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SUMMARY

Effective educational agents should accomplish four essential goals during a

student’s learning process: 1) monitor engagement, 2) re-engage when appropriate,

3) teach novel tasks, and 4) improve retention. In this dissertation, we focus on all of

these objectives through use of a teaching device (computer, tablet, or virtual reality

game) and a robotic educational agent. We begin by developing and validating an

engagement model based on the interactions between the student and the teaching

device. This model uses time, performance, and/or eye gaze to determine the stu-

dent’s level of engagement. We then create a framework for implementing verbal and

nonverbal, or gestural, behaviors on a humanoid robot and evaluate its perception

and effectiveness for social interaction. These verbal and nonverbal behaviors are ap-

plied throughout the learning scenario to re-engage the students when the engagement

model deems it necessary. Finally, we describe and validate the entire educational

system that uses the engagement model to activate the behavioral strategies embed-

ded on the robot when learning a new task. We then follow-up this study to evaluate

student retention when using this system. The outcome of this research is the de-

velopment of an educational system that effectively monitors student engagement,

applies behavioral strategies, teaches novel tasks, and improves student retention to

achieve individualized learning.
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CHAPTER I

INTRODUCTION

Effective instructors are able to improve learning by observing and maintaining stu-

dent engagement in real-time [42]. Through their observation, instructors are able

to interject behavioral cues essential for optimal learning in the form of instruction,

motivation, and correction. This paradigm is further expressed in Figure 1.

Figure 1: An effective instructor performing three behavioral cues essential for optimal

learning: instruction, motivation, and correction.

Instructors are not only limited to academic teachers. They are defined as any

individuals who teach new tasks. For example, personal tutors, physical therapists,

team-sport coaches, and fitness trainers are all considered instructors for the scope of

this research. Furthermore, an academic teacher may instruct subjects such as math

or english, whereas a physical therapist may instruct proper movements necessary for

motor skill rehabilitation.
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The primary issue is that there is a shortage of effective instructors across multiple

domains. Namely, there is a great need for more effective academic teachers and

physical therapists. According to the U.S. Department of Education, the shortage of

teachers in the traditional classroom setting is as high as 94% (Figure 2). According

to the U.S. Bureau of Labor, the demand for physical therapists is predicted to grow

as much as 27% by 2016 (Figure 3). The need for both academic teachers and physical

therapists are increasing at a rate that is difficult for human instructors to adequately

fill. Nevertheless, this shortage of professional instructors has led to many innovative

solutions such as the use of more learning technologies.

Figure 2: The shortage of teachers nationwide from 2014-2015 [66].

1.1 Effective Instructors

The benefits of effective instruction have been proven through a study conducted in

the Boston Public School System [79]. In Figure 4, the learning of students who

had the “least effective” teacher was compared to the students who were taught by

the “most effective” teachers. The average student gains for students with the most

effective teacher in math was 14.6, whereas the average student gains associated with

the least effective teacher were negative. A negative learning gain can be the result
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Figure 3: The projected increase in the national demand for allied health professionals

[67].

of not properly engaging each student in the classroom.

Not having an effective teacher also has long term effects on student development

as shown in Figure 5. Let us imagine that there is a student named Nicole who enters

middle school in the 50th percentile of her class. By the time she matriculates through

middle school with a high-performing teacher, she has the potential to reach the 90th

percentile in her class. On the contrary, matriculating through middle school with a

low-performing teacher could be detrimental to her academic development and result

in her leaving in the 37th percentile.
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Figure 4: A study conducted in Boston City Public Schools to analyze the cumulative

and residual effects of ineffective teaching on student achievement within one academic

year. [79]

1.2 Learning Technology

Learning technologies have been a vastly growing option to combat the shortage of

effective instructors and lack of motivation in the traditional learning environment.

This is where traditional learning is integrated with technologies such as comput-

ers. These technologies have the potential to increase performance and motivation to

learn due to the deviation from traditional, mundane classroom instruction. Learning

technology is a broad term used to describe any “computer” use in an “educational

setting.” For the context of this dissertation “computer” includes laptops, desktops,

tablets, smartphones, video games, and virtual reality (VR) systems. In addition, an

“educational setting” includes any environment where instruction is required to learn

a new task, and a new task can range from a computational task such as solving

a math problem or a motor task such as solving a movement problem. Although

there are many advantages to using learning technologies, there are also a few dis-

advantages to consider. In particular, a major concern is that learning technologies
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Figure 5: A study conducted in Boston City Public Schools to analyze the cumulative

and residual effects of ineffective teaching on long-term student achievement. [79]

narrowly monitors engagement, which is a critical component to learning. As such,

this dissertation will describe the benefits of developing a Robotic Educational Agent

(REA) that uses both the principles of an effective instructor coupled with learning

technology.

1.3 Robotic Educational Agent (REA)

In this dissertation, we aim to enhance learning through development of a robotic

educational agent (REA) as shown in Figure 6. The REA is able to optimize learning

by blending strategies to increase 1) engagement in a similar manner as an effective

human instructor and 2) performance through a variety of learning technologies.

As such, we detail a system that integrates a real-time engagement model into a

task learning scenario, discuss the processes employed on a robotic educational agent

to re-engage the student using behaviors comparable to that of a human instructor,

and develop a learning model that proves learning and retention is achieved. Chapter

2 provides a literature survey to discuss prior related work. Chapters 3-7 further

discuss Contributions 1-5, respectively. Moreover, Chapter 3 provides an overview of
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Figure 6: A Robotic Education Agent (REA), which is the result of integrating an

effective instructor with learning technology.

the engagement model whereas Chapter 4 discusses the nonverbal and verbal behav-

iors used in the study. The behavioral strategies embedded on the humanoid robotic

platform for motivational feedback in an active learning environment is discussed

in Chapter 5, and the behavioral strategies used to provide guided instruction and

corrective feedback are is discussed in Chapter 6. Chapter 7 discusses the learning

model used to evaluate when retention has been achieved after learning a novel task.

Finally, the overall conclusion is discussed in Chapter 8.
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CHAPTER II

LITERATURE SURVEY

2.1 Monitoring Engagement

In successful classroom settings, teachers are able to observe the student’s engage-

ment in real-time and employ strategies to re-engage the student, which, in effect,

improves attention, involvement and motivation to learn [84]. This is also true during

one-on-one tutoring sessions because tutors are able to track engagement in real-time

as well. In general, teachers are able to determine engagement by following behav-

ioral cues from students such as direction of attention, posture, facial expressions, and

responsiveness to instructional activity [30]. Understanding this behavioral engage-

ment is a crucial component in education because it is often related to the academic

achievement of a student [35, 44].

Currently, computer-based education (CBE), also known as learning technologies,

is a widely used method of instruction inside the classroom and at home. Research has

shown that CBE actually improves academic achievement [7] and student motivation

[81] when compared to traditional classroom instruction. Using CBE reduces the

amount of instructional time required and increases the students attitude towards

learning [55]. Although research has shown CBE as being a highly effective learning

tool, it pales in comparison to a human tutor [7]. Therefore, CBE should be used

as a supplement to traditional instruction and not as a replacement [59]. In this

dissertation, we will determine how our system can monitor student engagement in a

manner comparable to that of real classroom teachers.
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2.1.1 Common Methods

CBE mainly focuses on comprehension of material [8] and not real-time engagement,

which is essential for optimal academic achievement. Comprehension of material is

determined solely by the validity of answer selections. Many standardized tests today,

such as the SAT and GRE, adapt to the students based exclusively on their responses.

This type of evaluation is known as computerized adaptive testing (CAT) [87]. If the

student answers a question correctly, he/she is given a more difficult problem. If the

student answers a question incorrectly, he/she is given a problem of less difficulty.

However, for an educational system to be optimum, it must ensure that the student

is actively and continuously engaged. Computer-based tools mainly focus on compre-

hension because of the difficulty associated with determining cognitive states. Due to

the variability of behavior, characteristics, and environment, computational methods

with the capability of identifying the behavioral cues associated with engagement

have yet to be developed [84].

As an alternative to measuring engagement in real time, scales have been created

to evaluate motivation once the student has completed a system [74]. The problem

with this method is that an educational agent will not be able to adapt to the educa-

tional needs of the student once the learning session has already been completed. The

art of adaptation requires real-time information processing, which scales are unable

to deliver.

A more promising alternative to measuring engagement is through electroen-

cephalography (EEG) signal measurements. EEG signals are able to identify subtle

shifts in alertness, attention, and workload in real-time [13]. Szafir and Mutlu used an

EEG headset to monitor engagement in an educational setting through storytelling

[84]. When the EEG signals would begin to drop during narration, adaptive behav-

ioral cues (verbal and nonverbal) would be used to re-engage the students. EEG

measurements have the advantage of being well studied and low cost [84]; however,
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wearing a headset creates a controlled testing setup, which does not convey a nat-

ural learning environment. This ultimately has the potential to cause unnecessary

distractions and distort results.

2.1.2 Eye Gaze Methods

In efforts to create a non-invasive tool to monitor engagement in real-time and within

a natural learning environment, a viable option would be to use eye gaze. Research

has shown that there are many neural components related to vision. Posner et al.

investigate how people are able to visually fixate on one location while mentally

focusing on something else [71]. There is currently no way of determining what a

person is thinking about while looking at something – this would require recording

eye gaze and brain activity. An investigation was performed to obtain the relation

between eye fixation and neural activity with monkeys. The results showed that the

activity of the prefrontal (PF) neurons was influenced by the task being performed

[71].

Smith et al. performed a study to evaluate the correlation of eye movements and 1)

awareness and 2) hippocampus-dependent memory [83]. Participants viewed images

that were novel, repeated, and manipulated. The participants either had no memory

problems or were memory impaired patients (with damage to the hippocampus).

There were three experiments – Experiment 1 assessed awareness of manipulation

after all the images had been viewed; Experiment 2 assessed awareness after each

scene was presented; Experiment 3 assessed the memory impaired patients.

The results of both Experiment 1 and 2 showed that participants made fewer fix-

ations and sampled fewer regions when viewing familiar compared with novel images.

In addition, fixations for familiar images were longer than fixations for novel images.

This work suggests that simple repetition is enough to change viewing behavior. Also

in Experiment 1 and 2, measured awareness was very similar. When participants
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were aware of a change, their eye gaze was directed more to the critical region that

had been changed than the unchanged critical region in repeated images. However,

when the subjects were unaware of a change, the eye gaze was similar to showing a

repeated image. Lastly in Experiment 3, the subjects had trouble deciding whether

images were novel, repeated, or manipulated. The patients exhibited the same level of

confidence for incorrect and correct responses. Therefore, ability to correctly classify

images is dependent on hippocampus-dependent, declarative memory.

Asteriadis et al. were able to use common patterns found in eye gaze to eval-

uate engagement while learning. More specifically, they developed a system using

head pose and movement, direction of eye gaze, as well as measurements of hand

gesture expressivity to determine six user-states in an e-learning environment: atten-

tive, full of interest, frustrated/struggling to read, distracted, tired/sleepy, and not

paying attention [9]. The developed system was able to effectively detect reading-

and attention-related user states very well when subjects were asked to read/watch

an electronic document (web page, multimedia presentation, video clip). However,

this system was not tested in a complex problem solving or test-taking environment.

As such, we aim to develop a method of monitoring engagement that is adequate for

an environment where high-cognitive thinking is prevalent.

2.2 Effective Emotion in Learning

In addition to monitoring engagement, educational agents must also maintain or in-

crease the student’s level of engagement through use of various communication modal-

ities. Because the interaction between the student and the teacher is best modeled

as being a social dialog [78], it is essential to delve deeper into the methods used to

improve the social interaction exhibited in various learning scenarios. Emotions yield

a natural form of communication, in that they can be shown visually through facial

expressions, vocal expression, and actions/body movements. When certain emotions
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are integrated into social settings they have the capability to create a comfortable,

welcoming environment for all parties. This, in effect, will increase a person’s will-

ingness to engage in the social interaction. Moreover, in the realm of human-robot

interaction (HRI), emotions have been shown to enhance the social interaction in-

volved with education [78, 51, 84, 68, 61], motor-task learning [15, 48], play partners

[69, 57], companions [52, 57], elderly care [85], and weight-loss [52].

One of the key uses of emotions in HRI scenarios is to build a bond between the

two entities. Typically, this bonding mechanism can be enhanced by having the robot

exhibit forms of empathy. Empathy is a key factor used to enforce socially supportive

behaviors [86]. Smiling and showing sensitivity to the individual’s emotions enhance

the interpersonal relationship, which ultimately leads to increased enthusiasm and

learning [86]. In [78], Saerbeck was able to implement empathy best by simply having

a robotic agent smile (happy face) when a task was completed correctly and frown

(sad face) when the task was completed incorrectly. This study showed that the

appropriate expression of empathy in a social interaction scenario is best visualized

through a happy-sad continuum as shown in the circumplex model of affect (Figure

7) [77]. Arousal is represented in the vertical axis (quiet-active continuum), whereas

valence is represented in the horizontal axis (happy-sad continuum). The use of other

emotions such as anger, surprise, and nervousness as feedback were shown not to be

essential for active engagement.

2.2.1 Nonverbal Methods

Because body movement can be used to enable a robot to show forms of emotions,

we focus of the impact of nonverbal cues that increase the quality of interaction in

learning scenarios. During a case study involving a humanoid robot and children,

[12] was able to analyze the effects of upward and downward head movement relative

to positive and negative emotion. The humanoid robot was programmed to have six
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Figure 7: The circumplex model of affect. [77]

different base poses: anger, sadness, fear, pride, happiness, and excitement. Within

each base pose, the head was positioned either up, down, or forward to make a total of

18 poses. The results showed that moving the head up improved the identification of

pride, happiness, and excitement, while moving the head down improved the identifi-

cation of anger and sadness. Fear was identified well regardless of the head’s position.

In general, moving the head up can enhance positive emotions, while moving the head

down can enhance negative emotions.

In a similar study, Li and Chingnell analyzed how simple head and arm movements

were able to communicate emotion in social robots [56]. Here, they used a teddy bear

to implement various arm and/or head movements. They concluded that when head

movements were compared to arm movements, arm movements overall were perceived

to be more lifelike. They also stated that these simple gestures alone do not provide

a lot of information and recognition is low, which suggests that another medium to

communicate emotion is needed.

Schegloff discussed the different effects achieved when changing the upper body
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parts versus the lower body parts [80]. He categorized the body into nine different

stances: stance pose, hip pose, torso pose, shoulder pose, head pose, hip torque, torso

torque, shoulder torque, and head torque. He concluded that lower body movement

suggests “dominant involvement,” whereas upper body movement suggests “subordi-

nate involvement.” This could possibly mean that lower body movements have more

extreme effects on emotions, whereas upper body movements have less extreme ef-

fects. Although extreme emotions can be thought of as being less natural, in the realm

of robotics, interaction is actually enhanced with the use of exaggerated motions [41].

In particular, Gielniak and Thomaz were able to present evidence that engagement is

increased along with perceived entertainment value by over emphasizing movements

during social interaction [41].

In an investigation involving the communication of musical expression through

robotic gestures [26], robotic movements were derived from a perceptual test done by

Dahl and Friberg [33]. In [26], Burger and Bresin show how the use of variables such

as amount, speed, fluency, regularity, and direction on a mobile robotic platform are

able to convey happiness, anger, and sadness (Table 1). They also incorporated the

work of [50], which stated that round shapes convey positive emotion and sharp/spiky

objects oftentimes convey negative emotions. In result, Burger and Bresin had the

robotic platform perform fluent, circular movements to convey happiness and jerky,

sharp movements to convey anger [26].

Table 1: Implementation of the robot’s movements [26]

Movement Cue Happiness Anger Sadness

Amount of Gesture Large Large Small

Speed Fast Fast Slow

Fluency Fluent Jerky Fluent

Regularity Regular, circular Irregular Regular

Direction of arm Movements Upwards Fast up & down Slow up & down
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2.2.2 Verbal Methods

Another primary method used for engagement in the classroom environment is the use

of verbal cues, which can be used to encourage the student, provide instruction, and

give positive praise. As such, we focus on the impact of verbal cues in the learning

environment. By changing acoustic characteristics such as tempo, pitch, intensity,

voice quality, and articulation, verbal cues, or behaviors, can be used to evoke a

range of emotions that impact student engagement [14, 65, 49, 64, 70, 27]. In [64],

Murray and Arnott summarize how the human voice is affected by emotions such as

anger, happiness, sadness, surprise, and disgust (Table 2).

Table 2: Effect of emotions on human speech [64, 70]

Fear Anger Sorrow Joy Disgust Surprise

Speech Rate much

faster

slightly

faster

slightly

slower

faster or

slower

very much slower much

faster

Pitch Av-

erage

very

much

higher

very much

higher

slightly

lower

much higher very much lower much

higher

Pitch Range much

wider

much wider slightly

narrower

much wider
slightly wider

Intensity normal higher lower higher lower higher

Voice Qual-

ity

irregular

voicing

breathy

chest tone
resonant

breathy

blaring

grumbled chest

tone

Pitch

Changes
normal

abrupt on

stressed

syllable

downward

inflections

smooth

upward

inflections

wide down- ward

terminal

inflections

rising con-

tour

Articulation precise tense slurring normal normal

Prior research has shown that these human speech ideals can effectively be im-

plemented on a robotic platform. For example, in [14], Breazeal was able to express

emotion on a robotic platform by correlating human speech ideals (Table 2) into a

robotic speech synthesizer. Participants were able to perceive the robots intended
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emotion in most cases; however, there were a few misclassifications when the emo-

tions shared negative valence or high arousal (i.e. angry and disgust, happy and

excitement).

In addition to acoustic characteristics, sentence structure, language markers, and

vocabulary choice indirectly shape the social interaction between the agent and stu-

dent [65]. For example, age appropriate vocabulary is needed to maintain the stu-

dent’s level of engagement, and by adding markers such as “please” and “thank you,”

the agent can be perceived as being very polite [24]. Mutlu performed an investiga-

tion where he studied human communication and explored how robots would be able

to convey the same rich social outcomes of learning, rapport, and persuasion [65].

Through combinations of verbal, vocal, and nonverbal cues, Mutlu was able to ob-

serve how embodied communication cues can be useful in enhancing social interaction

in HRI.

2.3 Learning and Retention

After the learning process, it is important to evaluate if and when information is

being stored in one’s memory for easy recall later. This concept is known as reten-

tion. Retention lays a foundation to build upon and enables deeper learning over a

long period of time. Because of this, it is important to evaluate when retention has

occurred as well as the steps needed to reach this goal. When an instructor is able

to identify when and how retention has been obtained for each individual student,

learning can, in effect, be optimized long-term.

To evaluate human task performance during the learning process, previous re-

search uses the learning curve as a viable metric. During a learning scenario, the

student’s performance, P, is dependent on the number of instances or trials prac-

ticed, N. The initial performance of the student is described by B. In the instances

where there exists prior knowledge or practice before the scenario, N0 represents the
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number of initial trials. Therefore, N+N0 describes the total number of practice trials.

Lastly, the learning rate of the student is denoted by β, which gives great insight on

the quality of the instruction. The learning curve has been described through both

exponential and power-law functions. The exponential family of functions are shown

in (1) and (2), and its respective curve is shown in Figure 8.

P (N) = A+Beβ(N+N0) (1)

P (N) = BeβN (2)

Figure 8: The learning curve described by the exponential family of functions [5].

The power-law family of functions is shown in (3) and (4), and its respective curve is

shown in Figure 9. Although parameters A and N0 allow these functions to be more

accurate, it is common practice to equate both to zero, which results in the simplified

equations (2) and (4).

P (N) = A+B(N +N0)β (3)

P (N) = BNβ (4)

The power-law learning curve is typically used in a classroom setting where in-

struction is dependent on what remains to be learned. This “power law of practice”
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Figure 9: The learning curve described by the power-law family of functions [6].

theory is supported by the research performed in [75, 73]. However, the exponential

learning curve is more useful when evaluating a single student’s performance [47]. As

such, since we aim to achieve individualized learning in this dissertation, learning and

retention will be evaluated using equation (2).

In essence, the learning curve states that performance increases with experience

or practice. In addition, after n trials, the student’s performance begins to plateau

and learning is achieved (Figure 8 and 9). It has been theorized that by reaching this

“plateau,” retention can be increased; however, more research needs to be conducted

to reveal the exact correlation between learning and retention.

2.4 Robots in Education

The primary objective of tutoring, a practice designed to supplement classroom-

based learning, is to assist and guide students to become independent learners. To

be effective in this practice, a human tutor must provide direction maintenance – i.e.

when the learner disengages from the task at hand, the role of the tutor is to keep

him or her in pursuit of the specified objective [88]. Studies have shown that humans

are more responsive to completing tasks when there is a physical robotic embodiment

versus using CBE methods alone such as remote virtual agents [10]. In addition,

it has been theorized that robotic-based education (RBE) methods can approach
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the effectiveness of human tutors by coupling instructional methods in CBE with

human-equivalent behavioral cues of engagement. By using social cues, a long-term

relationship between the robot and the subject can be fostered [52]. This relationship

drastically increases the subject’s motivation to complete a task and the subject’s

desire to spend time with the robot for a long period of time. In addition, ample

studies have shown that the effect of being perceived as a social interaction partner can

be enhanced by a physical robotic embodiment [72]. These characteristics are ideal for

a student interacting with a robot tutor in a learning environment. As such, in efforts

to analyze the RBE approach, research has been conducted on both implementing

sociable [78, 52, 61, 68, 53, 57, 54] and educational robots [78, 61, 46, 68, 57, 90, 51, 54].

In the realm of education, robots are currently being used to teach math [51],

history [68], new languages [78, 90, 54], motor tasks [89, 32, 31, 58, 25], and new tasks

[61, 57]. Some studies vary the type of feedback (positive, negative, neutral) [68] and

behavioral techniques [84] given from the robot, while others vary the type of learning

adaptation or scaffolding [51] provided from the system. Generally speaking, students

are more attracted to the robot when it exhibits positive feedback [78, 68], are more

motivated to learn from the robot when there is individualized learning [61, 51], and

have increased recall abilities when the robot uses appropriate behavioral techniques

to re-engage [84].

Saerbeck et al. investigated whether or not social engagement with a robot in-

terface could effectively by applied to education [78]. Their research was done with

an interactive cat (iCat) whose goal was to teach a new language to a child. The

iCat platform has the shape of a cat, and its height is approximately 40 cm. The

study compared a socially supportive iCat (engaged in social dialog) to a neural iCat

(unidirectional knowledge flow). The students involved in the socially supportive iCat

case were more motivated, which is essential for any educational technology to have

long-term effectiveness.
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Kory and Breazeal developed a system that used a robotic learning companion

to improve language development through social storytelling [54]. The DragonBot

robotic platform was used in this study, which has “squish and squash” principles of

animation that allow for expressive movements. In addition, a smart phone is used as

the robot’s face. learning companion to teach children oral language skills. Kory and

Breazeal concluded that strategically matching or mismatching the robot’s ability to

the student’s could potentially improve language learning outcomes.

Michaud et al. believed that mobility, appearance, interaction modalities, and

behavior all influence a child’s ability to sustain interest and learn [61]. They used

Roball, a spherical robot with a diameter of approximately 15 cm, to evaluate au-

tonomous motion in children 12-18 months old. An algorithm was used to adapt the

robot’s behavior to the child’s interaction using proprioceptive sensors. Michaud et

al. concluded that mobile robots as assistive technology are great for creating in-

terplay and learning situations. Mobile robots allow adaptation to children and the

environment, and they keep children engaged.

Han et al. of Korea developed the world’s first e-learning home robot (IROBI)

in March 2004 [46]. IROBI, a humanoid robot consisting of only a head and torso,

demonstrated the prospect of robots as a new educational media. Users could interact

with IROBI using voice and a touch panel, and the robot communicated with people

by presenting voice, gestures, and multimedia contents on an LCD screen. During

this investigation, Han et al. compared traditional media-assisted learning and web-

based instruction (WBI) to Home Robot-assisted learning [46]. Han et al. concluded

that IROBI was the most effective in promoting and improving the child’s learning

concentration, interest, and achievement when compared to other instructional media.

It is theorized that these learning scenarios can be further enhanced by integrat-

ing a virtual reality (VR) gaming component into the teaching sessions as a form
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of CBE [39]. Virtual reality refers to a computer technology that creates a three-

dimensional (3D) virtual context that allow for interactions by the user [29]. In

general, gaming with instruction allows for flexible adaptation to each user’s learning

level, real-time feedback from the system, and increased engagement through the use

of hidden teaching tactics. Studies have been conducted that couple VR games with

REAs focused on teaching motor tasks [32, 31, 58, 25]. Each of these studies compared

robotic-assisted instruction alone to a combination of robot-assisted instruction and

VR gaming. Overall, the results showed that the addition of interactive VR gaming

was able to increase motivation, but not necessarily improve the user’s learning or

performance.

2.5 Summary

Prior work does not effectively monitor student engagement in real-time, lacks a

consistent framework for developing gestural behaviors for robotic agents, and does

not consistently improve both motivation and learning. As such, in this dissertation,

we detail a system that addresses each of these concerns with the development of the

Robotic Educational Agent (REA).
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CHAPTER III

ENGAGEMENT MODEL

In this dissertation, we seek to develop a robotic educational agent that can interac-

tively function in an equivalent manner as a human tutor. The preliminary work to

achieve the objective of monitoring student engagement is detailed in the following

sections. We begin by developing an engagement model based on the interactions be-

tween the student and the teaching device (tablet, computer, or virtual reality game)

in Section 3.1 [18, 16]. We later expand the model by developing an eye gaze algo-

rithm based on student fixations and saccades in Section 3.2. As such, this chapter

leads to our first contribution:

1. Develop an engagement model, which yields a non-invasive method

of monitoring student engagement when performing high-level cognitive

tasks.

3.1 Human-task Input

In this section, we discuss our preliminary engagement model which uses techniques

that determine behavioral user state and correlate these findings to human-task in-

puts, measured by mouse and keyboard events [18, 16]. Event processes are observed

to identify a common pattern associated with an engaged versus a disengaged stu-

dent. We evaluate the correctness of our model based on an investigation involving

a middle-school after-school program in which a 15-question math exam that varied

in cognitive difficulty was used for assessment. The eye gaze technique described in

[9] is referenced for the baseline comparison model for engagement. We conclude the

investigation with a survey to gather the students’ perspective of their mental state.
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3.1.1 Engagement Metrics

We define a learning task as a series of problems that must be solved by a student.

An engagement model is thus defined as a model that can correctly assess the level

of engagement of the student while involved in the learning task (Figure 10). The

level of engagement is defined by a series of on- and off-task events. The human-task

inputs consist of all physical input events that each student uses during the learning

task. We observe all the events post-task and derive a model based on the common

patterns present for all students.

Figure 10: Diagram of the entire system with the associated engagement metrics.

We first conduct a pilot test to derive a baseline model. We then define the

difficulty level of the problems to allow for future adaptation to a variety of problem

sets. The difficulty of a problem is directly proportional to the amount of time

needed to submit a response. Based on the results of the pilot studies, we are able to

categorize the student’s response as either slow, average, or fast. The problems that
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require less time to complete are categorized as low-level cognitive problems, whereas

the problems that require more time are categorized as high-level. We also monitor

response accuracy, which is defined as the correctness of the submitted response.

In this investigation, our learning task is focused in a math task (i.e. cognitive

learning task). Specifically, we focus on achievements on a math test. We implement

the engagement model by first identifying a set of events needed to effectively navigate

through the math test. If an input event or combination of input events fall within

the approved list needed to properly execute a function, the student is classified as

being on-task. Otherwise, the student is classified as being off-task. We monitor the

input events over a period of samples, which consists of n = 8 events. If more than

p = 25% of the sample is classified as being off-task, then the entire sample will be

classified as off-task. The inequality used to determine when a series of input events

is on-task is shown in (5).

1

n

m+(n−1)∑
i=m

xi < p OR
1

n

∑
E < p, ∀m = 1, 2, ..., n (5)

The subset of n sequential events is categorized by E which is defined as {xm + x(m+1)

+ ... + x(m+(n-1))}, where x is an event, m is the initial event in the series, and n is

the total number of events observed in the series. Each event that effectively executes

a function yields a value of one, and each event that does not execute a function yields

a zero. Equation 5 is computed for every sample until there is no longer a subset of

n events to evaluate.

In [9], six user-states were defined based on eye gaze for an e-learning environment

to categorize if the user was attentive, full of interest, frustrated, distracted, sleepy,

and not paying attention. We combined these categories to form two basic user-states

– engaged and disengaged. Attentive, full of interest, and frustrated are classified as

engaged, while distracted, sleepy, ot not paying attention are classified as disengaged.

While it might not seem that a user-state of frustrated should be classified as engaged,
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one is only frustrated when he or she is dedicating attention to a particular task.

However, frustration typically leads to being disengaged if the focus of frustration is

not resolved in a timely manner.

The amount of time that is classified as disengaged, Tdisengaged, will be recorded

along with the total time needed to complete the math test, Ttotal. All of this data is

used to derive the percent error associated with Asteriadis et al.’s eye gaze and head

pose model [9] as shown in (6).

Percent Error =
Tdisengaged
Ttotal

x100% (6)

3.1.2 Hypotheses

Two hypotheses were developed for our system:

1. The student is engaged if his or her series of events are classified as: on-task

and correct (regardless of speed) or on-task, slow or average, and incorrect.

2. Eye gaze and head pose will not be an accurate measure of user state/engagement

for high-level cognitive questions.

3.1.3 Experimental Design

To explore the trends developed over time associated with engagement in computer-

based education (CBE), we designed and conducted a pilot study in which students

completed a computer-based math test of varying difficulty. A total of 13 students

took part in this experiment and all were recruited middle school students from an

afterschool program in Atlanta, GA. The population consisted of both females and

males in the age range of 10-14 years old (Male: 6, Female: 7; Sixth grade: 2, Seventh

grade: 5, Eighth grade: 6).

The evaluation consisted of two segments to assess how well the engagement model
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performed when compared to eye gaze techniques. The initial validation of the en-

gagement model’s performance consisted of analyzing nine questions of low difficulty,

which required low-level cognitive thinking. This segment was directly followed by

analyzing six questions of high difficulty, which required high-level cognitive think-

ing. The questions were taken from Georgia’s Criterion-Referenced Competency Tests

(CRCT) [2].

The students were placed in a normal testing environment within a school, as

shown in Figure 11. Due to the size of the classroom, all 6 males were tested as the

first group followed by 6 of the females. An additional female was tested alone. The

instructions provided to the student were the following:

“You will take a 15-question math test. It does not matter how well you

perform, and I do not expect you to know all of the answers. However,

it is important that you stay focused on each question, give it your best

effort, and avoid being sidetracked.”

Each student was provided pencil and paper, which was initially placed next to

the laptop (Figure 11). As the student navigated through the test, the mouse and

keyboard events were recorded to determine total time, response accuracy, and proper

event execution. We also used a web camera to monitor eye gaze and head pose, which

was used to estimate behavioral user state throughout the test. The camera was also

used to perform video observations once the test had been completed.

We designed three 15-question math tests to assess our hypotheses one for each

grade level. The basic layout of each test is as shown in Figure 12. Boardmaker

Plus is the software that was used to create the math program [1]. The tests were

designed for students between the 6th and 8th grade. Nine questions on the test were

low difficulty and required low-level cognitive thinking to complete. Most, if not

all, of those problems can be computed quickly using mental math because they only

require one processing step to answer. However, six questions were high difficulty and
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Figure 11: This is the small classroom where all the testing took place. Each student

had their own laptop, pencil, and scratch-paper.

required high-level cognitive thinking to complete. Most, if not all, of those problems

cannot be computed quickly using mental math because they require multiple steps

to answer. In many cases, pencil and paper may be needed to develop an answer.

3.1.4 Results

When analyzing the results, we took all the engagement metrics into consideration,

total time, response accuracy, and proper function execution, as well as eye gaze

and the exit survey. Table 3 summarizes the data collected using the preliminary

engagement model as compared to the eye gaze technique. The total time needed

to complete each question was calculated and shown in Figure 13 for the 7th and 8th

grade. Because there were only two students in the 6th grade, all of their responses

were automatically classified as being of average speed. Using a boxplot, we were

able to properly divide the remaining data into its respective quartiles and categorize

any outliers as slow or fast. Due to the nature of the box and whisker plot, there

will always be a similar distribution between the average, slow, and fast categories

as shown in Figure 14(c). In addition, the students answered 45% of the question

correctly and 55% of the questions incorrectly as shown in Figure 14(d).
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Figure 12: The basic layout of each question on the math test is shown. At the top of

the interface, the student was able to type the answer into a textbox. The question

was stated in the center of the screen within a green box. Below the question, the

multiple-choice selections were displayed as rectangular buttons.

We also observed that 4% of the keyboard and mouse input was classified as

being off-task as shown in Figure 14(b). Through use of the list of approved events,

we were able to determine if the mouse clicks and keystrokes occurred within the

necessary constraints to successfully navigate through the test. Figure 14(a) shows

the combinations of events that model engagement and how often each combination

occurred during this study.

The term error refers to the amount of time the head pose and eye gaze technique

discussed in [9] categorized the student as either distracted, sleepy, or not paying

attention. Through use of (6), the eye gaze and head pose technique had an average

of 24.2% error for the 6th grade, 41.1% error for the 7th grade, and 34.8% error for

the 8th grade. This error suggests that the eye gaze and head pose is not the best

measure of engagement. In addition, for the students who scored considerably higher

than their peers, they exhibited up to a 65% eye gaze error. Figure 15 shows the

relationship between the students test score and the amount of time his or her gaze
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Table 3: Summary of results

Grade & Difficulty Avg. Score Avg. Time Developed

Model

On-task (Eye-Gaze)

6th 57% 13min 93% 76%

Low 50% 36s 100%

High 67% 81s 83%

7th 39% 10min 96% 59%

Low 44% 29s 100%

High 30% 59s 90%

8th 46% 15min 98% 65%

Low 46% 33s 100%

High 45% 101s 94%

was not directed towards the screen.

Following the math test, 5 questions were asked about each question. Three of the

questions were based on a 5-level Likert scale, one required a yes/no response, and

the last was multiple-choice. Table 4 shows the results of the 3 Likert questions, and

the mean and standard deviation are computed based on 195 samples (13 students x

15 questions). Overall, the students agreed that they were engaged for each question

in the complete test with an average score of 3.96 (Agree = 4, SD = 1.40). They

agreed that they understood the questions with an average score of 3.71 (Agree = 4,

SD = 1.38). Lastly, the students agreed that they knew how to solve the problems

with an average score of 3.56 (Agree = 4, SD = 1.41).

Table 4: Statistical analysis of exit survey

Statement m SD

I was engaged. 3.96 1.40

I understood the question. 3.71 1.38

I knew how to solve the problem. 3.56 1.41

Table 5 shows the results of the multiple-choice question that asked how each

answer selection was decided. The options were either that the student made a
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Figure 13: (a) Total time required per question for 7th grade (top) and 8th grade

(bottom).

random guess, an educated guess, or no guess/solved the problem. This may also give

some insight on how well the students believed they understood each question and,

furthermore, reflect their confidence level. Lastly, Table 6 shows that the students on

average used pencil and paper to solve the problems 56% of the time.

3.1.5 Discussion and Conclusion

Across all students/tests, less than 5% of the samples were classified as being off-

task, which is statistically significant. This suggests that there is a direct correlation

between an engaged student and our method of calculating on-task events. Moreover,
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Figure 14: (a) This chart shows the how often we received each combination of events

(S=slow, A=average, F=fast, C=correct, C̄=incorrect, O=on-task, Ō=off-task). (b)

O vs. Ō events. (c) Speed of responses. (d) C vs. C̄ responses.

Table 5: Student’s confidence of response

Selected Response Total Percentage

Solved 101 52%

Educated guess 53 27%

Random guess 41 21%

if a student is classified as being on-task, he or she is engaged (regardless of speed or

response), which proves Hypothesis 1.

Furthermore, validity of responses alone is not enough information to determine

user-state as exhibited in Figure 14(d). Speed coupled with the validity of responses

can help to determine more information about the engaged student. If the student

is on-task and has a series of fast responses with a series of correct answers (OCF),

the student may need questions of higher difficulty. The results show that 6% of

the sample was OCF. If the student is on-task and has a series of slow responses
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Figure 15: This graph shows the relationship between the students’ test scores and

the amount of time that eye gaze was not on the computer screen.

Table 6: Student’s use of pencil & paper

Needed Pen & Paper? Total Percentage

Yes 109 56%

No 86 44%

with a series of correct answers (OCS), the student may understand the material and

require more time to think. The results show that 7% of the sample was OCS. If the

student is on-task and has a series of slow responses with a series of incorrect answers

(OC̄S), the student may lack understanding and need questions of lesser difficulty.

The results show that 7% of the sample was OC̄S. This additional information will be

used in the future to better integrate instructional scaffolding and adaptation within

a learning scenario in Chapter 6.

This work also suggests that eye gaze and head pose technique is not an effective

measure of engagement when high-level cognitive thinking is required, which supports

Hypothesis 2. Based on the video observations performed post-testing, the students

consistently looked down at the paper to write out the multistep problems and cal-

culate the answers by hand. The use of pencil and paper was further documented
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by the students in the exit survey (Table 6). We also observed that other students

looked at random objects in space to perform mental math. In fact, we observed that

the longer that the student looked away from the computer screen, the higher he or

she performed on the test. The 8th grade student who scored the highest looked away

from the screen for 8.2 minutes, which was 47.4% of the entire test time. The 7th

grade student who scored the highest looked away from the screen for 10.6 minutes,

which was 65.4% of the entire test time. The large time delay associated with the lack

of eye contact from the human to the computer screen caused Asteriadis et al.’s eye

gaze technique to incorrectly declare the students as being distracted or disengaged.

However, using our engagement model, we were able to correctly categorize the stu-

dents as being engaged. By monitoring the time delay/speed, accuracy of responses,

and proper event execution associated with each question, we are able to expand the

eye gaze model proposed by Asteriadis et al. and apply it in a complex problem

solving environment [13].

3.2 Eye Gaze Input

Generally speaking, monitoring eye gaze has been used as a viable metric for measur-

ing attention, and this is only one of many domains where eye tracking is beneficial.

In Section 3.1, we observed that the eye gaze and head pose method of monitoring

engagement as described in [9] worked well for low-level cognitive problems, but failed

more often for the higher level problems. Because we want to target this system in

the math domain, it is important that the engagement model is able monitor the

student’s attentiveness regardless of the problem difficulty. The preliminary engage-

ment model takes time, response, and function execution into consideration, and it

is able to successfully monitor engagement for all-level cognitive tasks. However, we

hypothesize that we can create a richer and more adaptive learning environment by

developing an eye gaze algorithm that is suitable for all-level cognitive tasks.
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We began this exploration by creating a low-level cognitive environmental setup,

such as viewing artwork (Figure 16). Future work will involve a high-level cognitive

environmental setup, such as complex math problems. A camera is used to gather

the necessary information such as gaze locations, fixations, and saccades while each

user navigates through these environments. Once the data was collected, we applied

various pattern recognition techniques to develop our eye gaze engagement algorithm.

We expect to see trends that indicate future salient points in the environment, current

areas of interest, level of cognitive load, and, ultimately, level of engagement.

Figure 16: The entire eye gaze system – the Eye Tribe is placed below the monitor

where the images are displayed to the user.

3.2.1 HumAnS Gaze Tracker

For this study, we have developed the HumAnS Gaze Tracker, which is a system

designed to monitor a participants gaze while viewing various artwork displayed on

a monitor. The Eye Tribe is the hardware used to track the eye gaze coordinates,

pupil size, pupil centers, saccades, and fixations during the experience [3] (Figure 16).

The administrator interacts with the graphical user interface (GUI) shown in Figure

17. Through use of this GUI, we are able to upload various image sets, input the
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participant’s information, calibrate the Eye Tribe for each participant, display the

images, and store the eye gaze data in a log file.

Figure 17: HumAnS Gaze Tracker GUI.

3.2.2 Hypothesis

To have a global impact with eye gaze devices, an accurate, low-cost system is needed

for personal use in homes. As such, in this paper we focus on using a low-cost platform,

the Eye Tribe, to develop software able to track gaze and further detect novelties in

an environment. Individuals encounter novel environments on a daily basis – being

able to predict salient points in an environment has the capability to enhance learning

and understanding, increase engagement when completing a task, as well as provide

insight on an individuals hippocampus-dependent memory. We hypothesize that by

monitoring the amount of eye fixations along with the associated time durations,

salient points in environments can be predicted before the individual becomes fully

cognizant of them.
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3.2.3 Experimental Design

To evaluate the correlation between eye gaze and subconscious awareness of salient

points in an environment, we employed a single group design for this pilot study. A

total of 9 participants took part in this experiment and all were recruited students

from undergraduate and graduate studies at Georgia Institute of Technology in At-

lanta, GA. The population consisted of both females and males in the age range of

20-30 years old (mean = 24.66, standard deviation = 2.78; Male: 5, Female: 4; un-

dergraduate: 2, graduate: 7). During the study, the participant sat at a desk where

a laptop and Eye Tribe were placed in front of him or her as shown in Figure 18.

Figure 18: The actual experimental setup.

To begin, the administrator uses the HumAnS Gaze Tracker GUI (Figure 17) to

record the participants identification information and calibrate the Eye Tribe. We

structure the design similar to a study conducted by Smith et al. [83]. Here, they used

a combination of novel, repeated, and manipulated images to evaluate any patterns

in eye movements. For the context of our study, we used 12 novel images and paired

them with a slightly manipulated version of the image (Figure 19). The administrator

used the GUI to upload a specific image set with 24 images in total (12 pairs). The

system first displayed one image from all the pairs. Once one image from each pair has
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Figure 19: An image pair used in the study. The image on the left has been manip-

ulated, and the image on the right is the original.

been displayed, the system then displayed the second image of the pair in the same

order. (We alternated between first displaying the original image and manipulated

image to tease out the effects of photoshop in the manipulated image.) Each image

is displayed for a total of ten seconds, and a black screen is shown between images

for one second.

At the completion of each presentation, each participant recorded their perception

of the images in an exit survey (Figure 20). For each image, we asked each participant

if they noticed a change in the image and to give details about this change if applicable.

When asked these questions, the last or most recent version of the image pair would

be shown. The entire study was completed in approximately 10-15 minutes.

3.2.4 Results

Each participant viewed a total of 24 images; therefore, we were able to collect 216

instances of eye gaze data for all 9 participants. For each image, we monitored the

time stamp, x- and y-coordinates of both left and right eyes, and pupil size. With

this information we were able to calculate gaze duration, fixations, and saccades.

The Eye Tribe was able to capture 30 frames per second, so we were able to collect
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Figure 20: Exit Survey.

approximately 300 frames of gaze data for each image per participant. From there,

the gaze coordinates were overlaid onto the images to have a visual of each users

experience as shown in Figure 21.

The exit survey showed very interesting results. When we asked the participants

if they were aware of changes in the image pairs, the participants did not notice a

change for 46 of the 108 instances as shown in Table 7. For the 62 instances where

the participants were able to notice a change, their responses are recorded in Tables

28 - 39 found in Appendix A. In general, if the participant noticed a change in the

image, he or she was also able to recall the details of the change. A few participants

were aware that the image changed, but were not able to note the correct change.

Because our hypothesis focuses on using eye gaze to observe if participants are

subconsciously aware of salient points in environments, it is valuable to analyze the

scan paths of the participants who noted that there was no change in the image pair
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Figure 21: Participant 7 scanpath results for Image Pair 10. This participant noted

on the survey that he or she was NOT aware that the image changed; however, it is

shown here that there is fixation on the boat’s new and original location in the right

image.

(46 instances). Of these 46 instances, 10 instances show that the participant actually

gazed at the changed object’s new location, 3 gazed at the objects original location,

and 29 gazed at both the new and original location. Only 4 participants completely

overlooked the object of interest as shown in Table 8. In particular, Participant 7

noted that there was no change in Image Pair 10; however, the scan paths show that

the area of interest was noticed and the participant spent most of the time fixated on

the new and original location of the boat as shown in Figure 21. In the same breath,

Participant 8 did not notice the new or original area of interest as shown in Figure

22.

3.2.5 Discussion

The preliminary engagement model used in Section 3.1 is able to use physical input

from the student, such as mouse and keyboard events, to determine if the he or she

is engaged during a math exam. The preliminary model uses the metrics of time,

response/performance, and proper function execution when evaluating engagement
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Table 7: Total number of yes/no responses from the participants when asked if they

noticed a change in each image pair.

Image Pair “No” Response “Yes” Response

1 3 6

2 3 6

3 0 9

4 0 9

5 7 2

6 2 7

7 5 4

8 6 3

9 1 8

10 4 5

11 9 0

12 6 3

Total: 46 62

levels. However, by integrating an eye gaze metric into the model, a richer learn-

ing environment can be created by monitoring where the student is subconsciously

directing his or her attention on the teaching device (computer/tablet).

With subconscious eye gaze as a metric, learning and understanding can be en-

hanced by integrating scaffolding methods in the system based on gaze location.

Through gaze, the student is passively articulating areas of interest/salient points in

their learning environment. By providing scaffolding based on these salient points,

the student’s engagement levels are further increased because the student has already

deemed this an area of interest. For instance, during a multiple choice math test, if

a large amount of a student gaze’s is directed towards the incorrect answer response,

an intelligent tutoring system can interject with information that would assist the

student with rethinking their initial analysis. This idea is further displayed in Figure

23.
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Figure 22: Participant 8 scanpath results for Image Pair 1. This participant noted

on the survey that he or she was NOT aware that the image changed, and the gaze

data displayed here further corroborates his or her assessment.

3.2.6 Conclusion

Of the 46 instances when the participants were not consciously aware of any changes

in the image pairs, 91% of their eye gaze data showed that they were subconsciously

aware of the novel changes in their environment (Table 8, Figure 21). This alone

proves our hypothesis to be true, in that we are able to predict salient points in

an environment via eye gaze before an individual becomes fully cognizant of them.

Furthermore, monitoring eye gaze in a novel environment has the potential to enhance

learning and understanding as well as engagement when completing a task.
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Table 8: Of the 46 instances that the participants did NOT notice a change, 42

of them subconsciously gazed at the new and/or original area of interest. Only 4

participants completely overlooked the areas of interest.

Image Pair New Original Both Neither Total

1 2 0 0 1 3

2 3 0 0 0 3

3 0 0 0 0 0

4 0 0 0 0 0

5 0 1 5 1 7

6 1 0 1 0 2

7 3 0 1 1 5

8 0 2 4 0 6

9 1 0 0 0 1

10 0 0 4 0 4

11 0 0 8 1 9

12 0 0 6 0 6

Total: 10 3 29 4 46

Figure 23: On the left, the student’s gaze is directed towards the incorrect response.

On the right, an intelligent tutoring system is able to adapt and interject additional

information to assist the student before the he or she decides to select and submit

this response.
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CHAPTER IV

SOCIAL INTERACTION MODEL

The role of emotions in social scenarios is to provide an inherent mode of communi-

cation between two parties. When emotions are properly employed and understood,

people are able to respond appropriately, which further enhances the social interac-

tion. Ultimately, effective emotion execution in social settings has the capability to

build rapport, improve engagement, optimize learning, provide comfort, and increase

overall likability. In this chapter, we discuss associating dominant emotions of ef-

fective social interaction to verbal and nonverbal behaviors on a humanoid robotic

platform. The chapter addresses our second contribution:

2. Develop a framework for creating re-engagement strategies, verbal and

nonverbal cues, on a humanoid robotic platform that aid in enhancing

learning.

4.1 Nonverbal Behavioral Strategies

Because empathy is a key factor used to enhance interpersonal relationships, which

ultimately leads to increased enthusiasm and learning [86], we derived a framework for

implementing happy and sad emotions on a humanoid robotic platform [17]. Anger

can be detrimental to building rapport and establishing a level of comfort in social

settings, so this emotion was not investigated. The major areas of interest when

developing gestural behaviors are the head movements [12, 56, 80], arm movements

[56, 80, 26, 33], and the overall size [80, 26, 33] and speed [26, 33] of the gesture.
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4.1.1 Gestural Behavior Framework

Based on prior studies, it is noted that moving the head in an upward position should

convey happiness, while moving the head in a downward position should convey sad-

ness [12]. Moving the arms in an upward position should convey happiness, while

moving the arms slowly up and down should convey sadness [26]. As such, the frame-

work that has been developed and validated in this investigation to create empathetic

gestures on a humanoid robotic platform is displayed in Table 9.

Table 9: Framework for gestural behavior implementation

Key Principle Happy Characteristics, HC Sad Characteristics, SC

Head Direction Upward Downward

Arm Direction/Movement Upward Slow up & down

Gesture Size, S Large Small

Gesture Speed, P Fast Slow

For this investigation, size S of the gesture is determined by the number of body

parts in motion coupled with the range of motion of the movement as shown in (7) -

(9).

Slarge = AB (7)

Smedium = AB or Smedium = AB (8)

Ssmall = A B, (9)

where A is the number of active servos/joints and B is the range of motion. Based

on this definition of “size,” a large gesture should convey happiness, while a small

gesture should convey sadness [26]. The speed P of the gesture is determined by the

rate of change in the movement (not the total length of time), as shown in (10).

P = B/t, (10)

where t is time. Based on this definition of “speed,” a fast gesture should convey

happiness, while a slow gesture should convey sadness. (Note: The actual high/low
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thresholds associated with speed and size of the gestures were determined through

empirical studies.)

By using this framework, gestures that effectively convey empathy, happy and/or

sad emotion, can be developed with ease. These gestures are developed by comparing

the sum of happy characteristics, HC , to the sum of sad characteristics SC . More

specifically, a happy gesture is the result when

∑
HC >

∑
SC. (11)

A neutral gesture is the result when

∑
HC =

∑
SC. (12)

A sad gesture is the result when

∑
SC >

∑
HC. (13)

4.1.2 Gesture Implementation on Robotic Platform

For the robotic social agent, we utilize the DARwIn-OP platform (Darwin) [45], a

humanoid robot with 20 actuators, resulting in 6 DOF for each leg, 3 DOF for each

arm, and 2 DOF for the neck (Figure 24). To enable interaction with the human,

Darwin was programmed with 15 gestural behaviors created by applying the gestural

framework in Table 9. Of the 15 gestures created, 8 were happy, 3 were neutral,

and 4 were sad gestures. A brief description of each gesture is given in Table 10.

These gestures were programmed using Darwin’s default program ActionEditor in

which we programmed a sequential set of actuator positions, with speed and timing

constraints, to affect an appropriate gesture. Figure 24 - 26 displays an example of a

happy, neutral, and sad gestural behavior, respectively.

The 15 gestures are further broken down into the key principles of the framework

in Table 11. By doing this, it is evident how each gesture is associated with specific
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Table 10: Description of gestural behaviors from the robotic agent

Gesture Description

H1 Robot looks upward while raising his arms in the air and bringing them together, as if he were clapping.

H2 Robot moves his head only in an up and down motion while raising both arms to form a 90°angle with

the ground.

H3 Robot raises his left arm in a 90°angle, then pulls it down at a rapid speed.

H4 Robot bends his knees, then straightens his legs while raising both arms. Darwin is moving his head up

and down.

H5 Same description as H4, however, there are very subtle differences.

H6 Robot bends his knees, then straightens his legs while raising both arms and looking upward.

H7 Robot simply moves his head only in an up and down motion.

H8 Robot raises both of his arms simultaneously and forms a 90°angle while his head is upward (“field goal”

sign).

N1 Robot bends his knees then straightens his legs repeatedly while moving his head up and down simulta-

neously.

N2 Robot raises his left arm towards his head. He then moves his arm up and down next to his face (scratches

head).

N3 Robot nods his head up and down while simultaneously moving his arms back in forth (engaging in

conversation).

S1 Robot lowers his head to the ground and then raises his hands to his head, as if they were holding his

head

S2 Robot simply lowers his head to the ground.

S3 Robot lowers his head and raises his hands to his head (holds head). He then slowly shakes his head from

side to side.

S4 Robot lowers his head to the ground and then slowly shakes his head from side to side.

characteristics for depicting emotion. In particular we highlight the position of the

head [12], the direction/movement of the arms [26], the movement of the legs [80], and

the overall size and speed of the gesture [26]. We also implement smooth, fluent, and

regular movements for both the happy and sad gestures [26]. In addition, the purpose

of highlighting the movements of each body part is to observe if dominant involve-

ment (lower body) yields any significant differences when compared to subordinate

involvement (upper body).
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Figure 24: A happy gesture (H4) is broken down into three parts. Refer to Table 10

for each gesture’s description.

Figure 25: A neutral gesture (N1) is broken down into three parts. Refer to Table 10

for each gesture’s description.

4.1.3 Hypothesis

Previous studies have shown that empathy is a key factor used to enhance interper-

sonal relationships, which ultimately leads to increased enthusiasm and learning [86].

Therefore, we have derived a framework for implementing happy and sad emotions on

a humanoid robotic platform. Our hypothesis states that by applying the framework

outlined in Table 9, individuals will be able to perceive the correct resulting emotion

(happy, neutral, or sad) implemented on a humanoid robotic platform.

When the null hypothesis is accepted, the predicted resulting emotion and the

actual resulting emotion will not be equivalent and/or the sensitivity of the resulting

emotion will be less than 75%. When the null hypothesis is rejected, the predicted

resulting emotion and the actual resulting emotion will be equivalent and the sensitiv-

ity of the resulting emotion will be greater than 75%. Sensitivity is the true positive
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Figure 26: A sad gesture (S4) is broken down into three parts. Refer to Table 10 for

each gesture’s description.

rate (TPR) and (14) will be used to test the hypothesis.

TPR = TP/P = TP/(TP + FN), (14)

where P is the number of positive instances, TP is the number of true positives, and

FN is the number of false negatives.

4.1.4 Experimental Design

To evaluate the perception of gestural behaviors implemented on the robotic social

agent, we employed a single group design for this study. A total of 13 participants

took part in this experiment and all were recruited students from undergraduate and

graduate studies at Georgia Tech in Atlanta, GA. The population consisted of both

females and males in the age range of 18-34 years old (m = 25.8, SD = 3.9; Male:

8, Female: 5; undergraduate: 1, graduate: 12). During the study, the participant

sat at a desk where Darwin stood 2 feet away as shown in Figure 27. Once the

participant was positioned, Darwin performed a gesture (Table 5), and then returned

to a standing rest position. The gestures were selected at random to ensure that order

of the gestures presented did not have an effect on perception. If the participant did

not see a gesture fully or asked to view it again, Darwin was tasked to perform it again

until the participant was ready to move forward to the next gesture. At the completion

of each gesture, the participant recorded their perception of Darwin’s behavior on a
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Table 11: Key principles and associated emotion

Gesture Head Arms Legs Size Speed
∑

HC
∑

SC Resulting

Emotion

H1 Up Up – Medium Fast 3 0 Happy

H2 – Up – Medium Fast 2 0 Happy

H3 – Up/Down – Medium Fast 1 0 Happy

H4 – Up Bend Large Fast 3 0 Happy

H5 – Up Bend Large Fast 3 0 Happy

H6 Up Up Bend Large Fast 4 0 Happy

H7 – – – Small Moderate 1 0 Happy

H8 Up Up – Medium Fast 3 0 Happy

N1 – – Bend Medium Moderate 0 0 Neutral

N2 – Up/Down – Medium Moderate 0 0 Neutral

N3 – Midway – Medium Moderate 0 0 Neutral

S1 Down Midway – Medium Slow 0 2 Sad

S2 Down – – Small Slow 0 3 Sad

S3 Down Midway – Large Slow 1 2 Sad

S4 Down – – Medium Slow 0 2 Sad

5-point Likert scale (very happy - very sad) (Figure 28). This is repeated until all 15

gestures had been performed by Darwin and evaluated by the participant. The study

was completed in 10 minutes.

4.1.5 Results

To prove or disprove the hypothesis that the perception of emotion implemented on

a robotic social agent can be determined by the key principles outlined in Table 11,

we analyze the results of the Likert scale and confusion matrix. First we look at the

results of a 5-point Likert scale, where 1 is “Very Happy” and 5 is “Very Sad.” These

results are shown in Figure 29. There were a total of 104 happy, 39 neutral, and 52

sad gesture instances. Because the data set is unbalanced, we evaluate the sensitivity

and the specificity of each emotion in Table 12.
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Figure 27: The experimental setup.

Figure 28: The scale that the participants used to rank each gesture’s perceived

emotion.

4.1.6 Discussion

The standard deviations in Figure 29 were all less than 0.8 excluding one, and it was

a common trend that the “neutral” emotions had higher standard deviations than the

“happy” and “sad” emotions. An explanation for this is that the lack of dominant

characteristics in the gesture caused confusion for the participants. Table 11 shows

that N1, N2, and N3 all have no sad principles and no happy principles, so it is

not a surprise that participants were confused with these gestures. Even during the

actual testing, these gestures where oftentimes asked to be repeated for clarification.

This result suggests that there must be a distinguishable amount of happy and sad

principles for accurate perception of gestures.

Similarly, Table 12 clearly shows that the participants were not confident in pre-

dicting when the intended emotion was neutral. There were 16 instances of false
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Figure 29: Each gesture’s average perceived emotion is shown. The upper and lower

error bars are equivalent to one standard deviation.

Table 12: Analysis of sensitivity & specificity (A = actual, P = predicted)

Positive (P) Negative (P) Sensitivity/ Specificity

Happy
Positive (A) 99 5 95.19% (TPR)

Negative (A) 10 81 89.01% (TNR)

Neutral
Positive (A) 3 16 58.97% (TPR)

Negative (A) 8 148 94.87% (TNR)

Sad
Positive (A) 49 3 94.23% (TPR)

Negative (A) 6 37 95.80% (TNR)

negatives and 23 instances of true positives, which resulted in a sensitivity of only

58.97%. Because the TPR is less than 75% for the neutral intended emotion, we are

not able to reject the null hypothesis. However, the participants were very confident

predicting when the intended emotion was not neutral. There were 8 instances of

false positives and 148 instances of true negatives, which resulted in a specificity of

94.87%.

For both the happy and sad intended emotions, the participants were confident

predicting both when the emotion was and was not present. For happy, there were
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5 instances of false negatives and 99 instances of true positives, which resulted in a

sensitivity of 95.19%. This high TPR for the happy intended emotion allows us to

reject the null hypothesis. There were 10 instances of false positives and 81 instances

of true negatives, which resulted in a specificity of 89.01%. For sad, there were 3

instances of false negatives and 49 instances of true positives, which resulted in a

sensitivity of 94.23%. This high TPR for the sad intended emotion allows us to reject

the null hypothesis. There were 6 instances of false positives and 137 instances of

true negatives, which resulted in a specificity of 95.80%.

Figure 29 illustrates that the participants were able to distinguish seven gestures as

extreme instances. H1, H2, H3, H4, and H5 were on average “very happy,” whereas

S3 and S4 were on average “very sad.” In addition, the gesture with the smallest

standard deviation of 0.376 was S2 with an average of 4.154 (sad). Once the range

of happiness is combined into one category and the range of sadness is combined into

one category, the participants completely agree on their perception of the gestures. In

particular, H1, H2, H3, H5, H6, S2, and S4 have no deviation across all participants

(SD = 0). This suggests that implementing these gestures into a social scenario would

be ideal to enhance engagement and motivation.

Lastly, the movement of the upper body versus the lower body as discussed in

[80] did not reveal any trends necessary for distinguishing extreme emotion (very

happy/very sad). All 15 of the gestures had some type of upper body movement, but

4 of the gestures incorporated lower body movement as well. Of the 4 gestures that

incorporated lower body movement, 2 were classified as an extreme emotion (50%).

However, of the 11 gestures that did not incorporate lower body movement, 5 were

still classified as an extreme emotion (45.45%), while 6 were not classified as extreme

emotion (54.54%).
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4.1.7 Conclusion

This study revealed that by altering head direction, arm direction, gesture size, and

gesture speed on a humanoid robotic social agent, participants are able to achieve

accurate perception when the intended emotion is happy or sad. By using these key

principles to categorize the gestures, the standard deviation was kept consistently at a

minimum when identifying emotion. In fact, seven of the gestures yielded no standard

deviation across all the participants. When using this framework, the participants

are very confident in identifying when the intended emotion is happy, not happy, sad,

not sad, and not neutral. However, participants are not confident identifying when

the intended emotion is neutral. This work suggests that engagement and motivation

during social interaction can be optimized through the use of happy and sad gestures

derived using the described framework.

4.2 Verbal Behavioral Strategies

Studies have shown that the use of verbal encouragement strategies in education is

able to maximize learning. This idea is derived from traditional classroom settings

where teachers use a multitude of behavioral strategies to maintain the students level

of engagement. Motivated by these educational practices, we developed a number of

socially-supportive phrases to embed on the robotic educational agent.

4.2.1 Verbal Behavior Implementation

Open dialogue integrating socially supportive phrases between teacher and student

is ideal for optimal learning [78]. The use of verbal cues has the ability to encourage

the student, provide instruction, and give positive praise. To support this theory, we

have embedded verbal behaviors that enable the educational agent to provide socially

supportive phrases for re-engagement as the student navigates through the learning

task. During the utterance of verbal phrases, the robotic platform turns its gaze
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towards the student; otherwise, the robot remains looking at the teaching device. The

goal of the verbal phrases is to encourage the student based on their current learning

performance. It is very important that the phrases are socially supportive and convey

the idea of teamwork. There is a dialogue established between the student and the

robot, and not a unidirectional knowledge flow (i.e. the robot is not giving instructions

or issuing commands to the student). A sample of these socially supportive phrases

is shown in Table 13. For implementation purposes, the phrases were recorded and

stored on Darwin’s external SD card as mp3 files. Validation of the verbal behaviors

employed on the robotic educational agent is discussed in Chapter 5.

Table 13: Sample of verbal responses

Answer Speed Phrase

Correct

Fast

“You really know your stuff!”

“You’re a genius!”

“Fantastic!’

Slow

“This is hard, but we’re doing great.”

“Thanks for all your hard work.”

“This is really making me think.”

Incorrect

Fast

“Wait, I didn’t get to read that one.”

“Hang in there. We’re almost done.”

“I’m lost. We’re going too fast.’

Slow

“Don’t worry. I had trouble with that one too.”

“That one was very challenging.”

“Don’t sweat it. We’ll get the next one.”

None Inactive

“Let’s make an educated guess.”

“I was completely stumped on this one.”

“Don’t forget about me over here.”
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CHAPTER V

ENGAGEMENT WITH ROBOTIC EDUCATIONAL

AGENTS

Our studies have shown that teaching processes, which incorporate robotic-based

engagement methods, can approach the effectiveness of human instructors [20, 22,

23, 38]. We discuss the overall system approach, which consists of the engagement

model (Chapter 3) and the forms of multi-modal nonverbal and verbal cues used by

the robotic agent (Chapter 4). The result of this study fulfills our third contribution:

3. Develop a system that uses the physical input-based engagement model

and baseline re-engagement strategies embedded on a robotic platform to

re-engage students during a learning task.

5.1 Computation Tasks

In this section we elaborate on the process of embedding social interaction within

a humanoid-student math-learning scenario in order to re-engage students during

high-demand cognitive tasks (Figure 30). Results derived from 44 students engaging

with a robotic educational agent during a tablet-based math exam show that, while

various forms of social interaction increase test performance, combinations of verbal

cues result in a slightly better outcome with respect to test completion time.

5.1.1 The Learning Environment

In traditional learning scenarios, active engagement is an important goal for both

students and teachers [4]. One of the most non-engaging, yet necessary, elements

of the current learning environment is the process of testing [62]. As such, in this
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Figure 30: Diagram of the entire system with the REA.

chapter, we focus on the math-testing scenario to evaluate the role and effectiveness of

engagement using a robotic agent. For our work, we employed a 15-question multiple-

choice algebra or calculus test, which was proctored using a Samsung Galaxy Tablet

(Figure 31). There were three distinct display screen layouts throughout the test: the

welcome screen, the multiple-choice test screen(s), and the completion screen. The

first screen, the welcome screen, introduces the student to the system and enables

initiation of the test. The test, itself, is composed of a sequential set of screens that

highlights a single question, with an associated image when applicable, and a set

of multiple-choice answers with button choices A, B, C, and D (Figure 31). The

application only allows the student to make one selection, and then he/she will press

the Next button located at the bottom of the screen to move forward to the next test

screen. The application does not allow students to navigate backwards during the

test. Once the student reaches the last test screen, a ‘Submit Test’ button replaces

the ‘Next’ button. Once pressed, the completion screen is displayed, and the test has

been completed.

As each student progresses through the test, their interactions with the tablet are

communicated to the robotic educational agent Darwin [45] via Bluetooth. To enable
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Figure 31: The Learning Environment - Calculus Test Question Screen.

real-time performance, only the numbers 0-9 are transmitted from the tablet to the

Darwin. Each number conveys a different message to Darwin about the interaction

between the student and the tablet. Basically, every button that is pressed is sent to

Darwin, as well as the time intervals taken to navigate through the test. Table 14

defines what each number represents to Darwin.

Table 14: Bluetooth Communication Protocol between the Tablet and Darwin

Message Sent

from Tablet
Time (s)

Button Pressed

on Tablet
Answer

0 n/a Start App Icon n/a

1 n/a A, B, C, or D n/a

2 t<30 Next Correct

3 t>90 Next Correct

4 30<t<90 Next Correct

5 t<30 Next Incorrect

6 t>90 Next Incorrect

7 30<t<90 Next Incorrect

8 t =90n, n>0 n/a n/a

9 n/a Submit Test n/a

Upon opening the tablet-based math test, 0 is sent to Darwin and he then begins

his introduction on the welcome screen. If a multiple-choice answer is selected (A,

B, C, or D), a 1 is sent to Darwin and he will respond appropriately based on the

engagement type (verbal, nonverbal, or both). An answer is classified as either being
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fast, slow, or average based on the time elapsed on each question: if the student

submits a response in less than 30 seconds this is fast; if the student submits a response

in between 30 and 90 seconds this is average; if the student submits a response in more

than 90 seconds this is slow. (The thresholds for these time intervals are based on the

results from pilot testing as discussed in Chapter 3.) The answers are also classified

based on whether or not the answer is correct. Messages 2-7 are the numbers sent to

Darwin based on the answers submitted on the tablet.

To improve human-robot team performance, Shah et al. were able to reduce a

subject’s idle time by monitoring the beginning and end of tasks [82]. Based on the

results from this study, we focused on decreasing idle time by monitoring task or

question duration. Therefore, when there are long time intervals where there is no

interaction between the human and the tablet, ‘8’ is sent to Darwin. A long time

interval is defined as 90 seconds; therefore, every 90 seconds of inactivity or idle time,

Darwin is notified and he will respond appropriately. Lastly, 9 is sent to Darwin at

the completion of the test.

Depending on user-state, Darwin provides the users cues that are either verbal,

nonverbal, or a combination of the two (depending on the experimental group). For

both verbal and nonverbal behaviors, the behavior was selected at random based on

the message sent to Darwin from the tablet. For the engagement type that incor-

porates both verbal and nonverbal cues, the gestures and phrases were scripted and

paired prior to Darwin’s random selection. As such, we were able to expand Dar-

win’s library of verbal and nonverbal cues by pairing the same phrase with multiple

gestures. Although a phrase when it stands alone may mean one thing, by adding a

gesture, the underline meaning of the message can be altered. Upon execution of a

pair, both the gesture and the phrase are performed simultaneously. For example, if

3 (Slow correct answer submitted) is sent to Darwin, he may say, “This is hard, but

we’re doing great,” while nodding his head.
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5.1.2 Hypothesis

In this study, we look to validate the hypothesis that the use of a robotic educa-

tional agent can increase test performance by adaptively engaging with the student.

Adaptive engagement is based on the concept that the engagement model is driven

by identification of the behavioral state of the student.

5.1.3 Experimental Design

To evaluate the effectiveness of the robotic educational agent engaging students dur-

ing the learning process, we employed a between-groups design for this study. To

guarantee that the skills are evenly distributed between the groups, the students

were selected at random. A total of 24 college students took part in Trial 1 of the

experiment; this consisted of both females and males in the age range of 18-33 years

old (m = 24.6, SD = 4.9, Male: 18, Female: 6). A total of 20 high school students

took part in Trial 2 of the experiment; this consisted of both females and males in

the age range of 15-16 years old (m = 15.5, SD = 0.51, Male: 12, Female: 8). Our

experiment involved one factor – type of re-engagement:

• No Agent - Represents the control group. No agent is present.

• Verbal - The agent will say socially supportive phrases for re-engagement.

• Nonverbal - The agent will use only gestures for re-engagement.

• Mixture of Both - The agent will use both gestures and phrases for re-

engagement.

The experimental setup (Figure 32) in this study involves a test-taking learning

scenario. A Samsung Galaxy Tablet is used as the teaching device for displaying

questions and recording the students answers. The tablet is placed on an adjustable

stand at eye level. We utilize the humanoid robot Darwin as the platform for our

robotic educational agent [45]. For experiments with the robot agent present, Darwin
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is positioned to the right of the tablet, yet between the tablet and the student. The

robot is placed in a position such that the robot is always able to see and interact

with both the tablet and the student.

Figure 32: The experimental setup.

For experiments with the robot present, at the start of the test-taking learning sce-

nario, Darwin gives a verbal introduction and discusses the activity that the students

are about to perform. The script of this verbal introduction is shown below:

“Hello. My name is Darwin. We will be going through a series of 10 math

questions to learn the material together. I appreciate you taking the time

out of your busy schedule to work with me. Get your pencil and paper

ready so we can start. Press begin when you’re ready.”

The purpose of this introduction is to eliminate the novelty of the robot from the

investigation and prepare the students for the test by instructing them to gather

their materials. The students then navigate through the test questions until they

reach the completion screen. The test questions consists of multiple-choice math

questions of varying difficulty levels. As each student progresses through the test, the

interaction with the learning device is communicated to Darwin. Every button that

is pressed is sent to the robot, as well as the time intervals taken to navigate through
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the test (Table 14). After test completion, a message is also sent to the robot, at

which point Darwin shows its gratitude and gives a farewell.

We focus on increasing engagement while decreasing idle time by monitoring task

or question duration with the engagement model discussed in Chapter 3 [18, 16].

Depending on the estimated user-state determined by this model, Darwin provides

the students cues that are either verbal, nonverbal, or a combination of the two. For

both verbal and nonverbal behaviors, the behavior was selected at random based

on the message sent to Darwin from the teaching device. We were able to expand

Darwin’s library of verbal and nonverbal cues by pairing the same phrase with multiple

gestures. A stand-alone phrase can have one meaning, but by adding a gesture, the

underline meaning of the message can be altered. Upon execution of a pair, both the

gesture and the phrase are performed simultaneously.

For the experimental design, we utilize the same test, environmental setup, and

engagement model across all students. The only change between groups is the type of

cues that Darwin provides. For the control group, Darwin is removed from the table.

5.1.4 Results

To prove or disprove the hypothesis, we examined test completion time, the Likert

scale questions that were asked in an exit survey, and the comments that students

left at the end of the survey. We logged the total test time for each student in each

trial, and the means for the four groups are shown in Figure 33. The results of Trial 1

and 2 are compared and contrasted in Figure 34(a), and the results averaged together

from both trials are shown in Figure 34(b). The statistical analysis of each group and

trial is shown in Table 15.

After the students completed the test, we asked them to rate their agreement

with a series of statements on a 5-point Likert scale that ranged from “Disagree” to

“Agree”. For each of the questions on our survey, we performed an ANOVA test to
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Figure 33: The average completion times and ranges for Trial 1 & 2.

(a) Trial 1 vs. Trial 2. (b) Trial 1 & 2 combined.

Figure 34: Normalized results for Trial 1 & 2.

see if the differences between groups were significantly different. Table 16 depicts

the question, the average response, and the p-values, which are separated by trial

and test groups. In addition to the survey questions, we left room on the survey for

students to provide freeform comments that reflected their overall experience. These

are highlighted in the following section.

5.1.5 Discussion

For both trials, the verbal group was able to decrease idle time and maintain the

students attention best with the lowest average test times. In Trial 1, when compared

to the control group (No Agent), the verbal groups average test time was 30% lower,

while in Trial 2, the verbal group was 11% lower than the control group (Figure
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Table 15: Total time(s) statistical analysis

Group Mean SD p-value

Trial 1

Verbal 1424 405

0.28
Nonverbal 1461 533

Both 1618 673

No Agent 2026 673

Trial 2

Verbal 505 72

0.80
Nonverbal 583 240

Both 645 290

No Agent 570 230

34(a)). Across both trials, the verbal groups average test time was on average 22%

lower than the control group (Figure 34(b)). The verbal group also presented the

lowest standard deviations. In Trial 1, when compared to the control group, the

verbal groups standard deviation was 40% lower, while in Trial 2, the verbal group

was 69% lower than the control group. Across both trials, the verbal groups standard

deviation was on average 51% lower than the control group (Figure 34(b)). This not

only shows that the verbal cues were able to decrease time, but they were also able

to do so uniformly throughout the groups. This small range, test time, and standard

deviation values make it easier to guarantee a lower test completion time.

In Trial 1, there was a significant variance in how nervous the students deemed

themselves to be during the test with and without Darwin. The control group was

the least nervous during the test with a score of 1.00 (Disagree = 1; SD = 0), while

the remaining groups with Darwin had an average score of 2.72 (Neutral = 3; SD

= 1.4). This may be attributed to the students’ fear of letting Darwin down during

the test (Slightly Agree = 4; Avg = 3.9; SD = 1.2). This fear in effect makes the

students nervous, which is only natural. In addition, the fact that the students have

fear of disappointing Darwin supports that idea that a personal relationship was built

between Darwin and the human.

In Trial 2, there was a statistically significant variance in how appropriate the
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Table 16: Statistical analysis of survey responses (Trial 1/Trial 2)

Question Verbal Nonverbal Both No

Agent

p-value

I found this test difficult
4.00 4.67 4.67 3.83 0.25

2.00 2.00 1.60 1.20 0.43

I performed better than I had anticipated
3.00 2.67 3.33 3.17 0.74

2.80 2.40 2.40 2.80 0.92

I was nervous during this test
2.50 3.33 2.33 1.00 0.03*

2.20 3.00 2.00 2.00 0.51

I finished this test quickly
3.00 1.50 2.67 2.67 0.08

3.40 3.20 3.40 2.80 0.79

I was frequently bored during this test
2.00 2.83 1.50 2.33 0.25

1.80 3.40 1.80 4.60 0.002*

This test was an appropriate level for my skills
3.33 2.50 3.00 4.33 0.13

2.60 2.60 4.00 1.80 0.19

I enjoyed taking this test
3.00 2.83 3.33 4.17 0.31

4.00 3.20 4.40 2.20 0.07

I performed better on the test with Darwin
3.33 2.00 3.00 0.14

2.80 2.00 3.00 0.19

Darwin distracted me during the test
2.17 2.50 2.50 0.90

2.40 2.80 1.80 0.53

I was comfortable with Darwin’s presence
3.50 3.33 4.33 0.27

3.20 4.20 4.40 0.14

Darwin made me work quicker than usual
3.50 2.83 3.83 0.25

2.40 2.40 3.80 0.14

Darwins feedback was helpful
3.33 3.00 3.50 0.74

2.80 2.40 4.20 0.14

I was afraid of letting Darwin down
3.50 4.50 3.67 0.31

2.60 1.80 3.40 0.15

Darwin always reacted appropriately
3.50 2.33 3.33 0.17

4.20 1.80 4.40 0.002*

Darwin made me less nervous during the test
2.83 2.33 2.83 0.57

3.40 2.60 3.20 0.62

Darwin helped me to stay focused on the test
3.33 3.67 3.17 0.69

3.40 2.40 4.00 0.11

I like Darwin
4.17 4.50 4.67 0.62

3.20 4.20 4.60 0.20

Interested in taking Darwin to a real test?
2.17 2.17 2.00 0.92

1.8 0 2.40 2.40 0.48
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students deemed Darwin’s reactions to be during the test. The nonverbal group

thought Darwin’s actions were not appropriate with a score of 1.8 (Slightly Disagree

= 2; SD = 0.84), while the remaining groups had an average score of 4.3 (Slightly

Agree = 4; SD = 0.99). This supports the nonverbal freeform responses about how

“weird” Darwin’s movements were during the test. The lack of understanding of

Darwin’s actions was interpreted as him not giving any feedback at all, which resulted

in a more unpleasant experience.

Because boredom is often associated with poorer learning and behavior problems

[11], it is important to note that there was a statistically significant variance in how

bored the student deemed him- or herself to be throughout the test in Trial 2. For

both the verbal group and the group with a mixture of verbal and nonverbal cues,

the average response to the question on boredom during the test was 1.8 (Slightly

Disagree = 2; SD = 1.07). The nonverbal group followed with a score of 3.4 (Neutral

= 3; SD = 1.52), while the group with no agent was the most bored with a score of 4.6

(Agree = 5; SD = 0.55). This shows that the verbal group and the group with both

verbal and nonverbal cues were able to minimize boredom the best when compared

to the other groups.

The freeform responses yield a range of responses – some students felt like the

robotic platform was wasting space, while others enjoyed the robot’s presence. In par-

ticular, the students said that the robot was a “friendly looking robot with a friendly

voice.” Similarly, another student said robot was “cute...and friendly.” Lastly, a stu-

dent stated that he or she felt more confident when the robot was assisting with the

learning scenario. Although there were a lot of positive freeform responses, we would

like to make improvements in the system in the near future to decrease the amount

of negative responses received from students.
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5.1.6 Conclusion

Across all interaction types, verbal, nonverbal, and both, the students enjoyed Darwin

and were not distracted by his presence during the test. They were able to build a

relationship with Darwin and did not wish to disappoint him with their performance.

When compared to having no educational agent present, every interaction type that

Darwin implemented was successfully able to maximize the time used in the learning

environment. This was achieved by using the engagement model to monitor progres-

sion through the test and effectively eliminate idle time. In particular, the verbal

engagement implemented on Darwin was able to reach this goal best, although by a

small margin. In addition to minimizing idle time, the standard deviation was also

extremely low when compared to the control group. Lastly, a mixture of verbal and

nonverbal cues tends to have the least amount of boredom associated with it, which is

ideal for a richer learning environment. Overall, the use of only nonverbal cues such

as gestures shows no significant trends when compared to verbal cues; therefore, this

works suggests that verbal engagement is ideal for enhancing test performance with

computational tasks.

5.2 Motor Tasks

In this section we elaborate on the process of embedding social interaction within

a humanoid-student motor -learning scenario in order to re-engage students during

low-demand cognitive tasks. For individuals with a motor skill disorder, repetition

of recommended motor tasks is essential for learning. For the context of this study,

the tasks that will be discussed are comparable to the tasks performed in a physical

therapy session. Moreover, external motivational feedback is an important component

of motor-task learning such that individuals can remain engaged over an extended

period of time and, ultimately, improve their performance. In order to promote the

repetition of recommended motor tasks, several serious games have been developed
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to promote compliance with motor-task learning interventions.

To advance this work, we have developed a novel framework to couple serious

games with a robotic educational agent (REA) that provides motivational feedback

during interaction. The REA continuously tracks the student’s kinematic perfor-

mance and autonomously provides motivational cues to increase the engagement and

performance. The details of the student’s kinematic performance will be discussed in

the following chapter. However, in this section, we will focus on student engagement

and acceptance of Darwin during the learning session. To determine how motivational

cues affect an individual’s engagement level, we have tested the complete system with

20 able-bodied adults. Namely, we varied the type of motivational feedback given from

Darwin while completing a reaching task. The results show that when motivational

cues are not provided during interaction, the robotic platform is perceived to be un-

pleasant and the students are disengaged from completing the remaining tasks. The

exit surveys also suggest that when motivational cues were provided, the students

had a more pleasurable experience.

5.2.1 Super Darwin Pops (SDP)

In this section we introduce a system that can potentially be used as part of the

intervention protocol for individuals with motor skill disorders. We have developed

a novel framework to couple the virtual reality game Super Pop VRTM [39] with a

robotic educational agent Darwin [45] that can autonomously provide the student

motivational feedback during game play and, ultimately, increase the efficacy of the

corresponding intervention protocol. We will refer to the integration of these two

platforms as Super Darwin Pops (SDP). A description of the overall SDP system

is shown in Figure 35 along with all of the major components.

For simplicity, we focus on upper-body motor skills, of which the most dominant

form is reaching movements. The ability to reach is critical for most, if not all,
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Figure 35: This shows the system diagram with the main components. 1) Darwin is

the robotic platform which provides motivational feedback to 2) the student who is

interacting with 3) the Super Pop VRTM game [39].

activities of daily living such as feeding, grooming, and dressing [43]. Moreover, failure

to substantially recover upper-extremity function can lead to depression [60]. As

such, reaching movements, correlated to reaching exercises, are of interest in various

rehabilitation scenarios. These exercises require a student to move from a defined

initial position to a selected target position (Figure 36). In the proposed system, we

evaluate the student’s performance, and provide the corresponding feedback, with

respect to these movement types.

5.2.1.1 Virtual Environment

In order to enable collection of a non-biased data collection process for the randomized

trials, we employed a platform called Super Pop VRTM [39, 38], a motivating virtual

reality game used to track upper-body movements using the Kinect camera from

Microsoft. The objective of the Super Pop VRTM game is to interact with the virtual
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Figure 36: During game play, the student interacts with the motor-task learning game

interface displayed on the projector screen. The reaching movement is shown from

START to TARGET.

environment and ‘pop’ the virtual bubbles that appear on screen. For the student,

the execution of a reaching movement is necessary to successfully reach for and ‘pop’

a bubble. Figure 36 is an example of popping a bubble.

For this study, students interacted with the system in a lab environment as shown

in Figure 37. The environment settings were maintained constant in order to maintain

consistency. The virtual reality game screen was projected onto a large screen via a

projector connected to a PC laptop. The chair height upon which the student sat

was 39cm tall, the distance between the student’s chair and the Kinect camera was

200cm, and the distance between the projector and the screen was 470cm. For each

student, a total of six reaching movements were collected per arm during game play.

5.2.1.2 The Robotic Platform

To enable interaction with the virtual environment and feedback to the human, Dar-

win was pre-programmed with a library of verbal and nonverbal behaviors. The

nonverbal behaviors demonstrate the reaching task, whereas the verbal behaviors en-

able the robotic agent to provide socially supportive phrases for re-engagement as
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Figure 37: Actual experimental setup.

the student navigates through the learning task. These behaviors enabled Darwin to

work together with the student in the virtual environment as a teammate, yet also

provide motivational feedback when the task was performed, regardless of perfor-

mance (i.e. how well they are completing the reaching task). The ‘teamwork’ aspect

that is conveyed through these socially supportive verbal and nonverbal behaviors is

ideal for optimal learning [78]. The behaviors used in this investigation to provide

motivational feedback to the student are described previously in Section 4.2.

5.2.2 Hypothesis

Although studies have been conducted that show engagement levels can be increased

through use of verbal motivational feedback when learning computational tasks [23],

we hypothesize that similar trends can be found using verbal motivational feedback

when learning motor tasks.

5.2.3 Experimental Design

To evaluate the effectiveness of the robot providing motivational feedback while learn-

ing a motor task, we employed a between-groups design for this study. A total of

20 participants took part in this experiment and all were recruited from the Georgia

Institute of Technology in Atlanta, GA. The population consisted of both males and
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females in the age range of 18-45 years old (mean = 27.4, SD = 4.8 years; Male: 11,

Female: 9). The participants signed the IRB (Institutional Review Board) approved

consent form before engaging in the testing sessions.

For this study, the students were randomly assigned to a group:

• Group 1: (Control) The REA gives instruction to complete a reaching task

in the virtual environment, but does NOT give motivational feedback upon task

completion.

• Group 2: The REA gives instruction to complete a reaching task in the virtual

environment, and gives motivational feedback upon task completion.

Darwin is positioned to the left of the projection screen, yet between the student

and the screen. The robot is perpendicular to both the screen and the student, so

that it is able to see and interact with both entities (Figure 38). During game play,

the students’ movements are mapped into the virtual environment where they are

surrounded by the virtual bubbles as part of the game. At the start of the game,

Darwin gives a verbal introduction and discusses the activity that the student will

perform. The purpose of this introduction is to eliminate the novelty of the robot

from the testing sessions and provide some low-level instructions. The following is

the script of the verbal introduction:

“Hello. My name is Darwin, and I will be playing Super Pop with you

today. I will ask you to complete a series of tasks, and I would love it if

you would follow my instructions. When you’re ready, please raise both

of your hands as high as you can.”

Darwin then turns his head around and directs his eye gaze towards the projecting

screen. During game play, a set of Super Bubbles (SB) are presented in such a way

that indirectly prompts the students to complete three reaching tasks. When a SB
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Figure 38: Darwin is strategically placed between the student and the game, which

enables him to interact with both.

set is displayed, Darwin will direct his gaze towards the student and instruct the

student to perform a task. The tasks are given in the same order to all of the

students. For both Groups 1 & 2, Darwin states the task verbally and also provides

the students with an iconic gesture to further demonstrate the desired performance

(discussed further in the next chapter). However, for Group 2, Darwin also interjects

a motivational phrase upon task completion. Lastly, the interaction with the system

is followed with an exit survey to evaluate whether or not the students enjoyed their

experience.

5.2.4 Results

The survey following the interaction with the system covered topics about the stu-

dent’s motivation, the game’s perceived difficulty, and the student’s overall physical

effort exerted. We asked the students to rate their agreement with a series of state-

ments on a 5-level Likert scale that ranged from 1 (Strongly Disagree) to 5 (Strongly

Agree). The overall means and standard deviations of the students’ responses are

displayed in Table 17. In general, there seems to be a relatively positive perception
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of the entire system with the REA.

Table 17: Statistical analysis of survey responses

Statement
Group 1 Group 2

p-value
m SD m SD

I enjoyed playing the game overall 4.00 1.05 4.10 0.56 0.39

I think I performed well in the game 3.90 0.87 4.20 0.91 0.27

I would like to play this game more often 2.70 1.05 3.30 1.15 0.08

I would be willing to play the game every day for a few minutes 2.80 1.31 3.30 1.05 0.10

I would be willing to play the game twice a week for at least 30 minutes 2.50 1.26 3.00 0.94 0.10

It would be nice if I could play the game with other children 3.40 1.57 3.60 1.26 0.38

The game was so engaging that I lost track of the time 2.90 1.19 2.60 0.96 0.24

Training with this game is less fun than with regular physiotherapy 1.60 0.89 2.16 0.75 0.24

If repeatedly played, my speed and accuracy would improve 4.00 1.33 4.00 0.66 0.50

The game was too fast - I would have liked to play a slower version 1.80 0.42 1.90 0.56 0.29

The game was too difficult. I would have liked to play an easier version 1.60 0.51 1.60 0.51 0.50

I could predict what was going to happen after I had made a movement 4.00 0.94 3.80 0.91 0.17

I found it hard to play the game by moving my arms 1.30 0.67 1.4 0.51 0.37

I become more tired from playing this than regular physiotherapy 2.20 0.44 1.66 0.81 0.19

I have learned new movements by playing this game 2.11 0.78 2.00 0.70 0.38

I think I could learn new movements by playing the game more often 3.33 1.11 3.11 1.36 0.42

In addition to the questions discussed in the previous subsection, we also left

room on the survey for students to provide freeform comments that reflected their

experience as a whole. Out of the 20 people who participated in the study, 4 students

decided to provide comments. In particular, two comments were about the system

with the REA not providing verbal feedback (Group 1), and two comments were

about the system with the REA providing verbal motivational feedback (Group 2).

These responses are outlined in Table 18.

5.2.5 Discussion

In regards to motivation, students in both groups stated that they enjoyed playing the

game with a score of 4.05 (Agree = 4; SD = 0.82). This results correlates with results

from previous studies on student motivation with VR systems and/or robot-assisted
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Table 18: Freeform responses

Group Response

1

“Sound of the robot was not clear. Missed a few instructions.”

“Consider changing the tone of Darwin’s voice to have a higher pitch or place him closer to the user so

that his instructions can be heard clearly.”

2

“Sometimes it was too slow for me to realize what was going on. The visual feedback of where you were

(where your arms were) was really useful. I see this extending past cerebral palsy and being really useful

for rehab of all kinds (e.g. shoulder).”

“Could not make out what Darwin instructed on the first set of bubble pops. After that I inferred what

he wanted from his movements.”

rehabilitation [32, 31, 58, 25]. However, if we compare Group 1 to Group 2, the

students enjoyed playing the game slightly more in Group 2 with a score of 4.1 and

with a lower standard deviation of 0.56. The addition of motivational phrases in the

learning scenario also increased the students’ confidence in how well they perceived

their performance. Group 2 stated that they thought they performed well with a

score of 4.2 (Agree = 4; SD = 0.91), while Group 1 had a score of 3.9 (Agree = 4;

SD = 0.87).

Furthermore, we are interested in developing a learning system that students will

be able to use long term to ensure optimal results. Group 2 exhibits a lot of potential

towards reaching this goal when compared to Group 1. More specifically, Group 2

was inclined to play the game more often with a score of 3.3 (Neutral = 3; SD = 1.15)

whereas Group 1 had a score of 2.7 (Neutral = 3; SD = 1.05). We also probed both

groups to see if they would prefer to use the system every day for a few minutes or

twice a week for 30 minutes. As expected, Group 2 was more accepting of both ideas

with an average score of 3.15 (Neutral = 3; SD = 0.98), while Group 1 had a score

of 2.65 (Neutral = 3; SD = 1.26).

Lastly, the freeform responses were able to reveal subtle differences between the

two groups, although only 20% of the students decided to give feedback. In general,

the students in Group 1 were more critical of the entire system, and did not hesitate
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to state the areas that needed improvement. For instance, one student stated that

the “sound of the robot was not clear” and because of this he or she “missed a few

instructions.” Another student of Group 1 stated that we should “consider changing

the tone of Darwin’s voice to have a higher pitch or place him closer to the student

so that his instructions can be heard clearly.”

However, when we looked at the responses that Group 2 gave about the system,

the students seemed to be more sensitive in their critique and ended on a positive

note about the system. For instance, one student stated that “sometimes it was too

slow...to realize what was going on.” Then the same student ended by stating that

“the visual feedback of where you were (where your arms were) was really useful”

and he or she can “see this extending past cerebral palsy and being really useful for

rehab of all kinds (e.g. shoulder).” Another student in Group 2 stated that he or

she “could not make out what Darwin instructed on the first set of bubble pops.”

The same student ended by saying that after that he or she “inferred what he wanted

from his movements.”

The freeform responses suggests similar trends show in the prior engagement study

when learning computational tasks (Section 5.1). In particular, one can argue that in

Group 2, a personal relationship was built between Darwin and the human through

use of these socially-supportive motivational phrases. Because of this, the students

were more sensitive to Darwin’s ‘feelings’ when giving feedback. As previously noted,

the relationship between the student and the instructor is a very critical component

to achieving optimal learning.

Although we received beneficial information by conducting this study, there is

still obvious room for improvement with the proposed system. It was apparent in

both groups that at times it was difficult to hear Darwin’s voice at the start of each

session. Therefore, in future studies we plan to make the necessary adjustments to

the protocol.
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5.2.6 Conclusion

Across both groups, everyone enjoyed their interaction with the system. Unlike the

control group, it was evident that the students were able to build a relationship

with Darwin when he provided motivational cues during the learning scenario. In

particular, the students did not wish to disappoint him with their responses and

made sure to mention something positive about the system after their critique. In

addition, the group that was provided motivational cues during the learning scenario

had a richer experience. Based on their responses, they are more likely to interact with

the system long-term, which is ideal for optimal learning and retention. Therefore,

this works suggests that verbal engagement is ideal for enhancing performance with

motor tasks.
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CHAPTER VI

LEARNING WITH ROBOTIC EDUCATIONAL AGENTS

In addition to increasing student engagement with Robotic Educational Agents (REA),

we aim to increase student learning/performance. Our studies have provided many

insights on effective methods to communicate tasks and corrective feedback to stu-

dents during a learning scenario [21, 37]. We discuss the overall system approach,

which builds on the current REA system that employs verbal cues embedded on the

robotic agent to increase student motivation (Chapter 5). The result of this study

fulfills our fourth contribution:

4. Develop a system that uses verbal and nonverbal cues embedded on a

robotic platform to increase student performance through guided instruc-

tion and corrective feedback.

6.1 Guided Instruction

This work builds on the previous study, in that we have chosen to focus on learning

motor tasks similar to those performed in physical therapy. We utilize the same SDP

framework. However, instead of evaluating the effects of verbal motivational cues on

student engagement, we will focus on improving student performance by providing

guided instruction during interaction. The robotic agent continuously tracks the

student’s kinematic performance and autonomously provides objective verbal and

nonverbal cues in order to increase the efficacy of the intervention. To determine

how various cues affect an individual’s kinematic performance, we have tested the

complete system with 20 able-bodied adults. Namely, we computed the total amount

of time it took the students to successfully complete a reaching task as a function of

76



the verbal or nonverbal cues received. The results show that movement times improve

at a faster rate for the group provided with both verbal and nonverbal feedback versus

verbal feedback alone. Exit surveys also suggest that the targeted population deemed

the system enjoyable.

6.1.1 Description of System

6.1.1.1 Performance Metrics

There are several kinematic parameters associated with reaching movements, includ-

ing movement smoothness [76], movement speed [28], movement time [63], and elbow

range of motion (ROM) [36]. This combination of kinematic parameters best de-

scribes the reaching movements performed by the student while interacting with the

SDP game. In regards to this study, we only focus on computing and correcting the

student’s movement time (MT) [63].

The MT parameter describes the amount of time the student takes to complete

a reaching task (i.e. to move from one bubble to another). The initial and final

positions of the student’s hand are captured when they ‘pop’ the start and target

bubbles respectively. The MT for a given task is determined by the system clock,

which starts when the student ‘pops’ the initial bubble and stops when they ‘pop’

the target bubble.

6.1.1.2 The Robotic Platform

To enable interaction with the virtual environment and feedback to the human, Dar-

win was pre-programmed with a library of verbal and nonverbal behaviors. These

behaviors enabled Darwin to work together with the student in the virtual environ-

ment as a teammate, yet also provide corrective feedback when the task was performed

incorrectly. The ‘teamwork’ aspect that is conveyed through these socially supportive

verbal and nonverbal behaviors is ideal for optimal learning [78]. The behaviors used

in this investigation to provide corrective feedback to the student are described in
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Table 19, and the basic arm movement gesture is displayed in Figure 39.

Figure 39: The robotic platform Darwin performing the basic reaching movement

gesture. There are a total of three gestures, and the key difference is movement time.

Table 19: Instructional feedback

Task Verbal
Nonverbal

Movement Time Description

1
“Please pop bubbles one through three at a speed

that feels normal.”
1.60s

Darwin extends his left arm

above his head. He then

moves his shoulder joint

180ntil his arm is downward

and parallel to his torso

(Figure 39).

2
“Please pop bubbles one through three again, but

move as slow as possible.”
16.32s

3
“Please pop bubbles one through three again, but

move at a speed that is a little slower than normal.”
5.28s

6.1.2 Hypothesis

Feedback is provided to individuals who are learning motor tasks to help improve

the individual’s movement performance. Because feedback can come from a variety

of sources, we have chosen to utilize an embodied robotic agent to provide corrective

feedback to the students. Although studies have been conducted that show verbal

cues alone are best for motivational feedback [23], we hypothesize that receiving a

combination of verbal and nonverbal cues will be better than receiving verbal cues

alone for instructional feedback.

78



6.1.3 Experimental Design

To evaluate the effectiveness of the robot platform providing corrective feedback dur-

ing a motor task, we employed a between-groups design for this study. A total of

20 participants took part in this experiment and all were recruited from the Georgia

Institute of Technology in Atlanta, GA. The population consisted of both males and

females in the age range of 18-45 years old (mean = 28.4, SD = 5.7 years; Male: 15,

Female: 5). The participants signed the IRB (Institutional Review Board) approved

consent form before engaging in the testing sessions.

For this study, all students received instructional feedback selected randomly with

one variable between the two groups:

• Group 1: The robotic platform gives verbal instructional feedback to assist

the student when completing a reaching task in the virtual environment.

• Group 2: The robotic platform gives a combination of verbal and nonverbal

instructional feedback to assist the student when completing a reaching task in

the virtual environment.

Before the students played the SDP game, they were assigned to one of the groups.

All students completed a total of two games with their dominant hand. The first

game is the original Super Pop VRTM game played without the robotic platform and,

therefore, no feedback is given to the student. This initial game is used to familiarize

the student with the motor-task learning game and eliminate any novelty effects.

The second game is played with the robot platform. The group that the student is

assigned to determines the level of corrective feedback administered from the robot

platform.

For the games where the students play with the robot platform, Darwin is posi-

tioned to the left of the projection screen, yet between the student and the screen.

During game play, a total of three sets of bubbles are displayed during this game,
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and each set is correlated to one of the three tasks described in Table 19. When a

bubble set is displayed, Darwin will direct his gaze towards the student and instruct

the student to perform a task. For Task 1, the student is instructed to move at a

‘normal’ speed; for Task 2, the student is instructed to move ‘as slow as possible’;

for Task 3, the student is instructed to move at a speed ‘a little slower than normal.’

The tasks are given in the same order to all of the students. For both Groups 1 &

2, Darwin states the task verbally; however, for Group 2 Darwin also provides the

students with an iconic motor gesture to further demonstrate the speed that is desired

of them. Lastly, the interaction with the system is followed with an exit survey to

ensure that all of the students understood the instruction given from Darwin.

6.1.4 Results

6.1.4.1 Performance

To evaluate the performance of the proposed system, we collected data from the

students of both groups and averaged the resulting outcome metrics with respect to

movement time for each task. For the context of this study, the slower the student

moves, the higher is their movement time. Figure 40 shows the average movement

times of each group for each task along with the movement times of the robot platform

Darwin. By observing the linear trend-lines moving from Task 1 to Task 2, it is evident

that Group 1, Group 2, and the robotic platform Darwin improve at a positive rate

with a slope of 0.25, 0.56 and 0.90, respectively. In particular, Group 2 improves at a

faster rate than Group 1 and is able to perform closer to the robot’s guided direction.

Both groups also reach their highest movement time during Task 2, as expected.

Because we hypothesized that receiving a combination of verbal and nonverbal

cues will be better than receiving verbal cues alone for corrective feedback, we also

conducted a one-tailed t-test on the collected data as shown in Table 20. Here we

see that there are little differences between the performance of the groups for Task 1

and Task 3. However, for Task 2 there is a statistically significant difference between
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Group 1 (verbal cues only) and Group 2 (combination of both verbal and nonverbal)

with a p-value of 0.01.

Figure 40: The normalized average movement times with respect to each task for

Group 1, Group 2, and the Robot platform.

Table 20: Statistical Analysis of Movement Time

Task Group 1 Group 2 p-value

1 0.13 0.11 0.14

2 0.38 0.67 0.01*

3 0.24 0.28 0.26

6.1.4.2 Exit Survey

The survey following the interaction with the system covered topics about the stu-

dent’s motivation, the game’s perceived difficulty, and the student’s overall physical

effort exerted. We asked the students to rate their agreement with a series of state-

ments on a 5-level Likert scale that ranged from 1 (Strongly Disagree) to 5 (Strongly

Agree). The overall means and standard deviations of the students’ responses are

displayed in Table 21. In general, there seems to be a relatively positive perception

of the entire system with the robotic playmate.
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Table 21: Statistical Analysis of Survey Responses

Statement
Group 1 Group 2

p-value
m SD m SD

I enjoyed playing the game overall 4.20 0.78 4.00 1.05 0.29

I think I performed well in the game 3.60 0.96 3.90 0.87 0.13

I would like to play this game more often 3.10 1.28 2.70 1.05 0.23

I would be willing to play the game every day for a few minutes 3.30 1.15 2.80 1.31 0.13

I would be willing to play the game twice a week for at least 30 minutes 3.10 1.19 2.50 1.26 0.10

It would be nice if I could play the game with other children 4.00 1.05 3.40 1.57 0.21

The game was so engaging that I lost track of the time 2.90 0.99 2.90 1.19 0.50

Training with this game is less fun than with regular physiotherapy 3.00 1.15 1.60 0.89 0.07

If repeatedly played, my speed and accuracy would improve 4.20 0.42 4.00 1.33 0.35

The game was too fast - I would have liked to play a slower version 2.00 0.66 1.80 0.42 0.25

The game was too difficult. I would have liked to play an easier version 2.00 0.66 1.60 0.51 0.05

I could predict what was going to happen after I made a movement 3.50 1.17 4.00 0.94 0.12

I found it hard to play the game by moving my arms 1.70 0.48 1.30 0.67 0.05

I become more tired from playing this than regular physiotherapy 1.85 0.69 2.20 0.44 0.03*

I have learned new movements by playing this game 1.77 0.66 2.11 0.78 0.11

I think I could learn new movements by playing the game more often 3.62 0.91 3.33 1.11 0.50

6.1.4.3 Freeform Responses

The survey following the interaction with the system allowed students to provide

freeform comments that reflected their experience as a whole. Out of the 20 people

who participated in the study, 7 students decided to provide comments. In particu-

lar, five comments were about the system with the robotic platform providing verbal

feedback (Group 1), and two comments were about the system with the platform pro-

viding both verbal and nonverbal feedback (Group 2). These responses are outlined

in Table 22.

6.1.5 Discussion

Although the survey results (Table 21) show that across all groups there is an over-

all positive response to the system, the performance results show that there is still

potential in improving the efficacy of motor-task learning interventions by coupling
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Table 22: Freeform responses

Group Response

1

“Right now, this is more of a test run than a game. If (or when) the patterns’ locations or order change,

then I could be more compelled to play. Consider color-coding the patterns (the 1-2-3 bubbles).”

“I didn’t know which bubbles were 1-3 so I delayed the first time. (Bubbles were not labeled.) My hands

weren’t found at first. Maybe tell me in the game to move them or put them in a certain place.”

“The sound from the speaker of the robot was not clear. Better quality of speaker would have made this

trial better to follow the instruction given by the robot.”

“The question about ‘game interface’ was vague as is saw a video screen of myself overlaid with this

activity. So I never thought of there being an interface as presented. Maybe Darwin’s instruction could

include ”keeping your arm fully extended.” I couldn’t accurately comment on length of time to commit

to the game w/o knowing the goal. Maybe the survey should explicitly ask about previous physiotherapy

experience.”

“Robot partner sometimes difficult to understand.”

2

“Sound of the robot was not clear. Missed a few instructions.”

“Consider changing the tone of Darwin’s voice to have a higher pitch or place him closer to the user so

that his instructions/encouragement can be heard clearly.”

serious games with a robot platform that provides real-time corrective feedback. The

students enjoyed their experience, as well as the robot’s presence. Not only was the

system accepted, the students verbalized that they wanted to continue playing the

game with Darwin even after testing was complete.

In regards to performance, Figure 40 suggests that the corrective feedback cues

that Darwin provided had a positive effect on the outcome of the Movement Time

performance metric, further indicating that there is benefit in providing concurrent

corrective feedback during game play. Overall, both groups began at a certain base-

line for Task 1, were able to slow down for Task 2, and then speed up for Task 3.

However, we observe key differences between Group 1 and Group 2, which provide

feedback to the student in unique ways. More specifically, if we look at Task 2 when

Darwin instructs the student to move ‘as slow as possible,’ Group 1 has a normalized

movement time of 0.38 (SD = 0.26) and Group 2 has a normalized movement time of

0.67 (SD = 0.30). This result suggests that the addition of nonverbal cues for feedback
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on the robotic platform allows the student to perform better, as hypothesized.

Lastly, the freeform responses received from the students gave a lot of insight

to take into consideration for future studies. A large number of students commented

that the robot platform’s voice was hard to understand; however, the results in Figure

40 show that the were able to accurately complete the tasks as instructed. For Group

2, this could be attributed to the use of gestures to further explain the task.

6.1.6 Conclusion

The proposed system for providing objective instructional feedback to individuals

who have some form of motor skills disorder while they perform recommended motor

tasks has the potential of improving motor learning associated with such protocols.

The comparison between the groups’ average movement times showed that the stu-

dents in Group 2 (verbal and nonverbal) improved faster than the students in the

Group 1 (verbal only), while the exit surveys showed that the target population ac-

cepts a system such as ours regardless of the feedback type they received. As such,

these results suggest that the proposed system can increase learning best by using

both verbal and nonverbal cues for instructional feedback. In the future, we plan to

improve our methodology by 1) increasing the number of students, 2) redefining the

threshold values for the performance metrics, and 3) testing with the motivational

cues embedded on the robotic platform.

6.2 Corrective Feedback

Previous studies have shown that external corrective feedback provided to individ-

uals performing movement tasks increases the motor learning associated with their

intervention protocols, thus allowing for the individuals to rapidly improve on their

performance. After showing in [21] that a combination of verbal and nonverbal cues is

the most efficient method for providing guided instruction, we now show that motor
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learning associated with intervention protocols can be further increased by embed-

ding human-like behaviors on the robotic platform such that it provides continuous

low-resolution feedback. This would allow student performance to improve at each

iteration of feedback and, ultimately, converge to an individualized learning goal. To

show that students can converge to a reference point or learning goal for a given

kinematic parameter, we recruited 14 children to interact with the system. Results

show that students converged to their learning goal in an average of four trials. Fur-

ther analysis shows that the students’ response to the system imitates that of an

overdamped second-degree order system, suggesting that all individuals that interact

with our proposed system will reach their learning goals.

6.2.1 Description of System

We base this work on our previous findings in [21] that showed how an individual’s

performance with respect to movement time (MT) can be affected by verbal and

nonverbal corrective cues provided by a robotic platform (Section 6.1). We adhere

to the Super Darwin Pops (SDP) system previously developed to aid in motor task

learning for individuals who have some form of motor skill disorder [39, 38].

6.2.1.1 Performance Metric

As mentioned previously, movement time is a kinematic parameter of interest in motor

skill learning because it directly correlates with the speed of an individual’s move-

ments. In general, for a given learning goal, the idea is to compare the individual’s

MT with a ground truth value to determine their kinematic performance and then

influence their learning such that their MT approaches an ideal MT via corrective

feedback provided by a robotic agent.

We define an ideal MT using the model of human movement, Fitt’s law [34].

This model predicts the amount of time a student should take move from one point

to another in a virtual environment. We compute a MT reference for each student as
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a function of the distance between the start and target virtual points and the width

of the target as in [40].

6.2.1.2 Robotic Platform

Darwin was pre-programmed with a library of verbal and nonverbal behaviors, which

he uses to provide appropriate corrective feedback to the students depending on their

performance. Table 23 organizes these behaviors based on the student’s reference MT

or learning goal, where target is the reference MT window. Low-resolution means that

minimal detail is provided to the student on how to adjust their performance. After

each task the student completes, the system assesses the student’s performance rela-

tive to the kinematic parameters and feeds the information to Darwin. Depending on

the analysis, Darwin speaks the corresponding verbal feedback and then performs the

nonverbal gesture as described in Table 23 and shown in Figure 41. This combination

of low-resolution verbal and nonverbal cues is used to modify the student’s kinematic

performance towards reaching the learning goal.

Table 23: Low-resolution feedback given from the robotic platform

Movement

Time, MT
Verbal Nonverbal

MT > target
“Great job. Move a little faster

like this...”

Darwin performs the gesture at the correct movement

time. He extends his left arm above his head. He then

moves his shoulder joint 180 degree until his arm is down

and parallel to his torso (Figure 41).MT < target
“Great job. Move a little slower

like this...”

MT = target “Fantastic.”
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Figure 41: DARwIn-OP is used as the humanoid robotic platform in this study. Image

shows snapshots of Darwin performing the nonverbal gestures.

6.2.2 Hypothesis

An embodied robotic agent providing guided instruction to individuals during motor-

task learning has been shown to improve individual kinematic performance [21] and

increase overall engagement levels [91]. Given that the main objective of performing

movement tasks with a human instructor is to reach a learning goal over an extended

period of time, we aim to reach these long-term learning goals through implementation

of a robotic platform providing continuous low-resolution feedback. We hypothesize

that, by interacting with this proposed system, students will improve their kinematic

performance at each instance of completing a reaching task and, ultimately, converge

to a targeted learning goal.

6.2.3 Experimental Design

To evaluate how well a student’s kinematic performance relative to the Super Pop

VRTM game is affected by the feedback provided by a robotic platform, we recruited

14 children to interact with the system. Five females and nine males, ranging in

age between 15 and 16 years (mean age = 15.5 years, standard deviation = 0.5

years), participated in this study. The parents of the participants signed the IRB

(Institutional Review Board) approved consent form allowing their children to engage

in the testing sessions.

87



At the start of each session, Darwin instructs the students to raise their arms

as high as possible. The system is then calibrated to position the Super Bubbles

as previously described. In addition, the system computes the student’s reference

movement time (MT) and a ± 150 ms margin of error is added to the final value. Each

student interacts with the system for one round. Each round consists of three main

steps: 1) student performs the reaching task, 2) the system compares the student’s

MT to their reference, and 3) Darwin provides the corresponding corrective feedback

until they reach the goal or until the time runs out (6 minutes). A flowchart with the

logic of the testing sessions is shown in Figure 42.

Start

Darwin Provides

Instructions

Student

Performs Task

Goal Reached?

End

Low-resolution

Feedback (Table 23)

yes

no

Figure 42: Flowchart describing the interaction between the student and the system.

At the start of each round we make sure that the students’ starting MT is much

greater than the reference MT by having Darwin speak the following:

“Please pop bubbles one through three and move as slow as you can. Like

this...”
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Darwin then performs the nonverbal gesture that is 10 times slower than the one

described in Table 23 to show the student how the reaching task should be completed.

These instructions prompt the students to move as slow as they can thus defining a

common starting point between all students.

6.2.4 Results

Thirteen out of the 14 students converged to their corresponding movement time

(MT) references. The students that converged reached their reference windows at an

average of 4 ± 1.8 trials. The MTs for all students for their first and last trials,

and their corresponding reference MTs are shown in Figure 43 and Table 24. By

comparing the students’ MTs for their last trials to their respective reference MTs,

we can see that all but Participant 10 converged to their goals. As an example, the

response of Participant 4 who converged to the reference in 3 trials is shown in Figure

44. On the other hand, the response of Participant 10 who did not converge is shown

in Figure 45. We discuss some of the potential reasons for this student not converging

in the following section.

We performed a two-tailed paired t-test analysis to determine if the amount of

individuals that converged out of all who participated is statistically significant. Let ~a

and~b be two vectors containing the absolute difference between the students’ MTs and

their corresponding reference MTs for their first and last trials respectively, where each

element belongs to a different student. Let ~d be the vector containing the difference

between these ~a and ~b (15).

~d =



d1

d2

...

dn


=



|Ft1 −Rt1|

|Ft2 −Rt2|

...

|Ftn −Rtn|


−



|Lt1 −Rt1|

|Lt2 −Rt2|

...

|Ltn −Rtn|


(15)

where n is the number of the students being analyzed, Fti and Lti are the ith student’s
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MT in the first and last trials respectively, and Rti is the ith student’s reference MT.

Thus, we define our null-hypothesis as: the sample mean of ~d is equal to zero (i.e.

there is no statistical difference between ~a and ~b). Our t-test analysis on ~d results in

a p-value� 0.01. As such, we reject the null-hypothesis and conclude that there is a

statistical difference between the students’ performance in their first and last trials.

This suggests that the student that did not converge to their reference MT does not

affect our claim that individuals will reach their performance goals by interacting

with our system.

To further support this claim, we plotted two boxplots that summarize the abso-

lute differences between the student’ MTs and their corresponding reference MTs for

the first and last trials of all students (Figure 46). We use this information to visually

compare how far away the students were from their reference values in the first trials

with how far away they were in the last trials. As expected, the students’ MTs were

further away from their references in the first trials than they were in the last. The

median difference for the first trials is much greater than zero (4,051.3 ms), and the

median difference for the last trials is approximately equal to zero (67.6 ms).

Figure 43: Participants’ MTs at their first and last trials, and their respective refer-

ence MTs.
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Table 24: Quantitative results for all participants

Participant Reference MT [ms] Start MT [ms] End MT [ms]
Trials to

Convergence

1 741.50 6445.29 735.73 5

2 526.99 4320.93 402.59 3

3 883.51 4335.50 919.65 4

4 830.11 6878.28 714.98 3

5 659.69 4453.29 624.07 3

6 958.16 3445.10 902.77 4

7 789.77 5391.94 662.53 7

8 828.02 9687.42 951.08 3

9 814.50 3558.70 698.05 5

10 628.62 4331.25 2322.97 N/A

11 804.38 9306.65 814.15 4

12 823.45 4138.47 743.69 2

13 768.07 5544.83 722.22 1

14 653.31 4962.00 667.03 8

6.2.5 Discussion

The fact that all students converged at an average of four trials suggests that it does

not take much robot guidance before they reach the reference window. As expected,

the students that converged to their reference movement times (MTs) modified their

behavior according to Darwin’s commands after completing each reaching task. Par-

ticipants moved faster (decreased their MT) in the trials where their previous MT

was greater than the reference window, and moved slower (increased their MT) in

the trials where their previous MT was less than the reference window. Regarding

Participant 10 who did not converge, Figure 45 shows that the student did not cor-

rect his/her behavior according to Darwin’s commands for 5 out of 10 trials. Given

that Participant 10 did not follow Darwin’s feedback cues in half of the attempted

trials, the student’s behavior can be considered to be random. This analysis suggests

that, in order for the students to improve their kinematic performance and reach their

goals, they have to understand Darwin’s commands and do their best to follow them.
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Figure 44: MT response curve of Participant 4: convergence at Trial 3.

Figure 45: MT response curve of Participant 10: didn’t converge.

Otherwise, their random behavior would be comparable to not receiving targeted

feedback at all.

The students’ behavior through their interaction with the system is an important

factor that determines if the student will converge to the reference or not. As such, to

determine how well all students followed Darwin’s feedback cues, we analyzed their

performances throughout their interactions with the system. All students finished

their rounds with different number of trials. This is to say that the MT curves as a

function of the number of trials are of different lengths for all students. Thus we took
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Figure 46: Boxplots showing the comparison of the absolute differences between the

participants’ MTs and their reference MTs for the first and last trials.

the following steps to aggregate all the response curves: 1) normalize each curve with

respect to the MT relative to the maximum MT value out of all students and trials,

2) parameterize each curve with respective to their arc lengths, 3) normalize each

curve with respect to their corresponding maximum arc length, and 4) interpolate

each curve. After applying this methodology, the x-axis of all curves range between

0 and 1, and all curves now have the same number of points equally distributed in

the x-axis. This allows us to average all the curves and obtain the average response

curve as a function of the curve’s arc length (Figure 47).

In general, (16) describes the solution of an overdamped second-order system as

a function of time. We fitted the resulting average MT response from all students

to this solution and obtained (17). It is important to keep in mind that the final

MT response is a function of its arc length and not of time given that the original

MT responses were a function of the number of trials. Even so, the behaviors of the

average response and the fitted curve are maintained.

y(t) = c1 ∗ er1t + c2 ∗ er2t (16)

93



Figure 47: Average reference MT, average MT response from all students, and the

fitted response to the solution of an overdamped second-order system.

y(t) = 4172 ∗ e−5.996t + 1541 ∗ e−0.5535t (17)

where r1 and r2 are the equation’s characteristic roots, and c1 and c2 are the coeffi-

cients of the exponentials. The comparison between the average MT response from

all students and the fitted solution is shown in Figure 47. Not only does it show

that the average MT response converges to the average reference MT, but it also

shows that the average response mimics the solution of an overdamped second-order

system. This analysis suggests that each new student that interacts with our system

will have a similar response and reach their learning goal, thus supporting our claim

that our system can be used to aid individuals in reaching their performance goals

by providing targeted feedback from a robotic educational agent.

6.2.6 Conclusion

The developed system was able to provide the students with continuous corrective

feedback that enabled 92% of the students to reach their targeted learning goals.

In addition, the results mimic that of an overdamped second-order system, which

suggests that each new student that interacts with our system will have a similar
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response and reach their learning goal.

At first glance, the results of this investigation (Figure 47) appear to resemble the

learning curve discussed previously in Chapter 2. However, before we can strongly

make this claim, we need to show that the learning is retained long after the initial

learning goal has been reached (i.e. the curve needs to plateau). Once the reference

MT or learning goal is reached in this investigation, the learning scenario terminates;

therefore, the response is not able to plateau. As such, moving forward we plan to

evaluate if and when retention is achieved in the proposed REA system by extending

the testing sessions.
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CHAPTER VII

RETENTION WITH ROBOTIC EDUCATIONAL AGENTS

Previous studies have shown that various methods of repetition integrated into the

learning process is able to enhance student retention. In this chapter, we discuss

the overall system approach, which integrates the engagement model, motivational

feedback, guided instruction, and corrective feedback within a robotic educational

agent (REA). The result of this study fulfills our fifth contribution:

5. Develop a learning model, which validates retention is achieved in the

system after learning a new task.

7.1 Description of System

We base this work on our previous findings, which show that a student’s kinematic

performance can be improved by a robotic platform providing motivational feedback,

guided instruction, and corrective feedback [19, 21, 37]. We adhere to the same system

used in these studies, Super Darwin Pops (SDP), which combined the embodied

robotic agent Darwin [45] with the serious game Super Pop VRTM [39]. More details

and images of how the system is coupled together can be found in Chapter 5 and 6.

7.1.1 Learning Curve

In this investigation we aim to evaluate a system that achieves individualized learning.

As such, we will evaluate the performance of the students through use of the learning

curve described in (18), where the student performance, P, is a function of the number

of practice trials, N. The initial performance of the student is described as B, and the

learning rate of the student is described as β.
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P (N) = Be−βN (18)

It is noted that (18) is typically used to evaluate a single student’s progress instead

of aggregating the performance of a group (as we have done in prior studies).

7.1.2 Performance Model

For the context of this study, the learning goal is defined as completing a reaching

task within a specified movement time window (300ms). Furthermore, performance,

P, is defined as the absolute difference between the student’s actual movement time,

MT, and their learning goal, LG, as shown in (19).

P (MT ) = |MT − LG|. (19)

Because LG is a 300 ms window, it has a high and low bound. Therefore, depending

on what side of the window the student’s MT falls (i.e. if the student moves too fast

or too slow), LG will vary between the high and low bound. More specifically,

P (MT ) = |MT − LGhigh| ∀MT > LGhigh, (20)

P (MT ) = |MT − LGlow| ∀MT < LGlow. (21)

Lastly, if the student’s MT falls within the LG window, he or she has successfully

reached the goal as shown in (22).

P (MT ) = 1 when LGhigh ≥MT ≥ LGlow. (22)

We have chosen to equate a successful attempt to 1 to imitate the idea that the

student’s performance is approaching 0, similarly to an exponential decay. This will

enable us to compute a solution to the student’s exponential learning curve.
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7.2 Hypothesis

An embodied robotic agent providing guided instruction and corrective feedback to

individuals during motor-task learning scenarios has been shown to improve individual

kinematic performance [21, 37]. Given that a major component of learning is retaining

the information long after instruction has been completed, we aim to reach these

retention goals through implementation of a robotic platform providing repetition

tactics throughout the learning process. We hypothesize that, by interacting with

this proposed system, students will retain the information learned when asked to

repeat the task and without being provided additional feedback. We will validate

this hypothesis through use of the learning curve described in (18).

7.3 Experimental Design

To evaluate how well a student’s learning relative to the Super Pop VRTM game is

retained by the methods employed by the robotic platform, we recruited 7 participants

to interact with the system. A total of 3 females and 4 males, ranging in age between

19 and 32 years (mean age = 27 years, standard deviation = 4.6 years), participated

in this study. The participants signed the IRB (Institutional Review Board) approved

consent form before engaging in the testing sessions.

As described in the previous chapters, after the student raises their arms, the

system is calibrated to position the Super Bubbles. The system then computes the

student’s reference movement time and a ± 150 ms margin of error is added to the

final value. Each cycle consists of four main components: 1) student performs the

reaching task, 2) the system compares the student’s MT to his or her reference,

3) Darwin provides the corresponding corrective feedback until the goal is reached,

and 4) the student attempts to repeat the correct movement n = 3 times without

additional feedback. A flowchart with the logic of the testing sessions is shown in

Figure 48.
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Start

Initialize System

t = 0, r = 0

Darwin Provides

Instructions to Begin

Student

Performs Task

t = t + 1

Goal Reached?

Low-resolution

Feedback (Table 23)

Darwin Provides

Instructions to Repeat

Student Repeats Task

r = r + 1

r=n?

End

yes

no

yes

no

Figure 48: This flowchart describes the interaction between the student and the

system. The number trials the student takes to reach his or her learning goal is

described as t, and the number of repetitions the system provides once the goal is met

is described as r. The minimum r required to prove the hypothesis is n (determined

empirically).
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7.4 Results and Analysis

All 7 students were able to reach their respective learning goals. However, the number

of attempts needed to reach the goal ranged from 1 to 4 trials (m = 2.2; SD = 1.2).

In addition, all 7 students were able to keep their movement times of the last 3 trials

(when no additional feedback is given from Darwin) within a 300 ms window – the

windows ranged from 19 ms - 236 ms. We first calculated each student’s learning goal

based on the reference movement time predetermined by the system (Table 25). From

there, we calculated the student’s performance using the model (19) - (22) as shown

in Table 26. Lastly, we fitted the exponential learning curve (18) to each student’s

performance, and his or her solution is shown in Table 27.

Table 25: The learning goal, LG, of the participants (P1-P7) based on their reference

MT (ms)

Parameter P1 P2 P3 P4 P5 P6 P7

Ref. MT 608 613 746 648 788 748 646

LG [458, 758] [463, 763] [596, 896] [498, 798] [638, 938] [598, 898] [496, 796]

LGlow 458 463 596 498 638 598 496

LGhigh 758 763 896 798 938 898 796

If we take a closer look at the performance of Participant 1, the individual was

able to reach the learning goal after 1 trial (Figure 49). In addition, after reaching

the learning goal, he or she was able to replicate this task during the last three

attempts when no additional feedback was given from the robotic educational agent.

The student was able to keep the last three trials within an 85 ms window, which is
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Table 26: Performance of participants based on model, P(MT)=|MT − LG| (ms)

Trial
P1 P2 P3 P4 P5 P6 P7

MT P MT P MT P MT P MT P MT P MT P

0 1290 523 1714 950 2214 1317 5408 4609 3262 2324 2939 2041 4982 4186

1 583 1 412 50 759 1 371 126 1103 164 1212 314 461 35

2 641 1 830 66 433 162 763 1 1689 751 732 1 739 1

3 556 1 385 77 540 55 664 1 1308 370 742 1 584 1

4 626 1 597 1 523 72 725 1 828 1 602 1 463 33

5 446 17 747 1 732 1 738 1 505 1

6 477 1 599 38

7 465 1 835 1

Table 27: Solution to exponential learning curve, P(N)=BeβN

Parameter P1 P2 P3 P4 P5 P6 P7

B 532 950 1317 4609 2324 2041 4186

β 2.092 1.088 1.081 2.213 1.136 1.974 1.955

R2 0.166 0.709 -0.437 0.566 0.614 0.649 0.186

not only accurate, but extremely precise. Participant 1 was able to achieve a learning

rate β of 2.092.

Participant 2 was able to reach the learning goal after 4 trials (Figure 50). In

addition, after reaching the learning goal, he or she was able to replicate this task

2 of the last 3 attempts when no additional feedback was given from the robotic

educational agent. The student was able to keep the last three trials within a 19 ms

window, which is extremely precise. Participant 2 was able to achieve a learning rate

β of 1.088.

Participant 3 was able to reach the learning goal after 1 trial (Figure 51). However,

after reaching the learning goal, he or she was not able to replicate this task during

the last three attempts when no additional feedback was given from the robotic

educational agent. Although the student was not able to reach the learning goal

again, he or she was still able to keep the last three trials within a 107 ms window,
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Figure 49: Participant 1’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

which is very precise. Participant 3 was able to achieve a learning rate β of 1.081.

Because Participant 3 was unable to replicate the task during the learning session,

we had the student perform another learning cycle. The individual was still able

to reach the learning goal again after 1 trial (Figure 52). However, there was an

improvement on his or her performance. Namely, after reaching the learning goal,

he or she was able to replicate this task 2 of the last 3 attempts when no additional

feedback was given from the robotic educational agent. In addition, the student was

able to keep the last three trials within a 137 ms window, which is very precise.

Participant 3 was able to achieve a learning rate β of 1.845, which is an improvement.

Participant 4 was able to reach the learning goal after 2 trials (Figure 53). In

addition, after reaching the learning goal, he or she was able to replicate this task

during the last three attempts when no additional feedback was given from the robotic

educational agent. The student was able to keep the last three trials within an 83 ms

window, which is not only accurate, but extremely precise. Participant 4 was able to

achieve a learning rate β of 2.213.
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Figure 50: Participant 2’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

Participant 5 was able to reach the learning goal after 4 trials (Figure 54). In

addition, after reaching the learning goal, he or she was able to replicate this task

2 of the last 3 attempts when no additional feedback was given from the robotic

educational agent. The student was able to keep the last three trials within a 236 ms

window, which is precise. Participant 5 was able to achieve a learning rate β of 1.136.

Participant 6 was able to reach the learning goal after 2 trials (Figure 55). In

addition, after reaching the learning goal, he or she was able to replicate this task

during the last three attempts when no additional feedback was given from the robotic

educational agent. The student was able to keep the last three trials within a 140

ms window, which is not only accurate, but very precise. Participant 6 was able to

achieve a learning rate β of 1.974.

Participant 7 was able to reach the learning goal after 2 trials (Figure 56). In

addition, after reaching the learning goal, he or she was able to replicate this task

2 of the last 3 attempts when no additional feedback was given from the robotic

educational agent. The student was able to keep the last three trials within a 121 ms

window, which is very precise. Participant 7 was able to achieve a learning rate β of
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Figure 51: Participant 3’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

1.955.

7.5 Discussion

All students were able to reach their learning goal; however, each individual learned

at different rates as denoted by their number of trials and/or learning rate, β. In

particular, 2 students were able to reach their learning goal in 1 trial, 3 students

were able to reach their learning goal in 2 trials, and 2 students were able to reach

their learning goals in 4 trials. This can be attributed to the fact that all students

learn at different speeds and also have different learning types. Nevertheless, this

investigation proves that all students are able to learn when provided the appropriate

feedback.

At first glance, it appears that an ideal learning rate, β, for this motor-task is

approximately 2. It is evident through Figures 49-56 that the curves with a β closer

to 1 take longer to converge (plateau) to the learning goal when compared to the

others. In particular, Participant 2 with a β = 1.088 and Participant 5 with a β =

1.136 both required 4 trials to reach their learning goal. However, after they reached
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Figure 52: The results of Participant 3 after completing a second cycle of the system.

Here is his or her actual performance P(MT) plotted with his or her fitted learning

curve P(N).

the goal, they both were fairly accurate in maintaining their performance. Participant

3 also has a low β = 1.081; however, he or she was able to reach the learning goal

after 1 trial. The reason why the β is low is because after Participant 3 reached the

goal, he or she was not successful in maintaining this level of performance. Therefore,

according to this solution, learning has not been achieved.

All 7 students were able to retain their window of performance in the final three

trials when no additional feedback is given from the robotic agent. Moreover, the

movement time range was 19 ms - 236 ms (m=113 ms; SD = 66), where Participant

2 was able to achieve the minimum of 19 ms. The fact that all students were within

a 300 ms window for the final three trials exhibits a high level of precision across all

students.

In addition, 3 of the 7 students were able to achieve the learning goal 100% of

the last three trials – Participant 1, 4, and 6. Here, retention is achieved because

the students are able to mimic their initial movement perfectly. Another 3 of the 7

students were able to achieve the learning goal 67% of the last three trials – Participant
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Figure 53: Participant 4’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

2, 5, and 7. In the cases when the students did not achieve the goal, he or she was at

most 38 ms away from the goal, which is negligible. Therefore, retention is achieved

with these students as well. Lastly, 1 of the 7 students did not achieve the learning

goal for the last three trials – Participant 3. This student was able to achieve the

initial learning goal after his or her first attempt; however, this may have been due

to “luck” and not necessarily learning/understanding. Furthermore, the individual

may not have had enough practice trials to truly understand the learning goal before

being asked to repeat the motor task.

As a short follow-up study, we had Participant 3 complete the learning cycle for a

second time. These results showed an improvement in his overall performance. The

individual was able to achieve the initial learning goal after one trial and improved

his or her learning rate β from 1.081 to 1.845. The individual was also able to achieve

the learning goal 67% of the last three trials. In the instance when he or she did not

achieve the goal, it was by a negligible 49 ms. Therefore, retention is achieved for

Participant 3, but only after two cycles of the system had been completed.

After looking at the results, a naive individual may say that Participant 1 is the
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Figure 54: Participant 5’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

“best” student being that he or she achieved learning after the first trial, retained

this level of performance for 100% of the last 3 trials, had an ideal learning rate β

of 2.092, and obtained a small window for the last three trials of 85 ms. This same

naive individual may say that Participant 3 is the “worst” student being that he or

she achieved learning after the first trial due to “luck,” did not achieve the learning

goal for the last three trials, had the lowest learning rate β of 1.081, and ultimately

had to complete the learning cycle again to improve. This is by far not true. A major

takeaway from this study is that students learn at different speeds and prefer variety

of teaching styles. However, the REA system is still able to adapt to each student’s

learning preference so that he or she is able to reach the learning goal in a timeframe

suitable to his or her individual needs.

7.6 Conclusion

The developed system was able provide a combination of feedback (motivation, in-

struction, correction) and repetition tactics throughout the learning process that en-

abled 100% of the students to reach their learning goals and 85.7% of the students
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Figure 55: Participant 6’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).

to retain the information learned. In the one case where the student was unable to

retain the information taught, the individual appeared to have achieved the initial

learning goal through “luck,” which unfortunately happens often in learning. This

further shows the importance of evaluating learning to determine if retention is being

achieved. This critical component of evaluating retention would allow an instructor

to repeat the learning cycle so that all students are able to achieve optimal learning.
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Figure 56: Participant 7’s actual performance P(MT) plotted with his or her fitted

learning curve P(N).
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CHAPTER VIII

CONCLUSION

In this dissertation, we aimed to develop a robotic educational agent that can interac-

tively function in an equivalent manner as a human tutor. In result, we were able to

develop an educational system that effectively monitors student engagement, applies

behavioral strategies, teaches novel tasks, and improves student retention to achieve

individualized learning.

8.1 Engagement Model

We begin by developing an engagement model based on the interactions between

the student and the teaching device (tablet, computer, or virtual reality game), and

we later expand the model by developing an eye gaze algorithm based on student

fixations and saccades.

We observed that the eye gaze and head pose method of monitoring engagement

as described in [9] worked well for low-level cognitive problems, but failed more often

for the higher level problems. Because we want to target this system in the math

domain, it is important that the engagement model is able monitor the student’s

attentiveness regardless of the problem difficulty. The preliminary engagement model

takes time, response, and function execution into consideration, and it is able to

successfully monitor engagement for all-level cognitive tasks.

The results of this study prove that we are able to predict salient points in an

environment via eye gaze before an individual becomes fully cognizant of them. Fur-

thermore, monitoring human-task inputs (measured by mouse and keyboard events

and eye gaze) in a novel environment has the potential to enhance learning and un-

derstanding as well as engagement when completing a task.
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8.2 Social Interaction Model

Next, we examined how emotions in social scenarios are able to enhance learning.

Because empathy is a key factor used to enhance interpersonal relationships, which

ultimately leads to increased enthusiasm and learning [86], we derived a gestural

framework for implementing happy and sad emotions on a humanoid robotic platform

[17].

This study revealed that by altering head direction, arm direction, gesture size,

and gesture speed on a humanoid robotic social agent, participants are able to achieve

accurate perception when the intended emotion is happy or sad. By using these key

principles to categorize the gestures, the standard deviation was kept consistently at

a minimum when identifying emotion. When using this framework, the participants

were very confident in identifying when the intended emotion is happy, not happy,

sad, not sad, and not neutral. This work suggests that engagement and motivation

during social interaction can be optimized through the use of happy and sad gestures

derived using the described framework.

In addition, studies have shown that the use of verbal encouragement strategies

in education is able to maximize learning. This idea is derived from traditional class-

room settings where teachers use a multitude of behavioral strategies to maintain the

students level of engagement. Motivated by these educational practices, we developed

a number of socially-supportive phrases to embed on the robotic educational agent.

8.3 Robotic Educational Agent

Next, we elaborate on the process of embedding social interaction within a humanoid-

student math- and motor -learning scenario in order to re-engage students during high-

and low-demand cognitive tasks, respectively. We found that across all interaction

types, verbal, nonverbal, and both, the students enjoyed Darwin and were not dis-

tracted by his presence during the session. They were able to build a relationship
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with Darwin and did not wish to disappoint him with their performance. When com-

pared to having no educational agent present, every interaction type that Darwin

implemented was successfully able to maximize the time used in the learning envi-

ronment. This was achieved by using the engagement model to monitor progression

through the session. In addition, the groups that were provided motivational cues

during the learning scenario had a richer experience. Based on their responses, they

are more likely to interact with the system long-term, which is ideal for optimal learn-

ing and retention. Therefore, this works suggests that verbal engagement is ideal for

enhancing performance with motor tasks.

After increasing student engagement with out system, we aimed to increase stu-

dent learning/performance by integrating guided instruction and corrective feedback

into the REA. The results of our study suggest that the proposed system can increase

learning best by using both verbal and nonverbal cues for instructional feedback. In

addition, the continuous corrective feedback embedded on the REA enabled 92% of

the students to reach their targeted learning goals. The students’ performance mimic

that of an overdamped second-order system, which suggests that each new student

that interacts with our system will have a similar response and reach their learning

goal.

Lastly, in efforts to evaluate if learning is being retained after instruction has

ended, we expanded the system to provide a combination of feedback (motivation,

instruction, correction) and repetition tactics throughout the learning process. This

overall system enabled 100% of the students to reach their learning goals and 85.7%

of the students to retain the information learned. This further reiterates the impor-

tance of evaluating learning to ensure that retention is being achieved. In conclusion,

our developed robotic educational agent effectively monitors engagement, applies be-

havioral strategies to increase motivation, teaches novel tasks, and improves student

retention to achieve individualized learning.

112



APPENDIX A

EYE GAZE DATA

Table 28: Image 1 was the first image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the mailbox has been moved from the right side of the road to the left side of the

road. Of the 9 participants, 6 consciously noticed a change in the image, and their

description of the change is listed below.

Participant Details

3 Mailbox moved from the right side to the left side

4 The mailbox moved from one side of the road to the other

5 Mailbox moved from right to left

6 The mail box moved from the right portion of the screen to the left portion

7 I think the presence of the mailbox was the change

9 The mailbox changed sides
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Table 29: Image 2 was the second image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the star has been moved from the top of the left window to the

top of the right window. Of the 9 participants, 6 consciously noticed a change in the

image, and their description of the change is listed below.

Participant Details

1 Yellow star moved windows

3 The yellow flower moved from the upper right wall to the upper left wall

4 The star decoration on the wall (over the left window) grew larger

6 The gold star moved from being above the right window to being above the left

7 I think one of the window doors being missing is the change

9 The golden flower moved to the left
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Table 30: Image 3 was the third image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the fish on the far left has been moved to the front-right side of the image. All 9

participants consciously noticed a change in the image, and their description of the

change is listed below.

Participant Details

1 Left fish moved

2 One of the fish moved from left to right (bottom left corner)

3 The orientation of the image changed. It shifted to the right by 45 degrees

4 One of the fish moved from the left side of the image to the foreground on the right

5 More fish were on the left and not the right

6 There was an additional fish on the left portion of the screen that disappeared

7 One of the fish being missing was the change

8 The fish changed positions from the left side to the right side

9 The fish moved from being grouped on the left to the right
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Table 31: Image 4 was the fourth image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the orange has been moved from the table on the left to the floor

on the right next to the couch. All 9 participants consciously noticed a change in the

image, and their description of the change is listed below.

Participant Details

1 Orange moved from table to floor

2 Orange moved from the floor to on top of the table on the left of the room

3 The orange moved from the floor to the table. Also, the size of the orange was larger [at] first

4 The orange moved from the floor at the right of the image onto the table

5 The orange was on the floor

6 The orange moved from being on the floor on the right of the image to being on the table

7 There was an object on the floor that is no longer present

8 The pumpkin moved from the bottom right quadrant to the table

9 The orange moved from the floor to the table
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Table 32: Image 5 was the fifth image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the horse on the left of the bunch has been moved farther away from the other two

horses (closer to bottom left). Of the 9 participants, 2 consciously noticed a change

in the image, and their description of the change is listed below.

Participant Details

4 One of the horses moved further away (to the left) of the other two.

5 All three horses were together
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Table 33: Image 6 was the sixth image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the book has been moved from the top-right of the image to the

top-center of the image. Of the 9 participants, 7 consciously noticed a change in the

image, and their description of the change is listed below.

Participant Details

1 Arm with book moved from center mountain to right mountain

3 The arm holding the book shifted from the center of the image to the right side

4 The hand coming down from the clouds moved from the cloud in the center of the sky to a cloud

on the right side of the sky

5 The arm and book were in the middle of the picture

6 The arm that is coming from behind the cloud and holding the book moved from the center

cloud to the cloud that is farthest to the right

7 I think the white sleeve with a book on the top right corner was a change

8 The arm on the upper right quadrant moved from the middle top quadrant to the right quadrant
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Table 34: Image 7 was the seventh image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the yellow flower pot on the right window’s right shutter has been moved to the left

window’s left shutter. Of the 9 participants, 4 consciously noticed a change in the

image, and their description of the change is listed below.

Participant Details

2 The flower pot hanging from the rightmost shutter (with the yellow flowers) moved to the leftmost

shutter (under the pink flowers)

3 The flower pot with yellow flowers shifted from the upper portion of the right window shade to

the lower portion of the left window shade

4 I’m not 100% sure, but I think there were flowers (or something) on all of the window shutters,

not just those on the left window

5 Flower placement on shutters
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Table 35: Image 8 was the eighth image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the yellow L-shaped figure in the botttom-left of the image has

been moved up to the center-left of the image. Of the 9 participants, 3 consciously

noticed a change in the image, and their description of the change is listed below.

Participant Details

2 The yellow L-shaped part moved from the center to the bottom left corner

7 I think there was another yellow object, but I do not recall precisely

9 The yellow pieces moved from the center to the bottom center and to the right
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Table 36: Image 9 was the ninth image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the red person sitting on the rock (center-right) has been moved to the bridge in the

center of the image. Of the 9 participants, 8 consciously noticed a change in the

image, and their description of the change is listed below.

Participant Details

1 Red person appeared on bridge

2 The man sitting at the edge of one of the rocks on the right is now on the bridge

3 The person moved from sitting on the river bank to sitting on the bridge

4 The man moved onto the bridge. I don’t remember where he was previously - I think on the

rocks off to the right of the water midway up the image

5 The man was on the bank and not the bridge

6 The person who is wearing the red shirt moved from the ledge under the tree that is located in

approximately the center of the image to the bridge

8 That red kid in the middle wasn’t there before

9 The boy moved from sitting beneath the tree to on the bridge
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Table 37: Image 10 was the tenth image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the sailboat has been moved from the left of the lake to the center

of the lake. Of the 9 participants, 5 consciously noticed a change in the image, and

their description of the change is listed below.

Participant Details

2 Two sailboats moved from the center of the lake to the left

4 The group of boats moved from the middle of the water to the left side

5 All the ships were near each other in the middle of the picture

6 The two sail boats moved from the center on the image to the left side of the image

9 Yes, two of the boats moved from where the lone sailboat is to the front of the image
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Table 38: Image 11 was the eleventh image pair shown in the eye gaze study. The left

image is the original image, and the right image has been manipulated. In particular,

the blue house in the center of the image has been moved to the top left of the image

(on top of the big white house). None of the participants consciously noticed a change

in the image.

Participant Details

1-9 None of the participants noticed the change here.
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Table 39: Image 12 was the twelfth image pair shown in the eye gaze study. The

left image has been manipulated image, and the right is the original image. In the

manipulated image, the house debris located on the left side of the image has been

moved to the right side of the image. Of the 9 participants, 3 consciously noticed a

change in the image, and their description of the change is listed below.

Participant Details

2 The remains of one of the buildings moved from the right of the image (on top of a hill of rocks)

to the left (on top of a hill of rocks)

3 The partially demolished building in the foreground of the picture shifted from the right side of

the image to the left. The entire picture was inverted

4 I think there was smoke coming off of the building on the left side of the image before
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