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SUMMARY

The goal of this thesis is to develop a set of tools for continuous tracking of be-

havioral phenomena in videos to support human behavior study. Current standard practices

for extracting useful behavioral information from a video are typically difficult to replicate

and require a lot of human time. For example, extensive training is typically required for a

human coder to reliably code a particular behavior/interaction. Also, manual coding typi-

cally takes a lot more time than the actual length of the video (e.g., it can take up to 6 times

the actual length of the video to do human-assisted single object tracking [151]1). The time

intensive nature of this process (due to the need to train expert and manual coding) puts a

strong burden on the research process. In fact, it is not uncommon for an institution that

heavily uses videos for behavioral research to have a massive backlog of unprocessed video

data.

To address this issue, I have developed an efficient behavior retrieval and interactive

tracking system. These tools allow behavioral researchers/clinicians to more easily ex-

tract relevant behavioral information, and more objectively analyze behavioral data from

videos. I have demonstrated that my behavior retrieval system achieves state-of-the-art per-

formance for retrieving stereotypical behaviors of individuals with autism in a real-world

video data captured in a classroom setting. I have also demonstrated that my interactive

tracking system is able to produce high-precision tracking results with less human effort

compared to the state-of-the-art. I further show that by leveraging the tracking results, we

can extract an objective measure based on proximity between people that is useful for an-

alyzing certain social interactions. I validated this new measure by showing that we can

1This is calculated using an optimistic assumption that it takes a human one second to annotate one object
in a single frame.
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use it to predict qualitative expert ratings in the Strange Situation (a procedure for study-

ing infant attachment security), a quantity that is difficult to obtain due to the difficulty in

training the human expert.
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CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Objective

The goal of this thesis is to demonstrate how computer vision applied to continuous track-

ing of behavioral phenomena in videos can assist in the study of human behavior. Video is

an essential component in many studies in developmental psychology. It has been used in

a wide range of applications, such as assisting the coding of child behaviors in a controlled

research protocol (e.g., in The Strange Situation [9] and ADOS [95]) and functional assess-

ment of a target behavior (e.g., stereotypies in individuals with autism [100]). Currently,

the ability of psychologists and clinicians to utilize these video recordings is hampered by

the lack of tools for extracting useful behavioral measures from them. I wish to alleviate

this problem by creating a set of tools that allow researchers and clinicians to more easily

extract useful behavioral measures from videos.

1.2 Thesis Statement

Motion-derived action representation and instance-specific tracking model enables faster

extraction of behavioral measures from video data compared to manual annotation and

existing computer vision techniques.

1.3 Motivation

Imagine a situation where a child with a history of stereotyped/self-injurious behavior is

studying in a classroom that is equipped with cameras (see Figure 1). During the class

session, the child is following the lesson quietly for about 10 minutes, but suddenly he ran

away from the table. A clinician then assisted the child back into his seat but from that

point on, the child seemed unsettled by exhibiting several bouts of self-injurious behavior

1



and escaping his seat a few more times until the classroom session ended. This summary

is exactly the type of information that a behavioral therapist is looking for. To obtain this

information, the therapist will have to review the video recording of the class. However, a

therapist is interested not only in what has happened, but also why the child was exhibiting

certain disruptive behaviors so that the appropriate program can be created to help him.

Figure 1: A child with special needs studying in a class.

Figuring out the underlying cause of a behavior is often a challenging task since there

are many potential factors. For example, the child ran away might be because he is trying

to get attention from somebody else in the room by actively moving to gain proximity with

him, or it might be because the child is simply trying to escape from the lesson. For the self-

injurious behavior, it is possible that the child did it as an attempt to get access to certain

items (e.g. toys), or he did it because it fulfills a certain sensory function for him, or the

child might feel that the room was unpleasant since the sunlight made it particularly bright

that day. To find out exactly which ones of these factors contributed to the child’s disruptive

behavior, a therapist will have to review a lot more video recordings to find some patterns by

looking at other instances of the target behavior. This process is incredibly time-consuming

considering the amount of videos that the therapist potentially will have to review (e.g. the
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child might attend the class a few times per week). The process of having to watch the full

video recording just to find some instances of a particular behavior is also very inefficient

since the behavior itself might only be present for a few seconds in the video. A mechanism

that allows a therapist to quickly browse through a large video collection to find instances

of a particular behavior would greatly improve this process.

The first problem that I address is behavior retrieval in videos and its application for

studying stereotyped and repetitive behaviors (stereotypies) in individuals with autism. In

the domain of behavioral psychology, there is currently great interest in studying the effec-

tiveness of behavioral therapy for children with an Autism Spectrum Disorder (ASD) [13].

These children frequently exhibit repetitive and stereotyped behaviors, known as stereotyp-

ies. In comparison to more traditional functional activities, stereotypies are often unique

expressions of individual behavior and are therefore highly subject-specific, making it chal-

lenging to construct a general model of such behaviors. While clinicians use videos as a

tool to capture these behaviors, currently the process of identifying these behaviors from a

video collection is very time-consuming.

The problem of retrieving human actions is challenging due to the need to handle many

sources of variations: viewpoint, size and appearance of actors, scene lighting and video

quality. While many approaches have been proposed, getting accurate results remains a

challenge. State-of-the-art features that are used in video action recognition/retrieval re-

quire a lot of training examples to perform well (e.g., dense trajectories [155]). This makes

it challenging to apply current techniques to stereotypies since it is difficult to collect a

lot of examples of such behaviors due to several factors. First, they are highly subject-

specific. Although commonality certainly exists (e.g. Lam et.al. [86] found that 74.2% of

individuals with autism exhibit some form of hand/finger movement stereotypies), the ac-

tual expression of the behavior itself differs from person to person. Second, the frequency

of occurrence for some of the behaviors might be low. A useful behavior retrieval system

should be able to work for a given new instance of target behavior. The need to collect a

3



large number of examples, even for behaviors that have low frequency of occurrence, is

certainly a problem. Last, the landscape of behaviors of interest for a particular individual

is always constantly changing because of various environmental factors such as a change in

diet, in medication, in sleeping pattern, etc.. Furthermore, while the act of behavior therapy

itself might successfully reduce or eliminate a certain disruptive behavior, it might cause

new problem behavior to be expressed if the program fails to address the underlying cause

of the original disruptive behavior. Due to all these factors, an ideal behavior retrieval sys-

tem should still be able to perform well even if only given a single example of the target

behavior.

In this thesis, I address this problem of retrieving behavior of interest given only a

single example. While this is certainly a difficult requirement to satisfy, I will later demon-

strate that we can address it by exploiting the unique nature of the movements of a certain

classes of stereotypies. The core of my approach is a novel feature for representing action

based on the timing patterns of its movements. I demonstrate that my feature is robust to

variations in viewpoint and appearance in a controlled cross-view action recognition exper-

iment using the widely used IXMAS dataset [163]. To validate my proposed approach, I

show that not only my novel feature outperform the state-of-the-art techniques for the task

of retrieving stereotypies in real-world video recordings, but also I demonstrate that it is

useful for the task of general action recognition, achieving state-of-the-art performance in

cross-view action recognition and sports action recognition when combined with existing

action representation.

The second problem that I address in this work is high precision tracking of people and

objects and its application for objective analysis of interaction. More specifically, I show

that by tracking people in a video we can derive an objective measure based on proxim-

ity that is useful for analyzing certain interactions. A lot of behavioral phenomena can be

built up from having a continuous measurement of proximity between people or people and

4



objects. This measure, or measures derived from it, are present in a wide range of behav-

ioral studies such as temperament [174], attachment [9], locomotion [5], exploration [164]

and personal space [137]. For example, central to a lot of the studies on personal space

by Sommer is the measure of physical distance between people. Rothbart used a continu-

ous measure of physical distance between an infant and an object as the key measure for

studying infant approach behavior in the context of temperament study [125]. Similarly,

a continuous measure of distance between an infant and a target goal is one of the key

measures in studies of infant locomotion [5]. In The Strange Situation (a procedure to

observe infant attachment to the caregiver), the proximity between the infant and the care-

giver is central to how an expert rate the interaction. For example, some of the dimensions

of the baby-caregiver interaction that an expert rate includes proximity-seeking (the inten-

sity, promptness and persistence of the baby’s efforts to gain contact with the caregiver),

contact-maintenance (degree of activity and persistence in baby’s efforts to maintain con-

tact with the caregiver) and avoidance (intensity, persistence, duration and promptness of

the baby’s avoidance of proximity and interaction, even across a distance) [9].

Given the importance of this proximity measure, it is striking that standard practice of

obtaining this measure still depends on human visual observation. For example, Adolph

et.al. [5] instrumented the environment with physical markers (grids) so that a human ob-

server can measure the location of the infant in a video recording during infant locomotion

study. Similarly, Ainsworth and Bell in an early study of infant attachment [8] also used

grids so that human observer can derive a coarse measure of distance from the video record-

ing. Relying on human visual observation to estimate physical distance from video data is

certainly not desirable since it is both inefficient (it takes time for humans to estimate dis-

tance between two objects even for a single frame) and inaccurate (e.g. humans have to rely

on a certain physical marker with known size as the basis for measurement). It is clear that

the ability to accurately measure distance between people or people and object will greatly

impact many studies in psychology.
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In this work, I demonstrate that combining high precision object tracking and RGBD

camera allows for accurate extraction of temporally-dense proximity measure. To showcase

the usefulness of this measure, I focus on the problem of analyzing the interaction between

an infant and a caregiver in the context of infant attachment study in The Strange Situation.

The Strange Situation is a scripted interaction procedure, and is the most widely used

method for studying infant attachment security to the caregiver. It is an interesting pro-

cedure to demonstrate the value of having a dense measure of proximity since currently,

analysis on The Strange Situation entirely relies on expert judgment for the presence or ab-

sence of certain attachment behaviors (e.g. proximity-seeking, contact-maintenance, avoid-

ance and resistance behaviors). However, from the theory of attachment, it is clear that the

infant’s attachment security will affect how he will move in the space in relations to the

caregiver. Currently, a quantitative proximity measure (e.g. Fig. 2) is not being used by ex-

perts when producing attachment classification for The Strange Situation since it is difficult

to obtain using human observation. I later demonstrate that not only that this quantitative

measure can be used to predict the subjective ratings given by expert coder, but also having

this measure allows us to easily test a new hypothesis about this procedure that is previously

difficult to test.
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Figure 2: Infant-mother proximity derived from head tracking results. Left: tracked infant
and mother. Right: infant-mother proximity during an episode in The Strange Situation
procedure.
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Deriving the measure of proximity from RGBD video requires accurate localization of

the target objects. Tracking objects in a video with high precision is an extremely chal-

lenging problem due to several factors. First, the object might undergo a big amount of

visual variations during the course of the video because of pose changes, deformations and

lighting changes. Second, the object might become heavily occluded, which is another

common cause for tracking failures. Last, the target object can get in and out of the video

frame at any time. To this day, fully-automated high precision object tracking remains a

big challenge in computer vision. In this thesis I address the problem of obtaining high

precision object tracking efficiently in an interactive tracking framework, where high pre-

cision results is obtained by including human annotator as an oracle to correct for tracking

mistakes.

Interactive object tracking techniques have been employed for applications that require

accurate tracking results such as annotating video for training object detectors and prepro-

cessing for movie special effects. However, the literature on interactive tracking is still

virtually bereft of any application of these techniques to my target problem domain of

studying human behavior. The main issue to be addressed in an interactive tracking frame-

work is efficiency: how to minimize the usage of the human annotator since human time is

the most expensive resource. While there have been studies on how to effectively scale-up

an interactive tracking system (e.g. through crowdsourcing [151]), the issue of efficiency

still has not been thoroughly addressed in the interactive tracking literature (e.g., twenty

six hours of surveillance video cost tens of thousands of dollars to annotate despite using

state-of-the-art annotation system [109]). In this thesis, I address the problem of minimiz-

ing human effort in interactive tracking by leveraging user annotations for incrementally

learning instance specific model parameters within the tracking cost function. I will later

demonstrate that using my proposed approach, accurate tracking results can be obtained

more efficiently (requiring∼60% fewer annotations) compared to the state-of-the-art inter-

active tracking techniques.
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1.4 Contributions

I have made the following four contributions:

1. A state-of-the-art action retrieval approach that is robust to variations in viewpoint

and appearance by exploiting the dynamics of an action for temporally locating

stereotyped/repetitive behaviors in video (Chapter 3). We have published our Stereo-

typy dataset to the research community to encourage future research on the behavior

retrieval problem in realistic contexts. This work has been presented in International

Meeting for Autism Research 2012 and published in European Conference on Com-

puter Vision 2014.

2. A new computer vision interactive tracking method that obtains high-precision object

track from video with less human effort compared to the state-of-the-art by leverag-

ing human annotation to incrementally learn instance-specific model parameters of

the tracking cost function (Chapter 4). This work has been published in International

Conference on Computer Vision 2015.

3. An objective measure based on proximity to analyze interaction. This measure

demonstrates that it is possible to depart from the traditional subjective human rating

to analyze infant attachment behavior in The Strange Situation procedure (Chapter

5). This work has been presented in Society for Ambulatory Assessment Conference

2015, Association for Psychological Science Annual Convention 2015, and Interna-

tional Conference on Infant Studies 2016.

4. A demonstration of computer vision research for human behavior study in order to

influence the practice on how clinicians and behavioral researchers perform analysis

on video data.
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CHAPTER II

RELATED WORK

In this chapter we review relevant related work. Section 2.1 gives an overview on ac-

tion/activity representation in video and also action recognition and retrieval methods. Sec-

tion 2.2 describes various object representation strategies in tracking. Following this, Sec-

tion 2.3 discusses applications of tracking in behavioral study. Finally, Section 2.4 outlines

work on interactive tracking.

2.1 Video Action Recognition and Retrieval

There is a vast literature on action/activity representation. A classic representation of action

in videos is based on space-time templates [22, 52, 79]. While this approach captures the

fine-grained detail of an action, it is challenging to achieve robustness to various sources of

variations, particularly in viewpoints. Inspired by the success of sparse features in object

recognition [96], local sparse space-time features combined with the bag-of-features (BOF)

framework have dominated the landscape of action representation for the last decade. Some

of the local features that have been explored in this domain includes interest points [88,

39], tracks of points [102, 73, 155] or frame based descriptors [146]. Given these locally

defined spatial neighborhoods (e.g. points, track of points), one can extract various types of

descriptors such as HOG/HOF [88, 39, 155], MBH [155], MIP [82] or shape-flow [146].

One of the major challenges in the action retrieval problem is the viewpoint effect:

an action looks different depending on the camera viewpoint. While various descriptors

are sufficiently specific to be discriminative and thus have been shown to be useful for

action recognition, they are not robust to variations in viewpoints, and thus may not support

accurate retrieval of actions across views. One way to handle this problem is by having a lot

of training examples comprising of actions captured from different viewpoints. However,

9



this requirement presents a significant practical barrier for many applications, including the

one that I address in this work (see Section 3).

Recently, interesting work has been done to address the challenge of viewpoint vari-

ation in action recognition. Liu et.al. [94] tackle the viewpoint problem through transfer

learning by building a mapping between codebooks from different viewpoints. However,

their framework requires knowledge of the camera viewpoint associated with each action

(in testing and training). In a similar spirit, Li [92] and Zhang [177] learn a series of

linear transformations of the feature vector extracted from a video to make it invariant

to viewpoint changes. However, a linear transformation is not guaranteed to accurately

model view-invariant mapping. Also, performance of their method drops significantly in

the absence of multi-view observations of actions in training examples. In addition, these

methods depend on the shape-flow descriptor that requires extraction of a bounding box

and silhouette of an action, which can be challenging in real-world videos. Note that these

methods assume a discrete number of pre-defined camera positions, which limits applica-

bility of the methods since the need to collect examples across viewpoints can be burden-

some.

Junejo et.al. [73] propose the self similarity matrix (SSM) which exhibits invariance to

viewpoint changes. They compute SSM by either point tracking or pairwise frame similar-

ity. However, point tracking is not always accurate and computing pairwise frame similarity

means the feature will not be robust to slowly changing background. Another representa-

tion robust to changes in viewpoints is the hankelet ([90]). Hankelet is a hankel matrix

representation of a tracklet that is invariant to affine transformations. Results in [73] and

[90] show that SSM and hankelet are susceptible to large viewpoint changes.

In contrast to the action recognition domain, relatively little work has been done on

action retrieval. DeMenthon and Doermann [35] built a system for retrieving action based

on a single example, but it only works for short and near duplicate actions. Jung et.al. [74]

present an action retrieval system based on shape template matching of body parts. While
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their method obtains good results on the standard KTH dataset, estimating body parts in a

more general scenario is likely to be challenging. Yu et.al. [170] present an approach for

human action search by performing Hough voting using STIP features extracted from the

video. In the image retrieval domain, Rubner et.al. [127] incorporated the Earth Mover’s

Distance (EMD) as a way to measure similarity between images by using a linear pro-

gramming approach. An adaptation of this method has been recently proposed for learning

common activity prototypes in a video [173].

An interesting line of work has been done on action retrieval without using even a single

visual example. İkizler and Forsyth presented a language-based video action retrieval [64].

The idea is that assuming human limb tracking can be performed reliably, then searching

for a particular action in a video collection can be done using only sentences as the query,

without any visual examples. Wang et.al. [157] developed a system for automatically re-

trieving quasi-periodic events in video. This is a bottom up process to retrieve instances of

repeating visual patterns in a video. The challenge in their work is defining the right unit

for what can be considered as a single visual pattern. They demonstrated the utility of their

method for retrieving instances of social games from a long video recording. In a similar

spirit, Prabhakar et.al. [116] built a system for retrieving social games based on temporal

causality analysis on the occurrences of visual words.

2.2 Object Representation in Tracking

In the tracking context, an object is defined as any physical entity that is of interest. For

example, an object can be something rigid such as a car, a bicycle, a plane or something

non-rigid such as a person or an animal. In the tracking literature, an object is represented

by its shape and appearance. Here I review the various approaches for modeling object

shape and appearances.

I first discuss the different shape modeling strategies in tracking. A classical way to
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capture shape is to represent an object as a collection of points with a certain spatial config-

uration [96, 131]. To this end, various interest point detection strategies have been explored

(e.g. using eigen values of the structure tensor to detect Harris corner [59], the Shi-Tomasi

method [135], or using the difference of Gaussian function [96]). The main drawbacks of

this shape modeling approach is that sometimes it is difficult to reliably detect the same set

of interest points from an object under various possible sources of variations (e.g. illumi-

nation, scale, viewpoint). Another approach to represent object shape is by using simple

geometric primitives such as ellipse or rectangle. While this approach might be the sim-

plest, it is by far the most popular [32, 76, 180, 68, 124, 91, 14, 15, 57, 175]. In large part,

this popularity is caused by the rapid progress in object detection. Since most object de-

tectors operate on simple geometric primitives (typically rectangles), a tracking approach

that uses the same shape modeling strategy can build on the success of object detection.

Another way to model object shape is by using silhouette or contour [66, 169]. While this

shape representation has been shown to be capable of producing good results for tracking

certain objects in a highly cluttered environment [66], modeling all possible contour vari-

ations of an object can be difficult to do. Another approach for representing shape is the

articulated shape models [122, 16]. This approach is typically employed when the applica-

tion demands further information beyond just knowing where the object is (e.g. when we

need to know where the hand is, in addition to knowing where the person is).

I now discuss appearance modeling strategies in tracking. In general, we can classify

all appearance modeling approaches into three groups: 1) templates [180, 76, 68, 124, 91,

14, 57]; 2) image statistics [32, 169, 16]; and 3) filter responses [15, 175, 83, 50].

Template-based approaches model the appearance of an object by either its raw image

intensities [180, 68, 14, 57], a subspace representation based on image intensities [124,

91], or image gradients [66, 131]. An advantage of a template-based approach is that in

addition to modeling the object appearance, it also encodes the spatial information. Another

advantage is that a template tends to be very discriminative, which is beneficial for tracking
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since we often need to discriminate between the target object and similar looking objects

in the background. The main drawback of template is that it is more susceptible to object

appearance variations due to factors such as illumination and viewpoint.

Image statistics-based approaches describe the appearance of an object by aggregating

statistics derived from image intensities. These statistics can be in the form of a simple

variance of image intensities [76], a color histogram [131, 32] or histogram of oriented

gradients (HOG) [97, 33]. Many recent work on object detection use a combination of

image statistics features (e.g. the Aggregated Channel Features (ACF) [40] which combines

gradient magnitude, HOG and color histogram). An advantage of image statistics-based

appearance modeling is that it is compact, thus allows for fast comparisons (e.g. computing

distance in the feature space is cheap) and also efficient to store in memory. For example,

Hall’s object tracker makes use of fast feature extraction (ACF) and classification pipeline

(boosting) to achieve real-time speed [55]. Another advantage is that it is robust to various

sources of appearance variations. On the other hand, depending on the choice of statistics,

and appearance characteristics of the target object and the background, this approach might

produce a representation that is not sufficiently specific to discriminate between the target

and the background.

Filter responses-based approaches summarize object appearance by the filter responses

of the raw image. The filters can be in the form of Haar-like features [15, 57, 175] or filters

obtained from deep convolutional networks [83, 50]. An advantage of this approach is that

it provides a compact representation that is discriminative and relatively robust to various

sources of appearance variations. A potential drawback of this approach is that the perfor-

mance of the system will largely depend on the choice of filters. However, recent work on

deep convolutional neural networks [83, 50] demonstrate that this filter design problem can

be alleviated by using filters obtained from deep convolutional networks trained on a large

number of images.
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2.3 Tracking for Behavior Analysis

The need to analyze a large number of behavioral data from video has created a big de-

mand for computational tools that can be used to assist the process of extracting relevant

behavioral information from video. Tracking in particular has been widely used in many

studies of animal behaviors [34, 23, 140, 105, 75, 110, 113, 61]. To obtain high precision

results, most tracking approaches in this domain are typically highly tuned to track for a

particular type of animal in a very specific environmental setup. For example, Ohayon et.al.

[110] developed a system for tracking mice by first manually tagging each mouse with a

unique color pattern so that each target can be easily identified. They use the histogram of

oriented gradients (HOG) [33] to represent appearance of a mouse, and tracking is done by

using a variant of sampling approach. Perez et.al. [113] used exemplar-based approach for

detecting and tracking individual objects (they experimented on mice, flies, fish and ants).

A big downside of their approach is the need to collect a large number of exemplars per

target (typically 3000) for their system to perform well.

A very popular framework for tracking animals is combining some variations of back-

ground subtraction (for detecting the target object) with some notion of motion modeling

[105, 23, 34, 140]. For example, Branson et.al. [23] built a system for tracking flies, cock-

roaches or other elliptically shaped animals in a container. Their system assumes simple

background (i.e. easily distinguishable from the target animal) so that detecting the target

in each frame can be done by a simple background subtraction approach. Once detection

has been performed, the task of data association (assigning a detection to a particular track)

is done using a simple matching approach. Similarly, Straw et.al. [140] built a system for

tracking flies and birds by using a background subtraction approach for object detection

and extended Kalman filter (EKF) for associating detections with trajectories.

Tracking is important in many animal behavior studies since many behavioral analysis

approaches use the tracking results as the basis for detecting certain events. For example,

JAABA [75] used a suite of trajectory-related features such as speed, distance-to-wall,
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inter-animal proximity to discriminate between certain classes behaviors in flies. Similarly,

Hong et.al. [61] employed a combination of image features with trajectory for recognizing

mouse social behavior. It is then crucial that the tracking results contain as few errors as

possible. Currently, even with the highly tuned approach described above, errors in tracking

(typically ID switches) still happened occasionally. To address this issue, typically a post-

processing stage is performed so that a human can interactively fix for tracking errors (e.g.,

CTRAX, a popular fly tracker, uses FixErrors Matlab GUI [1] to allow users to identify and

fix tracking errors).

2.4 Interactive Tracking

The literature on interactive tracking is relatively sparse compared to the extensive liter-

ature on fully-automated object tracking. Early work in interactive tracking focused on

creating a system that can quickly incorporate a new annotation given by the user during

the interactive stage to refine the tracking result [24, 161]. The goal was to enable the user

to quickly evaluate the quality of the tracking result and decide whether additional anno-

tation is necessary. To achieve this, Buchanan and Fitzgibbon [24] combined an efficient

data structure based on K-D tree and a dynamic programming approach for interactive fea-

ture tracking. The K-D tree allows for fast lookup of patches with similar appearance,

while dynamic programming provides an efficient solution for inferring the trajectory of

the tracking target. Wei et.al. [161] used the dynamic programming approach proposed

by Buchanan and Fitzgibbon and combined it with object detection to build an interactive

object tracking system. The basic idea is that given some initial annotations, an interactive

tracking system should be able to anticipate likely object locations in a given frame by per-

forming object detection (with a conservative threshold). This allows the system to more

quickly respond to the user’s input during the interactive stage to perform object trajectory

optimization.

Another line of work in interactive tracking focuses on interpolation strategies. Wei
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and Chai [160] propose a weighted template model (based on color histogram) for interpo-

lating object appearance. The idea is that the appearance of the target object in all frames

can be adequately described by a linear combination of the appearance of the object in the

annotated frames. The LabelMe video work by Yuen et.al. [172] presents a strategy for

interpolating the location of the target object in between keyframes by using homography-

preserving linear interpolation. Using linear interpolation to infer an object trajectory is

an efficient alternative to the dynamic programming approach presented in [24, 161], but

it assumes that annotations are performed densely such that the object moves linearly be-

tween the annotated frames. To achieve good tracking results by using linear interpolation,

Vondrick et.al. [151] estimated that on average 1 out of every 5 frames would need to be

annotated.

A further line of work in interactive tracking focuses on frame selection strategies to

minimize the number of annotations that a user will need to perform to obtain good tracking

results. Vondrick and Ramanan [152] propose an active learning framework for interactive

tracking. They present an approach for deciding which frame to present based on the

expected change in the tracking result if the user were to annotate that frame (similar to

the popular maximum expected gradient length (EGL) algorithm for active learning [132]).

In the video segmentation domain, Fathi et.al. [46] present an active learning approach

based on using frame uncertainty to decide which frame to annotate. Their approach is

based on the assumption that the frame with the highest uncertainty estimate is the one that

will be the most informative for segmentation purposes. Vijayanarasimhan and Grauman

[149] present a frame selection method for video segmentation based on expected label

propagation error. In contrast to these works, the focus of my work (Chapter 4) is not on

the selection of the best frame for the user to annotate. Rather, my goal is to utilize the

annotation information more effectively for the task of interactive tracking.
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CHAPTER III

RETRIEVING ACTIONS FROM ARBITRARY VIEWPOINTS

3.1 Introduction

Given a single example video clip containing an action of interest, the goal is to retrieve

all matching instances of that action from an unstructured video collection. I refer to this

problem as action retrieval. I am motivated by applications in behavioral and developmen-

tal psychology, where it is common practice to record video of children and adults engaged

in a variety of activities. Currently, the ability of psychologists to utilize these recordings is

hampered by the lack of tools to efficiently search the video collection for a specific target

behavior.

As an example, a facility that serves individual with developmental disabilities (e.g.

The Center for Discovery in NY) may want to record the activities during a class session

by instrumenting a room with one or multiple cameras to allow clinicians to do a more

comprehensive review of what is happening during the session. From the clinician’s per-

spective, having a visual record of the activities is immensely useful. One usage of such

recordings is to assist in discovering new potential problem behaviors that might be missed

by the staffs who were present in the room. For this use case, after identifying this new

behavior of interest, a clinician then can review the current and previous recordings to help

her answer several questions: 1) Has this individual exhibited this behavior previously?

Knowing whether this behavior is a new occurrence or something that has happened before

in the past is useful for understanding the cause of the behavior. 2) What is the frequency

the behavior? Knowing how many times an individual exhibited a problem behavior during

a particular session is a useful measure for assessing factors that might affect the behavior

(e.g. if the frequency is much higher during the after-lunch sessions, the individual might
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be having issues with the foods). 3) What is typically happening just before the behavior

occurred? Figuring out patterns around the behavior is useful for determining the poten-

tial trigger. Having a system that can be used to quickly retrieve instances of a particular

problem behavior from a large video collection will be extremely useful for the clinicians

working in this domain.

A big challenge in this behavior retrieval task is that the behavior or interest for a

particular individual changes over time because of various environmental factors such as

change in diet, medication or sleeping pattern. Furthermore, while the act of behavior

therapy itself might successfully reduce or eliminate a certain disruptive behavior, it might

cause new problem behavior to be expressed if the program fails to address the underlying

cause of the original disruptive behavior. All these factors make it challenging for applying

the classical action recognition approach to this problem since techniques in this domain

often requires the collection of numerous training examples, which is impractical in this

scenario. An ideal behavior retrieval system should still be able to perform well even if

only given a single example of the target behavior. In this chapter, I present a technique

that can be used to efficiently search for a given instance of a problem behavior in a large

video collection.

There are two key challenges in doing action retrieval for problem behaviors: 1) We

only have a single (or a few) example of the behavior. I want to support the use case of

retrieving instances of new behaviors. Some of the problem behaviors occur only occa-

sionally. Thus, the ability to search for this problem behavior from a video corpus without

having to do extensive effort to collect numerous samples for training is important for prac-

tical application. 2) We need to handle many sources of variations: viewpoint, lighting, size

and appearance of actors. In this chapter I introduce a novel action representation based on

motion dynamics that is robust to such variations, while still being discriminative.

Currently, state-of-the-art performance in action classification is achieved by extracting

dense local features (e.g., histogram of oriented gradients, motion boundary histogram) and
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grouping them in a bag-of-features (BOF) framework [155]. The basic BOF representation

ignores information about the spatial and temporal arrangement of the local features by

pooling them over the entire video volume. More recently, it has been shown that con-

sidering the spatial and temporal arrangements (dynamics) of an action (e.g., extracting

a separate BOF model for each subvolume of a video [88, 155] or modelling the spatio-

temporal arrangements of the interest points [171]) adds more discriminative power to the

representation.

My approach is based on the observation that the dynamics of an action provide a pow-

erful cue for discrimination. In Johansson’s moving light display experiment, it was shown

that humans perceive actions by abstracting a coherent structure from the spatio-temporal

pattern of local movements [69]. While humans respond to both spatial and temporal infor-

mation, the spatial configuration of movements that comprise an action is strongly affected

by changes in viewpoint. This suggests that representing the temporal structure of an ac-

tion could be valuable for reducing the effect of viewpoint. Motivated by this observation,

I define human actions as a composition of temporal patterns of movements.

(a) Frame 10 (b) Frame 31 (c) MPHs

Figure 3: Movement Pattern Histogram for checkwatch action. (a)-(b): Arrows indicate
optical flow direction and are color coded according to the flow words (flows are subsam-
pled for presentation). (c): MPH set for checkwatch. (Best viewed in color)

My key hypothesis is that the temporal dynamics of an action are similar across views
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(assuming there is minimal occlusion). For example, the timing pattern of acceleration and

deceleration of the limbs is largely preserved under viewpoint changes. In my representa-

tion, an action is decomposed into movement primitives (corresponding roughly to body

parts). I encode the fine-grained temporal dynamics of each movement primitive using a

representation that I call the movement pattern histogram (MPH). I describe an action as a

collection of MPHs (see Fig. 3).

An advantage of video-level pooling methods such as BOF is that computing similarity

between representations can be done reliably using L2 or χ2 distance function. In part this

is because these representations discard the temporal structure of an action, obviating the

need for temporal alignment as a part of the matching process. In contrast, computing sim-

ilarity between two sets of MPHs requires alignment and I describe a novel method to do

so using a simultaneous alignment and bipartite matching formulation. Such formulation

allows for matching across viewpoints and we present an efficient algorithm to solve it.

My MPH representation can be used in two ways: 1) as a stand-alone action rep-

resentation for action recognition/retrieval across multiple viewpoints; and 2) to com-

plement existing BOF representations for action recognition. I demonstrate that my ap-

proach outperforms standard representations for cross-view recognition tasks in the IX-

MAS dataset [163]. I also show that my representation complements existing representa-

tions for the classification task in the UCF50 dataset [120]. Finally, I show that my repre-

sentation yields state-of-the-art results for the task of action retrieval in the novel Stereotypy

dataset that I introduce (stereotypies are repetitive body movement patterns frequently as-

sociated with autism and are often the target of behavioral therapy). In summary, this work

makes three contributions:

• I introduce the movement pattern histogram, a novel representation of actions as a

multi-channel temporal distribution of movement primitives.

• I present a novel optimization approach to matching movement pattern histograms

across videos based on maximum bipartite graph matching.
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• I introduce the Stereotypy dataset, a new annotated video corpus obtained by record-

ing children with autism in a classroom setting1. This dataset is publicly available.

3.2 Action Representation

In this section I describe my action representation, the movement pattern histogram (MPH).

MPH encodes the global temporal pattern of an action without requiring explicit tracking

of features over time. In Sec. 3.3 I present an iterative method for matching two sets of

MPHs.

3.2.1 The Movement Pattern Histogram

To illustrate my approach, consider the action of a person checking a wrist-mounted watch

seen from frontal view (Fig. 3). This action can be characterized by the upward movement

of the hand and upper arm during the early part of the action (to bring the watch to a

readable distance) and the downward movement of the same body parts at the end of the

action. We can imagine encoding these body part movements with a cluster of flow vectors,

where each cluster explains some portion of the total flow across the video. We denote these

clusters as flow words. In the check-watch example, the upward hand movement might be

mapped to a single flow word. That word would be present in the first half of the frames

and absent in the other half (when the hand moves downward).

Given a set of extracted flow words, my goal is to represent an action by encoding the

pattern of temporal occurrence of the flow words. In the example of Fig.3, the green and

cyan words occur early in the action (when the hand and upper arm are raised) while the

blue and magenta words occur later in the action. I construct an MPH for each flow word

which encodes its dynamics.

I now describe the process of constructing the MPH representation. I assume that the

1Note that the Stereotypy dataset was collected under an IRB-approved protocol, following best-practices
for research with vulnerable subject populations. Consent to publish has been obtained for all images and
results.
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(a) Cam 0 (b) Cam 1 (c) Cam 2

(d) Cam 0-MPH (e) Cam 1-MPH (f) Cam 2-MPH

Figure 4: (a)-(c): Three different views of the checkwatch action. (d)-(f): MPH repre-
sentations of checkwatch for each view. Note the structural similarity of the MPH curves
despite huge changes in viewpoint.

video is captured using a static camera (I relax this assumption in Section 3.2.2). First I

compute dense optical flow over the video clip. Then, I use EM [37] to cluster together

the flow vectors from all frames based only on the flow direction (we only consider flow

vectors whose magnitudes are above a certain threshold). Each flow cluster defines a single

flow word. In Figure 3(a)-3(b) we can see the flows color-coded according to the five flow

words. I then generate an MPH for each of the flow clusters by binning the flow vectors.

Each bin t in the MPH hc corresponds to frame number t, and contains the sum of flow

magnitudes for all pixel flows f that corresponds to cluster c in that frame. Let mc denote

the set of flow vectors that map to cluster c:

hc(t) =
∑

f(t)∈mc

‖f(t)‖ (1)

In Fig. 3(c) we can see that the green MPH corresponding to upward hand movement

is active at the beginning of the action and the blue MPH that corresponds to downward

hand movement is active at the end. Note that MPH is quite different from other flow-based
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models such as the histograms of oriented optical flow (HOOF) [28]. HOOF models the

distribution of optical flow direction in each frame, making it a viewpoint-dependent rep-

resentation, while MPH models the temporal distribution of the magnitudes of the different

flow clusters.

MPH differs in two ways from the standard histogram representations of visual words

which are used in action recognition. First, each MPH corresponds to a single flow word

and describes the variation in its magnitude over time. In contrast, BOF uses a single fixed

histogram describing the co-occurrence of all visual words. Second, the MPH provides a

very fine-grained temporal description (one bin per frame) but a very coarse spatial descrip-

tion (all occurrences of a word in a frame are binned together), in order to gain robustness

to viewpoint variations.

Figure 4 illustrates the robustness of the MPH representation to viewpoint variation.

We can see that the shapes of the MPH sets are quite similar in spite of substantial changes

in viewpoint. To empirically evaluate the robustness of MPH to viewpoint variations, I per-

form an experiment where I use MPH for the task of cross-view action recognition: classify

actions captured in a novel viewpoint given training data captured from other viewpoints

(see Section 3.4.1). The results of the experiment show that MPH perform better than cur-

rent state-of-the-art representations for cross-view action recognition, which demonstrates

the robustness of MPH to viewpoint effects.

Figure 5 shows MPHs for different actions. The MPH representation achieves a cer-

tain invariance property under viewpoint changes because it marginalizes out information

about appearance, spatial configuration, and flow direction of an action. While spatial con-

figuration and appearance can be important for discriminating certain actions (e.g. high

punch vs low punch), Figure 5 demonstrates that the temporal nature of an action can also

be very discriminative. Note how MPH captures the dynamics of the different actions:

wave (Fig. 5(c)) consists of hand moving left and right and this periodicity is reflected

in the MPH. Even in cases where the mechanics of two actions are similar (checkwatch
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(a) Getup (b) Kick (c) Wave

(d) Checkwatch (e) Punch (f) Scratchhead

Figure 5: MPHs of different actions.

and scratchhead both involve upward and downward movement of the hand), the dynam-

ics of the actions make the MPH sets distinct (Fig. 5(d) vs 5(f)). To empirically evaluate

the discriminate power of MPH, I evaluate its performance in the action recognition task

(Sections 3.4.1 and 3.4.2). The results demonstrate that MPH is useful for discriminating a

broad class of actions.

3.2.2 Compensating for Camera Motion

Sometimes action in the real world is captured using a moving camera. This can cause

problems for our representations if we assume that all flows in the video are cause by

the action. To minimize the effect of camera motion we can apply a video stabilization

technique such as Grundmann et.al. [54] before computing dense optical flow. However,

since we only need to remove the background motion between two consecutive frames (i.e.,

we don’t need to produce smooth camera trajectory for the whole video), we can apply

a simpler solution. We estimate the background motion by computing the homography

between frames from the optical flow motion vectors (this is similar to Jain et.al. [67] but

instead of assuming affine motion between frames we use homography). Using the dense

optical flow computed, we select a subset of flow vectors located in textured regions (using
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criteria in Shi and Tomasi [135]) and perform homography estimation with RANSAC.

From the estimated homography, we compute the camera-induced background motion for

every pixel in that frame and then subtract the background motion from the computed

flow vectors. We do this background motion estimation for every frame in the video and

use the corrected flow vectors to compute MPH. Figure 6 shows the result of our motion

compensation.

(a) (b)

(c) (d)

Figure 6: Motion compensation results from UCF50: b) Original flow, c) Estimated back-
ground motion, d) Motion compensated flow. Flows are color coded following the Middle-
bury convention.

3.3 Computing Similarity

Given my new MPH representation, how can we compute similarity between two videos

– target and source? Accurate similarity measure is important for action recognition and
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retrieval. My assumption is that if the two videos correspond to the same action, we can

find matching in which the MPH pairs are highly correlated. Let hti ∈ Rlt and hsj ∈ Rls be

the movement pattern histogram for primitives (clusters) i and j in the target and source

videos, respectively (ls and lt are the number of frames of the videos). Note that since

each video is clustered independently, there is no a priori relationship between MPHs from

separate videos. Let T = {ht1, ht2, ...htK} and S = {hs1, hs2, ...hsK}, where K is the total

number of flow words in the target and source video. We can construct an undirected

bipartite graph G = (V,E) where every single element of T is connected to every single

element of S, the vertex set V = T ∪ S, and eij ∈ E is the edge between hti and hsj .

The weight of edge eij is the similarity measure between two signals hti and hsj . I use

the Pearson correlation coefficient (PCC) to compute eij due to its invariance to scaling:

eij = PCC(hti, h
s
j) =

cov(hti,h
s
j)

σ
ht
i
σhs

j

The similarity between the target and source video is the maximum weighted bipartite

matching score of graph G.

Simultaneous alignment and matching

Since an action can be performed at different speeds, the two sets of histograms S and

T might not be temporally aligned. This negatively impacts my correlation measure. In

order to overcome this problem, I propose a simultaneous alignment and matching method

where we iteratively perform alignment and matching of S and T .

Let Hs = [hs1, h
s
2, ...h

s
K ] and Ht = [ht1, h

t
2, ...h

t
K ] be the matrices that we construct

from S and T . Without loss of generality, let us assume that we normalize the MPH in S

and T so that they all have zero mean and unit standard deviation. Also, we zero-pad each

vector hsj and hti such that ls = lt = l. Under this condition, finding the maximum weighted

bipartite matching of graph G is equivalent to computing a K ×K binary matrix M that

minimizes Cm = ‖HsM −Ht‖2F , where ΣiM(i, j) = 1,ΣjM (i, j) = 1.

To align Hs and Ht, we can use dynamic time warping (applying DTW or its variants
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e.g., Zhou et.al. [179] on a time series data is a common approach for doing activity align-

ment) to compute binary matrices (Ds,Dt) that minimize Cdtw = ‖DsHs −DtHt‖2F ,

where ΣjDs(i, j) = 1 and ΣjDt(i, j) = 1. Note that DTW optimization infers Ds and

Dt using dynamic programming such that the temporal ordering of the rows in Hs and Ht

is preserved. The DTW solution (Ds,Dt) are binary matrices of size l′ × l where l′ is the

length of the alignment path between Hs and Ht. Putting the previous two steps together,

we get the final cost function that we want to minimize:

Cmdtw = ‖DsHsM −DtHt‖2F

where ΣiM ij = 1, ΣjM ij = 1

ΣjDs(i, j) = 1

ΣjDt(i, j) = 1

(2)

Optimizing Cmdtw is a non-convex optimization problem with respect to the matching

matrix M and alignment matrices Ds and Dt. We can perform iterative optimization by

alternating between computing (Ds,Dt) and M :

1. Set M as K ×K identity matrix

2. Fix M and minimize Cdtw =
∥∥DsH

m
s −DtHt

∥∥2
F

, where Hm
s = HsM , to opti-

mize for (Ds,Dt)

3. Fix (Ds,Dt) and minimize Cm =
∥∥Hdtw

s M −Hdtw
t

∥∥2
F

, where Hdtw
s = DsHs

and Hdtw
t = DtHt, to optimize for M

4. Iterate 2-3 until convergence

Both step 2 and 3 monotonically decrease/non-increase Cmdtw. Since Cmdtw has a lower

bound of 0 this optimization will converge. DTW can be solved in O(l2) and minimizing

Cm using the Hungarian algorithm takes O(K3). Hence the complexity of this algorithm

is O(l2) + O(K3) and since l and K are typically small this is efficient to compute (l is

typically between 60-150 depending on how long the action is. K depends on the number
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of peaks of the flow distribution, typically between 4-6). Empirically I observe that this

optimization converges after 2-3 iterations.

To optimize for M , the task is to find the set of edges eij ∈ E that defines a perfect

matching in G such that the sum of the edges in the matching is maximum. I solve this

using the Hungarian algorithm to compute a set of λ for the following problem:

max
λ

∑
(i,j)∈E

λijeij

s.t.
∑

j∈N(i)

λij = 1 ∀i ∈ source∑
i∈N(j)

λij = 1 ∀j ∈ target

λij ∈ {0, 1}

(3)

where eij is the correlation between the i-th column of Hs and j-th column of Ht, and

N(i) is the set of vertices that are adjacent to vertex i.

After obtaining the λ for maximum matching, I define the similarity score between two

videos as the maximum weighted bipartite matching score of graph G:

score =
∑

(i,j)∈E

λijeij (4)

Figure 7 illustrates an example of the matching result. Note that while the two actions

are captured from widely different viewpoints, my matching algorithm is able to establish

the correspondence between flow clusters by exploiting the temporal property of MPH. For

instance, the matched MPH pair 1 (Fig. 7(c)) corresponds to flow words that belong to the

hand while it is moving up at the beginning of the action (Fig. 7(a)-7(b)) and the matched

pair 3 (Fig. 7(f)) corresponds to flow words of the hand while it is moving down at the end

of the action (Fig. 7(d)-7(e)).

3.4 Experimental Results

To evaluate the performance of my method I performed experiments on the IXMAS dataset

[163], UCF50 dataset [120] and a new real-world Stereotypy dataset that consists of a col-

lection of videos ranging from 10 to 20 minutes each (with total length of 31 hours). I
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(c) Pair 1

(d) C0 (e) C4
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(f) Pair 3

Figure 7: Matching of cam 0 and cam 4 for checkwatch. Note how the matched MPH
pair correspond to the same body part movements ((a)-(b): Hand moving up, (d)-(e): Hand
moving down).

consider three tasks. First, to empirically show the robustness of my representation to vari-

ations in viewpoint, I perform cross-view action recognition experiments on the IXMAS

dataset. Second, to show how my MPH complements existing BOF representation, I per-

form action recognition on the UCF50 dataset. Finally, I demonstrate the power of my

approach on a real-world behavior search task by doing action retrieval on the Stereotypy

dataset collected by our collaborators in Center for Discovery, an institution that serves

individuals with developmental disabilities.

For the action retrieval task, I compare retrieval results against two BOF representa-

tions: the self-similarity matrix (SSM) [73], a representation that has been shown to be ro-

bust to viewpoint effects, and improved trajectories (IT) [156], currently the most popular
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action representation (e.g., most submissions in the THUMOS action recognition challenge

[51] use this representation) and has been shown to achieve state-of-the-art results on many

action recognition tasks. Note that BOF representation has been previously used for action

retrieval [26].

To compute MPH I used GPU-based dense optical flow [165]. To select theK for MPH

I examined the number of peaks in the distribution of flow directions in sample videos. I

chose K = 5 (5 MPH per video) for all experiments. For action retrieval comparisons, I

found the following k works best for the different features:

• SSM: 150

• Improved trajectories: 100

3.4.1 Robustness to Viewpoint Variations

To demonstrate the robustness of my representation to viewpoint effects, I perform the

cross-view classification experiment on the IXMAS, a standard dataset to empirically test

how viewpoint affects an action representation. The IXMAS dataset contains videos of 11

types of actions captured from 5 viewpoints (see Figure 8). Each action in the dataset is

performed by several actors (30 examples per action) to ensure that the dataset captures the

intraclass variations of actions.

For this experiment I use 1-Nearest Neighbor (1-NN) classifier and a 6-fold cross val-

idation procedure (identical cross-validation procedure to other published results for this

dataset [92, 90, 177]). I compare my results against various cross-view action recognition

methods [73, 92, 90, 177].

I focus on two recognition tasks: 1) classifying videos captured from the test view

using training data captured from the train view; and 2) classifying videos captured from

the test view using training data from all of the other views. It is important to note that in

this particular experiment I am not assuming any view-correspondence in the training data

since in many applications the need to have multi-view correspondence for training can be

30



(a) Cam 0 (b) Cam 1 (c) Cam 2

(d) Cam 3 (e) Cam 4

Figure 8: The 5 viewpoints in the IXMAS dataset.

burdensome.

The results for the first recognition task (classifying videos from the test view using

training from the train view) can be seen in Table 3.4.1. For this task, my method improves

the average recognition accuracy by 2.5% compared to the next best approach (see the

highlighted cell in Table 3.4.1). Hankelet [90] is only robust to affine transformation and

thus achieves low accuracy when classifying videos trained from very different viewpoints

(e.g., their numbers in the c4 column are very low due to the viewpoint of cam 4 being

significantly different from cam 0-3). My representation also achieves significantly better

results than SSM when classifying actions from very different viewpoints (e.g. accuracy

of 56.5% for c4 compared to 49.6% of SSM). Even when compared against an approach

that uses multi-view correspondence for training the representation[92], my approach still
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produces better classification accuracy.

Table 1: Classification results by using a single view for training on IXMAS. Each row is
a training view, and column a test view.

Test View
c0 c1 c2 c3 c4 Avg.

Ours, [92], [90], [73] Ours, [92], [90], [73] Ours, [92], [90], [73] Ours, [92], [90], [73] Ours, [92], [90], [73] Ours, [92], [90], [73]
c0 80.3, 63.6, 83.7, 75.2 63.6, 60.6, 59.2, 69.7 68.5, 61.2, 57.4, 71.8 56.4, 52.6, 33.6, 49.4 67.2, 59.5, 58.5, 66.5
c1 80.0, 61.0, 84.3, 78.5 62.1, 62.1, 61.6, 67.9 59.7, 65.1, 62.8, 71.5 47.9, 54.2, 27.0, 48.0 62.4, 60.6, 58.9, 66.5
c2 63.6, 63.2, 62.5, 70.0 62.1, 62.4, 65.2, 73.0 79.7, 71.7, 72.0, 68.5 75.5, 58.2, 60.1, 55.2 70.2, 63.9, 64.9, 66.7
c3 67.0, 64.2, 57.1, 73.6 65.8, 71.0, 61.5, 72.4 83.6, 64.3, 71.0, 67.3 46.4, 56.6, 31.2, 45.9 65.7, 64.0, 55.2, 64.8
c4 54.5, 50.0, 39.6, 44.5 49.4, 59.7, 32.8, 41.5 72.1, 60.7, 68.1, 55.2 50.0, 61.1, 37.4, 37.9 56.5, 57.9, 44.5, 44.8

Avg. 66.3, 59.6, 60.9, 66.7 64.4, 64.2, 60.8, 65.5 70.4, 61.9, 65.0, 65.0 64.5, 64.8, 57.4, 62.4 56.5, 55.4, 38.0, 49.6 64.4, 61.2, 56.4, 61.9

The results for the second recognition task (classifying videos from the test view by

using training from all of the other views) can be seen in Table 2. Note that the results of

Junejo et.al. [73] for this task is obtained by including videos from all the views (including

the test view) for training. Even then, my approach still yields the best result, outperforming

other methods by a significant margin. This demonstrates that my method can use the

additional training views more effectively due to its ability to generalize across viewpoints.

Table 2: Cross-view recognition accuracy on IXMAS (trained on videos captured from
all views except the test view). Note how our representation gives a significantly more
accurate result.

Method Test View
c0 c1 c2 c3 c4 Avg.

Ours 83.9 81.8 87.6 83.0 73.6 82.0
[177] (test view used 66.4 73.5 71.0 75.4 66.4 70.5
for transfer learning)
[92] (test view used 62.0 65.5 64.5 69.5 57.9 63.9
for transfer learning)

[73] (trained on 77.0 78.8 80.0 73.9 63.6 74.6
all cameras)

3.4.2 Results on UCF50 Dataset

The UCF50 dataset contains 6618 videos of 50 types of actions. For this experiment I use

the leave-one-group-out (LoGo) cross validation as suggested by Reddy et.al. [120].

Many videos in UCF50 were captured using low resolution handheld cameras with var-

ious motion artifacts due to camera shake and rolling shutter. Clearly, the fine-grained
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motion features that my method exploits are difficult to extract in this case. However it is

valuable to characterize the limitations of my approach by analyzing the UCF50. Another

important characteristic of this dataset is that the scene context gives a significant amount

of information about the type of action in the video. For example, many of the actions are

performed using a specific set of instruments (e.g. barbell in bench press) and represent-

ing those cues can help immensely for classification. This suggests the need to combine

my representation (which only models the dynamics of an action) with a complementary

appearance-based representation.

I combine my approach with Fisher Vector (FV) encoding [114] (which can be seen

as an extension to BOF) of the dense trajectory descriptor described in [155]. To convert

my pairwise action similarity measure to a feature vector I use a method similar to Ac-

tionBank [129]. In ActionBank, the videos in the training set function as the bases of a

high-dimensional action-space. For example, if we have N videos in the training set, the

feature vector for video v is a vector of length N where the value of N(i) is my similarity

measure between video v and the i-th video in the training set. The full feature vector for

each video is then simply a concatenation of the FV representation of dense trajectory and

our ActionBank-like representation. For this experiment I use 1-vs-all linear SVM (with

C = 0.1) for training and classification.

Classification results on this dataset can be seen in Table 3. The accuracy improve-

ment obtained by adding my representation suggests that MPH encodes information that is

complementary to HOG, HOF and MBH.

Comparing results of MPH + FV of dense trajectory against only FV of dense trajec-

tory, the most significant improvement in accuracy comes from the class PizzaTossing (an

improvement of 10.5% from 65.8% to 76.3%). A large part of this improvement comes

from a better discrimination between PizzaTossing and Nunchucks classes. Many of the

videos of these these two classes share a significant similarity in appearance: a person per-

forming an action in a small room captured from close to frontal view. Thus, MPH (which
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Table 3: Classification results on UCF50.
Method Accuracy (LoGo)

Ours (MPH) + FV of DT [155] 90.5
Dense trajectories [155] w/ FV encoding 88.9

MBH + scene context[120] 76.9
GIST3D + STIP [136] 73.7

MIP [82] 72.7

models the dynamics of the action) increases discrimination between these two classes. An-

other notable improvement comes from the class RockClimbing (an improvement of 6.9%

from 85.4% to 92.3%). About half of the improvement for this class comes from a better

discrimination against RopeClimbing. While the actual movement of climbing a rope vs

climbing a wall with a rope is different, the context of these two classes are very similar

since wall and rope tend to be the prominent features in the video. Thus, MPH provides a

powerful cue to help discriminate between these two classes. On the other hand, MPH can

also increase confusion between classes. I observe the biggest drop in accuracy in the class

HorseRace (a decrease of 3.1% from 98.4% to 95.3%) partly due to increased confusion

with Biking. This is likely due to the fact that from a distance, the movement dynamics of

HorseRace and Biking look similar: people moving on a trajectory with their body moving

slightly up-and-down with a particular frequency. Human action is a complex concept de-

fined by the interplay of a number of elements: movements, human pose, instruments used,

and surrounding background context. A better approach to modellng any of these elements

is a step towards a better action representation.

3.4.3 Results on Stereotypy Dataset

Now I will use my approach to address the problem of action retrieval: Given a single

example video clip containing an action of interest, the task is to retrieve all matching

instances of that action from an unstructured video collection. The strength of my bottom-

up matching approach is that it can compute a similarity measure between activities without

learning. It can therefore be used in situations where the space of possible activities is very
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Figure 9: Two representative images from the Stereotypy dataset.

large and difficult to define a priori and when it is difficult to find an extensive amount of

training examples across different views.

In the domain of behavioral psychology, there is currently great interest in studying

the effectiveness of behavioral therapy for children with autism. These children frequently

exhibit repetitive motor movements, known as stereotypies. In comparison to more tradi-

tional functional activities, stereotypies are often unique expressions of individual behavior,

making it challenging to construct a general model of such behaviors. At the same time, it

would be very useful to be able to retrieve all instances of a particular stereotypy exhibited

by a child across multiple recording sessions given only a single example. I conducted an

experiment to evaluate the effectiveness of my algorithm in this context.

I collaborated with experimental and educational psychologists in the Center for Dis-

cover, an institution that serves individuals with developmental disabilities, on analyzing

videos obtatined of children with autism who engage in stereotypies in a classroom set-

ting. The dataset consists of 31 hours of videos from two overhead cameras located in two

separate rooms. Representative frames are shown in Figure 9. Note that even though the

activities in both rooms are recorded from an overhead camera, there is still a significant

variation in the orientation of the people with respect to the camera since the people are free

to move within the room area (see Figure 10). Our collaborators have identified 10 different
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target behaviors from these videos (Table 4), out of which 9 are subject–specific stereotyp-

ies and 1 is a general behavior (out of seat). Note that the target behaviors encompass many

of the common classes of stereotypical behaviors [86]. For the annotation, each bout of the

target behavior is assumed to last for 2 seconds. A psychologist with autism expertise and

familiarity of the children provided the groundtruth labels for the target behaviors.

Table 4: Behaviors of interest in the Stereotypy dataset. All behaviors except B5 are
subject–specific.

Behavior name Count
Hand to the head (B1, Fig. 10(a)) 24
Bounce on ball (B2, Fig. 10(b)) 27
Jump on ball (B3, Fig. 10(c)) 54
Head on arm (B4, Fig. 10(d)) 49
Out of seat (B5, Fig. 10(e)) 199
Paddling on objects (B6, Fig. 10(f)) 23
Paddling on self (B7, Fig. 10(g)) 23
Bite hand (B8, Fig. 10(h)) 60
Body rocking (B9, Fig. 10(i)) 23
Play with hand (B10, Fig. 10(j)) 30

(a) B1 (b) B2 (c) B3 (d) B4 (e) B5

(f) B6 (g) B7 (h) B8 (i) B9 (j) B10

Figure 10: Visual examples of the target behaviors in the Stereotypy dataset.
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Table 5: % of database one must go through to get 50% recall (lower is better).

Behavior Ours Ours IT IT SSM SSM
1 sample 2 samples 1 sample 2 samples 1 sample 2 samples

B1 9.7% 9.0% 16.5% 15.7% 12.8% 12.1%
B2 7.3% 6.5% 16.0% 13.8% 13.5% 12.1%
B3 8.3% 8.0% 14.9% 14.1% 16.2% 16.3%
B4 7.2% 6.6% 18.2% 17.0% 14.5% 13.9%
B5 4.9% 4.5% 9.2% 7.6% 10.9% 10.4%
B6 8.8% 8.6% 13.2% 12.3% 13.9% 13.1%
B7 6.3% 5.0% 13.4% 11.4% 14.8% 12.8%
B8 9.0% 8.7% 18.3% 17.2% 13.0% 12.6%
B9 2.9% 1.8% 13.6% 11.5% 13.8% 13.8%
B10 7.6% 7.1% 17.0% 15.6% 10.6% 10.0%
Avg. 7.2% 6.6% 15.0% 13.6% 13.4% 12.7%

For the experiment, I used sliding window to split the videos spatially into 5× 8 over-

lapping windows. For each of these windows, I temporally segment them into a series of

60-frame clips (2 seconds) with stride length of 15. This process segments each video into

many small subvolumes which I would refer to as clips from this point forward.

Action retrieval task: We identified all clips containing stereotypies, and used each of

those clips as the target input for retrieval. Given a target clip, I computed the similarity

of the clip against the rest of the clips in the dataset. The similarity score for my algorithm

is described in Section 3.3. For BOF, I found that the L2 distance between the normalized

feature vectors yielded the best results. I then ranked the videos according to the similarity

score and measured performance by using the Cumulative Match Characteristic (CMC)

curve, a common metric for retrieval. The CMC curve describes how far along one has to

go down the retrieval result (x-axis) to achieve a certain recall rate for the target (the y-axis).

I counted a clip as a hit if it temporally overlaps with at least 50% of the groundtruth.

In addition to performing retrieval using only a single example, I also perform the re-

trieval experiment if the system were to be given two examples of the same target behavior.

This is done to show the effect of having additional information to the different represen-

tations. For this experiment, the similarity score is simply the max of the similarity to the
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two target clips.

One of the main use cases of a behavior retrieval system is for a clinician to search for

additional examples of a new target behavior given minimal (one or two) input samples.

Individuals with ASD sometimes exhibit a new problem behavior which can be caused

by a number of reasons (e.g., environmental factors, change in sleeping pattern). When a

clinician observed a new problem behavior in a video recording, he will be interested to see

additional examples of such behavior. Note that the goal here is not 100% recall, but rather

for the clinician to see enough examples of the new behavior so that he can understand the

behavior better (e.g., to form a hypothesis for the underlying cause, to assess the severity of

the behavior, etc.). To simulate this use case, I show how much of the videos in the dataset

one must go through in order to get 50% recall of the target behavior (Table 5).

We can clearly see how my approach outperforms the competing methods in this sce-

nario. My method performs well on behaviors that involve gross motor movements such as

body rocking (B9), out of seat (B5) and paddling on self (B7). The limitation of my method

is that it is only encoding motion, thus my approach sees a drop in accuracy when used for

retrieving behaviors that are largely characterized by the body/limb configuration such as

hand to the head (B1) and bite hand (B8). The improved trajectories (IT) feature performs

the poorest in this setting since it is heavily dependent on the viewpoint and appearance in-

formation. SSM performs better than IT since it is robust to viewpoint changes. However,

the SSM representation is highly affected by the presence of clutter in the background (e.g.,

other people/objects) since it relies on computing pairwise similarity between the frames.

So, even though it works well on a constrained setting when the video only contains the tar-

get subject [73], it performs poorly in this setup. Adding an additional sample as an input

improves the performance of all methods (see results with 2 samples in Table 5). However,

my approach, even when using only a single input sample, still performs much better than

the competing methods with 2 input samples. This demonstrates the effectiveness of my

representation for this task.
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The CMC curves for retrieving stereotypies can be seen in Figure 11. Note that my

method performed significantly better than the competing BOF representations across all

behaviors. There are several factors that contributed to this: the child (target) might be

wearing different clothing in the different video, a therapist sometimes came to interact

with the child during the course of the class, and also the child often moved, changing his

relative angle to the camera (for example, Figure 10 illustrates how the different seating

positions affect a person’s orientation with respect to the camera). All these variations will

affect any representations that heavily depend on appearance information. My approach,

which encodes the temporal pattern of the movements of a behavior, is more robust to these

variations (as demonstrated by the higher recall rate across all behaviors in Figure 11).

3.5 Conclusions

Behavior retrieval from arbitrary viewpoints is a novel and practically-important problem

that has not been addressed before. I tackle the retrieval problem in two stages: 1) formu-

lation of a feature (MPH) that is easy to extract and robust to viewpoint variations; and 2)

simultaneous matching and alignment formulation that explicitly handles variations in the

dynamics of an action and allows matching of features extracted from different viewpoints.

The experimental results from the Streotypy Dataset demonstrate that current action

representation approaches are not suitable for the behavior retrieval task which requires

robustness to many sources of appearance variations. I have demonstrated that by lever-

aging the unique pattern of the dynamics of a behavior, my approach achieves the best

performance on retrieving instances of problem behaviors exhibited by individuals with

autism. This can potentially impact how clinicians perform behavior analysis on a large

video collection by providing them with a mechanism to more quickly search for relevant

behaviors.

In addition to obtaining state-of-the-art performance in behavior retrieval, I have also
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showed that my representation performs well on the action recognition problem. My ap-

proach obtains state-of-the-art results on the cross-view action recognition task, and when

complemented with the existing BOF representation, performs well on the classical action

recognition task.
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(a) Hand to the head (B1)
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(b) Bounce on ball (B2)
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(c) Jump on ball (B3)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

CMC Curve

Top % of database

R
ec

al
l (

%
)

 

 

Ours (1 sample)
Ours (2 samples)
IT (1 sample)
IT (2 samples)
SSM (1 sample)
SSM (2 samples)

(d) Head on arm (B4)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

CMC Curve

Top % of database

R
ec

al
l (

%
)

 

 

Ours (1 sample)
Ours (2 samples)
IT (1 sample)
IT (2 samples)
SSM (1 sample)
SSM (2 samples)

(e) Out of seat (B5)
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(f) Paddling on objects (B6)
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(g) Paddling on self (B7)
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(h) Bite hand (B8)
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(i) Body rocking (B9)
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Figure 11: CMC curves for all behaviors.
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CHAPTER IV

MINIMIZING HUMAN EFFORT IN INTERACTIVE TRACKING

BY INCREMENTAL LEARNING OF MODEL PARAMETERS

4.1 Introduction

The past decade has seen an explosive growth of video data. The ability to easily anno-

tate/track objects in videos has the potential for tremendous impact across multiple appli-

cation domains. For example, in computer vision annotated video data can be used as an

extremely valuable source of information for the training and evaluation of object detectors

(video provides continuous view of how an object’s appearance might change due to view-

point effects). In sports, video-based analytics is becoming increasingly popular (e.g. the

Italian company Deltatre employed 96 people to pour over multiple video footage for live

player tracking during the 2014 World Cup). In behavioral science, video has been used

to assist the coding of children’s behavior (e.g. for studying infant attachment [9], typical

development [121] and autism [95]).

The tracking problem is challenging because of the often dramatic appearance vari-

ations in the object being tracked (e.g., due to lighting and viewpoint change) and occlu-

sions. As a result, fully-automated high precision object tracking remains an open problem.

Note that getting accurate object tracks is important in many applications. For example, bi-

ologists who use video to monitor the movement of animals care about accurately tracking

these animals at all times. Errors in tracking are unacceptable since they can contaminate

the research findings. To obtain practically useful accurate tracking, several interactive ap-

proaches have been pursued (e.g., LabelMe Video [172] and the crowdsourcing method of

Vondrick et.al. [151]). Unfortunately, most existing interactive tracking approaches are not

optimized for human effort. However, minimizing human annotation effort is extremely
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important in practice since video can be prohibitively expensive to label (e.g., twenty six

hours of surveillance video cost tens of thousands of dollars to annotate despite using a

state-of-the-art annotation system [109]).

In this chapter I propose an interactive tracking system that is designed to minimize the

amount of annotation required to obtain high precision tracking results. I achieve this by

leveraging user annotations for incrementally learning instance specific model parameters

of the tracking cost function. This is in contrast to the common practice of hand-tuning the

model parameters on a training set and applying the same fixed parameters on any new test-

ing data. This approach is both time consuming (due to hand-tuning) and gives suboptimal

accuracy on individual tracking instances. I cast the problem of learning the optimal model

parameters as the problem of learning a structured prediction model in a maximum margin

framework. My key insight is that the incremental nature of an interactive tracking process

is particularly well-suited for efficient maximum margin learning of model parameters.

Related to this work is the work by Taskar et.al. [143] in learning structured prediction

model using large margin approach. However, their work is not focused in the tracking

problem (they apply their approach to protein structure prediction). Szummer et.al. [141]

apply Taskar’s [143] and Tsochantaridis’ [148] large margin approach to the problem of

learning CRF using graph cuts in the context of image segmentation. In contrast to these

works, my approach exploits the sequential nature of an interactive tracking process for

online incremental learning of a structured model, departing from the classical training-

testing paradigm.

I show that my approach significantly outperforms the current best practice of us-

ing hand-tuned model parameters on two datasets: the VIRAT challenge dataset and the

Infant-Mother Interaction dataset that I introduce. The main contribution of this work is

an annotation-driven maximum margin framework for efficiently learning instance-specific

model parameters.
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4.2 Object Tracking

In this section I describe the framework that I use for estimating object track in a video. I

first give a description of the object representation technique in Section 4.2.1. I then present

the formulation for estimating object trajectory given a set of observations (Section 4.2.2).

Finally, I describe an efficient approach to optimize for object trajectory in Section 4.2.3.

4.2.1 Object Representation

The choice of object representation significantly impacts tracking performance. For this

work, I use the Aggregated Channel Features (ACF) [40] which has been shown to achieve

good performance in the task of object detection. ACF is constructed by combining three

features: normalized gradient magnitude (Grad), histogram of oriented gradients (HOG)

[33] and color channel in LUV colorspace:

x = [Grad HOG LUV ]T (5)

To model the global appearance of the object, I use a discriminative approach. For each

annotated frame, I use the annotated bounding box and some perturbed version of it as

the positive instances and extract a large number of negative bounding boxes that do not

overlap (or have very minimal overlap) with the annotation. To learn the object model, I

use the positive and negative instances to train a linear SVM. For every frame, I detect K

object candidates using the learned model (I use a very conservative value of K = 500 to

avoid false negative).

4.2.2 Tracking Model

The task is to track an object in an image sequence of length T frames. An object track

is a set of T object locations Y = {yt}t=1...T . With each yt is associated xt, our object

representation based on HOG and color histogram. The set of all xt is denoted as X .

A track is initialized by bounding box annotations li made by the user in a set of

keyframes. Note that the user could select only a single keyframe. The annotations are
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represented by their locations L = {li}i∈N , with 1 ≤ i ≤ T and |N | ≤ T . Under this

model, a tracking algorithm can be described as a method that takes L as an input and

returns Y , the trajectory of the object for the entire image sequence.

Given the description above, we now define the cost function that serves as a measure

of the track quality:

E(Y ;w) =
∑
t

e(yt;w) (6)

e(yt;w) = [w1w2w3]


d(xt)

sapp(xt, xt−1)

smot(yt, yt−1)

 (7)

where d(·) is the cost of deviating from the global appearance model of the object (we

use the SVM score), sapp(·) is the appearance smoothness cost, and smot(·) is the cost of

deviating from the location predicted by optical flow. The contribution of d(·), sapp(·),

and smot(·) to the overall cost is described by the parameters of the cost function: w =

[w1, w2, w3]. Note that the value of these parameters significantly impacts the tracking

performance for a given video (see Section 4.3).

In this formulation, the tracking problem is reduced to finding the trajectory Y that

minimizes the cost function E(Y ;w). In addition, we also have to ensure that the hard

constraints of yi = li for all i ∈ N are satisfied. In order to be robust to occlusion,

we augment Y with an occlusion flag to reduce the penalty when an object undergoes

occlusion.

4.2.3 Tracking Optimization

The task is to find the best track Y that minimizes the cost function described in Equation

7 subject to the constraints yi = li for all i ∈ N . If we assume there are K candidate

locations for the object in each frame, a naive approach to finding the best track would take

O
(
K
T

)
time. Fortunately, this problem exhibits optimal substructure that lends itself to an
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efficient dynamic programming (DP) solution (interested reader can refer to previous work

on DP [17, 24] for more details).

Let Kt be the set of object candidates at frame t. Let ykt be the k-th candidate location

of the object at frame t. Let Ct(ykt ) be the cumulative cost of the track up until ykt , if ykt

is picked as a part of the object track. We can compute Ct(ykt ) for all t ∈ T, k ∈ Kt in

O(TK2) by using forward recursion:

C0(y
k
0) = w1d(xk0)

Ct(y
k
t ) = w1d(xkt ) + min

j∈Kt−1

P j
t−1(y

k
t )

P j
t−1(y

k
t ) = Ct−1(y

j
t−1) + w2sapp(x

k
t , x

j
t−1)

+w3smot(y
k
t , y

j
t−1)

(8)

To obtain the best track, we can store the pointer to the match in the previous frame

(Eq. 9) and backtrack from the location with the lowest cost in the last frame in T .

Mk
t (ykt ) = arg min

j∈Kt−1

P j
t−1(y

k
t ) (9)

To ensure that the track satisfies the hard constraints yi = li for all i ∈ N , we simply

set d(xkt ) = −∞ for all of the manually annotated locations li. Similar to Buchanan

and Fitzgiboon [24], to account for occlusion we augment the set of object candidates in

each frame with an occlusion state ([yt]occ = 1 means the object is occluded), effectively

modifying the cost function into the following:

E(Y ;w) =
∑
t



e(yt;w) [yt]occ = 0

λo [yt]occ = 1, [yt−1]occ = 0

λr [yt]occ = 1, [yt−1]occ = 1

λv [yt]occ = 0, [yt−1]occ = 1

(10)

I set λv = λo, and λr = 0.4λo, so there is only one parameter to choose a value for.
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This optimization method is very efficient. It takes less than 2 seconds to compute

the globally optimal solution for T = 1000 and K = 500. That means that for every

new annotation that a user has made, he/she can immediately observe how it affects the

tracking result. This is a very desirable property for an interactive system. Note that this

formulation has been been used in a number of interactive tracking work [24, 161, 152].

Thus, our approach to improve the cost function (Sec. 4.3) applies more broadly.

(a) Instance 1
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(d) Instance 2
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Figure 12: Error vs cost for two different sets of parameter values. I sample a number of
trajectories that are close to the groundtruth, and plot the error for each of these trajectories
under two different parameter settings. Note that the optimal parameter value for one in-
stance can result in a bad model for the other instance in the sense that low cost is assigned
to the trajectories that in fact have high error. In these scatter plots the ideal distribution
is a line with a slope of 1, reflecting a cost function which matches the error relative to
groundtruth.

4.3 Instance Specific Tracking Model

An important question that needs to be addressed is how do we weight the contributions of

the different parts of the cost function. In other words, how do we select the appropriate

values for w = [w1, w2, w3] in Equation 7? Currently, a popular solution for this parameter

selection task is hand-tuning: the parameters that minimize the average training error are
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identified and used for all new testing videos. There are three problems with this approach:

1) There is no single value that is optimal for all of the possible testing videos. This is

a major problem from the perspective of highly accurate tracking in which every video is

important, as by minimizing the average error we accept the possibility of large error on

specific video clips; 2) It can be very time consuming to exhaustively search for the best

parameter value; and 3) Adding new components to the cost function requires substantial

additional work. For example, if we want to incorporate an additional way to model global

appearance into the cost function, we have to redo the parameter search step.

To illustrate the problem of using a single set of weights for all videos, consider two in-

stances of a basic tracking task illustrated in Figure 12: tracking a person in the parking lot

with other people around (instance 1) and without (instance 2). I sample a number of object

trajectories that are close to the groundtruth trajectory and I compute the cost (according to

(7)) for each of these trajectories with two different weight values, that correspond to the

optimal weights for instances 1 and 2 (these values are computed by using our approach

presented in Section 4.3.1). In Figure 12(e) we can see that an optimal set of weights for

instance 1 results in a very bad model for instance 2 (and vice versa) where the trajectories

that have more error actually have less cost. Note that even though in both instances we

are tracking people, the context is different. In video 1 there are other objects with similar

appearance in the scene (other people), in video 2 there are no objects present with simi-

lar appearance. Ideal weight parameters should reflect this difference in the nature of the

tracking problem. Indeed, my approach is able to learn that very little weight should be as-

signed to the global appearance in instance 1 (since there are other people in the scene with

very similar appearance) and instead the motion should be emphasized. In the subsequent

sections I present my approach to incrementally learning the optimal value of the weight

parameters for each object trajectory in an interactive setting.
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4.3.1 Learning The Optimal Weights

In tracking optimization, the goal is to find a trajectory that has the lowest cost. The under-

lying assumption is that the groundtruth object trajectory has the lowest cost compared to

all other possible trajectories. Therefore, by optimizing the cost function, we can obtain the

groundtruth trajectory. Let Y gt be the groundtruth trajectory. We can express this property

mathematically as follow:

E(Y ;w) > E(Y gt;w) ∀Y 6= Y gt (11)

I have discussed in the previous section how the choice of w plays a critical role in

determining the validity of the above assumption. If this assumption is violated, then op-

timizing the cost function is a fool’s errand because it does not reflect the quality of the

trajectory. In interactive tracking, this translates into the user having to provide substantial

manual annotations to correct for tracking mistakes, which are inevitable since the costs are

wrong. This is extremely wasteful given that a better choice of w could greatly alleviate

this problem.

My goal is to find the optimal value for the weight parameter w for each tracking in-

stance such that the groundtruth configuration has the lowest cost. The inequalities in (11)

can have infinitely many solutions (e.g. a simple scaling of w will not change the inequality

since the cost function is linear in w). A common trick to resolve this type of issue is to

frame the problem as a maximum margin learning problem where the task is to find w that

will maximize the margin between the groundtruth trajectory and all other trajectories:

min 1
2
||w||2

E(Y ;w)− E(Y gt;w) ≥ 1 ∀Y 6= Y gt
(12)

Due to the modeling limitation of the cost function and noise in the data, the above

program may not have any solution. To address this issue we add the slack variables ξn.

Thus we allow the individual margins to be smaller, but this is discouraged by adding the
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slack variables into the objective.

min 1
2
||w||2 + C

N

∑
n

ξn

E(Y ;w)− E(Y gt;w) ≥ 1− ξn ∀Y 6= Y gt

(13)

The program described above assigns unit margin to all of the trajectories that are not

groundtruth (0-1 loss). While this should work well in an ideal scenario, if there is noise

in the data the algorithm might produce suboptimal results since the optimization enforces

the same margin on all of the trajectories (i.e. the same weight is assigned to all of the

trajectories). The algorithm will be more likely to produce the desired result if we can

instead use a better loss measure. This is the essence of the maximum margin learning

approach to structured prediction [143], which we would adopt.

In tracking, we can measure loss by using the Hamming distance between a trajectory

and the groundtruth trajectory ∆(Y, Y gt). In this sense, we can view the problem of learn-

ing the optimal weight parameter in tracking as an instance of maximum margin structured

prediction learning. By using the Hamming distance as our loss measure, the constraints in

(13) now become:

E(Y ;w)− E(Y gt;w) ≥ ∆(Y, Y gt)− ξn ∀Y 6= Y gt (14)

The above constraint means that we desire larger margin for the trajectories that are

further from the groundtruth. Or in other words, this loss-scaled margin means that the

trajectories that are further from the groundtruth should have higher cost than the trajecto-

ries that are closer (smaller margin). This is certainly a very desirable property for a cost

function. Unfortunately, it is not feasible to solve the above program due to two factors: 1)

we do not know the groundtruth trajectory Y gt; and 2) there are an exponential number of

constraints (KT assuming there are K object candidates in every frame in a T -frame long

video sequence).

During the interactive tracking process, a user incrementally adds one annnotation at a
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time. As a result of this, we obtain a series of trajectory estimates Y 1, Y 2, . . . Y N (assum-

ing the user has made N annotations) where Y i+1 is likely to be closer to the groundtruth

than Y i. My insight is that we can exploit this process to incrementally learn w. So instead

of using the groundtruth trajectory (which we do not have) as the positive instance for max

margin learning, we can use the current best estimate of the trajectory as the positive in-

stance and perform the optimization over a much smaller set of constraints that correspond

to the other previously estimated trajectories that we have obtained during the interactive

tracking process. So for every new annotation a user has made, we can estimate the pa-

rameter value that will make the most recent trajectory estimate have the lowest cost. This

process is aligned with our original formulation where we desire parameters that will make

the cost function assign lower cost to the trajectory that is closer to the groundtruth (i.e.

the latest trajectory estimate Y N ) compared to the trajectories that are further from the

groundtruth (i.e. other previously obtained trajectories Y 1, Y 2, . . . Y N−1). We can imple-

ment this as the following optimization:

min 1
2
||w||2 + C

N

N∑
i=1

ξi

E(Y i;w)− E(Y N ;w) ≥ ∆(Y i, Y N)− ξi i=1...N−1

wj ≥ 0 ∀wj ∈ w

(15)

By solving the above program after every annotation, we are guaranteed to have w that

assigns the lowest cost to the latest trajectory estimate (within some slack tolerance). Note

that if the user annotated the whole video sequence (N = T ), the above program reduces

to the original formulation in Equation 14, but with a much smaller set of constraints.

To account for the fact that we now optimize over a significantly smaller set of con-

straints compared to the original formulation in (14), we add an additional set of constraints

to enforce every single element of w to be nonnegative. This is a subtle but important ad-

dition since this set of constraints serve as a way to represent the trajectories that are far

from the groundtruth in the optimization. Many of the high loss trajectories will have high

values of d(·), sapp(·) or smot(·). Consider for example a trajectory that jumps from one
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corner of the image to a different corner in successive frames. This trajectory will have

a very high smot(·) (similar examples can be drawn for the other two components of the

cost function, d(·) and sapp(·)). Since our constraint set consists of only trajectories that

are close to the groundtruth, it will most likely not contain examples of those high-loss

trajectories. Because of this, there is a possibility that we obtain a negative w which can

result in the high-loss trajectories (which are not represented in the constraint set) to obtain

the lowest cost. Adding the nonnegativity constraint for w alleviates this problem.

To illustrate the result of our incremental learning of w, let’s revisit our earlier example

of tracking a person in the presence of other people (Fig. 12(a)). Due to the existence of

similar looking objects in the scene (other people), we know that intuitively the global ap-

pearance component should carry less weight in the overall cost function. Our incremental

weight learning approach is able to quickly learn this context information (see Table 6).

Also note how given the same set of annotations, the w that we learn incrementally results

in a better cost function for the problem (which is reflected by the lower error rate).

Table 6: Incremental learning of w. This table illustrates the effect of my incremen-
tal learning of the cost function parameters. I annotate a 300-frame long sequence at 4
uniformly-spaced locations, and I perform trajectory estimation given those annotations
with 4 different w values (the starting w and w that is learned incrementally after annota-
tions 2, 3 and 4). Note that my approach is able to learn to place less and less weight on the
global appearance cost (w1) since there are many similar-looking objects in the scene (Fig.
12(a)).

N annotations w1 w2 w3 Error/frame
1 0.33 0.33 0.33 0.5100
2 0.18 0.46 0.36 0.3800
3 0.08 0.40 0.52 0.0733
4 0.03 0.37 0.60 0.0367

4.3.2 Improving The Objective

A potential problem with the loss-scaled constraint in Equation 15 is that the algorithm

may give a suboptimal solution since it focuses on the constraints with high loss. Since

we scale the margin by the loss, a w that gives Y N the lowest energy (which is our goal)
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may not be selected in the optimization if there are any high-loss constraints that do not

have a large enough margin. This means that the earlier trajectory estimates (which are the

constraints that have high loss) can potentially overwhelm the ultimate objective which is

finding a w that gives the most recent trajectory estimate Y N the lowest cost. In order to

compensate for this, we can add directly to the objective the difference between the cost of

the two latest trajectory estimates, given a w parameter (E(Y N ;w) − E(Y N−1;w)). This

can be interpreted as putting more emphasis for the algorithm to search for the solution

that maximizes the separation between the two data points that are closest to the decision

boundary. This acts as a counter-weight to the high loss constraints. The final objective

then becomes the following:

min
1

2
||w||2 +

C1

N

N∑
i=1

ξi + C2(E(Y N ;w)− E(Y N−1;w)) (16)

This formulation is similar to Szummer et.al. [141] and Tsochantaridis et.al. [148] but is

adapted to my sequential formulation.

To illustrate the effect of the new objective on the parameter learning process, let us

consider once more the interactive tracking task in Figure 12(a) (tracking a person in the

presence of other people). We start with w = [1
3
, 1
3
, 1
3
] and perform interactive tracking on

the sequence by doing annotation one frame at a time. We use the same annotation sched-

ule (same set of frames with the same annotation ordering) and compare the convergence

behavior of the two objectives. Starting from the initial annotation, after each subsequent

annotation we compute the optimal w according to the two objectives. We normalize the

w to sum to 1 and plot its value on a simplex (note that normalizing w does not change the

inequality constraints in (15)). Figure 13 illustrates the convergence behavior of the two

objectives.

Notice that even though both objectives essentially converged to the same value (both

learned to place no weight on the global appearance due to the presence of similar looking

objects in the scene), the improved objective found the optimal parameter value much more

quickly than the original objective, converging after only 3 annotations instead of 5. My
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Figure 13: Convergence behavior of the original objective (15) and the improved objec-
tive (16) on the tracking instance in Fig. 12(a) (tracking an object in the presence of similar
looking objects). The green simplex is the solution space. Red dot is the starting value
of w and the blue dots are the value of w after each annotation. Note how the improved
objective converged quicker to the optimal solution.

hypothesis is that the additional term in the objective allows the algorithm to quickly con-

verge to the optimal solution by admitting a solution that does not provide enough margin

to the high loss constraint (in this case, constraint induced by the first trajectory estimate

Y 1). I look at the value of the slack variable ξ1 after annotation 3 to confirm this hypothesis,

and indeed the value of this variable in the new objective is higher than that in the original

objective. This confirms my idea that the additional term in the new objective can serve as

a balancing term to the high loss constraints, allowing the algorithm to focus more on the

solution that maximizes the separation between data points that are closest to the decision

boundary.

4.4 Experiments

To demonstrate the advantage of my instance specific max-margin tracking parameter

learning approach, I perform experiments on two datasets: 1) the VIRAT challenge dataset

[109]; and 2) the Infant-Mother Interaction dataset that I introduce. The VIRAT dataset

consists of over 300 surveillance videos captured in various locations. My task in this

dataset is to track moving people and cars (in VIRAT there are a lot of objects that are
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Figure 14: Dataset used for experiments: VIRAT dataset (top row) and Infant-Mother
Interaction dataset (bottom row).

completely stationary, which is trivial to track). The Infant-Mother Interaction dataset con-

sists of 15 videos of a dyadic interaction between an infant and a mother in a room during

a behavioral study called The Strange Situation [9]. This dataset serves as an important

practical application for interactive tracking since being able to obtain high precision track

of the people in the scene has a tremendous amount of utility for quantifying the behavior

of the individuals in the study (see Chapter 5). The task in this dataset is to track the head

of the people in the scene. A representative set of frames from the two datasets can be seen

in Figure 14. Note that groundtruth bounding box annotations of object tracks are provided

in both datasets.

I compare my incremental weight learning approach against the traditional fixed-weight

approach (hand-tuned to each of the datasets). I measure tracking error based on how well

the tracker is able to estimate the groundtruth annotations. For every frame, an object track

is considered to be correct if its intersection over union (IoU) with the groundtruth is at
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least 0.3 (a similar metric is used in [152]). I quantify tracking error by the error-per-frame

metric (i.e. an error of 0.01 means that for every 100 frames there is 1 frame where the

IoU is less than 0.3). To quantify human effort, I use the annotations-per-frame metric

(an annotations-per-frame of 0.1 means that a user annotated 10 frames out of 100). For

an interactive tracking system, the goal is to obtain high precision tracking results with as

few annotations as possible. To capture this, for each experiment I report the number of

annotations-per-frame that is required from the user to achieve a certain error-per-frame

target.

The interactive tracking experiments are conducted assuming that an oracle exists for

the system to request annotations from. In other words, user annotations are simulated by

the oracle (which uses the provided groundtruth). I perform the experiments using two

different frame selection strategies. The first one is the sequential strategy where the in-

teractive tracking system requests for a bounding box annotation from the oracle whenever

the object track starts to drift from the groundtruth (IoU < 0.3). This is to simulate the use

case when a user first annotated the target object in the first frame, and continue watching

the video (possibly in super-realtime speed) to correct for tracking mistakes as they hap-

pen. The second strategy is the uniform frame selection. This is a frame selection strategy

commonly employed in a setting where multiple users are available to provide annotations

(e.g., crowdsourcing [151]). For this use case, a system simply requests for annotations for

the target object on a set of keyframes that are uniformly distributed (temporally) on the

video.

The results for the VIRAT dataset using the sequential frame selection strategy can be

seen in Figure 15(a). My approach is able to outperform the fixed weight approach by

a large margin. For example, on average, by learning the weight parameter during the

annotation process using our method, my method is able to achieve 0.01 error tracking

results using only 0.0133 annotations-per-frame, compared to the 0.0327 annotations-per-

frame that is required by the fixed weight approach. This is an improvement of ∼60%
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which means that by using our approach, I can annotate this dataset to the same desired

accuracy with only 40% of the effort. This can potentially translate to a saving in the

order of tens of thousands of dollars for a dataset this size. Also note that the improved

objective that I propose gives a considerable improvement over the standard maximum

margin objective.

Similar to the VIRAT dataset, my approach is able to significantly improve the anno-

tation efficiency in the Infant-Mother Interaction dataset (see Figure 15(b)). For the target

error rate of 0.01, my approach is able to achieve the same tracking accuracy with only

36.6% of the human effort (going from 0.0273 annotations-per-frame to 0.01). Note that

the Infant-Mother Interaction dataset represents the ideal dataset for the hand-tuned fixed

weight approach since on the surface there seems to be minimal variations in the scene

(there is only one type of target object and all of the videos are captured in the same room).

However, even in this setup my approach is still able to provide a large improvement. This

means that even on videos captured from similar scene with the same type of target object,

there is always a significant variability in the individual tracking instances. Note that as is

the case in VIRAT, the proposed new objective gives the best results.
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(a) Results on VIRAT dataset
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Figure 15: Results on VIRAT and the Infant-Mother Interaction dataset using sequential
annotation procedure. y-axis is the error rate, x-axis is the annotations rate.
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Similar to the sequential frame selection strategy, my approach gives a significant im-

provement using the uniform frame selection strategy (Figure 16). In the VIRAT dataset,

my approach uses 64.3% fewer annotations compared to the baseline to achieve 0.01 error-

per-frame (going from 0.0187 annotations-per-frame to 0.0067). Similar improvement is

also observed in the Infant-Mother Interaction dataset (see Figure 16(b)).
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(a) Results on VIRAT dataset
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Figure 16: Results on VIRAT and the Infant-Mother Interaction dataset using uniform
annotation procedure. y-axis is the error rate, x-axis is the annotations rate.

4.5 Conclusion

I have highlighted the importance of having instance-specific model parameters in the

tracking by detection framework. I have presented a novel approach to address this critical

problem of determining the parameter value of the cost function. I leverage the sequen-

tial nature of interactive tracking to formulate an efficient approach for learning instance-

specific model parameters through a maximum margin framework. I have demonstrated

that by using my approach we can save the required number of annotations by ∼60% to

achieve high precision tracking results, a significant improvement in efficiency compared

to the existing approach.
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CHAPTER V

OBJECTIVE ANALYSIS OF INTERACTION BY DENSE

MEASURE OF PROXIMITY

5.1 Introduction

The measure of proximity (physical distance between two objects) is central to many stud-

ies in psychology. For example, in studying how people develop a sense of personal space,

having a measure of physical distance between people is crucial [137]. Similarly, studies in

infant locomotion use a continous measure of infant location with respect to the target goal

as one of the primary features [5]. Physical distance between an infant and an object is also

used as a measure when studying approach behavior [125], which is one of the dimensions

of temperament (aspects of an individual’s personality that are often regarded as innate

rather than learned). In the attachment domain, proximity-seeking and exploratory behav-

iors are some of the important characteristics when looking at infant-mother interaction

[9].

Currently, it is very difficult to obtain accurate, dense measure of proximity. In an

early personal space study, Sommer [137] used the arrangement of chairs around a dining

table as a way to measure proximity. Adolph et.al. [5] instrumented the space with phys-

ical marker (grids) so that a human observer can measure the location of infant in a video

recording during infant locomotion study. Rothbart [125] measured infant approach behav-

ior in a highly restrictive tabletop setting for studying temperament. In an early study of

infant attachment, Ainsworth and Bell [8] also used grid-lines as a way to measure infant

exploration behavior. The need to use actual physical markers (e.g. grids, arrangement of

objects) to get a proximity measure is certainly not desirable. Not only it limits the ex-

periment setup (e.g. the grids have to be always visible to the human observer to make it
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useful), but also it only gives us a very coarse measure of proximity, both spatially (the

maximum accuracy is limited by the size of the grids) and temporally (having a human

observer measures proximity for every frame in the video is impractical, thus it is typically

done in a very coarse time-step, e.g. 15 seconds in the study done by Ainsworth and Bell

[8]). All of those examples clearly suggest that a better way to measure proximity will have

a big impact on a wide array of studies.

While it is extremely challenging for humans to estimate accurate proximity measure

between objects just by looking at a video, recent development in affordable depth camera

(e.g. Microsoft Kinect) has made it possible for us to obtain this measure. With depth

sensor, the task of continously measuring the 3D spatial location of an object can be reduced

to the video object tracking problem (i.e. we only have to localize where the object is on the

image plane in order to determine its 3D location in the world). In this chapter, I address

this issue of obtaining accurate, temporally dense measure of proximity by combining state-

of-the-art interactive tracking technique with modern sensing technology (depth camera).

The focus of this work is on demonstrating how we can use dense measure of proximity

to objectively analyze infant-mother interaction during The Strange Situation, a protocol

for studying infant attachment security. In The Strange Situation, an infant is put through

a series of interaction episodes involving a caregiver (typically the mother) and a stranger

where the goal is to activate the attachment system. The idea is that different behaviors will

be exhibited by an infant depending on where he/she is on the attachment spectrum. An ex-

pert then review the interaction through a video for these attachment-related behaviors and

and classify the infant attachment into one of three categories: secure, insecure-avoidant

and insecure-resistant.

The Strange Situation is an excellent test scenario for showcasing the power of having

dense measure of proximity since it is designed based on the theory that infant attach-

ment security will affect the balance between attachment behaviors (wanting to be close

to the caregiver) and exploration behaviors (wanting to explore the environment) when the
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attachment system is stressed. It is clear that a measure of infant-caregiver proximity di-

rectly relates to the attachment and exploration behavior. However, currently an objective

measure of proximity is not being taken into account by experts when producing the final

attachment classification even though early study of the Strange Situation incorporated a

coarse measure of proximity [8]. One reason for this might be due to the difficulty in ob-

taining accurate, continous measure of proximity from human observation. Instead, current

practice of assigning attachment classification for The Strange Situation involves a complex

guide based on qualitative behavioral observation. The main problem with this approach is

that training a human to be able to code for these behaviors reliably is both time consuming

and expensive (e.g. The University of Minnesota Strange Situation training takes at least a

full week [2]).

In this chapter I will demonstrate that dense measure of infant-mother proximity can

be used to predict expert’s infant attachment classification in the Strange Situation. This

finding can be seen as the first step towards an objective, quantitative way to analyze social

interactions. In addition, another benefit of having a low-level quantitative measure is that

the data can be easily teased apart in some new way, allowing for a convenient way to test

for new hypothesis. Towards that end, in this chapter I will also demonstrate how we can

use the proximity measure to test for new hypothesis on the Strange Situation.

5.2 Dataset

I collaborated with The Early Play and Development Laboratory at the University of Miami

to collect several recordings of The Strange Situation. The procedure is executed in a 9× 9

square-foot room. Within the room, there are two chairs for the adults (the stranger and the

caregiver) to sit on, and also a set of toys for the infant to play with. The room is instru-

mented with 4 Kinect cameras (see Figure 17 to capture RGBD videos of the interaction.

The videos were recorded with spatial resolution of 640× 480 pixels and temporal resolu-

tion of 25 frames-per-second. The dataset comprised of 34 fully recorded, and 1 partially
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recorded session of the Strange Situation procedure from 35 different infants (each infant

only did the procedure once).

(a) View 1 (b) View 2

(c) View 3 (d) View 4

Figure 17: Four Kinects capturing The Strange Situation.

5.2.1 The Strange Situation Procedure

Before moving forward, I will now briefly explain the procedure of The Strange Situation

[8]. The Strange Situation is designed to elicit a wide range of behaviors pertinent to

attachment and exploration by bringing an infant through a situation of novelty and alarm

in a laboratory setting. There are 4 individuals involved in this procedure: the mother (M),

the baby (B), the stranger (S) and an observer (O). The interactions in The Strange Situation

comprise of eight standard episodes (same order is followed for all subjects). The procedure

is designed in such a way that it is novel enough to elicit exploratory behavior, but at the

same time not so strange that it causes a high degree of fear to the infant. Following is the
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8 episodes in The Strange Situation (visual illustration can be seen in Figure 18):

1. Episode 1 (M, B, O). Mother accompanied by an observer carried the baby into the

room, then the observer left.

2. Episode 2 (M, B). Mother put the baby down in the specified place, then sat quietly

in her chair, participating only if baby sought her attention. Duration 3 minutes.

3. Episode 3 (S, M, B). A stranger entered, sat quietly for 1 minute, conversed with the

mother for 1 minute, and then gradually approached baby, showing him a toy. At the

end of the third minute, the mother left the room unobtrusively.

4. Episode 4 (S, B). If baby was engaged in play, the stranger was nonparticipant. If

the baby was inactive, the stranger tried to interest him in the toys. If the baby was

distressed, the stranger tried to distract him or to comfort him. If the baby could not

be comforted, the episode was curtailed — otherwise it lasted 3 minutes.

5. Episode 5 (M, B). Mother entered, paused in the doorway to give the baby an oppor-

tunity to mobilize a spontaneous response to her. The stranger then left unobtrusively.

What M did next was not specified — except that she was told that after baby was

again settled in play with the toys, the mother was to leave again.

6. Episode 6 (B alone). The baby was left alone for 3 minutes, unless he was so dis-

tressed that the episode had to be curtailed.

7. Episode 7 (S, B). The stranger entered and behaved as in episode 4 for 3 minutes.

8. Episode 8 (M, B). The mother returned, the stranger left, and after the reunion had

been observed, the situation was terminated.

These episodes were arranged so that the less disturbing ones (from the infant’s per-

spective) came first. As a whole, the procedure is intended to be no more disturbing than

what an infant might encounter daily. The goal of The Strange Situation is to activate the
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(a) Episode 1 (b) Episode 2

(c) Episode 3 (d) Episode 4

(e) Episode 5 (f) Episode 6

(g) Episode 7 (h) Episode 8

Figure 18: The eight episodes in The Strange Situation.
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attachment system by putting the baby through a period of separation from the mother

(episode 4, 6 and 7). The basic idea is that when the baby feels stressed, his attachment

behavior is likely to be activated. As the mother comes back into the room (episode 5 and

8), the baby then will elicit certain behaviors to gain back a sense of security which then

allows the exploratory system to be activated by the novel environment. In the attachment

literature, this phenomenon is termed ”using the mother as a secure base from which to

explore.” As such, when classifying The Strange Situation, an expert typically focus more

on the two reunion episodes (episode 5 and 8). Similarly, in this work I focus on analyzing

the infant-mother interactions during the two reunion episodes through the lens of a dense

proximity measure.

5.2.2 Expert Ratings in The Strange Situation

After the procedure has been run, an expert then performs a detailed coding of the infant

behaviors for each of the two reunion episodes by referring to the video recordings. There

are four classes of behaviors scored by the expert on The Strange Situation: proximity-

seeking, contact-maintenance, interaction-avoiding, and contact-resisting. The coding is

done on a 7-point scale based on the assumption that the infant might exhibit the each

behaviors with different intensities. Following is a brief description of the four classes of

behaviors:

1. Proximity-seeking. The intensity, promptness and persistence of the babys efforts to

gain contact to caregiver.

2. Contact-maintenance. Degree of activity and persistence in baby’s efforts to maintain

contact with mother once contact has been gained.

3. Interaction-avoiding (avoidant). Intensity, persistence, duration and promptness of

the baby’s avoidance of proximity and interaction, even across a distance.
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4. Interaction-resisting (resistant). Intensity and frequency or duration of resistant be-

havior during contact.

The behaviors above are considered as the ingredients of the infant attachment in the

Strange Situation. There are a lot of factors that an expert has to consider when assigning a

rating for these behaviors during each of the reunion episodes. Also, the difference between

the ratings are sometimes subtle and hard to define precisely. For example, differentiating

a 7 and a 6 in the rating scale often involves determining whether a particular action by

the infant is deemed as very active as opposed to just active. This makes assigning a rating

reliably to these behaviors difficult. In fact, a coder will have to go through at least a

week-long training to become an expert [2]. In this work, I hypothesize that by looking at

infant-mother proximity, a purely objective quantity derived directly from video data, we

can accurately replicate the expert rating for these attachment behaviors. I will describe

how this can be done in Section 5.4.

After performing a detailed coding of the attachment behaviors, an expert then infers

the attachment security classification of the infant. The infant attachment can be classified

into three groups: A (insecure-avoidant), B (secure) and C (insecure-resistant). Note that

as described in Ainsworth’s Patterns of Attachment [9] and Fraley and Spieker [49], there

is no straight mapping between the rating of the attachment behaviors and the attachment

classification. Rather, these behaviors only serve as a guide for the expert to make the final

judgment on the classification. The basic idea is that coding these behaviors informs the

expert for making the right classification. Following are some excerpts from the criteria for

attachment classification as outlined in Ainsworth’s Patterns of Attachment:

• Group A. ”Conspicuous avoidance of proximity to or interaction with the mother in

the reunion episodes. If there is approach, the baby tends to mingle his welcome

with avoidance responses–turning away, moving past. Little or no tendency to seek

proximity to or interaction or contact with the mother.”
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• Group B. ”The baby wants either proximity and contact with his mother or interaction

with her, and he actively seeks it. The baby responds to his mother’s return in the

reunion episodes with a tendency to approach. Little or no tendency to avoid his

mother in the reunion episodes.”

• Group C. ”The baby displays conspicuous contact- and interaction-resisting behavior.

He also shows moderate-to-strong seeking of proximity and contact and seeking to

maintain contact once gained.”

Assigning an attachment classification involves analyzing a lot of fine details on the

behaviors during the reunion episodes. Therefore, producing a reliable classification re-

quires a lot of training and experience. It is not uncommon for an expert to ask for a

second opinion when assigning a classification. Looking at the description of the different

attachment groups, we certainly get a sense that infant-mother proximity plays a big role

in discriminating the groups. Similar to previously, I hypothesize that we can use infant-

mother proximity during the reunion episodes, a fully objective measure obtained directly

from video data, to produce attachment classification in the Strange Situation (Section 5.4).

5.3 Extracting Dense Measure of Infant-Mother Proximity from Kinect
Recordings

I use the distance between the baby’s and the mother’s head as the measure of infant-mother

proximity. There are two reasons for choosing head as the target: 1) It is is easier to track

compared to other body parts. The shape of the head is always approximately ellipsoid

independent of the viewpoint of the camera. This facilitates easy detection and tracking;

2) Knowing the 3D location of the head allows an easy way to identify certain events such

as discriminating between whether an infant is crawling, walking or being carried by the

mother (this can be done easily by looking at both the height of the head with respect to the

floor and the proximity between infant’s and mother’s head.

The first step that I did to obtain a temporally-dense measure of infant-mother proximity
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from the multi-view Kinect recordings is to track the head of the infant and the mother in

the videos. The 2D head tracking result will later be used as a way to determine the 3D

position of the heads, so the tracking needs to be done with high precision. Performing high

precision tracking fully-automatically is not possible with the current state of computer

vision technology due to the challenging nature of the tracking problem in this setup: 1)

The head can disappear/reappear at any point in the recordings (Figure 19(a)); 2) The head

can be heavily occluded in the video (Figure 19(b)); and 3) There can be a wide variation

in the appearance of the head at various time points in the video (Figure 19(c)). To obtain

high precision tracking of the heads, I use the interactive tracking framework that I have

developed in Chapter 4. An example of the tracking result can be seen in Figure 5.3.

(a) Object reappear (mother entering the
scene).

(b) Infant head heavily oc-
cluded.

(c) Wide variation in the appearance of the head.

Figure 19: Challenges in tracking the head of the infant and the mother in The Strange
Situation.

In order to extract the 3D head location from the 2D tracking result, we first need to map

the point cloud recorded from the four Kinect cameras to a single global coordinate system.
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Figure 20: Interactive tracking result.

To do this, I do a one-time calibration to compute the 3D rigid transformation (6 degrees of

freedom: 3D rotation + translation) between the coordinate system of the different Kinects.

The first step of this calibration process is to identify a number of common physical points

in the image captured from the 4 Kinect cameras (a minimum of 2 points are required to

compute the 3D rigid transformation). To be robust to the noise in the Kinect point cloud

data, the transformation between the different Kinects is computed by using at least 24

point correspondences that are identified manually. Using the point correspondences, the

3D rigid transformation is computed by using the Singular Value Decomposition (SVD)

method [11] which has been shown to be more stable than the other methods such as the

Orthonormal Matrices (OM) and the Dual Quaternions (DQ) [41]. An example of a fused

point cloud data from the multiple Kinects can be seen in Figure 21.

Once we have mapped the data from the multiple Kinects into a common frame of

reference, we can automatically track the infant’s and the mother’s head location in 3D by

making use of the video head tracking result that have been obtained previously. The steps

to track the head in 3D is as follow:

1. Get the 3D template of the head. In this work, I model the heads as spheres with

circumference of 45cm for the baby and 55cm for the mother (those two numbers

represent the 50th percentile of an infant and a female head circumference in the

population [48, 25]).
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Figure 21: Fused point cloud data from multiple Kinects.

2. Compute the initial guess for the location of the head in 3D by fitting the head tem-

plate to the set of point clouds that fall within the bounding box obtained from the

2D tracking result. To do the template fitting, I use the Iterative Closest Point (ICP)

with robust outlier rejection [176] to make the fitting process robust to background

noise and partial occlusion of the head.

3. Compute final estimate of the head location in 3D by using Kalman filter [77], treat-

ing the location of the head obtained in the previous step as the observation of the

system. Note that the estimate for the 3D head location computed form the previous

step can be noisy due to factors such as heavy occlusions. A known technique in

tracking to address this problem is to use Kalman filter as a way to account for noise

in the observation and smooth the tracking result. In this work, I use the standard lin-

ear Kalman filter with constant velocity assumption which has been shown to work

well for tracking people [19]. An example of the 3D tracking result can be seen in

Figure 22.

Finally, to compute the dense (25 frames-per-second) proximity measure between the

infant and the mother, I simply compute the distance between the 3D location of the heads.

An example of the proximity plot during a single reunion episode can be seen in Figure
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Figure 22: 3D tracking result (red circle: mother’s head, green circle: baby’s head).

23. In summary, I use the following four steps to obtain a dense measure of infant-mother

proximity from the multi-view Kinect recordings:

1. Track the infant and the mother’s head in image plane (Figure 5.3).

2. Map the point cloud obtained from the different Kinects to a single global coordinate

system (Figure 21).

3. Track the heads in 3D by making use of the result of the previous two steps (Figure

22).

4. Compute the distance between the infant’s and the mother’s head in 3D (Figure 23).

5.4 The Strange Situation Through The Lens of Infant-Mother Prox-
imity

The goal of The Strange Situation is to activate the baby attachment system to a high level

through a period of separation with the mother to elicit a wide range of attachment and

exploratory related behaviors. The theory that underlies this procedure is that the state of

being attached, together with the presence of the attachment object (i.e. the caregiver), may

support and facilitate exploratory behavior. Therefore, by observing the infant’s behaviors
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Figure 23: Infant-mother proximity during a reunion episode.

during the reunion episodes (a period where the infant attachment system is likely to be

activated), an expert then can look for patterns in the attachment behaviors and classify

the baby attachment into three groups: A (insecure-avoidant), B (secure) and C (insecure-

resistant).

In this work I posit a new way to analyze attachment behaviors by using infant-mother

proximity, an objective measure derived directly from video data. To validate this new mea-

sure, I will show that we can use it to predict both the expert’s ratings for the 4 attachment

behaviors (proximity-seeking, contact-maintenance, resistant and avoidant) and the expert

attachment classification. Though simple, infant-mother proximity is a very rich measure.

It can tell us periods when the baby is in close contact with the mother, moments when

the baby is actively approaching the mother, the baby’s locomotion when the mother is

approaching him, and many other behavioral events that are relevant for analyzing infant-

mother attachment. To use this measure for predicting the rating of attachment behaviors

and attachment classification, I first need to reduce it into a set of features. This process is

akin to designing features for audio classification (deriving features from a 1d signal). The

features should be designed in such a way that they capture many of the attachment-relevant

behaviors exhibited by the infants during the Strange Situation. Based on the description

of both the attachment classification and attachment behaviors in Ainsworth’s Patterns of
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Attachment, I formulate the following feature set:

1. Contact time: The length of time (in seconds) that the baby is in close contact to

the mother. I define contact as whenever the baby’s head is within an arm’s length

(80cm) of the mother’s head. This feature will speak to whether contact is achieved

during the reunion, and for how long. We expect that baby in the A group will have

a low or zero contact with the mother, baby in the B group will have medium to high

amount of contact, and baby in the C group will have a high amount of contact due

to the unsuccessful attempt by the mother to sooth the baby.

2. Proximity change: Change in infant-mother proximity (in meters) that is caused by

the baby’s locomotion during the first 5 seconds of the reunion episode. A securely

attached baby is more likely to respond to the mother’s return by actively approaching

the mother. The intensity and persistence of the approach will be captured by this

feature.

3. Contact initiation: The number of times the baby makes an effort to achieve contact.

An instance of contact can be initiated by the baby, the mother or both. To capture the

baby’s effort, I look at the 5 second time window before contact is achieved and look

whether the baby is actively moving towards the mother within that time window. I

give a 0 or 1 score to the baby for each instance of contact.

4. Exploration initiation: The number of times the baby actively moves away from the

mother after contact. The theory of the balance between attachment and exploratory

system suggests when attachment system is activated to a high degree, the main goal

for the infant would be to gain close contact to the mother. However, as the infant

feels more secure, the attachment system will go to a lower activation state which

allows the novel feature of the environment to activate the exploratory system. This

can manifest in the baby being comfortable enough to gradually move away from the

mother to explore the environment. This feature will capture this behavior.
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5. Approach initiation: The number of times the baby is actively moving closer towards

the mother. Approach behavior is one of the important elements that expert pays

attention to when assigning ratings for attachment behaviors and attachment classi-

fication. For example, the baby’s approach behavior is one of the key factors in in

determining the rating for the proximity-seeking and avoidant behavior.

6. Positive response to mother approach: The number of times the baby is actively

moving closer towards the mother whenever the mother is approaching the baby. For

every single instance of mother approach, I increment the value of this feature if

the baby is responding by locomoting towards the mother. This feature along with

two other features (neutral/negative response to mother approach) are intended to

capture the baby’s response to the mother’s attempt in gaining proximity, which is an

important factor in determining the baby’s attachment classification.

7. Neutral response to mother approach: The number of times the baby stays relatively

at the same place whenever the mother is approaching the baby. For every single

instance of mother approach, I increment the value of this feature if the baby is

responding by ignoring (by not moving closer or further) the mother.

8. Negative response to mother approach: The number of times the baby is actively

moving away from the mother whenever the mother is approaching the baby. For

every single instance of mother approach, I increment the value of this feature if the

baby is responding by avoiding (moving away) from the mother.

9. Baby being carried time: The length of time (in seconds) that the baby is being

carried by the mother. I determine whether the baby is being carried or not by looking

at the height of the baby’s head with respect to the floor. If the height is above

a certain threshold (90 cm), that means the mother is carrying the baby. This is

significant in the Strange Situation since being carried usually indicates that the baby

is crying. A high value for this features indicates that the baby is taking a long time
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to use the mother to regulate his feelings and gain back a sense of security after being

away during the period of separation.

10. Mean distance between baby and mother: Average distance between the baby and the

mother during the whole reunion episode. This feature captures the overall proximity

profile between the baby and the mother (i.e. whether the baby overall stays relatively

close or far from the mother during the reunion).

In the following sections I will use the above feature set for the task of predicting the

rating of attachment behaviors and attachment classification.

5.4.1 Predicting Rating of Attachment Behaviors Using Infant-Mother Proximity

As the first step in showing the usefulness of my proximity measure, I will demonstrate that

this measure can be used to predict expert’s rating for the 4 attachment behaviors in The

Strange Situation. Looking at the detailed description on the rating system in Ainsworth’s

Patterns of Attachment, one certainly gets a sense that infant-mother proximity plays a big

role in determining these ratings. For example, following is the description for a rating of 7

in proximity-seeking: ”The baby purposefully approaches the adult, creeping, crawling, or

walking. He goes the whole way and actually achieves the contact.” Contrast this with the

description for a rating of 2 in proximity-seeking: ”The baby begins to approach but stops,

having gone only a short way.” Indeed, various distance-related events such as approach,

contact, and move away are used as a way to describe the baby’s behavior not only for the

proximity-seeking dimension, but also for the other three categories (contact-maintenance,

resistant, and avoidant). It is only natural that we should be able to use this proximity

feature to predict these ratings.

To further illustrate this point, I contrast the proximity profiles for each of the attach-

ment behaviors in Figure 24. In Figure 24(a) we can easily see that the babies that are
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assigned high score in proximity-seeking show a period of active approach preceding con-

tact with the mother. In contrast, the babies with low proximity-seeking score show mini-

mal contact, and even when contact happened it is not preceded by an approach behavior.

In Figure 24(c), the babies with high resistant score spend almost the entire length of the

reunion episode in close contact with the mother, regardless of whether this contact is pre-

ceded by baby approach behavior or not. On the opposite end of the spectrum, we can see

that babies with low resistant score are willing to be away from the mother for a significant

period of time. Similar contrast can also be observed in the contact-maintenance and re-

sistant behaviors. Note how infant-mother proximity measure allows us to easily produce

visualization that can give us a quick way to get an overview of what is happening during

a reunion episode.

In addition to being useful for visualization purpose, we can also use the proximity

measure for predicting the expert rating of the attachment behaviors. I formulate this task

as a linear regression problem where the task is to learn a linear mapping between the

features derived from proximity (as described in Section 5.2.2) to the expert rating for each

of the attachment behaviors. Let yji be the expert rating for behavior j during reunion

instance i, and xi = [xi1 . . . xi10]
T be the 10 dimensional feature vector derived from the

proximity measure of reunion instance i. The task is to learn a linear mapping βj for each

of the attachment behavior j such that:

yji = βTj

 1

xi

+ εji (17)

where εji is all other factors which influence the expert rating yji other than the our proximity-

derived features xi.

The problem of computing the linear mapping βj between the proximity features xi

and the behavior rating yji can be solved by using linear regression. For this work, I use the

iterative reweighted least-squares method [60] that has been shown to be robust to outliers.
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(a) Proximity-seeking. Left: low (≤ 2), right: high (≥ 5).
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(b) Contact-maintenance. Left: low (≤ 2), right: high (≥ 5).
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(c) Resistant. Left: low (≤ 2), right: high (≥ 5).
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(d) Avoidant. Left: low (≤ 2), right: high (≥ 5).

Figure 24: Contrasting infant-mother proximity profiles in two opposite ends of the rating
scales for the different attachment behaviors. Highlighted in green are periods of close
contact with the mother, blue are moments when the baby is approaching the mother, and
magenta are instances when the baby is moving away from the mother. Note the contrast
in the proximity profile with respect to the ratings.
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In this experiment I use the 34 fully-recorded sessions of The Strange Situation proce-

dure. Since each session comprises of 2 reunion episodes, in total there are 68 datapoints

for each of the attachment behaviors. The distribution of the ratings for the different behav-

iors can be seen in Figure 25. Note the change in the distribution of the ratings in reunion

2 (R2) compared to reunion 1 (R1). A likely cause for this is that the attachment system

is more likely to be activated at a higher level during R2, so the infants tend to show a

more pronounced attachment behaviors. I will discuss this further about this phenomenon

in Section 5.4.2 when analyzing attachment classification.

To see whether we can indeed use the features extracted from the proximity measure to

predict expert attachment behavior ratings, I compute the linear mapping βj for each of the

the attachment behavior j using all 68 datapoints. Using the βj we can easily compute our

rating prediction:

ŷji = βTj

 1

xi

 (18)

Note that the difference between the true expert rating yji (Eq. 17) and the predicted

rating ŷji above is simply the noise term eji . If the expert rating solely depends on proximity,

the value of this variable should be close to 0. If infant-mother proximity is a major factor

in determining the rating, the value for this noise term should be small.

To evaluate how well the linear regression model matches the expert rating, I compute

the Pearson correlation coefficient (r-value), mean absolute difference (MD) and standard

deviation (SD) between the expert rating yji and the rating obtained by using the linear

mapping ŷji (Table 7). The results indicate that my predicted rating matches closely with

expert rating for all attachment behaviors. This is shown by the statistically significant

correlation value accompanied with low MD and SD. This results confirm my hypothesis

that infant-mother proximity is a big factor that influences the expert rating.

Next, I perform an ablation experiment to investigate the significance of each individ-

ual features in predicting these expert ratings. I trained a linear regression model without
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Figure 25: The distribution of expert ratings for the different attachment behaviors. Note
the noticeable difference in the distribution between reunion 1 (R1) and reunion 2 (R2)
indicating a change in the trend of the behaviors.

79



Table 7: Pearson correlation coefficient (r-value), mean absolute difference (MD) and
standard deviation (SD) between the expert rating yji and the rating obtained by using the
linear mapping ŷji . ** indicates highly statistically significant results (p < 0.01). The linear
regression model is learned using all 68 datapoints.

Variable r-value MD SD
Proximity-seeking - Reunion 1 0.780** 1.154 1.344
Proximity-seeking - Reunion 2 0.610** 0.990 1.281
Contact-maintenance - Reunion 1 0.790** 0.896 1.092
Contact-maintenance - Reunion 2 0.826** 0.996 1.136
Resistant - Reunion 1 0.626** 0.464 0.702
Resistant - Reunion 2 0.595** 0.929 1.252
Avoidant - Reunion 1 0.699** 0.727 0.946
Avoidant - Reunion 2 0.706** 0.552 0.738

using the target feature and calculate the p-value of the difference in the F-statistic of the

ratings obtained with and without using the target feature. The results can be seen in Table

8. From the table, we can see that different features contribute differently in predicting the

ratings. For example, the feature proximity change (change in infant-mother proximity that

is caused by the baby’s locomotion during the first 5 seconds of the reunion episode) play

a significant role in determining the proximity-seeking, resistant, and avoidant ratings, but

not contact-maintenance (p > 0.1). Intuitively, this aligns with how an expert is supposed

to rate the contact-maintenance behavior, which is by observing the infant’s efforts to main-

tain contact with mother once contact has been gained, and not by observing the change in

proximity during the early moments of the reunion. Having said that, interpreting the re-

sults in Table 8 should be done with care. Since many of the features are correlated, it does

not necessarily mean that a feature with p > 0.1 is not important for predicting a particular

rating.

The previous set of experiments show that we can learn a model that maps these quan-

titative features to the expert ratings. Although the finding is encouraging, it is not a true

prediction task since the linear mapping βj that is used to produce the prediction ŷji is

learned using the expert rating yji . In the prediction problem, the task is to produce the
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Table 8: p-value of the difference in the F-statistic of the ratings obtained with and without
using a particular feature.

Feature Prox.-seeking Contact-maint. Resistant Avoidant
Contact time 0.766 0.100 0.216 0.061
Proximity change 0.003 0.559 0.058 0.001
Contact initiation 0.051 0.850 0.889 0.039
Exploration initiation 0.559 0.636 0.544 0.248
Approach initiation 0.837 0.361 0.355 0.228
Positive response to mother approach 0.765 0.725 0.072 0.816
Neutral response to mother approach 0.207 0.618 0.091 0.889
Negative response to mother approach 0.851 0.061 0.137 0.615
Baby being carried time 0.100 0.803 0.271 0.698
Mean infant-mother distance 0.014 0.045 0.727 0.823

prediction without having access to the groundtruth of the testing data during the training

phase. In this next experiment, I use the leave-one-subject-out experiment setup where for

each i, I learn βij using training set that comprises of reunions from all subjects other than

the target subject, effectively reducing the number of datapoints from 68 (34subject × 2)

to 66 (33subject × 2). The results of this experiment can be seen in Table 9. Although

the accuracy is not as high as before, the numbers still indicate that the prediction matches

closely with the expert ratings (significant correlation between ŷji and yji accompanied with

low MD and SD). This combined with the previous results demonstrate that it is indeed

possible to predict this qualitative expert ratings by using solely objective measure. Al-

though there are definitely a number of other behavioral cues used by expert in determining

these ratings (e.g. reach-in hand gesture), infant-mother proximity captures a large part of

the differences in these ratings. Augmenting proximity with other behavioral feature will

certainly help in producing a more accurate prediction system.

5.4.2 Predicting Attachment Classification Using Infant-Mother Proximity

After demonstrating that we can use the proximity measure to predict expert rating for

attachment behaviors, in this Section I will show that we can also use this measure to dis-

criminate the 3 attachment groups: insecure-avoidant (A), secure (B) and insecure-resitant
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Table 9: Pearson correlation coefficient (r-value), mean absolute difference (MD) and
standard deviation (SD) between the expert rating yji and the rating obtained by using the
linear mapping ŷji in the leave-one-subject-out experiment setup. ** indicates highly sta-
tistically significant results (p < 0.01). The linear regression model for each ŷji is learned
using 66 datapoints (all reunions except for the target subject).

Variable r-value MD SD
Proximity-seeking - Reunion 1 0.614** 1.446 1.719
Proximity-seeking - Reunion 2 0.444** 1.285 1.577
Contact-maintenance - Reunion 1 0.689** 1.127 1.384
Contact-maintenance - Reunion 2 0.693** 1.327 1.504
Resistant - Reunion 1 0.442** 0.758 1.210
Resistant - Reunion 2 0.326* 1.301 1.735
Avoidant - Reunion 1 0.454** 0.939 1.225
Avoidant - Reunion 2 0.453** 0.792 1.058

(C). For this experiment, I use the same 10 features as I did in the previous rating prediction

experiment. The dataset that I use for this experiment comprises of 34 fully-recorded ses-

sions and 1 partially-recorded session (only contains reunion 2) of The Strange Situation.

Out of the 34 fully-recorded sessions, 1 infant is classified in the A group, 27 are in the B

group and 6 are in the C group. The one infant in the partially-recorded session is classified

to be in the A group. Note that this dataset is highly unbalanced reflecting the real-world

distribution of these three classes [9], where the B group significantly outnumbers the other

two groups.

First, I want to see whether the three attachment groups can be perfectly separated

in the proximity feature space. It has been noted in Ainsworth’s Patterns of Attachment

[9] and Fraley and Spieker [49] that the three attachment groups are not perfectly linearly

separable by their attachment behavior ratings, which is why there exists no direct mapping

between expert behavior rating and attachment classification. To see whether the three

groups are linearly separable in the proximity feature space, I train a support vector machine

(SVM) model with linear kernel using all 34 datapoints from the fully-recorded sessions.

Each session is represented by a 20 dimensional proximity-derived feature (10 from each
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reunion). Given a training data, SVM finds a hyperplane that best separates the different

classes in the feature space. Therefore, 100% training accuracy in SVM means that the

three classes are linearly separable in the feature space. The results of this experiment

can be seen in Table 10. The table shows that the three classes are linearly separable

(100% training accuracy) in my proximity-derived feature space. This is a very encouraging

result since it means that the proximity-derived features that I propose fully encodes the

differences in behaviors of the infants with respect to the attachment classification in the

34 Strange Situation sessions that I examine.

To investigate the informativeness of each individual feature, I perform another set

of experiments to look at the training accuracy if the model is limited to only use a single

feature (Table 10). Notice how none of the individual features can separate the three classes

perfectly. Some features such as approach initiation, positive response to mother approach,

and mean infant-mother distance is sufficient for differentiating the avoidant group from the

rest (82.35% training accuracy). However, most individual features are unable to separate

the 27 infants in the secure (B) group and the 7 in the insecure (A and C) groups, resulting

in all infants being lumped together in a single group (79.41% training accuracy). Only by

combining the features we can achieve perfect separation between the three groups.

Next, I perform an experiment to see which reunion episodes is most informative in

separating the three attachment groups. It has been hypothesized that the infant attachment

behavior is more pronounced during the second reunion since the infant attachment system

is more likely to be activated to a higher level then. We have seen some evidence of this by

comparing the distribution of the expert behavior rating in Figure 25. To further test this

hypothesis, I perform an experiment to see whether we can separate the three attachment

groups using features only from the individual reunion (i.e. features from R1 or R2 only).

The results of this experiment can be seen in Table 11. It is very interesting to see that

features extracted for reunion 1 poorly separate the three attachment groups, only achiev-

ing 85.3% training accuracy. This lends support to the hypothesis that during reunion 1,
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Table 10: Training accuracy using various proximity-derived features to predict attach-
ment classification. Accuracy of 100% means that the classes are linearly separable in the
feature space.

Feature Accuracy
Contact time 79.41%
Proximity change 79.41%
Contact initiation 79.41%
Exploration initiation 79.41%
Approach initiation 82.35%
Positive response to mother approach 82.35%
Neutral response to mother approach 79.41%
Negative response to mother approach 79.41%
Baby being carried time 79.41%
Mean infant-mother distance 82.35%
All combined 100%

Table 11: Training accuracy using features extracted from the individual reunions. Note
how the features from reunion 1 are not very discriminative for the task of attachment
classification.

Classification Features
Reunion 1 only Reunion 2 only Both reunions

Insecure-Avoidant (A) 1/1 1/1 1/1
Secure (B) 26/27 27/27 27/27
Insecure-Resistant (C) 2/6 6/6 6/6
All 29/34(85.3%) 34/34(100%) 34/34(100%)

the attachment system for some of the infants is not yet activated to a high level. This

causes their attachment behaviors to be more muted during this reunion episode [9]. My

proximity-derived features, which are designed to encode these attachment behaviors, cap-

ture this effect by showing less clear separation between the three groups compared to the

results from reunion 2.

After showing that the three attachment groups are linearly separable in my proximity-

derived feature space, I will now demonstrate the performance of my features for the task
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Table 12: Attachment classification prediction accuracy using leave-one-subject-out train-
ing setup.

Classification Accuracy
Insecure-Avoidant (A) 1/2
Secure (B) 26/27
Insecure-Resistant (C) 3/6
All 30/35(85.7%)

of attachment classification prediction. For this task, I decided to only use features from re-

union 2 since I have previously shown that this is sufficient for separating the three groups.

Furthermore, by using only data from R2, I can now include the one session that is missing

the R1 data. Similar to the previous setup for rating prediction, in this experiment I use the

leave-one-subject-out experiment setup. The results from this experiment can be seen in

Table 12. Notice that although my features are still able to produce very good accuracy for

classifying the B group, on the surface they seem to perform poorly for the other groups.

However, note that the size of the groups are very imbalanced where the A and C group

only has 2 and 6 datapoints respectively. This means that in the leave-one-subject-out ex-

periment setup, these groups will suffer the most from the reduction of datapoint during

training. Having said that, the results of this experiment is still very encouraging since we

are still able to correctly classify 30 out of the 35 datapoints.

5.5 Conclusions

The measure of physical distance is central in many studies in psychology. In this chapter

I have demonstrated how we can move away from the traditional qualitative analysis of in-

teraction by using a dense measure of proximity to deconstruct these complex, qualitative

expert ratings. More specifically, I have shown how we can apply this measure to the prob-

lem of analyzing interaction between an infant and a mother in the context of an attachment

study in The Strange Situation procedure. I validated this new measure by showing that we

can use it to predict qualitative expert ratings, a quantity that is difficult to obtain due to the
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difficulty in training the human expert. I have also showed that we can use this measure to

answer for new hypotheses that one might have about social interactions. For example, by

comparing how well we can separate the three attachment groups in the proximity feature-

space using features from reunion 1 and 2, I have added a new evidence to the hypothesis

that infants tend to exhibit a more pronounced attachment behaviors in reunion 2 in The

Strange Situation. Compared to expert rating, my proximity measure is easier to obtain

since it does not require expert training and can be derived automatically from video data

(given tracking output). This can potentially impact how researchers study and analyze

social interactions.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Videos have long been used by researchers and clinicians to assist in human behavior un-

derstanding. However, extracting useful behavioral measures from video data is often a

difficult endeavor since it typically scales linearly with the length of the video and has to

be done with painstaking attention to detail by a human expert. Despite this, more and

more behavioral studies heavily incorporate videos in their analysis pipeline. For example,

studies on infant locomotion [5, 6], preferential looking in individuals with autism [81, 71],

and infant attachment [18, 43] base their findings on certain behavioral measures that are

extracted from the recorded videos. The rapid growth of video data in this context com-

bined with the time-intensive nature of the behavioral measure extraction process certainly

create a data processing problem. It is not uncommon for an institution that heavily uses

videos for behavioral research to have a backlog of years of unprocessed video data. This

underscores the importance of better tools that can be used to assist in the extraction of

useful behavioral measures from video data.

6.1 Summary

In this thesis, I address this problem by introducing two distinct approaches. The first one

is a new method that can be used to assist the process of retrieving instances of a class of

behaviors in a large video collection. A faster way to search for a certain target behavior

in a video collection provides a tremendous value in many situations. One example that I

focus on in this thesis is the task of retrieving instances of problem behaviors in individuals

with autism. With the constantly changing landscape of problem behaviors, the ability to

quickly retrieve additional examples of a problem behavior given one, or very few exam-

ples is valuable to aid the clinicians in understanding the behavior (e.g., in the context of
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behavioral therapy). I have demonstrated that my approach achieves state-of-the-art results

in this real-world task of behavior retrieval from videos recorded in a classroom setting.

The second approach that I introduce is a novel way to adapt the cost function in inter-

active object tracking. A lot of behavioral phenomena can be derived from a continuous

measure of object location (i.e. tracking). I have demonstrated that we can obtain high

precision tracking results more efficiently (fewer human annotations) by leveraging user

annotations to adapt the tracking cost function. Furthermore, I have also showed that we

can use this tracking results to quantitatively analyze interaction through the measure of

proximity. I have demonstrated how this quantitative proximity measure can be used to an-

alyze the interaction between an infant and a mother in the context of The Strange Situation

procedure, in contrast to the traditional human-based qualitative ratings.

6.2 Future Work

The aim of the approaches introduced in this thesis is to facilitate faster extraction of useful

behavioral measures from video data through behavior retrieval and object tracking. There

are a number of future work that can be done to further realize this goal.

6.2.1 Visualizing the Behavior Retrieval Results

The main goal of a behavior retrieval system is to provide a user the ability to quickly

find other instances of a target behavior. From the algorithmic side, this means building a

system that obtains high precision results at high recall, which is the problem that I address

in Chapter 3. However, no retrieval method can obtain 100% precision at 100% recall.

This means that a user will still have to sort through the search results to filter out the false

positives. There is very little work that has been done on this problem. A common way

to present video search results is by visualizing it as a list accompanied by a thumbnail

image taken from a particular frame in the video (e.g., YouTube search results). However,

this approach will not work for the behavior search problem since many behaviors are

characterized by movements instead of a single canonical pose (e.g., it will be very hard to
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differentiate body rocking from sitting from just a single image). Playing the search results

one at a time seems inefficient but on the other hand, playing many of them in a single

page might overload the user’s cognitive system. An effective way to present the behavior

search results to the user will greatly improve the efficiency of a behavior retrieval system.

6.2.2 Interactive Multi-Object Tracking

Many videos contain more than a single object. Currently, most published work on interac-

tive tracking [24, 161, 152, 151] focus on single object tracking. Tracking multiple objects

in a video using any of these systems entails a repeated process of tracking a single object.

There is very little study on how to efficiently track multiple objects in an interactive set-

ting. From the user’s perspective, Vondrick et.al. [151] find that simply asking the user to

annotate all of the objects in a current frame overloads the user’s cognitive system, result-

ing in a slower user performance compared to asking the user to just focus on annotating

one object at a time. However, it seems unlikely that this is the most optimal way to ask

for user annotation in interactive multi-object tracking. A potentially promising approach

would be to selectively pick the set of objects for the user to annotate in a given frame,

which is a middle ground to asking to annotate just a single object or all of the objects.

From the algorithmic perspective, a formulation that allows for an efficient way to opti-

mize multiple object tracks simultaneously can improve the accuracy of the tracking results

(and as a direct consequence, the system will require fewer human annotations which is the

desired property of an interactive system). The dynamic programming single object track-

ing formulation first presented by Buchanan and Fitzgibbon [24] has been adopted by many

interactive tracking approaches [161, 152, 151] because of its efficiency while still guar-

anteeing optimality of the results. An approach with the same property but for multiple

objects setup will have a big impact on this problem.
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