CHARACTERIZING AND CONTROLLING PROGRAM BEHAVIOR
USING EXECUTION-TIME VARIANCE

A Dissertation
Presented to
The Academic Faculty

by

Tushar Kumar

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2016

Copyright (©) 2016 by Tushar Kumar

CHARACTERIZING AND CONTROLLING PROGRAM BEHAVIOR

USING EXECUTION-TIME VARIANCE

Approved by:

Prof. Santosh Pande, Advisor
College of Computing
Georgia Institute of Technology

Prof. Sudhakar Yalamanchili, Co-advisor
School of Electrical and Computer
Engineering

Georgia Institute of Technology

Prof. Patricio Vela

School of Electrical and Computer
Engineering

Georgia Institute of Technology

Prof. Richard Vuduc
College of Computing
Georgia Institute of Technology

Prof. Abhijit Chatterjee

School of Electrical and Computer
Engineering

Georgia Institute of Technology

Prof. Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Date Approved: March 9*" 2016

To my dear mother and grandmother,
for all their love, patience and sacrifice

over these long years.

ACKNOWLEDGEMENTS

There are many friends, colleagues and mentors over the many years whose patience, guid-
ance, friendship and kindness touched me and taught me much about life, work and adven-
ture.

Foremost, I'd like to thank with all my heart my advisor, Prof Santosh Pande, for
believing in me, giving me a chance to be ambitious once again, showing me how to think
big in research and for keeping me very well funded so I would have the freedom to think
big. Thank you for giving me one heck of an adventure — intellectual and across Europe
and North America.

I have the deepest gratitude for my co-advisor, Prof Sudhakar Yalamanchili, for offering
me the best of opportunity, a chance to work on cutting-edge research in our startup and
explore my full potential, and for being the nicest, most helpful person I have met.

I would like to thank my PhD committee members — Prof Patricio Vela, Prof Richard
Vuduc, Prof Abhijit Chatterjee and Prof Umakishore Ramachandran. In particular, I would
like to thank Prof Vela for devoting considerable time and interest in understanding my work
in depth as the subject area expert and in helping me express the technical accomplishments
much better.

From the early years of my graduate studies I'd like to thank my labmates and close
friends Khawar Azad, Jimy Chang, Manuel Benet Navarro, Chris Wood, Weilai Yang,
Himanshu Agarwal, Ankur Agrawal, Shridhar Reddy, Deepak Agarwal and Sriram Kishore
Rallabhandi.

My years of hiatus at a startup introduced me to Hitesh and Reshmi Patel, Suresh
Cheemalavagu, Ajay Jayaraj, Yogesh Chobe, Rick Copeland and Roger Dickerson who all
became close friends. I am particularly indebted to Hitesh for introducing me to yoga, and
for teaching the mind and body practice at a level I have not experienced with any other

teacher.

v

On my return to graduate studies I was blessed to make many new friends and confi-
dantes — Lakshmi Narasimhan Chakrapani, Pinar Korkmaz, Rodric Rabbah, Balasubra-
manian Seshasayee, Subramanian and Divya Ramaswamy, Nawaf Almoosa, Jeffrey Young,
Veerdhaval Mahajan, Varadraj Vernekar, Stephen Lewis, Aakash Jariwala, Trang Thai, Is-
mail Faik Baskaya, Shafi and Adria Motiwalla, Manish and Surabhi Goyal, Partha Sarathi
Chakraborty and Tanushree Ghosh, Shauvik Roy Choudhary and Tanushree Mitra, Vishakha
Gupta, Danesh Irani and Zareen Kasad, Bhuvan Bamba, Vijay Balasubramaniyan, Dul-
loor Rao, Adit and Smita Ranadive, Raghav and Rakshita Vijaywargiya, Mukil Kesavan,
Priyanka Tembey, Farhana Aleen, Kaushik Ravichandran, Martin Levihn, Jonathan Gladin,
and Kangqi (Vincent) Ni. In particular, I’d like to thank my close friends and labmates
Romain Cledat and Jaswanth Sreeram for our shared startup adventures (since the first
startup was evidently not enough for me) and our shared creation, misery, joy and travel.
The stimulating intellectual and research discussions with Nawaf, the wonderful time spent
with Manish and Surabhi Goyal, the family-like bonds with Partha and Tanu, Shafi and
Adria, and Shauvik and Tanu, the shared interest in coffee, food and dessert with Vishakha,
Pinar and Nawaf, the late night working sessions fueled by coffee, juice and omelettes with
Nawaf, Shauvik and Danesh, and the close bonds forged over tennis and beer with Yogesh,
Jaswanth, Adit, Dulloor and Raghav will remain some of my fondest memories.

I would like to thank my fellow graduate students Jayaram Natarajan, Kangqi (Vincent)
Ni, Girish Mururu and Vinit Deodhar for their considerable help critiquing my practice talk.
They helped improve the final presentation immensely. I am deeply indebted to Partha,
Shauvik, both the Tanus, Jeffrey and Nawaf for helping me so much during my last few
visits to Atlanta and as I worked remotely to finish the thesis.

Finally, T would like to thank my family, in particular my mother and grandmother,
without whose love, support and encouragement from an early age these academic pursuits

would not have been possible.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e iv
LIST OF TABLES e e e e X
LIST OF FIGURES e e xi
SUMMARY e xiv
I INTRODUCTION 1
1.1 Contributions 2

1.2 Dynamic QoS control 2

1.3 Profiling 4

1.4 Thesis Statement L 5

1.5 Organization 5

II MOTIVATION e e e e e e e 6
2.1 Nature of Immersive Applications, 6

2.2 Challenges in Tuning QoS 6

2.3 Challenges in Characterizing QoS Performance 10

IIT RELATED WORK e e e 15
3.1 Dynamic QoS Optimization 15

3.2 Offline Characterization Techniques 24

IV UNI-VARIATE QOS CONTROL 26
4.1 Contributions L e 29

4.2 Domain Observations 30

4.3 Adaptive Feedback Controller 35

4.4 Adaptation of Control Policy 36
4.4.1 Global failuremode 38

4.4.2 Oscillation failure mode 40

4.4.3 Sluggishness failure mode 42

4.4.4 Tllustration of Failure Modes 43

4.5 Experimental Validation00 44

4.6 Conclusion 50

vi

V MULTI-VARIATE QOS CONTROL:

APPROACH AND PROBLEM DEFINITION 51
5.1 Motivation 51
5.2 Contributions 52
5.3 OVerview 52
5.4 Problem Definition 53
5.5 Problem Definition: Discussion 55
5.6 Nature of Immersive Applications 57
57 Useof LLSEand LQR 62
5.7.1 Linear Model of Application 63
5.7.2 Linear Least-Squares Estimation (LLSE) 64
5.7.3 Using LLSE to estimate Linear Model for Application Response . . 65
5.74 LQR Regulator Design 66
5.7.5 Application QoS Control using LQR 69
5.8 Challenges in the use of LLSE and LQR with Immersive Applications . . . 74
5.8.1 Online Generation of Training Data. 75
5.8.2 Improving tolerance of LQR to Approximate Models. 76
5.8.3 Determination of LQR structuring parameters. 76

VI MULTI-VARIATE QOS CONTROL:

DESIGN OF THE QOS CONTROLLER.. 79
6.1 Design Strategies under Model-Identification Adaptive Control 80
6.2 Model Estimation with LLSE 0. 96
6.2.1 Quantifying Stability in H L. 100
6.2.2 Detection of Behavior Change Pointsin H 103
6.2.3 Quantifying Coverage in H 104
6.2.4 Reconciling Coverage and Representativeness into Recommended
History Length L, 107
6.2.5 Invalidation of Active Model on Significant Deviations in Application
Behavior 109
6.2.6 Adaptive Determination of LLSE Regularization Parameter A . . . 111
6.3 Model Updates to Track Changing Application Behavior 112
6.3.1 Estimation of Substitute Model M’ 113

vii

6.3.2 Comparing Performance Potential of M’ Against M 114

6.4 QoS Maximization by Balancing Exploration versus Exploitation 117
6.4.1 Probabilistic Distribution of Cluster Length 118
6.4.2 Relationship between Exploration Parameters 120
6.4.3 Using Model QoS to Adjust Exploration versus Exploitation 121

6.5 Regulator Construction with LQR. 126
6.5.1 Adaptive Correction to Input-Costs Matrix R 127
6.5.2 Introducing Adaptive-Integral Control into LQR to Compensate for

Model Approximation 137

6.6 Bounding Runtime Overhead 138

VII MULTI-VARIATE QOS CONTROL:

EXPERIMENTAL EVALUATION 140

7.1 Applications 141

7.2 Experimental Setup 144

7.3 Results L 144
7.3.1 Frame-time QoS 144
7.3.2 Accuracy QOS 145
7.3.3 Joint Accuracy and Frame-time QoS 147
7.3.4 Benefit of Multiple Control Parameters 148

7.4 mpeg2enc Detailed Evaluation L. 150

7.5 ferns Detailed Evaluation 0 L. 157

7.6 rtftr Detailed Evaluation 0oL 164

7.7 x264 Detailed Evaluation 0L 173

7.8 bodytrack Detailed Evaluation 174

VIII CALL-CONTEXT VARIANCE ANALYSIS 175

8.1 Contributions 176

8.2 Profile Representation 177
8.2.1 Node Annotations 178

8.3 Detecting Patterns of Behavior 179
8.3.1 Tagging Nodes. 179
8.3.2 Signature Generation for Patterns 180

viil

8.3.3 Grouping and Distinguishing between Similar Patterns 183

8.3.4 Ranking Impact of Patterns 185

8.4 Experimental Evaluation 0 0oL, 186
8.4.1 Case Study: H.263enc 191

IX DOMINANT VARIANCE ANALYSIS 193
9.1 Imtroduction 193
9.1.1 Overall scheme and Contributions 193

9.1.2 Contributions L 194

9.2 Variance and its Underlying Source 195
9.2.1 Classifying Variance 199

9.3 Context Sensitivity of Behavior 200

9.4 Constructing VCG from CCT 201

9.5 VCGPattern e 204

9.6 Dominant Behavioro o 206

9.7 Dominant Variance Analysis oL 210

9.8 Experimental Evaluation 0 0oL 212
9.8.1 Illustrations of VCG Analysis Results 214

9.82 Controller 217

9.9 Related Work 226
9.10 Conclusion e 227

X CONCLUSION . . . s e s e 229
10.1 Future Worko 231
APPENDIX A — DERIVATIONS 232
APPENDIX B — ALGORITHMS. 245
APPENDIX C — ZERO-ORDER SYSTEMS 265
APPENDIX D — MERGING VCG PATTERNS 268
REFERENCES e 274

X

6.1
6.2

6.3
6.4
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
8.1
9.1

9.2

9.3

LIST OF TABLES

LQR input-costs: Initial Refinement Step 134

LQR input-costs: Continued Refinement Step, when f;erm = false and f]bu =
false e 135

LQR input-costs: Boundary Tuning Step, when fjt-erm = false and fjbu = true 136

LQR input-costs: Hold Step, when f{*™ =true 137
Application scalable algorithms, tunable parameters and QoS objectives. . . 144
Mapping of control values to search window sizes for mpeg2enc 151
Mapping of control values to number-of-iterations for ferns. 157

A better mapping of control values to number-of-iterations for ferns (N =2) 158

Mapping of control values to scalefactor and minrect for rtftr 164
Number of cores for x264 (N =1) 173
Choice of sub-pixel interpolation mode for x264 (N =1) 173
Motion estimation search window size for x264 (N =1) 173
Number of cores for bodytrack (N =1) 174
Number of particles for bodytrack (N =2) 174
Attributes of the MDCC patterns for our benchmarks. 187

Number-of-nodes / Number-of-patterns: initially extracted, versus, after
merging on 7¢ without/with trimming00 L. 213

Benchmark characteristics and statistics for performance model generation
of all benchmarks. 225

Results showing statistics about runtime behavior of root functions in VCGs
exhibiting highly variant execution time on per frame basis. 226

2.1
2.2
4.1
4.2
4.3
4.4
4.5
4.6

4.7
7.1
7.2
7.3

7.4
7.5
7.6
7.7

7.8

7.9

7.10
7.11
7.12

7.13

7.14

7.15

LIST OF FIGURES

A sequence of frame-encoding times for the MPEG2 encoder. 7
Variations in per-frame decoding time for the MPEG2 decoder. 9
Block diagram of the adaptive feedback controller. 26
Dependence of a on the application and the dataset.. 37
Metrics for Oscillation failure mode L. 40
Frame sequence for the MPEG2 encoder on the Quantum of Solace video. 44
Variations in satisfaction ratio (SR) against sliding-window size (W). 46
Variations in SR against Y°% (mean frame-time objective), for fixed-X and

adaptive cases. L e 48
Distortion in the frame times for Torque. 49
Comparison of average frame-time QoS between controller and best fixed case.145
Comparison of average accuracy QoS between controller and best fixed case. 146

Comparison of average joint accuracy and frame-time QoS between controller
and best fixed case. 147

mpeg2enc: Impact of tuning multiple control parameters on frame-time QoS. 148

rtftr: Impact of tuning multiple control parameters. 149
mpeg2enc: monotonic response between x and frame-time 153
mpeg2enc 1.X: comparison of QoS performance for fixed x vs controller across

varying frame-time objectiveso oo 154

mpeg2enc 2X: comparison of QoS performance for fixed x1,x2 vs controller
across varying frame-time objectives o000 155

mpeg2enc 4X: QoS performance of controller across varying frame-time ob-

JeCEIVES . L oL L 156
ferns N = 6: poor monotonic response between x and frame-time 159
ferns N = 2: improved monotonic response between x and frame-time . . . 160
ferns: comparison of frame-time QoS for fixed = vs controller across varying

frame-time objectiveso 161
ferns: comparison of the accuracy QoS for fixed x vs controller across varying

frame-time objectives oL Lo 162
ferns: comparison of the combined QoS for fixed x vs controller across varying

frame-time objectives L L Lo 163
rtftr: mostly monotonic response between x; (scalefactor) and frame-time . 165

X1

7.16 rtftr: mostly monotonic response between xa (minrect) and frame-time . . .

7.17 rtftr: comparison of frame-time QoS of fixed x; (scalefactor) vs controller
across varying frame-time objectives oL

7.18 rtftr: comparison of frame-time QoS of fixed x9 (minrect) vs controller across
varying frame-time objectives L.

7.19 rtftr: comparison of frame-time QoS of fixed x1, zo (scalefactor, minrect) vs
controller across varying frame-time objectives

7.20 rtftr: comparison of combined accuracy and frame-time QoS of fixed z
(scalefactor) vs controller across varying frame-time objectives

7.21 rtftr: comparison of combined accuracy and frame-time QoS of fixed x5 (min-
rect) vs controller across varying frame-time objectives

7.22 rtftr: comparison of combined accuracy and frame-time QoS of fixed x1, z2
(scalefactor, minrect) vs controller across varying frame-time objectives

8.1 An example program, and the corresponding CCT with annotated node
statistics. L

8.2 Minimal distinguishing call-chain context (MDCC) pattern.
8.3 Tlustration of a CCT with the high-variant nodes tagged.
8.4 Illustration of MDCC extraction from full call-chain contexts.

8.5 Tllustration of selectively extending MDCC patterns using pattern-similarity
trees (PSTs) to distinguish between differing high-variant behavior.

8.6 Mean and CoV scatter-plots comparing the profiling D1 and regression D2
data sets, constructed using all the patterns.

8.7 Mean and CoV scatter-plots comparing the profiling D1 and regression D2
data sets, constructed using just the patternset..

8.8 Pattern set for H.263enc. L
9.1 Example function H and its annotated CCT.
9.2 A VCG Pattern and its CCS representing variant behavior under H.

9.3 VCG for mpeg2enc with: qos640x480, 7¢ =04, 5=0.1..
9.4 VCG for mpeg2dec with: qos320x240, 79 =0.01, 3 =0.1.
9.5 VCG for h263enc with: hockeyl cif 7¢ =028=01..
9.6 VCG for h263dec with: baikonur r7 overflight, 7¢ =04, 8 =0.1.. . . .
9.7 VCG for facetrack with: adam_sandler 7¢ =02 8=0.1..
9.8 VCG for svm with: cif 7¢ =02 =0.1.
9.9 VCG for ferns with: mousepad 7 =02 =0.1.

xii

166

167

168

169

170

171

172

178
181
182
182

185

190

215
216
217
218
219

221

9.10 VCG for sift with: fullhd7¢ =02 8=0.1. 221
9.11 VCG for stitch with: fullhd 7¢ =08 8 =0.1. 222
9.12 VCG for tracking with: fullhd 7¢ =02 8=0.1. 222

xiil

SUMMARY

Immersive applications, such as computer gaming, computer vision and video codecs,
are an important emerging class of applications with QoS requirements that are difficult
to characterize and control using traditional methods. This thesis proposes new techniques
reliant on execution-time variance to both characterize and control program behavior. The
proposed techniques are intended to be broadly applicable to a wide variety of immersive
applications and are intended to be easy for programmers to apply without needing to gain
specialized expertise.

First, we create new QoS controllers that programmers can easily apply to their applica-
tions to achieve desired application-specific QoS objectives on any platform or application
data-set, provided the programmers verify that their applications satisfy some simple do-
main requirements specific to immersive applications. The controllers adjust programmer-
identified knobs every application frame to effect desired values for programmer-identified
QoS metrics. The control techniques are novel in that they do not require the user to pro-
vide any kind of application behavior models, and are effective for immersive applications
that defy the traditional requirements for feedback controller construction.

Second, we create new profiling techniques that provide visibility into the behavior of
a large complex application, inferring behavior relationships across application components
based on the execution-time variance observed at all levels of granularity of the application
functionality. Additionally for immersive applications, some of the most important QoS
requirements relate to managing the execution-time variance of key application components,
for example, the frame-rate. The profiling techniques not only identify and summarize
behavior directly relevant to the QoS aspects related to timing, but also indirectly reveal
non-timing related properties of behavior, such as the identification of components that are

sensitive to data, or those whose behavior changes based on the call-context.

Xiv

CHAPTER I

INTRODUCTION

The execution-time variance of programmatic constructs is a largely untapped aspect of
programs that offers unique insights for understanding program behavior and a unique
approach for controlling program behavior. Immersive applications, such as computer gam-
ing, computer vision and video codecs, are an important emerging class of applications that
stand to benefit from the characterization and control of execution-time variance.
Immersive applications attempt to maximize the feature set expressed while maintaining
a sufficiently smooth frame-rate. Their Quality-of-Service (QoS) requirements are often
best-effort in nature, such as seeking soft-real-time frame-rates and the improvement of
multiple application-specific QoS metrics in a balanced manner. Immersive applications are
typically large C/C++/Java programs, which lack analyzable language semantics about
behavior and timing. Their QoS behavior is typically a complex emergent property of the
data-set and underlying algorithms. Consequently, QoS tuning becomes a tedious and ad
hoc process for immersive applications. The gaming industry is famous for prolonged game-
play testing where every possible game scenario is played out on various relevant gaming
platforms and then manual tweaks to the game feature-set are made for each scenario
and platform. Other application domains, such as video encoding and computer vision,
typically a priori fix the feature-set for a limited use-case after extensive trial-and-error — for
example, programmers may manually tweak algorithmic parameters until a sufficient frame-
rate and accuracy/fidelity is achieved on a required video resolution and video content. The
a priori fixed parameters fail to account for local variations in the application behavior over
a data set during a single execution of the application and variations in the application

behavior across data sets.

1.1 Contributions

1. We create new QoS controllers that programmers may easily apply to a wide variety of
immersive application to dynamically tune application-specific parameters and keep
QoS metrics at desired values over a single data set, across differing data sets and
across differing execution platforms. These controllers combine system identification,
adaptive control and optimal control with the particular properties inherent to immer-
sive applications to make the problem of QoS control tractable, whereas traditional
controller design techniques prove difficult to apply due to the nature of immersive

applications.

2. We create new profiling techniques that rely on detecting variant behavior around
repeatedly executed constructs in the application call-structure and summarize the
most dominant variant behavior from across all levels of the functional granularity of
the application. These profiling techniques are particularly suitable for identifying to
the user the application components that are likely to impact the QoS in immersive
applications, which is particularly difficult for traditional hot-spot profiling and static

analysis to accomplish for immersive applications.

The two contributions help during different phases of the application QoS tuning process.
Programmers may use our profiling techniques to discover what parts of their application
need either offline or dynamic tuning to maintain QoS. Once the programmers develop an
understanding of the application components that impact QoS, either with the help of our
profiling techniques or just from their own application/domain knowledge, the programmers
may choose to apply our controllers to perform the QoS tuning automatically over a wide-

variety of platforms and use-case scenarios.
1.2 Dynamic QoS control

As one part of this work, we create QoS control techniques for immersive applications.

The QoS requirements of immersive applications are typically straightforward to express

as a variance-minimization problem, creating an opportunity to apply standard model-
estimation and control techniques for the automated tuning of QoS during application
execution. Immersive applications frequently use parametrically scalable algorithms, where
the dynamic tuning of the algorithm parameters would allow control over the expressed
QoS behavior of the application, with regards to the frame execution time, accuracy of
results, level of detail, etc. However, immersive applications pose the following challenges
to the direct application of the standard estimation and control techniques — i) a monolithic
C/C++/Java implementation of the applications with no analyzable properties for behavior
and timing; 4i) high sensitivity of the application behavior to the data-set, often with
rapid variations over the data-set, making the a priori derivation/estimation of a fixed
model infeasible; #7i) behavior that is mostly an emergent property of the data-set and
the algorithms, often making the construction of parametric models very difficult, even
for application-domain experts; and, iv) existence of no common modeling framework with
well-defined behavior properties for immersive application.

We create a QoS-control problem formulation that recognizes additional properties com-
mon to immersive application. We refer to these properties as the domain assumptions of
the class of immersive applications. We create two QoS controllers that rely on the do-
main assumptions to augment the standard estimation and control techniques, making QoS
control tractable for immersive applications. The first controller is uni-variate with a very
light-weight adaptive-integral control strategy. The second controller is multi-variate and
builds on estimation and optimal control techniques. The controllers are probabilistic and
best-effort in nature — the better a given application satisfies the domain assumptions, the
greater the probability that its QoS requirements will be satisfied by the controllers and
with increasing tightness.

The QoS controllers are designed to allow an arbitrary immersive application to adapt to
a wide variety of operating conditions (such as compute platforms with differing capabilities)
and a wide choice of optimization goals for the QoS metrics, so long as the domain assump-

tions remain valid. We greatly simplify the achievement of QoS for immersive applications

by only requiring the programmers and domain experts to verify that their application sat-
isfies the domain assumptions, which is often a simple and intuitive process. In contrast,
the current state of the art requires them to either manually tailor algorithmic parameters
to only a narrow range of data sets and operating conditions, or have considerable controls
expertise to create a custom solution for their particular application, with the vast majority

of practitioners settling for the former.
1.3 Profiling

As a second part of this work, we create offline profile-analysis techniques to characterize the
variant behavior around repeatedly invoked constructs in programs. Variance characteriza-
tion creates new opportunities for the programmer to tune program behavior. In particular,
variance characterization reveals the program components most likely to impact the typical
QoS requirements of immersive applications, and has the ability to detect related behavior
across program components due to correlations in their execution-time variance, which is
beyond the capabilities of static analysis and hot-spot profiling.

We create the Call-Context Variance Analysis (CCVA) technique to demonstrate the
role call-context plays in determining the locations of variant behavior in the program call-
structure, and then the more general Dominant Variance Analysis (DVA) technique that
succinctly captures the structure of the variant behavior exhibited by an application. DVA
is capable of relating variant behavior across application components and finding underly-
ing causes of variance in large C/C++/Java applications where the programming language
provides no behavioral or timing semantics, limiting the utility of static analysis. The large
code-base and the predominantly data-dependent behavior of immersive applications also
limits the utility of regular hot-spot profiling techniques. Hot-spot profiling would simply
identify the top-level application functions as being the most compute-intensive, while the
performance tuning opportunities for frame-rate and improved QoS typically span functions
at multiple levels of granularity. In contrast, DVA will examine the repeated execution of

the application components at all levels of functional granularity (such as a frame, and

various levels of sub-block processing within a frame in a video encoder) and identify vari-
ant behavior at each level. DVA will determine if behavior at one level of granularity is
the principal cause of variance at another level. We create a new program representation
called Variance Characterization Graph (VCG) capable of flexibly and succinctly extracting
structure from the full program call-graph. DVA uses the VCG representation to capture
multiple instances of related variant behavior within a common structure for the user to
examine. Finally, DVA has the ability to summarize numerous instances of similar behavior

occurring across the program call-graph into a succinct VCG representation.
1.4 Thesis Statement

This thesis proposes novel adaptive control techniques capable of tuning the QoS of frame-
oriented immersive software applications for which generic controller design techniques and
generic programmatic techniques fail to be effective due to these applications’ rapidly time-
varying and data-dependent nature, and proposes a novel profiling technique capable of
summarizing the dominant variant behavior of these applications from across all levels of
their functional granularity, in a manner particularly suited for the QoS optimization of

typical immersive applications.
1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 motivates why the new
profiling and QoS control techniques are needed to overcome the unique challenges posed
by immersive applications. Chapter 3 discusses related work. Chapter 4 describes the
uni-variate QoS controller. Chapters 5, 6 and 7 describe the multi-variate QoS controller.
Chapter 8 describes the Call-Context Variance Analysis profiling technique. Chapter 9 de-
scribes the Dominant Variance Analysis profiling technique. Finally, Chapter 10 concludes

the thesis and discusses future work.

CHAPTER II

MOTIVATION

2.1 Nature of Immersive Applications

Immersive applications such as gaming, multimedia and computer vision are becoming
prominent compute-intensive applications on consumer desktops and mobile devices. Im-
mersive applications are interactive by nature, and place a premium on using a platform’s
compute resources to the maximum in order to create as engrossing and visually stunning an
experience as possible for the user. Due to their interactive nature, these applications have
a bounded window of time (a “frame”) to update the simulated world state and its visual
rendering based on immediate user inputs. Therefore, the QoS tuning goal for these appli-
cations is to pack the most sophisticated features possible into a frame while maintaining a
sufficiently smooth and high frame-rate [1]. A video encoder may need to compress a live
video-stream in real time without dropping too many frames in the presence of per-frame
variations in processing time. The programmers may also desire that an application-specific
feature achieves a certain quality, such as the achievement of sufficiently sophisticated Artifi-
cial Intelligence (AI) for bots (simulated characters) in a video game without compromising
the frame-rate too often with excessive Al computations, essentially striking a balance be-

tween Al quality and having a smooth frame-rate.
2.2 Challenges in Tuning QoS

There are four main challenges that programmers face in using existing formal methods to

tune the behavior of immersive applications.

The first challenge is that immersive applications are implemented as monolithic pro-
grams using general-purpose C/C++/Java development flows which provide significant pro-
ductivity advantages in developing a large complex application. Unfortunately, the use of

general-purpose programming languages fails to provide sufficient analyzable information

about the execution properties of the application that languages with specialized semantics,

such as for real-time [2, 3] or for streaming [4], could.

The second challenge is that the QoS of immersive applications is highly sensitive to
the nature of the data being processed and the nature of data may change rapidly during a
single execution of the application. An MPEG2 encoder, for example, exhibits very different
frame times on different parts of the same video stream being compressed, as illustrated by
the sequence of frames in Figure 2.1. Note that this is the case even when the application
has exclusive use of system resources, i.e. the frame-time variation is a consequence purely
of the characteristics of the application itself with no resource contention issues involved.

Figure 2.2 shows similar variations for the MPEG2 decoder application [5].

400 T T T T T
W=1 x
350 X W=7 .
a X
E 300 | .
X
250 s

200
150
100

Y: Frame time

S0 P M YRR LR YN
o TR XX XXX XXX X o XX XX XXy XX XX X XX X X XXX
0 50 100 150 200 250 300
Frame

Figure 2.1: A sequence of frame-encoding times for the MPEG2 encoder. W = 1 shows
the instantaneous frame-times. W = 7 shows a moving average of the previous seven frame
times.

The primary reason for the frame-time variability in the MPEG2 encoder is that the
motion estimation algorithm may perform searches of very different sizes across frames
depending on how quickly a matching block is found in adjacent video frames [6]. Such
data-dependent variability makes the use of any fixed setting of the application features
sub-optimal. A secondary reason for the frame-time variability is the use of Group-of-

Pictures (GoP) by the video standards [7] — for example, every sequence of seven frames

will consist of a pre-determined mix of intra coded, predictive coded and bi-predictive
coded frames (called I, P and B frames, respectively). The computational load of motion
estimation varies substantially across I, P and B frames, reflecting in substantially different
frame-times for adjacent frames in a GoP, as seen in the W = 1 plot in Figure 2.1. Since
the duration of the GoP is known a priori, and because the instantaneous frame-time
variations are not noticeable to an interactive user, the QoS goal for video encoders/decoders
typically involves keeping the moving average of frame-time within a desired range. The
corresponding moving averages over the prior seven frames (the GoP length) are shown in
the W =7 plot in Figure 2.1. Despite the averaging, the changing nature of the raw video
data produces substantial changes in frame-time over longer sequences of frames, as shown
for W =1.

Therefore, QoS controllers designed a priori on fixed application models or on “repre-
sentative” data sets would fail to account for the large variations possible within data sets
(such as the changing amount and speed of motion over the video sequence). Further, dif-
ferent data sets may differ from each other significantly, such as a low versus a high video
resolution, producing still larger variations in behavior that would make offline designed

controllers ineffective.

The third challenge is that the behavior of immersive applications is largely an emer-
gent property of the algorithms and data sets. Immersive applications tend to be large and
complex, involving multiple algorithms that interact and influence each other. The nature
of the data may affect the decision logic of an algorithm — say, the number of loop iterations
performed until some accuracy threshold is achieved. In a video game, a path-planning al-
gorithm (such as A* [8, 9]) may explore a large search-space of possible paths until a viable
solution is found. The path determined may impact other algorithms, such as the Al of a
bot that has to follow the path. The game world state, the user’s inputs, and the resulting
behavior of the algorithms would typically be hard to factor into any simplified model (say,

a parametric model), suitable for the construction of model-based controllers (say, using

40 T T T T T

processing time (ms)

15 .
5 L L L L L
1 100 200 300 400 500 600

frame number

Figure 2.2: Variations in per-frame decoding time for the MPEG2 decoder (Wiist et al. [5]).

adaptive control techniques) to tune the QoS of immersive applications (frame-time, accu-
racy of results, etc.). We contend that new techniques that directly account for the nature

of immersive applications are required.

The fourth challenge is that there is generally a lack of modeling frameworks suitable
for the broad range of immersive applications. Some specialized applications written by ex-
perts, such as video codecs, may have been systematically modeled and their execution-time
properties studied in depth, such as with MATLAB or high-level models before the actual
C/C++/Java implementation was done [10]. In contrast, the vast majority of immersive
applications (e.g., games, computer vision applications) get to have their behavior studied
only after they have been implemented [11]. Frequently, various third-party libraries of
functionality are used in the application [11, 12, 13, 14]. Consequently, the application
programmers may know what QoS metrics they care about and may have an idea of what
algorithmic knobs or parameters could be adjusted to impact the QoS metrics, but would
typically lack a sufficient understanding of the interactions of the algorithms and of the li-

braries to understand how the knobs/parameters actually impact the QoS metrics. Instead

of expecting the programmer to understand how the knobs/parameters impact QoS, we
would like in our approach to place a much lighter burden on the programmers — identify

which knobs/parameters could potentially impact QoS.
2.3 Challenges in Characterizing QoS Performance

Programmers need to understand the behavior of immersive applications in order to tune
the QoS performance. In Section 2.2 we motivated that immersive applications are large
complex programs, they exhibit behavior differences both within and across data sets, the
application behavior is an emergent property of the algorithms and the data set, and there
is often a lack of suitable modeling frameworks that programmers may use to understand
the application behavior. Here, we motivate the properties needed by a profiling technique

to become effective at characterizing the behavior of immersive applications.

1. Given the diversity of immersive applications, it is important that the profiling tech-

niques be broadly applicable and not rely on application-specific properties.

2. Given that the functional components in an immersive application are expected to
exhibit varying behavior over a given data set, the profiling techniques must be capable

of characterizing the range of behavior of a component.

3. Given the large code base of an immersive application, the behavior must be charac-
terized at multiple levels of functional granularity. Further, it should be possible to
present the profiling results to the user in a highly summarized manner, yet without
losing the details of lower-level components when those are key to understanding the
application behavior (infeasible for hot-spot profiling, which will tend to emphasize

the top-level components).

4. Given that immersive applications tend to be frame-oriented, and their components
often process streams of data (such as sub-blocks within a video frame), the charac-

terization of repeatedly invoked components is paramount.

5. Given that general-purpose programming languages, such as C/C++/Java, tend to

express the application hierarchically in terms of functions, it is important to preserve

10

information about the call-structure under which particular behaviors occur (the call
context of the behavior), as the programmer will rely on the call structure to relate

the profiling results to the application code-base.

6. The profiling technique must summarize similar behavior across the program call-tree

as much as possible, for varying degrees of “similarity” desired by the programmer.

7. Given the large size of the application, profiling results should use the call-context
in reporting results only when the behavior of components varies based on their call-
context, and only use the minimum call-context necessary for distinguishing differing
behaviors. Further, similar behavior of a component under multiple call-contexts
should be merged together and identified collectively using the minimal amount of

call-context that can distinguish from other call-contexts with dissimilar behavior.

8. Given that an immersive application should be characterized at multiple levels of
granularity, it would be very helpful to the programmer if the behavior found at
different levels of granularity could be related, particularly with regards to identifying

the underlying causes of behavior across components.

Most traditional profiling techniques are oriented towards minimizing program execution
time, such as profiling for hot-spots or hot-paths. Other techniques detect phases in an
application’s execution where each phase has distinct characteristics with regards to stall
cycles, cache miss-rates and instructions-per-cycle executed. Another set of techniques,
collectively called worst case execution time (WCET) analysis, attempt to place bounds on
the execution times of components in safety-critical applications. While all these techniques
aid the programmer in debugging different aspects of an application’s performance, they
lack the characteristics desired for profiling immersive applications.

To achieve the above mentioned desired properties, we are required to innovate on the

following ideas.

e We propose the notion of dominant behavior, to filter out what behavior is important

11

across all levels of granularity, whether exhibited by a single component in the call-

structure, or dominant only in aggregate across the application call-structure.

e We create mechanisms to determine the sensitivity of behavior to call-context, and

mechanisms to minimally represent the distinguishing call-context for the behavior.

e We create a structural representation to express the context sensitivity of behavior
whenever context matters, and for capturing relationships between behavior at mul-

tiple levels of granularity.

e We develop statistical mechanisms to determine “similarity” of behavior, particularly

to aid the summarization of behavior.

e We create a structural representation that can merge and summarize similar behav-
ior across the application call-structure, including the relevant call-contexts and the

cause-effect relationships.

We develop the above ideas for behavior defined in terms of the mean and variance
of the execution-time of application components. However, the demonstrated ideas can be
generalized to diverse aspects of the application execution, such as the mean and variance of
the number of memory accesses, cache misses, network accesses, etc. By defining behavior
in terms of mean and variance, we can not only compare the behavior of two components for
similarity, but can also flexibly combine similar behaviors into either a collective mean and
variance, or retain the details of the original behaviors as a Gaussian mixture model (GMM).
Use of the mean and variance provides representational and computational simplicity when
the spread is small relative to the mean, while the GMM provides generality to approximate
arbitrary probability distributions. Finally, mean and variance, and probability distribution
models such as GMMs are natural choices to summarize variations in behavior over the
multiple invocations of a repeatedly-invoked component.

Chapter 8 introduces the CCVA profiling technique to distinguish behavior based on
the minimal call-context. Chapter 9 describes the DVA profiling technique that introduces

the VCG structural and behavior representation. DVA combines the ideas of dominant

12

behavior, the merging of similar behavior, and the minimal distinguishing call-context to

operate on the VCG representation.

Benefits for Application Performance Tuning. With immersive applications, the
proposed profiling techniques can identify and characterize application components whose
variant behavior is likely to impact the QoS of the application, thereby providing the pro-
grammer with succinct and pertinent information to guide application tuning.

Non-immersive applications also benefit from variance analysis. During the paralleliza-
tion of a sequential application, programmer expertise or compiler analysis is traditionally
used to identify application components that are safe to execute in parallel. Profiling tech-
niques are used to determine which groups of components are beneficial to execute in parallel
with regards to producing speedup gains. However, traditional hot-spot profiling fails to
take the variations in the execution times of components into account. A safe set of compo-
nents, with each component exhibiting a large and roughly equal execution time on average,
may appear highly suitable for parallel speedup. However, if the execution time of these
components is highly variant in an out-of-phase manner, then in any parallel execution of
the components, one component is likely to have a much larger execution time than the
other components, thereby significantly reducing the parallel speedup. Therefore, variance
analysis is beneficial for determining which candidate safe set of components is likely to
produce a large parallel speedup.

It is important to study variance at all levels at which it occurs in the program. For
example, in a packet-routing application, it may be important to characterize the variance
in both the per-packet routing time at each port, as well as in the overall packet-routing rate
for the router. Such an analysis would help designers/programmers determine how much
buffer space should be provided at the port for transmission/reception, and the amount
of global memory needed for temporarily storing received packets. This can also facilitate
a trade-off between the sizes of the port buffer space and the global memory. A video-
compression application would similarly benefit from a characterization of the variance in

frame-compression time at the high level, and the per-image-block variations in processing

13

time within a video frame for diagnosing which types of image blocks or types of processing

at the low level are responsible for the high-level variance in frame-compression time.

14

CHAPTER III

RELATED WORK

3.1 Dynamic QoS Optimization

Control theory There is extensive literature on the design of controllers for linear-time-
invariant (LTT) systems [15], which is not directly applicable due to the non-linear and
highly time-varying nature of immersive applications. In particular, one common technique
called the Ziegler-Nichols method [16, 17, 18], tunes the gain parameters of a PID controller
to make the controller suitable for use with an LTI system with an unknown model. The
tuning technique involves offline excitation of the system with particularly crafted inputs,
such as sinusoids that are gradually varied in frequency and the system response observed
to determine the controller gain parameters. The extensive offline tuning involved is not
suitable for use with immersive applications, where the application behavior can vary sig-
nificantly across data sets and even over a few frames within a data set.

Adaptive control [19] deals with systems with partially-unknown or time-varying charac-
teristics. The well-established adaptive techniques are classified as model-reference adaptive
control (MRAC), self-tuning regulator (STR), gain scheduling (GS) and model-identification
adaptive control (MIAC). Broadly speaking, adaptive techniques are intended for dealing
with uncertainty in unknown constant or slowly changing parameters. With immersive
applications, the behavior can change rapidly and by large amounts, requiring additional
innovation and customization over the general adaptive techniques. Generally, robust con-
trol techniques are used to deal with disturbances and rapid parameter variations. Our
controllers incorporate parameter estimation techniques that build up metrics over long
sequences of frames to create robustness, while retaining the ability to detect rapid changes
in behavior by relying on the domain properties. However, as one major contrast, our con-

trollers are designed to improve the probabilistic properties of deviant application behavior,

15

rather than the traditional goals of achieving Lyapunov stability [20, 21, 22, 23], improv-
ing settling time, or minimizing overshoot [24]. As a second major contrast, immersive
software applications do not exhibit the typical general properties of physical systems that
can be relied upon to achieve convergence, such as the dissipation of total system energy
that would ultimately lead to equilibrium. Instead, we identify new properties of immer-
sive applications, which we refer to as the domain assumptions, that our controllers rely
upon to control application behavior. As a third major contrast, the control law in several
traditional adaptive approaches relies on components of the plant model to exhibit vari-
ous mathematical properties — e.g., the positive definiteness of a state-transform matrix.
Instead, our controllers must work with extremely noisy model estimates over insufficient
online data where it is not possible to reliably establish mathematical properties that would
hold true for the underlying application behavior. The controllers rely on the domain as-
sumptions, in particular certain probabilistic properties, to achieve effective control under
these circumstances.

Next, we contrast against the specific adaptive techniques. MRAC [25, 26] and STR
[27, 28, 29] require parametric models of the application to be available, usually in an LTI
form or in particular non-linear forms. When a plant model is not already available, the
control engineer assumes a model form, and experimentally fits/verifies the model (offline
model identification), leaving some parameters to be adaptively estimated at runtime. As
an example of STR applied to software applications, Lu et al. [30] experimentally validate
that the QoS of their non-linear application, a proxy server cache, can be approximated
as a second-order parametric LTI model whose parameters change periodically. A model
estimator periodically re-estimates the model parameters from system performance, and
pole-placement techniques produce a new controller for the estimated model. The MRAC
adaptive approach explicitly tracks the error between the outputs of a reference plant model
and the actual plant, and adjusts controller parameters to drive the error to zero. Both STR
and MRAC require a plant model of the application to be available. Consequently, MRAC
and STR are not well-suited to immersive applications where it is generally not feasible

for programmers to provide a parametric plant model, due to the rapidly time-varying and

16

emergent nature of the application behavior.

Our uni-variate controller [31] broadly falls in the category of GS [32, 33, 34]. The uni-
variate controller directly adjusts the feedback gain based on runtime metrics estimated by
the controller, with no application behavior model provided a priori or estimated at runtime.
The runtime metrics characterize properties that every immersive application must possess,
based only on the domain assumptions. In particular, the domain assumptions help identify
the granularity of QoS deviations that would be perceptible to the interactive user of the
application, and quantify the gain adjustment required to suppress the perceptible QoS
deviations. In contrast, the traditional GS techniques make assumptions about the form
and properties of the underlying unknown non-linear model [33]. These form and properties
assumed are not suitable for modeling immersive applications, and in particular, do not
correspond to the domain assumptions of immersive applications. Therefore, we create our
uni-variate controller as an alternative approach to gain scheduling based on the domain
assumptions.

The multi-variate controller falls in the category of MIAC [35]. Broadly speaking, the
MIAC approach is used when there is insufficient knowledge to create an a priori model, such
as with MRAC, but there is enough knowledge about the system to estimate a model. As
the main contribution, our controller relies on domain-specific knowledge about immersive
applications to make model identification tractable. The controller performs online model
identification to linearly approximate a model of the current application behavior and uses
optimal control techniques to construct a regulator dynamically. The controller uses a hybrid
of the certainty equivalent adaptive and cautious adaptive approaches guided by the domain
assumptions to achieve the dual objectives of replacing the active model with a new model
as soon as the application behavior changes, as well as discarding freshly estimated “noisy”
models when the existing active model is estimated to be more accurate. Additionally, the
domain assumptions help define the problem structure and the cost functions involved in

the model identification problem and the regulator construction problem.

17

Self-adaptive software There is recent work on applying adaptive control theory in
a generic manner to a wide-variety of software applications. Brun et al. [35] survey the
increasing need for self-adaptive feedback loops in software applications and the various
adaptive techniques that could be applied. Hoffman et al. [36] have similar goals as our uni-
variate controller — check point an application’s execution-rate on key events referred to as
“heart beats” (e.g., every loop-iteration or frame) and dynamically adjust a single param-
eter to bring the heart beats within a desired range. The adjusted parameter could be an
internal application parameter that directly adjusts application algorithms or an external
parameter (such as number of cores given to the application). Extensions of the technique
allow the power-states of the processor to be dynamically adjusted (DVFS) to achieve the
desired “heart rate” [37]. Most recently, Filleri et al. [38] show how adaptive controllers
can be created for software application with control-theoretic guarantees related to per-
formance (tracking, settling and overshoot) and robustness. These works have the same
goal we have — make it easy for non-experts to incorporate QoS control into their software
applications. However, all of these techniques expect an offline model for the application
behavior to be available for the controller design step, with the model possibly constructed
via offline model identification on suitably representative reference data-sets. In contrast,
both our uni-variate and multi-variate controllers explicitly avoid offline model construction
as immersive applications are shown to be highly variant, often with a rather large range
of behavior possible within a single application execution, and with behavior varying sig-
nificantly over data sets. For these reasons, the behavior cannot be captured effectively
by a fixed linear model, or even a general-form parametric model (which the cited self-
adaptive software techniques do not attempt). Consequently, for immersive applications,
our controllers significantly outperforms these more generic techniques. In particular, our
controllers are capable of tracking the frame-rate (or any other QoS outcome) within a tight
window (instead of just being effective at keeping the outcome above a desired minimum),
and are capable of tuning the more instantaenous behavior of the application. For example,
with video encoding applications, our controllers track the moving average of the last 7

frames ([31], Chapter 4 and Chapter 7) instead of the last 40 frames by Hoffman et al. [36].

18

Additionally, none of the prior self-adaptive software techniques control multiple applica-
tion parameters or explicitly track multiple outcomes, which is a capability our multi-variate
controller is the first to achieve.

Therefore, our reliance on properties specific to immersive applications allows our con-
trollers to achieve much tighter and more instantaneous control on immersive applications
and without the use of offline models (which are typically infeasible for immersive applica-
tions). However, the prior techniques are not limited to immersive applications, and may be
very effective at the control of other software applications, for example, applications whose
behavior is unknown but not highly time-variant, and where the application behavior on ref-
erence data-sets (for training) is highly representative of behavior over any online data-set.
As a final contrast, some of the prior techniques provide control-theoretic guarantees on the
constructed controllers, which our controllers do not. However, the guarantees only apply
when the offline model is a sufficiently accurate representation of the application behavior
(with some additional leeway possible with the incorporation of robust control techniques).
Since any fitted model is likely at best a very approximate or a very temporary repre-
sentation of an immersive application’s behavior, the control-theoretic guarantees on the
model fail to translate to guarantees on the application behavior. Instead, our controllers
are inherently probabilistic best effort in nature, as the domain properties of immersive ap-
plications that we have identified translate easily to probabilities, and implicitly allow the
QoS goals to be met more tightly and on a greater fraction of the frames when the appli-
cation behavior more strictly satisfies the required domain assumptions. By this approach,
our controllers possess the following performance and robustness properties for immersive

applications in contrast with the prior techniques.

1. High frequency of application frames that satisfy the QoS goal if the specified QoS

goal is attainable.

2. High frequency of application frames that minimize the QoS error if the specified QoS

goal is unattainable.

19

3. Robustness in the form of graceful degradation of QoS performance when the appli-

cation behavior does not strictly satisfy the domain assumptions.

4. Robust estimators that filter noise over a long sequence of frames, while staying re-

sponsive to sudden behavior changes due to the reliance on the domain assumptions.

Real time Mejia-Alvarez et al. [39] allow optional tasks in the task-graph representation
of an application. The optional tasks are executed for improved total system value whenever
there is slack to deadline. In contrast, the tuning of the QoS of immersive applications
requires a feature setting to be picked prior to frame invocation, needing the controller
to predict which feature settings will likely achieve the desired frame time. The feature
settings may impact the execution time of algorithms that execute early in the computation
structure of the frame. Such algorithms would fail to be tuned if optional work could
be discarded only towards the end of a frame’s computation. More generally, complex
applications such as games and the increasingly sophisticated computer vision use-cases,
typically employ a symbolic representation of the world state [40, 41, 42, 43]. The update
of a game object in the world state may trigger the invocation of particular algorithms
depending on the attributes associated with the object. Therefore, a particular algorithm
of interest may be invoked on-demand multiple times over the frame computation, with
no possibility of grouping all the invocations into a single or a few tasks that could be
tuned or discarded together. Therefore, comparatively few immersive applications would
be structured to benefit from the dropping of optional work towards the end of the frame.
Additionally, as explained in Chapter 2, immersive applications are typically not amenable
to implementation as real-time task-graphs. More generally, task-based techniques may only
re-order, schedule and eliminate parts of the computation; they cannot alter the inherent
computation, which our controllers can do by tuning the feature settings every frame.
Lastly, our controllers may only be applied to applications that (approximately) satisfy the
domain assumptions of immersive applications, while task infrastructures may have different
requirements, such as periodic execution of a set of tasks, that make them more suitable

for other non-immersive applications.

20

Cucinotta et al. [44] and Block et al. [45] use feedback control to fine-tune the alloca-
tion of compute resources to periodic soft-real-time tasks that can exceed deadlines. Their
methodology requires the prediction of task workloads. They assume that subsequent task
workloads can be predicted when suitable stochastic models are available. When stochastic
models are not available, they assume that either a moving-average model or a PI controller
can adequately predict task workloads based on previously observed workloads. Block et
al. additionally allow tasks to have multiple service levels, each delivering a user-specified
level of QoS with differing workloads. They require the specification of a function that
translates workloads between the service levels. In contrast, the data-dependent and time-
varying nature of immersive applications typically precludes the existence of a well-defined
relationship between workload (frame time) and service level (feature setting), much less
the ability of the programmer to specify a function capturing the relationship. Even the
QoS delivered for a fixed service level (feature setting) tends to be a time-varying entity
with immersive applications. Further, Block et al. require the user to specify gain param-
eters for their PI controller. Overall, it is infeasible for the users or the programmers of
immersive applications to provide much of the above required specifications, either because
of the applications’ time-varying nature or the difficulty in determining analytical /stochas-
tic models (Chapter 2). Instead, our uni-variate adaptive controller derives and fine-tunes
gain parameters directly from the observed application response, while our multi-variate
controller determines appropriate frames during the execution of the application to recon-
struct a model of the application behavior (“system identification”) to determine how best
to adjust the feature setting based on the current behavior of the application. As a final
difference, these works tune system resource allocation and scheduling to improve missed
soft-real-time deadlines without directly changing application properties; they don’t at-
tempt to tune application-specific algorithmic parameters to improve application-specific
QoS metrics.

de Niz et al. [46] schedule and allocate resources between applications for QoS gains.
Our controllers are complementary to their approach — the controllers tune the QoS of an

individual application by tuning parameters that impact the application’s algorithms. As

21

future work, the two aspects can potentially be combined to allow the joint tuning of the
algorithmic parameters and the resources allocated across applications to achieve the best

QoS across concurrently executing applications.

Application-specific techniques Work by Roitzsch et al. [47] and Huang et al. [48]
on predicting the frame-execution times of an MPEG2 decoder relies on extracting the
video control sequence from the bitstream using light-weight techniques. Since the control
sequence precisely dictates the set of computations needed for decoding each frame, it is
possible to accurately predict the per-frame execution time. In contrast, we target the
MPEG2 encoder, that processes raw video-frame-image data, and no simple pre-computed
metrics are available to assist in the prediction of per-frame processing time. Work by
Wiist et al. [5] dynamically scaled the complexity of an MPEG2 decoder among four levels
based on markov decision processes and reinforcement learning. However, the models and
the metrics in that work were created specifically for the MPEG2 decoder. In contrast, our
work is not application-specific and benefits the broader class of frame-oriented applications,
for example the MPEG2 encoder whose frame times cannot be cheaply predicted ahead of
time.

The more recent video encoding standards, such as H.264, employ rate-distortion op-
timization (RDO) [49, 50], which often involves application-specific feedback control to
dynamically tune QoS. The new standards allow the encoder to dynamically select from a
large space of possible block-sizes, motion-vectors and quantization step-sizes to achieve the
best trade-off between picture quality and compression bit-rate, based on the properties of
the raw video content. The larger space of possibilities allows the encoder to potentially
find much better macro-block matches and customized quantization step-sizes for the trans-
form data that result in lower residual error (the “distortion”), that would require fewer
bits to encode. However, additional bits must be expended to represent the more detailed
possibilities for the motion vectors, block sizes and quantization steps (the “rate”). Often
a feedback loop is employed to determine whether increasing the rate is currently justified

by a sufficient reduction in the distortion. Therefore, RDO may involve feedback control

22

carefully crafted by video experts after careful modeling for a single purpose. In contrast,
our two controllers can be be very widely deployed by programmers who are not experts to
model and craft their own controllers for their particular applications. Most importantly,
many immersive applications exhibit complex, dynamically changing behavior that is often

very hard to model, even for experts.

Function Estimation Our uni-variate controller does not require any function estima-
tion. The multi-variate controller needs to rely on some type of function-estimation tech-
niques to discover the application’s multi-variate input-output relationship based on only
very limited sampling of the application’s response characteristics. Linear least-squares
estimation (LLSE) [51] is a very commonly used function-estimation technique capable of
fitting a linear model even on relatively few data samples. LLSE is tolerant to signifi-
cant “noise” in the sample data (in our case, noise corresponds to all transient behavior in
the application that is not controllable through the available control parameters). Radial-
basis-function networks (RBFN) [52] are considered universal approximators of arbitrary
non-linear multi-variate continuous functions on a compact subset of R™. That is, the coef-
ficients in an appropriately structured and sufficiently large RBFN can be trained to fit any
given non-linear continuous function defined over a bounded domain.

When the estimation’s objective is to interpolate a function over a grid of sample points,
RBFNs are considered both straightforward to apply and highly accurate [53, 54]. How-
ever, given that our objective is to achieve effective QoS control over an application with
rapidly time-varying characteristics, our controller can sample only a few points from a
high-dimensional input space based on which the controller must adequately model the
application behavior. Therefore, determining an accurate model is not a feasible objective
for our controller. Instead, our primary objective with function estimation is to determine
the sensitivities of various outputs to individual inputs. Therefore, in our controller, we
have chosen to use LLSE to fit a linear model to the observed application behavior, de-

spite the potential of RBFNs to model arbitrary application behavior. The justifications

23

for this choice are as follows: i) RBFNs require model fitting to be performed in a higher-
dimensional space [55] compared to the dimensionality of the sample data to achieve a
good fit, requiring estimation of a much larger set of coefficients compared to performing
a linear fit with LLSE, ii) for a given dimensionality for model-fitting, RBFNs employ a
larger number of “structuring parameters” to define the parametric form of the non-linear
model compared to a linear model that will be estimated using LLSE, iii) feedback control
has the potential to work well with even approximate models (such as a linear model) of
the plant to be controlled, since feedback control can continue fine-tuning the control in-
puts over multiple control steps based on the observed response of the plant, iv) we have
identified special characteristics (common across applications in our target domain) that
would allow linear approximations of the application’s non-linear behavior to be sufficient
for achieving good feedback control, and v) optimal-control theory provides well-developed
controller design techniques for linear system models, such as linear quadratic regulators
(LQR) [56], making the use of controller design techniques over arbitrary non-linear models
[57] unnecessary for our purposes.

Hence, we expect to achieve good control performance at a much lower computational
cost by fitting approximate linear models, compared to fitting more accurate non-linear

RBFN models.
3.2 Offline Characterization Techniques

Existing application-profiling techniques look for program hot-spots and hot-paths [58, 59,
60]. These techniques attempt to find performance bottlenecks in an application, and do
not attempt to characterize patterns of variant behavior.

Calder et al. have used statistical techniques to characterize large-scale program behavior
in terms of just a few recurrent intervals of code [61], and to identify phase-change points
during the dynamic execution of a program [62]. However, their work does not attempt to
characterize the variant behavior in terms of the functional decomposition of the application.
In particular, they seek out intervals [61] consisting of closely-matching sets of dynamic

basic-blocks. The behavior captured by these intervals does not directly relate to the

24

behavior of functions. The behavior of the intervals is also not sensitive to the call context
under which the behavior occurs.

Variability characterization curves (VCCs) [63, 64] and approximate VCCs [65] have
been used to characterize the variability in the workloads of multimedia applications. Such
analysis techniques require domain-specific knowledge of the application before they can be
applied. Similarly, there are custom techniques for improving the QoS of a very limited
type of applications, such as the techniques by Roitzsch et al. [47] that develop a higher-
level model of a generic MPEG decoder, and use this model to predict the video-decoding
times with high accuracy. In contrast, our framework characterizes the application’s variant
behavior in a completely domain-independent manner, with no assistance from the user.

For applications written using formal real-time abstractions such as tasks and deadlines,
there are established formal techniques [66, 67] that analyze the real-time characteristics of
the application and enforce the real-time requirements. For monolithic applications written
without the use of these abstractions, our framework is unique in its ability to characterize
their soft-real-time behavior.

Worst-case-execution-time (WCET) [68] is an analysis methodology applicable to mono-
lithic applications, and has been incorporated into commercial products such as those from
AbsInt [69]. However, for non-safety-critical, compute-intensive applications like gaming
and video, the knowledge of the likely range of real-time behavior is more important for
driving design-optimization than the knowledge of the worst-case behavior. The likely range
(detected by our technique) can be substantially removed from the worst case, thereby di-

minishing the utility of characterizing the worst-case behavior for such applications.

25

CHAPTER IV

UNI-VARIATE QOS CONTROL

In this work [1, 31] we develop a QoS controller that caters to the unique nature of immersive
applications. We design an adaptive feedback controller based on a system-identification
strategy. The controller is intended to be incorporated into applications to dynamically
adjust a single algorithmic parameter of the programmer’s choosing to control the QoS
of a single programmer-identified QoS metric, often the frame-rate. The remainder of the
chapter assumes that the QoS metric is frame-rate, even though the technique is not limited
to frame-rate.

A system-identification based adaptive controller does not require a model of the ap-
plication and is also tolerant to dynamically changing application characteristics. The
adaptive aspect of the controller detects when the current control scheme is failing to suf-
ficiently achieve the specified frame-rate objective, and adjusts the feedback-control policy

accordingly. The controller consists of two layers, as illustrated in Figure 4.1.

__

! Adapt Policy :

i ! Notify on Significant] i

i Adjust Control Policy Policy Failure Monitor !

: new ; - Failure mode Occurrences :

i a"e" < adjust(a) - Failure metrics of Failure E

! Apply new T i

! control policy : i

L - -

i X : control . Y : observed !

Yobi £ & ; ! Feedback Controller parameter Application frame time
desired :] a : current ROUI’]C“I’]T X, Y ¢ App(Xd) i
. 1 . d - 1
frar_n(;tlme i control policy feature setting |
window: feedback Y for next frame i

Tune Application Feature X

Figure 4.1: Block diagram of the adaptive feedback controller.

26

The lower layer tunes the value of the control parameter X for the next frame of the
application based on the measured execution time Y of the current frame. App() represents
the unknown response of the application’s frame time Y to the application feature setting.
The programmer’s or user’s desire is to keep the frame time Y in the objective window
[Yobi —§ Y9 4 §]. The controller increases or decreases the value of X based on the
observed error Y — Y. A discretized value X4 (X rounded to the nearest integer) is
applied as the application feature setting for the next frame. If Y fell inside the desired
objective window, then the frame is considered a success and no correction is made to X.
Otherwise, the frame is considered a failure and X is adjusted for the next frame. The
success of the feedback controller is measured as the satisfaction ratio (SR), which is
defined as the fraction of the frames whose execution time fell inside the objective window
when executing the application on a given test data set.

Adjusting the generic control input X; would correspond to adjusting the values of
application-specific algorithmic parameters, such as the motion-estimation search-window-
size in the MPEG2 encoder application. The controller itself is unaware of the nature of
the algorithmic parameter, except that adjusting X is expected to simultaneously increase
or decrease both the quality of subsequent computational results and the frame times ex-
hibited. When incorporating our controller in their applications, we require programmers
to bind specific integer values of Xy to values taken by the algorithmic parameters. In
doing so, we eliminate the need for the programmer to make uninformed guesses about the
response characteristics of the application. In particular, we do not require the program-
mer to specify functions that relate values of an algorithmic parameter X to the resulting
frame time Y or computational quality. Nor do we require programmers to provide any
knowledge about the magnitude of the correction AX needed to the current X in order
to bring about a desired correction AY in the subsequent frame time Y. Indeed, as we
expressed in the challenges in Section 2.2, the lack of such modeling knowledge by the pro-
grammer is what creates a need for our technique. Instead, we require the programmer
to pick a sampling of parameter values over a range sufficiently large to exercise a wide

range of frame times and computational quality. For example, in the MPEG2 encoder,

27

it is relatively easy for the programmer to pick the following list of values for the search-
window-size parameter without needing much, or any, knowledge of expected input data
sets: 30, 20,15,10,5,2,1,0. The values on the left can be expected to generally produce a
larger frame time and computational quality than the values on the right. The programmer
binds the values to consecutive integers Xy = 0,1,...,7. Note that in the absence of our
controller, the MPEG2 encoder is always invoked with a fized value for the search-window-
size parameter. The programmer utilizes application-specific knowledge to establish that
a fixed search-window size of 30 produces extremely large encoding times, with values of
20, .., 5, ..,0 progressively shortening the per-frame encoding times, producing a large range
of frame times. Specific knowledge about the raw input video characteristics or the choice of
the objective window is not needed in picking these samples. While it can be expected that
a very careful choice of samples may further improve the QoS delivered by our controller,
we demonstrate that substantial improvements in QoS can be achieved simply by picking
any scattering of samples over a large range as exemplified above, so long as the impact of
the chosen samples on the corresponding frame-time QoS metric is monotonic.

The extremely limited prescription from the programmer makes the construction of a
feedback controller a non-trivial task. However, the interactive nature of the gaming and
multimedia domains allows us to make good assumptions about how long (i.e., number of
frames) the characteristics of App() can be expected to stay steady. By staying steady,
we refer to Y remaining mostly unchanged over a sequence of frames when X is held
fixed. Over different “regions”, i.e., sequences of consecutive frames, Y may hold steady at
different values for the same fixed X; value. The length of the regions may vary. However,
the nature of the domains allows us to make reasonable assumptions about the minimum
length of a steady region. Under the assumption of a steady region, we can derive tests
which indicate whether the current control scheme (denoted by « in Figure 4.1) is working
as well as possible in keeping Y within the objective window. Therefore, we can define
specific failure modes, detect when a failure mode occurs on the current a, and adjust

w

the control policy to o™ so that the failure mode ceases to occur on subsequent frames.

This is the task performed by the upper layer in Figure 4.1. This layer maintains failure

28

metrics corresponding to each failure mode. When specific metrics fail certain tests, the
corresponding failure mode is said to have occurred at that point in the frame sequence. The
failure metrics also carry the quantitative information necessary for formulating a corrected
control policy o™ that will be put into effect from the next frame onwards.

Such a strategy for controller design, where the control policy is constructed and adapted
based solely on the observed behavior of the application without relying on application-
specific models, is called system identification.

While it would be possible to enhance our technique with application-specific knowledge,
such as examining transform coefficients or the nature of the motion vectors in MPEG2, we
restrict the scope of this work to examining how far we can push the system-identification
approach. Such a restriction allows our work to be applied to not just well-studied applica-
tions like MPEG2, but to a broader class of applications including emerging ones that are

not yet well understood.

4.1 Contributions

This work makes the following research contributions:

e We illustrate the hitherto untapped potential of applying control theory with system
identification to the problem of achieving high QoS in frame-oriented interactive ap-
plications. We make the case that such an approach is a simple, practical and broadly
applicable approach for QoS optimization in applications that defy traditional formal

treatment.

e Using the gaming and video domains as important representatives of frame-oriented
interactive applications, we show that just three domain observations (scalable algo-
rithms with monotonic parameters, sliding window of user perception W, and the
likelihood that the application behavior will remain stable over at least W consecu-
tive frames) prove sufficient for driving the system-identification approach and allow
the construction of a broadly applicable adaptive controller that produces large QoS

improvements without using application-specific knowledge.

29

e As a first step, we chose to use the simplest possible feedback law, namely a linear
proportional controller (P controller). We demonstrate how the domain observations
above can be used to analytically derive failure modes and failure metrics over a P
controller, and thereby derive an adaptation policy for the controller. The simple na-
ture of a P controller greatly simplified the determination of failure modes and metrics
thereby allowing us to provide robust justification. We experimentally demonstrate
that our adaptation strategy applied over even a P controller delivers substantial QoS

improvements for real-world applications.

e We motivate that incorporating our adaptive controller into a new application places
a very low burden on the programmer. The programmer does not need to provide any
information about the dynamic response characteristics of the application and does
not need to intelligently pick sample values for the algorithm scaling parameter. The
programming effort needed to tie the application frame rate and the algorithm scaling

parameters to the controller’s inputs/outputs is expected to be quite low.

4.2 Domain Observations

We make the following observations about the common characteristics of frame-oriented
video and gaming applications. We use sophisticated real-world applications in realistic
scenarios to provide illustrative examples from each domain: MPEG2 encoder for video,

and Torque for gaming.

1. Monotonic effect of algorithmic parameters The key compute-intensive algo-
rithms within the video and gaming domains tend to be scalable by nature. Typically,
these algorithms are heuristic-driven and their runtime complexity can be adjusted
over a wide range based on tuning a handful of parameters. When the parameters
are set to maximize runtime complexity, these algorithms tend to produce the highest
quality results. Conversely, when set for low runtime complexity, they tend to produce

a low-quality result, but very quickly. The algorithmic parameters often control the

30

number of iterations the algorithm spends refining a result. Or, an algorithmic param-
eter may limit the search space explored by the algorithm. Therefore, we make the
observation that the runtime complexity and the corresponding quality-of-result for
such algorithms is very often a monotonic function of their corresponding algorithmic

parameters.

In subsequent discussion, we limit ourselves to applications where the programmer
can find algorithmic parameters that monotonically impact the application QoS, in
particular the frame time. The monotonicity requirement is easily satisfied by two
real-world applications we use to validate our technique, and we seek to illustrate that
the requirement would also be easily satisfied by additional interactive applications.
It is well established in existing research literature [70] that the search-window-size
parameter in MPEG2 has the most significant effect among all available parameters on
the frame-encoding times, and this effect is monotonic due to the nature of the search
algorithm. Our second application is a commercial game engine called Torque [71].
Based on the game-engine documentation and the user forums, we were quickly able
to recreate a common game-play scenario where two teams of simulated enemies are
involved in combat. The behavior of each character (bot) in these teams is determined
by the artificial intelligence (AI) algorithms that run periodically. There are a number
of clearly defined parameters that control i) how frequently each bot “thinks”, and
ii) the range of visual information (about the adjacent terrain, and the locations of
friends and enemies) that the bot incorporates in its thinking for determining its next
goals (escape, fight, seek ammunition) and for the path planning to achieve those
goals. These think-interval and visual-range parameters also monotonically scale the

AT algorithms.

Once the algorithmic parameters are identified, they are straightforward to tie to Xy
and have the feedback controller adjust them dynamically. Given the monotonicity
of all the parameters involved, we expect the programmer to combine all the used
parameters into a single formal parameter X4, which takes positive integral values

starting from 0 up to a maximum value N defined by the programmer. Therefore,

31

the adaptive controller will only adjust Xy, and the new values for the underlying
algorithmic parameters will be determined from a fized mapping defined by the pro-
grammer from integers 0,..., N to tuples of values over the underlying parameters.
Ultimately, Y + App(Xy) is an unknown, and, quite likely, a time-varying function
due to the significant data-sensitive nature of these applications. However, App() can

still be assumed monotonic in X4 at any given time instant.

. Perceived frame rate A typical video stream can be expected to exhibit similar
characteristics over short sequences of frames. For example, the sequence may corre-
spond to the video camera panning horizontally. Or the sequence may have captured
objects moving across a fixed background image with relatively uniform velocity. In
either case, the computational requirements for encoding each of the frames in such
a sequence can be expected to be similar. Given a typical frame-rate of 20 — 40 fps
in video, it is likely that such sequences are quite common and their length is at
least 20 frames or substantially more. Similarly, in a fast first-person-shooter game
such as Torque, it can be expected that the game-world state does not change too
quickly within a sequence of frames. At a typical frame-rate of 30 — 60 fps, such
sequences should be of non-trivial length as well. This observation allows us to expect
that for video and gaming applications, App() is only a slowly time-varying function.
Therefore, if a desirable value of X (that keeps Y in the objective window) is found
early in the sequence, it can be expected to work for the rest of the sequence, thereby

delivering a high satisfaction ratio.

Unfortunately, a video encoder like MPEG2 performs different types of computation
on adjacent frames. Typically, treats a video stream as a recurring pattern (called
GOP) of I-P-B-B-P-B-B frames (one common pattern). The pattern is imposed obliv-
ious of the data characteristics of the raw video frames. Motion estimation is not
applied to the I frames, applied uni-directionally to the P frames, and applied bi-
directionally (effectively twice) to the B frames. Similarly, a sophisticated game like

Torque has an event-scheduling loop at its heart that can cause adjacent frames to

32

vary considerably in the amount of computation scheduled for them.

However, even though adjacent frames may vary substantially in the computation
performed in them, our observation of slow variation in App() holds on average. For
example, Figure 2.1 (from Chapter 2) shows that the frame time can vary quickly
between adjacent frames in the MPEG?2 encoder (here the algorithmic parameter, the
search-window size, is kept fixed). However, the frame time as a moving average over
the previous seven frames (the length of our GOP pattern) varies slowly except for
moments of major discontinuity in the video scene. The Torque game engine exhibits

similar behavior.

Most importantly, the instantaneous frame rate is not perceptible by the user. For
example, the instantaneous frame rate could occasionally drop significantly below the
desired rate and the user would not notice the drop provided the frame rate recovered
quickly. Therefore, the perceived frame rate is determined by the current moving
average of the frame times of the previous few frames. Fast-action games and high-
quality video feeds typically have a frame rate of around 30 frames-per-second. The
perceived frame rate can be estimated as a moving average of the previous five-to-ten
frames, depending on the specific attributes of the application. We refer to the length
of this moving-average window as the sliding window, W, for that application.
Therefore, rather than trying to keep the instantaneous frame times in the objective
window, our controller instead attempts to keep the perceived frame times within
the objective window. This allows us to assume that App() varies only slowly with
time. Henceforth, Y will refer to the moving average of the previous W frame times.
Further, W also serves to define the minimum duration of time that is perceptible to
the user, and is therefore useful to the adaptive part of the controller in deciding when
a series of failures has gone on too long (i.e., the failures may become perceptible to

the user) and the control policy ought to be corrected.

. Response sensitivity Depending on the nature of the data being processed, the

AX change needed in X to produce the same AY correction in Y may vary. We refer

33

to this as the response sensitivity of App(). The response sensitivity fundamentally
affects the control policy « that ought to be used in the lower layer of the feedback
controller in order to achieve a good satisfaction ratio. The following are important

causes for the variation in response sensitivity:

e Global: The video encoder has 100x more pixels-per-frame to compress in a
1600 x 1200 video compared to a 160 x 120-resolution video. Even if the two
videos otherwise have similar characteristics, Y can be expected to be scaled
correspondingly. Similarly, in a game, the amount of game-world state to be
processed per frame grows with the number of objects and bots set up in the
game world. Therefore, the response sensitivity to two different data sets may
be vastly different depending on the invariant characteristics of the data sets.
A similar global effect will show up between running the application on fast

hardware versus slow hardware.

e Time-varying: While the response sensitivity may not change as much over
time within the same data set, it varies sufficiently that o must be fine tuned
occasionally. The faster an object moves across the screen in a video stream,
the further motion estimation has to search to find a matching image block in
an adjacent frame. Therefore, if the number of fast moving objects in the scene
changes substantially, the response sensitivity may change as well. In a game,
if many bots are playing closer together, then the Al computation for each bot
will have to take into account the positions of more bots. These effects will
dissipate when the number of objects in motion in the video changes or there is
a scene-cut, and similarly when the bots move far away from each other. Such
regional variations are significant factors in the relative magnitude of AY versus
the corresponding A X. Based on the scenarios described above, we should expect
that the regional variations appear over much longer sequences of frames. For
example, if the speed of a fast object in a video changes, adjusting X may be

sufficient to correct Y without adjusting o. However, if the number of fast moving

34

objects doubles, a change in o may be required. The speed of an object may
stay fixed for tens of frames, but it may take hundreds of frames for persistent

moving objects to be added or removed from the scene.

The global scenario suggests the need for determining a large adjustment to « very
soon after the application starts execution on a new data set on an unknown hardware
platform. Such a large adjustment is only rarely expected to be needed again in further
processing of the data set. The time-varying response sensitivity is expected to appear

repeatedly over a data set, each time requiring a fine-tuning of «.

4.3 Adaptive Feedback Controller

Our adaptive feedback controller can be added to an application as a library. The program-

mer needs to specify the following to the controller:

e N integer: X is allowed to vary in the range [0, N].
e W: A suitable length for the sliding window.

o [V —§ Y% 4 §]: the objective window to keep Y in.

Our convention is that X; = 0 represents the most compute-intensive algorithmic set-
ting, which produces the largest Y and causes the application’s algorithm to produce the
highest quality computational result. Conversely, X; = N should produce a low-quality
computational result in the shortest frame time Y. The programmer should select W to be
short enough that the moving average of frame times Y over the previous W frames can
show a response as a consequence of any changes in X, before the user perceives a change
in the frame rate. That is, if W is too long, then a drop in the instantaneous frame rate
over multiple frames may not affect Y sufficiently for the adaptive controller to notice and
attempt corrective action. Instead, the user will perceive the dropped frame rate before the
adaptive controller may fix it. Therefore, a large W introduces feedback lag in the system

where the controller always responds too late. On the other hand, W should be chosen

35

large enough to smoothen frame-to-frame variations that occur spuriously as described un-
der Section 4.2 (the GOP pattern in the MPEG2 encoder; the unbalanced scheduling of
events over adjacent frames in Torque). The programmer can try different values of W
within a range allowed by the above considerations, and pick the one that produces the
best satisfaction ratio on test inputs. Additionally, the programmer needs to tie the values
of X4 to the parameter values used by the scalable algorithms in the application.

In this work, we choose to keep the feedback control policy as simple as possible so that
it would be easier to adapt based on observed application behavior. Here the control policy
« represents a single scalar parameter whose value is adjusted when the control policy is

changed. We use a simple proportional controller as follows:

AX<—£><AY (1)
«

In other words, é is the feedback gain of the control system. AX is the amount by
which X should be changed in the next frame given that the observed frame-time Y of the
current frame deviated from the center of the desired objective window by AY «+ Y — Y,
While X and AX take continuous values inside the controller, the value of X passed to the
application is the closest integral value (Xy).

Since we control AY using AX, instead of controlling Y using X, and because the gain
« is adapted to the application behavior, the controller is an instance of adaptive-integral
control.

Note that even though the control policy is that of linear feedback, the application,
in general, may be highly non-linear and time-variant. Therefore, the overall closed-loop

feedback system cannot be analyzed as a linear control system.
4.4 Adaptation of Control Policy

In Section 4.2 we made limited assumptions about the manner in which application char-
acteristics hold steady and how they may vary over time. The assumptions now allow us
to detect sub-optimal modes of operation of the controller which indicate that some ad-

justment to the control policy is likely to deliver significant improvements in the SR. We

36

contrast this to the situation where the SR is poor but adjusting the control policy is not
likely to improve it much. We would refer to the former sub-optimal modes as failure modes
since the controller could do better, but the latter situation is not a failure mode since it is

not indicated that another control policy would do better.

Failure Modes. The only design parameter in the feedback controller is o. Figure 4.2
shows the SR achieved using the feedback controller, but with the adaptive layer disabled.
Here « is a priori fixed to a given value and not altered during the execution of the appli-
cation. The figure shows that for any given data-set, the value of a must be chosen from a
narrow range that is specific to that data-set. If «v is not in this narrow range, the SR of the
feedback-controlled system drops significantly. Therefore, offline profiling on representative
data-sets is unlikely to train « well for an as yet unknown data-set. Online adaptation of

« 18 the only option.

100 T T T T T T

T T T
QuantumOfSolace —&—

90 | Dolby —4&— |
Dolby640
80 } Torque —v— |

Satisfaction Ratio

0
0

.01 0.02 0.05 0.06250.125 0.25 0.5 2 10 20
a

Figure 4.2: Dependence of « on the application and the data set.

Since the controller is a simple P (proportional) controller with a single parameter «,
the following three cases provide a complete spectrum of ways in which the policy can be

adapted in any situation:

e Global failure: gets « into the correct order-of-magnitude range.

37

e Oscillation failure: fine-tunes « by increasing it.

e Sluggishness failure: fine-tunes a by decreasing it.

When the application starts execution, the controller initializes with an arbitrary and
very small value for . The Global failure mode determines a large multiplicative correction
for ae within the first few frames of the application’s execution. Subsequently, the Oscillation
and Sluggishness failure modes determine much more fine-tuned corrections to . They are
also invoked for further fine-tuning when the application encounters regions of the data
with differing response sensitivities. The following subsections elaborate on these failure
modes. Each failure mode continually maintains metrics (failure metrics). When a failure
metric crosses a threshold, it indicates that the corresponding failure mode has occurred.
Additional associated metrics indicate how to correct a to dispel further occurrence of that

failure mode.
4.4.1 Global failure mode

The occurrence of this failure mode causes « to reach its correct order-of-magnitude range in
a single adjustment of the control policy (the range with high SR in Figure 4.2). Section 4.2,
in the global response sensitivity paragraph, describes scenarios where such an adaptation
is necessary (adjust for video resolution, speed of hardware, etc.). This failure mode occurs
when the AX corrections due to Equation 1 are so large that they quickly cause X to
move out of the [0, N] range on either side. In such a situation, the feedback controller no
longer has effective control over Y. This failure mode will occur when « is so small that the
typical magnitudes of AX are continuously greater than 1.0 when Equation 1 is applied to
the currently observed values of AY', thereby not letting the controller exercise any single
value of X for even a short duration of frames.

The following metrics are maintained for this failure mode, and updated after every

frame:
e [3: The running average of |AX|’s observed so far.

o v cxy+ |AX]|

38

v represents a weighted sum of absolute deviations |[AX|. 0 < ¢ < 1 is a convergence
factor, where the contribution of older frames is de-emphasized with weight ¢. The main idea
here is that if the absolute deviations |AX| are observed to be consistently much larger than
1 (the minimum separation between values of Xj) then it is indicated that the controller
is continuously and quickly exploring the full-range of X (i.e., [0, N]) or it is consistently
exceeding this range altogether. If Y fell inside the objective window, then AX is 0.0 for
that frame. Therefore, a series of non-zero |AX|’s can occur only when the current control
policy has a series of failures in keeping Y within the objective window.

The failure mode is considered to occur when v > ﬁ x 1.0 and 8 > 1.0. Let’s choose
c=0.9. The ﬁ term is simply the convergence value of the geometric series sum), c.
This implies that a single large spike in AX would have to exceed ﬁ x 1.0 or approx 10.0 for
this failure mode to be triggered. On the other hand, a sustained AX of magnitude slightly
greater than 1.0 would trigger the failure mode after about 10’s of frames. Therefore, the
above condition allows a global-correction of « to be either triggered quickly by a very large
AX or by a AX of moderate magnitude sustained over multiple frames. This filters out
intermittent large spikes in AX from triggering the failure mode unless they are extremely
large. More generally, c =1 — % would be a better justified choice, as this would suggest
that sustained AX’s of magnitude > 1 would have to occur for about W consecutive frames
for a policy failure to have occurred. Slight anomalies in frame-times that are sustained for
less than W consecutive frames would not be perceptible to the user, and hence should not
be detected as policy failures.

When this failure mode occurs, « is corrected as follows: a"®¥ <+ B x «a. Therefore,
when values of AY of similar magnitude as before the correction are observed, the resulting
values of AX produced by Equation 1 would be of a smaller magnitude ~ 1.0 (instead
of average magnitude (). Therefore, the controller would now be able to exercise valid
settings of X instead of exceeding range on either side. Further fine-tuning of a may occur
subsequently via the other two failure modes. After the correction is applied, the failure

metrics are reset to 0.0 and begin updating as usual.

39

Since we do not provide a failure mode that could make a correspondingly large correc-
tion to o when « is too large, we ensure that at application start-up time the controller
is initialized with an exceedingly small value for «. Therefore, an additional failure mode

that decreases the value of a by orders-of-magnitude is not needed.
4.4.2 Oscillation failure mode

This failure mode occurs if the value of « is sufficiently low, leading to a high feedback gain
that causes “under-damped” oscillations of large magnitude or frequency. The crests and
troughs of these oscillations need to fall outside the objective window on either side in order
for this failure mode to occur. This corresponds to the situation where the AX corrections
(from Equation 1) being applied to X are so large that they cause Y to swing from one side
of the objective window to the other, but not stay confined within the objective window.
Figure 4.3 illustrates this phenomenon. On the left is a single half-cycle oscillation with
high amplitude. On the right is a sequence of half-cycle oscillations. Note that there is no

half-cycle after the Hg label as Y reaches its crest within the objective window.

Frames —

Figure 4.3: Metrics for Oscillation failure mode

In order to detect this failure mode, we have to assume that the application is currently
in a steady-state where an appropriate fixed value for Xy can keep Y within the objective
window. Then, the only cause for the oscillations would be that the current value of « is

causing X to vary faster than the application can respond to a change in X. Therefore, we

40

get oscillations as X is continually over-corrected in each direction. Therefore, the failure
mode should adjust a so that the magnitude of AX is appropriately reduced, and the
feedback controlled application has a chance to settle into steady state.

If the above assumption of an achievable steady state is valid, we can also assume that
the steady-state lasts for at least W frames. This is justified because W is a bound for the
minimum perceptible length of frames, and in Section 4.2 we motivated that a sequence
of frames of fixed characteristics (hence steady state) are likely to be of a duration that
is perceptible to the user. Hence we use W to determine if the frequency of oscillations is
sufficiently high to justify triggering the failure mode.

If the assumption of steady-state is not valid over the current region of frames and the
Oscillation failure mode is incorrectly triggered, we can rely on the Sluggishness failure
mode being subsequently triggered to negate the correction made by this failure mode.
Therefore, we just need to create a high barrier against this failure mode being triggered
inappropriately, not eliminate the chance completely.

The following metrics are maintained for this failure mode:

e [: A half-cycle represents a transition of Y from one side of the objective window
to the other. The L metric counts the number of frames involved in the current

half-cycle.
e H: This captures the crest to trough or vice versa height of the current half-cycle.

e 7: This metric is a weighted sum that provides a combined measure of the frequency

and magnitude of previously observed half-cycles. At the end of each half-cycle, this
w

is updated as follows: < d*n—+ H X T where 0 < d < 1 is a convergence factor.

Again the older frames are de-emphasized with weight d.

The Oscillation failure mode is triggered when 1 > 7 where threshold 7 = ﬁ x 20 x 1.0.
Note that 26 is the height of the objective window. The basis for this condition is that in

the absence of oscillations there should be on average at most one half-cycle per W frames.

new o X Q. We chose

T

Once the failure mode is triggered, « is corrected as follows: «

41

d = 0.66 so that a single half-cycle of magnitude or frequency at least three times greater
than one half-cycle per W frames can trigger the failure mode, or that a sustained set of
reasonably large half-cycles can trigger a correction within the occurrence of 3 — 4 such
half-cycles. This allows « to be fine-tuned rapidly at the onset of a new region with a

different response sensitivity (Section 4.2).
4.4.3 Sluggishness failure mode

This failure mode occurs when « is sufficiently high that Equation 1 produces AX of low
magnitude, leading to a sluggish “over-damped” response. The failure manifests itself as a
continuous series of AY values of the same sign, indicating that Y is continuously falling
outside the objective window on the same side. Additionally, X is not changing quickly
enough to produce a faster correction in Y.

As with detecting the Oscillation failure, we make an assumption of steady state, with
W serving as the minimal length of frames after which the application response can be
considered as sluggish. Any inappropriate triggering of the Sluggishness failure mode is
likely to be counter-acted by a subsequent Oscillation failure mode.

The following metrics are maintained for this failure mode:

e K: This keeps track of the current number of contiguous frames whose Y’s have all
occurred outside the objective window on the same side of the objective mean (i.e. all

Y’s are either too small or all too large).

e \: This metric accumulates AX over the last K frames.

This failure mode is triggered when K > W and A < 1.0 x g where p = % The general
idea is that the response is sluggish if the cumulative change in X (\) was less than 1.0 per
W frames of one-sided failure. Due to X being integer-valued, 1.0 is the minimal change

in X on average that can produce a change in behavior in Y. The failure mode corrects «

as follows: ™" + a x %
In summary, the metrics for each failure mode are updated and tested after each frame

for the occurrence of the corresponding failure mode. Note that the nature of the metrics

42

and tests for the Oscillation and Sluggishness failure modes make it impossible for both
these failure modes to occur simultaneously. This is because Y cannot be simultaneously
oscillating rapidly on either side of the objective window as well as persisting on only one
side of the objective window. However, the Global and Sluggishness tests could both detect
failure at the same frame. If so, the Global failure is given precedence as its detection
corresponds to the occurrence of large magnitude anomalies in Y, which can be largely
corrected in one step. In contrast, the Sluggishness failure metrics do not account for the
magnitude of errors in Y, and can only bring about minor corrections in « each time the

Sluggishness failure mode is detected.
4.4.4 Illustration of Failure Modes

Figure 4.4 shows a frame sequence for the MPEG2 encoder application modified to use our
adaptive controller, and a corresponding frame sequence for the unmodified application that
operated with a fixed setting for X. We choose X = 2 for the latter since this produced the
best SR among all possible fixed settings for X. The two horizontal lines in the top part of
the figure demarcate the boundaries of the objective window. It is clear visually that the
feedback controlled system stays within the objective window for significantly more frames
than the fixed choice case. This observation is also borne out by comparing the ongoing
satisfaction ratios plotted in the lower part of the figure.

The upper part of the figure shows variations in Y. The lower part of the figure shows
the corresponding X that was applied. For the unmodified application case, X is always
2. At frame 9, « is corrected from the default initial value of 0.0002 to the new value of
0.09764 (an orders of magnitude correction) in a single step. The cumulative SR shown
as a black dotted line in the lower part of the graph immediately gets a boost after this
correction is applied. In contrast, the gray dotted line showing the cumulative SR for the
fixed X = 2 run, stays quite low indicating a high rate of failure at that point. The Global
failure mode is denoted with G and the new corrected value of « is shown at the point of
correction. At frames 45, 141, 155, 181 under-damped oscillations of large magnitude and/or

high frequency appear, and are corrected within one or two half-cycles of the start of the

43

IG 0 (O] 0 S S

10_433343 Adaptive Control

i L 0167011
350 X =2

: 0.131559
0.09764

. 057985
0.749295

Q ;

E 250 ffdooz

200

£ 150

©

5100

S 50
@O 100 o
5 7 90 J'::
i) 80 ©
E)) 6 . e ~....'.‘ 70 O
w5 ' L 60 §
L4 S 50 T
B 3 It : 40 %
0 [0 %
= 2 e | o

: | LLI 20 o
w1l - 10 ®
> : 2
o L] 40

Figure 4.4: Frame Sequence for the MPEG2 encoder on the Quantum of Solace video:
Adaptive versus fixed X = 2. X = 0 uses largest Motion Estimation search window,
X = 7 uses smallest search window. G, O and S mark frames where global, oscillation
and sluggishness corrections are made to «, with the corresponding multiplicative factors
annotated.

oscillations. The occurrence of an Oscillation failure mode is denoted with 0 and the new
corrected value of « is shown at the point of correction. The Sluggishness failure mode
is seen to occur at frames 196 and 211 where the frame execution time stays outside the
objective window for extended periods of time while the feedback system does not adjust
X fast enough to bring Y back into the objective window. These occurrences are denoted

with S and the new corrected value of « is shown at the point of correction.

4.5 Experimental Validation

We use the MPEG2 encoder from the Mediabench II video [70] benchmark suite, and
the Torque game engine to validate our methodology. We use three different raw video
sequences to test the MPEG2 encoder. The video sequences are called QOS, dolby, and
dolby640. The first is a prefix of a trailer from the Quantum of Solace action movie,
consisting of 470 frames at a 320 x 192 resolution. dolby and dolby640 are derived from

the commonly used video test-sequence dolbycity. They are both 799 frames long with

44

resolutions of 320 x 192 and 640 x 480, respectively. To drive the Torque game engine,
we recorded a sequence of movements that the player executes at specific frame counts
within the game world. This produces a sequence of 900 game frames in each run. We
do not directly control the behavior of the bots in the fighting teams. Their behavior is
controlled by the randomized Al algorithms, for which we control basic parameters affecting
AT intensity and vision range. We use the satisfaction ratio (SR) metric to measure the
QoS performance of an application run on a given data set. For reasons explained in
Section 4.2, we measure the SR over the sliding-window-averaged frame times rather than
the instantaneous frame times. In the MPEG2 encoder, X was given a range of eight values
(0 — 7) corresponding to the following values of the search-window-size parameter used for
motion estimation: 30,20, 15,10,5,2,1,0. We ran all experiments on a Core2 Quad Q6600
2.4GHz CPU machine with 2GB of RAM.

Figure 4.2 shows that the range of values of o that produce high SR are highly applica-
tion and data-set dependent. This unpredictability in the high-SR range for o emphasizes
the importance of training a online during each run of the application. Figure 2.1 (from
Chapter 2) illustrates the importance of having a sliding window to satisfy the regions of
stable behavior requirement. The W = 1 case shows the instantaneous frame times for the
MPEG?2 encoder on a prefix of the QOS video sequence. There is a clear banding of the frame
times in each GOP into I, P, and B frames. Computing moving averages of length seven is
shown by the W = 7 case. The latter case clearly illustrates the presence of sequences of
frames with steady characteristics in the video sequence.

Figure 4.5 demonstrates the importance of choosing the correct W for each application
to achieve the best SR across all data sets. We see that W = 7, derived analytically to
match the length of the MPEG2 Group-Of-Pictures (GOP), gives the best overall SR across
the different video data sets. For Torque we empirically discover that W = 7 works the

best.

Figure 4.6 shows the impact on SR of picking different frame-time objectives for each

application. Evaluating a range of frame objectives also simulates the effect of evaluating

45

100 T T T
QuantumOfSolace —&—

90 ¥ Dolby —&—-

Dolby640

80 I Torque —v—+

70 . -
60 -
y

50 4 —

40 1
30 1
20 | 1
10 1

Satisfaction Ratio

0 1 1 1
3 7 11 15

Sliding Window Length W

Figure 4.5: Variations in satisfaction ratio (SR) against sliding-window size (W).

the application with a fized frame objective over a range of hardware with varying compute
capabilities. The size of the objective window is kept at 20% on either side of the frame-
time objective (i.e., §/Y°7 = 0.20). Experiments are run for various fixed settings of X
(i.e., the unmodified application with different configuration settings), and a run of the
application modified to use the adaptive controller. For the QOS and dolby data sets no
fixed choice produces a good SR. But the adaptive-controller case delivers substantially
better SR for these data sets. This illustrates that the controller is able to correct X to the
value best suited for each sequence of frames. For dolby640, X = 7 and X = 5 deliver
extremely high SR for Y% = 0.08 and 0.12 seconds respectively. The two fixed choices just
happened to work well on our machine for the given data set for these specific frame-time
objectives. Y°% = (.02 and 0.04 seconds turn out to be impossible objectives as even a
motion-estimation search-window of size 0 cannot achieve them. Note that dolby640 is
a much higher resolution video than the other video samples, leading to correspondingly
larger per-frame encoding times.

The adaptive case can significantly outperform every fixed X, rather than simply fol-

lowing the envelope of the fixed-X cases (e.g., Figure 4.6(b) at Y% = 0.12sec has adaptive

46

SR ~ 70% while all the fixed-X cases have SR < 40%). This is because the response char-
acteristics of our highly time-variant applications can change after sub-sequences of just
10’s — 100's of frames, making any given fixed X suboptimal over the full frame sequence.
Therefore, dynamic tuning has room to significantly outperform every fixed X by choosing
the best X appropriate for each sub-sequence.

Figure 4.7 shows the spread of the observed frame times Y about the desired mean

objective Y for Torque. The distortion is calculated as follows:

M .
! Y’Z — Yobj)2
Distortion = \/Zz:l() .

M

Here, Y;’s are the observed frame times. The distortion is a metric for the overall
variation in the observed frame times. Figure 4.7 shows that the adaptive controller pro-
duces the lowest, or very close to the lowest, distortion compared to any fixed-X case. For
Y%7 = 0.06secs, the fixed X = 6 case has slightly lower distortion in Figure 4.7 but sub-
stantially worse SR in Figure 4.6(d) compared to the adaptive case. A similar observation
holds for the distortion and the corresponding SRs at Y°% = 0.12secs. Except for these two
borderline anomalies, the distortion of the adaptive case is always lower than any fixed case.
The distortion metric shows that our adaptive controller not only improves the probability
of keeping the frame times within the objective window (measured as SR), but also reduces

the overall variation in the frame time.

47

Satisfaction Ratio Satisfaction Ratio Satisfaction Ratio

Satisfaction Ratio (%)

co

QuantumOfSolace

ST
LI T T T}

ISP NEFN RIS

Adapt

CEr

.02 0.04 0.06

0.08 0.12 0.16

v,

Frametime objective

(a) QOS

(seconds)

Dolby

1 e

A

Adap

(ISP NTFN RIS

Ctr

. .
0.02 0.04 0.06 0.08 0.12 0.16
Y%: Frametime objective (seconds)
(b) dolby
Dolby640
100 Y= —2—
0 | X =1 —— |
X-2
80 F X =3 —v]
HE=
70 | X _ 2 1
6o | X =7 —e—,|
tCtrl —@—
50 | 1
40 | E
30 F E
20 | 9
10 | 1
0 < & #
0.02 0.04 0.06 0.08 0.12 0.16
Y. Frametime objective (seconds)
(c) dolby640
Torque —e— Adaptive
100~ T T
—a X=0
80 1] X=1
e X=2
—+ X=3
o X=4
—=— X=5
”\ — X=6
e X=7
ol NN ‘ —
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16| " X=8

YO Mean frametime objective (seconds)

(d) Torque

Figure 4.6: Variations in SR against Y°% (mean frame-time

adaptive cases.

48

objective), for fixed-X and

Torque

O Db e e e

Lo T | T T T

HooJonUuidbdWwWN RO

Distortion

0 I I I I I
0.02 0.04 0.06 0.08 0.12 0.16

YObj: Frametime objective (seconds)
Figure 4.7: Distortion in the frame times for Torque.

Our adaptive controller does not directly address other aspects of the application’s
QoS, such as the quality of the computed results (let’s call it the computational-QoS). In
the MPEG2 encoder, the computational-QoS corresponds to the peak signal-to-noise ratio
(PSNR) for the compressed frames. In Torque, the computational-QoS corresponds to the
intelligence exhibited by the bots, which can be estimated as the average amount of time
spent on Al computations per frame. Instead, the controller only directly attempts to max-
imize the frame-QoS, i.e., the satisfaction ratio. For these applications, maintaining a high
and smooth frame rate trumps other considerations of computational-QoS, as a poor frame
rate directly makes a game unpleasant and jerky to play or a video stream uncomfortable
to watch. However, our adaptive controller not only achieves the best frame-QoS, but also
indirectly achieves a similar or better computational-QoS for the application compared to
the best-case execution of the application that did not use the adaptive controller. For the
MPEG?2 encoder, we measure the PSNR averaged over all the frames. The encoder is set
to produce a constant-bit-rate file, so all the output-file sizes are almost equal. The aver-
aged PSNR does not vary by much across the fixed-X runs and the adaptive-control runs.
There is no case where the fixed-X run produces both a better SR and a better averaged

PSNR compared to the adaptive case. The Torque game application shows a much larger

49

variation between runs in the average Al-time per frame. The adaptive case always has
similar or much better Al per frame compared to the fixed-X case with the best SR. In
particular, when Y% = 0.04secs and §/Y°% = 0.20, the adaptive case spends 24.13ms on
AT per frame, whereas the fixed case with the best SR (for X = 3) spends 14.21ms on Al
per frame. Therefore, our adaptive controller significantly enhances the frame-QoS across
data sets and frame-time objectives, without compromising (and sometimes enhancing) the
computational-QoS.

The total runtime overhead of our controller was less than 0.05% of the total frame time,

in all cases.

4.6 Conclusion

In this work we introduced a system-identification approach to design an adaptive feedback
control system for frame-oriented gaming and video applications that are implemented
without the use of real-time constructs, and whose highly data-dependent, time-varying
nature makes it difficult to establish analytical models relating algorithmic complexity with
frame-execution times. We demonstrate that the proposed adaptive controller trains to the
characteristics of the application and the current data set based purely on the observed
behavior of the application, without requiring any specific knowledge about the application
or the data set. We have demonstrated that our controller substantially smoothens the frame
rate, and keeps the frame times within a user-specified objective window with probability
matching or often significantly exceeding any fixed setting of the application’s feature set.
Further, our controller achieves this without compromising other aspects of the application’s

QoS, such as PSNR or game-play intelligence.

50

CHAPTER V

MULTI-VARIATE QOS CONTROL:
APPROACH AND PROBLEM DEFINITION

5.1 Motivation

In Chapter 4 we described an adaptive controller that significantly improved the frame-
rate QoS (the expressed “feature-set”) of frame-oriented interactive applications. While
the adaptive controller was applicable to a large variety of frame-oriented interactive appli-
cations that satisfied three broad domain assumptions, the controller dynamically adjusted
only a single application parameter X in order to keep only a single objective, typically the
observed frame-time Y, within a desired range.

Here we introduce a generalization to multiple-X, multiple-Y , applicable to a similarly
large variety of interactive applications. The multiple-Y’s allow the simultaneous optimiza-
tion and trade off between a larger set of QoS metrics beyond just frame time. Adjusting
multiple-X’s allows for a much more fine-tuned optimization of the multiple-Y’s, both in-
dividually and collectively.

The X'’s represent application-specific algorithmic parameters, whose adjustment causes
the application’s emergent QoS characteristics to vary. While it is relatively easy for pro-
grammers to describe the desirable ranges for QoS metrics (Y’s) and identify which appli-
cation parameters (X’s), if varied, are likely to significantly affect the QoS metrics, it is
very difficult for programmers to establish any relationship about how the X’s ought to
be varied to bring about a desired change in the Y’s. The reasons for this difficulty are
the same as those motivated for the single- X, single-Y problem. Namely, the relationship
between the multiple-X’s and multiple-Y’s in an interactive application can be i) highly
data-dependent, ii) time-varying and ii7) non-linear in general.

Hence, an automated, non-application-specific controller that can dynamically discover

the X-Y relationships, and adjust the X’s to keep the Y’s within desired ranges, will

o1

tremendously simplify the work of building interactive applications and achieving high QoS.

5.2 Contributions

1. We propose a statistical problem specification that is suitable for capturing the QoS
requirements of immersive applications, and is amenable to being effectively solved

via an online controller operating under a bounded compute budget.

2. We use powerful multi-variate offline system-identification and optimal control tech-
niques, LLSE and LQR, respectively, in a novel manner that makes them amenable for
an online controller. In particular, we create techniques to overcome some well-known
limitations of LQR, which allow our controller to be far more robust and deliver higher

QoS performance even with highly approximate system-identification.

3. We create a number of probabilistic and estimation techniques necessary to tackle
the following challenges specific to the online system-identification and control of

immersive software applications:

e almost no designer “intuition” is available to guide the selection of various pa-

rameters used by LLSE and LQR,

e the training data for model estimation is typically extremely limited and very
noisy,

e and the application behavior typically changes too rapidly and too significantly

to assume a fixed underlying model (even implicitly) in the solution technique.

5.3 Overview

This chapter provides the problem specification and an outline of the controller design. We
discuss how LLSE and LQR apply to the online controller. Then we identify a number
of challenges with LLSE and LQR that are traditionally solved with designer insight on a
fixed use-case in a offline-design setting, but must now be addressed solely from the problem
specification without specific knowledge about any use-cases.

Chapter 6, first provides the context for our work among system-identification-based

control techniques and elaborates on the necessary design trade-offs involved given the

52

nature of the problem. Then, the chapter details the solutions to the identified challenges.
Next, Chapter 7 provides experimental results and case-studies with immersive applications
using our controller. Finally, Appendix B lists all the controller algorithms at a high-level,

allowing the easy reproduction of the work.
5.4 Problem Definition

The programmer uses an API to identify n application-specific parameters and m QoS
metrics. Callback functions are registered for each parameter and metric. The controller is
notified of an application frame transition via an APT call, at which point the controller uses
the callback functions to read the QoS metrics for the current frame ¢ and then apply new
parameter values for the next frame ¢ + 1. Additionally, the programmer needs to certify
that the application’s behavior over the identified parameters and QoS metrics exhibits four
key properties common to immersive applications, referred to as the domain assumptions.
The problem instance registered by the programmer, the domain assumptions and the

controller’s optimization goals are summarized below.

Registered problem instance.

1. QoS output variables ¥, the corresponding target values gj, tolerances J. , and (optional)

relative importances §s.
2. Control input variables Z, taking integral values over —N to N.
3. User-perception window W.
4. Per-frame controller overhead allowed b.

5. (Optional) input and output model-orders: Zorder, Yorder-

Domain Assumptions.
1. Monotonic response between & and 7.

2. Tolerance to QoS deviations within sliding windows of W frames.

53

3. Stable application-response behavior over durations much greater than W frames with

high probability.

4. Range of yf values exhibited does not change dramatically or frequently over a given

application run.

Optimization Goals. The following 7 metric defines the QoS performance of the con-
troller on frame t of the application. The application executes as a series of frames

t=1,2,....

1 Zm iy — 9l
Tt m pa Sq (512 ()

The controller has two optimization goals.

1. Keep ¢ < 1.0 for as many frames as possible. The satisfaction ratio metric SR is

defined as the fraction of application frames with 7 < 1.0.

2. Minimize 7 whenever 7 > 1.0. The mean squared error QoS metric MSEQ is the

average 73 observed over the application frames.

We use the SR and MSEQ metrics to characterize the performance of the controller in

achieving the two optimization goals.

Performance and Robustness. The lack of an analytical model and the changing ap-
plication behavior makes it infeasible to establish traditional control-theoretic performance
properties, such as Lyapunov stability [20, 21, 22, 23], or overshoot and settling time min-
imization [24]. Instead, the inherently probabilistic nature of the domain assumptions,
and the probabilistic nature of the estimation techniques employed, confer the following

performance and robustness properties to the controller.

1. High frequency of goal satisfaction among the application frames if the specified QoS

goal is attainable.

2. High frequency of application frames that minimize the QoS error if the specified QoS

goal is unattainable.

54

3. Robustness in the form of graceful degradation of QoS performance when the appli-

cation behavior does not fully satisfy the domain assumptions.

4. Robust estimators that tolerate noise over long sequence of frames, while staying
responsive to rapid changes in application behavior due to the reliance on the domain

assumptions.
5.5 Problem Definition: Discussion

Let ¢ be a vector representing the m scalar QoS metrics y1,y2, -+ , ¥, that need to be

optimized for the given application:

Y1
R Y2
y= (3)
| Ym]|
Let & be a vector representing the n scalar parameters x1, s, -+ ,x, that are to be

adjusted by the controller in order to optimize the QoS metrics ¥

I

T2

8
I
—~~
=~
~—

l‘n
with —N; < x; < N;, where N; are integers specified by the programmer (“input bounds”
constraint). The programmers must map the integral values for x; produced by the con-
troller to values for the actual parameters taken by algorithms within their application.
Similarly, the programmers must map the actual output metrics in their application in
some way to the real-valued y;’s. The mappings must be done in a manner that produces a
monotonic relationship between the z;’s and y;’s (monotonic response domain assumption).

The execution of the application consists of a series of frames indexed by time t =

1,2,..., where the control input Z; is applied prior to the execution of frame ¢, and QoS

metrics ; are observed immediately after the execution of frame ¢.

95

Nature of Monotonic Relationship. In general, the relationship between each z; and
y; could be monotonic increasing or monotonic decreasing. This relationship is not assumed

to be known. As a special case, some x;’s may have no impact on certain y;’s.

Extension of Problem Definition to support Maximization Objectives. The
problem definition covered so far allows a range objective to be specified for each y; —
so far the goal has been to maintain |y; — ;| < §; for programmer-specified g; and ;. How-
ever, the controller tolerates the range objective to be changed every few frames (with some
runtime overhead to adjust internal metrics and re-design the regulator). We exploit the
controller’s ability to tolerate changing range objectives to build support for a maximization
objective — maximize y;. With this extension, each y; can be specified as either a range
objective |y; — g;| < d;, or, a maximization objective [(7i1,bi1), (Fi2,bi2) s s (i bik)]
with szluk bip=1.0and g;1 <2 <--- <y, With a range objective the programmer
specifies the optimal “center-value” ¢; to achieve for QoS metric y; with a tolerance given
by §;. With a maximization objective the programmer specifies that if the QoS metric y;
has exceeded a value ¢; 1, then there is an additional benefit of b;, to attempt to have

y; match or exceed ¥;,. The maximization objective captures the desire to maximize y;

over the range [¥; 1,3 k] as a series of progressive range objectives |y; — Ui pl < Uip — Yip—1-
The controller converts a maximization objective into a series of range objectives that differ

incrementally over time.

Specifying the Relative Importances of the QoS metrics. The programmer can
specify importance s; (> 0) for achieving QoS metric y;. s; = 1.0 by default unless specified
to be a different value.

The following definition of the instantaneous performance of the controller at frame t,
Ty, generalizes Eq 2 to accommodate the maximization-objective extension. For simplicity,

subsequent discussion will only use range objectives and Eq 2.

56

Here y;); represents the value of y; observed at frame ¢. For a range objective, we use
ri = 1. For a maximization objective, when ;1 < y;; < ip, we have g; = gip, 0; =

~ ~ o p—]_
Yip = Yip—1 and ry =1 =307 big.

Overall QoS Performance. We define two performance metrics to characterize the over-
all performance of the controller over all the application frames. The first performance met-
ric, satisfaction ratio (SR), is defined as the fraction of the frames ¢t = 1,2, ... that exhibit
7 < 1.0. That is, for these frames the QoS metrics were overall satisfied in accordance with
the importance placed on them by the programmer. The second metric, mean-squared-
error-QoS (MSEQ), captures the average deviation over all the frames of the QoS metrics.

Hence, if the application executed over a sequence of T' frames, then

T
1
L -
MSEQ £ > n. (6)
t=1
We will compare the SR and MSEQ metrics between i) a run of the application that
incorporates the controller, against ii) a run of the application that uses the best fized
hand-tuned settings for without using the controller, for a given input data set. In this
manner, we would seek to establish that case-i) consistently delivers better SR and MSEQ
over case-7i) over a range of input data sets. Such a comparison will establish whether the

controller achieves significant QoS improvement for a given application or not.
5.6 Nature of Immersive Applications

Achieving good performance on an unknown application without relying on application-
specific behavior models requires us to make some broad assumptions about the domain

from which the applications are drawn. In this sense, our controller is domain specific

57

rather than application specific. We make four broad observations about frame-oriented
applications coming from the gaming, multimedia, interactive visualization and computer
vision domains, which we broadly refer to as the domain of immersive applications. Thus,
immersive applications constitute the domain for which we have designed our controller.
In this section we motivate that any immersive application is likely to conform to the
following four observations, suggesting that our controller applies to a wide variety of im-
mersive applications. In the remainder of this chapter and in the next chapter we show that
it is possible to construct a QoS controller solely on the assumption that these observations

apply to a given application, with no additional application-specific knowledge provided.

#1 Parameters that produce a monotonic response in QoS are fairly common.
Computer-vision and video-encoding applications typically consist of object- or motion-
tracking algorithms that constitute a significant portion of the per-frame execution time.
Such tracking algorithms are often heuristic in nature, consisting of a variety of parameters
that can be tweaked to achieve desirable application-specific tracking capabilities within
a limited window of time. Even though tracking is a common theme across these appli-
cations, the unique nature of the object being tracked/recognized (face, person, arbitrary
template, etc.) varies considerably with each application, along with differing standards for
tracking accuracy (specific object for computer vision, versus, finding any closely match-
ing macroblock in video encoding) and differing standards for acceptable computational
complexity depending on the compute platform (ranging from small low-power embed-
ded platforms to high-end computers augmented with compute-GPUs). Consequently, the
algorithms involved are typically highly scalable in their QoS characteristics and their cor-
responding execution-time complexity. Therefore, it can be expected that such applications
have many algorithmic parameters (X’s) whose adjustment has a monotonic effect on the
QoS characteristics exhibited by the application (Y’s), including per-frame execution time
and detection-accuracy metrics. Similarly, gaming applications consist of a large number

of path-planning, graph-walking, and physics-simulation algorithms (respective examples

58

— artificial intelligence; a scene-graph representing relationships between game-world enti-
ties; and collision detection, special effects, and realistic mechanics). Each of these types
of algorithms have a large number of parameters that make trade-offs between the realism
exhibited, the modeling granularity of the game world, and the computational complexity.
Therefore, parameters that have a dominant, monotonic effect on various QoS characteris-
tics can again be expected to be common in gaming.

Benefit: the monotonic response is vital for a feedback control scheme to be applicable.

#2 Existence of a sliding window within which QoS deviations are not percep-
tible. The interactive user of immersive applications may not perceive a degradation in
QoS if the degradation happens only for a short sequence of frames. Consider, for example,
the frame rate in a fast-action game or video playback. The instantaneous frame rate is not
perceptible to the user. The instantaneous frame rate could occasionally drop significantly
below the desired rate and the user would not notice this provided the frame rate recovered
quickly. The perceived frame rate is determined by the current moving average of the frame
times of the previous few frames. Fast-action games and high-quality video feeds typically
have a frame rate around 30 frames-per-second. The perceived frame rate can be estimated
as a moving average of the previous five-to-ten frames, depending on the specific attributes
of the application. Let’s refer to the length of this moving-average window as the sliding
window, W, for that application.

Typical video encoding schemes divide the frames into groups of intra-coded 1, predicted
P, and bidirectionally-predicted B frames, each with widely different computation complexity
that guarantees very large frame-to-frame variations in frame-time. For example, MPEG2
encoding commonly uses a repeating Group-of-Pictures (GoP) of seven frames — I-P-B-B-
P-B-B. Therefore, we use W = 7 with our MPEG2 encoding benchmark.

Apart from the frame rate, there could be other QoS characteristics that are percep-
tible to the user. In a video game with a lot of simulated combatants (bots), the level of
intelligence exhibited by the bots would be perceptible to the player. Again, W places a

limit on how quickly any change is perceptible to the user. Therefore, per-frame variations

59

in exhibited artificial intelligence would not be perceptible in durations less than W frames.
In fact, only the cumulative intelligence exhibited over a duration of W4! frames, where
WAL is significantly longer than the W required to smoothen perceived frame-rate, would
be noticed by the player. Generally speaking, there can be different window lengths W;
associated with different QoS metrics y; (i.e., y; is actually a moving average of a QoS
metric over a window of W; frames). However, for simplicity we restrict our discussion to a
single W, the shortest of the various W;, which would typically be dictated by the frame-
rate. Depending on the nature of the application and the intended use-case, we expect the
programmer to specify a suitable W to the controller at the start of application execution.
Applications with no sliding window would have W = 1.

Benefit: knowledge of W helps the controller distinguish between frame-to-frame
“noise” (which may be impossible for a controller to limit — like over an MPEG2 GoP
sequence, and is not perceptible to the user anyway), and the actual deterioration or im-
provement in the QoS performance based on specific changes made by the controller in its

control policy.

#3 With high probability, the application’s ¥ — § response characteristics re-
main stable for durations of frames > W. Immersive applications have the goal of
captivating the interactive user in a rich and engrossing simulated world. The richness
of the simulated world may come not just from visual fidelity or rendering detail — the
richness may be associated with the complexity and the realism of the interactions between
the game-world objects (say, realistic distortions and rebound effects when objects made
of different materials collide in a game, requiring sophisticated physics modeling; or, so-
phistication of artificial intelligence during bot interactions). Regardless of the form of the
richness, the richness of the simulated world unfolds in a smooth continuous manner to the
interactive user over a sequence of frames. Our third observation is that immersive applica-
tions typically don’t undergo dramatic changes to their simulated-world state representations
in time frames that are too short to be perceptible to the interactive user. The implication

of this observation is that the simulated-world state, and therefore the application’s & — ¢/

60

response characteristics, are unlikely to change dramatically over frame sequences of length
less than W. In other words, we can expect to frequently encounter long sequences of frames
(of length > W) over which the application characteristics stay mostly unchanged (stable).

It is certainly possible to implement an immersive application whose characteristics
change more rapidly than W frames. However, we do not see this in practice in any number
of gaming, video, and computer vision applications that we have examined. Further, such an
implementation often reflects a poor application design as the simulated world’s transitions
experienced by the interactive user are no longer smooth and continuous.

Benefit: The controller incurs overheads in estimating and tracking the current -y
response characteristics of the application. In particular, the controller has to sacrifice
getting high QoS on a few frames in order to explore drifts in the application’s behavior.
The controller can deliver higher QoS performance if the sacrificed frames are mitigated

over a longer sequence of frames exhibiting the same application behavior.

#4 Range for i values remains fixed over long durations of the application exe-
cution. While the z; values are bounded by the problem definition, y; may take arbitrary
values determined by the application’s algorithms and the particular data set. During a
single execution of the application, we expect the same set of algorithms to be deployed
over long sequences of frames and expect the data being processed to be similar frame-to-
frame. Of course there can be frame-to-frame differences, even large differences like with the
MPEG2 GoP processing structure. However, we expect the overall ensemble of algorithms
and data to remain similar over sufficiently long sequence of frames. For example, on a given
compute platform, encoding 640 x 480 resolution video would exhibit a particular range of
computational complexity (frame-time) very distinct from the computational complexity
with 320 x 240 resolution video.

Benefit: Knowledge of the typical i range enables the efficient implementation of a
number of estimation techniques within the controller. The controller is able to detect the
transitions and act appropriately if significant changes to the range occur only after long

durations of frames.

61

Practical implications. Programmers need to certify that their applications are indeed
immersive applications in order to expect our controller to deliver QoS improvement. The
above four observations correspond to the four domain assumption requirements (Sec-
tion 5.4) that the programmer has to certify apply to the application before using the

controller. The controller can tolerate a soft satisfaction of these requirements, as follows.

e Satisfied with moderate to high frequency — for example with the stable response

characteristics requirement.

e Satisfied to a lesser extent — for example the programmer-specified W may be a
rough estimate, monotonicity may be violated to a minor extent over sub-ranges of

some I';.

We intend the controller to be robust — the QoS performance should only deteriorate
gradually over local sequences of frames when the requirements are only soft satisfied, and
only to the degree the requirements are violated. The controller relies on randomization

and uses noise-tolerant metrics to achieve robustness.
5.7 Use of LLSE and LQR

Here we discuss how LLSE is used for model estimation and LQR for regulator design us-
ing the estimated model. However, both LLSE and LQR rely on a number of structuring
parameters that in their traditional offline-use setting are chosen by the human designer.
Structuring parameters for LLSE include the regularization parameter A, and for LQR in-
clude time-horizon N and cost-matrices @,)y and R. Additionally, LLSE relies on suitable
training data to be already available. Appropriate choice of the structuring parameters and
suitable generation of the training data prove to be vital for achieving high QoS perfor-
mance.

Section overview. First, Section 5.7.1 motivates a linear model form suitable for captur-
ing an application’s & — g response characteristics. Second, Section 5.7.2 summarizes the
linear least-squares estimation technique. Third, Section 5.7.3 demonstrates how LLSE can

be applied to estimate our linear model form using the ¥ and ¥ data samples observed over

62

the past few frames. Fourth, Section 5.7.4 summarizes the LQR controller-design method-
ology for any given linear dynamical system model. Finally, Section 5.7.5 shows how the
estimated 7 — ¢ linear model can be converted to a dynamical system model, and a feedback
controller determined for it.

Section 5.8 identifies the challenges that must be addressed for an effective controller
to be constructed for immersive applications based on LLSE and LQR, with Chapter 6

providing detailed solutions to the identified challenges.
5.7.1 Linear Model of Application

The application executes as a sequence of frames denoted t = 1,2,.... A new linear model
for the application’s Z—g response characteristics is periodically estimated at certain frames.
At frame t = ty, we estimate the model using the values of & and ¥ recorded from the
previous frames, a history of application-response behavior H. |H| denotes the history
length of the application response retained for model-estimation purposes. The model to be

estimated has the following affine form:

n ZTord m Yord
» — .. ! . 7
Yilto = Gijr Ljlto—r + Gijr Yjlto—r + ¢ ()
j=1 r=0 j=1r=1

The above model is an affine estimator of y; at t = tp in terms of the past observed
values of ¥ and y. The g;;, notation represents the value predicted by the model for y; at
t = to. In contrast, the value actually observed for y; at t =t is denoted by y;,-

Next, let us rewrite Eq 7 to allow construction of a model form more amenable to LLSE.

Define sequences:

G E (g 11<5<n, 0<r <org] ++ [l [1<7<m, 1< 7 <yora | ++ [],

(8)
z',toé [$j|t0—7‘|1§j§na OSTSIEord] ++ [yj|t0—r|1§j§m, 1§T§yo7‘d] ++[1]
(9)

Here, @ is a column vector consisting only of the model coefficients to be estimated, and

63

Dito 18 a column vector consisting only of observations from # and ¥ that are relevant for
estimating Yilto- The 4++ operator above denotes sequence concatenation.

Therefore, Equation 7 can be rewritten as the following dot-product:
~ ST > = N
Yilto = Dito @ = Disto » Ti - (10)

The estimate at t = tg for the entire vector i/ can now be expressed as

Py, 0 0 0 Q1
. 0 Py O 0 7
Yty = e (11)
| 00 0 Do) [Gm]
-~ R:—’
P, q

Therefore, the linear model for the application response can be written as

Note that P;, consists entirely of relevant past observations of #; and ¢ (over appropriate
t < ty), whereas ¢ consists of all the model coefficients to be estimated, and does not vary

with to.
5.7.2 Linear Least-Squares Estimation (LLSE)

Given a k x [matrix A specifying the following transform:

T=At, (13)

and given a desirable result ¥ = Uges, the linear least-squares estimation problem is to

determine a suitable @ = 1} that will minimize the squared-error cost ||Taes — A 5|2
The solution to the LLSE problem is given by), = A" T4es. Al is called the Moore-

Penrose pseudo-inverse of A, and is defined as AT = (ATA)~1AT. However, the pseudo-

inverse is only defined if A has full column-rank. Full column-rank is equivalent to the

64

columns of A being linearly independent (which implies & > [). In general, A may not
satisfy this requirement, hence the LLSE problem is extended to the reqularized LLSE to
allow for arbitrary A.

The regularized LLSE problem takes the following form:

v Apxt |
= a. (14)
0 VA Iy
- /
v Alhyyxi
Or,
o = At

Here, I;«; is the | x l[-dimensional identity matrix and Agy; is an arbitrary matrix with
no restrictions placed on it. Since I;y; has full column-rank, the extended matrix A’(k)%
will also have full column-rank, regardless of choice or dimensions of Agy;.

Now, the solution to the regularized LLSE problem is given by

Vdes

s = (A)f : (15)
0

This solution minimizes the squared-error cost ||Tses — A 1s||? + Al|#s]|?. Minimizing
this cost allows us to prioritize finding a small-magnitude solution ;s with priority specified

by A > 0.
5.7.3 Using LLSE to estimate Linear Model for Application Response

We would like to estimate the linear model for the application response (¢ in Equation 12)

using the observed history data H. For this we construct the following estimation form:

g;fo Pto
gtofl Ptofl .
= q (16)
| Yto—h | | Pro—n |
—_— —
Vdes A

65

Here, h is chosen < |H| — max {4, Yora}- Hence, we get the form vUges = A ¢, where
Uges 18 constructed from past observations of ¢/, and A is constructed from past observations
of ¥ and 7/, as shown above. We now apply the regularized LLSE technique from the
previous section to determine a ¢ = ¢js that minimizes the model-fit-error of estimation at
t=to: €y = ||Uaes — A Gis||* + M| @s||*. An appropriate choice of) is vital for robust model
estimation. Traditional techniques use manual offline analysis to determine a suitable A
[72, 73, 74]. Section 6.2.6 covers how we can tune A automatically in an online controller.

Hence, our estimated linear model becomes yi’t = P, ¢, with ¢ = s estimated using

regularized LLSE as described above.
5.7.4 LQR Regulator Design

Consider the following general representation of a discrete-time linear dynamical system:

Si41 = Akxk 5t + By U - (17)

Here, §; represents the k-dimensional current state of the system (for ¢t =0,1,2,3,...).
A is the state-transition matrix, and B is the input-sensitivity matriz.
The LQR design problem for a discrete-time linear dynamical system given by Eq 17 is

as follows. Given:
1. an arbitrary initial state 5,
2. a state-cost matrix Q with Q7 = Q > 0,
3. a final state-cost matrix @y with Q? = Qs >0, and
4. an input-cost matrix R with RT = R > 0,

determine a sequence of inputs g, U1, -+ , Uy over a horizon of N time-steps, that drives

the final-state Sy close to zero, while minimizing the following quadratic cost function:

N—-1
J= (5 Q5+ Riiy) + Sy Q3N . (18)
t=0

66

The solution to the LQR problem [56] consists of the input sequence iy := —K;35; for
t=20,1,---,N. Here K; := (R + BTWtHB)_l BTW;,1A. The W; matrices are computed

as a backwards recursion in time as follows (Riccati equation):

W, = AT [Wt-i-l — W1 B (BT Wi B + R)_l BTWtH} A+Q, (19)

fort =N —1,---,0, starting with Wy := Qy.

Let’s make the following observations about the LQR controller-design process:

1. All the Wy matrices (for t =0,1,--- , N — 1) have to be computed in advance before
the input for the first time-step ug can be computed. In subsequent time-steps, the
input for that time-step, us, can be computed relatively efficiently since all the W;’s
are already computed. Hence, if LQR were to be done online (i.e., during application
execution), it would load up the first time-step with the compute-intensive recursion

on W; for all N time-steps, instead of amortizing this load over multiple time-steps.

2. Eq 19 is known to typically converge rapidly. Hence, for longer horizons N, it would be
possible to bound the cost of computing W;’s, rather than incurring a cost proportional

to N.

The above discussion summarizes the LQR controller-design process when the goal is
to drive the system state §; to zero in N time-steps. However, as will be seen in the next
subsection, our goal is to have parts of the system state converge to a desired state-trajectory.
This goal is achieved by employing a generalization of LQR called trajectory-tracking
LQR.

The trajectory-tracking LQR controller-design problem attempts to minimize the track-
ing error between the observed system state s; and a desired state-trajectory 7, t =
0,1,---,N. Strictly speaking, only a subset of the elements in the state vector s; may
be relevant for computing cost. For example, a missile’s state vector would include ele-
ments for position, velocity and acceleration. However, only position (for targeting) and
acceleration (for fuel burn) may be relevant towards minimizing cost. Hence, the trajectory-

tracking problem allows for a transform of the state CS; to track trajectory 7. Note that

67

C's; may be a vector of far lower dimension than s;, corresponding to dropping dependence
on a large number of terms in §;. The dimension and elements of 7; will now correspond to
the elements of vector C's;. The trajectory-tracking problem seeks to determine an input

sequence Uy, - - - ,Un_1 that minimizes the following quadratic cost function:

—_

J=Y [(C5)T Q(C5 —) +if Rity] + (C3n —n)T Qp (C5n — 7). (20)
0

=
Note that the cost matrices () and @ are of dimensions that correspond to the trans-
formed state C'S, and the costs are applied to the tracking error (C§; — 7;) rather than to
the transformed state values themselves.
The solution to the trajectory-tracking LQR problem has a somewhat more complicated

form [56], summarized below.

Ki:= (B"W, 1B+ R)"'BTW;,,A (21)
Wy := ATWi,1(A — BK;) + CTQC, with Wy := CTQC (22)
¥y == (A — BKy) o1 + CT Q7 with 7y .= CTQ;”n (23)
K} := (B"W,,1B + R)"'BT (24)
U = — K5 + KT (25)

Here, w; consists of not just the negative state feedback via Ky, but also a feed-forward
gain K7 applied to a function of the desired trajectory 7;. Despite the more complicated
forms involved, the observations made earlier still hold true: i) the backwards recursion
(now on Wy and ¥;) for the entire t = N — 1,--- ,0 has to be fully computed at ¢t = 0, and
ii) the recursion on W; tends to converge rapidly (it’s essentially identical to Equation 19).
Note that the cost of recursing on @; is low in comparison due to matrices being multiplied

only with vectors.

68

5.7.5 Application QoS Control using LQR

LLSE was used in Subsection 5.7.3 to estimate the application’s —g response characteristics

at any time ¢ = ¢ in the following form (Equation 12):
yto — Pto (j

This linear model for the & — ¢ response characteristics can rewritten as:

Yto—1

ytO ~Yord

~ Ttg

Ttg—1

-
Lo —Tord

1

for an appropriate matrix L constructed using elements of ¢.

Note the following about Equation 26 as a contrast with Equation 12: the past ob-
servations of 7; and y; are now explicit instead of being arranged in P;,, and the model
coefficients are arranged in L instead of §.

Let us rewrite Equation 26 at time-step ¢ as follows:

69

Y1 U1
gjt_yord gt—yord
. z, 7,
yr =1L = | L1 | La| L3 ‘ Ly
ft—l ftfl
j:‘t_xm"d ft_xord
1 1
V-1 Ty
=1 : + Lo Ty + L3 : + Ly [1]
gt*yo'rd L i“tfxord
U1 T
=1L : + Ly Ty + L3 : + Ly (27)
L gt—yord | L ft_xord |

Lo is constructed as follows:
fori € [1,m], k € [1,n],
(L2)ik = Gijr »
where j =k, r=0, (28)

and, L3 is constructed as follows:
fori e [1,m], k € [1,nZord]
(L3)ix = Gijr

k—1

where j = ((k—1) modn)+1, r= +1. (29)

The g;;r terms are already packed into ¢ from the linear application-response model.
The index of a g;; term in ¢ is a simple lookup defined by Equation 8 and Equation 11.

L4 is constructed as follows:

70

fori e [l,m], k€ [1,mYord] ,
(Ll)zk = gz{jrv

k-1
where j = ((k—1) mod m) +1, T:T—Fl. (30)

The g;;, terms are extracted from ¢ in the same manner as described above for the g;jr
terms.

Ly is simply a column vector of all the affine constants from Equation 7:

C1

&)
Ly

(31)

Cm

We need to determine a sequence of inputs Z; over some time horizon N (i.e., determine
Tty Trg+1s -+ > Ttg+N—1), that would cause the observed application QoS metrics % to con-
verge to the programmer-specified QoS objective gj’ (vector of individual g; objectives from
the problem specification in Section 5.4) within N time-steps after t = tg. The trajectory-
tracking LQR controller-design procedure requires the system characteristics to be expressed

as a linear dynamical system of the following form (Equation 17):

Si1= A5 +Bi,.

Take

71

Therefore, we need to define appropriate A and B matrices that satisfy Equation 17 for

the choice of §; given above in Equation 32.

Define a special block-shift matrix By, and a block-selector matrix S, that satisfy the

following:
U1 0
gt*yord“’]- 0
~ 0 Tt
B, 5 = ,and S T = . (33)
Ti_1 0
ft—l‘o.,»d-‘rl 0
1 0
Therefore,
U1
th*yord‘i'l
Ty
By s +S % = (34)
T
ft*zord‘i'l
1

Let Sy, Ss and S4 be additional block-selector matrices that satisfy the following:

Yt—1 Tt—1
S1 8 = : , S3 § = : ,and Sy 8} = [1] : (35)
?jtfyord ft*%rd
Therefore, comparing Equation 35 against the definition of §; in Equation 32, we get
S1
Sy | 5 =35 (36)

Sy

72

Now, starting with a time-shifted Equation 32, and substituting using Equation 34,

Equation 27, and Equation 35,

St41 =

A

1

Yt

B,5; + Sy

Bgs; + ST

L1518 + LoZy + L3535, + L4545;

(L151 + L353 + L4S4)§t + Loy

B,s; + S

Therefore, we get A and B for Equation 17 as follows.

St41 =

L1S1+ L3S3 4 L4Sy

B;

A

Given that Sy, S3 and Sy partition the rows of § into a top, middle and bottom block,

respectively, A can be re-written as follows.

Recall from Subsection 5.7.4, the trajectory-tracking LQR’s cost function and solution

does not depend directly on the state, but on a transformed state C 5.

73

We want the

desired trajectory ry = gj’, i.e., a constant trajectory. Hence, C' must be constructed so that
C3§; produces the linear estimate of the QoS metrics, 3?}_1. Note, in general, we cannot
have C's; = ﬁ’t as the current state §; cannot contain the current input #;. Hence, choose
C =1[I00 --- 0], which satisfies C'§; = gj’t_l.

Note that when §; is used by the LQR controller for state-feedback to determine control
input %, (as per Equation 25), we need to use the observed values for the past QoS metrics
Yi—r in constructing §; as per Equation 32. This ensures that the LQR controller performs
feedback-control by taking into account the actual deviations of the observed trajectory from
the desired trajectory (Equation 25). In contrast, the derivation of the linear dynamical
model (A, B) from the linear response model (L), given above by Equation 37, required the
use of the predicted values of the QoS metrics gjt that were predicted by the linear response
model itself (Equation 26).

Now that the dynamical system model is set up, our choices for the matrices A, B, and
C, and the desired trajectory 73 can be plugged into Equations 21-25 to yield the input
sequence that must be applied over the next N frames: @, 41, -+, Tro+N—1. However,
we still need to specify the LQR cost matrices @), @, and R, and the length of the horizon
N. Further, the problem specification in Section 5.4 posed an input-bounds constraint on
the elements of Z (and hence on each of the @; above): —N; < x; < N;. We have so far
not imposed this constraint in any way on the u; sequence. Strictly speaking, if the control
input requires z; > N; or x; < —Nj, we will simply clip x; = N; or x; = —N;, respectively,
when applying the input to the application. However, an LQR solution that entirely (or
mostly) respects input-bounds constraints is far more likely to be effective at bringing about
the intended QoS correction, since the input applied to the application would be faithful
both to the range of inputs supported by the application as well as to the linear model used

to drive LQR.
5.8 Challenges in the use of LLSE and LQR with Immersive Applications

The previous section demonstrated the use of LLSE and LQR for QoS control in a general

setting where the relationship between inputs Z and outputs ¥ needs to be discovered and

74

a regulator constructed. However, with immersive applications, a number of additional
problems have to be solved for i) LLSE to estimate “good quality” models, i) fully define
the structure and cost function of the LLSE model to be estimated and the LQR regulator
to be constructed, and 4ii) improve the robustness of the LQR controller in the face of
modeling imprecision and frame-to-frame noise. This section identifies the specific problems.

Chapter 6 provides the solutions.
5.8.1 Online Generation of Training Data.

The controller’s QoS performance depends on the accuracy of the model estimated by LLSE
and on the suitability of the regulator produced by LQR using the estimated model. The
accuracy of the estimated model depends on the quality of the training data. The quality

encompasses several aspects:

e [s the training data representative of the current application behavior? The application
behavior can change frequently, constrained only by the stable-response-period domain

assumption.

e Does the training data represent the application-response characteristics over the full
input range of £ or over only a narrow sub-range of ¢ The regulator designed with
LQR would have the ability to exercise the full input range of Z, which can produce
poor control performance if the estimated model did not adequately characterize parts

of the input range.

The first challenge is for the controller to ensure that only high-quality training data
is used to estimate models. In Section 6.2, we create metrics and estimation schemes that
address this challenge.

In our problem definition, the training data is generated entirely online during applica-
tion execution — the applied Z; and observed ¢; for a sequence of frames ¢t. This requires
the controller to simultaneously choose application inputs #; that maximize QoS and also
produce high-quality training data, with the two being contradictory requirements. Note

that prioritizing the delivery of the highest-possible QoS using the current estimated model

75

has two adverse effects: i) the discovery of more accurate models is precluded, and i)
the controller is less able to detect changes in application behavior and re-estimate more
representative models in a timely manner.

Therefore, the second challenge is for the controller to balance the two contradictory
requirements of producing high-quality training data for model estimation and maximizing
the QoS delivered by the existing model. In Section 6.4 we define a quantitative criteria for
such a balance, and create algorithms and metrics that achieve this balance.

The third challenge is for LLSE to estimate robust models from the limited noisy training
data — namely, avoid overfitting. In Section 6.2.6 we create an online estimation scheme
that determines a suitable value for the LLSE regularization parameter A to allow robust

model estimation.
5.8.2 Improving tolerance of LQR to Approximate Models.

A regulator produced by LQR is expected to perform well when LQR is applied to an
accurate model of a system with linear response characteristics. Our problem definition
does not require linearity in the system response characteristics, only monotonicity (due to
the nature of immersive applications). Further, only a limited amount of training data is
available to an online controller, and this data may be noisy given the nature of immersive
applications and the likelihood that ¢ is impacted by factors additional to the Z identified
by the programmer. The linear model estimated by LLSE is likely to be quite approximate
for these reasons, deteriorating the QoS performance possible from an LQR-constructed
regulator.

In Section 6.5.2 we apply the adaptive-integral univariate controller from Chapter 4
to the tracking error observed in each y;. This approach enhances the QoS performance

delivered by the controller beyond what was possible with LQR alone.
5.8.3 Determination of LQR structuring parameters.

The primary challenge arising from our problem definition is the construction of the input-
costs matrix R in a manner that constrains the regulator to respect the input-bounds

constraints —N; < x; < Nj, and yet have the regulator retain the ability to pick a value

76

for x; from the full range [—N;, N;| that maximizes QoS. To address this challenge, we
choose a strategy where LQR is repeatedly performed using the same estimated model
to repeatedly construct regulators, but with the entries of R iteratively tuned across the
invocations of LQR based on the control inputs Z produced by the last instance of the
regulator. Section 6.5 provides the details.

An important observation — software applications typically do not incur an inherent
“cost” when applying large magnitude input values (unlike a physical system, where for
example a control input might represent fuel burn rate in a rocket). Therefore, there
is no inherent “good value” for R, except what allows high QoS performance. At any
rate the only cost involved in our problem definition is the minimization of QoS error. If
programmers really need to explicitly constrain input costs within the framework of our
problem definition, they can specify a QoS output y; = z; with range objective |y; — ;| < d;
for their application. The range objective would indirectly place a cost to choosing values

for z; that differ from g;, in addition to the usual input-bounds hard-constraint on x;.

Choice of N. We use N =1 as the controller will repeatedly construct a new regulator
using LQR, perhaps multiple times within a single frame ¢. Using N = 1 constructs a
regulator that applies the maximal magnitude control inputs necessary to bring about the
desired control correction in one time-step. We separately use the R matrix to limit the

inputs to the input-bounds constraints.

Choice of (). The choice of the transformed-state (C'§;) cost matrix @ is dictated by the

per-frame instantaneous QoS-performance optimization goal 7, (Eq 5) as follows:
1 & i — il
Tt = Ezsiill 52 ‘ T .
i=1 i
Choosing @ to be a diagonal matrix with the following diagonal terms leads to LQR

minimizing the cumulative per-frame performance cost for ¢ = 1..N, which Eq 6 defined as

T
1 .
MSEQ = T ;—1 7¢ (here T'= N, the LQR horizon):

S; Ty

52

)

77

Here the definitions of s; and r; come from the extended problem definition in Section 5.5

and are not related to the dynamical system state §; or the desired trajectory 7;.

Choice of QQy. We choose the final-state costs @y = @ since we would need to keep
controlling QoS indefinitely, and not end control after some final state is achieved in N

frames.

Determining R. The input-cost matrix R is dynamically tuned over multiple LQR

regulator-design steps, as detailed in Section 6.5.

78

CHAPTER VI

MULTI-VARIATE QOS CONTROL:
DESIGN OF THE QOS CONTROLLER

The previous chapter motivated that the QoS control of immersive software applications
could be readily modeled as a discrete-time control problem that relied on characterization
at runtime of the observed application behavior. We rely on linear least-squares estimation
(LLSE) to periodically characterize the application behavior as a linear model. The linear
quadratic regulator (LQR) technique from optimal control theory allows the construction
of a regulator from the estimated linear model. At each application frame, the regulator
adjusts the application control parameters to drive the application QoS metrics towards
the desired goal (i.e., feedback control). We proposed an application QoS controller that
encompassed the activities of model estimation, regulator construction and feedback control,
and the decision logic necessary to orchestrate these activities in a manner suitable for
achieving high QoS with immersive software applications.

This chapter details the design of the application QoS controller. In general, the ap-
plication QoS controller falls under the category of model-identification adaptive control
(MIAC), where adaptive control is performed using models estimated at runtime. There
are many alternative strategies to craft a controller under MIAC, the specific choice depend-
ing on the nature of the system being controlled and the optimization goals for the control
problem. Section 6.1 explores the alternative strategies possible and our chosen strategy.
Our chosen strategy requires specific technical challenges to be addressed. The subsequent
sections of this chapter provide solutions to each of the technical challenges identified as
part of our chosen strategy. The technical challenges capture the “decision logic” of the

QoS controller, and provide solutions for all the problems not addressed by LLSE and LQR.

79

6.1 Design Strategies under Model-Identification Adaptive Control

The following questions explore the goals and strategies for crafting a controller under
MIAC. We address the questions for our problem of interest, the domain of immersive
software applications (rather than for a specific application with unknown parameters, as is

usually the case with adaptive control problems).

Question 1 Is specific information available for each problem instance the controller is

applied to?

The application QoS controller is provided as a pre-compiled software library. Each immer-
sive application describes a specific QoS optimization problem to the controller using an
application programming interface (API). The specific problems will differ on dimensional-
ity, input bounds, and desired ranges for the QoS objectives. Additionally, the application
provides a perception-window parameter indicating how quickly the user would perceive a
QoS failure. Such specific information allows the controller to optimize for each application.
However, the controller is designed based on the domain assumptions about immersive ap-
plications in Section 5.6, and there is no customization of the controller code for any given
application. The controller API even allows an application to change the QoS problem mid-
execution, though doing so briefly disrupts QoS control while the controller re-characterizes

the application behavior for the new QoS problem.

Question 2 When or how often should the model be estimated at runtime?

This question relates to how quickly is a given estimated model obsoleted by changing
application characteristics. Periodic model estimation (i.e., estimate every fixed number
of frames) is simplest. However, periodic model estimation requires that a suitable period
be known, either from the problem specification or the domain assumptions, or possibly

estimated at runtime. Too frequent estimation creates the following problems.

e The controller must with greater frequency drive control inputs with the goal of gen-

erating sample data suitable for the next model estimation, at the cost of driving

80

inputs for the primary goal of maximizing QoS.

e The controller incurs heavier runtime overheads, which may impact application QoS

(particularly, maintaining desired frame-rate).

Too infrequent estimation would fail to track QoS when faced with changing application
characteristics. Hence, determining when to re-estimate a model is crucial for achieving
good QoS.

While the problem specification and the domain assumptions provide insufficient infor-
mation to determine a period for model estimation, they do prove sufficient for constructing
metrics that track the prediction accuracy of the current model. The model’s current pre-
diction accuracy is compared against its prediction accuracy when the model was estimated
(to identify drift in application behavior) and also compared to a more recently estimated
substitute model. If the substitute model is found to have a higher prediction accuracy
over the most recent frames, it could be for two reasons: i) the application behavior has
changed since the current model was estimated, and/or i) better quality training data was
used in the estimation of the substitute model. The metrics are designed to meet two op-
posing goals: i) determine quickly if either the current model or the substitute model is
distinctly superior to the other, and i) allow precise comparison over longer durations of
frames when the prediction accuracies of the two models are close. Hence, the controller
attempts to filter out poor substitute models quickly, it allows distinctly superior substitute
models to be applied quickly, and it prevents model replacement under noisy or ambiguous
circumstances.

Model estimation is repeated as soon as new sample data of sufficient quality becomes
available after a previous model was discarded. In this manner, model estimation can
occur frequently when it is beneficial (e.g., tracking changes in application behavior as they
happen) and more slowly when it is not beneficial or actually harmful (e.g., replacing a

consistently accurate model during temporary deviations in the application behavior).

81

Question 3 How is the regulator updated when a new model is estimated?

A newly estimated model must become the active model before it impacts the regulator.
A new model becomes active either when there is no prior model present in the controller or
when the new model is a substitute model with better prediction accuracy than the current
active model. LQR is used to construct a regulator from the active model. However, the
model provides insufficient information about all the parameters needed by LQR. In an
offline-design setting, these additional parameters are provided by the human designers
based on intuition about their control problem and through trial-and-error in evaluating
constructed regulators on test data.

In our online-design setting, the controller estimates these additional parameters by
dynamically tuning them based on the observed control properties of the regulator. The
controller repeatedly re-designs the regulator from the same active model, performing a
directed search of the parameter space. The control properties of the constructed regulators
are characterized along the search path in the parameter space. The characterization is
done simply by applying the regulator to the dynamical-system state for the current frame
and evaluating the suitability of the produced control inputs against those produced by prior
regulators. Such characterization allows iterative refinement over multiple regulator designs,
both within the same application frame as well as across frames.

The online-design setting allows the controller to fine-tune the parameters to the specifics
of the current operating conditions. In contrast, an offline-designed controller must pick
single fixed values for the parameters that provide the best performance trade-offs over a
wide range of operating conditions. Section 6.5 describes the additional parameters and the

directed search mechanism with low and bounded overhead suitable for an online setting.

Question 4 Is there model certainty? That is, can the most recent model be considered the

best estimate of system behavior?

MIAC controllers can use different strategies depending on whether model certainty can be

assumed. Under model certainty, the most recently estimated model is considered the best

82

predictor of the system behavior and all prior model information can be discarded when
re-designing or updating the regulator. Under model uncertainty, noise in the training data
or training data that has insufficiently excited a fully representative range of application
behavior may allow only a compromised model to be estimated at the current time. But
combination with prior modeling information would allow a more accurate model to be
determined, even when the application behavior is gradually changing.

The QoS behavior of a typical immersive software application is the emergent behavior
over a large number of underlying algorithms, algorithms whose characteristics are often
heavily data-dependent. While the emergent behavior is often statistically stable over a
sequence of frames, there can be large noise on a frame-to-frame basis. Model estimation
via LLSE can filter out additive noise, but very frequently the noise is non-additive in
nature due to intermittent application events such as user-interaction events or application
functionality that is not executed every frame. Hence, the sample data may intermittently
have large noise that cannot be filtered out during model estimation, and we are unable to
assume model certainty.

Therefore, we use a hybrid approach for our controller: the new model fully replaces the

prior model, but only if metrics indicate it to be superior.

Question 5 How should the model structure be determined? Is this pre-determined or

determined at runtime?

The structure of the model needs to be fixed before LLSE can be invoked. The structure
includes knowledge of input-output impact relationships, model order, and setting a regu-
larization parameter to ensure robust LLSE (i.e., avoiding over-fitting to the sample data,
where perturbations to the sample data produce non-trivial differences in the resulting

models).

Impact Relationships. While many programmers or application experts may have knowl-
edge limiting which input control parameters may impact which QoS objectives for their

particular application, we have chosen to ignore this potential knowledge in order to place

83

a lower burden of expertise on the programmers using our controller. In general, the emer-
gent nature of the QoS behavior in immersive applications often makes it difficult for a
programmer to accurately identify impact relationships.

We assume that all control inputs can potentially impact any of the QoS objective
metrics. Hence, we always estimate a dense-structure model. With high-quality training
data, we expect LLSE to discover the more precise impact relationships with no additional
assistance from the problem specification. Hence, our controller separately ensures that the

training data is probabilistically of high quality before invoking LLSE.

Model Order. We choose input-order z,.q = 0 and output-order y,.q = 1, by default.
The effect of the older control inputs (Z’s) can be accounted for by their impact on the older
QoS outputs (7’s). The effect of older i’s from the past W frames is partially accounted
for in ¢;_1 due to the use of running averages as the samples saved in H. Since the use
of W > 1 provides a mechanism to sufficiently incorporate older #’s, we do not explore
Yord > 1 in this work. Though, in general, an explicit y,-¢q > 1 would allow the model to

capture additional detail beyond the running average captured due to W > 1.

Regularization. LLSE provides us the least-squared-error-fit model conforming to a re-
quired model structure, given some sample data. The sample data often proves insufficient
to provide a unique model solution (akin to finding an inverse solution for a non-invertible
matrix transform). A linear sub-space of solutions exists, out of which a hyperplane de-
fines an infinite range of equally good solutions (i.e., each solution exhibits the exact same
minimal squared-error in fitting the sample data). However, most or all of these models
may have very large coefficients, producing very large terms whose difference matches the
smaller-magnitude sample data. Such models are fitted to the noise in the sample data.
Instead, we prefer models, often from a different hyperplane with a somewhat larger fit-
error, whose coeflicients produce terms of magnitude close to the sample data. These latter
models average-out the noise (and the non-linearities) in the sample data and generalize
better for capturing the application behavior in a linear form.

We apply a standard technique called regularization to LLSE so that LLSE provides

84

a model solution with the above-mentioned desirable characteristics of generalizing better
to future, as yet unseen, application sample data. However, regularized LLSE requires a
regularization parameter to be provided. This parameter is traditionally determined by
offline analysis, which is not feasible under MIAC applied to unknown applications. We
develop a light-weight adaptive technique that quickly tunes the regularization parameter
until it is appropriate for the current application, and continues fine-tuning as the appli-
cation characteristics drift. Section 6.2.6 details the adaptive tuning of the regularization

parameter.

Question 6 How does the training data impact the quality of the model estimated?

We consider the training data to be of high quality if it allows a model with high
prediction-accuracy to be estimated. Our underlying assumption is that a more accurate
linear model would produce a regulator delivering higher QoS. The training data consists
of the control inputs applied and the corresponding QoS outputs observed over a sequence

of frames. The following two aspects determine the quality of the training data:
e (overage of the input space.

e How representative is the sequence of frames of the current application behavior?

Coverage. Coverage relates to the range exercised for each input variable and the sam-
pling density/distribution over the exercised range. If the training data samples a limited
range of an input variable, the estimated model may poorly represent the behavior outside
this range. Further, the behavior may perhaps vary considerably over different parts of the
input range, even if the behavior response is considered “smooth”. In general, dense sam-
pling over the entire input volume would allow an accurate linear model to be estimated, but
with no a priori indication of how dense the sampling needs to be (as the system response is
unknown). Unfortunately, dense sampling at runtime runs counter to our controller’s main

objective of driving the input control variables in a manner that best enhances the output

QoS.

85

With immersive applications, we make the assumption of monotonic response. Under
this assumption, sampling a large range for each input variable is of primary importance.
The sampling density and distribution within the large range is of secondary importance, as
this information can be interpolated more accurately when we assume a smooth monotonic
response (compared to a more general case where monotonic response is not assumed).
Hence, the coverage requirement can be primarily satisfied by sampling the vertices of a
convez polytope that encloses most of the volume of the input space. Then, any additional
samples taken within the polytope contribute to better noise-tolerance in the model esti-
mation and to a more accurate reflection of the non-linearity in the application response.
Hence, sampling the vertices of a large polytope serves as the minimal requirement for
coverage under the monotonic response assumption. Subsequently, we can parametrically
trade-off the overheads of collecting further samples within the polytope against the addi-
tional benefits of noise reduction and fitting non-linearities within the polytope.

Unfortunately, estimating the volume of a convex polytope enclosing a given set of
points in multi-dimensional space requires a computationally expensive algorithm, leading
to potentially large overheads at runtime. Hence, we approximate the polytope with an axis-
aligned bounding box (AABB), that simply records the minimum-to-maximum statistical
spread of values taken by each input variable. The volume of the AABB is very efficient to
calculate when coverage needs to be determined. The AABB would always have a larger
volume than the precise convex polytope over the sampled vertices. Therefore, we would
require the AABB to cover a larger fraction of the input volume, in order to get the precise

(but unknown) polytope to exceed a smaller volume threshold with high probability.

Representativeness. The immediately preceding sequence of frames would be consid-
ered the most accurate representatives of the current application behavior. Additionally,
we would expect that the longer the frame sequence, the greater the number of sample
points available to more densely explore the input space. However, apart from the runtime
overheads of storing a long history of sample data, the following factors indicate that a

longer frame sequence can become highly detrimental. First, the application behavior may

86

have changed abruptly (as opposed to a gradual shift) at some past frame. Inclusion of
frames preceding that change contributes samples that do not reflect the current applica-
tion behavior. Consequently, a larger number of new frames would have to be collected to
dilute the effect of the prior non-representative frames, leading to a larger lead-time before
model estimation would produce an accurate model. Second, a longer sequence does not
necessarily achieve greater coverage in the sample data. If the controller had confined the
control inputs to a narrow range over a frame sequence, but subsequent frames explored a
larger portion of the input space, then inclusion of a large number of the confined frames
would bias the sample data against the frames exhibiting greater exploration, leading to
estimation of a poorer-quality model. In summary, the representativeness of the sample
data is enhanced by i) detection of behavior change points so non-representative data can
be discarded, and ii) adjusting the duration of the sample data retained so as to capture
a representative range of the application’s current behavior (in contrast with the samples
achieving coverage over the input space).

To ensure estimation of high-quality models with high probability, it is vital for the
sample data to have sufficient coverage over the input space and be representative of the
current application behavior. We develop metrics that continually and efficiently charac-
terize coverage, identify behavior change-points in the collected sample history data and
estimate a duration of frames over which the application behavior becomes stable. The
metrics indicate in a precise manner when the data is suitable for high-quality model esti-
mation, when the history size (i.e., the number of preceding frames retained) needs to be
increased or decreased, and how the past frames should be weighed against more recent

frames during model estimation.

Question 7 How is the training data generated?

The previous question explored how the coverage and representativeness aspects of the
training data determined the likelihood of estimating a model with high prediction accuracy
(i.e., a “good” model). Every frame, the controller produces a control input for the appli-

cation. On any frame, the controller generates the control input under one of the following

87

three mutually exclusive conditions.

Case 1: No regulator defined.

Case 2: Regulator drives control inputs.

Case 3: Forced exploration of inputs, disregarding available regulator.

Next we describe how the coverage and the representativeness of the training data are
impacted in each case. A regulator is not defined until model estimation establishes an active
model and LQR is performed on the active model. Subsequently, the controller decision logic
may detect that the active model exhibits significantly compromised prediction accuracy on
the current application behavior. If so, the controller invalidates the active model even if
no suitable substitute model is available to take its place. Model invalidation immediately
invalidates the current regulator (because it was constructed from the model), again leaving
no regulator defined.

Whenever the regulator is either undefined or forcibly not used (Case 1 or Case 3,
respectively), we use an input explorer algorithm that at each frame identifies the input
variables exhibiting insufficient coverage of their respective ranges. For each variable with
insufficient coverage, a value is sampled uniformly at random over a sub-range where cov-
erage was lacking. All the other variables that presently have sufficient coverage hold their
values fixed to those from the prior frame.

The input explorer provides the following benefits.

e Within very few frame, provides a high probability that the convex polytope enclosing
the sample points achieves non-zero volume (i.e., the sample points cover a non-zero

range in every dimension of the input space).

e Within very few frames, provides a high probability that the axis-aligned bounding
box (AABB) enclosing the polytope has volume exceeding a desired large fraction of

the input space.

e The input dimensions currently exhibiting insufficient coverage increase either their

88

coverage or their sampling density in the given frame.

Impact on coverage. Once a regulator is constructed and is driving application control
inputs (Case 2), further exploration of the input space may get inhibited. For example,
the regulator may limit a control variable to a narrow range or even a fixed value, if the
regulator determines that this range/value delivers best application QoS. In general, the
sample data may quickly lose coverage when the control inputs are driven by the regulator.

Therefore, we are faced with an exploration versus exploitation dilemma every frame.
Should the controller use the current model to control QoS as best possible (Case 2)7 Or
should the controller explore the application behavior further, creating the opportunity for a
new model with potentially far better QoS-control capabilities to be discovered, but prevent-
ing the current model’s regulator from driving control inputs (Case 3)? The exploration-
vs-exploitation dilemma is inherent in any runtime scheme that must choose between using
current knowledge and discovering new knowledge. In our controller, exploration directly
increases coverage in the training data, while exploitation generally diminishes coverage.
The next question explores the criteria used in the controller for balancing exploration

versus exploitation.

Impact on representativeness. The controller maintains a finite history of the most
recent samples of the application behavior (i.e., the training data). Exploration on a given
frame is a waste if the sample data from the given frame gets discarded from the finite
training data by the time model estimation is next invoked. Additionally, even when a long
history is maintained, the sample data from the given frame may no longer be representative
by the time model estimation is performed (as discussed in the previous question).

Hence, one goal during exploration is to retain sufficient representative data and to
use it for model estimation before its representativeness is lost. Another goal is to ensure
that the forced exploration does not disrupt application QoS to an extent exceeding any
subsequent benefits of the exploration to model estimation. The next question discusses the
mechanisms employed by the controller to meet these goals and balance exploration versus

exploitation.

89

Question 8 How do we balance exploration versus exploitation?

Forced exploration allows the training data to periodically gain sufficient coverage to
allow model estimation. If some fixed percentage of application frames are devoted to forced
exploration, we want the exploration to occur in patterns that maximize the likelihood of
model estimation. Separately, we want to determine what percentage of application frames
should be devoted to forced exploration. The following types of considerations factor in

here.

1. Is the current model already producing very high application QoS, such that any dis-
ruption arising from the search for an even better model is highly counter-productive

to the resulting application QoS?

2. If the current model is producing only mediocre QoS, is it likely that another model
can significantly outperform the current model? If yes, we want to devote more frames
to forced exploration. If not, we want to minimize disruption to salvage whatever QoS

the current model is able to provide.

3. Can poor QoS produced by a model trigger a QoS death spiral, where aggressive ex-
ploration prevents models from functioning as best as they can, leading to continually

more aggressive exploration and ever poorer QoS in subsequent models?
Hence, we break the exploration versus exploitation problem into two sub-problems:

e Determine what patterns of forced exploration would maximize coverage and repre-
sentativeness benefits if the exploration were limited to a specified fraction of the

application frames (the ezploration fraction).

e Determine what exploration fraction would best balance the estimated benefit of ex-

ploration to future QoS against the disruption imposed on current QoS.

Section 6.4 provides the mathematical details. The following two questions cover the

above sub-problems.

90

Question 9 Sub-problem 1: What patterns of forced exploration mazimize benefits when

exploration is limited to a specified fraction of the application frames?

The following mechanisms control the patterns of forced exploration.

e Clustered sequences
e Quantified coverage gap

e Probabilistic structure

Clustered sequences. When the controller forces exploration, it does so for a contiguous
sequence of frames. Use of clustered exploration significantly raises the likelihood that the
generated training data achieves sufficient coverage to allow model estimation and consists
of the most representative sample data. Without exploration in clusters, frames with forced
exploration would be scattered over the frame sequence. Scattered exploration increases the
likelihood that at any given time the training data contains some exploration frames, but
may significantly decrease the likelihood that the exploration frames contribute sufficient
coverage to allow model estimation (consider the situation where the coverage is consistently
almost sufficient, but rarely sufficient). In contrast, clustered exploration decreases the
likelihood that the training data at any given time contains any exploration frames, but
when forced exploration does occur it is more likely to continue for a duration sufficient for
the training data to cross the coverage threshold needed for model estimation. Hence, for
the same fraction of application frames devoted to forced exploration, clustered exploration
is far more likely to exploit the generated samples for model estimation than scattered
exploration. Additionally, the clustering maximizes the representativeness of the exploration
samples — the coverage threshold is likely exceeded by the end of the clustered exploration
sequence, enabling model estimation right at the end of the clustered sequence, before the

bounded-length training data likely loses any exploration samples.

Quantified coverage gap. The controller has a metric quantifying the degree to which

the current training data falls short of the coverage needed for model estimation. From this

91

coverage-gap metric, the controller estimates the cluster length of the forced exploration
that would likely achieve the coverage threshold. Hence, whenever the inputs produced
by the regulator are by themselves meeting coverage, forced exploration is skipped entirely.
More generally, the coverage-gap metric limits the forced exploration to a frequency and

cluster length just sufficient for achieving the coverage threshold.

Probabilistic structure. Despite having a coverage-gap metric that can deterministi-
cally dictate the cluster length for the next forced exploration, we choose to use probabilistic
mechanisms for determining whether exploration is triggered on a particular frame and what
its cluster length is. Hence, the coverage-gap metric only shapes the parametric probability
distributions from which the cluster length and exploration frequency are sampled. A proba-
bilistically sampled exploration structure has certain critical advantages over a deterministic
exploration structure. First, an application might have its own patterns of behavior that
interact perversely with a deterministic exploration structure of just the right duration and
frequency to stymie the working of the controller. For any given application, a probabilistic
structure is less likely to repeatedly produce exploration patterns that stymie the controller
operation. Second, a probabilistic structure allows very precise control of exploration prop-
erties over long sequences of frames. For example, the exploration frequency can be chosen
to be arbitrarily close to zero, and over a long sequence of frames very simple probabilistic
sampling techniques effectuate the desired frequency. In contrast, a deterministic structure
must be produced by a priori fixed pattern generators, requiring very sophisticated schemes

to effectuate the desired exploration parameters.

Question 10 Sub-problem 2: What fraction of application frames devoted to exploration
would best balance the likely benefits to future QoS against the disruption to the current
QoS?

The following steps determine a suitable exploration fraction.

e Estimation of the QoS potential of the active model

92

e Estimation of the best achievable QoS by any other model

e Determination of a new exploration fraction from the two estimates

QoS potential of the active model. The achieved QoS is determined both by the
capabilities of the active model as well as the exploration fraction. We estimate the QoS
potential of the active model by extrapolating from the frames that the regulator was allowed
to drive inputs on. Strictly speaking, a scattering of forced exploration frames within a frame
sequence impacts the QoS performance of the regulator-driven frames as well. This impact
could be due to a non-zero input-order in the underlying application behavior, or when a
QoS output variable is set up to average its value over a window of frames. Hence, adjacent
forced exploration frames in the frame sequence may have an unpredictable impact on
the QoS measurements on the regulator-driven frames. However, there are two mitigating
factors that allow us to sufficiently approximate the model’s QoS performance as the QoS
measured over only the regulator-driven frames. First, the exploration happens in clusters,
thereby affecting the QoS of only the regulator-driven frames occurring immediately after
the exploration cluster (in contrast to a scattering of exploration frames having a potentially
more widespread impact). Second, when the exploration fraction is small, the error in the
model’s QoS measurement drops. When the exploration fraction is larger, the measurement
error can be substantially larger. However, a large exploration fraction occurs only when the
model has previously been estimated to have low QoS, allowing large errors only when the
model QoS is already estimated to be poor. When the introduced error consistently makes
the model QoS appear far better than actual, the exploration fraction would keep dropping,
improving the accuracy of subsequent QoS estimation: a built-in feedback mechanism. This
leaves us with the situation when the error makes the model QoS appear far worse than it
actually is. Such a situation can trigger a QoS “death spiral” for a series of frames until
a new active model is estimated. The dropping QoS triggers a large exploration fraction,
allowing a new active model to be estimated expeditiously, thereby ending the death spiral
quickly: another feedback-based safe-guard even if it sometimes causes the current model

to be needlessly replaced.

93

Best achievable QoS. Having an estimate of how good the QoS can be for the given
application allows the controller to determine whether i) the active model is far under-
performing and aggressive exploration must be attempted to estimate a better model, or
it) if the active model is delivering close to the best QoS performance possible on this ap-
plication and further exploration should be minimized to avoid disrupting whatever QoS
the current model is able to provide. A large under-estimation of the best achievable QoS
would cause a bad model applied early in the execution of the application to persist. A large
over-estimation of the best achievable QoS would expend needless application frames on ex-
ploration, preventing a reasonably good active model from delivering on its QoS potential.
The best achievable QoS is dependent not only on the application but also on the appli-
cation data-set. Hence, we cannot rely on an a priori estimate of the best achievable QoS.
Instead, the controller initially assumes the best possible QoS as being achievable. Then, as
new models continue to become active, the controller continually updates a best-achievable-
QoS metric as the average QoS of the top quantile of the active models encountered. This
scheme has the following advantages: i) poor-performing models estimated during noisy or
anomalous phases of the application only minimally impact the metric, i) the controller
initially allows higher exploration, increasing the likelihood that high-performing models
would get discovered, 4ii) if the application behavior characteristics gradually change such
that a higher performing model is no longer possible, the accumulation of poorer performing
active models will gradually shift the metric down, gradually clamping down on the explo-
ration. The disadvantage of the scheme is that if the application characteristics change
suddenly to allow high-performing models after a long sequence of low-performing active
models, the scheme would increase the exploration fraction only after multiple good active
models have already been encountered. However, note that the scheme’s reliance on the
top quantile of model QoS clamps down the exploration fraction slowly after encountering a
series of poor active models, but can ramp up much faster on encountering relatively fewer

good active models.

94

Determination of the exploration fraction. Two factors are multiplied to determine
the next exploration fraction. First, how much exploration can the current active model
tolerate without significantly impacting the model’s QoS performance? Second, what is
the achievability gap between the estimated best achievable QoS and the estimated QoS
of the active model? The tolerance factor is computed as a function of the active model’s
QoS. The achievability gap factor is computed as the relative difference between the best

achievable and the active model’s QoS estimates.

Finally, note that we use two different types of metrics to compare the quality of models:

e Prediction accuracy: the discrepancy between observed application outputs and the
outputs predicted by a model over the recent history of control inputs. This metric

is used when comparing the active model against a substitute model.

e Application QoS: the application QoS delivered by the regulator constructed from the
active model. This metric is used to compare the current active model against past

active models to determine the achievability gap.

The prediction accuracy is necessary to make comparisons against substitute models
that have not, as yet, been used to drive application control inputs and hence their actual

QoS performance is unknown.

95

6.2 Model Estimation with LLSE

Model estimation relies on the following components.

Sample History #H. Application behavior observed over a sequence of frames is used as
the training data for LLSE. At any frame ¢, the control inputs applied and QoS outputs

observed over the most recent sequence of frames is retained as the history H:

H=[Tk, Ge—r) | k € [L[H]]. (40)

The length of history retained, |H|, is determined adaptively at runtime. The ideal

length is

1. long enough to retain enough samples to cover the input space (coverage requirement),

2. long enough samples to capture a stable representation of the application’s current

behavior (stability aspect of the representativeness requirement),

3. yet short enough that the retained samples only represent the current application

behavior, not prior behavior (behavior change-points aspect of representativeness).

The coverage and representativeness requirements are often in conflict in determining
|H|. Therefore, for generality, a “forget-rate” parameter v progressively weighs down older
samples: the k*® past sample (Z;_, ;_x) has weight v*~! (0 < v < 1) when used by LLSE.
~ is adaptively adjusted by the controller. With the aid of an appropriately chosen v, H
can be made long enough to achieve coverage, relying on older, less representative samples
if necessary. At the same time, the low weightage of the older samples (if retained) in
the estimation of model M helps maintain representativeness. The controller maintains a
recommended length setting for H, represented by L~ (i.e., the controller allows H to retain

up to L, samples). We constrain v and L, to always obey the following relationship.

v =0.10 (41)

96

This constraint represents a heuristic that on frame ¢, only samples (Z_g, Jr—x) with
weight v*~1 > 0.10 are retained for LLSE. Any older samples (with k& > L) will have weight
< 0.10, and are considered to have insufficient impact on LLSE to be worth retaining. The
controller manipulates L. while « is updated as a dependent variable. In summary, all the
L., samples in H contribute towards coverage, while representativeness is predominantly

k=1 weights.

determined by the newer samples with larger ~

In addition to the training data needing to have an appropriate number of samples, the
samples themselves have to be generated in a manner that ensures coverage over the input
space. Section 6.2.3 describes metrics that quantify coverage of the training data and an

algorithm to generate samples that cover the input space when a new model needs to be

estimated but the coverage is not sufficient to allow model estimation.

Active Model M, Regulator C and Substitute Model M’. The controller applies
LQR on an estimated model M to construct a regulator C. The regulator drives application
inputs Z. M is referred to as the active model. The controller also attempts to periodically
estimate a substitute model M’. The controller attempts to compare the prediction accu-
racy of M against M’ using subsequent samples collected in H. Whenever M’ is found
unambiguously more accurate than M, the controller replaces M «+ M’.

M and M’ are estimated using LLSE on the samples in H whenever the samples have
sufficient coverage and have representativeness to the extent possible. LLSE needs a regu-
larization parameter A to be chosen to allow robust models to be estimated. Section 6.2.6
covers an adaptive runtime scheme to determine A suitable for the current application be-

havior.

Continuous Forced Exploration and Probabilistic Forced Exploration. We need

‘H to have coverage and representativeness only in the following situations.

1. When no active model is defined: M = ¢. This is a critical situation as there is also

no regulator C defined to drive application inputs.

2. Need to estimate a new M’.

97

3. Need to compare the prediction accuracy of M’ over M.

In the first situation, the controller will extend H and shape the application inputs Z to
achieve coverage in the minimum number of frames possible. We call this process continuous
forced exploration (CFE). Representativeness in H is desired but not required due to the
critical need to estimate M as quickly as possible.

The controller only makes a “best effort” to satisfy the needs identified in the second
and third situation. This is because M, and hence C, are already defined and the controller
is able to control application QoS. In these two situations, the controller uses a process we
call probabilistic forced exploration (PFE). PFE i) adjusts |#H| based on the coverage and
representativeness statistics observed for H, and) with a calculated probability overrides
the inputs Z produced by C on certain frames and instead samples T from a probability
distribution that will boost coverage and representativeness in 7. The objective of PFE
is to periodically allow M’ estimation and comparison against M without significantly
impacting the QoS performance delivered by M. The adverse impact on QoS arises due
to PFE overriding the application inputs from C. Section 6.4 covers PFE. Each occurrence
of CFE and PFE spans one or more consecutive frames — referred to as a CFFE cluster or
PFFE cluster of frames, respectively.

CFE is expected to be a rare occurrence (say, during the initial frames or occasionally
when the application behavior changes dramatically within a very short span of frames).
The vast majority of the application frames are expected to be either non-exploration (i.e.,

C drives the application input Z) or part of a PFE cluster.

Adapting |H|. On any given frame the following metrics determine |#|.

o Ls: the controller’s estimate for |#| that will achieve stability of behavior in the
samples in H. The stability aspect of representativeness attempts to collect in H
all the distinct behaviors that the application is currently exhibiting. Behavior refers
to the application’s (#,%) input-output response. The controller may not have an

estimate for Ls on every frame.

98

e L.: the controller’s estimate for |H| that would achieve coverage with high probability
immediately after a PFE cluster. The intent is to retain sufficient older samples of &
that in conjunction with the newest samples of Z from a PFE cluster confer coverage

to H.

e L.: the desired length for H. |H| can grow until || = L. Then, the oldest sample is
dropped from H whenever a new sample is added. However, |H| is allowed to exceed
L., during a CFE cluster. L., is adjusted as a compromise between the Ly (if defined)

and L. values.

Note that a chosen L. value is not intended to be sufficient for achieving coverage
on every frame ¢ with high probability. Instead, L. is intended to be sufficient only for
achieving coverage soon after a PFE cluster. Immediately after a PFE cluster, H will also
contain samples produced by C and potentially samples from prior PFEs. L. is a length
recommendation that implicitly encompasses the impact on coverage of the current and
prior PFEs and of the inputs produced recently by C. However, the process of estimating
L. is feedback-driven on the coverage statistics of H, hence the process does not need to
explicitly model the effect of the PFEs and C on coverage. By not requiring L. to confer
coverage on every frame with high probability, we dramatically reduce the adverse impact
of PFE on application QoS — far fewer frames have to participate in PFE if coverage
is required only occasionally. The controller dynamically tunes the frequency with which
frames achieve coverage by adjusting the probability parameters that PFE relies on.

In contrast, the Lg estimate is chosen to confer stability with high probability on any
frame while |H| = Ls, regardless of the specific locations of the PFE clusters within #.
The process that estimates Ly also detects behavior change points in H (the second aspect
of representativeness after stability). If frame t,cp, in H is detected as a behavior change
point, all samples older than and including ¢y, are deleted from H, but L, and L, are
not directly impacted. The goal is to prevent model estimation or comparison from using
frames that represent outdated application behavior. Essentially, L is estimated using the

long-term statistics of the application behavior, while behavior change points are detected

99

when the short-term statistics of the current samples in H exhibit an anomaly compared
to the long-term statistics.
Section 6.2.1, Section 6.2.2, Section 6.2.3 and Section 6.2.4 provide details on estimation

of Ly, thep, Le and L., respectively.
6.2.1 Quantifying Stability in H

Prediction Error. The prediction accuracy of the active model M is used to establish
changes in application behavior. The prediction error e; (a proxy for prediction accuracy) at
frame t is defined as e; £ —

dim(5)
by M for frame t using the applied inputs and #; is the actual output observed from the

ngt — Ui]?g 5 where ?jt is the application output predicted
application. The subscript (5, S’) indicates that our use of the L2-norm incorporates the user-
specified importance s; and tolerance ¢; values of each output dimension y; (Section 5.4), as

shown below.

> L2 A ’Z)ﬂt _yi\tP
|19 _ytH(g’g) = ZSZT (42)
i
As with the definition of 7, (Eq 2), the error in each output is normalized by the
corresponding d; to allow the errors from the different outputs to be meaningfully combined,
and the relative importances s; allow the controller to react more readily to errors in outputs
that are more important to the user.
We use the notation @Z = M(H,t), where it is assumed that H contains sufficient recent
samples (based on the model-order of M) to apply M at frame ¢. Hence,
A 1 = 12
et = WHM (H,t) — yt”(gj’)' (43)
There might be significant variation in e; over a sequence of frames, yet that does not
necessarily imply that the application behavior has changed. Often, a sequence of somewhat
differing behaviors that appear repeatedly and in quick succession may be best recognized
by the controller as a single large behavior, for which a single model M is estimated. We
assume that if the statistical distribution of e; over frame-sequences of a suitable length

L remains similar to other frame-sequences of length L then the application behavior has

100

not changed. Further, the application behavior is then considered stable over lengths L.
The controller attempts to estimate the shortest length L over which the behavior is found
stable, and if found, represents it as L.

Let 7., represent the history of input-output samples, similar to #, but whose length
is manipulated independent of H. Let T represent the {e;} sequence computed over the
samples in 7T, using the active model M. Therefore, |Tc| = |Toy| — max{Zorder, Yorder}- Te
needs to maintain a sufficient number of samples to evaluate stability of any length L that
could potentially serve as the stability length L.

If M = ¢ on any frame t, 7. becomes undefined. 7. must be recalculated whenever

model substitution M < M’ occurs or a new model M is directly estimated.

Kolmogorov-Smirnov Measure of Statistical Dissimilarity. Given a length L as a
candidate length for stability, the controller uses the Kolmogorov-Smirnov (K-S) distance
D (0 < D < 1) to establish the degree of dissimilarity between two segments of length
L extracted from T.. D = 0 implies that the value distributions of the two segments
are identical, whereas D = 1 implies the maximal dissimilarity between the two value
distributions. We use a histogram as a practical means to approximately capture the value
distribution of each segment. The histograms are binned over the min-to-max range of e,
seen since the last behavior change point detected. Keeping the range of the histograms
narrow in this manner maximizes the sensitivity of K-S in detecting statistical dissimilarity.

We compute D between every two adjacent segments of length L and use a weighted
average D to establish if the length L is statistically stable, unstable or highly unstable in
an application-independent manner. We heuristically define classifier s(L), as follows, to
query the statistics collected for candidate length L. Note that evaluation of s(L) requires

at least two segments of length L to be present in e, i.e., need |T¢| > 2L.

101

unknown, if M=¢or|T] <2L
stable, if D(L) <0.10

unstable, if D(L) < 0.50

\highly unstable if 0.50 < D(L) (< 1)

Ideally, we would determine the thresholds (0.10 and 0.50) in an adaptive manner suit-
able for each application. However, we leave as future work the determination of whether
application-specific adaptation is necessary, and if so, how to perform it.

Specifically, let D(L,ty) represent the K-S distance between the following two adjacent
segments of Te: S([to+1,t0+ L)) ={ey € Te | to+1 <t <tp+ L} and a similarly defined

S([to — L + 1,¢9]). If M was estimated on frame ¢ and the current frame is ¢, we have

t—tpm+1
= |
heuristically choose to weigh the oldest available D with 0.10 and the most recent one with

J complete segments and ny — 1 values for D. In computing D(L) we

1.0, with the intervening D’s given weights in a geometric progression between 0.10 and 1.0.
We retain the most recent D’s (all computed using the current M) based on two criteria:
i) allow at least 20 samples to be retained to confer statistical stability to the mean D, and
i1) beyond that discard the oldest samples computed for timesteps older than the current
oldest sample in H.
We get the following definition for D when M # ¢ and ¢t — tp + 1 > 2L.
np—1

> w N D(L, tag +iL - 1)
D) & = ; (45)

TLL—l

§ : wanzfl
i=1

where w is s.t. w™~2 = 0.10.
Formally,

Shortest L s.t. s(L) = stable

undefined, if no stable L is known

102

Sketch of Algorithm for Estimating L;. Recall that W is the perception-window
length provided by the programmer for the application (Section 5.4). The variations in
application behavior within durations of W frames are considered “noise” as these will not
be perceptible to the interactive user. Hence, L = W is the minimum segment length worth
considering as a candidate for stability. Further, as an efficiency optimization we restrict
all candidates L to be multiples of W.

An efficient algorithm that computes Ly is sketched below.

e Maintain candidate set L. On every frame s(L) is updated VL € L5, Let LM

represent the max L in L5, Initially, L5 < {W}.

e Allow |7¢| to grow till 2L7**. After that the oldest sample is dropped when a new

one is added to 7¢, maintaining |7¢| = 2L7* (until LT** changes).
e Binary search to add/remove L’s from L3 on the current frame.

— If AL € L3 sit. s(L) = stable and |T;| = 2L, add 2L to LS. (Note,
|Te| =200 — s(L*) # unknown.)

— If 3 contiguous Ly, Ly € L3 s.t. s(Ly) # s(La) A s(L1) # unknown A s(Lg) #
unknown, add L = % rounded to the closest multiple of W to L%¢*. Con-
tiguous means that L1 < Ly A AL € L s.t. L1 < L' < Lg. (This step doesn’t
necessarily add L as L may round to L or Lg).

— If 3 contiguous Ly, Lo, Ly € L5 s.t. s(L1) = s(L2) = s(L3) # unknown, remove

Ly from L5t

The controller can add an external L to Lzet for evaluation, such as when L. > L, and
it would be desirable not to set L, < L. if s(L.) = highly unstable (a trade-off when the
controller must choose between providing full coverage and maintaining representativeness,

as the two requirements are often found to be in conflict).
6.2.2 Detection of Behavior Change Points in H
If Ly # undefined (i.e., s(Ls) = stable), can we find thep s.t. D(Ls, thep) > 0.507 That

is, does there exist a segment [the, — Ls+1, thep| that exhibits highly dissimilar behavior

103

against an adjacent segment, while segments of length L have typically been found to have
behavior similar to their adjacent segments? If so, t,p, is a behavior change point and the
controller drops samples older than ty,., from #H and also attempts to estimate a new M’
if tpr — Ly < thep, 1.€., the estimation of M’ may have used some sample data from before
thep and therefore M’ should no longer be allowed to substitute M. Further, substitute
M — M if tp— L < tpep (i-e., the estimation of M may have relied on outdated samples),
and if M’ was estimated only on samples newer than ty,.,. Otherwise, the controller sets

M + ¢ and M’ < ¢, and CFE is performed.
6.2.3 Quantifying Coverage in H

We would like the training data in H to span a large fraction of the input space over .
Under our monotonic-response assumption about the application behavior (Section 5.4),
it suffices to sparsely sample the input space as the application response behavior can be
approximated by interpolation (implicitly done by LLSE). Therefore, the volume of the
polytope enclosing the input samples {Z;} can be a useful estimate of the coverage of
input space by H. However, computing the volume of a polytope has high computational
complexity, unsuitable for an online scheme. Therefore, we use the axis-aligned bounding-

box (AABB) as an approximation of the polytope.

Coverage Tests. We say that the training data has coverage when it passes both the

following tests for each input dimension.

e AABB statistical span test. Does the standard deviation of the z; input vari-
able exceed a minimally required fraction f (say, 50%) of the span of the j*® input

dimension?

e Significant swing test. Does the input variable x; exhibit at least a single large

swing exceeding a fraction g of the span of the j*® input dimension?

The AABB statistical span test ensures variation over the input space over the bulk of
the inputs, therefore preventing any narrow range of input values from dominating during

LLSE, but does not ensure that any of the variations are large. The significant swing test

104

ensures that the sample data has some (or at least one) large variation, but does not ensure
that the bulk of the sample data exhibits variations. Hence, the two tests are complementary

in establishing coverage.

Coverage Metric k. We define the coverage metric k as the number of input dimensions
that satisfy both the above tests over the input samples in H, normalized by the total

number of input dimensions.

dim/(Z)
1
A
ﬁ:(m(l__,)jz::ll{ngfNj/\ijgNj}a (47)

where, each standard deviation o; and implicitly the mean p; are computed using samples
of input dimension z; weighed by the forget-rate 7. That is, at time ¢ sample z;;_j is
weighted by v*~1, just as LLSE would do if the current H was used for model estimation.

X; represents the mazimum swing in x; seen over the samples in H, defined as follows.

A k—1 -1
X; = max Tl — Y Tijp— 48
J | <k<I<|H]| Y jlt—k Jlt—1 ()

When a new sample is added to H or the oldest sample dropped from H, the metrics
oj, ; and x; can be updated incrementally (i.e., without traversing #). Appendix A.1
provides the incremental update formulae and shows how suitable f and g are determined.

In practice, f = 0.5 can be assumed, unless v < 0.4 (which is extremely rare). We derive
1+~

9= 75

Estimation of History Length L. that Achieves Coverage. H achieves coverage
both due to the input samples & generated by regulator C and the samples generated by PFE
(CFE is intended to be very occasional, so we don’t include it in our reasoning here). The
frequency of occurrence of PFE and the cluster length of each PFE are both intentionally
probabilistic properties. Hence, the coverage contributed by each successive PFE can differ.
In one situation, H may still contain samples from a prior PFE cluster when the current
PFE cluster completes. In another situation, the gap between the current PFE and the

prior (i.e., an intervening sequence of non-PFE frames) may be large, causing H to have

105

already dropped samples from the prior PFE cluster. In the first situation, the latest PFE
cluster may confer coverage to H in conjunction with a prior PFE cluster. In the latter
situation, the latest PFE cluster may fail to confer coverage. Hence, the probabilistic nature
of PFE makes the L. value that confers coverage itself a probabilistic entity. Therefore,
we attempt to choose an L. value that will confer coverage with sufficiently high likelihood,
implicitly conditioned on the current probabilistic characteristics of PFE and the region of
input space exercised by C. As a heuristic, the controller estimates an L.-recommendation
value at the end of each PFE cluster, maintains a collection of the L.-recommendations,

and determines its L. from the median statistics of the collection.

Algorithm Sketch for Estimating L..

e Maintain a sorted sequence of coverage recommendations Ly°Y. Each entry is a tuple
consisting of a coverage-length sample and the frame it was sampled — (L, tx). The
entries are kept sorted by coverage-length. Keep |L:™| < 10, as that many samples
are likely sufficient for filtering out noise, and for sampling a sufficient spread of the

PFE and the application’s current behavior.
e Initially, L= « {(W, t)}.
e At end of a PFE cluster, sample the coverage k of H.

— If Kk < 1, i.e., PFE failed to achieve coverage, set L < |H|+ (1 — k) x 2dim(Z).
— If k = 1, i.e., PFE achieved coverage, set L < max{|H|— 2, W}.
— Append (L, t) to L™ t is the current timestep.

e At any frame t, L. < average of the 50% to 75% median values in Lg%

(This choice creates a high likelihood that L. will prove sufficient for coverage, while
reducing the likelihood of an unnecessarily long L., and it does so without explicitly

estimating the likelihoods.)

e On detection of f,cp, drop samples from Lg™ that were added before fhep. If this

empties Ly 4, add the current L. as the best initial guess.

106

The algorithm uses dynamic stability (essentially a form of non-converging feedback
control) to arrive at the “correct” L.. While L. may converge due to the averaging of the
median statistics, the samples L do not. Instead, the L sample values will be increased until
the PFE clusters start to achieve coverage and then reduced-increased continually around
the values that frequently confer coverage at the end of a PFE cluster. Note that when
coverage is proving sufficient over a long sequence of frames, no new entries get added to
L. This can keep an excessively large L. (if that happens to be the case) from being
corrected until coverage drops, PFE occurs and a smaller L.recommendation is added to
L¥9. Hence, an excessive value of L. may persist. In contrast, and crucially, note that
when L, is too small to achieve coverage, samples of increasing value are repeatedly added
at the frequency the controller chooses to start PFEs (frequency determined by the metric
g — Section 6.4), bringing about a more rapid correction in L. at a rate of the controller’s

choosing.

6.2.4 Reconciling Coverage and Representativeness into Recommended His-
tory Length L,

We have two goals when updating L.

e Reconcile the typically dissimilar recommendations Ls and L, into a single value in a

“safe” manner.
e (Create robustness against frequent variations in L; or L..

Frequent changes to L, make some of the controller’s incremental-update algorithms
less cost-effective. They are incremental only while «y is held fixed, requiring expensive re-
computations over all the samples in H otherwise. For this reason, we compute a reconciled
value L' from L, and L. every frame, update a filtered value L” from L', and apply L., <

L"” only when L” differs non-trivially from the current L.. Every frame the controller i)
L/ + L//

computes L, ii) then updates L” « 5

, and 41) then selectively updates L, < L” if

L, —L"| > W.

107

L' computation when L, is defined. When L, > L., it is safe to pick L' < L, as
any history length longer than L. should also achieve coverage with a similar or greater

probability. When Lg < L., we have the following situations.

e L. is estimated as stable. We can safely set L' < L. as stability and coverage are not

found to be in conflict.

e L. has unknown stability. We add L. rounded to the closest multiple of W to LS. If
the prior frame’s L” < Lg, we conservatively set L' < L. Otherwise, use L' < L”,
which provides some robustness in case L. frequently takes values of unknown stability

— remove L. as a factor until the stability of its values becomes known.

e L. is estimated as unstable. We heuristically “split the difference” between achieving

coverage with high likelihood against the possibility of retaining non-representative
Ls+ L.

sample data: L' + 5

e [. is estimated as highly unstable. We ignore L., thereby compromising the con-
troller’s ability to estimate and evaluate M’ with a desired frequency, but providing
safety against estimating or evaluating M’ on highly non-representative sample data.

L' + L.
In the cases described above, we estimate the stability of L. with the following steps.

1. For L = closest multiple of W of L., use s(L) if L € L.

2. Otherwise, determine if 3 contiguous Ly, Ly € L5 s.t. L1 < L. < Lo, s.t. s(Ly) =

s(Lg). If so, use s(L1).
3. Otherwise, stability of L. is presently unknown.
L' computation when L, is undefined. When L, is undefined on the current frame

(i.e., VL € L5 s(L) # stable), L. cannot be known to be stable (by definition of Ly).

L will be undefined on a frame for one of the following underlying causes.

Cause 1. The application behavior is changing rapidly enough that no L, can be found.

The best course of action is to ignore stability and just aim for coverage: L’ < L.

108

Cause 2. The length of sample data collected for evaluating stability, | 7|, is not sufficient

for finding Ls. This suggests that Ls > |T¢|/2 is a possibility.

Cause 3. There is significant noise in the sample data presently in 7, and evaluating over

fresh data would reveal a stable Lg, perhaps even Ly < |T¢|/2 for the present |T¢|.

Cause 4. M = ¢ = T. = ¢. CFE will extend H until coverage is achieved and M can

be estimated. During each frame of CFE, set L. < max(L,, |#|) and L” + L.,

Cause 4 is detectable by the controller (as M = ¢). However, the controller cannot
definitively distinguish between the occurrences of the first three causes. First, on frames
that have M # ¢ and L is undefined, the controller uses L’ < L. as the default strategy,
which would cover Cause 1 if that was indeed the underlying cause for Ls being undefined.
Secondly, recall that the Lg-estimation algorithm (Section 6.2.1) adds 2L™** to L3°" when
no stable L is known and |7¢| = 2L2**. In this way the algorithm searches for ever larger L,
covering the possibility of Cause 2. Lastly, the controller doesn’t need to take any special
action in response to the possible occurrence of Cause 3, as continued application execution
will naturally explore that possibility when 7. gets replenished with fresh data.

In summary, the controller simultaneously responds to the possible occurrence of Cause 1,
Cause 2 and Cause 3, without attempting or needing to discover which of the three has

actually occurred.

6.2.5 Invalidation of Active Model on Significant Deviations in Application
Behavior

When the application behavior changes suddenly and to a very large degree (manifested
as large increases in the prediction error), the controller invalidates the active model M,
forcing the immediate start of CFE to estimate a new active model in the shortest number
of frames. Without this invalidation mechanism the controller would have had to rely on
PFE to first achieve required coverage alongside the normal execution of the regulator C,
wait for a replacement model M’ distinct from M to be estimated and then in due course
for the advantage of M’ to be established (potentially requiring an additional PFE cluster

to achieve coverage) before M is finally replaced.

109

For resilience against frame-to-frame noise, we use the cumulative prediction error over
the entire history of M as the metric for determining if M should be rejected. The model
tracking error (MTE) metric at frame ¢ is defined as follows, relying on the forget-rate ~y
to de-emphasize older prediction errors. Model invalidation is triggered when the MTE

significantly exceeds (i.e, > 10x) the model-fit-error of M over its training data.

o0

1—7
MTE(t) £ E k © k) — Gopl - 4
®) dim(7) kZO’Y M 1=F) = G ||(§,5) (49)

H> is the unbounded history of samples retained since application start up, containing

samples till at least frame ¢. The 1 — « factor normalizes the magnitude of the metric so

its value can be meaningfully compared to the model prediction error of any single frame
[o¢]

(intuition from geometric series sum: E vka =

k=0
the prediction error for any single frame). This normalization also allows the values MTE(t)

a

, if @ was the “typical” magnitude of

and MTE(¢') to be meaningfully compared for any two frames ¢ and t'.

The MTE metric can be calculated recursively as follows

MTE(H) — L ||M(H, 1) — G2, 5 + YMTE(-1). (50)

dim(y)

Note that in the recursive calculation we can now use the finite . This is because
MTE(t—1) is pre-computed (pre-computation used the finite H of the previous frame). There-
fore, we use the recursive form to compute MTE in practice.

There are two properties of the MTE metric that will help detect a change in application

behavior while being insensitive to short-lived frame-to-frame deviations in behavior.

e The metric rapidly builds up magnitude when large prediction errors are observed

over a sequence of frames.

e The impact on MTE of a large prediction error in a single frame is quickly dissi-
pated when the error is not sustained in subsequent frames (robustness against noisy

deviations).

110

6.2.6 Adaptive Determination of LLSE Regularization Parameter)\

The LLSE optimization problem ¢ = A is ill-posed when A is not full-rank. The regular-

ized problem:

0] A
0 VAT
A
becomes well-posed because is always skinny with full column rank for any A > 0.

VAT

Given @, LLSE finds @ to minimize the cost ||A@ —]| + A||@]|?, essentially finding a low
magnitude solution 4. A low magnitude LLSE solution is considered to avoid overfitting to
the noise or anomalies in the training data A and ¢. Hence a low magnitude solution is
considered to generalize better to other non-training data. Therefore, the goal is to ensure
that LLSE attempts to minimize both parts of the cost: my = ||A@ — ¥]|? and py = ||i||?. To
meet this goal it is important to choose A such that both 7, and Apy parts of the cost have
similar magnitude, otherwise LLSE will essentially minimize only one or the other.

Literature establishes [72, 73, 74] that plotting logny vs log p) while varying A\ produces
an L-shaped curve, and that A should be chosen from the “knee” of the L-curve. Mathe-
matical techniques iteratively re-solve the LLSE problem for different values of A in order
to find the point of maximum curvature on the “knee” of the L-curve.

We take a simpler approach more appropriate for an online technique like ours, in order
to minimize the number of times the LLSE problem has to be re-solved. Our approach is to
scale A based on the difference in the order-of-magnitudes of the cost terms after each LLSE
solution, until the LLSE solution has 7 and Ap) within an order-of-magnitude of each other.
This termination condition approximates the idea of finding the “knee” of the L-curve, as
adjusting A at this solution point will rapidly exchange the magnitudes of the 7, and p)
terms. The LLSE problem may be re-solved multiple times within a single application frame
t until some budget is exhausted. A is optimized across multiple frames even though the
history data, and hence the A and v training data, changes from frame-to-frame.

Specifically, we update A as follows: if 5y > 10Apy or ny < 1—10)\ P, We scale A by
mA

to increase or decrease A, respectively. Hence, update A < /\”—A)\ =\

DY
Apxa?

111

The next invocation of LLSE would be expected to produce a correspondingly closer gap
between the ny and Apy. Whenever LLSE produces a pathological zero solution 4@ = 0
(i.e., px = ||@||> = 0) or a pathological post-update A\ = oo, we dramatically reduce \ to
facilitate the next invocation of LLSE to estimate @ # 0 (this is a heuristic because we don’t
always know whether the pathological solution was produced due to bad training data or the
excessive magnitude of \). The dramatic reduction is A <= v/A if A > 1, otherwise A « 2.
Conversely, A = 0 may occur due to limited numerical precision, producing a pathological
condition where no regularization is performed. We heuristically correct A = 0 by replacing
with A < 107, to re-enable regularization and allow A to be tuned in subsequent estimation
steps.

The strategy for determining A, described above, is effective for the following reasons.

e The typical range of values taken by input and output variables are unlikely to change
much over the course of execution of the application. This would be because the input
ranges are bounded by the programmer, and the fixed range of i domain assumption.
Therefore, “good” values for the estimated model coefficients will have a “typical”

magnitude, for which a narrow range of A\, once found, will continue to effective.

e Large range of tolerance for A: we only need to make the two cost components com-

parable in magnitude.

Therefore, when the application behavior changes gradually over frames, subsequent
model estimation automatically adjust A. It can be generally expected that only with low
probability can the application behavior change so rapidly that multiple model estimation
steps must be expended to determine a suitable A again (due to the stable application-

response assumption, Section 5.4).
6.3 Model Updates to Track Changing Application Behavior

The active model M is periodically replaced by a substitute model M’. Once estimated,
the performance of M’ is compared against M to determine if indeed M’ has superior

performance compared to M. The following subsections provide details.

112

6.3.1 Estimation of Substitute Model M’

There are three main reasons to estimate a possible substitute model M’ when an active

model M is already available and driving application inputs.

1. The model M is unbalanced. That is, the current value of the regularization param-
eter A\ does not balance the magnitudes of the LLSE cost components 7, and Ap)

(Section 6.2.6).
2. The application response characteristics may have changed since M was estimated.

3. The training data used to estimate M was of poorer quality than what is possible,
and it may be possible to estimate a better model if attempted again on fresh training

data.

The coverage requirement places only a lower bound on the amount of application be-
havior that must be sampled before estimation is allowed. However, there is no a priori
known ideal sampling pattern that would work well with any arbitrary application. Hence,
even when the application characteristics remain unchanged over a long sequence of frames,
repeated model estimation over different training data sets increases the likelihood of en-
countering a model that better approrimates the application characteristics. This could be
the very first model estimated (i.e., when M is initially defined) or a later one. Hence, the
controller needs to evaluate each newly estimated M’ against the active M, retaining the
better model as M (essentially, iterative maz-finding).

When M is unbalanced, the controller repeatedly re-estimates M’, possibly every frame
while the training data maintains coverage, until a balanced M’ is found and applied as M.
The repeated invocation of LLSE iteratively converges A to a value that achieves balance.
Our expectation is that the range of magnitudes of the inputs & and outputs ¢ do not change
dramatically over a sequence of frames, as they are reflective of the underlying data-ranges
used by the application and on the properties of the given data set (the range-of-§ domain
assumption, Section 5.4). Hence, we expect A to continue converging to a better value even

as the training data differs over each invocation of LLSE.

113

Once a balanced M is found, the substitute model is estimated after intervals of at
least L. frames, to allow for completely fresh training data in H. If the training data
lacks sufficient coverage to allow estimation of M’, the controller uses probabilistic forced
exploration (PFE) to enhance the coverage of the training data (details in Section 6.4, here
we provide only a gist). The frequency of the forced exploration (represented by 6) is partly
a function of the current QoS performance of M: greater frequency when M delivers low
QoS, and very low frequency when M delivers very high QoS (Section 6.4.3: Eq 63 and
Eq 67). Hence, the coverage requirement and the probabilistic forced exploration mechanism
further extend the intervals between estimation of successive substitute models (beyond the
minimum of L., frames), in a manner that balances the QoS deliverable by the current M

against the potential to find a substitute model M’ capable of significantly enhanced QoS.
6.3.2 Comparing Performance Potential of M’ Against M

At any frame t, only a single input Z; can be applied to the application. Hence, we cannot
construct a regulator from M’ and apply to the application to observe if better QoS per-
formance is achieved compared to using the regulator C constructed from M. Therefore,
we construct a metric, Advay aq, that compares the prediction error of M’ against M:
M, 1) — Gl 5, versus LM,) = il 2 5.

The following considerations are important for the metric.

e Robustness: we want to avoid frivolous replacements of M, as there can be a high
penalty to application QoS when it is likely that a good M could be replaced by a

poorer M’.

o Adaptive duration of evaluation: we want the metric to quickly determine (i.e., within
very few frames) if one of M and M’ is distinctly superior to the other, yet allow
a more precise evaluation over a long sequence of frames if the models’ prediction

accuracies are close.

We ensure robustness in the following ways:

114

e Compare performance over a sequence of samples to protect against short-lived anoma-

lous behavior.

e Use a different sequence of frames for comparing performance than the ones used to
estimate M’ (regression data versus training data), as M’ is by definition a low-error

fit to the training data used for its estimation.

e Ensure that the metric does not trigger replacement unless the regression sequence of
frames also meet the coverage requirement. In other words, we want the evaluation

to take place over the span of the input space, not a limited sub-range.

Previously, Eq 43 defined the prediction error of M at frame ¢ as follows.

. 112
e = WHM (Ho 1) = Gl g

We will similarly define the prediction error of M’ as follows.
/A 1

2 - M Al 1
€t dlm(g)HM (H¢t) yt”(sﬂ’(;) (5)

The following metric captures the performance advantage of M’ over M over the se-
quence of frames since M’ was estimated (txq) to the current frame ¢.
! ey — €
Advpp g 2 v T 52
MM u_zt: 7 max(ey, €],) (52)
=t

The metric can be updated recursively every frame as follows:

e — e}

Advpprm & ———
’ max (e, €})

+ 7y AdVMQM, (53)

with Adv g <= 0 whenever either M or M’ is re-defined.

The metric is defined over a sequence of frames. The sequence starts after M’ has been
estimated, ensuring the sequence is distinct from the training data for M’ (the regression
sequence). Further, we maintain a separate coverage metric for the regression sequence (i.e.,

in contrast with x for H).

115

When the regression sequence meets coverage and the metric Adv g g exceeds a thresh-
old, substitute model M’ replaces M. Estimation of a new M’ can occur at the same or a

later frame. The following threshold test is used:

1— ,ymax(L.y,count)
AdVM@M >

1 4
— % 0.10, (54)

where, count represents the length of the regression sequence.

The test can be interpreted as checking whether M”’s prediction accuracy consistently
exceeds M’s by at least 10% every frame averaged over a sufficiently long sequence of frames
(when count > L.). Alternatively, over a short sequence of frames (when count < L,), M’
must far surpass M on at least a few frames without significantly under-performing on
others, in order for M’ to quickly replace M.

There are three ways in which the regression sequence (i.e., frames since M’ was esti-
mated) can exceed L, frames — either ¢) the current M’ exhibits performance inferior to
M, ii) the performance improvement is only minor (below the 10% threshold), or i) the
regression sequence has not yet achieved coverage. In subsequent frames, if the regression
sequence achieves coverage before H achieves coverage, M’ can be evaluated against M by
the test in Eq 54 and can potentially replace M if better. Otherwise, the existing M’ is

discarded and a new one estimated when H achieves coverage.

Frequency of M’ estimation. L, is a duration sufficiently long for the regression se-
quence to achieve coverage with high probability if forced exploration were performed (Sec-
tion 6.4). The last L, frames of the regression sequence for the current M’ also become
the training data for the next M’ to be estimated. When M delivers high QoS (rather,
QoS close to what the controller estimates is the best possible), the exploration frequency is
greatly reduced to not adversely impact the performance potential of M, which in turn in-
creases the interval between successive M’ estimations to become arbitrarily longer than L,
frames. Conversely, when M exhibits poor QoS (rather, QoS far below the controller’s es-
timate of the best possible), the controller creates a high likelihood that exploration frames

will occur with sufficient frequency to achieve coverage in approximately L. frames, which

116

allows for the frequent estimation and advantage-evaluation of substitute M’’s.
6.4 QoS Maximization by Balancing Exploration versus Exploitation

Exploration consists of applying randomized control inputs on a sequence of frames to
characterize the current application response behavior. Two types of behavior exploration

mechanisms are used.

e Continuous forced exploration (CFE) is intended to estimate M in the minimum
number of frames possible, when M is currently undefined. Exploration is performed

in every frame until H achieves coverage.

e Probabilistic forced exploration (PFE) is intended to periodically boost coverage
so that a candidate replacement model M’ is estimated with a desired frequency, and
its prediction accuracy can be compared against M. Exploration is performed in
clusters of frames, whose duration and frequency of occurrence is determined through

statistics.

When the active model is undefined (i.e., M = ¢), CFE is performed every frame and H
is extended in length until coverage is achieved (allowing M to be estimated). When M # ¢
and H has coverage, no forced exploration is done (as M’ can be readily estimated using H
if the controller chooses to). However, when M # ¢ and H lacks coverage, PFE is performed
so that coverage can be periodically enhanced to allow the estimation of substitute model
M’ and its prediction accuracy evaluated against M.

The CFE mechanism is a high-priority interruption of the normal operation of the
controller, with the goal of estimating a model within a short number of frames. In contrast,
the PFE mechanism applies during the normal operation of the controller, typically spanning
the vast majority of the application frames.

Only on the frames where PFE could potentially occur (i.e., when M # ¢ and H
lacks coverage) does the question of balancing exploration versus exploitation arise. Such
frames are referred to as PFE-capable frames. The controller uses a parameter 0 < 6 < 1

to represent the fraction of exploration against exploitation. On any PFE-capable frame,

117

the PFE mechanism must determine a probability for starting a PFE cluster (if one is
not already underway), and how long the cluster should be if one were started. The PFE

mechanism is governed by the following parameters.
e ¢: probability that a PFE cluster is started on current frame t.

® dpeak: shapes the probability distribution from which the cluster length d is sampled

(whenever the current frame starts a PFE cluster).
e 0: the percentage of PFE-capable frames on which PFE should occur.

The cluster length d is a random variable sampled from a triangular probability dis-
tribution shaped by parameter dpeak. dpeax is adjusted based on Lppg, where Lppg is an
estimate of the shortest PFE cluster length that could achieve coverage given the current
contents of H. In other words, if the PFE cluster consisted only of maximally variant
samples, Lprg is the cluster length that will achieve coverage when these cluster samples
are inserted into H, while dropping the oldest samples, if necessary, to respect |H| < L.
Appendix A.2 describes how Lppg is estimated.

Let E{d} be the expected value of d. Therefore, E{d} is a function of dpeax. The

following relationship exists between ¢, F{d} and 6.

0

1= By (1-0)+0 (55)

Therefore, we can set any two and compute the third. In our methodology, we choose
to compute ¢ from 6 and E{d}. 6 quantifies the exploration-versus-exploitation balance:
0 = 0 s no exploration, all exploitation; 8 = 1 is all exploration, no exploitation.

The following subsections explore the parametric probability distribution from which
d is sampled, derive the relationship between the exploration parameters in Eq 55, and

elaborate how 0 is adjusted based on the QoS performance of the active model M.

6.4.1 Probabilistic Distribution of Cluster Length

A cluster length greater than L, is not useful for PFE as it represents going beyond a com-

plete replacement of all samples in H with exploration samples. For reference, the following

118

sample sequence for input z; — {%Nj, —%Nj, %Nj, —%Nj, } of duration L, is just suf-
ficient for achieving coverage (See “Determining Coverage Threshold f” in Appendix A.1).
PFE will typically produce samples with larger variance, allowing a duration shorter than
L., to achieve coverage with high probability. For example, a PFE of duration Ly con-
sisting of samples {N;, —N;, N;, —Nj, ...} is sufficient for achieving coverage even if the
remaining % samples in H are all zero. Additionally, regulator C may by itself sufficiently
explore some of the input dimensions, allowing perhaps even a very short PFE cluster to
achieve coverage.

Also consider the possibility of multiple PFE clusters occurring one after another sep-
arated only by small gaps, so the multiple clusters fit in H. This scenario is likely if ¢ is
high. Thus, multiple short PFE clusters can collectively achieve coverage.

The PFE cluster length d is sampled from a triangle-shaped parametric probability
distribution. The distribution is parameterized on dpeax. The distribution takes integral
values in the range (0, dpigh + 1), where dpigh = min{2dpeak, L, }. The distribution has a
triangular shape with peak probability