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A.  Introduction 
 
The project commenced in May 2006 and has had a one-year no-cost 

extension. 
 
The main objective of this research has been to develop a computational-

intelligence-based mechanism to effectively estimate and compensate load 
harmonics in a non-stationary complex system - the power grid. In a power 
system, the current to any load can be measured and processed to extract the 
harmonics when the power supply voltage is sinusoidal; this is a trivial procedure. 
However, when the supply voltage itself is distorted, due to other nonlinear loads 
and saturating transformers further upstream in the power network, then the load 
current contains harmonics caused both by the supply (referred to as supply 
harmonics) and the nonlinear load (referred to as load harmonics).  Simply now 
measuring the current waveforms of such a load, yields the combination of load 
harmonics and supply harmonics, and do not yield the true distortion (load 
harmonics only) caused by the load.  

Until the start of this project there was no method of separating out the supply 
harmonics from the load harmonics. The project started in May, 2006 by 
investigating the use of neural networks and other computational intelligence 
algorithms to model the load and thereby separate the load harmonics from the 
supply harmonics as illustrated in Fig. 1 and display the information about load 
harmonics for use mainly by utilities concerned that a particular load may be 
injecting excessive amounts of harmonic currents into the power network. The 
next phase focused on using these estimated load harmonics in real time in a 
closed loop harmonic mitigation (compensation) active filter method consisting of 
additional hardware and neural network software in parallel with the offending 
load. 

Most of the objectives of the project have been achieved. 
 

A first report was submitted in April 2007 and it 
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 summarized a survey to review the drawbacks of the then recent nonlinear 
load harmonic estimation techniques in power systems, as well as the 
then existing IEEE standards for regulating the load harmonics;   

 proposed the concept of “Load Modeling”, which is a novel neural-
network-based true harmonic detection technique to estimate how much 
harmonic current has been drawn from the power system. This technique 
requires only the voltage and current waveform measured from the PCC 
(Point of Common Coupling), where the load is connected;  

 described a few laboratory experiments using several small power loads, 
both single and three phase to validate the proposed Load Modeling 
technique. Algorithms developed in this project gave acceptably accurate 
harmonic estimation results. 

 investigated the performances of different types of neural networks such 
as the MLPN(Multi-layer Perceptron Network), the RNN(Recurrent Neural 
Network) and the ESN(Echo State Network) for this application. 

 evaluated a simple and intuitive control scheme to improve the 
performance of a three-phase boost-type PWM rectifier under harmonic 
and unbalanced input conditions. 

 
A second report was submitted in April 2008 for the period from February 2007 
to February 2008, which included results centered on the following major thrusts:  

 a performance comparison of three types of neural networks: MLP, RNN 
and ESN, with different numbers of hidden neurons, shown in detail. The 
training results, testing results and harmonic current prediction results 
were compared. The computational effort of each neural network was also 
discussed. It had been found that the MLP and RNN require a much larger 
size of training set than ESN. The RNN and ESN give more accurate load 
modeling results than the MLP, but require more computational effort. The 
choice between RNN and ESN is a tradeoff between convergence 
property and the necessary size of the training data. In other words, when 
the training data is not sufficient, which is quite possible in practice, the 
ESN can give better system approximation results than the MLP and RNN. 

 A study on the application of an Echo State Network (ESN) for the online 
design of a Wide Area Monitor (WAM) for a multi-machine power system 
was investigated. A single ESN was used to predict the speed deviations 
of four generators in two different areas. The performance of this ESN 
WAM was evaluated for small and large disturbances on the power 
system. Results for an ESN based WAM and a time delayed neural 
network (TDNN) based WAM were presented and compared. The clear 
advantages of the ESN WAM were that it learned the dynamics of the 
power system in a shorter training time with a considerably smaller 
number of weights to be trained. 

 To mitigate harmonic related issues in high-power adjustable speed motor 
drives with active filters, two or more paralleled semiconductor switching 
devices are generally used in each leg of the filter in order to handle the 
large compensation currents and provide better thermal management. In 



this study, a novel topology was proposed where two active filter inverters 
were connected with tapped reactors to share the compensation currents. 
The proposed active filter topology can produce seven voltage levels, 
which significantly reduces the switching current ripple and the size of 
ripple filters. 

 
A third report was submitted in April 2009 for the period March, 2008 to April 30 
2009, which summarized activities and findings centered around the following 
thrusts: 

 The proposed two ESN-based control schemes, namely the Indirect 
Adaptive Control and the Adaptive Critic Design-based HDP(Heuristic 
Dynamic Programming) Control for the active filter to compensate the load 
harmonics.   

 Simulation models for the active filter, nonlinear load and the power 
system for when they are connected in the Real Time Digital Simulator 
(RTDS).   

 An ESN used as the System Identifier in the control scheme was trained 
and tested online in real time on the RTDS system at Missouri University 
of Science and Technology in Rolla. The online training algorithm of the 
ESN was implemented in the Innovative Integration M67 card consisting of 
the TMS320C6701 processor to identify the load harmonics in a typical 
power system. The required computational effort and the system 
identification accuracy of an ESN with different dynamic reservoir size 
were investigated, which could provide useful information for similar 
applications in the future. The testing results in the real-time 
implementation showed that the ESN was capable of providing fast and 
accurate system identification for the neurocontrol of the active filter.   

 
The active filter work continued into year four, as described below. 

 
 

B. Progress during the One Year of No-Cost Extension from May 1, 2009 to 
April 30, 2010. 
 
1. Indirect Adaptive Control of an Active Filter Using Echo State 
Networks 
 

1.1 Utilization of Active Filters to Address Harmonic Issues in Power System  
 

The fact that wide use of nonlinear loads such as power electronic 
devices in the power grid has caused serious harmonic pollution has 
been recognized by utilities in recent years. One method to address this 
harmonic issue is to use an advanced neural network-based harmonic 
current prediction scheme to first estimate the true harmonic current 
contributed by the nonlinearity of the load, instead of the distorted power 
supply; then, use an active power filter to compensate the harmonic 



current drawn by the nonlinear loads, leaving the source current flowing 
out of the PCC (Point of Common Coupling) clean and nearly purely 
sinusoidal [1-4].  This neural-network-based proposed harmonic 
detection [5-9] and compensation system is shown in Fig.1. The true 
harmonic detection part (shown as the “Nonlinear Load Modeling” block 
in Fig.1) has been thoroughly validated in three previous annual reports, 
so the major task during the fourth and final year of the project has been 
to eliminate the harmonic current caused by the nonlinear load. 

As shown in the “Active Harmonic Filtering” block in Fig.1, the active 
filter is connected to the PCC via a three phase inductor Lf.  Based on 
monitoring the harmonics in the three-phase load currents, iaL, ibL, icL, the 
active filter injects three-phase currents, iaf, ibf, icf, with the exact 
harmonics to cancel those present in iaL, ibL, icL[10]. This is done by 
controlling the PWM inverter in an appropriate way.  

Typically power systems are large-scale nonlinear, non-stationary 
systems with varying dynamic characteristics over a wide range of 
operating conditions. Traditional linear controllers such as PI controllers 
are designed from a linearized system model with fixed parameters at a 
specific operating point. However, in a real power system, the active 
filter and the associated power network cannot be accurately modeled 
as a linear system with fixed and known parameters. Therefore, at other 
operating points or in the case of a major disturbance, a linear 
controller‟s performance degrades and may even become unstable. The 
drawbacks of using linear controllers to control a nonlinear system can 
be overcome by using neural-network-based nonlinear intelligent control 
techniques. Artificial neural networks (ANNs) are good at identifying 
nonlinear systems and avoid the need for an explicit mathematical model 
of the power system; such an identifier ANN can then be combined with 
a nonlinear intelligent neurocontroller, to provide effective control for the 
active filter over a wide range of operating conditions. The question then 
arises: which type of neural network architecture to use for the identifier?  
The Echo State Network [11] (ESN) is chosen.    

 The ESN is a new class of Recurrent Neural Network (RNN) which 
requires much less training effort than other types of RNN, with excellent 
system modeling capability [12]. Using an ESN-based current harmonic 
identification scheme removes the need of an explicit mathematical 
model of the APF and the power network. 
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Fig.1.  Neural network for estimating and compensating nonlinear load  

harmonic in a power system. 

 
 
 

1.2   Multiple Reference Frame Control Scheme of the Active Filter 
     

The overall scheme for the indirect adaptive neurocontrol of the active 
filter in the multiple-reference frame is shown in Fig. 2.  An AC-DC power 
electronic converter supplying an adjustable resistance is used as a 
nonlinear load, which injects current harmonics into the load currents iaL, 
ibL, icL.  The 5th and 7th harmonics in the load current, which are the major 
current harmonics present, are extracted using multiple-reference frames.  
The multiple-reference frame consists of multiple abc-to-dq transforms 
using a transformation angle rotating at multiples of the fundamental 
frequency, (e.g. θ5), which converts the harmonics in iaL, ibL, icL to dc 
currents id5

*, iq5
* in a reference frame called the 5th harmonic reference 

frame (HRF). A low pass filter then extracts these dc currents by 
eliminating all the higher frequency components.   

The iaf, ibf, icf currents are also transformed into the 5th HRF, and their d, 
q components id5, iq5 are each compared with the id5

*, iq5
* respectively, to 

form the two errors ed5, eq5. The 7th harmonic currents are processed in 
the same way using a 7th HRF. ed5, eq5, ed7, eq7 are used by the 
neurocontrol scheme and fed to the neurocontroller to control the voltage 



command of the PWM inverter.  When the errors are eliminated by the 
neurocontroller, the shunt active filter injects exactly the correct current 
harmonics to cancel the current harmonics caused by the nonlinear load, 
and hence no current harmonics are injected into the power source [10]. 
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Fig. 2. Multiple-reference frame base neurocontrol scheme of the active filter. 
 

 
1.3   Indirect Adaptive Control of Active Filter using Two ESNs 

 
The structure of the proposed indirect adaptive ESN-based control is 

shown in Fig. 3.  It consists of two separate ESNs, namely, one as the 
neuroidentifier and the other as the neurocontroller. The ESN based 
neuroidentifier is used to provide the dynamic model of the plant in an 
online fashion.  The plant input v= [vd5*, vq5*, vd7*, vq7*], two additional 
signals id1 and iq1, which are the fundamental d-axis and q-axis load 
current respectively and output ei= [ed5, eq5, ed7, eq7] at time k are fed into 

the ESN identifier to estimate the plant output d5 q5 d7 q7
ˆ ˆ ˆ ˆ ˆ[ , , , ]ie e e e e  at time 

k+1. The error between e and ê  is used to update the weights inside the 

ESN identifier.  At each time step, the ESN based neurocontroller 
generates the control signals as the plant inputs in order to drive the plant 
output to the desired value, which is * [0, 0, 0, 0]ie , and finally the error 

between 
îe  and *ie  is back propagated through the ESN identifier to 

update the weights inside the ESN controller. 
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           Fig. 3. Structure of the indirect adaptive ESN-based control. 

 
1.4    Online training and Testing of the ESN Identifier 

 
The ESN identifier is trained to predict the errors between the load 

current harmonics and the harmonics of the current injected by the active 
filter, as shown in Fig. 2.  

The training process consists of two stages: in the first stage, which is 
called forced training, the ESN identifier is trained to track the plant 
dynamics when the inputs to the plant are perturbed using Pseudo 
Random Binary Signals (PRBS); in the second stage, which is called 
natural training, the ESN identifier is trained to learn the dynamics of the 
plant when the PRBS is removed and the system is exposed to a large 
disturbance such as a sudden load change.  In each case the estimated 
output of the identifier is compared with the actual output of the plant and 
the resultant error vector is back-propagated through the ESN identifier to 
adjust its weights.   

Fig. 4-(a) shows the schematic diagram of forced training.  First, the 
switches S1 through S4 are at position 1. Conventional PI controllers are 
used to obtain the steady-state inputs of the plant, namely, v= [vd5*, vq5*, 
vd7*, vq7*].  The plant is then stopped and switches S1 to S4 are switched 
from position 1 to position 2.  Under this condition, the previously steady 
inputs to the plant, [vd5*, vq5*, vd7*, vq7*], are disturbed by adding a pseudo 
random binary signal (PRBS) to the steady-state inputs.  Each injected 
PRBS magnitude is limited to 10% of its steady-state value, and 
contains frequencies of 30, 60 and 90 Hz.  The PRBS disturbs the system 
and causes small deviations of ed5, eq5, ed7 and eq7, so that the ESN 
identifier can learn the system dynamics close to the normal operating 
range. Fig.4-(b) shows the input and output vector of the ESN identifier. It 
should be noted that two additional signals which are the fundamental 
components in the load current in the d-axis and q-axis, id1 and iq1, are 
also used as inputs to the ESN identifier. They are an indication of the 
load change. When the load changes nonlinearly, for example, the firing 
angle of the load side convertor changes, id1 and iq1 will change 
accordingly, so the ESN identifier can see these changes and response 
correctly. 
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Fig.4. Online training mechanism of the ESN Identifier. 

 

The ESN identifier is continuously trained online [13] under five 
different load conditions. The load change is realized by changing the 
firing angles of the thyristors in the load side convertor randomly among 0°, 
10°, 20°, 30° and 40°. The changes of the firing angle are shown in Fig. 5-
(a) and the nonlinear changes in the Phase A load current caused by the 
changes in the firing angle are shown in Fig. 5-(b). It can be seen clearly 
from Fig.6 that the load change is nonlinear. 

The vector [vd5*, vq5*, vd7*, vq7*, id1, iq1] which is the input to the power 
system, and the vector ei= [ed5, eq5, ed7, eq7] which is the output from the 
power system, are used, for the training the ESN identifier. Figure 7 shows 
the training and testing results of the ESN identifier. First the ESN 
identifier is trained online for 445 seconds and then tested for 5 seconds; 
during the testing, all the weights are fixed. There is a good match 

between the output of the ESN Identifier 5
ˆ
de , 5

ˆ
de , 5

ˆ
de  and 5

ˆ
de and ed5, eq5, 

ed7 and eq7, which are the actual output of the system during both the 
training and testing process. These results mean that the ESN identifier 
has successfully learned the dynamics of the system during the nonlinear 
load changes, so it can act as an accurate model of the system, predicting 
the one-step-ahead output of the PLANT when the indirect adaptive 
control scheme is implemented. 

    The important parameters used for the training and testing of the 
ESN identifier are listed below: 

1) Load Levels: randomly chosen from Firing Angle Alpha=0°, 10°, 20°, 
30° and 40°; 

2) Training time for each load:     0.5 second; 
3) Total Training Time:    445 seconds; 
4) Testing Time:     5 seconds after the training; 
5) Learning gain:     0.01; 
6) Momentum gain: 0; 
7) ESN Dynamic Reservoir Size:   100 internal neurons. 
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Fig.5. Nonlinear load changes during training.              Fig.6. ESN Identifier training and testing results. 

 
 

1.5    Control Performances of the ESN Controller  
 

The training of the ESN controller consists of two stages: (1) offline 
pre-training using PI controller input and output; (2) online training. The 
purpose of the pre-training is to make sure that the ESN controller can at 
least perform like conventional PI controllers. Then the ESN identifier and 
controller are exposed to various load conditions during the online training 
process so that they can learn the system dynamics and act adaptively. 
The pre-training is done in MATLAB using simulation data from PSCAD. 
The weights obtained from the pre-training are then used as the initial 
weights of the ESN controller. 
    The control result of the proposed indirect adaptive control scheme 
under five different load firing angles is shown in Fig.7 when a change in 
firing angle occurs every 0.5 seconds. Only the waveforms of ed5 are 
plotted here, and eq5, ed7, eq7  behave in a  similar manner. A comparison 
of the ESN controller performance and the PI controller performance is 
also given in Fig. 8. ESN controllers show faster damping and smaller 
overshoot than PI controllers. It takes less time for the ESN controller to 
drive ed5, eq5, ed7, eq7  to zero, which is highly desirable in this active filter 
application. 
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The Phase A source currents before (Fig.8-(a)) and after (Fig.8-(b)) the 
harmonic compensation are shown below. The harmonic current injected 
by the active filter in phase A is also shown in Fig.8-(c).  This figure only 
shows the performance of the ESN controller under one load condition. 
(Firing Angle=0°. 0.1 second data is plotted.) 
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        (a) Phase A source current ia without the Active Filter 
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(b) Phase A source current ia with the Active Filter 
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(c) Phase A current ifa injected by the Active Filter 

      Fig.8. Source current and Active Filter injected current. 



 

The results in Fig.8(a) and (b) show that the current waveform flowing 
out of the power source is nearly sinusoidal after the harmonic 
compensation. Also, from the comparison of performances of the 
proposed indirect adaptive control scheme and traditional PI controllers, is 
can be observed that since PI controllers are only tuned around a certain 
operation condition, when the load changes nonlinearly, the performances 
of the PI controllers degrade. The ESN controller used in the indirect 
adaptive control has been trained under different load conditions and 
actually learns the complicated system dynamics of the plant, so it gives 
better control results than the PI controllers.   

 

2. Presentations at Conferences 
 

 IEEE International Joint Conference on Neural Networks (IJCNN‟09), 
June 14-19, 2009, Atlanta, USA. 

 IEEE Intelligent System Applications to Power Systems (ISAP‟09), Nov. 
2009, Curitiba, Brazil. 

 
D. Summary 

 A novel concept of “Load Modeling” has been proposed to provide 
effective, accurate true harmonic detection of the nonlinear loads in the 
power grid. The ability of MLPNs to learn the admittance of the 
customer load using actual field data and utilize a trained neural 
network for estimating the true harmonic distortion caused by that 
customer has been validated through both software simulation and 
laboratory experiments. The advantages of this method are that it can 
be implemented online without disrupting the operation of any load, 
since only voltages and currents need to be measured; it does not 
require any special instruments, and it does not need to make any 
assumptions about any quantities, e.g., the impedance of the source, 
or a sine-wave PCC voltage. Every customer has individual power 
meters which are already receiving the waveforms of voltage and 
currents, and hence, it is a feasible option to implement the scheme for 
each customer individually.  

 Three different types of neural networks, namely, the MLP, the RNN 
and the ESN have been used and evaluated for this particular “Load 
Modeling” application. The MLP and RNN required a much larger size 
of training set than the ESN. The RNN and ESN gave more accurate 
load modeling results than the MLP, but required more computational 
effort. The choice between RNN and ESN is a tradeoff between 
convergence property and the size of necessary training data. In other 
words, when the training data is not sufficient, which is quite possible 



in practice, the ESN can give better system approximation results than 
the MLP and RNN. 

 A neural-network-controlled active filter has been implemented to 
eliminate the harmonic pollution after the harmonic current generated 
by the nonlinear loads in the power system was successfully 
determined. Since the ESN has a stronger learning ability than the 
MLP and easier training algorithm then the RNN, it is chosen to be the 
type of network that is used in the neurocontrol scheme of the active 
filter. The ESN identifier and ESN controller used in the indirect 
adaptive control scheme of the active filter are trained and tested 
online. The control performance of this neurocontrol scheme is 
compared with traditional PI controllers under five load conditions. The 
results show that neural-network-based intelligent control is more 
adaptive than traditional linear controller, especially when the operation 
condition of the system changes nonlinearly.  

 The online training algorithm of the ESN Identifier has also been 
implemented in a real time, hard-ware-in-loop environment. The active 
filter and the power system with nonlinear loads are simulated using 
the Real Time Digital Simulator (RTDS). The training of the ESN 
Identifier is realized in a DSP board which is connected to and 
communicates with the RTDS. The successful real time 
implementation of the online training algorithm shows that the ESN has 
a strong potential to be used in some practical applications which 
require fast computational speed in the future. 

 The outcomes in Year 4 of the project can be summarized as following: 

 Implemented the Indirect Adaptive Control Scheme using two 
ESNs for the active filter.  

 Proved the accuracy of the online training algorithm of the ESN.  

 Validated that ESNs have the ability to learn complicated power 
system dynamics when they are properly trained.  

 Compared the performances of the ESN controller and 
traditional linear PI controllers and showed that the ESN 
controller gives better results when the operating condition of 
the power system changes nonlinearly.  

 One of the major goals of this research project, which is 
compensating the nonlinear characteristics of non-stationary 
complex systems, has been successfully achieved: the 
nonlinear harmonic current in the power system is compensated 
by the current injected by the active filter using neural-network-
based control schemes. 

  

 



 
E. Overall Project Deliverables after Four Years 

 
1.  Manpower 

 
The following PhD candidates worked on different aspects of this project at 
Georgia Tech:  

 Joy Mazumdar, (graduated with PhD degree in August 2006. Now with 
Power Conversion Division, Siemens Energy and Automation, Atlanta) 

 Debrup Das, PhD candidate took over from Joy Mazumdar.  
 Jing Dai, PhD candidate, took over from Debrup Das. 

 
The following students/visiting scholar worked on different aspects of this 
project at Missouri University of Science and Technology:  

 Peng Xiao (graduated with PhD degree in September 2007) 

 Shishir Bashyal (graduated with MS degree in May 2008) 

 Jing Dai (Visiting Scholar from Georgia Tech from May 2008 to 
August 2008). 

 
 

All students have learned how to  
- conduct literature surveys 
- develop computer code and run simulations 
- prepare power point presentations and present their work to others 
- write scientific papers 
- collaborate with other members of the research group. 

 
 

2.  Follow-on Projects 
 

The project has already generated significant knowledge, and has already 
resulted in several follow-on projects, including: 

 

 How to identify resonance in the upstream supply circuitry. 
 

  
 

3.  Publications 
 

Altogether 15 peer reviewed papers were published in international 
journals and conferences [1-10, 12-16]. 

 
 

4.  Patents Filed 
 



R. G. Harley, T. G. Habetler, Frank C. Lambert, and J. Mazumdar. 
“System and Method for Determining Harmonic Contributions from Non-
linear Loads”. Inventors:  US Patent filed in August 2003. Final US patent 
number 7,013,227 issued on March 14, 2006. 

 
 

5.  Courses Taught 
At Georgia Tech Dr. Harley taught a 3 credit hour one semester 

graduate level course on “Computational Intelligence in Electric Power” 
three times during the duration of this project to a total of 28 students. 

 
At Missouri University of Science and Technology Dr. 

Venayagamoorthy introduced and taught a 3 credit hour one semester 
graduate level course on “Adaptive Critic Design”  during the course of this 
project to over 15 students from both MST and Georgia Tech (through the 
distance learning platform “WebEx”). In addition, another course on Real-
Time Power System Simulation (RTPSS) was introduced and taught twice 
by Dr. Venayagamoorthy during the duration of this project. Research 
from this project on active filters was introduced into the course contents 
of RTPSS. 

 
6.  Awards and Prizes 

Dr. Harley received the following award: 

 The 2009 IEEE Richard H. Kaufmann field award with citation 
“For contributions to monitoring, control and optimization of 
electrical processes including electrical machines and power 
networks”. 
 

Dr. Venayagamoorthy received the following awards: 

 2010 Innovation Award, Academy of Science, St. Louis, USA. 

 2010 IEEE Region 5 Outstanding Member Award. 

 2009 Missouri S&T Faculty Research Award. 

 2009 IEEE Region 5 Outstanding Educator Award Runner Up. 

 Fellow of the South African Institute of Electrical Engineers - 
effective Feb. 18, 2009. 

 Elected to Board of Governors, International Neural Network 
Society - 2009 to 2011. 

 Fellow of the Institution of Engineering and Technology (British 
equivalent of the IEEE) - effective Sept. 15, 2008. 

 2008 IEEE St. Louis Outstanding Educator Award. 

 2008 Missouri S & T Faculty Excellence Award (recognizing 
excellence in teaching, research and service contributions to the 
Missouri S & T). 

 IEEE PES Technical Committee Working Group Recognition Award 
for  Working Group on Multi-Agent Systems, 2008 



 Missouri University of Science and Technology Faculty Excellence 
Award (recognizing excellence in teaching, research  and service 
contributions to the UMR). 

 2007 Missouri University of Science and Technology 
Commendation for Teaching Excellence. 

 2006 IEEE St. Louis Section Outstanding Section Member. 

 2006 Missouri University of Science and Technology School of 
Engineering Teaching Excellence Award. 

 2006 IEEE PES Walter Fee Outstanding Young Engineer. 
 

 
7.  Outreaches 

 Two tutorials were presented jointly by Drs. Harley and 
Venayagamoorthy at international conferences and workshops [20-22]. 

 Several tutorials were presented by Dr. Venayagamoorthy at 
international conferences and workshops [17-19, 21, 23-25]. 

 Many invited presentations and lectures were presented by Dr. 
Venayagamoorthy at international conferences and universities [26-55]. 
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