
DISTRIBUTED COMPUTATION IN NETWORKED

SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Zak Costello

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2016

Copyright© 2016 by Zak Costello

DISTRIBUTED COMPUTATION IN NETWORKED

SYSTEMS

Approved by:

Dr. Magnus Egerstedt
Professor, School of ECE
Georgia Institute of Technology

Dr. Anthony Yezzi
Professor, School of ECE
Georgia Institute of Technology

Dr. Patricio Vela
Associate Professor, School of ECE
Georgia Institute of Technology

Date Approved: November 2015

To my father, Mark Costello, who encouraged me to follow my dreams.

ACKNOWLEDGMENT

I would like to recognize my advisor, Dr. Magnus Egerstedt, my collaborator Dr. Justin

Ruths, my reading committee, Dr Patricio Vela and Dr. Anthony Yezzi, AFOSR for funding

this research, and the collective help and encouragement of the entire GRITS Lab.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENT . iv

LIST OF FIGURES . vi

CHAPTER 1 INTRODUCTION . 1
1.1 Literature Review . 3

1.1.1 Analog Computation . 5
1.1.2 Unconventional Computation . 6
1.1.3 Distributed Computation . 7

1.2 Problem Definition . 8

CHAPTER 2 EXISTENCE CONDITIONS . 12
2.1 Consequences and Extensions of Theorem 1 19

2.1.1 T−1 can be directly Computed 20
2.1.2 Finite Time Consensus Is Impossible 20
2.1.3 A Single Node Can Compute Any Linear Function of Network

States . 21
2.1.4 Practical Computation of Any Linear Transform 22
2.1.5 Introducing Nonlinearities . 24

CHAPTER 3 ON THE DIFFICULTY OF FINDING SOLUTIONS 26
3.1 What Does GLn

+(R) Look Like? . 26
3.2 A Differential Geometric Perspective on Control Difficulty 28
3.3 Brockett’s Theorem and Its Implications 33

CHAPTER 4 COMPUTING SOLUTIONS . 37
4.1 Optimal Control Problem Formulations 37

4.1.1 Energy Minimization Problem 38
4.1.2 A Tracking Problem . 38

4.2 Deriving the Two Point Boundary Value Problem for Shooting 40
4.2.1 A Numerical Example Using Test Shooting 42

4.3 The Pseudospectral Method . 44
4.3.1 Examples Solving Problem 3 using the Pseudospectral Method . . 46
4.3.2 An Example Solving Problem 4 Using the Pseudospectral Method 50
4.3.3 Scalability of the Pseudospectral Method 52

CHAPTER 5 ROBOTIC IMPLEMENTATION 54

CHAPTER 6 SUMMARY AND FUTURE DIRECTIONS 59

REFERENCES . 61

v

LIST OF FIGURES

Figure 1 An illustration of what it means for W(t) ∈ sparse(G). If (i, j) ∈ E then
wi j(t) is in the i jth entry of W(t). Otherwise the i jth entry of W(t) is
zero. Also note that an edge wi j(t) is allowed to differ from w ji(t) 9

Figure 2 An example of the construction in the proof of Lemma 3 with node i and
j being represented by v1 and v4, respectively. 17

Figure 3 An example showing how the standard interaction exchange graph G
is transformed into the augmented information exchange graph, Gaug.
The augmented graph is formed by taking the graph Cartesian product,
G � Gline = Gaug, where Gline is the two node line graph. Both graphs
have nodes that are labeled with their associated state. Gaug has two
nodes associated with each agent. Agent i controls the state γi and µi

which are the output state and memory state respectively. 23

Figure 4 The shaded green region in the plots above show values for the entries
in the matrix M, the axes in the volume plot represent various values for
the entries a, b, and c. The plots from right to left are of different values
for the entry of the matrix t. These values are t=-10,-3,0,3,10 from left
to right. 27

Figure 5 Here are several plots of positive determinant matrices where x, y, z are
allowed to vary between -10 and 10. The rest of the matrix entries are
fixed. The resulting shaded region provides the set of matrices with pos-
itive determinant. With a 3 × 3 matrix, non-convex disconnected sets
can be generated for these particular parameter sets. It is important to
note that GLn

+(R) is connected. Disconnected sets can be formed from
GL3

+(R) by fixing 6 of the entries in the 3×3 matrix, even though the full
9 dimensional set is connected. Beyond 4 dimensions it becomes very
hard to have geometric intuition about these sets. 27

Figure 6 For every edge in the information exchange graph G connecting nodes
i and j, there is a corresponding vector field ~gi j(X). The Lie bracket
operation when applied to the vector fields corresponding two two ad-
jacent edges is equal to a vector field, ~gik(X), associated with an edge
connecting node i to node k. 30

vi

Figure 7 The above plots compare convergence of a control lyoponov function
approach to finding weights which compute a target transform T . In
this case we compare a 4 node system with a complete information ex-
change graph (upper plots) against an information exchange graph with
one edge pair missing. The upper plots show the evolution of a holo-
nomic system. The plots on the bottom show a nonholonomic system.
The nonholonomic system stalls out short of reaching convergence to
the target transformation whereas the holonomic system smoothly con-
verges. These results are in line with what should be expected from
Brockett’s Theorem. 35

Figure 8 The weight functions define the local interactions needed to achieve the
swap in the 4-node case. The first and second subproblems are solved
over the time intervals [0, 0.1) and [0.1, 0.2] respectively. 43

Figure 9 The evolution of the node states for the swap problem. The initial state is
x(t0) = [1, 2, 3, 4]T and the final state is x(t f) = [2, 1, 4, 3]T , i.e., the first
and second states swapped values and the third and fourth state swapped
values. 44

Figure 10 The time-varying weights of W(t) and the trajectory of the entries of
X(t) corresponding to a 4 node system in which the desired linear trans-
formation swaps the values of certain nodes. In the last subfigure we
show a sample evolution of node values from x(0) = [1, 2, 3, 4] to x(1) =

[3, 4, 1, 2]. The × markers indicate the entries of the desired transforma-
tion matrix T (middle) and the desired swap of state values (bottom). . . 48

Figure 11 The time-varying weights of W(t) and the trajectory of the entries of
X(t) corresponding to a 10 node system in which the desired linear
transformation swaps the values of certain nodes. In the last subfigure
we show a sample evolution of node values from x(0) = [0, . . . , 9] to
x(1) = [5, 7, 8, 9, 4, 0, 6, 1, 2, 3]. The × markers indicate the entries of
the desired transformation matrix T (middle) and the desired swap of
state values (bottom). 49

Figure 12 The time-varying weights of W(t) and the trajectory of the entries of
X(t) corresponding to a 4 node system in which the desired linear trans-
formation swaps the values of certain nodes. In the last subfigure we
show a sample evolution of node values from x(0) = [0, 1, 2, 4] to x(1) =

[1, 0, 3, 2]. The × markers indicate the entries of the desired transforma-
tion matrix T (middle) and the desired swap of state values (bottom). . . 51

Figure 13 The tightness of the tracking of the entries of X(t) can be adjusted by im-
posing different amplitude bounds on the entries of W(t); |Wi j| ≤ A, i, j =

1, . . . , n for A = 5 (top) and A = 20 (bottom). 52

vii

Figure 14 This plot summarizes the performance of the pseudo-spectral method as
the number of robots in the system increases. The number of robots in
the simulation is n. The time it takes to compute the weighted interaction
rules to compute a random swap matrix in seconds is shown on the plot
as tc. 53

Figure 15 A network of four communication constrained robots whose goal is to
swap positions as illustrated by the dotted lines in (b). By executing a
weight-based interaction rules we show that regardless of initial states,
this information exchange will be possible. 55

Figure 16 Robotic Experiment . 56

viii

CHAPTER 1

INTRODUCTION

The objective of this thesis is to develop a theoretical understanding of computation in

networked dynamical systems and demonstrate practical applications supported by the the-

ory. We are interested in understanding how networks of locally interacting agents can be

controlled to compute arbitrary functions of the initial node states. In other words, can a

dynamical networked system be made to behave like a computer? In this document, we

take steps towards answering this question with a particular model class for distributed,

networked systems which can be made to compute linear transformations.

In order to be specific about what is meant by computing with networked systems we

begin by describing its required parts. In this work, a networked system is thought of as

a dynamical system with three core components. First, there is the notion of a node. This

is an entity which has a state and associated dynamics. Some examples of objects that can

be modeled as nodes could be: a bird in a flock, a neuron in the brain, or a generator in

a power network. Second, there must be a notion of interaction between nodes. These

interactions are often described by a graph. The graph formalizes interactions between

nodes using edges which indicate that the state of a node dynamically impacts its adjacent

neighbors. Lastly, there needs to be some notion of external influence so that the network

can be driven towards some prescribed goal. This exogenous input may act on the nodes, or

the edges between nodes in the network. So these three components taken together describe

a network of controllable dynamically interacting nodes.

In the field of networked control many kinds of behaviors have been synthesized by

designing the interaction between neighboring nodes in a network. Some notable behav-

iors that designed local interaction rules enable are: distributed sensor networks [1, 2],

formation control [3, 4, 5, 6, 7], and consensus [8, 9]. All of these examples in addition

to implementing behaviors can be thought of as performing a computation. In formation

1

control, a set of aerial robots may want to reach a particular configuration. One can think

of this as a mapping from initial positions to a final target formation. With distributed

sensor networks, a set of hardware nodes may want to locally gather information and in a

distributed manner synthesize global situational awareness. This too can be described as a

mapping from sensor measurements to a global parameter of interest. Then in consensus,

a set of robots rendezvous by moving towards the centroid of their neighbors. In this case,

when robots move towards the centroid of their neighbors the robots compute an average

of their initial states. So, another way of looking at the result of applying designed local

interaction rules to a dynamical system is that they are computing a transformation. In this

work, this transformation is the notion of computation.

In the following section, we will contextualize our investigation of distributed compu-

tation in networked systems and review a series of related efforts. Specifically, we examine

how research in distributed computation, analog computation, and unconventional compu-

tation motivate and relate to our choice of problem formulation. In our initial efforts the

focus is on computing linear transformations in a distributed manner. To this end, two fun-

damental questions are answered: What global, linear transformations can be computed in

finite time using edge-based interaction rules? How do we find the local rules that would

compute a given linear transformation?

This investigation is motivated by a desire to develop techniques that compute global

functions of network state information. Specifically theory is developed which explains

when it is possible to find weight based interaction rules which compute linear transfor-

mations of network node states. This weight based interaction paradigm is explored and

the difficulty of finding these interaction rules is examined. Weighted interaction rules are

found which compute particular transformations are simulated. Then these rules are then

implemented on a physical network of robotic agents to illustrate their practicality. It is our

intention that this technique be developed into a useful tool which can be used to synthesize

global network behaviors using only local interactions.

2

1.1 Literature Review

One common theme when designing control and coordination mechanisms for distributed,

multi-agent systems is that the information, on which decisions are based, is restricted to

be shared among agents that are adjacent in the underlying information-exchange network,

e.g., [10, 8, 9, 11]. As a result, local rules are needed for processing the information and

coordinating the agents in the network in such a way that some global objective is achieved.

Problems that fit this description can be found in a variety of applications, including power

systems [12, 13, 14], formation control [3, 4, 5, 6, 7], distributed sensor networks [1, 2],

smart textiles [15], and distributed optimization [16, 17]. In this thesis we take steps to-

wards developing a general theory of local implementability/computability of such global

behaviors.

As such, one key aspect of algorithm design is the definition of local interaction rules

that produce desired global behaviors. An example of this are consensus algorithms for

computing averages in a distributed manner. In fact, consensus plays a role in many dif-

ferent applications, including multi-agent robotics, distributed sensor fusion, and power

network control, e.g., [9, 13, 18]. To this end, let the scalar state of each node in a network

be xi ∈ R, with initial condition xi(t0) = ξi, i = 1, . . . , n, where n is the number of nodes in

the network. By stacking the states together in x ∈ Rn,average consensus is achieved if

lim
t→∞

x(t) =
1
n


1 . . . 1
...

. . .
...

1 . . . 1

 ξ, (1)

where ξ is the vector containing all the initial node values. As such, the network is asymp-

totically computing the average, which is a global property since it relies on the state of

every node.

In this thesis, a computation is defined as a mapping between states at some initial time

to states at a final time by a dynamical system. So, this particular system can be thought

3

of as a distributed, analog, unconventional, single purpose computer. It is distributed be-

cause each agent can only use state information from its neighbors in the graph G. It is

analog in the sense that its outputs are real numbered values, unconventional in that the

system uses a nonstandard model that goes beyond a Von Neumann architecture to perform

its computation, and single purpose because it has been designed to compute one function,

the average. The properties of this type of computer can be advantageous over traditional

computers. Considering that a dynamic system which performs a single computation (con-

sensus) has found so many useful applications in networked systems applications, it seems

compelling to develop a more general dynamic system which is capable of performing

an arbitrary computation in a distributed manner to enable even more complex and useful

behaviors.

In the work that follows in this thesis we outline a more general dynamical system and

develop theoretical results showing what can be computed in a distributed way. Specif-

ically, we outline a computing model which is, distributed, analog, unconventional, and

more general purpose. This model is used to pose the fundamental question: What can be

computed in a distributed way? In this thesis, we begin to answer this question by investi-

gating specifically what linear computations can be computed in a distributed way. In order

to place this work in context it is necessary to explore what has been done in distributed,

analog, and unconventional computing individually and discuss how those results relate to

this line of inquiry.

This investigation was motivated by working to develop algorithms networked systems.

While there are well developed tools which can be adapted to new network algorithms such

as consensus, for new applications developing new network protocols is a research effort.

In reaching an understanding of what can be computed in a distributed way we also aim

to design a tool which will assist in creating new network protocols. By developing a turn

key method to find weighted interaction rules which compute linear transformations the

amount of effort it takes to create new behaviors for networked systems can be reduced.

4

One specific type of system which we emphasize in this thesis is a network of robots.

Linear computations are implemented on a system of robots using weighted interaction

rules. They provide a meaningful test for the practicality of implementation for such rules

and show that distributed computation is both possible and useful.

1.1.1 Analog Computation

While focus of this work is theoretical in nature and primarily makes use of tools from the

networked control literature, the continuous time nature of our approach makes it worth-

while to consider the analog computation literature. Computing using analog systems has

a long and rich history which encompasses a diverse set of machines with different design

goals. In fact, humanity’s first foray into computation was done with mechanical comput-

ing machines. These include devices such as The Antikethara Mechanism built between

150 BC and 100 BC which calculated phases of the moon and other celestial information

[19] and the differential analyzer in first built in 1931 which was able to numerically solve

differential equations [20] and was used as a firing computer on naval ships. In modern

times digital computation has been favored over analog, however, active research in this

area still continues. Contributions to this field have been made across several disciplines

[21].

Many different dynamic models of analog computation have been proposed including

those stemming from hybrid systems, analog machine based models, Hopfield networks,

and even models of space time [22, 20, 23, 24]. [22] shows that hybrid systems are capable

of universal computation. Several hybrid system models are compared and the ability of

these hybrid system models to simulate other computing machines is demonstrated using

several methods. To our knowledge, no analog computing models are designed specifically

to address computing over varying network topologies or numbers of agents. One of the

contributions of our work will be to understand how to compute over arbitrary network

topologies with varying numbers of agents.

While analog computers are believed not to have computational power that is greater

5

than their digital counterparts [25], implementation of analog computing systems in several

practical applications have been shown to use significantly less power and smaller physical

footprint than their digital counterparts [26]. So they may be useful in applications where

footprint and power resources are limited.

1.1.2 Unconventional Computation

In order to more broadly relate this thesis to computing devices and models that are non-

standard we look at the unconventional computing literature. In the field of unconventional

computing, efforts are made to understand alternative ways in which computation can be

achieved beyond the standard Von Neumann architecture and traditional silicon based im-

plementation of this model. In other words, the use of any logic or dynamical system for

computation which does not implement the Von Neumann architecture can be said to be

unconventional. To accomplish this, both alternative logical systems and physical mediums

are explored. One can think of unconventional computation research as a hedge against the

physical and theoretical limits of our current computing paradigm. These unconventional

computers take many forms in various mediums, such as a mechanical [27], a chemical

[28], and biological[29] computing devices. These unconventional machines and models

are typically pursued because they have some fundamental advantage over traditional sili-

con based computers.

For example in, [27], an idealized billiard ball computer is modeled. While on its face,

this work seems to be a purely academic exercise, its advantage is that it implements re-

versible computation. Reversible computation has attracted interest because it side skirts

Landauer’s principle which states: “Any logically irreversible transformation of classical

information is necessarily accompanied by the dissipation of at least kT ln(2) of heat per

lost bit (about 31021J at room temperature).” [30] In other words, an AND gate (a logically

irreversible transformation) necessarily requires the dissipation of at least some small fixed

amount of thermal energy. So by choosing a different logical system; one entirely com-

posed of reversible logic gates, it is possible to reduce the total amount of power required

6

to perform a computation.

A large body of work exists which explores realizations of these unconventional com-

puters (e.g. [31, 29, 32]). For instance, in [32], a computing system which is biocompatable

with living tissue is presented for the purpose of cancer treatment. This simple biomolecu-

lar computer can sense mRNA of disease related genes, then is able to synthesize a single

strand DNA fragments in response which are known to have anti-cancer activity.

A network model for computation over arbitrary connected networks of agents is new

to our knowledge of this field. It qualifies as an unconventional computation model because

it uses a logical system separate than the Von Neumann architecture. Additionally, it pro-

vides the benefit that a single model can be used to determine how to perform computations

over vastly different information exchange networks. The focus of this thesis is theoretical

in nature, and the computing models explored will not be physically realized on uncon-

ventional hardware within the scope of our current investigation. Though, at this early

stage keeping future applications in mind will allow physical realizations of the presented

computing models to be undertaken when the theoretical work is sufficiently mature.

1.1.3 Distributed Computation

In this section, distributed computation is examined in the context of control of networked

systems. Networked control as a discipline is devoted to questions about how to make

systems of networked agents accomplish some prescribed goal with limited information.

Powerful tools and and useful applications have been developed such as consensus [8, 9]

and formation control [3, 4, 5, 6, 7]. Control of network systems is a broad field, but in

the context of this investigation, we narrow our review of the network control literature

specifically to work that performs distributed computation in some sense.

The papers presented below are most closely related to the thesis work and they also

constitute the most sparse body of literature explored in this literature review. There are

relatively few papers in the area of using control theory to make networked dynamical sys-

tems compute. In the general area of obtaining global information using local interactions

7

there are a few lines of inquiry. In [33], a fixed weighting scheme was used to compute

linear transformations on networks. That work has a similar aim and takes a different dis-

crete time approach. In a certain sense, the investigation in [34] follows this line of inquiry

as well. There, quadratic invariance was used to establish whether or not a convex opti-

mization problem exists whose solution is a decentralized implementation of a centralized

feedback controller. In [35], this idea is extended to provide a practical, graph theoretic

method for finding this distributed controller. Additionally, in [36] a method is presented

under which consensus is computed in finite time.

The work in this thesis distinguishes itself from these other bodies of work by using a

time varying weighting method, which admits the computation of global, linear transfor-

mations in finite time. Specifically, we focus on a continuous time scheme for distributed

computation, over finite intervals using time-varying exogenous weight functions. We also

have shown that the thesis work carves out a unique line of inquiry that fits in with both the

unconventional computing and analog computing literature.

1.2 Problem Definition

In order to formally develop the problem which is explored in this thesis, we first briefly

review the necessary constructs required to describe weight-based interaction rules from

[37]. To this end, let V be a vertex set with cardinality n, and E ⊂ V × V be an edge set

with cardinality m, where we insist on (i, i) ∈ E, ∀i ∈ V , as well as (i, j) ∈ E ⇔ (j, i) ∈ E.

Let G be the graph G = (V, E), where the assumptions on E imply that G is undirected and

contains self-loops. We moreover assume that G is connected. As the main purpose with

G is to encode adjacency information in the information-exchange network, we introduce

the operator sparse(G) to capture these adjacencies, and we say that an n × n matrix M ∈

sparse(G) if (i, j) < E ⇒ Mi j = 0.

There are a number of different ways in which local interactions can be defined. In this

thesis, we assume that they are given by exogenous time-varying, weights associated with

8

W(t) =

w11(t) w12(t) 0
w21(t) w22(t) w23(t)

0 w32(t) w33(t)

 1 2 3

w21(t)

w12(t)

w32(t)

w23(t)

w11(t) w22(t) w33(t)

Figure 1. An illustration of what it means for W(t) ∈ sparse(G). If (i, j) ∈ E then wi j(t) is in the i jth
entry of W(t). Otherwise the i jth entry of W(t) is zero. Also note that an edge wi j(t) is allowed to differ
from w ji(t)

the edges in the network. These weights denoted wi j(t) are in L∞([t0, t f]) where i and j

indicate the originating and terminal node of the edge respectively. If xi ∈ R is the scalar

state associated with node i ∈ V , we define a local interaction as a continuous-time process

ẋi(t) =
∑

j|(i, j)∈E

wi j(t)x j(t). (2)

Note that we do not insist on wi j = w ji even though G is undirected.

We focus on scalar node states, but this can be expanded trivially. If each node has

more than one state, one set of interaction rules can be used for computing a function of

each state. The above system illustrates that the information exchange graph governs what

state information each agent has access to. Note that, as shown in Figure 1, every edge

between a pair of nodes is bidirectional and each node has an associated self edge. This

means that agent i has access to its own state and if agent i has access to agent j’s state then

agent j has access to agent i’s state. However, the goal is to use these local interactions to

ultimately compute a global function of the initial states. The same transformation will be

computed regardless of the initial state of the system. In order to move towards this goal

we can rewrite the system in ensemble form where the states associated with each agent

are stacked together in a vector, x = [x1, . . . , xn]T .

If we stack the states together in x = [x1, . . . , xn]T ∈ Rn, what we mean by local

interactions is thus

ẋ(t) = W(t)x(t), W(t) ∈ sparse(G), (3)

with solution

x(t) = Φ(t, t0)x(t0), (4)

9

where Φ is the state transition matrix associated with the system in (3), e.g., [38].

The purpose of the local interactions is to perform a global, linear computation. In other

words, given the n × n matrix T and the initial condition x(t0) = ξ, what we would like to

do is find W(t) ∈ sparse(G), t ∈ [t0, t f], such that

x(t f) = Tξ. (5)

But, comparing this expression to (4), this simply means that what we would like is

Φ(t f , t0) = T. (6)

If this was indeed the case, then the local interactions, as defined through W(t), would

indeed compute Tξ over the interval [t0, t f] for all possible values of ξ, i.e., one can think

of the network as a black box that takes ξ as the input at time t0 and, at time t f , returns Tξ

as the output.

As a final observation before we can formulate the general problem of performing

global, linear computations using local interactions, we note that state transition matrix

satisfies the same dynamics as (3), i.e.,

dΦ(t, t0)
dt

= W(t)Φ(t, t0), (7)

with initial condition Φ(t0, t0) = I, where I is the n × n identity matrix. Since, the state

transition matrix is what we are trying to control, its importance is emphasized in our

notation by letting X(t) = Φ(t0, t). Thus the final ensemble dynamics which will be used

are

Ẋ = W(t)X (8)

So In order to compute a given target transformation T using only local weight based

interaction rules we can formalize the problem of interest succinctly as below [37].

10

Problem 1 (Local Computation). Given a connected graphG and a target linear trans-

formation T , find W(t) ∈ sparse(G) over the time horizon t ∈ [t0, t f], such that

Ẋ = W(t)X,

with boundary conditions X(t0) = I, X(t f) = T.

In the chapters that follow, understanding Problem 1 is the primary focus. In Chapter 2

necessary and sufficient conditions are developed for the existence of a solution to Problem

1. Chapter 3, explores the difficulty of computing solutions in detail. Chapter 4 provides

several methods which are used to find solutions, simulates several example cases, and

finally presents a robotic implementation of distributed computation.

11

CHAPTER 2

EXISTENCE CONDITIONS

In this chapter, existence conditions for computations performed using local rules over a

static and undirected information-exchange network are considered. Specifically necessary

and sufficient conditions for the existence of a solution to Problem 1 are developed. The

local rules, once obtained, admit a decentralized implementation, where “decentralized” in

this context means that each node in the network only needs to communicate state infor-

mation among adjacent nodes in the network. In particular, we ask if it is possible to define

local interaction laws such that x(t f) = Tξ, given the linear transformation T and the initial

conditions x(t0) = ξ. Necessary and sufficient conditions are given for this to be possible,

and they state that local interaction rules exist if and only if T has positive determinant. To

this end, we start by observing that since X(t) is really the state transition matrix Φ(t, t0), it

is always invertible,

X(t)−1 = Φ(t, t0)−1 = Φ(t0, t). (9)

As a direct consequence of this, T has to be invertible for a solution to Problem 1 to exist,

i.e., we need that det(T) , 0. But, as X(0) = I, we have that det(X(0)) = 1 > 0. Moreover,

the determinant of a matrix depends continuously on its entries, and therefore the only

way for det(X(τ)) < 0 for some τ ∈ (t0, t f], there has to exist a τ′ ∈ (t0, τ) such that

det(X(τ′)) = 0. But this can not happen since X is always invertible. From this it directly

follows that for Problem 1 to have a solution, T has to satisfy det(T) > 0.

To state this fact more compactly, let GLn
+(R) denote the set of all n × n, real matrices

with positive determinant. We have thus established the following necessary condition for

the existence of a solution:

Lemma 1. A solution to Problem 1 exists only if T ∈ GLn
+(R).

12

Now that we have established necessary conditions for Problem 1 to have a solution,

we turn our attention to sufficient conditions. And, surprisingly enough, T ∈ GLn
+(R) turns

out to be both necessary and sufficient for a solution to exist, which constitutes the main

result in this chapter:

Theorem 1. A solution to Problem 1 exists if and only if T ∈ GLn
+(R).

As we have already established sufficiency, what must be shown is that whenever

det(T) > 0, there is a W(t) ∈ sparse(G) that drives X from I to T . The remainder of

this section is devoted to the establishment of this fact. However, before we can give the

proof to Theorem 1, a number of supporting results are needed, involving the controllability

of nonlinear, drift-free systems, i.e., systems of the form

ẋ =

p∑
i=1

gi(x)ui, (10)

where x ∈ Rn is the state of the system, and u1, . . . , up ∈ R are the control inputs. For the

sake of easy reference, we start by recalling Chow’s Theorem, as formulated in [39], for

such drift-free systems:

Theorem 2 (Chow’s Theorem, e.g. [39]). The system in (10) is locally controllable about

a point x0 if and only if

dim(∆(x0)) = n, (11)

where ∆ is the involutive closure of the distribution span{g1, . . . , gp}.

The system is moreover controllable if it is locally controllable everywhere. And, the

proof that T ∈ GLn
+(R) is sufficient for Problem 1 to have a solution will hinge on showing

that the dynamics, as defined through the local interaction rules in (3), is indeed controllable

everywhere on GLn
+(R). To this end, we first must rewrite the dynamics in Problem 1 on

13

the appropriate form. For this, we need the index matrix Ii j ∈ R
n×n, which has a one at the

ith row and jth column, and zeros everywhere else. The index matrix allows us to rewrite

Ẋ = WX

as

Ẋ =

 n∑
i=1

n∑
j=1

W � Ii j

 X, (12)

where the � symbol represents element-wise matrix product, i.e.,

Ẋ =




w11 . . . 0
...

. . .
...

0 . . . 0

 + . . . +


0 . . . 0
...

. . .
...

0 . . . wnn



 X, (13)

where we have surpressed the explicit dependence on t for the sake of notational ease.

Rearranging the terms and letting

gi j(X) = Ii jX, (14)

we get the drift-free matrix formulation

Ẋ =

n∑
i=1

∑
j|(i, j)∈E

gi j(X)wi j. (15)

To clarify, gi j(X) is a matrix whose ith row contains the jth row of X, with the rest of

the elements in the matrix equal to 0,

gi j(X) =

1
...

i − 1

i

i + 1
...

n



0 . . . 0
...

. . .
...

0 . . . 0

X j1 . . . X jn

0 . . . 0
...

. . .
...

0 . . . 0



. (16)

14

As a final step towards a formulation that is amenable to Chow’s Theorem, let the

vectorized version of gi j be given by ~gi j = vec(gi j), resulting in the vectorized version of

(15),

vec(Ẋ) =

n∑
i=1

∑
j|(i, j)∈E

~gi j(X)wi j. (17)

Once a drift free form of the system dynamics are derived, controllability can be evalu-

ated using Chow’s Theorem. The first order of business towards establishing controllability

of this system is the derivation of the Lie brackets for the system in (17).

Lemma 2.

[~gi j(X), ~gkl(X)] =



−~gil(X) if j = k, i , l

~gk j(X) if i = l, j , k

0 otherwise

(18)

Proof. The Lie bracket [~gi j(X), ~gkl(X)] is given by

[~gi j(X), ~gkl(X)] =
∂~gkl(X)
∂vec(X)

~gi j(X) −
∂~gi j(X)
∂vec(X)

~gkl(X), (19)

Substitution of (14) into (19), the above expression yields

∂(vec(IklX))
∂vec(X)

vec(Ii jX) −
∂(vec(Ii jX))
∂vec(X)

vec(IklX), (20)

which can be rewritten, using the Kronecker product, as

∂((I ⊗ Ikl)vec(X))
∂vec(X)

(I ⊗ Ii j)vec(X) −
∂((I ⊗ Ii j)vec(X))

∂vec(X)
(I ⊗ Ikl)vec(X) (21)

Taking the above derivatives yields

(I ⊗ Ikl)(I ⊗ Ii j)vec(X) − (I ⊗ Ii j)(I ⊗ Ikl)vec(X). (22)

Using the mixed product property of the Kronecker product, (19) can be further simplified

to

(I ⊗ IklIi j)vec(X) − (I ⊗ Ii jIkl)vec(X), (23)

15

i.e., the Lie bracket in (19) becomes

[~gi j(X), ~gkl(X)] = vec(IklIi jX) − vec(Ii jIklX). (24)

Now, using the fact that, Ii jIkl = Iil if j = k and Ii jIkl = 0 otherwise, we can break down (24)

into 3 cases:

First if j = k and i , l we get

[~gi j(X), ~gkl(X)] = −vec(IilX) = −~gil(X). (25)

The second case occurs when i = l and j , k, in which case

[~gi j(X), ~gkl(X)] = vec(Ik jX) = ~gk j(X). (26)

Otherwise, the Lie bracket is 0, and the lemma follows.

Now that Lie brackets can be computed in general for this problem, we must determine

if the involutive closure of the distribution associated with the system in (17) contains

enough independent vector fields for local controllability. To help with this determination,

we provide the following lemma.

Lemma 3. If node i is path-connected to node j, then ~gi j(X) is in the distribution ∆(X).

Proof. That node i is path-connected to node j means that there is a path through adjacent

nodes in the graph G that starts at node i and ends at node j. Assume that the path goes

through the nodes N1, . . . ,Nq, i.e., N1 is adjacent to N2, N2 is adjacent to N3, and so forth,

while N1 = i and Nq = j. Since these nodes are adjacent, we, by definition, have that

~gN1N2 , ~gN2N3 , . . . , ~gNq−1Nq ∈ ∆(X).

The involutive closure contains every possible Lie bracket that can be recursively cre-

ated from elements ∆(X), which implies that the problem is to create ~gi j from some com-

bination of Lie brackets from elements in ∆(X). And, from Lemma 2, we know that

[~gN1N2 , ~gN2N3] is equal to −~gN1N3 . Applying Lemma 2 again gives [−~gN1N3 , ~gN3N4] = ~gN1N4 .

16

!g12

[!g12, !g23] = −!g13

!g23 !g34v1 v2 v3 v4

[−!g13, !g34] = !g14

Figure 2. An example of the construction in the proof of Lemma 3 with node i and j being represented
by v1 and v4, respectively.

This procedure can be repeated until we arrive at one of two possible cases. If q is even, the

result is [−~gN1Nq−1 , ~gNq−1Nq] = ~gN1Nq . If q is odd we get [~gN1Nq−1 , ~gNq−1Nq] = −~gN1Nq . In either

case, we are able to construct ~gN1Nq from previous Lie brackets, as shown in Figure 2. And,

as N1 = i and Nq = j, we have ~gi j ∈ ∆(X).

Additionally the linear independence of vector fields is needed in order to establish

controllability. To this end the following lemma is presented.

Lemma 4. {~guv(X) ∀ u, v ∈ V} is a set of linearly independent vectors.

Proof. By definition, ~guv(X) = vec(IuvX). This definition can be expanded to vec(IuvX) =

(XT ⊗ In)vec(Iuv). Concatenating all possible vectors resulting from combinations of ver-

tices,

(XT ⊗ In)
[
vec(I11) vec(I21) . . . vec(Inn)

]
(27)

which can be further simplified to

(XT ⊗ In)In2 (28)

Taking the determinant of this expression yields

det(XT ⊗ In) = det(XT)n (29)

Because X ∈ GL+
n (R) the determinant of X is always positive and therefore we can write

det(XT)n , 0 (30)

This implies that the set of vectors {~guv(X)∀u, v ∈ V} is linearly independent.

17

To establish that the system is controllable on GLn
+(R), ∆(X) must have rank n2 every-

where on this set, which is the topic of the next lemma.

Lemma 5. If G is connected then ∆(X) has dimension n2 if and only if rank(X) = n.

Proof. To prove this lemma, we need to show that the implication goes both ways. Assume

first that dim(∆(X)) = n2. If G is connected then, by Lemma 3 and Lemma 4 the set

{gi j(X)|i, j ∈ V} is in ∆̄(X) and is linearly independent. Therefore,

∆(X) = span{~gi j, ∀(i, j) ∈ V × V}. (31)

For the purpose of the proof, it is convenient to go back to the matrix formulation, and

we recall that ~gi j = vec(gi j). As such, we will use the matrix form gi j to construct X.

And, since the goal is to form a matrix with rank n, only n linearly independent matrices

are needed. So, we arbitrarily choose to form X from the “diagonal” set {g11, g22, . . . , gnn}.

Using the fact that gi j = Ii jX, we can write,

n∑
i=1

gii =

n∑
i=1

IiiX,

which simplifies to
n∑

i=1

gii = X. (32)

gii is a matrix with one nonzero row at row i. The nonzero rows of each gii are linearly

independent. And, since X is composed of n linearly independent rows, rank(X) = n, and

the first implication follows. Next, we must show that

rank(X) = n⇒ dim(∆(X)) = n2, (33)

which we do by contradiction. Using the expression gi j = Ii jX, n2 matrices can be formed

from X. Let us assume that they are not linearly independent. This implies that there exists

a set of coefficients αi j such that, for some (k, l),

∑
(i, j),(k,l)

gi jαi j = gkl. (34)

18

Since X has full rank, X can be removed from (34) based on the fact that gi j = Ii jX, yielding∑
(i, j),(k,l)

Ii jαi j = Ikl. (35)

By definition of the index matrix, (35) cannot be true, since every matrix in the sum

on the left has a value of zero where Ikl has value of 1. Therefore, we have reached a

contradiction and can conclude that dim(∆(X)) = n2.

Since X is really a state transition matrix, i.e., it is indeed invertible (with rank(X) = n),

the system in (15) is locally controllable everywhere on GLn
+(R) as long as the underlying

graph G is connected:

Theorem 3. The system

Ẋ = WX, W ∈ sparse(G)

is locally controllable everywhere on GLn
+(R) if G is connected.

Theorem 3 and Lemma 1 give us all the ammunition needed to prove the main result in

this paper, namely Theorem 1:

Proof of Theorem 1. Lemma 1 tells us that a solution only exists if T ∈ GLn
+(R), so what

remains is to establish that this is indeed sufficient. Hence, assume that T ∈ GLn
+(R). Since

I ∈ GLn
+(R), and GLn

+(R) is connected [40], there is a continuous curve of matrices in

GLn
+(R) that connects I and T . And, by Theorem 3, every point along the path connecting I

and T is locally controllable. The system being drift-free moreover implies that it can flow

along this curve, e.g., [41]. Therefore, a solution to Problem 1 exists if T ∈ GLn
+(R).

2.1 Consequences and Extensions of Theorem 1

Theorem 1 provides tight conditions for which global linear transformations can be com-

puted using local weight based interaction rules. This result has several implications for

the practical use of weight based interaction rules for real problems. In this section we

discuss some of the consequences of Theorem 1. Additionally, ways to work around the

restrictions it places on the set of possible computations are provided.

19

2.1.1 T−1 can be directly Computed

Suppose that weighted interaction rules W(t) are found which compute a target transfor-

mation T on the initial states of the nodes in an information exchange graph G. Those

weighted interaction rules can be trivially modified so that the same network can compute

T−1. Noting that X(t) = Φ(t, t0) is the state transition matrix, we can rewrite our original

system as

Φ̇(t, t0) = W(t)Φ(t, t0),

Φ(t0, t0) = I,

Φ(t f , t0) = T.

(36)

The state transition matrix can be inverted as, Φ(t, t0)−1 = Φ(t0, t). So, Φ(t f , t0) = T implies

Φ(t0, t f) = T−1 then X−1(t f) = T−1. Computing T−1 now only requires that the original

differential equation be run backwards starting at t f and run back to t0. This can be accom-

plished as below,

Φ̇(t, t f) = −W(t f − t)Φ(t, t f),

Φ(t f , t f) = I,

Φ(t0, t f) = T−1.

(37)

This means given a set of weighted interaction rules W(t) that compute the target transfor-

mation T , the weighted interaction rules that compute T−1 are −W(t f − t).

2.1.2 Finite Time Consensus Is Impossible

As a consequence of Lemma 1 it is impossible to use local rules, as understood in this paper,

to achieve consensus in finite time. This follows directly from the fact that the consensus

computation is given by the linear map

Tcons =
1
n

1T 1, (38)

where 1 is a vector of length n, with all entries equal to one. And,

rank(Tcons) = 1,

20

i.e., det(Tcons) = 0. Note, of course, that asymptotic consensus is possible, e.g. [8, 9, 11, 5].

To formalize this point the following corollary is provided:

Corollary 1. There is no solution to Problem 1 which admits finite time consensus.1,2

Proof. Consensus dynamics of the form ẋ = −Lx asymptotically approach a solution,

x(t) = 1
n1T 1x0 where 1 is a vector in Rn composed of all ones. In order for our scheme

to compute the consensus of states in finite time, we must choose the target transformation

to be T = 1
n1T 1. Since det(1

n1T 1) = 0, by Theorem 1 there is no solution to Problem 1 that

will allow us to reach consensus in finite time.

2.1.3 A Single Node Can Compute Any Linear Function of Network States

If we return to the consensus problem, we have already established that Tcons in (38) is not

computable in finite time using local rules. However, consider instead the transformation

Tcons2 =



1/n 1/n · · · 1/n

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


. (39)

We have

det(Tcons2) =
1
n

(40)

and, as such, it is computable using local rules. In this case, the network average is only

computed by a single node (node 1 in this case), while the remaining nodes return to their

initial values at the end of the computation. This can in fact be generalized to any scalar,

1Note that this applies to any agreement across the nodes, i.e., not only to average consensus.
2It is possible to reach consensus asymptotically by choosing an T = eLt where L is the graph laplacian

and t is an arbitrary time. This choice of T would be computed in succession for all time.

21

non-zero, linear map ` : Rn → R through

T`ξ =



`(ξ)

ξ2

...

ξn


,

where we have assumed that `(ξ) depends on ξ1. If not, simply pick another node in the

network that ξ does depend on, as the node where the computation takes place. The point

with this is that it is possible to compute any scalar, non-zero, linear map as long as the

computation only has to take place at a single node.

2.1.4 Practical Computation of Any Linear Transform

In previous sections we discussed how Theorem 1 limits what transformations can be com-

puted in finite time. In this section, we show that with a doubling of the state space and a

modification of problem structure, Theorem 1 can be satisfied and any desired target linear

transformation, Tany, can be realized. Let Tany ∈ R be a matrix with any determinant. Now,

consider a system with n agents where each agent i has two states instead of one. One of

these states keeps track of the computational output γi(t), and the other is memory state

µi(t). The original state vector can be rewritten as

x(t) =

γ(t)

µ(t)

 , (41)

where γ(t) and µ(t) are vectors containing each agent’s output state and memory state re-

spectively. Let the initial states of this matrix be given by

x(t0) =

ξ0
 (42)

where ξ is the exogenous input into the network computation. Since each node is associated

with only one state, a connected augmented information exchange graph is required. This

graph is defined by taking the disjoint union of G with itself, then adding edges between

22

nodes controlled by an individual agent. This new graph is termed Gaug. An example of

transforming a graph G into its augmented graph Gaug is shown in figure 3.

x1 x2 x3 x4

⇓

γ1 γ2 γ3 γ4

µ1 µ2 µ3 µ4

Figure 3. An example showing how the standard interaction exchange graph G is transformed into the
augmented information exchange graph, Gaug. The augmented graph is formed by taking the graph
Cartesian product, G � Gline = Gaug, where Gline is the two node line graph. Both graphs have nodes
that are labeled with their associated state. Gaug has two nodes associated with each agent. Agent i
controls the state γi and µi which are the output state and memory state respectively.

This new graph results in a new sparse weight matrix W(t) with dimension 2n × 2n.

This matrix will take the form

W(t) =

W11(t) W12(t)

W21(t) W22(t)

 (43)

where W11(t),W22(t) ∈ sparse(G) and W12(t),W21(t) are diagonal weight matrices. In order

to phrase a problem in the form of Problem 1 such that a solution can be found, T must be

chosen to be in GL2n
+ (R). By allowing the target transformation to take the form below,

T =

Tany A

B C

 (44)

where A, B,C ∈ Rn are chosen so the block matrix T has positive determinant this re-

quirement is satisfied. Putting together all of the pieces we can define a problem with an

23

augmented state space which has a solution for any target transformation Tany.

Problem 2 (Augmented Local Computation). Given a connected graph G and a target

linear transformation Tany, find W(t) ∈ sparse(Gaug) over the time horizon t ∈ [t0, t f],

such that

Ẋ =

W11(t) W12(t)

W21(t) W22(t)

 X,

with boundary conditions

X(t0) = I, X(t f) =

Tany A

B C

 .

X(t) in the augmented problem has dimension 2n × 2n. The resulting computation

performed when Problem 2 is solved isγ(t)

µ(t)

 =

Tany A

B C


ξ0

 =

Tanyξ

Bξ

 (45)

Using all of the augmented variables a solvable problem in the form of 1 was formulated

where arbitrary linear transformations can be computed through the output node at the final

time γ(t f) = Tanyξ0. At t f , the value associated with the memory state µ(t) is discarded.

Therefore any linear transformation can be computed at the cost of augmenting the state

space by solving Problem 2. In this section, we showed that by doubling the state space,

the limit of a transformation T having positive determinant in Theorem 1 can be overcome.

We have illustrated that it is possible to compute a transformation Tany ∈ R
n×n which can

have any determinant by solving Problem 2.

2.1.5 Introducing Nonlinearities

Fundamentally, using weights to perform computations on networks with dynamics defined

by Ẋ = WX can only compute linear transforms. However, the inputs to the system can

24

be chosen to be nonlinear. If it is assumed that agents can compute nonlinear functions of

their own states and then execute linear computations, then nonlinear computations can be

synthesized. To illustrate this fact, Let the initial node states ξ be given by

ξ =


ξ1

...

ξn

 =


f1(x1(t0))

...

fn(xn(t0))

 = f (x(t0)) (46)

where fi(xi(t0)) are arbitrary nonlinear functions of the state of node i at time t0. These ini-

tial exogenous inputs when coupled with weights W(t) with t ∈ [t0, t f] allow the dynamical

system Ẋ = WX run until time t f and compute

x(t f) = T f (x(t0)). (47)

This is a linear combination of nonlinear functions. We can go further by allowing multi-

ple computations to be cascaded together. Consider now a set of weighting functions that

compute several different transformations, {W1(t), . . . ,Wp(t)} which when used on the dy-

namical system Ẋ = Wi(t)X compute T1, . . . ,Tp respectively. Now consider also that after

each computation that occurs in sequence, each node applies a nonlinear function to the

output and feeds the result into the next computation. Let these nonlinear computations be

noted f1, . . . , fp. The resulting computation can be written as

x(t f) = Tp fp(Tp−1 fp−1(. . . (T1 f1(x(t0))))) (48)

Any nonlinear computation which can be decomposed in this way can be computed by this

framework.

25

CHAPTER 3

ON THE DIFFICULTY OF FINDING SOLUTIONS

In Chapter 2, conditions for the existence of solutions to Problem 1 were established. Just

because a solution exists, doest not mean methods for finding solutions can be easily devel-

oped. Given that a target transformation is chosen which satisfies the existence condition,

T ∈ GL+
n (R), the difficulty of finding solutions is explored. First, the space of positive

determinant matrices is briefly illustrated using plots for 2 × 2 and 3 × 3 matrices. This

is intended to provide an appreciation of the non convexity of the space of positive deter-

minant matrices to the reader. Additionally, a differential geometric perspective on control

synthesis is provided which explains why more sparse interaction exchange graphs may

be, in some sense, harder to compute with. Finally we conclude with the implications of

Brockett’s theorem on control synthesis.

3.1 What Does GLn
+(R) Look Like?

To provide some understanding the space of positive determinant matrices, we provide

several figures which will show the nonconvexity of the space for 2× 2 and 3× 3 matrices.

These matrices are the representation of linear computations for 2 and 3 node systems

respectively. A connected 2 node system forms a complete graph and is therefore not an

example of a system performing distributed computation since both nodes have full state

information. We consider this system as it is the easiest to represent graphically. Consider

first a matrix

M2 =

a b

c t

 , (49)

where M ∈ R2×2. In Figure 4, the matrix M2 is plotted with various values for its entries.

Even for the smallest possible 2 node system, the space of positive determinant matrices is

non-convex. By adding only one more agent, the state transition matrix has 9 entries. The

26

Figure 4. The shaded green region in the plots above show values for the entries in the matrix M, the
axes in the volume plot represent various values for the entries a, b, and c. The plots from right to left
are of different values for the entry of the matrix t. These values are t=-10,-3,0,3,10 from left to right.

3 node system coupled with a line graph as the information exchange graph is the simplest

nontrivial system that can perform distributed computation. This new transformation ma-

trix M3 seems even less comprehensible when attempting to visualize the set of positive

determinant 3 × 3 matrices. This is illustrated in figure 5.

 x 10 −4.7
1.9 y 10
−2.8 5.4 z


 a 10 −8.2
1.4 e −2.5
2.5 −10 i


 x 10 3.5
10 y 10
4.7 −10 z


Figure 5. Here are several plots of positive determinant matrices where x, y, z are allowed to vary be-
tween -10 and 10. The rest of the matrix entries are fixed. The resulting shaded region provides the
set of matrices with positive determinant. With a 3 × 3 matrix, non-convex disconnected sets can be
generated for these particular parameter sets. It is important to note that GLn

+(R) is connected. Dis-
connected sets can be formed from GL3

+(R) by fixing 6 of the entries in the 3 × 3 matrix, even though
the full 9 dimensional set is connected. Beyond 4 dimensions it becomes very hard to have geometric
intuition about these sets.

Despite the lack of geometric intuition provided by visualizing these spaces, in chapter

4 a computationally fast method for planning a path between two positive determinant

matrices is provided. The purpose of this section was to illustrate that the nonconvexity of

27

GLn
+(R) is a major factor which makes finding solutions to Problem 1 difficult.

3.2 A Differential Geometric Perspective on Control Difficulty

In order for a solution to Problem 1 to exist we previously showed in [37] that the desired

transformation T must be in the set of n × n positive determinant matrices. This set consti-

tutes a group together with the standard matrix product. Here this group is denoted GLn
+(R).

This condition turns out to be both necessary and sufficient and can be stated succinctly as

follows: A solution to Problem 1 exists if and only if T ∈ GLn
+(R). This result can be

interpreted to mean that whenever det(T) > 0, there is a W(t) ∈ sparse(G) that drives X

from I to T .

Just because we know that a transformation T can be performed using local rules it does

not follow that we can (easily) find these rules, encoded through W(t) ∈ sparse(G), such

that Ẋ = WX, X(t0) = I,X(t f) = T . In order to better understand how difficult finding these

weights are for particular transformations and graph topologies, the relationship between

graph structure and degree of nonholonomy of the drift free dynamics are explored. Each

particular choice of connected information exchange graph, G, has a different edge set and

requires different wighted interaction rules in order to compute a target transform. In order

to develop these results, it is most convienent to phrase the dynamical system Ẋ = WX in

vectorized drift free form. Recall the structure of this system is,

vec(Ẋ) =

n∑
i=1

∑
j|(i, j)∈E

~gi j(X)wi j, ~gi j(X) = vec(Ii jX). (50)

In order to establish the relationship between the degree of nonholonomy of this system

and the underlying communication graph we start by recalling Lemma 2, which provides

an expression for computing a lie bracket,

28

[~gi j(X), ~gkl(X)] =



−~gil(X) if j = k, i , l

~gk j(X) if i = l, j , k

0 otherwise

(51)

To better understand what Lemma 2 really states, note that for every edge (i, j) ∈ E there

exists a corresponding vector field ~gi j(X). One way to interpret the Lie bracketing operation

that follows from Lemma 2 is that when applied to vector fields corresponding to adjacent

edges, it creates new vector field corresponding to a new edge.

For example, consider the directed three node line graph shown in Figure 6. The di-

rected edges (i, j) and (j, k) each have an associated vector field, ~gi j(X) and ~g jk(X) respec-

tively. Applying Lemma 2, the Lie bracket is [~g jk(X), ~gi j(X)] = ~gik(X). This resulting

vector field is associated with adding the edge (i, k) to the graph. So, by modulating vector

fields associated with edges in a particular information-exchange graph we can make the

graph behave as if it has additional edges. Consider the nested Lie bracket operation

[~gkl(X), [~g jk(X), ~gi j(X)]] (52)

which can be simplified to

[~gkl(X), ~gik(X)] = ~gil(X) (53)

This application shows that by nesting Lie brackets, virtual edges connecting nodes of

increasing distances away can be created. In this example, a vector field associated with

an edge between nodes i and l was created. These nodes were separated with a distance of

3 and were virtually connected with two nested lie brackets. In general, through repeated

applications of Lemma 2, any connected graph can be made to behave like a complete

graph.

Now, that a Lie bracketing relationship has been established for the drift free system, sev-

eral definitions are needed in order to connect Lie brackets to the properties of the infor-

mation exchange graph G.

29

Figure 6. For every edge in the information exchange graphG connecting nodes i and j, there is a corre-
sponding vector field ~gi j(X). The Lie bracket operation when applied to the vector fields corresponding
two two adjacent edges is equal to a vector field, ~gik(X), associated with an edge connecting node i to
node k.

Definition 1 (Distance). The distance between two nodes in a graph u, v is denoted d(u, v).

The value of d(u, v) is the cardinality of the edge set that comprises a shortest path con-

necting the two nodes.

Definition 2 (Graph Diameter). The Graph Diameter D of a graphG = (V, E) is max
u,v

d(u, v)

for any u, v ∈ V.

In order to talk about the degree of nonholonomy of a drift free system, the notion of a

distribution and filtration must be introduced. ∆(x), a distribution of a drift free system as

in (10), is defined as

∆(x) = span{g1(x), . . . , gq(x)}. (54)

The concept of filtration is also needed. A filtration is defined as follows: Gi = Gi−1 +

[G1,Gi−1] where G1 = ∆ and [G1,Gi−1] = span{[g, h]|g ∈ G1, h ∈ Gi−1}. If a filtration does

30

not increase the dimension of the space spanned by Gi then that distribution is said to be

involutive.

Definition 3 (Degree of Nonholonomy). The degree of nonholonomy is given by the least

number of filtrations p required to reach an involutive distribution. (See for example [39].)

Using the above definitions, the following lemma is presented in order to relate a par-

ticular vector field to the number of filtration required to form it.

Lemma 6. For any u, v ∈ V, ~guv(X) ∈ Gd(u,v)−1.

Proof. Because G is strongly connected, every node pair u, v ∈ V is path-connected. Path-

connected means that there is a path through adjacent nodes in the graph G that starts at

node u and ends at node v. The distance between the two nodes, d(u, v) gives the number

of edges in the shortest path connecting u and v. Using that fact, assume that the path goes

through the nodes N1, . . . ,Nd(u,v)+1, i.e., N1 is adjacent to N2, N2 is adjacent to N3, and so

forth, while N1 = u and Nd(u,v)+1 = v. Since these nodes are adjacent, we, by definition,

have that ~gN1N2 , ~gN2N3 , . . . , ~gNd(u,v)Nd(u,v)+1 ∈ ∆(X).

Since the involutive closure contains every possible Lie bracket that can be recursively

created from elements ∆(X), the problem is to create ~guv from some combination of Lie

brackets from elements in ∆(X). And, from Lemma 2, we know that [~gN2N3 , ~gN1N2] is equal

to ~gN1N3 . Applying Lemma 2 again gives [~gN3N4 , ~gN1N3] = ~gN1N4 . If this procedure is recur-

sively applied d(u, v) − 1 times, we arrive at [~gNd(u,v)Nd(u,v)+1 , ~gN1Nd(u,v)] = ~gN1Nd(u,v)+1 . So, we are

able to construct ~gN1Nd(u,v)+1 from previous Lie brackets. And, as N1 = u and Nd(u,v)+1 = v,

d(u, v) − 1 lie bracketing operations are required and therefore d(u, v) − 1 filtrations are

required. So, we arrive at ~guv ∈ Gd(u,v).

The previous result can be used to relate the distance between any two nodes in the

computation graph to the degree of nonholonomy of the system. This theorem can be

intuitively understood by noting that the number of filtrations needed to form a particular

31

vector field is equal to the distance between a pair of nodes. To link the information-

exchange graph to the degree of nonholonomy of (15), one final intermediate result is

needed. Using the lemmas developed above we can prove the main result of this paper:

Theorem 4. The Degree of Nonholonomy of (15) is equal to D− 1 where D is the diameter

of the computation graph G.

Proof. By definition the diameter of G is D = max
u,v

d(u, v). Because, Gi = Gi−1 + [G1,Gi−1],

for any i < D − 1, Gi ⊂ GD−1. Since D is the maximum distance of any path between

two nodes in G, it follows from Lemma 6 that GD−1 is the smallest possible filtration that

contains every ~guv(X), i.e., for any u, v ∈ V ~guv(X) ∈ GD−1, because there is at least one

pair of nodes u, v which has a shortest path of length D. By Lemma 4 this set of vectors

is linearly independent. Since we know that there are n2 such vectors it can be concluded

that they span the space of Rn2
. Therefore, GD−1 spans the entire state space of (15) and is

involutive. It follows that D − 1 is the degree of nonholonomy of (15).

Theorem 4 provides a connection between graph structure and dynamic constraints.

The Lie bracket operation on adjacent edges can be interpreted as information flow along

edges of a system. If information is to flow between node i and j, the system can travel

along the vector field ~gi j(X). Equivalently, information flow along ~g jk(X) occurs when

information flows between node j and k. The Lie bracket corresponding to [~g jk(X), ~gil(X)]

creates a vector field corresponding to information flow between nodes i and k. In this way,

the result in Theorem 4 becomes intuitive. In order to have information flowing between

every node in the graph for a global computation, there must be a vector field corresponding

to information flow between each pair of nodes. Considering that the diameter of a graph

is the maximum path length between any two nodes, the number of informational hops

required to connect each node to every other node is equal to D − 1. Additionally, the Lie

bracket operation increases in order for each required hop. So, information flow and the

Lie bracket operation are inherently tied together.

32

Theorem 4 also has implications on the synthesis of controllers. If the interaction ex-

change graph is complete, then the system is holonomic and a weight matrix can be triv-

ially synthesized. However, if even one edge is missing in the information exchange graph

the degree of nonholonomy is nonzero. From [42] we know that there exists no smooth

feedback control law for nonholonomic systems. In general, nonholonomic systems are re-

garded as harder to control. As such, we propose numerical methods for finding the weight

based interaction rules which compute a transformation of interest.

3.3 Brockett’s Theorem and Its Implications

One implication of Brockett’s Theorem stated in [42] is for drift free systems of the form,

ẋ =

m∑
i=1

gi(x)ui (55)

with x ∈ Rn, this system can only be stabilized with smooth feedback if m = n. This con-

dition only holds in the case of the information-exchange graph being the complete graph.

Or in other words, the system must be holonomic. This relationship is formalized in the

previous section by Theorem 4. This means that we can find smooth feedback controllers to

stabilize to a given target transformation if and only if G is the complete graph. If even one

edge is removed from the complete graph, there is no longer a smooth feedback controller

which provides weights for the computation of a target transformation T .

In order to illustrate this concept, a control Lyoponov function approach is developed.

Then we attempt to synthesize weighted interaction rules to compute a target transforma-

tion T under two different topologies, a complete graph (Gc), and a complete graph with

one pair of edges removed (Gs). This will illustrate the difficulty that sparsity introduces

into finding weighted interaction rules.

To this end, suppose we are trying to control a system as in Problem 1,

Ẋ = WX (56)

W ∈ sparse(G) (57)

33

where at time t f , we desire to reach state X(t f) = T . One approach to this problem would

be to define a dynamical constraint which would eventually stabilize to our target matrix.

In order to approach this problem, we choose to define a Lyoponov function and force our

choice of weighting functions to cause asymptotic convergence. Let the Lyoponov function

be,

V(X) =
1
2
‖X − T‖2F (58)

Now taking the first time derivative yields

V̇(X) = Tr((X − T)T Ẋ) = Tr(X(X − T)T W) (59)

For asymptotic stability Lyoponov tells us:

V̇(X) < 0 =⇒ Tr(X(X − T)T W) < 0 (60)

This condition can be phrased as a constraint that is linear in the elements of W. let the

nonzero elements of the weight matrix W be gathered into a vector expressed as w. This

condition can be stated as

vec((X − T)XT)Gw < 0 (61)

where G is an n × m matrix which preserves the sparsity condition on W. We satisfy this

condition and force exponential convergence by having a more strict bound on the decrease

of the Lyoponov Function with time. To do this restrict the constraint to

vec((X − T)XT)Gw = −k‖X − T‖F (62)

For simplicity of notation let vec((X − T)XT)G be represented by C(X). Once we have

forced the constraint to take a particular value we can explicitly solve for the weight vector

w. This is done as follows

C(X)w = −‖X − T‖F (63)

C(X)TC(X)w = −C(X)T ‖X − T‖F (64)

w = −(C(X)TC(X))−1C(X)T ‖X − T‖F (65)

34

Now this control law can be used as a feedback control law that should stabilize the state

to the target transformation T . In order to test this approach, consider a 4 node system. We

attempt to synthesize weighted interaction rules for the transformation,

T =



−6 4 6 −3

0 −2 −3 5

10 −10 −9 1

0 −4 0 6


(66)

using the control Lyoponov function approach outlined above for both a complete interaction-

exchange graph (Gc) and a complete graph with one pair of edges removed (Gs). The results

of this are shown in Figure 7.

Figure 7. The above plots compare convergence of a control lyoponov function approach to finding
weights which compute a target transform T . In this case we compare a 4 node system with a complete
information exchange graph (upper plots) against an information exchange graph with one edge pair
missing. The upper plots show the evolution of a holonomic system. The plots on the bottom show a
nonholonomic system. The nonholonomic system stalls out short of reaching convergence to the target
transformation whereas the holonomic system smoothly converges. These results are in line with what
should be expected from Brockett’s Theorem.

35

In this section we have illustrated that smooth feedback controllers can not be used to

synthesize weighted interaction rules. As a result, an optimal control approach is developed

in the next chapter which results in a control policy parameterized by time.

36

CHAPTER 4

COMPUTING SOLUTIONS

In the previous chapter, the difficulty of finding solutions to Problem 1 were discussed

in terms of interaction exchange graph topology. Brockett’s Theorem states that there is

no smooth feedback control which stabilizes a nonholonomic drift free system to a target

point. So as a result we pursue an optimal control based method to numerically find time

varying weighting functions. This chapter is devoted to developing two different optimal

control problem formulations and numerically solving them for several example test cases.

Both a shooting method and Pseudospectral method are used and results are presented.

4.1 Optimal Control Problem Formulations

As Brockett’s Theorem says that no smooth feedback control can stabilize a system, we

must instead look for time varying controls to drive the system from the initial condition

X(t0) = I to the final target transformation X(t f) = T . One technique that can be used to

find these time varying weighting functions is optimal control. This involves optimizing

a cost functional over a finite time horizon. Ultimately this problem reduces to solving a

nonlinear two-point boundary value problem. In order to synthesize efficient interaction

rules, we formulate two optimal control problems, where the inputs are defined as the time-

varying weights.

Just because we know that a computation Tξ can be done using local rules it does not

follow that we can (easily) find these rules, encoded through W(t) ∈ sparse(G), such that

Ẋ = WX, X(t0) = I,X(t f) = T . There are many possible ways in which weight functions

can be found. In this chapter, we address this problem of finding weighting functions W(t)

which allow for the computation of a provided target transformation T . We considered two

cost functions. One which minimizes the energy of the weighting functions, and one which

tries to track a path through GLn
+(R).

37

4.1.1 Energy Minimization Problem

There are many possible ways in which weight functions can be found. As such, when

framed as an optimal control problem, many costs can be considered. If the goal is to

simply find a set of weights which reaches some desired transformation, any choice of cost

is valid. In this case, we have chosen to minimize the energy of the weight functions. So,

we consider the cost,

J(W) =

t f∫
0

1
2
‖W(t)‖2Fdt, (67)

where ‖ · ‖F is the Frobenius norm. From this cost we can create a minimization problem

which when solved will provide local interaction rules to compute a desired linear trans-

formation on the system states. The resulting constrained minimization problem becomes

Problem 3 (Optimal Local Interactions).

min
W

J(W) =

t f∫
t0

1
2
‖W(t)‖2F dt

subject to the constraints

Ẋ = WX W(t) ∈ sparse(G)

X(t0) = I X(t f) = T

Under this problem formulation, only the start and end points are constrained while the

weight magnitudes are penalized. We also consider the case where following a particular

path is important.

4.1.2 A Tracking Problem

Instead of considering point constraints, we explore the case where following a chosen path

is important. In order to synthesize a control which will guide the dynamical system in

38

Problem 1, we first find a feasible path from the identity matrix to the target transformation

T ∈ Rn×n. According to [37] and [43], all reachable transformations are in the group

GL+
n (R). That is to say, any target transformation T must have positive determinant. We

proceed by providing a general method to generate a path between the identity matrix and

a given target transformation T where every intermediate point on the path has positive

determinant.

Given a non-singular matrix M, it can always be written as

M = KP, (68)

with K ∈ O(n) where O(n) is the orthogonal group, the set of all matrices K ∈ Rn×n where

det(K) = ±1 and P = PT � 0. If M ∈ GL+
n (R) then

M = RP, (69)

where R is a rotation matrix, i.e., R ∈ S O(n) [44].

So, given a target transformation T that we hope to achieve at time t = t f , we can plan

paths through GL+
n (R) using the polar decomposition. The target can be decomposed as

T = RT PT . (70)

Now, since we are moving from X(t0) = I to X(t f) = T , we can simply plan a path between

these two matrices using a polar decomposition. Let M(t) = R(t)P(t) be the planned path

with

R(0) = I P(0) = I R(t f) = RT P(t f) = PT (71)

Additionally, let φ(t) be the mapping from the interval [t0, t f] onto the interval [0, 1]. The

geodesic from I to PT in the space of positive definite matrices (in Frobenius norm) [45] is

P(t) = Pφ(t)
T . (72)

The path through S O(n) can be obtained using the idea in [46] of using constant angular

velocity

Ṙ = Ω̂R, (73)

39

where Ω̂ ∈ so(n) is skew-symmetric, with the result that

R(t) = eΩ̂φ(t). (74)

Moreover, Ω̂ is simply given by the skew symmetric and real logarithm

Ω̂ = ln(RT), (75)

which gives the final path as

M(t) = eln(RT)φ(t)Pφ(t)
T . (76)

Using the above derivation we can formulate an optimal control problem.

Problem 4 (Optimal Tracking).

min
W(t)

t f∫
t0

||X(t) − M(t)||2F dt

subject to the constraints

Ẋ = WX W(t) ∈ sparse(G)

X(t0) = I X(t f) = T

This second problem when solved tracks the designated path M(t). In the section that

follows both Problem 3 and 4. are simulated and the differences in the synthesized state

trajectories are explored.

4.2 Deriving the Two Point Boundary Value Problem for Shooting

In order to use a test shooting method to solve Problem 3, first the associated two point

boundary value problem must be derived. To do this we form the Hamiltonian. The Hamil-

tonian associated with Problem 3 (e.g., [47]), with costate matrix λ, is given by

H = vec(λ)T vec(WX) +
1
2
‖W‖2F . (77)

40

We can rewrite the Hamiltonian as

H =

n∑
i=1

∑
j|(i, j)∈E

n∑
k=1

λikwi jX jk +
1
2

n∑
i=1

∑
j|(i, j)∈E

w2
i j. (78)

The optimality conditions are

0 =
∂H
∂wi j

=

n∑
k=1

λikX jk + wi j, (79)

i.e., the optimal weights are given by

wi j = −

n∑
k=1

λikX jk, (80)

which yields m + n optimality conditions. This is also the number of nonzero values in the

W matrix. We get the costate equations from the derivative of the Hamiltonian with respect

to X:

λ̇i j = −
∂H
∂Xi j

= −
∑

k|(i,k)∈E

wkiλk j. (81)

By substituting the optimality conditions into both the state and costate equations, we get

2n equations with initial and final conditions on Xi j. The resulting, two-point boundary

problem becomes

Ẋi j = −
∑

k|(i,k)∈E

Xk j

n∑
l=1

λilXkl

X(t0) = I, X(t f) = T (82)

λ̇i j =
∑

k|(i,k)∈E

λk j

n∑
l=1

λklXil,

This system can be succintly rewritten in ensamble form as,

Ẋ = −(Ĝ � λXT)X

X(t0) = I, X(t f) = T (83)

λ̇ = (Ĝ � XλT)λ

where λ ∈ Rn×n is a matrix whose entries are costates and Ĝ ∈ sparse(G) is a matrix whose

nonzero entries are equal to 1. The numerical solution for the weight functions were found

41

in the example by solving (83) using test shooting. A reference which explains this method

in detail is [48]. Using optimal control to find weight functions was simply a convenient

method for illustrating the feasibility of finding solutions.

4.2.1 A Numerical Example Using Test Shooting

Consider the situation when the linear transformation T represents a reordering (or swap-

ping) of states. We examine the 4 node case where the underlying graph topology is given

by nodes 2, 3, 4 forming a clique (fully connected subgraph) and node 1 is connected to

node 2. In this example agents 1 and 2 and agents 3 and 4 are to “swap” state values, the

transformation matrix becomes

Tswap =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


. (84)

However, the linear interpolation between I and Tswap contains a singular matrix, which

makes the two-point boundary problem numerically ill-conditioned when using shoot-

ing methods, e.g., [48]. There are many such choices of transformations where this ill-

conditioning is a concern, as discussed in [49]. A way around this problem is to avoid this

singular matrix by solving two sequential two-point boundary problems.

As an example, in the first iteration, we let the boundary conditions be X(t0) = I, X((t f−

t0)/2) = T1. For the second iteration, they are X((t f − t0)/2) = T1, X(t f) = Tswap, where

T1 =



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


. (85)

This sequential approach avoids the numerical ill-conditioning, and the solution is

shown in Figures 8 - 9. This method works well for small systems where the number

42

of agents is 5 or less. As systems get larger the amount of computation required to find a

solution becomes very large. As a result, we explored a second pseudospectral method for

solving the optimal control problems posed.

0.00 0.05 0.10 0.15 0.20
-30

-20

-10

0

10

20

30

Time @sD

w

Edge Weights

Figure 8. The weight functions define the local interactions needed to achieve the swap in the 4-node

case. The first and second subproblems are solved over the time intervals [0, 0.1) and [0.1, 0.2] respec-

tively.

43

0.00 0.05 0.10 0.15 0.20
-1

0

1

2

3

4

Time @sD

x

State Trajectory

Figure 9. The evolution of the node states for the swap problem. The initial state is x(t0) = [1, 2, 3, 4]T

and the final state is x(t f) = [2, 1, 4, 3]T , i.e., the first and second states swapped values and the third

and fourth state swapped values.

4.3 The Pseudospectral Method

Existing analytic approaches do not scale well for such medium-to-large scale nonlinear

problems. In this work we find solutions using a direct collocation computational method,

which discretizes the continuous-time optimal control problem into a nonlinear optimiza-

tion problem whose decision variables are the values of the discretized state trajectories

and control signals. We show this combined approach is general and an efficient approach

to deriving the weights needed for local computations.

The pseudospectral method was originally developed in order to solve partial differen-

tial equations but has been applied more widely to optimal control problems in a variety of

applications such as satellite maneuvers, quantum control, and neuroscience [50, 51, 52].

Like many methods, this approach discretizes the continuous optimal control problem into

a nonlinear programing problem for which there are many commercial and open-source

44

solvers available. The method relies on a connection between two families of polynomials.

The orthogonal Legendre polynomials represent the “spectral” portion of the method, pro-

viding a level of exponential convergence as the order of the discretization increases. The

Lagrange polynomials composes the “psuedo” part of the method and makes the method

significantly easier to implement by dealing directly with interpolated state and control

values as decision variables rather than the expansion coefficients of the Legendre poly-

nomials, which have less physical interpretation. With this method we can consider an

optimal control problem of Bolza form,

min
W(t)

ϕ(t f ,X(t f)) +

∫ t f

t0
L(X(t),W(t)) dt,

s.t. Ẋ(t) = W(t)X(t),

e(X(0),X(t f)) = 0,

g(X(t),W(t)) ≤ 0, ∀ t ∈ [t0, t f],

where ϕ and L are the terminal and running costs and e and g are endpoint and path con-

straints, respectively. This optimal control problem is transformed to a nonlinear program-

ming problem of the form,

min
X̄,W̄

ϕ(X̄N) +
T
2

N∑
i=0

L(X̄i, W̄i)wi,

s.t.
N∑

k=0

D jkX̄k = W̄ jX̄ j,

e(X̄0, X̄N) = 0,

g(X̄ j, W̄ j) ≤ 0, ∀ j ∈ {0, 1, . . . ,N},

where X̄ ∈ Rn×n×N and W̄ ∈ Rn×n×N such that X̄ j = X(t j) and W̄ j = W(t j); t j is the

jth interpolation point; wi are the integration weights for quadrature approximations of

integrals; and D is a constant matrix determined by the order of discretization N. More

details can be found in [51]. In this work we use combination of commercial solvers,

AMPL and KNITRO, to solve this nonlinear programming problem [53, 54].

45

4.3.1 Examples Solving Problem 3 using the Pseudospectral Method

Here we present several results illustrating the efficacy of the pseudospectral method for

determining the time-varying weight functions that perform a desired global computation

on robot states. First we present several simulations for particular target transformations of

interest. Then we show empirical results on the computation time for various problem sizes.

We chose to use a swapping computation in the examples to illustrate this method because

it has obvious physical meaning for robotic systems and requires global information in

order to compute the transform.

4.3.1.1 4 Robot Swap

We consider the 4 robot system where the communication architecture encoded by the

structure of the matrix W(t) and the desired global transformation over the time interval

t ∈ [0, 1] are given by

W =



w11 w12 0 0

w21 w22 w23 0

0 w32 w33 w34

0 0 w43 w44


, (86)

Tswap =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, (87)

respectively, where we have dropped the explicit dependence on t to save space, wi j =

wi j(t). Tswap is designed so that the final robot states are the initial states with robots 1

and 3 as well as 2 and 4 swapped, i.e., x1(1) = x3(0), x4(1) = x2(0), x3(1) = x1(0), and

x4(1) = x2(0) (xi(t) is the value of the state of node j whereas X(t) is the transition matrix

at time t). This 4 node example is simulated by solving Problem 2 using Tswap as the target

transformation. Physically, when implemented by a system of ground robots moving in R2,

the weights are used independently for both the x and y coordinates of the robots and the

46

result would be a physical swap in position between each pairs of robots, (1, 3) and (2, 4)

regardless of their initial starting positions.

The entries of W(t) and X(t) for the computed solution are plotted in Fig. 10, using a

discretization level of N = 15. This solution is a realization of the proposed swap in Figure

1. This solution for local computations that lead to a global transformation is realized in

hardware in the next section.

4.3.1.2 10 Robot Swap

We now consider a larger example with 10 robots and a desired transformation that swaps

several of the states in a similar fashion to the previous case. A larger discretization level

N = 50 is chosen to capture the more quickly varying inputs and trajectories required to

make the higher-dimensional state transfer. The entries of W(t) and X(t) for the computed

solution are plotted in Fig. 11.

Note that any linear transformation T (det T ≥ 0) is possible to design in this manner.

The swap matrices typically generate plots which are more easily interpreted because Ti j ∈

{0, 1}. We have likewise synthesized weights for target transformations generated randomly

and achieved results with the same levels of performance and accuracy. In the case of

random T matrices, the discretization value is often chosen higher, around N = 100.

47

0 0.2 0.4 0.6 0.8 1

Φ
 (

t)

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

W
(t

)

-5

0

5

0 0.2 0.4 0.6 0.8 1

x
(t

)

-4

-2

0

2

4

6

Figure 10. The time-varying weights of W(t) and the trajectory of the entries of X(t) corresponding to a

4 node system in which the desired linear transformation swaps the values of certain nodes. In the last

subfigure we show a sample evolution of node values from x(0) = [1, 2, 3, 4] to x(1) = [3, 4, 1, 2]. The ×

markers indicate the entries of the desired transformation matrix T (middle) and the desired swap of

state values (bottom).

48

0.0 0.2 0.4 0.6 0.8 1.0
t

6

4

2

0

2

4

6

W
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

1.5

Φ
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
t

6
4
2
0
2
4
6
8

10

x
(t

)

Figure 11. The time-varying weights of W(t) and the trajectory of the entries of X(t) correspond-

ing to a 10 node system in which the desired linear transformation swaps the values of certain

nodes. In the last subfigure we show a sample evolution of node values from x(0) = [0, . . . , 9] to

x(1) = [5, 7, 8, 9, 4, 0, 6, 1, 2, 3]. The ×markers indicate the entries of the desired transformation matrix

T (middle) and the desired swap of state values (bottom).

49

4.3.2 An Example Solving Problem 4 Using the Pseudospectral Method

We now consider the second goal of tracking a desired reference trajectory for the transition

matrix X, while still ultimately achieving the desired transfer expressed by T . Because

the reference trajectory is not necessarily a feasible trajectory of the system, we cannot

implement the tracking condition as a constraint. Instead is is part of the running cost term

as shown in Problem 1. We include the power running cost as before with a very small

relative weight to promote smooth solutions. This additional term tends to create solutions

that are more numerically stable and thereby typically improves the performance of the

solutions. In Fig. 12 the entries of W(t) and X(t) for the computed solution are plotted for

a discretization level of N = 200. The relatively rapid oscillation of this solution leads to

some numerical inaccuracies, so we impose an amplitude bound A = 10 on the entries of

W(t) to guard against this, such that |Wi j| ≤ A, i, j = 1, . . . , n. This amplitude bound has

the effect of trading off the tightness of tracking with the smoothness of the trajectories and

controls, as depicted in Fig. 13 for A = 5 and A = 20. Brief violations of this amplitude

bound can be seen in the plot of W(t). These are due to the polynomial interpolation

that produces solution functions from the solutions of the nonlinear programming problem.

Such overshoots can be truncated with negligible effect on the solutions if desired, however,

doing so is not critical in this context.

50

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

1.5

Φ
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

x
(t

)

Figure 12. The time-varying weights of W(t) and the trajectory of the entries of X(t) corresponding to a

4 node system in which the desired linear transformation swaps the values of certain nodes. In the last

subfigure we show a sample evolution of node values from x(0) = [0, 1, 2, 4] to x(1) = [1, 0, 3, 2]. The ×

markers indicate the entries of the desired transformation matrix T (middle) and the desired swap of

state values (bottom).

51

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

0.5

0.0

0.5

1.0

1.5

Φ
(t

)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.5

0.0

0.5

1.0

X
(t

)

Figure 13. The tightness of the tracking of the entries of X(t) can be adjusted by imposing different

amplitude bounds on the entries of W(t); |Wi j| ≤ A, i, j = 1, . . . , n for A = 5 (top) and A = 20 (bottom).

4.3.3 Scalability of the Pseudospectral Method

To demonstrate the size of a system this method can currently handle, several simulations

were performed to determine weights that compute a random target matrix for a connected

random topology. This was performed systems with a number of nodes n = [3, 10]. systems

of less than 6 nodes complete in under a minute. above 6 nodes the time it takes to generate

weighting functions increases dramatically. This trend is illustrated in Figure 14.

52

Figure 14. This plot summarizes the performance of the pseudo-spectral method as the number of

robots in the system increases. The number of robots in the simulation is n. The time it takes to

compute the weighted interaction rules to compute a random swap matrix in seconds is shown on the

plot as tc.

53

CHAPTER 5

ROBOTIC IMPLEMENTATION

In networked robotic systems, information between agents can be communicated through

various modalities to enable collective behavior or information processing. Two salient ex-

amples are radio communication and direct observation of neighbors’ states. For example,

using radio networks, strategies have been developed which attempt to recreate internet-like

packet networks in distributed systems which can allow information to be shared between

amongst any agents [55]. However, in the absence of availability of communication, visi-

ble information can still be collected locally by observation of nearby agents’ states. This

information channel, governed by the dynamics imposed on the networked robotic system

can be used as a platform to perform computations on state information. These computa-

tions can enable new behaviors for networks of robots where global state information is

needed, but only local communication is available.

Information exchange via physical motion is present in the natural world. For instance,

bees communicate information about the direction and distance to food using a waggle

dance [56]. To this end, [57] developed a technique for modulating the distances between

ground robots as an information-passing scheme and were able to successfully use inter-

agent distances to pass messages between connected robots.

We implement weighted interaction rules on a network of interacting robots to compute

linear transformations of the robots’ states. This technique can be used in any communi-

cation channel where state information can be conveyed between agents. To illustrate this

claim consider an example of four unicycle robots connected in a line graph topology at-

tempting to swap positions. A swapping transform is chosen as an example to illustrate the

power of this method because it requires information to be exchanged between robots that

cannot locally communicate with one another. This transformation is shown to be possible

using local weighted interaction rules.

54

1 2 3 4

(a) An example of a 4 node interaction exchange graph. The arrows pointing into a particular node indicate
what information is able to be received by that particular agent.

1

2

3

4

x

y

(b) An illustration of robots in some initial positions. The goal is to have them swap positions as indicated
by the dashed lines.

Figure 15. A network of four communication constrained robots whose goal is to swap positions as illus-
trated by the dotted lines in (b). By executing a weight-based interaction rules we show that regardless
of initial states, this information exchange will be possible.

55

Figure 16. A sequence of images illustrating the hardware implementation of a 4 node swapping com-
putation with Khepera III unicycle robots. Each node in the image sequence is a Khepera III unicycle
robot. The lines connecting the robots are projected onto the lab floor and correspond to the magni-
tude of the weight on a particular edge. A darker line indicates a higher magnitude weight. The bottom
images are the same transformation without the floor projection to show the Khepera III hardware.
The sequence begins at the configuration on the left and proceeds right. In this figure the robot in the
upper left corner in the first image swaps with the robot in the upper right corner. Additionally, the
robot in the bottom left corner of the first image swaps with the robot in the bottom right corner. The
weighted interaction rules can be used for any starting robot positions and will still result in the chosen
swap. The swap is particularly interesting because local interactions do not provide the robots with
the information required to make the swap without some coordination. For example the swap between
the robot in the upper left and the lower right cannot take place directly since those two robots are not
directly connected with an edge in the information exchange graph.

In Figure 15, the goal for this system is to have Robots 1 and 3 switch positions, and to

have Robots 2 and 4 switch positions. Since both pairs of robots cannot directly communi-

cate with the partner which they will swap with, it is not clear how the robots should move

to accomplish this task. We use a set of weight based interaction rules associated with

each communication channel as developed in the previous chapters. Weights are a natural

choice for networked robotic systems because they are easily able to be assigned to adja-

cent robots in an any choice of connected information exchange graph. These precomputed

rules, when executed result in the swapping behavior of interest under the particular choice

of information exchange graph. It’s important to note that these rules can be found for any

connected network for many choices of linear transformation. Each set of interaction rules

corresponds to a collection of robots connected by a particular information exchange graph

computing one desired linear transformation.

56

In order to show that the distributed computation algorithm can be implemented and ac-

curately performed, a swapping transformation was implemented on a network of 4 Khep-

era III unicycle robots. The target transformation that the set of agents computes is given in

(87). The hardware interpretation of this transformation matrix is a position swap between

agents 1 and 2, and the agents 3 and 4. The underlying information exchange graph on

which this computation takes place is given by the sparsity structure of W(t) in (86).

The required weights for the swapping behavior to occur were calculated in section

4.3.1.1. In order to compute a swap in R2, the weights must act on both the x and y

coordinates of a given robots position. So, let the aggregate x and y goal coordinates of all

robots be given by xg, yg ∈ R respectively. Let φ(t) be the mapping from the interval [t0, t f]

onto the interval [0, 1]. As such, the autonomous dynamics on the interval t ∈ [0, 60] can

be expressed as

ẋg(t)

ẏg(t)

 =

W(φ(t)) 0

0 W(φ(t))


xg(t)

yg(t)

 (88)

xg(0)

yg(0)

 =

xg0

yg0

 (89)

where xg0 and yg0 are the initial x and y coordinates of the robots. Because W(φ(t)) ∈

sparse(G), agents can use the weights of all of the incoming edges along with the x and y

coordinates of those neighbors to collaboratively compute the solution to the system given

by (88). The computed xg(t) and yg(t) at a particular time are used as a goal position for a

go to goal controller on the unicycle dynamics. We omit the specific form of the controller

and note that any sufficiently well performing go to goal controller for a unicycle robot will

work. Letting Cv(xg, yg) and Cω(xg, yg) be the controller mapping the state and goal position

to the unicycle linear and angular velocity respectively, the autonomous system dynamics

for a particular unicycle robot i is given by

57

ẋi = Cv(x̂i, ŷi) cos(θi)

ẏi = Cv(x̂i, ŷi) sin(θi)

θ̇i = Cω(x̂i, ŷi),

(90)

where xi, yi are the physical coordinates of robot i, and θi is its heading. The application of

these autonomous dynamics on a network of Khepera 3 unicycle robots is illustrated in the

image sequence of figure 16 and the appropriate swapping behavior is observed.

Performing this swap is ultimately shows that weighted interaction rules can be imple-

mented physically. All of the efforts in this thesis culminate in robots performing linear

computations. We began by formalizing a problem whereby weighted local interaction

rules would result in linear computations on node states. Existence conditions were devel-

oped. The difficulty of solving Problem 1 was discussed. Weighted interaction rules were

then synthesized using various numerical methods. Then these weighted interaction rules

were implemented on robotic hardware. It is our intention that this thesis provides a useful

tool to synthesize global computations from local interaction rules.

58

CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In this thesis we have formalized the problem of using a dynamic network with time vary-

ing weights to compute linear transforms in a distributed way. Conditions for the existence

of solutions were established. A numerical approach was developed and then the method

was verified in simulation. The main theorem presented states: the distributed networked

system can compute a particular linear transformation T if and only if it has positive de-

terminant. After establishing existence conditions to Problem 1, the difficulty of finding

solutions was explored. Using lessons gathered from that investigation, numerical meth-

ods for computing solutions were developed and evaluated. The thesis concluded with a

robotic implementation illustrating that the weighted interaction rules can be implemented

on physical systems. We envision this body of work as a useful tool which can be used to

compute functions of network states in a distributed way.

The original intent of this work was to answer the question: Can a sparse dynamical

network be made to behave as if it were dense? The answer to this question is yes. We

showed that we can use a sparse weight based dynamical system to compute linear trans-

formations of the global network state. In dense networks every agent has access to the full

state information of all other agents in the network. So, dense systems can easily compute

functions of the full network state using information gathered from its neighbors. This in-

vestigation lead to a more fundamental question which ultimately drove the development

of this thesis: What fundamentally can be computed in a distributed way?

This question was addressed for a nonlinear dynamical system which used weight based

interaction rules and laid the groundwork for future inquiries into this question. The result

was a characterization of what could be computed using weights for static graphs. This

leaves the door open for several important expansions. These include investigation of

computations under time varying interaction exchange graph topologies, development of

59

nonlinear models which are capable of universal computation, and exploration of practical

distributed computing systems in unconventional mediums. We briefly comment below on

each of these extensions.

The topology of the underlying information exchange graph in a network can change

in some applications. One example is in power networks where tie lines may fail or new

ones may be added. In these cases the precomputed weighted interaction rules will no

longer have the desired effect. Instead, if interaction rules can be designed to be robust

under changing graph topologies, this would greatly enhance the utility of this weight based

distributed computation scheme.

One of the ultimate theoretical curiosities that motivated this work was: Can a dynam-

ical networked system of agents be made to do universal computation? The main thrust of

this work explores computation of linear transformations. For universal computation, how-

ever, nonlinear computations are needed as well. While computing linear transformations

of network states have applications, it would be advantageous to compute nonlinear func-

tions of network states in some manner. Does our existing model admit some modifications

which would allow the computation of nonlinear transformations of network states?

Some systems cannot easily be outfitted with computing devices, but must in some

sense perform computation in a distributed way in order to perform their function. For

example, one area where this is an issue is in the field of synthetic biology. In order to

engineer biological systems to be able to perform desired functions, there must be some

way to translate the mathematics of a solution into a biological realization. It is still not

clear how mathematical constructs such as matrix multiplication might be implemented

inside of a cell [58]. Extension of the ideas presented in this thesis to support modification

of biological system dynamics for computation could allow for a formal framework which

would allow such a translation from mathematics to biology.

60

REFERENCES

[1] K. Romer and F. Mattern, “The design space of wireless sensor networks,” Wireless
Communications, IEEE, vol. 11, no. 6, pp. 54–61, 2004.

[2] F. Zhang and N. Leonard, “Coordinated patterns of unit speed particles on a closed
curve,” Systems and Control Letters, vol. 56, no. 6, pp. 397–407, 2007.

[3] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,”
Robotics and Automation, IEEE Transactions on, vol. 14, no. 6, pp. 926–939, 1998.

[4] M. Ji and M. Egerstedt, “Distributed coordination control of multi-agent systems
while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4,
pp. 693–703, 2007.

[5] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Con-
trol, vol. 48, no. 6, pp. 988–1001, 2003.

[6] H. Tanner, A. Jadbabaie, and G. Pappas, “Stable flocking of mobile agents, part II :
Dynamic topology,” in Proc. 42nd IEEE Conf. Decision Control, 2003.

[7] N. Michael and V. Kumar, “Controlling shapes of ensembles of robots of finite size
with nonholonomic constraints,” in RSS, 2008.

[8] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010.

[9] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233,
2007.

[10] F. Bullo, J. Cortes, and S. Martnez, Distributed Control of Robotic Networks. A Math-
ematical Approach to Motion Coordination Algorithms. Princeton University Press,
2009.

[11] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle Cooperative Con-
trol. Springer-Verlag, 2008.

[12] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for micro-
grid control,” Power Systems, IEEE Transactions on, vol. 20, no. 3, pp. 1447–1455,
2005.

[13] T. Ramachandran, Z. Costello, P. Kingston, S. Grijalva, and M. Egerstedt, “Dis-
tributed power allocation in prosumer networks,” in IFAC Necsys, 2012.

61

[14] S. Grijalva, M. Costley, and N. Ainsworth, “Prosumer-based control architecture for
the future electricity grid,” in IEEE Multi-Conference on Systems and Control, 2011.

[15] D. Marculescu, R. Marculescu, N. H. Zamora, P. Stanley-Marbell, P. K. Khosla,
S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, et al., “Electronic tex-
tiles: A platform for pervasive computing,” Proceedings of the IEEE, vol. 91, no. 12,
pp. 1995–2018, 2003.

[16] J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed
dynamical systems,” SIAM Journal on Control and Optimization, vol. 44, no. 5,
pp. 1543–1574, 2005.

[17] A. Nedic, A. Ozdaglar, and A. Parrilo, “Constrained consensus and optimization
in multi-agent networks,” IEEE Transactions on Automatic Control, vol. 55, no. 4,
pp. 922–938, 2010.

[18] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and dis-
tributed sensor fusion,” in Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on, pp. 6698–6703, IEEE, 2005.

[19] T. Freeth, Y. Bitsakis, X. Moussas, J. Seiradakis, A. Tselikas, H. Mangou,
M. Zafeiropoulou, R. Hadland, D. Bate, A. Ramsey, et al., “Decoding the ancient
greek astronomical calculator known as the antikythera mechanism,” Nature, vol. 444,
no. 7119, pp. 587–591, 2006.

[20] C. E. Shannon, “Mathematical theory of the differential analyzer,” J. Math. Phys.
MIT, vol. 20, pp. 337–354, 1941.

[21] O. Bournez and M. L. Campagnolo, “A survey on continuous time computations,” in
New Computational Paradigms, pp. 383–423, Springer, 2008.

[22] M. S. Branicky, “Universal computation and other capabilities of hybrid and continu-
ous dynamical systems,” Theoretical Computer Science, vol. 138, no. 1, pp. 67–100,
1995.

[23] J. J. Hopfield, “Neurons with graded response have collective computational proper-
ties like those of two-state neurons,” Proceedings of the national academy of sciences,
vol. 81, no. 10, pp. 3088–3092, 1984.

[24] M. L. Hogarth, “Does general relativity allow an observer to view an eternity in a
finite time?,” Foundations of physics letters, vol. 5, no. 2, pp. 173–181, 1992.

[25] E. W. Blakey, A model-independent theory of computational complexity: from pa-
tience to precision and beyond. PhD thesis, University of Oxford, 2010.

[26] R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to neurobiol-
ogy,” Neural computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[27] E. Fredkin and T. Toffoli, Conservative logic. Springer, 2002.

62

[28] A. Adamatzky and B. D. L. Costello, “Experimental logical gates in a reaction-
diffusion medium: The xor gate and beyond,” Physical Review E, vol. 66, no. 4,
p. 046112, 2002.

[29] L. M. Adleman, “Molecular computation of solutions to combinatorial problems,”
Science, vol. 266, no. 5187, pp. 1021–1024, 1994.

[30] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz,
“Experimental verification of landauer/’s principle linking information and thermo-
dynamics,” Nature, vol. 483, no. 7388, pp. 187–189, 2012.

[31] R. P. Feynman, “Simulating physics with computers,” International journal of theo-
retical physics, vol. 21, no. 6, pp. 467–488, 1982.

[32] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, “An autonomous molecular
computer for logical control of gene expression,” Nature, vol. 429, no. 6990, pp. 423–
429, 2004.

[33] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation and consensus
using linear iterative strategies,” Selected Areas in Communications, IEEE Journal
on, vol. 26, no. 4, pp. 650–660, 2008.

[34] M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized
control,” Automatic Control, IEEE Transactions on, vol. 51, no. 2, pp. 274–286, 2006.

[35] J. Swigart and S. Lall, “A graph-theoretic approach to distributed control over net-
works,” in Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on,
pp. 5409–5414, IEEE, 2009.

[36] J. M. Hendrickx, R. M. Jungers, A. Olshevsky, and G. Vankeerberghen, “Graph di-
ameter, eigenvalues, and minimum-time consensus,” Automatica, 2013.

[37] Z. Costello and M. Egerstedt, “From global, finite-time, linear computations to local,
edge-based interaction rules,”

[38] R. Brockett, Finite Dimensional Linear Systems. John Wiley & Sons, Inc., 1970.

[39] S. Sastry, Nonlinear systems: analysis, stability, and control, vol. 10. Springer New
York, 1999.

[40] G. Strang, Introduction to Linear Algebra. Wellesley-Cambridge Press, 1993.

[41] R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM Journal
on Control, vol. 10, no. 2, pp. 265–284, 1972.

[42] R. W. Brockett et al., Asymptotic stability and feedback stabilization. Defense Tech-
nical Information Center, 1983.

63

[43] F. Rüppel, G. Dirr, and U. Helmke, “Controllability of bilinear interconnected sys-
tems,” Mathematical Theory of Networks and Systems, 2014.

[44] J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups. Springer Science &
Business Media, 2011.

[45] F. Hiai and D. Petz, “Riemannian metrics on positive definite matrices related to
means,” Linear Algebra and its Applications, vol. 430, no. 11, pp. 3105–3130, 2009.

[46] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 1994.

[47] D. Liberzon, Calculus of variations and optimal control theory: a concise introduc-
tion. Princeton University Press, 2012.

[48] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art
of Scientific Computing. Cambridge University Press, 2007.

[49] A. Bhaya, “Real matrices with positive determinant are homotopic to the identity,”
SIAM review, vol. 40, no. 2, pp. 335–340, 1998.

[50] F. Fahroo and I. M. Ross, “Pseudospectral methods for infinite-horizon nonlinear op-
timal control problems,” Journal of Guidance Control and Dynamics, vol. 31, no. 4,
pp. 927–936, 2008.

[51] J. Ruths and J.-S. Li, “Optimal Control of Inhomogeneous Ensembles,” Automatic
Control, IEEE Transactions on, vol. 57, no. 8, pp. 2021–2032, 2012.

[52] J. Ruths, P. N. Taylor, and J. Dauwels, “Optimal Control of an Epileptic Neural
Population Model,” in International Federation of Automatic Control, Cape Town,
pp. 3116–3121, IFAC, 2014.

[53] R. Fourer, D. M. Gay, and B. W. Kernighan, “AMPL: A mathematical programming
language,” 2002.

[54] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An Integrated Package for Nonlin-
ear Optimization - Springer,” Large-scale nonlinear optimization, 2006.

[55] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Mobile Ad Hoc networking:
the cutting edge directions, vol. 35. John Wiley & Sons, 2013.

[56] A. Michelsen, “The transfer of information in the dance language of honeybees:
progress and problems,” Journal of Comparative Physiology A, vol. 173, no. 2,
pp. 135–141, 1993.

[57] D. Raghunathan and J. Baillieul, “Motion based communication channels between
mobile robots-a novel paradigm for low bandwidth information exchange,” in Intelli-
gent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on,
pp. 702–708, IEEE, 2009.

64

[58] E. Klavins, “Proportional-integral control of stochastic gene regulatory networks,” in
Decision and Control (CDC), 2010 49th IEEE Conference on, pp. 2547–2553, IEEE,
2010.

65

	Titlepage
	Signatures
	Dedication
	Acknowledgment
	Table of Contents
	List of Figures
	Chapter 1 — Introduction
	Literature Review
	Analog Computation
	Unconventional Computation
	Distributed Computation

	Problem Definition

	Chapter 2 — Existence Conditions
	Consequences and Extensions of Theorem 1
	T-1 can be directly Computed
	Finite Time Consensus Is Impossible
	A Single Node Can Compute Any Linear Function of Network States
	Practical Computation of Any Linear Transform
	Introducing Nonlinearities

	Chapter 3 — On The Difficulty of Finding Solutions
	What Does GLn+(R) Look Like?
	A Differential Geometric Perspective on Control Difficulty
	Brockett's Theorem and Its Implications

	Chapter 4 — Computing Solutions
	Optimal Control Problem Formulations
	Energy Minimization Problem
	A Tracking Problem

	Deriving the Two Point Boundary Value Problem for Shooting
	A Numerical Example Using Test Shooting

	The Pseudospectral Method
	Examples Solving Problem 3 using the Pseudospectral Method
	4 Robot Swap
	10 Robot Swap

	An Example Solving Problem 4 Using the Pseudospectral Method
	Scalability of the Pseudospectral Method

	Chapter 5 — Robotic Implementation
	Chapter 6 — Summary and Future Directions
	References

