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SUMMARY

Immersive applications, such as computer gaming, computer vision and video codecs,

are an important emerging class of applications with QoS requirements that are difficult

to characterize and control using traditional methods. This thesis proposes new techniques

reliant on execution-time variance to both characterize and control program behavior. The

proposed techniques are intended to be broadly applicable to a wide variety of immersive

applications and are intended to be easy for programmers to apply without needing to gain

specialized expertise.

First, we create new QoS controllers that programmers can easily apply to their applica-

tions to achieve desired application-specific QoS objectives on any platform or application

data-set, provided the programmers verify that their applications satisfy some simple do-

main requirements specific to immersive applications. The controllers adjust programmer-

identified knobs every application frame to effect desired values for programmer-identified

QoS metrics. The control techniques are novel in that they do not require the user to pro-

vide any kind of application behavior models, and are effective for immersive applications

that defy the traditional requirements for feedback controller construction.

Second, we create new profiling techniques that provide visibility into the behavior of

a large complex application, inferring behavior relationships across application components

based on the execution-time variance observed at all levels of granularity of the application

functionality. Additionally for immersive applications, some of the most important QoS

requirements relate to managing the execution-time variance of key application components,

for example, the frame-rate. The profiling techniques not only identify and summarize

behavior directly relevant to the QoS aspects related to timing, but also indirectly reveal

non-timing related properties of behavior, such as the identification of components that are

sensitive to data, or those whose behavior changes based on the call-context.
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CHAPTER I

INTRODUCTION

The execution-time variance of programmatic constructs is a largely untapped aspect of

programs that offers unique insights for understanding program behavior and a unique

approach for controlling program behavior. Immersive applications, such as computer gam-

ing, computer vision and video codecs, are an important emerging class of applications that

stand to benefit from the characterization and control of execution-time variance.

Immersive applications attempt to maximize the feature set expressed while maintaining

a sufficiently smooth frame-rate. Their Quality-of-Service (QoS) requirements are often

best-effort in nature, such as seeking soft-real-time frame-rates and the improvement of

multiple application-specific QoS metrics in a balanced manner. Immersive applications are

typically large C/C++/Java programs, which lack analyzable language semantics about

behavior and timing. Their QoS behavior is typically a complex emergent property of the

data-set and underlying algorithms. Consequently, QoS tuning becomes a tedious and ad

hoc process for immersive applications. The gaming industry is famous for prolonged game-

play testing where every possible game scenario is played out on various relevant gaming

platforms and then manual tweaks to the game feature-set are made for each scenario

and platform. Other application domains, such as video encoding and computer vision,

typically a priori fix the feature-set for a limited use-case after extensive trial-and-error — for

example, programmers may manually tweak algorithmic parameters until a sufficient frame-

rate and accuracy/fidelity is achieved on a required video resolution and video content. The

a priori fixed parameters fail to account for local variations in the application behavior over

a data set during a single execution of the application and variations in the application

behavior across data sets.
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1.1 Contributions

1. We create new QoS controllers that programmers may easily apply to a wide variety of

immersive application to dynamically tune application-specific parameters and keep

QoS metrics at desired values over a single data set, across differing data sets and

across differing execution platforms. These controllers combine system identification,

adaptive control and optimal control with the particular properties inherent to immer-

sive applications to make the problem of QoS control tractable, whereas traditional

controller design techniques prove difficult to apply due to the nature of immersive

applications.

2. We create new profiling techniques that rely on detecting variant behavior around

repeatedly executed constructs in the application call-structure and summarize the

most dominant variant behavior from across all levels of the functional granularity of

the application. These profiling techniques are particularly suitable for identifying to

the user the application components that are likely to impact the QoS in immersive

applications, which is particularly difficult for traditional hot-spot profiling and static

analysis to accomplish for immersive applications.

The two contributions help during different phases of the application QoS tuning process.

Programmers may use our profiling techniques to discover what parts of their application

need either offline or dynamic tuning to maintain QoS. Once the programmers develop an

understanding of the application components that impact QoS, either with the help of our

profiling techniques or just from their own application/domain knowledge, the programmers

may choose to apply our controllers to perform the QoS tuning automatically over a wide-

variety of platforms and use-case scenarios.

1.2 Dynamic QoS control

As one part of this work, we create QoS control techniques for immersive applications.

The QoS requirements of immersive applications are typically straightforward to express
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as a variance-minimization problem, creating an opportunity to apply standard model-

estimation and control techniques for the automated tuning of QoS during application

execution. Immersive applications frequently use parametrically scalable algorithms, where

the dynamic tuning of the algorithm parameters would allow control over the expressed

QoS behavior of the application, with regards to the frame execution time, accuracy of

results, level of detail, etc. However, immersive applications pose the following challenges

to the direct application of the standard estimation and control techniques — i) a monolithic

C/C++/Java implementation of the applications with no analyzable properties for behavior

and timing; ii) high sensitivity of the application behavior to the data-set, often with

rapid variations over the data-set, making the a priori derivation/estimation of a fixed

model infeasible; iii) behavior that is mostly an emergent property of the data-set and

the algorithms, often making the construction of parametric models very difficult, even

for application-domain experts; and, iv) existence of no common modeling framework with

well-defined behavior properties for immersive application.

We create a QoS-control problem formulation that recognizes additional properties com-

mon to immersive application. We refer to these properties as the domain assumptions of

the class of immersive applications. We create two QoS controllers that rely on the do-

main assumptions to augment the standard estimation and control techniques, making QoS

control tractable for immersive applications. The first controller is uni-variate with a very

light-weight adaptive-integral control strategy. The second controller is multi-variate and

builds on estimation and optimal control techniques. The controllers are probabilistic and

best-effort in nature — the better a given application satisfies the domain assumptions, the

greater the probability that its QoS requirements will be satisfied by the controllers and

with increasing tightness.

The QoS controllers are designed to allow an arbitrary immersive application to adapt to

a wide variety of operating conditions (such as compute platforms with differing capabilities)

and a wide choice of optimization goals for the QoS metrics, so long as the domain assump-

tions remain valid. We greatly simplify the achievement of QoS for immersive applications
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by only requiring the programmers and domain experts to verify that their application sat-

isfies the domain assumptions, which is often a simple and intuitive process. In contrast,

the current state of the art requires them to either manually tailor algorithmic parameters

to only a narrow range of data sets and operating conditions, or have considerable controls

expertise to create a custom solution for their particular application, with the vast majority

of practitioners settling for the former.

1.3 Profiling

As a second part of this work, we create offline profile-analysis techniques to characterize the

variant behavior around repeatedly invoked constructs in programs. Variance characteriza-

tion creates new opportunities for the programmer to tune program behavior. In particular,

variance characterization reveals the program components most likely to impact the typical

QoS requirements of immersive applications, and has the ability to detect related behavior

across program components due to correlations in their execution-time variance, which is

beyond the capabilities of static analysis and hot-spot profiling.

We create the Call-Context Variance Analysis (CCVA) technique to demonstrate the

role call-context plays in determining the locations of variant behavior in the program call-

structure, and then the more general Dominant Variance Analysis (DVA) technique that

succinctly captures the structure of the variant behavior exhibited by an application. DVA

is capable of relating variant behavior across application components and finding underly-

ing causes of variance in large C/C++/Java applications where the programming language

provides no behavioral or timing semantics, limiting the utility of static analysis. The large

code-base and the predominantly data-dependent behavior of immersive applications also

limits the utility of regular hot-spot profiling techniques. Hot-spot profiling would simply

identify the top-level application functions as being the most compute-intensive, while the

performance tuning opportunities for frame-rate and improved QoS typically span functions

at multiple levels of granularity. In contrast, DVA will examine the repeated execution of

the application components at all levels of functional granularity (such as a frame, and
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various levels of sub-block processing within a frame in a video encoder) and identify vari-

ant behavior at each level. DVA will determine if behavior at one level of granularity is

the principal cause of variance at another level. We create a new program representation

called Variance Characterization Graph (VCG) capable of flexibly and succinctly extracting

structure from the full program call-graph. DVA uses the VCG representation to capture

multiple instances of related variant behavior within a common structure for the user to

examine. Finally, DVA has the ability to summarize numerous instances of similar behavior

occurring across the program call-graph into a succinct VCG representation.

1.4 Thesis Statement

This thesis proposes novel adaptive control techniques capable of tuning the QoS of frame-

oriented immersive software applications for which generic controller design techniques and

generic programmatic techniques fail to be effective due to these applications’ rapidly time-

varying and data-dependent nature, and proposes a novel profiling technique capable of

summarizing the dominant variant behavior of these applications from across all levels of

their functional granularity, in a manner particularly suited for the QoS optimization of

typical immersive applications.

1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 motivates why the new

profiling and QoS control techniques are needed to overcome the unique challenges posed

by immersive applications. Chapter 3 discusses related work. Chapter 4 describes the

uni-variate QoS controller. Chapters 5, 6 and 7 describe the multi-variate QoS controller.

Chapter 8 describes the Call-Context Variance Analysis profiling technique. Chapter 9 de-

scribes the Dominant Variance Analysis profiling technique. Finally, Chapter 10 concludes

the thesis and discusses future work.
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CHAPTER II

MOTIVATION

2.1 Nature of Immersive Applications

Immersive applications such as gaming, multimedia and computer vision are becoming

prominent compute-intensive applications on consumer desktops and mobile devices. Im-

mersive applications are interactive by nature, and place a premium on using a platform’s

compute resources to the maximum in order to create as engrossing and visually stunning an

experience as possible for the user. Due to their interactive nature, these applications have

a bounded window of time (a “frame”) to update the simulated world state and its visual

rendering based on immediate user inputs. Therefore, the QoS tuning goal for these appli-

cations is to pack the most sophisticated features possible into a frame while maintaining a

sufficiently smooth and high frame-rate [1]. A video encoder may need to compress a live

video-stream in real time without dropping too many frames in the presence of per-frame

variations in processing time. The programmers may also desire that an application-specific

feature achieves a certain quality, such as the achievement of sufficiently sophisticated Artifi-

cial Intelligence (AI) for bots (simulated characters) in a video game without compromising

the frame-rate too often with excessive AI computations, essentially striking a balance be-

tween AI quality and having a smooth frame-rate.

2.2 Challenges in Tuning QoS

There are four main challenges that programmers face in using existing formal methods to

tune the behavior of immersive applications.

The first challenge is that immersive applications are implemented as monolithic pro-

grams using general-purpose C/C++/Java development flows which provide significant pro-

ductivity advantages in developing a large complex application. Unfortunately, the use of

general-purpose programming languages fails to provide sufficient analyzable information
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about the execution properties of the application that languages with specialized semantics,

such as for real-time [2, 3] or for streaming [4], could.

The second challenge is that the QoS of immersive applications is highly sensitive to

the nature of the data being processed and the nature of data may change rapidly during a

single execution of the application. An MPEG2 encoder, for example, exhibits very different

frame times on different parts of the same video stream being compressed, as illustrated by

the sequence of frames in Figure 2.1. Note that this is the case even when the application

has exclusive use of system resources, i.e. the frame-time variation is a consequence purely

of the characteristics of the application itself with no resource contention issues involved.

Figure 2.2 shows similar variations for the MPEG2 decoder application [5].
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Figure 2.1: A sequence of frame-encoding times for the MPEG2 encoder. W = 1 shows
the instantaneous frame-times. W = 7 shows a moving average of the previous seven frame
times.

The primary reason for the frame-time variability in the MPEG2 encoder is that the

motion estimation algorithm may perform searches of very different sizes across frames

depending on how quickly a matching block is found in adjacent video frames [6]. Such

data-dependent variability makes the use of any fixed setting of the application features

sub-optimal. A secondary reason for the frame-time variability is the use of Group-of-

Pictures (GoP) by the video standards [7] — for example, every sequence of seven frames
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will consist of a pre-determined mix of intra coded, predictive coded and bi-predictive

coded frames (called I, P and B frames, respectively). The computational load of motion

estimation varies substantially across I, P and B frames, reflecting in substantially different

frame-times for adjacent frames in a GoP, as seen in the W = 1 plot in Figure 2.1. Since

the duration of the GoP is known a priori, and because the instantaneous frame-time

variations are not noticeable to an interactive user, the QoS goal for video encoders/decoders

typically involves keeping the moving average of frame-time within a desired range. The

corresponding moving averages over the prior seven frames (the GoP length) are shown in

the W = 7 plot in Figure 2.1. Despite the averaging, the changing nature of the raw video

data produces substantial changes in frame-time over longer sequences of frames, as shown

for W = 7.

Therefore, QoS controllers designed a priori on fixed application models or on “repre-

sentative” data sets would fail to account for the large variations possible within data sets

(such as the changing amount and speed of motion over the video sequence). Further, dif-

ferent data sets may differ from each other significantly, such as a low versus a high video

resolution, producing still larger variations in behavior that would make offline designed

controllers ineffective.

The third challenge is that the behavior of immersive applications is largely an emer-

gent property of the algorithms and data sets. Immersive applications tend to be large and

complex, involving multiple algorithms that interact and influence each other. The nature

of the data may affect the decision logic of an algorithm — say, the number of loop iterations

performed until some accuracy threshold is achieved. In a video game, a path-planning al-

gorithm (such as A* [8, 9]) may explore a large search-space of possible paths until a viable

solution is found. The path determined may impact other algorithms, such as the AI of a

bot that has to follow the path. The game world state, the user’s inputs, and the resulting

behavior of the algorithms would typically be hard to factor into any simplified model (say,

a parametric model), suitable for the construction of model-based controllers (say, using
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Abstract

Video processing in software is often characterized by
highly fluctuating, content-dependent processing times, and
a limited tolerance for deadline misses. We present an
approach that allows close-to-average-case resource allo-
cation to a single video processing task, based on asyn-
chronous, scalable processing, and QoS adaptation. The
QoS adaptation balances different QoS parameters that can
be tuned by user-perception experiments: picture quality,
deadline misses, and quality changes. We model the balanc-
ing problem as a discrete stochastic decision problem, and
propose two closely related solution strategies, for which
the processing-time statistics are determined off line and at
run time, respectively. We enhance both strategies with a
compensation for structural (non-stochastic) load fluctua-
tions. Finally, we validate our approach by means of simu-
lation experiments, and conclude that both enhanced strate-
gies perform close to the theoretical optimum.

Keywords: Soft real time, overload, multimedia, Quality
of Service.

1. Introduction

Software video processing is often characterized by
highly fluctuating, data dependent, resource requirements.
This is especially true for codecs and algorithms that con-
tain motion estimation, such as Natural Motion [3] or
MPEG encoding [17], or motion compensation, such as
MPEG decoding. For example, Figure 1 shows the decod-
ing times for a sequence of MPEG-2 frames. Typically,
there is a large gap between the worst-case and average-
case decoding times. Moreover, there is a clear distinc-
tion between short-term (or stochastic) and long-term (or
structural) load fluctuations. Due to high pressure on cost,
resource allocation will have to be close to average-case.
Hence, to prevent overload, some form of load reduction is
inevitable.
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Figure 1. The decoding times for a sequence
of MPEG-2 frames, showing both stochastic
and structural load fluctuations.

Quality of Service (QoS) is defined as ‘the collective ef-
fect of service performance which determine the degree of
satisfaction of a user of the service’ (ITU-T Recommenda-
tion E.800-Geneva 1994). The QoS abstraction provides a
means to reason about and deal with heterogeneous soft tim-
ing requirements for tasks with fluctuating load (e.g. accep-
tance of occasional deadline misses [5], or an average-case
response time requirement [11]), and heterogeneous adap-
tive capabilities (e.g. approximate computing [1, 29], or job
skipping [12]), in a unified manner.

In this paper, we focus on QoS control for a single-
threaded, soft real-time, video processing task, with load
fluctuations as shown in Figure 1. Specialists have devel-
oped scalable video processing algorithms, which can trade
picture quality for resource usage at the level of individual
frames. These algorithms provide a limited number of QoS
levels that can be chosen for each frame [8].

We assume that in spite of the load fluctuations, the task
has to operate within a given budget, which is less than the
worst-case requirement of the task. Moreover, we assume
that the task is asynchronous and works ahead to even out
the load [24]. An asynchronous task starts processing the
next frame immediately after completing the previous one,

Proceedings of the 12th 16th Euromicro Conference on Real-Time Systems (ECRTS’04) 
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Figure 2.2: Variations in per-frame decoding time for the MPEG2 decoder(Wüst et al. [5]).

adaptive control techniques) to tune the QoS of immersive applications (frame-time, accu-

racy of results, etc.). We contend that new techniques that directly account for the nature

of immersive applications are required.

The fourth challenge is that there is generally a lack of modeling frameworks suitable

for the broad range of immersive applications. Some specialized applications written by ex-

perts, such as video codecs, may have been systematically modeled and their execution-time

properties studied in depth, such as with MATLAB or high-level models before the actual

C/C++/Java implementation was done [10]. In contrast, the vast majority of immersive

applications (e.g., games, computer vision applications) get to have their behavior studied

only after they have been implemented [11]. Frequently, various third-party libraries of

functionality are used in the application [11, 12, 13, 14]. Consequently, the application

programmers may know what QoS metrics they care about and may have an idea of what

algorithmic knobs or parameters could be adjusted to impact the QoS metrics, but would

typically lack a sufficient understanding of the interactions of the algorithms and of the li-

braries to understand how the knobs/parameters actually impact the QoS metrics. Instead
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of expecting the programmer to understand how the knobs/parameters impact QoS, we

would like in our approach to place a much lighter burden on the programmers — identify

which knobs/parameters could potentially impact QoS.

2.3 Challenges in Characterizing QoS Performance

Programmers need to understand the behavior of immersive applications in order to tune

the QoS performance. In Section 2.2 we motivated that immersive applications are large

complex programs, they exhibit behavior differences both within and across data sets, the

application behavior is an emergent property of the algorithms and the data set, and there

is often a lack of suitable modeling frameworks that programmers may use to understand

the application behavior. Here, we motivate the properties needed by a profiling technique

to become effective at characterizing the behavior of immersive applications.

1. Given the diversity of immersive applications, it is important that the profiling tech-

niques be broadly applicable and not rely on application-specific properties.

2. Given that the functional components in an immersive application are expected to

exhibit varying behavior over a given data set, the profiling techniques must be capable

of characterizing the range of behavior of a component.

3. Given the large code base of an immersive application, the behavior must be charac-

terized at multiple levels of functional granularity. Further, it should be possible to

present the profiling results to the user in a highly summarized manner, yet without

losing the details of lower-level components when those are key to understanding the

application behavior (infeasible for hot-spot profiling, which will tend to emphasize

the top-level components).

4. Given that immersive applications tend to be frame-oriented, and their components

often process streams of data (such as sub-blocks within a video frame), the charac-

terization of repeatedly invoked components is paramount.

5. Given that general-purpose programming languages, such as C/C++/Java, tend to

express the application hierarchically in terms of functions, it is important to preserve
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information about the call-structure under which particular behaviors occur (the call

context of the behavior), as the programmer will rely on the call structure to relate

the profiling results to the application code-base.

6. The profiling technique must summarize similar behavior across the program call-tree

as much as possible, for varying degrees of “similarity” desired by the programmer.

7. Given the large size of the application, profiling results should use the call-context

in reporting results only when the behavior of components varies based on their call-

context, and only use the minimum call-context necessary for distinguishing differing

behaviors. Further, similar behavior of a component under multiple call-contexts

should be merged together and identified collectively using the minimal amount of

call-context that can distinguish from other call-contexts with dissimilar behavior.

8. Given that an immersive application should be characterized at multiple levels of

granularity, it would be very helpful to the programmer if the behavior found at

different levels of granularity could be related, particularly with regards to identifying

the underlying causes of behavior across components.

Most traditional profiling techniques are oriented towards minimizing program execution

time, such as profiling for hot-spots or hot-paths. Other techniques detect phases in an

application’s execution where each phase has distinct characteristics with regards to stall

cycles, cache miss-rates and instructions-per-cycle executed. Another set of techniques,

collectively called worst case execution time (WCET) analysis, attempt to place bounds on

the execution times of components in safety-critical applications. While all these techniques

aid the programmer in debugging different aspects of an application’s performance, they

lack the characteristics desired for profiling immersive applications.

To achieve the above mentioned desired properties, we are required to innovate on the

following ideas.

• We propose the notion of dominant behavior, to filter out what behavior is important
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across all levels of granularity, whether exhibited by a single component in the call-

structure, or dominant only in aggregate across the application call-structure.

• We create mechanisms to determine the sensitivity of behavior to call-context, and

mechanisms to minimally represent the distinguishing call-context for the behavior.

• We create a structural representation to express the context sensitivity of behavior

whenever context matters, and for capturing relationships between behavior at mul-

tiple levels of granularity.

• We develop statistical mechanisms to determine “similarity” of behavior, particularly

to aid the summarization of behavior.

• We create a structural representation that can merge and summarize similar behav-

ior across the application call-structure, including the relevant call-contexts and the

cause-effect relationships.

We develop the above ideas for behavior defined in terms of the mean and variance

of the execution-time of application components. However, the demonstrated ideas can be

generalized to diverse aspects of the application execution, such as the mean and variance of

the number of memory accesses, cache misses, network accesses, etc. By defining behavior

in terms of mean and variance, we can not only compare the behavior of two components for

similarity, but can also flexibly combine similar behaviors into either a collective mean and

variance, or retain the details of the original behaviors as a Gaussian mixture model (GMM).

Use of the mean and variance provides representational and computational simplicity when

the spread is small relative to the mean, while the GMM provides generality to approximate

arbitrary probability distributions. Finally, mean and variance, and probability distribution

models such as GMMs are natural choices to summarize variations in behavior over the

multiple invocations of a repeatedly-invoked component.

Chapter 8 introduces the CCVA profiling technique to distinguish behavior based on

the minimal call-context. Chapter 9 describes the DVA profiling technique that introduces

the VCG structural and behavior representation. DVA combines the ideas of dominant
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behavior, the merging of similar behavior, and the minimal distinguishing call-context to

operate on the VCG representation.

Benefits for Application Performance Tuning. With immersive applications, the

proposed profiling techniques can identify and characterize application components whose

variant behavior is likely to impact the QoS of the application, thereby providing the pro-

grammer with succinct and pertinent information to guide application tuning.

Non-immersive applications also benefit from variance analysis. During the paralleliza-

tion of a sequential application, programmer expertise or compiler analysis is traditionally

used to identify application components that are safe to execute in parallel. Profiling tech-

niques are used to determine which groups of components are beneficial to execute in parallel

with regards to producing speedup gains. However, traditional hot-spot profiling fails to

take the variations in the execution times of components into account. A safe set of compo-

nents, with each component exhibiting a large and roughly equal execution time on average,

may appear highly suitable for parallel speedup. However, if the execution time of these

components is highly variant in an out-of-phase manner, then in any parallel execution of

the components, one component is likely to have a much larger execution time than the

other components, thereby significantly reducing the parallel speedup. Therefore, variance

analysis is beneficial for determining which candidate safe set of components is likely to

produce a large parallel speedup.

It is important to study variance at all levels at which it occurs in the program. For

example, in a packet-routing application, it may be important to characterize the variance

in both the per-packet routing time at each port, as well as in the overall packet-routing rate

for the router. Such an analysis would help designers/programmers determine how much

buffer space should be provided at the port for transmission/reception, and the amount

of global memory needed for temporarily storing received packets. This can also facilitate

a trade-off between the sizes of the port buffer space and the global memory. A video-

compression application would similarly benefit from a characterization of the variance in

frame-compression time at the high level, and the per-image-block variations in processing
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time within a video frame for diagnosing which types of image blocks or types of processing

at the low level are responsible for the high-level variance in frame-compression time.
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CHAPTER III

RELATED WORK

3.1 Dynamic QoS Optimization

Control theory There is extensive literature on the design of controllers for linear-time-

invariant (LTI) systems [15], which is not directly applicable due to the non-linear and

highly time-varying nature of immersive applications. In particular, one common technique

called the Ziegler-Nichols method [16, 17, 18], tunes the gain parameters of a PID controller

to make the controller suitable for use with an LTI system with an unknown model. The

tuning technique involves offline excitation of the system with particularly crafted inputs,

such as sinusoids that are gradually varied in frequency and the system response observed

to determine the controller gain parameters. The extensive offline tuning involved is not

suitable for use with immersive applications, where the application behavior can vary sig-

nificantly across data sets and even over a few frames within a data set.

Adaptive control [19] deals with systems with partially-unknown or time-varying charac-

teristics. The well-established adaptive techniques are classified as model-reference adaptive

control (MRAC), self-tuning regulator (STR), gain scheduling (GS) and model-identification

adaptive control (MIAC). Broadly speaking, adaptive techniques are intended for dealing

with uncertainty in unknown constant or slowly changing parameters. With immersive

applications, the behavior can change rapidly and by large amounts, requiring additional

innovation and customization over the general adaptive techniques. Generally, robust con-

trol techniques are used to deal with disturbances and rapid parameter variations. Our

controllers incorporate parameter estimation techniques that build up metrics over long

sequences of frames to create robustness, while retaining the ability to detect rapid changes

in behavior by relying on the domain properties. However, as one major contrast, our con-

trollers are designed to improve the probabilistic properties of deviant application behavior,
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rather than the traditional goals of achieving Lyapunov stability [20, 21, 22, 23], improv-

ing settling time, or minimizing overshoot [24]. As a second major contrast, immersive

software applications do not exhibit the typical general properties of physical systems that

can be relied upon to achieve convergence, such as the dissipation of total system energy

that would ultimately lead to equilibrium. Instead, we identify new properties of immer-

sive applications, which we refer to as the domain assumptions, that our controllers rely

upon to control application behavior. As a third major contrast, the control law in several

traditional adaptive approaches relies on components of the plant model to exhibit vari-

ous mathematical properties — e.g., the positive definiteness of a state-transform matrix.

Instead, our controllers must work with extremely noisy model estimates over insufficient

online data where it is not possible to reliably establish mathematical properties that would

hold true for the underlying application behavior. The controllers rely on the domain as-

sumptions, in particular certain probabilistic properties, to achieve effective control under

these circumstances.

Next, we contrast against the specific adaptive techniques. MRAC [25, 26] and STR

[27, 28, 29] require parametric models of the application to be available, usually in an LTI

form or in particular non-linear forms. When a plant model is not already available, the

control engineer assumes a model form, and experimentally fits/verifies the model (offline

model identification), leaving some parameters to be adaptively estimated at runtime. As

an example of STR applied to software applications, Lu et al. [30] experimentally validate

that the QoS of their non-linear application, a proxy server cache, can be approximated

as a second-order parametric LTI model whose parameters change periodically. A model

estimator periodically re-estimates the model parameters from system performance, and

pole-placement techniques produce a new controller for the estimated model. The MRAC

adaptive approach explicitly tracks the error between the outputs of a reference plant model

and the actual plant, and adjusts controller parameters to drive the error to zero. Both STR

and MRAC require a plant model of the application to be available. Consequently, MRAC

and STR are not well-suited to immersive applications where it is generally not feasible

for programmers to provide a parametric plant model, due to the rapidly time-varying and
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emergent nature of the application behavior.

Our uni-variate controller [31] broadly falls in the category of GS [32, 33, 34]. The uni-

variate controller directly adjusts the feedback gain based on runtime metrics estimated by

the controller, with no application behavior model provided a priori or estimated at runtime.

The runtime metrics characterize properties that every immersive application must possess,

based only on the domain assumptions. In particular, the domain assumptions help identify

the granularity of QoS deviations that would be perceptible to the interactive user of the

application, and quantify the gain adjustment required to suppress the perceptible QoS

deviations. In contrast, the traditional GS techniques make assumptions about the form

and properties of the underlying unknown non-linear model [33]. These form and properties

assumed are not suitable for modeling immersive applications, and in particular, do not

correspond to the domain assumptions of immersive applications. Therefore, we create our

uni-variate controller as an alternative approach to gain scheduling based on the domain

assumptions.

The multi-variate controller falls in the category of MIAC [35]. Broadly speaking, the

MIAC approach is used when there is insufficient knowledge to create an a priori model, such

as with MRAC, but there is enough knowledge about the system to estimate a model. As

the main contribution, our controller relies on domain-specific knowledge about immersive

applications to make model identification tractable. The controller performs online model

identification to linearly approximate a model of the current application behavior and uses

optimal control techniques to construct a regulator dynamically. The controller uses a hybrid

of the certainty equivalent adaptive and cautious adaptive approaches guided by the domain

assumptions to achieve the dual objectives of replacing the active model with a new model

as soon as the application behavior changes, as well as discarding freshly estimated “noisy”

models when the existing active model is estimated to be more accurate. Additionally, the

domain assumptions help define the problem structure and the cost functions involved in

the model identification problem and the regulator construction problem.
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Self-adaptive software There is recent work on applying adaptive control theory in

a generic manner to a wide-variety of software applications. Brun et al. [35] survey the

increasing need for self-adaptive feedback loops in software applications and the various

adaptive techniques that could be applied. Hoffman et al. [36] have similar goals as our uni-

variate controller — check point an application’s execution-rate on key events referred to as

“heart beats” (e.g., every loop-iteration or frame) and dynamically adjust a single param-

eter to bring the heart beats within a desired range. The adjusted parameter could be an

internal application parameter that directly adjusts application algorithms or an external

parameter (such as number of cores given to the application). Extensions of the technique

allow the power-states of the processor to be dynamically adjusted (DVFS) to achieve the

desired “heart rate” [37]. Most recently, Filleri et al. [38] show how adaptive controllers

can be created for software application with control-theoretic guarantees related to per-

formance (tracking, settling and overshoot) and robustness. These works have the same

goal we have — make it easy for non-experts to incorporate QoS control into their software

applications. However, all of these techniques expect an offline model for the application

behavior to be available for the controller design step, with the model possibly constructed

via offline model identification on suitably representative reference data-sets. In contrast,

both our uni-variate and multi-variate controllers explicitly avoid offline model construction

as immersive applications are shown to be highly variant, often with a rather large range

of behavior possible within a single application execution, and with behavior varying sig-

nificantly over data sets. For these reasons, the behavior cannot be captured effectively

by a fixed linear model, or even a general-form parametric model (which the cited self-

adaptive software techniques do not attempt). Consequently, for immersive applications,

our controllers significantly outperforms these more generic techniques. In particular, our

controllers are capable of tracking the frame-rate (or any other QoS outcome) within a tight

window (instead of just being effective at keeping the outcome above a desired minimum),

and are capable of tuning the more instantaenous behavior of the application. For example,

with video encoding applications, our controllers track the moving average of the last 7

frames ([31], Chapter 4 and Chapter 7) instead of the last 40 frames by Hoffman et al. [36].
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Additionally, none of the prior self-adaptive software techniques control multiple applica-

tion parameters or explicitly track multiple outcomes, which is a capability our multi-variate

controller is the first to achieve.

Therefore, our reliance on properties specific to immersive applications allows our con-

trollers to achieve much tighter and more instantaneous control on immersive applications

and without the use of offline models (which are typically infeasible for immersive applica-

tions). However, the prior techniques are not limited to immersive applications, and may be

very effective at the control of other software applications, for example, applications whose

behavior is unknown but not highly time-variant, and where the application behavior on ref-

erence data-sets (for training) is highly representative of behavior over any online data-set.

As a final contrast, some of the prior techniques provide control-theoretic guarantees on the

constructed controllers, which our controllers do not. However, the guarantees only apply

when the offline model is a sufficiently accurate representation of the application behavior

(with some additional leeway possible with the incorporation of robust control techniques).

Since any fitted model is likely at best a very approximate or a very temporary repre-

sentation of an immersive application’s behavior, the control-theoretic guarantees on the

model fail to translate to guarantees on the application behavior. Instead, our controllers

are inherently probabilistic best effort in nature, as the domain properties of immersive ap-

plications that we have identified translate easily to probabilities, and implicitly allow the

QoS goals to be met more tightly and on a greater fraction of the frames when the appli-

cation behavior more strictly satisfies the required domain assumptions. By this approach,

our controllers possess the following performance and robustness properties for immersive

applications in contrast with the prior techniques.

1. High frequency of application frames that satisfy the QoS goal if the specified QoS

goal is attainable.

2. High frequency of application frames that minimize the QoS error if the specified QoS

goal is unattainable.
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3. Robustness in the form of graceful degradation of QoS performance when the appli-

cation behavior does not strictly satisfy the domain assumptions.

4. Robust estimators that filter noise over a long sequence of frames, while staying re-

sponsive to sudden behavior changes due to the reliance on the domain assumptions.

Real time Mejia-Alvarez et al. [39] allow optional tasks in the task-graph representation

of an application. The optional tasks are executed for improved total system value whenever

there is slack to deadline. In contrast, the tuning of the QoS of immersive applications

requires a feature setting to be picked prior to frame invocation, needing the controller

to predict which feature settings will likely achieve the desired frame time. The feature

settings may impact the execution time of algorithms that execute early in the computation

structure of the frame. Such algorithms would fail to be tuned if optional work could

be discarded only towards the end of a frame’s computation. More generally, complex

applications such as games and the increasingly sophisticated computer vision use-cases,

typically employ a symbolic representation of the world state [40, 41, 42, 43]. The update

of a game object in the world state may trigger the invocation of particular algorithms

depending on the attributes associated with the object. Therefore, a particular algorithm

of interest may be invoked on-demand multiple times over the frame computation, with

no possibility of grouping all the invocations into a single or a few tasks that could be

tuned or discarded together. Therefore, comparatively few immersive applications would

be structured to benefit from the dropping of optional work towards the end of the frame.

Additionally, as explained in Chapter 2, immersive applications are typically not amenable

to implementation as real-time task-graphs. More generally, task-based techniques may only

re-order, schedule and eliminate parts of the computation; they cannot alter the inherent

computation, which our controllers can do by tuning the feature settings every frame.

Lastly, our controllers may only be applied to applications that (approximately) satisfy the

domain assumptions of immersive applications, while task infrastructures may have different

requirements, such as periodic execution of a set of tasks, that make them more suitable

for other non-immersive applications.
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Cucinotta et al. [44] and Block et al. [45] use feedback control to fine-tune the alloca-

tion of compute resources to periodic soft-real-time tasks that can exceed deadlines. Their

methodology requires the prediction of task workloads. They assume that subsequent task

workloads can be predicted when suitable stochastic models are available. When stochastic

models are not available, they assume that either a moving-average model or a PI controller

can adequately predict task workloads based on previously observed workloads. Block et

al. additionally allow tasks to have multiple service levels, each delivering a user-specified

level of QoS with differing workloads. They require the specification of a function that

translates workloads between the service levels. In contrast, the data-dependent and time-

varying nature of immersive applications typically precludes the existence of a well-defined

relationship between workload (frame time) and service level (feature setting), much less

the ability of the programmer to specify a function capturing the relationship. Even the

QoS delivered for a fixed service level (feature setting) tends to be a time-varying entity

with immersive applications. Further, Block et al. require the user to specify gain param-

eters for their PI controller. Overall, it is infeasible for the users or the programmers of

immersive applications to provide much of the above required specifications, either because

of the applications’ time-varying nature or the difficulty in determining analytical/stochas-

tic models (Chapter 2). Instead, our uni-variate adaptive controller derives and fine-tunes

gain parameters directly from the observed application response, while our multi-variate

controller determines appropriate frames during the execution of the application to recon-

struct a model of the application behavior (“system identification”) to determine how best

to adjust the feature setting based on the current behavior of the application. As a final

difference, these works tune system resource allocation and scheduling to improve missed

soft-real-time deadlines without directly changing application properties; they don’t at-

tempt to tune application-specific algorithmic parameters to improve application-specific

QoS metrics.

de Niz et al. [46] schedule and allocate resources between applications for QoS gains.

Our controllers are complementary to their approach — the controllers tune the QoS of an

individual application by tuning parameters that impact the application’s algorithms. As
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future work, the two aspects can potentially be combined to allow the joint tuning of the

algorithmic parameters and the resources allocated across applications to achieve the best

QoS across concurrently executing applications.

Application-specific techniques Work by Roitzsch et al. [47] and Huang et al. [48]

on predicting the frame-execution times of an MPEG2 decoder relies on extracting the

video control sequence from the bitstream using light-weight techniques. Since the control

sequence precisely dictates the set of computations needed for decoding each frame, it is

possible to accurately predict the per-frame execution time. In contrast, we target the

MPEG2 encoder, that processes raw video-frame-image data, and no simple pre-computed

metrics are available to assist in the prediction of per-frame processing time. Work by

Wüst et al. [5] dynamically scaled the complexity of an MPEG2 decoder among four levels

based on markov decision processes and reinforcement learning. However, the models and

the metrics in that work were created specifically for the MPEG2 decoder. In contrast, our

work is not application-specific and benefits the broader class of frame-oriented applications,

for example the MPEG2 encoder whose frame times cannot be cheaply predicted ahead of

time.

The more recent video encoding standards, such as H.264, employ rate-distortion op-

timization (RDO) [49, 50], which often involves application-specific feedback control to

dynamically tune QoS. The new standards allow the encoder to dynamically select from a

large space of possible block-sizes, motion-vectors and quantization step-sizes to achieve the

best trade-off between picture quality and compression bit-rate, based on the properties of

the raw video content. The larger space of possibilities allows the encoder to potentially

find much better macro-block matches and customized quantization step-sizes for the trans-

form data that result in lower residual error (the “distortion”), that would require fewer

bits to encode. However, additional bits must be expended to represent the more detailed

possibilities for the motion vectors, block sizes and quantization steps (the “rate”). Often

a feedback loop is employed to determine whether increasing the rate is currently justified

by a sufficient reduction in the distortion. Therefore, RDO may involve feedback control
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carefully crafted by video experts after careful modeling for a single purpose. In contrast,

our two controllers can be be very widely deployed by programmers who are not experts to

model and craft their own controllers for their particular applications. Most importantly,

many immersive applications exhibit complex, dynamically changing behavior that is often

very hard to model, even for experts.

Function Estimation Our uni-variate controller does not require any function estima-

tion. The multi-variate controller needs to rely on some type of function-estimation tech-

niques to discover the application’s multi-variate input-output relationship based on only

very limited sampling of the application’s response characteristics. Linear least-squares

estimation (LLSE) [51] is a very commonly used function-estimation technique capable of

fitting a linear model even on relatively few data samples. LLSE is tolerant to signifi-

cant “noise” in the sample data (in our case, noise corresponds to all transient behavior in

the application that is not controllable through the available control parameters). Radial-

basis-function networks (RBFN) [52] are considered universal approximators of arbitrary

non-linear multi-variate continuous functions on a compact subset of Rn. That is, the coef-

ficients in an appropriately structured and sufficiently large RBFN can be trained to fit any

given non-linear continuous function defined over a bounded domain.

When the estimation’s objective is to interpolate a function over a grid of sample points,

RBFNs are considered both straightforward to apply and highly accurate [53, 54]. How-

ever, given that our objective is to achieve effective QoS control over an application with

rapidly time-varying characteristics, our controller can sample only a few points from a

high-dimensional input space based on which the controller must adequately model the

application behavior. Therefore, determining an accurate model is not a feasible objective

for our controller. Instead, our primary objective with function estimation is to determine

the sensitivities of various outputs to individual inputs. Therefore, in our controller, we

have chosen to use LLSE to fit a linear model to the observed application behavior, de-

spite the potential of RBFNs to model arbitrary application behavior. The justifications
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for this choice are as follows: i) RBFNs require model fitting to be performed in a higher-

dimensional space [55] compared to the dimensionality of the sample data to achieve a

good fit, requiring estimation of a much larger set of coefficients compared to performing

a linear fit with LLSE, ii) for a given dimensionality for model-fitting, RBFNs employ a

larger number of “structuring parameters” to define the parametric form of the non-linear

model compared to a linear model that will be estimated using LLSE, iii) feedback control

has the potential to work well with even approximate models (such as a linear model) of

the plant to be controlled, since feedback control can continue fine-tuning the control in-

puts over multiple control steps based on the observed response of the plant, iv) we have

identified special characteristics (common across applications in our target domain) that

would allow linear approximations of the application’s non-linear behavior to be sufficient

for achieving good feedback control, and v) optimal-control theory provides well-developed

controller design techniques for linear system models, such as linear quadratic regulators

(LQR) [56], making the use of controller design techniques over arbitrary non-linear models

[57] unnecessary for our purposes.

Hence, we expect to achieve good control performance at a much lower computational

cost by fitting approximate linear models, compared to fitting more accurate non-linear

RBFN models.

3.2 Offline Characterization Techniques

Existing application-profiling techniques look for program hot-spots and hot-paths [58, 59,

60]. These techniques attempt to find performance bottlenecks in an application, and do

not attempt to characterize patterns of variant behavior.

Calder et al. have used statistical techniques to characterize large-scale program behavior

in terms of just a few recurrent intervals of code [61], and to identify phase-change points

during the dynamic execution of a program [62]. However, their work does not attempt to

characterize the variant behavior in terms of the functional decomposition of the application.

In particular, they seek out intervals [61] consisting of closely-matching sets of dynamic

basic-blocks. The behavior captured by these intervals does not directly relate to the
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behavior of functions. The behavior of the intervals is also not sensitive to the call context

under which the behavior occurs.

Variability characterization curves (VCCs) [63, 64] and approximate VCCs [65] have

been used to characterize the variability in the workloads of multimedia applications. Such

analysis techniques require domain-specific knowledge of the application before they can be

applied. Similarly, there are custom techniques for improving the QoS of a very limited

type of applications, such as the techniques by Roitzsch et al. [47] that develop a higher-

level model of a generic MPEG decoder, and use this model to predict the video-decoding

times with high accuracy. In contrast, our framework characterizes the application’s variant

behavior in a completely domain-independent manner, with no assistance from the user.

For applications written using formal real-time abstractions such as tasks and deadlines,

there are established formal techniques [66, 67] that analyze the real-time characteristics of

the application and enforce the real-time requirements. For monolithic applications written

without the use of these abstractions, our framework is unique in its ability to characterize

their soft-real-time behavior.

Worst-case-execution-time (WCET) [68] is an analysis methodology applicable to mono-

lithic applications, and has been incorporated into commercial products such as those from

AbsInt [69]. However, for non-safety-critical, compute-intensive applications like gaming

and video, the knowledge of the likely range of real-time behavior is more important for

driving design-optimization than the knowledge of the worst-case behavior. The likely range

(detected by our technique) can be substantially removed from the worst case, thereby di-

minishing the utility of characterizing the worst-case behavior for such applications.
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CHAPTER IV

UNI-VARIATE QOS CONTROL

In this work [1, 31] we develop a QoS controller that caters to the unique nature of immersive

applications. We design an adaptive feedback controller based on a system-identification

strategy. The controller is intended to be incorporated into applications to dynamically

adjust a single algorithmic parameter of the programmer’s choosing to control the QoS

of a single programmer-identified QoS metric, often the frame-rate. The remainder of the

chapter assumes that the QoS metric is frame-rate, even though the technique is not limited

to frame-rate.

A system-identification based adaptive controller does not require a model of the ap-

plication and is also tolerant to dynamically changing application characteristics. The

adaptive aspect of the controller detects when the current control scheme is failing to suf-

ficiently achieve the specified frame-rate objective, and adjusts the feedback-control policy

accordingly. The controller consists of two layers, as illustrated in Figure 4.1.

Application

Y � App( Xd )

Feedback Controller

α : current

control policy

X : control
parameter

Y : observed
frame timeYobj ± δ :

desired
frame time

window

Monitor 
Occurrences

of Failure

Adjust Control Policy

αnew � adjust( α )

Notify on Significant 
Policy Failure
- Failure mode
- Failure metrics

Apply new

control policy

Tune Application Feature X

Adapt Policy

feedback Y

RoundInt
Xd :

feature setting 
for next frame

Figure 4.1: Block diagram of the adaptive feedback controller.
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The lower layer tunes the value of the control parameter X for the next frame of the

application based on the measured execution time Y of the current frame. App() represents

the unknown response of the application’s frame time Y to the application feature setting.

The programmer’s or user’s desire is to keep the frame time Y in the objective window

[Y obj − δ, Y obj + δ]. The controller increases or decreases the value of X based on the

observed error Y − Y obj . A discretized value Xd (X rounded to the nearest integer) is

applied as the application feature setting for the next frame. If Y fell inside the desired

objective window, then the frame is considered a success and no correction is made to X.

Otherwise, the frame is considered a failure and X is adjusted for the next frame. The

success of the feedback controller is measured as the satisfaction ratio (SR), which is

defined as the fraction of the frames whose execution time fell inside the objective window

when executing the application on a given test data set.

Adjusting the generic control input Xd would correspond to adjusting the values of

application-specific algorithmic parameters, such as the motion-estimation search-window-

size in the MPEG2 encoder application. The controller itself is unaware of the nature of

the algorithmic parameter, except that adjusting Xd is expected to simultaneously increase

or decrease both the quality of subsequent computational results and the frame times ex-

hibited. When incorporating our controller in their applications, we require programmers

to bind specific integer values of Xd to values taken by the algorithmic parameters. In

doing so, we eliminate the need for the programmer to make uninformed guesses about the

response characteristics of the application. In particular, we do not require the program-

mer to specify functions that relate values of an algorithmic parameter X to the resulting

frame time Y or computational quality. Nor do we require programmers to provide any

knowledge about the magnitude of the correction ∆X needed to the current X in order

to bring about a desired correction ∆Y in the subsequent frame time Y . Indeed, as we

expressed in the challenges in Section 2.2, the lack of such modeling knowledge by the pro-

grammer is what creates a need for our technique. Instead, we require the programmer

to pick a sampling of parameter values over a range sufficiently large to exercise a wide

range of frame times and computational quality. For example, in the MPEG2 encoder,
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it is relatively easy for the programmer to pick the following list of values for the search-

window-size parameter without needing much, or any, knowledge of expected input data

sets: 30, 20, 15, 10, 5, 2, 1, 0. The values on the left can be expected to generally produce a

larger frame time and computational quality than the values on the right. The programmer

binds the values to consecutive integers Xd = 0, 1, . . . , 7. Note that in the absence of our

controller, the MPEG2 encoder is always invoked with a fixed value for the search-window-

size parameter. The programmer utilizes application-specific knowledge to establish that

a fixed search-window size of 30 produces extremely large encoding times, with values of

20, .., 5, .., 0 progressively shortening the per-frame encoding times, producing a large range

of frame times. Specific knowledge about the raw input video characteristics or the choice of

the objective window is not needed in picking these samples. While it can be expected that

a very careful choice of samples may further improve the QoS delivered by our controller,

we demonstrate that substantial improvements in QoS can be achieved simply by picking

any scattering of samples over a large range as exemplified above, so long as the impact of

the chosen samples on the corresponding frame-time QoS metric is monotonic.

The extremely limited prescription from the programmer makes the construction of a

feedback controller a non-trivial task. However, the interactive nature of the gaming and

multimedia domains allows us to make good assumptions about how long (i.e., number of

frames) the characteristics of App() can be expected to stay steady. By staying steady,

we refer to Y remaining mostly unchanged over a sequence of frames when Xd is held

fixed. Over different “regions”, i.e., sequences of consecutive frames, Y may hold steady at

different values for the same fixed Xd value. The length of the regions may vary. However,

the nature of the domains allows us to make reasonable assumptions about the minimum

length of a steady region. Under the assumption of a steady region, we can derive tests

which indicate whether the current control scheme (denoted by α in Figure 4.1) is working

as well as possible in keeping Y within the objective window. Therefore, we can define

specific failure modes, detect when a failure mode occurs on the current α, and adjust

the control policy to αnew so that the failure mode ceases to occur on subsequent frames.

This is the task performed by the upper layer in Figure 4.1. This layer maintains failure
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metrics corresponding to each failure mode. When specific metrics fail certain tests, the

corresponding failure mode is said to have occurred at that point in the frame sequence. The

failure metrics also carry the quantitative information necessary for formulating a corrected

control policy αnew that will be put into effect from the next frame onwards.

Such a strategy for controller design, where the control policy is constructed and adapted

based solely on the observed behavior of the application without relying on application-

specific models, is called system identification.

While it would be possible to enhance our technique with application-specific knowledge,

such as examining transform coefficients or the nature of the motion vectors in MPEG2, we

restrict the scope of this work to examining how far we can push the system-identification

approach. Such a restriction allows our work to be applied to not just well-studied applica-

tions like MPEG2, but to a broader class of applications including emerging ones that are

not yet well understood.

4.1 Contributions

This work makes the following research contributions:

• We illustrate the hitherto untapped potential of applying control theory with system

identification to the problem of achieving high QoS in frame-oriented interactive ap-

plications. We make the case that such an approach is a simple, practical and broadly

applicable approach for QoS optimization in applications that defy traditional formal

treatment.

• Using the gaming and video domains as important representatives of frame-oriented

interactive applications, we show that just three domain observations (scalable algo-

rithms with monotonic parameters, sliding window of user perception W , and the

likelihood that the application behavior will remain stable over at least W consecu-

tive frames) prove sufficient for driving the system-identification approach and allow

the construction of a broadly applicable adaptive controller that produces large QoS

improvements without using application-specific knowledge.
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• As a first step, we chose to use the simplest possible feedback law, namely a linear

proportional controller (P controller). We demonstrate how the domain observations

above can be used to analytically derive failure modes and failure metrics over a P

controller, and thereby derive an adaptation policy for the controller. The simple na-

ture of a P controller greatly simplified the determination of failure modes and metrics

thereby allowing us to provide robust justification. We experimentally demonstrate

that our adaptation strategy applied over even a P controller delivers substantial QoS

improvements for real-world applications.

• We motivate that incorporating our adaptive controller into a new application places

a very low burden on the programmer. The programmer does not need to provide any

information about the dynamic response characteristics of the application and does

not need to intelligently pick sample values for the algorithm scaling parameter. The

programming effort needed to tie the application frame rate and the algorithm scaling

parameters to the controller’s inputs/outputs is expected to be quite low.

4.2 Domain Observations

We make the following observations about the common characteristics of frame-oriented

video and gaming applications. We use sophisticated real-world applications in realistic

scenarios to provide illustrative examples from each domain: MPEG2 encoder for video,

and Torque for gaming.

1. Monotonic effect of algorithmic parameters The key compute-intensive algo-

rithms within the video and gaming domains tend to be scalable by nature. Typically,

these algorithms are heuristic-driven and their runtime complexity can be adjusted

over a wide range based on tuning a handful of parameters. When the parameters

are set to maximize runtime complexity, these algorithms tend to produce the highest

quality results. Conversely, when set for low runtime complexity, they tend to produce

a low-quality result, but very quickly. The algorithmic parameters often control the
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number of iterations the algorithm spends refining a result. Or, an algorithmic param-

eter may limit the search space explored by the algorithm. Therefore, we make the

observation that the runtime complexity and the corresponding quality-of-result for

such algorithms is very often a monotonic function of their corresponding algorithmic

parameters.

In subsequent discussion, we limit ourselves to applications where the programmer

can find algorithmic parameters that monotonically impact the application QoS, in

particular the frame time. The monotonicity requirement is easily satisfied by two

real-world applications we use to validate our technique, and we seek to illustrate that

the requirement would also be easily satisfied by additional interactive applications.

It is well established in existing research literature [70] that the search-window-size

parameter in MPEG2 has the most significant effect among all available parameters on

the frame-encoding times, and this effect is monotonic due to the nature of the search

algorithm. Our second application is a commercial game engine called Torque [71].

Based on the game-engine documentation and the user forums, we were quickly able

to recreate a common game-play scenario where two teams of simulated enemies are

involved in combat. The behavior of each character (bot) in these teams is determined

by the artificial intelligence (AI) algorithms that run periodically. There are a number

of clearly defined parameters that control i) how frequently each bot “thinks”, and

ii) the range of visual information (about the adjacent terrain, and the locations of

friends and enemies) that the bot incorporates in its thinking for determining its next

goals (escape, fight, seek ammunition) and for the path planning to achieve those

goals. These think-interval and visual-range parameters also monotonically scale the

AI algorithms.

Once the algorithmic parameters are identified, they are straightforward to tie to Xd

and have the feedback controller adjust them dynamically. Given the monotonicity

of all the parameters involved, we expect the programmer to combine all the used

parameters into a single formal parameter Xd, which takes positive integral values

starting from 0 up to a maximum value N defined by the programmer. Therefore,
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the adaptive controller will only adjust Xd, and the new values for the underlying

algorithmic parameters will be determined from a fixed mapping defined by the pro-

grammer from integers 0, . . . , N to tuples of values over the underlying parameters.

Ultimately, Y ← App(Xd) is an unknown, and, quite likely, a time-varying function

due to the significant data-sensitive nature of these applications. However, App() can

still be assumed monotonic in Xd at any given time instant.

2. Perceived frame rate A typical video stream can be expected to exhibit similar

characteristics over short sequences of frames. For example, the sequence may corre-

spond to the video camera panning horizontally. Or the sequence may have captured

objects moving across a fixed background image with relatively uniform velocity. In

either case, the computational requirements for encoding each of the frames in such

a sequence can be expected to be similar. Given a typical frame-rate of 20 − 40 fps

in video, it is likely that such sequences are quite common and their length is at

least 20 frames or substantially more. Similarly, in a fast first-person-shooter game

such as Torque, it can be expected that the game-world state does not change too

quickly within a sequence of frames. At a typical frame-rate of 30 − 60 fps, such

sequences should be of non-trivial length as well. This observation allows us to expect

that for video and gaming applications, App() is only a slowly time-varying function.

Therefore, if a desirable value of Xd (that keeps Y in the objective window) is found

early in the sequence, it can be expected to work for the rest of the sequence, thereby

delivering a high satisfaction ratio.

Unfortunately, a video encoder like MPEG2 performs different types of computation

on adjacent frames. Typically, treats a video stream as a recurring pattern (called

GOP) of I-P-B-B-P-B-B frames (one common pattern). The pattern is imposed obliv-

ious of the data characteristics of the raw video frames. Motion estimation is not

applied to the I frames, applied uni-directionally to the P frames, and applied bi-

directionally (effectively twice) to the B frames. Similarly, a sophisticated game like

Torque has an event-scheduling loop at its heart that can cause adjacent frames to

32



vary considerably in the amount of computation scheduled for them.

However, even though adjacent frames may vary substantially in the computation

performed in them, our observation of slow variation in App() holds on average. For

example, Figure 2.1 (from Chapter 2) shows that the frame time can vary quickly

between adjacent frames in the MPEG2 encoder (here the algorithmic parameter, the

search-window size, is kept fixed). However, the frame time as a moving average over

the previous seven frames (the length of our GOP pattern) varies slowly except for

moments of major discontinuity in the video scene. The Torque game engine exhibits

similar behavior.

Most importantly, the instantaneous frame rate is not perceptible by the user. For

example, the instantaneous frame rate could occasionally drop significantly below the

desired rate and the user would not notice the drop provided the frame rate recovered

quickly. Therefore, the perceived frame rate is determined by the current moving

average of the frame times of the previous few frames. Fast-action games and high-

quality video feeds typically have a frame rate of around 30 frames-per-second. The

perceived frame rate can be estimated as a moving average of the previous five-to-ten

frames, depending on the specific attributes of the application. We refer to the length

of this moving-average window as the sliding window, W , for that application.

Therefore, rather than trying to keep the instantaneous frame times in the objective

window, our controller instead attempts to keep the perceived frame times within

the objective window. This allows us to assume that App() varies only slowly with

time. Henceforth, Y will refer to the moving average of the previous W frame times.

Further, W also serves to define the minimum duration of time that is perceptible to

the user, and is therefore useful to the adaptive part of the controller in deciding when

a series of failures has gone on too long (i.e., the failures may become perceptible to

the user) and the control policy ought to be corrected.

3. Response sensitivity Depending on the nature of the data being processed, the

∆X change needed in X to produce the same ∆Y correction in Y may vary. We refer
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to this as the response sensitivity of App(). The response sensitivity fundamentally

affects the control policy α that ought to be used in the lower layer of the feedback

controller in order to achieve a good satisfaction ratio. The following are important

causes for the variation in response sensitivity:

• Global: The video encoder has 100× more pixels-per-frame to compress in a

1600 × 1200 video compared to a 160 × 120-resolution video. Even if the two

videos otherwise have similar characteristics, Y can be expected to be scaled

correspondingly. Similarly, in a game, the amount of game-world state to be

processed per frame grows with the number of objects and bots set up in the

game world. Therefore, the response sensitivity to two different data sets may

be vastly different depending on the invariant characteristics of the data sets.

A similar global effect will show up between running the application on fast

hardware versus slow hardware.

• Time-varying: While the response sensitivity may not change as much over

time within the same data set, it varies sufficiently that α must be fine tuned

occasionally. The faster an object moves across the screen in a video stream,

the further motion estimation has to search to find a matching image block in

an adjacent frame. Therefore, if the number of fast moving objects in the scene

changes substantially, the response sensitivity may change as well. In a game,

if many bots are playing closer together, then the AI computation for each bot

will have to take into account the positions of more bots. These effects will

dissipate when the number of objects in motion in the video changes or there is

a scene-cut, and similarly when the bots move far away from each other. Such

regional variations are significant factors in the relative magnitude of ∆Y versus

the corresponding ∆X. Based on the scenarios described above, we should expect

that the regional variations appear over much longer sequences of frames. For

example, if the speed of a fast object in a video changes, adjusting X may be

sufficient to correct Y without adjusting α. However, if the number of fast moving
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objects doubles, a change in α may be required. The speed of an object may

stay fixed for tens of frames, but it may take hundreds of frames for persistent

moving objects to be added or removed from the scene.

The global scenario suggests the need for determining a large adjustment to α very

soon after the application starts execution on a new data set on an unknown hardware

platform. Such a large adjustment is only rarely expected to be needed again in further

processing of the data set. The time-varying response sensitivity is expected to appear

repeatedly over a data set, each time requiring a fine-tuning of α.

4.3 Adaptive Feedback Controller

Our adaptive feedback controller can be added to an application as a library. The program-

mer needs to specify the following to the controller:

• N integer: X is allowed to vary in the range [0, N ].

• W : A suitable length for the sliding window.

• [Y obj − δ, Y obj + δ]: the objective window to keep Y in.

Our convention is that Xd = 0 represents the most compute-intensive algorithmic set-

ting, which produces the largest Y and causes the application’s algorithm to produce the

highest quality computational result. Conversely, Xd = N should produce a low-quality

computational result in the shortest frame time Y . The programmer should select W to be

short enough that the moving average of frame times Y over the previous W frames can

show a response as a consequence of any changes in Xd before the user perceives a change

in the frame rate. That is, if W is too long, then a drop in the instantaneous frame rate

over multiple frames may not affect Y sufficiently for the adaptive controller to notice and

attempt corrective action. Instead, the user will perceive the dropped frame rate before the

adaptive controller may fix it. Therefore, a large W introduces feedback lag in the system

where the controller always responds too late. On the other hand, W should be chosen
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large enough to smoothen frame-to-frame variations that occur spuriously as described un-

der Section 4.2 (the GOP pattern in the MPEG2 encoder; the unbalanced scheduling of

events over adjacent frames in Torque). The programmer can try different values of W

within a range allowed by the above considerations, and pick the one that produces the

best satisfaction ratio on test inputs. Additionally, the programmer needs to tie the values

of Xd to the parameter values used by the scalable algorithms in the application.

In this work, we choose to keep the feedback control policy as simple as possible so that

it would be easier to adapt based on observed application behavior. Here the control policy

α represents a single scalar parameter whose value is adjusted when the control policy is

changed. We use a simple proportional controller as follows:

∆X ← 1

α
×∆Y (1)

In other words, 1
α is the feedback gain of the control system. ∆X is the amount by

which X should be changed in the next frame given that the observed frame-time Y of the

current frame deviated from the center of the desired objective window by ∆Y ← Y −Y obj .

While X and ∆X take continuous values inside the controller, the value of X passed to the

application is the closest integral value (Xd).

Since we control ∆Y using ∆X, instead of controlling Y using X, and because the gain

α is adapted to the application behavior, the controller is an instance of adaptive-integral

control.

Note that even though the control policy is that of linear feedback, the application,

in general, may be highly non-linear and time-variant. Therefore, the overall closed-loop

feedback system cannot be analyzed as a linear control system.

4.4 Adaptation of Control Policy

In Section 4.2 we made limited assumptions about the manner in which application char-

acteristics hold steady and how they may vary over time. The assumptions now allow us

to detect sub-optimal modes of operation of the controller which indicate that some ad-

justment to the control policy is likely to deliver significant improvements in the SR. We
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contrast this to the situation where the SR is poor but adjusting the control policy is not

likely to improve it much. We would refer to the former sub-optimal modes as failure modes

since the controller could do better, but the latter situation is not a failure mode since it is

not indicated that another control policy would do better.

Failure Modes. The only design parameter in the feedback controller is α. Figure 4.2

shows the SR achieved using the feedback controller, but with the adaptive layer disabled.

Here α is a priori fixed to a given value and not altered during the execution of the appli-

cation. The figure shows that for any given data-set, the value of α must be chosen from a

narrow range that is specific to that data-set. If α is not in this narrow range, the SR of the

feedback-controlled system drops significantly. Therefore, offline profiling on representative

data-sets is unlikely to train α well for an as yet unknown data-set. Online adaptation of

α is the only option.
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Figure 4.2: Dependence of α on the application and the data set.

Since the controller is a simple P (proportional) controller with a single parameter α,

the following three cases provide a complete spectrum of ways in which the policy can be

adapted in any situation:

• Global failure: gets α into the correct order-of-magnitude range.
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• Oscillation failure: fine-tunes α by increasing it.

• Sluggishness failure: fine-tunes α by decreasing it.

When the application starts execution, the controller initializes with an arbitrary and

very small value for α. The Global failure mode determines a large multiplicative correction

for α within the first few frames of the application’s execution. Subsequently, the Oscillation

and Sluggishness failure modes determine much more fine-tuned corrections to α. They are

also invoked for further fine-tuning when the application encounters regions of the data

with differing response sensitivities. The following subsections elaborate on these failure

modes. Each failure mode continually maintains metrics (failure metrics). When a failure

metric crosses a threshold, it indicates that the corresponding failure mode has occurred.

Additional associated metrics indicate how to correct α to dispel further occurrence of that

failure mode.

4.4.1 Global failure mode

The occurrence of this failure mode causes α to reach its correct order-of-magnitude range in

a single adjustment of the control policy (the range with high SR in Figure 4.2). Section 4.2,

in the global response sensitivity paragraph, describes scenarios where such an adaptation

is necessary (adjust for video resolution, speed of hardware, etc.). This failure mode occurs

when the ∆X corrections due to Equation 1 are so large that they quickly cause X to

move out of the [0, N ] range on either side. In such a situation, the feedback controller no

longer has effective control over Y . This failure mode will occur when α is so small that the

typical magnitudes of ∆X are continuously greater than 1.0 when Equation 1 is applied to

the currently observed values of ∆Y , thereby not letting the controller exercise any single

value of X for even a short duration of frames.

The following metrics are maintained for this failure mode, and updated after every

frame:

• β: The running average of |∆X|’s observed so far.

• γ ← c ∗ γ + |∆X|
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γ represents a weighted sum of absolute deviations |∆X|. 0 < c < 1 is a convergence

factor, where the contribution of older frames is de-emphasized with weight c. The main idea

here is that if the absolute deviations |∆X| are observed to be consistently much larger than

1 (the minimum separation between values of Xd) then it is indicated that the controller

is continuously and quickly exploring the full-range of X (i.e., [0, N ]) or it is consistently

exceeding this range altogether. If Y fell inside the objective window, then ∆X is 0.0 for

that frame. Therefore, a series of non-zero |∆X|’s can occur only when the current control

policy has a series of failures in keeping Y within the objective window.

The failure mode is considered to occur when γ > 1
1−c × 1.0 and β > 1.0. Let’s choose

c = 0.9. The 1
1−c term is simply the convergence value of the geometric series sum

∑
i c
i.

This implies that a single large spike in ∆X would have to exceed 1
1−c×1.0 or approx 10.0 for

this failure mode to be triggered. On the other hand, a sustained ∆X of magnitude slightly

greater than 1.0 would trigger the failure mode after about 10′s of frames. Therefore, the

above condition allows a global-correction of α to be either triggered quickly by a very large

∆X or by a ∆X of moderate magnitude sustained over multiple frames. This filters out

intermittent large spikes in ∆X from triggering the failure mode unless they are extremely

large. More generally, c = 1 − 1
W would be a better justified choice, as this would suggest

that sustained ∆X’s of magnitude > 1 would have to occur for about W consecutive frames

for a policy failure to have occurred. Slight anomalies in frame-times that are sustained for

less than W consecutive frames would not be perceptible to the user, and hence should not

be detected as policy failures.

When this failure mode occurs, α is corrected as follows: αnew ← β × α. Therefore,

when values of ∆Y of similar magnitude as before the correction are observed, the resulting

values of ∆X produced by Equation 1 would be of a smaller magnitude ≈ 1.0 (instead

of average magnitude β). Therefore, the controller would now be able to exercise valid

settings of X instead of exceeding range on either side. Further fine-tuning of α may occur

subsequently via the other two failure modes. After the correction is applied, the failure

metrics are reset to 0.0 and begin updating as usual.

39



Since we do not provide a failure mode that could make a correspondingly large correc-

tion to α when α is too large, we ensure that at application start-up time the controller

is initialized with an exceedingly small value for α. Therefore, an additional failure mode

that decreases the value of α by orders-of-magnitude is not needed.

4.4.2 Oscillation failure mode

This failure mode occurs if the value of α is sufficiently low, leading to a high feedback gain

that causes “under-damped” oscillations of large magnitude or frequency. The crests and

troughs of these oscillations need to fall outside the objective window on either side in order

for this failure mode to occur. This corresponds to the situation where the ∆X corrections

(from Equation 1) being applied to X are so large that they cause Y to swing from one side

of the objective window to the other, but not stay confined within the objective window.

Figure 4.3 illustrates this phenomenon. On the left is a single half-cycle oscillation with

high amplitude. On the right is a sequence of half-cycle oscillations. Note that there is no

half-cycle after the H3 label as Y reaches its crest within the objective window.
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Figure 4.3: Metrics for Oscillation failure mode

In order to detect this failure mode, we have to assume that the application is currently

in a steady-state where an appropriate fixed value for Xd can keep Y within the objective

window. Then, the only cause for the oscillations would be that the current value of α is

causing X to vary faster than the application can respond to a change in X. Therefore, we
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get oscillations as X is continually over-corrected in each direction. Therefore, the failure

mode should adjust α so that the magnitude of ∆X is appropriately reduced, and the

feedback controlled application has a chance to settle into steady state.

If the above assumption of an achievable steady state is valid, we can also assume that

the steady-state lasts for at least W frames. This is justified because W is a bound for the

minimum perceptible length of frames, and in Section 4.2 we motivated that a sequence

of frames of fixed characteristics (hence steady state) are likely to be of a duration that

is perceptible to the user. Hence we use W to determine if the frequency of oscillations is

sufficiently high to justify triggering the failure mode.

If the assumption of steady-state is not valid over the current region of frames and the

Oscillation failure mode is incorrectly triggered, we can rely on the Sluggishness failure

mode being subsequently triggered to negate the correction made by this failure mode.

Therefore, we just need to create a high barrier against this failure mode being triggered

inappropriately, not eliminate the chance completely.

The following metrics are maintained for this failure mode:

• L: A half-cycle represents a transition of Y from one side of the objective window

to the other. The L metric counts the number of frames involved in the current

half-cycle.

• H: This captures the crest to trough or vice versa height of the current half-cycle.

• η: This metric is a weighted sum that provides a combined measure of the frequency

and magnitude of previously observed half-cycles. At the end of each half-cycle, this

is updated as follows: η ← d ∗ η +H × W

L
, where 0 < d < 1 is a convergence factor.

Again the older frames are de-emphasized with weight d.

The Oscillation failure mode is triggered when η > τ where threshold τ = 1
1−d×2δ×1.0.

Note that 2δ is the height of the objective window. The basis for this condition is that in

the absence of oscillations there should be on average at most one half-cycle per W frames.

Once the failure mode is triggered, α is corrected as follows: αnew ← α × η

τ
. We chose
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d = 0.66 so that a single half-cycle of magnitude or frequency at least three times greater

than one half-cycle per W frames can trigger the failure mode, or that a sustained set of

reasonably large half-cycles can trigger a correction within the occurrence of 3 − 4 such

half-cycles. This allows α to be fine-tuned rapidly at the onset of a new region with a

different response sensitivity (Section 4.2).

4.4.3 Sluggishness failure mode

This failure mode occurs when α is sufficiently high that Equation 1 produces ∆X of low

magnitude, leading to a sluggish “over-damped” response. The failure manifests itself as a

continuous series of ∆Y values of the same sign, indicating that Y is continuously falling

outside the objective window on the same side. Additionally, X is not changing quickly

enough to produce a faster correction in Y .

As with detecting the Oscillation failure, we make an assumption of steady state, with

W serving as the minimal length of frames after which the application response can be

considered as sluggish. Any inappropriate triggering of the Sluggishness failure mode is

likely to be counter-acted by a subsequent Oscillation failure mode.

The following metrics are maintained for this failure mode:

• K: This keeps track of the current number of contiguous frames whose Y ’s have all

occurred outside the objective window on the same side of the objective mean (i.e. all

Y ’s are either too small or all too large).

• λ: This metric accumulates ∆X over the last K frames.

This failure mode is triggered when K > W and λ < 1.0×µ where µ = K
W . The general

idea is that the response is sluggish if the cumulative change in X (λ) was less than 1.0 per

W frames of one-sided failure. Due to Xd being integer-valued, 1.0 is the minimal change

in X on average that can produce a change in behavior in Y . The failure mode corrects α

as follows: αnew ← α× λ
µ .

In summary, the metrics for each failure mode are updated and tested after each frame

for the occurrence of the corresponding failure mode. Note that the nature of the metrics
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and tests for the Oscillation and Sluggishness failure modes make it impossible for both

these failure modes to occur simultaneously. This is because Y cannot be simultaneously

oscillating rapidly on either side of the objective window as well as persisting on only one

side of the objective window. However, the Global and Sluggishness tests could both detect

failure at the same frame. If so, the Global failure is given precedence as its detection

corresponds to the occurrence of large magnitude anomalies in Y , which can be largely

corrected in one step. In contrast, the Sluggishness failure metrics do not account for the

magnitude of errors in Y , and can only bring about minor corrections in α each time the

Sluggishness failure mode is detected.

4.4.4 Illustration of Failure Modes

Figure 4.4 shows a frame sequence for the MPEG2 encoder application modified to use our

adaptive controller, and a corresponding frame sequence for the unmodified application that

operated with a fixed setting for X. We choose X = 2 for the latter since this produced the

best SR among all possible fixed settings for X. The two horizontal lines in the top part of

the figure demarcate the boundaries of the objective window. It is clear visually that the

feedback controlled system stays within the objective window for significantly more frames

than the fixed choice case. This observation is also borne out by comparing the ongoing

satisfaction ratios plotted in the lower part of the figure.

The upper part of the figure shows variations in Y . The lower part of the figure shows

the corresponding X that was applied. For the unmodified application case, X is always

2. At frame 9, α is corrected from the default initial value of 0.0002 to the new value of

0.09764 (an orders of magnitude correction) in a single step. The cumulative SR shown

as a black dotted line in the lower part of the graph immediately gets a boost after this

correction is applied. In contrast, the gray dotted line showing the cumulative SR for the

fixed X = 2 run, stays quite low indicating a high rate of failure at that point. The Global

failure mode is denoted with G and the new corrected value of α is shown at the point of

correction. At frames 45, 141, 155, 181 under-damped oscillations of large magnitude and/or

high frequency appear, and are corrected within one or two half-cycles of the start of the
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Figure 4.4: Frame Sequence for the MPEG2 encoder on the Quantum of Solace video:
Adaptive versus fixed X = 2. X = 0 uses largest Motion Estimation search window,
X = 7 uses smallest search window. G, O and S mark frames where global, oscillation
and sluggishness corrections are made to α, with the corresponding multiplicative factors
annotated.

oscillations. The occurrence of an Oscillation failure mode is denoted with O and the new

corrected value of α is shown at the point of correction. The Sluggishness failure mode

is seen to occur at frames 196 and 211 where the frame execution time stays outside the

objective window for extended periods of time while the feedback system does not adjust

X fast enough to bring Y back into the objective window. These occurrences are denoted

with S and the new corrected value of α is shown at the point of correction.

4.5 Experimental Validation

We use the MPEG2 encoder from the Mediabench II video [70] benchmark suite, and

the Torque game engine to validate our methodology. We use three different raw video

sequences to test the MPEG2 encoder. The video sequences are called QOS, dolby, and

dolby640. The first is a prefix of a trailer from the Quantum of Solace action movie,

consisting of 470 frames at a 320 × 192 resolution. dolby and dolby640 are derived from

the commonly used video test-sequence dolbycity. They are both 799 frames long with
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resolutions of 320 × 192 and 640 × 480, respectively. To drive the Torque game engine,

we recorded a sequence of movements that the player executes at specific frame counts

within the game world. This produces a sequence of 900 game frames in each run. We

do not directly control the behavior of the bots in the fighting teams. Their behavior is

controlled by the randomized AI algorithms, for which we control basic parameters affecting

AI intensity and vision range. We use the satisfaction ratio (SR) metric to measure the

QoS performance of an application run on a given data set. For reasons explained in

Section 4.2, we measure the SR over the sliding-window-averaged frame times rather than

the instantaneous frame times. In the MPEG2 encoder, X was given a range of eight values

(0− 7) corresponding to the following values of the search-window-size parameter used for

motion estimation: 30, 20, 15, 10, 5, 2, 1, 0. We ran all experiments on a Core2 Quad Q6600

2.4GHz CPU machine with 2GB of RAM.

Figure 4.2 shows that the range of values of α that produce high SR are highly applica-

tion and data-set dependent. This unpredictability in the high-SR range for α emphasizes

the importance of training α online during each run of the application. Figure 2.1 (from

Chapter 2) illustrates the importance of having a sliding window to satisfy the regions of

stable behavior requirement. The W = 1 case shows the instantaneous frame times for the

MPEG2 encoder on a prefix of the QOS video sequence. There is a clear banding of the frame

times in each GOP into I, P, and B frames. Computing moving averages of length seven is

shown by the W = 7 case. The latter case clearly illustrates the presence of sequences of

frames with steady characteristics in the video sequence.

Figure 4.5 demonstrates the importance of choosing the correct W for each application

to achieve the best SR across all data sets. We see that W = 7, derived analytically to

match the length of the MPEG2 Group-Of-Pictures (GOP), gives the best overall SR across

the different video data sets. For Torque we empirically discover that W = 7 works the

best.

Figure 4.6 shows the impact on SR of picking different frame-time objectives for each

application. Evaluating a range of frame objectives also simulates the effect of evaluating
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Figure 4.5: Variations in satisfaction ratio (SR) against sliding-window size (W ).

the application with a fixed frame objective over a range of hardware with varying compute

capabilities. The size of the objective window is kept at 20% on either side of the frame-

time objective (i.e., δ/Y obj = 0.20). Experiments are run for various fixed settings of X

(i.e., the unmodified application with different configuration settings), and a run of the

application modified to use the adaptive controller. For the QOS and dolby data sets no

fixed choice produces a good SR. But the adaptive-controller case delivers substantially

better SR for these data sets. This illustrates that the controller is able to correct X to the

value best suited for each sequence of frames. For dolby640, X = 7 and X = 5 deliver

extremely high SR for Y obj = 0.08 and 0.12 seconds respectively. The two fixed choices just

happened to work well on our machine for the given data set for these specific frame-time

objectives. Y obj = 0.02 and 0.04 seconds turn out to be impossible objectives as even a

motion-estimation search-window of size 0 cannot achieve them. Note that dolby640 is

a much higher resolution video than the other video samples, leading to correspondingly

larger per-frame encoding times.

The adaptive case can significantly outperform every fixed X, rather than simply fol-

lowing the envelope of the fixed-X cases (e.g., Figure 4.6(b) at Y obj = 0.12sec has adaptive
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SR ≈ 70% while all the fixed-X cases have SR ≤ 40%). This is because the response char-

acteristics of our highly time-variant applications can change after sub-sequences of just

10′s− 100′s of frames, making any given fixed X suboptimal over the full frame sequence.

Therefore, dynamic tuning has room to significantly outperform every fixed X by choosing

the best X appropriate for each sub-sequence.

Figure 4.7 shows the spread of the observed frame times Y about the desired mean

objective Y obj for Torque. The distortion is calculated as follows:

Distortion =

√∑M
i=1(Yi − Y obj)2

M
.

Here, Yi’s are the observed frame times. The distortion is a metric for the overall

variation in the observed frame times. Figure 4.7 shows that the adaptive controller pro-

duces the lowest, or very close to the lowest, distortion compared to any fixed-X case. For

Y obj = 0.06secs, the fixed X = 6 case has slightly lower distortion in Figure 4.7 but sub-

stantially worse SR in Figure 4.6(d) compared to the adaptive case. A similar observation

holds for the distortion and the corresponding SRs at Y obj = 0.12secs. Except for these two

borderline anomalies, the distortion of the adaptive case is always lower than any fixed case.

The distortion metric shows that our adaptive controller not only improves the probability

of keeping the frame times within the objective window (measured as SR), but also reduces

the overall variation in the frame time.
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Figure 4.7: Distortion in the frame times for Torque.

Our adaptive controller does not directly address other aspects of the application’s

QoS, such as the quality of the computed results (let’s call it the computational-QoS). In

the MPEG2 encoder, the computational-QoS corresponds to the peak signal-to-noise ratio

(PSNR) for the compressed frames. In Torque, the computational-QoS corresponds to the

intelligence exhibited by the bots, which can be estimated as the average amount of time

spent on AI computations per frame. Instead, the controller only directly attempts to max-

imize the frame-QoS, i.e., the satisfaction ratio. For these applications, maintaining a high

and smooth frame rate trumps other considerations of computational-QoS, as a poor frame

rate directly makes a game unpleasant and jerky to play or a video stream uncomfortable

to watch. However, our adaptive controller not only achieves the best frame-QoS, but also

indirectly achieves a similar or better computational-QoS for the application compared to

the best-case execution of the application that did not use the adaptive controller. For the

MPEG2 encoder, we measure the PSNR averaged over all the frames. The encoder is set

to produce a constant-bit-rate file, so all the output-file sizes are almost equal. The aver-

aged PSNR does not vary by much across the fixed-X runs and the adaptive-control runs.

There is no case where the fixed-X run produces both a better SR and a better averaged

PSNR compared to the adaptive case. The Torque game application shows a much larger
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variation between runs in the average AI-time per frame. The adaptive case always has

similar or much better AI per frame compared to the fixed-X case with the best SR. In

particular, when Y obj = 0.04secs and δ/Y obj = 0.20, the adaptive case spends 24.13ms on

AI per frame, whereas the fixed case with the best SR (for X = 3) spends 14.21ms on AI

per frame. Therefore, our adaptive controller significantly enhances the frame-QoS across

data sets and frame-time objectives, without compromising (and sometimes enhancing) the

computational-QoS.

The total runtime overhead of our controller was less than 0.05% of the total frame time,

in all cases.

4.6 Conclusion

In this work we introduced a system-identification approach to design an adaptive feedback

control system for frame-oriented gaming and video applications that are implemented

without the use of real-time constructs, and whose highly data-dependent, time-varying

nature makes it difficult to establish analytical models relating algorithmic complexity with

frame-execution times. We demonstrate that the proposed adaptive controller trains to the

characteristics of the application and the current data set based purely on the observed

behavior of the application, without requiring any specific knowledge about the application

or the data set. We have demonstrated that our controller substantially smoothens the frame

rate, and keeps the frame times within a user-specified objective window with probability

matching or often significantly exceeding any fixed setting of the application’s feature set.

Further, our controller achieves this without compromising other aspects of the application’s

QoS, such as PSNR or game-play intelligence.
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CHAPTER V

MULTI-VARIATE QOS CONTROL:

APPROACH AND PROBLEM DEFINITION

5.1 Motivation

In Chapter 4 we described an adaptive controller that significantly improved the frame-

rate QoS (the expressed “feature-set”) of frame-oriented interactive applications. While

the adaptive controller was applicable to a large variety of frame-oriented interactive appli-

cations that satisfied three broad domain assumptions, the controller dynamically adjusted

only a single application parameter X in order to keep only a single objective, typically the

observed frame-time Y , within a desired range.

Here we introduce a generalization to multiple-X, multiple-Y , applicable to a similarly

large variety of interactive applications. The multiple-Y ’s allow the simultaneous optimiza-

tion and trade off between a larger set of QoS metrics beyond just frame time. Adjusting

multiple-X’s allows for a much more fine-tuned optimization of the multiple-Y ’s, both in-

dividually and collectively.

The X’s represent application-specific algorithmic parameters, whose adjustment causes

the application’s emergent QoS characteristics to vary. While it is relatively easy for pro-

grammers to describe the desirable ranges for QoS metrics (Y ’s) and identify which appli-

cation parameters (X’s), if varied, are likely to significantly affect the QoS metrics, it is

very difficult for programmers to establish any relationship about how the X’s ought to

be varied to bring about a desired change in the Y ’s. The reasons for this difficulty are

the same as those motivated for the single-X, single-Y problem. Namely, the relationship

between the multiple-X’s and multiple-Y ’s in an interactive application can be i) highly

data-dependent, ii) time-varying and iii) non-linear in general.

Hence, an automated, non-application-specific controller that can dynamically discover

the X-Y relationships, and adjust the X’s to keep the Y ’s within desired ranges, will
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tremendously simplify the work of building interactive applications and achieving high QoS.

5.2 Contributions

1. We propose a statistical problem specification that is suitable for capturing the QoS

requirements of immersive applications, and is amenable to being effectively solved

via an online controller operating under a bounded compute budget.

2. We use powerful multi-variate offline system-identification and optimal control tech-

niques, LLSE and LQR, respectively, in a novel manner that makes them amenable for

an online controller. In particular, we create techniques to overcome some well-known

limitations of LQR, which allow our controller to be far more robust and deliver higher

QoS performance even with highly approximate system-identification.

3. We create a number of probabilistic and estimation techniques necessary to tackle

the following challenges specific to the online system-identification and control of

immersive software applications:

• almost no designer “intuition” is available to guide the selection of various pa-

rameters used by LLSE and LQR,

• the training data for model estimation is typically extremely limited and very

noisy,

• and the application behavior typically changes too rapidly and too significantly

to assume a fixed underlying model (even implicitly) in the solution technique.

5.3 Overview

This chapter provides the problem specification and an outline of the controller design. We

discuss how LLSE and LQR apply to the online controller. Then we identify a number

of challenges with LLSE and LQR that are traditionally solved with designer insight on a

fixed use-case in a offline-design setting, but must now be addressed solely from the problem

specification without specific knowledge about any use-cases.

Chapter 6, first provides the context for our work among system-identification-based

control techniques and elaborates on the necessary design trade-offs involved given the
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nature of the problem. Then, the chapter details the solutions to the identified challenges.

Next, Chapter 7 provides experimental results and case-studies with immersive applications

using our controller. Finally, Appendix B lists all the controller algorithms at a high-level,

allowing the easy reproduction of the work.

5.4 Problem Definition

The programmer uses an API to identify n application-specific parameters and m QoS

metrics. Callback functions are registered for each parameter and metric. The controller is

notified of an application frame transition via an API call, at which point the controller uses

the callback functions to read the QoS metrics for the current frame t and then apply new

parameter values for the next frame t + 1. Additionally, the programmer needs to certify

that the application’s behavior over the identified parameters and QoS metrics exhibits four

key properties common to immersive applications, referred to as the domain assumptions.

The problem instance registered by the programmer, the domain assumptions and the

controller’s optimization goals are summarized below.

Registered problem instance.

1. QoS output variables ~y, the corresponding target values ~̃y, tolerances ~δ, and (optional)

relative importances ~s.

2. Control input variables ~x, taking integral values over − ~N to ~N .

3. User-perception window W .

4. Per-frame controller overhead allowed b.

5. (Optional) input and output model-orders: xorder, yorder.

Domain Assumptions.

1. Monotonic response between ~x and ~y.

2. Tolerance to QoS deviations within sliding windows of W frames.
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3. Stable application-response behavior over durations much greater than W frames with

high probability.

4. Range of ~y values exhibited does not change dramatically or frequently over a given

application run.

Optimization Goals. The following τt metric defines the QoS performance of the con-

troller on frame t of the application. The application executes as a series of frames

t = 1, 2, . . ..

τt =
1

m

m∑
i=1

si
|yi|t − ỹi|2

δ2
i

(2)

The controller has two optimization goals.

1. Keep τt ≤ 1.0 for as many frames as possible. The satisfaction ratio metric SR is

defined as the fraction of application frames with τt ≤ 1.0.

2. Minimize τt whenever τt > 1.0. The mean squared error QoS metric MSEQ is the

average τt observed over the application frames.

We use the SR and MSEQ metrics to characterize the performance of the controller in

achieving the two optimization goals.

Performance and Robustness. The lack of an analytical model and the changing ap-

plication behavior makes it infeasible to establish traditional control-theoretic performance

properties, such as Lyapunov stability [20, 21, 22, 23], or overshoot and settling time min-

imization [24]. Instead, the inherently probabilistic nature of the domain assumptions,

and the probabilistic nature of the estimation techniques employed, confer the following

performance and robustness properties to the controller.

1. High frequency of goal satisfaction among the application frames if the specified QoS

goal is attainable.

2. High frequency of application frames that minimize the QoS error if the specified QoS

goal is unattainable.
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3. Robustness in the form of graceful degradation of QoS performance when the appli-

cation behavior does not fully satisfy the domain assumptions.

4. Robust estimators that tolerate noise over long sequence of frames, while staying

responsive to rapid changes in application behavior due to the reliance on the domain

assumptions.

5.5 Problem Definition: Discussion

Let ~y be a vector representing the m scalar QoS metrics y1, y2, · · · , ym that need to be

optimized for the given application:

~y =



y1

y2

...

ym


. (3)

Let ~x be a vector representing the n scalar parameters x1, x2, · · · , xn that are to be

adjusted by the controller in order to optimize the QoS metrics ~y:

~x =



x1

x2

...

xn


, (4)

with −Nj ≤ xj ≤ Nj , where Nj are integers specified by the programmer (“input bounds”

constraint). The programmers must map the integral values for xj produced by the con-

troller to values for the actual parameters taken by algorithms within their application.

Similarly, the programmers must map the actual output metrics in their application in

some way to the real-valued yi’s. The mappings must be done in a manner that produces a

monotonic relationship between the xj ’s and yi’s (monotonic response domain assumption).

The execution of the application consists of a series of frames indexed by time t =

1, 2, . . ., where the control input ~xt is applied prior to the execution of frame t, and QoS

metrics ~yt are observed immediately after the execution of frame t.
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Nature of Monotonic Relationship. In general, the relationship between each xj and

yi could be monotonic increasing or monotonic decreasing. This relationship is not assumed

to be known. As a special case, some xj ’s may have no impact on certain yi’s.

Extension of Problem Definition to support Maximization Objectives. The

problem definition covered so far allows a range objective to be specified for each yi —

so far the goal has been to maintain |yi− ỹi| ≤ δi for programmer-specified ỹi and δi. How-

ever, the controller tolerates the range objective to be changed every few frames (with some

runtime overhead to adjust internal metrics and re-design the regulator). We exploit the

controller’s ability to tolerate changing range objectives to build support for a maximization

objective — maximize yi. With this extension, each yi can be specified as either a range

objective |yi − ỹi| ≤ δi, or, a maximization objective [(ỹi,1, bi,1) , (ỹi,2, bi,2) , · · · , (ỹi,k, bi,k)]

with
∑

p=1..k bi,p = 1.0 and ỹi,1 < ỹi,2 < · · · < ỹi,k. With a range objective the programmer

specifies the optimal “center-value” ỹi to achieve for QoS metric yi with a tolerance given

by δi. With a maximization objective the programmer specifies that if the QoS metric yi

has exceeded a value ỹi,p−1, then there is an additional benefit of bi,p to attempt to have

yi match or exceed ỹi,p. The maximization objective captures the desire to maximize yi

over the range [ỹi,1, ỹi,k] as a series of progressive range objectives |yi − ỹi,p| < ỹi,p − ỹi,p−1.

The controller converts a maximization objective into a series of range objectives that differ

incrementally over time.

Specifying the Relative Importances of the QoS metrics. The programmer can

specify importance si (> 0) for achieving QoS metric yi. si = 1.0 by default unless specified

to be a different value.

The following definition of the instantaneous performance of the controller at frame t,

τt, generalizes Eq 2 to accommodate the maximization-objective extension. For simplicity,

subsequent discussion will only use range objectives and Eq 2.
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τt =
1

m

m∑
i=1

si
|yi|t − ỹi|2

δ2
i

ri . (5)

Here yi|t represents the value of yi observed at frame t. For a range objective, we use

ri = 1. For a maximization objective, when ỹi,p−1 < yi|t ≤ ỹi,p, we have ỹi = ỹi,p, δi =

ỹi,p − ỹi,p−1 and ri = 1−
∑p−1

q=1 bi,q.

Overall QoS Performance. We define two performance metrics to characterize the over-

all performance of the controller over all the application frames. The first performance met-

ric, satisfaction ratio (SR), is defined as the fraction of the frames t = 1, 2, . . . that exhibit

τt ≤ 1.0. That is, for these frames the QoS metrics were overall satisfied in accordance with

the importance placed on them by the programmer. The second metric, mean-squared-

error-QoS (MSEQ), captures the average deviation over all the frames of the QoS metrics.

Hence, if the application executed over a sequence of T frames, then

MSEQ ,
1

T

T∑
t=1

τt . (6)

We will compare the SR and MSEQ metrics between i) a run of the application that

incorporates the controller, against ii) a run of the application that uses the best fixed

hand-tuned settings for ~x without using the controller, for a given input data set. In this

manner, we would seek to establish that case-i) consistently delivers better SR and MSEQ

over case-ii) over a range of input data sets. Such a comparison will establish whether the

controller achieves significant QoS improvement for a given application or not.

5.6 Nature of Immersive Applications

Achieving good performance on an unknown application without relying on application-

specific behavior models requires us to make some broad assumptions about the domain

from which the applications are drawn. In this sense, our controller is domain specific
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rather than application specific. We make four broad observations about frame-oriented

applications coming from the gaming, multimedia, interactive visualization and computer

vision domains, which we broadly refer to as the domain of immersive applications. Thus,

immersive applications constitute the domain for which we have designed our controller.

In this section we motivate that any immersive application is likely to conform to the

following four observations, suggesting that our controller applies to a wide variety of im-

mersive applications. In the remainder of this chapter and in the next chapter we show that

it is possible to construct a QoS controller solely on the assumption that these observations

apply to a given application, with no additional application-specific knowledge provided.

#1 Parameters that produce a monotonic response in QoS are fairly common.

Computer-vision and video-encoding applications typically consist of object- or motion-

tracking algorithms that constitute a significant portion of the per-frame execution time.

Such tracking algorithms are often heuristic in nature, consisting of a variety of parameters

that can be tweaked to achieve desirable application-specific tracking capabilities within

a limited window of time. Even though tracking is a common theme across these appli-

cations, the unique nature of the object being tracked/recognized (face, person, arbitrary

template, etc.) varies considerably with each application, along with differing standards for

tracking accuracy (specific object for computer vision, versus, finding any closely match-

ing macroblock in video encoding) and differing standards for acceptable computational

complexity depending on the compute platform (ranging from small low-power embed-

ded platforms to high-end computers augmented with compute-GPUs). Consequently, the

algorithms involved are typically highly scalable in their QoS characteristics and their cor-

responding execution-time complexity. Therefore, it can be expected that such applications

have many algorithmic parameters (X’s) whose adjustment has a monotonic effect on the

QoS characteristics exhibited by the application (Y ’s), including per-frame execution time

and detection-accuracy metrics. Similarly, gaming applications consist of a large number

of path-planning, graph-walking, and physics-simulation algorithms (respective examples
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— artificial intelligence; a scene-graph representing relationships between game-world enti-

ties; and collision detection, special effects, and realistic mechanics). Each of these types

of algorithms have a large number of parameters that make trade-offs between the realism

exhibited, the modeling granularity of the game world, and the computational complexity.

Therefore, parameters that have a dominant, monotonic effect on various QoS characteris-

tics can again be expected to be common in gaming.

Benefit: the monotonic response is vital for a feedback control scheme to be applicable.

#2 Existence of a sliding window within which QoS deviations are not percep-

tible. The interactive user of immersive applications may not perceive a degradation in

QoS if the degradation happens only for a short sequence of frames. Consider, for example,

the frame rate in a fast-action game or video playback. The instantaneous frame rate is not

perceptible to the user. The instantaneous frame rate could occasionally drop significantly

below the desired rate and the user would not notice this provided the frame rate recovered

quickly. The perceived frame rate is determined by the current moving average of the frame

times of the previous few frames. Fast-action games and high-quality video feeds typically

have a frame rate around 30 frames-per-second. The perceived frame rate can be estimated

as a moving average of the previous five-to-ten frames, depending on the specific attributes

of the application. Let’s refer to the length of this moving-average window as the sliding

window, W , for that application.

Typical video encoding schemes divide the frames into groups of intra-coded I, predicted

P, and bidirectionally-predicted B frames, each with widely different computation complexity

that guarantees very large frame-to-frame variations in frame-time. For example, MPEG2

encoding commonly uses a repeating Group-of-Pictures (GoP) of seven frames — I-P-B-B-

P-B-B. Therefore, we use W = 7 with our MPEG2 encoding benchmark.

Apart from the frame rate, there could be other QoS characteristics that are percep-

tible to the user. In a video game with a lot of simulated combatants (bots), the level of

intelligence exhibited by the bots would be perceptible to the player. Again, W places a

limit on how quickly any change is perceptible to the user. Therefore, per-frame variations
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in exhibited artificial intelligence would not be perceptible in durations less than W frames.

In fact, only the cumulative intelligence exhibited over a duration of WAI frames, where

WAI is significantly longer than the W required to smoothen perceived frame-rate, would

be noticed by the player. Generally speaking, there can be different window lengths Wi

associated with different QoS metrics yi (i.e., yi is actually a moving average of a QoS

metric over a window of Wi frames). However, for simplicity we restrict our discussion to a

single W , the shortest of the various Wi, which would typically be dictated by the frame-

rate. Depending on the nature of the application and the intended use-case, we expect the

programmer to specify a suitable W to the controller at the start of application execution.

Applications with no sliding window would have W = 1.

Benefit: knowledge of W helps the controller distinguish between frame-to-frame

“noise” (which may be impossible for a controller to limit — like over an MPEG2 GoP

sequence, and is not perceptible to the user anyway), and the actual deterioration or im-

provement in the QoS performance based on specific changes made by the controller in its

control policy.

#3 With high probability, the application’s ~x − ~y response characteristics re-

main stable for durations of frames � W . Immersive applications have the goal of

captivating the interactive user in a rich and engrossing simulated world. The richness

of the simulated world may come not just from visual fidelity or rendering detail — the

richness may be associated with the complexity and the realism of the interactions between

the game-world objects (say, realistic distortions and rebound effects when objects made

of different materials collide in a game, requiring sophisticated physics modeling; or, so-

phistication of artificial intelligence during bot interactions). Regardless of the form of the

richness, the richness of the simulated world unfolds in a smooth continuous manner to the

interactive user over a sequence of frames. Our third observation is that immersive applica-

tions typically don’t undergo dramatic changes to their simulated-world state representations

in time frames that are too short to be perceptible to the interactive user. The implication

of this observation is that the simulated-world state, and therefore the application’s ~x − ~y
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response characteristics, are unlikely to change dramatically over frame sequences of length

less than W . In other words, we can expect to frequently encounter long sequences of frames

(of length�W ) over which the application characteristics stay mostly unchanged (stable).

It is certainly possible to implement an immersive application whose characteristics

change more rapidly than W frames. However, we do not see this in practice in any number

of gaming, video, and computer vision applications that we have examined. Further, such an

implementation often reflects a poor application design as the simulated world’s transitions

experienced by the interactive user are no longer smooth and continuous.

Benefit: The controller incurs overheads in estimating and tracking the current ~x-~y

response characteristics of the application. In particular, the controller has to sacrifice

getting high QoS on a few frames in order to explore drifts in the application’s behavior.

The controller can deliver higher QoS performance if the sacrificed frames are mitigated

over a longer sequence of frames exhibiting the same application behavior.

#4 Range for ~y values remains fixed over long durations of the application exe-

cution. While the xj values are bounded by the problem definition, yi may take arbitrary

values determined by the application’s algorithms and the particular data set. During a

single execution of the application, we expect the same set of algorithms to be deployed

over long sequences of frames and expect the data being processed to be similar frame-to-

frame. Of course there can be frame-to-frame differences, even large differences like with the

MPEG2 GoP processing structure. However, we expect the overall ensemble of algorithms

and data to remain similar over sufficiently long sequence of frames. For example, on a given

compute platform, encoding 640× 480 resolution video would exhibit a particular range of

computational complexity (frame-time) very distinct from the computational complexity

with 320× 240 resolution video.

Benefit: Knowledge of the typical ~y range enables the efficient implementation of a

number of estimation techniques within the controller. The controller is able to detect the

transitions and act appropriately if significant changes to the range occur only after long

durations of frames.
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Practical implications. Programmers need to certify that their applications are indeed

immersive applications in order to expect our controller to deliver QoS improvement. The

above four observations correspond to the four domain assumption requirements (Sec-

tion 5.4) that the programmer has to certify apply to the application before using the

controller. The controller can tolerate a soft satisfaction of these requirements, as follows.

• Satisfied with moderate to high frequency — for example with the stable response

characteristics requirement.

• Satisfied to a lesser extent — for example the programmer-specified W may be a

rough estimate, monotonicity may be violated to a minor extent over sub-ranges of

some xj .

We intend the controller to be robust — the QoS performance should only deteriorate

gradually over local sequences of frames when the requirements are only soft satisfied, and

only to the degree the requirements are violated. The controller relies on randomization

and uses noise-tolerant metrics to achieve robustness.

5.7 Use of LLSE and LQR

Here we discuss how LLSE is used for model estimation and LQR for regulator design us-

ing the estimated model. However, both LLSE and LQR rely on a number of structuring

parameters that in their traditional offline-use setting are chosen by the human designer.

Structuring parameters for LLSE include the regularization parameter λ, and for LQR in-

clude time-horizon N and cost-matrices Q, Qf and R. Additionally, LLSE relies on suitable

training data to be already available. Appropriate choice of the structuring parameters and

suitable generation of the training data prove to be vital for achieving high QoS perfor-

mance.

Section overview. First, Section 5.7.1 motivates a linear model form suitable for captur-

ing an application’s ~x − ~y response characteristics. Second, Section 5.7.2 summarizes the

linear least-squares estimation technique. Third, Section 5.7.3 demonstrates how LLSE can

be applied to estimate our linear model form using the ~x and ~y data samples observed over

62



the past few frames. Fourth, Section 5.7.4 summarizes the LQR controller-design method-

ology for any given linear dynamical system model. Finally, Section 5.7.5 shows how the

estimated ~x−~y linear model can be converted to a dynamical system model, and a feedback

controller determined for it.

Section 5.8 identifies the challenges that must be addressed for an effective controller

to be constructed for immersive applications based on LLSE and LQR, with Chapter 6

providing detailed solutions to the identified challenges.

5.7.1 Linear Model of Application

The application executes as a sequence of frames denoted t = 1, 2, . . .. A new linear model

for the application’s ~x−~y response characteristics is periodically estimated at certain frames.

At frame t = t0, we estimate the model using the values of ~x and ~y recorded from the

previous frames, a history of application-response behavior H. |H| denotes the history

length of the application response retained for model-estimation purposes. The model to be

estimated has the following affine form:

ŷi|t0 =
n∑
j=1

xord∑
r=0

gijr xj|t0−r +
m∑
j=1

yord∑
r=1

g′ijr yj|t0−r + ci . (7)

The above model is an affine estimator of yi at t = t0 in terms of the past observed

values of ~x and ~y. The ŷi|t0 notation represents the value predicted by the model for yi at

t = t0. In contrast, the value actually observed for yi at t = t0 is denoted by yi|t0 .

Next, let us rewrite Eq 7 to allow construction of a model form more amenable to LLSE.

Define sequences:

~q T
i , [ gijr | 1 ≤ j ≤ n, 0 ≤ r ≤ xord ] ++

[
g′ijr | 1 ≤ j ≤ m, 1 ≤ r ≤ yord

]
++ [ ci ] ,

(8)

~p T
i,t0 ,

[
xj|t0−r | 1 ≤ j ≤ n, 0 ≤ r ≤ xord

]
++

[
yj|t0−r | 1 ≤ j ≤ m, 1 ≤ r ≤ yord

]
++ [ 1 ] .

(9)

Here, ~qi is a column vector consisting only of the model coefficients to be estimated, and
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~pi,t0 is a column vector consisting only of observations from ~x and ~y that are relevant for

estimating yi|t0 . The ++ operator above denotes sequence concatenation.

Therefore, Equation 7 can be rewritten as the following dot-product:

ŷi|t0 = ~p T
i,t0 ~qi = ~pi,t0 � ~qi . (10)

The estimate at t = t0 for the entire vector ~y can now be expressed as

~̂yt0 =



~p T
1,t0

0 0 · · · 0

0 ~p T
2,t0

0 · · · 0

...
...

...
...

0 0 0 · · · ~p T
m,t0


︸ ︷︷ ︸

Pt0



~q1

~q2

...

~qm


︸ ︷︷ ︸
~q

. (11)

Therefore, the linear model for the application response can be written as

~̂yt0 = Pt0 ~q . (12)

Note that Pt0 consists entirely of relevant past observations of ~xt and ~yt (over appropriate

t ≤ t0), whereas ~q consists of all the model coefficients to be estimated, and does not vary

with t0.

5.7.2 Linear Least-Squares Estimation (LLSE)

Given a k × l matrix A specifying the following transform:

~v = A ~u , (13)

and given a desirable result ~v = ~vdes, the linear least-squares estimation problem is to

determine a suitable ~u = ~uls that will minimize the squared-error cost ‖~vdes −A ~uls‖2.

The solution to the LLSE problem is given by ~uls = A† ~vdes. A
† is called the Moore-

Penrose pseudo-inverse of A, and is defined as A† = (ATA)−1AT . However, the pseudo-

inverse is only defined if A has full column-rank. Full column-rank is equivalent to the
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columns of A being linearly independent (which implies k ≥ l). In general, A may not

satisfy this requirement, hence the LLSE problem is extended to the regularized LLSE to

allow for arbitrary A.

The regularized LLSE problem takes the following form:

~v
0


︸︷︷︸
~v′

=

 Ak×l
√
λ Il×l


︸ ︷︷ ︸
A′(k+l)×l

~u . (14)

Or,

~v′ = A′~u .

Here, Il×l is the l × l-dimensional identity matrix and Ak×l is an arbitrary matrix with

no restrictions placed on it. Since Il×l has full column-rank, the extended matrix A′(k+l)×l

will also have full column-rank, regardless of choice or dimensions of Ak×l.

Now, the solution to the regularized LLSE problem is given by

~uls = (A′)†

~vdes
0

 . (15)

This solution minimizes the squared-error cost ‖~vdes − A ~uls‖2 + λ‖~uls‖2. Minimizing

this cost allows us to prioritize finding a small-magnitude solution ~uls with priority specified

by λ > 0.

5.7.3 Using LLSE to estimate Linear Model for Application Response

We would like to estimate the linear model for the application response (~q in Equation 12)

using the observed history data H. For this we construct the following estimation form:



~yt0

~yt0−1

...

~yt0−h


︸ ︷︷ ︸
~vdes

=



Pt0

Pt0−1

...

Pt0−h


︸ ︷︷ ︸

A

~q . (16)
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Here, h is chosen ≤ |H| −max {xord, yord}. Hence, we get the form ~vdes = A ~q, where

~vdes is constructed from past observations of ~y, and A is constructed from past observations

of ~x and ~y, as shown above. We now apply the regularized LLSE technique from the

previous section to determine a ~q = ~qls that minimizes the model-fit-error of estimation at

t = t0: εt0 = ‖~vdes −A ~qls‖2 + λ‖~qls‖2. An appropriate choice of λ is vital for robust model

estimation. Traditional techniques use manual offline analysis to determine a suitable λ

[72, 73, 74]. Section 6.2.6 covers how we can tune λ automatically in an online controller.

Hence, our estimated linear model becomes ~̂yt = Pt ~q, with ~q = ~qls estimated using

regularized LLSE as described above.

5.7.4 LQR Regulator Design

Consider the following general representation of a discrete-time linear dynamical system:

~st+1 = Ak×k ~st +Bk×l ~ut . (17)

Here, ~st represents the k-dimensional current state of the system (for t = 0, 1, 2, 3, . . .).

A is the state-transition matrix, and B is the input-sensitivity matrix.

The LQR design problem for a discrete-time linear dynamical system given by Eq 17 is

as follows. Given:

1. an arbitrary initial state ~s0,

2. a state-cost matrix Q with QT = Q ≥ 0,

3. a final state-cost matrix Qf with QTf = Qf ≥ 0, and

4. an input-cost matrix R with RT = R > 0,

determine a sequence of inputs ~u0, ~u1, · · · , ~uN over a horizon of N time-steps, that drives

the final-state ~sN close to zero, while minimizing the following quadratic cost function:

J =

N−1∑
t=0

(
~sTt Q~st + ~uTt R~ut

)
+ ~sTN Qf ~sN . (18)
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The solution to the LQR problem [56] consists of the input sequence ~ut := −Kt~st for

t = 0, 1, · · · , N . Here Kt :=
(
R+BTWt+1B

)−1
BTWt+1A. The Wt matrices are computed

as a backwards recursion in time as follows (Riccati equation):

Wt := AT
[
Wt+1 −Wt+1B

(
BTWt+1B +R

)−1
BTWt+1

]
A+Q , (19)

for t = N − 1, · · · , 0, starting with WN := Qf .

Let’s make the following observations about the LQR controller-design process:

1. All the Wt matrices (for t = 0, 1, · · · , N − 1) have to be computed in advance before

the input for the first time-step u0 can be computed. In subsequent time-steps, the

input for that time-step, ut, can be computed relatively efficiently since all the Wt’s

are already computed. Hence, if LQR were to be done online (i.e., during application

execution), it would load up the first time-step with the compute-intensive recursion

on Wt for all N time-steps, instead of amortizing this load over multiple time-steps.

2. Eq 19 is known to typically converge rapidly. Hence, for longer horizons N , it would be

possible to bound the cost of computingWt’s, rather than incurring a cost proportional

to N .

The above discussion summarizes the LQR controller-design process when the goal is

to drive the system state ~st to zero in N time-steps. However, as will be seen in the next

subsection, our goal is to have parts of the system state converge to a desired state-trajectory.

This goal is achieved by employing a generalization of LQR called trajectory-tracking

LQR.

The trajectory-tracking LQR controller-design problem attempts to minimize the track-

ing error between the observed system state ~st and a desired state-trajectory ~rt, t =

0, 1, · · · , N . Strictly speaking, only a subset of the elements in the state vector ~st may

be relevant for computing cost. For example, a missile’s state vector would include ele-

ments for position, velocity and acceleration. However, only position (for targeting) and

acceleration (for fuel burn) may be relevant towards minimizing cost. Hence, the trajectory-

tracking problem allows for a transform of the state C~st to track trajectory ~rt. Note that
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C~st may be a vector of far lower dimension than ~st, corresponding to dropping dependence

on a large number of terms in ~st. The dimension and elements of ~rt will now correspond to

the elements of vector C~st. The trajectory-tracking problem seeks to determine an input

sequence ~u0, · · · , ~uN−1 that minimizes the following quadratic cost function:

J =
N−1∑
t=0

[
(C~st − ~rt)T Q (C~st − ~rt) + ~uTt R~ut

]
+ (C~sN − ~rN )T Qf (C~sN − ~rN ) . (20)

Note that the cost matrices Q and Qf are of dimensions that correspond to the trans-

formed state C~st, and the costs are applied to the tracking error (C~st − ~rt) rather than to

the transformed state values themselves.

The solution to the trajectory-tracking LQR problem has a somewhat more complicated

form [56], summarized below.

Kt := (BTWt+1B +R)−1BTWt+1A (21)

Wt := ATWt+1(A−BKt) + CTQC , with WN := CTQfC (22)

~vt := (A−BKt)
T~vt+1 + CTQ~rt , with ~vN := CTQf~rN (23)

Kv
t := (BTWt+1B +R)−1BT (24)

~ut := −Kt~st +Kv
t ~vt+1 (25)

Here, ~ut consists of not just the negative state feedback via Kt, but also a feed-forward

gain Kv
t applied to a function of the desired trajectory ~rt. Despite the more complicated

forms involved, the observations made earlier still hold true: i) the backwards recursion

(now on Wt and ~vt) for the entire t = N − 1, · · · , 0 has to be fully computed at t = 0, and

ii) the recursion on Wt tends to converge rapidly (it’s essentially identical to Equation 19).

Note that the cost of recursing on ~vt is low in comparison due to matrices being multiplied

only with vectors.
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5.7.5 Application QoS Control using LQR

LLSE was used in Subsection 5.7.3 to estimate the application’s ~x−~y response characteristics

at any time t = t0 in the following form (Equation 12):

~̂yt0 = Pt0 ~q .

This linear model for the ~x− ~y response characteristics can rewritten as:

~̂yt0 = L



~yt0−1

...

~yt0−yord

~xt0

~xt0−1

...

~xt0−xord

1



, (26)

for an appropriate matrix L constructed using elements of ~q.

Note the following about Equation 26 as a contrast with Equation 12: the past ob-

servations of ~xt and ~yt are now explicit instead of being arranged in Pt0 , and the model

coefficients are arranged in L instead of ~q.

Let us rewrite Equation 26 at time-step t as follows:
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~̂yt = L



~yt−1

...

~yt−yord

~xt

~xt−1

...

~xt−xord

1



=

[
L1 L2 L3 L4

]



~yt−1

...

~yt−yord

~xt

~xt−1

...

~xt−xord

1



= L1


~yt−1

...

~yt−yord

+ L2 ~xt + L3


~xt−1

...

~xt−xord

+ L4

[
1

]

= L1


~yt−1

...

~yt−yord

+ L2 ~xt + L3


~xt−1

...

~xt−xord

+ L4 . (27)

L2 is constructed as follows:

for i ∈ [1,m] , k ∈ [1, n] ,

(L2)ik = gijr ,

where j = k, r = 0 , (28)

and, L3 is constructed as follows:

for i ∈ [1,m] , k ∈ [1, n xord] ,

(L3)ik = gijr ,

where j = ((k − 1) mod n) + 1, r =
k − 1

n
+ 1 . (29)

The gijr terms are already packed into ~q from the linear application-response model.

The index of a gijr term in ~q is a simple lookup defined by Equation 8 and Equation 11.

L1 is constructed as follows:
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for i ∈ [1,m] , k ∈ [1,m yord] ,

(L1)ik = g′ijr ,

where j = ((k − 1) mod m) + 1, r =
k − 1

m
+ 1 . (30)

The g′ijr terms are extracted from ~q in the same manner as described above for the gijr

terms.

L4 is simply a column vector of all the affine constants from Equation 7:

L4 =



c1

c2

...

cm


. (31)

We need to determine a sequence of inputs ~xt over some time horizon N (i.e., determine

~xt0 , ~xt0+1, · · · , ~xt0+N−1), that would cause the observed application QoS metrics ~yt to con-

verge to the programmer-specified QoS objective ~̃y (vector of individual ỹi objectives from

the problem specification in Section 5.4) within N time-steps after t = t0. The trajectory-

tracking LQR controller-design procedure requires the system characteristics to be expressed

as a linear dynamical system of the following form (Equation 17):

~st+1 = A~st +B ~ut .

Take

~ut = ~xt and ~st =



~yt−1

...

~yt−yord

~xt−1

...

~xt−xord

1



. (32)
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Therefore, we need to define appropriate A and B matrices that satisfy Equation 17 for

the choice of ~st given above in Equation 32.

Define a special block-shift matrix Bs, and a block-selector matrix S, that satisfy the

following:

Bs ~st =



~yt−1

...

~yt−yord+1

0

~xt−1

...

~xt−xord+1

1



, and S ~xt =



0

...

0

~xt

0

...

0

0



. (33)

Therefore,

Bs ~st + S ~xt =



~yt−1

...

~yt−yord+1

~xt

~xt−1

...

~xt−xord+1

1



. (34)

Let S1, S3 and S4 be additional block-selector matrices that satisfy the following:

S1 ~st =


~yt−1

...

~yt−yord

 , S3 ~st =


~xt−1

...

~xt−xord

 , and S4 ~st =

[
1

]
. (35)

Therefore, comparing Equation 35 against the definition of ~st in Equation 32, we get
S1

S3

S4

~st = ~st . (36)
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Now, starting with a time-shifted Equation 32, and substituting using Equation 34,

Equation 27, and Equation 35,

~st+1 =



~yt

~yt−1

...

~yt−u′max+1

~xt

~xt−1

...

~xt−umax+1

1



=

 ~yt

Bs~st + S~xt

 =

L1S1~st + L2~xt + L3S3~st + L4S4~st

Bs~st + S~xt



=

(L1S1 + L3S3 + L4S4)~st + L2~xt

Bs~st + S~xt

 .

Therefore, we get A and B for Equation 17 as follows.

~st+1 =

L1S1 + L3S3 + L4S4

Bs


︸ ︷︷ ︸

A

~st +

L2

S


︸ ︷︷ ︸
B

~ut. (37)

Given that S1, S3 and S4 partition the rows of ~st into a top, middle and bottom block,

respectively, A can be re-written as follows.

A =

 L1 L3 L4

Bs

 (38)

Recall from Subsection 5.7.4, the trajectory-tracking LQR’s cost function and solution

does not depend directly on the state, but on a transformed state C ~st. We want the
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desired trajectory rt = ~̃y, i.e., a constant trajectory. Hence, C must be constructed so that

C~st produces the linear estimate of the QoS metrics, ~̂yt−1. Note, in general, we cannot

have C~st = ~̂yt as the current state ~st cannot contain the current input ~xt. Hence, choose

C = [I 0 0 · · · 0], which satisfies C~st = ~̂yt−1.

Note that when ~st is used by the LQR controller for state-feedback to determine control

input ~ut (as per Equation 25), we need to use the observed values for the past QoS metrics

~yt−r in constructing ~st as per Equation 32. This ensures that the LQR controller performs

feedback-control by taking into account the actual deviations of the observed trajectory from

the desired trajectory (Equation 25). In contrast, the derivation of the linear dynamical

model (A, B) from the linear response model (L), given above by Equation 37, required the

use of the predicted values of the QoS metrics ~̂yt that were predicted by the linear response

model itself (Equation 26).

Now that the dynamical system model is set up, our choices for the matrices A, B, and

C, and the desired trajectory ~rt can be plugged into Equations 21-25 to yield the input

sequence that must be applied over the next N frames: ~xt0 , ~xt0+1, · · · , ~xt0+N−1. However,

we still need to specify the LQR cost matrices Q, Qf , and R, and the length of the horizon

N . Further, the problem specification in Section 5.4 posed an input-bounds constraint on

the elements of ~x (and hence on each of the ~ut above): −Nj ≤ xj ≤ Nj . We have so far

not imposed this constraint in any way on the ~ut sequence. Strictly speaking, if the control

input requires xj > Nj or xj < −Nj , we will simply clip xj = Nj or xj = −Nj , respectively,

when applying the input to the application. However, an LQR solution that entirely (or

mostly) respects input-bounds constraints is far more likely to be effective at bringing about

the intended QoS correction, since the input applied to the application would be faithful

both to the range of inputs supported by the application as well as to the linear model used

to drive LQR.

5.8 Challenges in the use of LLSE and LQR with Immersive Applications

The previous section demonstrated the use of LLSE and LQR for QoS control in a general

setting where the relationship between inputs ~x and outputs ~y needs to be discovered and
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a regulator constructed. However, with immersive applications, a number of additional

problems have to be solved for i) LLSE to estimate “good quality” models, ii) fully define

the structure and cost function of the LLSE model to be estimated and the LQR regulator

to be constructed, and iii) improve the robustness of the LQR controller in the face of

modeling imprecision and frame-to-frame noise. This section identifies the specific problems.

Chapter 6 provides the solutions.

5.8.1 Online Generation of Training Data.

The controller’s QoS performance depends on the accuracy of the model estimated by LLSE

and on the suitability of the regulator produced by LQR using the estimated model. The

accuracy of the estimated model depends on the quality of the training data. The quality

encompasses several aspects:

• Is the training data representative of the current application behavior? The application

behavior can change frequently, constrained only by the stable-response-period domain

assumption.

• Does the training data represent the application-response characteristics over the full

input range of ~x or over only a narrow sub-range of ~x? The regulator designed with

LQR would have the ability to exercise the full input range of ~x, which can produce

poor control performance if the estimated model did not adequately characterize parts

of the input range.

The first challenge is for the controller to ensure that only high-quality training data

is used to estimate models. In Section 6.2, we create metrics and estimation schemes that

address this challenge.

In our problem definition, the training data is generated entirely online during applica-

tion execution — the applied ~xt and observed ~yt for a sequence of frames t. This requires

the controller to simultaneously choose application inputs ~xt that maximize QoS and also

produce high-quality training data, with the two being contradictory requirements. Note

that prioritizing the delivery of the highest-possible QoS using the current estimated model
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has two adverse effects: i) the discovery of more accurate models is precluded, and ii)

the controller is less able to detect changes in application behavior and re-estimate more

representative models in a timely manner.

Therefore, the second challenge is for the controller to balance the two contradictory

requirements of producing high-quality training data for model estimation and maximizing

the QoS delivered by the existing model. In Section 6.4 we define a quantitative criteria for

such a balance, and create algorithms and metrics that achieve this balance.

The third challenge is for LLSE to estimate robust models from the limited noisy training

data — namely, avoid overfitting. In Section 6.2.6 we create an online estimation scheme

that determines a suitable value for the LLSE regularization parameter λ to allow robust

model estimation.

5.8.2 Improving tolerance of LQR to Approximate Models.

A regulator produced by LQR is expected to perform well when LQR is applied to an

accurate model of a system with linear response characteristics. Our problem definition

does not require linearity in the system response characteristics, only monotonicity (due to

the nature of immersive applications). Further, only a limited amount of training data is

available to an online controller, and this data may be noisy given the nature of immersive

applications and the likelihood that ~y is impacted by factors additional to the ~x identified

by the programmer. The linear model estimated by LLSE is likely to be quite approximate

for these reasons, deteriorating the QoS performance possible from an LQR-constructed

regulator.

In Section 6.5.2 we apply the adaptive-integral univariate controller from Chapter 4

to the tracking error observed in each yi. This approach enhances the QoS performance

delivered by the controller beyond what was possible with LQR alone.

5.8.3 Determination of LQR structuring parameters.

The primary challenge arising from our problem definition is the construction of the input-

costs matrix R in a manner that constrains the regulator to respect the input-bounds

constraints −Nj ≤ xj ≤ Nj , and yet have the regulator retain the ability to pick a value
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for xj from the full range [−Nj , Nj ] that maximizes QoS. To address this challenge, we

choose a strategy where LQR is repeatedly performed using the same estimated model

to repeatedly construct regulators, but with the entries of R iteratively tuned across the

invocations of LQR based on the control inputs ~x produced by the last instance of the

regulator. Section 6.5 provides the details.

An important observation — software applications typically do not incur an inherent

“cost” when applying large magnitude input values (unlike a physical system, where for

example a control input might represent fuel burn rate in a rocket). Therefore, there

is no inherent “good value” for R, except what allows high QoS performance. At any

rate the only cost involved in our problem definition is the minimization of QoS error. If

programmers really need to explicitly constrain input costs within the framework of our

problem definition, they can specify a QoS output yi = xj with range objective |yi− ỹi| < δi

for their application. The range objective would indirectly place a cost to choosing values

for xj that differ from ỹi, in addition to the usual input-bounds hard-constraint on xj .

Choice of N . We use N = 1 as the controller will repeatedly construct a new regulator

using LQR, perhaps multiple times within a single frame t. Using N = 1 constructs a

regulator that applies the maximal magnitude control inputs necessary to bring about the

desired control correction in one time-step. We separately use the R matrix to limit the

inputs to the input-bounds constraints.

Choice of Q. The choice of the transformed-state (C ~st) cost matrix Q is dictated by the

per-frame instantaneous QoS-performance optimization goal τt (Eq 5) as follows:

τt =
1

m

m∑
i=1

si
|yi|t − ỹi|2

δ2
i

ri .

Choosing Q to be a diagonal matrix with the following diagonal terms leads to LQR

minimizing the cumulative per-frame performance cost for t = 1..N , which Eq 6 defined as

MSEQ =
1

T

T∑
t=1

τt (here T = N , the LQR horizon):

Qii =
si ri
δ2
i

. (39)
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Here the definitions of si and ri come from the extended problem definition in Section 5.5

and are not related to the dynamical system state ~st or the desired trajectory ~rt.

Choice of Qf . We choose the final-state costs Qf = Q since we would need to keep

controlling QoS indefinitely, and not end control after some final state is achieved in N

frames.

Determining R. The input-cost matrix R is dynamically tuned over multiple LQR

regulator-design steps, as detailed in Section 6.5.
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CHAPTER VI

MULTI-VARIATE QOS CONTROL:

DESIGN OF THE QOS CONTROLLER

The previous chapter motivated that the QoS control of immersive software applications

could be readily modeled as a discrete-time control problem that relied on characterization

at runtime of the observed application behavior. We rely on linear least-squares estimation

(LLSE) to periodically characterize the application behavior as a linear model. The linear

quadratic regulator (LQR) technique from optimal control theory allows the construction

of a regulator from the estimated linear model. At each application frame, the regulator

adjusts the application control parameters to drive the application QoS metrics towards

the desired goal (i.e., feedback control). We proposed an application QoS controller that

encompassed the activities of model estimation, regulator construction and feedback control,

and the decision logic necessary to orchestrate these activities in a manner suitable for

achieving high QoS with immersive software applications.

This chapter details the design of the application QoS controller. In general, the ap-

plication QoS controller falls under the category of model-identification adaptive control

(MIAC), where adaptive control is performed using models estimated at runtime. There

are many alternative strategies to craft a controller under MIAC, the specific choice depend-

ing on the nature of the system being controlled and the optimization goals for the control

problem. Section 6.1 explores the alternative strategies possible and our chosen strategy.

Our chosen strategy requires specific technical challenges to be addressed. The subsequent

sections of this chapter provide solutions to each of the technical challenges identified as

part of our chosen strategy. The technical challenges capture the “decision logic” of the

QoS controller, and provide solutions for all the problems not addressed by LLSE and LQR.
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6.1 Design Strategies under Model-Identification Adaptive Control

The following questions explore the goals and strategies for crafting a controller under

MIAC. We address the questions for our problem of interest, the domain of immersive

software applications (rather than for a specific application with unknown parameters, as is

usually the case with adaptive control problems).

Question 1 Is specific information available for each problem instance the controller is

applied to?

The application QoS controller is provided as a pre-compiled software library. Each immer-

sive application describes a specific QoS optimization problem to the controller using an

application programming interface (API). The specific problems will differ on dimensional-

ity, input bounds, and desired ranges for the QoS objectives. Additionally, the application

provides a perception-window parameter indicating how quickly the user would perceive a

QoS failure. Such specific information allows the controller to optimize for each application.

However, the controller is designed based on the domain assumptions about immersive ap-

plications in Section 5.6, and there is no customization of the controller code for any given

application. The controller API even allows an application to change the QoS problem mid-

execution, though doing so briefly disrupts QoS control while the controller re-characterizes

the application behavior for the new QoS problem.

Question 2 When or how often should the model be estimated at runtime?

This question relates to how quickly is a given estimated model obsoleted by changing

application characteristics. Periodic model estimation (i.e., estimate every fixed number

of frames) is simplest. However, periodic model estimation requires that a suitable period

be known, either from the problem specification or the domain assumptions, or possibly

estimated at runtime. Too frequent estimation creates the following problems.

• The controller must with greater frequency drive control inputs with the goal of gen-

erating sample data suitable for the next model estimation, at the cost of driving
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inputs for the primary goal of maximizing QoS.

• The controller incurs heavier runtime overheads, which may impact application QoS

(particularly, maintaining desired frame-rate).

Too infrequent estimation would fail to track QoS when faced with changing application

characteristics. Hence, determining when to re-estimate a model is crucial for achieving

good QoS.

While the problem specification and the domain assumptions provide insufficient infor-

mation to determine a period for model estimation, they do prove sufficient for constructing

metrics that track the prediction accuracy of the current model. The model’s current pre-

diction accuracy is compared against its prediction accuracy when the model was estimated

(to identify drift in application behavior) and also compared to a more recently estimated

substitute model. If the substitute model is found to have a higher prediction accuracy

over the most recent frames, it could be for two reasons: i) the application behavior has

changed since the current model was estimated, and/or ii) better quality training data was

used in the estimation of the substitute model. The metrics are designed to meet two op-

posing goals: i) determine quickly if either the current model or the substitute model is

distinctly superior to the other, and ii) allow precise comparison over longer durations of

frames when the prediction accuracies of the two models are close. Hence, the controller

attempts to filter out poor substitute models quickly, it allows distinctly superior substitute

models to be applied quickly, and it prevents model replacement under noisy or ambiguous

circumstances.

Model estimation is repeated as soon as new sample data of sufficient quality becomes

available after a previous model was discarded. In this manner, model estimation can

occur frequently when it is beneficial (e.g., tracking changes in application behavior as they

happen) and more slowly when it is not beneficial or actually harmful (e.g., replacing a

consistently accurate model during temporary deviations in the application behavior).
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Question 3 How is the regulator updated when a new model is estimated?

A newly estimated model must become the active model before it impacts the regulator.

A new model becomes active either when there is no prior model present in the controller or

when the new model is a substitute model with better prediction accuracy than the current

active model. LQR is used to construct a regulator from the active model. However, the

model provides insufficient information about all the parameters needed by LQR. In an

offline-design setting, these additional parameters are provided by the human designers

based on intuition about their control problem and through trial-and-error in evaluating

constructed regulators on test data.

In our online-design setting, the controller estimates these additional parameters by

dynamically tuning them based on the observed control properties of the regulator. The

controller repeatedly re-designs the regulator from the same active model, performing a

directed search of the parameter space. The control properties of the constructed regulators

are characterized along the search path in the parameter space. The characterization is

done simply by applying the regulator to the dynamical-system state for the current frame

and evaluating the suitability of the produced control inputs against those produced by prior

regulators. Such characterization allows iterative refinement over multiple regulator designs,

both within the same application frame as well as across frames.

The online-design setting allows the controller to fine-tune the parameters to the specifics

of the current operating conditions. In contrast, an offline-designed controller must pick

single fixed values for the parameters that provide the best performance trade-offs over a

wide range of operating conditions. Section 6.5 describes the additional parameters and the

directed search mechanism with low and bounded overhead suitable for an online setting.

Question 4 Is there model certainty? That is, can the most recent model be considered the

best estimate of system behavior?

MIAC controllers can use different strategies depending on whether model certainty can be

assumed. Under model certainty, the most recently estimated model is considered the best
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predictor of the system behavior and all prior model information can be discarded when

re-designing or updating the regulator. Under model uncertainty, noise in the training data

or training data that has insufficiently excited a fully representative range of application

behavior may allow only a compromised model to be estimated at the current time. But

combination with prior modeling information would allow a more accurate model to be

determined, even when the application behavior is gradually changing.

The QoS behavior of a typical immersive software application is the emergent behavior

over a large number of underlying algorithms, algorithms whose characteristics are often

heavily data-dependent. While the emergent behavior is often statistically stable over a

sequence of frames, there can be large noise on a frame-to-frame basis. Model estimation

via LLSE can filter out additive noise, but very frequently the noise is non-additive in

nature due to intermittent application events such as user-interaction events or application

functionality that is not executed every frame. Hence, the sample data may intermittently

have large noise that cannot be filtered out during model estimation, and we are unable to

assume model certainty.

Therefore, we use a hybrid approach for our controller: the new model fully replaces the

prior model, but only if metrics indicate it to be superior.

Question 5 How should the model structure be determined? Is this pre-determined or

determined at runtime?

The structure of the model needs to be fixed before LLSE can be invoked. The structure

includes knowledge of input-output impact relationships, model order, and setting a regu-

larization parameter to ensure robust LLSE (i.e., avoiding over-fitting to the sample data,

where perturbations to the sample data produce non-trivial differences in the resulting

models).

Impact Relationships. While many programmers or application experts may have knowl-

edge limiting which input control parameters may impact which QoS objectives for their

particular application, we have chosen to ignore this potential knowledge in order to place
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a lower burden of expertise on the programmers using our controller. In general, the emer-

gent nature of the QoS behavior in immersive applications often makes it difficult for a

programmer to accurately identify impact relationships.

We assume that all control inputs can potentially impact any of the QoS objective

metrics. Hence, we always estimate a dense-structure model. With high-quality training

data, we expect LLSE to discover the more precise impact relationships with no additional

assistance from the problem specification. Hence, our controller separately ensures that the

training data is probabilistically of high quality before invoking LLSE.

Model Order. We choose input-order xord = 0 and output-order yord = 1, by default.

The effect of the older control inputs (~x ’s) can be accounted for by their impact on the older

QoS outputs (~y ’s). The effect of older ~y ’s from the past W frames is partially accounted

for in ~yt−1 due to the use of running averages as the samples saved in H. Since the use

of W > 1 provides a mechanism to sufficiently incorporate older ~y ’s, we do not explore

yord > 1 in this work. Though, in general, an explicit yord > 1 would allow the model to

capture additional detail beyond the running average captured due to W > 1.

Regularization. LLSE provides us the least-squared-error-fit model conforming to a re-

quired model structure, given some sample data. The sample data often proves insufficient

to provide a unique model solution (akin to finding an inverse solution for a non-invertible

matrix transform). A linear sub-space of solutions exists, out of which a hyperplane de-

fines an infinite range of equally good solutions (i.e., each solution exhibits the exact same

minimal squared-error in fitting the sample data). However, most or all of these models

may have very large coefficients, producing very large terms whose difference matches the

smaller-magnitude sample data. Such models are fitted to the noise in the sample data.

Instead, we prefer models, often from a different hyperplane with a somewhat larger fit-

error, whose coefficients produce terms of magnitude close to the sample data. These latter

models average-out the noise (and the non-linearities) in the sample data and generalize

better for capturing the application behavior in a linear form.

We apply a standard technique called regularization to LLSE so that LLSE provides
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a model solution with the above-mentioned desirable characteristics of generalizing better

to future, as yet unseen, application sample data. However, regularized LLSE requires a

regularization parameter to be provided. This parameter is traditionally determined by

offline analysis, which is not feasible under MIAC applied to unknown applications. We

develop a light-weight adaptive technique that quickly tunes the regularization parameter

until it is appropriate for the current application, and continues fine-tuning as the appli-

cation characteristics drift. Section 6.2.6 details the adaptive tuning of the regularization

parameter.

Question 6 How does the training data impact the quality of the model estimated?

We consider the training data to be of high quality if it allows a model with high

prediction-accuracy to be estimated. Our underlying assumption is that a more accurate

linear model would produce a regulator delivering higher QoS. The training data consists

of the control inputs applied and the corresponding QoS outputs observed over a sequence

of frames. The following two aspects determine the quality of the training data:

• Coverage of the input space.

• How representative is the sequence of frames of the current application behavior?

Coverage. Coverage relates to the range exercised for each input variable and the sam-

pling density/distribution over the exercised range. If the training data samples a limited

range of an input variable, the estimated model may poorly represent the behavior outside

this range. Further, the behavior may perhaps vary considerably over different parts of the

input range, even if the behavior response is considered “smooth”. In general, dense sam-

pling over the entire input volume would allow an accurate linear model to be estimated, but

with no a priori indication of how dense the sampling needs to be (as the system response is

unknown). Unfortunately, dense sampling at runtime runs counter to our controller’s main

objective of driving the input control variables in a manner that best enhances the output

QoS.
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With immersive applications, we make the assumption of monotonic response. Under

this assumption, sampling a large range for each input variable is of primary importance.

The sampling density and distribution within the large range is of secondary importance, as

this information can be interpolated more accurately when we assume a smooth monotonic

response (compared to a more general case where monotonic response is not assumed).

Hence, the coverage requirement can be primarily satisfied by sampling the vertices of a

convex polytope that encloses most of the volume of the input space. Then, any additional

samples taken within the polytope contribute to better noise-tolerance in the model esti-

mation and to a more accurate reflection of the non-linearity in the application response.

Hence, sampling the vertices of a large polytope serves as the minimal requirement for

coverage under the monotonic response assumption. Subsequently, we can parametrically

trade-off the overheads of collecting further samples within the polytope against the addi-

tional benefits of noise reduction and fitting non-linearities within the polytope.

Unfortunately, estimating the volume of a convex polytope enclosing a given set of

points in multi-dimensional space requires a computationally expensive algorithm, leading

to potentially large overheads at runtime. Hence, we approximate the polytope with an axis-

aligned bounding box (AABB), that simply records the minimum-to-maximum statistical

spread of values taken by each input variable. The volume of the AABB is very efficient to

calculate when coverage needs to be determined. The AABB would always have a larger

volume than the precise convex polytope over the sampled vertices. Therefore, we would

require the AABB to cover a larger fraction of the input volume, in order to get the precise

(but unknown) polytope to exceed a smaller volume threshold with high probability.

Representativeness. The immediately preceding sequence of frames would be consid-

ered the most accurate representatives of the current application behavior. Additionally,

we would expect that the longer the frame sequence, the greater the number of sample

points available to more densely explore the input space. However, apart from the runtime

overheads of storing a long history of sample data, the following factors indicate that a

longer frame sequence can become highly detrimental. First, the application behavior may
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have changed abruptly (as opposed to a gradual shift) at some past frame. Inclusion of

frames preceding that change contributes samples that do not reflect the current applica-

tion behavior. Consequently, a larger number of new frames would have to be collected to

dilute the effect of the prior non-representative frames, leading to a larger lead-time before

model estimation would produce an accurate model. Second, a longer sequence does not

necessarily achieve greater coverage in the sample data. If the controller had confined the

control inputs to a narrow range over a frame sequence, but subsequent frames explored a

larger portion of the input space, then inclusion of a large number of the confined frames

would bias the sample data against the frames exhibiting greater exploration, leading to

estimation of a poorer-quality model. In summary, the representativeness of the sample

data is enhanced by i) detection of behavior change points so non-representative data can

be discarded, and ii) adjusting the duration of the sample data retained so as to capture

a representative range of the application’s current behavior (in contrast with the samples

achieving coverage over the input space).

To ensure estimation of high-quality models with high probability, it is vital for the

sample data to have sufficient coverage over the input space and be representative of the

current application behavior. We develop metrics that continually and efficiently charac-

terize coverage, identify behavior change-points in the collected sample history data and

estimate a duration of frames over which the application behavior becomes stable. The

metrics indicate in a precise manner when the data is suitable for high-quality model esti-

mation, when the history size (i.e., the number of preceding frames retained) needs to be

increased or decreased, and how the past frames should be weighed against more recent

frames during model estimation.

Question 7 How is the training data generated?

The previous question explored how the coverage and representativeness aspects of the

training data determined the likelihood of estimating a model with high prediction accuracy

(i.e., a “good” model). Every frame, the controller produces a control input for the appli-

cation. On any frame, the controller generates the control input under one of the following
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three mutually exclusive conditions.

Case 1: No regulator defined.

Case 2: Regulator drives control inputs.

Case 3: Forced exploration of inputs, disregarding available regulator.

Next we describe how the coverage and the representativeness of the training data are

impacted in each case. A regulator is not defined until model estimation establishes an active

model and LQR is performed on the active model. Subsequently, the controller decision logic

may detect that the active model exhibits significantly compromised prediction accuracy on

the current application behavior. If so, the controller invalidates the active model even if

no suitable substitute model is available to take its place. Model invalidation immediately

invalidates the current regulator (because it was constructed from the model), again leaving

no regulator defined.

Whenever the regulator is either undefined or forcibly not used (Case 1 or Case 3,

respectively), we use an input explorer algorithm that at each frame identifies the input

variables exhibiting insufficient coverage of their respective ranges. For each variable with

insufficient coverage, a value is sampled uniformly at random over a sub-range where cov-

erage was lacking. All the other variables that presently have sufficient coverage hold their

values fixed to those from the prior frame.

The input explorer provides the following benefits.

• Within very few frame, provides a high probability that the convex polytope enclosing

the sample points achieves non-zero volume (i.e., the sample points cover a non-zero

range in every dimension of the input space).

• Within very few frames, provides a high probability that the axis-aligned bounding

box (AABB) enclosing the polytope has volume exceeding a desired large fraction of

the input space.

• The input dimensions currently exhibiting insufficient coverage increase either their
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coverage or their sampling density in the given frame.

Impact on coverage. Once a regulator is constructed and is driving application control

inputs (Case 2), further exploration of the input space may get inhibited. For example,

the regulator may limit a control variable to a narrow range or even a fixed value, if the

regulator determines that this range/value delivers best application QoS. In general, the

sample data may quickly lose coverage when the control inputs are driven by the regulator.

Therefore, we are faced with an exploration versus exploitation dilemma every frame.

Should the controller use the current model to control QoS as best possible (Case 2)? Or

should the controller explore the application behavior further, creating the opportunity for a

new model with potentially far better QoS-control capabilities to be discovered, but prevent-

ing the current model’s regulator from driving control inputs (Case 3)? The exploration-

vs-exploitation dilemma is inherent in any runtime scheme that must choose between using

current knowledge and discovering new knowledge. In our controller, exploration directly

increases coverage in the training data, while exploitation generally diminishes coverage.

The next question explores the criteria used in the controller for balancing exploration

versus exploitation.

Impact on representativeness. The controller maintains a finite history of the most

recent samples of the application behavior (i.e., the training data). Exploration on a given

frame is a waste if the sample data from the given frame gets discarded from the finite

training data by the time model estimation is next invoked. Additionally, even when a long

history is maintained, the sample data from the given frame may no longer be representative

by the time model estimation is performed (as discussed in the previous question).

Hence, one goal during exploration is to retain sufficient representative data and to

use it for model estimation before its representativeness is lost. Another goal is to ensure

that the forced exploration does not disrupt application QoS to an extent exceeding any

subsequent benefits of the exploration to model estimation. The next question discusses the

mechanisms employed by the controller to meet these goals and balance exploration versus

exploitation.
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Question 8 How do we balance exploration versus exploitation?

Forced exploration allows the training data to periodically gain sufficient coverage to

allow model estimation. If some fixed percentage of application frames are devoted to forced

exploration, we want the exploration to occur in patterns that maximize the likelihood of

model estimation. Separately, we want to determine what percentage of application frames

should be devoted to forced exploration. The following types of considerations factor in

here.

1. Is the current model already producing very high application QoS, such that any dis-

ruption arising from the search for an even better model is highly counter-productive

to the resulting application QoS?

2. If the current model is producing only mediocre QoS, is it likely that another model

can significantly outperform the current model? If yes, we want to devote more frames

to forced exploration. If not, we want to minimize disruption to salvage whatever QoS

the current model is able to provide.

3. Can poor QoS produced by a model trigger a QoS death spiral, where aggressive ex-

ploration prevents models from functioning as best as they can, leading to continually

more aggressive exploration and ever poorer QoS in subsequent models?

Hence, we break the exploration versus exploitation problem into two sub-problems:

• Determine what patterns of forced exploration would maximize coverage and repre-

sentativeness benefits if the exploration were limited to a specified fraction of the

application frames (the exploration fraction).

• Determine what exploration fraction would best balance the estimated benefit of ex-

ploration to future QoS against the disruption imposed on current QoS.

Section 6.4 provides the mathematical details. The following two questions cover the

above sub-problems.
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Question 9 Sub-problem 1: What patterns of forced exploration maximize benefits when

exploration is limited to a specified fraction of the application frames?

The following mechanisms control the patterns of forced exploration.

• Clustered sequences

• Quantified coverage gap

• Probabilistic structure

Clustered sequences. When the controller forces exploration, it does so for a contiguous

sequence of frames. Use of clustered exploration significantly raises the likelihood that the

generated training data achieves sufficient coverage to allow model estimation and consists

of the most representative sample data. Without exploration in clusters, frames with forced

exploration would be scattered over the frame sequence. Scattered exploration increases the

likelihood that at any given time the training data contains some exploration frames, but

may significantly decrease the likelihood that the exploration frames contribute sufficient

coverage to allow model estimation (consider the situation where the coverage is consistently

almost sufficient, but rarely sufficient). In contrast, clustered exploration decreases the

likelihood that the training data at any given time contains any exploration frames, but

when forced exploration does occur it is more likely to continue for a duration sufficient for

the training data to cross the coverage threshold needed for model estimation. Hence, for

the same fraction of application frames devoted to forced exploration, clustered exploration

is far more likely to exploit the generated samples for model estimation than scattered

exploration. Additionally, the clustering maximizes the representativeness of the exploration

samples — the coverage threshold is likely exceeded by the end of the clustered exploration

sequence, enabling model estimation right at the end of the clustered sequence, before the

bounded-length training data likely loses any exploration samples.

Quantified coverage gap. The controller has a metric quantifying the degree to which

the current training data falls short of the coverage needed for model estimation. From this

91



coverage-gap metric, the controller estimates the cluster length of the forced exploration

that would likely achieve the coverage threshold. Hence, whenever the inputs produced

by the regulator are by themselves meeting coverage, forced exploration is skipped entirely.

More generally, the coverage-gap metric limits the forced exploration to a frequency and

cluster length just sufficient for achieving the coverage threshold.

Probabilistic structure. Despite having a coverage-gap metric that can deterministi-

cally dictate the cluster length for the next forced exploration, we choose to use probabilistic

mechanisms for determining whether exploration is triggered on a particular frame and what

its cluster length is. Hence, the coverage-gap metric only shapes the parametric probability

distributions from which the cluster length and exploration frequency are sampled. A proba-

bilistically sampled exploration structure has certain critical advantages over a deterministic

exploration structure. First, an application might have its own patterns of behavior that

interact perversely with a deterministic exploration structure of just the right duration and

frequency to stymie the working of the controller. For any given application, a probabilistic

structure is less likely to repeatedly produce exploration patterns that stymie the controller

operation. Second, a probabilistic structure allows very precise control of exploration prop-

erties over long sequences of frames. For example, the exploration frequency can be chosen

to be arbitrarily close to zero, and over a long sequence of frames very simple probabilistic

sampling techniques effectuate the desired frequency. In contrast, a deterministic structure

must be produced by a priori fixed pattern generators, requiring very sophisticated schemes

to effectuate the desired exploration parameters.

Question 10 Sub-problem 2: What fraction of application frames devoted to exploration

would best balance the likely benefits to future QoS against the disruption to the current

QoS?

The following steps determine a suitable exploration fraction.

• Estimation of the QoS potential of the active model
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• Estimation of the best achievable QoS by any other model

• Determination of a new exploration fraction from the two estimates

QoS potential of the active model. The achieved QoS is determined both by the

capabilities of the active model as well as the exploration fraction. We estimate the QoS

potential of the active model by extrapolating from the frames that the regulator was allowed

to drive inputs on. Strictly speaking, a scattering of forced exploration frames within a frame

sequence impacts the QoS performance of the regulator-driven frames as well. This impact

could be due to a non-zero input-order in the underlying application behavior, or when a

QoS output variable is set up to average its value over a window of frames. Hence, adjacent

forced exploration frames in the frame sequence may have an unpredictable impact on

the QoS measurements on the regulator-driven frames. However, there are two mitigating

factors that allow us to sufficiently approximate the model’s QoS performance as the QoS

measured over only the regulator-driven frames. First, the exploration happens in clusters,

thereby affecting the QoS of only the regulator-driven frames occurring immediately after

the exploration cluster (in contrast to a scattering of exploration frames having a potentially

more widespread impact). Second, when the exploration fraction is small, the error in the

model’s QoS measurement drops. When the exploration fraction is larger, the measurement

error can be substantially larger. However, a large exploration fraction occurs only when the

model has previously been estimated to have low QoS, allowing large errors only when the

model QoS is already estimated to be poor. When the introduced error consistently makes

the model QoS appear far better than actual, the exploration fraction would keep dropping,

improving the accuracy of subsequent QoS estimation: a built-in feedback mechanism. This

leaves us with the situation when the error makes the model QoS appear far worse than it

actually is. Such a situation can trigger a QoS “death spiral” for a series of frames until

a new active model is estimated. The dropping QoS triggers a large exploration fraction,

allowing a new active model to be estimated expeditiously, thereby ending the death spiral

quickly: another feedback-based safe-guard even if it sometimes causes the current model

to be needlessly replaced.
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Best achievable QoS. Having an estimate of how good the QoS can be for the given

application allows the controller to determine whether i) the active model is far under-

performing and aggressive exploration must be attempted to estimate a better model, or

ii) if the active model is delivering close to the best QoS performance possible on this ap-

plication and further exploration should be minimized to avoid disrupting whatever QoS

the current model is able to provide. A large under-estimation of the best achievable QoS

would cause a bad model applied early in the execution of the application to persist. A large

over-estimation of the best achievable QoS would expend needless application frames on ex-

ploration, preventing a reasonably good active model from delivering on its QoS potential.

The best achievable QoS is dependent not only on the application but also on the appli-

cation data-set. Hence, we cannot rely on an a priori estimate of the best achievable QoS.

Instead, the controller initially assumes the best possible QoS as being achievable. Then, as

new models continue to become active, the controller continually updates a best-achievable-

QoS metric as the average QoS of the top quantile of the active models encountered. This

scheme has the following advantages: i) poor-performing models estimated during noisy or

anomalous phases of the application only minimally impact the metric, ii) the controller

initially allows higher exploration, increasing the likelihood that high-performing models

would get discovered, iii) if the application behavior characteristics gradually change such

that a higher performing model is no longer possible, the accumulation of poorer performing

active models will gradually shift the metric down, gradually clamping down on the explo-

ration. The disadvantage of the scheme is that if the application characteristics change

suddenly to allow high-performing models after a long sequence of low-performing active

models, the scheme would increase the exploration fraction only after multiple good active

models have already been encountered. However, note that the scheme’s reliance on the

top quantile of model QoS clamps down the exploration fraction slowly after encountering a

series of poor active models, but can ramp up much faster on encountering relatively fewer

good active models.
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Determination of the exploration fraction. Two factors are multiplied to determine

the next exploration fraction. First, how much exploration can the current active model

tolerate without significantly impacting the model’s QoS performance? Second, what is

the achievability gap between the estimated best achievable QoS and the estimated QoS

of the active model? The tolerance factor is computed as a function of the active model’s

QoS. The achievability gap factor is computed as the relative difference between the best

achievable and the active model’s QoS estimates.

Finally, note that we use two different types of metrics to compare the quality of models:

• Prediction accuracy: the discrepancy between observed application outputs and the

outputs predicted by a model over the recent history of control inputs. This metric

is used when comparing the active model against a substitute model.

• Application QoS: the application QoS delivered by the regulator constructed from the

active model. This metric is used to compare the current active model against past

active models to determine the achievability gap.

The prediction accuracy is necessary to make comparisons against substitute models

that have not, as yet, been used to drive application control inputs and hence their actual

QoS performance is unknown.
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6.2 Model Estimation with LLSE

Model estimation relies on the following components.

Sample History H. Application behavior observed over a sequence of frames is used as

the training data for LLSE. At any frame t, the control inputs applied and QoS outputs

observed over the most recent sequence of frames is retained as the history H:

H =
[

(~xt−k, ~yt−k) | k ∈ [1, |H|]
]
. (40)

The length of history retained, |H|, is determined adaptively at runtime. The ideal

length is

1. long enough to retain enough samples to cover the input space (coverage requirement),

2. long enough samples to capture a stable representation of the application’s current

behavior (stability aspect of the representativeness requirement),

3. yet short enough that the retained samples only represent the current application

behavior, not prior behavior (behavior change-points aspect of representativeness).

The coverage and representativeness requirements are often in conflict in determining

|H|. Therefore, for generality, a “forget-rate” parameter γ progressively weighs down older

samples: the kth past sample (~xt−k, ~yt−k) has weight γk−1 (0 < γ < 1) when used by LLSE.

γ is adaptively adjusted by the controller. With the aid of an appropriately chosen γ, H

can be made long enough to achieve coverage, relying on older, less representative samples

if necessary. At the same time, the low weightage of the older samples (if retained) in

the estimation of model M helps maintain representativeness. The controller maintains a

recommended length setting for H, represented by Lγ (i.e., the controller allows H to retain

up to Lγ samples). We constrain γ and Lγ to always obey the following relationship.

γLγ = 0.10 (41)
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This constraint represents a heuristic that on frame t, only samples (~xt−k, ~yt−k) with

weight γk−1 > 0.10 are retained for LLSE. Any older samples (with k ≥ Lγ) will have weight

≤ 0.10, and are considered to have insufficient impact on LLSE to be worth retaining. The

controller manipulates Lγ while γ is updated as a dependent variable. In summary, all the

Lγ samples in H contribute towards coverage, while representativeness is predominantly

determined by the newer samples with larger γk−1 weights.

In addition to the training data needing to have an appropriate number of samples, the

samples themselves have to be generated in a manner that ensures coverage over the input

space. Section 6.2.3 describes metrics that quantify coverage of the training data and an

algorithm to generate samples that cover the input space when a new model needs to be

estimated but the coverage is not sufficient to allow model estimation.

Active Model M, Regulator C and Substitute Model M′. The controller applies

LQR on an estimated modelM to construct a regulator C. The regulator drives application

inputs ~x. M is referred to as the active model. The controller also attempts to periodically

estimate a substitute model M′. The controller attempts to compare the prediction accu-

racy of M against M′ using subsequent samples collected in H. Whenever M′ is found

unambiguously more accurate than M, the controller replaces M←M′.

M and M′ are estimated using LLSE on the samples in H whenever the samples have

sufficient coverage and have representativeness to the extent possible. LLSE needs a regu-

larization parameter λ to be chosen to allow robust models to be estimated. Section 6.2.6

covers an adaptive runtime scheme to determine λ suitable for the current application be-

havior.

Continuous Forced Exploration and Probabilistic Forced Exploration. We need

H to have coverage and representativeness only in the following situations.

1. When no active model is defined: M = φ. This is a critical situation as there is also

no regulator C defined to drive application inputs.

2. Need to estimate a new M′.
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3. Need to compare the prediction accuracy of M′ over M.

In the first situation, the controller will extend H and shape the application inputs ~x to

achieve coverage in the minimum number of frames possible. We call this process continuous

forced exploration (CFE). Representativeness in H is desired but not required due to the

critical need to estimate M as quickly as possible.

The controller only makes a “best effort” to satisfy the needs identified in the second

and third situation. This is becauseM, and hence C, are already defined and the controller

is able to control application QoS. In these two situations, the controller uses a process we

call probabilistic forced exploration (PFE). PFE i) adjusts |H| based on the coverage and

representativeness statistics observed for H, and ii) with a calculated probability overrides

the inputs ~x produced by C on certain frames and instead samples ~x from a probability

distribution that will boost coverage and representativeness in H. The objective of PFE

is to periodically allow M′ estimation and comparison against M without significantly

impacting the QoS performance delivered by M. The adverse impact on QoS arises due

to PFE overriding the application inputs from C. Section 6.4 covers PFE. Each occurrence

of CFE and PFE spans one or more consecutive frames — referred to as a CFE cluster or

PFE cluster of frames, respectively.

CFE is expected to be a rare occurrence (say, during the initial frames or occasionally

when the application behavior changes dramatically within a very short span of frames).

The vast majority of the application frames are expected to be either non-exploration (i.e.,

C drives the application input ~x) or part of a PFE cluster.

Adapting |H|. On any given frame the following metrics determine |H|.

• Ls: the controller’s estimate for |H| that will achieve stability of behavior in the

samples in H. The stability aspect of representativeness attempts to collect in H

all the distinct behaviors that the application is currently exhibiting. Behavior refers

to the application’s (~x, ~y) input-output response. The controller may not have an

estimate for Ls on every frame.
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• Lc: the controller’s estimate for |H| that would achieve coverage with high probability

immediately after a PFE cluster. The intent is to retain sufficient older samples of ~x

that in conjunction with the newest samples of ~x from a PFE cluster confer coverage

to H.

• Lγ : the desired length for H. |H| can grow until |H| = Lγ . Then, the oldest sample is

dropped from H whenever a new sample is added. However, |H| is allowed to exceed

Lγ during a CFE cluster. Lγ is adjusted as a compromise between the Ls (if defined)

and Lc values.

Note that a chosen Lc value is not intended to be sufficient for achieving coverage

on every frame t with high probability. Instead, Lc is intended to be sufficient only for

achieving coverage soon after a PFE cluster. Immediately after a PFE cluster, H will also

contain samples produced by C and potentially samples from prior PFEs. Lc is a length

recommendation that implicitly encompasses the impact on coverage of the current and

prior PFEs and of the inputs produced recently by C. However, the process of estimating

Lc is feedback-driven on the coverage statistics of H, hence the process does not need to

explicitly model the effect of the PFEs and C on coverage. By not requiring Lc to confer

coverage on every frame with high probability, we dramatically reduce the adverse impact

of PFE on application QoS — far fewer frames have to participate in PFE if coverage

is required only occasionally. The controller dynamically tunes the frequency with which

frames achieve coverage by adjusting the probability parameters that PFE relies on.

In contrast, the Ls estimate is chosen to confer stability with high probability on any

frame while |H| = Ls, regardless of the specific locations of the PFE clusters within H.

The process that estimates Ls also detects behavior change points in H (the second aspect

of representativeness after stability). If frame tbcp in H is detected as a behavior change

point, all samples older than and including tbcp are deleted from H, but Ls and Lγ are

not directly impacted. The goal is to prevent model estimation or comparison from using

frames that represent outdated application behavior. Essentially, Ls is estimated using the

long-term statistics of the application behavior, while behavior change points are detected
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when the short-term statistics of the current samples in H exhibit an anomaly compared

to the long-term statistics.

Section 6.2.1, Section 6.2.2, Section 6.2.3 and Section 6.2.4 provide details on estimation

of Ls, tbcp, Lc and Lγ , respectively.

6.2.1 Quantifying Stability in H

Prediction Error. The prediction accuracy of the active model M is used to establish

changes in application behavior. The prediction error et (a proxy for prediction accuracy) at

frame t is defined as et ,
1

dim(~y)
||~̂yt− ~yt||2(~s,~δ), where ~̂yt is the application output predicted

by M for frame t using the applied inputs and ~yt is the actual output observed from the

application. The subscript (~s, ~δ) indicates that our use of the L2-norm incorporates the user-

specified importance si and tolerance δi values of each output dimension yi (Section 5.4), as

shown below.

||~̂yt − ~yt||2(~s,~δ) ,
∑
i

si
|ŷi|t − yi|t|2

δ2
i

(42)

As with the definition of τt (Eq 2), the error in each output is normalized by the

corresponding δi to allow the errors from the different outputs to be meaningfully combined,

and the relative importances si allow the controller to react more readily to errors in outputs

that are more important to the user.

We use the notation ~̂yt =M(H, t), where it is assumed that H contains sufficient recent

samples (based on the model-order of M) to apply M at frame t. Hence,

et ,
1

dim(~y)
||M (H, t)− ~yt||2(~s,~δ). (43)

There might be significant variation in et over a sequence of frames, yet that does not

necessarily imply that the application behavior has changed. Often, a sequence of somewhat

differing behaviors that appear repeatedly and in quick succession may be best recognized

by the controller as a single large behavior, for which a single model M is estimated. We

assume that if the statistical distribution of et over frame-sequences of a suitable length

L remains similar to other frame-sequences of length L then the application behavior has
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not changed. Further, the application behavior is then considered stable over lengths L.

The controller attempts to estimate the shortest length L over which the behavior is found

stable, and if found, represents it as Ls.

Let Txy represent the history of input-output samples, similar to H, but whose length

is manipulated independent of H. Let Te represent the {et} sequence computed over the

samples in Txy using the active model M. Therefore, |Te| = |Txy| −max{xorder, yorder}. Te

needs to maintain a sufficient number of samples to evaluate stability of any length L that

could potentially serve as the stability length Ls.

If M = φ on any frame t, Te becomes undefined. Te must be recalculated whenever

model substitution M←M′ occurs or a new model M is directly estimated.

Kolmogorov-Smirnov Measure of Statistical Dissimilarity. Given a length L as a

candidate length for stability, the controller uses the Kolmogorov-Smirnov (K-S) distance

D (0 ≤ D ≤ 1) to establish the degree of dissimilarity between two segments of length

L extracted from Te. D = 0 implies that the value distributions of the two segments

are identical, whereas D = 1 implies the maximal dissimilarity between the two value

distributions. We use a histogram as a practical means to approximately capture the value

distribution of each segment. The histograms are binned over the min-to-max range of et

seen since the last behavior change point detected. Keeping the range of the histograms

narrow in this manner maximizes the sensitivity of K-S in detecting statistical dissimilarity.

We compute D between every two adjacent segments of length L and use a weighted

average D̄ to establish if the length L is statistically stable, unstable or highly unstable in

an application-independent manner. We heuristically define classifier s(L), as follows, to

query the statistics collected for candidate length L. Note that evaluation of s(L) requires

at least two segments of length L to be present in Te, i.e., need |Te| ≥ 2L.

101



s(L) ,



unknown, if M = φ or |Te| < 2L

stable, if D̄(L) ≤ 0.10

unstable, if D̄(L) ≤ 0.50

highly unstable if 0.50 < D̄(L) (≤ 1)

(44)

Ideally, we would determine the thresholds (0.10 and 0.50) in an adaptive manner suit-

able for each application. However, we leave as future work the determination of whether

application-specific adaptation is necessary, and if so, how to perform it.

Specifically, let D(L, t0) represent the K-S distance between the following two adjacent

segments of Te: S([t0 + 1, t0 +L]) = {et′ ∈ Te | t0 + 1 ≤ t′ ≤ t0 + L} and a similarly defined

S([t0 − L + 1, t0]). If M was estimated on frame tM and the current frame is t, we have

nL =

⌊
t− tM + 1

L

⌋
complete segments and nL − 1 values for D. In computing D̄(L) we

heuristically choose to weigh the oldest available D with 0.10 and the most recent one with

1.0, with the intervening D’s given weights in a geometric progression between 0.10 and 1.0.

We retain the most recent D’s (all computed using the currentM) based on two criteria:

i) allow at least 20 samples to be retained to confer statistical stability to the mean D̄, and

ii) beyond that discard the oldest samples computed for timesteps older than the current

oldest sample in H.

We get the following definition for D̄ when M 6= φ and t− tM + 1 ≥ 2L.

D̄(L) ,

nL−1∑
i=1

wnL−i−1 D(L, tM + iL− 1)

nL−1∑
i=1

wnL−i−1

, (45)

where w is s.t. wnL−2 = 0.10.

Formally,

Ls ,


Shortest L s.t. s(L) = stable

undefined, if no stable L is known

. (46)
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Sketch of Algorithm for Estimating Ls. Recall that W is the perception-window

length provided by the programmer for the application (Section 5.4). The variations in

application behavior within durations of W frames are considered “noise” as these will not

be perceptible to the interactive user. Hence, L = W is the minimum segment length worth

considering as a candidate for stability. Further, as an efficiency optimization we restrict

all candidates L to be multiples of W .

An efficient algorithm that computes Ls is sketched below.

• Maintain candidate set Lset
s . On every frame s(L) is updated ∀L ∈ Lset

s . Let Lmax
s

represent the max L in Lset
s . Initially, Lset

s ← {W}.

• Allow |Te| to grow till 2Lmax
s . After that the oldest sample is dropped when a new

one is added to Te, maintaining |Te| = 2Lmax
s (until Lmax

s changes).

• Binary search to add/remove L’s from Lset
s on the current frame.

– If @L ∈ Lset
s s.t. s(L) = stable and |Te| = 2Lmax

s , add 2Lmax
s to Lset

s . (Note,

|Te| = 2Lmax
s =⇒ s(Lmax

s ) 6= unknown.)

– If ∃ contiguous L1, L2 ∈ Lset
s s.t. s(L1) 6= s(L2) ∧ s(L1) 6= unknown ∧ s(L2) 6=

unknown, add L = L1+L2
2 rounded to the closest multiple of W to Lset

s . Con-

tiguous means that L1 < L2 ∧ @L′ ∈ Lset
s s.t. L1 < L′ < L2. (This step doesn’t

necessarily add L as L may round to L1 or L2).

– If ∃ contiguous L1, L2, L3 ∈ Lset
s s.t. s(L1) = s(L2) = s(L3) 6= unknown, remove

L2 from Lset
s .

The controller can add an external L to Lset
s for evaluation, such as when Lc > Ls and

it would be desirable not to set Lγ ← Lc if s(Lc) = highly unstable (a trade-off when the

controller must choose between providing full coverage and maintaining representativeness,

as the two requirements are often found to be in conflict).

6.2.2 Detection of Behavior Change Points in H

If Ls 6= undefined (i.e., s(Ls) = stable), can we find tbcp s.t. D(Ls, tbcp) > 0.50? That

is, does there exist a segment [tbcp−Ls+1, tbcp] that exhibits highly dissimilar behavior
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against an adjacent segment, while segments of length Ls have typically been found to have

behavior similar to their adjacent segments? If so, tbcp is a behavior change point and the

controller drops samples older than tbcp from H and also attempts to estimate a new M′

if tM′ −Lγ ≤ tbcp, i.e., the estimation of M′ may have used some sample data from before

tbcp and therefore M′ should no longer be allowed to substitute M. Further, substitute

M←M′ if tM−Lγ ≤ tbcp (i.e., the estimation ofM may have relied on outdated samples),

and if M′ was estimated only on samples newer than tbcp. Otherwise, the controller sets

M← φ and M′ ← φ, and CFE is performed.

6.2.3 Quantifying Coverage in H

We would like the training data in H to span a large fraction of the input space over ~x.

Under our monotonic-response assumption about the application behavior (Section 5.4),

it suffices to sparsely sample the input space as the application response behavior can be

approximated by interpolation (implicitly done by LLSE). Therefore, the volume of the

polytope enclosing the input samples {~xt} can be a useful estimate of the coverage of

input space by H. However, computing the volume of a polytope has high computational

complexity, unsuitable for an online scheme. Therefore, we use the axis-aligned bounding-

box (AABB) as an approximation of the polytope.

Coverage Tests. We say that the training data has coverage when it passes both the

following tests for each input dimension.

• AABB statistical span test. Does the standard deviation of the xj input vari-

able exceed a minimally required fraction f (say, 50%) of the span of the jth input

dimension?

• Significant swing test. Does the input variable xj exhibit at least a single large

swing exceeding a fraction g of the span of the jth input dimension?

The AABB statistical span test ensures variation over the input space over the bulk of

the inputs, therefore preventing any narrow range of input values from dominating during

LLSE, but does not ensure that any of the variations are large. The significant swing test
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ensures that the sample data has some (or at least one) large variation, but does not ensure

that the bulk of the sample data exhibits variations. Hence, the two tests are complementary

in establishing coverage.

Coverage Metric κ. We define the coverage metric κ as the number of input dimensions

that satisfy both the above tests over the input samples in H, normalized by the total

number of input dimensions.

κ ,
1

dim(~x)

dim(~x)∑
j=1

I {σj ≥ f Nj ∧ χj ≥ g Nj} , (47)

where, each standard deviation σj and implicitly the mean µj are computed using samples

of input dimension xj weighed by the forget-rate γ. That is, at time t sample xj|t−k is

weighted by γk−1, just as LLSE would do if the current H was used for model estimation.

χj represents the maximum swing in xj seen over the samples in H, defined as follows.

χj , max
1≤k<l≤|H|

∣∣∣γk−1xj|t−k − γl−1xj|t−l

∣∣∣ (48)

When a new sample is added to H or the oldest sample dropped from H, the metrics

σj , µj and χj can be updated incrementally (i.e., without traversing H). Appendix A.1

provides the incremental update formulae and shows how suitable f and g are determined.

In practice, f = 0.5 can be assumed, unless γ < 0.4 (which is extremely rare). We derive

g =
1 + γ

2
.

Estimation of History Length Lc that Achieves Coverage. H achieves coverage

both due to the input samples ~x generated by regulator C and the samples generated by PFE

(CFE is intended to be very occasional, so we don’t include it in our reasoning here). The

frequency of occurrence of PFE and the cluster length of each PFE are both intentionally

probabilistic properties. Hence, the coverage contributed by each successive PFE can differ.

In one situation, H may still contain samples from a prior PFE cluster when the current

PFE cluster completes. In another situation, the gap between the current PFE and the

prior (i.e., an intervening sequence of non-PFE frames) may be large, causing H to have
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already dropped samples from the prior PFE cluster. In the first situation, the latest PFE

cluster may confer coverage to H in conjunction with a prior PFE cluster. In the latter

situation, the latest PFE cluster may fail to confer coverage. Hence, the probabilistic nature

of PFE makes the Lc value that confers coverage itself a probabilistic entity. Therefore,

we attempt to choose an Lc value that will confer coverage with sufficiently high likelihood,

implicitly conditioned on the current probabilistic characteristics of PFE and the region of

input space exercised by C. As a heuristic, the controller estimates an Lc-recommendation

value at the end of each PFE cluster, maintains a collection of the Lc-recommendations,

and determines its Lc from the median statistics of the collection.

Algorithm Sketch for Estimating Lc.

• Maintain a sorted sequence of coverage recommendations Lseq
c . Each entry is a tuple

consisting of a coverage-length sample and the frame it was sampled — (L, tk). The

entries are kept sorted by coverage-length. Keep |Lseq
c | ≤ 10, as that many samples

are likely sufficient for filtering out noise, and for sampling a sufficient spread of the

PFE and the application’s current behavior.

• Initially, Lseq
c ← {(W, t)}.

• At end of a PFE cluster, sample the coverage κ of H.

– If κ < 1, i.e., PFE failed to achieve coverage, set L← |H|+ (1− κ)× 2 dim(~x).

– If κ = 1, i.e., PFE achieved coverage, set L← max{|H| − 2, W}.

– Append (L, t) to Lseq
c . t is the current timestep.

• At any frame t, Lc ← average of the 50% to 75% median values in Lseq
c .

(This choice creates a high likelihood that Lc will prove sufficient for coverage, while

reducing the likelihood of an unnecessarily long Lc, and it does so without explicitly

estimating the likelihoods.)

• On detection of tbcp, drop samples from Lseq
c that were added before tbcp. If this

empties Lseq
c , add the current Lc as the best initial guess.
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The algorithm uses dynamic stability (essentially a form of non-converging feedback

control) to arrive at the “correct” Lc. While Lc may converge due to the averaging of the

median statistics, the samples L do not. Instead, the L sample values will be increased until

the PFE clusters start to achieve coverage and then reduced-increased continually around

the values that frequently confer coverage at the end of a PFE cluster. Note that when

coverage is proving sufficient over a long sequence of frames, no new entries get added to

Lseq
c . This can keep an excessively large Lc (if that happens to be the case) from being

corrected until coverage drops, PFE occurs and a smaller Lc-recommendation is added to

Lseq
c . Hence, an excessive value of Lc may persist. In contrast, and crucially, note that

when Lc is too small to achieve coverage, samples of increasing value are repeatedly added

at the frequency the controller chooses to start PFEs (frequency determined by the metric

q — Section 6.4), bringing about a more rapid correction in Lc at a rate of the controller’s

choosing.

6.2.4 Reconciling Coverage and Representativeness into Recommended His-
tory Length Lγ

We have two goals when updating Lγ .

• Reconcile the typically dissimilar recommendations Ls and Lc into a single value in a

“safe” manner.

• Create robustness against frequent variations in Ls or Lc.

Frequent changes to Lγ make some of the controller’s incremental-update algorithms

less cost-effective. They are incremental only while γ is held fixed, requiring expensive re-

computations over all the samples in H otherwise. For this reason, we compute a reconciled

value L′ from Ls and Lc every frame, update a filtered value L′′ from L′, and apply Lγ ←

L′′ only when L′′ differs non-trivially from the current Lγ . Every frame the controller i)

computes L′, ii) then updates L′′ ← L′ + L′′

2
, and iii) then selectively updates Lγ ← L′′ if

|Lγ − L′′| ≥W .

107



L′ computation when Ls is defined. When Ls ≥ Lc, it is safe to pick L′ ← Ls as

any history length longer than Lc should also achieve coverage with a similar or greater

probability. When Ls < Lc, we have the following situations.

• Lc is estimated as stable. We can safely set L′ ← Lc as stability and coverage are not

found to be in conflict.

• Lc has unknown stability. We add Lc rounded to the closest multiple of W to Lset
s . If

the prior frame’s L′′ < Ls, we conservatively set L′ ← Ls. Otherwise, use L′ ← L′′,

which provides some robustness in case Lc frequently takes values of unknown stability

— remove Lc as a factor until the stability of its values becomes known.

• Lc is estimated as unstable. We heuristically “split the difference” between achieving

coverage with high likelihood against the possibility of retaining non-representative

sample data: L′ ← Ls + Lc
2

.

• Lc is estimated as highly unstable. We ignore Lc, thereby compromising the con-

troller’s ability to estimate and evaluate M′ with a desired frequency, but providing

safety against estimating or evaluatingM′ on highly non-representative sample data.

L′ ← Ls.

In the cases described above, we estimate the stability of Lc with the following steps.

1. For L = closest multiple of W of Lc, use s(L) if L ∈ Lset
s .

2. Otherwise, determine if ∃ contiguous L1, L2 ∈ Lset
s s.t. L1 < Lc < L2, s.t. s(L1) =

s(L2). If so, use s(L1).

3. Otherwise, stability of Lc is presently unknown.

L′ computation when Ls is undefined. When Ls is undefined on the current frame

(i.e., ∀L ∈ Lset
s , s(L) 6= stable), Lc cannot be known to be stable (by definition of Ls).

Ls will be undefined on a frame for one of the following underlying causes.

Cause 1. The application behavior is changing rapidly enough that no Ls can be found.

The best course of action is to ignore stability and just aim for coverage: L′ ← Lc.
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Cause 2. The length of sample data collected for evaluating stability, |Te|, is not sufficient

for finding Ls. This suggests that Ls > |Te|/2 is a possibility.

Cause 3. There is significant noise in the sample data presently in Te and evaluating over

fresh data would reveal a stable Ls, perhaps even Ls < |Te|/2 for the present |Te|.

Cause 4. M = φ =⇒ Te = φ. CFE will extend H until coverage is achieved and M can

be estimated. During each frame of CFE, set Lγ ← max(Lγ , |H|) and L′′ ← Lγ .

Cause 4 is detectable by the controller (as M = φ). However, the controller cannot

definitively distinguish between the occurrences of the first three causes. First, on frames

that have M 6= φ and Ls is undefined, the controller uses L′ ← Lc as the default strategy,

which would cover Cause 1 if that was indeed the underlying cause for Ls being undefined.

Secondly, recall that the Ls-estimation algorithm (Section 6.2.1) adds 2Lmax
s to Lset

s when

no stable L is known and |Te| = 2Lmax
s . In this way the algorithm searches for ever larger L,

covering the possibility of Cause 2. Lastly, the controller doesn’t need to take any special

action in response to the possible occurrence of Cause 3, as continued application execution

will naturally explore that possibility when Te gets replenished with fresh data.

In summary, the controller simultaneously responds to the possible occurrence of Cause 1,

Cause 2 and Cause 3, without attempting or needing to discover which of the three has

actually occurred.

6.2.5 Invalidation of Active Model on Significant Deviations in Application
Behavior

When the application behavior changes suddenly and to a very large degree (manifested

as large increases in the prediction error), the controller invalidates the active model M,

forcing the immediate start of CFE to estimate a new active model in the shortest number

of frames. Without this invalidation mechanism the controller would have had to rely on

PFE to first achieve required coverage alongside the normal execution of the regulator C,

wait for a replacement model M′ distinct from M to be estimated and then in due course

for the advantage of M′ to be established (potentially requiring an additional PFE cluster

to achieve coverage) before M is finally replaced.
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For resilience against frame-to-frame noise, we use the cumulative prediction error over

the entire history of M as the metric for determining if M should be rejected. The model

tracking error (MTE) metric at frame t is defined as follows, relying on the forget-rate γ

to de-emphasize older prediction errors. Model invalidation is triggered when the MTE

significantly exceeds (i.e, > 10×) the model-fit-error of M over its training data.

MTE(t) ,
1− γ
dim(~y)

∞∑
k=0

γk ||M(H∞, t−k)− ~yt−k||2(~s,~δ) (49)

H∞ is the unbounded history of samples retained since application start up, containing

samples till at least frame t. The 1 − γ factor normalizes the magnitude of the metric so

its value can be meaningfully compared to the model prediction error of any single frame

(intuition from geometric series sum:

∞∑
k=0

γka =
a

1− γ
, if a was the “typical” magnitude of

the prediction error for any single frame). This normalization also allows the values MTE(t)

and MTE(t′) to be meaningfully compared for any two frames t and t′.

The MTE metric can be calculated recursively as follows

MTE(t) ← 1− γ
dim(~y)

||M(H, t)− ~yt||2(~s,~δ) + γ MTE(t−1). (50)

Note that in the recursive calculation we can now use the finite H. This is because

MTE(t−1) is pre-computed (pre-computation used the finite H of the previous frame). There-

fore, we use the recursive form to compute MTE in practice.

There are two properties of the MTE metric that will help detect a change in application

behavior while being insensitive to short-lived frame-to-frame deviations in behavior.

• The metric rapidly builds up magnitude when large prediction errors are observed

over a sequence of frames.

• The impact on MTE of a large prediction error in a single frame is quickly dissi-

pated when the error is not sustained in subsequent frames (robustness against noisy

deviations).
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6.2.6 Adaptive Determination of LLSE Regularization Parameter λ

The LLSE optimization problem ~v = A~u is ill-posed when A is not full-rank. The regular-

ized problem:  ~v

0

 =

 A
√
λ I

 ~u,

becomes well-posed because

 A
√
λ I

 is always skinny with full column rank for any λ > 0.

Given ~v, LLSE finds ~u to minimize the cost ||A~u−~v||2 +λ||~u||2, essentially finding a low

magnitude solution ~u. A low magnitude LLSE solution is considered to avoid overfitting to

the noise or anomalies in the training data A and ~v. Hence a low magnitude solution is

considered to generalize better to other non-training data. Therefore, the goal is to ensure

that LLSE attempts to minimize both parts of the cost: ηλ = ||A~u−~v||2 and ρλ = ||~u||2. To

meet this goal it is important to choose λ such that both ηλ and λρλ parts of the cost have

similar magnitude, otherwise LLSE will essentially minimize only one or the other.

Literature establishes [72, 73, 74] that plotting log ηλ vs log ρλ while varying λ produces

an L-shaped curve, and that λ should be chosen from the “knee” of the L-curve. Mathe-

matical techniques iteratively re-solve the LLSE problem for different values of λ in order

to find the point of maximum curvature on the “knee” of the L-curve.

We take a simpler approach more appropriate for an online technique like ours, in order

to minimize the number of times the LLSE problem has to be re-solved. Our approach is to

scale λ based on the difference in the order-of-magnitudes of the cost terms after each LLSE

solution, until the LLSE solution has ηλ and λρλ within an order-of-magnitude of each other.

This termination condition approximates the idea of finding the “knee” of the L-curve, as

adjusting λ at this solution point will rapidly exchange the magnitudes of the ηλ and ρλ

terms. The LLSE problem may be re-solved multiple times within a single application frame

t until some budget is exhausted. λ is optimized across multiple frames even though the

history data, and hence the A and v training data, changes from frame-to-frame.

Specifically, we update λ as follows: if ηλ > 10λ ρλ or ηλ < 1
10λ ρλ, we scale λ by√

ηλ
λ ρλ

, to increase or decrease λ, respectively. Hence, update λ ←
√

ηλ
λ ρλ

λ =
√

ηλ λ
ρλ

.
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The next invocation of LLSE would be expected to produce a correspondingly closer gap

between the ηλ and λρλ. Whenever LLSE produces a pathological zero solution ~u = 0

(i.e., ρλ = ||~u||2 = 0) or a pathological post-update λ = ∞, we dramatically reduce λ to

facilitate the next invocation of LLSE to estimate ~u 6= 0 (this is a heuristic because we don’t

always know whether the pathological solution was produced due to bad training data or the

excessive magnitude of λ). The dramatic reduction is λ←
√
λ if λ > 1, otherwise λ← λ2.

Conversely, λ = 0 may occur due to limited numerical precision, producing a pathological

condition where no regularization is performed. We heuristically correct λ = 0 by replacing

with λ← 10−6, to re-enable regularization and allow λ to be tuned in subsequent estimation

steps.

The strategy for determining λ, described above, is effective for the following reasons.

• The typical range of values taken by input and output variables are unlikely to change

much over the course of execution of the application. This would be because the input

ranges are bounded by the programmer, and the fixed range of ~y domain assumption.

Therefore, “good” values for the estimated model coefficients will have a “typical”

magnitude, for which a narrow range of λ, once found, will continue to effective.

• Large range of tolerance for λ: we only need to make the two cost components com-

parable in magnitude.

Therefore, when the application behavior changes gradually over frames, subsequent

model estimation automatically adjust λ. It can be generally expected that only with low

probability can the application behavior change so rapidly that multiple model estimation

steps must be expended to determine a suitable λ again (due to the stable application-

response assumption, Section 5.4).

6.3 Model Updates to Track Changing Application Behavior

The active model M is periodically replaced by a substitute model M′. Once estimated,

the performance of M′ is compared against M to determine if indeed M′ has superior

performance compared to M. The following subsections provide details.
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6.3.1 Estimation of Substitute Model M′

There are three main reasons to estimate a possible substitute model M′ when an active

model M is already available and driving application inputs.

1. The model M is unbalanced. That is, the current value of the regularization param-

eter λ does not balance the magnitudes of the LLSE cost components ηλ and λρλ

(Section 6.2.6).

2. The application response characteristics may have changed since M was estimated.

3. The training data used to estimate M was of poorer quality than what is possible,

and it may be possible to estimate a better model if attempted again on fresh training

data.

The coverage requirement places only a lower bound on the amount of application be-

havior that must be sampled before estimation is allowed. However, there is no a priori

known ideal sampling pattern that would work well with any arbitrary application. Hence,

even when the application characteristics remain unchanged over a long sequence of frames,

repeated model estimation over different training data sets increases the likelihood of en-

countering a model that better approximates the application characteristics. This could be

the very first model estimated (i.e., when M is initially defined) or a later one. Hence, the

controller needs to evaluate each newly estimated M′ against the active M, retaining the

better model as M (essentially, iterative max-finding).

When M is unbalanced, the controller repeatedly re-estimatesM′, possibly every frame

while the training data maintains coverage, until a balancedM′ is found and applied asM.

The repeated invocation of LLSE iteratively converges λ to a value that achieves balance.

Our expectation is that the range of magnitudes of the inputs ~x and outputs ~y do not change

dramatically over a sequence of frames, as they are reflective of the underlying data-ranges

used by the application and on the properties of the given data set (the range-of-~y domain

assumption, Section 5.4). Hence, we expect λ to continue converging to a better value even

as the training data differs over each invocation of LLSE.
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Once a balanced M is found, the substitute model is estimated after intervals of at

least Lγ frames, to allow for completely fresh training data in H. If the training data

lacks sufficient coverage to allow estimation of M′, the controller uses probabilistic forced

exploration (PFE) to enhance the coverage of the training data (details in Section 6.4, here

we provide only a gist). The frequency of the forced exploration (represented by θ) is partly

a function of the current QoS performance of M: greater frequency when M delivers low

QoS, and very low frequency when M delivers very high QoS (Section 6.4.3: Eq 63 and

Eq 67). Hence, the coverage requirement and the probabilistic forced exploration mechanism

further extend the intervals between estimation of successive substitute models (beyond the

minimum of Lγ frames), in a manner that balances the QoS deliverable by the current M

against the potential to find a substitute model M′ capable of significantly enhanced QoS.

6.3.2 Comparing Performance Potential of M′ Against M

At any frame t, only a single input ~xt can be applied to the application. Hence, we cannot

construct a regulator from M′ and apply to the application to observe if better QoS per-

formance is achieved compared to using the regulator C constructed from M. Therefore,

we construct a metric, AdvM′,M, that compares the prediction error of M′ against M:

||M′(H, t)− ~yt||2(~s,~δ) versus ||M(H, t)− ~yt||2(~s,~δ).

The following considerations are important for the metric.

• Robustness: we want to avoid frivolous replacements of M, as there can be a high

penalty to application QoS when it is likely that a good M could be replaced by a

poorer M′.

• Adaptive duration of evaluation: we want the metric to quickly determine (i.e., within

very few frames) if one of M and M′ is distinctly superior to the other, yet allow

a more precise evaluation over a long sequence of frames if the models’ prediction

accuracies are close.

We ensure robustness in the following ways:
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• Compare performance over a sequence of samples to protect against short-lived anoma-

lous behavior.

• Use a different sequence of frames for comparing performance than the ones used to

estimateM′ (regression data versus training data), asM′ is by definition a low-error

fit to the training data used for its estimation.

• Ensure that the metric does not trigger replacement unless the regression sequence of

frames also meet the coverage requirement. In other words, we want the evaluation

to take place over the span of the input space, not a limited sub-range.

Previously, Eq 43 defined the prediction error of M at frame t as follows.

et =
1

dim(~y)
||M (H, t)− ~yt||2(~s,~δ)

We will similarly define the prediction error of M′ as follows.

e′t ,
1

dim(~y)
||M′ (H, t)− ~yt||2(~s,~δ) (51)

The following metric captures the performance advantage of M′ over M over the se-

quence of frames since M′ was estimated (tM′) to the current frame t.

AdvM′,M ,
t∑

u=tM′

γt−t
′ eu − e′u
max(eu, e′u)

(52)

The metric can be updated recursively every frame as follows:

AdvM′,M ← et − e′t
max(et, e′t)

+ γ AdvM′,M, (53)

with AdvM′,M ← 0 whenever either M or M′ is re-defined.

The metric is defined over a sequence of frames. The sequence starts afterM′ has been

estimated, ensuring the sequence is distinct from the training data for M′ (the regression

sequence). Further, we maintain a separate coverage metric for the regression sequence (i.e.,

in contrast with κ for H).
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When the regression sequence meets coverage and the metric AdvM′,M exceeds a thresh-

old, substitute model M′ replaces M. Estimation of a new M′ can occur at the same or a

later frame. The following threshold test is used:

AdvM′,M >
1− γmax(Lγ , count)

1− γ
× 0.10, (54)

where, count represents the length of the regression sequence.

The test can be interpreted as checking whether M′’s prediction accuracy consistently

exceedsM’s by at least 10% every frame averaged over a sufficiently long sequence of frames

(when count ≥ Lγ). Alternatively, over a short sequence of frames (when count < Lγ), M′

must far surpass M on at least a few frames without significantly under-performing on

others, in order for M′ to quickly replace M.

There are three ways in which the regression sequence (i.e., frames since M′ was esti-

mated) can exceed Lγ frames — either i) the current M′ exhibits performance inferior to

M, ii) the performance improvement is only minor (below the 10% threshold), or iii) the

regression sequence has not yet achieved coverage. In subsequent frames, if the regression

sequence achieves coverage before H achieves coverage,M′ can be evaluated againstM by

the test in Eq 54 and can potentially replace M if better. Otherwise, the existing M′ is

discarded and a new one estimated when H achieves coverage.

Frequency of M′ estimation. Lγ is a duration sufficiently long for the regression se-

quence to achieve coverage with high probability if forced exploration were performed (Sec-

tion 6.4). The last Lγ frames of the regression sequence for the current M′ also become

the training data for the next M′ to be estimated. When M delivers high QoS (rather,

QoS close to what the controller estimates is the best possible), the exploration frequency is

greatly reduced to not adversely impact the performance potential ofM, which in turn in-

creases the interval between successiveM′ estimations to become arbitrarily longer than Lγ

frames. Conversely, when M exhibits poor QoS (rather, QoS far below the controller’s es-

timate of the best possible), the controller creates a high likelihood that exploration frames

will occur with sufficient frequency to achieve coverage in approximately Lγ frames, which
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allows for the frequent estimation and advantage-evaluation of substitute M′’s.

6.4 QoS Maximization by Balancing Exploration versus Exploitation

Exploration consists of applying randomized control inputs on a sequence of frames to

characterize the current application response behavior. Two types of behavior exploration

mechanisms are used.

• Continuous forced exploration (CFE) is intended to estimateM in the minimum

number of frames possible, whenM is currently undefined. Exploration is performed

in every frame until H achieves coverage.

• Probabilistic forced exploration (PFE) is intended to periodically boost coverage

so that a candidate replacement modelM′ is estimated with a desired frequency, and

its prediction accuracy can be compared against M. Exploration is performed in

clusters of frames, whose duration and frequency of occurrence is determined through

statistics.

When the active model is undefined (i.e.,M = φ), CFE is performed every frame and H

is extended in length until coverage is achieved (allowingM to be estimated). WhenM 6= φ

and H has coverage, no forced exploration is done (asM′ can be readily estimated using H

if the controller chooses to). However, whenM 6= φ andH lacks coverage, PFE is performed

so that coverage can be periodically enhanced to allow the estimation of substitute model

M′ and its prediction accuracy evaluated against M.

The CFE mechanism is a high-priority interruption of the normal operation of the

controller, with the goal of estimating a model within a short number of frames. In contrast,

the PFE mechanism applies during the normal operation of the controller, typically spanning

the vast majority of the application frames.

Only on the frames where PFE could potentially occur (i.e., when M 6= φ and H

lacks coverage) does the question of balancing exploration versus exploitation arise. Such

frames are referred to as PFE-capable frames. The controller uses a parameter 0 < θ < 1

to represent the fraction of exploration against exploitation. On any PFE-capable frame,
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the PFE mechanism must determine a probability for starting a PFE cluster (if one is

not already underway), and how long the cluster should be if one were started. The PFE

mechanism is governed by the following parameters.

• q: probability that a PFE cluster is started on current frame t.

• dpeak: shapes the probability distribution from which the cluster length d is sampled

(whenever the current frame starts a PFE cluster).

• θ: the percentage of PFE-capable frames on which PFE should occur.

The cluster length d is a random variable sampled from a triangular probability dis-

tribution shaped by parameter dpeak. dpeak is adjusted based on LPFE, where LPFE is an

estimate of the shortest PFE cluster length that could achieve coverage given the current

contents of H. In other words, if the PFE cluster consisted only of maximally variant

samples, LPFE is the cluster length that will achieve coverage when these cluster samples

are inserted into H, while dropping the oldest samples, if necessary, to respect |H| ≤ Lγ .

Appendix A.2 describes how LPFE is estimated.

Let E{d} be the expected value of d. Therefore, E{d} is a function of dpeak. The

following relationship exists between q, E{d} and θ.

q =
θ

E{d}(1−θ) + θ
(55)

Therefore, we can set any two and compute the third. In our methodology, we choose

to compute q from θ and E{d}. θ quantifies the exploration-versus-exploitation balance:

θ = 0 is no exploration, all exploitation; θ = 1 is all exploration, no exploitation.

The following subsections explore the parametric probability distribution from which

d is sampled, derive the relationship between the exploration parameters in Eq 55, and

elaborate how θ is adjusted based on the QoS performance of the active model M.

6.4.1 Probabilistic Distribution of Cluster Length

A cluster length greater than Lγ is not useful for PFE as it represents going beyond a com-

plete replacement of all samples in H with exploration samples. For reference, the following
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sample sequence for input xj —
{

1
2Nj , −1

2Nj ,
1
2Nj , −1

2Nj , . . .
}

of duration Lγ is just suf-

ficient for achieving coverage (See “Determining Coverage Threshold f” in Appendix A.1).

PFE will typically produce samples with larger variance, allowing a duration shorter than

Lγ to achieve coverage with high probability. For example, a PFE of duration
Lγ
2

con-

sisting of samples {Nj , −Nj , Nj , −Nj , . . .} is sufficient for achieving coverage even if the

remaining
Lγ
2

samples in H are all zero. Additionally, regulator C may by itself sufficiently

explore some of the input dimensions, allowing perhaps even a very short PFE cluster to

achieve coverage.

Also consider the possibility of multiple PFE clusters occurring one after another sep-

arated only by small gaps, so the multiple clusters fit in H. This scenario is likely if q is

high. Thus, multiple short PFE clusters can collectively achieve coverage.

The PFE cluster length d is sampled from a triangle-shaped parametric probability

distribution. The distribution is parameterized on dpeak. The distribution takes integral

values in the range (0, dhigh + 1), where dhigh = min{2 dpeak, Lγ}. The distribution has a

triangular shape with peak probability at dpeak and zero probabilities at 0 and dhigh + 1.

Whenever dpeak is updated, the controller numerically computes E{d} from the distribution.

This can be done efficiently at runtime as an explicit summation over the distribution.

The determination of dpeak factors in LPFE — an estimate of the shortest cluster length

that could achieve coverage given the current H, and numClusters — the number of PFE

clusters to split LPFE exploration frames into.

dpeak ←
LPFE

numClusters
(56)

numClusters defines the number of clusters in a PFE cluster group — the goal being to

achieve coverage after multiple PFE clusters. The last cluster in a cluster group is always

extended indefinitely until coverage is achieved.

Having multiple clusters is useful in two ways: i) helps minimize the local disruption to

application QoS when LPFE is large by splitting it, and ii) when exploration is highly desired

(high θ) but the probability of starting a cluster (q) is made trivially small because LPFE is

too large, splitting into multiple clusters boosts q (note that E{d} grows with dpeak = LPFE
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without multiple clusters, eventually making q in Eq 55 trivially small despite θ ≈ 1).

To achieve the benefits of multiple clusters described above, we heuristically define

numClusters as the smallest positive integer that produces q (via Eq 56 and Eq 55) such

that q ≥ θ

5
for the given θ and LPFE (details in Appendix A.2).

Benefits of PFE. The PFE mechanism described so far has been designed to have the

following useful properties.

1. Allows coverage to be achieved in close to LPFE exploration frames, for any specified

LPFE.

2. Utilizes randomization to allow exploration with any arbitrary desired frequency θ

(something difficult for exploration with a deterministic pattern to achieve).

3. Confers a probabilistic structure to the exploration, to avoid repeatedly triggering per-

verse interactions with an application (analogous to mitigating unintended resonance

in physical systems).

4. Mitigates excessive local disruption to the regular operation of the active model by

suitably splitting exploration into multiple clusters.

6.4.2 Relationship between Exploration Parameters

The parameters q, θ and E{d} (really, a function of dpeak) are related by Eq 55. To derive

this relationship, consider a contiguous sequence of frames of length L over which M 6= φ

and H does not have coverage. Let the sequence of frames be partitioned into K epochs,

where each epoch is either an entire PFE cluster or a single frame on which C drives input.

Hence, on the first frame of each epoch, the controller decides to pursue forced exploration

with probability q. Let the epochs be indexed by k for 1 ≤ k ≤ K. Let indicator function

Ife(k) = 1 if the kth epoch is a PFE cluster with cluster length dk, and Ife(k) = 0 if the

epoch is a single frame with inputs driven by C (with dk undefined). Then, the following

equation holds.
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L =

K∑
k=1

[
Ife(k) dk + (1− Ife(k)) 1

]
(57)

= K qE{d} + K (1− q) (58)

Strictly speaking, E{d} in the above equation is the average value of the dk’s observed

over the forced exploration epochs. In contrast when we compute E{d} as the mean of the

triangular distribution parameterized by dpeak, we are making a projection that if the cur-

rent coverage gap keeps re-appearing (because of the same application behavior continuing

and the same regulator C operating), we would find that the computed E{d} matches the

observed E{d} because dk’s represent samples from that same distribution.

Note that θ is the fraction of frames in L that undergo forced exploration. That is,

θ =

∑K
k=1 Ife(k) dk

L

=
K qE{d}

L

=
q E{d}

(1− q) + q E{d}
.

Re-factoring terms to extract q, we get Eq 55:

q =
θ

E{d}(1−θ) + θ
.

6.4.3 Using Model QoS to Adjust Exploration versus Exploitation

Two considerations drive the selection of θ.

1. Given the current QoS performance ofM, how much disruption to the QoS from the

forced exploration would be considered tolerable?

2. Is it likely that a model with much better QoS performance thanM can be estimated?

If yes, we want to boost exploration. If not, we want to minimize the disruption to

whatever QoS M can provide.
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The QoS performance of the controller is quantified by two separate metrics: the satis-

faction ratio (SR) and the mean-squared-error QoS (MSEQ). We need θ to optimize for both.

The SR metric is the fraction of frames that fully satisfy the QoS requirements (i.e., frames

with τ ≤ 1.0). The controller is also required to minimize the QoS deviations, which are

captured by MSEQ as the average τ over the frames. Note that SR incurs the same penalty

for τ slightly greater than 1.0 and τ significantly exceeding 1.0. MSEQ distinguishes between

the two cases, but does not distinguish between τ very slightly less than 1.0 and τ very

slightly greater than 1.0. Hence, we need θ to optimize for both metrics.

Optimizing for Satisfaction Ratio. ŜRM is the estimate of the SR thatM is capable of

delivering, i.e., the SR if the regulator created fromM drove application inputs continuously

over a sequence of frames with no forced exploration at all. In practice, the controller

can only observe the application behavior with forced exploration frames mixed in with

regulator-driven frames. Therefore, we define ŜRM as follows to attempt to filter out the

impact of any forced exploration frames mixed in.

ŜRM ,

∑t−1
t′=tM+W I {M drove inputs in frame t′} I {τt′ ≤ 1}∑t−1

t′=tM+W I {M drove inputs in frame t′}
, (59)

with ŜRM = 1 assumed for at least the first W frames after M’s estimation, and until

M gets to drive a frame input. Since the measured objectives are averaged over a moving

window of W frames, the first W frames are skipped to drain out the possible impact of

prior behavior.

While ŜRM characterizesM’s performance over the entire sequence of frames for which

M is the active model, we need an additional metric, ŜR
cur
M , to characterize the current

performance of M over the most recent sequence of frames, particularly so the controller

can quickly detect if M is no longer suitable due to changing application behavior. We

choose to compute ŜR
cur
M over the most recent 10 ∗W frames, since this duration is long

enough to be perceptible to the user (hence, any observed deviations are of consequence,

not noise).
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ŜR
cur
M ,

∑t−1
t′=max(tM+W, t−10∗W ) I {M drove inputs in frame t′} I {τt′ ≤ 1}∑t−1

t′=max(tM+W, t−10∗W ) I {M drove inputs in frame t′}
, (60)

with ŜR
cur
M = 1 for at least the initial W frames after a new M becomes active, and until

the first frame driven by M.

Let ŜRAch be the estimate of the best SR performance achievable on the current execution

of the application, based on the SR performances of the past active models. We heuristically

define ŜRAch as follows.

ŜRAch , Average


Top 25% of all ŜR

cur
M s observed so far,

with each ŜR
cur
M sampled every 10 ∗W model-driven frames,

with an initial ŜR
cur
M = 1 assumed at application startup

 (61)

Let θtol be the amount of exploration that is tolerable given the current performance

ŜR
cur
M of the active model M. We heuristically define θtol as follows.

θtol = 0.5 ∗ (1− ŜR
cur
M ) (62)

Finally, the following combines the tolerance and achievability components of SR into a

recommendation for the next θ to apply in the controller.

θ = θtol ŜRgap + 0.01, (63)

where, the SR achievability gap is defined as follows.

ŜRgap ,


ŜRAch − ŜRM

ŜRAch

, if +ve

0 , otherwise.

(64)

The 0.01 term allows for a minimal forced exploration even when ŜR
cur
M = 1 (and there-

fore, θtol
SR = 0), or when ŜRM ≥ ŜRAch. Notice that the tolerance term uses ŜR

cur
M to be

responsive to the current behavior, while the achievability term uses ŜRM for stability

against intermittent noise.
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Optimizing for Mean Squared Error QoS. Optimizing for SR also optimizes for MSEQ

when τ ≤ 1.0 on most frames and frames with τ � 1.0 are infrequent. Unfortunately,

in the general case, feedback-based θ optimizations that track SR are not sensitive to the

extent to which τ exceeds 1.0. Due to this lack of sensitivity, when τ � 1 for most frames

the θ optimizations for improving SR lose efficacy. Instead, in such a situation, θ ought to

be adjusted to reduce τ , which would directly improve MSEQ and would also improve SR if

sufficient reduction in τ is possible.

We generalize the technique presented previously for improving SR to now improve

MSEQ. Improving SR becomes an important special-case of improving MSEQ. Consider the

generalized objective — satisfy τ ≤ k for an arbitrary choice of k ≥ 1.0. Let SR(k), ŜRM(k),

ŜR
cur
M (k), and ŜRAch(k) represent the corresponding generalized metrics characterizing the

achievement of the generalized objective τ ≤ k. To summarize:

• SR(k) — the QoS performance on objective τ ≤ k over the full execution of the

application.

• ŜRM(k) — the measured performance of M on objective τ ≤ k, since M became the

active model.

• ŜR
cur
M (k) — the measured performance ofM on objective τ ≤ k, over the most recent

10 ∗W frames.

• ŜRAch(k) — the estimated performance achievable for objective τ ≤ k, based on the

observed performance of past active models.

First, note that any modelM will produce arbitrarily good SR(k) ∀ k ≥ ktr, for a suitably

large ktr (since SR(k) is an increasing function of k, eventually becoming = 1). Second, note

that a model M that delivers good performance at SR(ktr) has no guarantee to provide

either good or bad SR(k) for 1 ≤ k < ktr. Our strategy is to reduce MSEQ indirectly, by

finding the ktr that balances the undesirability of widening the objective to τ ≤ ktr against

the improved SR(ktr) that becomes possible. We refer to ktr as the performance tracking level,

i.e., the choice of k at which the controller will track SR(k) to optimize θ.
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For tractability, we discretize the allowed values of k to
{

1.0, 1.50, (1.50)2, . . . , (1.50)lmax
}

,

referred to as the levels of k. k = (1.50)l is referred to as the lth level. lmax =

⌈
log τmax

log 1.50

⌉
,

where τmax = maximum τ encountered for a frame so far. Every frame the level that lo-

cates the largest improvement in failure rate is chosen as ktr. The largest improvement is

indicative of traction, i.e., the τ ’s for a large fraction of the application frames fall between

ktr and 1.50 × ktr. Therefore, adjustments to θ based on feedback of observed SR(ktr) will

likely produce an improvement in subsequent SR(ktr), improving MSEQ at ktr.

ltr ← argmax
0≤ l < lmax

ŜRAch((1.50)l+1)− ŜRAch((1.50)l)

l + 1

ktr ←(1.50)ltr

(65)

(66)

We use ŜRAch(k) to determine ktr as that is the current estimate of the best performance

possible by any model for objective τ ≤ k. The l + 1 denominator creates a preference for

choosing a smaller ktr.

Initially at application startup when no knowledge about application behavior is avail-

able, we assume ŜRAch(k) = 1.0 ∀ k. Eq 66 will produce ktr = 1, which will cause the

controller to initially optimize θ based on SR. After encountering more frames the various

ŜRAch(k) metrics can be expected to take values closer to the ground truth, and the con-

troller may gradually pick a larger ktr. Later, if the application behavior changes to allow

estimation of modelsM that achieve a tighter objective, the ŜRAch(k) metrics for a smaller

k will gradually improve, leading to subsequent reduction in ktr to a tighter feasible level k.

On any given frame, θ is determined as follows (a generalization of Eq 63).

θ = θtol(ktr) ŜRgap(ktr) + 0.01, (67)

where,

θtol(k) = 0.5 ∗ (1− ŜR
cur
M (k)),

ŜRgap(k) =


ŜRAch(k)− ŜRM(k)

ŜRAch(k)
, if +ve

0 , otherwise,
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The above derivations are valid under an implicit assumption, which we explore here. Let

τ̂exp represent the average τ over the frames that underwent exploration. Let τ̂M represent

the average τ on the frames that M drove application inputs. We have so far assumed

ktr < τ̂exp, i.e., we assume that the exploration frames will always deteriorate the QoS

performance that an estimated model can achieve for the application. This assumption may

not be true under certain pathological conditions, such as under the following situations.

• Due to noise in the training data, a bad M is determined and applied on a sequence

of frames.

• Due to noise, the regulator design heuristics determine a poor C on some frames.

• The application does not satisfy the domain requirements. Here, the QoS performance

of an estimated M can be worse on average than having randomly generated inputs.

The scope of our work precludes dealing with the last situation. In the other situations

arising out of intermittent noise, the use of long-term metrics filters out the effects of noise

— ŜR
cur
M (k) averages over 10 ∗W frames, ŜRM(k) over frames since M was estimated, and

ŜRAch(k) over all the active models estimated so far. In general, the satisfaction of the

domain assumptions implies that with high probability τ̂M < τ̂exp.

6.5 Regulator Construction with LQR

LQR is used to construct a regulator C from the active modelM. Most of the LQR design

parameters are determined from the structure of model M, the actual M estimated, and

the controller problem specification. These include the state-space representation ~st, the

matrices describing the linear dynamical system, the target trajectory ~rt, the state-cost

matrix Q, and the final state-cost matrix Qf = Q. However, the horizon N and the

input-costs matrix R remain to be determined. In the traditional offline-design setting of

LQR applied to an a priori fixed system model, N and R can be tuned by the human

designer based on intuition and trial-and-error until a regulator with desirable performance

characteristics is arrived at. Typically, N can be set very large if a steady-state regulator is

desired (a fixed K and Kv feedback-control matrix applied at every time-step), or a shorter
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N can produce a sequence of Kk and Kv
k feedback-control matrices, 0 ≤ k < N , applied

over N time steps. R is typically chosen such that the control inputs in ~ut tend to maintain

magnitudes that the system is capable of accepting and operating efficiently under (say, a

system may have hard limits on control inputs, and low magnitude control inputs may help

maintain a low fuel-burn rate).

Given the online setting of our controller, the likelihood that the application charac-

teristics (and hence the estimated model) can change frequently, and the lack of detailed

a priori knowledge about the application characteristics, we can rely only on the observed

performance of the applied regulator to determine if N and R are suitable. For generality,

we choose to potentially re-design regulator C at every frame t, even as the active model

M stays unchanged for multiple frames. That is, we choose to fix N = 1. We construct

a directed search algorithm that adjusts the coefficients of R by iteratively constructing C

using LQR, potentially multiple times per frame. The algorithm examines the properties of

the input ~ut produced by the current C and the variation in the input from that produced

by the previous design iteration of C, to determine how best to adjust R towards producing

the next design iteration of C.

In the typical offline setting, the regulator solution produced by LQR converges quickly.

However, in our modified online setting, we continue to adjust R over each successive

iteration of LQR applied to the previous solution (essentially, we repeatedly solve with

N = 1, with the new iterative solution replacing the previous one, rather than generating

a solution sequence of length N > 1).

6.5.1 Adaptive Correction to Input-Costs Matrix R

Based on system model M and the observed current state ~st the constructed regulator C

determines the input ~xt to apply at time-step t. However, one or more dimensions xj of

the input vector may exceed bounds, i.e., |xj | > Nj . The inputs are clipped to bounds

(and rounded to closest integer) before being applied to the application. However, an LQR

regulator C that projects state trajectory using inputs quite different from those actually

applied to the application will have a compromised ability to control application state. As

127



an illustration, consider two LQR regulators, C1 and C2, constructed from M. C1 projects

that a large |xj | will best adjust state ~st, only to have xj clipped. In contrast, a large

input-cost Rjj forces C2 to pick a low magnitude xj , while also exercising other inputs xi

to adjust state since xj by itself is of insufficient magnitude. C1 expects to see a large

correction in ~st towards the desired trajectory, but this doesn’t happen as the application

only sees a clipped input. On the other hand, C2 only expects to see a modest improvement

in state ~st, and the actual effect is close to what C2 projected, allowing C2 to make continued

adjustments over multiple time-steps along a trajectory it can project with some accuracy.

For any given C constructed however optimally, state ~st can be constructed so that

C produces next input with a dimension xj that exceeds its bounds. Hence, rather than

attempt to determine a best fixed input-costs matrix R, we need to dynamically adapt R

based on actual observed states and produced inputs.

Goals. We seek to achieve the following goals when we adapt R:

1. Ideally, the input ~xt should be determined based solely on M and ~st. That is, the

entries of R should be sufficiently small that the designed regulator C produces in-

puts that are projected to absolutely minimize state tracking error, disregarding the

magnitude of the inputs.

2. Except, when some input dimension exceeds bounds (|xj | > Nj), the Rjj entry should

be increased in magnitude to force a re-designed regulator C to just borderline exceed

bounds: maintain |xj | ≥ Nj while minimizing |xj | − Nj . This allows C to produce

saturating inputs (i.e., |xj | = Nj after clipping) when the situation demands, while

still retaining the ability to effectively project system state (like C2, and unlike C1 in

the earlier example).

At time-step t, the current state ~st is already fixed. The projected states ~̂st+1, ~̂st+2, . . .

and the next inputs used ~xt, ~xt+1, . . . will depend on the regulator C. Hence, we have the

opportunity to evaluate alternative designs for C at time-step t until the projected inputs and

projected states appear most suitable (e.g., a regulator that closely tracks the desired state

trajectory, while producing inputs with the least violation of the input-bounds constraints).
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However, to keep the regulator design process tractable and have low overhead at run-

time, we will restrict ourselves to iteratively refine the design of C within a given time-step,

and terminate the iterative process as soon as a design satisfies a sufficiency criterion. In

particular, we restrict ourselves to refining C by only adjusting the entries of the diagonal

input-costs matrix R.

Strategy. We attempt to classify the condition of xj as one of the following:

1. Under-constrained – Rjj is sufficiently small that the designed regulator C essen-

tially disregards the magnitude of xj and finds the best inputs based solely on state

~st and model M.

If |xj | ≤ Nj , this is a highly desirable condition, which we refer to as desirably

under-constrained. When |xj | significantly exceeds Nj , the condition instead be-

comes problematically under-constrained and must be corrected.

The under-constrained condition is tested by examining whether changes to Rjj fail

to produce any significant changes to |xj | after regulator refinement. However, care

must be taken to differentiate against the situation when |xj | fails to change signifi-

cantly because Rjj is already so large that the trajectory-tracking-error component of

the LQR cost is essentially ignored compared to the input-magnitude component of

the LQR cost. This latter situation will also exhibit xj ≈ 0 due to the dominance of

the input cost in LQR, and an additional test will allow us to definitively distinguish

the over-constrained condition from under-constrained (see over-constrained condition

below).

When desirably under-constrained, we would like to stop further adjustments to

Rjj as a suitable value has already been determined. When problematically under-

constrained, we would like to increase Rjj until the condition dissipates.

2. Over-constrained – Rjj is large enough that C is constrained to produce a lower-

magnitude input xj , even though a higher-magnitude input would be better suited to

respond to current state ~st.

This condition is detected either when
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• |xj | ≤ Nj and adjusting Rjj produces corresponding adjustments in xj after

regulator refinement, or

• xj ≈ 0, adjusting Rjj produces no significant changes in xj after regulator re-

finement, and (0.5)2 ∗Rjj � (~̂yt − ~̃y)T Q (~̂yt − ~̃y). Here, ~̂yt is the projected next

output when input ~xt, produced by C, is applied to model M.

The above comparison test, (0.5)2 ∗ Rjj � (~̂yt − ~̃y)T Q (~̂yt − ~̃y), is determined by

examining the LQR cost function J in Eq 20, which for each time-step consists of

a trajectory-tracking-error component and an input-cost component. Let TT (uj) =

(C~st+1|uj − ~rt)T Q (C~st+1|uj − ~rt) = (~̂yt|uj − ~̃y)T Q (~̂yt|uj − ~̃y) represent the trajectory-

tracking-error component of J due to choosing input ~xt = C(~st) but with the jth input

dimension over-ridden: xj = uj . Also, let IC(uj) = (uj)
2Rjj capture the input-cost

component of applying the over-ridden ~xt, but only for the jth input dimension. Then,

the comparison test above can be expressed as IC(uj = 0.5) � TT (xj), where xj is

the original, non-over-ridden value of the jth input dimension. Our goal is to diagnose

if an excessive magnitude Rjj is forcing C to produce xj ≈ 0 when a larger magnitude

xbestj would have tracked the trajectory better, i.e., TT (xj) ≥ TT (xbestj ). uj = 0.5 is

chosen as the least magnitude value that would be rounded to a non-zero integer when

applied to the application.

Let’s consider the situation where xj ≈ 0 has been detected over two consecutive

refinement steps. To determine if Rjj is so large that the input cost significantly

dominates the trajectory-tracking-error cost (thereby being the cause of xj ≈ 0), we

consider the following mutually exclusive and collectively exhaustive cases:

(a) IC(uj = 0.5)� TT (xj). Consider two sub-cases:

• Assume |xbestj | ≥ 0.5. ∴ IC(xbestj ) ≥ IC(uj = 0.5) � TT (xj) ≥ TT (xbestj )

⇒ IC(xbestj ) � TT (xbestj ). Rjj over-constrains and precludes application of

input xbestj , ∴ reduce Rjj .

• Assume |xbestj | < 0.5. Reducing Rjj is not harmful as the rounded integral
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input applied to the application will remain 0. Also, Rjj will not indefi-

nitely keep getting reduced with each refinement step. Reduction will stop

eventually when IC(uj = 0.5) 6� TT (xj).

The controller does not have visibility into which of the two sub-cases may be

occurring. However, reducing Rjj in the current refinement step is either imme-

diately helpful or at least helps the controller diagnose the situation better over

subsequent iterations while not being harmful in the current refinement step.

(b) IC(uj = 0.5) ∼ TT (xj). Because IC(uj = 0.5) ≥ IC(xj), one of the following

must be true:

• IC(xj) ∼ TT (xj). ∴ x
p
j 6≈ xrj , where xpj and xrj are the values of xj produced

over consecutive refinement steps of Rjj where Rjj was scaled by a non-

trivial scale-factor. Therefore, at least one of the following must be true:

xpj 6≈ 0 or xrj 6≈ 0, contradicting the primary assumption that xj stays ≈ 0

over subsequent refinement steps.

• IC(xj) � TT (xj). This represents a desirably under-constrained condition

described previously and no adjustment to Rjj is needed.

(c) IC(uj = 0.5)� TT (xj). ∴ IC(xj)� TT (xj), again desirably under-constrained,

requiring no further adjustment to Rjj .

Therefore, the test IC(uj = 0.5)� TT (xj), conducted when xj stays ≈ 0 over consec-

utive refinement steps, precisely indicates whether Rjj is having an over-constraining

or under-constraining effect. Note that while the entities xbestj , IC(xbestj ) and TT (xbestj )

are used to theoretically justify the test, the test never needs their actual values to be

known.

3. Barely under-constrained – without the constraining effect of Rjj during regulator

design, xj would exceed bounds.

This condition is detected when |xj | is close to Nj , and small adjustments to Rjj

cause |xj | to swing from ≤ Nj to > Nj and vice versa after regulator refinement.

When barely under-constrained, we would like to make ever finer adjustments to Rjj
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to draw |xj | closer to Nj . The motivation is to ensure that xj gets maximally applied

when demanded by state ~st, yet C is forced to possibly exercise other inputs xi to

produce additional needed correction to state.

4. No inference – when none of the above conditions can be reliably detected.

This condition occurs, in particular, when the adjustments to Rjj produce unexpected

changes to xj . For example, xj increases in magnitude despite an increase in magni-

tude to Rjj . Such a situation will commonly occur when adjustments to Rii of other

inputs xi produce a larger effect on xj than the adjustment of Rjj .

Iterative Refinement Process. At time-step t, let Ck identify the sequence of LQR reg-

ulators, each one refined from the previous using a single LQR design step. C0, C1, C2, . . .,

represent the successive LQR design iterations until a regulator meeting sufficiency re-

quirements is arrived upon (or the regulator design budget is exhausted for the current

time-step).

Usually, C0 would represent the final LQR regulator produced in the previous time-step

t − 1, serving as the initial design for time-step t. However, whenever a new model M is

estimated, the last regulator design is invalidated. C0 is determined by the first LQR design

step from the new model. However, the R from the last regulator is still used in the first

design step, as a best initial guess, with the understanding that subsequent refinement steps

will correct R as needed. R is arbitrarily initialized to the identity matrix the very first

time LQR is invoked in an application’s execution.

The refinement process is applied independently for each input dimension xj . The kth

step takes the following information as input:

• The previous regulator Ck−1, designed using input-cost Rk−1
jj , and producing input

value xk−1
j .

• The resulting refined regulator Ck, designed using input-cost Rkjj , and producing input

value xkj .

• Pre-conditions: flag fbu
j indicating whether xk−1

j was considered barely under-constrained,
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and flag f term
j signaling whether step k− 1 had indicated a termination of the refine-

ment process for input xj .

The kth refinement step produces the following information:

• A value for Rk+1
jj , produced either by refining Rkjj , by holding Rkjj , or by reverting to

the older Rk−1
jj if the previous refinement step k − 1 produced neither an improved

value in Rkjj nor actionable information for further refinement.

• Post-conditions: flag fbu
j indicating if xkj is considered barely under-constrained, and

flag f term
j indicating whether the refinement process can be terminated for input xj .

f term
j = true also indicates that either a hold or a revert action was taken at step k.

Initially, we only know x0
j , R

0
jj , C0 and flag fbu

j from time-step t− 1, but no refinement

action has been taken on Rjj . Tables 6.1–6.4 detail the tests to determine the condition of

xj (the conditions were described previously) and the refinement action taken. Table 6.1

describes the initial step k = 0. For the next step k = 1, Table 6.2 is followed when the pre-

vious time-step determined xj not to be barely under-constrained (i.e., when fbu
j = false).

Otherwise, Table 6.3 is followed when fbu
j = true. Subsequent steps have to additionally

consider whether the refinement for xj was terminated in a prior step. If terminated (indi-

cated by pre-condition f term
j = true), Table 6.4 describes whether to continue holding Rjj

at a fixed value or to restart refinement. If not terminated (pre-condition f term
j = false),

Table 6.2 is followed under the pre-condition fbu
j = false, and Table 6.3 is followed under

the pre-condition fbu
j = true.

Different input dimensions xi and xj may need to refine over a differing number of

iterations. There is only a single regulator Ck produced at step k, not a separate one for

each input dimension. In turn, Ck produces a vector ~x kt that refines all input dimensions

simultaneously. Hence, a dimension xj may terminate its refinement earlier (i.e., Rjj is

held constant for subsequent iterations) compared to another dimension xi, which may

continue to refine for additional steps. Further, continued refinement iterations for xi may

change the conditions under which xj had previously terminated. For example, if xj had

terminated with xj bounded, further refinement of C due to xi may cause |xj | > Nj . The
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Table 6.1: LQR input-costs: Initial Refinement Step
← ~st−1 ~st →

RM
jj = R0

jj R1
jj =?

xMj|t−1 x0j|t

Case 1: f buj = true retain cj
(was barely

under-constrained) (a) |x0j|t| > Nj ⇒ Rjj ↑

(b) |x0j|t| ≤ Nj ⇒ Rjj ↓

Case 2: f buj = false
(was not barely

under-constrained) (a) |x0j|t| > Nj ⇒ Rjj ↑
(Problematically under-constrained)

(b) |x0j|t| ≤ Nj ⇒ Rjj ↓
(default action, to generate data)

refinement of xj would need to restart until it again satisfies a termination criterion for one

of the conditions. Overall, the need to refine any one dimension xi triggers another step of

refinement for C, until either the runtime budget for regulator refinement is exhausted for

the current time-step t, or all the inputs dimensions indicate termination of their refinement

in the same step k.
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Table 6.2: LQR input-costs: Continued Refinement Step, when f term
j = false and fbu

j =
false

Rk−1
jj Rk

jj Rk+1
jj =?

xk−1j xkj

Invariant: f termj = false ⇒ Rk−1
jj 6= Rk

jj

Case 3: |xk−1j | ≤ Nj |xkj | ≤ Nj

(a) Rjj ↑↓; |xj | ↑↓ ⇒ Rjj ↓.
and (xj ≈ 0 ∧ IC(0.5)� TT (xj)) (No impact, over-constrained)

(b) Rjj ↑↓; |xj | ↑↓ ⇒ Revert Rjj , f
term
j ← true.

and (xj 6≈ 0 ∨ IC(0.5) 6� TT (xj)) (No impact, desirably under-constrained)

(c) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj .
or, Rjj ↓ ⇒ |xj | ↓ (No inference, other factors dominate)

(d) Rjj ↑ ⇒ |xj | ↓ ⇒ Rjj ↓.
or, Rjj ↓ ⇒ |xj | ↑ (over-constrained)

Case 4: |xk−1j | ≤ Nj |xkj | > Nj

(a) Rjj ↓ ⇒ |xj | ↑ ⇒ fbuj ← true, cj+= 1, Rjj ↑.
(Initiate boundary tuning)

(b) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj .
(No inference, other factors dominate)

Case 5: |xk−1j | > Nj |xkj | ≤ Nj

(a) Rjj ↑ ⇒ |xj | ↓ ⇒ fbuj ← true, cj+= 1, Rjj ↓.
(Initiate boundary tuning)

(b) Rjj ↓ ⇒ |xj | ↓ ⇒ Revert Rjj .
(No inference, other factors dominate)

Case 6: |xk−1j | > Nj |xkj | > Nj

(a) Rjj ↑ ⇒ |xj | ↓ ⇒ Rjj ↑.
or, Rjj ↓ ⇒ |xj | ↑ (Problematically under-constrained)

(b) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj .
or, Rjj ↓ ⇒ |xj | ↓ (No inference, other factors dominate)
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Table 6.3: LQR input-costs: Boundary Tuning Step, when f term
j = false and fbu

j = true

Rk−1
jj Rk

jj Rk+1
jj =?

xk−1j xkj

Invariant: f termj = false ⇒ Rk−1
jj 6= Rk

jj

Case 7: |xk−1j | ≤ Nj |xkj | ≤ Nj

(a) Rjj ↑↓; |xj | ↑↓ ⇒ Rjj ↓.
and (xj ≈ 0 ∧ IC(0.5)� TT (xj)) (No impact, over-constrained)

(b) Rjj ↑↓; |xj | ↑↓ ⇒ Revert Rjj , f
bu
j ← false, f termj ← true.

and (xj 6≈ 0 ∨ IC(0.5) 6� TT (xj)) (No impact, desirably under-constrained)

(c) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj , f
bu
j ← false.

or, Rjj ↓ ⇒ |xj | ↓ (No inference, other factors dominate)

(d) Rjj ↑ ⇒ |xj | ↓ ⇒ Rjj ↓.
or, Rjj ↓ ⇒ |xj | ↑ (Continue till boundary crossing)

Case 8: |xk−1j | ≤ Nj |xkj | > Nj

(a) Rjj ↓ ⇒ |xj | ↑ ⇒ cj+= 1, Rjj ↑.
(Boundary crossed, reverse with finer step)

(b) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj , f
bu
j ← false.

(No inference, other factors dominate)

Case 9: |xk−1j | > Nj |xkj | ≤ Nj

(a) Rjj ↑ ⇒ |xj | ↓ ⇒ cj+= 1, Rjj ↓.
(Boundary crossed, reverse with finer step)

(b) Rjj ↓ ⇒ |xj | ↓ ⇒ Revert Rjj , f
bu
j ← false.

(No inference, other factors dominate)

Case 10: |xk−1j | > Nj |xkj | > Nj

(a) Rjj ↑ ⇒ |xj | ↓ ⇒ Rjj ↑.
or, Rjj ↓ ⇒ |xj | ↑ (Continue till boundary crossing)

(b) Rjj ↑ ⇒ |xj | ↑ ⇒ Revert Rjj , f
bu
j ← false.

or, Rjj ↓ ⇒ |xj | ↓ (No inference, other factors dominate)
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Table 6.4: LQR input-costs: Hold Step, when f term
j = true

~st →

R0
jj R1

jj . . . Rk−1
jj Rk

jj Rk+1
jj =?

x0j x1j . . . xk−1j xkj

Invariant: f termj = true ⇒ fbuj = false

Case 11: Rk−1
jj 6= Rk

jj ⇒ Rk+1
jj ← Rk

jj

(Previous step had revert action, start hold)

Case 12: Rk−1
jj = Rk

jj

(a) ; |xj | ↑↓ ⇒ Rk+1
jj ← Rk

jj

(Continue hold)

(b) ⇒ |xj | ↑↓ ⇒ Rjj ↓, f termj ← false
(Change is due to other factors,
restart refinement to possibly re-correct xj)

6.5.2 Introducing Adaptive-Integral Control into LQR to Compensate for Model
Approximation

The LQR regulator design strategy provides provably optimal control inputs (with optimal-

ity defined as minimizing cost function J) when the linear dynamical model of the system

is an accurate reflection of true system dynamics. However, we need to drive LQR using an

estimated dynamical model. The model must be estimated using very limited history data,

since immersive applications are expected to exhibit rapidly time-varying characteristics.

Further, the underlying behavior is possibly highly non-linear, though monotonicity of the

behavior has been guaranteed by the programmer. Model estimation via LLSE can at most

produce a good linear approximation of the underlying behavior. In particular, it is crucial

that model estimation gets the signs of the dominant xj-yi relationships correct, otherwise

applying a linear regulator like LQR will force a bad control input to become a progressively

worse control input at each subsequent time step.

Here we make the assertion that so long as the signs of the dominant coefficients are

estimated correctly, a modified version of LQR that we propose can tolerate significant

errors in the magnitudes of the estimated coefficients. Our modification to LQR introduces
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adaptive-integral control to each of the output variables to account for the observed discrep-

ancy between the linear modelMLLSE estimated for the application and the true application

response model MApp.

The adaptive control takes the following form: instead of updating state ~st with the

observed output ~yt−1 as per Eq 32, we now update ~st with a scaled version of the output,

~y sc
t−1.

The scaled output is determined as follows:

~y sc
t−1 = ~̃y + ~β ◦ ε~yt−1, (68)

where, ~̃y = [ỹ1, ỹ2, · · · , ỹm]T are the objectives for the corresponding outputs y1, · · · ym. The

output error observed at time t−1 is denoted by ε~yt−1 = ~yt−1− ~̃y. ~β captures the individual

scaling factors for the observed error in each yi, with the notation ~c = ~a ◦~b representing

the Hadamard Schur product: ci = ai.bi, i.e., an element-wise multiplication. Hence, the

adaptive policy consists of determining appropriate values for the βi’s based on the observed

tracking error for the yi’s. Note that βi = 1.0 leaves unmodified the LQR state update.

The dynamic scaling of the tracking error with βi allows LQR to drive εyi|t to zero, when

LQR by itself is unable to do so. An instance of the univariate controller from Chapter 4

is used for determining each βi in each time-step t. For the univariate controller to be

applicable in this setting, we have to demonstrate that each tracking error εyi|t−1 varies

monotonically with the changes applied by the regulator to every control input xj in the

next time step t. Appendix A.3 demonstrates that this property indeed holds.

6.6 Bounding Runtime Overhead

The user specifies a per-frame budget b as a limit on the controller runtime overhead. The

controller has a budget objective to keep its average per-frame overhead less than or equal

to the time duration b.

The controller maintains a debt metric that accumulates by how much the past frames

exceeded the budget b. The debt decreases after a frame when the controller has smaller

overhead in that frame than b. Every frame a usable budget busable is computed as the
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difference between b and the accumulated debt.

busable limits the invocation of replacement model estimation (that is, LLSE for estimat-

ing M′) and regulator re-design (that is, iterative refinement of an existing C using LQR).

If busable < 0, only the work absolutely critical to the controller’s QoS performance will be

invoked. The critical work consists of model estimation if M = φ and the initial design of

the regulator C from a new M (that is, when C = φ).

The non-critical work of estimating the alternative modelM′ and of iterative regulator

refinement is done only if busable ≥ 0. The controller queries the system time before running

each iteration of non-critical work in a frame, and executes that iteration of work only if the

busable budget has not already been exhausted. Basic work involving collection of metrics

and state update is not limited by the budget.

When b is greater than the time required for the per-frame basic work, the controller

achieves its objective of keeping the average per-frame overhead ≤ b. Note that the overhead

may exceed b on the individual frames that must do the critical work, or when non-critical

work gets started before the deadline set by busable but only completes after the deadline.

When busable < 0, the controller will suppress all non-critical work for a series of frames

until busable ≥ 0 again holds, thereby achieving the budget objective.
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CHAPTER VII

MULTI-VARIATE QOS CONTROL:

EXPERIMENTAL EVALUATION

We apply the multi-variate controller to full applications available as open-source. The

applications are representative of computer vision and video encoding. Each application is

highly compute intensive and has a requirement to maintain a smooth frame-rate.

The applications, as made available, use fixed values for parameters in their key algo-

rithms. The QoS behavior exhibited by each application changes over a wide range as the

application is re-executed with different values for the algorithm parameters. We apply

the QoS controller to these applications to dynamically tune the values of the algorithm

parameters after every frame. We evaluate the QoS performance of an application for every

possible fixed setting of the algorithm parameters (“fixed cases”) and with the controller

(“controller case”). Each case (the use of the controller, or of a particular fixed setting)

is evaluated over a range of target values for the QoS objective (e.g., a range of desired

frame-times). For each case, we compute the average QoS over the objective range. We

present summarized results that compare the average QoS of the controller case against the

fixed case with the best average QoS (“best fixed case”). We also present detailed results

for each case showing the QoS obtained for each value of the QoS objective.

The experimental evaluation seeks to establish the following.

1. Our controller can significantly improve the frame-time QoS when one or more control

parameters are tuned by the controller.

2. Allowing the controller to simultaneously tune multiple parameters (nX) typically

produces better QoS than tuning only one parameter (1X). While expected, the

results establish that the controller can explore a much larger higher-dimensional input

space with low overhead and still find “good” parameter values with high probability.
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3. We construct application-specific “accuracy of results” metrics, and demonstrate that

the controller can simultaneously optimize for frame-time and accuracy QoS (nX−2Y ).

4. Finally, with application case studies, we illustrate the process of applying the con-

troller to applications. In particular, we illustrate how programmers may verify if

their application sufficiently satisfies the required domain assumptions, and how pro-

grammers may easily adapt an application implemented with fixed parameter settings

and without explicit QoS metrics for dynamic tuning with the controller.

7.1 Applications

mpeg2enc. This is an MPEG2 video encoder from the MediaBench II video benchmark

suite [70]. The motion-estimation algorithm is known for being the most compute-intensive

part of this application. The search-window-size parameters determine how much effort

the algorithm expends in trying to find a matching macroblock for the current macroblock

being encoded. In general, a larger search window typically allows for less lossy compression

by making it more likely that a matching macroblock will be found, while incurring a

correspondingly higher frame-time. We use the frame time as the application QoS metric

y and the search-window-size parameters as the control inputs ~x used by the controller to

tune y. The 1X evaluation uses a single search-window-size for the horizontal and vertical

searches in both the forward (next frame) and backward (previous frame) search directions

on any given frame. The 2X evaluation uses two control parameters to allow independent

setting of the horizontal and vertical search-window-sizes. The 4X evaluation uses four

control parameters to independently set the horizontal and vertical search-window sizes in

the forward and backward directions.

ferns. This is a computer vision application [75]. Ferns uses keypoint-detection techniques

to detect and track the presence of a reference planar pattern in a video in a 3D translation-,

scaling- and rotation-invariant manner. For example, we use a flat picture of a mousepad

as the reference planar pattern and the test video consists of a person moving and rotating
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the mousepad in 3D space in a room. We use our controller to maintain a desired frame-

time y while varying the number of iterations executed by a classification algorithm in the

program (represented by x). Once the target pattern is detected in a frame, ferns is capable

of tracking the pattern in subsequent frames at a lower computational cost. However, for

our purpose of measuring the impact of the controller on the ferns detection algorithm, we

disable tracking and perform detection every frame. We evaluate two QoS objectives —

the frame-time and an “accuracy of results” metric defined by us. The accuracy metric

estimates how accurate is the number of keypoints detected by ferns in a frame. As a

heuristic, we designate every fourth frame as a “reference frame” for which x is set to the

maximum number of iterations. The measured number of keypoints detected is treated as a

reference to compute accuracy for the next three frames. We consider two factors in defining

a ferns-specific accuracy metric — i) ferns, as written, treats 10 keypoints as the detection

threshold for the target pattern, and ii) the detection algorithm employs randomization and

exhibits large frame-to-frame variations in the number of keypoints detected, though the

detection pattern is clear when viewed over multiple frames. Given these factors, we define

the accuracy metric as follows: accuracy = 1 − |ref-keypoints − detected-keypoints|
max{ref-keypoints, detected-keypoints}

,

and ref-keypoints is kept at least 5 to avoid a possible divide-by-zero error, as there is a

possibility of detecting no keypoints in a frame due to the classification algorithm’s inherent

randomness. Therefore, our definition of the accuracy metric may incorrectly penalize or

help the accuracy of subsequent frames whenever a reference frame has a large error in

ref-keypoints. However, the accuracy metric is still useful as an approximate estimator of

accuracy, and helps us illustrate how the accuracy of computer vision applications may

be tuned dynamically. We will evaluate 1X against 1Y , with y being frame-time and

then accuracy, and finally 1X against 2Y (the joint QoS optimization of frame-time and

accuracy).

rtftr. This is a real-time face-detection and tracking application [76]. The application de-

tects the presence of one or more faces in every frame of the video and can track them across

video frames. The detection algorithm extracts rectangular blocks of different sizes from the
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video frame, to explore the possible occurrence of a face at any scale in the frame. We apply

the controller to control detection frame-time y by varying two parameters that control the

granularity at which block extraction is performed — a scalefactor parameter (sf) that de-

termines the next scaled-down box size to try, and a minrect parameter (mr) that determines

the smallest block size to consider. Use of a larger scalefactor speeds up the detection algo-

rithm, as fewer scales are considered from the largest till minrect. However, use of a larger

scalefactor increases the risk of missing the occurrence of a face that could only be detected

at a particular block size. A smaller minrect allows correspondingly smaller faces to be de-

tected, but increases compute time as the number of smaller blocks in an image grows expo-

nentially. At every frame, the application produces a count of the number of faces detected.

As a heuristic, we treat every fourth frame as a reference frame, where the corresponding

mr or sf or both parameters take the most compute-intensive values and the resulting

number of faces detected is stored as the reference for the next three frames. We define

an rtftr-specific accuracy metric, accuracy = 1− |detected-face-count − ref-face-count|
max{detected-face-count, ref-face-count}

.

We will evaluate the use of control parameters mr and sf individually and then together

against one and then two QoS objectives — frame-time and accuracy (1X−1Y , 2X−1Y

and 2X−2Y evaluations).

x264. We use the x264 benchmark from the PARSEC 2.1 benchmark suite [77]. x264 im-

plements the video encoder from the H.264/AVC standard [78]. The performance of x264

scales with number of cores. Additionally, x264 utilizes a large number of encoding param-

eters and choice of algorithms for various stages that are intended to scale the encoding

characteristics of the encoder based on a static configuration. Out of these we choose the

following control parameters for dynamic tuning — i) the number of cores (which impacts

frame-time but not fidelity), ii) the choice of sub-pixel interpolation algorithm (e.g., fullpel,

SAD mode decision, SATD mode decision, etc.), and iii) motion estimation search window

size. The choice of subpel algorithm and the motion estimation search window parame-

ters impact both the frame-time and the fidelity. The chosen control parameters satisfy

the monotonicity assumption against the explicit QoS goal of frame-time and the implicit
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QoS goal of fidelity. The x264 benchmark as a whole satisfies the domain assumptions for

immersive applications.

bodytrack. We use the bodytrack benchmark from the PARSEC 2.1 benchmark suite

[77]. bodytrack tracks the pose of a user in a video (e.g., recognize that a hand is raised

and determine its position). bodytrack uses particle filters [79, 80] for pose estimation.

bodytrack’s performance scales with the number of cores. Additionally, we demonstrate

that the number of particles can be dynamically varied to tradeoff pose-detection accuracy

versus achieving a desired frame-time.

7.2 Experimental Setup

Table 7.1 summarizes the scalable algorithms, the control parameters and the QoS objectives

used for each application. δ = 20% is used for the QoS objectives.

Table 7.1: Application scalable algorithms, tunable parameters and QoS objectives.
Benchmark Scalable Algorithms X Y (δ = 20%)

Motion estimation search size: 1X = H / V / F / B
mpeg2enc - Horizontal / Vertical 2X = H F / B, V F / B fr = frame-time

- Forward / Backward 4X = H F, H B, V F, V B
Scale and rotation invariant kp : max number of fr = frame-time

ferns object detection using keypoints iterations for ac = accuracy
detecting keypoints

Generate candidate rectangles
rtftr that may frame faces fr = frame-time

- minimum rectangle size mr : min rectangle size ac = accuracy
- scale up for next rectangle size sf : scale factor
Parallel implementation, nc : num cores
multiple algorithms to choose sp : sub-pel algo choice

x264 from for fast vs accurate fr = frame-time
sub-pixel interpolation,
motion estimation search size me : motion est search size

bodytrack Parallel implementation, nc : num cores fr = frame-time
particle-filter based pose search np : num particles

7.3 Results

7.3.1 Frame-time QoS

Figure 7.1 compares the average frame-time SR (measure of QoS) of the controller against

the best fixed case for each of the applications. Each application is evaluated on multiple

data-sets which differ in content and/or factors such as video resolution. mpeg2enc is
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evaluated on the standard dolbycanyon and dolbycity video sequences, with a resolution

of 320 × 240 for the former, and 320 × 240 and 640 × 480 for the latter. Similarly, rtftr

and ferns use their corresponding test video sequences at two different resolutions.

Figure 7.1: Comparison of average frame-time QoS between controller case and best fixed
case: across benchmarks, data sets and choice of control parameters.

Each application was executed over a range of frame-time objectives ỹ ± δ, where ỹ is

varied over a range. An example objective would be to keep frame-time in the window

0.02 ± 20% seconds. The range of frame-time objectives ỹ simulates the execution of the

application on a variety of platforms with differing processing capabilities, as well as a

genuine requirement for changing the target frame-time if the application has varied use-

cases. Figure 7.1 shows several benchmarks and data sets where the controller delivers

average SR improvements in the range of ≈ 0.2 to 0.5, a significant improvement in QoS

compared to keeping ~x fixed at the best possible value. We do not show results for mpeg2enc

with 4X as that evaluation would require an inordinate number of runs of the application

corresponding to the 84 possible fixed cases, requiring weeks of machine time.

7.3.2 Accuracy QoS

Figure 7.2 summarizes the adverse impact on the accuracy due to the use of the controller.

We have defined the accuracy metrics for ferns and rtftr with respect to setting the

corresponding control parameters at their most compute-intensive settings. Therefore, the

controller will always do worse compared to the most-compute intensive fixed case. The

best we can hope for is that the controller will rapidly determine that the control parameters
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must be set to their most compute-intensive values in order to maximize QoS. For ferns

we see a minimal adverse impact. For rtftr we observe a minimal adverse impact when

only one control parameter (either mr or sr) is exercised by the controller. When both

control parameters are tuned, there is a larger adverse impact to SR in the range of −0.10

to −0.20. With both control parameters, the accuracy metric falls very sharply if either

control parameter deviates from its most compute-intensive setting. Despite the fact that

the x−y response for rtftr satisfies the monotonicity requirement, the large non-linearity

in the x−y response implies that the controller essentially needs to sample the input space

at or near the most compute intensive settings in order to drive the inputs to those values.

Otherwise, the estimated model of the x−y response will fail to sufficiently incorporate the

disproportionate impact of the most compute-intensive settings on accuracy. The single

parameter cases have a 1 in 5 chance of randomly sampling the most compute-intensive

setting, compared to only a 1 in 52 chance when both parameters are used, causing the

larger deterioration in accuracy SR when both parameter are used. However, the adaptive

scaling of the feedback error to the LQR regulator (Section 6.5.2) helps mitigate the full

adverse impact of the response non-linearity.

Figure 7.2: Comparison of average accuracy QoS between controller case and best fixed
case: across benchmarks, data sets and choice of control parameters.
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7.3.3 Joint Accuracy and Frame-time QoS

Figure 7.3 summarizes the benefit to the joint frame-rate and accuracy SR with the use

of the controller. The frame-rate and accuracy aspects are typically in opposition — the

accuracy is maximized when the most compute-intensive settings are chosen for the control

parameters, while the frame-time may require less compute-intensive setting of the control

parameters. The controller will balance the frame-rate and accuracy aspects when tuning

the application to the joint QoS objective. We observe modest SR improvements for ferns,

with 0.05 to 0.15 improvements in SR for rtftr. As expected, the improvements are not

as large as when the controller optimized only for frame-time QoS (Figure 7.1). When

optimizing only for frame-time, no fixed setting would work well across the range of frame-

time objectives, giving the controller a huge advantage. However, a single fixed setting by

our definition of the accuracy metric always produces the best accuracy regardless of the

frame-time objective, limiting the improvements in the joint accuracy and frame-time QoS.

Figure 7.3: Comparison of average joint accuracy and frame-time QoS between controller
case and best fixed case: across benchmarks, data sets and choice of control parameters.
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7.3.4 Benefit of Multiple Control Parameters

Figure 7.4 and Figure 7.5 contrast the SR when the controller tunes multiple control pa-

rameters (nX) compared to a single control parameter (1X). ferns is not shown as we use

only a single control parameter in that application.

Figure 7.4: mpeg2enc: Impact of tuning multiple control parameters on frame-time QoS.

Figure 7.4 shows a modest improvement in the frame-time SR for mpeg2enc when the

horizontal and vertical search-window-sizes are tuned independently as two separate pa-

rameters (2X), and when the vertical and horizontal search-window-size parameters for

the forward and backward motion-prediction directions are also tuned independently (4X).

One data set, dolbycity at 320 × 240 resolution, shows an insignificant reduction in SR,

essentially indicating that the SR is unchanged in going from 1X to 4X. While the results

do not show large improvements for 2X and 4X over 1X, they do demonstrate that the

controller overhead stays limited in exploring the much larger 2X and 4X input-spaces (of

size 82 and 84, respectively) compared to exploring the 1X input-space (consisting of 8

values). High controller overhead in terms of either more frames wasted on the PFE/CFE

mechanisms (Section 6.2) due to the higher-dimensional input space, or by contributing to

the frame-encoding time, would have manifested as a deterioration in SR.
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Figure 7.5 shows the evaluation of rtftr for three objectives — a QoS objective of

frame-time (fr), a QoS objective of accuracy (ac) and a combined QoS objective giving

equal weight to frame-time and accuracy (ac, fr). For fr we see large improvements when

control parameters mr and sr are tuned together compared to tuning only one of them.

We see a significant reduction in SR in going to multiple parameters for the ac objective,

for reasons explained in Section 7.3.2. For the joint QoS objective, combining the control

parameters gives similar, somewhat worse, and somewhat improved QoS compared to the

use of a single control parameter — a mixed result, overall suggesting no harm with the use

of both parameters for the joint objective.

Figure 7.5: rtftr: Impact of tuning multiple control parameters (mr and sf individually
and together). Evaluation performed for frame-time QoS (fr), accuracy QoS (ac) and the
joint QoS (ac, fr).
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7.4 mpeg2enc Detailed Evaluation

The search window size is determined by the following parameters.

• Forward horizontal size.

• Backward horizontal size.

• Forward vertical size.

• Backward vertical size.

All experiments for mpeg2enc are run on an Intel Q6600 CPU @2.40GHz desktop com-

puter running Ubuntu Linux.

We run three sets of experiments. The first set uses a single parameter x to set all four

of the search window parameters to equal values (1X set). The second set uses x1 to set

identical values for the two horizontal sizes, and x2 for the two vertical sizes (2X set). The

third set uses x1, x2, x3 and x4 to vary each of the search window sizes independently (4X

set). In general, it is expected that the use of multiple independent parameters will create

more opportunity for the controller to find fine-tuned solutions to meet the application QoS

(the desired frame-rate) than with just one parameter, producing a higher SR (satisfaction

ratio). Our experimental results in Section 7.4 demonstrate that this is indeed the case.

Due to the I-P-B-B-P-B-B GoP pattern used by mpeg2enc, we use sliding window

W = 7. Table 7.2 relates the range of control input values generated by the controller (−4

to 4) against the actual search window sizes used inside the application (the last value is

repeated as by convention the controller needs an odd number of settings: integers −N to

N , for some N).

Next, we use the 1X set to verify that monotonicity indeed holds between search-

window sizes and the encoding frame-time y. Figure 7.6 shows the spread of frame-time for

increasing values of x on two test video sequences.

Figure 7.7 shows the SR produced for the 1X set on the two test video sequences. The x-

axis shows increasing frame-time objectives ỹ. We use a 20% tolerance for y, i.e., δ = 0.20 ỹ.

Two different test video sequences are used, dolbycanyon with 320 × 240 resolution and
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Table 7.2: Mapping of control values to search window sizes for mpeg2enc
x search window size

-4 30
-3 20
-2 15
-1 10
0 5
1 2
2 1
3 0
4 0

dolbycity640 with 640× 480 resolution, each consisting of approximately 1000 frames. The

QoS performance of each application execution is measured as the SR. SR is compared

between application executions that keep x fixed versus application executions that use the

controller to dynamically tune x. The controller overhead is limited to 5% of the frame-

time objective, i.e., budget = 0.05 ỹ. Notice that the controller executions significantly

outperform the fixed cases at almost every ỹ (frame-time objective). Where a given fixed

x execution outperforms the controller execution, it only does so marginally (dolbycity640

dataset graph), and only for a single ỹ. For example, fixed x = 2 outperforms the controller

at ỹ = 0.08secs, but significantly underperforms against the controller everywhere else.

This demonstrates that the controller is able to greatly enhance the QoS across a wide range

of operating conditions (different frame-rates, or conversely execution on platforms with

widely differing compute capabilities).

Similarly, Figure 7.8 shows the SR achieved for the 2X set on the two test video se-

quences, comparing the QoS performance of the controller against the fixed x1, x2 cases.

There are several characteristics worth noticing. First, note that x1, x2 combination fixed

cases can outperform the x fixed cases from the 1X set. Second, notice that for the

dolbycanyon dataset, the controller noticeably underperforms the best fixed cases for ỹ =

0.02. Examining the output log of the application execution identifies the reason — the

controller readily exhausts the 5%×0.02secs runtime overheads budget and is unable to per-

form LLSE and LQR on most frames when they are needed. In fact, looking at the output

logs for ỹ = 0.02, 0.04 on even the 1X set also reveals that the budget is exhausted on most
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frames, with the controller barely getting sufficient opportunity to perform LLSE and LQR

to deliver high SR. With ỹ = 0.02secs on the 2X set, the controller gets too constrained.

The current implementation of the controller in C++ has not been optimized. We expect

an opportunity for > 10× reduction in overheads once such optimization is attempted.

Third, comparing the dolbycity640 dataset across the 1X and 2X sets shows mixed gains

in QoS — ỹ = 0.08secs performs better in the 2X set, taking advantage of the finer tuning

possible with two control variables instead of one, as expected; for ỹ = 0.12secs we get

slightly poorer QoS performance with 2X, due to the controller expending comparatively

more frames in exploration and fewer in the exploitation of a good model compared to the

1X case.

Finally, Figure 7.9 shows the SR achieved for the 4X set on the two test video sequences.

Due to the very large number of combinations of fixed cases x1, x2, x3, x4, we skip generating

results for the fixed cases. Instead, we merely compare the results against the 2X and 1X

sets. In particular, notice that the 4X set noticeably outperforms both the 2X and 1X sets

on the dolbycity640 dataset — the gains from tuning four control inputs clearly outweigh

the overheads of exploring and modeling application behavior in higher dimensions.
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Figure 7.6: mpeg2enc: monotonic response between x and frame-time
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Figure 7.7: mpeg2enc 1X: comparison of QoS performance for fixed x vs controller across
varying frame-time objectives
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Figure 7.8: mpeg2enc 2X: comparison of QoS performance for fixed x1, x2 vs controller
across varying frame-time objectives
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Figure 7.9: mpeg2enc 4X: QoS performance of controller across varying frame-time objec-
tives

156



7.5 ferns Detailed Evaluation

All experiments for ferns are run within an Ubuntu Linux virtual machine running on an

Intel i7-3630QM CPU @2.40GHz running Ubuntu Linux.

We initially tried the following mapping, using N = 6, between the values of the control

input x to the number-of-iterations used inside a ferns detector algorithm (Table 7.3).

Table 7.3: Mapping of control values to number-of-iterations for ferns
x num iterations

-6 30
-5 25
-4 20
-3 18
-2 15
-1 13
0 10
1 8
2 5
3 4
4 2
5 1
6 1

On two different test videos, Figure 7.10 shows that monotonicity between x and y

(the detection frame-time) does not hold over several of the sub-ranges. Consequently,

our controller exhibited erratic and frequently poor SR performance when the mapping in

Table 7.3 was used. The two datasets are of the same test video scaled to different resolutions

— vid320× 240 and vid640× 480. The two datasets potentially trigger different execution

characteristics in the ferns algorithm, and definitely exhibit very different frame-times.

We trimmed Table 7.3 (N = 6) to Table 7.4 (N = 2) by dropping values that appeared

to hinder monotonicity, and we finally observed distinctive x-y monotonicity, as shown in

Figure 7.11. The spreads still overlap somewhat, but there is a much higher likelihood of

monotonicity on any given frame of the application over every part of the input range. Note

that domain experts and application programmers would have to establish for themselves

if their application will show monotonic behavior on any intended use-case, and place the

necessary restrictions inside their application to establish monotonicity before using our
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controller. With ferns we illustrate the process of establishing monotonicity, but do not

make any claims about the additional use-cases over which this monotonicity will continue

to hold.

Table 7.4: A better mapping of control values to number-of-iterations for ferns (N = 2)
x num iterations

-2 30
-1 20
0 15
1 8
2 2

Using the mapping in Table 7.4, we get the SR performance shown in Figure 7.12 over

increasing frame-time objectives ỹ with a 20% window. We use W = 1 since each frame

independently performs detection and the results of the detection are often used for higher-

level computer vision analysis. Figure 7.12 provides details on the frame-time QoS for

ferns summarized in Figure 7.1. Figure 7.13 and Figure 7.14 provide similar details for the

accuracy QoS and the combined QoS, respectively.
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Figure 7.10: ferns N = 6: poor monotonic response between x and frame-time
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Figure 7.11: ferns N = 2: improved monotonic response between x and frame-time
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Figure 7.12: ferns: comparison of frame-time QoS for fixed x vs controller across varying
frame-time objectives
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Figure 7.13: ferns: comparison of the accuracy QoS for fixed x vs controller across varying
frame-time objectives
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Figure 7.14: ferns: comparison of the combined QoS for fixed x vs controller across varying
frame-time objectives
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7.6 rtftr Detailed Evaluation

All experiments for rtftr are run within an Ubuntu Linux virtual machine running on an

Intel i7-3630QM CPU @2.40GHz running Ubuntu Linux.

Similar to ferns we had to trim our initial set of mappings of x1 to scalefactor and x2

to minrect in order to get better x1-y and x2-y monotonicity. Table 7.5 shows the final

mappings used. Figure 7.15 shows the resulting mostly monotonic response characteristics

for scalefactor over two datasets. Similarly, Figure 7.16 shows the monotonic response

characteristics for minrect over the two datasets. The two datasets consist of the same test

video scaled to two different resolutions — vid480× 360 and vid640× 480.

Table 7.5: Mapping of control values to scalefactor and minrect for rtftr
x1 scalefactor x2 minrect

-2 1.1 -2 20
-1 1.2 -1 30
0 1.3 0 50
1 1.6 1 100
2 2.1 2 360

Figure 7.17 shows the frame-time SR performance of the controller against fixed cases

with scalefactor alone, and Figure 7.18 with minrect alone. Figure 7.19 shows the frame-time

SR performance when scalefactor and minrect are simultaneously tuned by the controller.

We especially see the cumulative benefits of tuning both parameters for larger values of ỹ

— while the individual tuning of scalefactor and minrect could not deliver high SR, the joint

tuning does.

Similarly, Figures 7.20-7.22 show the combined accuracy and frame-time QoS perfor-

mance. Figures 7.17-7.22 provide details on the results previously summarized in Fig-

ures 7.1-7.3.
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Figure 7.15: rtftr: mostly monotonic response between x1 (scalefactor) and frame-time
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Figure 7.16: rtftr: mostly monotonic response between x2 (minrect) and frame-time
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Figure 7.17: rtftr: comparison of frame-time QoS of fixed x1 (scalefactor) vs controller
across varying frame-time objectives
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Figure 7.18: rtftr: comparison of frame-time QoS of fixed x2 (minrect) vs controller across
varying frame-time objectives
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Figure 7.19: rtftr: comparison of frame-time QoS of fixed x1, x2 (scalefactor, minrect) vs
controller across varying frame-time objectives
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Figure 7.20: rtftr: comparison of combined accuracy and frame-time QoS of fixed x1

(scalefactor) vs controller across varying frame-time objectives
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Figure 7.21: rtftr: comparison of combined accuracy and frame-time QoS of fixed x2

(minrect) vs controller across varying frame-time objectives
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Figure 7.22: rtftr: comparison of combined accuracy and frame-time QoS of fixed x1, x2

(scalefactor, minrect) vs controller across varying frame-time objectives
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7.7 x264 Detailed Evaluation

All experiments for x264 are run on an Intel Q6600 CPU @2.40GHz desktop computer

running Ubuntu Linux.

Table 7.6, Table 7.7 and Table 7.8 show the mapping of the control parameters for se-

lecting number of cores nc, selection of sub-pixel interpolation mode sp, and the motion

estimation search window size me. The sub-pixel mode choices select three out of a possible

ten modes, to both maximize the range on frame-time and fidelity covered and to create suf-

ficient separation in the impact on frame-time and fidelity between adjacent values, based

on experimental evaluation on datasets. Similarly, we sample a large range of possible mo-

tion estimation search window sizes into three values for the me control parameter. Ideally,

we would choose a denser set of samples for me, but we restricted to three widely separated

samples to limit the time for running experiments over all the possible combinations of the

three control parameters (nc, sp, and me) when evaluating the fixed cases.

Table 7.6: Number of cores for x264 (N = 1)
nc Number of cores

-1 1
0 2
1 4

Table 7.7: Choice of sub-pixel interpolation mode for x264 (N = 1)
sp Sub-pixel interpolation mode

-1 SAD mode decision, one qpel iteration (setting 1)
0 SATD mode decision, more qpel (setting 4)
1 RD mode decision for all frames (setting 7)

Table 7.8: Motion estimation search window size for x264 (N = 1)
me Motion estimation search window size

-1 4
0 16
1 40

Figure 7.1 summarizes the improvement to frame-time QoS achieved when the nc, sp,

me control parameters are exercised individually and in all combinations. The results show

moderate to large improvements in SR by the use of the controller in each combination
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compared to the best performing fixed case for the corresponding combination. Additionally,

we can infer that the controller is able to deliver greater improvements in SR when two

parameters are exercised together instead of one, with the best improvement when all three

parameters are exercised together.

7.8 bodytrack Detailed Evaluation

All experiments for bodytrack are run on an Intel Q6600 CPU @2.40GHz desktop computer

running Ubuntu Linux.

Table 7.9 and Table 7.10 show the mapping of the control parameters for selecting

number of cores nc, and the number of particles used np. As with other benchmarks, the

application is written to use fixed values for these parameters. We modify the application

so the controller may dynamically tune them every frame. The reference data-set was set

up to be used with 4000 particles in the unmodified application.

Table 7.9: Number of cores for bodytrack (N = 1)
nc Number of cores

-1 1
0 2
1 4

Table 7.10: Number of particles for bodytrack (N = 2)
np Number of particles

-2 2000
-1 3000
0 4000
1 5000
2 6000

Figure 7.1 summarizes the improvement to frame-time QoS achieved when the nc and

np control parameters are exercised individually and together. The results show large

improvements in SR by the use of the controller in each combination compared to the

best performing fixed case for the corresponding combination. Additionally, we can infer

that the controller is able to deliver significantly greater improvements in SR when the two

parameters are exercised together instead of individually.
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CHAPTER VIII

CALL-CONTEXT VARIANCE ANALYSIS

In this work [81, 82] we use segments of call chains to distinguish the behavior of highly

variant functions under their calling contexts. Multiple individual full call chains get sum-

marized as a set of very few and very short call-chain segments that uniquely predict the

behavior of the variant function associated with them. By extracting simple, short signa-

tures from a large collection of behavior, we attempt to extract a more general pattern of

behavior that would be representative of the behavior of the application on future, as yet

unseen, data sets. In this manner, any program tuning or algorithmic optimizations carried

out by the programmer after viewing the variance-analysis results produced for a profiling

data set, would also similarly tune or optimize the behavior of the application for any future

regression data sets.

As an important use-case in its own right, and as an illustration of the use of the

variance-characterization results for other kinds of program-tuning goals, in this work we

study an application’s variant behavior with an eye towards tuning the application’s soft-

real-time behavior, i.e., detecting and characterizing behavior that is likely to impact user-

responsiveness or frame-rate in an interactive application.

We pose the following research questions in order to drive the design of our profile-

analysis framework:

Question 1 Component discovery Can the recurrent behavior identified during the pro-

filing of function calls be used to identify the individual components of an application’s

soft-real-time functionality?

Question 2 Structure discovery Can the identified recurrent behavior be used to recon-

struct the soft-real-time structure of the application? The structure would consist of the

components of soft-real-time functionality identified in the application.
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Question 3 Context-sensitivity discovery Can the context-dependent variability in the

behavior of the soft-real-time components be detected? The behavior of a component may

differ significantly depending on what context it is invoked under.

Question 4 Generality How reliably can behavior discovered during profiling be expected

to generalize to future runs of the application on arbitrary inputs?

8.1 Contributions

We make the following specific contributions in this work.

• We describe a tractable approach for succinctly capturing the behavior of millions-to-

billions of profile events in terms of tens of soft-real-time components. The discovered

components are the functions that introduce significant variability to the application’s

real-time behavior, and hence are the most important ones to be brought to the

attention of a programmer interested in improving soft-real-time behavior.

• We demonstrate that function-call-chain segments capture the context sensitivity of

a component’s soft-real-time behavior. We motivate how varying the length of the

call-chain segments gives them a varying ability to differentiate between the multiple

contexts of invocation of a component. We provide algorithms that choose the correct

segment lengths that produce highly succinct profile results that differentiate between

only those contexts where behavior is significantly different.

• We illustrate the use of specific statistical theory for constructing algorithms that

find patterns of behavior (dominant components and their corresponding invocation

contexts). As a consequence of the probabilistic guarantees provided by the statis-

tical theory, the produced patterns generalize well for describing the behavior of the

application executing on arbitrary input data.

We validate the correctness of the identified components by profiling well-known mul-

timedia applications. Extensive prior research exists about the soft-real-time behavior of
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these applications. The components reported by our profiling methodology match closely

with those described in prior research as the main causes of soft-real-time variance in these

applications.

Among the questions listed above, only the structure discovery question is not satisfac-

torily answered by our current methodology (leading us to create the Dominant Variance

Analysis technique, described in Chapter 9). Although the discovered components and

their call-chain contexts do allow the programmer to infer the structure, this inference is

not sufficiently precise and may not work in all circumstances.

Overview Section 8.2 introduces the profile representation constructed from the raw

stream of profile events. Section 8.3 introduces the relevant statistical theory and describes

the analysis performed on the constructed profile representation to detect patterns. Section

8.4 provides experimental validation.

8.2 Profile Representation

We profile instrument the application and use the generated profile events to construct a

calling-context tree (CCT). Ammons et al. [83] showed that a CCT representation succinctly

captures the dynamic structure of the function calls executed by the application. It preserves

the full call-chain context of invocation, and merges information along multiple identical

contexts into a single context. This makes the CCT an ideal representation for investigating

context-sensitive behavior.

We automatically profile instrument a C/C++ application using the LLVM [84] compiler

infrastructure. We execute the application on test inputs and use the generated sequence

of profile events to construct the CCT as described by Ammons et al. [83].

During CCT construction, we annotate statistics on each CCT node. These statistics are

used by subsequent analysis for detecting patterns. Figure 8.1 shows an example program,

the corresponding CCT and the annotated node statistics. Function A was invoked from

two call sites within the parent function main. This leads to two children nodes for function

A. Since function B was never invoked under the left A node, it only gets a NULL edge at its
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call site in A. The next subsection describes the node annotations required for our variant

call-context analysis.

  

void main() {
  for(i=0;i<100;++i) {
    if(i%5 == 0)
      A(0, i); //Lexical id=0
    A(1, i); //Lexical id=1
  }
}

void A(int flag, int i) {
  if(flag != 0)
    B(i); //Lexical id=0
  // other statements
}

void B(int i) {
  for(j=0;j<i;++j) {
    S1;
  }
}

1
1
1
1

1
1
10

1
1

Program Instruction
Count

main

A

B

A

NULL

0

00

1

N: 20
X
i
={11,11,...}
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!"=11 #"=0 
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i
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T: 
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!
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N: 100
X
i
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N: Invocation count
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Figure 8.1: An example program, and the corresponding CCT with annotated node statis-
tics.

8.2.1 Node Annotations

Each node is annotated with the following statistics about its corresponding function call:

1. invocation count N : The number of times the corresponding function call was

invoked.

2. mean X̄: The mean execution time across all invocations of the function call corre-

sponding to the node. This includes the execution time of all children function calls.

3. variance σ2: The statistical variance in the execution time of the function call across

all invocations. The variance is the square of the standard deviation σ. Using the

property σ2 = E(X2) − X̄2, a single pass over the profile data constructs the CCT

and computes all node annotations, including the variance.
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8.3 Detecting Patterns of Behavior

Once the CCT has been constructed and its node annotations calculated, the CCT is tra-

versed in pre-order for analysis. Nodes whose total execution time constitutes a minuscule

fraction (say, < 0.02%) of the total execution time of the program are deemed as insignif-

icant. All other nodes are deemed significant. Since a CCT node subsumes the execution

time of all its children nodes, once a node is found to be insignificant, the nodes in its

children subtree are all guaranteed to be insignificant as well.

8.3.1 Tagging Nodes

We examine the annotations of nodes to determine if the corresponding nodes exhibit high

variance in their execution time within the context of the caller function (parent node).

This is captured by the variance P.σ2. We use Chebyshev’s inequality [85], given below

by Equation 69, to determine meaningful thresholds to compare a node’s variance against.

Chebyshev’s inequality establishes conservative probability bounds on a given collection

of data samples while making no assumptions about the underlying probability distribution

that generated the data.

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(69)

In our experiments, we define a node to be high-variant if its execution time cannot be

guaranteed to lie within 200% of its mean with at least 96% probability (i.e., for at least

96% of the invocations of the node). This implies 1
k2 = 1 − 0.96 = 0.04 and kσ = 2 × µ.

Therefore σ
µ ≥ 0.4 becomes the condition for high variance. Consequently, we use the

Coefficient-of-Variability metric for classifying the variant nature of nodes: CoV = σ
µ . The

choice of the variance-window around the mean and the probability of samples falling within

it can be tweaked by the user based on the method described above. As the programmer

pushes the probability guarantee of samples falling within the kσ variance window to 100%,

1
k2 → 0 and k → ∞. This implies that the window kσ → ∞ would trivially encompass all

possible execution times. Therefore, it is practical to keep the probability not too close to

100%, and for almost all soft-real-time applications a probability guarantee of 96% would
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suffice, though this can be adjusted to the guarantees desired for any given application.

Qualitatively, kσ = 200%× µ suggests a highly-variant behavior as the execution time can

increase to over thrice the mean execution time (and reduce all the way down to 0). Based

on how stringent the soft-real-time requirements are for an application, the programmer

can adjust the threshold that defines high-variant behavior.

Once the CCT is constructed from the profile data, it is pre-order traversed in linear

time and individual nodes may be tagged as being high-variant. As mentioned earlier, the

traversal is restricted to significant nodes.

8.3.2 Signature Generation for Patterns

The previous subsection described how the significant nodes in the CCT were individually

tagged if they exhibited statistical high-variance. The next step is to find the patterns of

call chains whose presence on the call stack can be used to predict the occurrence of the

high-variance behavior found at the tagged nodes. For a given tagged node P , we restrict

the call-chain pattern to be some contiguous segment of the call chain that starts at main

(the CCT root node) and ends at P .

The sequence of names of the function calls in the call-chain segment becomes the

detection pattern arising from the tagged node. This particular detection pattern might

occur at other places in the significant part of the CCT. Quite possibly, the occurrence of

this detection pattern elsewhere in the CCT does not match the statistical behavior, i.e.,

the mean and the CoV values, that were observed at the tagged node. Therefore, our key

criteria in generating the detection pattern is the following:

All occurrences in the significant CCT of a detection pattern arising from a high-

variance-tagged node must exhibit the same statistical behavior that was observed

at the tagged node.

Notice that this condition is trivially satisfied if we allow our detection pattern to extend

all the way to main from the tagged node, since this pattern cannot occur anywhere else

as a result of its full call context being a unique path in the CCT. In many applications,

patterns extending to main are likely to generalize very poorly to the regression execution
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of the application on arbitrary input data. Regression execution refers to the real-world-

deployed execution of the application, as opposed to the profile execution of the application

that produced the profile data used for constructing the CCT. In many applications, we

expect the behavior of the function call at the top of the call stack to be correlated with

only the function calls just below it in the call stack. This short call sequence would be

expected to produce the same statistical behavior regardless of where it was invoked from

within the program (i.e., regardless of what sits below it in the call stack). In this work

we focus our attention on detecting just such call sequences. We call such a call sequence

the minimal distinguishing call-chain (MDCC) pattern corresponding to any particular

statistical behavior. MDCC patterns are the shortest-length detection sequences whose

occurrence at the top of the call stack predicts the behavior at the tagged node, with no

mis-prediction of behavior occurring in the significant CCT. An MDCC pattern is illustrated

in Figure 8.2.

Figure 8.2: Minimal distinguishing call-chain context (MDCC) pattern.

Our paper [82] provides the algorithms for constructing MDCCs along the criteria dis-

cussed above. Figure 8.3 illustrates a CCT with the high-variant nodes for function F

tagged. The figure also illustrates a full call-chain context from main for node F1.
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Figure 8.4 illustrates how the full call-chains for the significant nodes of F (from Fig-

ure 8.3) are processed to extract MDCCs that distinguish the high-variant behavior of F

from the low-variant behavior of F .
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Figure 8.4: Illustration of MDCC extraction from full call-chain contexts.
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8.3.3 Grouping and Distinguishing between Similar Patterns

In the previous discussion, we assumed that the programmer desired to distinguish between

tagged nodes whenever their statistics (mean, CoV) did not match exactly. However, the

exact matching of statistics may lead to very long detection patterns that generalize poorly

to the regression runs. For example, if multiple high-variant-tagged nodes with somewhat

different means require long call chains to distinguish between each of them, then it may be

preferable to actually have a shorter call-chain pattern that does not distinguish between

these tagged nodes.

Furthermore, if the same detection sequence occurs at multiple tagged nodes in the

significant CCT and the nodes have matching statistics, we would like to combine the mul-

tiple occurrences of the detection sequence into a single detection sequence. Such detection

sequences are likely to generalize very well to the regression run of the application, and are

therefore quite important to detect.

In order to address the preceding two concerns in a unified framework, we first generate

short call-chain patterns using only the “broad-brush” notions of high variance, without

distinguishing between the tagged nodes using their statistics (mean, CoV). Then we group

patterns with identical call contexts (arising from different tagged nodes) and use pattern-

similarity trees (PSTs) to start differentiating between them based on their statistics. The

initial group forms the root of a PST. We apply a similarity measure (SM) function on the

group to see if it requires further differentiation. If the patterns in the group have widely

different means or CoVs, and the programmer wants this to be a differentiating factor,

then the similarity check with the appropriate SM will fail. In our experimental evaluation,

we use an SM that checks if the corresponding means and CoVs of the two patterns being

compared are within 10% of each other; the programmer can choose to plug in a different

SM, say one that checks only on means.

Once the SM test fails on a group, all the patterns in the group are extended by one

more parent function from their corresponding call chains (tagged CCT nodes are kept

associated with the patterns they generate). This will cause the resulting longer patterns

to start to differ from each other. Again, identical longer patterns are grouped together
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as multiple children groups under the original group. This process of tree subdivision is

continued separately for each generated group until the SM function succeeds in all current

leaf nodes. At this point, each of the leaf groups in the PST contain one or more identical

patterns. The patterns across different leaf groups are however guaranteed to be different

in some part of their prefixes. Patterns in different leaf groups may be of different lengths,

even though the corresponding starting patterns in the root PST group were of the same

length. All the identical patterns in the same leaf node are collapsed into a single detection

pattern. For example, an SM function that differentiates on σ but not on means (or only

weakly on means), will produce leaf nodes that contain patterns with a single σ but a

collection of widely varying means.

Figure 8.5 illustrates how identical MDCC patterns identifying high-variant behavior

can be selectively extended using PSTs to distinguish between high-variant behavior with

differing statistics.
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Figure 8.5: Illustration of selectively extending MDCC patterns using pattern-similarity
trees (PSTs) to distinguish between differing high-variant behavior.

8.3.4 Ranking Impact of Patterns

The previous steps produce numerous patterns (11 to 46 patterns for our benchmarks)

characterizing the variability in the application at multiple levels. It is highly desirable

to rank the patterns to focus the programmer’s attention on the ones that are the most

likely to contribute variability to the program. For this purpose we introduce a metric that

we call the variability impact metric or VIM. The Chebyshev inequality introduced earlier

points us towards a suitable definition for VIM. While the CoV = σ
µ indicates whether the

variations are large with respect to the mean, the kσ term in the Chebyshev inequality

indicates the absolute amount of variability. The variability per invocation multiplied by

the total invocation count of that pattern gives the total amount of variability contributed

by the innermost function in the pattern to its immediate parent. Therefore, we define VIM
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as follows, with N being the invocation count of the innermost function in the pattern:

VIM = kσN . (70)

While this metric indicates how much variance is contributed by the innermost function

F to its immediate parent C (referring to the pattern in Figure 8.2), it is not necessarily

implied that the pattern’s variance contribution propagates up the call chain to A or B. For

example, if B invokes C from inside a loop, then the VIM for C will measure the variance

impact to the iterations of the loop, not to B directly. In fact, it is possible that B is not

variant at all if each iteration of C consumes correspondingly lower execution time when the

loop-count is high, and vice versa when the loop-count is low, leading to a constant execution

time for the loop across all invocations of B. A similar situation can occur without loops if

B invokes C inside a very infrequently executed branch.

Despite the limitation described above, the profile analysis technique is excellent for

eliminating unlikely contributors of variance. Therefore, the correct way to interpret the

produced patterns is to think of them as highly likely contributors of variance. This imme-

diately allows the programmer to narrowly focus on very limited parts of the application in

order to identify the causes of violations to the soft-real-time requirements. The program-

mer would, of course, have to examine relative invocation counts along a given pattern’s call

chain to infer how far up the call chain an innermost function is likely to be contributing

variance.

8.4 Experimental Evaluation

Our statistical profile analysis tool has been written in python. We did not use any high-

performance numerical or scientific libraries (such as NumPy, SciPy) in the python im-

plementation. We profile instrumented a number of applications in the MediaBench II

Video suite and a real-time object-recognition benchmark (mimas-findTux) from the Mi-

mas computer-vision application-suite [86]. We generate profile data (a sequence of profile

events) for each benchmark using the input data sets provided with the benchmark suites, or
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some larger external data sets if the profiles are too short. Specifically, we use two different

input data sets for each benchmark, referred to as D1 and D2.

First, we run profile analysis on D1 to create patterns. Then, we use D2 with the

regression run to validate the statistics of the patterns found previously. The regression run

simulates the application call stack using the profile events. No CCT is constructed and

no analysis is performed during the regression run. We use a generic finite-state-machine

sequence-detector to detect the occurrence of the patterns at the top-of-the-stack. Such a

sequence detector needs to check the call stack for the possible occurrence of every pattern

on every profile event. This is the cause of the significant slow-down seen in Table 8.1 in the

pass times for the regression runs compared to the profile runs. We would like to emphasize

that the profile-analysis time consists entirely of the time to read and parse the profile-data

file from disk. All of the actual analysis combined (variance tagging, minimum call-context

detection, PSTs, etc.) consumes a fraction of a second.

Table 8.1 shows the length of the D1 profile (in terms of the number of entry / exit

events) used to generate the patterns, the number of high-variance patterns found, and the

length of the D2 profile used during regression to simulate the real-world execution of an

application. The pass time refers to the duration of time needed to complete profile analysis

or regression.

Table 8.1: Attributes of the MDCC patterns for our benchmarks.

Benchmark Profiling on D1: Pat. Generation Regression on D2

# of Pass time # of Pattern # of Pass time Pattern Pat. set
steps (seconds) patterns set size steps (seconds) set size overlap

H.263enc 30000000 397 9 7 60000000 1245 7 100%

H.263dec 25000000 341 30 5 60000000 2194 6 100%

findTux 30000000 402 60 3 40000000 2833 3 100%

mpeg2enc 30000000 387 44 5 60000000 2943 5 100%

mpeg2dec 30000000 402 20 5 60000000 1657 5 80%

Clearly, during regression the input data set is different, which will lead to corresponding

changes in the call chains invoked, their invocation counts, and their variant behaviors.

However, in our validation we strive to demonstrate that the patterns capture the statistical
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behavior of the application at a more fundamental level, which tends to remain relatively

constant across different data sets. In order to demonstrate this, we introduce the notion

of a pattern set both for profiling and regression. We define the pattern set to consist of a

subset of patterns that are found to be the most impactful as measured by their variability

impact metric (VIM). Specifically, we limit the pattern set to only those patterns whose VIM

is at least 10% of the VIM of the pattern with the highest VIM. The pattern set is constructed

separately for profiling and regression, leading to the construction of two potentially disjoint

sets. Table 8.1 shows that in fact the regression pattern set very closely mirrors the profiling

pattern set (pattern set overlap column). This implies that the same set of patterns that

were found to be the most impactful during profiling tend to remain the most impactful

during regression as well. The pattern set spans an order-of-magnitude of the largest VIM

values (i.e., 10×). We chose to define the pattern set as such because we expect the data-

set-induced variations to cause relative fluctuations in the pattern statistics across data

sets. These fluctuations are a result of the changes in the length of the data (number of

events) and the type of the data (for example, encoding video with a constant background

versus a moving background, different frame-dimensions, etc.). Despite these variations

in the characteristics of the input data, the most impactful patterns found on D1 tend to

remain the most impactful on D2 as well, validating our intuition that our patterns capture

variant behavior in a statistically-sound manner. In mpeg2dec, the VIM of one pattern was

just slightly smaller during regression causing it to be dropped from the regression pattern

set. Similarly, a pattern that had barely missed inclusion in the profiling pattern set got

included in the regression pattern set. However, both these patterns have similar VIMs (in

the order-of-magnitude sense). Therefore, despite a pattern set overlap of only 80%, this

result also shows that profiling and regression pattern sets match closely for mpeg2dec. In

H.263dec, there was a pattern that barely missed inclusion in the profiling pattern set, but

got included in the regression pattern set.

Figure 8.6 shows the distribution of the mean and CoV values for all the patterns

discovered, on a per-benchmark basis. For each benchmark, the left side in the scatter

plot shows the distribution found during profiling (on D1), and the right side shows during
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regression (on D2). No VIM-based distinction is made between patterns; the least varying

pattern with low invocation count is given a point just like the most impactful pattern.

For every benchmark, the distributions for profiling and regression are very similar, except

for a uniform linear shift and a uniform scaling of one distribution with respect to the

other. When we look at Figure 8.7, plotted using only the patterns in the profiling and

regression pattern sets, we again see a close similarity between the profiling and regression

distributions, indicating that the dominant patterns are fundamentally associated with the

application behavior, regardless of data sets. For example, encoding raw video with a

larger frame-image size quadratically increases the mean and possibly the CoV of a motion-

estimation pattern, but motion-estimation remains dominant independent of the frame-

image size.

The following is representative across the benchmarks of the compaction of information

achieved in going from raw profile data to the final profile results: 800MB to 1.3 GB of

raw profile-event data reduced to a CCT with 600 to 800 nodes, out of which 200 to 350

nodes were found significant, out of which 16 to 116 nodes were tagged high-variant, which

were grouped down to 9 to 60 patterns with identical contexts and similar means and CoVs

(using pattern-similarity trees), finally out of which 3 to 7 were dominant patterns (the

pattern set).
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Figure 8.6: Mean and CoV scatter-plots comparing the profiling D1 and regression D2 data
sets, constructed using all the patterns.
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Figure 8.7: Mean and CoV scatter-plots comparing the profiling D1 and regression D2 data
sets, constructed using just the pattern set.
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8.4.1 Case Study: H.263enc

Figure 8.8 shows the profiling pattern set for the H.263enc benchmark, sorted from the

most impactful to the least. The VIM found for each pattern is shown for the profiling

and regression phases. Function names are shown in boxes, and the edge-annotations give

the lexical-id (lexical position) of the call site of the callee (sink of arrow) within the

body of the caller (source of arrow). The italicized number on top of each box gives the

number of times the corresponding function was invoked as part of the pattern. A pattern’s

invocation count corresponds to the invocation count of the function in the left-most box.

This is the innermost function of the pattern, and the entire pattern occurs only when

the entire call-chain segment occurs on the stack. Therefore, the invocation count of the

innermost function is the invocation count of the pattern.

The patterns in Figure 8.8 were automatically discovered by the profile analysis frame-

work with no guidance from the user, and no application or domain knowledge. Yet, these

patterns closely mirror conventional wisdom about the parts of video-encoding applications

that are the most important with regards to meeting or violating soft-real-time require-

ments. Motion-estimation related macroblock search-spaces are known to be the most

variant parts of video encoding [87], since the search space can be quite large and it is hard

to know up front how quickly the search will terminate.
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Figure 8.8: Pattern set for H.263enc.

Note that the middle three patterns and the bottom three patterns are identical except

for a difference in lexical-ids. In both cases, the multiple identical patterns have very

similar statistical characteristics (VIMs and also from their positions in the scatter plots).

These could have been combined into a single pattern in both cases, but our analysis

framework distinguishes based on lexical-ids within patterns. The downside here is

having three patterns where one would suffice, but in general this produces greater resolving

power between identical call chains whose behavior varies between call sites, such as with

mpeg2enc.
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CHAPTER IX

DOMINANT VARIANCE ANALYSIS

9.1 Introduction

One aspect that is not covered by existing profiling techniques is the characterization of the

variation in execution time exhibited by components in the application. The benefits of such

characterization include determining whether an interactive application can be expected to

be responsive and detecting if a security application is vulnerable to timing attacks that

guess the underlying dynamic control-flow based on the observed variations in its execution

time to crack the secret key [88, 89].

Analyzing variance allows long-range relations to be revealed between functions not

close together in the program graph whose behavior varies in synchrony. Further, analyzing

variance rather than hot-spots reveals the functions where highly data dependent processing

takes place, a problem difficult to solve using static or dynamic analysis.

Ultimately, we would like to identify groups of functions whose variant behaviors are

related, and identify the dominant modes of behavior exhibited collectively by each group.

In particular, we would like to quantify relationships between the functions where high

variance is observed and the other functions that are the principal underlying causes of

the observed high variance, exposing the variance contribution structure of the application.

The overarching intent here is to provide application-wide summarization of the variant

behavior, including cause-effect relationships. Using the generated summary representation,

we show how a simple performance model can be derived and used in a controller to realize

soft-real-time properties of an application.

9.1.1 Overall scheme and Contributions

In this work we propose a profile analysis framework that elicits dominant patterns of execu-

tion variance that are stable across different execution runs. First we profile the application,
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constructing a Call-Context Tree (CCT) [83] where the nodes collect per-function profil-

ing data. Once the CCT is constructed, we identify instances of highly variant functions

and explore their underlying causes within the CCT structure. We extract the relevant

structure and function relationships from the CCT into our proposed Variance Characteri-

zation Graph (VCG) representation. Once in the VCG representation, we perform further

statistical analysis to distill the dominant patterns of behavior and trim out statistically

insignificant behavior, presenting the user with a succinct representation of the application’s

variant behavior and the functions that are its underlying cause.

9.1.2 Contributions

This work makes the following contributions:

• We motivate the optimization potential offered by the characterization of variant

behavior in an application’s functions.

• We propose a program representation, the Variance Characterization Graph (VCG),

that succinctly captures the dominant variant behavior exhibited by the application.

• The VCG representation allows the programmer to easily and unambiguously map

observed behavior both to the lexical code locations in the program and to the dynamic

call structure of the application.

• We show how the variance metric, specific properties of the dynamic call structure of

an application and statistical clustering techniques are used to construct a VCG rep-

resentation that is statistically stable and provides meaningful results across different

data-sets and profiling runs.

• We show how a simple performance model can be quickly devised from VCG and em-

bed controllers into applications to improve the application soft-real-time properties.

The rest of the chapter is organized as follows. We first discuss variance and the factors to be

considered when exposing the variance contribution structure of the application. Then we

discuss the role of context sensitivity in our dominant variance analysis. This is followed by a
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description of the VCG representation and the algorithms that generate dominant patterns.

Finally, we present evaluations of the VCG representation and the derived controller.

9.2 Variance and its Underlying Source

Our goal is to examine the statistical behavior of the execution times of functions and co-

relate them. We first introduce some terms and naming conventions. In Listing 9.1, the

functions are arranged in the lexical order G1 to Gk within the body of F .

Listing 9.1: Example function F

void F( int R, int T) {

G1 ( ) ;

. . .

i f ( . . . )

G2 ( ) ;

for ( i = 0 ; i < R; i++) {

G3 ( ) ;

S ; // l o c a l code

i f (T >= 0)

G4 ( ) ;

else

G5 ( ) ;

}

}
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void G1 ( . . . ) {

A1 ( ) ;

SS ; // l o c a l code

A2 ( ) ;

}

void G3 ( . . . ) {

B1 ( ) ;

SSS ; // l o c a l code

B2 ( ) ;

}

void G2 ( . . . ) {

i f ( . . . )

D1 ( ) ;

while ( . . . )

D2 ( ) ;

}

void D1 ( . . . ) {

P ( ) ;

}

void D2 ( . . . ) {

Q( ) ;

}

Let random variable X represent the execution time of any single invocation of F . Let

r.v. Yi represent the cumulative execution time of Gi within a single invocation of F . Let

r.v. Y0 represent the local execution time of F , that is the execution time of F not spent

inside any children calls Gi. Therefore, the following must hold between the observed

values of X and Yi’s for any given invocation of F :

X =
k∑
i=0

Yi (71)

Let X̄ = E[X] represent the mean execution time of F over N invocations of F . Let

σ2
X = E[(X−X̄)2] represent the variance in the execution time of F over these invocations.

Let C represent the covariance matrix between the random variables Y0 to Yk observed

over these invocations.

C is a (k + 1) × (k + 1) dimensional matrix, with Ci,j = E[(Yi − Ȳi)(Yj − Ȳj)], again

with the expectation computed over the N invocations of F . A covariance matrix is always

symmetric, i.e., Ci,j = Cj,i, ∀ i, j.
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Since X is a sum over Yi, the following holds:

σ2
X =

k∑
i=0

k∑
j=0

Ci,j (72)

=
∑
i

Ci,i + 2 ∗

∑
i<j

Ci,j


(self terms) (cross terms)

Here we make no assumptions about the correlation between any Yi and Yj . Using Eq 72,

the self-terms, Ci,i = E[(Yi − Ȳi)2] may indicate whether the invocations of Gi within F

contribute significantly to σ2
X . For example, in Listing 9.1, if F is invoked N times with very

different values for parameter R, Y3 will show significant variation over the N invocations

of F , causing C3,3 to have a large positive value.

In addition, cross-terms are also important when determining the overall contributions

of the invoked functions. For example, if F is invoked with both positive and negative

values for parameter T , then both Y4 and Y5 will show significant variation, resulting in

large positive C4,4 and C5,5 terms. However, the cross-terms C4,5 = C5,4 will have large-

magnitude negative values, indicating a strong negative correlation and canceling out each

other. Therefore, in order to determine which Gi’s are the major causes of the variance in

F , it is not sufficient to just determine if the corresponding Ci,i terms contribute significantly

to σ2
X , but also need to examine if other Gj’s are diminishing or enhancing the contribution

through Ci,j terms.

Let us explicitly label the metrics to identify what function they correspond to — X̄F ,

σ2
XF and CF for F , and X̄G1 , σ2

XG1
and CG1 for G1. Our interest in studying the variant

behavior of a function F is to determine if other functions are the root underlying source of

the variance in F .

Consider the following scenarios:

• Variations in G1’s execution time may actually reflect the variations in A1’s execution

time, making G1 simply a transmitter of A1’s variance to F . A1 would then be the

underlying source of F ’s variance, even though F does not invoke it directly. Further
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analysis may reveal that A1 itself is merely a transmitter of variance originating further

down the call-chain.

• Alternatively, the local code statements denoted by SS may be causing G1’s behavior

to be variant, with A1 and A2 only playing a minor role. This would establish G1

itself as an underlying origin of F ’s variance.

• Another alternative is that none of SS, A1 and A2 have large variances of their own.

But if their behavior varies in synchrony, then their limited variance gets amplified.

Again, this would establish G1 as a root underlying source of F ’s variance.

To determine which of the above three scenarios apply, we use the fact that CF1,1 = σ2
XG1

(by definition), and directly compare the values of the CG1
i,j terms against σ2

XF . This lets

us determine if {A1}, {A2} or {A1, A2} could replace G1 as a significant contributor of

variance to F .

Unlike G1, G3 is called within a loop in F. Due to the loop, unfortunately, the availability

of the CG3
i,j terms does not permit a similar analysis to be possible for determining if B1

or B2 are the underlying sources of F ’s variance, with G3 merely being the transmitter.

The primary impediment is that a relation between CF3,3 and σ2
XG3

cannot be established in

general. We can get around this limitation by treating the body of G3 as implicitly inlined

into F . Then B1 and B2 will directly get terms in the CF matrix instead of terms for G3.

The effect of the SSS block of statements would be absorbed into the Y F
0 variable. In theory,

we could recursively inline any of the Gi functions to any depth in order to determine the

underlying sources of variance despite the presence of loops and conditionals around call-

sites. However, each additional depth of inlining the call-chains originating at Gi requires

the corresponding C matrix to be reconstructed, requiring a fresh pass over the profiling

data. Additionally, the size and cost of constructing CF grows as a square of the number

of leaf call-sites in F after inlining. For any given F , the large number of combinations

(for each depth, along multiple call-chains originating under F ), and the growing cost of

constructing CF for each combination precludes an exhaustive examination of possibilities

via inlining. Instead, we rely on heuristics. For example, is the total execution time of the
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next level inlined-function too small compared to F to contribute much variance? Is there

a sufficient number of inline candidates identified across the CCT to make another profiling

pass worthwhile?

If F has been implicitly inlined along various call-chains to depths where its body now

contains call-sites for functions A1, A2, ..., Ai, ..., we need following modifications to C.

• Variable Y F |Ai refers to the cumulative execution time spent in Ai during a given

invocation of F . This is analogous to Yi referring to the cumulative execution time of

immediate call-site Gi.

• CF |A1,A2,... refers to CF that has been modified to remove terms for the Gi’s that

have been inlined away, and has new entries added for A1, A2, .... That is, the new

Y F |Ai variables get entries alongside the remaining Yj ’s.

• C
F |A1,A2,...
i,j refers to terms between an unaffected Yi and Yj , i.e., it’s the same as CF

i,j .

However, C
F |A1,A2,...
Ai,j

, C
F |A1,A2,...
i,Aj

, and C
F |A1,A2,...
Ai,Aj

refer to new terms between Y F |Ai

and Yj , between Yi and Y F |Aj , and between Y F |Ai and Y F |Aj , respectively.

9.2.1 Classifying Variance

We use Chebyshev’s inequality [85], given below, to determine if a function F ’s behavior can

be considered highly variant over its N invocations. Chebyshev’s inequality establishes

conservative probability bounds on the statistics of a given collection of data samples while

making no assumptions about the underlying probability distribution that generated the data.

Pr(|X − X̄| ≥ tσ) ≤ 1

t2
(73)

We define a node in the CCT to be high-variant if its execution time cannot be guar-

anteed to lie within 200% of its mean with at least 96% probability. This implies 1
t2

=

1−0.96 = 0.04 and tσ = 2×X̄. Therefore
σ

X̄
≥ 0.4 becomes the condition for high-variance.

Consequently, we use the Coefficient-of-Variability metric for classifying the variant nature

of nodes: CoV =
σ

X̄
. Similarly, a CCT node is labeled low-variant if its execution time lies

within 10% of its mean with at least 96% probability, with the test CoV ≤ 0.01. Note that
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the variance characterization of CCT nodes is done based on the final profile statistics after

the CCT has been fully constructed, not progressively as samples are collected.

9.3 Context Sensitivity of Behavior

In many parts of a program, behavior may be determined largely by the data or parameters

passed from the calling context. We would like VCG to distinguish the variant behavior

of a function if it differs based on the calling context. Otherwise, we would like VCG to

provide the most succinct representation of a function’s behavior possible. Context-sensitive

analysis offers several benefits, including: specialization of functionality to context, either

by the programmer or the compiler (code version selection [90]); detecting behavioral bugs

(such as real-time deadline violations) that predominantly show up in some contexts of

invocation of function F and not in others.

A context-aware analysis scheme would determine i) whether context affects behavior,

ii) what aspects of the context affect behavior, and iii) how does behavior differ across

contexts. Once the differing behaviors are identified for a function F of interest, we use

the notion of Minimal Distinguishing Call-Chain Context (MDCC) [81, 82] to succinctly

distinguish the occurrence of one type of F ’s behavior from another in the program call-

graph. For now, consider a VCG pattern to be simply a tree of VCG nodes. Each VCG

node n in a VCG pattern P will have associated with it a set of MDCCs, called the Call-

Context Set for n, denoted CCS(P, n), which identify the calling context under which

the behavior of n in P is expected to occur. CCS(P ) consists of MDCCs for the root

node of P , with the MDCCs needing to distinguish across all other VCG patterns which

have the same function F in their root node. In contrast, an internal VCG node n only

needs to distinguish itself from its siblings under their common parent VCG node, and the

VCG tree structure often suffices for such disambiguation, typically making the CCS(P, n)

information unnecessary for disambiguating between internal nodes. Further, CCS(P )

contains only the shortest call-chain segments needed to distinguish against other patterns

P2, P3, . . . rooted on the same function. We use the MDCC-construction algorithms from

[81, 82] to construct CCS(P ) and CCS(P, n). The next section illustrates call-context sets.
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void H(){
  L(…);   //lexical site [0] L1
  K(…);   //lexical site [1]
  J(…);   //lexical site [2]
  for(… i<Num …)
    L(…); //lexical site [3] L2
  U(…);   //lexical site [4]
}

void L(…) {
  If (…) {
    if (…)
      A(…);    //lexical site [0]
    else
      D(…);    //lexical site [1]
  }
  else N(…); //lexical site [2]
}

U

V

W

η λ

λ/

λ//

θ

Figure 9.1: Example function H and its annotated CCT.

9.4 Constructing VCG from CCT

Figure 9.1 shows a subtree of the application CCT under a function H. Nodes with identical

names differ in terms of the call-chain used to invoke them under H. Henceforth, let Fi be

used to label the nodes for the same function F . We will now use NFi , X̄Fi , σ2
XFi

, CFi and

CoV Fi to refer to metrics on the corresponding node instances of F , and similarly for node

instances of other functions.

The nodes annotated with Greek letters represent the occurrences of high-variant be-

havior. Whenever a function F has nodes exhibiting high variance (F1, F2, F3 and F4), it

becomes important to contrast against the occurrences of low-variance behavior of the same

function F (F5) because it is crucial for inferring the unique circumstances under which

each behavior occurs. Here, each greek letter identifies a distinct type of high-variant

behavior, which is determined by comparing the
(
X̄, CoV

)
tuples for the corresponding

nodes. All occurrences of low-variant behavior are annotated with lv. Functions that

never exhibit high-variant behavior do not need their node instances distinguished for the

purpose of variance analysis. Hence, their CCT nodes are not shown with subscript indices

(A, B, M , etc.).
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H[3]-L {[3]}

H[3]-L[2]-F {[0]-N[0]-C[0]}
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[4]

W

λ// Behavior

H[4]-U {[4]}

θ Behavior

U

V

[0] λ Behavior

λ/ Behavior[0]

H[4]-U[0]-V {[0]}

H[4]-U[0]-V[0]-W {[0]}

0.50
0.70

Figure 9.2: A VCG Pattern and its CCS representing variant behavior under H.

While CCT provides a representation that predicts the expected behavior of functions

based on the call-chain, a few challenges from the point of view of facilitating program

understanding become evident:

• How to preserve structural relationships? The CCT does not reveal any

relationships between the behaviors of a group of functions. For example, it is not

evident from the CCT that F exhibits behavior α when invoked under L exhibiting

behavior γ, and F exhibits lv when invoked under L exhibiting lv.

• How to eliminate/minimize redundant information? The majority of the

space in the CCT is occupied by long call-chain that do not themselves describe

behavior. In fact, the behaviors of F can be simply distinguished using L1, L2, K

and J in this example, with the added advantage of distinguishing the behavior closer

to its cause (i.e., knowing which of L1, L2, K or J is invoked will determine F ’s

behavior).

We propose the Variance Characterization Graph (VCG) representation to meet these

challenges. Figure 9.2 shows the VCG representation of the variant behavior under H in

a single VCG pattern. In general, there would be multiple VCG patterns extracted from

the CCT of a program. The behavior α of CCT nodes F1 and F2 gets summarized into

a single VCG node. The two lexical instances of L (on edges tagged [0] and [3] under

H) along with J and the absence of K distinguish the spectrum of F ’s behavior. At the

same time, the variant behavior of J and L is also fully characterized. The CCS for each
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VCG node is shown. For internal VCG nodes a CCS only gives the call-chain paths to the

VCG node from its parent VCG node. Each VCG node is tagged with its corresponding

behavior. It is worth noting that i) only those functions that show variant behavior in at

least some instances show up as VCG nodes (let’s refer to them as used functions); ii) there

is little to no loss in the ability to locate every distinct behavior for each used function in

the VCG tree. The location of behavior is implicitly disambiguated by the tree structure

itself, with a need to examine CCSs of children nodes only if a VCG node has more than

one identically-named immediate-children VCG nodes exposing distinct behaviors.

Since VCG retains call-structure, we can now superimpose long-range variance contri-

bution relationships over this structure. In Figure 9.1, let’s say that the analysis described

in Section 9.2 determined the lv L and W as the underlying sources of variance for H. This

creates H  L and H  U  V  W as linear variance-contributing segments (or linear

segments for short) in the VCG (Figure 9.2). The head of the linear segments, H, is the

target high-variant node to which variance is being contributed by the source nodes L and

W of the respective linear segments. The nodes internal to the linear segment (U and V )

are merely the transmitters of underlying variance. Even a low-variant L may contribute

variance to H, say if it is invoked inside a loop with a loop-count that varies over invocations

of H. Strictly speaking, the source of the variance is the enclosing loop-block rather than

L, but we make a design decision to restrict our analysis and the VCG representation to

just functions for tractability dashed back-edges from L to H and W to H graphically cap-

ture the variance contribution relationships corresponding to the two linear segments and

demarcate their spans. The L→ H back edge is annotated with the variance contribution

fraction cf = 0.50, and the back edge W → H with cf = 0.70. cf captures how much of

the target’s variance (i.e., H’s) is contributed by the source of the back edge (i.e., L and

W ). Formally, cf ← C
H|W
W,W /σ

2
H for the W → H back edge. Note that cf may exceed 1

and the sum of cf ’s from multiple back edges to H may exceed 1. This is possible because

of potential negatively correlated variant behavior under H (e.g., out-of-phase variations in

invocations of L and U).
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Scope of a VCG Pattern. The single VCG pattern shown in Figure 9.2 could con-

ceivably have been multiple VCG patterns — one for H, one each for F with α, β and lv

behaviors, one each for L with γ and lv behaviors, and so on. However, when the specific

behaviors observed occur under the call-context of H, constructing the larger pattern re-

tains the context. Note that without the context of H, the three instances of α behavior

in the CCT (F1, F2 and F4) could have been merged into a single VCG pattern. However,

due to the need to capture the variant CCT nodes L1 and J under H’s context, the pattern

could only merge F1 and F2. Additionally, the presence of linear segments also dictates the

scope of a pattern (retain W under H).

ALGORITHM: Extract VCG patterns from CCT. After profiling, the CoV test

is used to tag CCT nodes as high variant or low variant, ignoring nodes with too few

invocations for statistical significance (default, < 6) or contributing an insignificant fraction

of the program execution time (default, < 0.02%). If a function F is used, i.e., at least one

CCT node for F is tagged high variant, then all significant nodes of F (i.e., with ≥ 0.02%

of program execution time) must also be extracted, and tagged as either low variant (if

indicated by the CoV test) or as contrast otherwise. Variance contributions of underlying

nodes to their ancestor CCT nodes are examined, possibly invoking additional profiling

passes to reconstruct the C matrices after each level of implicit inlining. Finally a pre-order

traversal of the CCT extracts the initial set of VCG patterns — finding a tagged node

starts a VCG pattern, and the VCG pattern extends to descendant nodes if they contribute

significant variance to an ancestor VCG node in the same pattern (either directly or through

a linear segment marked in the CCT).

9.5 VCG Pattern

Here we summarize the semantics of a VCG pattern in terms of what it represents and what

can be inferred from it.

Tree Structure and Call-Context-Sets. A VCG pattern consists of a tree structure

with annotated back-edges. The nodes represent functions invoked in the dynamic call
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structure of the application. A forward-edge establishes context : the function-call for the

child VCG node was invoked during the execution of the function-call for the parent VCG

node. The child function-call may have been invoked indirectly by the parent via a long chain

of intermediate calls that have been omitted from the VCG (unused functions, Section 9.4).

Each VCG node has an associated Call-Context-Set (CCS) providing the call-chain path-

segments to the node’s function-call from the parent VCG node’s function-call. The node’s

CCS helps disambiguate the specific call-chain contexts under which the behavior associated

with the node occurs (though usually the VCG tree structure itself sufficiently disambiguates

context). The CCS for the root VCG node consists of MDCC segments to disambiguate

under main the function-call paths to the VCG pattern.

Contribution Structure. A back-edge b establishes variance contribution, indicating

that the source node is the root underlying cause of the execution-time variance observed

in the target node. The zero or more nodes along the forward-edges from the target to the

source of b (the linear segment of b) are the transmitters of the source’s variance to the

target.

Node Properties. Each VCG node can be one of three node types: Task, Contributor or

Contrast. A Task is a node at which high-variant behavior is principally observed, rather

than just being a transmitter of variance to an ancestor Task. A Task F may or may not

have a back-edge to another Task J which is F ’s ancestor in P . A Contributor is a non-high-

variant node that is nonetheless the underlying source of variance to an ancestor Task J via

a back-edge. A Contrast node for F is a non-high-variant node that is not a Contributor.

The purpose of a Contrast node is to i) help isolate the specific call-contexts under which

F is high-variant, and ii) capture the range of behavior possible for F . Each VCG node

maintains invoke count, mean and variance statistics.

Contribution Properties. A Task node may have incoming variance contribution back

edges. A back edge is annotated with statistics extracted from the appropriate term in C

to capture what fraction of the target node’s variance is being contributed by the source of
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the back edge, referred to as the contribution fraction.

9.6 Dominant Behavior

The CCT is constructed with main as the root node. Therefore, the analysis described

in Section 9.4 will find a forest of VCG patterns, as main itself is invoked only once and

therefore invariant. In our experiments, the number of patterns detected in the CCT could

range from a few dozen to several hundred. Some patterns may have a VCG node F

that exhibits unusually high variance (i.e., large CoV F ), or F has an unusually large total

execution time over the NF invocations in the node (called weight WF , where WF =

NF ∗ X̄F ). Either one of these characteristics makes this node dominant, and makes it

important that the containing pattern P be presented prominently in the analysis results.

It is possible to have multiple patterns P1, P2, ..., PT with identical structure, such that F

is not dominant in any of them. But the behavior of F becomes dominant if all of these

structurally identical patterns are considered collectively, called common recurring pattern

of behavior. Therefore, we need to be able to distill the dominance of recurrent behavior

from across the application’s CCT. We distill dominance by merging identical VCG patterns

and creating a higher-level VCG pattern that retains the same structure while accumulating

the statistics of the individual lower-level VCG patterns P1, P2, ..., PT .

Summarization. In general, the desire to summarize information into as few patterns

as possible needs to be counter-balanced with a need to preserve the distinctiveness of be-

haviors. We refer to this as the summarization vs precision tradeoff. To allow for maximal

summarization, we need the ability to merge patterns that are just similar rather than iden-

tical in structure and corresponding metrics. When considering two patterns for merging,

differences can arise at multiple points between them: i) a subtree present in one may be

absent in the second, ii) the statistics associated with corresponding nodes in the two pat-

terns may differ, and iii) the variance contributed by corresponding linear segments may

differ. We take a weighted sum of these differences, and construct a single scalar merge-cost

which encompasses all these factors. The merge-cost is compared against a threshold de-

rived from the summarization-pressure to determine if the given two patterns are merged.
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However, there are certain structural conditions that must be satisfied for a merger to

be even considered. The conditions check whether the two patterns are structurally com-

patible (as opposed to identical) both in the tree structure that provides context, and in

the contribution structure imposed on the tree structure (the linear segments, identified

by the back-edges). When the compatibility conditions are satisfied, the resulting merged

pattern meaningfully summarizes the combined behavior over the two patterns, including

over subtrees that are present in only one lower-level pattern.

The summarization vs precision tradeoff is best served if the analysis achieves the max-

imum precision possible under any given setting of a summarization-pressure param-

eter, τS . We choose to use hierarchical agglomerative clustering [91] as the technique for

merging patterns and distilling dominant behavior. Hierarchical agglomerative clustering

treats each pattern as a point. The distance between every pair of points is computed (we

use the merge-cost as the distance measure). A pair of points a and b with the smallest

distance da,b are merged, provided da,b ≤ τS . This consumes points a and b and produces

a new point m as a result of the merger. Other unconsumed points c and d can then be

similarly merged in the order of smallest distance. This process consumes a layer of points

and produces a new layer of points. Every pair of points in the last layer is either incom-

patible (based on the compatibility conditions for merging two patterns) or the merge-cost

exceeds τS .

Prioritization and Trimming. The patterns in the final layer are subsequently priori-

tized and trimmed. Prioritization sorts the patterns in the order of their dominance, where

a pattern’s dominance is computed as a sum of the root node’s dominance and the recur-

sive dominance of the subtrees. Prioritization presents the most important patterns first

to the user. The next step of trimming is optional and eliminates entire patterns, or sub-

trees within patterns, that are substantially less dominant compared to the ones retained.

We use the Variance Impact Metric introduced by Kumar et al. [82] (VIM , σN for a

Task node, = 0 for other node types) as a node’s dominance, computed recursively for a

pattern/subpattern as described above. A trim-threshold parameter 0.0 ≤ β < 1.0
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eliminates patterns (and its subpatterns) whose VIM is less than β times the VIM of the

highest-VIM pattern/subpattern at that level, and, whose weight is less than β times the

weight of the highest-weight pattern/subpattern at that level. The weight condition ensures

that important low-variant patterns/subpatterns are retained for contrast.

Generality of the Dominant VCG patterns. Summarization, prioritization and trim-

ming make the VCG results robust. If only the most re-inforced and weighty behavior is

presented to the programmer, then chances are good that this behavior derived over a pro-

filing data-set will also be the most dominant behavior that occurs over any future runs

of the application on regression data-sets. Strictly speaking, the exact same metric values

from profiling are unlikely to re-appear during regression (as with any profiling technique).

However, we can expect that essentially the same pattern structures, in essentially the

same order of relative dominance will be found in the regression runs. On the other hand,

disabling or minimizing trimming (setting β ≈ 0) will allow data-set specific behavior to

become apparent. When comparing two sets of untrimmed VCG results generated for data-

sets with differing characteristics, we can expect to find significant structural and ordering

differences in the less dominant VCG patterns. These expectations are borne out by our

experimental validation on real-world applications.

Structural Compatibility. The pattern merge algorithm first attempts to recursively

merge the structure of two VCG patterns P1 and P2 into a candidate merged pattern Pm.

P1 and P2 need not have identical structure: subtrees may exist in one but not in the other,

linear segments may differ. Correspondence between P1 and P2 is established in a pre-order

traversal: corresponding nodes in P1 and P2 are located (if present in both) by examining

both the corresponding VCG trees and the corresponding CCS’s, the corresponding node-

types must match, the merged CCS computed, and the contribution structure merged if not

incompatible. The contribution structure consists of back-edges superimposed on a VCG

pattern’s tree structure. The contribution structure mismatches if the backedges coming

from P1 and P2 create an overlap. Recall that the semantics of a VCG back edge are that

the source node X is the underlying cause of the variance observed in an ancestor node
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Y , and all the nodes between X and Y are merely transmitters of this variance. If P2

introduces a back edge with source as node Z lying between X and Y , the transmitter

semantics for Z in P1’s back edge are violated — the two back edges represent incompatible

behavior. To summarize, a mismatch in either i) the node-types for corresponding nodes

(if present in both patterns), or ii) in the contribution structure, precludes a merge. Note

that alternative techniques, such as approximate graph matching, may be used in place of

our recursive merge algorithm, so long as matching node-types and compatible contribution

structures are somehow ensured.

Merge cost. If patterns P1 and P2 are found to be structurally compatible, a merge-

cost is computed to determine the degree of similarity of the behavior statistics expressed

in the two patterns. The merge cost consists of the following factors — i) the degree of

similarity of the node statistics, and ii) the degree of similarity of the contribution statistics

of corresponding back edges.

The pattern merge-cost is computed progressively as a sum of the node merge-costs in a

pre-order traversal of Pm and normalized by the number of nodes in Pm visited so far. If

the normalized progressive merge cost exceeds the summarization pressure parameter τS at

any point in the pre-order traversal the merge of P1 and P2 into Pm is rejected. Use of a

normalized progressive merge cost allows us to prioritize mismatches near the root of Pm

(recall that the root provides the context under which the subtrees exist), while at the same

time allows average similarity of node statistics to be the ultimate factor determining the

merge.

At a high-variant node n in Pm, the Kolmogorov-Smirnov difference measure D is used

to determine the similarity of behavior of n in P1 and P2. The corresponding means and

standard deviations are used to construct Gaussian distributions for P1.n and P2.n. The

choice of Gaussian is for simplicity to reconstruct the distribution; a more sophisticated

approach would retain more detail about the shape of the distribution rather than just

the mean and standard deviation — for example, a Gaussian Mixture Model. The KS D

209



metric is used because it can compute the degree of dissimilarity between any two prob-

ability distributions without making any assumptions about the nature of the underlying

distributions and is known to be a robust metric in practice. 0.0 ≤ D ≤ 1.0, where D = 0.0

indicates identical distributions, and D = 1.0 maximal dissimilarity (say, between two non-

identical Dirac delta distributions). The merged statistics for Pm.n can be computed using

the invocation counts, means and standard deviations for P1.n and P2.n. Note that the

merged statistics can be computed precisely, that is they are mathematically identical to

re-computing statistics over the combined X samples from P1.n and P2.n. D = 0 is assumed

when merging non-high-variant nodes, as the purpose of such nodes is to contrast against

the behavior of high-variant nodes and identify underlying causes of variance; the behavior

statistics of interest are really those of the high-variant nodes.

Each contribution back-edge b has a contribution-fraction statistic associated with it.

Given the variance of the target node of b, we can calculate the actual variance being

contributed and merge the statistics from P1.b and P2.b (weighed using the invoke-counts

of the target nodes) to determine the merged contribution-fraction. The variance in the

contribution-fractions (weighed by their respective invoke counts) is used a measure of

dissimilarity for merging P1.b and P2.b. For nodes with incoming back-edges, the node

merge-cost is the average of the node statistics D metric and the average contribution-

fraction merge-cost for all incoming back-edges.

Appendix D provides an implementation-level discussion of the merge algorithms and

mathematical details.

9.7 Dominant Variance Analysis

In summary, Dominant Variance Analysis (DVA) consists of the following steps:

Step 1 Profiling and CCT Construction: In our experiments, we use LLVM [84]

to instrument all function-call entries/exits to update dynamic-instruction-count (DIC as

an approximation of execution time), and dump to profile files, as per [82], in the profiling

phase. But in reality, our analysis framework works with any profiling and CCT construction

methodology. The additional annotations needed by our analysis (mean, variance, etc.)

210



are straightforward to incorporate in any CCT construction scheme. Once the CCT is

constructed, high-variant nodes are identified based on the CoV test in Section 9.2.1.

Step 2 Identifying long-range underlying sources of variance on CCT: Sec-

tion 9.2 describes how additional profiling passes over the profile sequence allow the identi-

fication of low-level functions that contribute significant variance to functions several levels

up in the CCT.

Step 3 Initial Extraction of VCG patterns: Once the annotated CCT has been

constructed, the node variances characterized and the long-range underlying-contribution

relationships identified, certain CCT nodes get extracted as VCG nodes of types Task,

Contributor and Contrast (Section 9.5). Hierarchy in the CCT leads to the forward tree-

edges in the VCG pattern. Contribution relationships become back edges between relevant

VCG nodes. These initially extracted VCG patterns form the base-layer of VCG patterns

on which further merging will be attempted subsequently.

Step 4 Merging within and across VCG patterns: The algorithms in Section 9.6

attempt merging internally within each base-layer VCG pattern, then perform merging

across the subsequently produced patterns. The summarization pressure parameter τS

controls whether the final VCG results are intended for generality to regression runs (high

τS) or for extracting data-set specific details (low τS).

Step 5 Prioritization and Trimming: Using the VIM metric, the final merged layer

of VCG patterns are sorted in priority-order. The β parameter sets the trimming threshold

to eliminate non-dominant and non-weighty results (Section 9.6). Aggressive trimming

(β ≈ 1.0) will likely leave only the most dominant patterns that generalize best. Low levels

of trimming (β ≈ 0.0) will preserve more details, including “noise” specific to the profiling

data set.

Once the initial VCG patterns have been extracted from the CCT, the user can re-

peatedly invoke Steps 4-5 of the Dominant Variance Analysis with different values for τS

and β to gain different types of understanding about the application. Whereas Steps 1-2

can potentially be very time consuming as they involve scanning the entire profile data set,
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Steps 4-5 can be repeated in less than a second as they work with very sparse information.

9.8 Experimental Evaluation

The emerging importance of interactive media applications on consumer desktops, embed-

ded systems and surveillance was a key motivation towards our developing the Dominant

Variance Analysis. We choose four benchmarks from MediaBench II [70], two video encoders

and two decoders: mpeg2enc, mpeg2dec, h263enc and h263dec; four vision algorithm bench-

marks from San Diego Vision Benchmark Suite [92]: svm, sift, stitch and tracking; one

benchmark from [75], a planar object detector: ferns; and one benchmark from [93], a real-

time face tracker: facetrack. The number of functions these benchmarks have ranges from

89 to 829, and 227 on average. We ran all profile generation experiments and the Dominant

Variance Analysis on an Intel Q6600 system (quad-core) clocked at 2.40GHz with 2GB

of RAM. The input data-sets used for profiling were reference videos (for decoders) and

corresponding decoded raw-image sequences (for encoders).

dolbyrain, hockey1 cif and baikonur r7 over flight are standard videos used to characterize

video codecs. qos is a trailer of the Quantum of Solace action movie transcoded to two res-

olutions (320x240 and 640x480), since pixel-count dramatically affects execution-times [70].

We used between 100–300 frames of the video sequences for profile generation. fullhd, vga,

cif and qcif are data sets shipped along with San Diego Vision Benchmark Suite. mousepad

is a default test video clip for ferns, while epfl is multi-camera pedestrian videos from [94].

adam sandler and al gore are two video clips from YouTube celebrities face tracking and

recognition data set.

All the steps (Section 9.7) of the Dominant Variance Analysis were implemented in

python. Step 1 took between 1400–5800 seconds (over different benchmarks and data-sets).

Step 2 took between 6000–16500 seconds. Steps 3–5 cumulatively consumed less than 1

second since they operated only on the constructed CCT and not on the profile sequence.

We expect Steps 1 and 2 to be substantially faster if implemented in C/C++.

Table 9.1 shows the sizes of the representations at various stages of the analysis, with

different settings of the summarization-pressure parameter τS (over its full range: 0.0–1.0)
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Table 9.1: Number-of-nodes / Number-of-patterns: initially extracted, versus, after merg-
ing on τS without/with trimming

Initially No trimming (β = 0) With trimming (β = 0.1)
CCT Extracted τS τS

Benchmark Data-set size (unmerged) 0.01 0.2 0.4 0.6 0.8 1.0 0.01 0.2 0.4 0.6 0.8 1.0

mpeg2enc
qos320x240 707 78/6 42/5 31/5 25/5 25/5 25/5 25/5 32/1 23/1 17/1 17/1 17/1 17/1
qos640x480 695 74/3 39/3 28/3 21/3 21/3 21/3 21/3 31/1 22/1 17/1 17/1 17/1 17/1
dolbyrain 718 75/3 30/3 29/3 23/3 23/3 23/3 23/3 23/1 23/1 17/1 17/1 17/1 17/1

mpeg2dec
qos320x240 890 400/186 42/11 35/8 35/8 35/8 35/8 35/8 15/4 16/5 16/5 16/5 16/5 16/5
qos640x480 920 407/184 55/12 49/10 49/10 49/10 49/10 49/10 16/4 17/5 17/5 17/5 17/5 17/5
dolbyrain 898 394/181 42/7 41/6 41/6 41/6 41/6 41/6 14/2 15/3 15/3 15/3 15/3 15/3

h263enc
hockey1 cif 747 207/71 50/7 44/5 44/5 44/5 44/5 44/5 6/3 2/1 2/1 2/1 2/1 2/1
baikonur r7 745 45/12 27/9 18/6 18/6 18/6 18/6 18/6 8/4 2/1 2/1 2/1 2/1 2/1

h263dec
hockey1 cif 294 125/52 40/9 35/9 35/9 35/9 35/9 35/9 8/2 8/2 8/2 8/2 8/2 8/2
baikonur r7 296 134/55 51/13 43/13 35/12 35/12 35/12 35/12 22/4 23/4 15/3 15/3 15/3 15/3

ferns
mousepad 676 35/9 35/9 35/9 35/9 35/9 35/9 35/9 6/4 6/4 6/4 6/4 6/4 6/4

epfl 676 35/9 35/9 35/9 35/9 35/9 35/9 35/9 6/4 6/4 6/4 6/4 6/4 6/4

svm
cif 522 35/20 21/6 19/6 19/6 19/6 19/6 19/6 8/1 6/1 6/1 6/1 6/1 6/1
qcif 522 35/20 21/6 19/6 19/6 19/6 19/6 19/6 8/1 6/1 6/1 6/1 6/1 6/1

sift
fullhd 260 16/12 10/7 9/6 9/6 9/6 9/6 9/6 4/2 5/3 5/3 5/3 5/3 5/3
vga 263 14/11 6/4 6/4 6/4 6/4 6/4 6/4 4/2 4/2 4/2 4/2 4/2 4/2

stitch
fullhd 314 8/8 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 2/2 2/2
vga 314 8/8 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 2/2 2/2

tracking
fullhd 522 8/8 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
vga 525 8/8 3/3 3/3 3/3 2/2 2/2 2/2 3/3 3/3 3/3 2/2 2/2 2/2

facetrack
adam sandler 6183 10/2 10/2 10/2 10/2 10/2 10/2 10/2 5/1 5/1 5/1 5/1 5/1 5/1

al gore 6163 10/2 10/2 10/2 10/2 10/2 10/2 10/2 5/1 5/1 5/1 5/1 5/1 5/1

and with trimming enabled and disabled. β = 0.1 performs a relatively non-aggressive

trimming (Section 9.6), only eliminating patterns/sub-patterns at a level that are at least

an order to magnitude (10×) less dominant than the most dominant pattern/sub-pattern

at that level. The constructed CCT is a tree rooted at main with approx. 300–6000 nodes

(across different benchmarks and data-sets). The initial layer of VCG patterns extracted

from the CCT range from 10 nodes in 2 patterns to 407 nodes in 184 patterns. Now consider

the final merged VCG patterns produced. With trimming disabled (under β = 0), only the

summarization pressure can force a reduction in the number of VCG nodes and patterns.

The achievable reduction is limited by the structural compatibility (Section 9.6) which

must be satisfied for merger to be possible, regardless of summarization pressure. τS = 0.01

represents very low summarization pressure (recall, overall merge-cost of two patterns is

the average of all the D difference measures between corresponding nodes/back-edges, and

that 0.0 ≤ D ≤ 1.0). Since τS = 0.01 shows substantial reduction in number of nodes and

patterns for all benchmarks, this suggests that the initial extracted layer of VCG patterns

had a large number of patterns that matched closely in structure and in corresponding

annotated statistics (i.e., behavior). This result demonstrates that the CCT representation

had significant recurrent patterns of behavior that were merged by our analysis to distill the

dominance of the associated recurrent behavior. Under larger τS relatively limited additional
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merger occurs, producing stable VCG results in most cases with τS ≥ 0.2, and in all cases

with τS ≥ 0.4.

The trends discussed with trimming disabled also hold true when trimming is enabled

(under β = 0.1). In addition to the results stabilizing with τS ≥ 0.2 for most cases, and τ ≥

0.4 for all cases, we observe a convergence of the results across different data-sets:

the number of VCG nodes and patterns becomes almost identical under any fixed setting

of τS ≥ 0.2 (compare the rows of results for same benchmark over different data-sets, under

trimming enabled; discrepancy for h263dec is explained later). Therefore, we see stability

moving across the rows and convergence moving along columns for a given benchmark.

We also find that under stability the resulting VCG graphs are identical in structure and

statistics. This is expected since all results in a row of the table are constructed from the

same profile sequence, just summarized or trimmed to different extents. On the other hand,

under convergence the structure of the VCG graphs is virtually identical, differing perhaps

with the addition/deletion of one or two nodes and edges. The annotated statistics differ

substantially over different data-sets, but they still produce similar contribution fractions

on corresponding back-edges. This is a more surprising result since the data-sets used

(and hence the profiles produced) were quite different for results in the same column. The

combined effect of stability and convergence is that under even a low trimming (β = 0.1),

all results (over multiple data-sets) for a benchmark with τ ≥ 0.4 are essentially identical in

structure and contribution-back-edge-structure, thereby revealing something fundamental

about an application’s behavior.

9.8.1 Illustrations of VCG Analysis Results

Figure 9.3 shows the VCG for mpeg2enc, consisting of 17 nodes in a single pattern. Boxes

with solid outlines present Task nodes, ovals present Contrast nodes. To ease reference, a

unique id is attached to each VCG node. For example, the root node is motion estimation

with id (0). Further, the VCG reveals what is well-known in literature [70, 95] for mpeg2enc:

motion-estimation is by far the most significant cause of per-frame variability in execution-

time, and this variability occurs due to searching for matching image-blocks in adjacent
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motion_estimation H0L

frame_ME H1L

frame_estimate H2L frame_estimate H6L frame_estimate H10L

fullsearch H3L

dist1 H4L dist1 H5L

fullsearch H7L

dist1 H8L dist1 H9L

fullsearch H11L fullsearch H14L

dist1 H12L dist1 H13L dist1 H15L dist1 H16L

Figure 9.3: VCG for mpeg2enc with: qos640x480, τS = 0.4, β = 0.1.

video-frames (fullsearch nodes). The dist1 function computes a distance measure between

offset image-blocks, performing half-pixel interpolation if needed, and accounts for most

of the variance of the parent fullsearch (seen as contribution back-edges, with contribu-

tion fractions annotated). Examining mpeg2enc’s source code reveals that frame ME has

multiple call-sites for frame estimate, and usually conditionally invokes any one call-site

per invocation of frame ME. This explains frame estimate (2) contributing 129% (i.e,

> 100%) of the variance in frame ME (1), since the different call-sites of frame estimate

also contribute large negative cross-correlation terms (Eq 72).

Figure 9.4 shows mpeg2dec with 15 nodes in 4 patterns, 3 of the patterns being trivial

but sufficiently dominant to avoid being trimmed compared to decode macroblock (0).

Figure 9.5 and Table 9.1 show the extremely dominant variability of MotionEstimation,

and SAD Macroblock within it, leading to all other functions being trimmed out in h263enc.

Figure 9.6 (for h263dec) mainly shows pattern trees for reconstruct (0), the per-frame

reconstruction function, and getblock (6) which performs frame-data-I/O. recv (2) and
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Figure 9.4: VCG for mpeg2dec with: qos320x240, τS = 0.01, β = 0.1.
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N=157722407 V=80.91 ´ 109 SAD_Macroblock H1L
Μ=396.4 Γ=1.29

Figure 9.5: VCG for h263enc with: hockey1 cif τS = 0.2 β = 0.1.

rec4 (3) are examples of Contributor nodes (dashed outlines), which have low CoV but

contribute variance (and large negative cross-correlation terms) to recon comp (1) due to

mutually exclusive conditional invocation. Also, recon comp (1) and (4) subtrees seem to

exhibit very different behaviors. The corresponding call-sites can be disambiguated based

on the Call-Context-Sets (dumped separately). Here (1) and (4) correspond to lexical

call-sites {3} and {4, 5}, respectively, in the body of reconstruct.

Figures 9.7-9.12 show the VCGs for additional benchmarks.

9.8.2 Controller

To demonstrate the utility of VCG, we build a controller to reduce the application’s variance

in execution time by inferring a tight performance model of the source of variance (e.g.,

the root node in the VCG), which centers around the application’s tunable algorithmic

parameters. VCG narrows the search space by orders of magnitude and makes the model

generation efficient, accurate and tractable.

The controller has an offline component and an online component. The offline com-

ponent runs once before deploying the application. It synergistically combines program

analysis and machine learning to build a performance model for the root node function fr

in the application’s VCG, which automatically chooses the features that are the best pre-

dictors of its execution time. To obtain these features, the offline component requires the
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Figure 9.6: VCG for h263dec with: baikonur r7 overflight, τS = 0.4, β = 0.1.

application’s binary P as well as a set of training inputs d1, . . . , dN . Besides performance

models, this component also produces as output an augmented binary Q that tracks in a

lightweight style the values of features needed by the models to predict execution time on

new inputs. We describe the offline component in more detail in Section 9.8.2.1.

The online component runs during the execution of binary Q. It tracks the instrumented

feature values and once any feature value changes, it estimates the execution time of that
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Figure 9.7: VCG for facetrack with: adam sandler τS = 0.2 β = 0.1.

invocation of fr by applying the performance model of that function, provided by the

offline component, on the current feature values. Finally, tuning logic uses these estimates

to decide whether to adjust the values of features that are identified by programmers as

tunable algorithmic parameters based on how much the predicted execution time deviates

from the average execution time seen so far (e.g., 10% as threshold). We describe the online

component in more detail in Section 9.8.2.2.

It is worth noting that the controller construction methods are general enough for any

application friendly to the dominant variance analysis.

9.8.2.1 Offline Component

The high-level idea of offline component is to only instrument functions appearing in the

application’s VCG with features that are potentially good predictors of the execution time

of the root function fr in VCG (Instrumentor), then to profile the instrumented application
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Figure 9.8: VCG for svm with: cif τS = 0.2 β = 0.1.

to collect values of the features and execution times of the function fr on a set of given

inputs (Profiler), and lastly to use machine learning to build a performance model based

on a few features that are the best predictors (Model Generator). We run them twice and

obtain one machine learning model each time: one as initial model and the other as final

model which is derived from the initial model and deployed in the controller. We next

describe each of the above three steps in detail.

To find features that are good predictors, the Instrumentor uses the following five feature

schemes, each of which generates a set of features of a particular kind from the application:

• Branch Counts: This scheme generates two separate features to track the number

of times each conditional branch evaluates to true and false.

• Loop Counts: This scheme generates a separate feature to track the number of times
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Figure 9.9: VCG for ferns with: mousepad τS = 0.2 β = 0.1.
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Figure 9.10: VCG for sift with: fullhd τS = 0.2 β = 0.1.

221
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Figure 9.11: VCG for stitch with: fullhd τS = 0.8 β = 0.1.

fDeepCopy (0) fDeepCopy (1)

Figure 9.12: VCG for tracking with: fullhd τS = 0.2 β = 0.1.

each loop iterates.

• Method Call Counts: This scheme generates a separate feature to track the number

of times each function call is invoked.

• Return Values: This scheme generates a separate feature to track the return value

of each function call site, provided it is of integer type.

• Parameter Values: This scheme generates a separate feature to track each param-

eter value of integer type of each function call site.

All five schemes in the Instrumentor are implemented using LLVM [84] by iterating over

the body of each function appearing in the VCG of that application. More specifically, the

branch counts, loop counts and return values schemes track the cumulative value of each

feature, i.e., they accumulate these values over all executions of the branch, all executions

of the loop and all executions of the call site, respectively, in a particular invocation of

the root function fr in VCG, whereas the parameter values scheme tracks only the most

recent value of each feature. And all the features are re-initialized at the entry of function

fr. Finally, the Instrumentor also injects code at the entry and exit of function fr for the

Profiler to measure the execution time. The application augmented in this way is denoted

by Q′, which is used to produce the initial performance model M ′.

The profiler runs the instrumented application Q′ produced by the Instrumentor on each

of given inputs d1, . . . , dN . Whenever function fr finishes execution, the Profiler records
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the values of all instrumented features v1, . . . , vM as well as its execution time t of this

just finished instance, and outputs a tuple 〈t, v1, . . . , vM 〉. Note that the function fr may

be called multiple times on a single input di, providing multiple data points for the Model

Generator in a single run.

Finally, the Model Generator uses the tuples generated by the Profiler, and builds a per-

formance model for the function fr. This model is a polynomial function that approximates

the execution time of fr in terms of features v1, . . . , vM . An example model is:

0.1 + 0.2v2 − 1.2v2v125 + 0.5v2
125

The model is inferred using the regression algorithm from [96]. Like any regression

algorithm, this algorithm fits as closely as possible the feature values v1, . . . , vM and

execution time t in each tuple output by the Profiler for function fr. In addition, it has

two salient properties suitable for performance prediction: sparsity and non-linearity. The

sparsity property concerns minimizing the number of features selected in the performance

model (e.g., v2 and v125 in the example) which is beneficial for two reasons: i) it prevents

the model from overfitting problems; and ii) the fewer number of features selected, the less

overhead in tracking features in the online component. Finally, the non-linear property

allows nonlinear terms (e.g., v2v125) in the model, allowing to approximate the execution

time more accurately.

Once the initial performance model M ′ is generated, our controller requires program-

mers to partition all the selected features into two categories: i) tunable features, Vtunable

and ii) untunable features, Vuntunable. A feature is deemed as tunable if its value derives

from at least one algorithmic parameter of the application which makes sense to change in

the application’s domain. Such an algorithmic parameter is also called tunable algorith-

mic parameter. Obviously, this step needs human intervention due to requiring domain

knowledge, thus preventing us from automation. However, backward program slicing with

selected features as slicing criteria facilitates the partition and reduces the manual effort.

Therefore we claim it won’t be much effort involved. Let us denote the tunable algorithmic

parameters that correlate to Vtunable as Atunable. Then the final feature set is composed of

223



Vuntunable and Atunable, and a new performance model M with that feature set is generated

in a similar way. Meanwhile, an augmented application Q is produced by the Instrumentor,

which tracks the values of features in final feature set. Finally, the online component utilizes

that information to tune the run-time performance of the instrumented application Q by

changing values of specified tunable algorithmic parameters Atunable.

9.8.2.2 Online Component

The online component is relatively straightforward. It runs as part of the modified appli-

cation binary Q produced by the offline component that tracks the values of features used

in the performance model M of function fr, and invokes tuning logic whenever any feature

value gets updated. Once tuning logic is invoked, it first checks the deviation between

estimated execution time based on current feature values and the average execution time

so far. If the difference gets beyond the threshold, tuning logic makes its best efforts to

adjust the tunable algorithmic parameters, Atunable, to pull back the estimated execution

time within bound.

9.8.2.3 Results

We evaluated the potential benefits of VCG by imposing a controller built out of it on four

soft-real-time applications described in Table 9.2: two encoders from [70], one planar object

detector from [75] and one face tracker from [93]. We deployed controllers to tune online

the execution time of the root functions in VCGs since they are the most significant causes

of the variance in per-frame execution time.

In Table 9.2, the fourth column shows for each application the number of user-defined

functions, total functions (plus library functions) and the functions instrumented for per-

formance model generation w/ and w/o the guidance of VCG. Under the guidance of VCG,,

the number of functions instrumented for model generation reduces dramatically, facilitat-

ing the model generation and increasing the possibility of capturing algorithmic parameters

by the model. The following three columns depict the statistics for performance models:

the number of features selected by the performance model, the total number of features

instrumented initially, the number of data points for training and testing, and whether the
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Table 9.2: Benchmark characteristics and statistics for performance model generation of
all benchmarks.

LOC
# functions # features # data capture

app total
instrumented selected total

train test w/o VCG
w/o VCG w/o VCG w/o VCG

ferns
planar
object

detector
7.1K 458 579 458 2 – 3 2244 62 3500 1000 7 3

mpeg2enc
MPEG-2

video
encoder

7.6K 95 123 95 5 – 2 2323 280 2030 1015 7 3

h263enc
H.263
video

encoder
8.1K 96 122 96 2 – 2 2538 142 3600 2500 7 3

facetrack
face

tracker
2.7K 770 909 770 5 – 2 1455 146 2766 2555 7 3

final model captures the key tunable algorithmic parameters. The tunable parameter for

each application is as follows: maximum iteration number for ferns, and search window size

for the rest. Clearly, VCG captures highly summarized variant patterns in the application,

making the model generation tractable over a large scale of data sets while the blind search

procedure without VCG makes the machine learning algorithm blow up in complexity due

to a huge search space. In addition, it shows the selected regression algorithm minimizes the

number of selected features, suitable for performance prediction. The prediction accuracy

of four performance models are as follows: 88.6% for ferns, 73.4% for mpeg2enc, 92.8% for

h263enc and 97.3% for facetrack.

Table 9.3 shows the root functions in VCGs of three applications, the average execution

time on per frame basis, the execution time span, the variance of the execution time across

all invocations of the root functions, the average rate of change between two consecutive

frames in execution time, and the overhead introduced by the controller. We can easily

find that with the controller, the changing rate of the execution time of the root function

gets smaller, and the variance gets reduced by 14% for ferns, 17% for mpeg2enc, 8% for

h263enc and 9.1% for facetrack. It is worth mentioning that the three metrics (per-

frame execution time, variance and rate) are capturing the aggregated behaviors and thus

more faithful. Finally, negative overhead in most cases indicates that such savings not only

compensate for the cost of controller deployment but provide extra performance gains as

well.
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Table 9.3: Results showing statistics about runtime behavior of root functions in VCGs
exhibiting highly variant execution time on per frame basis.

function
avg per-frame

execution time (ms)
range (ms) variance rate ( dt

dn
) over-

head
w/o controller w/o controller w/o controller w/o controller

ferns estimate H 597.0 553.0 1935 1383 282.6 242.8 0.9 0.8 -3.7%
mpeg2enc motion estimation 7449.6 6947.8 4775 3328 897.8 744.8 10.5 7.4 -6.7%
h263enc MotionEstimation 120.6 118.4 47 44 46.3 42.8 -0.6 -0.6 -1.7%
facetrack Track 42585.1 35978.7 19483 12812 2140.4 1945.0 11.5 7.9 1.9%

9.9 Related Work

Existing application profiling techniques look for program hot-spots and hot-paths [58, 59,

60]. These techniques attempt to find performance bottlenecks in an application, and do

not attempt to characterize patterns of variant behavior. Calder et al. have used statistical

techniques to characterize large scale program behavior using few recurrent intervals of

code [61] and to find phase change points in the dynamic execution of a program [62].

However, their work does not attempt to characterize the variant behavior in terms of the

functional decomposition of the application. In particular, [61] focuses on detecting the

phase change in programs whereas ours focuses on detecting timing variances of functions.

They detect the phase change by noting the differences in basic block vectors in terms

of execution frequencies recorded via sampling over fixed intervals. While such a method

is adequate to detect a “different phase behavior”, it is not sufficient to detect timing

variance in that difference in such basic block vectors and their frequencies may or may

not imply timing variance and vice versa. In addition, [61] is based on the sampling on

the number of instructions, which is unlikely to fall exactly on the boundary of objects

(e.g., function), and thus is never applicable for capturing behaviors of functions. Most

importantly, existing basic-block technique is not sufficient for inferring VCG over basic-

blocks because it does not construct covariance matrices nor maintain difference in behavior

of a given basic-block when its parent is invoked under different call-contexts. Variability

Characterization Curves (VCCs) and Approximate VCCs [65] have been used to characterize

the variability in the workloads of multimedia applications. Such analysis techniques require

domain-specific knowledge of the application before they can be applied. Similarly, there are

custom techniques for improving the QoS of each type of application, such as by Roitzsch

et al. [47] that develop a higher-level representation model of a generic MPEG decoder, and
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based on this predict video-decoding times with high accuracy. In contrast, our framework

characterizes the variant behavior in the application in a completely domain-independent

manner, with no assistance from the user. Perelman et al. [97] introduced Variational

Path Profiling (VPP), that identifies acyclic program paths that exhibit a lot of variability

in execution-time over their multiple invocations. Since the sequence of instructions is

identical for each execution of a given path, variability in execution time is only caused

by architectural or system variabilities, such as cache-misses or interrupts. In contrast,

our work primarily characterizes the variation in functionality corresponding to functions

performing varying levels of computation over their repeated invocations, depending on the

characteristics of the data they are processing. A further contrast is that VPP applies

to acyclic paths, which are typically of limited length. Hence, VPP is fixed in scope of

applicability, whereas our analysis applies to functionality at all levels of hierarchy in the

application, and over all levels of granularity of execution time. Worst-case-execution-time

(WCET) [68] is an analysis methodology applicable to monolithic applications, and has been

incorporated into commercial products such as from AbsInt [69]. However, for non-safety-

critical, compute-intensive applications like gaming and video, knowledge of the likely range

of real-time behavior is more important for driving design optimization than knowledge of

worst-case behavior. The likely range (detected by our technique) can be substantially

removed from the worst case, thereby diminishing the value of characterizing the worst-case

behavior for such applications.

9.10 Conclusion

In this chapter we have illustrated the value of profiling the variant behavior of an appli-

cation. We introduce the VCG representation to readily allow the application-wide variant

behavior of the application to be succinctly represented. We introduce the Dominant Vari-

ance Analysis framework that allows precision-of-results versus summarization-of-results

trade-offs to be readily made by tweaking a single parameter τS . The VCG representa-

tion captures the variant structure of the application that we expect corresponds closely
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to the high-level design of the application. We have showed empirically that the VCG re-

mains stable across different executions. The methods for β-based trimming and τS-based

summarization attempt to distill what is dominant behavior, either observed by itself or

inferred by combining multiple instances of similar behavior. Stability of analysis results

comes naturally from our technique when there are application behaviors that dominate

and we are able to highlight them while suppressing behaviors that are not comparatively

dominant. We have demonstrated that VCG serves as a very useful summarization to build

the controllers for reducing variance. In particular, the use of VCG made the problem of

building models tractable and secondly, the built models allowed reduction in the variance

of the application.
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CHAPTER X

CONCLUSION

In this thesis we showed that meeting the QoS needs of immersive applications, such as

computer gaming, multimedia and computer vision applications, poses difficult challenges

for existing techniques. This thesis identified common characteristics shared by a wide

variety of immersive applications, and showed how these characteristics can be relied upon

to construct new profiling and control techniques that non-expert programmers may easily

apply to their applications.

The proposed profiling technique, dominant variance analysis (DVA), helps the program-

mer understand the dominant patterns of program behavior across all levels of functional

granularity. We define the behavior of application components in terms of their execution-

time variance statistics, as this definition of behavior allows us to easily identify the appli-

cation components most likely to impact QoS without requiring the profiling technique to

have knowledge about the nature of the application and its particular notion of QoS. The

use of variance naturally allows the identification of repeatedly invoked components that

impact, for example, the application frame rate and various image-block processing rates,

as well the identification of components with sensitivity to their input data or their call-

context of invocation. When applied to immersive applications, DVA presents non-expert

programmers with the application components most likely to impact the application QoS,

and the patterns of behavior exhibited by those components. More generally, beyond im-

mersive applications, DVA helps identify application components with sensitivity to their

call-context and their data.

We have proposed two controllers, a very light-weight uni-variate controller, and a much

more compute-intensive multi-variate controller, to allow non-expert programmers to easily

tune the QoS of their immersive applications. The complexity and emergent nature of be-

havior of immersive applications generally makes it infeasible for non-expert programmers
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to provide a priori models of their application’s behavior. Further, immersive applications

often exhibit rapidly time-varying and highly data-set sensitive behavior, that makes it

unlikely that a fixed behavior model could even exist. The lack of offline models and in-

ability to assume the existence of a fixed, albeit unknown, behavior model poses challenges

in the application of existing general-purpose adaptive control techniques. Our proposed

controllers rely on the common properties of immersive applications to make the dynamic

control of application QoS tractable without the availability/assumption of a priori fixed or

parametric models. The performance and robustness properties of the controllers are prob-

abilistic best-effort, reflecting the probabilistic properties that hold true over the highly

time-varying, data-set dependent behavior of immersive applications. The controllers pro-

vide APIs where the programmer can express the QoS goals of their application as a variance

minimization/bounding problem. Both controllers rely on the probabilistic properties of im-

mersive applications to maximize the number of frames where the QoS variance is limited

to acceptable bounds, or failing which, the QoS variance is minimized.

The uni-variate controller performs adaptive gain-scheduling, but with the gain-scheduling

driven by metrics that track properties relevant for immersive applications. The multi-

variate controller is categorized under model-identification adaptive control (MIAC), but

with the structure and cost-functions of model estimation and regulator construction dic-

tated by the common properties of immersive applications. Additionally, the orchestration

of various critical activities within the controller is dictated by the common properties —

in particular, i) the generation of high quality online training data to allow estimation of

models that more accurately capture the current application behavior, ii) the detection of

changes in application behavior to trigger new model estimation, and iii) the balance be-

tween dedicating some application frames to the exploration of application behavior to find

models that may deliver higher QoS than the current model, versus, the exploitation of the

current model on as many frames as possible to allow the current model to deliver the best

QoS it can. The controllers are effective at providing tight QoS control for an application

over a variety of data sets and execution platforms provided the programmers verify that

their application satisfies the common properties we identify for immersive applications.
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10.1 Future Work

The light-weight uni-variate controller can be custom-extended to tune special platform

parameters in addition to tuning a given application algorithmic parameter. The special

platform parameters include the number of cores allocated to the application and dynamic

voltage and frequency scaling (DVFS). The dynamic tuning of the special platform pa-

rameters in addition to the application parameter will allow the controller to save power

or reduce the likelihood of hitting thermal throttling limits while allowing the platform to

provide just sufficient compute capabilities to meet the application QoS requirements. This

future work will differ from numerous prior work on DVFS and the control of degree-of-

parallelism in that it will allow tight QoS and power control for immersive applications,

which would be challenging for prior techniques for all the reasons mentioned previously

about the nature of immersive applications. However, the multi-variate controller may be

directly applied to tune DVFS and the degree of concurrency, as the impact of tuning these

platform parameters will often satisfy the required common properties.

It is possible to significantly reduce the runtime overhead of the multi-variate controller,

possibly by an order of magnitude or more. We will explore approximation techniques,

re-factoring to minimize re-computation of various controller coefficients, improved cache

utilization by the various controller data-structures, and better use of specialized architec-

ture ISAs to speed up linear algebra, such as SIMD, vectorization and GPGPUs.

We will explore the extension of the DVA profiling technique to program and architecture

properties other than execution time. With minor changes DVA may be applied to study

the dominant patterns of cache accesses, memory traffic, network accesses, etc.

Finally, we seek to re-apply the approach of identifying common properties of a domain

of applications to domains other than immersive applications. We seek to ease the QoS

characterization and control of additional software applications where the application be-

havior does not allow traditional adaptive control techniques to be applied. In general, we

seek to create controllers whose notion of performance and robustness reflects the common

properties of the application domain (e.g., probabilistic and statistical properties) rather

than being limited to the traditional guarantees.
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APPENDIX A

DERIVATIONS

A.1 Incremental Update of History Statistics

Incremental update of mean and standard deviation ~µ and ~σ. We derive the

incremental update formulae for the scalar case, as the multi-variable problem just applies

the scalar solution independently to each dimension of ~x. Let {a1, a2, . . . , an−1} represent

an online sequence of scalar data samples, i.e., at the next step sample an would be added.

The mean and variance can be updated incrementally as follows.

ān = ān−1 +
an − ān−1

n

M2,n = M2,n−1 + (an − ān−1)(an − ān)

σ2
n =

M2,n

n

Our use case needs the samples {a1, a2, . . . , an−1} to contribute to the statistics with

weights
{
γn−2, γn−3, . . . , 1

}
, respectively. When a new sample an gets added, we need the

samples {a1, a2, . . . , an−1, an} to be re-weighted with
{
γn−1, γn−2, . . . , γ, 1

}
. The weighted

mean and variance are defined as follows.

ān ,
an + γan−1 + γ2an−2 + . . .+ γn−1a1

1 + γ + γ2 + . . .+ γn−1
(74)

M2,n , (an − ān)2 + γ(an−1 − ān)2 + γ2(an−2 − ān)2 + . . .+ γn−1(a1 − ān)2 (75)

σ2
n ,

M2,n

1 + γ + γ2 + . . .+ γn−1
(76)

The following modified formulae perform a weighted incremental update of the statistics

when sample an is added.
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ān =
(1− γ)an + γ(1− γn−1)ān−1

1− γn

M2,n = γM2,n−1 + (an − ān−1)(an − ān)

σ2
n =

1− γ
1− γn

M2,n

In addition to adding a new sample an at each time step, we may also need to delete one

or more of the oldest samples (in the order of oldest first). With each deletion, we want to

transform the sample sequence {a1, a2, . . . , an−1, an} weighted with
{
γn−1, γn−2, . . . , γ, 1

}
to

the sample sequence {a2, . . . , an−1, an} weighted with
{
γn−2, . . . , γ, 1

}
, i.e., drop the earliest

sample without re-weighting the remaining samples. When a1 is dropped, the statistics for

the shortened sequence are as follows.

ā′n−1 =
an + γan−1 + γ2an−2 + . . .+ γn−2a2

1 + γ + γ2 + . . .+ γn−2
(77)

M ′2,n−1 = (an − ā′n−1)2 + γ(an−1 − ā′n−1)2 + γ2(an−2 − ā′n−1)2 + . . .+ γn−2(a2 − ā′n−1)2

(78)

σ′
2
n−1 =

M ′2,n−1

1 + γ + γ2 + . . .+ γn−2
(79)

Once the deletion is done, we will just re-label the shortened sequence {a2, . . . , an−1, an}

as {b1, . . . , bn−2, bn−1}, back to the canonical form on which we can perform additional

decremental (deletion) or incremental updates. The following formulae perform a weighted

decremental update of the statistics, with statistics re-labeled.

ān−1 =
(1− γn)ān − (1− γ)γn−1a1

1− γn−1

M2,n−1 = M2,n +
1− γn

1− γ
(ān − ān−1)2 − γn−1(a1 − ān−1)2

σ2
n−1 =

1− γ
1− γn−1

M2,n−1
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Determining Coverage Threshold f . Consider a reference sequence {a1, a2, . . . , an−1} =

{+αNj ,−αNj ,+αNj ,−αNj , . . .} for input dimension xj , with 0 < α < 1. If αNj is a sig-

nificant portion of Nj (say, α = 0.5), the statistics of the reference sequence would provide a

threshold against which an arbitrary training sequence can be compared to determine if the

training sequence has coverage. By simple substitution into Eqs 74-76 we get the standard

deviation of the reference sequence as follows.

σref =
2α
√
γ

1 + γ
Nj (80)

Therefore, for any choice of 0 < α < 1 we deem appropriate and for any γ used, we

get f =
2α
√
γ

1 + γ
for use in Eq 47. We define α = 0.5 as providing good coverage, producing

f =
√
γ

1+γ . Now f ≈ 0.5 for γ > 0.4, i.e., unless history length Lγ is picked very short (< 3

samples).

Determining Coverage Threshold g. For input dimension xj , we define a swing from

+
Nj
2 to −Nj

2 (or, vice versa) in the two most recent frames as the minimum threshold for

a significant swing. Since the sample at timestep t− k is weighed by γk−1, the least value

of the threshold occurs when at timesteps t−1 and t−2, xj takes values +
Nj
2 and −Nj

2 ,

respectively.

Threshold =
Nj

2
− (−Nj

2
)γ =

1 + γ

2
Nj

Therefore, g =
1 + γ

2
in the significant swing test χj ≥ g Nj .

Incremental update of maximum swing ~χ. We derive the incremental update for-

mulae for the scalar case, as the multi-variable problem just applies the scalar solution

independently to each dimension of ~x. Let A = {a1, a2, . . . , an−1} represent an online se-

quence of scalar data samples, i.e., at the next step sample an would be added producing

B = {a1, a2, . . . , an−1, an}. We use the following notation in this derivation. Let d(A, k)

represent the largest swing between any two samples in A excluding the most recent k

samples (i.e., excluding {an−k, an−k+1, . . . , an−1}).
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d(A, k) , max
k<i<j≤n−1

∣∣γi−1an−i − γj−1an−j
∣∣

Similarly, let d(B, k) represent the largest swing between any two samples in B excluding

the most recent k samples (i.e., excluding {an−k+1, an−k+2, . . . , an}).

d(B, k) , max
k<i<j≤n

∣∣γi−1an+1−i − γj−1an+1−j
∣∣

When H has the input samples A, χ = d(A, 0). When sample an is appended to H, we

get χ = d(B, 0).

By definition, d(B, 1) = max
1<i<j≤n

∣∣γi−1an+1−i − γj−1an+1−j
∣∣

= max
0<i<j≤n−1

∣∣γian−i − γjan−j∣∣
= γ max

0<i<j≤n−1

∣∣γi−1an−i − γj−1an−j
∣∣

= γ d(A, 0).

Let vmin = min
1≤j≤n−1

γj−1an−j and vmax = max
1≤j≤n−1

γj−1an−j . That is, the smallest and

the largest weighted samples in A, respectively.

Further, d(B, 0) = max

{
d(B, 1), max

1<j≤n

∣∣an − γj−1an+1−j
∣∣} (separating out i = 1)

= max

{
d(B, 1), max

0<j≤n−1

∣∣an − γjan−j∣∣} (replacing j−1 with j)

= max {d(B, 1), |an − γ vmin|, |an − γ vmax|} .

Therefore, we get the following incremental update formulae after a new sample x is

appended to H.

χ← max (γ χ, |x− γ vmin| , |x− γ vmax|) (81)

vmin ← min (x, γ vmin) (82)

vmax ← max (x, γ vmax) (83)
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Now consider sequence C = {a2, . . . , an} left after dropping the oldest sample a1 from

B. We get the following decremental formulae just before the oldest sample a1 = H[ |H| ] is

dropped from H.

vmin ←


vmin, if vmin < γ|H|−1 a1

min
1≤j<|H|

γj−1H[j], otherwise

(84)

vmax ←


vmax, if vmax > γ|H|−1 a1

max
1≤j<|H|

γj−1H[j], otherwise

(85)

χ← vmax − vmin (86)

Here, the updated vmin and vmax are the smallest and the largest weighted samples in

C (i.e., in B excluding a1), respectively. The updates of vmin and vmax sometimes require

a scan over all the samples of H when the smallest or the largest weighted sample is being

dropped, but are usually incremental updates.

A.2 Estimation of PFE Cluster Length LPFE

Consider history H when it has insufficient coverage. Let xj represent the input dimen-

sion exhibiting the least coverage, i.e., the least
σj
Nj

. Consider a PFE cluster of length

LPFE. Given the coverage metrics over H, what is the least value of LPFE that will achieve

coverage on xj assuming that the PFE cluster will consist of maximally variant samples

{+Nj , −Nj , +Nj , −Nj , . . .}?

For simplicity, let µo and σo represent the observed statistics for samples of xj in H.

Let µe and σe represent the estimated statistics once LPFE maximally variant samples are

added to H, with perhaps the oldest samples of H dropped to maintain |H| ≤ Lγ . Let K

represent the final length of H after the addition of the PFE cluster and the dropping of

the oldest samples, E represent the excess samples of H that will be dropped, and R the

number of samples of H retained.

Consider the following cases:
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• If LPFE + |H| ≤ Lγ (no samples need to be dropped):

K = LPFE + |H|,

E = 0,

R = K − LPFE = |H|

• Otherwise, samples must be dropped:

K = Lγ ,

E = LPFE + |H| − Lγ ,

R = K − LPFE = |H| − E = Lγ − LPFE

We make a simplifying assumption that the R retained samples exhibit the same µo and

σo statistics as the original full sequence of samples in H. Then, from definitions,

1− γK

1− γ
µe =

LPFE−1∑
l=0

(−1)lNjγ
l +

K−1∑
l=LPFE

H[l − LPFE + 1]γl

=

LPFE
2
−1∑

l=0

(1− γ)Nj(γ
2)l +

K−LPFE−1∑
l=0

H[l + 1]γLPFE+l (for LPFE = even)

= (1− γ)
1− γLPFE

1− γ2
Nj + γLPFE

K−LPFE−1∑
l=0

H[l + 1]γl

=
1− γLPFE

1 + γ
Nj + γLPFE

1− γR

1− γ
µo (as per the simplifying assumption).

Similarly,
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1− γK

1− γ
σe

2 =

LPFE−1∑
l=0

((−1)lNj − µe)2γl +

K−1∑
l=LPFE

(H[l − LPFE + 1]− µe)2γl

=

LPFE
2
−1∑

l=0

[
(Nj − µe)2 + γ(Nj + µe)

2
]

(γ2)l

+ γLPFE

K−LPFE−1∑
l=0

(H[l + 1]− µo + µo − µe)2γl

=
1− γLPFE

1− γ2

[
(Nj − µe)2 + γ(Nj + µe)

2
]

+ γLPFE

[K−LPFE−1∑
l=0

(H[l + 1]− µo)2γl

+ 2(µo − µe)
K−LPFE−1∑

l=0

(H[l + 1]− µo)γl + (µo − µe)2
K−LPFE−1∑

l=0

γl
]

=
1− γLPFE

1− γ2

[
(Nj − µe)2 + γ(Nj + µe)

2
]

+ γLPFE

[
1− γR

1− γ
σo

2 + (µo − µe)2 1− γR

1− γ

]
.

Therefore, for any given choice of LPFE (≤ Lγ) the following equations hold.

K =


LPFE + |H|, if LPFE + |H| ≤ Lγ

Lγ , otherwise

(87)

R =


|H|, if LPFE + |H| ≤ Lγ

Lγ − LPFE, otherwise

(88)

µe =
1

1− γK

[
1− γLPFE

1 + γ
(1− γ)Nj + γLPFE(1− γR)µo

]
(89)

σe
2 =

1

1− γK

[
1− γLPFE

1 + γ

[
(Nj − µe)2 + γ(Nj + µe)

2
]

(90)

+ γLPFE(1− γR)
[
σo

2 + γLPFE(µo − µe)2
]]

Algorithm Sketch for LPFE Estimation. When H lacks coverage, LPFE is estimated

as follows.
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1. Identify xj with the least
σj
Nj

. Let µo = µj and σo = σj .

2. Perform binary search to determine least LPFE that will produce µe and σe satisfying

σe ≥ 0.5Nj (coverage threshold).

• Each step picks candidate length L and computes σe using Eqs. 87 - 90.

• The bounds for the binary search are L ∈
[

1,
⌈
Lγ
2

⌉ ]
.

• Invariant 1: upper is the least value for LPFE known so far (i.e. least clus-

ter length that will confer coverage with maximally variant samples). Initially

upper ←
⌈
Lγ
2

⌉
.

• Invariant 2: lower is the largest known cluster length that does not confer

coverage even with maximally variant samples. Initially lower ← 1.

• Algorithm terminates when upper = lower, violating invariant 2.

Estimating the number of PFE clusters to split LPFE into. LPFE is the estimated

length of a single PFE cluster to achieve coverage. We expect the controller to determine

a non-trivial probability q of starting a PFE cluster when the current model’s QoS per-

formance is poor, so a better model may be estimated expeditiously. When we expect

the controller to achieve coverage in a single PFE cluster with high probability, there are

countervailing scenarios when Lγ is large (described in Section 6.4.1), where a large θ does

not produce a large q — the controller determines that a large cluster is needed but the

probability q of starting the cluster becomes too small. Instead, the controller must exer-

cise multiple PFE clusters in close succession (a cluster group), with each cluster of a much

more limited expected length E{d}, but which collectively are likely to achieve coverage in

close to LPFE frames. Splitting LPFE into a sufficient number of clusters allows E{d} to

become sufficiently small that a high θ can produce a high q.

The controller maintains a metric numClusters and uses dpeak ←
LPFE

numClusters
(Eq. 56)

to shape the PFE cluster length distribution and adjust its expected value E{d}. As a

heuristic, we require numClusters to be the smallest positive integer that produces q ≥ θ/5

while respecting the practical constraint E{d} ≥ 1. The motivation for the heuristic is to
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have at least a 10% probability of starting a PFE cluster (i.e., q = 0.10) when θ has its

maximum value of 0.50 (i.e., when the controller is maximally biased towards finding an

alternative model).

A.3 Justification for scaling ε~yt−1 with ~β

Here we demonstrate that the changes applied by the regulator to every control input xj in

the next time step t vary monotonically (in fact, linearly) with the tracking error εyi|t−1 for

each output yi from the previous time-step (see Section 6.5.2). Establishing this property

is a pre-condition for applying the adaptive-integral controller from Chapter 4 to our prob-

lem here of dynamically adjusting the tracking error reported to the LQR regulator. The

dynamic adjustment of the tracking error overcomes a limitation of the LQR-constructed

regulator — the underlying application-response may be locally non-linear and/or may

locally deviate from the globally-fitted linear model used to create the regulator.

A linear dynamical system is modeled as (Eq. 17)

~st+1 = A~st +B ~ut

Our objective is to have a transformed state C ~st track a desired specified trajectory ~rt.

We choose a suitable state representation and construct C so that C ~st = ~yt−1 and ~rt = ~̃y.

Due to linearity, an input sequence ~u at , ~u
a
t+1, · · · , ~u at+N and corresponding state sequence

~s at , ~s
a
t+1, · · · , ~s at+N satisfying Eq. 17 can be added to any other input sequence and corre-

sponding state sequence satisfying Eq.17, ~u bt , ~u
b
t+1, · · · , ~u bt+N and ~s bt , ~s

b
t+1, · · · , ~s bt+N respec-

tively, and produce a new input sequence and corresponding state sequence that also satisfies

Eq. 17, as shown below.

If ~s at+1 = A~s at +B ~u at and ~s bt+1 = A~s bt +B ~u bt ,

then ~s ct+1 = A~s ct +B ~u ct

for ~u ct = ~u at + ~u bt and ~s ct = ~s at + ~s bt . (91)

Linearity also applies to the outputs:

~y ct = ~y at + ~y bt where ~y at = C ~s at+1, ~y
b
t = C ~s bt+1, ~y

c
t = C ~s ct+1. (92)
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Consider the solution to the trajectory tracking LQR problem, given by Eqs. 21-25:

Kt := (BTWt+1B +R)−1BTWt+1A

Wt := ATWt+1(A−BKt) + CTQC , with WN := CTQfC

~vt := (A−BKt)
T~vt+1 + CTQ~rt , with ~vN := CTQf~rN

Kv
t := (BTWt+1B +R)−1BT

~ut := −Kt~st +Kv
t ~vt+1

At time t, let N represent the number of time-steps remaining in the LQR control hori-

zon. For convenience, let Vt+1 = (BTWt+1B+R)−1BT . The next control-input determined

by LQR for time t has the form:

~ut := −Kt~st︸ ︷︷ ︸
Zero-driving input

+ Kv
t ~vt+1︸ ︷︷ ︸

Trajectory offset

= ~zt + ~ot

(93)

Note that ~zt does not depend on the trajectory ~rt at all. Instead, this is the part of the

LQR control-input that attempts to drive the system state ~st to zero. On the other hand,

~ot offsets the input so that system state tracks ~rt instead of tracking zero.

Taking advantage of the linearity described in Eq. 91, let’s partition the input and state

sequences as follows, over a time-interval τ = t to t+N − 1:

~u aτ = ~zτ = −Kτ ~s
a
τ , with ~s at = ~st (94)

~u bτ = ~oτ = Kv
τ ~v

a
τ+1, with ~s bt = 0 (95)

Let’s recursively substitute the LQR solution for ~u at :

~u at := −Kt ~s
a
t = −Vt+1Wt+1A~st

= −Vt+1Wt+1
~̂s at+1|~u at =0
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where ~̂s at+1|~u at =0 = A~st is the system state estimated for time t + 1, using Eq. 17, given

current observed state ~st and applying zero current input ~u at .

Note that ~̂s at+2|~u at =0 = (A−BKt+1) ~̂s at+1|~u at =0 is the system state estimated for time

t + 2, using Eq. 17, conditioned on current observed state ~st and the application of zero

current input ~u at . Similarly, ~̂y at|~u at =0 = C~̂s at+1|~u at =0 is the output estimated for time τ = t,

conditioned on current observed state ~st and applying zero current input ~u at . Applying

these substitutions, we get

~u at := −Vt+1

[
ATWt+2 (A−BKt+1) + CTQC

]
~̂s at+1|~u at =0

= −Vt+1

[
ATWt+2

~̂s at+2|~u at =0 + CTQ ~̂y at|~u at =0

]
= −Vt+1

[
AT
[
ATWt+3 (A−BKt+2) + CTQC

]
~̂s at+2|~u at =0 + CTQ ~̂y at|~u at =0

]
Reapplying the above mentioned substitutions for another time-step, and generalizing:

~u at := −Vt+1

[
AT
[
ATWt+3

~̂s at+3|~u at =0 + CTQ ~̂y at+1|~u at =0

]
+ CTQ ~̂y at|~u at =0

]
= −Vt+1

[
(AT )N−1Wt+N

~̂s at+N |~u at =0 +
N−2∑
k=0

(AT )kCTQ ~̂y at+k|~u at =0

]
(96)

= −Vt+1

[
N−1∑
k=0

(AT )kCTQ ~̂y at+k|~u at =0

]
(97)

= −Vt+1

[
N−1∑
k=0

(AT )kCTQε~̂y at+k|~u at =0

]
− Vt+1

[
N−1∑
k=0

(AT )kCTQ ~̃y

]
(98)

We get Eq. 97 from Eq. 96 by recognizing the recursion base-case Wt+N = CTQfC and

applying our choice of Qf = Q. In Eq. 98, ε~̂y at+k|~u at =0 = ~̂y at+k|~u at =0 − ~̃y is the trajectory-

tracking error estimated for time-step t + k assuming a zero input is applied at current

time-step t.

Next, let’s examine the offset to the input trajectory, ~u bt = ~ot, required to offset the

state trajectory to ~rt = ~̃y.
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~u bt = Kv
t ~vt+1 = Vt+1~vt+1

= Vt+1

[
(A−BKt+1)T ~vt+2 + CTQ~rt+1

]
= Vt+1

[
(A−BKt+1)T

[
(A−BKt+2)T ~vt+3 + CTQ~rt+2

]
+ CTQ~rt+1

]
= Vt+1

N−1∑
k=0

 k∏
p=1

(A−BKt+p)
T

CTQ~rt+1+k


(recognizing recursion base case ~vt+N = CTQf ~rt+N , and our choice of Qf = Q)

= Vt+1

N−1∑
k=0

 k∏
p=1

(A−BKt+p)
T

CTQ ~̃y

 (99)

(since we choose a constant trajectory: ~rt = ~̃y)

Combining Eq. 98 and Eq. 99:

~ut := Vt+1

N−1∑
k=0

 k∏
p=1

(A−BKt+p)
T

CTQ ~̃y − (AT )kCTQ ~̃y


− Vt+1

N−1∑
k=0

[
(AT )kCTQε~̂y at+k|~u at =0

]

By defining the following matrices

Et , Vt+1

N−1∑
k=0

 k∏
p=1

(A−BKt+p)
T

CTQ− (AT )kCTQ

 (100)

D(k,t) , Vt+1(AT )kCTQ, for k = 0 to N − 1 (101)
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we get a simplified form

~ut := Et ~̃y +

N−1∑
k=0

D(k,t) ε~̂y at+k|~u at =0 (102)

= Et ~̃y +
N−1∑
k=0

[
~d

(k,t)
1

~d
(k,t)

2 · · · ~d
(k,t)
m

]


(εŷa1)t+k|~u at =0

(εŷa2)t+k|~u at =0

...

(εŷam)t+k|~u at =0


(103)

= Et ~̃y +

N−1∑
k=0

m∑
i=1

(
(εŷai )t+k|~u at =0

)
~d

(k,t)
i (104)

= Et ~̃y +

m∑
i=1

[
N−1∑
k=0

(
(εŷai )t+k|~u at =0

)
~d

(k,t)
i

]
(105)

= Et ~̃y +
m∑
i=1

[
~d

(0,t)
i

~d
(1,t)
i · · · ~d

(N−1,t)
i

]


(εŷai )t+0|~u at =0

(εŷai )t+1|~u at =0

...

(εŷai )t+N−1|~u at =0


(106)

= Et ~̃y +
m∑
i=1

F (i,t) ~̂erra(yi; t, t+N − 1) (107)

Here, for a specific output objective yi, F
(i,t) is constructed by selecting the ith columns

from the D(k,t) matrices. For a specific yi, ~̂erra(yi; t, t + N − 1) is the sequence of error-

values for yi estimated using the ~u aτ and ~s aτ sequences. Note that ~̂erra(yi; t, t + N − 1) is

the only mechanism in LQR for incorporating state feedback about observed values of yi

into ~ut. And, this mechanism weighs the (non-state dependent) columns of matrix F (i,t)

based on the projected error-estimates for yi. Hence, the magnitude of the error-terms in

~̂erra(yi; t, t + N − 1) linearly impacts the control-inputs that the controller applies to the

application with regards to correcting yi.

By showing linearity, we establish the monotonicity property we sought. The application

of adaptive-integral tuning to the tracking error can now be expected to drive application

inputs in a manner that drives the tracking error closer to zero in the next time step, even

when the regulator does not do so by itself due to modeling approximations.
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Function FrameTransition
Input: b : budget allocated for operation of R
Data:
t : current frame number
M : currently active model
C : currently active feedback controller
H : history of application control inputs and response till frame t

H =
{

(~xt−k, ~yt−k) | k ∈ [1, |H|]
}

~µ, ~σ : mean and std statistics on ~x samples in H, updated incrementally
~χ, ~vmin, ~vmax : max swing statistics on ~x samples in H, updated incrementally
γ, Lγ : current history forget-rate parameter and desired history length
~xt−1 : control input applied last frame
~yt−1 : application QoS output observed for last frame
~ut : continuous, unclipped control input generated for this frame
~xt : discretized, clipped control input to be applied this frame
~st−1, ~st : previous and current states of the LDS implied by M
~β : adaptive scaling-parameters to compensate for drift between

estimated linear model and observed application characteristics
lastExp : last frame on which inputs were explored
prevDuration : time taken by previous invocation of FrameTransition()

1 startTime← time()
2 ~yt−1 ← ReadFrameOutputs()
3 H ← (~xt−1, ~yt−1)++H
4 ~µ, ~σ, ~χ, ~vmin, ~vmax ← AddSample(~xt−1, ~µ, ~σ, ~χ, ~vmin, ~vmax, |H|−1, γ)
5 coverageMet, κ← CheckHistoryCoverage(~σ, ~χ, |H|, γ)

6 ~st, ~β ← AdaptiveStateTransition(~xt−1, ~yt−1, ~st−1, ~β, lastExp)
7 busable ← BudgetAllocate(b, prevDuration)
8 deadline← startTime + busable

9 doPFE, remainingLen←
ProbForcedExploration(newM, applyC , coverageMet, ~µ, ~σ, |H|, γ, Lγ)

10 newM ←
UpdateModel(startTime, deadline, ~β, coverageMet, γ, Lγ , ~xt−1, ~yt−1, doPFE)

11 newC ← UpdateRegulator(deadline, ~st)

12 if newC then ~β ← ~1
13 applyC ← (C 6= φ ∧ IsStateFullySetup(~st) ∧ doPFE = false)
14 if applyC then
15 ~ut ← C(~st)
16 else
17 ~ut ← InputExplorer( coverageMet, ~µ, ~σ, ~χ, ~xt−1, |H| )
18 lastExp← t

19 γ, Lγ ← ResizeHistory(~xt−1, ~yt−1, newM, κ, doPFE, remainingLen)
20 ~xt ← DiscretizeAndClipInputBoundViolations(~ut)
21 ApplyControlInput( ~xt )
22 t← t+ 1
23 prevDuration← time()− startTime
24 Return control to application to execute next frame.
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Function UpdateModel(startTime,deadline, ~β, coverageMet, γ, Lγ , ~xt−1, ~yt−1,doPFE)

Data:
λ,M, η, ρ, e, tM : active model, metrics and estimation timestep
λ′,M′, η′, ρ′, e′, tM′ : substitute model, metrics and estimation timestep
newM,newM′ : indicates if a new M or M′ is applied this frame
sameModel : indicates if M and M′ are the same
AdvM′,M : prediction accuracy advantage of M′ over M
~µ′, ~σ′, ~χ′, ~v′min, ~v

′
max, count : statistics on ~x since last M or M′ estimated/applied

Initially: M← φ

1 if
M 6= φ ∧

((
MTE(H,M)� e ∧ t− tM > W ) ∨

(
(η, ρ) unbalanced ∧ t− tM � Lγ

))
then M, C ← φ, φ

2 newM, newM′ ← false, false
3 if coverageMet = true then
4 if M = φ then
5 λ,M, η, ρ, e, tM ← LLSEandRefineLambda(H, γ)
6 λ′,M′, η′, ρ′, e′, tM′ ← λ,M, η, ρ, e, tM
7 newM,newM′ , sameModel← true, true, true

8 while time() < (startTime + deadline)/2 ∧ (η′, ρ′) unbalanced do
9 λ′,M′, η′, ρ′, e′, tM′ ← LLSEandRefineLambda(H, γ)

10 newM′ , sameModel← true, false

11 if (η, ρ) unbalanced ∧ (η′, ρ′) balanced then
12 λ,M, η, ρ, e, tM ← λ′,M′, η′, ρ′, e′, tM′
13 newM, sameModel← true, true

14 if M 6= φ then
15 if newM = false ∧ newM′ = false then
16 et−1 ← 1

dim(~y) ||M (H, t−1)− ~yt−1||2(~s,~δ); e′t−1 ← 1
dim(~y) ||M

′ (H, t−1)− ~yt−1||2(~s,~δ)

17 AdvM′,M ←
et−1 − e′t−1

max(et−1, e′t−1)
+ γ AdvM′,M

18 count← count + 1
19 coverageMet′ ← coverageMet
20 if count < |H| then
21 ~µ′, ~σ′, ~χ′, ~v′min, ~v

′
max ← AddSample(~xt−1, ~µ

′, ~σ′, ~χ′, ~v′min, ~v
′
max, count−1, γ)

coverageMet′, κ′ ← CheckHistoryCoverage(~σ′, ~χ′, count, γ)

22 Threshold← 1− γmax(Lγ , count)

1− γ
× 0.10

23 if AdvM′,M > Threshold ∧ coverageMet′ = true then
24 λ,M, η, ρ, e, tM ← λ′,M′, η′, ρ′, e′, tM′
25 newM, sameModel← true, true

26 if time() < deadline ∧ coverageMet = true ∧ doPFE = false
∧ C 6= φ ∧ tC = t− 1 ∧ (tM′ ≤ t− Lγ ∨ sameModel = true) then

27 λ′,M′, η′, ρ′, e′, tM′ ← LLSEandRefineLambda(H, γ)
28 newM′ , sameModel← true, false

29 (continued on next page)
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Function UpdateModel(continued)

30 if newM ∨ newM′ then
31 AdvM′,M ← 0.0
32 count← 0

33 if newM = true then C ← φ
34 return newM

Function CheckHistoryCoverage(~σh, ~χh, lenh, γ)

Input:
~σh, ~χh, lenh : standard deviation, max swing and sample length for some history h
γ : forget rate used in history h

1 if lenh ≤ yorder or lenh ≤ xorder or lenh ≤W then
2 return false, 0

3 numSpanningDims← 0
4 for j ∈ [1, dim(~x)] do

5 if σhj ≥ 0.5Nj ∧ χhj ≥
1+γ

2 Nj then

6 numSpanningDims← numSpanningDims + 1

7 κ← numSpanningDims

dims(~x)
8 if κ = 1 then coverageMet = true else coverageMet = false
9 return coverageMet, κ

Function LLSEandRefineLambda(h, γ)

Data: λnext : value to use for next LLSE invocation

Initially: λnext ← default

1 λm ← λnext

2 m, ηm, ρm ← LLSE(h, λm, γ)
3 tm ← t
4 em ← MTE(h,m)

5 if ρm > 0 then

6 λnext ←

√
ηm λm
ρm

7 if ρm = 0 ∨ λnext =∞ then
8 if λ > 1 then

9 λ←
√
λ

10 else
11 λ← λ2

12 if λ = 0 then
13 λ← 10−6

14 return (λm,m, ηm, ρm, em, tm)
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Function MTE(h,m)

Input:
h =

{
(~xt0−k, ~yt0−k) | k ∈

[
1, |h|

] }
: History till some time t0

m : A linear model

Data: γ : current history sample forget rate

1 Let m(h, t′) = ~̃yt′ for t′ ∈
[
t0 − |h|+ yorder, t0 − 1

]
denote the evaluation of the model

m to produce a prediction at time t′ using observed history data till before t′ and the
applied input at t′

2 errorConvergingSum =
1− γ
dim(~y)

|h|−yorder∑
k=1

γk−1

dim(~y)∑
i=1

si
(yi|t0−k − ỹi|t0−k)2

δ 2
i

3 return errorConvergingSum
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Function UpdateRegulator(deadline, ~st)

Input:
deadline : current frame’s deadline for non-critical work
~st : current state

Result: Construct C from M and refine based on projected inputs

Data:
t : current frame number
C, tC : the active controller and its last refinement timestep
newC : indicates if a new controller is created this frame from M
R : input-costs diagonal matrix used for the LQR design of C
Rp, ~xp : the previous input-costs matrix and input
Rr, ~xr : the refined input-costs matrix and input
~̂yt, TT

r : projected output on input ~xr and resulting trajectory-tracking error
~f bu : flag if each input dimension is barely under-constrained
~f term : flag if each input dimension is ready to terminate refinement
~c : counters used for updating corresponding diagonal entries of R

Initially: C ← φ, R← Idim(~x)×dim(~x), ~f
bu ← ~false, ~c← ~1

1 newC ← false
2 if M 6= φ ∧ (time() < deadline ∨ C = φ) then
3 if C = φ then
4 C ← LQR(φ,M, R); tC ← t
5 newC ← true

6 ~f bu ← ~false

7 if IsStateFullySetup(~st) = true ∧ time() < deadline then
8 Rp, ~xp ← R, C(~st)
9 for 1 ≤ j ≤ n do

10 Rjj ← InitialRefinement(fbu
j , |xp

j |, R
p
jj , cj)

11 C ← LQR(C,M, R); tC ← t
12 Rr, ~xr ← R, C(~st)

13 ~f term ← ~false
14 repeat

15 ~̂yt ←M(~st, ~x
r)

16 TT r ← (~̂yt − ~̃y)T Q (~̂yt − ~̃y)
17 for 1 ≤ j ≤ n do
18 Rjj , f

term
j , fbu

j , cj ←
19 RefineInputCost(f term

j , fbu
j , |xp

j |, |xr
j |, R

p
jj , R

r
jj , cj , TT

r)

20 C ← LQR(C,M, R); tC ← t
21 Rp, ~xp ← Rr, ~xr

22 Rr, ~xr ← R, C(~st)
23 until ∀j f termj = true or time() ≥ deadline

24 return newC
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Function InitialRefinement(fbu
j , |xp

j |, R
p
jj , cj)

1 if fbuj = false then

2 cj ← 1

3 if |xpj | > Nj then

4 Rjj ← IncreaseInputCost(Rp
jj , cj)

5 else
6 Rjj ← DecreaseInputCost(Rp

jj , cj)

7 return Rjj
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Function RefineInputCost(f term
j , fbu

j , |xp
j |, |xr

j |, R
p
jj , R

r
jj , cj , TT

r)

1 if fbuj = false then cj ← 1

2 if f termj = true then

3 assert(fbu
j = false)

4 Rjj , f
term
j ← EvaluateTerminatedRefinement(f term

j , |xp
j |, |xr

j |, R
p
jj , R

r
jj , cj)

5 return Rjj , f
term
j , fbuj , cj

6 assert(f term
j = false and Rp

jj 6= Rr
jj)

7 if |xpj | ≤ Nj ∧ |xrj | ≤ Nj then

8 if PracticallyEqual(|xpj |, |xrj |) then

9 if PracticallyEqual(|xrj |, 0) ∧ (0.5)2 ∗Rr
jj > 10 ∗ TT r then

10 Rjj ← DecreaseInputCost(Rr
jj , cj)

11 else
12 Rjj ← Rp

jj ; fbu
j ← false ; f term

j ← true

13 else if (Rp
jj −Rr

jj) ∗ (|xpj | − |xrj |) > 0 then

14 Rjj ← Rp
jj ; fbu

j ← false

15 else if (Rp
jj −Rr

jj) ∗ (|xpj | − |xrj |) < 0 then

16 Rjj ← DecreaseInputCost(Rr
jj , cj)

17 if |xpj | ≤ Nj ∧ |xrj | > Nj then

18 if Rp
jj > Rr

jj then

19 fbu
j ← true ; cj ← cj + 1 ; Rjj ← IncreaseInputCost(Rr

jj , cj)

20 if Rp
jj < Rr

jj then

21 Rjj ← Rp
jj ; fbu

j ← false

22 if |xpj | > Nj ∧ |xrj | ≤ Nj then

23 if Rp
jj < Rr

jj then

24 fbu
j ← true ; cj ← cj + 1 ; Rjj ← DecreaseInputCost(Rr

jj , cj)

25 if Rp
jj > Rr

jj then

26 Rjj ← Rp
jj ; fbu

j ← false

27 if |xpj | > Nj ∧ |xrj | > Nj then

28 if (Rp
jj −Rr

jj) ∗ (|xpj | − |xrj |) ≤ 0 then

29 Rjj ← IncreaseInputCost(Rr
jj , cj)

30 else
31 Rjj ← Rp

jj ; fbu
j ← false

32 return Rjj , f
term
j , fbuj , cj
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Function EvaluateTerminatedRefinement(f term
j , |xp

j |, |xr
j |, R

p
jj , R

r
jj , cj)

1 if Rp
jj 6= Rr

jj then

2 Rjj ← Rr
jj

3 else
4 if PracticallyEqual(|xpj |, |xrj |) = true then

5 Rjj ← Rr
jj

6 else
7 Rjj ← DecreaseInputCost(Rr

jj , cj)

8 f term ← false

9 return Rjj , f
term
j

Function IncreaseInputCost(Rr
jj , cj)

1 Rjj ← Rr
jj ∗

(
1 +

1.0

cj

)
2 return Rjj

Function DecreaseInputCost(Rr
jj , cj)

1 Rjj ← Rr
jj/

(
1 +

1.0

cj

)
2 return Rjj

Function PracticallyEqual(xp
j , x

r
j)

1 if |xpj − xr| ∗ (10 ∗W ) < 0.5 then

2 return true

3 else
4 return false
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Function ProbForcedExploration(prevNewM, prevAppliedC , coverageMet, ~µ, ~σ,
histLength, γ, Lγ)

Data:
q, d : probability to start a new PFE this frame, cluster length
remainingLen : length of PFE cluster remaining (if previously started)
θ : fraction of application frames given to PFE
τt−1 : the QoS performance of the controller in the last frame
lmax : Number of performance levels to maintain SR statistics
∀k ∈ {(1.50)l | l ∈ {0, . . . , lmax}} :

ŜRM(k), ŜR
cur
M (k) : estimated full and current SR of M on τ ≤ k

ŜR
set
Ach(k), ŜRAch(k) : Set of ŜRM(k) observed, computed achievability

Q(k) : queue of τ ≤ k tests for the 10 ∗W most recent frames
ktr, ltr : the current SR performance tracking level, and its index
nfM : number of frames where M drove inputs, after initial W
numClusters, clIdx : num-clusters to split LPFE into, cluster index in group
τmax : the maximum τt−1 encountered so far

Initially: lmax ← −1; ŜRM, ŜR
cur
M , ŜR

set
Ach, ŜRAch, Q← φ, φ, φ, φ, φ; nfM ← 1;

remainingLen← 0; numClusters← 1; clIdx← 0; τmax ← 1.0

1 τmax ← max{τmax, τt−1}; l′max ←
⌈

log τmax

log 1.50

⌉
2 for l ∈ {lmax + 1, . . . , l′max} do
3 k ← (1.50)l

4 ŜRM(k), ŜR
cur
M (k), ŜR

set
Ach(k), ŜRAch(k), Q(k) ← 1, 1, {1}, 1, [1]

5 lmax ← l′max

6 if prevNewM = true ∧ nfM > 1 then
7 if nfM not divisible by 10 ∗W then

8 ŜR
set
Ach, ŜRAch ← UpdateAchievability(ŜR

set
Ach, ŜR

cur
M , lmax)

9 for k ∈ {(1.50)l | l ∈ {0, . . . , lmax}} do

10 ŜRM(k), ŜR
cur
M (k), Q(k) ← 1, 1, [1]

11 nfM ← 1

12 if prevAppliedC = true then
13 if t− tM ≥W then
14 for k ∈ {(1.50)l | l ∈ {0, . . . , lmax}} do

15 ŜRM(k)← ŜRM(k) ∗ nfM + I{τt−1 ≤ k}
nfM + 1

; Q(k).append(I{τt−1 ≤ k});

ŜR
cur
M (k)← Average(Q(k));

16 nfM ← nfM + 1;

17 if nfM divisible by 10 ∗W then

18 ŜR
set
Ach, ŜRAch ← UpdateAchievability(ŜR

set
Ach, ŜR

cur
M , lmax)

19 ltr ← argmax
0≤ l < lmax

ŜRAch((1.50)l+1)− ŜRAch((1.50)l)

l + 1
; ktr ← (1.50)ltr

20 θ ← 1

2
(1− ŜR

cur
M (ktr)) max

(
ŜRAch(ktr)− ŜRM(ktr)

ŜRAch(ktr) + 0.01
, 0

)
+ 0.01

21 (continued on next page)

254



Function ProbForcedExploration(continued)

22 if remainingLen > 0 then
23 if clIdx < numClusters ∨ remainingLen > 1 ∨ coverageMet = true then
24 remainingLen← remainingLen− 1

25 if clIdx = numClusters ∧ remainingLen = 0 then
26 clIdx← 0

27 return true, remainingLen

28 if coverageMet = true then
29 return false, 0

30 LPFE ← EstimateShortestPFEClusterLength(~µ, ~σ, histLength, γ, Lγ)
31 q′ ← φ
32 if numClusters > LPFE then
33 numClusters← LPFE

34 while true do

35 dpeak ←
⌊

LPFE

numClusters

⌋
36 Ed, d← AdjustClusterLengthDistributionAndSample(dpeak, Lγ)

37 q ← θ

Ed (1− θ) + θ
38 if q′ 6= φ ∧ q and q′ straddle θ

5 then
39 break

40 if q < θ
5 then

41 if numClusters = LPFE then
42 break

43 numClusters← numClusters + 1

44 else
45 if numClusters = 1 then
46 break

47 numClusters← numClusters− 1

48 q′ ← q

49 if q ≤ random(0.0, 1.0) then
50 return false, 0

51 remainingLen← d− 1
52 clIdx← min (clIdx + 1, numClusters)
53 return true, remainingLen

Function UpdateAchievability(ŜR
set
Ach, ŜR

cur
M , lmax)

1 for k ∈ {(1.50)l | l ∈ {0, . . . , lmax}} do

2 ŜR
set
Ach(k)← ŜR

set
Ach(k) ] {ŜRcur

M (k)}
3 ŜRAch(k)← Average of largest 25% in ŜR

set
Ach(k)

4 return ŜR
set
Ach, ŜRAch
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Function EstimateShortestPFEClusterLength(~µ, ~σ, histLength, γ, Lγ)

1 jo ← argmin
j

σj
Nj

2 µo, σo, No ← µjo , σjo , Njo

3 lower, upper← 1,

⌈
Lγ
2

⌉
4 while lower < upper do

5 L←
⌊

lower + upper

2

⌋
6 if L+ histLength ≤ Lγ then
7 R← histLength

8 else
9 R← Lγ − L

10 µe ← 1
1−γR+L

[
1−γL
1+γ (1− γ)No + γL(1− γR)µo

]
11 σe

2 ← 1
1−γR+L

[
1−γL
1+γ

[
(No−µe)2 +γ(No+µe)

2
]

+γL(1−γR)
[
σo

2 +γL(µo−µe)2
]]

12 if σe ≥ 0.5No then
13 upper← L

14 else if lower + 1 = upper then
15 lower← upper

16 else
17 lower← L

18 LPFE ← upper
19 return LPFE
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Function ResizeHistory(~xt−1, ~yt−1, newM, κ, doPFE, remainingLen)

Data:
M : currently active model at frame t
History at t : H =

[
(~xt−k, ~yt−k) | k ∈ [1, |H|]

]
~µ, ~σ, ~χ,~vmin, ~vmax : statistics on ~x samples in H
γ : history sample forget rate
Lγ , L

′′ : length of significant history allowed by γ, candidate Lγ
Lmin : minimal length for history required by user
Ls, Lc : length recommendations for stability and coverage
prevFrameEndedPFE : was previous frame last frame of a PFE cluster?

Initially: γ ← (0.9)1/W , Lγ ←
log 0.1

log γ
, L′′ ← Lγ , prevFrameEndedPFE← false,

Lmin ← max { W, 2 dim(~x) + 1 } (if not specified by user)

1 if Lγ < Lmin ∨ M = φ then

2 Lγ ← max{Lmin, (M = φ ? |H| : 0)}; L′′ ← Lγ ; γ ← (0.1)1/Lγ

3 D̄, Ls, tbcp ← UpdateStabilityLength(~xt−1, ~yt−1, newM, t− |H|)
4 Lc ← UpdateCoverageLength(prevFrameEndedPFE, κ, |H|, tbcp)
5 if Ls 6= φ then
6 if Ls ≥ Lc then L′ ← Ls
7 else
8 coverageStability← InterpolatedStability(Lc, D̄, L

set
s )

9 if coverageStability = stable then
10 L′ ← Lc

11 else if coverageStability = unknown then
12 Lset

s ← AddStabilityCandidate(Lc, L
set
s )

13 L′ ← max(Ls, L
′′)

14 else if coverageStability = unstable then

15 L′ ← Ls + Lc
2

16 else if coverageStability = highly unstable then
17 L′ ← Ls

18 else L′ ← Lc

19 L′′ ← L′ + L′′

2
20 if |Lγ − L′′| ≥W ∧ L′′ ≥ Lmin then
21 Lγ ← L′′

22 γ ← (0.1)1/Lγ

23 if M 6= φ ∧ (|H| > Lγ ∨ tbcp 6= φ) then
24 Lbcp ← |H|
25 if tbcp 6= φ then Lbcp ← t− tbcp

26 Lreduced ← min{Lγ , Lbcp}
27 for k = |H| downto Lreduced+1 do
28 ~µ, ~σ, ~χ,~vmin, ~vmax ← RemoveSample(H, ~µ, ~σ, ~χ, ~vmin, ~vmax, k, γ)

29 H ← H[1 .. Lreduced]

30 prevFrameEndedPFE← (doPFE = true ∧ remainingLen = 0)
31 return γ, Lγ
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Function UpdateStabilityLength(~xt−1, ~yt−1, newM, tH)

Data:
M : Currently active model at frame t
Txy =

[
(~xt−k, ~yt−k) | k ∈ [1, |Txy|]

]
: Stability Samples History

Te =
[
et−k | k ∈ [1, |Te|]

]
: Prediction Error History for M

Lset
s : Candidate lengths for stability, persists across models

emin, emax : The min and max values of et seen so far
reconstruct : Captures the condition that all current histogram data

has become invalid and must be subsequently re-constructed

Initially: Txy ← [ ], Te ← [ ], Lset
s ← {W}, emin ← φ, emax ← φ, reconstruct← true

1 Txy ← (~xt−1, ~yt−1) ++ Txy
2 if newM = true ∨ M = φ then
3 Te ← [ ]
4 reconstruct← true

5 if M = φ then return φ, φ, φ
6 if |Txy| ≥ max{xorder, yorder} then
7 prev emin, prev emax ← emin, emax
8 numRemaining← |Txy| − |Te| − max{xorder, yorder}
9 for k = numRemaining downto 1 do

10 et−k ←
1

dim(~y)
||M(Txy, t−k)− ~yt−k||2

11 Te ← ( et−k ) ++ Te
12 emin ← min{emin, et−k}; emax ← max{emax, et−k}
13 if (emax − emin) > 1.10 (prev emax − prev emin) then
14 reconstruct← true

15 repeat
16 D̄, Ls, tbcp ← UpdateAveragedKSDistances(reconstruct, Te, Lset

s , emin, emax, tH)
17 reconstruct← false
18 removeSet, addSet← {}, {}; L1, L2 ← φ, φ; Lmax

s ← max{Lset
s }

19 for L3 in ascending order of Lset
s do

20 if L1 6= φ ∧ L2 6= φ ∧ Stability(D̄(L1)) = Stability(D̄(L2)) =
Stability(D̄(L3)) 6= unknown then

21 removeSet← removeSet ∪ {L2}
22 if L2 6= φ ∧ Stability(D̄(L2)) 6= unknown ∧ Stability(D̄(L3)) 6=

unknown ∧ Stability(D̄(L2)) 6= Stability(D̄(L3)) then

23 L← L2 + L3

2
rounded to closest multiple of W

24 if L 6= L2 ∧ L 6= L3 then
25 addSet← addSet ∪ {L}

26 L1, L2 ← L2, L3

27 if Ls = φ ∧ |Te| > 2Lmax
s then

28 addSet← addSet ∪ {2Lmax
s }

29 Lset
s ← (Lset

s − removeSet) ∪ addSet

30 until removeSet = {} ∧ addSet = {}
31 if |Te| > 2Lmax

s then drop (|Te| − 2Lmax
s ) oldest samples from Txy and Te

32 return D̄, Ls, tbcp
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Function UpdateAveragedKSDistances(reconstruct, Te, Lset
s , emin, emax, tH)

Data:
histogram(L) : Histogram of last completed segment

of length L ∈ Lset
s in Te

timestamp(L) = t′ : Segment [t′−L+1, t′] of Te
over which histogram(L) was computed

D(L) : Sequence
[
D(L)[i]

∣∣ i ∈ [1, |D(L)|]
]

of the most
recent K-S distances for L ∈ Lset

s for current M
tD(L) : Sequence

[
tD(L)[i]

∣∣ i ∈ [1, |D(L)|]
]

of corr. timestamps
D̄(L) : Averaged K-S metrics for L ∈ Lset

s for current M
tprev
bcp : Previous tbcp found. = φ initially

1 if reconstruct = true then
2 histogram← φ; timestamp← φ; D ← φ; tD ← φ; D̄ ← φ; tprev

bcp ← φ

3 for L ∈ Lset
s do

4 if |Te| ≥ L then
5 if timestamp(L) = φ ∨ timestamp(L) < t− |Te| − 1 then
6 histTimestep← t− |Te|+ L− 1

7 else
8 histTimestep← timestamp(L) + L

9 numAppends← 0
10 for t′ ← histTimestep; t′ ≤ t− 1; t′ ← t′ + L do
11 if |D(L)| = 0 then resetBins← true else resetBins← false
12 newhist← ConstructHistogram(Te, t′, L, resetBins, emin, emax)
13 if timestamp(L) 6= φ then
14 newD← KolmogorovSmirnovD(newhist, histogram(L), L)
15 D(L)← ( newD ) ++D(L)
16 tD(L)← ( timestamp(L) ) ++ tD(L)
17 numAppends← numAppends + 1

18 histogram(L)← newhist
19 timestamp(L)← t′

20 if numAppends > 0 then
21 if |D(L)| > 20 then Drop any oldest samples in D(L) and tD(L)

on indices i s.t. tD(L)[i] < tH, but keeping |D(L)| ≥ 20

22 if |D(L)| = 1 then w ← 1 else w ← (0.10)
1

|D(L)|−1

23 D̄(L)←

|D(L)|∑
i=1

wi−1D(L)[i]

/|D(L)|∑
i=1

wi−1


24 Ls ← φ
25 if ∃ smallest L ∈ Lset

s s.t. Stability(D̄(L)) = stable then
26 Ls ← L

27 tbcp ← φ
28 if Ls 6= φ ∧ ∃ least i ∈ [1, |D(Ls)|] s.t. Stability(D(Ls)[i]) =

highlyunstable ∧ tD(Ls)[i] ≥ tH ∧ tD(Ls)[i] > tprevbcp then

29 tbcp ← tD(Ls)[i]; t
prev
bcp ← tbcp

30 return D̄, Ls, tbcp
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Function Stability(Dmetric)

1 if Dmetric = φ then return unknown
2 if Dmetric ≤ 0.10 then return stable
3 if Dmetric ≤ 0.50 then return unstable
4 return highlyunstable

Function InterpolatedStability(L, D̄, Lset
s )

1 L′ ← L rounded to closest multiple of W
2 if L′ ∈ Lset

s ∧ Stability(D̄(L′)) = stable then
3 return stable

4 L1 ← φ
5 for L2 ∈ Lset

s in ascending order do
6 if L1 6= φ ∧ L1 < L′ < L2 ∧ Stability(D̄(L1)) = Stability(D̄(L2)) then
7 return Stability(D̄(L1))

8 if L2 6= L′ then
9 L1 ← L2

10 return unknown

Function AddStabilityCandidate(L, Lset
s )

1 L′ ← L rounded to closest multiple of W
2 if L′ /∈ Lset

s then
3 Lset

s ← Lset
s ∪ {L′}

4 return Lset
s
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Function ConstructHistogram(Te, t′, L, resetBins, emin, emax)

Data:
rangemin(L), rangemax(L) : The min-max bounds registered for length L

Initially: rangemin, rangemax ← φ, φ

1 if rangemin(L) = φ ∨ resetBins = true then
2 rangemin(L)← emin
3 rangemax(L)← emax

4 numBins← 10
5 bins[1 ..numBins]← [0 .. 0]
6 for t′′ ∈ [t′−L+1, t′] do
7 Get et′′ from Te

8 bin←
⌊

et′′ − rangemin(L)

rangemax(L)− rangemin(L)
∗ numBins

⌋
+ 1

9 if bin < 1 then bin← 1
10 if bin > numBins then bin← numBins
11 bins[bin]← bins[bin] + 1

12 return bins

Function KolmogorovSmirnovD(bins1, bins2, L)

Input: bins1[1 ..numBins], bins2[1 ..numBins] : histograms representing pdfs

1 maxdiff, cdf1, cdf2 ← 0, 0, 0
2 for (bin← 1; bin ≤ numBins; bin++) do
3 cdf1 ← cdf1 + bins1[bin]
4 cdf2 ← cdf2 + bins2[bin]
5 maxdiff ← max{maxdiff, |cdf1 − cdf2|}

6 Dmetric← maxdiff

L
7 return Dmetric
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Function UpdateCoverageLength(prevFrameEndedPFE, κ, |H|, tbcp)

Data:

Lseq
c : A sorted sequence of tuples of coverage-lengths and timestamps,

kept sorted by coverage-length
t : Current timestep
Lc : Last updated coverage-length recommendation

Initially: Lseq
c ← {(W, t)} , Lc ←W

1 if tbcp 6= φ then
2 Drop samples from Lseq

c with timestamps ≤ tbcp

3 if |Lseq
c | = 0 then Lseq

c ← {(Lc, t)}
4 if prevFrameEndedPFE = true then
5 if κ < 1 then
6 L← |H|+ (1− κ)× 2dim(~x)

7 else
8 L← max{|H| − 2,W}
9 Add sample (L, t) to Lseq

c

10 Drop samples with oldest timestamps until |Lseq
c | ≤ 10

11 if prevFrameEndedPFE = true ∨ tbcp 6= φ then
12 Lc ← Average of the 50% to 75% median coverage lengths in Lseq

c

13 return Lc

Function AddSample(~x, ~µ, ~σ, ~χ,~vmin, ~vmax, k, γ)

Input:

~x : most recent sample to be added to some history h
~µ, ~σ, ~χ,~vmin, ~vmax : statistics of history h prior to adding sample
k : length of history h prior to adding sample
γ : forget rate for past samples in history

Result: ~µ new, ~σ new, ~χ new, ~v new
min , ~v

new
max : updated statistics after adding sample

1 if k = 0 then
2 ~µ new, ~σ new, ~χ new, ~v new

min , ~v
new
max ← ~x, 0, 0, ~x, ~x

3 return ~µ new, ~σ new, ~χ new, ~v new
min , ~v

new
max

4 ~µ new ← (1− γ)~x+ γ(1− γk)~µ
1− γk+1

5 ~σ2
new
← 1− γ

1− γk+1

(
γ

1− γk

1− γ
~σ2 + (~x− ~µ) ◦ (~x− ~µ new)

)
6 ~χ new ← max (γ ~χ, |~x− γ ~vmin| , |~x− γ ~vmax|)
7 ~v new

min ← min (~x, γ ~vmin)
8 ~v new

max ← max (~x, γ ~vmax)

9 return ~µ new, ~σ new, ~χ new, ~v new
min , ~v

new
max
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Function RemoveSample(h, ~µ, ~σ, ~χ,~vmin, ~vmax, k, γ)

Input:
h : history whose oldest sample (kth sample) is to be dropped
~µ, ~σ, ~χ,~vmin, ~vmax : statistics of history h prior to dropping oldest sample
k : length of history h prior to dropping oldest sample
γ : forget rate for past samples in history

Result:
~µ new, ~σ new, ~χ new, ~v new

min , ~v
new
max : updated statistics after dropping oldest sample

1 if k > 1 then
2 ~x ← h[k]

3 ~µ new ← (1− γk)~µ− (1− γ)γk−1~x

1− γk−1

4 ~σ2
new
← 1− γ

1− γk−1

(
1− γk

1− γ
{
~σ2 + (~µ− ~µ new)2

}
− γk−1(~x− ~µ new)2

)
5 ~χ new, ~v new

min , ~v
new
max ← ~χ, ~vmin, ~vmax

6 for 1 ≤ j ≤ n do
7 if vminj ≈ γk−1 xj then
8 v new

minj
← min

1≤u<k
γu−1h[u]

9 for 1 ≤ j ≤ n do
10 if vmaxj ≈ γk−1 xj then
11 v new

maxj ← max
1≤u<k

γu−1h[u]

12 for 1 ≤ j ≤ n do

13 if χj ≈ max
(∣∣∣v new

minj
− γk−1 xj

∣∣∣ , ∣∣∣v new
maxj − γ

k−1 xj

∣∣∣) then

14 χ new
j ← max

1≤u<v≤k

∣∣γu−1h[u]− γv−1h[v]
∣∣

15 else
16 ~µ new, ~σ new, ~χ new, ~v new

min , ~v
new
max ← 0, 0, 0, 0, 0

17 return ~µ new, ~σ new, ~χ new, ~v new
min , ~v

new
max

Function BudgetAllocate(b, prevDuration)

Input:
b : per-frame budget allocated by programmer to execute R
prevDuration : time take by previous invocation of FrameTransition

Data: debt : accumulated budget deficit over all previous frames

1 debt← debt + (prevDuration− b)
2 busable ← min(b, b− debt)
3 return busable
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Function InputExplorer(coverageMet, ~µ, ~σ, ~χ, ~xt−1, lenH)

Input:

~µ, ~σ : weighted mean and std of ~x samples in H
~xt−1 : the control input applied the previous frame

lenH : length of history H

Result: ~x ′ : input to be applied next

1 if lenH = 0 then
2 ~x ′ ← [0, 0, . . . , 0]T

3 else if coverageMet = true then
4 ~x ′ ← ~xt−1

5 j ← random(1, dim(~x))
6 x′j ← random(−Nj , Nj)

7 else
8 for j ∈ [1, dim(~x)] do

9 if σj ≥ 1.20× 1
2 Nj ∧ χj ≥ 1.20× 1+γ

2 Nj then
10 x′j ← xj|t−1

11 else
12 if µj ≈ 0 then
13 x′j ← random(−Nj , Nj)

14 if µj > 0 then
15 x′j ← random(−Nj , µj)

16 else
17 x′j ← random(µj , Nj)

18 return ~x ′
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APPENDIX C

ZERO-ORDER SYSTEMS

For some applications, the functional design of the application may make it simple for

the programmer to infer that the execution properties of each frame are completely (or

pre-dominantly) independent of the prior frames. For such applications, choosing a model-

order = 0 (i.e., xorder = 0, yorder = 0) would be the most accurate characterization of the

application. While the LQR scheme is essentially a highly optimized special-case of an LLSE

problem, the LQR case is intended for feedback-control and does not address the zero-order

model situation. However, the zero-order model can be efficiently inverted directly using

LLSE (since the complexity of the control problem grows significantly with model-order

and control horizon N).

The zero-order model M is determined by estimating matrix L in

~̂yt0 = L~xt0 , (108)

a special-case of Eq 26.

At time-step t, we want to solve for ∆~xt in

~β ◦ ε~yt−1 = L∆~xt, (109)

while minimizing fit-error ||~β ◦ ε~yt−1 − L∆~xt||2.

Here ε~yt−1 = ~yt−1 − ~̃y is the observed tracking-error for the previous time-step. Rather

than simply inverting ~̃y = L~xt in order to determine the best input ~xt to produce objec-

tive ~̃y at time-step t, we want to incorporate feedback control to compensate for model

mismatch/drift between M and the application. We arrive at Eq 109 as follows:

• Use the difference form of Eq 108:
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∆~yt = L∆~xt, (110)

to incorporate feedback of observations.

• Use the adaptive strategy elaborated in Section 6.5.2 to dynamically adjust feedback

sensitivity to deviations from the objective ~̃y. Use of the sensitivity gain ~β requires

the monotonicity property (Kumar et al. [31]), which is also justified by Section 6.5.2.

Note that the difference-form of the model in Eq 110 can stabilize on an input when

∆~yt−1 → 0, without requiring that ~yt−1 → ~̃y. However, the adaptive tracking-error form in

Eq 109 will continue to adjust ~xt until the tracking error ε~yt−1 → 0, even in the presence

of model-drift from M, and varying sensitivities of ~yt to ~xt over their possibly non-linear

response curve (rather, higher-dimensional response surface).

We can compute the least-squares-error input-increment in Eq 109 as follows: ∆~xt ←

L† (~β ◦ ε~yt−1). However, L may not be full-rank, and therefore, may not have a pseudo-

inverse L†. As discussed in Section 5.7.2, this limitation is overcome by regularization,

yielding the following procedure:

∆~xt ←

 L
√
δ I


† ~β ◦ ε~yt−1

0

 . (111)

Typically, the pseudo-inverse is not explicitly computed, as that requires the inversion

and multiplication of very large matrices. Instead, the LLSE procedure is used for efficiency.

However, here we are dealing with a small m × n matrix L, and the pseudo-inverse of its

regularized form L′ =

 L
√
δ I

 is quite efficient to compute explicitly: L′† ← (L′TL′)−1L′T .

When a zero-order model-structure is required (i.e., xorder = yorder = 0), the previously

described algorithms need to be modified as follows:

• The following UpdateRegulatorZO() procedure replaces the previously described

UpdateRegulator() procedure.
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• The state representation needs to be modified to retain the previous frame’s input

and output (despite zero-order for both), as follows: ~st =

~y sc
t−1

~ut−1

.

• Further note that, as signified by the use of ~ut−1, the retained past input is continuous

instead of the discretized ~xt−1 (but is still clipped to input-bounds).

• Correspondingly, the FrameTransition() procedure must be modified to call the

AdaptiveStateTransition() procedure with ~ut−1 as parameter instead of ~xt−1.

• Therefore, the FrameTransition() procedure needs to retain ~ut−1 as past input in

addition to ~xt−1.

Function UpdateRegulatorZO(deadline)

Data:
δ : regularization parameter to use for next LLSE for constructing C
ηδ, ρδ : metrics produced by the last invocation of C

Initially: δ ← default, ηδ ← φ, ρδ ← φ

1 if M 6= φ then
2 L = matrix form of M
3 if time() < deadline ∧ (C = φ ∨ unbalanced (ηδ, δ ρδ)) then
4 if ηδ 6= φ ∧ ηδ > 0 ∧ ρδ > 0 then

5 δ ←

√
ηδ δ

ρδ

6 L′ ←
[
L√
δ I

]
7 Linv ← (L′TL′)−1L′T

8

C(~st0)← Function{
∆~ut0 ← Linv (~y sc

t0−1 − ~̃y),

where ~st0 =

[
~y sc
t0−1

~ut0−1

]
, ~y sc

t0−1 = ~̃y + ~β ◦ ~yt0−1

ηδ ← ||L∆~ut0 − (~y sc
t0−1 − ~̃y)||2

ρδ ← ||∆~ut0 ||2

~ut0 ← ~ut0−1 + ∆~ut0

~ut0 ← ClipInputBoundViolations(~ut0)

return ~ut0
}
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APPENDIX D

MERGING VCG PATTERNS

Section 9.6 covers the overall criteria and algorithms for the merger of patterns. Here we

expand on some implementation-level details of the merge algorithms and capture some

basic math. Reading this appendix is not needed for gaining a full understanding of the

techniques introduced in Chapter 9.

A pattern Pi refers to the root node of the pattern, from which the rest of the pattern can

be traversed. Two patterns P1 and P2 are merged using a three pass algorithm. The first

pass, shown as recursive Function MergePatternTrees (Algorithm 1), produces a merge-

candidate VCG tree structure PM , assuming no incompatibility is found between the tree

structures of P1 and P2. Each node in PM has a pointer to the corresponding node in P1

and/or P2. The corresponding node may possibly be absent in at most one of P1 or P2.

Therefore, the tree structure produced in PM is an overlap of the tree structures of P1 and

P2.

The first stage of Function MergePatternTrees (Algorithm 1), lines 1 - 2, checks if P1 and

P2 match on the name and types of their root nodes. The second stage, lines 4 - 23, performs

a call-context compatibility check over the call-contexts from nodes P1 and P2 to their

children. Note that this is the mechanism that determines which child of P1 corresponds to

which child of P2 (if any). The orderings P1.children[0..m1] and P2.children[0..m2] do not

establish a correspondence between the children of P1 and P2. The call-context compatibility

check verifies that if a newly created child node merge child of PM has a call-context cc

(i.e., cc ∈ merge child.ccs), and cc is in the call-context of some child, child, of P1, then

this must imply that i) child under P1 becomes the corresponding node for merge child

under PM , and ii) every other call-context cc1 ∈ child.ccs must necessarily also be mapped

to merge child (and similarly for an appropriate child of P2). The second requirement may

fail to be satisfied if some cc1 ∈ child.ccs has already been assigned to a different merge-child
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Algorithm 1: MergePatternTrees(P1, P2)

1 if P1 6= ⊥ ∧ P2 6= ⊥ then
2 if P1.fname 6= P2.fname

∨ P1.node type 6= P2.node type then
return ⊥

3 end
4 all P1 ccs ←

⋃
i P1.children[i].ccs if

P1 6= ⊥, else φ
5 all P2 ccs ←

⋃
i P2.children[i].ccs if

P2 6= ⊥, else φ
6 all ccs ← all P1 ccs ∪ all P2 ccs
7 Initialize Assigned[cc]← ⊥, ∀ cc ∈ all ccs
8 mcount← 0
9 foreach cc ∈ all ccs do

10 if Assigned[cc] = ⊥ then
11 Assigned[cc]← mcount
12 mcount← mcount+ 1
13 if P1 6= ⊥ ∧ ∃ i s.t. cc ∈

P1.children[i].ccs then
14 if ∃ cc1 ∈ P1.children[i].ccs s.t.

Assigned[cc1] 6= ⊥ ∧
Assigned[cc1] 6= Assigned[cc]
then

15 return ⊥
16 end
17 Assigned[cc1]← Assigned[cc],

∀ cc1 ∈ P1.children[i].ccs

18 end
19 if P2 6= ⊥ ∧ ∃ i s.t. cc ∈

P2.children[i].ccs then
20 if ∃ cc2 ∈ P2.children[i].ccs s.t.

Assigned[cc2] 6= ⊥ ∧
Assigned[cc2] 6= Assigned[cc]
then

21 return ⊥
22 end
23 Assigned[cc2]← Assigned[cc],

∀ cc2 ∈ P2.children[i].ccs

24 end

25 end

26 end
27

28 PM ← Create VCG node with the
matching fname and node type
attributes from P1 and/or P2

(whichever 6= ⊥).
29

30 PM .CorrNodes ← [P1, P2]
31

32 for 0 ≤ m < mcount do
33 combined child ccs←

{cc : Assigned[cc] = m}
34 child P1 ← ⊥
35

36 if P1 6= ⊥ ∧ ∃ i s.t. Assigned[cc] = m
where cc ∈ P1.children[i].ccs then

37 child P1 ← P1.children[i]
38 end
39

40 child P2 ← ⊥
41 if P2 6= ⊥ ∧ ∃ i s.t. Assigned[cc] = m

where cc ∈ P2.children[i].ccs then
42 child P2 ← P2.children[i]
43 end
44 merge child←

MergePatternTrees(child P1, child P2)
45 if merge child = ⊥ then
46 return ⊥
47 end
48

49 merge child.ccs← combined child ccs
50 merge child.parent← PM
51 PM .children[m]← merge child

52 end
53 return PM

under PM . Violation of the call-context compatibility check will cause the merge process

to fail. The intent here is that the call-contexts of child must not get split over multiple

children of PM . Therefore, child.ccs ⊆ merge child.ccs, as merge child.ccs is being created
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Algorithm 2: MergeContributionStructure(PM )

input : VCG pattern PM , with merge-nodes pointing to corresponding nodes in P1

and P2

output: PM with contribution structure merged if compatible, else ⊥
1 foreach mnode in pre-order traversal of PM tree do
2 if ∃ cnodei, cnodej ∈ mnode.CorrNodes, cnodei 6= cnodej ∧ cnodei, cnodej 6=

⊥ s.t. ∃LSi ∈ cnodei.list ols with no corresponding LSj ∈ cnodej .list ols, and,
cnodej has a child node corresponding to the second node in the LSi sequence
then return ⊥

3 if ∃ cnodei, cnodej ∈ mnode.CorrNodes, cnodei 6= cnodej ∧ cnodei, cnodej 6=
⊥ s.t. cnodei.cls 6= ⊥ then

4 if cnodej .cls = ⊥∨ Node sequences cnodei.cls and cnodej .cls
are not in correspondence via PM then return ⊥

5 end
6 foreach cnodei ∈ mnode.CorrNodes do
7 foreach LSi ∈ cnode.list ols do
8 merged LS ← Construct a sequence of nodes in PM that corresponds to

LSi
9 if merged LS /∈ mnode.list ols then

10 Append merged LS to mnode.list ols
11 foreach mn in merged LS node sequence except first node (i.e.,

mnode) do mn.cls← merged LS
12 end

13 end

14 end

15 end
16 return PM
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to accommodate the call-chains of corresponding nodes child1 and child2 from P1 and P2,

and child1.ccs may not necessarily be identical to child2.ccs (say, due to internal merging

of subtrees within a pattern). The last stage, lines 28 - 51, recursively invokes Function

MergePatternTrees on pairs of children drawn over P1 and P2 that have been found to be

in correspondence (based on call-contexts). This creates mcount merged children subtrees

under PM .

The second pass, shown as Function MergeContributionStructure (Algorithm 2), takes

the merged tree structure PM (with its intrinsic pointers to corresponding nodes within P1

and P2) and returns it with the corresponding contribution structures also merged, provided

no incompatibility exists between the contribution structures of P1 and P2.

Line 2 is the originating-linear-segment compatibility check. Compatibility is

violated if a node cnodei in, say P1, is originating some linear segment, LS, which does

not have a corresponding linear segment originating at cnodej , the node in P2 that corre-

sponds to cnodei in P1 via PM . However, if cnodej is missing the child subtree that could

have carried the linear segment corresponding to LS then no conflict in interpretation is

introduced by allowing the contribution structure to merge. Lines 5 - 4 are the linear-

segment internal-compatibility check. This check verifies if a node cnodei, say in P1,

is internal to a linear segment LS, and the corresponding node cnodej in P2 is internal to a

linear segment identical to LS. However, if corresponding node cnodej does not exist (i.e.,

cnodej = ⊥), then no conflict in interpretation of the merged structure is introduced at

mnode.

The third pass updates the metrics on the merged nodes as described in Section D.1.

Then it computes the Kolmogorov-Smirnov difference measure 0.0 ≤ D ≤ 1.0 between

the original metrics m1 and m2 coming from P1 and P2, respectively. We treat the m1 and

m2 metrics as Gaussians for the purpose of computing D. If the node or edge corresponding

to, say them2 metric, does not exist in P2 (since we allow the merging of dissimilar patterns),

an appropriately zeroed out value is used for m2 in computing D. This would make a merger

of dissimilar structures automatically more expensive since a zero-distribution will have a

relatively high D difference from non-trivial distributions. The algorithm then computes a
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weighted average of the D values over the merged tree. The Wi measures (total execution

time) of merged tree nodes are used to weigh the associated D in the average. Since we

want a strong dissimilarity at the root node (D > τS) to by itself rule the merger to be

prohibitively costly, we choose to use a breadth-first-traversal to progressively add nodes

(and corresponding D terms) to the weighted average. If the progressive average exceeds

the summarization pressure τS at any point, we prohibit the merger. Otherwise, a scalar

merge-cost dP1,P2 is produced. Therefore, the programmer can choose τS in the range 0.0

to 1.0, where a low τS only allows highly similar structures and behaviors to merge thereby

providing precision, whereas a larger τS would force the summarization of the results into

much fewer, more compressed patterns that possibly generalize better to future runs of the

application.

If a merge-cost dP1,P2 is produced, then the tuple ((P1, P2) , dP1,P2, PM ) provides a pair

of points for the agglomerative-clustering algorithm to consider. Agglomerative clustering

uses dP1,P2 as the corresponding distance measure, and PM as the result of combining P1

and P2.

D.1 Merging Statistics

Consider corresponding nodes F1 and F2 from P1 and P2 respectively, that get merged into

FM under merged pattern tree PM . The root nodes P1 and P2 (since a pattern is represented

by the root to the pattern tree) have had their call-contexts from main combined under PM ,

i.e., PM .ccs = P1.ccs ∪ P2.ccs.

Under Pi there is a path of VCG nodes to Fi, with call-context-sets at each level on

this path. Now, F1.fname = F2.fname = FM .fname since the merger was successful.

Let us refer to that common function name as fname for brevity here. Therefore, every

full call-chain (all the way from main) that results in those invocations of fname that

got counted in NF1 , can be enumerated as some concatenation of the call-chain-segments

taken from the call-context-sets in P1 along the VCG path to F1. Note that the converse

is not necessarily true: every full call-chain that can possibly be constructed by taking

segments from the call-context-sets in a VCG path, may not have actually occurred during
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the profiling execution of the application. But we don’t need the converse property to hold.

Now, once the patterns P1 and P2 are merged, we would like the same property to hold

for FM under PM . Clearly, this enumerable-path property still holds as the call-context-

set at each merged node is a superset of the corresponding nodes in P1 and P2. With regards

to annotated statistics, we still need to combine the NF1 invocations of fname for F1 and

the NF2 invocations for F2 into NFM invocations for FM . The programmer should be able

to interpret the statistics uniformly for P1, P2 and PM without needing to know if some of

these patterns are the result of merging one or more layers of lower-level patterns. This can

indeed be done as follows:

NFM ← NF1 +NF2 ,

X̄FM ← X̄F1 ∗NF1 + X̄F2 ∗NF2

NFM
,

σ2
XFM

←
NF1 ∗ (σ2

XF1
+ (X̄F1 − X̄FM )2) +NF2 ∗ (σ2

XF2
+ (X̄F2 − X̄FM )2)

NFM
.

These can be verified as being mathematical equivalences. That is, even though we

no longer have available the NF1 separate observations of r.v. XF1 and the NF2 separate

observations of r.v. XF2 , we can still exactly compute the resulting metrics as if we had re-

computed the mean and variance directly from the combined observations. The secondary

metrics, CoV FM and WFM , can always be recomputed from the primary metrics of mean,

variance and count.

For a Task node H with incoming back-edge bi corresponding to the ith linear segment

originating at H, i.e., H.list ols[i], the variance-contribution statistics are recorded as a

tuple in H.ols stats[i] = Ti. Let descendant W of H be the source of bi. Then, Ti =

(Ȳ H|W , σ2
Y H|W

, NH) is the statistics tuple for bi. Ti that can be updated during mergers

of structurally-corresponding back-edges bi from P1 and P2 just like the merger of node

statistics above. The contribution fraction along bi is a secondary metric cfi ← C
H|W
W,W /σ

2
H .

The numerator term is updated on merger like the variance terms above.
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