t = 20 s (d) t = 25 s

(e) t = 30 s (f) t = 35 s

Figure 7. Robotic implementation of a drawn star-shaped density on a team of GRITSBots. A tablet
is later used (Figure 7c-7f) to directly influence the location of the swarm formation. An overhead
projector is used to visualize in real-time the broadcasted density function, the Voronoi tessellation,
and the current desired location of the swarm provided by the user through the tablet.
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3.6 Concluding Remarks

In this chapter we constructed a framework for human-swarm interactions in which the

human operator abstracts away the number of agents in the robot swarm and manipulates it

as a whole by directly imposing the desired density of robots in the environment. In order to

pursue this approach, contributions were made to the problem of coverage of time-varying

functions – for which there was a dearth in the literature. In particular, important spectral

properties are provided which are used to provide convergence guarantees for the presented

control laws. In addition to these, a family of distributed approximations is presented which

allow the agents to provide optimal coverage of the human-generated density functions

while only relying on local information.

Although collision avoidance is not explicitly considered in this chapter, collisions are

rarely observed during the robotic experiments. This is in part due to the nature of the

coverage problem, in which the goal (to an extent) is for the agents to spread out. In fact,

if agents are point-particles, agents will never collide given that they remain in the interior

of their Voronoi cells which are non-overlapping. Practically, since agents are not point-

particles, and depending on how concentrated the density function is, it is possible for

the agents to get close enough to the boundary of their Voronoi cells to collide. A common

way to handle collisions is to introduce artificial repulsive force terms to the agents’ control

law. Although this can be a simple modification to the system, it does not provide formal

guarantees. There has been recent work on using barrier certificates to modify swarm

controllers in a minimally invasive way that results in provably collision-free controllers

that try to be as close as safely possible to the original controllers [81].

We are, however, not only interested in obtaining collision-free motion from the multi-

robot system but also characterizing these interactions between agents. In some appli-

cations, it might even be of interest to enforce that agents interact with each other (e.g.,

coordinated sensing, collaborative assembly). The next chapter presents a framework for

multi-robot motion planning that allows us to accomplish these objectives.
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CHAPTER 4

MULTI-ROBOT MOTION PLANNING

In the previous chapter, we explored human-swarm interactions where a human operator is

able to manipulate a large team of robots by imposing desired densities on the environment.

As agents execute rich motion patterns, collision avoidance begins to play a bigger role

the multi-robot system. In particular, we are interested in addressing and characterizing

inter-agent interactions that can occur in multi-robot systems as an effect of rich motion

patterns in a shared space (in which case collision avoidance is required) or due to mission

objectives (e.g., for coordinated sensing or information exchange). In this chapter, we

construct a framework for multi-robot motion planning for the sake of interactions which

we call multi-robot mixing [82–84].

4.1 Inter-Robot Interactions in Multi-Robot Systems Using Braids

As discussed in Section 2.1, many applications have been proposed using multi-robot sys-

tems, e.g., multi-robot foraging, cooperative assembly, Multi-robot simultaneous localiza-

tion and mapping, transportation systems, convoy protection. In many of these applications,

the overall objectives can be stated in terms of making a team of robots follow a physical

path, such as a road or the movements of a ground convoy, while ensuring that particular

search patterns are executed [85–87]. These patterns should be selected in such a way that

certain secondary geometric objectives are met, including ensuring that an area along the

path is covered, that multiple views of the same objects are achieved, that an aerial vehicle

is always on top of the convoy, or that a sufficient number of vehicle-to-vehicle interactions

take place for the purpose of information sharing [88, 89]. In this work, we collect all of

these different secondary objectives under one unified banner, namely multi-robot mixing.

In particular, we specify interaction patterns with certain desired levels of mixing (i.e., in-

teractions between agents), and then proceed to generate the actual cooperative movements
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that realize these mixing levels.

In this chapter, we study the problem of characterizing inter-robot interactions for the

sake of coordination and collision avoidance. We specify the mixing patterns through ele-

ments of the so-called braid group [59,60], where each element corresponds to a particular

interaction pattern. We do not focus on a particular pattern per se, but rather on the problem

of being able to execute a whole class of patterns. The result from such a construction is

a hybrid system driven by symbolic inputs [57], i.e., the braids, that must be mapped onto

actual paths that both obtain the mixing level specified through the braid, and remain safe

in the sense that collisions are avoided.

As stated in Section 2.3, the use of braids for robot motion planning has been consid-

ered before. Using the notion of configuration space [90] for robot motion planning, [91]

studies the problem of construction and classification of configuration spaces for graphs,

e.g., robots on a manufacturing floor constrained on rails or paths. By studying the topo-

logical data associated with these graphs, such as the braid groups, he is able to provide a

measure of the complexity of the control problem (e.g., the construction of potential field

controllers on homeomorphic spaces).

In [61], the graph braid group is used as the fundamental group of the configuration

space of graphs that describe robot motion. There, each graph in the configuration space

represents discretized collision-free robotic motion plan (e.g. road maps), where at each

discrete time the graph vertices represent the positions of robots and (possibly moving)

obstacles, and the edges represent fixed tracks connecting these vertices. They present an

algorithm to construct the presentation of the graph braid group of N agents, where the

group generators (i.e., the braids) represent actual paths between configurations of robots

on the graph, i.e., the motion plan to transition from one configuration to another. However,

they only consider zero-size robots where they rely on a “one edge separation” between

points at all times to avoid collisions, and as such, their approach is purely academic and

mainly focuses on the combinatorics of ideal robots moving on a graph.
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The research presented in this chapter is the first approach that uses braids in multi-

robot motion planning to symbolically characterize and enforce rich interaction patterns,

implementable on actual robotic platforms. In particular, we extend the notions presented in

[82–84]. The definition on planar braids and their geometric interpretations are generalized

from their original form presented in [82]. A controller was designed for nonholonomic

vehicles to track a geometric path in [83]. In this chapter, we modify this controller to

instead produce optimal trajectories that are provably safe in the collision-free sense, satisfy

a set of spatio-temporal constraints, and follow desired geometric paths (Section 4.2.2).

This also allows us to obtain tighter bounds on the amount of interaction patterns that are

achievable in a space than the one found in [83]. We also provide novel contributions in

Section 4.4, where these trajectory-generating controllers are extended to non-rectangular

regions, and in Section 4.5.1 we provide an optimal trajectory-tracking controller with

formal guarantees on optimality and spatio-temporal constraint satisfaction.

The outline of this chapter is as follows: in Section 4.1.1, the braid group is introduced

as a way of specifying mixing levels, and in Section 4.1.2, the corresponding symbolic

braid objects are given a geometric interpretation in terms of planar robot paths; controllers

are then presented so that mixing strategies satisfying a given specification can be executed

by a class of robots as described in Section 4.2, together with bounds on the highest achiev-

able mixing levels for a given space. Section 4.3 introduces a new specification language in

order to specify rich, temporally-layer tasks. In Section 4.4, the trajectory generating con-

trollers are extended to non-rectangular regions. In Section 4.5, implementation of these

controllers on actual robotic platforms is addressed, and these ideas are deployed on a team

of actual mobile robots.

4.1.1 Planar Braids

Consider two agents on a square, initially located at the two left vertices of the square as

in Figure 8a. The agents’ task is to move to the two right vertices of the square. There

are two ways in which these target vertices can be assigned. The first is to simply let the
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(a) Two robots, originally at one
side of a square, map to the other.

1

2

1

2
σ0

1

2

2

1
σ1

1

2 1

2

σ̂1

(b) Three braids for two planar agents. Note that “strand” 1 goes over
“strand” 2 in σ1 and vice versa in σ̂1.

Figure 8. Two-robot interactions and corresponding symbolic braids.

robots move along a straight line while the second is to have them cross paths and move to

vertices diagonally across from their initial placement. If the robots are not to collide with

each other, one agent can cross the intersection of the two paths first, and then the other

(or vice versa). In the braid group, these two options correspond to different “braids,” and

we have thus identified three planar braids for two agents, as shown in Figure 8b. Let us

momentarily denote these three braids, σ0, σ1, σ̂1.

Now, given these three braids, we can concatenate them together to form other braids,

as seen in Figure 9. The left braid is given by σ1 · σ1 and the right braid is σ1 · σ̂1. In the

braid group, what really matters is not the geometric layout of the paths, but how the paths

wrap around each other. As can be seen, if we were to “pull” the right corners in σ1 · σ1,

the “strands” would get “tangled” in the middle, while a “stretched-out” σ1 · σ̂1 is simply

σ0. Thus we let σ0 be the identity braid, such that σ1 and σ̂1 are each others’ inverses in

the sense that

σ1 · σ̂1 = σ̂1 · σ1 = σ0.

In fact, every braid has an inverse and, as such, the set of braids (together with the concate-

nation operation) is indeed a group. And, as σ−1
1 = σ̂1 (and σ−1

1 = σ̂1), σ0 and σ1 (or σ0

and σ̂1 for that matter) are the so-called generator braids for this group in that all planar

braids can be written as concatenations of these two braids and their inverses [59, 60].

This notion of generator braids can be extended to the case when there are N ≥ 2, with

the only difference being that we will have N generators rather than just two, i.e., let σ0 be
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σ1 · σ1 σ1 · σ̂1

Figure 9. Two concatenated braids σ1 · σ1 and σ1 · σ̂1. The latter of these two braids is the same as the
identity braid σ0.

the trivial generator with no interactions and σk denote the interactions between agents k

and k + 1, k = 1, . . . ,N − 1. If we let ΣN be the set of all planar generator braids over N

agents, this set will serve as the alphabet over which braid strings (themselves braids) are

produced from, and we let ΣM
N denote the set of all braids of length M (i.e., braids composed

of M generators) over N agents.

4.1.2 A Geometric Interpretation

Although heavily inspired by geometry in [59], the braid group is not concerned with the

actual geometry of the braid strands. For the sake of describing the robot motion plans,

we will associate geometric paths with the different braids. First of all, we assume that

the braid is geometrically located in a rectangular area of height h and length ` no matter

how long the braid string is. Using the particular two-agent braids discussed in the previous

paragraphs, we assume that the two agents are initially located at the points (0, 0) and (0, h),

while the final locations are at (`, 0) and (`, h). If the total braid results from the use of one

single-generator braid σ0, or σ1 then no additional points are needed. However, if the

braid has length 2, then we also need to introduce intermediary half-way points (`/2, 0) and

(`/2, h). As such, we let Pq
2 =

{(
q
M `, 0

)
,
(

q
M `, h

)}
be a set of uniformly spaced1 positions

1Unless otherwise stated, the rest of this document we will assume these sets of intermediary points are
uniformly spaced in h and `, but the notions presented here extend to points which are not, as the application
demands. More on this in Section 4.4.
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for these intermediary points, where the subscript 2 denotes the two-agent case, M is the

length of the braid to be executed, and q = 0, 1, . . . ,M.

Using this notation, we can refer back to Figure 8a and say that each of the two gener-

ator braids correspond to an assignment, i.e., a bijective map, between P0
2 and P1

2, and we

use the following notation to denote this fact

σi : P0
2 →b P

1
2, i = 0, 1,

where →b denotes bijection. Note that this is a slight abuse of notation in that σi now

denotes both an element in the braid group as well as a map – this distinction, however,

should be entirely clear from the context. Further, we will refer to these points which

agents are bijectively mapped to and from as braid points.

If we generalize this to N ≥ 2 agents and let σ denote a string of generators of length

M ≥ 2, i.e., σ ∈ ΣM
N , we will use the notation

σ(k) : P(k−1)
N →b P

k
N , k = 1, . . . ,M,

where σ (k) is the kth braid2 in the string σ and

P
q
N =

{(
q
M `, 0

)
,
(

q
M `,

1
(N−1)h

)
,
(

q
M `,

2
(N−1)h

)
, . . . ,

(
q
M `, h

)}
,

as shown for the three-agent case in Fig. 10.

We moreover use the notation ξ(i, j) ∈ R2 to denote the point agent j should go to at step

i, i = 1, . . . ,M. We use the convention that ξ(0, j) = (0, ( j − 1)h/(N − 1)), j = 1, 2, . . . ,N,

to denote agent j’s initial position. In other words,

ξ(1, j) = σ(1)〈ξ(0, j)〉,

ξ(2, j) = σ(2)〈ξ(1, j)〉 = σ(2) ◦ σ(1)〈ξ(0, j)〉,

2Note that a braid here refers to a member of the braid group, e.g., a single generator (i.e., a single
bijective map) or a concatenation of several generators (i.e., a composition of bijective maps).

43



σ(1)
y

σ(2)
y

ξ (0, 1)

ξ (0, 2)

ξ (0, 3)

ξ (1, 1)

ξ (1, 3)

ξ (1, 2)

ξ (2, 3)

ξ (2, 1)

ξ (2, 2)︸                                                                                     ︷︷                                                                                     ︸
`

} h

P0
3 = {(0, 0) , (0, 0.5h) , (0, h)} P2

3 = {(`, 0) , (`, 0.5h) , (`, h)}
P1

3 = {(0.5`, 0) , (0.5`, 0.5h) , (0.5`, h)}

Figure 10. The geometric interpretation of braid string σ = σ2 · σ1 for the three-agent case. In this
example, σ(1) = σ2 and maps P0

3 to P1
3, while σ(2) = σ1 and maps P1

3 to P2
3.

or more generally,

ξ(i, j) = σ(i)〈ξ(i − 1, j)〉

= σ(i) ◦ σ(i − 1) ◦ · · · ◦ σ(1)〈ξ(0, j)〉,

where we use the 〈·〉 notation to denote the argument to σ(i) and ◦ to denote composition.

This construction is also illustrated in Figure 10 for the three-agent case.

The geometric interpretation we will make of the planar braids is that the mobile agents

that are to execute them must traverse through these braid points. They must moreover do

so in an orderly and safe manner, which will be the topic of the next section.

4.2 Braid Controllers

Given a collection of N agents with dynamics

ẋ j = f (x j, u j),
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and planar output

y j = h(x j) ∈ R2, j = 1, . . . ,N,

then it is of interest to have these agents execute a braid σ ∈ ΣM
N . We now define what it

means for this braid to be executed.

Given an input braid string σ, what each individual agent should do is “hit” the inter-

mediary braid points {ξ(i, j)}Nj=1 at specified time instances ti. We let T denote the time it

should take for the entire string to be executed. As such, the first condition for a multi-agent

motion to be feasible with respect to the braid is the following:

Definition 4.2.1 (Braid-Point Feasibility).

A multi-robot trajectory is braid-point feasible if

y j(ti) = ξ(i, j), i = 0, . . . ,M, j = 1, . . . ,N.

where the ti form a partition of a given time window [0,T ], i.e.,

t0 = 0 < t1 < · · · < ti < · · · < tM = T. ^

On top of braid-point feasibility, we also insist that the robots do not collide as they

maneuver. To a certain degree, this condition is what restricts the level of mixing that is

possible, i.e., since the braid is constrained in a rectangle of fixed height and width, what

length strings the multi-robot system can execute while maintaining a desired level of safety

separation.

Definition 4.2.2 (Collision-Free).

A multi-robot trajectory is collision-free if

‖yi(t) − y j(t)‖ ≥ δi j, ∀i , j, t ∈ [0,T ],

where δi j > 0 is the desired level of safety separation between agents i and j. ^
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For convenience, we will refer to δ̄ = max δi j as the maximum safety separation such

that no agent collides. This will come up in Theorem 4. We are missing a notion to describe

what the multi-robot mixing problem is, that is, what constitutes a braid controller.

Definition 4.2.3 (Braid Controller).

A multi-robot controller is a braid controller if the resulting trajectories are both braid-

point feasible and collision free, for all collision-free initial conditions such that

y j(0) = ξ(0, j), j = 1, . . . ,N. ^

As a final notion, we are interested in how much mixing a particular system can support.

Definition 4.2.4 (Mixing Limit).

The mixing limit M? is the largest integer M such that there exists a braid controller for

every string in ΣM
N . ^

Whenever two strands of the braid associated with a given braid string cross, the two

associated agents will have to interact. The mixing limit therefore serves as an input-

independent bound on how much mixing is achievable for a given team of agents operating

in a given environment. The mixing limit is in general quite hard to compute; it needs to

consider every permutation of strings of varying lengths up to some number, the geometry

assigned to each string, and is dependent on the kinematical response of the multi-robot

system. However, under certain assumptions it is possible to find bounds on M? for a given

braid controller.

4.2.1 Braid Controllers: Stop-Go-Stop Hybrid Strategy

Our first attempt at executing braids will be a hybrid control strategy called the Stop-Go-

Stop. We will assume that agent dynamics are given by single integrator dynamics, i.e.,

ẋ j = u j ∈ R
2 with y j = x j, j = 1, . . . ,N. Further, for practical considerations, assume that

there is a cap on the maximum velocity achievable by the agents, i.e., ‖u j‖ ∈ [0, vmax]. The

idea is then at each braid step to send agents off straight to their next braid point in order
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of the distance they’ll need to travel, waiting just long enough to avoid collisions before

sending an agent off. To that end, we define si : {1, . . . ,N} → {1, . . . ,N} to be a bijective

mapping that denotes the farthest distance ordering at step i, that is

si(p) < si(q) =⇒ ‖ξ(i, p) − ξ(i − 1, p)‖ ≥ ‖ξ(i, q) − ξ(i − 1, q)‖

where ties are arbitrarily broken such that si remains a bijection. We let the agents heading

angle be given by θi, j = tan−1
(

(ξ(i, j)−ξ(i−1, j))2
(ξ(i, j)−ξ(i−1, j))1

)
where the subscript indicates the first or second

component, and the unit heading vector be ρ̂i, j =
[
cos(θi, j), sin(θi, j)

]T
. Lastly, the time the

agents will wait before entering GO mode will be given by their ordering as (si( j) − 1)τ

where

τ =
δ

vmax cos(θ∗)

is the time required to be δ apart horizontally3, with cos(θ?) = `/M√
`2/M2+h2

being the max-

imum horizontal distance an agent could travel given σ ∈ ΣM
N . To ensure that the agents

do not overtake the first agent (horizontally), the speed of the agents should be scaled by

the velocity of the first agent, i.e., u j = vmax cos(θi,s−1
i (1))/ cos(θi,si( j)). The hybrid automaton

describing the stop-go-stop controller is given in Figure 11.

Theorem 3. [82] The STOP-GO-STOP controller in Figure 11 is a braid controller if the

braid points themselves are sufficiently separated and

cos(θ?)vmax

(
min

i
(ti − ti−1) − (N − 1)τ

)
≥

√
`2/M2 + h2.

Proof:

The STOP-GO-STOP controller ensures that the agents are never within δ of each other

by virtue of the fact that they have to wait until they are indeed at least that far apart

(horizontally) before entering GO mode. As such, the trajectories are collision-free.

What remains to show is that they are also braid-point feasible. Consider the agent

that has to wait the longest before it can move, i.e., the agent that has to wait a total of

3Since we are interested in the mixing limit, the analysis is done with the horizontal direction being the
limiting factor for safe execution of the braids.
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STOP
ẋ j = 0i := 1

GO

ẋ j = vmax

cos
(
θi,s−1

i (1)

)
cos

(
θi,si( j)

) ρ̂i, j

STOP
ẋ j = 0

t = (si ( j) − 1) τ + ti−1

xi = ξ (i, j)

t = ti

i := i + 1

Figure 11. Hybrid STOP-GO-STOP braid controller.

(N − 1)τ, and at its worst has mini (ti − ti−1) − (N − 1)τ time left to reach the next braid

point. In other words, we need that the distance traveled in that amount of time at the speed

vmax cos(θi,s−1
i (1))/ cos(θi,si( j)) is greater than the distance required. But, we note that

vmax cos(θi,s−1
i (1))/ cos(θi,si( j)) ≥ vmax cos(θ?)

and, as we are only looking for a bound, we assume that we use this lower speed and that

the distance required to travel is the largest distance possible (which it really is not). In

other words, we need

cos(θ?)vmax

(
min

i
(ti − ti−1) − (N − 1)τ

)
≥

√
`2/M2 + h2,

and the proof follows.

Note that Theorem 3 implicitly provides a lower bound on the mixing limit as long as

the agents’ paths are straight lines. In Figure 12 we can see the mixing limit as a function

of the number of agents in the team for parameters vmax = 5, T = 20, ` = 5, h = 10,

and ∆ = 0.2. The problem with this strategy is that it does not allow for more general

geometric paths (which could be interpreted as feasible trajectories under a given robot

dynamical model), nor does it ensure that agents get within a specified distance from each

other (which could be necessary when collaboration is required). The next section we

present a new strategy called braid reparameterization which will explicitly consider more

general strand geometries, and allow us to obtain analytical bounds on the mixing limit.
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Figure 12. Lower bound on the mixing limit using the Stop-Go-Stop braid controller.

4.2.2 Braid Controller: Braid Reparameterization

We are now seeking a strategy that will allow us to follow a given geometry while achieving

a mixing strategy encoded as a braid string σ ∈ ΣM
N . Further, we wish to enforce inter-agent

interaction as dictated in σ by having agents get as close as the safety separation δ jk. Before

moving forward, consider the following lemma.

Lemma 5. If at any braid step, the generators in the braid substring σ(k) = σ ⊆ Σm
N ,

m ≤ M, have indices that are two or more apart, then any agent interacts with at most one

other agent at this step.

Proof:

Let Bk
N ∈ R

N×2 be a matrix that contains the set of braid points at time k such that B0
N =

[ξ(0, 1) · · · ξ(0,N)]T . Consider the two-generator concatenation σi ·σ j. As a bijective map,

if σi = σ0, then the agents do not interact, and the agent in braid point position [Bk−1
N ]n

gets mapped to braid point position [Bk
N]n, where [B]n corresponds to the nth row of B,

n = 1, . . . ,N. If σi , σ0, then σi will swap the position of the two agents occupying the

braid point positions i and i + 1 at step k − 1, i.e., it maps the agent occupying [Bk−1
N ]i to

[Bk
N]i+1 and the agent occupying [Bk−1

N ]i+1 to [Bk
N]i. Similarly, σ j swaps the position of the
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agents occupying the braid point positions j and j + 1.

The two agents in positions i and i + 1 at k − 1 would only interact with the two agents

in positions j and j + 1 at k − 1 if i (or i + 1 for that matter) is equal to either j or j + 1. But

if we let |i − j| ≥ 2, then we get that

|i − j| ≥ 2 ⇔ 2 ≤ i − j or 2 ≤ j − i

⇒ j < j + 1 < j + 2 ≤ i < i + 1

or i < i + 1 < i + 2 ≤ j < j + 1

⇒



i , j

i , j + 1

i + 1 , j

i + 1 , j + 1,

and as such these two-generator concatenation maps the agents from one set of braid points

to the next with at most two interaction between at most two agents per interaction.

One of the two braid group relations [59, 60] tells us that if |i − j| ≥ 2 then σi · σ j =

σ j · σi. More generally, if we let

h : {1, . . . ,m} → {1, . . . ,N − 1}

be a surjective map such that |h(i) − h( j)| ≥ 2 for all i, j ∈ {1, . . . ,m} with i , j, then for

any bijective map g : {1, . . . ,m} → {1, . . . ,m} we have that

σ(k) = σh(1) · σh(2) · · · · · σh(m) = σh(g(1)) · σh(g(2)) · · · · · σh(g(m)).

As such, the braid generators can be rearranged to obtain any permutation of two-generator

concatenations from generators in σ(k). Since for all permutations of two-generator con-

catenations we will have indices that are two or more apart, these will map the agents at

braid step k from the set of braid points Bk−1
N to the next set of braid points Bk

N with at most

m interactions total, and at most one interaction per agent.
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If the geometric interpretation of the braid string is restricted to the case of only pairwise

interactions at every braid step, then it is possible to devise a hybrid strategy with the

desired properties, which we can then compose together to achieve the desired interaction

patterns. As such, we will restrict the geometric interpretation of braid strings to those

satisfying pairwise interactions as in Lemma 5.

Restriction 1 (Geometric interpretation of a given braid). As a bijective map from one set

of braid points to another, the braid σ(k) will only contain generators whose indices are

two or more apart, i.e., for some h : N→ {0, . . . ,N − 1}

σ(k) = σh(1) · σh(2) · · · · , where |h(i) − h( j)| ≥ 2 ∀i , j

Note that this is not a restriction on which braids strings we will consider, but on how

many braid steps we will need to execute the interaction pattern encoded in the braid string.

As an example, suppose that a braid string contains the substring of three concatenated

generators σ1 · σ3 · σ2. The first two generators, σ1 · σ3, may take place simultaneously at

braid step 1 without incurring in more than one interaction per agent with another agent,

but we would require an additional braid step for σ2 in order to avoid multiple interactions

in the same step. This is illustrated geometrically in Figure 13. In (a), an agent interacts

with more than one other agent since all the generators are not at least two indices apart

and take place at the same braid step. Note that in the remaining cases (b)-(d), we introduce

intermediate braid points while retaining the desired level of interaction, final configuration

of the agents, and reducing to pairwise interactions.

Braid strings that satisfy Restriction 1 will have at most interactions involving two

agents at any given braid step. So in order to safely execute braids, one need only consider

the case when two agents interact. We will devise a strategy for reparameterizing the geom-

etry such that should two agents interact, the resulting parameters are at least δ from each

other. By tracking the parameterized paths, the agents’ trajectories will be collision-free

and braid-point feasible. The resulting controllers can be combined to satisfy a given braid
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{σ1 · σ3 · σ2}
= {σ3 · σ1 · σ2}

(a)

{σ1 · σ3} · σ2
= {σ3 · σ1} · σ2

(b)

σ1 · σ3 · σ2

(c)
σ3 · σ1 · σ2

(d)

Figure 13. A braid string σ = σ1 · σ3 · σ2 taking place in a varying number of braid steps.

string.

Consider the geometric path agent j must follow at step i given by γ j
i : [0, 1]→ R2 with

γ
j
i (0) = ξ(i − 1, j) and γ j

i (1) = ξ(i, j). Let ∆ be the arclength of this path, given by

∆ =

∫ 1

0

√(
γ̇

j
i (p)

)T
γ̇

j
i (p) dp.

We wish to find a parameterization of the strand geometries such that the parameters of

two intersecting strands, thought of as virtual vehicles that live on their geometries, are

collision free. The strategy to do so will be to impose constraints on the agents’ separation

from the path intersection at a specified time. To ensure braid-point feasibility, the strategy
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will be to impose constraints on the time in which the agents must get from the beginning

of one braid step to the end of that step. To that end, we construct the following constrained

optimization problem

(v?j , v
?
k ) = arg min

(v j,vk)
J(v j, vk) = arg min

(v j,vk)

1
2

∫ ti

ti−1

v2
j + v2

k dτ (21)

subject to

ṗ j = v j, p j(ti−1) = 0,

p j

( ti−1 + ti

2

)
=

∆ + δ

2∆
, p j(ti) = 1,

and

ṗk = vk, pk(ti−1) = 0,

pk

( ti−1 + ti

2

)
=

∆ − δ

2∆
, pk(ti) = 1.

The constraints at ti−1 and ti will ensure that the reparameterization is braid-point feasible.

For collision avoidance we will define a safety separation region, as depicted in Figure

14, to be the region from the intersection point to the point where it is possible for the

two agents to be within δ jk of each other, i.e., the set
[

∆−δ
2∆
, ∆+δ

2∆

]
for δ ∈ [0,∆] such that∥∥∥γ j

i (p j) − γk
i (pk)

∥∥∥ ≥ δ jk for all p j, pk ∈ [0, 1], where we let δ be the distance from the

intersection point to the boundary of the safety separation region along the path. Note that

if the geometry of the braid strands are straight lines, the distance δ can be easily computed

by δ = δ jk csc(θ), where θ is the angle between the two intersecting lines, and this would

also imply the parameters get as close as δ jk csc (θ/2). Similarly, when the geometry is

city-block-like, we can find δ = δ jk + h
2(N−1) and the agent get as close as 2δ jk. For more

general geometries, δ may be conservatively selected. At t̄i := ti−1+ti
2 , i.e., half-time along

the braid step, we will require one parameter to exit the safety separation region as the other

one is about to enter it. All these cases are illustrated in Figure 14. This way we guarantee

that the two parameters are never inside the region simultaneously and thus their separation

will always be of at least δ jk.
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δ jk

δ

θ
δ′

δ
δ jk

Figure 14. Safety separation region for three different geometry, two-agent braids. For straight lines
(left) or city-block-like (right), the distance δ can be computed exactly. For arbitrary curves (center),
the distance δ′ can be selected conservatively.

The optimality conditions for equation (21) are given by

λ̇ j = λ̇k = 0, ṗ j = −λ j, ṗk = −λk,

p j(t̄i) = ∆+δ
2∆
, pk(t̄i) = ∆−δ

2∆
, p j(ti) = pk(ti) = 1.

Since λ̇ j = λ̇k = 0, we will get that λ j and λk are piecewise constant. By using the midway

condition, we have that for t ∈ (ti−1, t̄i]

p j(t̄i) =

∫ t̄i

ti−1

v j dτ =
∆ + δ

2∆

⇒ v j(t̄i − ti−1) =
∆ + δ

2∆

⇒ v j =
1
∆

∆ + δ

(ti − ti−1)

and similarly for t ∈ (t̄i, ti], the terminal condition tells us that

p j(ti) =

∫ ti

t̄i
v j dτ +

∆ + δ

2∆
=

∆

∆

⇒ v j(ti − t̄i) =
1

2∆
(2∆ − ∆ + δ)

⇒ v j =
1
∆

∆ − δ

(ti − ti−1)

Note that for agent k, the signs are reversed on the numerator. As such, the resulting braid

parameterization will have velocities given by

ṗ j(t) =


1
∆

∆±δ
(ti−ti−1) t ∈ (ti−1, t̄i]

1
∆

∆∓δ
(ti−ti−1) t ∈ (t̄i, ti]

(22)
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where the sign in the numerator is determined by the interpretation given to the braid strand

going “under” (e.g., the agent crosses the intersection point first) or “over” (e.g., the agent

crosses the intersection point second), and in cases where there are no intersections we set

δ = 0 in the numerator.

It is possible to come up with an upper bound on the length of the braid attainable under

this mixing scheme. Under Restriction 1, the following theorem provides an upper bound

on the mixing limit.

Theorem 4. Given the maximum safety separation δ̄ and bounds on the agents’ veloci-

ties such that v j(t) ∈ [0, vmax] ∀t, j, the mixing limit M? for N-agent braids that can be

performed in a space of height h and length ` in time T is bounded above by

M? ≤ min

`
√

4h2 − δ̄2 (N − 1)2

δ̄h
,

(N − 1)
(
vmaxT −

(
` + δ̄

))
h

−
1
2

 .
Proof. Consider σ ∈ ΣM

N . Since at any step an agent can either interact with another agent

or move straight ahead, the maximum mixing will be achieved if an agent interacts with

another agent at every step. Thus, at every step it must be enforced that there are no

collisions. Assuming a uniform partition of the time window, the arclength-normalized

parameter velocity will be given by

v j =


(

M∆±Mδ
T∆

)
if t ∈

(
i−1
M T, 2i−1

2M T
]

(
M∆∓Mδ

T∆

)
if t ∈

(
2i−1
2M T, i

M T
]

for i = 1, 2, . . . ,M, where the sign on the numerator depends on the interpretation of

whether the strand goes over or under, ∆ is the arclength of the strand geometry connecting

two braid point, assumed equal at each braid step and for both agents due to symmetry,

and δ is the safety separation distance along the braid as described above. The total braid

path length ∆ heavily depends on the geometry of path. However, for the sake of obtaining

bounds on the mixing limit, we may assume that the braid points are uniformly distributed
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in height and length, such that the length of sufficiently regular paths will be bounded by√(
h

N − 1

)2

+

(
`

M

)2

≤ ∆ ≤
h

N − 1
+
`

M
(23)

where the lower bound assumes straight lines connecting the braid points and the upper

bound assumes city-block-like paths stepping midway between the two points. But after

normalizing the bounds on the parameter velocity, we see that

0 ≤
M (∆ − δ)

T∆
≤

M (∆ + δ)
T∆

≤
vmax

∆
. (24)

The lower bound of (24) tells us that for the parameter to not go backwards we need δ ≤ ∆.

To ensure this, we set δ = δ̄ csc θ ≤
√(

h
N−1

)2
+

(
`
M

)2
≤ ∆, and since we require δ̄ ≤ h

N−1 for

collision-free braid points, using the geometric relationships to solve for M yields

M ≤
`
√

4h2 − δ̄2 (N − 1)2

δ̄h
.

Similarly, the right-hand side inequality of (24) tells us that ∆ ≤ vmaxT−δ
M =

vmaxT−( 1
2 ( h

N−1 )+δ̄)
M ,

and to ensure this we set ∆ ≤ h
N−1 + `

M ≤
vmaxT−( 1

2 ( h
N−1 )+δ̄)

M . Solving for M yields

M ≤
(N − 1)

(
vmaxT −

(
` + δ̄

))
h

−
1
2
.

Thus

M? ≤ min

`
√

4h2 − δ̄2 (N − 1)2

δ̄h
,

(N − 1)
(
vmaxT −

(
` + δ̄

))
h

−
1
2

 .

Theorem 4 provides a compact expression to obtain an upper bound on the mixing limit

that abstracts away strand geometry. It provides a notion of the whether or not desirable

mixing levels are achievable in the space, regardless of what the actual movement patterns

to achieve these mixing levels are (encoded in the braid string of length M ≤ M?). Figure

15 includes a plot of the bound on the mixing limit for varying number of agents and time

window size.
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Figure 15. Upper bound on the Mixing Limit presented in Theorem 4 for parameters ` = 2 m, h = 4 m,
δ = 0.13 m, vmax = 2 m/s

4.3 Formal Synthesis of Braid Strings

In this section, we address the question of how to determine which motion pattern to ex-

ecute given a desired interaction specification. Note that for a multi-robot system with N

agents attempting to execute a particular motion pattern encoded in a braid string of M

generators, there are NM possible braid strings. Searching the space of interactions patterns

in a naı̈ve way could result in costly searches that do not afford real time implementation

on multi-robot systems. Instead, we use the results from Theorem 4 together with the clo-

sure property of the braid group to construct an algorithm that significantly reduces the size

of the search space while guaranteeing exactness of the solution. This is one of the two

main contributions of this section. The second contribution is the introduction of a formal

framework to specify rich, temporally layered multi-robot mixing requirements. We define

a special class of deterministic transition systems, called braid transition systems (BTSs),

to encapsulate how braid strings affect the mapping between braid points. In Section 4.3.3
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we define a new logic, called Braid Temporal Logic, that is interpreted over runs of BTSs.

In order to define this new logic, in the next section we provide some common notation on

temporal logic and automata.

4.3.1 Temporal Logic and Automata

The set of all finite and set of all infinite words over alphabet Ω are denoted by Ω∗ and Ω∞,

respectively.

A deterministic transition system [92] (DTS) is a tuple TS = (Q, q0, Act,Trans), where

Q is a set of states, q0 ∈ Q is the initial state, Act is a set of actions, and Trans ⊆ Q×Act×Q

is a transition relation. A labeled DTS is a tuple TS = (Q, q0, Act,Trans, AP, L) where AP

is a set of atomic propositions, and the labeling function L : Q → 2AP maps states to

propositions. An input sequence a = a0a1 . . . ∈ Act∗ induces a run r = q0q1q2 . . . ∈ Q∗ such

that q0 = q0 and (qi, ai, qi+1) ∈ Trans. The trace of a run of a labeled transition system is a

word w = w0w1 . . . ∈ (2AP)∗ such that wi = L(qi).

A syntactically co-safe linear temporal logic (scLTL) formula over a set AP is induc-

tively defined as [93]:

φ := p|¬p|φ ∨ φ|φ ∧ φ|φ U φ| © φ| ♦ φ, (25)

where p ∈ AP and φ is an scLTL formula. The logical operators ∨,∧, and ¬ are disjunction,

conjunction, and negation, respectively, and the temporal operators U , © , and ♦ are

until, next, and eventually, respectively. We also use Boolean implication⇒, where (φ1 ⇒

φ2) = (¬φ1 ∨ φ2). The logic scLTL is defined over words w = w0w1 . . . ∈ (2AP)∗. The

notation w |= φ is used to mean that w satisfies an scLTL formula φ. The language of φ is

L (φ) = {w|w |= φ}.

A (deterministic) finite state automaton (FSA) is a tuple FS A = (Ω,Π,Ω0, F,∆FS A)

where Ω is a finite set of states, Π is an input alphabet, Ω0 ⊆ Ω is a set of initial states,

F ⊆ Ω is a set of final (accepting) states, and ∆FS A ⊆ Ω×Π×Ω is a deterministic transition

relation. An accepting run rFS A of an automaton FS A is a sequence of states ω0ω1 . . . ω j+1
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such that ω j+1 ∈ F and (ωi, πi, ωi+1) ∈ ∆FS A ∀i ∈ [0, j]. The language of FS A, denoted

L (FS A), is the set of words w ∈ Π∗ that lead to an accepting run. Given an scLTL formula

φ over AP, there exist off-the-shelf algorithms [94] for creating an FSA FS Aφ with input

alphabet 2AP such that L (FS Aφ) = L (φ).

The product automaton between a labeled deterministic transition system TS and an

FSA FS Aφ is an FSA Pφ = TS ×FS Aφ = (ΩP , χ0, Act, FP ,∆P) [92], where ΩP ⊆ Q×Ω,

χ0 = (q0, ω0), FP ⊆ Q × F, and ∆P = {(q, ω), p, (q′, ω′)|(q, p, q′) ∈ Trans, (ω, L(q), ω′) ∈

∆FS A}. The state of the automaton at time k is denoted as χk = (qk, ωk). Any accepting

word a = a0a1 . . . ∈ Act∗ over P induces a trace w over TS such that w |= φ. Thus, finding

a path on TS that satisfies φ corresponds to a reachability problem on Pφ.

The distance to acceptance [95, 96] W : ΩP → Z
+ is defined such that W(χ) is the

minimum number of actions required to drive P from χ to a state χ f ∈ FP .

4.3.2 Temporal Logic and the Braid Group: Braid Transition System

In the BTS, we model the set of braid points abstractly as configurations.

Definition 4.3.1 (Configuration space). Let vN = [1 . . . N]T . The (mixing) configuration

space for a team of N agents is Perm(vN) where Perm(·) denotes the set of permutations of

the elements of the vectors.

The configuration associated with P0 is by definition vN . A column vector c ∈ Perm(vN)

corresponds to a configuration of the braid points such that c(k) = j if and only if agent j

is mapped to the braid point [Pi]k at step i.

Definition 4.3.2 (Braid Transition System (BTS)). The braid transition system of size N is

a deterministic transition system described by the tuple

BTS N =
(
vN ∪ Perm(vN)2, vN ,ΣN ,TransN

)
,

where TransN ⊆ CN × ΣN ×CN is the smallest transition relation that satisfies
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(vN , σ0, (vN , vN)) ∈ TransN (26a)

(vN , σi, (vN , c22)) ∈ TransN ⇔

c22(i) = i + 1 ∧ c22(i + 1) = i

∀i ∈ 1, . . . ,N − 1


(26b)

((c11, c12), σ0, (c12, c12)) ∈ TransN (26c)

((c11, c12), σi, (c21, c21)) ∈ TransN ⇔

c21 = c12 ∧ c21(i) = c22(i + 1)

∧c21(i + 1) = c22(i)

∀i ∈ 1, . . . ,N − 1 ^


(26d)

Example 1. The braid transition system for two agents, BTS 2, is illustrated in Figure 16a.

^

A BTS stores one time unit of history, i.e., if the BTS is in state (c1, c2), ci ∈ Perm(vN),

at time k, then the robots were in configuration c1 at time k − 1 and are in configuration c2

at time k. This allows us to check properties that explicitly involve interactions between

agents. Given a run of the braid transition system r = vN , (vN , c1), (c1, c2) . . . ∈ (Perm(vN)∪

Perm(vN)2)∗ we define its configuration trace as rC = vN , c1, c2, . . .. For a finite N, the

number of states in BTS N is (N!)N +1 and the number of transitions in TransN is N2(N!)+

N.

4.3.3 Braid Temporal Logic

In order to describe rich, temporally layered requirements on the agents’ mixing, we define

a new predicate temporal logic, called Braid Temporal Logic (BTL).

Definition 4.3.3 (BTL Syntax). The syntax of BTL is defined inductively as

φ := Am pg|d(Am, A`) ∼ x|AmA`|¬Aip j|¬AiA j

|φ ∨ φ|φ ∧ φ|φ U φ| © φ| ♦ φ,

(27)
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where φ is a BTL formula, ∼∈ {<, >}, x ∈ N, and the Boolean and temporal operators are

as defined for scLTL in Section 4.3.1. The predicate Am pg means agent m is in position g;

d(Aa, A`) ∼ x means that the distance between agents m and ` is less than (or greater than)

x; AmA` means that agents m and ` interact. ^

Definition 4.3.4 (BTL semantics). The semantics of BTL is defined recursively as

ci |= Am pg ⇔ ci(g) = m

ci |= ¬Am pg ⇔ ci 6|= Am pg

ci |= d(Am, A`) ∼ x ⇔ | f − g| ∼ x where

ci( f ) = m and ci( f ) = `

ci |= AmA` ⇔ m and ` swap between

ci−1 and ci.

ci |= ¬AmA` ⇔ ci 6|= AmA`

ci |= φ1 ∨ φ2 ⇔ ci |= φ1 or ci |= φ2

ci |= φ1 ∧ φ2 ⇔ ci |= φ1 and ci |= φ2

ci |= φ1 U φ2 ⇔ ∃ j ≥ i s.t. c j |= φ2

and ck |= φ1 ∀i ≤ k < j

ci |= © φ ⇔ ci+1 |= φ

ci |= ♦ φ ⇔ ∃ j ≥ i s.t. c j |= φ. ^

(28)

Example 2 (cont’d). For the case of two robots interacting, we can use the BTL formula

φn=2 = ♦ (A1 p2 ∧ © A1A2) (29)

to describe the property: eventually, Agent 1 is in position 2 and in the next step, Agent 1

and Agent 2 interact.

Example 3. Consider the specification
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φc = ♦ (A3A4 ∨ A2A4)

∧ (¬(A3A4 ∨ A2A4) U A1A4)

∧ ((A3A4 ⇒ ♦ A3 p5) ∧ (¬A3 p5 U A3A4)

∨ (A2A4 ⇒ ♦ A2 p5) ∧ (¬A2 p5 U A2A4))

(30)

In plain English, this is: agent 4 communicates with agent 2 or 3 after it has communicated

with Agent 1. Whichever agent 4 communicates with reports to position 5.

4.3.4 Synthesis of Braid Strings from BTL Formulae

In this work, we are both interested verifying rich temporally layered behaviors of interact-

ing robots, and in developing braid controllers that enforce a given BTL specification. We

encode this in the following problem.

Problem 1 (Braid String Synthesis). Given a set of N agents and a BTL formula φ, find a

word σ ∈ ΣM
N such that applying σ to BTS N will lead to a configuration trace that satisfies

φ and σ has fewer generators than the mixing limit M∗. ^

There are potentially many words σ that satisfy Problem 1. Here, we synthesize the

shortest satisfying word.

The standard approach to solving Problem 1 is to convert it to the problem of scLTL-

based synthesis for labeled transition systems. Briefly, we convert a given BTL formula φ

to an scLTL formula φ′ by applying a mapping π that maps every predicate in φ to a unique

atomic proposition. The product automaton P = BTS N × FS Aφ′ is constructed and then

Djikstra’s algorithm is used to produce the shortest accepting word. We ensure that the

length of the resulting word is less than the mixing limit. Applying this word to BTS N will

result in a configuration trace rC that satisfies φ.

Example 4 (Cont’d). Figure 16b shows the FSA constructed from (29). Figure 16c shows

the product automaton between BTS 2 and the FSA from (29). In Figure 16d, we see the

path that results from finding the shortest accepting word on P .
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(b)

(c)
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(d)

Figure 16. (a) The braid transition system constructed when two agents interact. (b) FSA constructed
from (29). The initial state ω0 is indicated in grey and the accepting state is indicated by the double
outline. The edges are annotated with the BTL subformulae whose language is the set of inputs that
enable the indicated transition. (c) Product automaton between (a) and (b). Again, the accepting state
is indicated with double circles. (d) The braid resulting from finding the shortest accepting path on (c).
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4.3.5 Language-Guided Synthesis

The number of states in BTS N scales exponentially with N. We present a procedure, out-

lined in Algorithm 1, that constructs the part of the product automaton between BTS N

and FS Aφ′ necessary to solve Problem 1, denoted PLG, that does not require explicitly

constructing BTS N .

After constructing FS Aφ′ , we use its accepting states and the set of predicates that

enable transitions to these states to enumerate the accepting states FP of P . Next, we

construct PLG backwards. At each iteration j, the procedure BackStep constructs the set

of states K j such that W(χ) = j ∀χ ∈ K j and connects K j to PLG. Since TransN can be

represented by (26), we can enumerate all transitions in BTS N that would result in a state

(c1, c2) ∈ K j. The inputs of the transitions in FS Aφ′ can be used to determine whether paths

originating from these enumerated states can reach an accepting state in j steps. Finally,

after executing BackStep M∗ − 1 times, we connect the initial state (vN , ω0) to PLG and

then trim any states in the graph that are not reachable from (vN , ω0).

Algorithm 1: Language-guided product automaton construction.
function LanguageGuidedConstruction(N, φ,M∗)

FS Aφ′ = BuildFSA(φ)

FP = ComputeAcceptingState(FS Aφ′)

ΩP = FP; ∆P = ∅; K0 = FP;

for j = 1 to (M∗ − 1) do

(K j,∆FS A,ΩP,∆P) = BackStep(K j−1,∆FS A,ΩP,∆P)

end

(ΩP,∆P) = ConnectInitialState(ΩP,∆P)

PLG = (ΩP, (vn, c, ω0), Act, FP,∆P)

return Trim(PLG)
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Figure 17. Shortest braid that satisfies (30).

Proposition 1 (Exactness). The language of PLG is the set of all paths that will induce

BTS N to satisfy φ and respect the mixing limit.

Proof. (Sketch) The result is guaranteed by enforcing the loop invariant W(χ) = j ∀χ ∈

K j.

Example 5 (Cont’d.). The braid in Figure 17 satisfies (30) and respects the mixing limit

of 8. This braid was generated by Algorithm 1 in 3.7s from an automaton with 845 states.

Applying the standard approach (Section 4.3.4) calculated the solution in 939s from an

automaton with 5724 states. All calculations were performed on a PC with a 2.6 GHz

processor with 7.8 GB RAM.

4.4 Non-Rectangular Regions

Up to this point, only the problem of braiding on a rectangular region of height h and

length l has been considered. On this region, the braid points were uniformly distributed

along both dimensions and bounds on the mixing limit were provided through the use of

the presented braid controller. In this section, the scheme is extended to more generally

shaped regions, e.g., the road on Figure 18. As has been done previously, discussion begins

by first considering the two agent case.

Consider the two agents attempting to perform a braid of length one on the arbitrarily

curved region on Figure 18b. Connecting the braid points together results in the quadrilat-

eral depicted in the red dotted line. Let this quadrilateral be considered as the space where

the agent needs to perform a braid of length one, rather than the curved region itself. Note
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(a) Three agents braiding on a curved region.

(b) Two agents need to move from the
left-most circles to the right-most circles
along the curved region.

(c) The longer the braid length in this curved road
segment, the closer the quadrilaterals resemble
the curved region.

Figure 18. Agents braiding on a region that curves.

that as longer length braids are included in this road segment, other quadrilaterals appended

together will be obtained which approximate the road slightly better. Since it is of interest

to obtain mixing strategies near the mixing limit, as longer length braids are included in

this road segment, better approximations of the curved region will be obtained by these

composition of quadrilaterals. This is depicted in Figure 18c.

The strategy for performing a mixing strategy in curved region will be to transform

the curved region into a straightened rectangular region of known height and length, as

illustrated in Figure 19a. In this way the braid controller can be fashioned as in previous

sections and the resulting braid controller can be transformed back into the actual curved

region. After distributing the braid points on both the curved region and the rectangular
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(a) The curved region will be mapped to the rectangular region of known width and height where
control design will take place.

(b) The bijective transformation T maps points in the rectangle to points in the quadrilateral. Both
shapes are defined by the braid points which determine the corners.

Figure 19. Rectangular and non-rectangular regions.

region, as in Figure 19a, the next step is to find a transformation to map between these two

regions.

Let agents j and k interact in at braid step i. Denote Sq
i, j to be the quadrilateral formed

by connecting together the braid points ξ(i − 1, j), ξ(i − 1, k), ξ(i, j), and ξ(i, k), like the one

depicted in Figure 18b. Let Sr
i, j be a rectangular plane of specified height and length whose

corners are given by ξr(i − 1, j), ξr(i − 1, k), ξr(i, j), and ξr(i, k).

With knowledge of these braid points and through the use of a projective transform as in

[97], it is possible to obtain a local diffeomorphism that maps from a rectangle of specified

height and length to the convex arbitrarily shaped quadrilateral, i.e., Ti, j : Sr
i, j → S

q
i, j.

Note that by selecting transforms based on the corners of these quadrilaterals, a con-

tinuous curve that spans across the boundary between Sr
i, j and Sr

i+1, j might be mapped to

a discontinuous curve that spans across the boundary between Sq
i, j and Sq

i+1, j when trans-

formed using Ti, j and Ti+1, j in their respective spaces. However, there will certainly be

67



0 1 2 3 4 5 6
0

1

2

3
Track (Real World)

East (m)

N
or

th
 (

m
)

3.5 4

0

0.2

0.4

0.6

0.8
Zoomed in Track (Real World)

East (m)

N
or

th
 (

m
)

2 4 6 8 10 12 14
0

0.2
0.4
0.6

Straightened Track (Virtual World)

Counter Clockwise along Path (m, along Center of Path)F
ro

m
 O

ut
er

 to
 In

ne
r

T
ra

ck
 B

ou
nd

ar
y 

(m
)

(a) Simulation Time 5.04 seconds.
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(b) Simulation Time 9.57 seconds.

Figure 20. Five agents performing a mixing strategy given by a braid of length 80. The top left plot
represents the actual curved region the agents are mixing in and the top right is a close-up of the agents.
The lower plot is the virtual “straightened” rectangular region where the design of the braid took place.

continuity in the mapping of curves passing through the braid points, since these points are

shared by the quadrilaterals and are used to compute the transforms, i.e., Ti, j (ξr(i, j)) =

ξ(i, j) = Ti+1, j (ξr(i, j)).

Recall the braid controller presented for the rectangular region. For agent j, at braid

step i, this was given by

v j(t) =


1
∆

(
∆−δ

ti−ti−1

)
if t ∈ (ti−1, t̄i] ,

1
∆

(
∆+δ

ti−ti−1

)
if t ∈ (t̄i, ti] .

where it is expected that T −1
i, j (x (ti−1)) = ξr(i − 1, j) and T −1

i, j (x (ti)) = ξr(i, j). In the

expression, ∆ corresponds to the length of the geometric path agent j must follow to move

between ξr(i − 1, j) and ξr(i, j), while δ corresponds to the distance along the path agent j

switches velocities in order to avoid collisions. Note that for a given parameterization of the

geometric path γ j
i,r(p) in Sr

i, j with parameter p ∈ [0, 1], the arclength ∆ may be computed

as follows

∆ =

∫ 1

0

√
γ̇

j>
i,r (p)γ̇ j

i,r(p) dp.

If the geometric curve is directly given in Sq
i, j as γ j

i (p) such that the curve in Sr
i, j may be
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parameterized as γ j
i,r(p) = T −1

i, j (γ j
i (p)), then the arclength may be computed by

∆ =

∫ 1

0

√(
γ̇

j
i (p)

)>
M(γ j

i (p))γ̇ j
i (p) dp.

whereM(γ j
i (p)) =

(
DT −1

i, j

(
γ

j
i (p)

))>
DT −1

i, j

(
γ

j
i (p)

)
and DT −1

i, j is the Jacobian of T −1
i, j . In the

special case where the geometry is given by straight lines, then ∆ = ‖ξr(i, j) − ξr(i − 1, j)‖.

Finally, it is of interest to find δ in order to avoid collisions. If the parameterization

γ
j
i (p) of the curve in Sq

i, j is known, then the safety separation ball may be set in Sq
i, j as

before and the safety separation distance may be computed as

δ =

∫ b

a

√(
γ̇

j
i (p)

)>
M(γ j

i (p))γ̇ j
i (p) dp.

where [a, b] ⊂ [0, 1], and if the agent is meant to braid over (resp. under) then γ
j
i (a)

corresponds to the point along the curve where the agent enters the safety separation region

(resp. where the two curves intersect) and γ j
i (b) corresponds to the point along the curve

where the two curves intersect (resp. where the agent exits the safety separation region).

In the special case where the geometry is given by straight lines, then by setting

γn
i (p) = (1 − p)ξ(i − 1, n) + pξ(i, n), p ∈ [0, 1], n = j, k.

as the path agent j and k must follow, the intersection point s may be found by setting

s = γ
j
i (π j) = γk

i (πk) where π j

πk

 = A−1 (ξ(i − 1, k) − ξ(i − 1, j))

with A =
[
(ξ(i, j) − ξ(i − 1, j)) ,− (ξ(i, k) − ξ(i − 1, k))

]
. Recall that the distance in Sq

i, j from

the intersection point s, for the special case of the geometry being straight lines, was given

by δ = δ jk csc(θ) with θ being the angle between these two lines, i.e., θ = cos−1
(
x̂>j x̂k

)
where x̂n is the unit vector pointing towards the next point, i.e.,

x̂n =
(ξ(i, n) − ξ(i − 1, n))
‖ξ(i, n) − ξ(i − 1, n)‖

, n = j, k.
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By setting γ̂(p) = (1 − p)s ± pδx̂ j, where sign depends on whether the braid goes over or

under, it is possible to determine δ in the non-rectangular plane directly as

δr =

∫ 1

0

√(
±δx̂ j − s

)>
M (γ̂(p))

(
±δx̂ j − s

)
dp.

With this information, v j can be found in Sr
i, j for interactions between agents j and k. Note

that a reparameterization of the path can now be set equivalent to the desired trajectory of

agent j by setting γ j
i,d(t) = γ

j
i,r(p j(t)) (see (31) below). Thus, the braid controller parameter

velocity vq
j(t) for agent j in Sq

i, j will be given by vq
j(t) =

∥∥∥DTi, j(γ
j
i,d(t))γ̇ j

i,d(t)
∥∥∥.

This strategy was implemented in simulation over the curved region illustrated in Figure

20. In the figure, agents are performing the mixing strategy given to them by a braid of

length 80 on the curved region (top) and simultaneously on the straightened rectangular

region (bottom). The parameters used for this simulation were δ jk = 7.7 cm and vmax =

1.5 m/s ∀ j, k, and T = 30 s.

4.5 Implementing Braids

Section 4.1 approached the problem of multi-robot mixing from an execution level, where

given a symbolic input it is possible to find a braid controller that generates trajectories

to satisfy the input. In Section 4.3, we addressed the specification level where given a

specification it is possible to synthesize a braid string that satisfies the specification. In this

section we consider the implementation level, that is, we address how to find controllers

that are implementable on actual robotic systems that follow the braid controllers generated

trajectories in previous section. We then validate the framework by implementing a mixing

strategy on a team of six robots.
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4.5.1 Optimal Tracking Controller

We will now utilize the braid parameter velocity to find the braid controller for the agents.

By integrating (22) we obtain the braid parameterization of the path γ j
i

p j(t) =


t−ti−1

(ti−ti−1)
∆±δ
∆

t ∈ (ti−1, t̄i]

t−t̄i
(ti−ti−1)

∆∓δ
∆

+ ∆±δ
2∆

t ∈ (t̄i, ti] .
(31)

Assume that agents have single integrator dynamics, i.e., ẋ j = u j with y j = x j ∈ R
2. The

agent’s controller will be found by optimally tracking the reparameterized path γ j
i (p j(t)) to

minimize the cost

J(u j) =
1
2

∫ ti

ti−1

(
x j − γ

j
i

)T
Q

(
x j − γ

j
i

)
+ uT

j Ru j dτ (32)

for Q = QT � 0 and R = RT � 0, with constraints ẋ j = u j, x j(ti−1) = γ
j
i (0), and

x j(ti) = γ
j
i (1). Using the standard variational argument together with Pontryagin’s min-

imum principle, the first order necessary conditions for optimality tell us that the optimal

tracking controller u∗j is given by

u∗j = −R−1λ j

where λ is the so-called costate and satisfies

λ̇ j = −Q
(
x j − γ

j
i

)
with unknown terminal condition λ j(ti). Suppose that similarly to [98, Chapter 5.3] we can

construct λ j as an affine combination of the unknown λ j(ti) and the state, i.e.,

λ j(t) = H(t)x j(t) + K(t)λ j(ti) + E(t)

and similarly, the terminal state as

x j(ti) = ξ(i, j) = F(t)x j(t) + G(t)λ j(ti) + D(t)
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for some yet unknown functions H,K, E, F,G, and D. One can differentiate these equations

and manipulate the equations to obtain(
HR−1H − Q − Ḣ

)
x j +

(
HR−1K − K̇

)
λ j(ti) +

(
HR−1E + Qγ j

i − Ė
)

= 0

and (
FR−1H − Ḟ

)
x j +

(
FR−1K − Ġ

)
λ j(ti) +

(
FR−1E − Ḋ

)
= 0.

In order to satisfy these equations for any value of x j(t) and λ j(ti), the terminal conditions,

and after noticing that F = KT , we obtain that

Ḣ = HR−1H − Q, H(ti) = 02×2

K̇ = HR−1K, K(ti) = I2

Ġ = KT R−1K, G(ti) = 02×2 (33)

Ė = HR−1E + Qγ j
i , E(ti) = 02×1

Ḋ = KT R−1E, D(ti) = 02×1.

Note that G(ti) = 0 and Ġ(t) � 0 for all t, which suggests that G(t) � 0 for t < ti. If the

problem is not abnormal, i.e., there exists a neighboring minimum solution, then G will

be invertible at some t < ti. In particular, by solving backwards in time in the sequence

H → K → E → G → D up to t = ti−1, we can find that

λ j (ti) = G−1 (ti−1)
(
ξ (i, j) − KT (ti−1) ξ (i − 1, j) − D (ti−1)

)
resulting in the feedback optimal trajectory tracking control law

u∗j(x j, t) =

− R−1
[
H(t)x j(t) + K(t)G−1(ti−1)

(
ξ(i, j) − KT (ti−1)ξ(i − 1, j) − D(ti−1)

)
+ E(t)

]
(34)

where H,K, E,G and D are the solutions to terminal value problems in (33). which can be

solved numerically backwards from ti. As it turns out, these conditions are also sufficient

for optimality as presented in the following theorem.
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Theorem 5. The tracking controller in (34) is a minimizer to the cost functional (32) whose

optimal value is given by

J(u∗) =[
ξ(i − 1, j)T

(
1
2

H − KG−1KT

)
ξ(i − 1, j) + ξ(i − 1, j)T

(
KG−1 (ξ(i, j) − D) + E

)
+ ϕ

]∣∣∣∣∣∣
t=ti−1

where ϕ(t) is the solution to the terminal boundary problem

ϕ̇ =
1
2

(
Λ j(t)

)T
R−1Λ j(t) −

1
2

(
γ

j
i (t)

)T
Qγ j

i (t)

ϕ(ti) = −ξ(i, j)T Λ j(ti)ξ(i, j)

with

Λ j(t) = E(t) + K(t)G−1(ti−1)(ξ(i, j) − KT (ti−1)ξ(i − 1. j) − D(ti−1)).

Proof. As the control law was derived from the necessary conditions for optimality, we

only need to show that it is sufficient for optimality. We will do so by leveraging the

Hamilton-Jacobi-Bellman theorem [99, Chapter 2].

Note that the optimization problem is regular as there exists a u j that allows the Hamil-

tonian to achieve a minimum with respect to it, i.e.,

H(x j, u j, λ j) =
1
2

[(
x j − γ

j
i

)T
Q

(
x j − γ

j
i

)
+ uT

j Ru j

]
+ λT

j u j

=
1
2

(
u j + R−1λ j

)T
R

(
u j + R−1λ j

)
−

1
2
λT

j R−1λ j +
1
2

(
x j − γ

j
i

)T
Q

(
x j − γ

j
i

)
which attains a minimum with respect to u j when

u∗j = −R−1λ j.

Define V(z, t) as

V(z, t) =
1
2

zT H(t)z + zT K(t)G−1(ti−1)ξ(i, j)

− zT
(
K(t)G−1(ti−1)

(
KT (ti−1)ξ(i − 1, j) − D(ti−1)

)
+ E(t)

)
+ ϕ(t)
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where ϕ(t) is as defined above. It can be verified that V(z, t) satisfies the terminal condition

V(ξ(i, j), ti) = 0, that ∂V(z,t)
∂z

∣∣∣T
z=x j

= λ j, and that is satisfies the Hamilton-Jacobi-Bellman

equation, i.e.,

0 =
∂V (z, t)
∂t

∣∣∣∣∣∣
z=x j

+H

x j, u∗j
(
x j, t

)
,
∂V(z, t)
∂z

∣∣∣∣∣∣T
z=x j

 .
As a consequence, u∗j is a minimizer to the cost functional and

J(u∗) = V(ξ(i − 1, j), ti−1).

As a final note, the terminal costate value λ j(ti) was computed using the initial condi-

tions for the problem. However, as the gains involved are solved from terminal conditions,

the choice of initial conditions is arbitrary, and evaluating at t = ti−1 results in control law

(34) being open-loop in the terminal costate value. This could yield undesired results un-

der the influence of disturbances and errors. To alleviate this, we can rewrite the terminal

costate as a function of the current state value instead, i.e.,

λ j(ti) = G−1 (ti−1)
(
ξ (i, j) − KT (ti−1) ξ (i − 1, j) − D (ti−1)

)
= G−1 (t)

(
ξ (i, j) − KT (t) x j (t) − D (t)

)
in order to obtain the fully closed-loop optimal tracking controller

u∗j(x j, t) = −R−1
[(

H(t) − K(t)G−1(t)KT (t)
)

x j(t) + K(t)G−1(t) (ξ(i, j) − D(t)) + E(t)
]
. (35)

4.5.2 Robotic Implementation

We consider a team of 6 agents with heterogeneous sensors that is tasked with the high-level

mission: Agent 3 visits location 5 and communicates with agent 1. After agent 3’s mission

is complete, agent 1 goes to location 6 and agent 6 goes to location 1. Agents 1 and 2 are

never more than 3 locations apart for the duration of the mission. The corresponding BTL
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formula is given by

φs = ( ♦ A3 p5) ∧ ( ♦ A3A1)

∧ ((¬A1 p6 ∨ ¬A6 p1) U A3A1)

∧ ((¬A1 p6 ∨ ¬A6 p1) U A3 p5)

∧ ( ♦ (A1 p6 ∧ A6 p1))

∧ (d(A1, A2) < 4 U (A1 p6 ∧ A6 p1)).

(36)

This mission represents part of a much longer mission that has been decomposed into

sequential BTL specifications over different windows. This would be the case if the team

of agents are moving along a path and have variable requirements at different points along

this path.

An interpretation of this specification is that over this time-window, Agent 3 is carrying

an infrared camera that needs to measure an algal bloom in a pond in location 5. Agent 1

will be tasked with updating a base station along the path during the next time window, so

it needs an update from Agent 3 about its recent measurements and needs to be in position

6 during the next time window. Agent 6 needs to be in location 1 so it is ready to measure

tree density with its LIDAR in the next time window. Agents 1 and 2 use downward-facing

cameras to sense cooperatively, so their proximity requirement is permanent.

We used Algorithm 1 to generate a braid string that satisfies the given specification and

meets the mixing limit of 15. The braid string was calculated in 43s from an automaton

with 5749 states. This resulted in the string

σspec = {σ1 · σ3 · σ5} · σ2 · σ3 · σ4 · {σ3 · σ5} · {σ2 · σ4} · σ1 (37)

where the grouped substrings may occur simultaneously without violating the specification.

To validate the above results in a practical setting, the braid controllers were imple-

mented on a team of six Khepera III differential-drive robots, which may be modeled using

unicycle dynamics, i.e.,

ẋ j =

[
ν j cos θ j ν j sin θ j

]T

, θ̇ j = ω j.
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where x j ∈ R
2 is the robot’s planar position and θ j its heading. The single integrator control

u j from (35) can be mapped to unicycle dynamics as

ν j =

[
cos θ j sin θ j

]
· u j, ω j =


κ [ − sin θ j cos θ j ] · u j

‖u j‖
, if

∥∥∥u j

∥∥∥ > 1

κ [ − sin θ j cos θ j ] · u j, otherwise

for tuning gain κ > 0.

The robots were controlled over WiFi UDP from an Ubuntu (version 14.04LTS) com-

puter with a 2.8GHz processor and 5.8GB RAM, running ROS (Robot Operating System,

Indigo distribution). This computer also received robot state information from ten Opti-

Track S250e motion capture cameras. Figure 21 shows the actual execution of the mixing

strategy on the robots at two stages of a 60s total mission time-window, where a visual

representation of the braid string geometry is being projected onto the robot workspace via

an overhead projector mounted on the ceiling of the lab space. The braid points were uni-

formly distributed on a rectangular space of length ` = 3.4m and height h = 2.5m. Straight

lines were chosen as the braid strands’ geometric interpretation. Optimal trajectory track-

ing controllers are used to minimize the error between the robots actual trajectories and the

desired specification-satisfying trajectories, as described in Section 4.5.

Figure 21b shows the agents at a stage of interaction, where an agent exits the safety

separation region before the other one enters. Figure 22a illustrates the instantaneous mini-

mum inter-agent distance throughout the execution. It can be seen that the minimum inter-

robot distance achieved is approximately 0.132m — since the Khepera’s have a diameter

of 0.13m, no collisions were observed during execution. Figure 21c illustrates the robots

simultaneously arriving at a set of braid points. Figure 22b illustrates the robot trajectories

in the plane. The optimal tracking controller compensates for deviations due to velocity

saturation and the robots’ dynamics, thus ensuring the controller remains collision-free and

braid points are reached while successfully satisfying the mission specification.
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(a) The robots start at the beginning of the braid.

(b) Collision-free – robots get as close as δ.

(c) The controller is braid point feasible – braid points are reached simultaneously.

Figure 21. Robots executing the mixing strategy in (37). The geometric paths and spatio-temporal con-
straints are being projected on the workspace with an overhead projector for the sake of visualization.
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Figure 22. Data associated with robotic implementation in Figure 21.
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4.6 Concluding Remarks

In this chapter, we constructed a framework for multi-robot mixing – a multi-robot motion

planning scheme that allows users to provide rich, temporally-layered specification to char-

acterize and specify desired levels of interactions and spatio-temporal constraints, e.g., for

the sake of coordinated sensing, information exchange, and collision avoidance. We use el-

ements of the braid group, which allows us to abstractly characterize classes of interaction

patterns (as opposed to particular ones) and construct controllers to generate trajectories

that satisfy these symbolic inputs. This results in a hybrid control system that is driven by

strings of these symbols, which are then mapped onto actual motion patterns that both re-

alize the desired interaction levels and remain safe in the sense that collisions are avoided.

We further construct a new specification language with syntax similar to linear temporal

logic. This new language allows us to provide rich, temporally-layered specifications to

the multi-robot mixing framework for specifying frequency on interactions among agents,

desired position configurations, and other pairwise distance criteria. Algorithms are pre-

sented to significantly reduce the search space of specification satisfying symbolic inputs

with exactness guarantees. This approach is also tested on robotic platforms.

It should be noted that one of the benefits to having these layers of abstraction is that

the characterization of interactions may extend to more than agents coming in close prox-

imity of each other. It is conceivable that one encodes interactions in braid temporal logic

referring to more abstract notions, such as those pertaining to routing and queueing sys-

tems. Further, the motion planning aspect presented in here focused on reference path

tracking and spatio-temporal constraint satisfaction, however other notions of motion plan-

ning could be used to construct braid controllers (e.g., potential fields, Lyapunov controlled

functions, barrier functions) – as long as they accept a symbolic braid as an input.

As stated above, the motion planning aspect presented in this chapter focused on ref-

erence path tracking and spatio-temporal constraint satisfaction. In the next chapter, we

present research on these subjects from a robot navigation and control point of view.
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CHAPTER 5

ROBOT NAVIGATION

In this chapter, we consider two robot navigation and control subjects. In Section 5.1, we

explore the problem of finding the (globally) shortest reference path in a cluttered environ-

ment between two points in three dimensions. An algorithm is presented that is complete

and has one of the best complexities found in the literature. This algorithm is also im-

plementable online as is demonstrated by a robotic implementation on a quadcopter robot

navigating through a field with obstacles.

In Section 5.2, research is presented on generating optimal trajectories for tracking a

given reference path while satisfying given required navigation performance criteria. The

novelty comes in two fronts: introducing a reparameterization of the reference path as

part of a trajectory-tracking optimization problem in order to better accommodate vehicle

dynamics; and the application of these optimal control techniques in flight management

systems for the sake of enabling next generation air traffic control system concepts.

5.1 Shortest Path through 3D Cluttered Environments

In this section we consider a single agent attempting to find the shortest feasible path be-

tween two points inR3 in a cluttered environment such that a robot does not collide with any

obstacles. It is our goal to do so in an online and computationally tractable fashion. Tak-

ing advantage of certain properties about paths in Euclidean space and recently developed

tools, namely intermittent diffusion, we will obtain a finite dimensional stochastic differen-

tial equation which can be efficiently solved numerically forward in time to produce, with

certain probability guarantees, the shortest path between these points. The scheme itself

is quite intuitive: gradient descent will be used to find a locally short paths, then a certain

amount of noise will be injected into the system to “kick” the solution out of local traps,
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followed by another application of gradient descent to find (potentially) different local min-

ima. This process is repeated for a certain number of iterations, and the shortest path found

will be the (globally) shortest path with prescribed probability δ.

5.1.1 Problem Formulation

Formally, we’ll consider the problem of N obstacles in R3, which we’ll denote by a con-

nected and compact set Pk ⊂ R
3, k = 1, . . . ,N. We are interested in the least-length

rectifiable and feasible path (in that it does not intersect with the interior of any obstacles)

described by a curve γ in R3, which is a continuous map γ : [0, 1]→ R3. A path with finite

length is said to be rectifiable, and feasible if

φk(γ(t)) ≥ 0, t ∈ [0, 1], 1 ≤ k ≤ N. (38)

where φk is the signed distance function to the kth obstacle, i.e., negative if inside the ob-

stacle, minimum Euclidean distance to the obstacle if outside of it, or the shortest geodesic

if the two points lie on the boundary. As we wish to avoid collisions with the obstacles, we

need to accommodate for the robot’s footprint. Fortunately, the level set representation of

obstacles in (38) enables us to deal with the robot’s footprint in a straightforward manner.

If we assume that the robot can be approximated by a ball of radius r (see figure 23), then

all that one needs to do is enlarge all obstacles by this radius r, which boils down to a

uniform decrease in the level set function. We may restate the definition of feasibility to: a

path is said to be feasible for a “ball robot” with radius r if

φk(γ(t)) − r ≥ 0, t ∈ [0, 1], 1 ≤ k ≤ N. (39)

We can now formally state the problem at hand: if we let F be the set of all feasible

rectifiable paths which start at X and end at Y (i.e., γ(0) = X, γ(1) = Y), we’re interested in

γopt given by

γopt = arg min
γ∈F

L(γ).

The shortest path possesses a special structure that can be harnessed for the purpose of

path planning: the optimal path γopt consists only of straight line segments and geodesics
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Figure 23. A robot’s footprint is approximated by a ball of radius r. This ball can be enlarged to r′ in
order to provide a safety margin.

on the boundaries of obstacles. This implies that we can represent γopt by a sequence of

junctions (special points) that connect different line segments or obstacle boundary

(x0, x1, . . . , xn, xn+1), x0 = X, xn+1 = Y.

Each xi connects to its neighbors xi−1 and xi+1 either by a line segment or a curve on the

boundary. Let xc
i be the adjacent junction that connects to xi by a curve and xs

i the junction

that connects to xi by line segment (xc
0 = x0, xc

n+1 = xn+1), as shown in figure 24, where in

the example xs
i+1 = xi, xc

i+1 = xi+2, xs
i+2 = xi+3, and xc

i+2 = xi+1.

This structure enables us to search for the optimal path through a sequence of junctions

(x0, x1, . . . , xn, xn+1). Each xi (except x0 and xn) is the ending point of exactly one line

xi xi+1 xi+2 xi+3 xi+4

xi+5

1

Figure 24. The shortest feasible path with obstacles and the junction points that represent it.
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segment and one geodesic on the boundary. The sum of their length is given by

J(xi) =
∥∥∥xi − xs

i

∥∥∥ + dni(xi, xc
i ), (40)

where ni is the index such that xi ∈ Pni and dni(xi, xc
i ) is the shortest geodesic on Pni con-

necting xi and xc
i . The length of γ is then

L(γ) = L(x1, . . . , xn) =
1
2

n+1∑
i=0

J(xi). (41)

The above formulation converts the original infinite dimensional problem of finding

a path into the a finite dimensional problem of finding the optimal junctions. Therefore,

we can apply finite dimensional optimization techniques such as gradient descent to find a

local minimizer.

To overcome the challenge that gradient descent is only able to find the local minimizer,

we adopt a recently developed global optimization strategy called intermittent diffusion.

The key idea of intermittent diffusion is that when the gradient flow gets stuck at a local

minimizer, we introduce a certain amount of noise to the flow, which will kick the flow out

of the local trap. The perturbed gradient flow becomes the following stochastic differential

equation

dxi = −∇J(xi)dt + σ(t)T(xi, xc
i )dW(t), (42)

where W(t) is the standard Brownian motion and σ(t) is a step function representing the

magnitude of the noise we add at time t. Here

T(xi, xc
i ) = −∇dni(xi, xc

i ),

i.e., T(xi, xc
i ) is the tangent direction at xi on the curve belonging to the shortest path con-

necting xi and xc
i . The tangent on this curve exists, even when xi is a critical point of ∂Pni ,

for example, at the tip of the cylinder in figure 25, as long as xi , xc
i .

We also have that σ(t) is given by

σ(t) =

m∑
i=1

σi1[S i,Ti](t).
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Here t ∈ [0,T ] and 1[S i,Ti](t) is the indicator function of the interval [S i,Ti], i.e. turns the

noise “on” if t ∈ [S i,Ti], and “off” when not in these intervals. The parameters S i and Ti

form a partition of [0,T ], i.e., 0 = S 1 < T1 < S 2 < T2 < · · · < S m < Tm < S m+1 = T , and

represent the duration of the injected noise. The parameters σi represent the magnitude of

the injected noise. An example of σ(t) is depicted in figure 26. Given a desired minimum

probability of obtaining the global optimizer, the parameters m and T are then selected in

order to comply with this probability.

The idea behind the choice of σ is that when σ(t) = 0, xi converges to a local minimizer

following the negative gradient flow and jumps out of a local trap when σ(t) > 0 with

certain probability. Moreover, by storing the solutions obtained when σ(t) = 0, we will be

able to obtain not only the global optimizer but also a series of local minimizers. This is

useful when limited time is allowed for the algorithm to run.

The following theorem captures how the intermittent diffusion algorithm works:

Theorem 6. Given any real number δ > 0, there exist τ > 0, σ0 > 0 and integer m0 > 0

such that if Ti − S i > τ, σi < σ0 (for i = 1, 2, · · · ,m), then equation (42) converges to the

global minimizer of equation (41) with probability at least 1 − δ.

This theorem is a direct application of intermittent diffusion and a detailed description,

including details on how to select τ, σ0 and m0, can be found in [100].

To solve (42), we can discretize it by many well established schemes. For example,

xc
i xi

T (xi, x
c
i )

1

Figure 25. An illustration of T(xi, xc
i ).
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t

σ(t)

S 1 T1 S 2 T2 S 3 T3 S 4

Figure 26. Step function for the magnitude of noise to be injected at time t.

we can consider the Euler scheme, in which the noise term dW(t) is discretized in time as

dW(t) =
√

∆t ξ, where ξ ∼ N(0, 1) is a standard, normal random variable and ∆t is the step

size. Plugging in (40) into (42) results in

dxi = −
xi − xs

i∥∥∥xi − xs
i

∥∥∥dt + (σ(t)dW(t) + dt)T(xi, xc
i ),

which when combined with the Euler scheme yields the discretization

xk+1
i = xk

i −
xk

i − (xk
i )

s∥∥∥xk
i − (xk

i )s
∥∥∥∆t + (σ(k∆t)

√
∆t ξ + ∆t)T(xk

i , (xk
i )

c). (43)

5.1.2 Online Implementation

An algorithm was proposed in [53] to find the set of junctions that represents the shortest

path using (43). We present this algorithm below.
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Algorithm 2: Finding the Shortest Path.
Input : level set function φk(x),

the distance function dk(x, y),

starting and ending points X and Y ,

number of intermittent diffusion intervals m.

Output : The optimal set Uopt of junctions.

Initialization: Find the initial set U of junction points.

Select duration of diffusion ∆T`, ` ≤ m;

Select diffusion coefficients σ`, ` ≤ m;

for ` = 1, . . . ,m do

U` = U;

for xi ∈ U` do

for j = 1, . . . ,∆T` do

Update xi according to (43) with σ(t) = σi;

Update set U`, i.e. remove junctions from or add junctions to U`;

end

while
∥∥∥xk+1

i − xk
i

∥∥∥ > ε do

Update x according to (43) with σ(t) = 0;

Update set U`;

end

end

end

Compare U`’s and set Uopt = arg min
`≤m

L(U`). Compute sk as above for k = 1, . . . ,N`;

The initial set U of junctions can be set as the intersection points of the line segment

XY and the obstacles. This initialization gives initial path similar to those generated by

bug algorithms [101], and in many cases is already close enough to the global optimizer. It

should be noted though that a good initialization is not required for the proposed algorithm.
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Given enough time to run the algorithm, the global minimizer will still be obtained even

starting from a far initial path.

Both the duration of diffusion ∆Tl and diffusion coefficients σl are randomly selected

in intervals [0,Tmax] and [0, σmax] respectively. Experiments show that Tmax = 20 and

σmax = 2 are often adequate. Depending on whether one wants to record local minimizers,

line 20 can be replaced by keeping track only of the best minimizers at current realization.

We now give a brief analysis of the algorithm:

Completeness: Since we assume all the obstacles are bounded and disjoint, and we start

from a feasible path, Theorem 6 guarantees the proposed algorithm is complete.

Complexity Following [102], instead of discussing the algebraic complexity of the al-

gorithm, we will consider the running time in order to achieve certain relative error ε. We

will compare our result with other approaches only for polyhedral obstacles since most of

the literature focus on them.

1. The initialization can be done by a bisection line search, which can be achieved in

O(log 1
ε
) time..

2. Line 2-3 takes O(m) time.

3. Inner loop line 7-12 takes O(∆Tl) time. This is because equation (43) takes constant

time, and so does adding or removing junctions.

4. Inner loop line 13-17 takes T (ε) time where T (ε) denotes the number of iterations

required until the error is less than ε. If we assume the Hessian matrix of the gradient

is nondegenerate, which is the case for all polyhedral obstacles [103], then T (ε) =

O(log 1
ε
).

Let ∆T = maxi≤l ∆Ti. Then the total running time is O(m(∆T + log 1
ε
)). From [100], it

can be shown that in order to obtain the desired successful probability 1− δ, the number of

realizations must be of order O(log 1
δ
). Therefore, the complexity is O(log 1

δ
log 1

ε
). Table 1

shows a complexity comparison with some existing methods.
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Table 1. Complexity comparison to other algorithms.

Algorithm Complexity

A∗ O(( 1
ε
)3 log 1

ε
)

Papadimitriou [102] O(1
ε
)

Choi, et. al. [103] (When the
shortest path is not unique.)

O(1
ε
)

Choi, et. al. [103] (When the
shortest path is unique.)

O(log 1
ε
)

Figure 27 illustrates several local minimizers obtained from the algorithm in an envi-

ronment with 4 obstacles. Note that even though their lengths are very comparable, their

geometry can be very different. It is possible to then select a short path from the list in

order meet other criteria, such as increasing the margin of safety, rather than following the

absolute shortest.
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Figure 27. The three shortest and the longest minimizer in an environment with four obstacles.
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Further, the feasibility, in a dynamical sense, of the online algorithm is demonstrated

when it is implemented on a Parrot AR.Drone quadrotor robot. Two separate runs of the

quadrotor tracking the shortest path are depicted in figure 28. Figures 29a and 29b illustrate

the actual robot executing these runs at two different points along their trajectory.
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Figure 28. Shortest reference and robot’s actual paths.

(a) A third of the way: front, profile and back view.

(b) Two thirds of the way: front, profile and back view.

Figure 29. Robotic implementation of shortest paths in cluttered environments.
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5.2 Trajectory Generation from Reference Paths

The previous section presented research on generating the shortest path in a cluttered en-

vironment which is then to be followed by a robot. In this section, we consider the prob-

lem of generating trajectories that satisfy a set of spatio-temporal constraints, including

closely following a desired reference path such as a road or a flight path, and arriving at

specific locations along the path at certain times, e.g., like toll booths or metering points.

Aside from this subset of locations with required time of arrivals (RTA), the provided ref-

erence path does not have required times of arrival. This implies that the path itself can

be thought of as a set of spatial constraints without temporal constraints. Conventional

trajectory-tracking solutions that use the reference path parameterization as provided may

result costly maneuvers, or higher fuel expenditure. One could instead find a new tempo-

ral parameterization of the path to best accommodate vehicle dynamics, effectively turning

into an optimal trajectory to be tracked. In particular, the following research explores the

problem of reparameterizing a reference path to meet certain spatio-temporal constraints as

part of the optimization problem.

This research was the result of an attempt to facilitate the development of the Next

Generation Air Transportation System (NextGen) concepts. The idea is that prototype

4D flight management system (FMS) capabilities will need to generate computationally

tractable, new trajectory solutions that comply with multiple RTA constraints, e.g., spatio-

temporal constraints on certain points along a reference path.

The novelty of the research found in this section comes in two fronts: introducing a

reparameterization of the reference path as part of a trajectory-tracking optimization prob-

lem in order to better accommodate vehicle dynamics; and the application of these optimal

control techniques in flight management systems for the sake of enabling next generation

air traffic control system concepts. More details on this research can be found in [104].
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Figure 30. Representation of RNP Constraints. The dotted line represents the reference path. The
tube represents the distance from the reference path that satisfies the RNP. The dots represent points
with required times of arrivals. The dashed disks represent the spatial tolerance around the central
spatio-temporal constraint.

5.2.1 Problem Statement

We are interested in finding a continuous trajectory that complies with required navigation

performance (RNP), e.g., spatial non-temporal constraints, as well as RTA. Further, since

control effort will directly tie in to the amount of fuel consumed, it is of interest to find a

trajectory that will minimize the amount of energy required to arrive at all the waypoints.

Using the parameterized reference path r(t) ∈ R3, one way to solve this problem is to

express it as a generic tracking problem in the form of the optimal control problem

u∗(t) = arg min
u(t)

J(u(t))

= arg min
u

1
2

∫ T

0

[
uT Ru + (y − r(t))T Q (y − r(t))

]
dt + 1

2 (x(T ) − xT )T S T (x(T ) − xT )

subject to the constraint ẋ = f (x, u) with x(0) = x0 and y(t) = h(x), for x ∈ Rn, u ∈ Rm,

y ∈ R3, positive definite symmetric matrices Q and R and positive semi-definite matrix S T .

The cost functional J(u(t)) encodes a cost on the expended control energy over the interval

[0,T ] as weighted by cost matrix R, as well as a cost for deviating from the reference path

r(t) as weighted by cost matrix Q. The terminal cost penalizes any trajectory that deviates

from the RTA and other terminal state requirements as weighted by cost matrix S T . A

visual representation of these constraints can be seen in Figure 30.

Note that the path specified in r(t) only has RTAs at its endpoints. This means that
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we only need there to exist a τ ∈ (0,T ) such that ‖y(t) − r(τ)‖ < RNP for all t ∈ (0,T ),

as opposed to tracking r(t) as it is parameterized. In order to reduce the tracking cost

and accommodate for the vehicle’s dynamics, we can reparameterize the path with a new

parameter p ∈ R which is the solution to the differential equation ṗ = v. We will think

of this new reparameterization as a virtual vehicle that moves perfectly along the reference

path, and whose velocity along it we get to control directly. The real vehicle needs to track

this virtual vehicle whose velocity will be designed to reduce the real vehicle’s control

effort. We can modify the problem to include the virtual vehicle’s velocity

arg min
u(t),v(t)

J(u(t), v(t)) = arg min
u(t),v(t)

∫ T

0
L(x(t), u(t), r(p(t)), v(t)) dt + Ψ(x(T ))

:= arg min
u,v

1
2

∫ T

0

[
uT Ru + (y − r(p))T Q (y − r(p)) + P (v − vt)2

]
dt

+ 1
2 (x(T ) − xT )T S T (x(T ) − xT ) (44)

subject to the constraints

ṗ(t) = v(t), p(0) = 0, p(T ) = T

ẋ(t) = f (x, u), x(0) = x0, y(t) = h(x)

for P > 0. We can interpret the cost of y(t) as how closely we are tracking the virtual vehicle

and we can interpret the cost of v(t) as penalizing for letting p(t) flow too differently from

the original parameterization, e.g., if the reference path was originally parameterized by t,

then vt = 1 implies that p(t) should be close to real time.

We let λx(t) and λp(t) be the so called co-states associated with x(t) and p(t), respec-

tively. Using the standard variational argument from calculus of variations and Pontryagin’s

maximum principle, we obtain the first order necessary conditions for optimality

λ̇x(t) = −
∂ f
∂x

T
λx(t) − ∂L

∂x
T

0 =
∂ f
∂u

T
λx(t) + ∂L

∂u
T

λ̇p(t) = − ∂r
∂p

T ∂L
∂r

T

0 = λp(t) + ∂L
∂v .

λx(T ) = ∂Ψ
∂x

T
∣∣∣∣
t=T
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These equations turn the original optimization problem into a two-point boundary problem,

and provide enough information together with the constraint set to obtain the optimal solu-

tion u∗(t) and v∗(t). The two-point boundary problem could be numerically solved to obtain

an open-loop solution, where the control signal could be computed offline and stored for

later use when computational power is not available online. In practice though, this strat-

egy is very fragile to noise and perturbations and the use of the open-loop optimal control

signal could in fact result in great deviations from the desired results. In order to avoid

this scenario we turn to a closed-loop control strategy, i.e., instead of finding the optimal

control signal value for the time interval, we find the gains to form a feedback loop that

results in the optimal output.

5.2.2 Feedback Form Optimal Control Signal

In autopilot design for aircrafts, there are seldom high-fidelity models available to describe

the aircraft dynamics. This is due to the high complexity and level of uncertainty with aero

coefficients. Instead, lookup tables with empirical aero coefficients based on current flight

conditions are used to generate linearized models. If high-fidelity models were available,

then one could use the optimal control signals u∗(t) and v∗(t) with the model to generate

the nominal optimal trajectories x∗(t) and p∗(t). One could linearize around these optimal

trajectories to obtain locally linear models for which a closed loop strategy could be for-

mulated. Whichever the case, it is of interest to consider a linear model for the system in

the form

ẋ(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t)

Additionally, we will consider the special case where the reference path r is given by a

straight line connecting some initial point y(0) = Cx0 and some final point y(T ) = CxT , e.g.,

the shortest path in free space. This kind of reference path can be expressed parametrically

as a function of p ∈ [0,T ] by

r(p) =
(
1 − p

T

)
C(t)x0 +

p
T C(t)xT = C(t)

(
xT−x0

T

)
p + C(t)x0 =: C(t)xs p + C(t)x0.
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which has a derivative given by

dr
dp = C(t)xs.

Using the optimality conditions, we can plug in the value of u(t) and v(t) obtained from the

second column into the state and co-state dynamics to get the following (affine) two-point

boundary problem

˙̂x(t) = Âx̂(t) − B̂R̂−1B̂T λ̂(t) + B̂k, x̂(0) =
[ x0

0
]

(45)

˙̂λ(t) = −ÂT λ̂(t) − Q̂x̂(t) + Q̂x̂(0), λ̂(T ) =
[

S T (x(T )−xT )
αp

]
(46)

for some yet undetermined αp ∈ R, where x̂ = [xT , p]T is the augmented state, λ̂ = [λT
x , λp]T

is the augmented co-state, and

Â =
(

A 0n×1
01×n 0

)
B̂ =

(
B 0n×1

01×m 1

)
Q̂ =

(
CT QC −CT QCxs
−xT

s CT QC xT
s CT QCxs

)
R̂ =

(
R 0m×1

01×m P

)
k =

[
0m×1

vt

]
.

Note that these are affine equations on the state and co-states, and we can use the sweep

method [98] to obtain a solution in feedback form. We can express the set of zero-error

terminal constraints (i.e., p(T ) = T ) as a linear combination of the initial states and the

terminal co-states (plus an offset due to the fact that the dynamics are affine), i.e.,

p(T ) = F(0)x̂(0) + G(0)λp(T ) + D(0)

for some F : [0,T ] → R1×(n+1), G : [0,T ] → R, D : [0,T ] → R. Similarly, the initial

conditions for the co-state equation could also be expressed as a linear combination of the

initial states and the terminal co-states (plus an offset), i.e.,

λ̂(0) = S (0)x̂(0) + K(0)λp(T ) + E(0)

for some S : [0,T ]→ R(n+1)×(n+1), K : [0,T ]→ Rn+1, E : [0,T ]→ Rn+1. Since the co-state

is to be solved backwards in time, any time before the terminal time can potentially be an
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initial point, i.e., for t ≤ T it is possible that

λ̂(t) = S (t)x̂(t) + K(t)λp(T ) + E(t) (47)

p(T ) = F(t)x̂(t) + G(t)λp(T ) + D(t) (48)

We can differentiate (47) and (48) with respect to time and plug in (45), (46) and (47) to ob-

tain that F(t) = KT (t) and the following set of differential equations with their appropriate

boundary conditions which make use of the optimality conditions in (46)

Ṡ (t) = −S (t)Â(t) − ÂT (t)S (t) + S (t)B̂(t)R̂−1B̂T (t)S (t) − Q̂, S (T ) =
(

S T 0n×1
01×n 0

)
Ė(t) = −

(
ÂT (t) − S (t)B̂(t)R̂−1B̂T (t)

)
E(t) − S (t)B̂(t)k + Q̂x̂(0), E(T ) =

[
−S T xT

0

]
K̇(t) = −

(
ÂT (t) − S (t)B̂(t)R̂−1B̂T (t)

)
K(t), K(T ) =

[
0n×1

1

]
Ḋ(t) = KT (t)B̂(t)R̂−1B̂T (t)E(t) + KT (t)B̂(t)k, D(T ) = 0

Ġ(t) = KT (t)B̂(t)R̂−1B̂T (t)K(t), G(T ) = 0

where G(t) < 0 since G(T ) = 0 and Ġ(t) > 0 for t ≤ T . These differential equations are

either differential Riccati equations, linear time-varying equations, or quadratures, which

have been broadly studied, and efficient numerical methods exist to solve them. In particu-

lar, it is possible to sequentially solve these equations by sweeping backwards in time from

the terminal condition in the order presented above. Note that we may solve for the co-state

terminal condition in (48) to obtain

λp(T ) = G−1(t)
[
p(T ) − KT (t)x̂(t) − D(t)

]
which when combined with (47) results in the optimal û∗(t) =

[
u∗T (t), v∗(t)

]T
feedback-

feedforward strategy given by

û∗(t) = − R̂−1B̂T (t)
[(

S (t) − K(t)G−1(t)KT (t)
)

x̂(t) + K(t)G−1(t) (p(T ) − D(t)) + E(t)
]

+ k

(49)
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Figure 31. ERLIN ONE Arrival chart.

5.2.3 Simulation Results

The approach described above was simulated to demonstrate its feasibility. In order to

obtain results that are relevant to real-world scenarios, a descent scenario was chosen for

Hartsfield-Jackson Atlanta International Airport (KATL). In particular, a descent trajectory

was performed for a lateral path segment generated from the ERLIN ONE STAR chart at

KATL airport (see Figure 31). The route was constructed from the consecutive connection

of waypoints DEVAC-CALCO-ROME-ERLIN.

A nonlinear aircraft model was linearized around a nominal trajectory generated from

open-loop numerical solutions to the two-point boundary problem. To test the robustness

of the feedback form controllers, disturbances where introduced through a simple wind

model obtained from a polynomial fit of random wind data samples generated from NOAA

METAR data of KATL airport. In the simulation, the origin was placed at DEVAC at

sea level. The x-coordinate represents East, the y-coordinate represents North, and the z-

coordinate represents upward direction. It was assumed that the aircraft started at DEVAC
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at 35,000 feet above mean-sea level and at a true airspeed of 450 knots, oriented 105◦ from

the North and leveled to the Earth. The aircraft is to continuously descend to 20,000 feet

above sea level at CALCO, which is located 72.1 nautical miles away from DEVAC at 105◦

from the North. In particular, the focus was on the first 180 second segment of this flight.

In order to evaluate RTA compliance performance, a virtual RTA was set up at the 180

seconds point along the continuous descent trajectory.

Monte Carlo simulations of the 180 second flight segment were run for 1,000 iterations

where the mean and covariance for the wind sample were set to be 5 m/s and 15 m/s, respec-

tively. The RNP value is 2 nautical miles for lateral deviation and 1,000 feet for vertical

deviation. RTA compliance was defined as whether the aircraft was within 1 nautical miles

of the desired point at final time. Minimum descent angle is defined as −6◦. The nominal

true airspeed is to decrease linearly as a function of altitude, 450 knots at 35,000 feet, and

300 knots at 10,000 feet. The allowable deviation from this nominal speed is defined to

be 30 knots. Table 2 shows the compliance of these runs with the open loop and feedback

control laws. Figure 32 show sample trajectories inside of the RNP tube representation, as

well as the results from the Monte Carlo simulations.

Table 2. Constraint compliance during Monte Carlo runs.

With Feedback Open Loop

RNP Compliance 74.9% 9.5%

RTA Compliance 99.3% 98.8%

Minimum Descent Angle Compliance 100%

True Airspeed Compliance 97.7%
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(a) Sample trajectories in RNP tube.

(b) Max deviation from Monte Carlo simulations. Trajectories outside the tube
violate the RNP.

Figure 32. Trajectories obtained from Monte Carlo simulations.
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CHAPTER 6

CONCLUSIONS

This dissertation provides contributions with respect to two topics in multi-robot systems.

The first is a framework for human-swarm interactions in which the human operator ab-

stracts away the number of agents in the robot swarm and manipulates it as a whole by

directly imposing the desired density of robots in the environment. In order to pursue this

approach, contributions were made to the problem of coverage of time-varying functions –

for which there was a dearth in the literature. In particular, important spectral properties are

provided which are used to provide convergence guarantees for the presented control laws.

In addition to these, a family of distributed approximations is presented which allow the

agents to provide optimal coverage of the human-generated density functions while only

relying on local information.

The second major contribution comes from a framework for multi-robot mixing – a

multi-robot motion planning scheme that allows users to provide rich, temporally-layered

specification to characterize and specify desired levels of interactions and spatio-temporal

constraints, e.g., for the sake of coordinated sensing, information exchange, and collision

avoidance. We use elements of the braid group, which allows us to abstractly characterize

classes of interaction patterns (as opposed to particular ones) and construct controllers to

generate trajectories that satisfy these symbolic inputs. This results in a hybrid control sys-

tem that is driven by strings of these symbols, which are then mapped onto actual motion

patterns that both realize the desired interaction levels and remain safe in the sense that col-

lisions are avoided. We further construct a new specification language with syntax similar

to linear temporal logic. This new language allows us to provide rich, temporally-layered

specifications to the multi-robot mixing for specifying frequency on interactions among

agents, desired position configurations, and other pairwise distance criteria. Algorithms

are presented to significantly reduce the search space of specification satisfying symbolic
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inputs with exactness guarantees. This approach is also tested on robotic platforms.

Novel work is also presented with respect to robot navigation and control. In particular,

work is done on finding the shortest path between two points in cluttered environments. An

algorithm is presented that has one of the best complexities found in the literature. This

algorithm is also implementable online as demonstrated by a robotic implementation on

a quadcopter robot navigating a field with obstacles. In addition to the work on finding

the shortest path, work is also presented on generating optimal trajectories for tracking a

given reference path while satisfying required navigation performance. The novelty comes

in two fronts: introducing a reparameterization of the reference path as part of a trajectory

tracking optimization problem in order to better accommodate vehicles dynamics; and the

application of these optimal control techniques in flight management systems for the sake

of enabling next generation air traffic control system concepts.
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