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Annual R~port on NSF Project DDM-90-12020: 
Choosing the Best Simulated System, with 

Applications to Manufacturing 

David Goldsman 
School of Industrial and Systems Engineering 

Georgia Institute of Technology 
Atlanta, GA 30332-0205 

June 2, 1991 

Abstract 
The ongoing research concerns the problem of choosing the best of a number 

of simulated systems. Specific areas of research include the development and eval­
uation of: new variance estimators for use in ranking and selection procedures in 
the simulation environment, particularly in manufacturing systems; normal means 
selection procedures (for the cases of common' known variance, common unknown 
variance, arbitrary unknown variance, and correlated normal populations); two­
factor nonnal means procedures; and one- and two-factor nonparametric selection 
procedures (which are based on procedures for selecting the most probable multi­
nomial cell). 

1 Introduction 

This report contains a survey of the work supported under NSF grant DDM-90-12020 
during the last nine months. The work studies procedures for choosing the best of a 
number of simulated systems, particularly with respect to manufacturing simulations. 
The main contributions are the development and evaluation of: 

• New variance estimators for use in ranking and selection procedures in the simu­
lation environment (§2). Since simulations rarely produce independent and iden­
tically distributed normal observations, we cannot use the usual sample variance 
to estimate variances in simulations. Instead, we must develop new estimators. 
Our new estimators have a number of desirable properties. 
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• Normal means selection procedures (§3). We have studied a number of new proce­
dures for selecting the normal population having the largest (or smallest) mean. 
Our new procedures are quite a bit more efficient than competing procedures, 
both in tern1s of the numbers of stages and observations that the procedures 
must take in order to guarantee the same probability requirement. 

• Two-factor normal rneans procedures (§4). It is well known that factorial ex­
perirnentation when employed in ranking and selection problems can result in 
considerable savings in total sample size relative to independent single-factor 
experin1entation when both guarantee comparable probability requirements. In­
deed, we have developed new two-factor normal means procedures which are much 
rnore efficient than previous methods. 

• One- and two-factor multinomial selection procedures ( §5 ). Multinomial selec­
tion procedures are very useful in the simulation environment because they can 
be used as nonparametric procedures. vVe have a fast technique for evaluating 
the performance of many multinomial selection procedures. Further, we have de­
veloped a number of two-factor generalizations of existing one-factor multinomial 
selection procedures. 

2 New Variance Estimators 

We have developed and analyzed a nurnber of new variance estimators for use in the 
sitnulation environn1ent. 

2.1 Spaced Batch Means 

The most commonly-used variance estimator in simulations is the familiar batch means 
estimator. This estimator divides a long simulation run into contiguous, equal-length: 
batches, and then (incorrectly) assumes that the resulting batch means are indepen­
dent and identically distributed normal random variables. The method of 3paced batch 
means simply inserts spacers between adjacent batches in the hopes of reducing any 
correlation which might be present between the batch means. In terms of such cri­
teria as variance estimator bias and confidence interval coverage, we have shown in 
[9] that the use of spacers never really hurts the experimenter; sometimes, especially 
in the presence of negative serial correlation, spaced batch means achieves dramatic 
improvements over regular batch means. 
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2.2 Orthonormal Standardized Time Series Estimators 

In [8], we generalize Schruben's standardized time series area estimator i~ a way which 
yields an estimator with higher degrees of freedom. This results in a new estimator 
with very small variance as well as other desirable properties. Since the estirnator has 
tractable distributional properties, it can be used to form confidence intervals for the 
mean of a stationary sirnulation process. 

2.3 Cramer-von Mises Estimators 

Other standardized time series estimators resemble generalizations of the Cramer-von 
Mises statistic. In [13], we find that these estimators also have a number of desirable 
properties, including comparatively low variances. Unfortunately, the estimators' dis­
tributional fonns are nontrivial, and so we have not yet used them to form confidence 
intervals for the mean of a stationary simulation process. 

2.4 Overlapping Estimators 

Building on the work of Meketon, Schmeiser, and others, we have developed and ana­
lyzed a number of so-called overlapping estimators; these estimators are closely related 
to spectral estimators. In [10] and [12], we study overlapping batch means estima­
tors, overlapping standardized time series area estimators, and overlapping Cramer-von 
!vlises estimators. In all cases, the overlapping versions have the same bias but smaller 
variance than their non-overlapping counterparts. 

3 Normal Means Procedures 

We have developed and analyzed a number of normal means procedures, i.e., procedures 
for finding that one of a number of competing normal populations which has the largest 
(or smallest) mean. 

3.1 Common Known Variance Case 

In [4], we conducted a large Monte Carlo study which compared the performances of 
various procedures for selecting the normal population having the largest mean when 
the variances are known and equal; namely, we compared Bechhofer's original single­
stage procedure, a two-stage elimination procedure due to Tamhane and Bechhofer, a 
truncated version of the Bechhofer, Kiefer~ and Sobel sequential procedure, and the 
Hartmann sequential procedure with elimination. During the last few months, we have 
studied in [6] the performance of the Kao and Lai sequential procedure with elimination. 
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3.2 Common Unknown Variance Case 

In [1], we conducted a large Monte Carlo study which compared the performances of 
various procedures for selecting the normal population having the largest mean when 
the variances are -nnknown and equal; clearly, this is a more realistic and useful problem 
than that studied in the previous subsection. Specifically, we compared the original 
Bechhofer, Dunnett, and Sobel two-stage procedure, the Gupta and Kim two-stage 
elimination procedure, and a sequential procedure with elimination due to Hartmann. 
Recently, we have also studied in [6] the performance of the Kao and Lai sequential 
elin1ination procedure for the common unknown variance case. 

3.3 Unknown Variance Case 

We are currently investigating the rnore realistic normal means scenario in which the 
variances are unknown and not necessarily equal. The idea here is to modify normal 
rneans procedures (e.g., that of Dudewicz and Dalal) for use in the presence of serial 
correlation. 

3.4 Multivariate Case 

Variance reduction techniques (VRTs) are often used in simulation to help distinguish 
among alternative populations. One common VRT is common random numbers, which 
atternpts to induce positive correlation among the competing populations. In order 
to take advantage of such VRTs, we have beglin development of multivariate normal 
selection procedures. 

4 Two-Factor Normal Means Procedures 

Suppose Ilij, i = 1, ... , a, j = 1, ... , b, represent ab normal populations in a two­
factor setup without interaction, i.e., the expected value of an observation from IIii is 
J.L + O'i + f3i· The goal is to find from one two-factor experiment that population·having 
the largest O'i and /3i. 

We have shown in an earlier paper [3] that factorial experimentation when employed 
in ranking and selection problems can result in considerable savings in total sample size 
relative to independent single-factor experimentation when both guarantee comparable 
probability requirements. In [5], we discuss the performance of a sequential elimination 
procedure due to Hartmann. We find that Hartmann's procedure performs better than 
its predecessors in terms of the expected number of observations it takes; unfortunately, 
it performs more poorly in terms of the expected number of sample stages. 
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5 Multinomial Procedures 

There are circumstances under which it might not be prudent to use an adaptation 
of a normal means procedure when trying to find the best of a number of simulated 
syste1ns. For instance, suppose the simulation runs are rather short .. Then any result~ 
ing batch means might not be independent and identically distributed normal random 
variables; in such a case, the normal means results outlined above would not be appro­
priate. Instead, the experimenter might be advised to use a nonparametric procedure 
for selecting the best system. It is well known that procedures for selecting the most 
probable multino1nial cell can be interpreted as nonparametric. 

We have developed an extremely efficient technique [11] for calculating performance 
characteristics of a number of existing multinomial procedures (e.g., [2] ); this technique 
is efficient in its use of both computing time and space. This summer, we shall also work 
on two-factor multinomial problems in the spirit of [7] and the procedures discussed 
previously in §4. 
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Abstract 

This paper reports on the research we have conducted over the last two years. 
The general goal of our research is to develop statistical ranking and selection proce­
dures that can be applied in the manufacturing arena. In particular, we investigate 
methods for choosing the "best" of a number of simulated processes, where the 
term "best" refers to some criterion of goodness specified by the experimenter. 

Specific areas of interest include the development and evaluation of: new vari­
ance estimators for use in ranking and selection procedures in the simulation en­
vironment; normal means selection procedures (for the cases of common known 
variance, common unknown variance, arbitrary unknown variance, and correlated 
normal populations); two-factor normal means procedures; one- and two-factor 
nonparametric selection procedures that are based on procedures for selecting the 
most probable multinomial cell; and other selection procedures involving expo­
nential and Bernoulli populations. We also seek to apply our methods to solve 
real-world manufacturing problems. 

Authors' addresses: David Goldsman, School of Industrial and Systems Engineer­
ing, Georgia Institute of Technology, Atlanta, GA 30332, sman<Oisye.gatech.edu; 
James J. Swain, Department of Industrial and Systems Engineering, University of 
Alabama-Huntsville, Huntsville, AL 35899, jswain<Oebs330.eb.uah.edu. 

1 Introduction 

As modern manufacturing systems grow more complex, computer simulation becomes 
the analysis tool of choice. Simulation is· attractive for many reasons: it yields credible 
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results when implemented properly, it has general applicability, simulation models are 
readily constructed, and managers are comfortable with the technique. 

An important problem in manufacturing simulation, and the general topic of this 
research, concerns the determination of the "best" of a number of competing alternative 
systems or processes. The term "best" is used with respect to that characteristic of a 
process that the expeimenter deems to be the most important. For instance, we might 
ask which of a number of alternative manufacturing plant layouts maximizes the expected 
throughput of a particular product. Or we might wish to find the layout that minimizes 
product congestion at certain critical workstations. 

The above are problems of ranking and selection. When applicable, ranking and 
selection procedures generally are more parsimonious with observations than methods 
of "classical" statistics, which are designed for fundamentally different problems - e.g., 
confidence interval estimation and hypothesis testing. 

For a number of reasons, it has not heretofore been feasible for the simulation practi­
tioner to exploit the wide variety of ranking and selection techniques. In fact, almost all 
of the ranking and selection literature has been concerned with the special case in which 
observations taken from a particular process are independent and identically distributed 
(i.i.d.) random variables. In the simulation environment, it usually is not possible to ob­
tain such i.i.d. observations since any non-trivial simulated process has serially correlated 
and/or nonstationary outputs. Another problem involving the implementation of many 
ranking and selection techniques concerns the fact that these procedures usually assume 
that the competing systems have a particular distributional form, for example, normal or 
Bernoulli. Since simulation output processes almost always have unknown distributional 
forms, direct implementation of existing ranking and selection methods on such systems 
is difficult. 

2 Research Areas 

Our research aims to devise ranking and selection techniques for use with manufacturing 
simulations. This paper reports on the research we have conducted over the last two 
years (also see [30] and [31]). We have enjoyed tremendous success in our research efforts 
on a number of topics; specifically, we discuss the development and evaluation of: 

• Variance estimators for use in ranking and selection procedures in the 
simulation environment. Since simulations rarely produce i.i.d. normal observa­
tions, we cannot use the usual sample variance to estimate the variance of a sample 
mean in a simulation. Luckily, it is straightforward to adapt many selection pro­
cedures for use with simulations by assuming that the batch means arising from a 
stationary (steady-state) simulation are approximately i.i.d. normal random vari­
ables. The key is to accurately and precisely estimate the variances of the batch 
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means. In §3 of this report, we propose and evaluate a number of new variance 
estimators. The variance estimators are based on standardized time series meth­
ods; they are shown to be asymptotically unbiased and to have variances that are 
a great deal smaller than those of competing estimators. 

• Normal means selection procedures. In §4, we study a number of procedures 
for selecting the normal population having the largest (or smallest) mean. Our 
new procedures are quite a bit more efficient than competing procedures, both in 
terms of the numbers of stages and observations that the procedures must take in 
order to guarantee the same probability requirement. In the course of writing a 
practitioner's textbook, [15], on the subject, we have also produced tables that will 
aid experimenters in their use of our procedures. 

• Two-factor normal means procedures. It is well known that factorial experi­
mentation when employed in ranking and selection problems can result in consider­
able savings in total sample size relative to independent single-factor experimenta­
tion when both strategies guarantee comparable probability requirements. Indeed, 
we have investigated new two-factor normal means procedures that are a great deal 
more efficient than previous methods. This topic is the subject of §5. 

• One- and two-factor multinomial selection procedures. Multinomial selec­
tion procedures are very useful in the simulation environment because they can be 
used as nonparametric procedures. We have recently developed a fast technique for 
evaluating the performance of many multinomial selection procedures. Further, we 
have proposed a number of two-factor generalizations of existing one-factor multi­
nomial selection procedures. §6 discusses such multinomial techniques. 

• Procedures for other distributions. During the course of our work, we devised 
or evaluated procedures for a variety of other problems, e.g., the selection of the 
exponential distribution having the largest mean and the selection of the Bernoulli 
population having the largest success probability. This additional work is detailed 
in §7. 

• Applications to real-world problems. The ultimate goal of any applied re­
search project is that it be used to solve real-world problems. To this end, we have 
begun to apply our research on actual problems in industry. This is discussed in 
§8 of the report. 
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3 Some New Variance Estimators 

3.1 Motivation and Background 

The motivation for this section is the normal means selection problem: here we wish to 
select the "best" one of a number of normal populations-in this case, that population 
having the largest (or smallest) mean. 

Procedures for normal means selection problems generally call for the experimenter 
to take i.i.d. observations from each of the competing normal processes. Along the way, 
these procedures usually require the user to estimate the variances of the competing 
normal processes. Of course, it is almost never possible to directly obtain i.i.d. normal 
observations from simulation output since any non-trivial simulated process produces 
nonnormal and/or serially correlated and/or nonstationary output. So it is natural to 
ask: how can the normal means selection problem have any relevance in the simulation 
environment? 

The answer is simple. Suppose we are interested in selecting that one of k simulated 
processes having the largest mean value. Consider the outputs from the k competing sim­
ulations, }i1 , Yi2, ... , Yin, i = 1, 2, ... , k, where n is the (common) simulation run length. 
By way of example, l'ii could represent the revenue from day j obtained under inventory 
policy i. With little loss of generality, we shall henceforth assume that l'it, }i2 , ••• , Yin 
is a stationary sequence, i = 1, 2, ... , k; such an assumption is justified if we have al­
ready truncated any data suspected of containing initialization bias ( cf. [29]). Thus, if 
Jli = E[Yi;], i = 1, 2, ... , k, we are interested in selecting that one of the k competing 
simulations corresponding to the largest of the Jli 's. 

For simulation i, we can obtain approximately i.i.d. normal observations by dividing 
the run }i1 , Yi2, . .. , Yin into a number of contiguous batches. Specifically, suppose that 
we partition Yib }i2 , ••• , Yin into b nonoverlapping, contiguous batches, each consisting 
of m Yi; 's. (Assume for convenience that the run length n = bm.) The Rth batch from 
simulation i consists of the random variables 

1-'i,(l-l)m+b l'i,(l-l)m+2' · · · 'Yi,lm, 

i = 1, 2, ... , k, R = 1, 2, ... , b. The Rth batch mean is the sample mean of them observa­
tions from batch£, 

i = 1, 2, ... 'k, .e = 1, 2, ... 'b. 

1 m 

Zi,l = - E 1-'i,(l-l)m+j' 
m i=l 

If m is large enough (and if certain mild moment and mixing conditions hold), a 
central limit theorem allows us to assume that the batch means from simulation z, 
Zi,b Zi,2 , ••• , Zi,b, are approximately i.i.d. normal random variables, as desired. 
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The problem that remains is that the most useful normal means selection procedures 
call for us to estimate the unknown variances of the observations from the competing 
normal populations; i.e., we will need to estimate the variances of the batch means from 
the k simulations-Var(Zi,t), i = 1, 2, ... , k. This is a difficult problem and is the crux 
of this section. 

We now report on progress in developing and evaluating new estimators for the vari­
ance of the sample mean of a stationary stochastic process. The new variance estimators 
are based on standardized time series methods. Some necessary background on variance 
estimators using batch means is given in §3.2. The new standardized time series estima­
tors are introduced and discussed in §3.3. They are shown to be asymptotically unbiased 
and to have variances that are a great deal smaller than those of competing estimators. 

3.2 Batch Means Estimator 

Suppose Xt, X 2 , ••• , Xn is a stationary process with mean p,. The estimator of choice for 
p, is usually the sample mean X n, which is unbiased. In order to measure the precision of 
X n, the experimenter often estimates a~ = nVar(X n) or the so-called variance parameter, 
a 2 = limn-co a~. The literature contains a great deal of work on the problem of estimating 
a 2

; see [16) or [38] for surveys. 
We first review the popular batch means estimator for a 2

; certainly, it is the sim­
plest to understand. As suggested in §3.1, we divide the n observations into b adjacent, 
nonoverlapping batches, each of length m (take n = mb). For i = 1, 2, ... , b, define the 
ith batch mean as 

m 

Xi,m = L X(i-t)m+ifm. 
j=l 

The batch means estimator for u2 (or u~) is 

where X n = l:j=1 Xi/n is the sample mean. Notice that VB looks quite similar to the 
sample variance that one encounters in any elementary statistics text. The batch means 
estimator has been studied extensively, especially in the case that b is fixed and m --+ oo 
(see, e.g., [17), [42), and [43]). 

Suppose we denote the covariance function of the stationary stochastic process by 
Ri = Cov(Xt,Xt+j), j = 0,±1,±2, ... , and the quantity 1 = -2l:f=1 jRj. Then under 
reasonable conditions (see [17), [27], and [44]), it can be shown that 

E[VB] = u 2 + 1/m + o(1/m) 
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and 
Var(VB) ~ 2a4 jb. 

So the batch means estimator is a bit biased for a 2
, but this bias decreases in m. Further, 

the variance of the estimator decreases as the number of batches increases. 
We mention that the batch means estimator implicitly (and incorrectly) assumes that 

the resulting batch means are i.i.d. normal random variables. The method of spaced batch 
means inserts spacers between adjacent batches in the hopes of reducing any correlation 
that might be present between the batch means. In terms of such criteria as variance 
estimator bias and confidence interval coverage for Jl, we have shown in [22] that the 
use of spacers never really hurts the experimenter; sometimes, especially in the presence 
of negative serial correlation, spaced batch means achieves dramatic improvements over 
regular batch means. 

3.3 Standardized Time Series Estimators 

We now discuss a number of competitors to the batch means variance estimator. These 
competitors are all based on the method of standardized time series. We first present 
some background material; then we introduce the new estimators for a 2

• 

3.3.1 Background 

The standardized time series of the stationary stochastic process, X 11 X 2 , ••• , Xn, is de­
fined as 

T. (t) = lntj(Xn- Xlntj) for 0 < t < 1 
n a-J'ii - - ' 

where Xi = E~=I Xk/ j, j = 1, 2, ... , n, and l·J is the greatest integer function. Schruben 
[45] shows that Tn => B, where B is a standard Brownian bridge process and => denotes 
weak convergence as n --+ oo. We remark that one can break the Xi's into batches, 
and then form asymptotically independent standardized time series from each batch; see 
§§3.3.3 and 3.3.5. 

3.3.2 The Weighted Area Estimator 

The first class of estimators we shall consider is related to the area under a Brownian 
bridge process. Let us define 

A(n) 
Ej=1 f(j /n )aTn(j /n) 

- n 

and 

A - f f(t)oB(t)dt, 
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where (among other technical conditions) f(t) is continuous and normalized so that 
Var(A) = a 2

• One can then show (see, e.g., [27]) that 

where ~ denotes convergence in distribution as n --+ oo, and X~ is a x2 random variable 
with d degrees of freedom. We refer to A2(n) as the weighted area estimator for a 2

• 

In addition to the covariance function Ri and the quantity 1 from §3.2, suppose we 
define F = JJ f(s) ds and F = JJ f~ J(s) ds dt. Then under mild conditions (see [21], 
[27], and [44]), 

Example 1 After a little algebra, we find that the expected value of the "unweighted" 
area estimator (with J(t) = .Ji2 for all t) is E[A2 (n)] = a 2 +3iln+o(1ln). The expected 
value of the weighted area estimator with weighting function J( t) = .J840(3t2

- 3t + 1 12), 
0 ~ t ~ 1, is E[A2(n)] = a 2 +o(1ln). In this case, we say that A2(n) is first-order unbiased 
for a 2

• 

Further, if A4 (n) is uniformly integrable, then it is straightforward to show that the 
asymptotic (n--+ oo) variance of the weighted area estimator is Var(A2 ) = 2a4

• 

3.3.3 The Weighted Area Batch Estimator 

Our comments so far concerning the area estimators have assumed that we have one 
long batch of n observations. What if we alternatively break the n observations into 
b contiguous, nonoverlapping batches, each of size m (with n = bm)? Let A~(m), i = 
1, 2, ... , b, denote the weighted area estimator formed exclusively from the ith batch of 
observations, X(i-t)m+t, X(i-t)m+2 , ••• , Xim· The weighted area batch estimator for a 2 is 
-2 b -2 1) 
A ( m) = Li=l A;( m) I b. It is easily demonstrated that A ( m) --+ a 2 X~ I b as the batch 
size m --+ oo. Further, E[A\m)] = E[A2(m)] and, if the A;{m)'s are approximately 

-2 
independent, Var(A (m)) ~ Var(A2(m))/b. 

These results allow us to directly compare the bias and variance of the weighted area 
batch estimator to the corresponding quantities for the batch means estimator. We see 
that the bias of the unweighted area batch estimator is about three times that of the 
batch: means estimator; the bias of the weighted area batch estimator with each batch 
using the "first-order unbiased" weighting function f(t) = .J840(3t2 - 3t + 1/2) (see 
Example 1) is an order of magnitude better than that of the batch means estimator. The 
variances of the batch means estimator and the weighted area batch estimator are about 
the same. 
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Based on the results of [45], we remark that the weighted area batch estimator and 
the batch means estimator are asymptotically independent as the common batch size 
m -+ oo. This implies that the two estimators can be combined (by taking the obvious 
linear combination) so as to yield additional degrees of freedom in the resulting x2 limiting 
random variable. 

3.3.4 The Weighted Cramer-von Mises Estimator 

We now look at a class of estimators for u2 that is related to the area under the square 
of a Brownian bridge process, and hence is similar to the well-known Cramer-von Mises 
statistic. Following the development in §3.3.2, let us define the weighted CvM estimator 
for u 2 by 

W2(n) = l:j=1 g(jfn)(uTn(jfn))
2

• 

n 
Under mild conditions, it can be demonstrated that 

where g(t) is continuous on [0, 1] and normalized so that E[W2
] = u 2 J~ g(t)t(l-t) dt = u 2

• 

Anderson and Darling [3] derived the distribution of W2 with g(t) = [t(l- t)]-1 ; the dis­
tribution of W 2 with an arbitrary weighting function has not been explicitly determined 
(see [18]). 

Suppose we define G = f0
1 g(s) ds. Then under mild assumptions (see [23] and [24]), 

we have 

Example 2 We find that the expected value of the "unweighted" CvM estimator (with 
g(t) = 6 for all t) is E[W2 (n)] = u 2 + 51/n + o(l/n). So this estimator is a bit more 
biased than the unweighted area estimator (see Example 1). Now suppose g(t) = 51 -
c/2 + ct- 150t2

, where t E [0, 1] and cis real. Then the expected value of the weighted 
CvM estimator is E[W2(n)] = u 2 + o(l/n). In this case, W 2(n) is first-order unbiased for 
u2. 

We have seen that it is possible to choose weighting schemes for the weighted area 
and weighted Cv M estimators so that both are first-order unbiased. What sets the 
Cv M estimator apart from the area estimator? The choice of weights clearly affects 
the asymptotic variance of the CvM estimator W 2 (n); on the other hand, the choice of 
weights does not affect the asymptotic variance of the area estimator A2(n), which is 
always 2u4

• 
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In fact, under reasonable assumptions (including the uniform integrability of W 4 (n)), 
one can show that 

Var(W2(n)) -+ Var(W2
) = 4o-4 l g(t)(l- t)2 1' g(s)s2 dsdt. 

Example 3 If g(t) = 6 (as in Example 2), then Var(W2
) = 4a4 /5. If g(t) =51 - c/2 + 

ct -150t2
, where cis real (as in Example 2), then Var(W2) = ( c2 - 300c+ 26856)a4 /12600. 

This quantity is minimized by c = 150, in which case Var(W2
) == 1. 729a4

• 

Notice that the variances from Example 3 are quite a bit lower than 2a4, the asymptotic 
variance of the weighted area estimators. 

We would like to choose a weighting function that minimizes the variance of the Cv M 
estimator while satisfying the first-order unbiasedness and normalizing constraints; i.e., 
we wish find a weighting function g(t) which minimizes Var(W2) subject to G = 1 = 
f~ g(t)t(l - t) dt. It is straightforward to show using Lagrangian multipliers that the 
optimal quadratic and cubic polynomial weighting function is g(t) = -24+ 150t -150t2

, 

the choice studied in Example 3 with c = 150. The best quartic turns out to be (after 
some algebra) 

( ) 
- -1310 19270t - 25230t2 16120t3 

g t - 21 + 21 7 + 3 

for which Var(W2
) = 1.042a4 • 

8060t4 

3 

A number of variants of the CvM estimator are studied in [23], [24], [26], and [48]. 
These include Cv M estimators resulting from hatching, overlapping estimators (in the 
spirit of [39]), as well as estimators arising from still other functionals of Brownian bridges; 
we briefly discuss some of these estimators in the subsequent subsections. 

3.3.5 The Weighted CvM Batch Estimator 

Similar to our discussion in §3.3.3, we can break the n observations into b contigu­
ous, nonoverlapping batches, each of size m (where we take n = bm). Let Wl(m), 
i = 1, 2, ... , b, denote the CvM estimator formed exclusively from the ith batch 
of observations, X(i-l)m+b X(i-l)m+2 , ••• , Xim· The CvM batch estimator for a 2 is 

W\m) = E~=l Wl(m)fb. Obviously, E[W\m)] = E[W2(m)] and, if the Wl(m)'s are 
approximately independent, Var(W\m)) ~ Var(W2 (m))/b. 

3.3.6 Overlapping Estimators 

Building on the work of Meketon and Schmeiser [39] and others, we have also studied a 
number of so-called overlapping estimators; these estimators are closely related to spectral 
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estimators. In [23], [24], [26], and [42], we consider overlapping batch means estimators, 
overlapping standardized time series area estimators, and overlapping Cramer-von Mises 
estimators. For example, let W 2(i, m), i = 1, ... , n- m + 1, denote the CvM estimator 
formed exclusively from the observations Xi, Xi+1 , ... , Xi+m-1 . The Cv M overlapping 
estimator for u 2 is W 2 (m) = L:~::-1m+1 W 2 (i, m)/(n- m + 1). Obviously, E[W2(m)] = 
E[W2(m)]; further, in the special case that each W 2(i, m) uses the weighting function 

- -2 g(t) = 6, Goldsman and Meketon [26] show that Var(W2 (m)) ~ ~iVar(W (m)). Without 
going into additional details here, we remark that the overlapping versions have the same 
bias as and smaller variance than their non-overlapping counterparts. 

3.3. 7 Lp-N orm Estimators 

An interesting generalization of the weighted area and CvM estimators is what we refer 
to as the Lp-norm estimator. Let us first define the Brownian bridge functional 

( 
{1 )2/p 

LP = lo BP(t) dt , 

where p > 0. Under mild conditions, the continuous mapping theorem implies that 

L;(n) = E[~v] ( ~ ~uPT!(jfn)rP .E, u
2 
Eftvr 

Thus, under uniform integrability, 

and 
Var(L;(n)) ~ u4Var(Lp)f(E[Lp]?. 

We see that the estimator L;( n) is asymptotically unbiased for u 2 as n ~ oo for any p 
of interest. We call L;( n) the standardized time series Lp-norm estimator for u 2

• Notice 
that the case p = 1 is simply the unweighted area estimator, and the case p = 2 is the 
unweighted CvM estimator. Implementation of the above estimators requires that we 
know the value of E[Lp] for the given p. This is an easy task for p = 1 and 2, but Monte 
Carlo simulation must be carried out in order to precisely estimate E[Lp] for other values 
of p. The relevant details are given in [48]. 

Given that these estimators are all asymptotically unbiased, one way to compare 
their performances is to look at their asymptotic variances (divided by u4 

), Vp = 
Var(Lp)/(E[Lp])2

, for different values of p. Of course, this quantity is known for p = 1 
and 2, but must be estimated for other values of p. Table 1 gives actual or estimated 
values of Vp based on our Monte Carlo work. The entries from Table 1 show that Vp tends 
to decrease with increasing values of p. In fact, v10 is only about 25% of v1 • Since lower 
variance is desirable, these estimators deserve some closer scrutiny. 
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Table 1: Actual (p = 1 and 2) or Estimated Values of Vp 

I 

p 1 I 2 3 4 5 6 7 8 9 10 
Vp 2.0000 0.8000 0.92 0.66 0.71 0.59 0.62 0.56 0.57 0.53 

3.3.8 Orthonormally Weighted Area Estimators 

In [20] and [21], we generalize Schruben's standardized time series area estimator in 
a (completely different) way that yields an estimator with higher degrees of freedom. 
The new estimator has very small variance as well as other desirable properties. Since 
the estimator has tractable distributional properties, it can be used to form confidence 
intervals for the mean of a stationary simulation process. In particular, let 

Oi(n) = Ej=1 wi(j /n)uTn(j /n) 
n 

for continuous weighting functions wi(t), i = 1, 2, ... , d. For large n, it can be shown 

that (01 (n), 02(n), ... , Od(n)) .E. (Ot, 0 2 , .•• , Od), a multivariate normal random vec­
tor with 

0; - f w;(t)oB(t)dt. 

By the continuous mapping theorem, 

d d 

Vw(n) = 'L_,Ol(n)fd .E. L., o; fd. 
i=l i=l 

Suppose the functions w1 , w2 , ••• , wd are orthonormal with respect to r( s, t) = 
(s 1\ t)[1 - (s V t)] over the unit square, where 1\ denotes minimum and V denotes max­
imum. Then under mild additional conditions, Ot, 0 2 , ••• , Od are i.i.d., normal (0, u 2

) 

random variables. One method of obtaining orthonormal weighting functions is to use 
the Gram-Schmidt procedure to orthonormalize any set of linearly independent functions 
u1 , u2 , ••• , Ud. 

Example 4 Suppose ui(t) = ti-t, i = 1, 2, 3, so that the u/s are linearly independent. 
Applying Gram-Schmidt with respect to r(s, t) yields the orthonormal weighting func­
tions 

Wt(t) v'i2, 
w2(t) - v'120(t- 1/2), 
W3(t) - v'25200(t2

- t + 1/5). 
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Example 5 An infinite sequence of orthonormal weighting functions is wi(t) = 
v'81ri cos(21rit), i = 1, 2, .... 

If the w/s are orthonormal, then we easily have that Vw( n) !!.. a2x~/ d. Assuming 
uniform integrability, we see that E[Vw(n)]--+ a2 (as desired) and Var(Vw(n)) = 2a4 /d, 
which is quite an improvement over the variance of the weighted area estimator ( d = 1) 
from §3.3.2. 

Additional details (including a discussion on the effects of hatching) and nice prop­
erties of the orthonormally weighted area estimator are presented in [21]. 

4 Normal Means Procedures 

We have developed and investigated a number of normal means procedures, i.e., proce­
dures for finding that one of a number of competing normal populations which has the 
largest (or smallest) mean. 

4.1 Motivation and Background 

The basic assumptions used throughout this work are as follows: 

Statistical Assumptions: Independent random samples of observations }i1 , }i2 , ••• 

(1 ~ i ~ t) are taken from t ~ 2 normal populations Tit, ... , Tit. The numbers of ob­
servations to be taken from each treatment depend on the goal of the experiment, the 
probability requirement to be guaranteed, and the particular procedure employed, as 
explained subsequently. Here lli has unknown treatment mean J.li and known or un­
known variance a[. Varous assumptions concerning the variances can be considered, 
e.g., ar = ... = a; known; ar, ... ,a; known but not necessarily equal; ar = ... =a; 
unknown (the usual Analysis of Variance assumption); ui, ... , ai completely unknown 
but max{ ai, ... , ui} ~ u[;, where u[; is known; and ai, ... , ui completely unknown and 
arbitrary. 

We denote the vector of treatment means by I' = (p1, ••• , Jlt) and the vector of 
treatment variances by u 2 = (ui, ... , a;). The ordered Pi-values are denoted by J.l[IJ ~ 
• • • ~ Jl[tJ· Neither the values of the JL[8J nor the pairing of the lli with the Jl[8J (1 ~ i, s ~ t) 
is assumed to be known. The treatment having mean /l[t] is referred to as the "best" 
treatment. In cases where ui = · · · = ui, we denote the common variance by u2• 

Henceforth, let Yii (1 ~ i ~ t, j ~ 1) denote the observed values of the l'ii· 
For the purposes of this report, the experimental goal and the associated probability 

(design) requirement are stated in Goal 1 and Equation (1), respectively. 
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Goal 1 To select the treatment associated with mean /l[t]· 

A correct selection ( CS) is said to be made if Goal 1 is achieved. 

Probability Requirement: For constants (6*, P*) with 0 < 6* < oo and 1/t < P* < 1, 
specified prior to the start of experimentation, we require 

P{CS} ~ P* whenever /l[t]- /l[t-1] ~ 6*. (1) 

The probability in Equation (1) depends on the differences /li-Jlj (i # j, 1 ~ i,j ~ t), 
the sample size n, and also on u 2

. The constant 6* can be thought of as the smallest 
difference worth detecting. If /l[t-1] and /l[t] are very "close" in standardized units, i.e., 
if (/l[t] - /l[t-1]) /a is small, then the sampling cost required to distinguish between the 
associated treatments can be prohibitive. Furthermore, if /l[t-t] is very close to /l[t], then 
it may matter little which of the associated treatments is selected. Thus, 6* is the smallest 
difference which can be detected at a reasonable sampling cost or which is of practical 
importance. 

Clearly, it makes no sense to choose P* ~ 1/t since P* = 1/t can be achieved 
without taking any observations by rolling a fair t-sided die and selecting the treatment 
so identified as the best one. Also, we must have P* < 1 since we cannot guarantee ( 1) 
with probability unity. 

Parameter configurations p, satisfying /l[t]- /l[t-1] ~ 6* are said to be in the preference­
zone for a correct selection; configurations satisfying /l[t] - /l[t-I] < 6* are said to be in 
the indifference-zone. Any procedure that guarantees (1) is said to be employing the 
so-called indifference-zone approach. 

4.2 Common Known Variance Case 

A Monte Carlo study conducted in [10] compares the performances of various procedures 
for selecting the normal population having the largest mean when the variances are 
known and equal; namely, we compare Bechhofer's original single-stage procedure from 
[5], a two-stage procedure with elimination from [46, 4 7], a closed version of a sequential 
procedure from [14], and a closed sequential procedure with elimination from [34]. In 
[12], we look at the performance of another sequential procedure with elimination from 
[37]. Subsequent Monte Carlo work, conducted in conjunction with our textbook [15], 
studies a new sequential procedure with elimination due to Paulson [40]. Among our 
many findings, we can make the following general statement concerning the relative 
performances of the sequential procedures. 

• If the experimenter wishes to minimize the expected number of total observations, 
use Paulson's procedure [40]. 
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• If the experimenter wishes to minimize the expected number of stages, use the 
closed version of the sequential procedure from [14], 

4.3 Common Unknown Variance Case 

In [7], we conduct a Monte Carlo study that compares the performances of various pro­
cedures for selecting the normal population having the largest mean when the variances 
are unknown and equal. This is clearly a more realistic and useful problem than that 
discussed in §4.2. Specifically, we compare and make recommendations concerning a 
two-stage procedure from [6], a two-stage procedure with elimination from [33], and a 
sequential procedure with elimination from [35]. 

4.4 Unknown Variance Case 

We have worked on the still more realistic normal means scenario in which the variances 
are unknown and not necessarily equal. The idea here is to eventually modify normal 
means procedures, e.g., that of [41], for use in the presence of serial correlation; see [25] 
and the application in [28]. In our text [15], we provide easy-to-use tables of constants 
that are necessary to implement the procedure given in [41]. 

4.5 Multivariate Case 

Variance reduction techniques (VRTs) are often used in simulation to help distinguish 
among alternative populations. One popular VRT is common random numbers, which 
attempts to induce positive correlation among the competing populations. In order 
to take advantage of such VRTs, we are also studying multivariate normal selection 
procedures. 

5 Two-Factor Normal Means Procedures 

Suppose Il;j, i = 1, ... , a, j = 1, ... , b, represent abnormal populations in a two-factor 
setup without interaction, i.e., the expected value of an observation from Il;j is p, +a;+ /3i 
for some p,, {a;}, and {/3i}. The goal is to find that population having the largest ai and 

/3i· 
We have shown in [9] that factorial experimentation when employed in ranking and 

selection problems can result in considerable savings in total sample size relative to 
independent single-factor experimentation when both strategies guarantee comparable 
probability requirements. In [11], we discuss the performance of a sequential elimination 
procedure due to Hartmann [36]. We find that Hartmann's procedure performs better 
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than its predecessors in terms of the expected number of observations it takes; unfortu­
nately, it performs more poorly in terms of the expected number of sample stages. 

6 Multinomial Procedures 

6.1 Motivation and Background 

There are circumstances under which it might not be prudent to use an adaptation of a 
normal means procedure when trying to find the best of a number of simulated systems. 
For instance, suppose the simulation runs are rather short. Then any resulting batch 
means might not be approximately i.i.d. normal random variables; in such a case, the 
normal means results outlined above would not be appropriate. Instead, the experimenter 
might be well-advised to use a nonparametric procedure for selecting the best system. 
It is well known that procedures for selecting the most probable multinomial cell can be 
interpreted as being nonparametric. With these comments in mind, we have developed 
and investigated a number of multinomial selection procedures, i.e., procedures for finding 
that multinomial cell having the largest probability. 

The basic assumptions used throughout this section are as follows: 

Statistical Assumptions: Independent vector-observations Xi = ( X 1j, ... , Xti) (j 2:: 
1) are taken from a single multinomial distribution IT having t 2:: 2 categories with 
associated unknown probabilities p = (p1 , •.• , Pt)· Let Pi (0 ~ Pi ~ 1, I:~= I Pi = 1) be 
the probability of the event Ei associated with the ith category Ci (1 ~ i ~ t). The 
events Ei are mutually exclusive and exhaustive; Xii = 1 [0] according as Ei does [does 
not] occur on the jth observation (1 ~ i ~ t, j 2:: 1 ). 

We denote the ordered values of p~, ... , Pt by P[t] ~ · · · ~ P[t]· Neither the values of 
the P[.s] nor the pairing of the Ci with the P[sJ (1 ~ i, s :::; t) is assumed to be known. The 
category associated with P[t] is referred to as the "best" category. We denote the observed 
values of Xj by Zj = (Xtj, ... 'Xtj) (j 2:: 1). The cumulative sum for category ci after 
m 2:: 1 vector-observations have been taken is given by Yim = ET=1 Xij (1 ~ i ~ t), and 
the associated ordered values of the Yim are given by Y[t]m :::; • · · S Y[t]m· 

The purpose of the experiment is stated in Goal 2 and the associated probability 
(design) requirement is given in (2). 

Goal 2 To select the category associated with P[t]· 

A correct selection ( CS) is said to be made if Goal 2 is achieved. 

15 



I 

Probability Requirement: For constants (0*, P*) with 1 < ()* < oo and 1/t < P* < 1, 
specified prior to the start of experimentation, we require 

P{CS} ~ P* whenever P[t]/P[t-1] ~ 0*. (2) 

The probability in (2) depends on the entire vector p = (pt, ... , Pt) and on the number 
n of independent vector-observations taken from II. The constant ()* can be interpreted 
as the "smallest P[t]/P[t-1] ratio worth detecting." 

6.2 Example of a Multinomial Procedure 

By way of example, we now present a truncated sequential procedure from [8] for select­
ing the most probable multinomial cell. 

For given t and ( ()*, P*), specified prior to the start of sampling, find the truncation 
number n0 from a table provided in [8] or [15]. Such truncation numbers are provided 
for selected (t; ()*, P*) and are used to prevent the procedure from requiring a prohibitive 
number of stages. 

Sampling rule: At the jth stage of experimentation (j > 1 ), take the random vector­
observation Xi= (X1j, .•. ,Xti) from II. 

Stopping rule: At stage m (m ~ 1), calculate the ordered sample sums Y[1Jm ~ · · · ~ Y[t]m, 

and then calculate 
t-1 

Zm = L(1j(J*)Y[t]m-Y[i]m. 
i=1 

Stop sampling when, for the first time, either 

Zm ~ (1- P*)/ P* or n = no or Y[t)m- Y[t-1)m > no-m, (3) 

whichever occurs first. 

Terminal decision rule: Let N denote the value of m at the termination of sampling. 
Select the category that yielded the largest sample sum, Y[t]N, as the one associated with 
P[t]· H exactly q of the YiN are tied for largest, i.e., Y[t-q]N < Y[t-q+1]N = · · · = Y[t]N, then 
select one of the q tied categories as the one associated with P[t) by using a random device 
that assigns probability 1/ q to each. 

Some artificial examples illustrate the simplicity of the procedure. 
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Example 6 For t = 3, P* = 0. 75 and ()* = 3.0, entering the table in [8] tells us to 
truncate sampling at n0 = 5 observations. However, we stop sampling by criterion (3) if 

m XJ.m 

1 0 
2 0 

and select category c2. 

1 
1 

0 
0 

Ylm Y2m 

0 1 
0 2 

Y3m 

0 
0 

Example 7 For t = 3, P* = 0. 75 and ()* = 3.0, the truncation number n0 = 5 from the 
table tells us to stop sampling if 

m Xtm X 2m X 3m Ytm Y2m Y3m 

1 0 1 0 0 1 0 
2 1 0 0 1 1 0 
3 0 1 0 1 2 0 
4 1 0 0 2 2 0 
5 1 0 0 3 2 0 

and select category C1 . 

We have developed an extremely efficient technique (see [1] and [2]) for calculating 
performance characteristics of a number of existing multinomial procedures (including 
that given above); this technique is efficient in its use of both computing time and space. 
We have also worked on two-factor multinomial problems in the spirit of [13] and the 
procedures discussed previously in §5. 

7 Additional Procedures 

During the course of our work, we devised or evaluated procedures for a variety of other 
problems. For instance, the dissertation of Auclair [4] deals with, among other problems, 
the selection of the exponential distribution having the largest mean; such a goal is useful 
in reliability and life studies. In that line of research, we devised a truncated version of 
the Bechhofer, Kiefer, and Sobel [14] open exponential procedure; the truncated version 
is somewhat more efficient in terms of sample size than its predecessor. As we undertook 
the writing of our textbook [15], we also studied the performances of various procedures 
to select the Bernoulli population having the largest success probability. Such problems 
have wide applicability in the medical field. In particular, our text compares procedures 
from [14] and Paulson [40]. 
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8 Real-World Applications 

A number of applications for our work are discussed in such sources as [28], [32], and [38]. 
However, the goal is to use our research in a constructive way in actual manufacturing 
arenas. 

Together with P. A. Farrington and S. L. Messimer, of the University of Alabama 
in Huntsville, we have been working with a large electronics manufacturer in Huntsville, 
Alabama. The work consists of building, validating, and using simulation models to assist 
management at the manufacturing plant in the choice of alternatives for existing and 
planned high-volume production lines. The work is currently supporting two graduate 
and one undergraduate research students. Our efforts up to this point have centered 
on the construction of the simulation models. Work is about to begin on using these 
models to choose a configuration of a line for a model-year 1996 product. Ranking and 
selection methodology will be among the techniques used to determine the recommended 
configuration (see [19]) . 

The work on this grant will be among the research areas pursued with electronics 
manufacturers in the Huntsville region. Huntsville is home to approximately five billion 
dollars in electronics manufacturing annually, and we are discussing ways with local 
companies to improve facility utilization and planning through design and simulation. A 
proposed project will be the design of a system for the construction and maintenance of 
simulation models, and the mechanisms for experimental design when alternatives are 
to be ranked for decision making. The strategies for ranking and selection investigated 
here will be a part of the overall strategy being researched. Funding through the local 
companies, the State of Alabama, or some partnership with these and federal agencies 
(e.g., ARPA or NSF) is also being pursued. 

9 Summary 

This paper reported on some of the research we have conducted over the last two years 
concerning the use of ranking and selection procedures in the discrete-event simulation 
environment. The motivation for this work concerned problems in the manufacturing 
arena-problems that are only amenable to solution via simulation. In particular, our 
research addressed the following rich classes of topics: 

• Estimation of the variance of the sample mean. 

• Procedures for the normal means selection problem. 

• Procedures for two-factor normal means selection problems. 

• Procedures for nonparametric (multinomial) selection problems. 
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• Procedures for other problems such as exponential or Bernoulli selection. 

• Real-world applications of our work. 

We have enjoyed a great deal of success with this line of research. We believe that 
there is a great deal of interesting research left to be done in these areas. 
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