
INVESTIGATION OF MECHANOTRANSDUCTORY 

MECHANISMS IN THE PATHOGENESIS OF LUNG FIBROSIS 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

by 

 

 

Vincent F. Fiore 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Biomedical Engineering 

 

 

Georgia Institute of Technology 

May, 2014 

 

 

COPYRIGHT 2014 BY VINCENT F. FIORE 



INVESTIGATION OF MECHANOTRANSDUCTORY 

MECHANISMS IN THE PATHOGENESIS OF LUNG FIBROSIS 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Thomas Barker, Advisor 

Department of Biomedical Engineering 

Georgia Institute of Technology 

 Dr. Andrés García 

School of Mechanical Engineering 

Georgia Institute of Technology 

   

Dr. Philip Santangelo 

Department of Biomedical Engineering 

Georgia Institute of Technology 

 Dr. Cheng Zhu 

Department of Biomedical Engineering 

Georgia Institute of Technology 

   

Dr. James Hagood 

Department of Pediatrics 

University of California, San Diego 

  

   

  Date Approved:  February 14, 2014 

 



 

 

 

 

 

 

 

 

To those who have traveled this road before, and to those who will follow. 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

 I would like to acknowledge and thank those, without whom the completion of 

this Ph.D. would not have been possible.  To my family, whose unconditional support 

helped motivate me, especially through the difficult times, thank you.  I would like to 

acknowledge my friends, both prior to arriving in Atlanta and those throughout my time 

here, for keeping life outside of the lab fun, exciting, and a necessary change of pace.  I 

would like to thank my adviser, Tom, for giving me the flexibility and independence to 

approach my research with passion and creativity; I will carry this, and the confidence it 

has instilled, with me throughout my career.  I would like to thank my entire committee 

for their thoughtful and critical review of this work and professional guidance.  Most of 

all, I would like to thank Alison, whose constant companionship kept me grounded, 

happy, and healthy throughout the most difficult years of this journey. 



 v 

TABLE OF CONTENTS 
 

ACKNOWLEDGEMENTS .............................................................................................. IV	  

LIST OF FIGURES ....................................................................................................... VIII	  

LIST OF SYMBOLS AND ABBREVIATIONS .............................................................. X	  

SUMMARY ...................................................................................................................... XI	  

CHAPTER 1	   INTRODUCTION .................................................................................. 1	  

1.1	   Specific aims .......................................................................................................... 1	  

1.2	   Significance of Research ....................................................................................... 3	  

CHAPTER 2	   LITERATURE REVIEW ....................................................................... 5	  

2.1	   Tissue Fibrosis and Idiopathic Pulmonary Fibrosis ............................................... 5	  

2.2	   Fibroblasts .............................................................................................................. 8	  
2.2.1	   Fibroblast function in normal physiology and pathophysiology .................... 8	  
2.2.2	   Stromal cell subpopulations in vivo ................................................................ 9	  

2.3	   Microenvironmental Changes During Fibrotic Progression ................................ 11	  

2.4	   Cellular Responses to ECM Mechanics ............................................................... 15	  
2.4.1	   Global cell phenotypic responses .................................................................. 15	  
2.4.2	   Integrins, focal adhesions, and associated signaling mechanisms ................ 16	  

2.5	   Plasma membrane-associated integrin signaling ................................................. 19	  
2.5.1	   Lipid rafts ...................................................................................................... 19	  
2.5.2	   Membrane-associated integrin signaling intermediates ................................ 21	  
2.5.3	   Thy-1 structure, reactivity and function ........................................................ 22	  

CHAPTER 3 ..................................................................................................................... 25	  

QUANTIFICATION OF IN VIVO LUNG PARENCHYMA TISSUE RIGIDITY AND 
ITS CHANGE DURING LUNG FIBROSIS* .................................................................. 25	  

3.1	   Introduction .......................................................................................................... 25	  

3.2	   Materials and Methods ......................................................................................... 27	  
3.2.1	   Murine lung tissue preparation and mechanical characteration .................... 27	  
3.2.2	   Human lung tissue preparation and mechanical characterization ................. 29	  



 vi 

3.3	   Results .................................................................................................................. 31	  
3.3.1	   Characterization of lung tissue morphometry and cell viability in fresh lung 
tissue sections ............................................................................................................ 31	  
3.3.2	   AFM measurement of mouse lung tissue Young’s modulus ........................ 34	  
3.3.3	   Rigidity measurements of clinical IPF specimens ........................................ 35	  

3.4	   Discussion ............................................................................................................ 38	  

CHAPTER 4 ..................................................................................................................... 42	  

THY-1 REGULATION OF FIBROBLAST CYTOSKELETAL RESPONSES TO 
ALTERATIONS IN SUBSTRATE RIGIDITY ............................................................... 42	  

4.1	   Introduction .......................................................................................................... 42	  

4.2	   Materials and Methods ......................................................................................... 45	  
4.2.1	   Cells and plasmids ........................................................................................ 45	  
4.2.2	   ECM substrates ............................................................................................. 47	  
4.2.3	   Assays of cytoskeletal phenotype ................................................................. 49	  
4.2.4	   Assays of force-dependent signaling ............................................................ 51	  

4.3	   Results .................................................................................................................. 53	  
4.3.1	   Emergence of Thy-1neg population in IPF fibroblasts ................................... 53	  
4.3.2	   Loss of Thy-1 enhances cytoskeleton activation in physiologic matrices .... 55	  
4.3.3	   Thy-1 enhances mechanosensitivity to ECM rigidity ................................... 58	  
4.3.4	   Thy-1 modulates rigidity sensing via RhoA activation ................................ 62	  
4.3.5	   Force-dependent adhesion signaling is modulated by Thy-1 ....................... 65	  
4.3.6	   Fyn and Thy-1 expression is required for efficient rigidity sensing ............. 68	  
4.3.7	   Thy-1 regulates rigidity-dependent ECM assembly and remodeling ........... 70	  

4.4	   Discussion ............................................................................................................ 72	  

CHAPTER 5 ..................................................................................................................... 77	  

IDENTIFICATION OF A THY-1/αVβ3 INTEGRIN/FYN/RHOA SIGNALING AXIS 
REGULATING LUNG FIBROBLAST MECHANOTRANSDUCTION ....................... 77	  

5.1	   Introduction .......................................................................................................... 77	  

5.2	   Materials and Methods ......................................................................................... 81	  
5.2.2	   Protein complex identification assays ........................................................... 82	  
5.2.3	   Assays of cytoskeletal phenotype ................................................................. 83	  
5.2.4	   Assays of force-dependent signaling ............................................................ 85	  



 vii 

5.3	   Results .................................................................................................................. 87	  
5.3.1	   Lipid raft stability and Thy-1’s GPI anchor are required for Fyn recruitment, 
force-dependent RhoA activation, and rigidity sensing ............................................ 87	  
5.3.2	   Thy-1 associates with αvβ3 integrin via the Arg-Leu-Asp motif ................. 91	  
5.3.3	   Thy-1 binds αvβ3 integrin in cis and is dependent on integrin conformation 
and Thy-1’s RLD motif ............................................................................................ 93	  
5.3.4	   Thy-1’s RLD motif is required for Fyn recruitment, force-dependent RhoA 
activation, and rigidity sensing ................................................................................. 98	  

5.4	   Discussion .......................................................................................................... 100	  

CHAPTER 6	   CONCLUSIONS AND FUTURE DIRECTIONS ............................. 105 

REFERENCES ............................................................................................................... 111	  
 

 

 

 

  



 viii 

LIST OF FIGURES 

 

Figure 1:   Schematic of fibrotic progression in the alveolar space. .............................. 8	  

Figure 2:   Histologic and vital stain characterization of mouse lung tissue ................. 32	  

Figure 3:   Cell viability characterization of fresh lung tissue sections. ........................ 33	  

Figure 4:   AFM measurement of mouse lung tissue stiffness. ...................................... 35	  

Figure 5:   AFM measurement of human IPF and normal lung tissue stiffness. ........... 37	  

Figure 6:   Histogram analysis of AFM measurements from patient samples. .............. 38	  

Figure 7:  Thy-1 expression and cytosketetal phenotype of IPF and normal lung 

fibroblasts. .............................................................................................................. 54	  

Figure 8:  Thy-1 knockdown alters the cytoskeletal phenotype of normal lung 

fibroblasts... ............................................................................................................ 57	  

Figure 9:   Analysis of Thy-1-dependent rigidity sensing in human lung fibroblasts. .. 59	  

Figure 10: Analysis of Thy-1-dependent rigidity sensing in endogenous Thy-1 

subpoulations and via exogenous re-expression .................................................... 61	  

Figure 11:  Analysis of substrate rigidity- and force-dependent RhoA activity ............ 64	  

Figure 12:  Analysis of Thy-1- and force-dependent adhesion complex components. . 67	  

Figure 13:  Analysis of c-Src- and Fyn-mediated SYF cell spreading in Thy-1pos and Thy-

1neg SYF subpoplations. ......................................................................................... 69	  

Figure 14:  Thy-1 regulates Fn assembly and collagen gel contraction ........................ 71	  

Figure 15:  Lipid raft stability is required for Thy-1-mediated Fyn recruitment and force-

dependent RhoA activation. ................................................................................... 88	  

 Figure 16:  Thy-1‘s GPI anchor is required for Fyn recruitment, force-dependent RhoA 

activation, and rigidity sensing. ............................................................................. 90	  

Figure 17:   Co-immunoprecipitation of Thy-1 with αvβ3. ........................................... 93	  

Figure 18: Thy-1 associates with integrin αvβ3 in cis and is dependent on integrin 

conformation. ......................................................................................................... 95	  



 ix 

Figure 19:  Thy-1 association with integrin αvβ3 in cis is dependent on Thy-1’s RLD 

motif….... ............................................................................................................... 97	  

Figure 20:  Thy-1‘s RLD motif is required for Fyn recruitment, force-dependent RhoA 

activation, and rigidity sensing. ............................................................................. 99	  

 

  



 x 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

2D 
3D 
AFM 
BSA 
CAF 
COP 
CDM 
DRM 
E 
ECM 
EDA-Fn 
FA 
FAK 
Fn 
IPF 
IPFLF 
kPa 
NLF 
pAAm 
PLA 
pMLF 
PGE2 
SFK 
SYF 
Thy-1pos 

Thy-1neg 
UIP 
 

Two-dimensional 
Three-dimensional 
Atomic force microscope 
Bovine serum albumin 
Carcinoma-associated fibroblast 
Cryptogenic organizing pneumonia 
Cell-derived matrix 
Detergent-resistant membrane 
Young’s modulus 
Extracellular matrix 
Extra domain A-containing fibronectin 
Focal adhesion 
Focal adhesion kinase 
Fibronectin 
Idiopathic pulmonary fibrosis 
IPF lung fibroblast 
Kilopascal 
Normal lung fibroblast 
Polyacrylamide 
Proximity ligation assay 
Primary mouse lung fibroblast 
Prostaglandin E2 
Src family kinase 
Src/Yes/Fyn-/- fibroblasts 
Thy-1-positive fibroblasts 
Thy-1-negative fibroblasts 
Usual interstitial pneumonitis 
 

  
  
  



 xi 

SUMMARY 

 

 Tissue fibrosis, or the formation of scar tissue, is a necessary physiological 

process during tissue repair.  However in the pathological setting, excessive scar tissue 

formation disrupts tissue architecture and function, and is a major cause of mortality 

associated with numerous human diseases.  However, the physiological processes 

underlying the resultant outcome of progressive and fatal fibrosis versus reparative scar 

tissue formation remain poorly understood. 

 In the process of fibrosis, remodeling and deposition of the extracellular matrix 

(ECM) results in stiffening of the tissue, as is commonly associated with scar tissue.  

Cells also respond to these changes in the stiffness of their environment through 

engagement of their cytoskeleton and signaling of cell-ECM contacts.  Increasing ECM 

stiffness results in activation of fibroblasts, which are the tissue-resident cells responsible 

for scar tissue formation.  Thus, understanding to what extent the stiffness of the cellular 

environment changes as a consequence of fibrotic progression, and how cells respond to 

this change, is critical. 

 In this thesis, we quantitatively measured stiffness of the lung parenchyma and its 

change during fibrosis.  We find that the average stiffness increases by approximately 10-

fold.  We then investigated how changes in ECM rigidity affect the cytoskeletal 

phenotype of fibroblasts.  We find a complex relation between expression of the 

glycoprotein Thy-1 (CD90) and ECM rigidity-dependent cytoskeletal phenotype (i.e. 

“rigidity sensing”).  Finally, we investigate a mechanism for the regulation of rigidity 

sensing by Thy-1 and its involvement in intracellular signaling through cell-ECM 

contacts.  Taken together, this work helps define in vivo parameters critical to the 

fibrogenesis program and to define unique cellular phenotypes that may respond or 

contribute to mechanical homeostasis in disease.  



 

1 

CHAPTER 1  INTRODUCTION  

 

1.1 Specific aims 

 Fibrosis of vital organs remains one of the leading causes of death in the 

developed world, where it occurs predominantly in soft tissues (liver, lung, kidney, heart, 

skin) through fibroblast proliferation and deposition of extracellular matrix (ECM) 

(Bitterman and Henke 1991, Ghosh, Quaggin et al. 2013).  Especially problematic are 

chronic fibrotic disorders, where unrelenting fibrotic remodeling disturbs normal tissue 

architecture and impairs organ function.  Idiopathic pulmonary fibrosis (IPF) is a 

progressive and fatal fibrotic disorder of the lung parenchyma resulting in respiratory 

failure.  Due to a lack of understanding of the pathogenesis of this disease, 

pharmacological therapies remain ineffective, with a median survival time of 3 years 

post-diagnosis, and whole organ transplantation is the only viable option for treatment 

(King, Pardo et al. 2011). 

 As with all fibrotic disorders, significant remodeling of the ECM results in 

alterations to the mechanical properties of tissue (Hinz 2010).  This is of 

pathophysiologic interest, as alterations in extracellular mechanics (e.g. rigidity) 

significantly modify cell behaviors.  For instance, increased ECM rigidity supports 

fibroblast activation to a proliferative and matrix synthetic state (Tomasek, Gabbiani et 

al. 2002, Liu, Mih et al. 2010, Tschumperlin, Liu et al. 2013).  Thus, the extracellular 

matrix (ECM) exists as both a biochemical and mechanical environment; cells are able to 

sense and respond to the mechanical properties of the ECM, giving rise to 

developmentally-regulated and/or pathological processes.  However, the range of tissue 

stiffness cells encounter in the lung in vivo, both during normal physiological processes 

and during disease progression, are unknown. 
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 The connective tissue deposition observed in fibrosis is the result of resident 

fibroblasts synthesizing, assembling, and remodeling the ECM.  It has long been 

established that subpopulations of fibroblasts exist within the lung, depending on their 

anatomical location, functional requirements, and gene expression profiles (Sorrell and 

Caplan 2009).  Studies have previously demonstrated that a subpopulation of fibroblasts 

lacking cell surface expression of glycoprotein Thy-1 (CD90) preferentially localize to 

regions of ongoing fibrogenesis in vivo (termed fibroblastic foci) and exhibit pro-fibrotic 

behaviors in vitro (Hagood, Prabhakaran et al. 2005, Sanders, Kumbla et al. 2007).   

However, detailed molecular mechanisms by which Thy-1 mediates its effects on 

downstream signaling are still largely unknown.  Intriguingly, studies have demonstrated 

that Thy-1 expression modulates the assembly of stress fibers and focal adhesions, 

structures that enable cells to transduce ECM rigidity cues into biochemical signaling in a 

process termed ‘mechanotransduction’ (Barker, Grenett et al. 2004).  As fibroblasts are 

both responsible for and sensitive to fibrosis-associated changes in ECM rigidity, 

understanding how fibroblasts “sense” and “respond” to rigidity is of critical importance 

in understanding IPF pathophysiology. 

In this thesis, our objective was to further the understanding of IPF disease 

pathophysiology through the specific study of fibrosis-associated ECM rigidity and the 

phenotypic response of fibroblasts to this parameter.  This was accomplished using 

quantitative bioengineering methodology in combination with standard cell biological 

approaches in a series of three (3) specific aims: 

1. To measure the rigidity of lung parenchyma and its change as a 

consequence of fibrosis in both preclinical and human patient models of 

pulmonary fibrosis.  These studies indicate a dramatic, but spatially 

heterogeneous increase in tissue rigidity due to fibrosis, with average tissue 
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stiffness increasing by approximately an order of magnitude (from ~2 to 20 

kPa).  

2. To investigate Thy-1-dependent regulation of fibroblast cytoskeletal 

responses to alterations in ECM rigidity.  We find that Thy-1 promotes 

sensitive cytoskeletal remodeling in response to changes in ECM rigidity, 

within the range of rigidity identified in vivo.   Additionally, we find that Thy-

1 modulates mechanosensitive activation of the cytoskeletal regulator RhoA 

and promotes recruitment of Fyn to cell-ECM adhesions. 

3. To investigate the molecular interactions governing Thy-1-dependent Fyn 

recruitment to cell-ECM adhesions and downstream 

mechanotransduction.  We find that Thy-1 interacts with αvβ3 integrins 

within the plasma membrane via its integrin-binding motif.  Both Thy-1’s GPI 

anchor and integrin-binding motif are required for Fyn recruitment to cell-

ECM adhesions, force-dependent RhoA activation, and sensitive cytoskeletal 

remodeling in response to changes in ECM rigidity. 

 

1.2 Significance of Research 

 The underlying mechanisms governing chronic fibroproliferative disorders, such 

as IPF, are largely unknown (King, Pardo et al. 2011).  Thus, pharmacological treatments 

are ineffective and diseases remain a significant medical and socioeconomic burden 

(Wynn 2007).  It has long been recognized that tissue becomes stiffer as a result of 

fibrosis, however only recently has it been appreciated that such physical changes in the 

local tissue microenvironment may participate in disease pathogenesis (Tomasek, 

Gabbiani et al. 2002).  Therefore, describing to what degree tissue rigidity changes as a 

consequence of fibrosis, and how this change influences cell-level behavior is a critical 
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first step in understanding specific and therapeutically-targetable mechanisms underlying 

the physical microenvironment’s involvement in fibrotic progression. 

 Our first undertaking is to measure the changes in tissue rigidity, or Young’s 

modulus (E), at the microscale-level during lung fibrosis.  These values are critical in 

determining the properties of the local environment that cells interact with in vivo.  These 

measured values of E can be used to model the microenvironmental rigidity of cells in 

vitro, and as a result, these values have been used across the field of lung 

mechanobiology to study the impact of tissue stiffness on cell physiology (Booth, Hadley 

et al. 2012, Huang, Yang et al. 2012, Brown, Fiore et al. 2013).  This also enables future 

studies on normal lung cell physiology to more closely mimic in vivo settings. 

 A second goal of this project was to investigate the phenotype of Thy-1-

expressing subpopulations in physiologic microenvironments, to better evaluate the pro-

fibrotic phenotype of these disease-associated fibroblasts.  This is towards the ultimate 

goal of understanding how pro-fibrotic cellular phenotypes may contribute to the 

fibrogenesis program in vivo.  This is critical because fibroblasts are the drivers of 

fibrotic progression, and thus understanding how they sense and respond to disease-

associated cues is essential. 

 Lastly, we investigated the molecular mechanisms by which Thy-1 alters 

fibroblast phenotype in vitro.  This is aimed towards the significant and long-term goal of 

discovering novel molecular pathways for therapeutic intervention in IPF. This adds to 

the knowledge of molecular mechanisms that may be linked to IPF pathophysiology, 

enabling future studies into the discovery and testing of novel therapeutics. 
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CHAPTER 2  LITERATURE REVIEW 

 

2.1 Tissue Fibrosis and Idiopathic Pulmonary Fibrosis 

 The spatial and structural architecture of tissue is tightly controlled during 

development and homeostasis, enabling proper fitness of the organism.  Adult tissues, 

especially those in higher-order multicellular and mammalian organisms, exhibit 

extraordinary structure-function relationships that depend on the requirements of the 

underlying physiological process (Fuchs and Raghavan 2002).  In many human diseases, 

these structure-function properties are dysregulated, leading to decline of tissue function 

and organism fitness. 

 Fibrosis is a common alteration of tissue structure-function in human diseases, 

with chronic fibroproliferative processes broadly contributing to nearly 45% of deaths in 

the developed world (Wynn 2007).  During fibrosis, connective tissue is assembled and 

remodeled by activated fibroblasts in an effort to restore tissue integrity.  This is an 

essential process in regulated wound healing, such that wounds in the adult typically heal 

as scars (Gurtner, Werner et al. 2008).  However, significant accumulation of such scar 

tissue in the parenchyma disrupts physiologic tissue architecture and results in altered 

tissue/organ function.  Fibrosis is not only a principal cause of tissue dysfunction in 

major vital organs, such as the lungs, liver, and heart, but also a critical component of 

cancer malignancy and certain neurologic disorders (Rolls, Shechter et al. 2009).  Indeed, 

fibrosis of tissue surrounding a primary malignant cell mass, known as the tumor stroma, 

plays a critical role in priming cancer cells for malignancy and metastasis (Paszek, Zahir 

et al. 2005, Butcher, Alliston et al. 2009).  Thus, fibrosis represents a major cause of 

human mortality worldwide, however the mechanisms underlying fibrogenesis, especially 

in the context of chronic fibroproliferative disorders, are incompletely understood. 
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 A number of pulmonary disorders are characterized by fibrotic remodeling of the 

lung parenchyma, including idiopathic pulmonary fibrosis (IPF), asbestosis, and 

cryptogenic organizing pneumonia (COP).  Prominent features of these disorders are 

excessive fibroblast proliferation and collagen deposition in the distal airspace and lung 

parenchyma following lung injury (Hardie, Glasser et al. 2009, Kis, Liu et al. 2011).  IPF, 

characterized histologically by the lesion termed usual interstitial pneumonitis (UIP), has 

an annual death rate higher than that of Alzheimer's disease, and about half that of HIV 

infection (White, Lazar et al. 2003).  IPF is chronic and unrelenting fibrogenesis within 

the alveolar structure, what is becoming more commonly thought of as a form of 

disordered wound healing.  What is known of the pathophysiology of IPF is complex, 

involving the interplay of genetic predisposition, environmental factors, activation 

of parenchymal and immune effector cells, and the participation of a staggering number 

of soluble mediators and matrix components at the local and tissue level (Crouch 1990).  

Traditional therapy for interstitial lung diseases, consisting of corticosteroids and other 

immunomodulatory agents, are ineffective as these regimens do not treat the underlying 

pathology (Mapel, Samet et al. 1996).  A recent randomized clinical trial for the 

combination treatment of prednisone, azathioprine, and antioxidant N-acetylcysteine was 

prematurely ended due to safety concerns and lack of efficacy in the control arm 

(Idiopathic Pulmonary Fibrosis Clinical Research, Raghu et al. 2012).  In essence, both 

the etiology and pathogenesis of the disease are not fully understood, making treatment of 

symptoms and co-morbidities prohibitively difficult, while combatting underlying disease 

mechanisms even more so. 

 Potentially adding to the complexity, numerous recent publications suggest that 

the physical/mechanical properties of the ECM can regulate a host of cellular processes 

involved in fibrosis (Engler, Griffin et al. 2004, Levental, Yu et al. 2009, Liu, Mih et al. 

2010, Booth, Hadley et al. 2012, Huang, Yang et al. 2012, Brown, Fiore et al. 2013).  
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Specifically, cells are able to sense the mechanical properties of the ECM, such as 

rigidity, and engage their actinomyosin contractile machinery in a manner that facilitates 

mechanical homeostasis between the cell and its environment (Pelham and Wang 1997, 

Paszek and Weaver 2004, Solon, Levental et al. 2007).  These events have implications in 

the progression and treatment of fibrotic diseases, as fibrosis results in profound 

alterations in the mechanical properties of tissues.  Indeed, Barry-Hamilton et al. recently 

demonstrated successful reduction of bleomycin-induced pulmonary fibrosis in a murine 

model, along with a marked reduction in activated fibroblasts and decreased TGFβ 

signaling, by inhibiting the matrix crosslinking enzyme lysyl oxidase-like-2, which 

decreases tissue stiffness (Levental, Yu et al. 2009, Barry-Hamilton, Spangler et al. 

2010).  Further implications of mechanical properties of the microenvironment on cell 

phenotype and fibrosis are discussed below. 

 The main effector cell in IPF is the fibroblast, as is evidenced by the name 

“fibrosis”.  Activated fibroblasts within UIP lesions, termed fibroblastic foci, exhibit a 

highly contractile and synthetic phenotype (Katzenstein and Myers 1998, Hardie, Glasser 

et al. 2009).  Fibroblastic foci represent regions of ongoing fibrogenesis, an increased 

number of which are associated with a decline in lung function and an increased risk of 

mortality (King, Schwarz et al. 2001, Nicholson, Fulford et al. 2002).  Proliferation and 

recruitment of resident fibroblasts, as well as excessive deposition and remodeling of 

collagens and fibronectin, leads to alveolar wall expansion and distortion of epithelial 

structures (White, Lazar et al. 2003).  This is contrasted by the normal alveolus, in which 

sheet-like epithelial cells lie on a laminin/collagen IV-rich basement membrane in close 

proximity to capillary beds, allowing for the diffusive exchange of oxygen and carbon 

dioxide (Figure 1, (Fehrenbach 2001)).  As a result of ECM remodeling and cellular 

activation, fibrotic lesions exhibit both a biochemical and biophysical microenvironment 

that is distinct from its physiologic counterpart, and thus fibroblasts, as well as epithelial, 
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endothelial, and immune cells within this changing microenvironment are exposed to 

altered instructive cues. 

 

Figure 1:  Schematic of fibrotic progression in the alveolar space.  (A) Normal 

alveoli exhibit sheet-like epithelial cells on basement membrane.  (B) Fibrotic 

regions undergo ECM remodeling and alveolar wall expansion. 

 

2.2 Fibroblasts 

2.2.1 Fibroblast function in normal physiology and pathophysiology 

 Fibroblasts are stroma resident cells responsible for much of the assembly and 

remodeling of ECM during development and adult homeostasis.  Fibroblasts are defined 

as “cells that 1) synthesize and secrete a complex array of structural (e.g. collagens and 

fibronectin) and nonstructural (e.g., matricellular family of molecules such as 

thrombospondins, SPARC, and osteopontin) ECM molecules, 2) actively organize and 



 9 

remodel the ECM through production of proteinases, and 3) converse with nearby cells 

through paracrine, autocrine, and other forms of communication”(Sorrell and Caplan 

2009).  Furthermore, fibroblasts are identified by their ability to migrate in response to 

directional cues and respond to the local mechanical environment (i.e. 

mechanotransduction). It is therefore apparent that fibroblasts are central to tissue and 

organ physiology. 

 Fibrosis is the result of aberrant and prolonged activation of fibroblasts.  In IPF, 

the fibroblastic focus consists of fibroblasts or myofibroblasts (defined by de novo 

expression of α-smooth muscle actin and cellular fibronectin) in a fibronectin- and type I 

collagen-rich matrix (Kuhn and McDonald 1991).  These cells proliferate and deposit 

ECM in the alveolar wall, supporting the primary role for this cell type in disease 

pathogenesis.  Although studies support the general notion that IPF fibroblasts may 

display unique phenotypes from their normal counterparts (Miki, Mio et al. 2000, Ramos, 

Montano et al. 2001), large gaps in knowledge remain regarding what specific differences 

are responsible for progressive fibrosis versus the physiologic function of fibroblasts 

essential for normal lung repair.  Given the distinctly heterogeneous nature of IPF, it is 

likely that cells from specific histological features vary in their phenotypic traits, and thus 

locally identifying cell phenotype with respect to disease features of interest is critical. 

2.2.2 Stromal cell subpopulations in vivo 

 As the defining characteristics of fibroblasts are typically their spindle-shaped 

morphology, ability to adhere to plastic culture surfaces, and the absence of other 

lineage-specific markers, the diversity of such cells is typically slighted.  Fibroblasts from 

distinct stromal tissues can exhibit significant phenotypic heterogeneity. For example 

skin fibroblasts differ from those from the lung in terms of morphology, proliferation 

rates, and synthesis of cytokines and ECM constituents (Sorrell and Caplan 2009).  
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Comparison of genome-wide mRNA expression profiles of fibroblasts from distinct 

anatomical locations has revealed divergence among a wide array of genes, from lipid 

metabolism to cell migration (Chang, Chi et al. 2002).  This is perhaps unsurprising, as 

different anatomical locations have evolved with unique functions, and so fibroblasts 

within these compartments may be specialized to perform distinct roles.  However, 

fibroblasts within the same stromal compartment can exhibit functional phenotypic 

differences as well.  Clonal derivatives from skin, intestinal tissue, and lung have been 

demonstrated to differ in ECM component synthesis and assembly, epithelial-

mesenchymal crosstalk, and secretion and responsiveness to cytokines (Fritsch, Orian-

Rousseaul et al. 1999, Sorrell and Caplan 2009).  This is further complicated by the fact 

that these cells can undergo phenotypic plasticity within their lifespan, dependent on 

microenvironmental cues.  For example, carcinoma-associated fibroblasts can exhibit 

significant functional differences between those subpopulations promoting metastasis 

within tumor microenviroment versus non-malignant growth (Goetz, Minguet et al. 

2011). 

 In the skin, distinct fibroblast lineages play unique roles in defining dermal 

architecture during skin development and repair.  Fibroblasts arising from a single 

progenitor will go on to create two distinct fibroblast lineages in the mouse; one forms 

the upper dermis, including the dermal papilla and supports hair follicle growth and 

regeneration, whereas the reticular/hypodermal subpopulation will go on to synthesize 

the majority of fibrillar ECM and are the progenitors for pre-adipocytes within the 

hypodermis (Driskell, Lichtenberger et al. 2013).  During wound healing, the initial wave 

of regeneration depends on cells of the reticular/hypodermal lineage elaborating a 

collagenous ECM, while upper cells become active later in the process to facilitate re-

epithelialization and follicular morphogenesis.   



 11 

 Lung fibroblast subpopulations characterized by surface expression of Thy-1 

represent an intriguing system of phenotypic subsets.  In vitro, fibroblasts lacking 

expression of Thy-1 undergo enhanced proliferation and activation of pro-fibrotic 

cytokines in response to fibrogenic growth factors, such as platelet-derived growth factor-

A (PDGF-A) and connective tissue growth factor (CTGF), and exhibit differential 

signaling responses to pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and 

interleukin-1β (IL-1β) (Hagood, Miller et al. 1999, Hagood, Lasky et al. 2001, Hagood, 

Mangalwadi et al. 2002, Zhou, Hagood et al. 2004).  Of foremost clinical significance, 

Thy-1 expression is absent in fibroblasts within the fibroblastic foci IPF patients, whereas 

the majority of lung fibroblasts from healthy lung interstitium are Thy-1pos (Hagood, 

Prabhakaran et al. 2005, Sanders, Pardo et al. 2008).  Furthermore, Thy-1 knockout mice 

display more severe fibrosis in response to bleomycin challenge, a commonly used model 

for the induction of lung fibrosis, and regions of the interstitium undergoing fibrotic 

remodeling in wild-type mice are predominated by Thy-1neg fibroblasts (Hagood, 

Prabhakaran et al. 2005).  Therefore, Thy-1neg fibroblasts represent a pro-fibrotic subset 

of cells that appear to play a central role in the pathophysiology of lung fibrosis. 

 

2.3 Microenvironmental Changes During Fibrotic Progression 

 The cellular microenvironment is made up of soluble and substrate-bound 

macromolecules that impart strong control over resident cell phenotype.  One major 

component of the microenvironment, apart from neighboring cells and local soluble 

signals, is the ECM.  The ECM is a dynamic, multi-component scaffold that contains 

both biochemical and biophysical cues that modulate cell behavior through local 

interactions at the cell-ECM interface (Hynes 2009).  Cells also assemble and remodel 

this structure in a continuous fashion during development and throughout the lifetime of 
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the organism (Larsen, Artym et al. 2006).  Thus, cells possess the ability to communicate 

bidirectionally with the ECM, both instructing the local environment through modulation 

of ECM parameters, while also being exquisitely sensitive to these changes.  To 

accomplish this task, cells possess a system of molecules and complexes that coordinate 

signaling responses from the ECM and also participate in local remodeling of the ECM 

(Miyamoto, Katz et al. 1998).  Integrins are the major class of cell surface ECM receptors 

used in this process, which together with their accessory molecules, orchestrate this 

bidirectional communication and will be the topic of further discussion below. 

 As a consequence of fibrogenesis, major changes occur to the biochemical and 

biophysical properties of the ECM.  The abundance of connective tissue deposited by 

fibroblasts results in an increase in the amount of fibrous ECM protein, predominantly 

type I-III collagens (Tomasek, Gabbiani et al. 2002), thereby altering ligand presentation 

and topology within the microenvironment.  This is concomitant with an increase in 

tissue rigidity, as the amount of collagen I scales linearly with tissue rigidity over three 

orders of magnitude and is largely responsible for the tensile strength of tissues (Swift, 

Ivanovska et al. 2013).  Enzymatic crosslinking of ECM fibers can further increase tissue 

rigidity.  Both tumors and scars have long been recognized as mechanically stiffer than 

normal tissue, a property that has aided in the detection and resection of diseased tissue 

(Butcher, Alliston et al. 2009).  However, it is now appreciated that changes in tissue 

rigidity accompanying fibrosis may provide a driving force for disease progression.  

During mammary tumorigenesis, stiffening of the tumor stroma, for instance due to 

enhanced ECM deposition and crosslinking by carcinoma-associated fibroblasts (CAFs), 

enhances integrin signaling in non-malignant mammary epithelial cells through 

extracellular-related kinase and focal adhesion kinase (FAK) (Levental, Yu et al. 2009).  

This can promote malignant transformation of the tumor (Paszek, Zahir et al. 2005).  

Furthermore, the specific adhesion- and integrin-signaling phenotype of CAFs can 
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regulate this cell-ECM bidirectional communication to either promote or inhibit 

malignancy.  For example, stroma associated with breast carcinomas and metastatic 

melanoma is enriched in CAFs expressing high levels of caveolin-1, which promote 

ECM remodeling to favor directional migration and invasion of carcinoma cells (Goetz, 

Minguet et al. 2011). 

 Previous studies have demonstrated that tissue compliance decreases as a 

consequence of IPF disease progression.  This was demonstrated at the whole organ level 

through lung pressure-volume measurements (i.e. plethysmography) from IPF patients, 

where lung compliance was seen to decrease by more than 30% and was the most 

strongly correlated pulmonary function parameter with the extent of fibrosis (Sansores, 

Ramirez-Venegas et al. 1996).  Similarly, tensile-stress testing of lung tissue strips from 

rats after bleomycin-induced fibrosis gave quantitative values of tissue elasticity (i.e. 

Young’s modulus), showing a significant increase as a result of fibrosis.  Values for these 

bulk segments of tissue and were determined to increase by 2-fold, from approximately 5 

to 10 kPa, between normal and bleomycin-treatment groups (Dolhnikoff, Mauad et al. 

1999, Ebihara, Venkatesan et al. 2000).   

 In response to these increases in ECM stiffness, a number of pro-fibrotic cellular 

responses occur.  Fibroblasts increase their expression of α-smooth muscle actin (α-

SMA), which promotes further activation of cytoskeletal machinery (Hinz, Celetta et al. 

2001, Goffin, Pittet et al. 2006).  Enhanced polymerization of F-actin leads to 

translocation of the cytoplasmic G-actin-bound transcription factor MRTF-A into the 

nucleus, where it complexes with serum response factor and drives α-SMA gene 

expression (Huang, Yang et al. 2012).  Both fibroblasts and type II alveolar epithelial 

cells activate the pro-fibrotic cytokine TGF-β to a greater extent (Wipff, Rifkin et al. 

2007).  We have demonstrated that ECM stiffness promotes alveolar epithelial-to-

mesenchymal transition through enhanced αvβ6 integrin-mediated activation of latent 
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TGF-β from ECM (Brown, Fiore et al. 2013).  Importantly, cytoskeletal contractility and 

Rho-mediated signaling are necessary for stiffness-induced EMT and latent TGF-β 

activation.  

 In fibroblasts, matrix stiffening promotes fibroblast proliferation and matrix 

synthesis through suppression of COX-2 and prostaglandin E2 (PGE2) expression, 

importantly linking matrix stiffness and fibroblast proliferation (Liu, Mih et al. 2010).  In 

contrast, physiologic stiffness enhances COX-2 and PGE2 expression, which promotes 

fibroblast quiescence and inhibits assembly of mature cytoskeletal structures.  One of the 

common features of these studies is that ECM stiffening results in phenotypic changes 

that further promote cytoskeletal activity, pro-fibrotic ECM remodeling, and fibroblast 

proliferation.  This demonstrates a feedback loop between the biophysical state of the 

ECM and the activation state of the cytoskeleton that, in the case of fibrosis, may become 

positive and lead to system instability, i.e. chronic fibrotic remodeling.  Interestingly, 

how the microenvironment is initially remodeled during the wound healing/fibrotic 

processes that result in changes from an initially physiologic rigidity regime to a disease-

associated and pro-fibrotic state is unknown.  However, it must be stated the majority of 

studies investigating the physiology and disease-associated cell behavior in vitro have 

been performed on rigid glass or plastic materials.  In fact, simply removing 

mesenchymal cells from their in vivo microenvironment results in dramatic activation of 

the cytoskeleton, hypertrophy, and changes in gene expression reminiscent of 

myofibroblast differentiation associated with fibrosis (Balestrini, Chaudhry et al. 2012). 

 The local rigidity of the environment of the cell is bi-directionally regulated 

during normal tissue homeostasis and disease progression by adhesion complexes that 

link that ECM to the cytoskeleton.  This regulation is bi-directional: the cell (e.g. 

fibroblast) assembles and remodels the ECM, thereby changing its material properties, 

and the cell is also exquisitely sensitive to changes in the material properties of its 
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substratum.  In other words, the cell both senses and controls the rigidity its 

microenvironment. 

 

2.4 Cellular Responses to ECM Mechanics 

2.4.1 Global cell phenotypic responses 

 Of the many parameters characterizing the material properties of biological tissue, 

including viscosity, strength, topology, porosity, etc., stiffness or rigidity is perhaps the 

most widely investigated.  As a measure of the extent to which an object resists elastic 

deformation under an applied force, the elastic modulus has emerged as a critical 

regulator of cell behavior (Discher, Janmey et al. 2005).  Investigation into the cellular 

responses to ECM rigidity has yielded multiple phenotypic outputs that are modulated by 

this parameter, including migration, differentiation, proliferation, and apoptosis.  As may 

be expected, many of these phenotypes are intimately connected with the cytoskeleton, 

which is largely responsible for a cell’s own mechanical properties and its ability to 

perform mechanical work (Ingber 2003, Yeung, Georges et al. 2005).  Although the 

molecular and biophysical details of how a cell senses and responds to its mechanical 

environment are ongoing, a generalizable description is that a cell probes the mechanics 

of the ECM by generating forces within the cytoskeleton that are transmitted to the ECM 

through protein complexes that are also biochemically sensitive to these forces (Moore, 

Roca-Cusachs et al. 2010). 

 Tissue cells in vitro exhibit multiple modules of cytoskeletal contractility leading 

to force generation on the ECM (Ponti, Machacek et al. 2004, Hu, Ji et al. 2007).  These 

modules are highly regulated both in space and time and are dependent on both intrinsic 

(eg. retrograde actin flow, myosin filament assembly and activity) and extrinsic (ECM 

stiffness, biochemical composition) factors.  For example, under low tension, actin 
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filaments are not assembled into stress fibers and instead exhibit contractile network-

arrays that are highly efficient in cell migration (Aratyn-Schaus, Oakes et al. 2011).  This 

tension is controlled both by the stiffness of the underlying ECM and the ability of 

myosin to reorganize and tense actin filament networks.  In response to a stiff ECM, 

contractile-network arrays can give rise to highly contractile, parallel actin stress fibers, 

and this in turn can generate maximal tension on the ECM.  Thus, cells exhibit precisely 

tuned intracellular machinery, namely the actinomyosin cytoskeleton, to respond to 

extracellular stimuli such as changes in the mechanical microenvironment, which 

ultimately give rise to distinct motile or contractile phenotypes.   

 Cells on stiff substrates not only assemble bundles of F-actin filaments and 

generate larger traction forces, but also increase the size of cell-matrix adhesions, 

structures that can be directly correlated, during the initial stages of growth and 

maturation, to the cell’s application of force on the matrix (Pelham and Wang 1997, 

Stricker, Aratyn-Schaus et al. 2011).  Thusly, cells increase their applied traction forces 

and spread area in response to increasing substrate stiffness (Saez, Buguin et al. 2005, 

Yeung, Georges et al. 2005).  These responses occur up to a point (~12-16 kPa), at which 

effective saturating levels are reached.  In consequence of the assembly of cytoskeletal 

structures, such as stress fibers and focal adhesions, and enhanced contractility on stiff 

substrates, cells also increase their cortical stiffness (Solon, Levental et al. 2007, Tee, Fu 

et al. 2011).  Therefore, there exists a range of responses, including cell spread area, 

stress fiber and focal assembly, traction force generation, and cortical stiffening, that 

result from changes in ECM stiffness and can be measured in vitro.   

2.4.2 Integrins, focal adhesions, and associated signaling mechanisms 

  Integrin-based adhesions are the physical attachment sites between cells and the 

ECM (Hynes 2002).  Cytoskeletal forces are linked to the ECM through the 
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transmembrane integrins and their associated molecules that cluster to form adhesions, 

more specifically termed focal adhesions, focal complexes, or nascent adhesions 

depending on their molecular composition, size, and/or historical commonplace (Geiger, 

Spatz et al. 2009).  In this Thesis, we refer to these structures commonly as focal 

adhesions (FAs).  The cytoplasmic tails of integrin serve as scaffolds for the binding of 

integrin-associated proteins, including cytoskeletal binding and adapter proteins, enzymes 

such as kinases and phosphatases, and small GTPases and their regulators (Gardel, 

Schneider et al. 2010).  Thereby, adhesions serve as a macromolecular complex that 

physically associate the cytoskeleton and ECM with the ability to propagate biochemical 

signals.  FAs are mechanosensitive organelles, in that they grow and change composition 

in response to mechanical force (Balaban, Schwarz et al. 2001, Riveline, Zamir et al. 

2001).  Thus, specific proteins are recruited to adhesions in a force-dependent manner, 

and these proteins may elicit specific downstream responses (Gardel, Schneider et al. 

2010, Pasapera, Schneider et al. 2010, Kuo, Han et al. 2011).  In particular, nascent 

complexes, including scaffolding molecules such as paxillin, form at the leading edge, 

while myosin II-mediated tension and structural templating lead to recruitment and 

activation of accessory proteins such as zyxin and α-actinin, promoting growth and 

“maturation” of the complex distal to the leading edge (Choi, Vicente-Manzanares et al. 

2008, Pasapera, Schneider et al. 2010, Oakes, Beckham et al. 2012).  Increased 

mechanical tension leads to activation of downstream signaling molecules such as focal 

adhesion kinase (FAK), Src and Rho family GEFs (Wang, Botvinick et al. 2005, 

Friedland, Lee et al. 2009).    

 Downstream of ECM ligation, a plethora of integrin-specific and tension-

dependent signaling responses occur as FAs assemble and turnover (Kuo, Han et al. 

2011, Schiller, Hermann et al. 2013).  Intriguingly, exogenous forces applied to integrins 

initiate similar signaling pathways to those stimulated by internally generated forces.  
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Initial studies on adhesion reinforcement demonstrated that cells are able to sense the 

restraining force applied to Fn-coated beads and respond by a localized and proportional 

strengthening of cytoskeletal linkages (Choquet, Felsenfeld et al. 1997).  Force-bearing 

FA proteins, such as vinculin, are also recruited and/or activated at the site of exogenous 

force application, further demonstrating the structural importance of adhesion 

strengthening and mechanotransduction (Galbraith, Yamada et al. 2002).  These 

cytoskeletal rearrangements result in localized stiffening of the cell at the cell-ECM 

interface (Wang, Butler et al. 1993).  

One of the major pathways involved in mechanotransduction signaling, or 

mechanosignaling, is the GTPase RhoA, a critical signaling hub in the assembly of stress 

fibers and FAs.  RhoA is a Ras-related member of the Rho family of small GTPases that 

promotes the assembly of FAs and actin stress fibers, whereas inhibition with dominant-

negative mutants or pharmacological inhibitors results in disassembly of stress fibers and 

FAs (Ridley and Hall 1992, Nobes and Hall 1995).  RhoA induces stress fibers and focal 

adhesions by stimulating contractility, as active Rho elevates myosin light chain (MLC) 

phosphorylation in a Rho-associated kinase (ROCK)-dependent manner (Chrzanowska-

Wodnicka and Burridge 1996).  This is in contrast to other Rho family members, such as 

Rac and Cdc42, which have distinct, but interdependent functions with respect to 

cytoskeletal organization (Nobes and Hall 1995, Machacek, Hodgson et al. 2009).  In 

addition, RhoA mediates actin assembly though an mDia-dependent pathway, both of 

which are necessary for the proper assembly of stress fibers (Watanabe, Madaule et al. 

1997).  The requirement for ROCK-mediated myosin II contraction, activated 

downstream of RhoA, in tension-induced adhesion assembly was demonstrated; this 

could be bypassed by external force application (Riveline, Zamir et al. 2001).  

Correspondingly, tension activates RhoA, however the molecular mechanisms upstream 

of this were unknown (Wozniak, Desai et al. 2003, Bhadriraju, Yang et al. 2007).  
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Recently two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, were 

demonstrated to regulate RhoA activation in response to force via their activation and 

recruitment to the adhesion complex (Guilluy, Swaminathan et al. 2011).  These studies 

further illuminate the mechanochemical responses to mechanical tension that mediate 

cytoskeletal remodeling and cellular adaptation. 

 At the single molecule level, forces may alter the receptor-ligand reaction 

landscape or expose cryptic binding motifs to modulate the output and dynamics of 

downstream signaling pathways.  This has been demonstrated with various structural FA-

and cytoskeleton-associated proteins such as talin (del Rio, Perez-Jimenez et al. 2009), 

filaminA (Ehrlicher, Nakamura et al. 2011), spectrins (Johnson, Tang et al. 2007), 

integrin (Kong, Garcia et al. 2009, Kong, Li et al. 2013), and others.  For example, force 

causes cryptic exposure of vinculin-binding motifs within a stretched talin molecule (del 

Rio et al., 2009).  Force also exposes SFK-binding motifs within p130Cas, resulting in 

substrate phosphorylation and a potential mechanism for signal transduction (Sawada et 

al., 2006).  However within the FAs, a multitude of proteins, binding interactions, and 

complex architecture make resolving mechanosignaling mechanisms at the molecular 

level a challenge.   

 

2.5 Plasma membrane-associated integrin signaling 

2.5.1 Lipid rafts 

 Lipid rafts are functional subdomains of proteins and lipids that exhibit lateral 

segregation within the plasma membrane (Lingwood and Simons 2010).  Typically, they 

are enriched in cholesterol, sphingolipids, and GPI-anchored proteins and have distinct 

mobility characteristics within the plasma membrane (Sharma, Varma et al. 2004, 

Goswami, Gowrishankar et al. 2008).  These domains can facilitate the clustering and 
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association of cooperative signaling molecules, thus organizing functional modules 

within the lipid bilayer.  Such mechanisms have been hypothesized to facilitate protein 

sorting, endocytosis, transmembrane signal transduction, cell-matrix adhesion, and other 

critical cellular processes (Simons and Ikonen 1997).  In artificial membranes, 

differences in lipid and/or protein composition can give rise to the coexistence of 

compositionally distinct equilibrium structures, such as liquid-ordered and liquid-

disordered phases (van den Bogaart, Meyenberg et al. 2011); it has been hypothesized 

that similar segregation principles might operate in living cells, however cell membranes 

are composed of extremely diverse molecular constituents that are under non-equilibrium 

conditions (Simons and Gerl 2010).  Much of the current compositional and functional 

understanding of these membrane subdomains stems from molecular association with 

detergent-resistance membrane (DRM) fractions, as defined by extraction with cold, non-

ionic detergents or disruption of these subdomains by perturbation of membrane 

cholesterol (Lingwood and Simons 2007).  However, recent advances in super-resolution 

microscopy and molecular imaging have demonstrated the existence of such structures 

within live cells and their exceptionally dynamic characteristic (Sharma, Varma et al. 

2004, Goswami, Gowrishankar et al. 2008, Eggeling, Ringemann et al. 2009, van den 

Bogaart, Meyenberg et al. 2011).   

 Lipid rafts impact integrin function through localization of signaling molecules.  

Adhesion to the ECM promotes translocation of lipid rafts containing Rac1, enabling 

downstream effector activation and stimulation of actin polymerization (del Pozo, 

Alderson et al. 2004).  Lipid rafts are also required for FAK-dependent stabilization of 

microtubules at the leading edge (Palazzo, Eng et al. 2004), and integrin clustering 

promotes the assembly of lipids into a more liquid-ordered (i.e. raft-associated) state, 

with the plasma membrane adjacent to mature FAs exhibiting high membrane order 
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(Gaus, Le Lay et al. 2006).  Thus lipid rafts help regulate integrin signaling, and these 

two proximal cellular sub-compartments have interrelated functions.   

2.5.2 Membrane-associated integrin signaling intermediates 

 Src family kinases (SFKs) are a family of nine related non-receptor tyrosine 

kinases with homology to the proto-oncogene c-Src (Thomas and Brugge 1997).  SFKs 

are activated downstream of integrins where they play a critical role in adhesion 

assembly and integrin-mediated signaling (Moore, Roca-Cusachs et al. 2010).  One well-

characterized interaction involves the complex formation of SFKs with previously 

activated FAK, resulting in phosphorylation of additional tyrosine residues in FAK, 

serving as docking sites for subsequent proteins (Shattil 2005).  SFKs play a central role 

in integrin signaling, regulating multiple downstream pathways including those involving 

phosphoinositide (PtdIns) 3-kinase, mitogen-activated protein (MAP) kinases, FAK, and 

Rho GTPases (Shattil 2005).   

 Only palmitylated SFKs associate with GPI-anchored proteins (Stefanova, Horejsi 

et al. 1991, Shenoy-Scaria, Gauen et al. 1993, Alland, Peseckis et al. 1994).  All SFKs 

contain a consensus N-terminal Met-Gly-X-X-X-Ser/Thr motif enabling N-myristylation 

and targeting to the membrane.  In addition, SrcA subfamily members Fyn, Lyn, and Lyk 

contain a cysteine within the N-terminal region that serves as a site for palmitylation 

(Resh 1994).  Though reversible via palmityl thioesterases, this additional modification 

confers specific targeting of dually acylated SFKs.  Similarly, non-myristylated versions 

of Fyn fail to associate with GPI-anchored proteins, demonstrating the need for both 

myristylation and palmitylation posttranslational modifications for targeting to 

subdomains containing GPI-anchored proteins (Alland, Peseckis et al. 1994).   

 Activation of Fyn is required for the force-dependent formation of focal 

complexes and reinforcement of αvβ3-integrin-cytoskeleton connections (von Wichert, 
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Jiang et al. 2003).  This is one of the initial phases in ECM connectivity, with the 

activation of SFKs occurring within 300 milliseconds of force application to Fn-beads 

(Wang, Botvinick et al. 2005, Na, Collin et al. 2008).  Furthermore, the rigidity response 

of enhanced spreading correlates with the leading edge recruitment of Fyn, but not c-Src.  

Interestingly, addition of the palmitoylation site to c-Src enables its support of this 

rigidity response (Kostic and Sheetz 2006).  The stretch-activated substrate of Fyn, 

p130Cas, and its phosphorylation is dependent on substrate rigidity, and so a mechanism 

of force-dependent Fyn phosphorylation of p130Cas with rigidity-dependent 

displacement has been proposed (Jiang, Huang et al. 2006, Kostic and Sheetz 2006).  

However, the mechanism by which Fyn is recruitment to nascent adhesions and activated 

remains unknown. 

2.5.3 Thy-1 structure, reactivity and function 

 Thy-1 is a heavily N-glycosylated single v-type immunoglobulin (Ig) domain of 

primordial origin within the Ig superfamily (Campbell, Gagnon et al. 1981).  It is 

localized to the outer leaflet of the plasma membrane via an N-terminal 

glycophosphatidylinositol (GPI)-anchor, which specifies lateral mobility within the lipid 

bilayer.  There it has been demonstrated to localize to specific membrane nano-/micro-

domains, termed lipid rafts, to carry out transmembrane signaling functions (Tiveron, 

Nosten-Bertrand et al. 1994, Chen, Thelin et al. 2006).  Within lipid rafts, Thy-1 may 

physically associate with SFKs, which, in response to a physiological stimulus, can 

activate downstream signals via their kinase activity.  Particularly, Thy-1 partitions 

within similar membrane domains as dually palmitoylated and myristoylated SFKs Fyn, 

Lyn, and Lyk (Draberova and Draber 1993).  

 Thy-1 binds integrin to mediate transcellular adhesion and signaling in a variety 

of tissue specific contexts.  Thy-1 is expressed on activated endothelial cells where it 
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interacts with αMβ2 (Mac-1) on leukocytes and αvβ3 on melanoma cells and participates 

in their extravasation from the blood stream (Wetzel, Chavakis et al. 2004, Saalbach, 

Wetzel et al. 2005).  Within the central nervous system, Thy-1 is highly expressed on 

neurons where it binds αvβ3 expressed on neighboring astrocytes and mediates neurite 

extension inhibition in the dentate gyrus (Tiveron, Barboni et al. 1992).  Interestingly, 

this interaction leads to signaling events in both cell type (i.e. neuron and astrocyte) that 

appear to be critical in the neuronal guidance (Leyton, Schneider et al. 2001, Avalos, 

Valdivia et al. 2009).  Lung fibroblasts lacking Thy-1 are more efficient at activating 

matrix-bound latent TGF-β than fibroblasts expressing Thy-1 (Zhou, Hagood et al. 2010).  

As this process is integrin-mediated and enabled via cellular contraction, the question of 

whether this effect is mediated by altered contractility between Thy-1 subpopulations or a 

direct and inhibitory interaction with LTBP-binding integrins is warranted.  Indeed, Thy-

1 can interact with αvβ5 on lung fibroblasts, although the specific physical/dimensional 

context of this interaction is unknown.  All taken together, Thy-1 exists as a cell surface 

glycoprotein that exhibits molecular interactions with signaling and scaffolding 

molecules critical to the proper form and function of cell-matrix adhesions, and it can 

differentiate native fibroblast cell populations with respect to their cytoskeletal 

phenotype.   

 Thy-1 regulates the activity of Rho GTPase within fibroblast subsets, leading to 

alterations in stress fiber and focal adhesion assembly on rigid substrates (Barker, Grenett 

et al. 2004).  Thy-1 can negatively regulate SFK activation in quiescent cells and, through 

the decreased phosphorylation of p190RhoGAP, lead to elevation of active RhoA.  

Downstream phenotypes such as migration and cytoskeletal assembly are mediated by 

exogenous expression of Thy-1.  Somewhat paradoxically, Thy-1neg fibroblasts undergo 

enhanced myofibroblast differentation in response to fibrogenic cytokines, as evidenced 

by expression of myogenic regulatory factors MyoD and myocardin and the contracture 
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of collagen gels (Sanders, Kumbla et al. 2007).  Interestingly, even under non-stimulated 

conditions, Thy-1neg fibroblasts are able to more efficiently contract 3 mg/mL collagen 

gels than Thy-1pos cells, which display Young’s moduli likely in the 300-600 Pa range.  

Therefore, the cytoskeletal phenotype of Thy-1 fibroblast subpopulations is likely 

dependent on a variety external cues including fibrogenic cytokines, dimensionality, 

ECM ligand presentation, and ECM stiffness. 
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CHAPTER 3  QUANTIFICATION OF IN VIVO LUNG 

PARENCHYMA TISSUE RIGIDITY AND ITS CHANGE DURING 

LUNG FIBROSIS* 

3.1 Introduction 

 One of the hallmarks of fibrosis is rigidification of the tissue microenvironment.  

This is a consequence of excessive synthesis, deposition, crosslinking, and contraction of 

ECM by fibroblastic cells within the scarring region (Hinz, Phan et al. 2012).  In the case 

of many parenchymal fibrotic disorders (e.g. lung, liver, heart), the fibrotic remodeling 

that results in altered mechanical properties coincides with structural and architectural 

distortion of the tissue, causing tissue dysfunction and ultimately organ failure.  Thus, 

mechanical changes to tissue are a critical parameter in the diagnosis, monitoring, and 

associated outcome of fibrotic pathologies. 

 We now appreciate that rigidity of the cellular microenvironment imparts a strong 

influence on residing cell phenotype.  Cells sense and respond to the mechanics of their 

microenvironment, altering a number critical cell phenotypes including migration, 

differentiation, proliferation, and apoptosis (Discher, Janmey et al. 2005).   Importantly, 

many of these phenotypes are intimately related to the cytoskeleton, which regulates 

ECM remodeling and fibrosis-associated fibroblast activation.  Therefore, the existence 

of a rigid scar tissue environment is thought to be a pro-fibrotic cue, potentially resulting 

in a feed-forward loop of progressive fibrosis (Tomasek, Gabbiani et al. 2002, 

Tschumperlin, Liu et al. 2013).   

 In the case of pulmonary fibrosis, previous studies have demonstrated that tissue 

compliance decreases as a consequence of disease progression.  This can be demonstrated 

at the whole organ level through plethysmographic measurements from IPF patients, 
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where lung compliance is seen to decrease by more than 30% and was the most strongly 

correlated pulmonary function parameter with the extent of fibrosis (Sansores, Ramirez-

Venegas et al. 1996).  Similarly, tensile-stress testing of lung tissue strips from rats after 

bleomycin-induced fibrosis established quantitative values of tissue elasticity (i.e. 

Young’s modulus), demonstrating a significant increase due to bleomycin injury.  Values 

for these bulk segments of tissue and were determined to increase by 2-fold, from 

approximately 5 to 10 kilopascal (kPa), between normal and bleomycin-treatment groups 

(Dolhnikoff, Mauad et al. 1999, Ebihara, Venkatesan et al. 2000). 

 In the case of rigidity sensing by cells, the length scales at which they measure 

their mechanical environment is on the order of microns, the size of individual cells or 

even subcellular FA organelles that locally respond to mechanical cues (Plotnikov, 

Pasapera et al. 2012, Trichet, Le Digabel et al. 2012).  However, as the architecture of the 

lung is highly complex and heterogeneous, extrapolating mechanical parameters 

measured at the millimeter (i.e. bulk) scale to the micron scale is highly problematic 

(Fust, Bates et al. 2004).  Therefore, it was the goal of this study to quantify the 

microscale rigidity of the lung parenchyma (i.e. alveolus) and its change as a 

consequence of fibrosis in preclinical and human patient models of pulmonary fibrosis.  

To do this we utilized the extremely high spatial and force resolution of the atomic force 

microscope (AFM) together with optical fluorescence microscopy to measure anatomical 

regions of interest with high spatial accuracy and precision.  We also use the high spatial 

resolution capability of the AFM and power of sampling to obtain accurate statistical 

parameters regarding the distributions of mechanical properties encountered in vivo.  

These values can be then be utilized in vitro to assay the role of physiologic and 

pathophysiologic levels of microenvironmental stiffness on cellular phenotype using a 

reductionist approach. 
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Niklason and E. S. White (2012). "Acellular normal and fibrotic human lung matrices as 
a culture system for in vitro investigation." Am J Respir Crit Care Med 186(9): 866-876. 
 
(2) Brown, A. C., V. F. Fiore, T. A. Sulchek and T. H. Barker (2013). "Physical and 
chemical microenvironmental cues orthogonally control the degree and duration of 
fibrosis-associated epithelial-to-mesenchymal transitions." J Pathol 229(1): 25-35. 
 
 
 
 

3.2 Materials and Methods 

3.2.1 Murine lung tissue preparation and mechanical characteration 

3.2.1.1 Animal use and bleomycin-induced fibrosis 

 8-10 week old C57/Bl6 mice (Charles River, MA) were intubated and 3.2 U/kg 

bleomycin (EMD Chemicals, NJ) was instilled intratracheally in 50 µL of sterile saline.  

Mice were sacrified after 14 days for tissue harvesting.  All experiments were performed 

in accordance with guidelines set forth by the National Institutes of Health and Georgia 

Institute of Technology Institutional Animal Care and Use Committee-approved 

protocols. 

3.2.1.2 Lung tissue preparation for histology 

Immediately following the bronchoalveolar lavage, lungs were harvested from 

each time point and experimental/control group.  The trachea was cannulated and left 

intact during the removal of the lungs from the body.  Using the cannula, the lungs were 

inflated with 10% buffered formalin and then stored in 15 ml of 10% buffered formalin 

until paraffin embedding.  Lungs were embedded in paraffin, sectioned, and stained with 

hematoxylin and eosin (H&E) for imaging. 
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3.2.1.3 Lung tissue preparation for fluorescence microscopy and AFM nanoindentation 

 Lungs were inflated using 2% ultra low-melting temperature agarose (SeaPrep, 

Lonza Inc.) warmed to 37°C and subsequently allowed to solidify on ice.  The left lobe 

was dissected into approximately 1 cm3 blocks, and 100 µm thick slices were generated 

using a VT100S vibratome (Leica, IL).  Samples were kept in 10% FBS, 1% penicillin & 

streptomycin-supplemented DMEM after harvesting and during mechanical analysis.  To 

allow for visualization of tissue architecture and type, lung slices were stained with 

fluorescein-labeled lectin from the Cry-Baby Tree, Erythrina crystagalli (ECL; Vector 

Laboratories) to label alveolar type I epithelial cells (ATI) and LysoTracker Red 

(Invitrogen) to label the lamellar bodies of alveolar type II epithelial cells (ATII).  Cell 

nuclei were stained Hoechst 33258 (Invitrogen).  Slices were incubated at 37οC for 30 

minutes before washing with warm DMEM. 

3.2.1.4 LIVE/DEAD assay of tissue cell viability 

 To study viability of resident tissue cells over the time course of mechanical 

characterization, the LIVE/DEAD Viability Kit for mammalian cells was used (L-3224, 

Invitrogen). Lung slices were incubated with 10 µM calcein AM and 5 µM EthD-1 for 1 

hour prior to their corresponding time point. Samples were then fixed with 4% 

formaldehyde and mounted.  Additionally, a dead control group was included by 

incubating samples with 70% methanol for 30 minutes prior to dye incubation.  Samples 

were mounted in ProLong® Gold antifade reagent (Invitrogen) and imaged using 

confocal microscopy (LSM 510-META, Carl Zeiss Inc.) at 63X magnification (plan-

apochromatic, 1.4 N.A. objective). 
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3.2.1.5 AFM nanoindentation analysis 

 Vital stains for ATI, ATII cells and cell nuclei were used to direct measurements 

to peri-alveolar regions of interest.  Micrographs were acquired using the AFM base 

inverted microscope (TiE, Nikon) at 20X magnification (PlanFluor 20X, 0.5 NA 

objective) using a Nikon DS-Qi1 camera.  Samples were measured in 10% FBS-

supplemented DMEM at room temperature.  For fibrotic regions, areas of enhanced 

cellularity distinct from larger airways were chosen.  Using a MFP-3D-BIO AFM 

(Asylum Research) with a 4.74 µm diameter silica glass bead customized-silicon nitride 

AFM tip (Veeco), peri-alveolar regions were located and probed by force map 

nanoindentation at a pixel rate of 1.0 Hz, deflection set point of approximately 10 nN, 

and indentation rate of 22.86 µm/sec.  Cantilever spring constants were determined using 

the thermal resonance frequency method with values ranging from 0.06-0.08 N/m  

(Maaloum, Muller et al. 2002).  Force-indentation profiles were measured in 10x10 µm 

grids with approximately 600 nm spacing between points.  A minimum of 10 regions 

were selected for each tissue slice and a minimum of 3 slices used per mouse.  Force-

indentation profiles were fit to a Hertz model for elastic deformation between spheres to 

calculate the Young’s modulus for each point, assuming a Poisson’s ratio of 0.4 (Butler, 

Nakamura et al. 1986).   

3.2.2 Human lung tissue preparation and mechanical characterization 

3.2.2.1 Human lung procurement 

 Human lungs deemed to be unsuitable for lung transplantation were obtained 

from beating-heart (or warm autopsy) donors through Gift of Life Michigan.  Human 

deidentified IPF lung samples were obtained from explants of patients with IPF 

undergoing lung transplantation at the University of Michigan.  The University of 
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Michigan Institutional Review Board has deemed these approaches exempt from 

oversight as all subjects were considered deceased. 

3.2.2.2 Decellularization of lung matrices 

 Incubation times lasted, on average, 24 hours per step and involved instillation of 

solutions through both the pulmonary vasculature and the airways.  In essence, lung 

samples were first agitated in sterile deionized, distilled water followed by incubation in 

0.1% Triton X-100 to lyse cellular components.  Samples were then washed 3 times with 

sterile PBS, followed by incubation with 2% sodium deoxycholate.  Following three 

subsequent washes with sterile PBS, samples were incubated in 1M NaCl to lyse residual 

nuclei.  After decanting NaCl, tissues were rinsed three times with sterile PBS and 

incubated with DNAse (30 µg/ml) in 1.3mM MgSO4 and 2mM CaCl2.  The DNAse 

solution was decanted and tissues were washed three times with sterile PBS.  This 

protocol was repeated three times.  Resulting samples were then sterilized with a solution 

containing 0.18% peracetic acid and 4.8% ethanol for 20 minutes and then washed three 

times with sterile PBS and stored at 4°C. 

3.2.2.3 AFM nanoindentation analysis 

 Tissue samples were dissected into strips of approximately 5 x 5 mm in length 

and width and 1000 µm in thickness, and were characterized using an MFP-3D-BIO 

atomic force microscope (AFM) (Asylum Research; Santa Barbara, CA).  AFM 

nanoindentation tests were performed under fluid conditions (PBS, pH 7.4) using a 4.74 

µm diameter spherical tipped-silicon nitride cantilever (Bruker, Camarillo, CA).  

Cantilever spring constants were measured prior to sample analysis using the thermal 

fluctuation method, with nominal values of 30-50 pN/nm (Maaloum, Muller et al. 2002).  

Two-dimensional force maps were taken in 30 x 30 µm grids, and force-indentation 

curves were individually analyzed using a Hertzian model for spherical tips, from which 
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Young’s modulus was obtained.  The sample Poisson’s ratio was assumed as 0.4, and a 

power law of 1.5 was used to model tip geometry (Butler, Nakamura et al. 1986).  All 

AFM measurements were made using a cantilever deflection set point of approximately 

10 nN and a rate of indentation of 22.86 µm/sec. 

 

3.3 Results 

3.3.1 Characterization of lung tissue morphometry and cell viability in fresh lung 

tissue sections 

 To verify that gross tissue architecture was not perturbed during the preparation of 

fresh lung tissue sections for subsequent mechanical characterization, we compared vital-

stained fresh tissue sections with traditional formaldehyde-fixed and paraffin-embedded 

histological techniques.  Normal alveolar and bronchoalveolar structures are maintained 

in fresh tissue sections as compared to H&E stained fixed tissue (Figure 1, alveolar type I 

(ATI) cells stained in green).  In bleomycin-treated animals, significant cellular 

hyperplasia, alveolar wall expansion, and overall architectural distortion are seen in both 

H&E and fresh tissue sections, suggesting overall maintenance of tissue structure in fresh 

lung tissue sections. 
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Figure 2:  Histologic and vital stain characterization of mouse lung tissue.  H&E-

stained sections of normal lung are compared to bleomycin-treated lung.  Vital 

stains for ATI cells (green), ATII cells (red), and cell nuclei (blue) are shown for 

normal and bleomycin-treated fresh tissue sections.  Scale bar = 200 µm. 

 

 To investigate the preservation of cell viability within fresh tissue sections, we 

used a LIVE/DEAD assay over various culture times in vitro.  Cell viability was 

maintained at basal levels for 3 hours in culture, after which time a 25% decrease in 

viability was seen, persisting to 24 hours (Figure 2).  After 48 hours in culture, 

approximately 50% of the cells remained viable.  As all AFM measurements were 

performed within 6 hours of tissue harvesting, this suggests that fresh tissue sections 

maintain proper tissue architecture and support viability in the majority of resident cells. 
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Figure 3:  Cell viability characterization of fresh lung tissue sections.  Fresh tissue 

sections were cultured for various times and stained with Calcein AM (green) and 

ethidium homodimer-1 (red) for detection of live and dead cells, respectively.  

Alveolar regions were imaged after 3, 6, 24, and 48 hours in culture.  Methanol 

treatment was used to induce cell death.  Quantification of live/dead signal intensity 

is depicted for various culture times; the dashed line represents freshly isolated 

tissue. 
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3.3.2 AFM measurement of mouse lung tissue Young’s modulus 

To ensure correct spatial and anatomical location within the lung, peri-alveolar regions 

(i.e. alveolar wall segments) were located based on vital staining for ATI and ATII cells 

and fluorescence microscopy concurrent with AFM measurements.  Representative 

brightfield/fluorescence overlay and fluorescence-only images are shown (Figure 3A,B).  

AFM measurements generated force-indentation curves, from which material properties 

of the tissue could be derived; for our study, the Hertz model for elastic contact between 

two spheres was used to estimate the sample Young’s modulus (E), a descriptive 

parameter for tensile stress per strain within the linear stress-strain regime (Figure 3C).  

Multiple regions (≥ 10) and sections (≥ 3) of tissue were measured to obtain Young’s 

modulus for individual animals.  Average E for normal lung was consistently between 1-

2 kPa (Figure 3D).  In contrast, bleomycin treatment to induce fibrosis dramatically 

increased the average E and variance in all samples tested.  Overall mean and standard 

deviation values are reported for all samples (5 mice per condition, n = 180/mouse; 

Figure 3E).  The average E of normal lung tissue was 1.96 ± 1.21 kPa and increased in 

the bleomycin-treated mouse to 17.25 ± 11.06 kPa.   
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Figure 4:  AFM measurement of mouse lung tissue stiffness.  (A) Representative 

optical micrograph of vital tissue sections stained for cell nuclei (blue), ATI cells 

(green), and ATII cells (red) overlaid with a brightfield image depicting the AFM 

probe.  (B) A fluorescence-only image with the AFM probe placement indicated (red 

dashed line).  (C) A force-indentation curve for the anatomical region indicated.  

Approach (red) and retract (blue) curves, along with the fitted Hertz model curve 

(beige) are shown.  (D) Average E ± standard deviation for individual mice from 

non-treated or bleomycin-treated groups.  (E) Box & whisker plots of pooled 

average Young’s modulus values for normal vs. bleomycin-treated animals.  An 

unpaired Student’s t-test was used to determine P < 0.0001. 

 

3.3.3 Rigidity measurements of clinical IPF specimens 

 To extend our findings from the bleomycin model of lung fibrosis to the relevant 

disease pathobiology of IPF, we obtained human tissue from patients with diagnosed IPF 
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or otherwise healthy individuals.  AFM nanoindentation measurements were made 

similarly to mouse lung previously described, except concurrent optical microscopy was 

not possible due to the sample preparation.  Specifically, patient samples were not 

accessible for hydrogel instillation and high-precision vibratome sections, and thus light 

scattering due to sample thickness prohibited optical microscopy.  Measurements were 

randomly distributed about parenchymal regions of the tissue.  The average Young’s 

modulus of native normal lung tissue was 1.92 ± 1.40 kPa, in good agreement with values 

obtained from normal mouse lung (Figure 4A).  IPF specimens had a significantly 

increased average E (20.25 ± 28.49 kPa), while a significant number of measurements 

were distributed in the stiffness regime not dissimilar from normal lung.  This is likely 

explained by the spatially heterogenous pathobiology of IPF, with regions of normal lung 

parenchyma in close proximity to mature scar tissue or regions of ongoing fibrotic 

remodeling.   

 To specifically explore the properties of the ECM during fibrotic remodeling, we 

used decellularized specimens from the same patient donors.  After decellularization, 

normal lung matrices exhibited an average E of 1.66 ± 1.13 kPa, no different than native 

lung (Figure 4B).  The rigidity of IPF lung matrices was 12.14 ± 13.24 kPa and 

somewhat more homogeneous in distribution, suggesting that decellularization of IPF 

lungs may result in a relaxation of matrix proteins that results in slightly softer tissue.  

However, as this tissue is significantly stiffer (approximately 5-fold greater average E) 

than normal decellularized tissue, this demonstrates that the ECM is significantly 

remodeled during fibrotic progression, resulting in localized tissue stiffening.  The values 

for IPF tissue also qualitatively correspond to those measured in bleomycin-treated mice. 
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Figure 5:  AFM measurement of human IPF and normal lung tissue stiffness.  

Young’s modulus values for normal or IPF tissue is shown for both native (i.e. non-

decellularized) (A) and decellularized (B) patient samples.  Dot plots (mean ± 

S.E.M.) representing individual force-indentation measurements, and data is pooled 

from 2 donors per group.  *** = p < 0.001, as assessed by the Mann-Whitney test. 

 

 Because the average values depend on the relative sampling of normal vs. 

distinctly stiffer histopathological regions of diseased tissue, we used frequency 

distributions to identify major peaks within the data.  Normal tissue exhibited one major 

peak best fit by a log-normal distribution, with a mode of approximately 1 kPa (Figure 

5A-C).  When overlaid, IPF tissue exhibited a similar major peak at 1 kPa fit by the log-

normal distribution, but was significantly more skewed towards higher values.  Both 

native and decellularized tissue exhibited similar distributions with similar 

characteristics.   Therefore, measurements from IPF tissue contained both a population of 

data points associated with normal lung rigidity, as well as a population unique to IPF.   
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Figure 6:  Histogram analysis of AFM measurements from patient samples.  

Young’s modulus values are represented for native (A) and decellularized (B) tissue 

in a frequency distribution.  Normal (blue) and IPF (red) datasets are overlayed.  

Log-normal curves fitting is shown for native normal (C) and native IPF tissue (D), 

along with a table of fitted parameters (inset). 

 

3.4 Discussion 

 In this work we measured the Young’s modulus of lung tissue from both a pre-

clinical model of lung fibrosis and human IPF patients.  During the completion of this 

study, a similar study by Liu and colleagues was published on the microscale rigidity of 

mouse lung during bleomycin-induced fibrosis (Liu, Mih et al. 2010).  Our results are in 
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close agreement with theirs; further validating the findings of these two studies.  

However, our analysis of clinical tissue specimens from normal and IPF patients 

represents the first ever quantification of this critical parameter involved in the 

pathobiology of lung fibrosis and tissue fibrosis, in general.  We find that IPF results in 

an enhancement of average microscale tissue rigidity by an order of magnitude 

(approximately 10 fold), with discrete regions of the tissue demonstrating values up to 

100-fold change compared to the normal lung.  This extreme change in 

microenvironmental stiffness is likely to have a profound impact on the phenotype of 

resident cells, through their ability to sense and respond to mechanical cues, as will be the 

investigation of subsequent chapters.  As such, we have defined and quantified this 

important parameter as seen in vivo.  Namely, cells rarely encounter rigidity values 

exceeding 4 kPa in normal lung tissue.  In IPF, the average Young’s modulus increases 

between 5-10 fold, however tissue is not globally stiffened.  Instead spatially 

heterogenous regions are focally stiffened, in close agreement with the histopathological 

features.  Therefore in IPF tissue, cells encounter environments (>10 kPa) never seen in 

normal healthy tissue, altering not only the work required for respiration but also the 

cytoskeletal phenotype of resident cells.  This large range of values measured in IPF 

likely represents the spatial and temporal hierarchy of disease-associated fibrotic 

remodeling, as less “mature” regions of fibrosis contain less type I collagen.   

 In human patient samples, we compared the Young’s modulus of native vs. 

decellularized tissue, enabling evaluation of the material properties of the non-cellular 

tissue compartment.  The fibrotic ECM alone exhibited significant rigidification 

(approximately 5 fold) compared to normal decellularized tissue.  This is expected as scar 

tissue is commonly composed of dense assemblies of ECM fibers (mainly type I 

collagen).  Therefore, the microscale rigidity measurements made with AFM correspond 

to focal remodeling and stiffening of the ECM during IPF.  It will be crucial in future 
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studies to align mechanical measurements with typical histologic classification to gain an 

understanding of the hierarchy of fibrotic regions within the lung and their associated 

mechanical properties.  Likely, regions of enhanced ECM deposition and /or crosslinking 

will correlate to regions of elevated stiffness.  However, the rigidity of fibroblastic foci 

(i.e. regions of active fibrogenesis), which differ from mature scar tissue in terms of their 

ECM composition and cellularity, remain unknown and should be the focus of future 

investigation. 

 While stiffness of the cellular microenvironment clearly plays a significant role in 

defining the resident cell phenotype (Paszek, Zahir et al. 2005, Engler, Sen et al. 2006, 

Wipff, Rifkin et al. 2007, del Rio, Perez-Jimenez et al. 2009), the origins of the increased 

tissue stiffness are still poorly understood.  It is likely that stiffness emanates from the 

residential cell population and/or the over-production or activation of cross-linking 

enzymes.  Fibroblasts that have differentiated down a contractile, myofibroblastic 

pathways are known to exhibit significant contractile force (Wipff, Rifkin et al. 2007).  

Such cell-derived forces are capable of stressing the surrounding ECM leading to 

increased microenvironmental stiffness.  Reports have shown that lysyl oxidase in the 

tumor microenvironment is sufficient to crosslink and stiffen the tumor stroma (Levental, 

Yu et al. 2009) and transglutaminases have long been known to catalyze ECM 

crosslinking and recently have been shown to result in tissue stiffening (Santhanam, 

Tuday et al. 2010).  However, the cellular mechanisms underlying how and under what 

external cues cells indeed stiffen their surrounding microenvironment, from a relatively 

compliant and physiologic state to the diseased regime seen in IPF, should be the focus of 

future investigation. 

 We characterized the distribution of Young’s modulus values in normal vs. IPF 

tissue.  Of note is the wide distribution of rigidity values in IPF tissue, while still 

maintaining significant “mechanically normal” regions of tissue.  Thus, we define 
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regimes of Young’s moduli corresponding to normal and fibrotic tissue.  Normal lung 

typically yields values between 0.5-4 kPa, while fibrotic lung exceeds the normal regime 

in a continuous fashion (values >10 kPa are unique to IPF), extending to hundreds of 

kilopascals.  These measurements help define the range of rigidity values seen in normal 

lung physiology and disease, and parameter values with which to justify in vitro 

experimentation. 
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CHAPTER 4  THY-1 REGULATION OF FIBROBLAST 

CYTOSKELETAL RESPONSES TO ALTERATIONS IN 

SUBSTRATE RIGIDITY 

 

4.1 Introduction 

 Fibroblasts are the main ECM remodeling and maintaining cell type during 

normal organism homeostasis and wound healing (Sorrell and Caplan 2009).  However 

during pathologies such as fibrosis, their aberrant and persistent activity results in the 

assembly of tissue structures not permissible of normal organ function (Tomasek, 

Gabbiani et al. 2002).  These regions of scar tissue are dense, ECM-containing structures 

that disrupt normal tissue architecture.  In IPF, fibroblasts exist within nodules of high 

synthetic and ECM remodeling activity, termed fibroblastic foci, which are responsible 

for de novo fibrogenesis and are the most closely associated histologic feature to disease 

progression and patient morbidity (King, Schwarz et al. 2001, Nicholson, Fulford et al. 

2002).  Thus fibroblasts, specifically those localizing to fibroblastic foci, are the major 

cell type of interest in IPF pathology due to their functional role of creating fibrotic tissue 

structures.  Complicating the functional analysis of these cells in vitro, fibroblasts from 

human tissue isolates exhibit phenotypic heterogeneity (Chang, Chi et al. 2002, Sorrell 

and Caplan 2004); this is likely exacerbated in IPF due to the extreme spatial and 

temporal diversity of disease presentation and endogenous, i.e. the intermixture of normal 

lung parenchyma, new fibrotic tissue (i.e. fibroblastic foci), mature fibrosis, and 

honeycomb features within biopsied tissue segments (Visscher and Myers 2006).  Further 

contributing to this phenotypic heterogeneity, fibroblasts constituting complex multi-

cellular structures can be derived from diverse origins and exhibit functional 

heterogeneity.  For example, the dermis is patterned by two distinct lineages of 
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fibroblasts from a common progenitor, with the upper dermis supported by a Dlk-/Lrig1+ 

subpopulation critical in regulating hair follicle formation, whereas the Blimp1-/Dlk+ 

reticular/hypodermal subpopulation goes on to synthesize the majority of fibrillar ECM 

and supply pre-adipocytes within the hypodermis.  During wound healing, the initial 

wave of regeneration depends on cells of the reticular/hypodermal lineage elaborating a 

collagenous ECM, while upper cells become active during re-epithelialization and 

follicular morphogenesis (Driskell, Lichtenberger et al. 2013).  Within the fibrotic lesions 

of human patients myofibroblasts lack expression of the cell-surface glycoprotein Thy-1 

(CD90), whereas the majority of fibroblasts in normal interstitial spaces are Thy-1-

positive (Thy-1pos) (Hagood, Prabhakaran et al. 2005, Sanders, Pardo et al. 2008).  

Fibroblast subpopulations characterized by surface expression of Thy-1 also display 

phenotypic diversity in vitro (Fries, Blieden et al. 1994, Barker, Grenett et al. 2004, Rege 

and Hagood 2006, Hudon-David, Bouzeghrane et al. 2007, Sanders, Kumbla et al. 2007, 

Barker and Hagood 2009). 

The previous two decades of research has identified Thy-1 as a critical modulator 

of fibroblast phenotype in vitro and in vivo.  Thy-1 is a cell surface glycoprotein that 

alters fibroblast phenotype largely through modulation of intracellular signaling pathways 

via Src family kinases (SFKs) and Rho GTPases and regulation of inter-cellular adhesion 

(Rege and Hagood 2006, Barker and Hagood 2009).  While it is commonly used as a 

marker for mesenchymal-type cells, it is not constitutively expressed on fibroblasts from 

rodent or human origin.  Instead, Thy-1 undergoes intricate tissue-specific and 

spatiotemporal expression regulation via a somewhat unique combinatorial influence of 

control elements, dictated by the gene structure and post-transcriptional regulation (Xue, 

Rivero et al. 1991, Bradley, Ramirez et al. 2009).  Despite the clinical relevance of this 

fibroblast subpopulation in IPF and the knowledge that Thy-1neg lung fibroblasts are 

hyper-proliferative (Hagood Chest 2001), differentially express growth factor receptors 
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(Hagood AJPhys 1999), display altered cytokine signaling (Hagood AJPCMB 2002), 

show enhanced myofibroblastic differentiation (Sanders AJPCMB 2007), and 

increasingly activate TGF-β (Yong AJP 2004, Yong JBC 2009), the molecular 

mechanism(s) explaining Thy-1-associated fibroblast phenotypes are still not completely 

defined. 

 Thy-1 regulates Rho activity via SFK-mediated repression of p190RhoGAP, 

leading to alterations in stress fiber and focal adhesion assembly on rigid two-

dimensional (2D) substrates (Barker, Grenett et al. 2004). Downstream phenotypes, such 

as migration and cytoskeletal network assembly, can be modulated by exogenous 

expression of Thy-1.  Somewhat paradoxically, Thy-1neg fibroblasts undergo enhanced 

myofibroblast differentation in response to fibrogenic cytokines and are able to more 

efficiently contract soft three-dimensional (3D) collagen gels than Thy-1pos fibroblasts, 

which display Young’s moduli in the range of 400-600 Pa.  Therefore, cytoskeletal 

phenotype regulated by Thy-1 expression is likely dependent on a variety of external cues 

including fibrogenic cytokines, ECM dimensionality, ECM ligand presentation, and ECM 

stiffness. 

 As described in the previous chapter, connective tissue fibrosis results in changes 

to the mechanical properties of tissue; fibrosis leads to a drastic increase in tissue rigidity.  

Resident stromal cells are also sensitive to the mechanics of their microenvironment, 

resulting in bidirectional and dynamic mechanics-driven communication.  Therefore, 

investigating the phenotype of fibroblasts in physio- and pathophysiologically-relevant 

mechanical microenvironments is a critical step in linking in vitro cell biological studies 

to the cellular mechanisms of fibrogenesis in vivo.  Furthermore, as the mechanics of the 

microenvironment directly influence the mechanical architecture of the cell (i.e. 

cytoskeleton and cell-matrix adhesions), which in turn regulate the assembly and 

remodeling of ECM, we focus on investigating cytoskeletal parameters in response to 
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changing ECM rigidity.  In this chapter, we investigate the cytoskeletal phenotype of 

fibroblasts regulated by Thy-1 in a variety of cell systems and extracellular environments.  

We show that Thy-1 modulates fibroblast rigidity sensing in a complex way – Thy-1 

expression enhances mechanosensitivity to matrix rigidity, while loss of Thy-1 promotes 

fibroblast activation in soft microenvironments, i.e. rigidity values similar to normal lung 

parenchyma. 

 

4.2 Materials and Methods 

4.2.1 Cells and plasmids 

4.2.1.1 Isolation, sorting and RNAi treatment of human lung fibroblasts 

 Primary human lung fibroblasts were isolated from normal or IPF patients as 

described previously (White, Thannickal et al. 2003).  Normal lung fibroblasts (NLFs) 

were obtained from patients undergoing thoracic surgery for non-fibrotic lung 

diseases.  Written informed consent was obtained from all subjects in accordance with the 

University of Michigan Institutional Review Board.  IPF lung fibroblasts (IPFLFs) were 

used from patients in whom a pathologic diagnosis of UIP was subsequently 

made.  Briefly, under sterile conditions, lung tissue segments were minced to a fine slurry 

and cultured in T-75 tissue culture flasks.  Media was aspirated and replaced with fresh 

media every 48 to 72 hours.  Cells were maintained in DMEM supplemented with 10% 

fetal bovine serum (FBS), 100 µg/mL penicillin/streptomycin, and 1 mM sodium 

pyruvate.  For fluorescence-activated cell sorting (FACSAria III, BD Biosciences; 

Franklin Lakes, New Jersey), cells were stained with FITC-labeled anti-human Thy-1 

antibody (5E10, BD Pharmingen; San Jose, CA) and sorted into Thy-1pos and Thy-1neg 

subpopulations based on positive expression of normal lung fibroblasts or negative 
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antibody controls, respectively.  Cells were sorted twice to establish >90% purity based 

on Thy-1 expression.  Cells were used for experimentation between passages 4-9 (P4-9). 

 For Thy-1 knockdown experiments, CCL-210 NLFs were obtained from ATCC 

(Manassas, VA) and transduced with lentiviral particles (5x multiplicity of infection 

(M.O.I.) plus 5 µg/mL Polybrene) containing a pool of 19-25 (plus hairpin) nucleotide-

encoding target-specific constructs (sc-32837-v, Santa Cruz Biotechnology; Santa Cruz, 

Ca) or a scrambled sequence control without specificity to any known cellular mRNA 

(sc-108080).  After 72 hours, transduced cells were sub-cultured and selected with 1.0 

µg/mL puromycin.  Cells were FACS sorted once for cells exhibiting high knockdown 

efficiency, whereas the control shRNA construct had no effect on Thy-1 expression. 

4.2.1.2 Isolation of primary mouse lung fibroblasts  

 Mouse lung fibroblasts were isolated from 6-8 week old C57/Bl6 mice as 

previously described (McIntosh, Hagood et al. 1994).  Briefly, mouse lungs were lavaged 

with sterile PBS, the pulmonary vasculature was perfused with heparin-supplemented 

PBS, and then lungs were excised.  Following dissection of lobes 1-5, lung parenchyma 

was minced and subject to enzymatic disruption (DNaseI, trypsin, collagenase; Sigma; St. 

Louis, MO) and plated onto tissue culture polystyrene.  Early passage fibroblasts (P3-P5) 

were sorted for Thy-1 expression using FACS after staining with FITC-labeled anti-

CD90.2 monoclonal antibody (53-2.1, BD Pharmingen).  Cells were sub-cultured and re-

sorted until subpopulations of >90% purity was obtained.  Cells were routinely 

maintained and sub-cultured in DMEM supplemented with 10% FBS, 100 µg/mL 

penicillin/streptomycin, and 1 mM sodium pyruvate (CellGro; Herndon, VA). 

4.2.1.3 Generation of RFL-6 cell lines 

 RFL-6 cell lines stably expressing a wild-type Thy-1.2 construct were used as 

previously described (Barker, Grenett et al. 2004, Rege, Pallero et al. 2006).  Briefly, 
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RFL-6 cells were transfected with pcDNA3.1zeo+ vector with Thy-1.2 inserted into the 

multiple cloning site using EcoRI/XhoI or empty pcDNA3.1zeo+ vector as control and 

selected with 500 ug/mL Zeocin (Invitrogen; Carlsbad, CA).  Following stable expression 

selection, cells were sorted Thy-1 expression for >95% Thy-1 expression purity and 

expression levels equivalent to endogenous Thy-1pos fibroblasts.  Cells were routinely 

maintained and sub-cultured in Ham’s F12 (CellGro) supplemented with 10% FBS, and 

100 µg/mL penicillin/streptomycin. 

4.2.1.4 Sorting and transfection of c-Src/Yes/Fyn knockout cells 

 c-Src/Yes/Fyn-knockout MEFs (SYFs) (Klinghoffer, Sachsenmaier et al. 

1999)obtained from ATCC (a generous gift of Dr. Andres Garcia, Georgia Institute of 

Technology) were cultured in DMEM supplemented with 10% FBS, 100 µg/mL 

penicillin/streptomycin, and 1 mM sodium pyruvate.  SYFs were sorted for Thy-1 

expression using FACS after staining with FITC-labeled anti-CD90.2 monoclonal 

antibody (53-2.1, BD Pharmingen).  Cells were sub-cultured and re-sorted until 

subpopulations of >90% purity was obtained.  Thy-1pos and Thy-1neg SYFs were 

transfected with EGFP-tagged c-Src or Fyn (a kind gift of Dr. Margaret Frame, 

Edinburgh Cancer Research Center) using Amaxa Nucleofector (Lonza; Basel, 

Switzerland) program U-30.  After 24 hrs, cells were plated on pAAm substrates of 

varying stiffness, fixed, and the actin cytoskeleton was stained for quantification of cell 

spread area as described below. 

4.2.2 ECM substrates 

4.2.2.1 Preparation of cell-derived matrices (CDM) 

 CDMs were prepared according to Cukierman et al (Cukierman, Pankov et al. 

2001).  Briefly, 0.2% gelatin was adsorbed onto coverglass and crosslinked with 1.0% 
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glutaraldehyde.  Following quenching with 1M glycine and PBS washing, NIH-3T3 cells 

(ATCC) were plated at 5x105/mL into a 6-well plate.  Cultures were maintained in 

DMEM supplemented with 10% FBS, 100 µg/mL penicillin/streptomycin, 1 mM sodium 

pyruvate, and 50 µg/mL ascorbic acid, with media changed every 48 hrs.  After 8 days, 

cells were extracted using 0.5% TritonX-100, 20 mM Na4OH in PBS, and DNAseI was 

used to digest any remaining nuclear material.  CDMs were extensively washed with PBS 

and stored at 4°C in 100 µg/mL penicillin/streptomycin-supplemented PBS for up to 2 

weeks.   

4.2.2.2 Preparation of polyacryamide (pAAm) gel substrates 

 Polyacrylamide (pAAm) hydrogels with varying bisacrylamide concentrations 

were fabricated on amino-silanated coverslips, as previously described (Tse and Engler 

2010, Brown, Fiore et al. 2013).  Briefly, pAAm gel solutions were produced by 

combining acrylamide and bisacrylamide (Biorad; Hercules, CA) to final concentrations 

of 8% acrylamide and 0.045%, 0.102%, 0.146%, or 0.239% bisacrylamide to obtain gels 

with final elastic moduli of 1.8 kPa, 6.7 kPa, 10.6 kPa, or 18.7 kPa, respectively. 50 µl of 

each solution was polymerized by the addition of 1% (v/v) ammonium persulfate (VWR; 

West Chester, PA) and 0.1% (v/v) N,N,N’,N’-tetramethylethylenediamine (Biorad).  

Human plasma fibronectin (Fn) was purified from blood plasma and covalently attached 

to the surface using the heterobifunctional crosslinker sulfosuccinimidyl-6-(4’-azido-2’ 

nitrophenyl-amino)hexanoate (sulfo-SANPAH, Pierce Chemical Co.; Rockford, IL).  

Following overnight incubation with Fn, gels were then washed and stored in PBS. 
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4.2.3 Assays of cytoskeletal phenotype 

4.2.3.1 Immunofluorescence staining 

 Thy-1 mouse lung fibroblast subpopulations or RFL-6 lines were plated on Fn-

coated PAAm substrates of varying rigidity at a seeding density of 1,000 cells/cm2.  Cells 

plated in 10% FBS-containing growth media were allowed to attach and spread for 4 

hours at 37°C, 5% CO2.  Samples were then fixed using 4% formaldehyde, permeabilized 

in 0.2% Triton X-100 for 5 minutes, and blocked with 10% normal goat serum (NGS).  

Primary antibodies including V284 (vinculin, Millipore; Billerica, MA), 8d4 (talin, 

Sigma), 53-2.1 (Thy-1, BD Pharmingen), 5E10 (Thy-1, BD Pharmingen), and AB2024 

(Fn, Millipore) along with AlexaFluor-labeled secondary antibodies were used for 

staining (Invitrogen).  AlexaFluor-conjugated phalloidin (Invitrogen) was used to stain F-

actin, and samples were counterstained with Hoechst 33528 (Invitrogen).  Images were 

acquired at 20x (Plan-fluor, 0.5 N.A.) or 60x (Plan-apochromat, 1.4 N.A.) magnification 

with a Nikon TiE epifluorescence microscope (Nikon; Tokyo, Japan) and CoolSNAP 

HQ2 monochromatic CCD camera (Photometrics; Tucson, AZ), or using a Zeiss 

LSM700 confocal microscope (Carl Zeiss, Inc.; Jena, Germany) with a variable 

secondary dichroic and 20x (0.8 N.A.), 60x (1.4 N.A.) objectives.  Cell area was 

measured with an intensity-based auto-detection algorithm to detect and highlight borders 

and calculate pixel number.  Quantitatively similar values of cell area are detected for 

membrane staining (DiI), actin, and vinculin immunostaining. 

4.2.3.2 Quantification of cell and adhesion morphometrics 

 Immunostained vinculin image planes were extracted from 60x fluorescent 

micrographs and loaded into MATLAB.  First, general background elimination was 

performed by averaging the intensity of a user-defined background polygon, and the 

average background pixel intensity was set to zero.  Single cells within the field of view 
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were masked and remaining pixels could be converted to cell area.  A second mask, 

applied as a function of the standard deviated of the pixel intensity distribution, was used 

to select and convert adhesions to a binary sequence.  Connected pixels were then 

grouped into bins based on size, converted to units (µm2), and saved as the focal adhesion 

size data to the output structure. 

4.2.3.3 AFM analysis of cortical stiffness 

 Cells were plated as for immunofluorescent staining and measured within 4-6 

hours of plating.  Using an MFP-3D-BIO atomic force microscope (AFM) (Asylum 

Research; Santa Barbara, CA), nanoindentation tests were performed in fluid conditions 

(DMEM + 10 mM HEPES, 10% FBS, 1% penicillin and streptomycin, pH 7.4) using a 

4.74 µm diameter spherical tipped-silicon nitride cantilever (Bruker; Camarillo, CA). 

Cantilever spring constants were measured prior to sample analysis using the thermal 

fluctuation method, with nominal values of 40-60 pN/nm.  Single force points taken from 

at least 3 peri-nuclear regions of greater than 300 nm in height were averaged to 

determine a cell’s average cortical stiffness.  Similarly, regions of PAAm substrate 

surrounding measured cells were probed.  Force-indentation curves were individually 

analyzed using the Hertz model for spherical tips, from which Young’s modulus was 

obtained.   The sample Poisson’s ratio was assumed as 0.33, and a power law of 1.5 was 

used to model tip geometry.  AFM measurements were made using a 2 nN force set point 

and an indentation rate of 22.85 µm/s. 

4.2.3.4 Collagen gel contraction 

Trypsinized cells were re-suspended at 5x106 cells/mL in growth media and 

added to NaOH-neutralized acid-prepared rat tail collagen, type I (BD Biosciences) at a 

final suspension of 0.5x105 cells/mL in 1.0 mg/mL collagen, type I.  After polymerization 

for 60 min. at 37°C, gels were disassociated and growth media was added to monitor 
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floating contraction over 72 hrs.  To obtain gel contraction values, the diameter of the 

well and the gel were measured using ImageJ software, and the percentage of contraction 

was calculated using the formula 100× (well diameter − gel diameter)/well diameter. 

4.2.4 Assays of force-dependent signaling 

4.2.4.1 RhoA activity assay 

 RFL-6 or CCL-210 cells were plated on pAAm substrates at 5x103/cm2.  After 4 

hours, cells were washed once with ice-cold PBS and the RhoA G-LISA assay 

(Cytoskeleton, Inc.; Denver, CO) was performed per manufacturer’s instructions.  After 

absorbance measurements were taken at 490 nm, buffer-only background levels were 

subtracted and normalized by the experimental group with lowest RhoA activity levels.  

For magnetic force application assays, cells were plated and subject to force application 

as described below and RhoA G-LISA was performed; relative RhoA activity values 

were obtained after normalizing to zero force RhoA activity signal per experimental 

group.   Western blot for total RhoA protein was used to ensure protein expression of 

RhoA was equivalent between samples and treatment conditions. 

4.2.4.2 Magnetic tweezing and complex precipitation assay 

 2x106 cells/dish were plated in a 10 cm tissue culture-treated polystyrene dish and 

made quiescent overnight in serum-free DMEM.  2.8 µm diameter magnetic beads 

(M280 Dynabead, Invitrogen) coated with full-length Fn, anti-transferrin receptor (CD71, 

H-300; Santa Cruz Biotechnology), bovine serum album (BSA) were added at a 10:1 

ratio of beads per cell in serum-free plus 0.5% BSA.  Following a 15 minute period to 

allow bead attachment, a neodymium permanent magnet with (surface field of 2451 

Gauss, K & J Magnets, Inc.) was placed 6 mm from the dish surface.  Following the 

prescribed time of magnetic force application, cells were lysed (10 mM HEPES (pH 7.6), 
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150 mM NaCl, 0.1% NP-40, 2 mM MgCl2 plus protease inhibitor cocktail), the bead 

fraction was precipitated magnetically (DynaMag, Invitrogen).  Following 3x wash with 

lysis buffer, co-precipitated proteins were either denatured in 2x Laemmli for 

immunoblot anaysis or stained with primary and secondary antibodies for flow 

cytometry.  Force levels applied using this set-up were between 10-16 pN per bead as 

verified using COMSOL simulations and according to those published previously 

(Guilluy, Swaminathan et al. 2011). 

4.2.4.3 Western blots 

 Cultured cells directly lysed in Laemmli buffer or bead-associated adhesion 

complexes were heat-denatured at 95°C for 5 min. Protein was separated 

electrophoretically on a 4-15% polyacrylamide gel (Biorad) according to standard 

procedures, then transferred to nitrocellulose membranes using a semi-dry transfer 

apparatus (Trans-Blot SD, Biorad), blocked with 5% nonfat dry milk in TBS or 5% BSA, 

then incubated with Thy-1 (9798, Cell Signaling Technology; Danvers, MA), αv integrin 

(AB1930, Millipore), α5 integrin (AB1928, Millpore), talin (8d4, Sigma), paxillin (5H11, 

Millipore), pY397-FAK (44-624G, Invitrogen), Fyn (1S, Millipore), c-Src (32G6, Cell 

Signaling Technology), and pY418-SFK (2101, Cell Signaling Technology) primary 

antibodies overnight at 4° C.  Following washing with TBS + 0.1% Tween 20, 

membranes were incubated for 2 hours with IR secondary antibody (Licor; Lincoln, NE), 

washed, and imaged using the Odyssey IR scanner (Licor).  Western blots were 

quantified using ImageJ image processing software and a minimum of n = 3 blots were 

quantified and averaged per group. 
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4.3 Results 

4.3.1 Emergence of Thy-1neg population in IPF fibroblasts 

 Due to the small spatial scale and heterogeneous nature of the histopathological 

features of IPF, isolation of cells from diseased versus normal regions of lung tissue 

within IPF patients has not been currently achieved.  Since the predominance of normal 

lung fibroblasts highly express Thy-1, whereas fibroblasts within fibroblastic foci are 

Thy-1neg, we reasoned that lung fibroblasts from IPF patients (IPFLFs) would exhibit a 

significant population of cells with low Thy-1 expression.  Thy-1 expression was profiled 

in five donors with clinically diagnosed IPF (male and female between ages 28-61) and 

five normal healthy donors using flow cytometry (Figure 7A).  Thy-1 expression was 

significantly lower (85% compared to 95%; P = 0.0169) (Figure 7B).  This resulted in the 

emergence of a population of Thy-1neg cells that could be sorted for using fluorescence-

activated cell sorting (FACS).  In contrast, all normal lung fibroblasts (NLFs) tested 

exhibited a single peak of high Thy-1 expression.  Therefore we established Thy-1pos and 

Thy-1neg IPFLFs that were positive or negative for Thy-1, respectively. 
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Figure 7:  Thy-1 expression and cytosketetal phenotype of IPF and normal lung 

fibroblasts.   (A) Flow cytometry histograms of Thy-1 expression for individual 

samples of IPF (green) and normal lung fibroblasts (red).  Isotype antibody control 

(blue) indicates Thy-1neg expression levels.  (B) Quantification of the percentage of 

Thy-1pos fibroblasts for normal and IPF fibroblasts.  Mean ± S.E.M. are shown; P-

value for an unpaired, two-tailed Student’s t-test is shown.  (C) Immunofluorescence 

of fibronectin and vinculin overlay (top) or vinculin and actin overlay (bottom) for 

IPF and normal lung fibroblasts plated on CDMs or Fn-glass.  Scale bar = 100 µm.  

(D-F) Box or dot plots of cell area (D), cell stiffness (E), and adhesion size (F) for 

normal vs. Thy-1pos and Thy-1neg IPF fibroblasts on CDMs and Fn-glass.  Boxes 

indicate the lower and upper quartile and whiskers are 10-90 percentile.  * = p < 
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0.05; ** = p < 0.01; *** = p < 0.001, as assessed by unpaired, two-tailed Student’s t-

test for (C, D) and Mann-Whitney test (E). 

4.3.2 Loss of Thy-1 enhances cytoskeleton activation in physiologic matrices 

 Previous studies on Thy-1 regulation of fibroblast phenotype have been 

performed in the context of cells adherent to ECM-coated coverglass.  As this 

environment is known to 1) promote significant activation of most soft tissue cells, 

including fibroblasts (e.g. proliferation, enhanced metabolic activity, protein synthesis, 

cytoskeleton activation), 2) promote differentiation of normal fibroblasts into 

myofibroblasts (i.e. α-SMA- and EDA-Fn-expressing fibroblasts), and 3) exhibit physical 

properties far from those encountered during normal lung physiology, we studied cell 

responses to a physiologically relevant 3D cell-derived matrix (CDM).  CDMs were 

prepared from NIH-3T3 cultures and consisted of Fn-rich fibrillar matrices of 

approximately 30 µm in thickness and an average Young’s modulus of 670 ± 50 Pa 

(mean, µ ± S.E.M.; data not shown).  Thy-1pos IPFLFs plated on CDMs exhibited a cell 

spread area of 1501 ± 175 µm2, similar to NLFs (1539 ± 164 µm2); whereas on Fn-coated 

glass (Fn-glass), both Thy-1pos IPFLFs and NLFs increased their spread area by 

approximately 3.5-fold (5373 ± 348 and 4976 ± 485 µm2, respectively) and formed actin 

stress fibers, consistent with robust activation of the cell spreading response and 

cytoskeleton activation on rigid substrates (E ≈ 3 GPa) (Figure 7D).  In contrast Thy-1neg 

IPFLFs had a significantly higher cell area (2588 ± 222 µm2) on CDMs, but lower on Fn-

glass (3467 ± 318 µm2) than Thy-1pos IPFLFs and NLF. (Figure 7D)  Atomic force 

microscopy (AFM) was used to measure the cell’s cortical stiffness as a direct 

quantification of their cytoskeletal organization and contractile activity in different 

microenvironments (Figure 7E).  Similar to cell area measurements, both Thy-1pos 

IPFLFs and NLFs had significantly lower Young’s moduli than did Thy-1neg IPFLFs on 

CDMs (922 ±123 and 994 ± 132 vs. 1731 ± 202 Pa, respectively), whereas on Fn-glass, 
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Thy-1pos IPFLFs and NLFs were significantly higher than Thy-1neg IPFLFs (3.224 ± 

0.409 and 3.111 ± 0.418 vs. 2.164 ± 0.265 kPa).  Therefore, Thy-1-expressing cells from 

both IPF and normal patients exhibited significantly more robust cell spreading and 

contractile responses to rigid substrates, whereas Thy-1neg cells had higher cytoskeleton 

activation in physiologic CDMs. 

 We then analyzed the morphometry of focal adhesions (FAs) via 

immunofluorescence staining of vinculin and quantitative image analysis.  Generally, FA 

size is directly proportional to local traction force magnitude during initial adhesion 

assembly and maturation (i.e. < 10 µm from the leading edge; Stricker, Aratyn-Schaus et 

al. 2011).  On CDMs, Thy-1pos IPFLFs and NLFs had small FAs of approximately 0.5 

µm2 in size, whereas on Fn-glass a portion of FAs became significantly elongated and 

enlarged, indicative of adhesion maturation.  The mean FA area similarly increased to 

1.531 ± 0.139 and 1.552 ± 0.124 µm2 for Thy-1pos IPFLFs and NLFs, respectively (Figure 

7F).  In contrast, Thy-1neg IPFLFs had significantly larger FAs than Thy-1-expressing 

cells on CDMs (0.929 ± 0.071 µm2), indicating higher levels of adhesion maturation in 

physiologic ECMs. 

 To specifically investigate the role of Thy-1 expression on cytoskeletal responses 

to the ECM microenvironment, we knocked down Thy-1 expression in normal human 

lung fibroblasts using lentiviral-based RNA inhibition (RNAi).  Control cells 

(cont.shRNA) displayed a phenotype consistent with NLFs and Thy-1pos IPF fibroblasts, 

namely the spread area, cortical stiffness and adhesion size was dramatically reduced on 

CDMs compared to Fn-glass (Figure 8A-D).  In contrast, Thy-1 knockdown (Thy-

1.shRNA) increased cell area and cortical stiffness on CDMs by approximately 50% and 

80%, respectively, and decreased cell area and cortical stiffness on Fn-glass by 25% and 

65% compared to cont.shRNAs (Figure 8B,C).  Similarly to Thy-1neg IPFLFs, Thy-

1.shRNAs had enlarged FAs on CDMs compared to cont.shRNAs (0.984 ± 0.072 vs. 
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0.606 ± 0.028 µm2), but a significantly lower fraction of large FA (≥ 1.5 µm2) on Fn-glass 

(Figure 8D). Thus, Thy-1 expression confers enhanced cytoskeleton activation in 

microenvironments of supraphysiologic rigidity, whereas loss of Thy-1 expression results 

in enhanced cystoskeleton and cell-matrix adhesion activity in physiologic matrices.

 

Figure 8:  Thy-1 knockdown alters the cytoskeletal phenotype of normal lung 

fibroblasts.  (A) Immunofluorescence of fibronectin and vinculin overlay (left) or 

vinculin only (right) for shRNA-treated NLFs plated on CDMs or Fn-glass.  Scale 

bar = 100 µm.  (B-D) Box or dot plots of cell area (B), cell stiffness (C), and adhesion 

size (D) for cont.shRNA- vs. Thy-1.shRNA-treated fibroblasts on CDMs and Fn-

glass.  Boxes indicate the lower and upper quartile and whiskers are 10-90 

percentile.  * = p < 0.05; ** = p < 0.01; *** = p < 0.001, as assessed by unpaired, two-

tailed Student’s t-test for (B, C) and Mann-Whitney test (D). 
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4.3.3 Thy-1 enhances mechanosensitivity to ECM rigidity 

 As rigidity is one of the parameters (including matrix biochemistry, ligand 

presentation/conformation, dimensionality, and surface topology and topography) 

different between 3D Fn-rich CDMs and Fn-glass, we investigated whether substrate 

rigidity sensing was directly modulated by Thy-1 expression.  Polyacrylamide (pAAm) 

gels of variable rigidity were synthesized by varying the crosslinker, bis-acrylamide, 

concentration, and Fn was covalently immobilized the surface.  Gel Young’s modulus, E, 

was measured by AFM and controlled to approximate the E of normal and fibrotic lung 

tissue as previously determined (e.g. 2.2 kPa = normal, soft; 18.7 kPa = fibrotic, stiff).  

Cont.shRNAs or Thy-1pos primary mouse lung fibroblasts (pMLFs) plated on soft pAAm 

gels exhibited a mainly cortical and diffuse actin cytoskeleton with small or unobservable 

adhesion plaques, whereas Thy-1.shRNA or Thy-1neg pMLFs displayed larger FAs and 

bundled actin filaments, demonstrating enhanced cytoskeletal maturation on soft matrices 

(Figure 9A, Figure 10A).  Consistently, Thy-1.shRNA and Thy-1neg pMLFs spread area 

and cortical stiffness was higher than cont.shRNAs or Thy-1pos pMLFs.  On stiff ECM, 

Thy-1pos displayed larger actin filament bundles (i.e. stress fibers) and larger and more 

elongated FAs (Figure 9B-D, Figure 10B,C).  This demonstrates that Thy-1 expression is 

critical for efficient mechanosensitive remodeling of the cytoskeleton. 
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Figure 9:  Analysis of Thy-1-dependent rigidity sensing in human lung fibroblasts.  

(A) Immunofluorescence of actin and vinculin cont.shRNA- vs. Thy-1.shRNA-

treated fibroblasts on soft (1.8 kPa) vs. stiff (18.7 kPa) Fn-coated pAAm substrates.  

(B-D) Box or dot plots of cell area (B), cell stiffness (C), and adhesion size (D) for 

cont.shRNA- vs. Thy-1.shRNA-treated fibroblasts on soft and stiff pAAm 

substrates.  Boxes indicate the lower and upper quartile and whiskers are 10-90 

percentile.  * = p < 0.05; ** = p < 0.01; *** = p < 0.001, as assessed by unpaired, two-

tailed Student’s t-test for (B, C) and Mann-Whitney test (D).   
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10C). When plotted on a semi-log scale, a linear trend is observed, with which a linear 

least-square regression can be used to fit data.  RFL-6s transfected with Thy-1 (RFL-6Thy-

1) exhibited enhanced substrate E-sensitive cortical stiffening (slope, k = 3.582 ± 0.493 

kPa/kPa, r2 = 0.615) which is statistically the same as Thy-1pos  pMLFs (k = 3.832 ± 0.493 

kPa/kPa, r2 = 0.598), compared with RFL-6EV (k = 1.435 ± 0.493 kPa/kPa, r2 = 0.488) and 

Thy-1neg  pMLFs (k = 1.233 ± 0.396 kPa/kPa, r2 = 0.423) (Figure 10C).  Similarly, RFL-

6Thy-1 showed significantly enhanced substrate E-sensitive cell spreading (k = 1728 ± 126 

µm2/kPa, r2 = 0.509) compared to RFL-6EV (k = 798 ± 167 µm2/kPa, r2 = 0.668), similarly 

to pMLFs (k = 4081 ± 229 µm2/kPa, r2 = 0.72 and k = 1825 ± 232 µm2/kPa, r2 = 0.676 for 

Thy-1pos and Thy-1neg, respectively) (Figure 10B,D).  FAs also became significantly 

enlarged due to increases in substrate E in RFL-6Thy-1, whereas this effect was muted in 

RFL-6EV (Figure 10E).  Thus, exogenous Thy-1 expression is sufficient to enhance 

mechanotransduction of ECM rigidity, and this enhancement is similar to that observed 

in endogenous Thy-1-expressing cells. 
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Figure 10:  Analysis of Thy-1-dependent rigidity sensing in endogenous Thy-1 

subpoulations and via exogenous re-expression.  (A) Immunofluorescence of 

vinculin-only (left) or vinculin and actin overlayed (right) in Thy-1pos vs. Thy-1neg 

pMLFs on soft (top) and stiff pAAm (bottom) substrates.  Scale bar = 20 µm.  (B) 

Cell area vs. substrate E (mean ± S.E.M.) in Thy-1pos vs. Thy-1neg pMLFs.  (C) Cell 

stiffness vs. substrate E (mean ± S.E.M.) for Thy-1pos vs. Thy-1neg pMLFs overlaid 

with RFL-6EV vs. RFL-6Thy-1 cells.  (D) Cell area vs. substrate E (mean ± S.E.M.) in 

RFL-6EV vs. RFL-6Thy-1 cells.  (H) Box plots of adhesion size for RFL-6EV (white) and 
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RFL-6Thy-1 (gray) cells Boxes indicate the lower and upper quartile and whiskers are 

10-90 percentile.  * = p < 0.05; ** = p < 0.01; *** = p < 0.001, as assessed by the 

Mann-Whitney test.   

4.3.4 Thy-1 modulates rigidity sensing via RhoA activation 

 Barker et al. have previously shown that Thy-1 expression modulates RhoA 

activity via SFK-mediated signaling through p190RhoGAP (Barker, Grenett et al. 2004).  

As RhoA is a major signaling hub for control of the actin cytoskeleton whose activity is 

modulated by ECM rigidity, we investigated whether Thy-1 expression regulated the 

activation state of RhoA in response to changes in substrate E.  We performed RhoA 

activity assays (based on affinity pull-down of the GTP bound-specific RhoA effector 

rhotekin) on soft and stiff pAAm substrates.  In cont.shRNA human lung fibroblasts, 

RhoA activity was approximately 2-fold higher on stiff vs. soft substrates (Figure 11A).  

This response was significantly muted in Thy-1.shRNA cells, where RhoA activity was 

not statistically different between soft and stiff substrates.  However, RhoA activity was 

approximately 50% higher in Thy-1.shRNA compared to cont.shRNA on soft substrates 

(Figure 11A).  Consistent with these results, RFL-6Thy-1 demonstrated enhanced substrate 

rigidity-dependent RhoA activation across a range of substrate E, whereas this response 

was again muted in RFL-6EV (Figure 11B).  Importantly, RhoA signaling was critical in 

the Thy-1-mediated cell spreading response to substrate E, as inhibition of downstream 

signaling effector Rho kinase (ROCK), largely abolished substrate E-dependent 

spreading in both Thy-1.shRNA- and cont.shRNA-treated NLFs (Figure 11E). 

 To further investigate how Thy-1 modulates RhoA activation in a substrate E-

dependent manner, we decided to investigate whether direct force-dependent RhoA 

activation is affected by Thy-1 expression.  It was recently demonstrated by Guilluey et 

al. that applying a tensile force to the cell surface via 2.8 µm-diameter Fn-coated beads, 
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with an approximately 15 pN constant force, is sufficient to mechanically activate RhoA 

(approximately 2-fold over 5 min. timescale).  This contributes to the growing literature 

body validating RhoA as a mechanosensitive signaling element.  We repeated this same 

experimental setup using RFL-6EV and RFL-6Thy-1 cells (schematic, Figure 11C).  We 

found that force via Fn receptors was sufficient to activate RhoA in quiescent RFL-6 

cells, however force application with an antibody to the transferrin receptor (CD71, TfR) 

did not activate RhoA, nor did beads coated with BSA (data not shown) (Figure 11D).  

RhoA activity increased with force application time in a dose-dependent manner, 

reaching maximal activity between 3-5 min.  Intriguingly, we found that in the presence 

of Thy-1 expression, RhoA activity was elevated by approximately 2-fold in response to 

force, however this effect was diminished by approximately 50% in the absence of Thy-

1.  Therefore, this data demonstrates that Thy-1 modulates the direct force responsiveness 

of RhoA via Fn receptors. 
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Figure 11:  Analysis of substrate rigidity- and force-dependent RhoA activity.  (A) 

RhoA activity (mean ± S.E.M.) of cont.shRNA- vs. Thy-1.shRNA-treated normal 

lung fibroblasts on soft (1.8 kPa) vs. stiff (18.7 kPa) Fn-coated pAAm substrates.  

(B) RhoA activity (mean ± S.E.M.) of RFL-6EV (white) and RFL-6Thy-1 (black) cells 

on Fn-coated pAAm substrates of varying rigidity.  * = p < 0.05 as assessed by an 

unpaired, two-tailed Student’s t-test.  (C) Cartoon schematic of the magnetic force 

application set-up.  (D) RhoA activity (mean ± S.E.M.) of RFL-6EV (white) and RFL-
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6Thy-1 (black) probed with Fn-coated beads and RFL-6Thy-1 probed with anti-TfR-

coated beads (gray) for varied duration of magnetic force application.  Yellow box 

inidicates the approximate level of RhoA activity in untreated cells.  (E) Box plot of 

cell area for cont.shRNA- vs. Thy-1.shRNA-treated normal lung fibroblasts on soft 

(1.8 kPa) vs. stiff (18.7 kPa) Fn-coated pAAm substrates treated with 10 µM Y-

27632.  Boxes indicate the lower and upper quartile and whiskers are 10-90 

percentile. 

4.3.5 Force-dependent adhesion signaling is modulated by Thy-1 

 To gain more insight into how Thy-1 may be modulating the force-dependent 

activation of RhoA, we investigated the complex of proteins associated with the Fn-

coated beads and how they changed as a consequence of force.  To accomplish this, we 

used magnets to pull-down bead-associated complexes, and following washing steps to 

promote specificity, we denatured and resolved the protein complexes via SDS-PAGE.  

We then took a targeted approach, looking at known adhesion-associated molecules that 

have been previously demonstrated to be involved in mechanotransduction and 

mechanosignaling via Western blot (Figure 12 A,B).  The prevalence of integrin receptor 

subunits αv and α5 was unchanged in both the presence and absence of Thy-1 and/or 5 

minute force application.  The integrin-actin linking protein talin was also associated 

independently of Thy-1 and force, suggesting that integrin ligation is sufficient for 

exposure of talin binding sites within the complex, or vice versa (Figure 12 A,B).  Also, 

the prevalence of the adapter protein paxillin was independent of Thy-1 and force.  

Intriguingly, the SFK member Fyn was specifically associated with the complex only in 

the presence of Thy-1, and largely independent of force.  In contrast another SFK 

member c-Src was associated independently of Thy-1, demonstrating the specificity of 

Thy-1-mediated SFK recruitment to Fyn (Figure 12 A).  Interestingly, SFK activation, as 

reported by phosphorylation of tyrosine 418 (pY418) within the activation loop of SFK, 
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exhibited both force-dependent and -independent responses, however both were critically 

reliant on Thy-1.  However another mechanosensitive signaling molecule, FAK, was 

activated in response to force independently of Thy-1 (Figure 12 A,B).  Importantly, Thy-

1 was also associated with the adhesion complexes. Therefore, Fyn recruitment and 

force-dependent SFK activation was dependent on Thy-1 expression.  As Fyn has been 

demonstrated to be a critical early mechanosensitive signaling element, an upstream 

component of the force-dependent RhoA activation pathway, and its localization to 

adhesion complexes is modulated by Thy-1 expression, this represents an intriguing 

effector in Thy-1-regulated mechanosignaling and rigidity sensing (von Wichert, Jiang et 

al. 2003, Kostic and Sheetz 2006, Na, Collin et al. 2008, Guilluy, Swaminathan et al. 

2011). 
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Figure 12:  Analysis of Thy-1- and force-dependent adhesion complex components.  

(A) Western blots of indicated proteins, along with their molecular weight, within 

the adhesion complex or total cell lysate for RFL-6EV and RFL-6Thy-1 cells.  Absence 

or presence of 5 min. continual force application is indicated below individual lanes.  
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(B) Quantification of Western blots via densitomtery for a minimum of n = 3 blots 

from at least two independent experiments.  Density measurements for each 

molecule is represented relative to the levels of RFL-6EV without force application, 

with the exception of Thy-1, for which measurements are represented relative to 

RFL-6Thy-1 without force application.  * = p < 0.05 as assessed by an unpaired, two-

tailed Student’s t-test.   

4.3.6 Fyn and Thy-1 expression is required for efficient rigidity sensing 

 To further explore relevance of Fyn in Thy-1-regulated phenotypes, we asked the 

whether Fyn was a critical component of the Thy-1-dependent responses to substrate 

rigidity.  As pharmacological inhibitors are not specific to individual SFKs, especially 

highly homologous members such Fyn, Lyk, c-Src, and Hck, we used a genetic approach 

to specifically assess the role of Fyn vs. c-Src.  c-Src-Yes-Fyn triple knockout mouse 

embryonic fibroblasts (SYFs) were FACS sorted into Thy-1pos and Thy-1neg populations.  

Cells were then transfected with EGFP-tagged Fyn (Fyn-GFP) or c-Src (c-Src-GFP), 

plated on soft and stiff pAAm substrates, and the cell spreading response was assayed.  In 

general, spreading responses were retarded in these cells, as has been previously 

demonstrated (Klinghoffer, Sachsenmaier et al. 1999).  Non-transfected SYFs did not 

spread to significantly different areas on soft (1.8 kPa) vs. stiff (18.7 kPa) pAAm gels, 

consistent with data previously observed (Kostic and Sheetz 2006) (Figure 13 B).  In 

contrast, Thy-1pos SYFs transfected with Fyn-GFP spread and assembled actin stress 

fibers to a significantly greater extent on stiff substrates, whereas this did not happen in 

Thy-1neg SYFs transfected with Fyn-GFP (Figure 13 A,B).  Furthermore, Thy-1pos SYFs 

expressing Fyn-GFP spread significantly less on soft substrates, compared to Thy-1pos 

SYFs expressing c-Src-GFP; this affect was not observed in Thy-1neg SYFs.  This data 

demonstrates that indeed both Thy-1 and Fyn expression are required in these fibroblasts 

for sensitive cytoskeletal remodeling in response to changes in substrate rigidity. 
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Figure 13:  Analysis of c-Src- and Fyn-mediated SYF cell spreading in Thy-1pos and 

Thy-1neg SYF subpoplations.  (A) Confocal micrographs of actin (red), GFP (green), 

and nuclei (blue) for Thy-1neg (left) and Thy-1pos (right) SYFs plated on the indicated 

stiffness Fn-coated pAAm substrate.  Transiently transfected GFP-tagged SFKs are 

also indicated.  Scale bar = 50 µm  (B) Box plots of cell area for SYFs cells as 

indicated.  Boxes indicate the lower and upper quartile and whiskers are 10-90 

percentile.  * = p < 0.05; ** = p < 0.01; *** = p < 0.001, as assessed by an unpaired, 

two-tailed Student’s t-test. 
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4.3.7 Thy-1 regulates rigidity-dependent ECM assembly and remodeling 

 To assess the potential pro-fibrotic consequences of Thy-1neg fibroblasts lack of 

sensitive rigidity sensing, we looked at ECM assembly and remodeling phenotypes in 

human lung fibroblasts.  Assembly of Fn fibrils by fibroblasts in culture is dependent on 

cytoskeletal contractility, and inhibition of RhoA signaling or the downstream 

actomyosin system greatly inhibits Fn assembly (Zhang, Magnusson et al. 1997, Zhong, 

Chrzanowska-Wodnicka et al. 1998).  Furthermore, ECM rigidity has recently been 

demonstrated to regulate Fn assembly, wherein cells on soft ECMs assemble significantly 

less Fn (Carraher and Schwarzbauer 2013).  We analyzed the amount of cell-assembled 

Fn on soft vs. stiff matrices through quantitative immunofluorescence microscopy.  

Cont.shRNA fibroblasts on soft pAAm substrates did not assemble significant amounts of 

Fn initially, maintaining a rounded morphology, and this amount only slightly increased 

over 48 hrs in culture (Figure 14A,B).  On stiff pAAm substrates however, cont.shRNAs 

dramatically increased the amount of Fn they assembled over 48 hrs.  Thy-1.shRNA 

fibroblasts on stiff pAAm substrates exhibited a qualitatively similar level of Fn assembly 

as cont.shRNAs (Figure 14A,B).  Uniquely, Thy-1.shRNAs were proficient at elaborating 

Fn matrix on soft pAAm substrates, indicating a pertinent phenotypic switch in the 

context of fibrotic ECM remodeling.  Furthermore, Thy-1.shRNAs more efficiently 

contracted 1.0 mg/mL collagen matrices than did cont.shRNAs (Figure  14C,D).  This 

enhanced contraction was mediated by ROCK signaling, as treatment with Y-27632 

drastically inhibited gel contraction and normalized differences due to Thy-1 knockdown 

(Figure  14C,D).  This data demonstrates a significantly enhanced Fn 

assembly/remodeling phenotype of Thy-1neg fibroblasts, specifically in relatively soft 

ECM microenvironment.   
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Figure 14:  Thy-1 regulates Fn assembly and collagen gel contraction.  (A) 

Immunofluorescence microscopy of extracellular Fn (red) and nuclei (blue) in 
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cont.shRNA- vs. Thy-1.shRNA-treated normal lung fibroblasts on soft (1.8 kPa) vs. 

stiff (18.7 kPa) pAAm substrates after 24 hrs.  Scale bar = 10 µm.  (B) 

Quantification of cell-associated Fn assembly (mean ± S.E.M.; area × intensity, 

arbitrary units) for cont.shRNA- vs. Thy-1.shRNA-treated normal lung fibroblasts 

on soft (1.8 kPa, red) vs. stiff (18.7 kPa, black) pAAm substrates for 12, 24, and 48 

hrs. in culture.  (C) Images of 1 mg/mL 3D collagen I gels contracted by fibroblasts 

after 48 hrs. in culture.  (D) Quantification of gel contraction (percentage of the 

original gel diameter) for cont.shRNA- vs. Thy-1.shRNA-treated normal lung 

fibroblasts with and without 10 µM Y-27632 treatment. ** = p < 0.01 as assessed by 

unpaired, two-tailed Student’s t-test. 

 

 

4.4 Discussion 

 Rigid microenvironments promote cytoskeletal activation, ECM remodeling and 

myofibroblast differentiation, potentially resulting in a feed-forward loop of progressive 

fibrogenesis (Hinz 2010, Liu, Mih et al. 2010, Huang, Yang et al. 2012).  However, how 

the initial wound environment evolves into a pathologic rigidity regime from a relatively 

compliant provisional matrix is not well understood.  Here we analyzed the phenotype of 

lung fibroblasts in response to changes in ECM microenvironment, including substrate 

rigidity.  We found that expression of the glycoprotein Thy-1 (CD90) at levels analogous 

to normal human lung fibroblasts, promotes sensitive cytoskeletal regulation in response 

to a changing ECM microenvironment, including alterations in substrate rigidity.  This 

was observed in multiple cell systems including 1) both IPF and normal human lung 

fibroblasts, 2) RNAi-mediated Thy-1 gene repression in normal lung fibroblasts, 3) 

endogenous mouse lung fibroblast subpopulations, and 4) heterologous Thy-1 re-

expression in a lung fibroblast cell line, demonstrating the robustness of this finding.  
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Furthermore, it demonstrates Thy-1 expression itself is required for the described 

phenotypic regulation.  In contrast, cells lacking Thy-1 expression, either endogenously 

(including those isolated from heterogeneous IPF fibroblast isolates) or through genetic 

manipulation, are more refractory to changes in ECM rigidity.  Consequently, Thy-1neg 

cells exhibit significantly more mature actin cytoskeletons and FAs, higher cortical 

stiffness, and larger spread area in ECMs of rigidity not dissimilar from normal lung 

tissue, in contrast to the largely quiescent Thy-1pos fibroblasts.  This results in prominent 

Fn matrix assembly in soft ECMs and efficient contraction of floating collagen gels.  

Therefore, in soft ECMs, Thy-1neg fibroblasts exhibit the pro-fibrotic phenotypes of 

enhanced cytoskeleton activation, ECM assembly, and ECM remodeling.  This suggests 

an intriguing interpretation that, in a relatively healthy lung interstitium or in new 

provisional matrix following alveolar damage, the Thy-1neg phenotype may contribute to 

elaboration of a fibrillar matrix consistent with tissue repair and fibrosis.  Potential 

consequences of such phenotypic responses in the context of IPF are further elaborated in 

Chapter 6. 

 The Thy-1-dependent fibroblast phenotype is modulated by activation of the 

actomyosin regulator, RhoA.  Consistent with ECM rigidity-dependent alterations in 

cytoskeletal phenotype, we find that Thy-1neg fibroblasts have higher endogenous active 

RhoA on soft substrates (~2 kPa), whereas Thy-1pos have higher active RhoA on stiff 

substrates (>10 kPa).  As substrate rigidity is sensed through force-dependent adhesion 

signaling (i.e. mechanosignaling) pathways, we proceeded to directly investigate force-

dependent adhesion signaling and if it was modulated by Thy-1.  Intriguingly, RhoA 

activation in response to force application through Fn receptors was significantly 

diminished in the absence of Thy-1, demonstrating an important role for Thy-1 in 

efficient mechanosignaling of RhoA.  Inhibition of RhoA downstream effector ROCK 
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disrupted Thy-1-dependent rigidity sensing, consistent with prior literature demonstrating 

the importance of this pathway in rigidity sensing. 

We then took a targeted approach to look for interactions and molecules regulated 

by Thy-1 during force application; this was accomplished by isolating molecules 

associated with force-modulated adhesion complexes.  Interestingly, we pulled out the 

SFK, Fyn, as a molecule whose localization is regulated by Thy-1 expression.  

Interestingly, its association with integrin-Fn complexes was largely independent of 

force, but as required by the assay, dependent on ligand binding (i.e. presentation of a Fn-

coated bead).  As Fyn has been previously demonstrated to be a critical early signaling 

element in force-dependent integrin signaling and adhesion reinforcement (von Wichert, 

Jiang et al. 2003, Kostic and Sheetz 2006), and it was recently discovered to be an 

upstream element in the force-activated RhoA pathway (Guilluy, Swaminathan et al. 

2011), this suggests Thy-1 could modulate mechanosignaling via altering localization of 

Fyn with respect to integrin adhesion complexes.  Interestingly, force-dependent 

activation of RhoA was found to result from parallel pathways emanating from integrins, 

namely Fyn-mediated activation of the RhoGEF, LARG, and activation of GEF-H1 by 

FAK/ERK, which are additive for full RhoA activation (Guilluy, Swaminathan et al. 

2011).   As force-mediated FAK activation is independent of Thy-1 expression, this may 

explain why partial RhoA activation in response to force is observed in the absence of 

Thy-1. 

The activation of SFKs, as monitored by phosphorylation of Y418 within the 

activation motif, was modulated by Thy-1 in both a force-dependent and –independent 

manner.   In the absence of Thy-1, both bead/ligand-induced (i.e. force-independent) and 

force-induced pY418-SFK adhesion association was abrogated.  As association of the 

other fibroblast expressed, Fn-binding integrin-associated SFK, c-Src, is independent of 

Thy-1, this suggests that Thy-1 facilitates recruitment and activation of Fyn specifically.  
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Furthermore, this data demonstrates that both multivalent ligand binding and exogenous 

force application are capable of activating SFKs.  This is in agreement with reports that 

multivalent ligands of both β1 and β3 integrins are able to activate SFKs in cells in 

suspension (Wary, Mariotti et al. 1998, Arias-Salgado, Lizano et al. 2003).  Additionally, 

when optical tweezers were used to apply directional force via a fibronectin-coated bead, 

ligation of the probe bead, in the absence of the external forces imposed by the trap, was 

sufficient to locally activate SFKs independent of the actin cytoskeleton (Wang, 

Botvinick et al. 2005).  This data has been used to support a model whereby ligand-

induced clustering of integrin receptors is sufficient for co-clustering of SFKs, enabling 

trans-autophosphorylation within the SFK activation motif by proximal SFKs and 

promoting kinase activation (Arias-Salgado, Lizano et al. 2003, Shattil 2005).  Thus, 

Thy-1 appears to facilitate Fn receptor clustering-induced SFK activation.  Downstream 

of ligand binding and potential clustering mechanisms, direct force application via 

integrins further activates SFKs through a yet unknown mechanism (Wang, Botvinick et 

al. 2005, Na, Collin et al. 2008, Guilluy, Swaminathan et al. 2011).  In the same optical 

tweezer study, Wang et al. demonstrated that 300 pN force caused actin cytoskeleton-

dependent directional and long-range activation of SFKs using of a FRET biosensor.  

Intriguingly, the activity of their biosensor construct was sensitive to c-Src and Fyn 

(approximately 50% activity), however the N-terminal residues of Lyn kinase was used 

for membrane-targeting (Wang, Botvinick et al. 2005).  As the N-terminal region of Lyn 

is both palmitoylated and myristolated, targeting the kinase to lipid raft domains where it 

interacts with GPI-anchored proteins, this suggests their biosensor was equally targeted to 

such domains.  Further work from this group indeed verified differential SFK biosensor 

targeting to sub-membrane domains via targeting motifs (i.e. K-Ras vs. Lyn), which 

regulates the observed signaling responses (Seong, Lu et al. 2009).  This demonstrates 

that the activity of their biosensor is sensitive to the local membrane environment, and as 

such, targeting to membrane domains occupied by dually acyl chain-modified SFKs (i.e. 
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Fyn, Lyn) vs. myristate only-modified (i.e. c-Src) likely reflects the relevant activity of 

these molecules.  Furthermore, Guilluy et al. showed genetically that force-dependent 

activation of RhoA and adhesion reinforcement was mediated specifically by Fyn.  These 

data support the importance of Fyn in force-dependent SFK activation during 

mechanostransduction through integrin-Fn bonds.  However, due to a paucity of reagents 

with specificity for Fyn versus other SFK members, we took a similar genetic approach 

to investigate the requirement of Fyn vs. c-Src in Thy-1-dependent mechanotransduction 

responses.  Consistently, both Thy-1 and exogenous Fyn expression were required for 

robust SYF cell spreading on stiff ECMs.  The observed data support a mechanism for 

Thy-1 regulating Fyn localization and activation in response to force, which facilitates 

RhoA activation and remodeling of the cytoskeleton in response to force or substrate 

rigidity, providing a likely mechanism for Thy-1-mediated mechanotransduction.  It will 

be the goal of further studies to understand how Thy-1 regulates the localization of Fyn 

during mechanotransduction. 
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CHAPTER 5   IDENTIFICATION OF A THY-1/αVβ3 

INTEGRIN/FYN/RHOA SIGNALING AXIS REGULATING LUNG 

FIBROBLAST MECHANOTRANSDUCTION 

5.1 Introduction 

At present date, no effective treatments for idiopathic pulmonary fibrosis (IPF) 

exist.  This is likely due to a lack of detailed knowledge of the pathogenesis of the 

disease, highlighting the complexity of persistent tissue remodeling disorders, wherein 

the tissue microenvironment is constantly evolving with disease progression.  In our 

previous chapters, we quantitatively determined the extent of tissue stiffening that occurs 

due to fibrogenesis, and we discovered a known fibrosis-suppressor, Thy-1, regulates the 

mechanotransduction of normal- and fibrosis-associated tissue rigidity in lung fibroblasts.  

This raises the intriguing possibility that 1) loss of Thy-1 and its associated phenotypic 

regulation of mechanotransduction play a critical pathophysiologic role in IPF, and 2) 

understanding the mechanism of this phenotypic regulation may yield novel therapeutic 

targets for the treatment of IPF.  In this chapter, we aim to address the latter by 

deciphering a mechanism by which Thy-1 modulates integrin signaling and 

mechanotransduction. 

As the primary receptors for ECM, integrins are critical first responders to ECM-

derived instructive cues.  Integrins form complexes (focal adhesions, FAs) with 

associated signaling and scaffolding molecules that enable biochemical signal generation 

and propagation from the outside environment into the cell (Geiger and Yamada 2011).  

FAs also contain a plethora of structural proteins that link the ECM to the cytoskeleton, 

thereby allowing bidirectional transmission of mechanical forces.  In this way, FAs are 

primary sites of cell-ECM force modulation and signal generation, and are capable of 
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transducing such forces into biochemical signals, i.e. mechanotransduction (Geiger, Spatz 

et al. 2009).  For this reason, FAs have gained considerable interest as sites for focus in 

determining the molecular mechanisms that underlie this phenomenon. 

Obfuscating the molecular mechanisms that regulate mechanosensing and 

mechanotransduction within FAs is the large number of FA-associated proteins and 

interactions.  Recent proteomics analysis points to upwards of 900 proteins that may 

associate with integrin-ECM complexes at some point during their lifecycle (Humphries, 

Byron et al. 2009, Kuo, Han et al. 2011).  How these proteins associate in space and time 

is critical for overall FA function and, thus, biochemical signal generation, force 

transmission, and mechanotransduction.  For example, the scaffolding molecule paxillin 

is prominent during initial complex formation (i.e. nascent adhesions), as is the integrin-

activating and actin-bridging protein talin, whereas other structural molecules such as α-

actinin, zyxin, and tensin associate later in the FA assembly process (Gardel, Schneider et 

al. 2010, Geiger and Yamada 2011).  Whereas the structural molecule vinculin is present 

in nascent adhesions, in more mature adhesions it can switch to an active conformation, 

linking talin and actin to stabilize force transmission (Dumbauld, Lee et al. 2013, 

Thievessen, Thompson et al. 2013).  In space, these dynamic but coordinated interactions 

build a hierarchical network of proteins that link the cytoskeleton to the ECM, resembling 

a stratified structure of protein-protein interactions wherein innumerous opportunities for 

mechanotransductory events exist (Kanchanawong, Shtengel et al. 2010). 

What are less well known are processes that mediate FA assembly and 

mechanotransduction upstream of integrin-ECM binding.  However, as these complexes 

assemble in a rapid yet well-organized manner, additional regulatory mechanisms that 

contribute to the timing and configuration of these complexes are not surprising.  Once 

integrins bind an immobilized ligand, FA assembly proceeds from a relatively stable 

position, microscopically, although FA translocation or frictional slippage does occur 
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(Smilenov, Mikhailov et al. 1999, Aratyn-Schaus and Gardel 2010).  However preceding 

immobilization, integrin complexes are ambulatory within the plasma membrane, where 

they can undergo directional mobility at the leading edge to “probe” for ligand-binding 

sites or undergo Brownian motion within membrane compartments (Wiseman, Brown et 

al. 2004, Galbraith, Yamada et al. 2007).  For examples, α5 integrins group in clusters of 

3-5 molecules in non-FA regions, where they are highly mobile (Wiseman, Brown et al. 

2004).  At the nanoscopic level, single integrins receptors are highly mobile even within 

FA structures, exhibiting intermittent modes of confinement, diffusion and 

immobilization depending on their tripartite interaction with the ECM and the 

cytoskeleton (Rossier, Octeau et al. 2012).  Furthermore, it is known that simply 

clustering integrins in the absence of ligation or force recruits downstream signaling 

molecules requisite for early ligand-induced signal generation, such as Src family kinases 

(SFKs) (Shattil 2005, Boettiger 2012).  Intriguingly, not all early signaling intermediates 

directly bind to integrin receptors, necessitating alternate scaffolding molecules to bridge 

these interactions. 

Integrins are dynamic molecular machines, existing in multiple conformations 

that control ligand recognition and affinity, cytoplasmic binding partner accessibility, and 

forces transmitted through the receptor-ligand complex.  In a low-affinity state, integrin is 

bent, resulting in close juxtaposition of the ligand-recognizing headpiece to the plasma 

membrane (Takagi, Petre et al. 2002, Luo, Carman et al. 2007).  A cytoplasmic salt 

bridge between Asp-723 in the β integrin subunit and Arg-995 in the α integrin subunit 

(i.e. membrane-proximal clasp) forms to stabilize this conformation and competes for the 

binding of cytoplasmic integrin-activating proteins (Vinogradova, Velyvis et al. 2002).  

In a simple description, when integrin-activating proteins, such as talin, bind to the 

cytoplasmic face and disrupt inter-subunit bonds, they facilitate global conformation 

changes (e.g. extension) of the protein (Calderwood, Zent et al. 1999, Garcia-Alvarez, de 
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Pereda et al. 2003).  Interestingly, this global conformation change is linked to enhanced 

ligand-binding affinity, coupling global conformational changes to local conformation 

shifts within the ligand recognition site (Takagi, Petre et al. 2002, Kim, Ye et al. 2011).  

Although this is an over-simplification of the system – as local conformational changes 

and ligand recognition can exist in the absence of integrin extension, and lower-affinity 

states exist in the extended conformation – this illustrates the dynamic nature of 

integrin’s recognition of ligand and regulation of downstream molecular responses. 

As an increasing number of molecules that directly associate with integrin are 

identified, it is clear that they evolved to share or overlap in their binding motifs, 

resulting in adapter-binding ‘hot-spots’ (Legate and Fassler 2009).  Intriguingly, like talin 

and other integrin-activating proteins, some partner molecules bind motifs cryptic to the 

active (i.e. extended) conformation and vice versa.  For instance, a subset of molecules, 

known as integrin-activation inhibitors, directly bind to the juxtamembrane region of 

integrin and stabilize clasp formation (Pouwels, Nevo et al. 2012).  Also, important 

scaffolding/signaling molecules paxillin and Fyn bind to the membrane-proximal clasp 

region, suggesting this motif is only accessible for adapter binding following separation 

of the two integrin tails and thus, integrin activation (Reddy, Smith et al. 2008, Legate 

and Fassler 2009). 

In the pursuit of a molecular mechanism linking Thy-1 to intracellular 

mechanosignaling, we have chosen to focus on FAs as a likely target of Thy-1-associated 

signal transduction.  Previous work by Barker et al. demonstrated that fibroblast Thy-1 

surface expression is sufficient to alter SFK activation, p190 RhoGAP phosphorylation 

and downstream Rho signaling, leading to differential FA and stress fiber formation 

(Barker, Grenett et al. 2004).  Furthermore, they established a critical role for the Thy-

1/SFK signaling axis in thrombospondin-mediated FA disassembly (Barker, Pallero et al. 

2004).  Multiple groups have helped to establish SFKs as a key Thy-1-mediated signaling 
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effector (Ley, Marsh et al. 1994, Barker, Pallero et al. 2004, Cohen, Breuer et al. 2009, 

Shan, Hagood et al. 2010, Herrera-Molina, Frischknecht et al. 2012).  Importantly, Thy-

1’s GPI anchor is critical to these signaling responses due to its ability to localize the 

Thy-1 to lipid rafts, where it interacts with SFKs (Stefanova, Horejsi et al. 1991, 

Draberova and Draber 1993, Tiveron, Nosten-Bertrand et al. 1994, Barboni, Rivero et al. 

1995, Rege, Pallero et al. 2006).   As an outer leaflet-associated molecule, Thy-1 requires 

extracellular binding partners for its polypeptide structure.  Intriguingly, integrins have 

been identified as a Thy-1 binding partner, although these findings explicitly focus on 

integrin as a trans-acting (i.e. cell-cell) receptor (Leyton, Schneider et al. 2001, Wetzel, 

Chavakis et al. 2004, Saalbach, Wetzel et al. 2005, Avalos, Valdivia et al. 2009, Shan, 

Hagood et al. 2010).  These prior findings along with the results from the previous 

chapter demonstrating 1) Thy-1 facilitates fibroblast mechanotransduction of ECM 

rigidity, 2) Thy-1 is required for efficient force-dependent RhoA activation, 3) Thy-1 

mediates the localization of Fyn kinase to adhesion complexes, 4) Thy-1 regulates the 

force-activation of SFKs, and 5) efficient mechanotransduction of ECM rigidity requires 

both Thy-1 and Fyn expression, motivate us to investigate how Thy-1 may be regulating 

these phenomena. 

 

5.2 Materials and Methods 

5.2.1.1 Inhibitor treatments 

 Cholesterol oxidase (CholOx) from Streptomyces sp. (Sigma) was used at a 

concentration of 1 U/mL.  Cells were treated for 1 hr. prior to the start of magnetic 

tweezing and complex precipitation assays, and CholOx was maintained in the media 

during assays.  2 mM Mn2+ or 10 µg/mL LIBS2 were added to cultures for 60 min. prior 

to fixation and PLA assays.   
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5.2.2 Protein complex identification assays 

5.2.2.1 Immunoprecipitations 

 Cells were maintained in suspension or plated at 1x104/cm2 in a 10 cm diameter 

dish.  Cells were lysed in 50 mM Tris, pH 8.0, 150 mM NaCl, 5 mM EDTA, 5% 

glycerol, 1% Triton X-100, 25 mM NaF, and supplemented with 1× protease inhibitor 

cocktail and phosphatase inhibitor cocktails (Roche).  Lysates were clarified by 

centrifugation for 10 min at 12,000 rpm, 4 °C and pre-cleared with Dynabeads (M280, 

Invitrogen) for 1 hr. at 4 °C.  Complexes were captured with antibody-conjugated (αv 

integrin, AB1930; Millipore) and BSA-blocked Dynabeads for 2 hr. at 4 °C.  Beads were 

washed in lysis buffer, and proteins were eluted in sample buffer (2x Laemmli).  Samples 

were probed by Western blotting with antibodies to αv integrin (AB1930) and Thy-1 

(5E10, BD Pharmingen). 

5.2.2.2 Proximity ligation assays (PLA) 

 Cells on No. 1.5 coverglass were fixed with 4% formaldehyde with 0.2% 

glutaraldehyde for 15 min. at 25°C.  Samples were blocked with 5% normal goat serum 

(NGS) with 0.1% Tween-20, prior to primary antibody incubation.  Primary antibodies 

used were Thy-1 (EPR3132, Abcam; Cambridge, MA), αvβ3 integrin (23C6, Chemicon 

International; Temecula, CA), αvβ3 integrin (LM609, Millipore), anti-LIBS2 epitode β3 

integrin subunit (ab62, Millipore), αvβ3 integrin (WOW-1, a kind gift of Sanford Shattil, 

University of California, San Diego), β1 integrin (K20, BD Pharmingen), and β1 integrin 

(HUTS-4, Chemicon International).  All antibodies were used at between 0.5-1.0 µg/mL 

in blocking buffer.  Proximity ligation assays were performed according to the 

manufacturer’s instructions (Olink Biosciences; Uppsala, Sweden). 
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5.2.3 Assays of cytoskeletal phenotype 

5.2.3.1 Preparation of polyacryamide (pAAm) gel substrates 

 Polyacrylamide (pAAm) hydrogels with varying bisacrylamide concentrations 

were fabricated on amino-silanated coverslips, as previously described.  (Tse and Engler 

2010)  Briefly, PA gel solutions were produced by combining acrylamide and 

bisacrylamide (Biorad; Hercules, CA) to final concentrations of 8% acrylamide and 

0.045%, 0.102%, 0.146%, or 0.239% bisacrylamide to obtain gels with final elastic 

moduli of 1.8 kPa, 6.7 kPa, 10.6 kPa, or 18.7 kPa, respectively. 50 µl of each solution 

was polymerized by the addition of 1% (v/v) ammonium persulfate (VWR; West Chester, 

PA) and 1% (v/v) N,N,N’,N’-tetramethylethylenediamine (Biorad).  Human plasma 

fibronectin (Fn) was purified from blood plasma and covalently attached to the surface 

using the heterobifunctional crosslinker sulfosuccinimidyl-6-(4’-azido-2’ nitrophenyl-

amino)hexanoate (sulfo-SANPAH, Pierce Chemical Co.; Rockford, IL).  Following 

overnight incubation with Fn, gels were then washed and stored in PBS. 

5.2.3.2 Immunofluorescence staining 

 Thy-1 mouse lung fibroblast subpopulations or RFL-6 lines were plated on Fn-

coated PAAm substrates of varying rigidity at a seeding density of 1,000 cells/cm2.  Cells 

plated in 10% FBS-containing growth media were allowed to attach and spread for 4 

hours at 37°C, 5% CO2.  Samples were then fixed using 4% formaldehyde, permeabilized 

in 0.2% Triton X-100 for 5 minutes, and blocked with 10% normal goat serum (NGS).  

Primary antibodies including V284 (vinculin, Millipore; Billerica, MA), 8d4 (talin, 

Sigma), 53-2.1 (Thy-1, BD Pharmingen), 5E10 (Thy-1, BD Pharmingen), and AB2024 

(Fn, Millipore) along with AlexaFluor-labeled secondary antibodies were used for 
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staining (Invitrogen).  AlexaFluor-conjugated phalloidin (Invitrogen) was used to stain F-

actin, and samples were counterstained with Hoechst 33528 (Invitrogen).  Images were 

acquired at 20x (Plan-fluor, 0.5 N.A.) or 60x (Plan-apochromat, 1.4 N.A.) magnification 

with a Nikon TiE epifluorescence microscope (Nikon; Tokyo, Japan) and CoolSNAP 

HQ2 monochromatic CCD camera (Photometrics; Tucson, AZ), or using a Zeiss 

LSM700 confocal microscope (Carl Zeiss, Inc.; Jena, Germany) with a variable 

secondary dichroic and 20x (0.8 N.A.), 60x (1.4 N.A.) objectives.  Cell area was 

measured with an intensity-based auto-detection algorithm to detect and highlight 

boarders and calculate pixel number.  Quantitatively similar values of cell area are 

detected for membrane staining (DiI), actin, and vinculin immunostaining. 

5.2.3.3 Quantification of cell and adhesion morphometrics 

 Immunostained vinculin image planes were extracted from 60x fluorescent 

micrographs and loaded into MATLAB.  First, general background elimination was 

performed by averaging the intensity of a user-defined background polygon, and the 

average background pixel intensity was set to zero.  Single cells within the field of view 

were masked and remaining pixels could be converted to cell area.  A second mask, 

applied as a function of the standard deviated of the pixel intensity distribution, was used 

to select and convert adhesions to a binary sequence.  Connected pixels were then 

grouped into bins based on size, converted to units (µm2), and saved as the focal adhesion 

size data to the output structure. 

5.2.3.4 AFM analysis of cortical stiffness 

 Cells were plated as for immunofluorescent staining and measured within 4-6 

hours of plating.  Using an MFP-3D-BIO atomic force microscope (AFM) (Asylum 

Research; Santa Barbara, CA), nanoindentation tests were performed in fluid conditions 

(DMEM + 10 mM HEPES, 10% FBS, 1% penicillin and streptomycin, pH 7.4) using a 
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4.74 µm diameter spherical tipped-silicon nitride cantilever (Bruker; Camarillo, CA). 

Cantilever spring constants were measured prior to sample analysis using the thermal 

fluctuation method, with nominal values of 40-60 pN/nm.  Single force points taken from 

at least 3 peri-nuclear regions of greater than 300 nm in height were averaged to 

determine a cell’s average cortical stiffness.  Similarly, regions of PAAm substrate 

surrounding measured cells were probed.  Force-indentation curves were individually 

analyzed using a Hertzian model for spherical tips, from which Young’s modulus was 

obtained.   The sample Poisson’s ratio was assumed as 0.33, and a power law of 1.5 was 

used to model tip geometry.  AFM measurements were made using a 2 nN force set point 

and an indentation rate of 22.85 µm/s. 

5.2.4 Assays of force-dependent signaling 

5.2.4.1 RhoA activity assay 

 RFL-6 or CCL-210 cells were plated on pAAm substrates at 5x103/cm2.  After 4 

hours, cells were washed once with ice-cold PBS and the RhoA G-LISA assay 

(Cytoskeleton, Inc.; Denver, CO) was performed per manufacturer’s instructions.  After 

absorbance measurements were taken at 490 nm, buffer-only background levels were 

subtracted and normalized by the experimental group with lowest RhoA activity levels.  

For magnetic force application assays, cells were plated and subject to force application 

as described below and RhoA G-LISA was performed; relative RhoA activity values 

were obtained after normalizing to zero force RhoA activity signal per experimental 

group.   Western blot for total RhoA protein was used to ensure protein expression of 

RhoA was equivalent between samples and treatment conditions. 
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5.2.4.2 Magnetic tweezing and complex precipitation assay 

 2x106 cells/dish were plated in a 10 cm tissue culture-treated polystyrene dish and 

made quiescent overnight in serum-free DMEM.  2.8 µm diameter magnetic beads 

(M280 Dynabead, Invitrogen) coated with full-length Fn, anti-transferrin receptor (CD71, 

H-300; Santa Cruz Biotechnology), bovine serum album (BSA) were added at a 10:1 

ratio of beads per cell in serum-free plus 0.5% BSA.  Following a 15 minute period to 

allow bead attachment, a neodymium permanent magnet with (surface field of 2451 

Gauss, K & J Magnets, Inc.) was placed 6 mm from the dish surface.  Following the 

prescribed time of magnetic force application, cells were lysed (10 mM HEPES (pH 7.6), 

150 mM NaCl, 0.1% NP-40, 2 mM MgCl2 plus protease inhibitor cocktail), the bead 

fraction was precipitated magnetically (DynaMag, Invitrogen).  Following 3x wash with 

lysis buffer, co-precipitated proteins were either denatured in 2x Laemmli for 

immunoblot anaysis or stained with primary and secondary antibodies for flow 

cytometry.  Force levels applied using this set-up were between 10-16 pN per bead as 

verified using COMSOL simulations and according to those published previously 

(Guilluy, Swaminathan et al. 2011). 

5.2.4.3 Western blots 

 Cultured cells directly lysed in Laemmli buffer or bead-associated adhesion 

complexes were heat-denatured at 95°C for 5 min. Protein was separated 

electrophoretically on a 4-15% polyacrylamide gel (Biorad) according to standard 

procedures, then transferred to nitrocellulose membranes using a semi-dry transfer 

apparatus (Trans-Blot SD, Biorad), blocked with 5% nonfat dry milk in TBS or 5% BSA, 

then incubated with Thy-1 (9798, Cell Signaling Technology; Danvers, MA), Fyn (1S, 

Millipore), c-Src (32G6, Cell Signaling Technology), and pY418-SFK (2101, Cell 
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Signaling Technology) primary antibodies overnight at 4° C.  Following washing with 

TBS + 0.1% Tween 20, membranes were incubated for 2 hours with IR secondary 

antibody (Licor; Lincoln, NE), washed, and imaged using the Odyssey IR scanner 

(Licor).  Western blots were quantified using Image J image processing software and a 

minimum of n = 3 blots were quantified and averaged per group. 

 

5.3 Results 

5.3.1 Lipid raft stability and Thy-1’s GPI anchor are required for Fyn 

recruitment, force-dependent RhoA activation, and rigidity sensing 

 In the previous chapter, we made the unique observation that Thy-1 is required for 

the acute recruitment of the SFK member Fyn to Fn-associated adhesion complexes.  It 

has been previously shown that Thy-1 interacts with Fyn in specialized membrane 

subdomains, termed lipid rafts.  This association between the GPI-anchored outer leaflet 

molecules and inner leaflet-associated intracellular signaling molecules, via the local 

plasma membrane environment, is critical for the biological activity of many GPI-

anchored molecules.  This is the case for Thy-1, where almost all studies of Thy-1-

medated intracellular signaling, including in antibody-induced activation of murine T 

cells, anti-Thy-1-induced glomerulonephritis, and thrombospondin-induced FA 

disassembly are critically dependent on its association with SFKs via lipid rafts.  

Disrupting the stability of lipid rafts inhibits these interactions and subsequent signaling; 

common methods of disruption are pharmacological agents that perturb membrane 

cholesterol, such the cholesterol-sequestering agent methyl-β-cyclodextran (MβCD) or 

cholesterol-modifying enzymes such as cholesterol oxidase (CholOx).  To reduce the off-

target effects associated with MβCD, we treated RFL-6Thy-1 cells with CholOx, which 
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oxidizes cholesterol molecules to cholestenone and perturbs their interaction with 

sphingomyelin and associated liquid-ordered domains, thus disrupting such domains 

(Rouquette-Jazdian, Cellular Signaling 2006).  CholOx treatment dramatically inhibited 

the ability of Thy-1 to recruit Fyn to adhesion complexes, and it also largely abrogated 

the force-induced SFK activation that was dependent on Thy-1 (Figure 15A,B).  Lipid 

raft disruption similarly affected efficient force-dependent RhoA activation enabled by 

Thy-1 expression.  These results demonstrate that lipid raft stability is required for Thy-1-

mediated Fyn recruitment and SFK activation, and RhoA activation in response to force 

(Figure 15C). 

 

Figure 15:  Lipid raft stability is required for Thy-1-mediated Fyn recruitment and 

force-dependent RhoA activation.  (A) Western blots of indicated proteins within 

the adhesion complex or total cell lysate for RFL-6Thy-1 with and without treatment 

with 1.0 U/mL CholOx . Absence or presence of 5 min. continual force application is 

indicated.  (B) Quantification of Western blots via densitomtery for a minimum of n 



 89 

= 3 blots.  Density measurements for each molecule is represented relative to the 

levels of RFL-6Thy-1  in the presence of CholOx; * = p < 0.05 as assessed by an 

unpaired, two-tailed Student’s t-test.  (C) RhoA activity (mean ± S.E.M.) of RFL-

6Thy-1 + CholOx (red) probed with Fn-coated beads for varied duration of magnetic 

force application.  RFL-6EV and RFL-6Thy-1 are underlaid in gray. 

 To further explore the dependence of lipid rafts on Thy-1-mediated signaling, we 

used a chimeric mutant of Thy-1 in which the GPI anchor was substituted with the 

transmembrane domain and a short cytoplasmic tail of mouse CD8 (RFL-6Thy-1/CD8).  This 

mutation alters the localization of the Thy-1 ectodomian to regions of the plasma 

membrane distinct from its endogenous lipid raft sites (Tiveron, Nosten-Bertrand et al. 

1994).  Using this mutant, we verified that the Thy-1’s GPI anchor was critical for Fyn 

recruitment and force-dependent SFK activation, suggesting lipid raft localization is 

required (Figure 16A,B).  We also found this mutant was unable to mediate force-

dependent RhoA activation and phenocopied the Thy-1neg control (RFL-6EV) (Figure 16 

D).  Next, we investigated the effect of the Thy-1/CD8 chimera on cell-level cytoskeletal 

responses to substrate rigidity.  Cortical stiffness and cell area increased with a similar 

slope as RFL-6EV (k = 1.378 ± 0.393 kPa/kPa and 623.26 ± 95.7 µm2/kPa for cortical 

stiffness and cell area, respectively) (Figure 16 E,F).  These responses were significantly 

less sensitive substrate E than RFL-6Thy-1.  Furthermore, although some substrate E-

dependent changes in FA size were observed, FAs were significantly larger on soft 2.2 

kPa substrates in RFL-6Thy-1/CD8 compared to RFL-6Thy-1 (0.882 ± 0.051 vs. 0.624 ± 0.051 

µm2) (Figure 16 G).  This demonstrates that Thy-1’s GPI anchor, presumably its 

localization to lipid rafts, and the stability of lipid rafts are critical for the function of 

Thy-1 in mechanosignaling and mechanotransduction. 
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Figure 16:  Thy-1‘s GPI anchor is required for Fyn recruitment, force-dependent 

RhoA activation, and rigidity sensing.  (A) Western blots of indicated proteins 

within the adhesion complex or total cell lysate for RFL-6Thy-1 and RFL-6Thy-1/CD8. 

Absence or presence of 5 min. continual force application is indicated.  (B) 

Quantification of Western blots via densitomtery for a minimum of n = 3 blots from 



 91 

two independent experiments.  Density measurements for each molecule is 

represented relative to the levels of RFL-6Thy-1/CD8  without force application; * = p < 

0.05 as assessed by an unpaired, two-tailed Student’s t-test.  (C) 

Immunofluorescence micrographs of vinculin (red), actin (green), and nuclei (blue) 

for RFL-6Thy-1/CD8 on Fn-coated pAAm substrates of varying rigidity (indicated in 

top right, white).  (D) RhoA activity (mean ± S.E.M.) of RFL-6Thy-1/CD8 (pink) probed 

with Fn-coated beads for varied duration of magnetic force application.  RFL-6EV 

and RFL-6Thy-1 are underlaid in gray, and yellow box inidicates the approximate 

RhoA activity in untreated cells.  Cell area (E) and cell stiffness (F) vs. substrate E 

(mean ± S.E.M.) in RFL-6Thy-1/CD8 (pink) with RFL-6EV and RFL-6Thy-1 underlaid in 

gray.  (G) Box plots of adhesion size for  RFL-6Thy-1/CD8 cells for various substrate 

rigidities (indicated below).  Boxes indicate the lower and upper quartile and 

whiskers are 10-90 percentile.  * = p < 0.05, as assessed by the Mann-Whitney test.   

5.3.2 Thy-1 associates with αvβ3 integrin via the Arg-Leu-Asp motif 

 To further explore how Thy-1 facilitates lipid raft-mediated coupling of Fyn to 

adhesion complexes, we turned to the literature for evidence of alternate Thy-1 binding 

partners.  It has been reported that Thy-1 binds integrins in a variety of tissue-specific 

contexts, including αMβ2 (Mac-1) on leukocytes (Saalbach, Haustein et al. 2000, 

Saalbach, Hildebrandt et al. 2002, Wetzel, Chavakis et al. 2004), αvβ3 on melanoma cells 

and neurons (Leyton, Schneider et al. 2001, Saalbach, Wetzel et al. 2005, Hermosilla, 

Munoz et al. 2008, Avalos, Valdivia et al. 2009), and αvβ5 on lung fibroblasts (Zhou, 

Hagood et al. 2010).  We first asked if Thy-1 forms a complex with αv integrins in 

human lung fibroblasts.  To accomplish this, we immunoprecipitated αv integrin via a C-

terminal antibody in cell lysates and looked for co-precipitation of Thy-1.  As 

demonstrated in Figure 11A, αv was specifically pulled-down by the anti-C-terminal αv 

antibody, whereas a control IgG antibody did not (Figure 17A).  When immunoblotted 
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for Thy-1, we saw that indeed Thy-1 was co-precipitated as part of a complex with αv.  

Interestingly, when compared to cells spreading on Fn for 30 min. or overnight, cells in 

suspension demonstrated a greater amount of Thy-1 pulled-down with αv, indicating that 

Thy-1 preferentially forms complexes with αv in suspended cells. 

 Binding to αv integrins and α5β1 is direct and mediated by Thy-1’s Arg-Leu-Asp 

(RLD) motif, as mutation to non-functional Arg-Leu-Glu (RLE) abolishes binding 

(Hermosilla, Munoz et al. 2008, Avalos, Valdivia et al. 2009, unpublished data).  We 

next asked if the complex formed between Thy-1 and αv integrins was mediated by the 

purported RLD binding motif.  We made the Asp to Glu substitution within the RLD 

motif (Thy-1D37E) of human Thy-1, which renders the molecule unable to directly bind αv 

and α5β1 integrins.  In CHO.B2 cells stably expressing human αvβ3 integrin, this 

mutation completely abolished Thy-1 association by co-immunoprecipitation (Figure 

17B).  Interestingly, Thy-1/CD8 was similarly unable to complex with αv integrin, 

implicating proper membrane localization as critical in Thy-1-αv association.  This 

further suggests that post-lysis interactions were not significantly present in our 

experimental assay. 
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Figure 17:  Co-immunoprecipitation of Thy-1 with αvβ3.  (A) Immunoprecipitation 

of αv integrin from normal human lung fibroblasts in suspension vs. spread on Fn, 

and immunoblots of αv and Thy-1.  IgG control antibody and total cell lysates are 

shown for compasion.  (B) Immunoprecipitation of αv integrin from 

CHO.B2(hαvβ3) cells expressing various Thy-1 and mutant contructs, and 

immunblots of αv and Thy-1. 

5.3.3 Thy-1 binds αvβ3 integrin in cis and is dependent on integrin conformation 

and Thy-1’s RLD motif 

 There are several limitations of co-immunoprecipitation for analyzing molecular 

complexes including disruption of the endogenous cell compartmentalization and 

structure, an inability to assess spatial localization, difficulty in determining direct 

binding interactions within a ternary complex, and the possibility for post-lysis artifacts.  

We were critically interested in if Thy-1 might bind to αvβ3 within the plane of the 

plasma membrane (we term in cis), as in our previous studies, we have been assaying for 
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cell interactions with the ECM largely in the absence of transcellular contacts.  Thus, to 

look at endogenous protein-protein interactions, we used a proximity-based ligation assay 

(PLA), which utilizes oligonucleotide-linked antibodies to form a hybridized DNA 

molecule capable of amplification and detection.  This assay is capable of discriminating 

antigen interaction distances on the order of 40 nm in situ (Soderberg, Gullberg et al. 

2006).  To start, we probed multiple anti-αvβ3 antibodies for PLA with Thy-1 on the cell 

surface of human lung fibroblasts.  Interestingly, we were only able to observed PLA 

signal with two antibodies: LM609, which binds to the βA domain of β3 and 

allosterically inhibits binding of ECM ligands and 23C6, which is a non-functional 

antibody (Figure 18A,B) (Lin, Carron et al. 1998).  In contrast the LIBS2 antibody, 

which recognizes a site within the juxtamembrane β-tail domain and cooperatively binds 

with ligand by a propagating long-range conformation change within β3 (Du, Gu et al. 

1993), or WOW-1, which is a ligand-mimetic antibody showing high affinity to extended 

αvβ3, and thus has been used to report the extended conformer, did not complex with 

Thy-1 (Pampori, Hato et al. 1999) (Figure 18A,B).  A similar finding was observed with 

α5β1 integrin, where non-functional antibody K20 gave PLA signal, whereas the swung-

out hybrid domain and high affinity-associated HUTS-4 did not (Mould, Barton et al. 

2003).  In total, these results suggest that proximity between Thy-1 and integrin is 

preferential for integrins not in the high-affinity or extended conformer. 

 To further examine this hypothesis, we tested whether directly perturbing integrin 

conformation would influence the proximity of αvβ3 and Thy-1 as detected by PLA.  We 

incubated lung fibroblasts in culture with LIBS2 antibody or Mn2+, which has been 

demonstrated both at the single-molecule and cell-level to promote extension of integrin 

molecules and ligand binding (Vinogradova, Velyvis et al. 2002, Askari, Tynan et al. 

2010).  In response to these treatments, PLA signal between Thy-1 and αvβ3 (LM609 

antibody; similar results obtained with 23C6) was completely abolished (Figure 18C).  
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These results further demonstrate that Thy-1-αvβ3 interactions are preferential to the low-

affinity or bent integrin conformation, and that ligation of ECM ligands, presumably by 

the high-affinity receptor, disrupts the interaction between Thy-1 and αvβ3 (Figure 16A).  

       

Figure 18:  Thy-1 associates with integrin αvβ3 in cis and is dependent on integrin 

conformation.  (A) Cartoon diagram of αvβ3 integrin adapted from RSCB Protein 

Data Bank Normal indicating the approximate binding sites for antibodies LM609, 

LIBS2, and WOW-1 (top left panel).  PLA between Thy-1 and αvβ3 integrin in 

normal human lung fibroblasts for the antibodies and conditions indicated in white 
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lettering.  PLA punta (green) and cell nuclei (blue) shown; scale bar = 10 µm.  (B) 

Quantification of PLA signal (mean ± S.E.M.) for various antibodies and integrins 

with Thy-1.  (C) Quantification of PLA signal (mean ± S.E.M.) between αvβ3 

(LM609) and Thy-1 for Mn2+ and LIBS2 integrin activating conditions.  * = p < 

0.05, ** = p < 0.01 as assessed by unpaired, two-tailed Student’s t-test. 

 Last we wanted to determine if the interaction reported by PLA was dependent on 

the RLD integrin-binding motif in Thy-1.  To test this, we expressed Thy-1 and the RLD 

mutant (Thy-1D37E) mutant, along with the GPI anchor mutant form (Thy-1/CD8), in 

CHO.B2(hαvβ3) and performed PLA assays.  Indeed, mutation to the RLD motif 

completely abolished PLA between Thy-1 and αvβ3 (Figure 19A,B).  Interestingly, the 

GPI anchor mutant of Thy-1 still retained some binding activity to αvβ3 in this assay, 

although it was significantly abrogated.  Therefore, we conclude that Thy-1 binding to 

αvβ3 integrin in cis is via Thy-1’s RLD integrin-binding motif, and this interaction is 

facilitated by GPI-anchored membrane localization of Thy-1. 
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Figure 19:  Thy-1 association with integrin αvβ3 in cis is dependent on Thy-1’s RLD 

motif.  PLA between Thy-1 and αvβ3 integrin in CHO(hαvβ3) cells.  (A) PLA punta 

(green), mCherry (red), and cell nuclei (blue) shown with various Thy-1 contructs 

indicated in white lettering; scale bar = 10 µm.  (B) Quantification of PLA signal 

(mean ± S.E.M.) for various Thy-1 contructs with αvβ3.  * = p < 0.05, ** = p < 0.01 

as assessed by unpaired, two-tailed Student’s t-test. 
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5.3.4 Thy-1’s RLD motif is required for Fyn recruitment, force-dependent RhoA 

activation, and rigidity sensing 

 Lastly, we investigated whether the RLD motif was necessary for Thy-1’s 

mechanosignaling and mechanotransduction phenotypes.  We expressed Thy-1D37E in 

RFL-6 cells (RFL-6Thy-1(D37E)) and investigated whether this molecule was able to support 

Fyn recruitment to adhesion complexes.  Indeed, this mutant form was unable to recruit 

Fyn, and force- and Thy-1-dependent SFK activation was significantly abrogated (Figure 

20A,B).   Enhanced force-dependent RhoA activation mediated by Thy-1 was also not 

observed in RFL-6Thy-1(D37E) cells, demonstrating this motif is critical in Thy-1 

mechanosignaling (Figure 20D).  We investigated cell-level cytoskeletal responses to 

substrate E in the presence of Thy-1D37E.  Cortical stiffness and cell area increased with a 

similar slope as RFL-6EV (k = 1.839 ± 0.441 kPa/kPa and 901.9 ± 108.9 µm2/kPa for 

cortical stiffness and cell area, respectively) (Figure 20E,F).  These responses were 

significantly less sensitive substrate E than RFL-6Thy-1.  Furthermore, substrate E-

dependent changes in FA size was greatly abrogated in RFL-6Thy-1(D37E) cells, with a trend 

of larger mean FA size on soft substrates than RFL-6Thy-1 (0.810 ± 0.059 vs. 0.624 ± 

0.051 µm2), but smaller on stiff substrates (0.973 ± 0.062 vs. 1.254 ± 0.084 µm2) (Figure 

20G).  These data demonstrate that Thy-1’s integrin-binding motif is critical for the 

function of Thy-1 in mechanosignaling and mechanotransduction, specifically in 

recruitment of Fyn to Fn-mediated adhesion complexes and facilitation of force-

dependent SFK activation and RhoA mechanosignaling.  Further discussion on the 

potential mechanisms underlying these phenomena is elaborated below. 
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Figure 20:  Thy-1‘s RLD motif is required for Fyn recruitment, force-dependent 

RhoA activation, and rigidity sensing.  (A) Western blots of indicated proteins 

within the adhesion complex or total cell lysate for RFL-6Thy-1 and RFL-6Thy-1(D37E). 

Absence or presence of 5 min. continual force application is indicated.  (B) 

Quantification of Western blots via densitomtery for a minimum of n = 3 blots.  



 100 

Density measurements for each molecule is represented relative to the levels of RFL-

6Thy-1(D37E)  without force application; * = p < 0.05 as assessed by an unpaired, two-

tailed Student’s t-test.  (C) Immunofluorescence micrographs of vinculin (red), actin 

(green), and nuclei (blue) for RFL-6Thy-1(D37E) on Fn-coated pAAm substrates of 

varying rigidity (indicated in top right, white).  (D) RhoA activity (mean ± S.E.M.) 

of RFL-6Thy-1(D37E) (pink) probed with Fn-coated beads for varied duration of 

magnetic force application.  RFL-6EV and RFL-6Thy-1 are underlaid in gray, and 

yellow box inidicates the approximate RhoA activity in untreated cells.  Cell area 

(E) and cell stiffness (F) vs. substrate E (mean ± S.E.M.) in RFL-6Thy-1(D37E) (pink) 

with RFL-6EV and RFL-6Thy-1 underlaid in gray.  (G) Box plots of adhesion size for  

RFL-6Thy-1(D37E) cells for various substrate rigidities (indicated below).  Boxes 

indicate the lower and upper quartile and whiskers are 10-90 percentile.  * = p < 

0.05, as assessed by the Mann-Whitney test. 

   

5.4 Discussion 

 In Chapter 4, we found that Thy-1 expression regulates mechanotransduction of 

ECM rigidity via a RhoA-mediated pathway, and that Thy-1 modulates the localization 

and activation of Fyn and SFKs, respectively, within adhesion complexes.  In this 

chapter, we attempted to decipher how Thy-1 achieves these effects at the cell membrane.  

By substituting Thy-1’s endogenous GPI anchor with an alternate receptor’s 

transmembrane segment, we find that Thy-1’s GPI anchor is critical in mediating 

mechanosignaling through Fyn and RhoA, and to modulate the mechanostransductory 

response to ECM rigidity.  GPI-anchored Thy-1 interacts with Fyn within cholesterol-rich 

lipid rafts, suggesting this interaction is critical for Fyn recruitment to adhesion 

complexes.  In support of this, treatment of wild-type Thy-1-expressing cells with 
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CholOx, which disrupts lipid rafts by altering cholesterol partitioning within the 

membrane, disrupted Fyn recruitment and SFK activation.  Furthermore, downstream 

signaling through RhoA was altered, further validating the requirement of proper Fyn 

recruitment for mechanosignaling through RhoA. 

 We also find that Thy-1 complexes with αvβ3 integrins on the cell surface, and 

this interaction requires the Arg-Leu-Asp integrin binding motif of Thy-1.  To determine 

if these molecules interact within the plasma membrane, or in cis, we used PLA to look 

for endogenous complexes on the cell surface.  In doing this assay, we also found that 

only specific conformations of integrin were efficient in forming complexes with Thy-1.  

In particular, antibodies that bind with high-affinity to the active or extended integrin 

conformer did not complex with Thy-1, whereas those that either promote the low-

affinity conformation or are insensitive to conformation state were proficient to bind.  

This was seen with both α5β1 and αvβ3 integrins, however the interaction was more 

robust with αvβ3, and so was further investigated.  In support of the conformational 

sensitivity of this interaction, promoting integrin into the extended conformation using 

Mn2+ or activating antibody, LIBS2, again disrupted complex formation between αvβ3 

and Thy-1.  This data suggests that Thy-1 is only proficient at binding αvβ3 when it is in 

the bent state.  This is sensible, as Thy-1 is only a single Ig domain of approximately 2 

nm in diameter plus a compact glycan chain, and thus when lipidated and partitioned into 

the outer leaflet of the plasma membrane, would be unlikely to span the 20 nm distance 

integrin projects from the membrane in its extended conformation (Barboni, Rivero et al. 

1995, Luo, Carman et al. 2007).  However, we are not able to exclude alternative 

configurations of low-affinity αvβ3 binding to Thy-1 about the topographically complex 

cell surface.   

 We then investigated a mutated form of Thy-1, in which an Asp to Glu 

substitution within the integrin-binding motif rendered it unable to complex with αvβ3 



 102 

integrin, demonstrated both by immunoprecipitation and PLA.  This mutant form of Thy-

1 was unable to support Fyn recruitment, force-dependent or -independent SFK 

activation, efficient force-dependent RhoA activation, or Thy-1-mediated rigidity 

sensing.  Together with data establishing αvβ3 integrin as a cis-acting binding partner for 

Thy-1, specifically via the Arg-Leu-Asp sequence, and the known clustering/recruitment 

of αvβ3 integrins during recognition of a multivalent Fn substrate, this suggests a likely 

mechanism by which Thy-1 mediates Fyn recruitment to adhesion complexes and 

downstream signaling.  Namely that binding of low-affinity αvβ3 integrin to Thy-1 could 

act as a molecular bridge for integrin and Fyn molecules, via Thy-1 and Fyn’s association 

within lipid rafts.  Disruption of the Thy-1’s integrin-binding site, prevention of its 

localization to lipid rafts, or direct disruption of lipid rafts would all inhibit such a 

tripartite interaction between αvβ3, Fyn and Thy-1.  Thus, such complexes would likely 

be preformed in the cell membrane prior to ECM ligand binding; subsequently, Fn 

binding and clustering of integrin promotes the local accumulation of Fyn in a Thy-1-

dependent manner.  In this way, Thy-1 acts as an adapter protein for integrin and Fyn, 

while being sensitive to their conformational states.  As integrin clustering is sufficient to 

promote SFK priming and trans-activation, this may contribute the initial Thy-1- and Fn 

bead-dependent activation of SFKs (Arias-Salgado, Lizano et al. 2003).  Furthermore, as 

Fyn is now localized to sites of local force application, force-mediated activation can now 

occur.  As it has been well-demonstrated that Fyn activity is critically important in 

mechanotransduction (von Wichert, Jiang et al. 2003, Kostic and Sheetz 2006), and 

multiple pathways link Fyn to RhoA activation during force-dependent signaling 

(Thomas, Soriano et al. 1995, Giannone and Sheetz 2006, Moore, Roca-Cusachs et al. 

2010, Guilluy, Swaminathan et al. 2011), this suggests a likely connection between the 

cell surface activity of Thy-1 and downstream modulation of mechanotransductory 

cytoskeleton remodeling through RhoA activity. 
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 It is known that SFKs also exist in a series of conformations related to their 

activation state.  Interactions between the SH3 domain and flexible linker region stabilize 

inactive SFKs in a clamped and sterically inaccessible state (Brown and Cooper 1996, 

Thomas and Brugge 1997).  However, binding of the SH3 domain to associating adapters 

relieves the auto-inhibitory conformation, thus priming the molecule for further 

activation (Brown and Cooper 1996, Shattil 2005).  In the case of c-Src and β3 integrin, 

this auto-inhibition is relieved by SH3 domain binding to the C-terminal Arg-Gly-Thr 

motif, which is sufficient for subsequent integrin-clustering-mediated trans-autoactivation 

of c-Src and downstream signaling (Arias-Salgado, Lizano et al. 2003, Arias-Salgado, 

Lizano et al. 2005).  Intriguingly, the specific binding motif for Fyn is within the 

membrane-proximal HDRK motif, which is also the site for α/β integrin inter-subunit salt 

bridge formation (Reddy, Smith et al. 2008).  This suggests that in the bent and 

membrane-proximal clasp-stabilized integrin, Fyn cannot access its SH3 domain binding 

site; whereas in the active and extended integrin conformation, Fyn is able to gain access 

to its SH3 binding site and relieve its auto-inhibitory conformation.  Thereby, Thy-1 may 

enable coupling of inactive (i.e. clamped) Fyn molecules in close proximity to low-

affinity integrin molecules (i.e. bent conformation), supporting temporally efficient signal 

transduction (i.e. SFK priming and activation) in response to integrin ligation and 

clustering and/or mechanical forces, while simultaneously facilitating the use of SFK’s 

multiple regulatory mechanisms.  Temporally efficient activation of RhoA, which is 

critically dependent on Thy-1, helps further this hypothesis.  Support or disproval of this 

model should be a topic for future studies. 

 It has been long hypothesized that lipid rafts play a critical role in integrin 

signaling and FAs, as many adhesion-associated signaling molecules, such as SFKs, 

FAK, and Rac associate with detergent-resistant membrane (DRM) fractions (Shima, 

Nada et al. 2003, del Pozo, Alderson et al. 2004, Palazzo, Eng et al. 2004).  FAs also 
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have a higher level of liquid-ordered membrane than do surrounding regions of the FA, 

suggesting a significant presence of cholesterol-rich membrane domains (Gaus, Le Lay et 

al. 2006).  Intriguingly, the majority of integrins in the non-stimulated or ligated state are 

in non-raft fractions (Leitinger and Hogg 2002).  It was recently demonstrated using 

superresolution microscopy that inactive integrins exist in nanodomains that are spatially 

separate, but adjacent to nanodomains of GPI-anchored proteins (van Zanten, Cambi et 

al. 2009).  These domains coalesce upon integrin binding and are disrupted by cholesterol 

depletion, which also functionally impairs integrin.  Therefore, it appears that under basal 

conditions, integrins have some affinity towards nanodomains of GPI-anchored proteins, 

but are not continuous.  Thy-1 can bind integrin in its low-affinity state, and this 

interaction is greatly abrogated by substitution of Thy-1’s GPI-anchor, suggesting that 

proximity between integrin and lipid raft nanodomains is critical.  Furthermore, as 

perturbing the Thy-1-αvβ3 interaction inhibits recruitment of other lipid raft-associated 

molecules, this suggests that such a proximity between Thy-1 and αvβ3 (or other integrin 

and lipid raft nanodomains) is functional.  However, such hypotheses wait further testing. 

The preceding findings demonstrating that 1) Thy-1 is a critical regulator of 

fibroblast spreading, cortical actin stiffening, and FA maturation in response to matrix 

rigidity, 2) both Thy-1’s GPI anchor and integrin-binding motif are required for Fyn 

recruitment, mechanosignaling, and rigidity sensing, and 3) evidence of a Thy-1-αvβ3 

integrin cis interaction within the plasma membrane strongly support a αvβ3/Thy-

1/Fyn/RhoA mechanotransduction signaling axis in lung fibroblasts. 
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CHAPTER 6  CONCLUSIONS AND FUTURE DIRECTIONS  

 In this thesis, we began by asking what the endogenous mechanical environment 

of lung parenchyma is and how it changes during disease.  As such we were able to 

accurately describe the rigidity of the microenvironment for cell types residing within the 

lung, including epithelial, vascular, immune, and stromal cells such as fibroblasts.  This 

work has informed multiple in vitro studies on the role of ECM rigidity in modulating 

lung cell phenotype, by using accurate values for mimicking cells in situ.  With the 

field’s continuing knowledge of the biological importance of mechanics in controlling 

cell fate, we then took a similar approach to specifically assess the contribution of ECM 

rigidity to fibroblast phenotype in vitro. 

 We found that Thy-1 expression, at levels corresponding to normal lung 

fibroblasts from healthy patients, promotes sensitive cytoskeletal regulation in response 

to a changing ECM microenvironment, including alterations in substrate rigidity from the 

level of normal lung tissue to fibrotic regimes (i.e. ~1-20 kPa).  In contrast, cells lacking 

Thy-1 expression, either endogenously or through genetic manipulation, are more 

refractory to this changing parameter.  In consequence, Thy-1neg cells exhibit 

significantly more mature actin cytoskeletons and FAs, in contrast to largely quiescent 

Thy-1pos fibroblasts, in rigidity environments not dissimilar from normal lung tissue.  

This results in pronounced Fn matrix assembly in soft ECMs and efficient contraction of 

floating collagen gels.  Therefore, in soft ECMs, Thy-1neg fibroblasts exhibit the pro-

fibrotic phenotypes of enhanced cytoskeleton activation, ECM assembly, and ECM 

remodeling.  This provides the intriguing interpretation that in a relatively healthy lung 

interstitium or in new provisional matrix following alveolar damage, the Thy-1neg 

phenotype may contribute to elaboration of a fibrillar matrix consistent with tissue repair 

and fibrosis. Together with enhanced migratory and mitogenetic capabilities, this 

positions the Thy-1neg phenotype as critical during early wound repair processes.  
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Whereas Thy-1pos cells are capable of more fully maturing their cytoskeleton and FAs in 

a rigid environment, similar to fibrotic regions in vivo – potentially contributing to the 

continued evolution of scar tissue – they are also susceptible to apoptotic cues present in 

healing wounds.  Akin to the physiologic establishment of robust scar tissue followed by 

apoptosis of myofibroblasts in response to injury, the Thy-1pos phenotype may play a 

critical role in reparative fibrosis, namely the eventual cessation of fibrogenesis, which is 

lacking in IPF.  This also suggests that persistence of the Thy-1neg subpopulation, 

resulting in continual and largely ECM rigidity-independent ECM assembly and 

remodeling, may be pathologically relevant to the formation and persistence of 

fibroblastic foci.  Together with the in vivo knowledge of repressed Thy-1 expression due 

to promoter hypermethylation specifically within fibroblastic foci versus both adjacent 

normal and mature fibrotic tissue, this suggests an intriguing “cause and effect” of Thy-1 

regulation, specifically within fibroblastic foci (Sanders, Pardo et al. 2008).  Although the 

in vivo consequences of the established phenotypes are speculative, this represents a 

radical paradigm shift in the phenotypes and microenvironmental cues implicated in 

progressive fibrotic disorders.   Namely, this suggests that investigation of pro-fibrotic 

phenotypes within microenvironments not associated with mature or previously 

established fibrosis, but instead with recent wound healing or new/ongoing fibrosis, is 

essential.  This suggests that fibroblast phenotypes investigated in rigid environments, 

even those between 7-20 kPa (on the low end of the in vivo fibrotic regime), may not 

reveal mechanisms critical to IPF pathogenesis (i.e. fibroblastic foci), but instead 

mechanisms reactive to de novo fibrotic remodeling.  Thus phenotypes should be studied 

in soft environments, similar to normal tissue and early provisional matrices, to discover 

potentially causative mechanisms in fibroblastic foci formation and IPF pathogenesis.  

This represents a drastic change in the field, as most research is currently focused on 

understanding the mechanisms by which stiff ECM promotes fibroblast activation.  In 

contrast, understanding how changes in fibroblast phenotype within soft ECMs results in 
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ECM assembly, remodeling, and eventual stiffening of the microenvironment should be a 

focus of future research. 

 In this work we also identify a unique complex formed between the GPI-anchored 

glycoprotein Thy-1 and αvβ3 integrin.  This complex was formed via Thy-1’s Arg-Leu-

Asp integrin-binding motif in cis within the plasma membrane of fibroblasts.  

Furthermore, this interaction did not take place with extended or active integrin, and was 

preferential for cells not binding to ECM (i.e. more Thy-1-αvβ3 association with cells in 

suspension vs. spreading on Fn).  These data, together with the knowledge that ECM 

binding and mechanosignaling is associated with extended integrin within FAs, this 

suggests that the Thy-1-integrin complex is formed upstream of ECM binding.  

Furthermore, experiments analyzing the spatial localization of Thy-1-αvβ3 complexes 

with respect to paxillin-marked FAs demonstrate that, indeed, such complexes appear to 

be preferentially formed outside FAs.  Together with the role of Thy-1’s integrin-binding 

motif and lipid raft targeting in mediating Fyn recruitment, force-dependent RhoA 

activation, and rigidity sensing, this suggests a functional importance for this upstream 

complex.  Thus, we suggest this constitutes a protein complex upstream of integrin-ECM 

bonds that modulates downstream mechanosignaling.  One importance for such a 

complex might be to spatially couple associated signaling molecules to inactive receptors, 

such that in response to ligand-induced activation, receptors can rapidly generate 

downstream signals; potentially critical for receptors that lack intrinsic enzymatic 

activity, such as integrins.  Intriguingly, multiple lipid raft-associated outer membrane 

proteins, including uPAR, GPI-80, and CD47, have been shown to associate with integrin 

in cis and alter its signaling function (Wei, Lukashev et al. 1996, Brown and Frazier 

2001, Yoshitake, Takeda et al. 2003, Wei, Czekay et al. 2005).  Although the molecular 

details of these complexes are not known, it invites questions as to whether these 

complexes have a similar structure-function, and why lipid raft-associated (more 
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specifically GPI-anchored proteins) are utilized in this function?  Intriguingly, as many of 

these interactions appear sensitive to integrin conformation, this provides a mechanism to 

switch from the composition and activity of upstream complexes (i.e. prior to ECM 

ligation), via conformational changes in integrin and integrin-associated proteins, to 

specific downstream associations. 

Thy-1 also binds heparin sulfate proteoglycans, including syndecan-4, through a 

conserved polycationic motif in the C-C’ strand loop motif (Avalos, Valdivia et al. 2009).  

We have discovered a novel trans interaction between syndecan-4 and Thy-1 involving 

α5β1 integrin (V. Fiore and L. Ju, unpublished data).  Both receptors independently bind 

to Thy-1; however in the presence of both α5β1 and syndecan-4, the two receptors bind 

cooperatively to Thy-1 to form a trimolecular complex.  This complex displays 

prolongation of bond lifetimes under force, or catch bonds, and a unique phenomenon 

characterized by abrupt bond stiffening.  Both α5β1 and syndecan-4 receptors are 

proficient at supporting adhesion and myosin II contractility-dependent signaling of 

melanoma cells on Thy-1 in vitro.  Thus, it appears that complex and so far under-

appreciated interactions between Thy-1 (and potentially other cis/trans-acting integrin-

binding proteins), integrins and their co-receptors exist.  This is especially intriguing in 

the context of syndecans as co-receptors of integrins, as these receptors bind a similar 

repertoire of ligands and are known to signal in a coordinated fashion.  However, the 

molecular details of this synergy are as yet unknown.  As trimolecular complexes 

between integrin, syndecan, and Thy-1 can form under short timescales, Thy-1 may be 

hypothetically viewed as a molecular bridge between these co-receptors.  In contrast, 

during stable and close contact between integrins and the substratum, the large size of 

heparin sulfate glycosaminoglycan chains are expected to segregate syndecans from the 

integrin core, acting as an additional control element for spatial and temporal signaling 

sensitivity (Paszek, Boettiger et al. 2009, Roper, Williamson et al. 2012).  As are the 
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bonds between integrins and their ligands, FA-associated molecules during their 

assembly and turnover, and the mobility of membrane-tethered proteins, these 

interactions are likely to be quite dynamic.  Thus the further study and mechanistic 

understanding of these complexes should be undertaken at nano spatial- and sub-second 

time-scales, which is already underway. 

 With this work, we aimed at interrogating multiple length scales relevant to 

complex multi-cellular organisms, namely the tissue, cell and molecule.  While the goal 

of connecting molecular mechanisms guiding cell phenotype in vitro to tissue-level 

regulators of cell phenotype in vivo  (and vice versa) exists, mechanistically validating 

such connections among diverse length scales and microenvironmental inputs (i.e. 

mechanical, chemical) is a challenge.  However, this challenge is worthy of approach.  

For example, in this study – although we were able to characterize the phenotype of one 

histologically-validated marker of disease-associated fibroblast subpopulation within the 

context of the in vivo microenvironment, and to describe a mechanism demonstrating 

Thy-1 as regulator of mechanotransductory phenotype – we have not thoroughly 

validated in vitro findings to the in vivo pathophysiology.  Further studies should 

thoroughly validate Thy-1neg IPFLFs as the bona fide fibroblastic foci-resident cell 

phenotype; this should be approached using laser capture microdissection of in vivo 

histologic features, along with gene expression profiling for comparison with in vitro 

cultures.  In general, this approach can help validate or disprove certain in vitro culture 

methods and/or models as reliable predictors of in vivo physiology.  Furthermore, 

investigation of the mechanical properties specific to fibroblastic foci and other unique 

histological features, via correlative histology and AFM force mapping, should be done 

to further connect cell and tissue phenotype with microenvironmental mechanics.  

Acknowledging the challenge of describing such processes at the multi-scale and multi-
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parameter levels, this is a necessary undertaking for the future progress in human 

physiology and medicine. 
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