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SUMMARY

This thesis proposes an optimized Co-ordinate Rotation Digital Computer

(CORDIC) algorithm in the rotation and extended vectoring mode of the circular

co-ordinate system. The CORDIC algorithm computes the values of trigonometric

functions and their inverses. The proposed algorithm provides the result with a lower

overall latency than existing systems. This is done by using redundant representa-

tions and approximations of the required direction and angle of each rotation. The

algorithm has been designed to provide the result in a fixed number of iterations n

for the rotation mode and 3dn/2e + bn/2c for the extended vectoring mode; where,

n is a design parameter. In each iteration, the algorithm performs between 0 and

p/n parallel rotations, where, p is the number of precision bits and n is the selected

number of iterations. A technique to handle the scaling factor compensation for such

an algorithm is proposed. The results of the functional verification for different val-

ues of n and an estimation of the overall latency are presented. Based on the results,

guidelines to choosing a value of n to meet the required performance have also been

presented.
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CHAPTER I

INTRODUCTION

In several signal processing applications, it is necessary to compute the precise val-

ues of trigonometric functions in real-time. There exist different means to do so,

including Taylor series approximations and CORDIC (Co-Ordinate Rotation Digital

Computer). However, these methods either involve the use of a multiplier or are

iterative, both of which result in a high output latency. The CORDIC algorithm is

an iterative algorithm used to compute trigonometric functions without the use of a

multiplier [12]. While the original algorithm worked in the circular co-ordinate sys-

tem, the unified CORDIC extends the algorithm to be used with the hyperbolic and

linear co-ordinate systems as well; thus enabling it to compute various more complex

functions [13]. However, the algorithm in general takes about p iterations to provide

an output having p bit precision. This high iteration count implies a high output

latency. The algorithm also provides a scaled result, although the scaling factor is

constant for basic CORDIC algorithms. Therefore, a scaled initial vector can be

loaded before performing the iterations to the same effect.

These algorithms have been widely used for various applications such as matrix

transforms [6], [17], decimal-binary conversions [2], singular value decompositions [3],

etc. The critical path for the original CORDIC algorithm is the determination of the

sign of the residual angle W. The sign of the residual angle is used to determine the

direction of rotation of the next iteration. Some of the approaches to reducing this

critical path delay are to use carry-save and signed-digit representations [3], binary

to bipolar recoding (BBR), micro-rotation angle recoding (MAR) [4], modified vector

rotational CORDIC (MVR-CORDIC) [15], Hybrid CORDIC [14], etc. These are
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discussed further in Section II. A summary of many ways to optimize the CORDIC

algorithm is presented in [9].

This thesis proposes an optimized algorithm to compute trigonometric functions

in the circular co-ordinate system using the rotation mode. In the conventional algo-

rithm, the rotations are performed in the direction determined by the residual angle;

however, the magnitude of each rotation is predefined. The idea here is to perform

rotations in the direction and of the magnitude, that provides lower residual value.

While it is computationally intensive to find the magnitude of rotation that provides

minimum error, it is relatively easy to find an approximate rotation magnitude that

provides a decrease in the residue. This approximation does not provide the rota-

tions enabling the minimum iteration count as provided by the trellis based searching

schemes [16]; however, it enables us to perform the rotations in parallel, resulting in a

reduction in the overall latency. This thesis also proposes an optimized algorithm to

calculate the inverse of trigonometric functions using the extended vectoring mode. It

is shown that the acceleration of convergence of this mode by considering the magni-

tude of rotations is difficult, but it can be done after the residue is sufficiently small.

A redundant representation at a higher level of granularity has been used in both

modes to provide an estimate of the value of the variable with good accuracy, while

also reducing the critical path time of calculating the residual angle. The proposed

algorithm has been designed and verified to work in the circular co-ordinate system,

although it can be extended to support the other co-ordinate systems as well.

The structure of this thesis is as follows. Section II describes the original CORDIC

algorithm in further detail and describes some noteworthy approaches to reduce the

latency. In Section III, the proposed and generalized algorithm is described in detail

as well as the proposed scaling compensation technique. A design implementation of

a specific case with an example is described. Section IV analyzes the performance of

the same. The conclusions of the paper are presented in Section V.
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CHAPTER II

FUNDAMENTALS AND EXISTING APPROACHES

2.1 The CORDIC Algorithm

The original CORDIC algorithm has two modes of operation: rotation mode, which

can be used to calculate the values of the sine and cosine functions, and the vectoring

mode, which can be used to calculate the inverse of the same. The function of the

algorithm can also be interpreted as the conversion of a unit vector from the polar

to cartesian co-ordinate system and vice versa. It can be designed to accept input

(provide output) in any unit, such as degrees, radians and binary fractions of a half

revolution for the rotation (vectoring) mode. In general, it takes p iterations to

converge to a result with precision of p bits for both modes of the algorithm. Also,

each iteration involves a p bit operation on the critical path. Therefore, each iteration

takes O(p) time, while the entire algorithm takes O(p2) time.

x′ = cos(β − α) · (x− tan(β − α) · y)

y′ = cos(β − α) · (y + tan(β − α) · x)

(1)

The Figure 1 shows two vectors in the circular co-ordinate systems. Given the co-

ordinates of a vector (x, y, α), the co-ordinates of the other vector can be computed

as shown in Eq. 1. The CORDIC algorithm performs rotations using similar equa-

tions. However, the rotations are performed about a predefined set of angles. These

angles are of the form β − α = tan−1(2−k). These values are chosen such that the

multiplication of the tangent function with the co-ordinates, as shown in Eq. 1, can

be performed as simple binary shifts. It has been shown in [12] that convergence is

guaranteed by using these set of angles. Also, the multiplication of the cosine function

3



Figure 1: Vectors in Circular Co-ordiante System

is ignored in the CORDIC algorithm and thus, results in scaled vectors. However,

this completely avoids the need for a multiplier and makes each rotation a simple

shift and add operation.

In the rotation mode of the CORDIC, we start with a vector of known value which

is generally chosen as 0 radian. This vector is then rotated about the predefined angles

to converge onto the required input angle. In each iteration k, the vector is rotated by

an angle of tan−12−k in the determined direction, while also accumulating a certain

scaling in its magnitude. While the angle converges to the required angle, we get

the X and Y co-ordinates as the value of the two trigonometric functions cosine and

sine; however, the output is scaled by a certain factor. Although, since the set of

angles used for each rotation is predefined, the scale factor introduced for a constant

precision of p is constant. This can therefore be accounted for by loading a scaled

initial vector instead [13]. The formula for each iteration is as shown in Eq. 2.
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Xi+1 = Xi − σi · 2−i · Yi

Yi+1 = Yi + σi · 2−i ·Xi

Wi+1 = Wi − σi · tan−1(2−i)

σi = sign(Wi) (Rotation Mode)

σi = −sign(Yi) (V ectoring Mode)

(2)

Here, Xk, Yk are the co-ordinates of the vector after kth iteration, Wk is the residual

angle after the kth iteration and σk ∈ {−1, 1} is the direction of rotation for the

k + 1th iteration. This conventional algorithm examines the sign of the residual angle

after each iteration, to decide the direction of the next. Therefore, this algorithm

determines the direction of rotation that could reduce the error, but the magnitude

of the rotation is independent of any of these values. It is rather predefined for every

iteration.

In the vectoring mode of the algorithm, the value of a vector is taken as input and

stored as X and Y . The value of W is initialized to zero. Rotations are performed

similar to the rotation mode, except that the direction of rotation is determined by

the sign of Y instead. As the vector is rotated to converge onto the value of Y to 0,

the angle corresponding to the input vector is converged upon in W . Here as well, the

magnitude of the vector gets scaled with every rotation. However, this does not affect

convergence or the final result. This is because the algorithm only depends on the sign

of Y and not the value. Also, any change in magnitude has no effect on the angle of

the vector. Therefore, this mode of the algorithm can be used to determine the angle

of a vector with known cartesian co-ordinates with any magnitude. The drawback

is that it requires both the co-ordinates. Its use to calculate inverse trigonometric

functions therefore, requires as input the values of both sine and cosine.
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2.2 Existing Approaches

It was soon realized that the critical data path for both modes of the algorithm, was

the computation of the direction of rotation based upon the sign bit of the residual

angle/Y co-ordinate. There have been approaches utilizing redundant number based

implementations [3] to reduce this critical path delay and obtain a fast carry-free

computation. This approach also enabled σi to take a value of 0 which meant that it

could choose to not perform rotations for certain angles. Using this representation,

each iteration effectively takes O(1) time. Therefore, the entire algorithm takes O(p)

time. However, in this case the direction of rotation cannot be determined directly

from the residual angle as it now utilizes a redundant representation. The direction

therefore, is obtained by an estimate instead. This affects the accuracy of the result.

Also, this raises the issue of a non-constant scaling factor as the magnitude of ro-

tations performed differs in each case. The double rotation method [11] provides a

constant scaling factor with redundant representations; however, the number of ro-

tations performed is doubled compared to the original algorithm. Another approach

was to use a radix-4 CORDIC algorithm [1]. In this method, the direction of rota-

tion is allowed to assume one of five possible values. This algorithm requires half

the number of iterations as compared to the conventional technique. However, the

computation time of an iteration, also increases.

Angle Recoding algorithms utilizing the greedy algorithm [5], extended angle sets

[16] and parallel angle recoding [10] successfully reduce the number of iterations re-

quired. These algorithms however, require rigorous computation to determine the

rotation angle and direction, but provide very low iteration count of approximately

p/3 iterations for p bit precision. It can therefore be used in cases where the input

values are known beforehand, such as calculation of twiddle factors. However, its

use to calculate these functions in real-time, would be unproductive. For a precision

of p bits, the Hybrid CORDIC algorithm [14] provides an algorithm to compute the
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result with p/3 + 1 iterations. The underlying idea is that after approximately p/3

iterations, the rotations can be performed in parallel. This is because the direction of

rotation can be simply obtained by examining the respective bit in the residual angle.

These methods also require a complex scaling factor compensation, which adds to

the overall latency. The BBR and MAR techniques described by [4] provide great

benefit in being able to perform rotations in parallel, but the recoding by itself takes

considerable computation time.

X ′i = Xi − σi · 2−i−1 · Yi

Xi+1 = X ′i − σi · 2−i−1 · Y ′i

Y ′i = Yi + σi · 2−i−1 ·Xi

Yi+1 = Y ′i + σi · 2−i−1 ·X ′i

W ′
i = Wi − σi · tan−1(2−i−1)

Wi+1 = W ′
i − σi · tan−1(2−i−1)

Ti+1 = Ti + (Ti · 2−2i)

σi = (Ti > Xi) ? − 1 : 1 (Cosine Matching)

σi = (Ti > Yi) ? 1 : − 1 (Sine Matching)

(3)

The vectoring mode of the algorithm can also be optimized using redundant repre-

sentations [3]. However, its use to calculate inverse functions remains limited. A

technique to obtain the inverse sine or cosine values, without the knowledge of the

other, was proposed in [8] and [7]. This mode is called as the extended vectoring

mode. The idea here was to perform CORDIC rotations to match the target value

for X (Y ) to calculate inverse cosine (sine). The equations for the same are shown

in Eq. 3. Here, Xk, Yk and Wk are the co-ordinates and the residual angle, similar

to the rotation mode. The variable Tk is the current target to be matched, while σk

is the direction of rotation. In this mode of the algorithm, rotations are performed

7



to converge to X = T (Y = T ), for cosine (sine) matching. However, since every

rotation also scales the magnitude of the vector, a similar scaling needs to be added

to the target T as well. Therefore, double rotations are performed here, which helps

to scale the target value with only simple shift and add operations. This has been

explained in further detail in Section 3.2.2. This technique also requires p iterations

to converge to a result with p bit precision, while the computation time of each iter-

ation has now tripled. This is because in every iteration we are performing a double

rotation and then a comparison to determine the sign for the next iteration.
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CHAPTER III

THE PROPOSED ALGORITHM AND ARCHITECTURE

3.1 Rotation Mode

The rotation mode of the proposed algorithm can be used to compute values of

trigonometric functions such as sine and cosine, with lower latency. The following

description of the algorithm represents the input and residual angle as binary fractions

of a half revolution i.e W ∈ [−1, 1) 7→ [−π, π). However, these representations can

be applied to radian representations as well.

Here, the residual angle W and the values of X and Y have been implemented

using a redundant representation; however the redundancy for W is at a higher level

of granularity. As described earlier, each rotation in the original algorithm is a p bit

operation, but it guarantees the direction providing lower residue. Using the redun-

dant representation, each rotation becomes a 1 bit operation; however, the direction

is determined by an estimate. Therefore, the idea here is to use an intermediate rep-

resentation for W . This would provide an intermediate computation time between

the two initially described representations, while also providing adequate accuracy

about its sign and value. Also, another salient feature of the proposed algorithm is

that the magnitude of the residue is used to determine the rotation angle. That is, for

example, for a very small input angle value, the original CORDIC algorithm would

still start rotation by the maximum angle i.e. tan−11. Although, the algorithm stills

converges onto the input angle, this iteration would increase the residue. However,

the proposed algorithm examines the value of the residue to determine the rotation

angle. While the greedy algorithm [5] and the trellis based searching schemes [16] also

do the same, they involve rigorous computation. The proposed algorithm determines
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Figure 2: Set Representation

an approximate rotation angle, using negligible computation. Therefore, approxima-

tions of the required rotation angle and direction can be obtained to perform them

in parallel.

For a fixed precision of p bits for the input angle and the output values, we divide

the input angle into n sets of p/n bits respectively, where n is a fixed constant. Let

these sets be Wi with i ∈ [0, n− 1]. Each of these n sets is viewed as a counter with

a particular weight of 2p((i/n)−1) for the angle mapping [0, 1] 7→ [0, π]. These sets are

augmented to contain extra (redundant) bits, enabling them to assume a larger range

of signed values as shown in Fig. 2. The sets are initialized such that the standard

bits for each set are taken directly from the input angle, while the redundant bits are

set to 0. Therefore, the residual angle after any rotation can be evaluated by Eq. 4.

The representation used for X and Y can be similar to the carry-save representations,

since it provides least computation time and the determination of the direction and

magnitude of rotation does not depend on these values.

W =
n−1∑
i=0

Wi × 2p((i/n)−1) (4)

The algorithm has been designed such that each iteration j would simply work on

reducing the value of set Wn−j to 0 and it thus takes n iterations to compute the

results. For the case of n = p, we would have a similar representation of the data as

10



Theorem 1. For W being the residual angle and i ∈ [2,∞), if 21−i > |W/π| ≥ 2−i

then ||W | − tan−1(22−i)| < |W |

Proof. If W > 0 and W ≥ tan−1(22−i) then

W − tan−1(22−i) < W (5)

tan−1(22−i) > 0 (6)

This is true for all values of i ∈ [2,∞)

If W > 0 and W < tan−1(22−i) then

−W + tan−1(22−i) < W (7)

tan−1(22−i) < 2W (8)

But W can only have a minimum value of π2−i

tan−1(22−i) < π21−i (9)

This is also true for all values of i ∈ [2,∞)
Similarly, this can be proven for negative values of W

used in the carry-save and signed-digit redundant representations; whereas, for n = 1,

the representation would be similar to the conventional CORDIC algorithm. However,

the way this algorithm works is significantly different than either of these. Therefore,

for intermediate values of n, we get an intermediate computation time and accuracy

of the value. In the proposed algorithm, we implement a mechanism to provide the

direction of rotation which guarantees the direction that can provide a reduction in

error, while the angle or magnitude of rotation is determined by approximation. Also,

each rotation here, is effectively a p/n bit operation.

3.1.1 Rotation Direction and Angle Determination

Here, each iteration comprises of multiple steps. While the conventional CORDIC

would perform one rotation per iteration, the proposed algorithm performs multiple

rotations in parallel. In each iteration j, the algorithm performs a rotation till the

value of the respective residual set Wn−j is reduced to zero. The direction of rotation

11



for each step is determined by examining the sign of Wn−j, similar to the conventional

algorithm. Whereas, the angle of rotation is chosen by the location of the most

significant bit in Wn−j, that has a value which is the complement of its sign bit. The

idea here is to simplify the determination of rotation angle and to perform a rotation

of magnitude that reduces the error. Theorem 1 shows that for all values of the

residual angle W < π/2, the residual angle reduces after each rotation based on this

angle selection technique. A similar proof can also be shown for rotation magnitude

determined in a similar fashion from W represented in radians. This provides a

reduction in error; however, it does not ensure that it provides the minimal error.

Therefore, this guarantees convergence provided the angle and direction of rotation

are maintained as stated here. That is, convergence is guaranteed for sufficiently low

values of n since the effect of redundancy decreases with n. To provide more accurate

estimates of the angle, the algorithm incorporates a sign compensation technique

which has been discussed further in Section 3.1.3. After each rotation, the values

of the residual angle sets are updated to reflect the rotation and this process is

repeated till Wn−j is zero. Besides, at the end of every iteration there is an overflow

handling function, which adds the redundant bits of Wn−j−2 to Wn−j−1 ensuring

optimum representation for the next iteration. The number of rotations performed in

each iteration would range from [0, p/n]. The technique to handle the scaling factor

introduced has been discussed in the following subsection.

3.1.2 Scaling Compensation

The algorithm performs rotations using a predefined set of angles taking the form

tan−1(2−r), where r ∈ [0, p− 1]. The size of the set of angles required, is equal to the

number of precision bits p. In contrast to the conventional algorithm, the proposed

algorithm performs a rotation about only a subset of this set of angles. Also, the

angle used for every rotation is not predefined, but estimated from the value of the
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respective residual set Wn−j. Therefore, there is a need to appropriately calculate

and eliminate the scaling in the end result. The scaling factor introduced due to each

rotation of tan−12−r, is (cos(tan−12−r))−1.

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
− ... (10)

lim
x→0

tan−1x = x (11)

cos(tan−12−r) = 1− 2−2r−1 + x

where, x < 2−p

r ≥ p/4

(12)

The scaling compensation technique employed here is based on a few heuristics. The

Taylor series expansion of cosine has been shown in Eq. 10. Also, the value of arctan

can be estimated for small values using Eq. 11. On combining these two equations,

we get the relation presented in Eq. 12. This shows that the scaling factor introduced

can be estimated using a simple shift and add operation. It can also be seen that

for values of r ≥ p/2, the value can be estimated as 1 and therefore, no additional

operations need to be performed. The scaling factor introduced due to the angles in

the range tan−1(2−p/2) to tan−1(2−p) is therefore, negligible.

For the p/4 angles for which the scaling factor cannot be estimated using Eq. 12,

we can employ the double rotation method described in [11]. Here, we perform two

rotations for every angle such that for a rotation in direction σi for angle tan−12−r,

we instead perform two rotations in the direction σi of angle tan−12−r−1. While,

if a rotation about any angle is not to be performed, we can instead perform two

rotations about that angle, but in opposite directions. Thereby still accumulating

the scaling factor, while maintaining the angle. This technique enables us to skip

rotations about certain angles as desired by the algorithm. Therefore, the scaling

factor remains constant. Here, we are using a carry-save implementation for X and
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Algorithm 1: Super-CORDIC Rotation (W )

Initialize values of W[n− 1 : 0]
Load Scaled Initial Vector
for j = 0 to n− 1 do
iter = n− 1− j
for rot = 1 to p/n do
if Witer! = 0 then

Angle determination(Witer)
W = Modify residue(W )
Perform rotations

else
W = Overflow handle(W )
break

end if
end for

end for

Figure 3: Pseudo-Code for the proposed Super-CORDIC Rotation architecture

Y , therefore, the doubled number of rotations for the first p/4 angles is still not on

the critical path as long as n is chosen so that p/n > 4.

3.1.3 Architectural Implementation

The architectural design for implementing this algorithm is described in further detail

in this section. Here, in each iteration j, the angles that may be used for rotation,

belong to the set tan−1(2−r) where r ∈ [jp/n, (j + 1)(p/n) − 1]. During the first

iteration, the scaled initial vector is loaded and double rotations are performed about

every determined angle. In the second iteration, we perform an additional rotation to

compensate for the scaling factor using the approximation as stated by Eq. 12. The

entire algorithm is therefore, as described by the pseudo-code presented in Fig. 3.

The presented algorithm provides convergence over the input domain of [−π/4, π/4].

The input domain has been explained further in the next subsection.

To provide a more accurate estimate of the residual angle, a sign compensation

technique has been used. The technique avoids an error in angle and direction selec-

tion due to the redundant representation. In the carry save representation, a single
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Table 1: Example of Sign Compensation for Input Angle 10 Degrees

Angle W W4 W3 W2 W1

10 0x1C71C7 0x7 0x7 0x7 0x7

Rotation tan−1 2−4 0x3FE 0x3DE 0x3D0 0x3CB

6.42367 0x124593 0x5 0x3E5 0x3D7 0x3D2

Rotation tan−1 2−4 0x3FE 0x3DE 0x3D0 0x3CB

2.84733 0x8195D 0x2 0x3 0x3A7 0x39D

carry is propagated to the next bit position in every step. Similar is the case with

signed digit representations. The sign compensation technique described here is anal-

ogous to the same. It propagates a sign change to the higher residual set, without

adding any additional latency. For the jth iteration, it checks if the sign bits of Wn−j

and Wn−j−1 are different. In such a case, it complements the initial carry to the mod-

ify residue function for Wn−j and adds an equivalent number to Wn−j−1. However, in

the case when the sign bits are different and |Wn−j| = 1, the rotation is not performed

since the result of the sign compensation would result in Wn−j = 0. The pseudo-code

for the entire modify residue function with the sign compensation technique has been

described in Fig. 4. An example of sign compensation has been showed in Table 1.

The algorithm has been applied on an input angle of 10 degrees for p = 24 and n = 4

and the first double rotation of tan−1 2−4 has been shown. The representation of the

residual sets is, Wi[5 : 0] are the standard bits and Wi[9 : 6] are the redundant bits,

including the sign bit. After the first rotation, the sign of W4 and W3 are different and

therefore, sign compensation has been performed in the following rotation. It can be

observed that the effective value of residue as computed by Eq. 4, is still consistent.

Determining the angle of rotation based on Theorem 1, provides a simple approach

for positive values of W and low values of n. This is because lower the value of n,

lower is the effect of redundancy. Also, the implementation of the same is essentially

just an examination of the respective bits. However, this becomes a little complex in

15



Algorithm 2: Modify residue (W )

sign comp = Wn−j[s]⊕Wn−j−1[s]
for set = n− 1 to 0 do
modset = (angle× 2p−(set×n)/π) mod 2p/n

modset = (p/n){direction} ⊕modset
mod carryset = direction

end for
mod carryiter = sign comp⊕ direction
mod carryiter−1 = sign comp & direction
for set = n− 1 to 0 do
Wset = Wset +modset +mod carryset

end for
return W

Figure 4: Approximate pseudo-code for Modify Residue Function

Algorithm 3: Angle Determination (Witer)

tangent = (p/n)× (n− iter − 1) + 2
direction = Witer[s]
for bit = 0 to (p/n)− 1 do
if Witer[(p/n)− 1− bit] = Witer[s] then
tangent + = bit−Witer[s]
break

end if
end for
angle = tan−1(tangent)

Figure 5: Approximate pseudo-code for Angle Determination Function

the case of negative values of W , since checking for the validity of the input condition

of Theorem 1 is no longer a simple bit examination. Therefore, using the same

logic as has been presented by the pseudo-code in Fig. 5, does not follow the angle

determination logic of the theorem strictly and is more of an approximation.

The advantage of using this redundant representation is that each addition op-

eration now becomes only a p/n bit operation. This implies that if there is a carry

generated in any set Wi instead of propagating it to Wi+1, it may be stored within

Wi as a overflow counter. To accommodate these overflow values, each set has some

redundant bits as shown in Fig. 2. The required number of redundant bits k would
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Algorithm 4: Overflow Handle (W )

if Witer = 0 then
Witer−1 + = (p/n+ 1){Witer−2[sign]}+Witer−2[X]
Witer−2[X] = 0

else
Witer−1 + = Witer << p/n
Witer = 0

end if

Figure 6: Approximate pseudo-code for Overflow Handle Function

Table 2: Example for rotation mode for p = 24, n = 4 and input angle 25 degrees

Iteration Residual
Angle (W)

W3 W2 W1 W0 Rotation

0x471C72 0x11 0x31 0x31 0x32

Iteration 1 0x1F2F91 0x8 0x3F3 0x3FE 0x11 14.03624
0xFFF742B0 0x3FF 0x3B5 0x3CB 0x3F0 14.03624
0xFFF9CE88 0x3FF 0x3DD 0x3FA 0x8 -0.89517
0xFFFC5A60 0 0x3C5 0x29 0x20 -0.89517

Iteration 2 0xFFFEE638 0 0x3EE 0x18 0x38 -0.89517
0x2C29 0 0x3 0x3EF 0x69 -0.44761
0x36B 0 0 0xD 0x2B 5.59528e-2

Iteration 3 0xE0 0 0 0x3 0x20 3.49705e-3
0x3E 0 0 0 0x3E 8.74264e-4

Iteration 4 0x16 0 0 0 0x16 2.18566e-4
0x2 0 0 0 0x2 1.09283e-4
0 0 0 0 0 1.36603e-5

be as stated in Eq. 13 to ensure proper functionality even in the worst case. The

number of redundant bits here, including the sign bit, would generally be lesser than

in the case of other redundant approaches [3]. The pseudo-code for the overflow

handle function has been presented in Fig. 6. It shows that, if there is case where

an iteration j has not reduced Wn−j to zero, it is moved over into the Wn−j−1 set

allowing the next iteration to reduce it further. If Wn−j is zero, then the redundant

bits from Wn−j−2 are moved into Wn−j−1 to ensure optimal representation for the

next iteration.
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To demonstrate the working of this algorithm, an example has been presented in

table 3.1.3 for values p = 24 and n = 4. Here the input angle has been chosen as 25

degrees and is represented as a binary fraction of a half revolution. It can be seen

from iteration 1 that double rotations are performed to preserve the scaling factor.

The algorithm converges to Wn−j = 0 in each iteration j. The final error present in

the values of X and Y is 1.493× 10−7 and 3.062× 10−7 respectively.

2k+(p/n) − 1 ≥ (2p/n − 1) + (2log2(p/n) − 1)

+ (p/n)(2p/n − 1)

k ≥ log2(p/n) + 1

(13)

The maximum computation time required for an iteration is p/n times the time

required to modify the residue, plus a p/n bit operation for overflow handling. This

evaluates to (p/n)× ((p/n) + 1) bit operations per iteration. Therefore, the choice of

value of n is crucial here. Considering the scaling factor heuristics presented above, it

follows that one should have n ≤ 4 to avoid scaling error. Therefore, the ideal value of

n can be considered to be 4 to keep the hardware cost minimal, while avoiding scaling

error. The total latency of the algorithm can be viewed as n times the computation

time of one iteration, which evaluates to p((p/n) + 1). This implies that greater the

value of n, lower is the total latency of the algorithm. However, for high values of n the

error in the output due to the scaling factor and also due to the difficulty to maintain

the angle determination logic based on Theorem 1, increases considerably. Note, in

comparison to the conventional CORDIC algorithm, the effective iteration count of

the proposed algorithm can be considered to be (p/n) + 1 as per the total latency of

the algorithm. This is because, each iteration in the original CORDIC algorithm was

a p bit operation. For a design with each iteration taking one cycle, this algorithm

would therefore take n cycles. The algorithm could also be designed such that each
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rotation takes one cycle. In this case, the total number of cycles required would vary

between 0 to p+n. However, the time period of the cycle would be much smaller than

the original algorithm, since the computation time of each rotation has decreased by

a factor of n.

3.1.4 Input Domain Extension

The use of redundant representations pose problems in detection of a sign change,

since the generated carry may or may not always propagate till the sign bit. For input

angles very close to 0 radian, the proposed algorithm would perform rotations of very

small magnitude to converge to the result and therefore, the vector never crosses the

zero boundary where the value of Y would incur a sign change. In contrast, for input

angle values close to π/2, the proposed algorithm performs rotations starting with a

large magnitude, which may cause the vector to cross the π/2 boundary, where the

value of X incurs a sign change. Therefore, the convergence domain for the proposed

algorithm has been defined to be [−π/4, π/4].

However, the algorithm can be extended to converge over the entire 2π domain

as follows. Since the algorithm begins with loading a known and scaled vector value

which is taken to be at angle 0 radian, we can simply change the the input domain

by instead loading a different vector. The value of the residual sets Wi would also be

initialized differently according to the loaded vector. Therefore, we cover the entire

input domain of 2π by following the relations mentioned in Eq. 14. It also shows

that for the different initial vectors, the value of the co-ordinate is either loaded in

X0 or Y0 and it may be negative or positive. The absolute value required is the same

and therefore, no additional storage is required.
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W ∈ [−π/4, π/4) θ = 0 X0 = 1/K Y0 = 0

W ∈ [π/4, 3π/4) θ = π/2 X0 = 0 Y0 = 1/K

W ∈ [3π/4, 5π/4) θ = π X0 = −1/K Y0 = 0

W ∈ [5π/4, 7π/4) θ = 3π/2 X0 = 0 Y0 = −1/K

where, W = Input angle

θ = Angular Co-ordinate of Initial Vector

X0, Y0 = Scaled Initial Vector Co-ordinates

(14)

When the representation used for W is that of binary fractions of the half revolution,

checking for the domain of the input angle and accordingly loading the initial vector is

simple. It can be achieved simply by examining the three MSB bits of the input angle.

Also, initializing the residual sets Wi also does not require any additional overhead in

terms of computation. In the case of a radian representation for W , it is not as simple

to detect what domain the input angle lies in. However, the domains mentioned in

Eq. 14 are not strict and are still valid as long as the input angle does not lie close

to θ + π/2. Therefore, we can have obscure boundaries for the domains which can

be realized with a simple examination of the MSB bits as well. Although, initializing

the value of the residual sets Wi has a computational overheard. We need to compute

the value of W − θ and use this value to initialize the residual sets. This is a p

bit operation and therefore, can be considered as an additional iteration. However,

the benefit of using this representation is that for small values of the residue, the

rotation direction and angle can be determined in parallel as presented in Hybrid

CORDIC[14]. This enables us to perform all the iterations that do not involve any

double rotation or scaling compensation, to be performed in parallel. For the ideal

proposed value of n = 4, this implies that one less iteration is required. Therefore, the

overall effect of the domain extension with the use of the Hybrid CORDIC technique
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adds no additional latency.

3.2 Extended Vectoring Mode

The vectoring mode of the conventional CORDIC algorithm has limited uses as it

requires the value of sine and cosine both, to compute the angle of its input vector.

Therefore, it cannot be used to calculate the values of inverse sine and inverse cosine

if one of these values is not known. As described above, the CORDIC extended

vectoring as proposed by [8] provides a technique to calculate these functions. This

is done by performing rotations of a known vector to match the input target value,

opposed to the conventional vectoring mode where the initial vector itself is taken as

input. However, to compensate for the scaling factor added after every rotation, the

double rotation technique has been utilized. It has been shown in the following section

how the double rotations help to estimate the scaling factor, without requiring any

multiplication. Besides, the direction of each rotation is determined by the sign of the

difference between the target and the corresponding value of the vector. This results

in each iteration being thrice in length, as compared to the conventional CORDIC.

Also, it can also be shown that only a output precision of 2−(p/2) can be obtained for

an input precision of p bits and this requires p number of iterations.

The differences between the approach for this mode in contrast to the rotation

mode are as follows. In the rotation mode, the scaling factor can cause an error in

the result and needs to be handled. In the vectoring mode, there is no requirement

for this since any scaling in magnitude would not affect the sign or the angle of the

vector. Although, in extended vectoring we are comparing the value of the vector to

the input target value. Therefore, the algorithm in designed to modify the target by

the same scaling factor, as is introduced by the CORDIC and then performing the

comparison. Another approach to handling the scaling, as described in [7], is to start

with a scaled initial vector to counter the scaling introduced by CORDIC. However,
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in this case the initial few rotations are performed based on an approximation, while

the scaling factor is eliminated.

Another crucial difference between the two modes is that in the rotation mode,

the direction of rotation is determined by the residual angle. This value tends to

relate directly to the angle values utilized here by the relation mentioned in Eq. 11.

It is therefore, easier to approximate the magnitude of the required rotation as well,

from the value of the residue. However, in the case of vectoring the direction is

determined by the Y co-ordinate, while in the extended vectoring it is determined

by the difference in target and co-ordinate values. Here, although the sign of these

variables provide us the direction of rotation required, an estimate of the magnitude

is difficult to obtain, since there is no direct relation between these variables and the

set of angles used. Therefore, the scope of accelerating convergence by taking into

account the magnitude of rotation as well as the direction, as was done in the rotation

mode, is limited in this case.

Ti+1 = Ti + Ti · 2−2i

Di+1 = Xi+1 − Ti+1 (Cosine Matching)

Di+1 = Yi+1 − Ti+1 (Sine Matching)

(15)

Here, we define two new variables D and T which are computed as stated by the

Eq. 15. The rest of the variables are the same as defined in Eq. 3. In the proposed

algorithm, the representation of D is the same as that of W in the rotation mode,

as shown in Fig. 2. The other variables i.e. X, Y , W and T can be represented

using a carry save representation. This is because the value of D would be used to

determine the direction and angle of rotation, while there is no such dependency on

the other variables. Therefore, the non-redundant value of D after any rotation in

the algorithm can be computed by the Eq. 16.
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D =
n−1∑
i=0

Di × 2p((i/n)−1) (16)

3.2.1 Rotation Direction and Angle Determination

Similar to the rotation mode, each iteration here as well, takes multiple steps. Al-

though, while it was essentially a p/n bit operation to perform a rotation in the

rotation mode, here it is a 3p/n bit operation for every rotation that introduces a

scaling factor. Whereas, the rotations that do not introduce a scaling factor and thus,

do not need a double rotation, can be performed as a p/n bit operation. To keep

the time period of the input clock similar to that of the rotation mode, here, three

iterations are used to reduce each set Di to zero for all sets Dn−j where j < n/2. This

is because only p/2 angles from the entire set of predefined angles, introduce a scaling

as shown in Section 3.1.2. The number of iterations requiring the double rotations

is 3dn/2e; while, the number not requiring double rotations is bn/2c. Therefore, the

total iteration count for the proposed algorithm is 3dn/2e+ bn/2c.

As mentioned above, it is difficult to approximate the magnitude of rotation re-

quired for the extended vectoring mode. Therefore, for the first 3dn/2e iterations,

the rotations are performed sequentially and are predefined, as was the case with the

conventional algorithm. However, a double rotation is performed since the scaling

factor introduced due to it can be easily estimated using a shift and add operation.

Therefore, for these iterations the direction is determined by the sign of the higher

valued non-zero set Di and the magnitude of rotations are predefined.

For the remaining bn/2c iterations, since the accumulated angle would have con-

verged to a value close to the required value, the relation stated in Eq. 17 can be used

to also determine an approximate magnitude of the rotation to be performed. This

relation only shows the case for cosine matching, but a similar case for sine matching

can also be shown. Therefore, we can get an estimate of the magnitude of rotation
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to be performed once the angle accumulated in W is close enough to the required θ.

However, it requires the value of cosec of W and requires a multiplication operation.

Here, we use the sectioning approach. Since the set of angles to be used is predefined,

we do not require an exact value or even an estimate of cosec, rather we can use this

relation just by having boundaries as to which power of two, the value of cosec is

closest to. We could define obscure boundaries for the same, which can be realized

by simple bit examination. Therefore, this can be implemented without the use of a

multiplier and does not require additional storage either. Therefore, for these itera-

tions the direction of rotation is determined in a similar fashion as described above;

however, the magnitude of rotation is also estimated.

D = cosW − cosθ

= 2 · sin((θ +W )/2) · sin((θ −W )/2)

≈ 2 · sin(θ) · ((θ −W )/2)

D · cosec(θ) ≈ θ −W

(17)

3.2.2 Scaling Factor Estimation

As mentioned above, the scaling factor in this case need not be compensated, but

the target needs to be updated with an equivalent scaling. This is done using the

double rotation technique. Although, this technique was also used in the rotation

mode for the first iteration, the purpose of using the same is different in the two

cases. In the rotation mode, double rotation enables the algorithm to skip a rotation

about an angle, while still introducing the scaling factor attributed to it. Here, double

rotations are performed because it is easier to estimate the scaling factor. The scaling

factor introduced due to a rotation of tan−12−k is (cos(tan−12−r))−1. On performing

double rotations, this scaling factor can be estimated as shown in Eq. 18. Therefore,

we perform double rotations while the target T is also updated to account for this
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Algorithm 5: Super-CORDIC Extended Vectoring (T )

Initialize values of D[n− 1 : 0]
Load Initial Vector
for j = 0 to 3dn/2e do
for rot = 1 to p/3n do

Direction determination(D)
D = Modify residue(D)
Perform double rotations

end for
D = Overflow handle(D)
break

end for
for j = 0 to bn/2c do
for rot = 1 to p/n do

Angle and Direction determination(D)
D = Modify residue(D)
Perform rotations

end for
W = Overflow handle(W )
break

end for

Figure 7: Pseudo-Code for the proposed Super-CORDIC Extended Vectoring archi-
tecture

scaling factor. Thus, the comparison between the co-ordinate and the target has a

constant scaling in both the terms.

K = (cos(tan−12−r))−1 (Single Rotation)

K =
√

1 + 2−2r

K2 = 1 + 2−2r (Double Rotation)

(18)

3.2.3 Architectural Implementation

The input target value is placed into the standard bits of D, while the redundant bits

are set to zero. During the first iteration, a known initial vector is loaded and rotations

are performed on this vector till the value of the required co-ordinate matches the

input target value. While doing so, the angle accumulated over the rotations in

register W is the inverse cosine/sine of the input target value and is output at the

25



end of the algorithm. Rotations are performed by determining the direction and

magnitude of rotation as described in the previous section. In each of the initial

3dn/2e iterations, p/3n double rotations are performed. While doing so, the target

value is also updated to reflect the accumulated scaling and W is updated to reflect

the angle of the current vector. Finally, the register D is computed as the difference

between the corresponding co-ordinate and the target value and is used further for

the next rotation.

In the remaining bn/2c iterations, a variable number of rotations are performed

in each iteration ranging from 0 to p/n. The rotations performed in these iterations

do not contribute any scaling factor and thus, there is no need to update the target

value. Therefore, each of these rotations is a p/n bit operation. The magnitude of

rotations for these iterations are determined by the relation presented in Eq. 17. Here

the update of the D register is also performed with sign compensation to reduce the

effect of redundancy. Also, at the end of each of these iterations the overflow handling

has also been employed similar to the rotation mode. The entire algorithm is shown

by the pseudo-code in Fig. 7.

The total number of redundant bits required in D would be the same as was the

case with the rotation mode, since it accounts for the worst case. The domain of

this algorithm has been restricted to [0, 1] to avoid the need additional hardware to

detect sign changes. The output range of the algorithm is mapped onto [0, π/2]. The

inverse of negative values of sine and cosine can be easily computed by mapping them

onto the domain of this algorithm. It can also be noted that since cosec(π/2− θ) =

sec(θ), the number of values required for approximations of the magnitude of rotation

based on Eq. 17, remain the same and do not need to be doubled to incorporate

the computation of sine inverses. The total computation time of this algorithm is

(p/3n)((3p/n) + 1)(3dn/2e) + (p/n)((p/n) + 1)(bn/2c). In comparison to the original

algorithm with each iteration as a p bit operation, the effective iteration count here is
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Table 3: Example of extended vectoring for p = 24, n = 4 and input cos 25

Residue (D) X Y W T Rotation

0x17FC35 0xFFFFFF 0 0 0xE803CA

0xFF97BF9 0xF00000 0x7FFFFE 0x7D6DD7 0xF68406 14.036
0x11E1E7 0x10C3FFE 0x420000 0x3DC262 0xFA5E15 -7.125
0x79B4D 0x102F3C0 0x6345FE 0x5DB7BD 0xFB5872 3.576
0xE75D 0xFC7EA5 0x735C67 0x6DB667 0xFB9747 1.789

0xFFFD2CFB 0xF8D3FC 0x7B3925 0x75B63C 0xFBA700 0.895
0xFFFF120C 0xFABCFB 0x7753EA 0x71B642 0xFBAAEE -0.447

0xFFFFFFBC 0xFBAAA6 0x755DFB 0x6FB643 0xFBABE9 -0.223
0x739B 0xFC1FC3 0x746235 0x6EB644 0xFBAC27 -0.111
0x394D 0xFBE584 0x74E03C 0x6F3643 0xFBAC36 5.595e-2
0x1C11 0xFBC84A 0x751F32 0x6F7642 0xFBAC39 2.797e-2
0xD6E 0xFBB9A7 0x753EA8 0x6F9641 0xFBAC39 1.398e-2
0x61C 0xFBB255 0x754E62 0x6FA640 0xFBAC39 6.994e-3

0xFFFFFEC9 0xFBAB02 0x755E1B 0x6FB63F 0xFBAC39 1.398e-2
0x9D 0xFBACD6 0x755A2F 0x6FB240 0xFBAC39 -3.497e-3

0xFFFFFFB5 0xFBABED 0x755C25 0x6FB43F 0xFBAC39 1.748e-3
0x28 0xFBAC61 0x755B2C 0x6FB340 0xFBAC39 -8.742e-4

0xFFFFFFEE 0xFBAC27 0x755BA8 0x6FB3BF 0xFBAC39 4.371e-4
0x9 0xFBAC42 0x755B6A 0x6FB380 0xFBAC39 -2.185e-4

0xFFFFFFFD 0xFBAC36 0x755B88 0x6FB39F 0xFBAC39 1.092e-4
0xFFFFFFFE 0xFBAC38 0x755B82 0x6FB398 0xFBAC39 -2.732e-5

(1/3n)((3p/n) + 1)(3dn/2e) + (1/n)((p/n) + 1)(bn/2c). For the ideal value of n = 4,

the effective iteration count evaluates to (p/2) + 1.

An example of the algorithm has been presented in Table 3.2.3. It can be seen

that during the first two iterations, double rotations are performed with the rotation

magnitude being predetermined. It can also be seen that the the target value T

is also scaled with each rotation to ensure the scaling in the target and the co-

ordinates is the same. Also, this scaling has no effect after the first two iterations and

therefore, double rotations are not required in the following iterations. In contrast to

the rotation mode, the value of the co-ordinates may take values greater than 1 as

shown in the first rotation of the first iteration in the given example. This is again

due to the scaling and therefore, one extra bit is required to represent these values.
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In the third and final iteration, the rotations are accelerated using the magnitude

approximation presented in Eq. 17. It can be seen that, as the value of X approaches

the value of T i.e. as the value of D reduces, the result is converged upon in W . The

error in the final result of this example is 1.8206× 10−6.
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CHAPTER IV

PERFORMANCE ANALYSIS

4.1 Rotation Mode

The rotation mode of the proposed algorithm was simulated for different values for

p, n and (p/n). The error in the results obtained is as shown in tables 4, 5 and 6.

These values are based on 10000 samples evenly distributed over the range [0, π/4]. As

described above, greater the value of n, lower is the overall latency, although, higher

is the error in the result. It can be seen that for a constant value of p/n, increasing

the number of precision bits p, does not do much benefit. Also, the results for the

optimal value of n = 4 show the minimum error. On decreasing the value of n to 3,

it can be seen that there is a slight decrease in error. However, here the hardware

cost as well as the overall latency would increase considerably. On increasing the

domain of the rotation mode of the algorithm, the results obtained are as shown in

Table 7. These values are based on 10000 samples evenly distributed over the range

[0, 2π]. For this mode of the algorithm, the average expected error would be around

2−p, assuming there is no scaling error. However, a slightly higher absolute error is

obtained due to truncation errors.

Table 4: Error values for rotation mode with constant p/n = 4

Error P = 12 P = 16 P = 20 P = 24 P = 28

Avg. in X 1.898e-4 1.440e-5 3.319e-6 3.287e-6 3.286e-6
Avg. in Y 2.617e-4 2.078e-5 2.116e-6 1.396e-6 1.365e-6
Max. in X 8.264e-4 6.422e-5 1.247e-5 1.014e-5 1.006e-5
Max. in Y 1.245e-3 8.887e-5 1.008e-5 6.720e-6 6.657e-6
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Table 5: Error values for rotation mode with constant n = 4

Error P = 12 P = 16 P = 20 P = 24 P = 28

Avg. in X 1.888e-4 1.440e-5 1.055e-6 8.092e-8 5.210e-9
Avg. in Y 2.558e-4 2.078e-5 1.637e-6 1.055e-7 8.200e-9
Max. in X 9.231e-4 6.422e-5 5.449e-6 3.900e-7 2.529e-8
Max. in Y 3.101e-3 8.887e-5 8.671e-6 4.466e-7 3.476e-8

Table 6: Error values for rotation mode with constant p = 24

Error N = 8 N = 6 N = 4 N = 3

Avg. in X 5.904e-5 3.287e-6 8.092e-8 7.298e-8
Avg. in Y 2.944e-5 1.396e-6 1.055e-7 8.620e-8
Max. in X 8.667e-4 1.014e-5 3.900e-7 3.568e-7
Max. in Y 3.021e-3 6.720e-6 4.466e-7 4.246e-7

4.2 Extended Vectoring Mode

This mode of the proposed algorithm does not provide as much flexibility in terms of

designing for speed or accuracy. Since the initial p/2 rotations have to be performed

sequentially and cannot be accelerated, the choice of the value of n would have to

be greater than or equal to 4. The algorithm was simulated and tested for p = 24

and n = 4 for 10000 samples evenly distributed over the range [0, π/4]. The average

error obtained was 1.411×10−5, while the maximum error obtained was 9.049×10−4.

For this mode of the algorithm, the average expected error would be around 2−p/2.

Again, a slightly higher absolute error is obtained due to truncation errors.

Table 7: Error values for rotation mode with domain extension for constant p = 24

Error N = 6 N = 4 N = 3 N = 2

Avg. in X 8.378e-5 1.299e-6 1.643e-7 2.179e-7
Avg. in Y 8.377e-5 1.290e-6 1.650e-7 2.221e-7
Max. in X 2.606e-4 4.406e-6 7.346e-7 8.275e-7
Max. in Y 2.606e-4 4.428e-6 7.484e-7 8.305e-7
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CHAPTER V

CONCLUSION

The Super-CORDIC rotation mode algorithm presents a generalized algorithm to

design a CORDIC processor based on the requirements in terms of hardware cost,

overall latency and absolute error in the output. The value of the design parameter

n can be chosen to meet required performance. The higher the value, the higher is

the error in the final result and lower is the latency. For the proposed ideal value of

design parameter n = 4, the Super-CORDIC presents an rotation mode algorithm

that has no scaling error and an effective iteration count of (p/n) + 1. This iteration

count is lower than any existing rotation mode CORDIC system. The hardware cost

of the algorithm would however, be higher than the original algorithm but lower than

the other redundant CORDIC systems. The only limitation on the value of n is that

p/n ≥ 4, so that the double rotations of the first iteration do not add additional

latency.

The extended vectoring mode of the algorithm of the Super-CORDIC has been

optimized to provide the result in 3dn/2e+ bn/2c iterations. Therefore, the effective

iteration count for the ideal case of n = 4 is p/2 + 1. The choice of the design

parameter n has more strict limitations here and can be only chosen such that n ≤ 4.

However, it is possible to design a Super-CORDIC processor for both modes, with the

ideal value of n = 4. Therefore, the Super-CORDIC algorithm presents an optimized

low latency algorithm to compute the values of trigonometric functions and their

inverses.
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