
An interactive, graphical coding environment for
EarSketch online using Blockly and Web Audio API

Anand Mahadevan
Dolby Laboratories

San Francisco, CA 94103
anand.mahadevan@dolby.com

Jason Freeman
School of Music

Georgia Institute of
Technology

Atlanta, GA 30332
jason.freeman@gatech.edu

Brian Magerko
Digital Media Program

Georgia Institute of
Technology

Atlanta, GA 30332
magerko@gatech.edu

ABSTRACT
This paper presents an interactive graphical programming
environment for EarSketch, using Blockly and Web Audio
API. This visual programming element sidesteps syntac-
tical challenges common to learning text-based languages,
thereby targeting a wider range of users in both informal
and academic settings. The implementation allows seamless
integration with the existing EarSketch web environment,
saving block-based code to the cloud as well as exporting it
to Python and JavaScript.

1. INTRODUCTION

1.1 A brief overview of EarSketch
1 EarSketch [12] is a novel approach to teaching com-

puter science concepts via algorithmic music composition
and remixing in the context of a digital audio workstation
paradigm. It is aimed at satisfying both artistic and peda-
gogical goals of introductory courses in computer science and
computer music. EarSketch seeks to increase and broaden
participation in computing by creating an engaging and cul-
turally relevant learning experience using a STEAM (sci-
ence, technology, engineering, arts and mathematics) ap-
proach [19]. Students write code (in Python or JavaScript)
to creatively and algorithmically manipulate audio samples
from a loop library. EarSketch offers a tightly integrated
creative and pedagogical environment that captivates stu-
dents by making abstract computing concepts relevant in
a context that borrows from the paradigm of digital audio
workstations and music production while remaining readily
accessible to those without any prior experience with music
or music technology [18].

Since development of EarSketch began in 2011, it has been
accessed by over 40,000 users in all 50 states in the US and
over 100 countries through summer camps and academic
courses. It has also been incorporated into a music tech-
nology MOOC [11] that has reached over 35,000 students.

1Most of the content for sections 1.1 and 1.2 was borrowed
from [16]

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA

c© 2016 Copyright held by the owner/author(s).

1.2 Related work
Other recent projects have also tried to engage students in

computing by connecting coding to artistic and creative con-
texts. Alice, for example, is a 3D programming environment
that allows students to create animated stories through code
while learning computer science principles such as object-
oriented programming [10]. Blockly [1] and Scratch [22], on
the other hand, teach programming through the creation
and sharing of games, animations and simulations. From
the standpoint of coding to create music, Wavepot offers a
multitude of APIs for novice and experienced musicians to
explore and compose music online [5]. Other visual program-
ming based educational projects such as PencilCode [8], use
a block editor called Droplet [7]. Droplet allows bidirectional
switching between text and blocks-based authoring.

1.3 Why visual programming?
The role of visual programming in computer science edu-

cation has been prominent in recent years. As mentioned by
Deepak Kumar in [14], visual languages help introduce basic
computational thinking skills required to learn programming
in a fun, interactive digital multimedia setting. One of the
primary motivations of Scratch was to“add programmability
to media-manipulation activities that are popular in youth
culture” [17]. There are many tools currently available that
make this possible for a variety of applications at varying
levels of scalability. Max/MSP [3] and Pure Data [20], for
example, are the most commonly used visual programming
languages by artists, composers and performers.

Good visual programming tools transcend human language
barriers and are easily understood by people all over the
globe [23]. K.N. Whitley, in detail, examines empirical data
from studies that show how visual representation can in-
crease comprehension compared to text [24]. The current
version of EarSketch has been very successful with students
who are teenagers. However, anything from complex syntax
to verbose error messages on the console can lead to distrac-
tion and loss of interest. Cyndi Rader, in [21], talks in depth
about the degrees of comprehension with regard to childrens’
understanding of visual programming environments. In or-
der to make sure the learning is engaging and productive,
one needs to address the method of delivery. A graphical
environment has the ability to keep users captivated and
thereby enables them to focus on the computational learn-
ing without worrying about low level intricacies related to
code syntax and semantics. It can also be thought of as a
link between e-learning and playing [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/77096119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: The EarSketch Blockly Interface

1.4 Relevant frameworks
EarSketch resides completely on the web and uses the Web

Audio API for all of its audio scheduling and processing.
EarSketch previously supported coding in either JavaScript
or Python through a text editor integrated into the browser-
based interface. To add support for visual programming to
EarSketch, we needed a simple and robust framework to
author and execute visual code directly in the browser with-
out any external plugins and dependencies. The approach
to visual programming also needed to convey key concepts
of computing like conditionals and loops which are essential
to the EarSketch curriculum as it is taught in schools.

Scratch [4] and Blockly [1] were shortlisted to be the plau-
sible options. Both Scratch and Blockly are open source,
customizable, client based, and completely cross browser.

Customization of blocks is imperative for EarSketch as it
provides functions that closely mimic popular operations in
a digital audio workstation (DAW) workflow such as placing
audio clips on a multi-track timeline, adding effects and step
sequencing rhythms. Ultimately, Blockly was chosen, as it
allowed exporting from blocks to JavaScript, Python and
Dart, had a stable code base that was conducive to expan-
sion and customization and could readily be injected into
the EarSketch UI.

2. DESIGN AND WORK FLOW
The following section goes in depth into the design and

implementation of EarSketch APIs with Blockly. All the
EarSketch APIs were redesigned and implemented using the
Block Factory utility provided by Blockly. A UI button with
the icon “B” located on the top left corner, allows the user
to switch between the Blockly editor and the code editor.

2.1 EarSketch API abstraction
Figure 1 shows a sample script executed on EarSketch

with Blockly. Before proceeding further, it is worth review-
ing some of the core EarSketch APIs. The focus of this
discussion will be restricted to the following API functions
- setTempo(), fitMedia(), setEffect() and makeBeat().
The project tempo is set using the setTempo() function.

An audio file is placed on the multi-track timeline us-
ing the fitMedia() function. Audio files are specified by
constants. EarSketch comes bundled with over 4000 audio
loops in a variety of genres like hip-hop, soul, rock, techno
and house that we commissioned from Richard Devine, an
experimental electronic musician and sound designer, and
Young Guru, an audio engineer and DJ best known for his
long-running collaboration with Jay Z. The remaining argu-
ments to fitMedia() specify a track number, start measure,
and end measure. Figure 2 shows the fitMedia() API in
context, juxtaposed with the python equivalent . All the
blocks have tool tips built in to guide the user filling the
arguments of the block. The blocks also take care of type
checking. For example, a text field cannot be added to a
field that expects a number.

The setEffect() function adds an effect to a particular
track. For example, the following statement

setEffect(1, VOLUME, GAIN, -60, 1, 0, 5)
adds a volume effect on track 1 whose gain is being au-

tomated between -60db and 0db between measures 1 and 5.
Figure 3, shows a subset of the supported effects in a drop
down fashion.

EarSketch’s makebeat() function allows users to create
rhythmic beats and phrases by using strings to piece to-
gether contents of different audio files at a 16th note reso-
lution. Borrowing from Thor Magnusson’s ixi lang [15] and
Freeman and Van Troyer’s LOLC [13], our API uses a string
representation to sequence individual sixteenth notes over a
full measure. The notation is fairly straightforward; a num-



Figure 2: Blockly abstraction for fitMedia and equivalent Python code

Figure 3: Dropdown list of effects supported by setEffect

ber represents a single audio file or an index in a list of audio
files, a “+” sign extends the duration of the preceding sound
by a sixteenth note, and a “-” sign indicates a rest.

Bolstered by the default libraries provided by Blockly (such
as logic, loops, text and variables), the implemented frame-
work is now capable of effectively leveraging the EarSketch
approach to teaching computer science in a visual program-
ming context.

2.2 Saving and exporting
Blockly provides low level routines to switch between DOM

and XML. The XML for these groups of blocks in the main
workspace is the same as Blockly’s XML save format. The
equivalent XML is stored just like any other JavaScript or
Python script on the EarSketch server. When the user at-
tempts to load his or her Blockly XML, the Blockly editor
is automatically brought up and populated with the corre-
sponding DOM. With a single click, the user can also export
the Blockly code to Python or JavaScript code in a new tab
in the code editor. This can be particularly useful to illus-
trate how abstractions translate to high level code. It also
enables enthusiastic individuals to adopt different method-
ologies for composition, for example to design a skeletal
framework via blocks and perform some advanced editing
through code. It should be noted however, that unlike Pen-
cilCode [8] and Code.org’s App Lab [2], bidirectional con-
version between blocks and text views of code is not yet
possible: users can only convert from blocks to text code
but not the other way.

3. CONCLUSION AND FUTURE WORK
In order to make this project appealing to a broader au-

dience, further refinement and evaluation is required. The
criteria for evaluation must be chosen carefully. From the
point of view of cognitive factors involved in visual program-
ming, Blackwell et al.[9] lists out various intelligible ’dimen-
sions’ such as Abstraction gradient, Closeness of mapping
and hidden dependencies. Their research highlights the im-
portance of the underlying paradigms of visual programming
languages (control flow versus data flow) and that it must
be considered before performing empirical evaluations.

There are several constraints with this environment that
need to be addressed. It is difficult to write complex scripts
using Blockly due to limited available real estate on the can-
vas. Although Blockly supports collapsing of blocks, it is not
a scalable solution for larger projects. Unlike the code edi-
tor which supports multiple tabs, Blockly follows a singleton
paradigm. Because of this, the user is limited to having one
script open at a time. It is also challenging to address cer-
tain basic computing concepts such as variable scope within
Blockly.

Despite the aforementioned constraints, there is opportu-
nity for improvement with regard to further abstraction and
improved user experience. The setEffect() API, for in-
stance, can be broken down into separate entities for creating
the effect and applying automation envelopes on them. In-
telligently capturing logical errors like infinite loops and un-
reachable code sections leaves less room for confusion while
debugging. Also, the notion of bidirectional conversion be-



tween code and blocks opens a new avenue for EarSketch to
explore. Animations between conversions and re-rendering
unformatted text into clean blocks are some of the things
users can benefit from.

The project also stands as an example of the flexibility of
authoring web applications with Web Audio API. Before the
advent of the Web Audio API, audio-intensive applications
such as EarSketch could only be developed as standalone
desktop application software. The Web Audio API enables
EarSketch to be deployed in the browser, where it can eas-
ily integrate a variety of third-party APIs, frameworks, and
web services to add new functionality to the platform much
more quickly than would be possible with desktop software.
The rapid integration of Blockly into EarSketch to enable a
visual programming paradigm is one such example. Because
web development tools and APIs make it relatively trivial to
integrate new coding paradigms into the EarSketch environ-
ment, our team has been able to concentrate its resources
on exploring which programming paradigms map best onto
digital audio workstation workflows and onto computer sci-
ence learning objectives, and on API and curricular design
that supports these approaches.

4. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. CNS #1138469
and DRL #1417835. Many thanks to the entire EarSketch
project team (http://earsketch.gatech.edu/personnel).

5. REFERENCES
[1] Blockly - https://blockly-games.appspot.com/

accessed: 04/21/2015.

[2] Code.org’s app lab - https://code.org/educate/applab
accessed: 02/17/2016.

[3] Max / msp - https://cycling74.com/ accessed:
04/21/2015.

[4] Scratch - https://scratch.mit.edu/ accessed:
04/21/2015.

[5] Wavepot - http://wavepot.com/ accessed: 04/21/2015.

[6] A. Baratè, M. G. Bergomi, and L. A. Ludovico.
Development of Serious Games for Music Education.
Journal of e-Learning and Knowledge Society, 9(2),
May 2013.

[7] D. Bau. Droplet, a Blocks-based Editor for Text Code.
J. Comput. Sci. Coll., 30(6):138–144, June 2015.

[8] D. Bau and D. A. Bau. A Preview of Pencil Code: A
Tool for Developing Mastery of Programming. In
Proceedings of the 2nd Workshop on Programming for
Mobile Touch, PROMOTO ’14, pages 21–24, New
York, NY, USA, 2014. ACM.

[9] A. F. Blackwell, K. N. Whitley, J. Good, and
M. Petre. Cognitive factors in programming with
diagrams. Artificial Intelligence Review,
15(1-2):95–114, 2001.

[10] S. Cooper, W. Dann, and R. Pausch. Teaching
objects-first in introductory computer science. In
ACM SIGCSE Bulletin, volume 35, pages 191–195.
ACM, 2003.

[11] J. Freeman. Survey of music technology
https://www.coursera.org/course/musictech, October
2014.

[12] J. Freeman, B. Magerko, T. McKlin, M. Reilly,
J. Permar, C. Summers, and E. Fruchter. Engaging
underrepresented groups in high school introductory
computing through computational remixing with
earsketch. In Proceedings of the 45th ACM technical
symposium on Computer science education, pages
85–90. ACM, 2014.

[13] J. Freeman and A. Van Troyer. Collaborative textual
improvisation in a laptop ensemble. Computer Music
Journal, (2):8, 2011.

[14] D. Kumar. Digital Playgrounds for Early Computing
Education. ACM Inroads, 5(1):20–21, Mar. 2014.

[15] T. Magnusson. The IXI lang: A SuperCollider parasite
for live coding. International Computer Music
Conference, pages 503–506. San Francisco,
Huddersfield, International Computer Music
Association, Centre for Research in New Music
University of Huddersfield, 2011.

[16] A. Mahadevan, J. Freeman, B. Magerko, and J. C.
Martinez. Earsketch: Teaching computational music
remixing in an online web audio based learning
environment. In Proceedings of the 2015 Web Audio
Conference, Paris, France, 2015.

[17] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. ACM Transactions on Computing
Education (TOCE), 10(4):16, 2010.

[18] S. McCoid, J. Freeman, B. Magerko, C. Michaud,
T. Jenkins, T. Mcklin, and H. Kan. EarSketch: An
integrated approach to teaching introductory
computer music. Organised Sound, 18(2):146–160,
Aug. 2013.

[19] N. Park and Y. Ko. Computer Education’s
Teaching-Learning Methods Using Educational
Programming Language Based on STEAM Education.
In J. J. Park, A. Zomaya, S.-S. Yeo, and S. Sahni,
editors, Network and Parallel Computing, number
7513 in Lecture Notes in Computer Science, pages
320–327. Springer Berlin Heidelberg, Jan. 2012.

[20] M. Puckette et al. Pure data: another integrated
computer music environment. Proceedings of the
Second Intercollege Computer Music Concerts, pages
37–41, 1996.

[21] C. Rader, C. Brand, and C. Lewis. Degrees of
comprehension: children’s understanding of a visual
programming environment. In Proceedings of the ACM
SIGCHI Conference on Human factors in computing
systems, pages 351–358. ACM, 1997.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for All. Commun. ACM,
52(11):60–67, Nov. 2009.

[23] N. C. Shu. Visual programming. Van Nostrand
Reinhold New York, 1988.

[24] K. N. Whitley. Visual programming languages and the
empirical evidence for and against. Journal of Visual
Languages & Computing, 8(1):109–142, 1997.


