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SUMMARY 

 

 

 
The High Occupancy Vehicle (HOV) lanes on Atlanta, Georgia’s radial I-85 had 

long been providing sub-optimal throughput in the peak traffic hours, as the two-person 

occupancy requirement allowed the lanes to become heavily congested. The Georgia 

Department of Transportation converted 15.5 miles of HOV 2+ lanes to High Occupancy 

Toll (HOT) lanes, one in each direction on I-85. The lanes use dynamic value pricing to 

set toll levels based on the volume and average speed of traffic in the lanes. The goal of 

this research was to investigate the responses to toll lane pricing and the factors that 

appear to inform lane choice decisions, as well as examining values of travel time savings 

and toll price elasticity for users of the Express Lanes.  This study of the metropolitan 

Atlanta I-85 Express Lanes operates at the microscopic level to examine the impact of 

demographic characteristics, congestion levels, and pricing on users’ decisions to use or 

not use the I-85 Express Lanes. 

After the introduction and literature review, the dissertation provides an overview 

of the data sources and the processing methods used to construct a usable analytical data 

set.  The next chapter describes a major effort in the construction of this data set: that of 

pairing the lane use data with marketing demographic data.  The following sections 

discuss the quality of the various data sources and the issues with them, as well as the 

opportunities for sample bias that arose as a result of the data processing and construction 

of the final data set. 

The dissertation then proceeds in examining the value of travel time savings 

distributions as a whole and across different income segments and trip lengths.  The 
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differences in these distributions among lower, medium, and higher income households 

were marginal at best.  The results did not indicate that higher income households had the 

highest value of travel time savings results, as may have been expected.  More substantial 

variation was found among trips of differing lengths within the Express Lane corridor.  

The modeling work discussed next provided a number of insights into toll lane use.  The 

determinants of lane choice decision-making in the morning peak had notable differences 

from the determinants of the afternoon peak.  The initial analysis involved models which 

were estimated across three different income segments to examine differences in decision 

making between low, medium, and higher income households.  The results indicated that 

the parameters were largely consistent across the three segments.  Further segmenting the 

households showed that lane choice determinants varied more within the ‘Higher’ income 

segment than across the original three-segment structure.  In particular, the five-segment 

models illustrated lower elasticities with regard to corridor segment counts and toll levels 

for the highest-income households in the sample, as well as higher household income 

level elasticities for afternoon trips by that same cohort. 

This research was among the first in the available literature to use revealed 

preference lane use data for both the toll lane users and the unpriced general purpose lane 

users.  The use of household level marketing data, rather than census or survey data, was 

another unique characteristic of this research.  The analysis of value of travel time 

savings with a demographic component that looks at household income has not yet been 

seen in the literature; similarly, the findings regarding differing behavior among very 

high income households appear to be unseen in the existing literature.  The results from 

this analysis, such as willingness-to-pay values for different population segments, will be 
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useful inputs to the decisions surrounding future HOT implementations in the Atlanta 

region.  The use of new data sources, the evaluation of those types of data sources, and 

the application of methods that have previously been unused in this field make up the 

primary contributions of this dissertation. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

The concept of road pricing has been widely promoted by economists since 

Arthur Pigou first proposed the idea in 1920 (Pigou, 1920).  Making users pay when and 

where they drive allows them to realize more of the external costs that they impose on 

others.  Varying these tolls with traffic levels also has the potential to reduce congestion 

by managing demand.  For decades, however, toll implementations involved 

predetermined variations in toll levels, falling short of the dynamically priced ideal.  

Now, with the ubiquity and affordability of technologies such as radio-frequency 

identification (RFID) short range transponders, more dynamic and economically efficient 

systems can be deployed.   

In Georgia, the High Occupancy Vehicle (HOV) lanes on Atlanta’s radial I-85 

had long been providing sub-optimal throughput in the peak traffic hours, as the two-

person occupancy requirement allowed the lanes to become heavily congested (Guin, 

2008).  The Georgia Department of Transportation (GDOT) sought to address this 

problem by converting the lanes to High Occupancy Toll (HOT) facilities (HOV Strategic 

Implementation Plan Atlanta Region, 2003).  These HOT lanes restrict traffic to carpools 

with three occupants and to users willing to pay a toll, with the goal of maintaining free-

flow conditions through pricing that changes based on lane conditions.  The HOV-to-

HOT project converted 15.5 miles of HOV 2+ lanes to HOT lanes, one in each direction 

on I-85.  The HOT length begins at the junction with I-285, which forms a perimeter 

around Atlanta, and continues north into the surrounding suburbs.  The lanes use dynamic 
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value pricing to set toll levels based on the volume and average speed of traffic in the 

lanes.  GDOT’s goal is to consistently achieve speeds of 45 miles per hour in the I-85 

Express Lanes, and the dynamic pricing algorithms are designed to reflect this.  The lanes 

have multiple entry and exit points, and the tolls are assessed using vehicle transponders 

attached to windshields and RFID tag readers located over the lanes on the freeway.  

Vehicles with occupancies of three or more travel for free in the HOT lanes and must also 

carry transponders.  The toll lanes opened in October, 2011.  Prices are adjusted at five-

minute intervals for the various entry-and-exit trip combinations.  Today, tolls range from 

$0.01 per mile in the off-peak periods to over $0.50 per mile in the peak hours ($0.16 to 

$11 for a complete traverse of the facility). 

HOT lanes differ from other pricing schemes in that they offer users the choice to 

pay for improved service.  Unlike cordon pricing systems, such as London’s Congestion 

Charging Zone, or bridge and tunnel tolls, drivers may still use an adjacent free 

alternative without changing their route or mode.  This means that corridor users make 

different decisions with every trip, including whether to use the priced or unpriced lanes.  

Drivers then choose the length they want to travel in the lanes.  This is in addition to the 

prior decisions of whether to obtain a Peach Pass transponder and whether to take a trip 

in carpool mode or in toll mode.  As such, each trip along the I-85 corridor now involves 

multiple decisions relating to use of the Express Lanes and/or the General Purpose lanes.  

This study will work at the microscopic level to examine the impact of demographic 

characteristics, congestion levels, and pricing on users’ decisions to use or not use the the 

I-85 Express Lanes.   
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The I-85 HOT corridor in Atlanta is relatively unique in that RFID tag reads are 

taken from the toll lanes as well as from the unpriced General Purpose (GP) lanes.  This 

means that this project can assess a user’s choice to use, or not use, the lanes as a function 

of price and traffic conditions.  Using privately sourced demographic data, this 

dissertation will model individual users’ choices as a function of demographics, toll price, 

and operating conditions.  The results will illuminate differences in Express Lane 

decision making behavior among different segments of the population. 

The data used in this analysis are new and unique in a number of ways.  The 

Express Lanes system provides disaggregated transponder detections in both the HOT 

and the GP lanes, a feature that for much of its operation was unique to this facility.  As 

mentioned above, this allows researchers to know when a specific vehicle chose to use or 

to not use the Express Lanes.  Use data also allows for direct comparisons of measures 

such as travel time and travel time variability between the priced and unpriced lanes 

using the same data source.  Two other features of the data are unique to this 

implementation: the existence of partial corridor trips, which make up a majority of the 

trips taken, and the presence of repeat user data.  For each transponder in the data set, 

records for all of that transponder’s trips in both lane types are available.  The available 

data also include trip lengths, toll amounts, start and end times, and whether the trip was 

in carpool or toll mode.  These elements are quite rare, though not wholly unique, in 

HOT lane studies.  The study also makes use of household-level socioeconomic data 

sourced from a marketing company.  This is another data source that has not been used in 

toll lane or other pricing literature until now.  This household level data provides an 
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alternative to the aggregated census sources and the costly and self-reported surveys that 

are commonly used for demographic information.   

The goal of this research is to investigate the responses to toll lane pricing and the 

factors that appear to inform lane choice decisions.  In addition, this dissertation will 

examine values of travel time savings and toll price elasticity for users of the Express 

Lanes.  While these are common analyses in pricing projects, the dataset described in the 

following sections illustrates the uniqueness of this study.  The dissertation will start with 

an overview of the available data and the data processing methods, followed by a 

comprehensive choice modeling analysis, and then  an examination of the value of travel 

time savings and disaggregate demand elasticities.  The existence of user history data 

allows for analysis using panel data methods to reduce bias in models of user response.  

These results can be used to inform discussions of the impacts of future projects on 

different demographic groups, and will allow for data-driven decision making to assess 

and minimize negative effects on different populations.   

In terms of the significance of this dissertation, the ability to assess users’ 

responses to congestion pricing as a function of user, system and pricing attributes is a 

novel use of a unique dataset, and an important input to policy decisions concerning 

future HOT lane investments and developments.  This is especially significant as the 

Atlanta metropolitan region is considering spending more than $16 billion on a network 

of managed lane facilities (Atlanta Region Managed Lane System Plan, 2010).  The 

results from this analysis, such as willingness-to-pay values for different population 

segments, will be useful inputs to the decisions surrounding future HOT implementations 

in the Atlanta region.  This research can also be used in responding to equity and social 
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justice concerns and in future managed lanes toll and revenue estimations.  HOT lanes 

are often given the moniker of “Lexus Lanes” due to the perception that they are used 

only by the rich (Patterson & Levinson, 2008).  These perceptions may be based on 

limited studies that report very general results, such as the study by the Southern 

Environmental Law Center that used zip code-level data to report average incomes of 

Express Lane users (Atlanta Journal-Constitution, 2013).  This analysis aims to provide a 

more accurate illustration of the ways that different income groups choose to use the 

facility.  The modeling tools and methods that result will be transferable to other cities 

with similar data and toll lane infrastructure. 

This study of the metropolitan Atlanta I-85 Express Lanes employs trip 

characteristics, facility operating conditions, and household demographics to provide a 

comprehensive overview of Express Lane users and their decision-making processes.  

The results provide the basis for a demand-modeling tool that can examine the response 

of consumers to different toll levels as a function of facility operating conditions and user 

demographics for forthcoming Express Lane implementations.   

This dissertation begins with a background discussion and overview of the I-85 

Express Lanes.  The next section is a review of the existing literature concerning HOT 

lanes and other managed lane pricing implementations.  The literature review describes 

the current methods and data sources used in pricing research and discusses some 

shortcomings of existing studies.  The following chapter details the data sources and 

provides an overview of the data.  This includes a thorough examination of the different 

operational data streams and the household demographic data used in the dissertation.  

Chapter four describes the data processing methods that converted the raw data to usable 
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formats and provides an overview of the constructed trips that make up the foundation of 

the data set.  Chapter five describes the process of pairing the lane use data with the 

demographic data and examines the demographics of the resulting sample.  The next 

chapter describes issues with the quality of the data and the attempts to address those 

issues.  Chapter seven examines the potential avenues of bias in the data set.  A 

preliminary investigation of modeling HOT lane use decisions at the trip level comprises 

the following chapter, followed by a comparison in chapter nine of the full data set with 

the more restricted data set used in the analyses .  The dissertation continues in chapter 

ten by presenting the initial value of travel time savings analyses along with a more 

complete expansion of that work, including demographic and trip length factors.  Chapter 

eleven uses hierarchical tree based regression methods to more closely examine the 

available variables.  Chapter twelve expands on the initial modeling work with new 

variables and methods, and also examines demand elasticity among income groups and at 

different toll levels.  The final chapter provides a conclusion to the research, summarizing 

the research findings, contributions, and the limitations of the study, and presenting 

potential extensions of the work. 

Project Background 

While roadway tolling has long been a common feature of America’s 

infrastructure, dynamically priced tolls have only started appearing relatively recently.  

Orange County, California’s State Route 91 (SR-91), the first fully automated, privately 

operated toll facility in the U.S., opened in 1995 (Sullivan, 2002).  While the tolls on SR-

91 are time-based, rather than congestion-based, later facilities implemented true value 

pricing.  Such pricing schemes have been implemented in Minneapolis, Minnesota, San 
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Diego, California, Houston, Texas, Denver, Colorado, Seattle, Washington, and Miami, 

Florida (FHWA, 2012).  The city of Atlanta, Georgia, is one of the latest cities to 

implement a dynamically-priced, fully automated pricing system.  Atlanta’s congestion 

levels have been rated among the worst in the country (Texas Transport Institute, 2012).  

In 2010, the USDOT awarded the Georgia Department of Transportation (GDOT), 

Georgia’s State Road and Tollway Authority (SRTA), and the Georgia Regional 

Transportation Authority (GRTA) a $110 million Congestion Reduction Demonstration 

Program grant to convert underutilized HOV lanes into valued-priced HOT lanes.  The 

grant also dedicated funds for increased bus service and improved park and ride lots 

along the corridor (Georgia Department of Transportation, 2013).   

On October 1, 2011, the City of Atlanta, Georgia opened its first HOT lanes on 

the I-85 radial freeway.  The Georgia Department of Transportation’s (GDOT) HOV-to-

HOT project converted almost 16 miles of HOV 2+ carpool lanes into HOT lanes, one in 

each direction.  The HOT lane corridor begins at the junction with I-285, which forms a 

perimeter around Atlanta, and continues north into the surrounding suburbs.  The State 

Road and Tollway Authority (SRTA), the operating agency, sets toll levels based on 

traffic volumes and average speeds of traffic on the corridor.  SRTA’s goal is to 

consistently achieve a speed of forty-five miles per hour in the Express Lane, and sets toll 

prices to manage demand for use of the HOT lane.  The lanes have multiple entry and 

exit points, and the tolls are paid via electronic vehicle transponders known as Peach 

Passes.  Prices are adjusted at five-minute intervals for the various entry-and-exit trip 

combinations.  Vehicles with occupancies of three or more may travel for free in the 

HOT lanes, as may emergency vehicles, alternative fuel vehicles, and motorcycles, 
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provided that they register with the agency and carry Peach Pass transponders to use the 

Express Lanes. 

The I-85 Express Lanes stretch 15.5 miles from Chamblee Tucker Road (south of 

I-285) to both Old Peachtree Road and State Route 316 in the north.  Figure 1 illustrates 

the length of the HOT lane corridor relative to the I-285 and the Atlanta metropolitan 

area.  The lanes are equipped with automatic vehicle identification (AVI) scanners to read 

the Peach Pass RFID transponders.  Thirty-five HOT gantries with AVI tag readers 

(RFID tag readers) sit above the Express Lanes.  In addition, thirteen scanners (seven 

northbound and six southbound) sit above the general purpose lanes to detect 

transponders on general purpose lanes.  The lanes are also flanked by ten enforcement 

cameras that capture license plates of vehicles (to positively identify vehicles without 

Peach Passes).  Ten toll rate signs line the corridor and display the current toll rate for 

different trip lengths.   
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Figure 1: I-85 Express Lanes (Georgia Department of Transportation) 

The Express Lanes are divided into six segments, named after the interchange closest to 

their entry points.  The interchanges are Interstate 285 (285), Jimmy Carter Boulevard 

(JC), Indian Trail-Lilburn Road (IT), Pleasant Hill Road (PH), Old Peachtree Road (OP), 

and State Route 316 (SR316).  These segments range in length from 1.76 miles to 3.60 

miles.  Lane access is provided by five dashed-line ingress/egress sections in the 

southbound and northbound directions.  Those sections appear in purple below in Figure 

2; sections vary in length from 0.35 miles to 0.66 miles.  The RFID scanners placed on 

gantries over the HOT and General Purpose lanes provide a great deal of vehicle 

detection and lane condition data.  Those data are described in Chapter 3.   
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Figure 2: I-85 Express Lanes Weave Zones 

Research Framework 

The research began with the reception and storage of the I-85 Express Lanes data 

from the State Road and Tollway Authority.  These data were converted to the MySQL 

database format and stored on a secure server at the Georgia Institute of Technology.  

Georgia Tech researchers used these data to begin a preliminary investigation into the 

value of travel time savings exhibited by users of the Express Lanes (Sheikh, 2014).  This 

investigation compared the amount of time toll lane users saved with the toll amount they 

paid and presented the resulting distributions in terms of dollars per hour.  This initial 

work was followed by the extraction of license plate records from the SRTA data, which 

were matched in the motor vehicle registration database in a blind process to household 

address.  This matching process allowed for the connection of SRTA vehicle data with 

Source: GDOT, 2012 
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household-level socioeconomic data (Epsilon Targeting, 2013).  These demographic data 

were obtained from a private marketing firm and were used in all subsequent research.   

The research reported in this dissertation began with an investigation into the 

potential bias in the sample of households for which both Express Lane use and 

socioeconomic data were available.  From here, researchers conducted a choice modeling 

analysis using the socioeconomic data in conjunction with corridor condition data and 

user history data.  This analysis examined the determinants of lane choice decision 

making for users of different demographic segments under different traffic conditions.  

The preliminary value of travel time savings analysis was then expanded through the use 

of a greater scope of trips and the addition of a demographic component in the form of 

income segmentation.  The final step was an investigation into price demand elasticity of 

users on the Express Lanes under different conditions and among different 

socioeconomic groups. 

Research Contribution 

This document is a PhD dissertation in partial fulfillment of the requirements for the PhD 

degree in the department of Civil and Environmental Engineering at the Georgia Institute 

of Technology.  The dissertation makes a number of contributions to the body of research 

concerning road pricing in general, and High Occupancy Toll lanes specifically.  The first 

of these contributions is the provision of new modeling results derived from new and 

novel data sources.  The availability of automated detection data from the unpriced 

General Purpose lanes and the use of privately sourced household demographic data are 

rare, if not unique, in the realm of HOT lane use research.  The dissertation also 

implements modeling methods that have not yet been applied to HOT lane research, such 
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as panel data methods for repeat observations by individual users.  This dissertation work 

will also provide a basis for a spreadsheet-based demand modeling tool that may be 

suitable for future HOT implementation.  Finally, the research involves the development 

of a host of data processing and modeling scripts that serve to:  construct trips from 

disaggregated vehicle detections, estimate corridor conditions such as travel speeds and 

travel time reliability, and pair trip records with account, toll, and demographic data to 

provide a comprehensive overview of user characteristics and operating conditions at the 

time of each individual trip. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

The first HOT lane facility in the US was State Route 91 in California; operations 

began in 1995 (Sullivan, 2002).  The unique characteristics of HOT lanes, including the 

presence of adjacent tolled and un-tolled alternatives, make them suitable for many 

operational and economic analyses.  With the opening of SR91, impact assessment 

studies began appearing in the literature.  Successive research has evolved since the SR-

91 study.  The research described in this dissertation includes conventional concepts and 

methods typically employed in studying HOT lanes, such as value of time, price elasticity 

of demand, and discrete choice modeling.  The following literature review provides an 

overview of those concepts and of recent studies by other researchers.  The review 

process pointed to a number of shortcomings and gaps in recent research that this 

dissertation hopes to rectify.  The literature review begins with an overview of congestion 

pricing and case studies that illustrate the various forms it can take.  The next section 

presents a discussion of research concerning the value of travel time and reliability.  The 

literature review then describes the concept of price elasticity, its applications in 

transportation research, and presents a selection of relevant research.  The last section of 

the review discusses previous choice modeling studies of HOT lanes with a focus on the 

different data sources (stated preference, revealed preference, and combinations of the 

two) and modeling methods that they have employed.   



 

 

14 

Congestion Pricing Overview 

The lack of efficient road pricing has long been derided by economists.  Randall Pozdena 

(2010), in his road pricing primer for the Puget Sound Regional Council, provides an 

overview of the arguments for pricing and the various forms it can take.  Most 

infrastructure funding is currently raised by flat fees such as fuel taxes and registration 

fees.  Funding does not vary by roadway or condition and is thus economically 

inefficient.  In short, the driver is not paying the full cost of the burden he or she imposes 

on other drivers and the roadway.  In describing the economist’s position, Pozdena argues 

that “prices should…reflect the short-run marginal cost burdens imposed by the 

motorist.”  This includes both congestion and wear and tear on the facility.  In addition, 

investment decisions are often made by political and level-of-service determinations, not 

cost/benefit analyses.  This results in “the poor state of repair of road surfaces and 

bridges, and the dissipation of valuable time, fuel and capital resources due to 

congestion,” along with resentment by users who do not see a connection between the 

fees they pay and the investments they enable (Pozdena, 2010). 

Many of the traditional obstacles to road pricing are much more manageable 

today.  Technological advances allow for transponders on highway gantries and in cars, 

or with on-board metering (GPS); hence, pricing no longer requires toll plazas on every 

road.  Cost/benefit studies can identify areas in which pricing schemes would pay for 

themselves, reducing or avoiding the need for subsidy.  One additional argument that 

Pozdena (2010) makes is that land use regulations and transit subsidies would be 

unnecessary if roads were properly priced.  He argues that current policies are 
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economically inefficient, and that the same goals would be achieved in a less costly 

manner through pricing schemes (Pozdena, 2010).   

Pozdena then describes different pricing systems with varying levels of 

complexity.  The first is ubiquitous network tolling (UNT): Variable tolls are placed on 

freeways and arterials; however users must use on-board units (OBUs) which capture all 

travel.  The next is freeway-only tolling: this can use gantry and transponder techniques, 

however users can divert to potentially less-used arterials to avoid the priced facilities.  

Area pricing, also known as cordon pricing, levies a toll as vehicles enter tolled zone.  

But, Pozdena argues that cording pricing is a poor approximation of pricing the 

individual paths.  Finally, Partial Pricing generally takes the form of HOT Lanes, in 

which drivers have adjacent priced and unpriced options.  Pozdena’s model of economic 

and vehicle miles traveled (VMT) benefits indicates that UNT performs the best 

(Pozdena). 

Guo and Yang (2009) look at congestion pricing from a different theoretical 

perspective: how it can be implemented to be Pareto-efficient.  That is, how pricing can 

make people better off, without making any participants worse off.  The authors’ model 

uses multiclass users to account for how people of different income levels would react to 

the introduction of road pricing.  Guo and Yang find that a scheme can be Pareto-

efficient, if the tolling strategy reduces total system cost.  Under their assessment, travel 

time can increase slightly across certain origin-destination pairs while still being Pareto-

efficient, but only if the appropriate share of revenues is refunded to users to adequately 

compensate them for their increased travel times.  This also addresses an issue that many 

have with the concept of congestion pricing, which is that it prices low-income users off 
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the roads.  The study indicates that revenue refunding has efficiency as well as equity 

benefits (Guo & Yang, 2009). 

Congestion Pricing in Other Jurisdictions 

A number of pricing schemes have gained worldwide recognition.  The cordon pricing 

systems in London, Singapore, and Stockholm have all been the subjects of numerous 

studies since their inceptions.  Of these, the system in downtown Singapore is the oldest; 

it started in 1975 as a manual process, with drivers buying tickets to display in their 

windows and ‘enforcement personnel’ watching for violators at the entry points to the 

pricing zone.  The complexity of the scheme increased rapidly; at one point personnel 

had to monitor 16 different license types.  The overall effect was that traffic dropped 31% 

by 1988, despite a 77% increase in vehicle population (Chin, 2010). 

In 1998, the manual Singapore system was replaced with an electronic system.  

Units in each vehicle contained cards with stored values, from which the fee was 

deducted upon each entry into the priced zone.  A centralized control center identified 

vehicles without cards or with insufficient amounts on the card and sent out bills based 

on license plates.  Volume counts were examined every three months and rates were 

adjusted to achieve the desired amount of traffic.  The study attributed the success of the 

system to its flexibility (in adding new regions and varying the price based on demand) 

and to the public relations campaign emphasizing the traffic-management, rather than 

revenue-generating, nature of the program (Chin, 2010). 

The city of London also implemented a cordon pricing scheme in 2003 in its 

central business district.  Central London was seen as a suitable candidate due to low road 

capacity, heavy demand, and availability of alternative modes.  Before the pricing 
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scheme, private automobile trips made up approximately 12% of total peak period trips.  

The cordon scheme was enforced by video cameras, and the system managed an average 

of 110,000 users per day as of 2006.  The first few months of the program saw this 

percentage drop to 10%; removing almost 20,000 vehicles per day.  Average speeds 

within the zone increased from 8mph to 11mph (an increase of 37%).  Peak congestion 

delays decreased by 30%, and bus congestion delay decreased by 50% (enhancing the 

transit user’s experience).  Bus and subway ridership increased 14% and 1% respectively.  

While the scheme has been considered effective, various shortcomings have been noted.  

For one, the fee is not based on distance, time, or road congestion; a flat fee is imposed 

for all users.  More congested roads cost the same as less congested roads.  The system 

also has “relatively high overhead costs.”  The subway system, which is the alternate 

mode of many drivers, is “crowded and unreliable,” though revenues from the scheme are 

being used to improve transit.  The plan met with opposition from the public at first, 

however the plan was quickly accepted after implementation; other regions soon wanted 

to be included.  In general, drivers showed more price elasticity than expected, which 

resulted in less congestion but also less revenue (Litman, 2006). 

Stockholm began its own pricing scheme in 2006.  Like those of Singapore and 

Central London, it was a cordon system.  The study by Hamilton took a different 

approach in that it discussed the project’s cost of implementation rather than public 

acceptance or effectiveness.  While the system did not actually exceed its budget, its 

nature as a contracted project, the tight deadlines it faced, and the political pressure it was 

under, resulted in higher costs to the government.  Because a major political party wanted 

a successful system in place before the next election, the government allowed the 
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contractor to overstaff its call center and increased payments for achieving deadlines.  In 

addition, a number of requirement changes throughout the process resulted in higher 

costs to the government.  Hamilton’s paper found that the focus on minimizing technical 

and political risks raised costs significantly (Hamilton, 2010). 

The case studies discussed above all offered key lessons and insights for other 

pricing projects.  The systems demonstrated that pricing alone does not reduce 

congestion; changes to land use, improvements to public transportation, updated parking 

policies, and even road improvements may also be necessary.  Alternatives to the priced 

roads, such as transit or unpriced routes, must also be provided or improved upon.  The 

research also demonstrates the varying levels of complexity and the accompanying 

tradeoff with privacy.  A common theme was the initial skepticism of the public, 

followed by greater acceptance after implementation.  This was greatly aided by 

educational efforts and transparency to emphasize the traffic management nature of the 

programs.  The case studies and pricing overview provide the most value as instructional 

resources for future pricing schemes. 

Price Elasticity of Demand in Transportation 

A common area of study in road pricing is the subject of price elasticity.  The term refers 

to a ratio of change, such that a change in one variable can predict a change in a related 

variable.  An elasticity value of 0.2 for Variable X with respect to Variable Y indicates 

that for every 1% change in Variable Y, there is a 0.2% change in Variable X.  Any value 

less than 1.0 is considered “inelastic;” likewise, any value greater than 1.0 is considered 

“elastic.”  The amount by which a change in price causes a change in behavior has long 

been of interest to researchers in various fields.  In the transportation industry, 
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fluctuations in gasoline prices and transit fares have often been examined for their effects 

on the demand for these products.  With the more recent advent of dynamic road pricing, 

another avenue of consumer response has been made available for analysis.  

Technological advances allow for highly detailed datasets documenting price and volume 

changes within toll lanes, and sensitivities under a host of different conditions can now be 

considered.  This dissertation will examine demand sensitivities of users on the I-85 

corridor, and this section of the literature review examines elasticity results from other 

projects for purposes of comparison.   

Before discussing the studies that evaluate actual elasticity levels, this section 

provides some background on how they are calculated.  Pratt (2003), in a widely-cited 

publication by the Transit Cooperative Research Program (TCRP), presented four 

different methods of estimating price elasticities.  Those methods are the point elasticity, 

the shrinkage ratio, the midpoint arc elasticity, and the log arc elasticity.  Extending 

Pratt’s work, Han (2009) examined those techniques of elasticity estimation and 

identified methods that are more appropriate for various situations.  Han noted that 

despite the importance of the concept of elasticity to the transportation field, as of yet 

there is no agreed-upon technique for determining a value.  Han argued that two general 

categories of techniques exist: statistical models and primitive formulas.  Statistical 

models take into account more factors relating to travel demand, while primitive formulas 

have less onerous data requirements.  Han evaluated three of the primitive methods 

described by Pratt (the exception being point elasticity) by comparing their estimator 

bias, variance, and mean square errors (MSE).  Equation 1, for the point elasticity, most 

closely resembles the fundamental definition of elasticity in the economics literature.  
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Pratt argues that it is difficult to use in practice, however, as it requires knowing the 

demand curve (from which the derivative is taken) relating price and quantity. 

 

Equation 1: Point Elasticity (Pratt, 2003) 

Equation 2, and the following equations, all provide different methods of 

approximating the point elasticity.  The log arc elasticity is, according to Pratt, the 

formulation that “most nearly approximates point elasticity.”  As a result, it is formula 

that is used throughout TCRP Report 95, “Traveler Response to Transportation System 

Changes.”  However, Han (2009) estimated that the log arc elasticity had the highest 

MSE result of the three methods examined. 

 

Equation 2: Log Arc Elasticity (Pratt, 2003) 

The midpoint arc elasticity, shown below in Equation 3, may be used when one of 

the variables in the log arc elasticity equation is zero.  That is, when the starting or ending 

quantity or price are equal to zero.  Han (2009) suggested that the midpoint arc method 

be used in circumstances where demand increases as it had the lowest MSE value. 

 

Equation 3: Midpoint (Linear) Arc Elasticity (Pratt, 2003) 

Equation 4 provides the shrinkage ratio elasticity formula, which is typically used 

in transit and road pricing studies.  It is perhaps the easiest to understand from an 

intuitive perspective, as the formula is defined as the relative change in demand divided 
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by the relative change in price.  According to Pratt, these are often labeled “approximate 

point elasticities.”  This formula, however, gives different results for equivalent changes 

in opposite directions (Pratt, 2003).  Han (2009) labeled this method the “most efficient 

technique among the three” in cases where demand decreases. 

 

Equation 4: Shrinkage Ratio (Pratt, 2003) 

An important consideration when using these methods is the possibility that 

additional factors that have been excluded from the model affect demand and/or price.  

Looking solely at those two values ignores other variables that are likely to affect 

transportation demand, such as employment and prices of alternative modes.  For this 

reason, most researchers use more robust methods, such as multiple regression and choice 

modeling, to estimate elasticities while controlling other factors.  These methods make up 

the second category of elasticity estimators (i.e. the statistical models) that Han described 

but did not examine. 

Oum (1992) provided a review of different concepts of elasticities and the model 

specifications that yield these different types of elasticities.  The paper began by 

describing the difference between ordinary and compensated demand elasticities: 

ordinary price elasticities measure “both the substitution and income effects of a price 

change,” while compensated price elasticities measure “only the substitution effect of a 

price change.”  Compensated elasticity is not estimated, however, as “it is a function of 

utility, which is not directly observable” (Oum, 1992). 

Oum then goes on to describe mode-choice elasticities and regular demand 

elasticities.  Mode-choice studies are those “which examine shares of a fixed volume of 
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traffic among modes.”  The elasticities that are estimated in this situation reflect 

substitutions between modes but “aggregate mode-choice studies…do not take into 

account the effect of a price change on the aggregate volume of traffic.”  Estimating 

regular demand elasticities requires acknowledging these changes in aggregate volumes, 

and disaggregate studies can correct this.  Specifically, disaggregate studies which 

“include in the users’ choice set the option of not making the trip” can generate regular 

demand elasticities.  In the absence of this non-traveler data, the resulting elasticities are 

mode-choice rather than regular demand.  As the data set for the I-85 Express Lanes 

contains both HOT and GP trips by users with transponders, this dissertation will 

estimate regular demand elasticities (Oum, 1992). 

A study by Goodwin (1992) examined demand elasticity of fuel consumption 

with respect to fuel price and transit use with respect to fare price.  Goodwin’s main 

insight, however, was the difference between short-term and long-term values.  While the 

papers Goodwin examined showed elasticity values well under -0.5 for, he estimated that 

these values increased by 50-200% over the long term.  Short term elasticity of fuel 

consumption with respect to price averaged -0.27, while the average of long term studies 

was -0.71.  The elasticity of traffic levels with respect to fuel price also increased from  

-0.16 to -0.33 from the short term to the long term.  Goodwin’s conclusions were that 

changes in behavior occur over time since more options are available as time increases, 

and that these long term elasticities make prices a strong mover of behavior.  These 

changes include less car use or the purchase of more efficient vehicles; on the transit side, 

individuals may eventually move closer to stations if prices are attractive enough 

(Goodwin, 1992). 
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Because Atlanta’s HOT lanes opened in October of 2011, there are now likely 

enough data to examine long-term elasticities.  The additional controls that would be 

required, however, are out of the scope of this dissertation.  These controls include data 

for changes in housing, employment, vehicle type, fuel prices, and other complicating 

factors over time.  Future studies could potentially use the same data described in this 

dissertation, along with those additional measures, to assess long-term elasticities.  Note 

that the steadily increasing toll rates, as discussed throughout this dissertation, will 

complicate these proposed studies.  

A complicating matter in sensitivity studies is the fact that elasticities can be 

affected by a wide variety of factors, making comparisons between cities or even among 

different facilities within cities difficult.  Hirschman (1995), in a study of elasticity values 

across bridges and tolls in New York City, noted that “elasticities can vary dramatically 

according to mode, time of day, travel purpose, household income, and by the amount 

and direction of the price change.”  The study looked at six bridges and two tunnels 

connecting the five boroughs of New York City.  The authors developed time-series 

multiple-regression models from twelve years’ worth of data for the various tolls; toll 

level, which increased from $0.75 to $2.50, was the main independent variable.  The 

authors also included employment, gasoline prices, vehicle registrations, transit fares, and 

seasonal variations as independent factors.  The shrinkage ratio was used as a method of 

checking their regression results, not the primary method, as it does not take into account 

the other factors the authors considered, such as employment (Hirschman, 1995).  The 

results showed very low elasticities, as the authors predicted.  Almost all of the values 

were much less than 1.0 in value and negative.  The maximum elasticity estimated for 
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automobiles was -0.50, while the median was -0.10.  Elasticities were higher where free 

alternatives existed or where transit alternatives are convenient, such as in Brooklyn and 

the Bronx.  The authors concluded from this study that small increases in toll fares would 

not decrease congestion along the bridges and tunnels, but a “steep and sudden increase” 

could accomplish this (Hirschman, 1995). 

A more recent study of elasticity values, although one that focused on Spain 

rather than the U.S., was written by Matas and Raymond (2003).  The authors assessed 

seventeen years’ worth of data concerning Spain’s toll roads with a focus on examining 

why elasticity values differ on different segments.  The model the authors created 

estimated that corridors with high traffic volumes were generally inelastic, while those 

that had a good alternative road (with high speeds) were more elastic.  If the number of 

heavy vehicles on those alternatives roads increased, however, the toll demand became 

less elastic.  Longer roads resulted in higher elasticity, likely due to the higher total price 

to be paid.  Tourist areas exhibited higher levels of inelasticity, and overall demand was 

estimated to be more responsive to GDP than to gasoline prices.  Another notable point 

the authors made was that setting a toll too high may create too much demand on the 

alternative road, increasing maintenance costs and environmental impacts.  Reducing 

such a toll may actually decrease the total cost of the infrastructure.  The results overall 

confirmed literature that suggested that demand is generally more elastic where there are 

good, un-tolled alternatives (Matas & Raymond, 2003).  This suggests that as the I-85 

HOT lanes operate alongside free General Purpose lanes, elasticity values should be 

higher than they would be in the absence of a free alternative.   
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Low elasticity values such as those described in the studies above have long been 

used by politicians and planners to develop pricing and transportation policy.  Litman 

(2010) looked at the policy-related implications of low versus high elasticity values and 

the structural factors that help define them.  Litman referred to the “rebound effect,” in 

which higher fuel prices lead to the purchase of more fuel efficient cars and thus a 

driver’s VMT actually increases.  The “rebound effect” may have a direct relationship 

with elasticity: if elasticity is low, rebound effects may be small.  Low elasticity and 

rebound effects support fuel efficiency mandates (in the case where the goal is to reduce 

fuel consumption), since greater fuel efficiency would reduce consumption and not raise 

external costs such as “congestion, accident risk and sprawl.”  Higher rebound effects and 

elasticities may make fuel efficiency standards less effective at reducing VMT and 

instead argue for pricing schemes (Litman, 2010).  Unfortunately, the paper does not 

address the previously mentioned phenomenon of varying elasticities among different 

cities or facility types and alternatives. 

The historical evidence Litman cites demonstrates the decrease in elasticity values 

between 1960 and 2005.  This is reflected in the studies discussed above: nearly all of the 

elasticity values are very inelastic.  Litman argues that the 20
th

 century saw increases in 

VMT due to higher vehicle ownership and numbers of driver’s licenses, more women in 

the workforce, expanded highways, worsening transit service, and low-density 

development.  All of these factors in turn reduced elasticity.  Litman goes on to suggest 

that other changes may now be increasing elasticity.  These include an aging population 

of retirees and the elderly, who commute less and have lower incomes.  Stagnating 

incomes combined with increasing fuel prices will also likely increase elasticity.  
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Increasing investments in pedestrian, bicycle, and transit infrastructure, along with more 

traffic congestion, may also serve to increase price sensitivity by providing alternatives 

with acceptable levels of service.  This is reflected in recent elasticity research that has 

shown an upward trend in sensitivities since 2005 (Litman, 2010). 

As mentioned above, lower elasticity values favor fuel efficiency mandate 

increases, because directly increasing the cost of driving will not cause drivers to drive 

less over the short term.  Higher sensitivity values, however, favor pricing schemes such 

as road pricing.  Transportation analyses have typically used elasticity values which 

according to Litman are now too low.  Studies by the USDOT, for example, 

underestimate elasticity and thus the benefits of pricing schemes (Litman, 2010).   

The various elasticity studies paint a complex picture of the effects of congestion 

pricing systems.  Pricing schemes, if implemented, should consider spillover effects and 

traffic diversion that may increase maintenance costs.  In many instances, the most 

significant impacts will take many years to be realized as sensitivities are low over the 

short term.  On the other hand, changing demographics and political concerns may herald 

a reversal of the trend of low elasticities.  This has many implications for transportation 

and planning policy, as elasticity levels affect decisions regarding fuel prices, transit 

fares, pricing plans, land use policies, and more. 

This issue of traffic diversion onto unpriced roads was the focus of a study by 

Swan and Belzer (2010).  The paper sought to estimate elasticity in response to road tolls 

by examining truck data in Ohio.  The data was used to estimate the amount of VMT 

diverted from Ohio’s highways onto its secondary roads.  The focus here was on the 

effects of high elasticity values caused by the availability of suitable alternatives: the null 
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hypothesis the authors used, that no traffic would be diverted to other roads, was negated.  

Sixteen of the thirty-three routes had “significant positive coefficients” for diverted 

VMT.  The results showed that the quality of an alternative road would increase the 

elasticity of a tolled road; as a result, “relatively small toll increases can lead to 

significant diversions of traffic from highways to secondary roads.”  The authors used 

these results to make the case against setting toll rates beyond marginal costs and arguing 

that “there may be a role for the Federal government in regulating state or local toll rates 

where they interfere with interstate commerce” (Swan & Belzer, 2010). 

In addition to road and toll elasticity, transit fare elasticities also receive a great 

deal of attention.  Todd Litman of the Victoria Transport Policy Institute published a 

review of elasticity literature from 1991 to 2004 with a focus on cross-elasticities, defined 

as “the percentage change in the consumption of a good resulting from a price change in 

another, related good.”  Litman began by listing various factors that affect elasticities.  

User type, such as choice rider versus dependent rider, low versus high income, etc., 

played a role.  Dependent transit riders had lower elasticities, and commute trips were 

less price-sensitive.  Different types of price changes also resulted in different elasticity 

values: fare changes, service changes (since service affects non-monetary costs), and 

parking prices had higher elasticity values than other changes.  The direction of the 

change also made a difference: users were more sensitive to fare increases than to 

decreases.  Hence, elasticities were price direction dependent.  Elasticity also varied by 

mode, since different modes (such as bus versus rail) serve different markets (Litman, 

2004).   
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Litman then moved on to transit elasticity values themselves, arguing that older 

studies looked at short- and medium-term effects and neglected long-term elasticities, 

which are typically two to three times the size.  This agrees with the argument put 

forward by Goodwin in his study.  In addition to looking at sensitivity with respect to 

fare, Litman (2004) examined the effects of service changes on ridership.  Cross-

elasticities relating to transit ridership with respect to fuel price were also discussed.  

Table 1 below summarizes the elastic ranges that resulted from Litman’s study.  Most of 

the values are inelastic; only a few long-term sensitivity ranges reach or exceed 1 

(Litman, 2004). 

Table 1: Transit Elasticities and Cross-Elasticities (Litman, 2004) 

 Market Segment Short Term Long Term 

Transit Ridership 

WRT transit fares 

Overall -.2 to -.5 -.6 to -.9 

Transit Ridership 

WRT transit fares 

Peak -.15 to -.3 -.4 to -.6 

Transit Ridership 

WRT transit fares 

Off-peak -.3 to -.6 -.8 to -1.0 

Transit Ridership 

WRT transit fares 

Suburban Commuters -.3 to -.6 -.8 to -1.0 

Transit Ridership 

WRT transit service 

Overall .5 to .7 .7 to 1.1 

Transit Ridership 

WRT auto operating 

costs 

Overall .05 to .15 .2 to .4 

Automobile travel 

WRT transit costs 

Overall .03 to .1 .15 to .3 
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Values of Travel Time and Reliability 

Value of time is an important concept in transportation modeling, with 

applications for every mode and a place in many different modeling applications.  The 

amount of money that a user will pay to save some increment of time, typically expressed 

in dollars per hour, has implications for transportation policy, frequency, pricing, and for 

the distributional impacts of different planning decisions.  High Occupancy Toll lanes 

provide a unique way of studying values of time for different populations, as the facilities 

pair a priced alternative with an adjacent free alternative.  The two differ in price and 

typically in performance, allowing for direct comparisons of trips along the same route.  

Similarly, a great deal of research has investigated the value of travel time reliability, 

though methodological complications and the difficulty of measuring user perception 

make it harder to identify and isolate this result. 

Some previous studies, such as those by Small (2005), Levinson (2011), Liu 

(2007), and He (2011), have used econometric methods to generate value of travel time 

estimates.  These studies often involve stated preference survey data, or some 

combination of survey and revealed preference data.  In some cases, the trip 

characteristics must be estimated or simulated.  He (2011), for example, approached the 

issue of having only HOT-lane choice data by generating “simulated” choices to use the 

unpriced lanes; whenever a user was not seen in the managed lane, they were assumed to 

be in the free lanes (2011).  This assumption is not necessary for this dissertation, as the 

lane detection data identify General Purpose lane trips as well as HOT lane trips.  Small 

used travel time estimates from student field work as a factor in his model for California 

State Route 91 (2005).  The mixed logit models in these studies allow for random, rather 
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than fixed, coefficients and thus the resulting values of travel time are presented as 

distributions.  Small estimated a median value of time of $21.46/hour (2005), while 

Levinson estimated values of time ranging from $3.40/hour to $20.56/hour (2011).  Liu 

reported VTTS results ranging from $6.82/hour to $27.66/hour (2007).  Devarasetty 

(2012) estimated a value of travel time savings of $51/hour on the Katy Freeway in 

Texas. 

Burris, et al. (2012) used a strictly revealed-preference approach, without choice 

modeling, by comparing HOT trip times in Minneapolis and San Diego to General 

Purpose travel times generated from loop detector data.  Using revealed preference data, 

toll paid and travel time saved, Burris estimated median VTTS figures of $73/hour and 

$116/hour for the morning and afternoon peaks in Minneapolis, and $49/hour and 

$54/hour for similar periods in San Diego.  These values were calculated from five-

minute averages of HOT speeds and volumes, GP speeds and volumes, toll rates, and trip 

counts.  That study also explained that HOT users can see GP conditions before making 

the choice to use the priced lane, and so they have some knowledge of the potential time 

savings.  Other work by Devarasetty (2013) showed that HOT users actually overestimate 

their time savings by an average of 11 minutes, which has implications for revealed 

preference willingness-to-pay research based on HOT lanes.  The study by Burris was 

unique in that it was one of the few to rely solely on automated revealed preference data. 

In the absence of survey data, it is difficult, if not impossible to identify whether 

users are paying for travel time savings or reliability.  The answer is likely that users are 

paying for some combination of the two benefits, as evidenced by other studies that do 

incorporate stated preference surveys (Devarasetty, et al., 2012).  Travel time reliability is 
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also often studied with econometric methods involving both stated and revealed 

preference data.  The study by Carrion-Madera and Levinson (2012) used survey results 

with GPS data by presenting users with fixed route choices and studying their 

preferences.  The resulting values of reliability ranged from $0.68/hour to $18.23/hour in 

the Minneapolis-St. Paul region.  Small estimated a median value of reliability (VOR) of 

$19.56/hour in his study of SR91 in the Los Angeles, California region (2005), while 

Devarasetty et al. used survey results to come to a combined VTTS and VOR figure of 

$50/hour.  This dissertation examines the reliability benefits of the HOT lanes, but in the 

absence of survey data it cannot assign a value to those benefits. 

The literature concerning values of travel time savings and reliability as it relates 

to High Occupancy Toll lanes differs greatly among the different facilities under 

examination.  The results show high levels of variability in the estimated values of time 

and reliability, ranging from $3.40/hour to $116/hour.  Data limitations and 

methodological differences, such as estimated travel times and imputed lane choice 

decisions, make it difficult to directly compare the results of different studies.  Like 

demand elasticity, values of time may differ by location due to factors that are not 

captured in these models.  Other factors, such as political considerations, which may limit 

toll amounts, or safety benefits of HOT lanes, which users may value in addition to the 

time savings, may also contribute to these differences. 

Additional value of time research has focused on other modes and facilities, rather 

than on HOT lanes, but contains worthwhile insights for value of time research.  These 

studies examine the interaction of value of time with income, the role of supply-side 

uncertainty in toll-setting, and the effects of different levels of driver information on the 
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impact of tolls.  Among these studies is a paper by Mohring, et al. (1987), which attempts 

to estimate monetary values for travel time and waiting time as they relate to income.  

Such an effort has been historically difficult due to limited data sets.  The authors used a 

“disutility” coefficient for waiting time, which quantifies the adverse effects caused by a 

process (such as travel).  In the case of the study, the authors assigned a disutility range 

of 0.3 to 0.5 to travel time versus waiting time.  This indicates that travelers assign a 

disutility value to time spent traveling of 30-50% of the value of time spent waiting.  For 

example, if the disutility value of an hour waiting is $10, the disutility value of an hour 

spent traveling is $3-5.  The study uses data from the Singapore Bus Service to determine 

whether users would rather take a more expensive and comfortable bus that was available 

immediately or wait for a cheaper option.  A “comfort premium” was assigned to the 

more expensive and luxurious bus.  The authors found that the comfort premium 

increases with trip distance and during peak periods.  Peak period riders were found to 

have higher values of wait times and responded more to convenience factors.  The results 

showed that an average rider with a 50 minute peak-period trip is only 19% likely to wait 

for a nicer bus of equal fare if another bus is immediately available, while a rider 

planning a short trip is 60% likely to wait for the cheaper option.  The results of the paper 

show that, as expected, the ratio of waiting-time value to income increases with income.  

In addition, nonwage earners in households have lower waiting-time values than wage 

earners in the same households (Mohring, Schroeter, & Wiboonchutikula 1987). 

Two other studies looked at complications in common congestion pricing models, 

including supply-side uncertainty and random capacity and demand.  Boyles et al. (2010) 

argue that traditional calculations of the marginal costs of traveling do not account for 
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uncertainty, such as “incidents, weather conditions, [and] fluctuations in travel demand.”  

The authors relate this to congestion pricing by asking whether tolls should vary in 

response to disruptions:  If an accident occurs, should tolls increase to keep drivers off 

the road? Or should they not increase since drivers expect better conditions with higher 

tolls? The authors discuss responsive versus unresponsive tolls and find that to properly 

account for uncertainty, “unresponsive tolls must be set higher than responsive tolls” 

(Boyles, Kockelman, & Waller, 2010). 

Lindsey (2009) also looks at driver information as it relates to tolls, investigating 

three scenarios:  1) users have perfect information about conditions and the toll reflects 

that perfect information;  2) users have imperfect information and tolls reflect that 

imperfect information; and  3) tolls are set using less information than the users have.  

The paper focuses on highways, where “capacity and demand shocks are common.”  It 

notes that much congestion is due to nonrecurring events; crashes account for most 

congestion in urban areas.  Tolls give drivers information about the level of congestion in 

non-toll lanes, but a toll level may mean different things.  The author concludes that in 

the first two cases, toll revenues will pay for “optimal capacity of a facility,” but not in 

the third case.  The paper focuses on highways, where “capacity and demand shocks are 

common.”  It notes that much congestion is due to nonrecurring events; crashes account 

for most congestion in urban areas.  Tolls give drivers information about the level of 

congestion in non-toll lanes, but a toll level may mean different things: “tolls cannot 

convey complete information about the state” (Lindsey, 2009). 
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High Occupancy Toll Lane Decision Making Studies 

With the growing popularity of High Occupancy Toll lanes in the US has come a 

corresponding amount of modeling research concerning these lanes.  This literature is 

varied in both methods and data sources.  The various studies use different types of 

choice and regression models, and the data may include revealed preference automated 

reporting, traveler surveys of trip and demographic characteristics, or some combination 

of the two.  The results from these different studies are instructive, even when the 

methods or data differ from what is being investigated here.  Different studies also point 

to different determinants as being significant in route or mode choice decisions; this may 

also be a function of differing data and methods.  As a result, it is difficult to make direct 

comparisons between studies and to judge whether previous analyses are confounded. 

Stated Preference Studies 

Stated preference travel behavior modeling studies are very common.  These 

studies measure a variety of characteristics and attitudes, including socioeconomic 

attributes and expected responses to potential situations.  Asensio and Matas (2007) used 

survey results to examine the impacts of travel time variability and to put a value on 

travel time reliability.  The stated preference method is used here to look at the value of 

reliability for different user and trip characteristics.  The paper uses a mean-variance 

model in its analysis, with travel time variability represented by the standard deviation of 

travel time.  The resulting models gave values of travel time savings and reliability, as 

expected; the stated preference method allowed for segmentation by the flexibility of a 

respondent’s arrival time.  This dissertation will examine travel time variability using 
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vehicle detection data, but arrival time flexibility is an example of the category of data 

that is not available in a strictly revealed-preference data set. 

Burris and Pendyala (2002) estimated multinomial logit models for pricing 

participation and frequency of participation based on demographic surveys of a variably-

priced facility (a bridge rather than an HOT lane in this case).  The data were also 

revealed preference in that the respondents were users of the facility.  Like the research 

undertaken in this dissertation, the Burris and Pendyala paper aimed to “describe the 

participation of travelers in variable pricing programs as a function of their socio-

economic and commute characteristics.”  One shortcoming of the stated preference 

approach that the authors identified is that “travelers often tend to overstate their potential 

response to a hypothetical stimulus in stated preference surveys.”  Studies by Hensher 

(2001) and Calfee, Winston, and Stempski (2001), described below, detailed other 

shortcomings with the stated-preference approach: it is inappropriate for prediction, it 

may yield biased results depending on the design of the survey, and it may be more 

expensive or difficult to achieve large sample sizes.   

Calfee, Winston, and Stempski (2001) used survey data to estimate value of 

automobile travel time for respondents in “major U.S.  metropolitan areas.”  The authors 

estimated ordered probit, rank-ordered logit, and mixed logit models and then compared 

the resulting values of congested time from the different methods.  The values ranged 

from $2.92/hour to $5.47/hour for the ordered probit, $3.12/hour to $5.47/hour for the 

ordered logit, and $3.17 to $5.47 (mean values) for the mixed logit.  Calfee, Winston, and 

Stempski noted that stated preference studies must be designed with an “accurate 

ordering of preferences,” and that other design decisions (such as ordinal versus cardinal 
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rankings) may cause bias.  The sample size of this study was 1,170 respondents, and the 

authors made the point that with stated preference methods, it may be more expensive or 

difficult to get large samples. 

Yan, Small, and Sullivan (2002) also used survey data, this time from State Route 

91 in California, to estimate more complex joint and nested logit choice models.  In this 

study, the route and mode choices were distinct, and additional models included 

transponder choice.  Yan, Small, and Sullivan sought to investigate the effect of toll 

changes on “vehicle occupancy or time of day instead of or in addition to changing 

route.”  The value-of-time results estimated by the choice models were in the range of 

$13-16 per hour.  This is much lower than the results that were estimated in the 

preliminary study of I-85 described later in this document.  The authors note that these 

results were for congested travel time, “which is known to have a higher value than that 

of uncongested time.”  In addition to estimating value of time and elasticity results, the 

authors noted that it is “quite possible that pricing demonstrations in which there is a free 

road parallel to the priced road do not capture the full range of behavioral responses.”  

This is because drivers do not need to consider more drastic behavioral changes if they 

can simply take the unpriced roadway parallel to the same route.  Here the benefits of 

stated preference data include the ability to investigate more choices and to include 

individual-level factors such as sex.  The downsides include potentially lower value of 

time results than would be seen in revealed preference studies. 

Another study by Burris (2006) estimated multinomial logit models from stated 

preference surveys to explain HOT lane use.  This study was unique in that it excluded 

mode characteristics, explaining travel time and required occupancy, for example, “were 
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felt to be implicitly included in the traveler’s choices.”  These results indicated that users 

of the facility were “significantly more likely to be over 65 years old, have a post-

graduate degree, have a household income greater than $100,000 per year, and be on a 

school-related trip.”  The paper illustrated that unique geographical aspects of a study, in 

this case the prevalence of schools near the end of the facility, may have a large impact 

on the results.  The stated preference nature of this and other studies allows analysts to 

assess the influence of trip purpose, which generally cannot be derived from 

observational data alone.  A frequently-cited study by Li (2001) estimated logistic 

regression models using similar methods to those outlined in this dissertation.  The 

determinants were categorized as demographic characteristics, financial capability, and 

travel characteristics.  Demographic characteristics included household size, household 

“type,” gender, and age, while “financial capability” referred to household income.  

Travel characteristics included trip length, vehicle occupancy, a commute trip dummy 

variable, and trip frequency.  The author hypothesized that the HOT lanes would be more 

frequently used for commute trips, long-distance trips, high-occupancy trips, and trips by 

frequent users, women, and larger households.  The list of resulting significant variables, 

including age, financial ability, vehicle occupancy, would be interesting to compare with 

the results of the revealed preference study proposed here. 

Hensher (2001) created mixed logit models from survey data and compared the 

value of travel time savings results with those from standard multinomial logit models.  

The mixed logit models “[produced] higher estimates of values of time savings compared 

to the multinomial logit model.”  Hensher estimated values of free flow, slowed down, 

and start/stop time with both MNL and Mixed Logit models.  The resulting mean values 
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ranged from $0.06 to $5.90 higher for the Mixed Logit cases, with an average difference 

of $0.37 for the value of free flow time and $3.02 for the value of stop/start time.  This 

supports the cases for including random coefficients where appropriate in this 

dissertation’s choice models, as the resulting values of time may be significantly 

different.  Hensher also discussed the importance of preference heterogeneity in 

transportation modeling, as neglecting this issue leads to serial correlation in the error 

term.  Significantly, ignoring preference heterogeneity can also have “impact on the 

marginal rates of substitution between attributes.”  This issue may directly impact the 

elasticity studies in this dissertation.  The study locations in question were seven cities in 

New Zealand.  One final important note from this paper is its description of revealed 

preference data as “’dirty’ from the point of view of statistical estimation,” as there is 

“often too much confoundment in RP data.”  However, Hensher stressed the importance 

of revealed preference data in prediction, and stated that “the SC component of a data set 

is useful only in improving the statistical efficiency of the parameters associated with the 

design attributes.” 

The studies discussed above illustrate many of the benefits of stated preference 

studies: flexibility in choices and in scenarios presented to the respondents, the ability to 

control for confounding and correlated factors, and the ability to capture the order of a 

respondent’s preferences.  They also reveal some of the downsides in the form of 

potentially unrealistic responses and value of time estimates that do not match those from 

revealed preference studies, as well as potential sample size limitations due to expense 

and response rates.  Other important points include the potential for results to be specific 

to a certain geography and some of the potential pitfalls of revealed preference data.   
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Stated and Revealed Preference Studies 

Studies that combine both stated and revealed preference data are typically 

described as the most valuable, as they can capture the benefits of both types of data and 

make up for the shortcomings of each.  For revealed preference data, these shortcomings 

include the fact that only the ‘most preferred’ option is reported, there may be correlation 

among the different variables, there may be a lack of variation in the data, and important 

factors may be excluded.  In the case of this dissertation, variables representing traffic 

conditions may be correlated with toll amounts and time savings, for example.   

Borjesson (2007) estimated mixed logit models for departure time choice using 

both stated preference and a form of revealed preference data.  In this case, the revealed 

preference data was extracted from a model of the Stockholm network named 

“CONTRAM.”  While the travel times from the model were simulated, they were 

described by Borjesson as “actual mean travel times.”  Borjesson describes the benefits of 

combined RP and SP models, as in this case the revealed data are highly correlated.  The 

author modeled departure time choice as a function of travel time variability, but “high 

correlation of mean travel time and travel time uncertainty in revealed preference data 

[made] accurate estimation of the trade-offs unfeasible.”  Borjesson later cites this “high 

correlation between mean travel time and travel time uncertainty in RP data” as a primary 

factor in the lack of travel time uncertainty studies using RP-only data.  The paper does 

not discuss whether perceptions of travel time uncertainty affect the departure time 

decision, or whether actual uncertainty is the contributing factor.  A related issue appears 

in the research proposed here, as values of toll amounts, travel time, and volumes are 

very likely to be correlated.  However, the article ultimately concludes that stated 
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preference data is “less trustworthy for trip timing analysis and forecasting,” the goals of 

the paper. 

Two of the most frequently cited revealed preference studies are those by Lam 

and Small (2001) and Small (2005).  Even these studies, however, used both revealed 

preference data and stated preference data.  Lam and Small (2001) used surveys asking 

for vehicle occupancy, job characteristics, and other information.  In this highly-cited 

study, the average travel times for the models were estimated using a “standard 

engineering algorithm” and volume and vehicle density from loop detectors.  The 

resulting travel time savings for the California State Route 91 lanes under examination 

were 5.9 minutes in 1998, a value that Lam and Small describe as small in magnitude and 

which “makes [their] results vulnerable to measurement error.”  This value is within the 

same order of magnitude as the median travel time savings of the I-85 Express Lanes, 

relative to the entire corridor.  An important note in this study, which also relates to other 

loop-detector based studies, is that there are “many assumptions required to convert loop 

detector data into speeds estimates” (Lam and Small, 2005).  The dissertation research 

presented herein does not have to rely on estimated travel times, as the data include actual 

travel times in both HOT and General Purpose lanes.   

The study by Lam and Small used binomial logit models for the route choice 

models, and included various measures of variability.  The paper includes a discussion of 

the endogeneity in the models, namely in the option to switch to another route.  Lam and 

Small then included time-of-day choice in their next models, but this came from the 

survey data, and hence cannot be repeated in this dissertation work.  The authors also 

address the issue of their data covering a portion of the actual trip length by both ignoring 
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this limitation (so that its effects are in the alternative-specific constants) and by 

estimating those missing travel times.  These two methods are both options for this 

dissertation.  Finally, the authors examine transponder choice and find that “transponder 

installation has its own determinants, distinct from those of the daily decision of whether 

or not to use the transponder.”  As for the route choice results, the authors report that 

“work-hour flexibility [provided by surveys] and total trip distance seem to influence the 

daily decision of which route to take” (Lam and Small, 2005). 

The Small (2005) paper estimated mixed logit models based on both revealed and 

stated preference data, with some important points for this dissertation.  The author notes 

that revealed-preference studies “have been hampered by collinearity among cost and 

travel-time variables” and that “they have not accounted for heterogeneity in cost or 

travel time elasticities.”  An interesting point is that the author does not name any of 

these revealed-preference studies.  Similarly, the revealed preference data used in the 

study is self-reported and comes from telephone surveys (Small 2005). 

A number of other studies had important points that are relevant to this 

dissertation.  Liu (2007) was a rare study that used revealed preference data, in the form 

of loop-detector data, to estimate mixed logit models of route choice.  The main 

determinants in this study were “travel time, reliability, and cost.”  The study was also 

unique in that it examined values of travel time and reliability as they differed with 

departure time; that is, it did not assume them to be constant across the hours under study.  

Liu did not include demographics in that work; this dissertation will.  Hess (2005) 

discussed mixed logit models with positive coefficients for travel time; these models 

indicate that users gain more utility from longer trips.  The author notes that these are 
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typically seen as the result of model misspecifications or the lack of explanatory power in 

the data, and proposes other interpretations (Hess 2005).  Goodall and Smith (2010) 

wrote a paper with some worthwhile methodological variations, such as separating “daily 

users” of the MnPASS HOT lanes from less frequent users in their models to achieve a 

much better fit.  The paper concluded that “pricing has a negligible influence” on lane use 

because almost 90% of the facility users were daily users, and that drivers may “use the 

HOT lanes as insurance against unanticipated congestion.”  On the I-85 Express Lanes, 

however, only 3.5% (4231 out of 120582) of transponders used the priced facility more 

than 200 times in 2012 (four times a week for 50 weeks of the year).  The authors also 

raise the question of what has the greater impact in lane use decisions: current conditions 

vs. previous experience. 

A common theme in the literature concerning HOT choice modeling is the set of 

shortcomings of both stated and revealed preference data.  Data sources in papers that 

combine the two methods include surveys of users describing recent trips, which are still 

self-reported and subject to errors in memory or perception and to exaggeration.  

Revealed preference data on its own also comes with many limitations, and studies that 

use automated data are still rare.  Only one of these studies included choice models based 

on automated rather than self-reported data.  For revealed preference data, the 

shortcomings include the fact that only the ‘most preferred’ option is reported, there may 

be correlation among the different variables, there may be a lack of variation in the data, 

and important factors may be excluded.  In the case of this dissertation, variables 

representing traffic conditions may be correlated with toll amounts and time savings, for 

example.  Peak-hour toll rates could potentially be consistent, reducing the variation in 
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the data.  Trip attributes, such as trip purpose and desired arrival time, are not captured by 

the automated data and may affect modeling results.  These issues are discussed later in 

the limitations section.  The next chapter will discuss the data used in this dissertation.  It 

will give an overview of the various data streams that are ultimately used to assess trip, 

corridor, and household characteristics, as well as lane choice decisions. 
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CHAPTER 3 

DATA SOURCES 

 

 

 

The data supporting this dissertation come from two main sources: Express Lane use and 

performance data provided by the Georgia State Road and Tollway Authority (SRTA), 

and socioeconomic data provided by the marketing firm Epsilon.  This chapter will begin 

by outlining the SRTA data streams and providing descriptive overviews of the SRTA 

data that have been collected.  This includes a thorough investigation of the lane use data 

and the patterns of behavior that they reveal.  The next section will describe the Epsilon 

marketing data.  That section will describe the coverage of the demographic variables 

provided by Epsilon and will also provide distributions of a subset of those variables.  

The final section examines the correlation among the Epsilon demographic variables.   

SRTA Express Lane Data 

The I-85 Express Lane data that SRTA provides consist of ten different streams that are 

delivered automatically to Georgia Tech’s servers.  The streams come from ETCC, the 

contractor that works with SRTA to operate the Express Lanes.  The data arrive as XML 

files, with data frequencies varying from every twenty seconds to every seven days.  This 

section gives an overview of the elements, frequency, and significance of the primary 

data streams that will be used in this research.  Descriptions of the remaining data streams 

can be found in the Appendix. 

As discussed earlier in this dissertation, the physical infrastructure that makes up 

the HOT system includes thirty-five Express Lane gantries positioned approximately half 
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a mile apart.  One of these gantries sits above SR-316 to identify the users of that portion 

of the facility.  In addition to the Express Lane gantries, Radio Frequency Identification 

(RFID) scanners detect vehicles with Peach Pass transponders in the General Purpose 

lanes.  Seven of these operate in the northbound direction and six in the southbound 

direction.  These segments are separated by weave zones that are between 0.35 miles and 

0.82 miles long.  Each travel direction also has five rate signs that display the toll amount 

required for the next segment of the facility and the amount required to travel to the end 

of the facility.  These signs are placed before each of the weave zones that allow drivers 

to enter or exit the HOT lanes.  The Express Lane gantries and AVI scanners provide the 

detection data described in the following sections. 

Primary Data Streams: 

Vehicle RFID Tag Read Data: This stream contains all vehicle detections for all lanes.  

The automatic vehicle identifiers provide information about the transponder, the vehicle, 

and the lane the vehicle was traveling in.  In addition to the TransponderID and the 

LaneID, the table provides a timestamp column to identify which lane a specific vehicle 

was in at a given time.  These data have many uses, including travel time and reliability 

calculations and weaving studies. 

Frequency: Delivered daily. 

Data Fields: 
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Table 2: Vehicle Read Data Elements 

Name Description 

TransactionID Unique Transaction Identifier 

TransponderID Unique Transponder Identifier 

PlateNumber License plate of vehicle 

PlateState Registration state of vehicle 

LaneID Unique Lane Identifier 

TransactionDateTime Timestamp of vehicle detection 

 

The vehicle stream delivers an enormous amount of data.  In 2012 alone, there 

were over 78 million detections in the HOT lanes (roughly 2.3 per mile) and over 44 

million detections in the General Purpose lanes (roughly 0.4-0.5 per mile).  Table 3 

below provides an overview of the vehicle data stream for 2011, 2012, 2013, and 2014.  

The “Total HOT/GP Detections” rows report the raw numbers of detections from each 

lane type provided over the year.  “Average Unique HOT/GP Users per Month” are 

derived from the monthly counts of distinct transponders detected in each lane type.  The 

values indicate, as may be expected, that more Peach Pass transponders are detected in 

the General Purpose lanes versus the HOT lanes. 

Table 3: Vehicle Stream Summary 

 

2011  

(Oct-Dec)* 

2012 

(Jan-Dec) 

2013 

(Jan-Dec) 

2014 

(Jan-Dec) 

Total HOT Detections  13,220,332 78,340,186 94,974,194 108,718,150 

Total GP Detections  0 44,368,481 62,159,534 63,614,769 

Average Unique HOT 

Users per Month  29,315 48,476 63,328 73,337 

Average Unique GP 

Users per Month  0 142,259 176,170 180,515 

*: Prior to January 6, 2012, the General Purpose vehicle detectors were not operating. 

Figure 3 illustrates the number of unique users per month in each lane type from 

the opening of the facility in October, 2011 through December of 2014.  The jump in GP 

lane users in January, 2012 is the result of the GP lane vehicle detectors coming online; 
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prior to that month, only the HOT lane detectors were reporting data.  Both lines illustrate 

the gradual increase in Peach Passes detected on the corridor since the start of operations. 

 

Figure 3: Users per Month by Lane Type 

An important behavioral feature for the analysis methods that are implemented 

later in this dissertation is the fluidity of lane type choices; that is, users do not remain in 

only the HOT or GP lanes.  Table 4 below shows the numbers of transponders that are 

detected in each lane type in each month of 2012.  The significant result here is that over 

30,000 vehicles use both the HOT and General Purpose lanes each month.  These 

“hybrid” users make up between 28.1% and 33.4% of the unique corridor users each 

month.  Similar tables for 2013 and the first three months of 2014 can be found in the 

Appendix. 
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Table 4: Unique Corridor Users by Lane Type for 2012 

Month 
GP-Only 

Users 
HT-Only 

Users 

GP and HT  
“Hybrid” 

Users 
Total  
Users 

Percentage 
“Hybrid” 

Users 

201201 76,791 2,024 30,834 109,649 28.1% 

201202 84,518 2,453 35,099 122,070 28.8% 

201203 92,368 3,170 40,419 135,957 29.7% 

201204 93,157 3,268 40,902 137,327 29.8% 

201205 95,193 3,719 45,718 144,630 31.6% 

201206 99,396 3,821 46,425 149,642 31.0% 

201207 101,342 3,831 47,525 152,698 31.1% 

201208 100,707 4,017 50,546 155,270 32.6% 

201209 100,402 3,800 49,925 154,127 32.4% 

201210 104,294 2,746 50,400 157,440 32.0% 

201211 104,550 3,057 54,081 161,688 33.4% 

201212 111,515 2,927 50,991 165,433 30.8% 
 

Trip Data: The trip data stream contains information on all Express Lane trips that 

occurred within the past day.  The records provide the section in which the trip took 

place, the unique RFID identifier of the transponder detected, the toll amount paid, the 

license plate number, entry and exit times for the HOT lane, and an indicator of whether 

the trip occurred in toll-paying or carpool mode.  With these data elements, researchers 

can determine when a specific vehicle entered the HOT lane from the General Purpose 

lanes, the length of the trip, and what price they paid both overall and per mile. 

Frequency: Delivered daily. 
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Data Fields: 

Table 5: Trip Data 

Name Description 

TripID Unique Trip Identifier 

SectionID Unique Section Identifier 

TollAmount Amount paid 

TollMode TOLL or NON-TOLL 

TransponderID Unique Transponder Identifier 

PlateNumber License plate of the vehicle 

PlateState Registration state of the vehicle 

TripEntryTime Timestamp of start of the trip 

TripExitTime Timestamp of end of the trip 

DWLViolationFlag ‘Y’ if trip involved a double white line 

violation 

 

Table 6 shows a summary of many of the data elements of the Trip stream for the 

two months of operations in 2011 and all of 2012, 2013, and 2014.  “Paid trips” refers to 

trips taken in toll mode (as opposed to non-toll mode) with toll amounts greater than zero.  

A trip may be registered with a toll Amount of $0 if the operating agency overrode the 

system, likely due to a “breakdown” of toll lane conditions.  The vast majority of the 

trips, over 90%, are taken in ‘Toll’ mode.  In the trip data stream, ‘Non-Toll’ mode is 

used to describe carpool trips that do not get charged as well as trips by emergency 

vehicles, alternative fuel vehicles, and motorcycles.   
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Table 6: Trip Stream Summary 

 

2011 (Nov-

Dec)*,** 2012* 2013 2014 

Average Toll Amount Paid 

(All Trips) $0.94 $1.00 $1.21 $1.44 

Average Toll Amount Paid 

(All Paid Trips)  $1.14 $1.11 $1.47 $1.71 

Average Toll Amount Paid 

(Peak Hour and Direction Paid 

Trips)  $1.41 $2.08 $2.93 $3.39 

Toll Mode Trips Percentage  91.69% 93.66% 93.72% 93.09% 

Average Total Trips per Month  201,904 338,343 411,390 465,137 

Total Trip Records  403,808 4,060,112 4,936,680 5,581,643 

*: Prior to 01/29/2012, five trip sections were not included in the data.  Those sections 

were PHS-PHS, PHS-ITS, PHS-JCS, PHS-285S, and OPS-OPS. 

**: Trip stream data were not delivered for October of 2011 

Table 7 shows average southbound toll amounts broken down by day of the week 

and morning peak hour for all of 2012.  Table 8 shows the corresponding average tolls 

for the northbound afternoon peak.  Both tables reflect paid toll trips, as discussed above.  

Average southbound morning peak tolls are higher than their northbound afternoon peak 

counterparts with the exception of the northbound 6:00pm hour and the 5:00pm hour on 

Fridays.  Note that these averages include all paid toll trips; they do not control for the 

impact of trip length on the toll amount charged.  Tables for calendar years 2013 and 

2014 can be found in Appendix A. 

Table 7: 2012 SB AM Peak Average Tolls by Day of Week and Hour – Paid Trips 

n = 1,146,473 trips 

6:00 

AM 

7:00 

AM 

8:00 

AM 

9:00 

AM 

AM 

Peak 

Monday $2.05 $2.90 $2.19 $1.03 $2.23 

Tuesday $2.09 $2.97 $2.36 $1.17 $2.31 

Wednesday $2.09 $3.01 $2.25 $0.96 $2.27 

Thursday $2.06 $2.92 $2.23 $1.05 $2.24 

Friday $1.51 $1.90 $1.32 $0.72 $1.48 

All $1.98 $2.77 $2.10 $1.00 $2.13 
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Table 8: 2012 NB PM Peak Tolls by Day of Week and Hour – Paid Trips 

n = 1,095,483 trips 

3:00 

PM 

4:00 

PM 

5:00 

PM 

6:00 

PM 

PM 

Peak 

Monday $0.91 $1.12 $1.34 $1.13 $1.16 

Tuesday $0.91 $1.20 $1.41 $1.17 $1.21 

Wednesday $0.91 $1.16 $1.33 $1.13 $1.16 

Thursday $0.93 $1.22 $1.45 $1.29 $1.26 

Friday $0.98 $1.26 $1.41 $1.20 $1.23 

All $0.93 $1.19 $1.39 $1.19 $1.21 

 

Figure 4 illustrates total Express Lane trip counts by month, including both paid 

and unpaid (carpool mode) trips.  The largest contributor to the variation in total trip 

counts each month is the number of toll-mode trips; non-toll trips increase very gradually 

from the start of operations through the end of 2014.  The chart reveals a gradual increase 

in the total number of HOT lane trips per month, punctuated by occasional steep declines 

and increases.   

 
Figure 4: Trip Counts by Month 
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Toll Trip Overview 

Figure 5 illustrates the consistency of toll-mode trip taking: the ratio of toll mode 

to non-toll mode is virtually unchanged for the duration of the study time period.  Figure 

6, which illustrates the total toll amounts paid per month as reported by the Trip stream, 

also indicates gradual growth across the entire timeframe.  This growth is an effect of 

both the increasing number of trips (as seen in Figure 4) and the increase over time of the 

maximum possible toll rate for a given trip.  This toll rate increase will be illustrated later 

in Figure 13. 

 
Figure 5: Toll Mode Trip Percentages by Month 
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Figure 6: Monthly Toll Revenue Since Inception 

Figure 7, Figure 8, and Figure 9 below show the distributions of tolls paid during 

all hours and during the AM and PM peak hours in 2012.  The distributions illustrate the 

variation in toll amount paid, even within the peak periods.  Here again the trips under 

examination are ‘paid’ trips, which are in toll mode and have toll amounts greater than 

zero.  Southbound AM peak trips exhibit a greater variety in potential toll amounts; this is 

reflected in the shape of the distributions and the higher median toll for southbound trips.  

Similar charts for 2013 and 2014 can be found in the Appendix. 
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Figure 7: 2012 Distribution of Paid Tolls 
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Figure 8: 2012 Distribution of Paid Tolls, Southbound AM Peak 
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Figure 9: 2012 Distribution of Paid Tolls, Northbound PM Peak 

Figure 10 and Figure 11 illustrate the toll amount distributions only for paid trips 

that traverse the entire corridor: Southbound from Old Peachtree Road to I-285 in the 

morning peak (6:00 AM to 10:00 AM), and northbound from I-285 to Old Peachtree 

Road in the afternoon peak (3:00 PM to 7:00 PM).  Again, the southbound morning peak 

trips exhibit more variation and have a higher maximum toll amount; the northbound 

afternoon trips are more tightly clustered around the median and do not exceed $6.  

Similar plots for 2013 and 2014 can be found in the Appendix A. 
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Figure 10: 2012 Distribution of Paid Tolls, Southbound AM Peak - Section 23 



 

 

58 

 

Figure 11: 2012 Distribution of Paid Tolls, Northbound PM Peak - Section 5 
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Figure 12 shows the average toll amount charged per month for the peak-period, 

corridor-length, ‘paid’ trips discussed above.  Both the southbound and northbound lines 

slowly trend upwards, with the northbound toll amounts increasing rapidly at the end of 

2013.  There are multiple potential reasons for a constantly increasing toll rate, including 

higher demand on the corridor and decreasing sensitivity to toll amounts.   

 

Figure 12: Average Peak Tolls Charged by Month 

One complication with the amounts charged by SRTA and reported in the trip 

stream is the slowly-increasing upper limit imposed on the tolls.  Political considerations 

resulted in SRTA capping the maximum allowable toll, with that cap increasing over 

time.  Evidence of this gradual increase in the maximum toll can be seen here in Figure 

13.  The implications of this changing toll cap are described in later sections of this 

dissertation. 
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Figure 13: Maximum Toll Charged per Week 

Figure 14, Figure 15, Figure 16, and Figure 17 take this issue into account by 

presenting distributions of the toll amount paid as a fraction of the maximum toll for a 

given time frame.  Figure 14 and Figure 15 illustrate the distribution of tolls paid as a 

fraction of the weekly maximum, while Figure 16 and Figure 17 look at the daily 

maximum.  These are peak period, peak direction trips that traverse the entire corridor, 

from Old Peachtree to 285 and vice versa.  In both the weekly and daily charts, the 

pluralities of trips occur at the maximum toll rate.  This is even more apparent at the daily 

level: over 30% of the southbound AM trips occur at the maximum toll rate for the day, 

while for northbound PM trips that figure is over 20%. 
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Figure 14: Toll Distribution as Fraction of Weekly Maximum, SB 2012 
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Figure 15: Toll Distribution as Fraction of Weekly Maximum, NB 2012 
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Figure 16: Toll Distribution as Fraction of Daily Maximum, SB 2012 
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Figure 17: Toll Distribution as Fraction of Daily Maximum, NB 2012 

 

These charts illustrate a notable feature of Express Lane trips: a large proportion 

(roughly 10-30%) of these trips occur at the maximum toll rate for a given day.  This 

indicates that the toll is insufficiently high to meet the demand management goals of the 

facility.  Under these conditions, congestion in the toll lanes becomes more likely as users 

are not sufficiently discouraged from purchasing trips. 
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Transponder Trip Distributions 

Figure 18 shows the distribution of trips by Peach Pass transponders in 2012 

through 2014.  Roughly 20% of the transponders registered only a single trip in the entire 

year.  This distribution is based on transponders that appeared in the Trip data, and so it 

does not include those that did not use the Express Lanes in 2012.  This first figure 

includes all trip records, including those in both Toll and Non-Toll (carpool) modes.  In 

addition, it includes trips by both personal and corporate accounts.   

Figure 19 looks at paid trips only; that is, trips that occur in Toll mode and were 

charged an amount greater than $0.  The distributions are very similar in shape, with a 

slightly higher peak at one trip and a decrease in the median of one for the Paid Trips 

distribution.  Figure 20 illustrates the trip distribution of Non-Toll trips which were 

charged $0.  Again, transponders with only one trip make up the plurality of the data set, 

but here the discrepancy between one and two trips is not as great. 
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Figure 18: HOT Trips per Transponder for 2012-2014 
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Figure 19: Paid HOT Trips per Transponder for 2012-2014 
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Figure 20: Non-Toll HOT Trips per Transponder for 11/2011-12/2014 
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Figure 21 below presents the distribution in a different form, in which the 

transponders have been ranked by the total number of trips in 2012.  This chart illustrates 

that the 20% of transponders with the most trips undertook more than 80% of the total 

trips.  Again, this sample is limited to transponders that had at least one HOT lane trip in 

2012 and thus appeared in the trip data stream.  As discussed above, the trips counted 

here include both toll and non-toll (carpool) trips, as well as trips by both personal and 

corporate accounts.   

 

Figure 21: Cumulative Trip Distribution for 2012 
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Figure 22 shows the distribution of paid trips by transponder, excluding Non-Toll 

carpool trips and those with toll amounts of zero.  Finally, Figure 23 illustrates the 

distribution of Non-Toll trips per transponder.  All three figures share a very similar 

shape despite differences in total numbers of transponders and trip counts; in all three 

cases, the top 20% of transponders took roughly 80% of the trips.  Similar distributions 

for calendar years 2013 and 2014 can be found in the Appendix. 

 

Figure 22: Paid Trip Distribution for 2012 
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Figure 23: Non-Toll Trip distribution for 2012 

 

Account Data: This stream describes the attributes of Peach Pass accounts, including all 

of the transponders and vehicles that are associated with those accounts.  The three tables 

are updated daily to provide data concerning new accounts and changes to existing 

accounts.  Those changes may include a vehicle’s switch from toll mode to carpool mode 

or vice versa, a change in transponder status, or a change in account status.  One 

important feature of the Account data stream is the lack of a joining element between the 

transponder data and the vehicle data.  While both are associated with an account, there is 

no direct link between a vehicle and a transponder.  As such, accounts that have multiple 

vehicles and multiple transponders do not indicate which vehicle is associated with which 

transponder.  This many-to-many relationship complicates the process of linking 

transponders to vehicles and ultimately to the marketing demographic data.  This issue is 
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explored further in other chapters, namely the Data Quality and Treatment chapter and 

the Potential Sample Bias in Paired Vehicle Activity and Marketing Data chapter. 

Frequency: Delivered daily. 

Data Fields: 

Table 9: Base Account Data 

Name Description 

AccountID Unique Account Identifier 

AccountType Includes Personal, Corporate, Toll Exempt, 

Register by Plate, Non-Revenue, Emergency 

Non-Revenue, and Regular Post Paid 

AccountStatus Includes Active, Proposed, Pending to Close, 

Suspended, Closed, and Cancelled 

 

Table 10: Account Transponder Data 

Name Description 

AccountID Unique Account Identifier 

TransponderID Unique Transponder Identifier.  The table 

includes rows for each transponder 

associated with an account. 

TransponderAgencyCode Indicates whether the transponder was 

originally used for Georgia SR-400 (GA400) 

or for the I-85 Express Lanes (GSRTA) 

TransponderStatus Includes Active, Lost, Stolen, Inactive, No 

Balance, and Low Balance 
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Table 11: Account Vehicle Data 

Name Description 

AccountID Unique Account Identifier 

PlateNumber License plate of the vehicle.  The table 

includes rows for each vehicle associated 

with an account. 

PlateState Registration state of the vehicle. 

TollMode Toll or Non-Toll 

TollModeTimestamp Timestamp of the switch to or from toll 

mode 

 

Table 12 provides an overview of the Account data by type and status.  These data 

are useful in separating out Peach Pass transponders that have been registered to 

corporate or toll-exempt accounts.  As the behavior of these users is likely very different 

from that of other users, it may prove beneficial to model them separately.  In the table 

below, account status type A refers to ‘Active,’ while I and P are ‘Pending to Close’ and 

‘Proposed,’ respectively.  Account types S, CC, and C indicate Suspended, Cancelled, 

and Closed accounts.  An examination of the HOT lane trips from 2012 indicates that 

1.2% of the trips were taken by Suspended, Cancelled, and Closed accounts.  However, 

that figure is based on the population of trips for which a join to the Account data could 

be made.  As mentioned above, the many-to-many relationship between transponders and 

vehicles narrows the scope of accounts for which this join is possible.  As a result, the 

1.2% figure reflects only those accounts that have a single vehicle and a single 

transponder.  In addition, the table is based on account status results from August 2013; 

that may not have been the status of the account at the time the trip was made.  The table 

shows that there are just over 270,000 accounts that are active or will be soon, and almost 
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100,000 accounts in the data set that are no longer active.  Of the active accounts, most of 

them are personal.  A non-trivial number, over 14,000, are corporate or toll-exempt.  As 

mentioned above, these users may behave differently as the users themselves are not 

paying a toll. 

Table 12: Accounts by Type and Status as of 8/21/2013 

Account Type All Accounts 

Status = 

(A,I,P) Status = (S, CC, C) 

P (Personal) 347076  257480  89596  

C (Corporate) 10197  8379  1818  

TE (Toll Exempt) 5942  5727  215  

RBP (Register By Plate) 4  2  2  

NR (Non-Revenue) 13  3  10  

ENR (Emergency Non-Revenue) 129  118  11  

B (Regular Post-Paid) 528  333  195  

Total  363889  272042  91847  

 

The structure of the Account data provided by SRTA creates  number of issues.  

Accounts that have multiple vehicles and multiple transponders cannot have those 

transponders connected to individual license plates.  The frequency of this issue is further 

explored in other chapters: Data Quality and Treatment, and Potential Sample Bias in 

Paired vehicle Activity and Marketing Data.  In addition, the “Toll Exempt” category 

within the account types is meant to include vehicles that will always have carpools, 

alternative fuel vehicles, and motorcycles.  The Account data do not make any distinction 

between these three categories, however; they are all grouped together under the “Toll 

Exempt” umbrella.  In developing future database structures for toll implementation, this 

dissertation will recommend that these and other data issues be avoided from the outset 

via improved database design. 

Figure 24 combines data from the Trip stream and the Account stream to identify 

trips taken by transponders and accounts that both have ‘active’ status as of May, 2014.  
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The resulting cumulative trip distributions are plotted for 2012, 2013, and January 

through May of 2014.  In each year, the top 10% of active transponders (by number of 

trips) take over 80% of the Express Lane trips.  For both 2012 and 2014, those users take 

over 90% of the Express Lane trips.   

 

Figure 24: Cumulative Trip Distribution for all Active Transponders 
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Figure 25 shows the cumulative toll amount distribution for individual 

transponders ranked by the total amount of toll paid.  The chart illustrates cumulative 

lines for calendar years 2012 and 2013.  In each case, the top 10% of toll paying 

transponders paid over 75% of the total annual toll amount. 

 

Figure 25: Cumulative Toll Distributions 
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Epsilon Marketing Data 

The socio-economic data used in this dissertation come from credit reports and other data 

that are sanitized, processed, and packaged for sale by the marketing data firm Epsilon.  

These data include a host of variables at the household, neighborhood, and individual 

levels.  This study will make use of the household and neighborhood level variables, as it 

is not possible to identify individual drivers in multi-person households with the available 

data.  The full marketing data set originated from a list of license plates collected by 

researchers for the I-85 HOV-to-HOT conversion analysis project at Georgia Tech.  This 

project involved the collection of license plates of users of the I-85 corridor.  Researchers 

collected license plate data in the morning and afternoon peak periods at five sites along 

the corridor; this occurred four times a year, once each season, for two years.  The first 

year of data collection occurred before the opening of the facility, while the second 

occurred immediately after operations began.  Researchers identified frequent users of the 

corridor and targeted those license plates for the demographic data purchase (Khoeini, 

2014).  The complete set of data includes 349,134 records.  The dataset was purchased 

and delivered to Georgia Tech on March 6, 2013.  This section will provide an overview 

of the demographic variables in the marketing data set, and then examine potential 

correlation within the household data. 

 The full marketing demographic data set contains 130 data elements for each 

record.  These elements include a combination of identifying variables (unique Epsilon 

identification number, address data, household name, variables that indicate what type of 

match was made and other elements that are related to Epsilon’s internal processes),  

household and head of household demographic variables, and neighborhood demographic 
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variables.  This section lists the full set of household and neighborhood variables; the 

individual variables and identifying data are not used in this dissertation’s analysis.  A 

complete table of all of the marketing variables is available in the Appendix. 

Epsilon Data Coverage 

A recent working paper by Khoeini (2013) compared the marketing data used in this 

dissertation with aggregate and disaggregate census data.  The paper discussed the 

relative benefits of this marketing data: the price per household is significantly lower than 

that of survey data, and the data are updated more frequently (typically every three 

months).  Unlike the extensive Atlanta Household Travel Survey from 2011 to which 

these data were compared, the marketing data do not provide travel or vehicle ownership 

information.  While additional trip-related data would be useful for this dissertation, the 

SRTA lane use data provide a substantial amount already.  One of the limitations of the 

marketing data identified by Khoeini is the issue of coverage, or the varying degrees of 

completeness for each observation.  Many of the socioeconomic variables are not present 

for each household; for example, only 36% of the households have associated income 

data.  Epsilon provides imputed data to fill in these gaps.  While the imputation methods 

remain confidential, Khoeini reported that the inferred data closely matched the 

household travel survey data.  Khoeini concluded that “the accuracy and coverage of 

marketing data are not as [good] as survey data,” but that a “large enough sample of 

marketing data could potentially cancel out the errors across the user groups.” 

 Table 13 provides an overview of the household variables in the Epsilon 

marketing dataset, along with the percentage of usable, non-blank records in each 

category.  While many of the variables are self-explanatory, certain variables require 
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further description.  The income variables, such as Household Income and Narrow Band 

Income, are ordinal variables for which each value is a range of household incomes.  For 

this dissertation, the author used the midpoint of those income ranges.  The table 

illustrates the varying rates of coverage among the household demographic variables; 

those relating to the physical houses themselves have the lowest rates of available data 

(property lot size, living area size, year of home construction, and home market value 

variables).  In addition, the ‘Home Market Value’ variable is missing the required 

description of the potential values in the data dictionary.  As currently presented, Home 

Market Value cannot be deciphered and used in analysis.  The Household Age variable 

refers to the age of the head of the household, while the Occupation variable is described 

as the ‘most prominent known profession of everybody in the household’ (Epsilon 

Targeting, 2013). 

  



 

 

80 

Table 13: Epsilon Household Variables 

Variable Name Non-Blank Records Blank Records Coverage Amount 

Living Area Square Feet 146,106 203,028 41.85% 

Property Lot Size in Acres 117,367 231,767 33.62% 

Year Home Built 144,803 204,331 41.48% 

Home Market Value 257,259 91,875 73.68% 

Household Income 348,435 699 99.80% 

Dwelling Type 346,374 2,760 99.21% 

Home Valuation Model 301,349 47,785 86.31% 

Home Owner 344,503 4,631 98.67% 

Household Education 348,251 883 99.75% 

Household Marital Status 348,435 699 99.80% 

Number of Adults 348,435 699 99.80% 

Length of Residence 348,435 699 99.80% 

Narrow Band Income 348,435 699 99.80% 

Target Income 348,435 699 99.80% 

Household Age 348,435 699 99.80% 

Presence of Children 348,435 699 99.80% 

Household Size 348,435 699 99.80% 

Occupation 306,766 42,368 87.86% 

 

Table 14 below presents an overview of the neighborhood demographic variables 

and the number of non-blank records in each category.  Here the coverage rates are 

equivalent across all variables.  For the three variables in which it is used, ‘Average 

CMV’ refers to average commercial market value.  These variables were initially ignored 

in the analytical process, however later examination indicated that they may contribute to 

choice modeling.  This is discussed in further detail in Chapter 12, the Modeling 

Extensions chapter of this dissertation. 
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Table 14:  Epsilon Neighborhood Variables 

Variable Name Non-Blank Records Blank Records Coverage Amount 

Percent of Households 

Owning a Registered 

Passenger Car 

348,830 304 99.91% 

Percent of Households 

Owning a Registered New 

Passenger Car 

348,830 304 99.91% 

Percent of Households 

Owning a Registered Truck 

348,830 304 99.91% 

Percent of Households 

Owning a Registered New 

Truck 

348,830 304 99.91% 

Percent of Households 

Owning a Registered 

Motorcycle 

348,830 304 99.91% 

Average CMV in Thousands 

for all New and Used 

Registered Vehicles 

348,830 304 99.91% 

Average CMV in Thousands 

for all New and Used 

Registered Cars 

348,830 304 99.91% 

Average CMV in Thousands 

for all New and Used 

Registered Trucks 

348,830 304 99.91% 

Percent of Households 

Owning a Registered Motor 

Home 

348,830 304 99.91% 

Selected Variable Distributions 

Figure 26 through Figure 31 illustrate distributions of a small subset of the demographic 

variables in the full Epsilon dataset.  Figure 26 presents the household income 

distribution with varying column widths to represent the differences in categorical ranges.  

The maximum income cutoff is set at $300,000 for the purposes of visual representation; 

that category actually includes all household incomes over $250,000.  A plurality of 

households, nearly 25%, fall into the $50,000-$74,999 range.  The two lowest income 

categories, those from $0-14,999 and $15,000-19,999, make up 8.54% of the data set.  
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Very few households, less than 1% of the total, have annual incomes exceeding 

$200,000.  The median income in this sample, $62,500, exceeds the Census Bureau 

American Community Survey five-year median estimates for the City of Atlanta 

($46,631) and the state of Georgia ($49,179) (U.S. Census Bureau, 2013).  Further 

discussion of the Census data can be found in the Connecting SRTA Data to Epsilon Data 

and Potential Sample Bias in Paired Vehicle Activity and Marketing Data chapters of this 

dissertation. 

 
Figure 26: Household Income Distribution in All Epsilon Data 

 Figure 27 presents the distribution of household education levels in the full 

Epsilon dataset.  The majority of households, nearly 70%, have completed some or all of 

an undergraduate degree.  Over 27% of the households completed only a high school 
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education.  Only 2.33% of corridor users in the data set did not finish high school.  

However, graduate level education is even more rare in this sample (0.92%). 

 

Figure 27: Household Education Distribution in All Epsilon Data 
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Figure 28 shows the distribution of the heads of household ages.  Here nearly 

35% of households have a household head in the 35-44 year old age range.  Households 

with head of households under 25 years old make up less than 1% of the total sample, 

while those over 75 years old comprise 3.14% of the total.  The second largest category is 

the 45-54 years old range; this segment makes up nearly 24% of the households. 

 

Figure 28: Head of Household Age Distribution in All Epsilon Data 
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 Figure 29 shows household sizes in the Epsilon data.  Nearly 37% of all 

households consist of a single individual; two-person households make up 25.3% of the 

total.  The final category includes households with nine or more persons; these make up 

0.69% of the full Epsilon dataset. 

 

Figure 29: Household Size Distribution in All Epsilon Data 
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 The Epsilon data also categorize households as renters or owners of their homes, 

and assign a ‘definite’ or ‘probable’ rating to the results.  Figure 30 presents the 

distribution of these owner or renter assignments.  Over 50% of the sample consists of 

what Epsilon deems to be ‘definite owners,’ while ‘definite renters’ make up only 0.55% 

of the total.  ‘Probable owners’ dwarf the share of ‘probable renters’ too; the former 

category has 30.4% of the households, while the latter has approximately 15%. 

 

Figure 30: Household Ownership Distribution in All Epsilon Data 
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 The final demographic variable presented here is the dwelling type of the 

households.  Epsilon categorizes household dwelling types as SFDU (single family 

dwelling unit), MFDU (multi-family dwelling unit), business, CMRA (commercial mail 

receiving agency), condo, and mobile home.  The vast majority of households, nearly 

87%, live in single family dwelling units.  At 8.86% of observations, multi-family 

dwelling unit households make up approximately one tenth of the single-family unit 

count.  A trivial amount of records fall into the business or mobile home categories; each 

contains less than 1% of the total households.  The marketing firm does not explain why 

condominiums are listed separately from multi-family dwelling units, but they comprise 

less than 3% of all households. 

 

Figure 31: Dwelling Type Distribution in All Epsilon Data 
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Correlation within Demographic Data 

The correlation matrix shown in Figure 32 was computed using Pearson’s method with 

pairwise complete observations.  The correlation coefficient values presented in the 

matrix are also color-coded along a gradient to represent the level of correlation.  The 

dark green shown in the diagonal 1-values represents the highest level of positive 

correlation; high levels of negative correlation are presented in dark red.  Yellow values 

represent positive correlation coefficients that are low in magnitude.  Similarly, orange 

values highlight negative correlation values with small magnitudes.  The intersections 

between the four highlighted variables are also surrounded in thick black borders for 

easier identification.  Four of the variables have been assigned colors within the left-most 

name column to better identify their positions in the top row.  These four variables have 

also been used in the preliminary analyses that are presented later in the dissertation: 

household income, household size, head of household age, and household education 

level.   

 The results of the correlation matrix include both expected and unexpected values.  

The household income variable, represented in blue, is positively correlated with most of 

the remaining variables.  The largest positive coefficients can be seen with household 

education, living area size, and home ownership status.  The largest correlation 

coefficient is found between the two different income variables, as may be expected.  The 

coefficient estimated for household income and property lot size is negative, but the 

magnitude is very small.  The other negative coefficients, between income and dwelling 

type and income and marital status, are an artifact of the manner in which the dwelling 

type and marital status variables are coded.  A dwelling type of value 1 is a single-family 
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dwelling unit, which represents the vast majority of households in the Epsilon data.  

Similarly, a marital status value of 1 represents marriage, while 2 is single.  In terms of 

the other highlighted variables, income is more strongly correlated with household size 

than with age. 

 Household education is, again, positively correlated with income, with a 

correlation coefficient of 0.46.  The correlation values with head of household age and 

size are also positive, but much smaller in magnitude.  Education is positively correlated 

with living area size with a coefficient of 0.30, but negatively correlated with property lot 

size with a coefficient of -0.30.  This represents the largest coefficient value, either 

positive or negative, among the property lot size values. 

 The head of household age variable is most highly correlated with just two 

variables: home ownership and length of residence.  The coefficient value between 

household age and income is weakly positive, perhaps due to seniors whose earning 

power has decreased.  Note that income data do not speak to wealth and availability of 

money, and more detail may be found by examining income and employment status in 

conjunction.  A similar effect may explain the weak correlations between household age 

and household size, as well as household age and number of children: older households 

see their children depart and form new households. 

 The final highlighted variable, household size, is not surprisingly strongly 

positively correlated with number of children, number of adults, and presence of children.  

Other positive but weaker correlation coefficients appear with household income, home 

ownership, and length of residence.  The strongly negative correlation between household 
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size and marital status is again explained by the coding of the marital status variable, in 

which a value of 1 indicates marriage. 

 The variable correlations that are illuminated by this correlation matrix are largely 

expected.  They include strongly positive relationships between income and education, 

income and household size, and marital status and household size.  Perhaps the most 

surprising results are those related to property lot size, in particular its strongly negative 

relationship with household education.  These results will inform future analyses that 

involve demographic data, particularly those in which multiple demographic elements are 

included. 
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Figure 32: Epsilon Demographic Data Correlation Matrix 
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CHAPTER 4 

DATA PROCESSING 

 

 

 

The large amount of raw data delivered by SRTA and available in the Epsilon marketing 

dataset required a great deal of processing to be put in a usable form.  This chapter will 

describe the various stages of the process that converts the abundant raw data into 

processed data usable for analysis.  The first section describes the method of aggregating 

individual vehicle detections into vehicle trips.  The second section provides an overview 

of the set of constructed trips.  The third discusses the average travel time calculations 

and presents a selection of the results.  The method of counting detected transponders 

along the corridor is presented in section four.  The final section provides an overview of 

the process that joins constructed trips to the other elements of the SRTA data stream. 

Building Trips from Disaggregated Detections 

The Vehicle detection stream provided by SRTA and described in the Data Sources 

chapter delivers disaggregated data from each of the RFID tag readers along the corridor.  

For the purposes of this research, disaggregate tag read data need to be combined into 

vehicle trips.  This section describes how the individual detections were aggregated into 

trips and provides an overview of the trips in the resulting dataset. 

The algorithms that combine individual detections into vehicle trips begin by 

ordering chronologically all of the detections for a given Peach Pass transponder for a 

given day.  The first detection in the resulting ordered list is identified as the start of the 

first trip.  The script then loops through the remaining detections and either adds them to 
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the existing trip or creates a new trip.  A detection is added to an existing trip if it meets 

three criteria: 1) the detection occurs within a specified time interval of the previous 

detection, 2) the detection is in the same direction as the previous detection (northbound 

or southbound), and 3) the detection occurs downstream of the previous detection.  For 

this work, researchers used a time threshold of fifteen minutes between detections.  If two 

detections occurred more than fifteen minutes apart, the second detection triggered the 

start of a new trip.  The purpose of this is to break apart trip chains which exit the 

corridor and then re-enter soon after.  A new trip is also triggered when the other two 

criteria are not met.  The script continues to cycle through all of the day’s detections for 

the given transponder in this manner. 

Trips with speeds greater than 100 miles per hour were excluded from the data.  

This filter was implemented due to detections that were perceived to be mistimed or 

misreported, resulting in unreasonable trip speeds.  Very few of the generated trips met 

this criterion; less than 0.1% of trips on any given day.  Additionally, trips that had 

speeds of 0 mph (due to two detections being reported at the same time) were also 

removed from the data set.  This screening step also eliminated less than 0.1% of the trips 

on any given day.  Trips that started or ended on SR-316 were constructed, but there are 

no General Purpose tag readers on that branch of the Express Lanes.  This made it 

impossible to compare conditions for the two lane types on SR-316 with the given data, 

and so these trips will not be included in the analyses.  For each built trip, the elements 

that are collected and stored are listed and described below in Table 15. 
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Table 15: Fields in Constructed Trips 

Field Name Description 
transponderId Unique Peach Pass identifier 

Year Year of trip 

Month Month of trip 

Date Date of trip 

hour Hour of trip 

fiveMin Five minute interval of trip 

fifteenMin Fifteen minute interval of trip 

startTime Trip start time 

endTime Trip end time 

travelTime Duration of trip (seconds) 

direction Northbound or southbound 

startLane LaneID of first detection 

endLane LaneID of last detection 

startGantry Gantry name at first detection 

endGantry Gantry name at last detection 

startSegment Corridor segment at first detection 

endSegment Corridor segment at last detection 

gpStartTime Start time of GP portion of trip 

gpEndTime End time of GP portion of trip 

gpStartLane LaneID of first detection in GP portion of trip 

gpEndLane LaneID of last detection in GP portion of trip 

gpStartGantry Gantry name at first detection in GP portion of trip 

gpEndGantry Gantry name at last detection in GP portion of trip 

gpEquivalentSection Section number of similar trip in HOT lane 

gpTravelTime Duration of GP portion of trip (seconds) 

gpDistanceft Distance of GP portion of trip (feet) 

gpSpeed Speed of GP portion of trip (mph) 

htStartTime Start time of HOT portion of trip 

htEndTime End time of HOT portion of trip 

htStartLane LaneID of first detection in HOT portion of trip 

htEndLane LaneID of last detection in HOT portion of trip 

htStartGantry Gantry name at first detection in HOT portion of trip 

htEndGantry Gantry name at last detection in HOT portion of trip 

htStartSegment Corridor segment at first HOT detection 

htEndSegment Corridor segment at last HOT detection 

htSection SRTA Section number of trip 

htTravelTime Duration of HOT portion of trip (seconds) 

htDistanceft Distance of HOT portion of trip (feet) 

htSpeed Speed of HOT portion of trip (mph) 

numberOfDetections Total number of detections in the trip 

misdetections Number of detections with misreported times or locations 

distanceft Distance between the gantries that reported the first and last detections (feet) 

distancemi Distance between the gantries that reported the first and last detections (miles) 

speed Speed of entire trip (mph) 

hotUse Flag indicating HOT detections occurred 

mixedTrip Flag indicating HOT and GP detections occurred 

segmentOP Flag indicating vehicle was detected in the Old Peachtree segment 

segmentPH Flag indicating vehicle was detected in the Pleasant Hill segment 

segmentIT Flag indicating vehicle was detected in the Indian Trail segment 

segmentJC Flag indicating vehicle was detected in the Jimmy Carter Boulevard segment 

segment285 Flag indicating vehicle was detected in the I-285 segment 
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In this list, the “gp start lane/gantry” and “gp end lane/gantry” entries refer to the 

first GP segment of the trip.  That is, if the vehicle is detected in the GP lane, and then 

switches to the HOT lane, and then back to the GP lane, only the first GP lane detections 

will appear in the output.  Additionally, the script only outputs trips that consist of more 

than one detection.  A sample of the constructed trip output with one trip from January 1, 

2014 is shown here in Figure 33. 

 
Figure 33: Sample Constructed Trip Output 
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Below is an example of a series of RFID detections for a specific transponder that 

includes both HOT and GP lane detections.  The vehicle is initially detected in the HOT 

lane.  In the middle of its HOT lane trip, it is detected by a GP lane detector.  After that 

detection, the vehicle continues in the HOT lane for the remainder of its trip. 

 
Table 16: Sample Trip with HOT and GP Detections 

Transponder Lane Gantry 

00040787 170000 285N1 

Trip Date 170012 285N2 

April 20, 2012 170026 285N3 

 
170036 285N4 

 
170048 285N5 

 
170061 285N6 

 
170086 JCN1 

 
170099 JCN2 

 
170112 JCN3 

 
170125 JCN4 

 
170522 GPN3 

 
170137 JCN5 

 
170150 ITN1 

 
170163 ITN2 

 
170175 ITN3 

 170187 ITN4 

 170200 ITN5 

 170212 PHN1 

 170224 PHN2 

 170238 PHN3 

 170250 PHN4 

 170262 PHN5 

 170274 PHN6 

 170288 PHN7 
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The corresponding constructed trip output for these data is shown here in Figure 

34: 

 
Figure 34: Sample Built Trip with Mixed Detections 

This record indicates that the trip began at the first northbound HOT gantry in the 

I-285 segment and ended at SR-316E.  Note that the GPN3 detection which occurred in 

the middle of the trip did not break up the HOT trip that was reported by the script.  The 

trip-building algorithm allows for Express Lane trips to continue after a single General 

Purpose lane detection.  This resembles the logic of SRTA’s trip building, which also 

ignored that GP detection and reported the same start- and end-points of the HOT trip 

(section 4 starts at 285 northbound and ends at Pleasant Hill northbound).  Figure 35 

shows the corresponding trip record in the SRTA Trip summary stream, which also has 

the same start and end time, along with the same transponder identifier. 

 

 
Figure 35: Corresponding Sample SRTA Trip 
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Characteristics of Constructed Trip Dataset 

The full set of constructed trips was built from the individual RFID vehicle detections 

that were generated with the opening of the facility on October 1, 2011.  Table 17 shows 

the number of total trips, Express Lane-only trips, GP lane-only trips, and mixed trips for 

2012, 2013, and 2014.  The total number of trips by Peach Pass equipped vehicles has 

been increasing by at least one million per year.  The rates of toll lane trip-taking vary 

each year, but not in a consistent direction: while the proportion of general purpose-

exclusive trips increased slightly from 2012 to 2013, it decreased again in 2014. 

 
Table 17: Number of Constructed Trips by Year 

 2012 2013 2014 
Total trips by Peach 

Pass -equipped 

vehicles 

11,188,848 13,903,170 15,250,085 

HOT-Only trips 1,540,232 (13.8%) 1,683,636 (12.1%) 2,169,130 (14.2%) 
GP-Only trips 7,059,956 (63.1%) 8,854,212 (63.7%) 9,480,632 (62.2%) 

Mixed trips 2,588,660 (23.1%) 3,365,322 (24.2%) 3,600,323 (23.6%) 
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Figure 36 shows the distribution of RFID detections per trip for HOT-exclusive 

trips for January of 2013.  A single month was selected as an example because of the 

large amount of data in each month’s worth of constructed trips.  The maximum number 

of detections possible is 35, as 35 RFID detectors span the length of the Express Lanes.  

A plurality of trips, nearly 25%, consist of 24 detections.  These 24 detections make up 

69% of the 35 detector total.  Vehicles may trigger every RFID gantry they pass under 

during corridor trips; they may also miss a tag read if a scanner is out of commission.  

The trip-building scripts used in this dissertation account for such occurrences. 

 

 

Figure 36: RFID Detections per HOT-Only Trip 
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Figure 37 illustrates the distribution of RFID detections per GP-only trip in 

January, 2013.  As vehicles detected at just a single gantry are not included in the 

constructed trip set, the minimum number of detections in the constructed trip set is two.  

Roughly 25% of the trips occur across three general purpose lane vehicle detection 

gantries.  Trips with seven detections only occur in the northbound direction, as there are 

only six general purpose vehicle detectors in the southbound direction.  As is the case 

with the Express Lane detections, relatively few trips include a detection at each gantry 

along the corridor.  It is also the case that GP-lane RFID scanners are adjacent to HOT-

lane scanners.  In addition to scanners missing detections, they may also double-count 

transponders by detecting them in both lane types. 

 

Figure 37: RFID Detections per GP-Only Trip  
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Figure 38 below illustrates the kernel density distribution of constructed trip 

speeds for all trips in March, 2012.  The colored lines represent mixed trips (blue; those 

that use both the GP and HOT lanes), GP-only trips (red), and HOT-only trips (green).  

This figure includes all hours of the day and all days of the week.  Note that the GP 

distribution is dominated by the effect of off-peak trips while the majority of HOT trips 

occur in the peak periods; Figure 43 presented later will illustrate this effect.  All of the 

figures below were generated from the constructed trip data set with the detection interval 

set to 900 seconds between gantry detections. 

 

Figure 38: Speed Distribution for March 2012 Constructed Trips 
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Figure 39 and Figure 40 illustrate the kernel density distributions for peak-period 

trips in March, 2012.  Unlike Figure 38, weekends were excluded from these distributions 

(along with off-peak hours).  Here the benefits of the Express Lane are more pronounced: 

HOT speeds are more concentrated at the higher end of the speed distribution, and fewer 

Express Lane trips are observed around the 25-30mph range where a plurality of GP lane 

trips take place.  This effect is even more pronounced in the northbound PM peak period 

trips shown in Figure 40.  Here the higher-speed peak includes far more of the total trips, 

while almost no trips occur at the lower end of the distribution.  In both cases, the 

‘mixed’ trips, which traverse both lane types, behave more like toll lane-only trips than 

general purpose lane-only trips.  Figure 41 and Figure 42 present these speed 

distributions as cumulative distribution functions for the southbound and northbound trips 

respectively.   
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Figure 39: Speed Distribution for March 2012 SB AM Built Trips 



 

 

104 

 

Figure 40: Speed Distribution for March 2012 NB PM Built Trips 
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Figure 41: Speed CDF for March 2012 SB AM Built Trips 
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Figure 42: Speed CDF for March 2012 NB PM Built Trips 
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Figure 43 illustrates the kernel density distribution of off-peak trips for both lane 

types.  Peak periods are defined as 6-10:00 AM in the southbound direction and 3:00-

7:00 PM in the northbound direction.  Here the distributional center of the GP-lane trips 

is lower than that of the toll lane trips, though in both cases the majority of trips are taken 

at high speeds.  Note the discrepancy in trip counts between the HOT-only and GP-only 

trips: the count of off-peak GP trips is an order of magnitude higher than that of off-peak 

HOT trips.  These trips likely dominate the GP-lane speed distribution in Figure 38, 

which shows the unpriced lanes carrying more high speed trips than the HOT lanes.  This 

figure illustrates the benefits provided by the Express Lanes even in the off peak-periods.  

These off-peak trips occur at very low toll rates, further encouraging users. 
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Figure 43: Speed Distribution for March 2012 Off-Peak Built Trips 
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Figure 44 illustrates the kernel density distribution of trip distances for all days 

and hours in the March 2012 data set.  Note that the distance distributions include more 

distinct peaks as trip distance is a discrete measurement in this data.  Because the vehicle 

detections occur only at the existing gantries, the potential distance measurements can 

only come from combinations of those gantries.  The comparison is also not a direct 

comparison as the HOT lane detectors cover a longer length of the corridor than the GP 

lane detectors: the GP detectors extend across approximately 88% of the length of the 

HOT detector span. 

 

Figure 44: Trip Distance Distribution for March 2012 
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Figure 45, Figure 46, Figure 47, and Figure 48 illustrate the frequency of the 

different start and end locations for trips in the Express Lanes in March of 2012.  Figure 

45 shows the counts of trips that start and end at the six southbound Express Lane 

segments during the morning peak hours.  A roughly equal number of trips start at Old 

Peachtree Road southbound and State Route 316 West.  This is not surprising as these are 

the northernmost points of the facility.  Combined, trips from the two entry locations 

make up a majority of all trips.  The most frequent exit location is the I-285 segment, 

which is also understandable as it is the southernmost exit point.  Entry and exit behavior 

in the GP lanes is different, as evidenced by Figure 46.  Because there are no GP lane 

detectors on SR-316, researchers cannot see the breakdown of vehicles that enter from 

316 versus those that enter from Old Peachtree Road.  Here more trips begin at the 

second southbound GP gantry, in the Pleasant Hill Road section.  Similarly, the largest 

number of trips end at the fifth southbound detector, before the exit to I-285.  Unlike the 

HOT lane morning trips, which more often start and end at the extremes of the facility, 

the GP lane morning trips more frequently start and end within the facility. 
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Figure 45: Start and End Segments for March 2012 AM Peak HOT Trips 
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Figure 46: Start and End Segments for March 2012 AM Peak GP Trips 
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Figure 47 and Figure 48 present the frequency of start and end locations for HOT 

and GP lane northbound trips in the afternoon peak.  The behavior here is different: the 

vast majority of HOT trips begin at a single location: I-285 northbound.  This is to be 

expected as the facility does not fork at the southern end as it does at the northern end.  

SR-316 and Old Peachtree Road see the most trip exits, with more trips ending at Old 

Peachtree in this month.  Figure 48 shows that the behavior in the GP lanes differs even 

more, in that roughly the same number of trips start at the first and second northbound 

gantries.  The first gantry is south of the I-285 interchange, while the second is north of it.  

Most of the trip exits occur not at the last gantry or even the second-to-last gantry (both 

in the Old Peachtree Road section) but rather at the fourth northbound gantry, located in 

the Indian Trail segment of the facility.  The sixth (Old Peachtree) gantry sees a similar, 

but slightly lower, number of trip end points.  The counts and charts illustrate differences 

between the typical start and end points of HOT and GP trips, as well as between 

morning and afternoon peak period trips. 
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Figure 47: Start and End Segments for March 2012 PM Peak HOT Trips 
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Figure 48: Start and End Segments for March 2012 PM Peak GP Trips 

Travel Time Averages  

In addition to building trips from the disaggregate vehicle detections, these data were also 

used to find travel times of vehicles on the I-85 Express Lanes corridor.  The algorithms 

that calculate vehicle travel times examine a single day’s worth of detection data at a 

time.  Vehicle detections are grouped by the unique identifier assigned to each Peach 

Pass transponder.  The travel time script iterates through each detection for each 

transponder and identifies the gantry at which the vehicle was detected.  Once all of the 

gantries have been identified, the script cycles through the possible combinations of 

gantries that constitute a trip.  For those combinations that correspond to existing 



 

 

116 

detections, a travel time is calculated and stored.  For example, consider a vehicle X that 

is detected at General Purpose northbound gantries 1, 3, and 6.  The travel time script will 

cycle through the possible General Purpose northbound gantry combinations, such as 

gantry 1 to gantry 2, gantry 2 to gantry 3, gantry 1 to gantry 3, and so on.  In this 

example, the detections of vehicle X would yield travel times from gantry 1 to gantry 3, 

gantry 1 to gantry 6, and gantry 3 to gantry 6.  This method is used for all gantries in the 

HOT and GP lanes in both the northbound and southbound directions.  The script does 

not calculate travel times between lane types; that is, if vehicle X is detected by an HOT 

lane gantry and then by a GP lane gantry, the software will not report a travel time 

between those two gantries.  The results provide travel times for HOT-exclusive and GP-

exclusive traverses by section.  This is distinct from individual trip travel times, which 

measure the entire duration of the trip and may occur over both lane types. 

 Before outputting the travel time data, the travel time script applies filters to 

remove impossible results.  The first of these verifies that the downstream detection 

occurs later than the upstream detection, thus avoiding “negative” travel times.  The 

second filter removes travel times that are longer than an hour; the purpose of this filter 

being to remove trips that involve vehicles leaving and then returning to the freeway.  

The third filter verifies that both detections occur within the same twelve-hour timeframe 

(before noon or after noon).  Finally, a function that detects “mixed” trips filters out 

travel times that involve detections in both lane types.  In the case of vehicle X traveling 

between GP gantries 1 and 6, this last filter will check whether the vehicle was detected 

in the Express Lanes between those two gantries.  If vehicle X spent some portion of that 
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trip in the HOT lane, that travel time is excluded from the final output.  This is to ensure 

that the calculated travel times reflect the conditions of a single lane type. 

The resulting daily travel time files give the unique transponder identifier, the 

date and time of the first and last detections, the travel time in seconds between those 

detections, the lane type and direction that the vehicle traveled in, the start and end 

gantries and the roadway segments those gantries correspond to, the distance in feet and 

miles, and the speed of the vehicle.  Figure 49 below shows an example of a travel time 

output file. 

 

Figure 49: Sample Travel Time Output 

After calculating travel times for each gantry combination in both the HOT and 

GP lanes, another script averages the travel times to provide an overview of traffic 

conditions along the corridor.  This script reads one day’s worth of travel time results at a 

time and provides average travel times, average speeds, and standard deviations of both 

measures between all of the various HOT and GP gantries. 

Average speeds are calculated by summing up the total distance traveled by all 

vehicles between two gantries and dividing that by the total time taken by those vehicles.  

Average travel times are calculated using the harmonic mean method.  The results are 

reported at the gantry level, for example Indian Trail gantry 1 to Pleasant Hill gantry 5, 

and also at the segment level: Indian Trail northbound to Pleasant Hill northbound.  At 

the segment level, distances traveled by different vehicles may vary, and so the script 
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does not report travel times but only speeds.  Each record also reports the number of 

travel times used in the calculation.  The measures are calculated in bins of five minutes 

and fifteen minutes. 

 Figure 50 shows an example of the average travel time output in its raw form.  

This includes the date and time of the average travel time, along with an indicator of 

whether the result is calculated for a five-minute bin or a fifteen-minute bin.  The output 

file also identifies whether the measure was at the gantry level or at the segment level.  A 

segment is made up of multiple gantries, so the results from the segment level include the 

relevant results from the gantry level.  The gantry level looks at all combinations of the 

individual vehicle detectors and provides averages of the travel times and speeds that 

occur between them.  At the segment level, travel speeds between the gantries 

encapsulated within a given segment are averaged.  Travel times are not reported at the 

segment level because the distances between the gantries within a segment varies.  

Gantry 1 and Gantry 3 may be farther apart than Gantry 2 and Gantry 4, for example, 

though all four are within Segment A. 

 

Figure 50: Sample Travel Time Average Output 

Figure 51 illustrates one month’s worth of average travel times (in 15-minute 

bins) during the southbound morning peak for the entire corridor, from Old Peachtree 

Road to I-285.  As these are travel times, not speeds, the endpoints were the first and last 

gantries on the HOT lane.  The results are presented in fifteen minute bins for each 
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weekday of January, 2012.  Mean travel times in the figure are consistent until 7:00AM; 

at that point, there is greater variation in the daily travel time averages.  This variation 

lasts until roughly 8:45AM, at which point the daily average corridor travel times are 

consistent again.  Figure 52 illustrates the corresponding travel times for the northbound 

afternoon peak, from the first gantry in the I-285 segment to the final gantry in the Old 

Peachtree Road segment.  The results are much more consistent, with fewer ‘slow’ days 

in which the average travel time was outside of a narrow range. 

 

Figure 51: Daily Average HOT Travel Times - Southbound 
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Figure 52: Daily Average HOT Travel Times - Northbound 
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Figure 53 and Figure 54 present the average daily travel times on the General 

Purpose lanes for the southbound morning and northbound afternoon peaks, respectively.  

Note that the maximum value on the y-axis for these figures is twice that of the two 

previous figures.  Here, the relevant detectors are the first and last GP scanners in each 

direction.  The results are much more varied, with no ‘narrow’ consistent interval in 

either timeframe.  This may be an artifact of the grouping together of all GP lanes for the 

travel time calculations, rather than examining each GP lane individually.  The 

northbound plot shows slightly tighter clustering at the beginning of the study period, 

until 4:00PM, but both charts show little consistency otherwise. 

 

 

Figure 53: Daily Average GP Travel Times - Southbound 
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Figure 54: Daily Average GP Travel Times - Northbound 
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Unique Transponder Counts  

Another script examines the disaggregate vehicle detection data to count the number of 

unique Peach Pass transponders in the corridor.  The script groups the results by the 

different entry and exit combinations and reports counts in five or fifteen minute 

intervals.  The script reads an individual day’s vehicle detections and finds the lane and 

corridor segment in which each detection occurred.  The various possible entry and exit 

combinations for the corridor record a detection for that transponder in that five or fifteen 

minute interval.  For example, if Vehicle X is detected in the HOT lanes in the Jimmy 

Carter Boulevard segment, the script would note the detection for the Jimmy Carter 

segment, the I-285 to Jimmy Carter segment, the I-285 to Indian Trail segment, the I-285 

to Pleasant Hill segment, and so on.  Similarly, it would note the detection for the Jimmy 

Carter to Indian Trail segment, the Jimmy Carter to Pleasant Hill segment, and the Jimmy 

Carter to Old Peachtree segment.  The script proceeds in this manner, noting detections 

for all of the segment combinations that include the location of the detection. 

 Once the script has finished reading the detection file and has identified all of the 

transponders and the segments in which they were found, the script cycles through the 

results and prints out the number of unique transponders found along with the date and 

time, the time interval (five or fifteen minutes), and the start and end segment name for 

each potential entry and exit combination.  Figure 55 below shows the first few lines of a 

transponder count output file.  In this case, lines 2 through 7 show counts for segments 

beginning with the JC01 gantry (Jimmy Carter gantry number 01) and ending at various 

gantries within the 285 segment.  As the segment under examination increases in length, 

more vehicles are counted within the five minute interval.  The segment from JC01 to 
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28507, the shortest distance, contains 11 unique Peach Pass transponders, while the 

longest segment, from JC01 to 28502, contains 20. 

 

Figure 55: Sample Transponder Count Output 

Figure 56 shows the transponder count results for the southbound morning peak 

period, from Old Peachtree Road to I-285.  Here the number of vehicles detected in the 

facility in fifteen-minute intervals increases consistently until the peak-of-the-peak at 

7:30AM.  As the detection counts decrease afterwards, the counts become less consistent.  

Figure 57 illustrates the transponder count results for the northbound afternoon peak.  

Again, a steady increase in vehicle counts on the corridor can be seen until the peak-of-

the-peak at 5:30PM.  Here the counts are more consistent overall, mirroring the average 

travel time plots presented previously.  Note that the two days that yield low transponder 

counts are January 2 (the day after New Year’s Day) and January 16, Martin Luther 

King, Jr. Day (a federal holiday). 



 

 

125 

 

Figure 56: Daily HOT Transponder Counts - Southbound 

 

Figure 57: Daily HOT Transponder Counts - Northbound 
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Figure 58 and Figure 59 present the transponder counts in the GP lanes for the 

southbound morning and northbound afternoon peak periods, respectively.  Unlike the 

average travel time plots for the General Purpose lanes, the transponder counts show 

more consistency throughout the fifteen-minute intervals represented here.  The peaks-of-

the-peaks, represented by the intervals with the highest transponder counts, appears to 

match those of the HOT lanes.  In both lane types, this peak occurs around the 7:30AM 

interval for the southbound direction and the 5:30PM interval for the northbound 

direction. 

 

Figure 58: Daily GP Transponder Counts - Southbound 
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Figure 59: Daily GP Transponder Counts - Northbound 
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Construction of the Analytical Data Set 

After using the disaggregated detections to construct vehicle trips, calculate travel time 

averages, and count distinct transponder reads, the suite of scripts then joins these results 

to data from other SRTA-provided streams.  This section provides an overview of the 

data streams and the joining processes. 

 The purpose of the processing of the various data streams described in this 

chapter is to generate a comprehensive file for use in the subsequent analytical work.  

This will allow for the proposed investigation into user behavior and decision making at 

the trip level which incorporates the various data streams provided by SRTA and Epsilon.  

This file will include one observation per vehicle trip on the corridor.  The structure of 

each observation is built around the proposed dependent variable: the use of the Express 

Lanes on a given trip.  Additional data elements will indicate whether the trip was 

exclusively in the toll or general purpose lanes, or whether it involved a combination of 

both lane types (resulting in a partial Express Lane trip).  Each observation will also 

include a set of independent variables involving trip characteristics, corridor conditions, 

and household demographic data.  The trip characteristics include the time of the trip, the 

origin and destination along the corridor, and the Express Lane toll rate at the time of the 

trip.  The corridor condition variables include the average speeds and transponder counts 

in both lane types.  The demographic data include household income, size, education 

level, and head of household age.  Additional variables that fall into these three 

categories, and the process by which they are joined in the data set, are discussed in the 

following paragraphs. 
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 The building of the analytical file that incorporates the different data streams 

begins with the set of vehicle trips that were constructed from the individual vehicle 

detections.  The first step is joining these constructed trips to the Express Lane Trip 

stream summary data provided by SRTA.  This Trip stream data provides one record per 

Express Lane trip, and includes the start and end points, the entry and exit times, the toll 

mode and the amount paid, the transponder identifier, the vehicle plate number, and 

more.  Of these fields, the toll amount and toll mode are brought into the analytical 

dataset.  This allows researchers to identify the trips that were taken in carpool mode (toll 

mode = ‘NON-TOLL’) and thus were charged no toll.  Similarly, it provides the actual 

amount of toll paid by the toll-mode users.  The constructed trips are joined to the SRTA 

Trip data by the trip date, the start time, and the transponder identifier.  The trip date and 

transponder identifier must be the same, while the start time must be within the same 

five-minute interval.  This is to allow for minor differences between the two trip data 

sets: the constructed trips may have an extra or a missing gantry read, for example, that 

would change the start time slightly. 

 After the Trip stream join, the joining script then brings in the Toll Rate data 

provided by SRTA.  This allows for Express Lane toll rates to be reported for trips that 

were taken in the General Purpose lanes and so did not have records in the Trip summary 

data.  This is how researchers are able to find the toll a user would have paid had they 

used the HOT facility instead of the unpriced lanes.  This join also reports the maximum 

daily toll, allowing researchers to identify Express Lane trips that were taken at the 

maximum toll rate.  These trips are important to identify because the maximum toll rate 

charged on the corridor was limited at the opening and has been increasing gradually 
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since; this was previously addressed in the Data Sources chapter.  This join also relies on 

the trip date and the five-minute interval of the start time, as well as the section of the 

corridor on which the trip occurred, because toll rates differ by corridor section. 

 The next join brings the average travel time and speed data into the dataset.  As 

discussed earlier, these records are harmonic means of the travel times between all of the 

entry and exit combinations on the Express and General Purpose lanes.  This allows 

researchers to compare average travel times and speeds across the different lane types for 

all of the dates and times for which data are available.  This dataset also includes standard 

deviations of the speeds and travel times.  These results are joined on date, time, fifteen 

minute interval, and start and end points.  The transponder count data is joined in the 

same manor; these data are also reported for all start and end point combinations for both 

the Express and GP lanes.   

 The next step is to join the constructed trips with account data and status.  The 

script locates the account data files associated with the date of the trip; if the account data 

is missing for that day (due to a corrupted or missing data file), the script identifies the 

first valid account file for that month.  The script reads in the account and transponder 

files for the purpose of identifying the account type: personal or corporate.  From the 

transponder ID associated with a trip, the script identifies the account and returns the 

account type. 

 The final function in the joining script cleans up entries that do not have complete 

entries for all of the data fields.  If the script could not successfully create a join to the toll 

rates, average travel times, or travel counts, the row is removed from the dataset.  These 

records have no identified toll rate for the time and location, no identified maximum toll 
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rate, average speeds of 0 mph, or no transponders identified at that time on the corridor.  

The narrowing of trip data that results from this process is explored in Chapter [7], under 

the Data Pairing and Loss heading.  Finally, a fundamental step in the joining process to 

create this analytical file is matching the SRTA records with the marketing demographic 

data based on household locations from the vehicle registration database.  This step is 

very complex, and is therefore described in more detail in the following chapter: 

Connecting SRTA Data to Epsilon Data. 
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CHAPTER 5 

CONNECTING SRTA DATA TO EPSILON DATA 

 

 

 

To bring demographic data into the working data set, the marketing data must be joined 

to the trips constructed from the SRTA lane use data.  This multi-stage process is outlined 

in this chapter.  The chapter begins by discussing the registration database matching 

portion of the process, which is performed by the Georgia Tech Research Institute.  The 

next section outlines the steps required to match those results with the Epsilon 

demographic data.  A summary of the results of the pairing process follows, along with a 

discussion of the commutershed restriction employed in this research.  The chapter then 

provides an overview of selected demographic characteristics of the paired data set.  

Finally, the last section compares the paired households with the full Epsilon marketing 

data set to identify any potential differences. 

GTRI Vehicle Registration Database Pairing 

In April of 2014, all of the registered Georgia license plates with Peach Pass 

accounts were provided to the Georgia Tech Research Institute (GTRI) for matching 

against the state vehicle registration database.  The data were matched with a blind 

process that created a link between observed plates and the privately sourced data without 

explicitly connecting license plates with registration database data.  This process involved 

983,860 unique plates sent to GTRI, sourced from both the Trip data stream and the 

Account data stream.  The structure of the Account data stream prevented joining 

transponders to vehicles when an account had more than one of either; this issue is 
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further discussed in the Data Quality and Treatment chapter of this dissertation.  A total 

of 521,159 license plates, from accounts with only one transponder and one vehicle, were 

selected for registration database pairing from the Account stream.  At the time, it was 

understood that the Trip data stream did not have this issue; a trip record includes both 

the unique transponder identifier and the vehicle plate number and so researchers 

believed that these pairings were unique.  As a result, 689,692 license plate and 

transponder combinations were identified from the Trip data stream.  The final figure of 

983,860 license plates included substantial overlap between the Account and Trip data 

sets.  On May 23, 2014, GTRI delivered the set of household addresses based on the 

vehicle registration database.  The set of addresses successfully matched and returned by 

GTRI included 518,099 non-unique records; that is, addresses appeared multiple times in 

the returned data set. 

Epsilon Pairing Script Process 

 The script which pairs the SRTA lane use data with the Epsilon marketing data 

then reads the Account stream files for a specified date.  Account data are received on a 

daily basis and can change just as frequently; accounts and transponders, for example, 

may be in ‘active’ status one day and then inactive the next.  The script looks at those 

accounts and transponders that are active on a given day.  For those accounts with one 

active transponder and one vehicle, the transponder ID and vehicle plate are paired and 

stored.  Accounts with multiple vehicles and transponders are stored in a separate file.  

These accounts lack a one-to-one join between vehicles and transponders, and so they 

must be handled separately.  Only accounts with one transponder and one vehicle or 
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accounts whose vehicles are all registered at the same address can successfully be paired 

with the Epsilon data. 

 The pairing scripts then examine the Trip summary stream that SRTA provides.  

This is the data set that lists all of the Express Lane trips, and provides transponder and 

license plate data for each observation.  This stream was initially thought to be capable of 

addressing the many-to-many issues in the Account data; because each record has a 

single license plate and transponder, researchers thought that this would provide the one-

to-one join that the Account data lacks.  This turned out not to be the case; again, the 

Data Quality and Treatment chapter describes these issues in greater detail.  The pairing 

scripts find only those Trip stream records for which one-to-one relationships between 

plates and transponders exist, and then adds these to the pool of unique pairings.  

The next step in the matching process is reading the registration database records 

delivered by GTRI.  As discussed in the previous section, researchers had sent GTRI a 

list of the license plates found in the SRTA data streams, along with an obscured key 

identification field for each record.  The key field allowed GTRI to return the registration 

results without including the license plates.  The script reads and temporarily stores the 

registration database records.  Because of the multiple transponder and multiple vehicle 

issue discussed above, the GTRI matches are separated into those corresponding to 

single-vehicle, single-transponder accounts and those corresponding to many-to-many 

accounts. 

After reading in the registration database matches, the script reads in the full set 

of marketing demographic data.  These data include the addresses for each household.  

The script then iterates through both datasets to find those records with matching address 
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data.  Researchers put the addresses through a standardization process with the goal of 

increasing the rate of 1:1 matches.  This involved changing ‘Rd’ to ‘Road,’ ‘St’ to 

‘Street,’ and dozens of other changes.  Researchers also examined the records for 

misspellings and other issues that may cause matches to fail.  The total number of records 

that saw exact matches was 148,352; this represents 28.6% of the GTRI registration data 

set and 42.5% of the Epsilon household data set. 

After pairing with the registration database records, the resulting data are filtered 

to include only those within the I-85 commutershed.  This commutershed was defined by 

Khoeini (2014) in her dissertation and it identifies the ellipse in which 95% of the 

corridor users have registered their vehicles.  The commutershed is outlined below in 

Figure 60.  Out of a total of 518,099 registration database records that GTRI returned, 

417,350 are located within the commutershed.  With the I-85 commutershed restricting 

the set of addresses, the resulting match count between the GTRI registration database 

and the Epsilon household marketing data is 135,170 records.  This represents 26.0% of 

the GTRI registration data set and 38.7% of the Epsilon household data set. 

At this point, the GTRI registration database records have been paired with the 

Epsilon household demographic records.  To successfully complete the pairing process, 

these results must also be paired with the SRTA plates and transponders that were 

identified at the start of this section.  The script begins by pairing the one-to-one 

transponders and plates with the registration database results provided by GTRI.  From 

here, those one-to-one records with GTRI data are then narrowed to records that also 

include successful Epsilon pairings.  These one-to-one records are then supplemented by 

accounts with multiple transponders that are ultimately associated with a single address.  
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The scripts then apply the commutershed filter to further narrow the result set.  The next 

section provides an overview of the results of this pairing process at both the unrestricted 

and commutershed-restricted levels. 

Results of SRTA-Epsilon Pairing Process 

Table 18 presents a snapshot of the pairing results from a single day of account 

data: January 1, 2014.  The table presents the rates of matching which occur between the 

SRTA transponder records, the GTRI registration database, and the Epsilon marketing 

data set.  The full population of transponders under examination consists of all active 

transponders listed in the SRTA Account data stream; this population consists of 436,753 

active transponders.  Of those, nearly 64% originate from Peach Pass accounts that have a 

single transponder and a single vehicle.  Thus for this sample of transponders, the pairing 

scripts can directly associate a single transponder with a single plate.  Almost 85,000 of 

these one-to-one transponders come exclusively from the account data, in which the 

relevant accounts have a single associated vehicle and a single associated transponder.  

Nearly twice as many transponders originate from the Trip summary stream; these 

transponders were paired with a single plate within the SRTA data from the opening of 

the facility to the end of 2014.  A subset of the transponders with one-to-one plate 

matches, consisting of 46,836 transponders, were common to both the Account and the 

Trip data streams.  These transponders were counted only once in the final tally. 

The next step in the pairing process matches the transponders with address 

records from the GTRI registration database.  Of the 278,984 transponders with a one-to-

one plate relationship, 254,280 can be paired with GTRI records.  This set is 

supplemented by transponders that do not have a one-to-one plate relationship, but are 
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associated with a single GTRI address.  These transponders have one-to-many, many-to-

one, or many-to-many relationships with the license plates in their parent accounts.  Once 

these license plates were paired with the GTRI address data, however, the resulting 

addresses were the same and so researchers could assign an address to these accounts and 

transponders.  The share of transponders from these accounts is roughly half that of the 

one-to-one accounts, and they represent 29% of the overall transponder population. 

The final step in the pairing process matches the GTRI-paired transponders with 

the Epsilon demographic data based on the addresses in the GTRI and Epsilon data sets.  

This step creates the largest loss of data: of the 380,976 transponders with GTRI matches, 

only 98,213 were successfully paired with Epsilon data.  The majority of these, 55,686, 

come from the one-to-one transponder list.  The analyses that follow will employ about 

data recorded from about 100,000 vehicles and household using the corridor, but this 

represents only about 23% of the transponders traversing the corridor.  The following 

sections discuss the limited data availability and potential uncertainty issues. 
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Table 18: Snapshot of SRTA-Epsilon Matched Transponders 

 Transponders  % of Total  

All active transponders in SRTA Account data (1/1/2014)  436,753 100.0% 

Active transponders with one-to-one plate matches 278,984 63.9% 

Account stream-only transponders with one-to-one plate 

matches 

84,658 19.4% 

Trip stream-only transponders with one-to-one plate matches 147,490 33.8% 

Transponders with one-to-one plate matches found in both 

streams 

46,836 10.7% 

Total GTRI HH paired transponder count from all sources 380,976 87.2% 

One-to-one transponders paired to GTRI HH data 254,280 58.2% 

Additional one-to-many, many-to-one, or many-to-many 

transponders paired to GTRI HH data 

126,696 29.0% 

Total Epsilon paired transponder count from all sources 98,213 22.5% 

One-to-one transponders paired to Epsilon data 55,686 12.7% 

Additional one-to-many, many-to-one, or many-to-many 

transponders paired to Epsilon data 

42,527 9.7% 

I-85 Commutershed Restriction 

The registration-matched dataset provided by GTRI (518,169 records) was a much larger 

data set than the set of Epsilon marketing demographic records (349,134 records).  This 

contributed to the low match rate between the Epsilon data and the GTRI registration 

address data: geographically, the GTRI data cover a larger area and includes many 

households outside of the I-85 commutershed.  The Epsilon data purchase, on the other 

hand, was restricted to households within the I-85 commutershed.  In an attempt to 

investigate the match rate of household records between the Epsilon and GTRI data, the 

author restricted the registration data to zip codes within the I-85 commutershed as 
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defined by Khoeini in her doctoral dissertation (2014).  The ellipse was designed to 

capture 95% of the Express Lane users identified in the license plate collection study 

(Guensler, et al., 2013).  Figure 60 illustrates the commutershed defined by Khoeini and 

the selection of the zip code regions that intersect it.  The dark blue ellipse represents the 

Express Lane commutershed, while the lighter blue areas beneath the ellipse are the zip 

code regions that intersect with the commutershed. 

The selection identified 132 zip code regions as intersecting with the 

commutershed.  The author then restricted the GTRI registration database records to 

those from these 132 zip codes and re-matched the records with the Epsilon marketing 

data.  The effect of this restriction on the GTRI and Epsilon match rates can be seen in 

Table 19 and the discussion below.   

 



 

 

140 

 

Figure 60: Zip Code Regions Intersecting I-85 HOT Commutershed 

Table 19 provides a similar snapshot of SRTA-Epsilon pairing rates, this time 

restricted to transponders and households that fall within the I-85 commutershed.  The 

differences begin at the GTRI-pairing step of the process; here, approximately 80,000 

fewer transponders were successfully paired to the GTRI registration database results.  

That drop off rate is not nearly as high for the Epsilon pairing step; there 6,029 

transponders were excluded by the commutershed restriction.  This is to be expected as 

researchers specifically targeted the Epsilon data purchase to households within the I-85 

commutershed.  One motivation for restricting match results to the commutershed was 
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the hope that such a restriction would improve the match rate in the sample, and it is true 

that the the proportion of GTRI-matched transponders that can be paired with Epsilon 

data is higher within the geographically restricted sample.  Of those GTRI-matched 

commutershed transponders, 33.11% were successfully paired with Epsilon records.  Of 

the GTRI-matched transponders that have no commutershed restriction, 25.78% of the 

sample was successfully paired.  The overall rate of transponder pairing among the entire 

active transponder population is similar with or without the commutershed restriction; 

that restriction removes 6,029 transponders from the final Epsilon-matched sample. 

Table 19: Snapshot of SRTA-Epsilon Matched Transponders in Commutershed 

 Transponders  % of Total  

All active transponders in SRTA Account data (1/1/2014)  436,753 100.0% 

Active transponders with one-to-one plate matches 278,984 63.9% 

Account stream-only transponders with one-to-one plate 

matches 

84,658 19.4% 

Trip stream-only transponders with one-to-one plate matches 147,490 33.8% 

Transponders with one-to-one plate matches found in both streams 46,836 10.7% 

Total commutershed GTRI HH paired transponder count from 

all sources 

278,364 63.7% 

One-to-one transponders paired to commutershed GTRI HH data 149,053 34.1% 

Additional one-to-many, many-to-one, or many-to-many 

transponders paired to commutershed GTRI HH data 

129,311 29.6% 

Total Epsilon paired commutershed transponder count from all 

sources 

92,184 21.1% 

One-to-one commutershed transponders paired to Epsilon data 52,406 12.0% 

Additional one-to-many, many-to-one, or many-to-many 

commutershed transponders paired to Epsilon data 

39,778 9.1% 
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Overview of Paired Households 

This section presents select distributions of demographic characteristics for the paired 

households identified by the matching process.  These measures include household 

income, household size, household education, head of household age, home ownership 

category, and dwelling unit type.  This section also compares the results to Census 

Bureau estimates of household demographics in the City of Atlanta geography, taken 

from the five year American Community Survey results (2013).   

The first data set characteristic examined was the number of active transponders 

associated with each household.  Figure 61 below illustrates the distribution of 

transponders per household within the matched Epsilon dataset.  The pairing date for this 

distribution was January 1, 2014; as mentioned above, SRTA to Epsilon pairing can vary 

day-to-day due to the changing nature of the Account data stream.  A plurality of 

matched households, just over 40%, have one associated Peach Pass transponder.  Few 

households, 11.3% of the total, have more than 3 registered transponders. 
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Figure 61: Distribution of Plates per Household in SRTA-Epsilon Matching Dataset 
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Figure 62 through Figure 67 illustrate distributions of selected Epsilon 

demographic variables in the SRTA-Epsilon matched dataset.  Figure 62 shows the 

household income distribution in the matched sample.  The average household income is 

significantly higher than the median income (more than $20,000 higher).  The Epsilon 

mean is $2,817 higher (3.42%) than the $82,381 mean household income figure for the 

City of Atlanta, as reported by the 2009-2013 5-year American Community Survey 

estimates.  The median household income also exceeds that of the ACS estimates for 

Atlanta by $15,869 (U.S Census Bureau, 2013).  Also notable is the presence of lower-

income households in the paired data set.  While some of the income categories include 

very few households (in particular, the category from $15,000-$19,999), all of them 

include at least some matches.  The two income categories ranging from $50,000 to 

$99,999 annually include a plurality of households, representing over 40% of the total. 
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Figure 62: Household Income in SRTA-Epsilon Matching Dataset 
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Figure 63 illustrates the household size distribution in the matched data set; here, 

just over 30% of households have one member while households with two and three 

members make up a combined 40% of the sample.  The ACS data for Atlanta report 

45.9% of households as having a single member, while 29.3% of households are 2-person 

households and 11.5% are 3-person households (U.S Census Bureau, 2013).  Again, this 

comparison involves different geographies as well as different data sources; a more direct 

comparison involving census results in the I-85 commutershed can be found in the 

Potential Sample Bias in Paired Vehicle Activity and Marketing Data chapter. 

 

 

Figure 63: Distribution of Household Sizes in SRTA-Epsilon Matching Dataset 
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Figure 64 shows that over 80% of households in the matched sample are have at 

least some college education, while the proportion of households that have some high 

school is marginally smaller than the proportion that has attended graduate school.  

Within the ACS estimates for individuals 25 and over, the proportion of high school 

graduates is similar at 20.3%.  The remaining categories differ more substantially.  An 

estimated 31.6% of the ACS sample has an Associate’s or Bachelor’s degree, while over 

50% of the matched Epsilon sample households have college degrees.  The number of 

graduate degree holders reported by the ACS is much higher: 19.4% of the over-25 City 

of Atlanta population is estimated to have a graduate or professional degree (U.S Census 

Bureau, 2013).   

 

Figure 64: Household Education Levels in SRTA-Epsilon Matching Dataset 
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Figure 65 presents the head of household age distribution for the matched Epsilon 

sample.  A plurality of households, over 30%, have a head of household between the ages 

of 35 and 44 years old.  Very few fall within the 18-24 category, and roughly 10% are 

over the age of 65.  That figure very closely resembles the 10% of the City population 

that is 65 or older as estimated by the ACS.  Other categories do not align as neatly: the 

ACS estimates that 14.9% of individuals in Atlanta fall between 35 and 44 years of age.  

The ACS also estimates 19.6% of its sample is between 25 and 34 years old, while the 

matching Epsilon data report fewer than 15% of households of this age range.  This raises 

another manner in which the comparison is not direct, however, as the Epsilon data 

reports household numbers while the ACS estimates are reported at the individual level 

(U.S Census Bureau, 2013). 
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Figure 65: Head of Household Age in SRTA-Epsilon Matching Dataset 
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Figure 66 shows the number of households in the matching Epsilon data that fall 

into each of the marketing firm’s home ownership categories.  Of particular interest is the 

very small number of households that are renters; this is even more striking when one 

considers that the vast majority of households in the marketing data renter categories are 

only defined as “Probably renters.”  Within the ACS City of Atlanta estimates, over half 

of the households (54.6%) are identified as renter-occupied (U.S Census Bureau, 2013).   

 

Figure 66: Home Ownership in SRTA-Epsilon Matched Data 
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The final chart, Figure 67, shows the potential dwelling types in the marketing 

data and the proportion of matched households that fall into each category.  The great 

majority of the matched Epsilon households live in single-family dwelling units.  The 

American Community Survey estimates for City of Atlanta households identify 40.2% of 

households as “1-unit, detached” and 5.3% as “1-unit, attached.”  28.6% of the 

households in the ACS data include 20 or more units (U.S Census Bureau, 2013).  Again, 

this discrepancy is likely the result of geographical differences rather than sample bias, as 

the ACS data include the whole City of Atlanta while the Epsilon marketing purchase 

was concentrated on the I-85 commutershed outside the I-285 perimeter of the City. 

 

Figure 67: Dwelling Type in SRTA-Epsilon Paired Data 
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The distributions point to a number of differences between the Epsilon and 

Census data, or more accurately, between the I-85 commutershed households and the 

City of Atlanta population.  Mean household incomes reported by the matched Epsilon 

set and the ACS are similar, though the median income value is much higher in the 

Epsilon data.  The ACS also reports higher estimates of single-occupant households.  The 

ACS education estimates include fewer individuals with undergraduate college degrees, 

but many more with graduate degrees.  Far more home owners are present in the Epsilon 

data versus the ACS estimates.  Similarly, the large proportion of renters (over 50%) in 

the ACS estimates are virtually unseen in the matched Epsilon data.  It bears repeating 

that these comparisons are not perfect, as the scope of the ACS data differs 

geographically from that of the Epsilon data purchase; furthermore, the ACS data are 

reported at the individual level, rather than the household level.  A more direct 

comparison of the Epsilon and ACS data, restricted to similar geographies, can be found 

in Chapter 7, Potential Sample Bias in Paired Vehicle Activity and Marketing Data. 
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Comparison between Paired and Overall Households 

The Epsilon households that were successfully paired with SRTA Peach Pass 

transponders represent a fraction of the total households in the demographic data set: the 

46,452 households represent 13.3% of the purchased Epsilon sample.  The third chapter 

of this dissertation, entitled Data Sources, provides an overview of the full Epsilon 

population.  Table 20 presents the results of a comparison between that full population 

and the narrower paired sample that was discussed in the previous sections of this 

chapter. 
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Table 20: Comparison of Paired Households and All Epsilon Households 

 Full Epsilon Data Set Paired Epsilon Sample 

Number of Households 349,134 46,452 

Household Income   

Mean $61,862 $85,198 

Median $62,500 $62,500 

25
th
 Percentile $35,000 $45,000 

75
th
 Percentile $87,500 $112,500 

Skewness 1.56 1.21 

Kurtosis 6.93 5.01 

Mann-Whitney Test Result p<2.2x10-16 

Household Size   

Mean 2.40 2.74 

Median 2 2 

25
th
 Percentile 1 1 

75
th
 Percentile 3 4 

Skewness 1.47 1.14 

Kurtosis 5.39 4.16 

Mann-Whitney Test Result p<2.2x10-16 

Household Education   

Mean 3.04 3.39 

Median 3 4 

25
th
 Percentile 2 3 

75
th
 Percentile 4 4 

Skewness -0.22 -0.69 

Kurtosis 2.06 2.69 

Mann-Whitney Test Result p<2.2x10-16 

Head of Household Age   

Mean 3.72 3.80 

Median 3 4 

25
th
 Percentile 3 3 

75
th
 Percentile 5 5 

Skewness 0.56 0.46 

Kurtosis 2.83 2.79 

Mann-Whitney Test Result p<2.2x10-16 

 

 Table 20 provides summary statistics for a subset of the demographic variables in 

the Epsilon data set.  The table highlights a number of notable differences between the 

paired data subset and the full data purchase.  Household income levels are higher on 

average in the paired subsample, though the median values are the same.  This is further 

reflected in the 25
th

 and 75
th

 percentile values, both of which are higher in the paired 

sample.  The skewness values indicate that both distributions are right-trailed, while the 
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kurtosis results indicate that both are more peaked than the normal distribution.  The full 

sample is less symmetric and more peaked than the paired sample. 

 The household size variable follows a similar pattern: the paired sample includes 

a higher proportion of larger households than the full data set.  This is reflected in the 

higher mean and 75
th

 percentile values.  Like the household income distributions, the 

household size distribution is less symmetric and more right-tailed in the full data set.  

The full data set is also more peaked than the paired sub-sample.  The household 

education variable distributions differ slightly in that both are left-tailed; in this case, the 

paired data are less symmetric.  The higher mean and 75
th

 percentile education values in 

the paired data support this as well. 

Out of the four variables compared here, the head of household age measure is the 

most similar across the two data sets.  Though the median value is a full unit higher in the 

paired sample (median of 35-44 in the full sample, median of 45-54 in the paired 

sample), the mean values differ only slightly, and the skewness and kurtosis measures are 

similar as well.  For each variable under examination, researchers used the Mann-

Whitney two-tailed test to compare the distributions of the full sample and the paired 

sample.  In each case, the resulting p-value was virtually indistinguishable from zero; the 

null hypothesis of distributional equality was rejected. 
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Chapter Overview 

 The process of pairing the SRTA lane use data with the Epsilon demographic data 

involves many steps that each include the potential for data loss and bias.  Foremost 

among these is the final stage in the process, in which the address-matched SRTA records 

attempt to find matches in the Epsilon data set.  This step narrows the transponder sample 

to roughly one-third of the GTRI-matched records and one-fifth of the total records.  

Prior to that, however, complications in the structure of the SRTA data restrict the scope 

of users that survive the pairing process.  Restricting the households to those within the I-

85 commutershed improves the match rate between GTRI-matched households and 

Epsilon households, but removes over 6,000 transponders from the final sample.  The 

resulting sub-sample of demographic data exhibits notable differences from the complete 

sample: larger households, more higher-income households, and more highly educated 

households.  A brief comparison with the Census Bureau’s estimates of related measures 

from the City of Atlanta points to significant differences with that data set as well, 

especially in the areas of home ownership and dwelling type (single family versus multi-

family).  This issue is further explored in Chapter 7, Potential Sample Bias in Paired 

Vehicle Activity and Marketing Data, which investigates household demographic 

comparisons at different stages in the pairing process using commutershed-restricted 

Census data.  
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CHAPTER 6 

DATA QUALITY AND TREATMENT 

 

 

 
During the course of working with the SRTA Express Lane use data and the Epsilon 

marketing demographic data, a number of issues arose with the structure and quality of 

the data that may have affected the match rate between the two data sources and initial 

analytical results that arose out of the matched dataset.  This chapter will describe those 

issues and the methods used to address them.  The first section describes the problem 

with the structure of the SRTA Account data, and the second does the same for the SRTA 

Trip stream data.  The next section discusses the time series relationships of plates and 

transponders in that Trip data stream.  This is followed by an investigation into the 

stability of the individual and combined data sets over the course of the three years of 

analysis.  The chapter then examines issues with the Epsilon marketing data and the 

revised data set that attempted to correct those issues.  Finally, the chapter ends with a 

look at the quality of the SRTA transponder detection data that serves as the foundation 

for much of the analysis in this dissertation. 

Account Transponder and Vehicle Issue 

As part of the process of pairing Express Lane use data to household demographic data, 

researchers needed a link between the Peach Pass transponder identifier and the license 

plate of the vehicle in which that transponder was used.  Using the license plate data, 

researchers at GTRI pulled addresses from the Georgia vehicle registration database via a 

single-blind process.  Addresses records were returned to Georgia Tech without the 
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license plate numbers and names for privacy purposes.  The author then attempted to pair 

the addresses with the Peach Pass transponders, so that the demographic data could be 

paired with the SRTA lane use data. 

 Because the transponder-to-address pairing process required a license plate, 

researchers could only find addresses for transponders that had associated license plates.  

Transponders without license plate data needed to be excluded from the demographic 

analyses for this reason.  Similarly, transponders with too many license plates were also 

initially excluded from demographic data pairing.  If a transponder were to be associated 

with multiple license plates, those plates may match to multiple household addresses, 

potentially making it impossible to identify which set of household data applies to a 

transponder. 

 Unfortunately, the structure of the SRTA-provided Peach Pass Account data 

yielded many instances of this situation.  The Account data lacked a join table linking 

every transponder to one-and-only-one vehicle/license plate.  This was not an issue when 

an account had only one transponder and one license plate; in that case the pairing was 

obvious.  Many accounts, however, had multiple transponders and/or license plates.  

Because of the lack of a linking element, researchers could not identify in these cases 

which transponder was paired with which license plate.  In situations where the license 

plates in an account were matched with different household addresses, there was no way 

to identify which address the Peach Pass transponders in that account were paired with. 

 To examine the scope of this and other structural problems, Table 21 presents a 

summary of the SRTA Account stream data from January 1, 2014.  The table shows the 

various issues present in the structure of the Account table.  Registered transponders and 
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vehicles have, in different instances, one-to-one relationships, one-to-many relationships, 

and many-to-one relationships.  Nearly 50% of the active accounts have active 

transponders with a one-to-one relationship with a vehicle; that is, there is only one 

transponder and one vehicle registered to that account.  The next largest group of 

accounts, over 38% of the total, has multiple vehicles (greater than or equal to two) and 

transponders.  Notably, the transponders associated with these accounts far outnumber 

those with a one-to-one relationship with a vehicle.  The 286,066 transponders in the 

many-to-many set are more than double the 131,494 in the one-to-one set.  These 

transponders cannot be paired with a specific vehicle due to the lack of a joining element.  

A trivial number of accounts have registered transponders without any vehicles; a 

similarly low proportion of accounts have just one registered vehicle and more than one 

active transponder.  The other possible many-to-one relationship, in which an account has 

just one registered transponder but multiple vehicles, occurs in 6.3% of the active 

accounts.  The table entries in parentheses refer not to accounts but to transponders.  The 

two bolded entries at the end of the table indicate the scope of the scope of the problem of 

transponders associated with multiple accounts; a total of 610 transponders on January 1, 

2014 fell into this category.  
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Table 21: Account Data Breakdown 

Account Stream Data – 01/01/2014 Accounts % of Total  

Active Accounts in SRTA Data (Status = A, I, P) 278,170 100% 

Active accounts with one active transponder and one 

vehicle 

131,494 47.27% 

Active accounts with one active transponder and no 

vehicles 

3 0.0011% 

Number of transponders within these accounts (3) N/A 

Active accounts with one active transponder and 

multiple vehicles 

17,531 6.30% 

Number of transponders within these accounts (17,531) N/A 

Active accounts with no active transponders and no 

vehicles 

18,808 6.76% 

Active accounts with no active transponders and one 

or more vehicles 

3,528 1.27% 

Active accounts with multiple active transponders and 

one vehicle 

165 0.059% 

Number of transponders within these accounts (331) N/A 

Active accounts with multiple active transponders and 

multiple vehicles 

106,641 38.34% 

Number of transponders within these accounts (286,066) N/A 

Number of transponders associated with two active 

accounts 
(608) N/A 

Number of transponders associated with three active 

accounts 
(2) N/A 

   

Express Lane Trip Stream Issues 

The Express Lane Trip data stream, which provides a daily summary of toll lane trips, 

was originally thought to be a partial solution to the one-to-many and many-to-many 

relationships between account transponders and vehicles discussed in the previous 

section.  The vast majority of trip records, over 99.9%, provide both a transponder 

identifier and a vehicle plate number, theoretically allowing for the one-to-one join 
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between transponders and plates that is missing from accounts with multiple instances of 

either element.  This assumption was used in some preliminary analyses.  Further 

investigation of the Trip stream data, however, revealed that the relationship was more 

complicated and that the transponder-vehicle pairs could not be used without further 

scrutiny.  The first issue was the lack of a true one-to-one pairing between the 

transponder and vehicle elements in the Trip stream.  An examination of the trip data 

from November, 2011 through December, 2014 revealed many instances in which 

transponders were associated with multiple license plates and license plates were 

associated with multiple transponders.  Similarly, the data had records where no 

transponder was reported, no plate was reported, or both fields were empty.  Table 22 

presents an overview of the transponder side of these Trip stream transponder-plate 

relationships. 

 
Table 22: Transponder-Plate Relationships in Trip Stream Data 

Trip Stream Transponders: 11/2011 – 12/2014 Transponders % of Total 

Total Unique Transponders in Trip Stream 254,251 100% 

Transponders with 1:1 Plate Matches 194,326 76.4% 

Transponders associated with multiple plates, 

plate associated with one transponder 

14,701 5.8% 

Transponders associated with one plate, plate 

associated with multiple transponders 

28,774 11.3% 

Transponders associated with multiple plates, 

plates associated with multiple transponders 

7,548 3.0% 

Transponders with no plates associated 8,902 3.5% 

 

 Figure 68 provides a breakdown of the different categories of transponder and 

plate pairings in the SRTA Trip data.  The data listed over 850,000 unique license plates, 
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though over 400,000 of those were never paired with transponders.  A much smaller 

number of transponders, 8,902, were never paired with license plates.  Nearly 200,000 

unique transponder and plate pairs appear in the Trip data.  These were transponders that 

were only ever associated with a single plate, and plates that were only ever associated 

with a single transponder.  The remaining counts address transponders that were paired 

with multiple plates, plates that were paired with multiple transponders, and many-to-

many relationships in which both of these situations occurred.   
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Figure 68: Trip Stream Plate and Transponder Breakdown 
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A very small percentage (0.0002%) of Express Lane trip records had no 

transponders or license plate data.  Trips with transponder identifiers but no plate 

numbers make up 1.28% of the trip set.  Trips by transponders associated with multiple 

plates account for 17.98% of the total; these transponders are discussed more in the next 

section.  Nearly 900,000 trips, making up 6.00% of the total, include license plate data 

but no transponder identifier.  These are likely violation trips by vehicles without Peach 

Passes.  The majority of trips, 57.62%, includes both transponder and plate data, and 

represent unique pairings of those two elements.  The Trip stream also includes 

transponders that are paired with multiple plates, while those plates are also associated 

with multiple transponders.  This many-to-many relationship between transponders and 

plates accounts for 4.77% of the total trip count.  Finally, trips by transponders associated 

with a single plate, while that plate is associated with multiple transponders over the 38 

month timeframe, make up 12.36% of the total. 

Table 23 shows the vehicle plate aspect of the transponder-plate relationship in 

the SRTA Trip stream data.  Almost 23% of the total plates counted over 38 months have 

a unique transponder paired with them, while nearly 50% have no associated transponder.  

While less than 2% of all plates have a many-to-many relationship with Peach Pass 

transponders, over 25% of the plates have a one-to-many relationship, in which their 

associated transponders are also tied to other license plates. 
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Table 23: Plate-Transponder Relationships in Trip Stream Data 

Trip Stream Plates: 11/2011 – 12/2014 Transponders % of Total 

Total Unique Plates in Trip Stream 855,886 100% 

Plates with 1:1 Transponder Matches 194,326 22.71% 

Plates associated with multiple transponders, 

transponders associated with one plate 

7,822 0.91% 

Plates associated with one transponder, 

transponder associated with multiple plates 

233,118 27.24% 

Plates associated with multiple transponders, 

transponders associated with multiple plates 

15,853 1.85% 

Plates with no transponders associated 404,767 47.29% 

 

 The overall effect of this database structure issue is to narrow the potential pool of 

Peach Pass users that can be studied using the available demographic data.  This effect 

can also be seen in the overall match rates between the SRTA lane use data and the 

Epsilon marketing data.  Later, this dissertation will discuss how the narrow sample of 

one-to-one transponders was expanded to include some fraction of the remaining Peach 

Passes and vehicles.   

Time Series of Transponder and Plate Relationships 

One element of the transponder-to-license plate relationships in the Trip stream that 

appeared after further investigation was the overlapping nature of the pairings.  After 

identifying the first and last detection of a unique transponder and plate pair, researchers 

discovered that the same transponder was often associated with multiple plates within the 

same time interval.  That is, rather than one transponder cleanly transitioning from one 

vehicle to another, instead it would appear to be associated with two different vehicles 

concurrently.  This may have been an artifact of the method by which the operating firm 

ETTC reported vehicle plate numbers alongside the transponder identifiers.  Researchers 
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suspected that the firm used faulty database joins that may have yielded incorrect license 

plates for accounts with multiple vehicles, or image recognition software that may have 

reported variations on the same license plate in different instances.   

A script that examined over three years’ worth of Express Lane trips, from 

November 2011 through December 2014, recorded the first and last instance of each 

unique transponder and plate pairing.  The script then reported the total number of unique 

transponders detected within that timeframe, and also the number of transponders 

associated with multiple license plates within the same timeframe.  That is, transponders 

whose plate pairings overlapped.  The script found 882,850 total unique transponders 

over the 38 month timeframe.  Of those, 4,772 transponders were detected within 

overlapping plate-pairing intervals.  For these 4,772 transponders, which make up 0.54% 

of the unique transponder population, the SRTA Trip summary data cannot reliably be 

used to pair them with a unique license plate. 

A second script read the same Express Lane trips and identified transponders that 

were associated with more than one plate in the Trip summary data.  This script looked 

for Peach Passes that were detected at least 250 times within the 38 month timeframe 

from November 2011 through December 2014.  It generated a list of toll lane trips, 

ordered sequentially by date and time, along with the transponder identifier and the 

license plate associated with that specific trip.  From this, researchers could see when 

individual transponders changed the plate with which they are linked.  A variation of this 

script also included blank values for the license plate field, thus identifying transponders 

that were linked to at least one license plate and to blank license plate records.  Figure 69 

below illustrates one example from September 2014 of such a transponder.  The 
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transponder is first linked to ‘CCXXXXX,’ then ‘BSXXXXX.’  The link switches 

between one plate and the other multiple times throughout the month.  The first 

occurrence occurs during the workday on October 13th; the 5:38AM trip occurs with one 

license plate, while the 6:30PM trip occurs with the other.  Running this script for one 

month, October 2014, identified 328 transponders that fit the given criteria when blank 

license plates were included.  Without blank license plates, 186 transponders matched the 

criteria (at least two plates and at least 20 trips).  Note that the script in this instance was 

looking for 20 trips within the month of October; running the script for all 38 months 

would expand the interval for the 20 trip criteria and would thus include more 

transponders.  The 20 trip criteria was increased to 250 for the 38 month duration.  The 

minimum trip criteria was computationally necessary to allow the script to run.  Note that 

the license plates in the image below have been masked for privacy purposes. 
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Figure 69: Example Transponder Associated with Two Plates 

 Running the script for the full 38 months yielded 298 frequently used (at least 250 

trips) transponders that were associated with multiple plates, not including blanks among 

the possible license plate values.  A total of 579 unique license plates were associated 

with those transponders.  The vast majority of these transponders, 96.3%, were associated 

with two different license plates.  The remaining transponders were associated with three 

different license plates. 

 This transponder-to-license-plate pairing issue has implications both for the 

design of the database in which the lane use data are stored and for this dissertation.  It 

may be the case that a user is switching the transponder from one vehicle to another, in 

which case the data are correct.  If not, it may be the case that the database is querying 

the license plate records incorrectly and returning faulty license plate data.  The presence 
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and use of license plate cameras on the corridor also complicates the data, as it is evident 

that some of the transponders are associated with two ‘different’ license plates that differ 

by very few characters.  Figure 70 provides an example of this.  This indicates that some 

faulty image recognition may be the cause of the differing license plate results.   

 

Figure 70: Similar License Plates in SRTA Data 

 For the purposes of the analyses presented here, the multiple plate pairing issue 

complicates the one-to-one join needed between transponders and license plates to 

properly tie demographic data to Express Lane use data.  The result is that the Trip 

summary data does not provide a clean match, but rather resembles the Account data in 

that it includes many-to-many relationships between transponders and license plates.  

These issues further narrow the subset of Trip stream transponders and license plates that 

can be included in the analyses presented in this dissertation. 

Sample Stability in SRTA Express Lane Data 

One of the primary issues in the methods used in this dissertation involves the cross-

sectional nature of some of the data sources and the longitudinal nature of the other data 

sources.  The Epsilon demographic data and the registration database matching by GTRI 

are both cross-sectional in that they were the result of one-time queries that returned 

records from a database at only a single point in time.  The Epsilon dataset was dated 

March 6, 2013, while the GTRI registration database matching was performed on May 

23, 2014.  Both of these data sets present their results from that day only. 
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 In comparison, the SRTA Express Lane data tables are updated every day, and in 

some cases multiple times a day.  The elements that are used to connect lane use data 

with registration and demographic data may potentially change every day.  Vehicles may 

have been associated with an account prior to May 23, 2014, for example, and then 

removed from that account after that date.  Similarly, a household that registered for a 

Peach Pass after March 6, 2013 would not appear in the SRTA-Epsilon paired dataset as 

that address would not have been included in the marketing data purchase.  This section 

examines the stability of the SRTA lane use data, Epsilon demographic data, and GTRI 

registration data throughout the course of facility operations. 

 The total number of license plates in the STRA Express Lanes trip summary data 

from November, 2011 through December, 2014 is illustrated below in Figure 71.  The 

figure also shows the number of new and dropped license plates each month.  New plates 

are those which were not previously seen in the Trip summary data, and thus that month 

contains their first detection.  Dropped plates are those whose last observation occurred in 

that month.  Note that this chart is based solely on the Express Lanes Trip summary 

stream, so it only captures toll lane trips, not general purpose lane trips.  The chart 

illustrates the ‘churn’ in the vehicle plate data: each month, thousands of license plates 

are detected for the first time.  Each month also see thousands of license plates that are 

detected for the last time, at least through December 2014.  An average of 75,578 total 

license plates are detected each month. Excluding the first month (in which all detected 

plates are ‘new’), an average of 22,347 license plates are detected for the first time each 

month.  An average of 20,613 plates are dropped each month (again, excluding the last 

month in which all remaining plates are ‘dropped’).  
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Figure 71: SRTA Trip Stream Plate Stability 

Similarly, Figure 72 shows the new, dropped, and total Trip stream transponders 

each month.  In this case, the average number of total transponders detected per month is 

53,713.  6,082 new transponders are detected each month on average, while 4,962 are 

dropped. 
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Figure 72: SRTA Trip Stream Transponder Stability 

 Figure 73 shows new and dropped transponders from the SRTA Vehicle detection 

data.  This data source includes detections from both the Express Lanes and the general 

purpose lanes and so gives a more complete picture of the turnover in the data. 
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Figure 73: SRTA Vehicle Stream New and Dropped Transponders 
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Figure 74 illustrates the total counts of unique transponders identified in the 

Vehicle detection stream.  The trend has been increasing steadily since early 2012; the 

inactive General Purpose lane detectors are likely the cause of the very low counts in the 

first three months.  Had the time frame expanded into 2015, the drop at the end of the 

figure would be provided with more context to see if it represents an aberration or a 

change in the trend. 

 

 

Figure 74: SRTA Vehicle Stream Total Transponders 
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 The two figures above present only those plates and vehicles that were observed 

on the corridor; this may not provide a full account of the system’s characteristics.  The 

next set of figures uses the SRTA Account data to illustrate the total number of accounts 

as well as registered, rather than observed, vehicles and transponders over the thirty-eight 

month time frame.  The figures also illustrate the new accounts as well as the new and 

dropped vehicles and transponders per month.  Figure 75 illustrates the steadily-

increasing numbers of total registered Peach Pass accounts from January, 2012 through 

December, 2014. 

 

Figure 75: Total SRTA Accounts over Time 
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Figure 76 shows the total counts of SRTA accounts in Active status over those 

three years of operations.  The trend is very similar to that of the previous chart; each 

month, the proportion of active accounts ranges from a minimum of 71.8% to a 

maximum of 75.2%. 

 

Figure 76: Total Active SRTA Peach Pass Accounts over Time 
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The rate of new Peach Pass account creation is shown in Figure 77.  While the 

number of new accounts began to decrease towards the end of 2013, the system is still 

adding nearly 2,000 accounts per month.  The drop in April of 2012 represents missing 

data in the Account stream; this issue is described in greater detail later in this chapter. 

 

Figure 77: New SRTA Accounts over Time 
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 Figure 78 focuses on the vehicles registered in the SRTA account data stream.  

For every month, the rate at which vehicles are added exceeds the rate at which accounts 

are created.  Relatively few vehicles are removed from the account tables each month.  

This figure shows part of the difficulty in the demographic pairing method used in this 

study: as mentioned above, the query against the registration database was executed in 

May of 2014.  Roughly 20,000 vehicles were added to the database after that month; 

none of those are included in the analysis.   

 

Figure 78: New and Dropped SRTA-Registered Vehicles over Time 
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Figure 79 shows the total count of registered transponders which, similar to the 

number of registered accounts, increases steadily over the three years under study. 

 

 

Figure 79: Total SRTA Transponders over Time 
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 Figure 80 presents the total number of SRTA-registered transponders in Active 

status over three years of operation.  Similar to plot of total active accounts over time, 

this figure shares a shape with the figure of total SRTA transponders (active and inactive) 

over time.  In this case, the proportion of transponders in active status ranges from 72.1% 

to 85.5%.   

 

Figure 80: Total SRTA Active Transponders over Time 

  



 

 

181 

Figure 81 shows the numbers of newly detected and no longer detected 

transponders in the SRTA Account stream.  The number of new transponders in the 

Account data each month is far lower than the numbers of new transponders detected in 

the vehicle detection data each month; Figure 73 showed those new transponders 

regularly exceeding 20,000.  That figure also showed far more transponder dropouts each 

month as well.  The registration data, as presented in the Account records, exhibit far less 

variability than the actual lane use data, as represented by the vehicle detection records.  

 

Figure 81: SRTA Data New and Dropped Transponders over Time 
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 The potential effects of this changing sample would appear in Figure 82 below, 

which illustrates the GTRI registration database match rate over the scope of the study.  

As mentioned above, the GTRI researchers executed the registration database query on 

May 23, 2014.  Python scripts written for this dissertation perform the matching process 

between the SRTA vehicle data and the GTRI registration database daily.  The result is a 

match rate that changes every day but is very consistent month-to-month.  Note again that 

the April, 2012 data from the Account stream was incomplete, resulting in the low match 

rate for that month shown here. 

 

Figure 82: GTRI Match Rate over Time 
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Figure 83 also shows the new and dropped GTRI registration database matches 

each month.  The number of new matches steadily decreases, to the point where very few 

matches are added in all of 2014.  The number of dropped registration database matches 

also decreases in 2014, though not as drastically.  The number of new and dropped 

matches is very small compared to the overall match rate: less than 1% of the total 

number of matches each month.  

 

Figure 83: New and Dropped GTRI Matches over Time 

 Similarly, Figure 84 shows the total number of unique matches for the Epsilon 

households each month from January of 2012 through December of 2014.  This match 

rate is also very consistent across the study timeframe, with an average of 46,400 

households matched per month.  Figure 85 illustrates the new and dropped matches each 

month; these were plotted separately as the difference in scale between this and Figure 84 

is substantial.  New matches are those whose first occurrence was in that month, while 



 

 

184 

dropped matches are those whose last occurrence was in that month.  Like the GTRI 

registration database match rate, the number of new and dropped Epsilon households 

each month is multiple orders of magnitude smaller than the total number of matches.  

The changes in the SRTA account and lane use data appear to have little impact on the 

number of households in the final paired sample. 

 

Figure 84: Epsilon Match Rate over Time 
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Figure 85: New and Dropped Epsilon Matches over Time 
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 The constantly-changing sample highlights a characteristic of the SRTA and 

Epsilon data sets.  Thousands of new transponders are registered each month, and more 

transponders are detected for the first time each month.  The match rate at both the GTRI 

and Epsilon levels changes far less dramatically, however.  This discrepancy indicates 

that though the actual composition of lane users is constantly changing, the users being 

studied are relatively constant.  The benefit of such a result is that many users can be 

studied in a longitudinal fashion; very few Epsilon households drop out of the sample 

each month.  The downside of such a data set lies in the large proportion of users who fall 

outside of the scope of the study, especially those that entered the system in the last six 

months of 2014.   

Data Issues in Epsilon Demographic Data 

In the process of performing the data processing and treatment described here, a 

number of issues with the private marketing data arose were recognized as potential 

avenues for bias in the sample.  As discussed above, the marketing data do not have 

complete coverage; many of the variables have imputed values for some households.  The 

method of imputation is confidential and unknown to Georgia Tech.  The timeframe of 

the marketing data may also not match up exactly with that of the trip data.  Khoeini 

(2013) described how many households experience changes in different socioeconomic 

characteristics over the two-year period of the 2006 Commute Atlanta study.  For 

example, 18% of the households in that study saw a change in household income, for 

example.  As a result, some of the marketing data may be outdated relative to trip dates.  

These potential sources of bias may all add uncertainty to the disaggregate choice-based 
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analysis.  Among those issues was Epsilon’s initial handling of the households within an 

apartment complex.  

Epsilon Data Multi-Family Dwelling Unit Issue 

In examining the household demographic data, researchers identified several 

instances of names and variable values that were identical.  Upon further investigation, 

researchers found that these records belonged to multi-family buildings such as apartment 

and condominium complexes.  The team concluded that household records from the same 

multi-family dwelling units were assigned the same name and demographic data in the 

purchased data set, despite the records pertaining to different units within those buildings.  

It appeared that the query used to pull records from the Epsilon database assigned the 

first available value to an address, irrespective of the second address line.  In short, all of 

the records from a given street address had the same name and variable values, regardless 

of the number of unique households at that address. 

For example, the multi-unit building shown below in Figure 86 has 63 records for 

the different apartments in the Epsilon data.  Each of the 63 records is listed with the 

same name.  The figure also illustrates selected demographic data associated with each of 

those records; all of the various elements are identical. 
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Figure 86: Example of Duplicate Epsilon Data 

 

The extent of this issue is illustrated in Table 24.  Researchers used multiple 

criteria to identify potentially problematic Epsilon records.  Those criteria involved the 

residence type as specified by Epsilon, the address and last name values, and the presence 

of apartment or suite numbers in the apartment text. The first category of records, 

comprising of the rows labeled “Multi-Family Dwelling Unit records,” “Condo records,” 

“Business records,” “Blank records,” and “Mobile Home records,” included all 

households that were not designated by Epsilon as “Single Family Dwelling Unit” 

households.  A total of 46,567 records fell into this category.  The second group includes 

records that had similar address and surname values in the dataset.  Researchers wrote a 

script that extracted both the first ten characters of the street address and the last name 

from each Epsilon record and then searched for instances of duplicate values.  The script 

used the first ten characters of the street address to avoid including apartment or suite 

numbers, which could be different.  The script identified 42,696 total records as 



 

 

189 

duplicates; within those records were 12,912 unique values.  The final category of 

problematic records included those with ‘APT’ or ‘SUITE’ included in the address text.  

A search of the Epsilon dataset identified a total of 23,522 records that fit this criteria.  

Many records fell into multiple categories; a record may have been listed as ‘Multi-

family dwelling’ units and also included ‘apt’ in the address text.  In the three categories 

described above, the investigation identified a total of 68,180 unique records.  

Table 24: Problematic Epsilon Records 

Total number of records 349,134 

Multi-Family Dwelling Unit records 30,931 

Condo records 10,397 

Business records 260 

Blank records 2,760 

Mobile Home records 2,219 

Records containing duplicate values 42,696 

Unique addresses within duplicate records 12,912 

Records with second-level addresses:  

Apt 20,303 

Suite 3,219 

Total number of problematic records 68,180 

 

 This issue presented an immediate and obvious source of bias for the study.  

Researchers must either use the same demographic data for each unit within the complex, 

which would be incorrect, or remove the multi-unit household data from the demographic 

sample.  That solution generated a clear source of bias by excluding households which 

typically have lower incomes.  Table 25 below illustrates the average values of household 

size, education, income, and head of household age for the single-unit, multi-unit, and 

other home types in the marketing data set.  Households categorized in the Multi-Family 

Dwelling Unit category have far lower average household incomes, and their average 

head of household age is younger too.  Education levels are similar, but single-family 

dwelling unit households include one more member on average.  
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Table 25: Demographic Means by Dwelling Type 

Measure Single-Family 

Dwelling Units 

Multi-Family 

Dwelling Units 

Other Units 

Number of records 302,567 30,931 12,876 

Household Income $64,553 $40,047 $55,298 

Household Size 2.51 1.52 1.91 

Household Education 

Level 

3.04 3.02 3.21 

Head of Household Age 3.80 2.96 3.57 

 

Figure 87 illustrates the household income distributions for households in the 

single family dwelling unit and multi-family dwelling unit categories.  As indicated by 

the differences in income averages and medians, the multi-family dwelling households 

have incomes which are more heavily concentrated towards the lower end of the 

spectrum.  The average household income of the multi-family dwelling category is 38% 

lower than that of the single family unit households.   

 

Figure 87: Household Income - Single Family and Multi-Family Units 

 Figure 88 shows the distributional differences in household size between the 

single family unit and multi-family unit households.  As may be expected, households in 
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single family dwelling units are larger by one individual on average.  The proportion of 

households with one individual is over 20% higher in the multi-family unit dataset versus 

the single family unit sample.   

 

Figure 88: Household Size - Single Family and Multi-Family Units 

Figure 89 illustrates the differences in household education levels for the two 

dwelling-unit types.  Here the differences are visible but very minor; single family unit 

households have marginally more representation in the ‘Some College’ category while 

multi-family unit households have a very slightly higher rate of observations in the 

‘College’ category.  The ‘Some High School’ proportion is also slightly higher in the 

multi-family dwelling unit sample. 
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Figure 89: Household Education - Single Family and Multi-Family Units 

Figure 90 shows the differing head of household age values for the single family 

and multi-family unit households.  Here the differences are once again pronounced.  

Households in single-family units skew older: the proportion of households in the 25-34 

age bracket is over 30% higher in the multi-family unit distribution.  The results indicate 

that the multi-family dwelling unit households under examination here are primarily 

younger people with smaller families, rather than older couples that may be downsizing 

after retirement.  
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Figure 90: Head of Household Age - Single and Multi-Family Units 

A summary of the differences in the single family dwelling unit and multi-family 

dwelling unit households can be seen below in Table 26.  The income, size, and age 

distributions are all significantly different across the two dwelling unit types, as expected, 

given the charts presented above.  Only the education variable cannot be said to differ, as 

the Mann-Whitney test could not reject the null hypothesis of distributional equality with 

95% confidence.  Multi-family dwelling unit households in this data set have lower 

household incomes, fewer members, and younger members overall. 
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Table 26: Differences between Single Family and Multi-Family Dwelling Data 

 Single Family Units Multi-Family Units 

 Income Size Education Age Income Size Education Age 

Mean $64,553 2.51 3.04 3.80 $40,047 1.52 3.02 2.96 

Median $62,500 2 3 4 $35,000 1 3 3 

Skewness 1.54 1.39 -0.20 0.56 1.77 2.47 -0.29 1.16 

Kurtosis 6.79 5.11 2.04 2.86 9.18 11.01 2.18 3.86 

Mann-Whitney 

Results 

p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

p = 0.073 p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

p = 0.073 p < 2.2x10
-

16
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Revised Epsilon Demographic Data 

After researchers pointed out the problems in the multi-family dwelling unit Epsilon data, 

the firm agreed to re-analyze the affected addresses and return new database query results 

to Georgia Tech.  The new data set contained reprocessed records for the 68,180 previous 

records that researchers identified as problematic.  Of those 68,180 new observations, 

19,344 remained the same as the old records while 48,846 were modified.  This section 

provides an investigation of the extent of the differences.  Figure 91 shows the 

distributions of annual household income for the households that were identified as 

having problematic data in the original data set.  The re-processed results for those 

households that were returned with different values are shown on the right hand side.  

The mean and median values of the two distributions are close; the most notable 

difference appears to be fewer households in the lower income range in the re-processed 

records.  Note that the difference in sample size values for the original and re-processed 

data reflect missing values in the original data that were populated in the newer dataset. 
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Figure 91: Household Income Distribution for Old and Re-Processed Data 
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Figure 92 shows the differences in the household size distribution after re-

processing.  Here the biggest change appears in the ‘1’ category: the re-processed data 

has noticeably fewer households with that size and thus has a higher average value with a 

flatter, more right-shifted distribution. 

 

 

Figure 92: Household Size Distribution for Old and Re-Processed Data 
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Figure 93 shows the differences in education level for the affected households.  

Here the two distributions are very similar, with no notable (or visible) differences 

between them.  Of the four factors examined here, this is the most consistent. 

 

 

 

Figure 93: Household Education Distribution for Old and Re-Processed Data 
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Figure 94 presents the differences in the head of household age distributions 

among the old and re-processed Epsilon demographic data.  Again, the median head of 

household age value remains the same for the two data sets, while the overall distribution 

flattens out and shifts to the right due to fewer households in the 25-34 age range 

category. 

 

Figure 94: Head of Household Age Distribution for Old and Re-Processed Data 

 

Overall, the re-processed data show some significant differences for the nearly 

49,000 households that were affected.  Table 27 summarizes these differences.  The 

households in the re-processed data have slightly higher annual household incomes: 

while the mean difference is less than $2,000, that difference represents a 4.5% increase 

over the original income average.  This is represented visually by a flatter, slightly right-

shifted distribution for the re-processed data; the lower skewness and kurtosis values 

confirm these differences.  Similarly, the re-processed households are larger by 18.6% on 

average.  The re-processed distribution displays less of a peak at the value of one, and is 
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thus also flatter and shifted more to the right than the original problematic data 

distribution.  The mean value for the head of household age increased by 19.4%, 

primarily by removing households from the 25-34 category.  Of the four factors 

examined here, only household education saw no significant changes after re-processing  

This is shown in the high degrees of similarity in the mean values and the skewness and 

kurtosis results.  This category was the only one in which the Mann-Whitney 

distributional comparison test could not reject the null hypothesis of equal distributions.  

Overall, the reprocessed data appears to have addressed a bias towards small, younger 

households with slightly lower annual incomes that was present in the original dataset.  

Note that the initial analyses presented in Chapter 8 and the beginning of Chapter 10 use 

the original data, while the later analyses use the corrected data.
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Table 27: Summary of Differences Between Old and Re-Processed Data 

 Original Problematic Data New Re-Processed Data 

 Income Size Education Age Income Size Education Age 

Mean $43,675 1.61 3.08 3.09 $45,636 1.91 3.09 3.69 

Median $35,000 1 3 3 $35,000 1 3 3 

Skewness 1.87 2.31 -0.37 1.03 1.82 2.11 -0.36 0.51 

Kurtosis 9.16 9.77 2.21 3.56 8.53 8.50 2.23 2.42 

Mann-Whitney 

Results 

p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

p = 0.3514 p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

p < 2.2x10
-

16
 

0.3514 p < 2.2x10
-

16
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Quality of SRTA Vehicle Detection Data 

Another foundational element of the analytical dataset that required quality assurance was the 

individual RFID vehicle detection data provided by SRTA.  Previous examinations of the data 

revealed potential issues in detection reporting, particularly in the timestamps associated with 

vehicle detections.  The SRTA lane use data also suffered from transmission issues that 

interrupted the data streams and individual gantry-level reporting issues stemming from faulty 

hardware or other causes that resulted in abnormally low detection counts.  This section will 

provide an overview of these complications. 

Mistimed Gantry Detections 

The first of these issues was the occurrence of misreported gantry detection times.  The table 

below shows an example of the detections of a single transponder over a six-minute period.  The 

bolded rows illustrate an instance of a detection that appears to have been reported at an incorrect 

time.  The detection at the fifth Old Peachtree Southbound gantry is reported after the detection 

at the third gantry, though it is physically located immediately after the sixth Southbound gantry.  

This would result in the trip-building script splitting the detections up into two different trips, 

despite the proximity of the detection times and the otherwise logical spatial progression of the 

detections. 

As a result, the trip-building script was modified to allow these misdetections while 

keeping track of the number that occur within each trip.  This changed the number of trips that 

were generated by the script: for an example day (February 15
th

, 2012), the total number of trips 

was reduced from 32,762 to 32,608.  Out of those 32,608 trips, 158 included misdetections.  One 

of those trips had two misdetections and the remaining 157 had one misdetection.  Incorporating 

the misdetections into the trips in this way also changed the speed characteristics of the resulting 



 

 

203 

trips.  For the February 15, 2012 example, the algorithm that broke up trips with misdetections 

yielded 28 trips with speeds over 100mph; two of these trips were estimated to have speeds of 

nearly 200mph.  After incorporating the misdetections so that the trips were not broken up, there 

were nine trips with speeds over 100mph.  The maximum speed in this new set was 114mph.  

This change appeared to reduce the number of unreasonably high speeds that were the result of 

misreported detections. 

Table 28: Example of Misreported Detection 

LaneID TransactionDateTime Direction Gantry 

170400 2/16/2012 13:20:24 SB OP09 

170390 2/16/2012 13:20:49 SB OP08 

170380 2/16/2012 13:21:10 SB OP07 

170370 2/16/2012 13:21:30 SB OP06 

170348 2/16/2012 13:22:06 SB OP04 

170338 2/16/2012 13:22:25 SB OP03 

170359 2/16/2012 13:22:34 SB OP05 

170328 2/16/2012 13:22:44 SB OP02 

170295 2/16/2012 13:23:52 SB PH07 

170281 2/16/2012 13:24:09 SB PH06 

170267 2/16/2012 13:24:33 SB PH05 

170256 2/16/2012 13:24:58 SB PH04 

170244 2/16/2012 13:25:22 SB PH03 

170231 2/16/2012 13:25:55 SB PH02 

170218 2/16/2012 13:26:17 SB PH01 
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 Figure 95 presents the counts of mistimed detections in the constructed trip set per month 

from January, 2012 through December, 2014.  After starting from a very large baseline in the 

first month, the misdetection counts drop to more reasonable levels by March, 2012.  Other than 

two relative spikes in August, 2012 and October, 2014, the timing issues in the reporting system 

appear to have been addressed by SRTA or their contractors. 

 

Figure 95: Mistimed Detections by Month 

Interruptions in Data Transmission 

Another significant issue occurred as the result of gaps in the various data streams.  These 

gaps occurred for two primary reasons: an outage in the server link connecting Georgia Tech 

with SRTA/ETC, or an error in the reporting system.  Instances of the first type of gap, in which 

Georgia Tech stopped receiving data from SRTA, are outlined below in Table 29 though Table 

31 and occurred over the course of the facility lifespan.  The first table lists the dates of missing 

or corrupted Account data.  These errors were largely concentrated in the first five months of 
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2012; that time frame covers 69 of the 72 missing days’ worth of data.  The 72 total missing days 

represent 6.6% of all days in 2012-2014. For data processing steps that require daily account 

data, such as those that pair the daily active transponders with Epsilon marketing data, the scripts 

find the first or most recent valid account file in that month.  For example, a script that looks for 

the account file for March 7, 2012, will instead use the records from March 6, 2012.  In the case 

of May, 2012, in which the first three days of data are missing, the scripts identify the 4
th

 as the 

first available date and use those records for May 1-3. 

Table 29: Gaps in SRTA Account Data Transmission 

Start Date End Date Days Missing 

1/6/2012 1/7/2012 2 
1/11/2012 1/11/2012 1 
1/14/2012 1/14/2012 1 
1/21/2012 1/22/2012 2 
1/24/2012 1/25/2012 2 
1/27/2012 1/28/2012 2 
2/1/2012 2/1/2012 1 
2/3/2012 2/5/2012 3 
2/7/2012 2/10/2012 4 
2/18/2012 2/18/2012 1 
2/25/2012 2/25/2012 1 
3/7/2012 3/7/2012 1 
3/11/2012 3/11/2012 1 
3/13/2012 3/13/2012 1 
3/15/2012 3/17/2012 3 
3/21/2012 3/24/2012 4 
3/27/2012 5/4/2012 39 
2/13/2014 2/14/2014 2 
2/28/2014 2/28/2014 1 

Total 72 
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Table 30 provides the time frames for the gaps in the remote traffic microwave sensor 

(RTMS) data stream used to collect vehicle counts and speeds.  Data from this real-time feed 

cannot be recovered in the way that other files can.  These gaps are less of an issue here, because 

this dissertation does not use the RTMS data stream.  The 136 missing days represent 12.4% of 

the three year timespan from 2012-2014. 

Table 30: Gaps in SRTA RTMS Data Transmission 

Start Date End Date Days Missing 

3/18/2012 4/13/2012 27 
6/4/2012 6/7/2012 2 
2/16/2013 4/18/2013 31 
6/4/2013 8/9/2013 67 
9/30/2013 10/8/2013 9 

Total 136 

 

 Only eleven days’ worth of individual vehicle detection data were lost, as shown in Table 

31.  The majority of these occurred in 2013.  Losses in this stream are more disruptive to the 

analysis, as it forms the basis of the constructed trip set and many of the operational data sets to 

which those trips are joined, such as travel speed averages and transponder counts.  Unlike the 

RTMS outages, the missing data in the Vehicle detection stream occurs on a day-by-day basis.  

Because the feed is not real time, any gaps in the transmission can be rectified by recovering the 

detection data once the connection has been restored.  The remaining losses occur due to empty 

or corrupted files rather than connection errors.  The 11 missing days represent just 1.0% of the 

1,096 days in the three years of analysis. 
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Table 31: Gaps in SRTA Vehicle Data Transmission 

Start Date End Date Days Missing 

10/6/2012 10/6/2012 1 
1/27/2013 1/27/2013 1 
2/24/2013 2/24/2013 1 
4/17/2013 4/17/2013 1 
6/5/2013 6/5/2013 1 
8/17/2013 8/17/2013 1 
9/26/2013 9/26/2013 1 
10/8/2013 10/8/2013 1 

10/22/2013 10/22/2013 1 
1/27/2014 1/27/2014 1 
2/28/2014 2/28/2014 1 

Total 11 

 

 The missing data in the Express Lane Trip summary stream are listed in Table 32.  These 

records are fairly evenly distributed through the three years under examination.  This stream is 

primarily used to identify which HOT trips were taken in Toll mode versus Carpool mode; other 

details about the trips themselves are replicated in constructed trip set which is derived from the 

individual vehicle detections.  The 18 missing days constitute 1.6% of the total days in the three 

year time frame. 

 
Table 32: Gaps in SRTA Trip Data Transmission 

Start Date End Date Days Missing 

9/21/2012 9/23/2012 3 
10/28/2012 10/28/2012 1 
1/27/2013 1/27/2013 1 
2/24/2013 2/24/2013 1 
4/17/2013 4/17/2013 1 
8/17/2013 8/17/2013 1 
10/8/2013 10/8/2013 1 

10/22/2013 10/22/2013 1 
1/27/2014 1/27/2014 1 
2/13/2014 2/14/2014 2 
2/28/2014 2/28/2014 1 
5/11/2014 5/14/2014 4 

Total 18 
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The overall impact of the missing data is slight; the most important stream, the Vehicle 

detections, has 99% of the study days represented in the data.  The Trip summary stream 

includes over 98%.  While the missing data rate for the Account stream is higher, at 6.6%, those 

data can more readily be substituted for with neighboring files.  The most extreme case of 

missing data occurs in the RTMS feed, which is not used in any analysis presented here. 

The second type of issue occurred primarily at the beginning of the facility operations.  

These reporting errors, and their durations, were as follows: 

1. Between the opening of the facility on October 1, 2011 and January 6, 2012, the 

General Purpose lane vehicle detectors were offline.  No vehicle detections were 

reported in the GP lanes until January 6, 2012. 

2. Until January 29, 2012, the Express Lane system reported no southbound trips 

originating at the Pleasant Hill segment of the corridor or those that start and end 

in the Old Peachtree segment.  These include trips ending at the end of the 

Pleasant Hill segment, as well as those ending at Jimmy Carter Boulevard 

southbound,   

Issues with Vehicle Detection Gantries 

In addition to identifying times in which SRTA Express Lane use data was missing or corrupted, 

the author investigated aberrations in the reported data itself.  This section looks at the individual 

RFID detection stream provided by SRTA to investigate potential problems in the reporting 

hardware or software.  A python script was employed to examine each day’s worth of detection 

data from 2012 through 2014 and counted the daily detections at each of the 35 HOT gantries.  

Figure 96 shows the resulting detection counts at each gantry for the duration of 2013; the plots 

are separated by the corridor segment.  The x-axis represents the day of the year (1-365).  Within 



 

 

209 

a given corridor segment, there may potentially be great variation in the typical number of 

detections recorded by individual gantries.  The Jimmy Carter Boulevard portion of Figure 96 

demonstrates this, as one gantry consistently exceeds 10,000 detections per day while two others 

report less than 5,000 per day.  This is also reflected in the measure of dispersion: while the 

average number of detections per HOT gantry per day in the 2013 data is 7435.5, the standard 

deviation is 4858.5.   

In each case, there are six dates in 2013 on which each segment reports virtually no 

detections.  Those six dates are the same for each corridor section and for all of the individual 

gantries within those sections.  Within those six days, the average number of detection counts 

across all thirty-five gantries is 7.0 per gantry.  For the remainder of the year, the average 

number of detection counts across all gantries is 7558.5 per gantry.  The scope of the issue in the 

2013 data, in terms of the proportion of affected gantries, indicates a system-wide problem rather 

than a gantry-specific problem.   

Table 33 lists the dates over all three years of study on which the Express Lane gantries 

reported fewer than 100 detections, along with the number of gantries for which this occurred 

and the average detection count at those gantries.  This list of dates includes two for which the 

detection count issue is not systematic but rather isolated to a small subset of one or two gantries.   
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Table 33: Dates of Low Express Lane Gantry Detections 

Date Number of Affected Gantries Average Detection Count 

10/13/2012 2 26.50 

10/27/2012 32 13.25 

2/23/2013 34 9.35 

4/16/2013 34 4.09 

8/16/2013 35 7.43 

9/25/2013 35 7.83 

10/7/2013 35 10.06 

10/21/2013 35 3.34 

1/26/2014 35 7.66 

1/29/2014 35 50.74 

2/12/2014 34 2.29 

2/27/2014 35 5.06 

7/15/2014 1 1.00 

 

 The thirteen days represented in Table 33 constitute 1.2% of the 1,096 days between 

2012 and 2014.  The impact of these days in which abnormally low numbers of detections are 

reported is that those days are essentially removed from the analysis.  Without sufficient 

detections, the processing scripts cannot construct vehicle trips.  The 100-detection criteria was 

selected to identify and isolate the six problematic dates in Figure 96.  Expanding that criteria to 

a maximum of 500 detections changes the number of affected days to a total of twenty-five, 

representing 2.3% of the total number of days examined.  The final analyses used the 100-

detection criteria. 
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Figure 96: HOT Detection Counts by Gantry - 2013 
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Chapter Summary 

This chapter presented an overview of the issues and complications involving the various 

data sets used in this dissertation.  These complications involved the structure of the data, 

the stability of the sample, and the quality of the data themselves.  The structure of the 

SRTA account data limited the scope of the user population that could be included in this 

dissertation.  The need to join vehicle data to transponder data restricted the sample to 

those accounts with one of each, though this restriction was loosened by finding accounts 

whose vehicles were all registered at one address.  The Express Lane Trip summary 

stream was able to improve the size of the sample but also suffered from many-to-many 

relationships that removed users from the study population.  This trip stream included 

transponders associated with multiple plates, plates associated with multiple 

transponders, and records with blank data in one or both of those fields.  Furthermore, 

these instances of transponders associated with multiple plates, or vice versa, also 

overlapped chronologically, narrowing and complicating the pairing process.  The 

resulting sample of transponders and households was smaller than the original 

population, but still included tens of thousands of each. 

Further complicating the pairing process was the longitudinal nature of the SRTA 

lane use data.  Account records changed daily: a transponder that was active one day may 

have been inactive the next.  Similarly, each month of lane use data included thousands 

of transponders that were detected for the first time.  The Epsilon demographic data, 

however, were cross-sectional, representing household characteristics from a single point 

in time.  The resulting rate of matches between the SRTA lane use data, the registration 
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database, and Epsilon demographic data was very consistent.  Though the users of the 

lane changed constantly, the sample under examination did not. 

Aside from the complications with the structure of the data, the contents of the 

various data sets had issues as well.  The Epsilon demographic data included problematic 

records for apartment dwellers and other households in multi-family units, though this 

issue was addressed for the majority of affected households.  The corrected data from 

Epsilon replaced the previously problematic data in the analytical file.  The SRTA lane 

use data suffered from interruptions in the data streams that eliminated specific dates 

from the analyses, but this impact was small.  Errors in gantry detection timing 

complicated the trip construction process, especially towards the beginning of the study 

period.  Again, this had a small impact on the overall data set.  The gantries were also 

affected by days of systematic or individual errors that reduced the numbers of reported 

detections to almost nothing.  These days also fell outside of the scope of the analysis due 

to the lack of data.  Some of the issues outlined here could be addressed, either through 

workarounds or by revising the affected data.  Others could not be addressed, and thus 

limited the scope of the study.  The primary goal of the data quality investigation was to 

illustrate the various ways the sample was affected due to issues in the data sources.  

What remains to be investigated is the overall impact of these issues on final sample.  

Though data quality issues narrowed the sample that was available for analysis, a sizeable 

number of transponders and households remain.  The next chapter will investigate the 

potential bias in the sample that results from these data quality issues. 
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CHAPTER 7 

POTENTIAL SAMPLE BIAS IN PAIRED VEHICLE ACTIVITY 

AND MARKETING DATA 

 

 

 

Initial analyses of the pairing of SRTA vehicle activity data and Epsilon marketing data 

set generated unexpected results.  The HOT lane use behavior among users in the lower, 

medium, and higher income segments was very similar (for this analysis, lower income 

households were defined as those with $50,000 or less in annual income, medium income 

households had $50,000 to $100,000, and higher income households had over $100,000 

in annual income).  The rates at which these groups used the HOT lanes relative to the 

GP lanes in the dataset, specifically trips from 2013, exhibited a 3.2% difference between 

the higher income and medium segments, and a 3.9% difference between the higher and 

lower income segments.  In both cases, the higher income segment had the higher rate of 

use.  With the limitations of that dataset in mind (no trips across both lane types, only 

11% of the transponder population represented, etc.), Table 34 is reprinted here from that 

research to illustrate the similarities in Express Lane use rates among the different 

income segments (Sheikh, 2015). 
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Table 34: 2013 Trip Characteristics by Income Segment 

 Full Dataset Lower Income Medium Income Higher Income 

Households Analyzed 28,953 7,959 12,592 8,402 

% of Households by Income 100 27.5% 43.5% 29.0% 

Total Trips Monitored 1,304,079 393,069 600,696 310,314 

     HOT Trips 282,616 80,340 126,745 75,531 

     GP Trips 1,021,463 312,729 473,951 234,783 

% of Total Trips by Income  30.1% 46.1% 23.8% 

% of HOT Trips by Income  28.4% 44.9% 26.7% 

% of GP Trips by Income  30.6% 46.4% 23.0% 

% of Trips in HOT Lane 
 

20.4% 21.1% 24.3% 

% of Trips in GP Lanes 
 

79.6% 78.9% 75.7% 

Average Trip Speed (mph) 52.3 52.1 52.4 52.6 

 

These results did not conform with research reported in similar contemporary 

studies in other cities and for other HOT lane facilities, which identify household income 

as a major, significant factor in toll lane decision making (Li, 2001; Burris, 2006).  

Because of this discrepancy, this dissertation includes an investigation into potential bias 

in the paired lane use and demographic dataset.  This chapter outlines these potential 

areas of bias in the sample, beginning with a look at the trip-taking behavior of users at 

each stage in the data pairing process.  The next section examines the rate of dropouts by 

frequency of corridor use in the pairing process to investigate whether there is a 

relationship between trip frequency and pairing success.  After that comes a look at the 

commutershed restriction employed in the analysis, followed by a comparison of 

available Census Bureau data at each stage in the process.  The chapter then discusses 

issues with the structure of the Account data structure in the SRTA lane use data, and 

finally provides an overview of the data loss at each stage in the process. 

Cumulative Trip Distributions by Sampling Level 

The first step in examining the potential bias in the demographic sample was 

creating cumulative trip distributions for the different levels of data pairing and data loss.  
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These levels include the full set of all detected transponders, the transponders that could 

be paired with address data from the vehicle registration database, and finally 

transponders that had matching demographic data. 

Figure 97 presents cumulative corridor trip count distributions based on the 

constructed trip dataset from 2013.  The transponders are ranked on the x-axis by the total 

number of trips they took over that timeframe.  The y-axis represents the share of the 

total trips taken.  For example, in the topmost chart, examining all transponders 

regardless of matching status, the top 10% of corridor users (identified on the x-axis) 

collectively took 69.69% of the total corridor trips in 2013 (identified on the y-axis).  At 

the median, half of the users (50
th

 percentile of users) made 97.10% of all 2013 trips.  

This figure includes all of the transponders in the data set; no pairing or narrowing has 

occurred yet.  Similarly, it includes all transponder-equipped trips; not just toll lane trips. 

 The second chart in Figure 97 provides the same distribution for address-matched 

transponders.  These are the transponders for which a GTRI registration database pairing 

could be made.  This is the first of two steps in pairing the SRTA vehicle activity data 

with the Epsilon marketing demographic data, and it involves a narrowing of the sample 

from over 400,000 transponders to 172,357 transponders.  Whereas in the unpaired chart, 

the top 10% of users had taken 69.69% of trips, here the top 10% of users took 56.75% of 

trips.  At the median, the 50
th

 percentile of unpaired users took 97.10% of trips.  After 

GTRI registration database matching, the 50
th

 percentile of users took 94.96% of trips. 

 The final chart in Figure 97 shows the ranked cumulative trip distribution within 

the activity-demographic matched dataset.  The transponder population has narrowed to 

76,051, or 18.02% of the original set of transponders.  The cumulative distribution curve 
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has flattened once again: here the top 10% of activity-demographic matched  users took 

44.13% of trips, and the 50
th

 percentile of Epsilon-matched users accounted for 93.36% 

of trips.   

 

Figure 97: Trip Count Distribution by Pairing Level 
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 Figure 98 again shows the cumulative trip count distributions at the unpaired, 

GTRI-matched, and demographic-matched levels.  These plots restrict the trips to 

Express Lane trips only.  As in the previous figures, each step in the pairing process 

creates a flattening of the cumulative distribution curve.  At the unpaired level, the top 

10% of users took 85.88% of all of the Express Lane trips in 2013.  By the time the 

distribution reaches the median user, all of the toll lane trips have been taken: the 

corresponding cumulative trip count percentage for the 50
th

 percentile user is 100%.  The 

GTRI-matched users in the second chart differ more at the high end: here, the top 10% of 

users took 70.69% of the Express Lane trips, while the 50
th

 percentile of users took 

98.49% of the toll lane trips.  Finally, at the demographic-matched level, the top 10% of 

users accounted for 58.20% of all Express Lane trips in 2013, while the top 50% 

accounted for 97.37%. 
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Figure 98: HOT Trip Count Distribution by Pairing Level 

 Iterating through the data pairing processes reduces the total proportion of 

corridor trips taken by the top 10% of users by an average of 12.78% at each of the two 

stages.  At the median, each pairing stage reduces the percentage of trips taken by 1.87%.  
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For the toll lane trips, these averages are slightly higher: the top 10% of users see an 

average of 13.84% reduction in their share of trips taken at each stage of the process.  

The top 50% of users see their total trip percentage decrease by 1.32% at each stage on 

average.  These rates are understandable, as by definition the most frequent users take the 

most trips; removing more frequent users will therefore have more of an impact on trip 

counts than removing less frequent users.   

 While the cumulative trip count distribution charts show some of the impact of 

the pairing process, the issue that arises with these figures lies in the uncertainty in the 

loss of trip data.  That is, the plots do not indicate whether the data loss was random or 

whether it was concentrated among certain users.  The flattening plots show that frequent 

users drop out of the sample during the pairing process: while the top 10% of all corridor 

users took nearly 70% of the corridor trips in 2013, the top 10% of demographic-matched 

users took less than 45% of the demographic-matched trips.  Less apparent is the impact 

of the pairing process on less frequent users, or the distribution of the impact on frequent 

users relative to those less frequent users.  The next section seeks to address this 

shortcoming. 

Pairing Dropouts by Rank 

To address the limitations of the cumulative distribution plots discussed above, 

trip data loss was assessed as a function of user rank.  As in the previous section, rank 

here is defined by a user’s position within the list of transponders ordered by trip count.  

The purpose of this investigation is to examine whether the data loss incurred during the 

pairing process is randomly distributed among corridor users or whether it is concentrated 



 

 

221 

within a specific portion of the transponder population.  This section examines the paired 

dropouts by their ranks before and after the pairing process. 

Y-Y Plots of Changes in Rank 

The first method used to investigate this question compared the transponder ranks 

before and after the two steps of the pairing process.  After ordering the transponders by 

the number of trips taken per transponder, each transponder was assigned a percentile 

rating based on its rank.  The most frequent trip takers, for example, were found in the 

first percentile.  The list of transponders was then narrowed to those which could be 

paired with GTRI registration database addresses, and also those whose addresses placed 

them in the I-85 commutershed.  The author assigned a new set of ranks to this new list, 

so that each paired transponder had a pre-pairing rank and a post-pairing rank. 

Figure 99 below is a Y-Y plot illustrating the percentile ratings, based on the 

number of total corridor trips for each transponder, of the sample of all transponders 

detected in the constructed trips versus the sample of address-matched commutershed 

transponders in the constructed trips.  A transponder’s position on the x-axis indicates its 

percentile rank in the original unpaired data set, while its position on the y-axis shows its 

percentile rank in the GTRI-matched commutershed dataset.  The trip counts and 

transponder lists were taken from the duration of calendar year 2013.  The plot shows that 

a user at the 25
th

 percentile of trip frequency within the full dataset is ranked at 45.10% in 

the GTRI-matched commutershed dataset.  A user at the 75
th

 percentile in the full set has 

a corresponding ranking in the matched dataset of 93.05%.  Additional percentile 

rankings can be found in Table 35. 
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The shape of the curve in Figure 99 illustrates the nature of the data loss.  If the 

losses were randomly distributed among the users, the resulting curve would follow the y 

= x line in the figure.  As greater percentages of data go missing, the y-y curve departs 

from the straight line.  The 25
th

 percentile figure mentioned above, which yields a 

45.10% rank in the GTRI-matched set, indicates the loss of less frequent users.  

Similarly, the 50
th

 percentile user appears at the 75
th

 percentile in the GTRI-matched data.  

The users ranked below the 50
th

 percentile have suffered more data loss than those above 

the 50
th

 percentile, and so the user’s relative position in the matched rankings decreases.  

As more data are retained, the curve arcs back towards the straight line. 

 

Figure 99: Percentile Ranks - All Detected vs. GTRI Commutershed Transponders 
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Figure 100 shows a similar Y-Y plot comparing the relative ranks of all of the 

transponders detected in the constructed trip dataset versus the subset of commutershed 

transponders for which an Epsilon demographic match could be made.  The y-axis in this 

plot shows the transponder’s percentile ranking within the Epsilon-paired commutershed 

dataset.  Here the 10% rank within all transponders corresponds to a 34.61% rank among 

the demographic-matched commutershed transponders.  At the 50% level within all 

transponders, the matching Epsilon-matched rank is 89.03%.  This plot shows more 

significant differences between the original and paired ranks relative to the GTRI-

matched chart; the differences in rank are greater at virtually every point across the 

spectrum. 

 

Figure 100: Percentile Ranks - All Detected vs. Demographic-Matched Commutershed Transponders 
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 Table 35 provides an overview of the percentile ranks in the original, GTRI-

matched, and Epsilon-matched data sets.  At every percentile level in the table, the 

corresponding GTRI and Epsilon matched ranks are significantly lower (that is, the 

percentile values are higher in the paired sets).  This indicates that there were fewer users 

below (with a higher percentile rank) a given transponder in the paired data.  For 

example, the 10
th

 percentile transponder became the 19.62% transponder by virtue of 

users in the 11-99
th

 percentile group dropping out of the GTRI-paired data set.   

The largest discrepancy between the original rankings and the GTRI-matched 

rankings shown in Table 35 occurs at the 50% level; the difference between the percentile 

ratings at that point is 26.58%.  Expanding the search to include percentile values outside 

of the table, the largest discrepancy across the whole spectrum occurs at the 46.78% rank 

in the original data set.  The corresponding GTRI-matched transponder rating at that 

point is 73.58%.  Between the original data set and the Epsilon-paired sample, the largest 

gap in the rankings presented in the table is at the 25% level: there the difference is over 

40%.  After this point, the rankings begin to converge again as sample retention 

improves.  The largest gap overall occurs at the 32.10% position in the unpaired sample; 

the percentile rating for that transponder in the demographic-matched set is 76.13%.  In 

both the GTRI- and Epsilon-matched rankings, the smallest difference is at the 90
th

 

percentile.   

The main takeaway from this table is the indication that more frequent users are 

more represented in the paired data sets.  At each rank level examined in the original data 

set, more of the less-frequent users are dropped relative to more-frequent users.  This 

effect is more pronounced among the demographic-matched transponders than it is 
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among the GTRI-matched transponders.  As in the previous section, these charts do not 

tell the whole story concerning which users are dropped.  The next section will examine 

the number of dropouts at each percentile rank in the various data sets. 

Table 35: Percentile Ranking by Pairing Step 

Full Transponder Set Ranking GTRI-Matched 

Commutershed Transponders 

Demographic-Matched 

Commutershed Transponders 

10% 19.62% 34.61% 

25% 45.10% 67.06% 

50% 76.58% 89.03% 

75% 93.05% 96.76% 

90% 97.30% 98.82% 

Dropout Counts by Rank 

While the previous section presented the relative ranks by total trip count of 

transponders before and after the demographic pairing process, it did not delve into the 

details behind the changes in those ranks.  This section seeks to expand upon that analysis 

by examining the numbers of transponders that are lost in the pairing process as a 

function of the frequency of their trip-taking.  The figures below present two perspectives 

on this issue. 

Figure 101 shows the number of dropouts that occur in the marketing data 

matching process at each transponder percentile rating.  Here again, the transponders 

were ordered by the number of trips they took in 2013.  Each transponder was then 

assigned a rank and corresponding percentage value based on the total number of 

transponders.  In a 100-transponder sample, for example, the transponder with the most 

trips would be assigned to the 0-1% bin, represented here by a percentile rating of 0%.  In 

this sample, each percentile bin contained 4,219 or 4,220 transponders.  These bins are 

represented on the x-axis of the chart below.  The y-axis displays the number of 

transponders from the original data set that were dropped during the demographic data 
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matching process.  For example, the first bin (at 0%) lost 1,320 out of 4,219 transponders, 

or 31.3%, after the data were paired to the GTRI and then the Epsilon data. 

What is immediately apparent in the figure is the increasing dropout rate among 

higher percentile ranks.  That is, the number of dropouts per percentile bin increases as 

the number of trips represented by each bin decreases.  The last quartile of bins consist 

almost entirely of dropouts; few if any transponders from those groups are present in the 

demographic-matched data.  Note that these losses may be due to a number of reasons: 

the households may be located in an area for which no marketing data were purchased 

(this is likely the case for those users with Georgia State Route 400 toll tags that do not 

live in the I-85 commutershed), there may have been an error in the addresses used for 

data set matching, or they may be less-frequent users which were not originally targeted 

in the marketing data purchase. 
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Figure 101: Paired Dropouts by User Percentile 

Figure 102 differs in that the percentile rating for each user is calculated by the 

total number of trips, not the total number of users.  This has the effect of changing the 

number of transponders represented in each percentile bin.  The 0-1% bin, for example, 

represents 180 transponders that collectively took 1% of the total corridor trips in 2013.  

The 99% bin, on the other hand, includes 116,883 transponders, each of which took an 

average of only 1.2 trips in all of calendar year 2013.  While the scale of the chart flattens 

the losses of the first three transponder quartiles, the losses in the remaining 25% are 

striking.  The results are consistent with the previous figure: transponders with fewer trips 

are less likely to appear in the demographic-matched data set. 
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Figure 102: Paired Dropouts by Trip Percentile 

 The pattern that emerges from both of these figures is the bias in the pairing 

process towards frequent users of the I-85 corridor.  The households for which the 

Epsilon demographic data was purchased, and to a lesser extent the households which can 

be paired to GTRI registration database records, are those which more frequently use the 

I-85 corridor and the Express Lanes.  This is to be expected, as the Epsilon marketing 

data purchase was deliberately targeted towards vehicles that were more frequently 

observed on I-85. 

Census Data Comparison 

Because demographic data from the purchased marketing data source were not 

available at all levels of the data pairing process, this research used Census data from the 
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American Community Survey 5-Year summary file to examine the demographics of the 

households at various stages of the pairing process.  The 5-year summary file was 

selected for its geographic specificity; it is the only summary file to present data at the 

block group level (U.S Census Bureau, 2013).  This chapter uses the 2009-2013 ACS 

Survey as it is the most recent version available at the time of writing. 

 The first step in this process involved geocoding the results from the Georgia 

registration database matching process.  Of all 983,860 plates sent to GTRI for 

registration database matching, 518,169 (52.7%) were returned.  Among these returned 

records were 366,298 unique households.  An address locator for the Atlanta region was 

constructed in ArcGIS using Census TIGER street data (United States Census Bureau, 

2014).  These county-level street data, provide by the Census bureau, were combined by 

the Atlanta Regional Commission (ARC) and included in their Atlanta Regional 

Information System (ARIS) data set (volume 1c, 2011).  After constructing the address 

locator, the author geocoded the 366,298 addresses matched to the registration database.  

293,883 of those addresses were successfully geocoded.  These geocoded results were 

then spatially joined to the Census block group in which they reside.  Figure 103 

illustrates the geocoded address matches and the Census block groups which contain 

them. 
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Figure 103: Geocoded Address Matches with County and Block Group Boundaries 

 

 Once the geocoded addresses were joined to the Census block groups, the author 

examined the American Community Survey 5-year data for those block groups to 

illustrate the income distributions of matched households.  Figure 104 below illustrates 

the distribution of census block group median income values for the 293,883 geocoded 

households in the registration-database matched data set.  These geocoded households 

represent 80.2% of the 366,298 households matched to the registration database.  This 

chart is presented at the top of Figure 104; the median value (of the block-group level 

median values) is just over $70,000 per year. 
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The second plot in Figure 104 presents the distribution of ACS block group 

median incomes for the geocoded households from the Epsilon marketing purchase 

dataset.  This dataset was generated separately from the previous registration-matched 

dataset, which used the SRTA trip records and account data as the source of its license 

plates.  The source of the license plates for the Epsilon demographic purchase was the 

two-year HOV-to-HOT conversion analysis that Georgia Tech conducted from 2010 to 

2012 (Guensler, et al., 2013).  This project involved the collection of 1.5 million license 

plates of I-85 corridor users.  Though two sets of license plates were collected using 

different methods (video observation versus automated reporting), there is significant 

overlap among them. 

Of the 349,134 households in the purchased marketing dataset, 289,557 (82.9%) were 

successfully geocoded.  The second plot in Figure 104 shows a different distribution 

shape for the geocoded Epsilon households compared to the geocoded GTRI-matched 

households.  Here the median household income is almost $8,000 lower, and the whole 

distribution is shifted to the left (towards lower incomes).  The final chart in Figure 104 

illustrates the households from the Epsilon marketing data that were successfully paired 

with the SRTA transponder data.  This pairing process is described in detail in the 

Connecting SRTA Data to Epsilon Data chapter.  This figure used December 31, 2013 as 

the date on which the SRTA and Epsilon data were paired.  A total of 40,426 households 

were successfully matched.  The resulting distribution of ACS median incomes is higher 

than both of the previous sets, with a median of over $76,000.  The distribution is also 

less heavily tilted towards the lower end and exhibits more of a rightward-shift, towards 

higher incomes, than either of the two previous charts.  These results suggest a noticeable 
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bias towards higher incomes in the SRTA-Epsilon paired data.  An overview of these 

three distributions is provided below in Table 36. 

 

Figure 104: Median Census Household Income Distributions 
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 Figure 105 presents distributions of the ACS block group household age data for 

the same three sets of households.  The first plot illustrates Census-provided household 

age data for registration database-matched households.  Here the median value of the 

ACS data is nearly 37 years old for the 293,883 households in the sample.  Again, the 

values reported for each household are the ACS estimates of the median household age of 

the block group in which the household is located.  

 The second and third charts in Figure 105 present the demographic-matched 

households and the SRTA-Epsilon paired households, respectively.  Within the 

demographic-matched sample, the median head of household age drops slightly, by less 

than one year.  The SRTA-Epsilon paired households have the same median age as the 

GTRI-matched households, though the shape of the distribution differs.  The paired 

sample, which is ultimately used in the analyses in this dissertation, has a more-

concentrated peak around the median, with fewer households on the shoulders of the 

distribution.  These charts indicate that the paired dataset, while exhibiting similar central 

household age measures, include marginally fewer households at the shoulders of the 

distribution. 
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Figure 105: Median Census Household Age Distributions 
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 Figure 106 presents the final set of distributions for the GTRI-matched, 

demographic-matched, and SRTA-Epsilon paired households: that of average household 

size of family households.  For each block group, the ACS reports estimates of the 

numbers of households with two individuals, three individuals, and so on, up to seven 

individuals.  The ACS also splits these estimates into ‘family households’ and ‘non-

family households.’  The distributions presented in Figure 106 include family household 

data.  The average household size for each block group was computed by counting the 

total number of persons reported by each family household category and dividing that 

value by the number of family households.  The inclusion of only ‘family households’ 

explains the minimum household size value of 2.  Here the average household size 

distributions for each sample are similar, with median values that differ by 0.07 at most.  

While the GTRI-matched sample has a less-pronounced peak than the rest, the shapes of 

the distributions are otherwise alike.  The activity-demographic paired sample has the 

highest median household age, but the magnitude of the difference and the similarity in 

the shapes of the distributions suggest that the discrepancy is not significant. 
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Figure 106: Average Census Family Size Distributions 
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 Table 36 provides an overview of the census data distributions for all three data 

sets.  The most striking differences appear in the household income comparison.  The 

average household income in the paired sample is over $15,000 higher than that of the 

full set of Epsilon households (which is not surprising as it includes non-freeway-users), 

but is also $5,000 higher than that of the GTRI-matched households, which might 

indicate a bias if the dropout rate is higher for low income households.  On the other 

hand, it may simply reflect that lower ACS income areas have a lower fraction of 

household users of the facility and that the census block average income does not reflect 

the average income of users from that census block.  The demographic-matched 

households have the highest level of kurtosis and the smallest inter-quartile range 

between the 25
th

 and 75
th

 percentiles.  As suggested by the distribution figures above, the 

SRTA-Epsilon paired households have substantially higher annual incomes than the 

larger pools from which they are drawn. 

 The household size distributional measures reflect the similarities apparent in the 

figure.  The average and median household size values are similar across all three data 

sets, as are the inter-quartile range measures.  The skewness results indicate that all three 

distributions are close to symmetrical, while the kurtosis values indicate that all three are 

more peaked than the normal distribution. 

 The household age distributions are also more similar than different.  Here the 

SRTA-Epsilon paired distribution is slightly less symmetrical, and slightly more peaked, 

than the other two samples.  Other measures also differ only marginally: the average 

household age in the SRTA-Epsilon paired data is 1.13 higher than that of the 

demographic-matched data, and the inter-quartile range is smaller than that of the GTRI-
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matched data by 1.1.  In all cases, Mann-Whitney tests rejected the null hypothesis of 

distributional equality at the 99% confidence level; but, this was to be expected given the 

large number of observation counts in each of the three data sets. 
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Table 36: Overview of Census Data Distributions 

 GTRI-Matched 

Households 

Demographic-

Matched 

Households 

Paired Epsilon 

Demographic Sample 

Number of 

Households 

293,883 289,557 40,426 

Household Income    

Mean $77,078 $67,012 $82,201 

Median $70,203 $62,418 $76,628 

25
th
 Percentile $51,458 $45,380 $60,625 

75
th
 Percentile $97,763 $82,317 $99,891 

Skewness 0.932 1.067 1.037 

Kurtosis 4.171 5.097 5.067 

Mann-Whitney Test 

Result: vs. GTRI 

N/A p<2.2x10
-16

 p<2.2x10
-16

 

Mann-Whitney Test 

Result: vs. Epsilon 

p<2.2x10
-16

 N/A p<2.2x10
-16

 

Mann-Whitney Test 

Result: vs. Paired 

p<2.2x10
-16

 p<2.2x10
-16

 N/A 

Household Size    

Mean 3.162 3.242 3.238 

Median 3.174 3.232 3.240 

25
th
 Percentile 2.907 3.020 3.051 

75
th
 Percentile 3.408 3.478 3.478 

Skewness 0.0343 0.0870 -0.187 

Kurtosis 3.564 3.807 3.712 

Mann-Whitney Test 

Result: vs. GTRI 

N/A p<2.2x10
-16

 p<2.2x10
-16

 

Mann-Whitney Test 

Result: vs. Epsilon 

p<2.2x10
-16

 N/A p=0.0065 

Mann-Whitney Test 

Result: vs. Paired 

p<2.2x10
-16

 p=0.0065 N/A 

Household Age    

Mean 37.29 36.23 37.36 

Median 36.60 35.70 36.60 

25
th
 Percentile 32.80 31.80 33.40 

75
th
 Percentile 41.20 40.10 40.70 

Skewness 0.628 0.605 0.758 

Kurtosis 4.277 4.172 4.672 

Mann-Whitney Test 

Result: vs. GTRI 

N/A p<2.2x10
-16

 p=0.0046 

Mann-Whitney Test 

Result: vs. Epsilon 

p<2.2x10
-16

 N/A p<2.2x10
-16

 

Mann-Whitney Test 

Result: vs. Paired 

p=0.0046 p<2.2x10
-16

 N/A 
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Account Stream Join Issues 

 As discussed in previous chapters, the registered account data that Georgia Tech 

receives from ETCC contains a many-to-many relationship between the transponders and 

vehicles.  That is, there is no linking element within an account’s record that specifies 

which transponder is associated with which vehicle license plate.  As a result, accounts 

with multiple vehicles and multiple transponders do not identify which vehicle is using 

which transponder.  This is a complication in the analytical process, as the method of 

pairing SRTA records with demographic data involves household addresses matching.  

So if an account has multiple registered vehicles, which are registered at different 

addresses, the results would link to more than one demographic data set. 

 Initial analyses reported in Sheikh (2016) addressed this issue by examining only 

those accounts with a single transponder and a single registered vehicle which allowed 

for a direct link between the transponder, the license plate number, the registration 

address, and finally the demographic data.  This method introduced bias into the results 

by including only accounts and households with a single vehicle.  An examination of the 

Account stream data, shown below in Table 37, shows the number of active accounts 

with zero, one, and two or more matching Epsilon records (by column) on January 1, 

2014.  These are accounts that are not in ‘Closed’ status (the remaining status values 

include ‘Active,’ ‘Proposed,’ and ‘Pending to Close’).  The bottom row shows the total 

number of transponders associated with those accounts.  In previous analyses, the 

majority of accounts, 87.2%, were not matched with a corresponding Epsilon ID and so 

cannot be paired with demographic data.  Of the 278,170 accounts, 230,503 (82.9%) were 

not paired with any Epsilon records.  45,955 (16.5%) were paired with one marketing 
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record, and 0.62% were paired with multiple marketing records.  These accounts, for 

which multiple marketing records were found, cannot be included in the analyses because 

they cannot be tied to a specific household.  Restricting the Account data to accounts that 

were not closed reduced the rate of unpaired records by 4.3% and increased the rate of 

accounts paired to one Epsilon record by 4%. 

Table 37: Counts of Active Accounts with Matching Demographic Data IDs 

Number of 

Active 

Transponders 

Number of Accounts Matched to 0,1, or 2+ Demographic IDs 

(percent of row total) 

0 IDs 1 ID 2+ IDs 

0 22,035 (100%) 0 (0%) 0 (0%) 

1 126,896 (85.3%) 21,758 (14.6%) 102 (0.1%) 

2 58,491 (78.7%) 15,290 (20.6%) 516 (0.7%) 

3 15,570 (72.5%) 5,539 (2.58%) 359 (1.7%) 

4 4,805 (69.3%) 1,924 (27.7%) 205 (3.0%) 

5 1,551 (66.2%) 682 (29.1%) 109 (4.7%) 

6+ 1,155 (49.4%) 762 (32.6%) 421 (18.0%) 

Total Active 

Transponder 

Count 

329,246 (75.3%) 88,602 (20.3%) 19,517 (4.5%) 

Data Pairing and Join Loss 

Every step in the dataset construction process entails some degree of loss.  This 

loss occurs when a join cannot be made successfully for a trip due to a lack of data.  At 

the demographic data join stage, for example, a trip is excluded if the transponder could 

not be paired with a unique demographic record.  For other stages, such as the toll rate or 

travel time joins, trips are excluded when no corresponding records can be found in the 

toll rate or travel time databases that match the date, time, and location of the trip in 

question.  The purpose of this section is to list the steps in the process and quantify the 

data loss that occurs at each of those steps.  Table 38 presents an overview of the joining 

process for the month of January, 2013, which includes more than one million 

constructed trips made by 120,822 unique transponders.   
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The first step is pairing the constructed trips with demographic data, which 

eliminates a significant portion of the available trip data (46.24% of the constructed trips 

from January 2013 cannot be matched to demographic data).  This step also removes an 

even larger portion of the transponder population, 64.88%.  In terms of trip 

characteristics, the changes are primarily in the category of lane type.   

After the vehicle activity data are joined with demographic records, the 

percentage of trips by lane use also change, as shown in Table 38.  General Purpose lane-

only trips decrease from 65.8% to 59.9%, while the Express Lane-only trips increase 

from 12.4% to 14.3% after matching, and the mixed-lane trip percentage changes from 

21.8% to 25.8%.  Average trip speed decreases slightly after matching, and while the 

average trip length is greater, than measure is problematic because it is correlated with 

lane use (as discussed previously in this dissertation). 

The next three steps in the join process (trip stream join, the toll rate stream join, 

and the average travel time join), have a much smaller impact on the numbers of trips and 

transponders in the data sets.  Of these three stages, the travel time join has the largest 

effect on the sample.  This join reduces the number of trips in the data set by almost 

100,000, and increases the general purpose-exclusive trip rate by over 4%.  Average trip 

speed after the travel time join is only marginally different than the previous three stages. 

After the demographic data join stage, the stage with the largest impact on the 

data set is the transponder detection count join.  This join reduces the trip count by over 

50% relative to the previous travel time join stage; the resulting count is 21.2% of the 

original sample.  Similarly, number of transponders in the sample decreases by roughly 

30% relative to the previous stage, and the remaining 28,740 transponders account for 
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23.8% of the initial data set.  Compared to the original, unjoined data set, the lane type 

use rates differ greatly.  The number of trips that occur solely in the general purpose lanes 

decrease from 65.8% to 53.3% compared to the original constructed trips; most of that 

difference is balanced with an increase in the rate of mixed trips. 

The loss of data during the data set construction process is particularly significant 

at the stage in which vehicle activity is joined to marketing data (loss of 46.2%) and then 

the transponder detection count join stage (loss of an additional 32.5% of the original 

data).  The final data set consists of just 21.2% of the original trip count, and 23.7% of 

the original transponder count.  The question that naturally arises from this is whether 

sample biases result from exclusion of data from the individual join processes.  While the 

loss of the marketing data is largely the result of households from outside the 

commutershed (38.7% of the active transponder population consists of transponders from 

the now-defunct Georgia 400 toll, a facility with a different catchment area), and are 

largely associated with infrequent users, the transponder detection count join losses are 

less intuitive.  It may be more valuable or worthwhile to forgo this step in favor of 

preserving more of the constructed trips.  As later chapters will demonstrate, this question 

is complicated by the fact that the transponder count join is the basis for some of the most 

valuable model components.  Similarly the Epsilon demographic data join, which 

removes the largest number of trips and transponders, is required for the demographic 

analyses that motivate this entire dissertation.  As a result, the strategy employed here is 

to describe the impacts of this data loss in this and other chapters of the dissertation so 

that the analytical results can be interpreted with full knowledge of their limitations. 
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Table 38: Data Loss by Join Step - January 2013 

 
Constructed 

Trips 
After 

Demographic 

Join 

After 

Trip Stream 

Join 

After 

Toll Stream 

Join 

After 

Travel Time 

Join 

After 

Transponder 

Count Join 

After 

Account  

Join 
# Trips  1,076,511 578,724 543,079 531,630 464,487 228,463 228,060 

# Transponders  120,822 42,438 41,978 41,897 40,957 28,740 28,673 

Avg. Length (mi)  8.21 8.59 8.46 8.47 8.28 8.88 8.89 

Avg. Speed (mph)  63.8 62.5 62.7 62.9 62.6 56.3 56.3 

% HOT Trips  12.4 14.3 13.1 12.9 9.7 14.6 14.6 

% GP Trips  65.8 59.9 63.8 64.1 68.5 53.3 53.3 

% Mixed Trips  21.8 25.8 23.1 23.0 21.8 32.1 32.1 
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Demographic Characteristics of Paired Data 

 This chapter has focused on the impacts of the Express Lane use and demographic 

data pairing process, specifically as it affects the transponder population and the trip 

characteristics of those transponders.  Another very important category of those impacts 

is the demographics themselves; that is, how the demographic characteristics of the 

sample change throughout the pairing and data set construction process.  This issue is 

discussed in Chapter 5.  Whereas this chapter uses Census data for the paired households, 

Chapter 5 (Connecting SRTA Data to Epsilon Data) examined the Epsilon data set as a 

whole.  The investigation of the paired Epsilon households revealed a sample that had 

higher average household incomes, older heads of household, larger household sizes, and 

slightly higher education levels than the full marketing data purchase.  Chapter 6 (Data 

Quality and Treatment) outlines issues with the demographic data, including the 

mishandling of multi-family dwelling units (which was corrected).  Chapter 6 

(Connecting SRTA Data to Epsilon Data) chapter also compared the users in the Epsilon-

paired sample with Census Bureau data for the City of Atlanta reported in the five-year 

American Community Survey.  Those differences included higher median household 

incomes in the Epsilon sample, along with fewer single-occupancy households, more 

undergraduate degrees, and far more home owners.  The ACS comparison is less than 

direct, however, as the measures were taken at different levels (households for the 

Epsilon data, individuals for much of the Census data) and different geographies (the I-85 

commutershed for the Epsilon data, the City of Atlanta for the Census data). 
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Chapter Summary 

 The purpose of this chapter was to examine the different ways that manipulation 

of the lane use and demographic data, primarily through the process that paired the two 

disparate data sets, had the potential introduce bias into the analytical results.  The 

mechanisms that created the possibility for bias include matching the SRTA corridor use 

data with the vehicle registration database, matching those results with the Epsilon 

demographic data purchase, and constructing the complete data set including corridor 

operational characteristics.  The impacts of these data processing stages were seen in the 

subset of Peach Pass transponders and Epsilon households that made it through the entire 

process.  The resulting sample differed from the complete set of SRTA data by primarily 

including those vehicles that frequently used the corridor; the bottom quartile of users 

ranked by trip frequency (infrequent users) were virtually excluded from the final paired 

sample.   

 The effects of the data processing required for the analyses in this dissertation on 

the demographics of the sample were examined in different ways.  Chapter 5 compared 

the paired demographic data with the full data purchase.  That chapter also compared the 

paired households with City of Atlanta dwellers using Census ACS data.  Chapter 7 

compared the ACS-provided demographic characteristics of the GRTI-matched 

households, to the households for which demographic data were procured, and with the 

households for which the SRTA-Epsilon pairing was successful.  That investigation 

found a substantial bias in the SRTA-Epsilon paired sample towards higher income 

households, while the other demographic characteristics examined were largely similar.  

However, it is impossible to know whether the difference constitutes a sample bias or a 
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revealed difference between facility users and non-users at varying levels of income 

aggregation (household vs. census level). 

 This chapter also examined the data loss that occurred in joining the SRTA 

constructed trips with the Epsilon demographic data and with the other streams that were 

provided by SRTA or derived from their data.  The join process results in the exclusion 

of a significant portion of the constructed trip population; the trips that remain at the end 

of the process differ primarily in the higher rates of toll lane use, lower average speeds, 

and fewer households represented.  The structure of the Account data stream is another 

potential source of bias: left unaddressed, the many-to-many relationships in the data 

stream restrict analysis only to those accounts with a single transponder and vehicle.  

Expanding the analysis to accounts with a single household address illustrates the 

potential scope of this bias: of the 88,602 active transponders associated with a single 

Epsilon record, only 21,758 (24.56%) come from single-transponder/single-vehicle 

accounts.  These issues must all be weighed and considered when conducting and 

interpreting the analyses that are performed later in this dissertation. 
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CHAPTER 8 

INITIAL HOT USE CHOICE ANALYSIS 

 

 

 

This chapter begins the investigation into the behavior and decision making of 

users and non-users of the I-85 Express Lanes, within and across various demographic 

groups.  The chapter uses the unique combination of Express Lane data and household 

demographic data to examine decision-making at the trip level for users from different 

income groups and demographic clusters.  Additionally, this chapter provides a summary 

of Express Lane use characteristics by these different groups.  The results may help 

inform future toll lane studies and investigations of equity impacts. 

The next section describes the sources of the data used in the study and provides 

an overview of the dataset.  The methodology section explains how the data were 

processed and the modeling techniques that were applied.  Next, the results section 

discusses the modeling outputs.  Finally, the chapter addresses the limitations of the data 

employed in the study and describes the next steps in this research.  A version of this 

chapter was submitted to the Transportation Research Board for the 2015 Annual 

Meeting; the paper was selected for presentation and for anticipated publication in 2016 

(Sheikh, et al., 2015). 

Data 

The data supporting this initial study come from the two sources described previously: 

Express Lane use data collected by SRTA, and household socioeconomic data procured 

from Epsilon, a marketing firm.  This chapter uses vehicle detection and toll rate data for 

calendar year 2013.  Within that year were over 157 million transponder detections and 
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more than 100,000 toll updates for the year (five-minute intervals).  Vehicle detections 

originate from the various HOT and GP lane RFID detectors.  Each detection record 

provides the unique transponder identification number, the detection time, and the lane 

type and gantry number at which the detection occurred.  The toll amount data stream 

was also used to identify the posted toll rate for each HOT entry and exit combination 

throughout the study timeframe.  For the 2013 assessment presented in this chapter, the 

system recorded roughly 62 million detections in the GP lanes and 95 million detections 

in the HOT lanes.  Traffic volumes are much larger in the general purpose lanes than in 

the HOT lanes.  At any given time, roughly twice the number of tag-equipped vehicles 

are operating in the GP lanes as in the HOT lanes (i.e. less than 1/3 of tag-equipped users 

have opted into using the HOT lane).  Because HOT lane detectors are located every 1/3 

to 1/2 mile, and there are only six GP lane detection stations, detector density in the HOT 

lanes is higher than in the general purpose lanes (5.8:1 in the southbound direction, 5:1 in 

the northbound direction), increasing the detections/vehicle/mile in the HOT lane.  Only 

the RFID-equipped vehicles are detected in the GP lanes.  Hence, the relative number of 

detections across the lanes is presented to demonstrate that the number of vehicles and 

monitored trips involved in the study is very large. 

The HOT and GP data originate from the same data source, and these data 

constitute revealed preference data, which sets this study apart from most previous 

studies.  Although the RFID-equipped vehicles are spread across multiple lanes, the large 

number of using the lanes means that the RFID-derived speeds, travel times, and other 

conditions from the vehicles in the GP lanes are representative of actual travel during the 

peak periods.  Speeds differ across GP lanes, and the RFID tags are not uniformly 
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distributed across these lanes.  Nevertheless, the volume of vehicles monitored in the GP 

lanes is such that the data can be used to represent the conditions of non-HOT travel.  

Similarly, the data allow for direct comparisons of the conditions between the Express 

and GP lanes.  The process of generating trips and estimating operating conditions from 

these detections was described previously in the Data Processing chapter. 

For this initial study, the data will only include trips that use only a single lane 

type.  Mixed trips (those that include trip segments in both the HOT and GP lanes) are 

excluded from the analysis until supplemental analyses are undertaken in Chapter 12.  

Hence, while the following analyses are representative of single-lane-type trip decision 

making, the behavior of the population subset that uses the lane for only a portion of their 

trips may differ significantly. 

The socio-economic data used in these analyses come from the marketing data 

described previously in Chapter 3 (Khoeini, 2013; Khoeini, 2014).  These data include 

many demographic variables at the household and individual levels.  This chapter makes 

use of the household level variables, as it is not possible to identify individuals within the 

observed lane-use data.  The household variables used here include income, size, 

education, and head of household age. 

As described previously, the full demographic data set originated from a list of 

license plates collected by researchers for a previous project at Georgia Tech (Guensler, 

et al., 2013).  These plates were collected quarterly, during peak period hours on I-85, 

from 2010 to 2012 as part of an HOV-to-HOT conversion analysis.  The complete data 

set included over 300,000 unique license plate records.  For the research described here, 

the subset of the data that could be tied to SRTA data were used.  This excluded 
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corporate accounts, which could not be joined to demographic data.  Accounts that joined 

to multiple households were also excluded.  The data were matched via a single-blind 

process that created a link between observed plates and the privately sourced data without 

explicitly connecting license plates with registration database data.  The results were 

stored on a secure server at Georgia Tech.  A total of 76,764 unique households were 

paired with the complete SRTA data; 28,953 households were identified within the study 

timeframe.  Previous chapters describe this process and its complications in greater detail. 

 

Variables in the data set included: 

 Lane Choice (dependent variable) - HOT lane vs. GP lane (coded as 1,0) 

 Trip Length (miles) - Based upon sequential tag reads, irrespective of whether the 

trip is in the HOT lane or GP lanes 

 Toll Amount ($) - Based upon toll paid for HOT lane use or toll that would have 

been charged based upon GP entry and exit locations 

 Trip Direction - Northbound vs. southbound 

 HOT Lane Speed (mph) – Space mean speed of trips in HOT lane along the same 

trip length at the same time 

 HOT Transponder Count – Count per fifteen minute bin of the number of tags 

detected in the HOT lane along the same trip length (surrogate for traffic volume) 

 GP Lane Speed (mph) - Space mean speed of trips in GP lane along the same trip 

length at the same time 

 GP Lane Transponder Count – Count per fifteen minute bin of tags detected in GP 

lanes along the same trip length (surrogate for traffic volume) 
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 Congested Conditions flag – Indicates speeds less than 40 mph in GP lanes 

 Household Income - Demographic data 

 Household Size - Demographic data 

 Household Education - Demographic data 

 Head of Household Age - Demographic data 

 

Figure 107 illustrates the marketing data demographic characteristics of this initial 

data set in the form of distributions for the 28,953 households.  As indicated by the 

income distribution, more than 40% of the households in the sample have annual incomes 

between $50,000 and $100,000.  The income segmentation categories arose out of the 

divide illustrated in this distribution.  The household size results illustrate that over 30% 

of the sample households include a single individual, while approximately 40% have two 

or three vehicles.  Roughly 50% of the sample households have members who completed 

a college education.  The proportion of households with graduate degrees is roughly 

similar to those with only some high school completed.  In terms of the head of 

household age, over 60% are between 35 and 54 years old. 
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Figure 107: Demographic Distributions of Examined Households 

Methodology 

The Vehicle detection stream described above delivers disaggregated data from each of 

the AVI scanners and HOT gantries.  Those disaggregate data needed to be processed in 

different ways for different purposes: vehicles trips were built from the disaggregate 

detections, average travel times and speeds were calculated for the various start and end 

locations on the corridor, and total transponder counts were collected for those same 

locations.  The Data Processing chapter earlier in this dissertation provides the details on 

how these various data sets were constructed and joined together.  Briefly, the individual 

vehicle detections were used to re-construct the trips taken by the Peach Pass holders.  

The resulting reconstructed trip includes data identifying the RFID transponder, the start 
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and end time of the trip, the gantry and corridor segment at which the trip started, the 

gantry and corridor segment at which the trip ended, as well as the overall speed and 

travel time for the trip.  This reconstructed trip data also include those characteristics of 

the individual GP and HOT portions of trips that use both lane types.   

Trips with speeds greater than 100 mph were excluded; this filter was 

implemented due to detections that were perceived to be mistimed or misreported.  Very 

few of the trips met this criterion; less than 0.1% of trips on any given day.  Additionally, 

trips that had speeds of 0 mph were also removed.  This screening eliminated less than 

0.1% of the trips on any given day.  Finally, trips that started or ended on SR-316 were 

excluded as there are no General Purpose tag readers on that branch (which made it 

impossible to compare conditions for the two lane types with the given data). 

For each trip, researchers estimated corresponding operational conditions on both 

lane types.  Average trip speeds for the fifteen-minute time interval on the specific day on 

which the trip was taken were calculated for the segments of the corridor that 

corresponded to the trip.  Similarly, researchers counted all of the distinct Peach Pass 

transponders that were detected within that road length at the same time.  Thus, for each 

trip, researchers were able to compare average HOT and GP speeds and unique 

transponder counts along the same road length at the same time.  This is not a count of all 

of the vehicles in the GP lanes, but it is meant to serve as a proxy of such a metric.  A 

congested conditions dummy variable was included for trips that occurred when average 

speeds were below 40 mph in the GP lanes.  The resulting trips were narrowed down to 

those weekday trips that occurred in the peak hour and direction: from 6:00-10:00 AM 

southbound, and from 3:00-7:00 PM northbound.  Finally, the trips were joined to toll 
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data to identify the amount charged for trips between the specified origins and 

destinations at the time of the trip.  For trips that occurred in the GP lanes, the toll amount 

was what the user would have paid had they taken the Express Lanes. 

The resulting data set is described below in Table 39.  The data set consists of a 

total of 1,304,079 trips, of which 282,616 were HOT-lane trips and 1,021,463 were GP-

lane trips.  These trips were extracted from the 2013 data.  These trips were taken by 

28,953 unique households with corresponding demographic data. 

Table 39: Overview of Initial Trip Dataset 

 Full  

Dataset 

Lower 

Income 

Medium  

Income 

Higher 

Income 

Households Analyzed 28,953 7,959 12,592 8,402 

% of Households by Income 100 27.5% 43.5% 29.0% 

Total Trips Monitored 1,304,079 393,069 600,696 310,314 

     HOT Trips 282,616 80,340 126,745 75,531 

     GP Trips 1,021,463 312,729 473,951 234,783 

% of Total Trips by Income  30.1% 46.1% 23.8% 

% of HOT Trips by Income  28.4% 44.9% 26.7% 

% of GP Trips by Income  30.6% 46.4% 23.0% 

% of Trips in HOT Lane  20.4% 21.1% 24.3% 

% of Trips in GP Lanes  79.6% 78.9% 75.7% 

Average Trip Speed (mph) 52.3 52.1 52.4 52.6 

Average Trip Length (mi) 7.96 7.45 8.14 8.27 

 

Table 39 also shows the proportion of trips taken by different income groups.  

Here, lower income households were defined as those with incomes less than $50,000; 

medium income households were defined as those with incomes between $50,000 and 

$100,000, and higher income households were those with incomes over $100,000.  As 

expected, the number of observed trips for each group was generally in proportion to the 

size of the income group within the transponder-equipped population.  However, the 

HOT lane usage rates were relatively constant across the three income segments (20% - 

24% of their trips).  Researchers were surprised by this finding, as it does not generally 

agree with the existing literature on HOT lanes.  This initial data set has a number of 
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limitations that are discussed later in the chapter, including the fact that the transponders 

examined here only make up roughly 13% of the active transponder population.  Average 

trip length also noticeably increases across the three income segments, which may be an 

artifact of geographical clustering along the corridor. 

Figure 108 illustrates trip speed distributions by lane type and income segment.  

The lane type distribution on the left shows the lower variance and greater consistency in 

Express Lane speeds, which is expected.  While the peak Express Lane speed is 

marginally lower than that of the GP lanes, a higher proportion of the trips are taken at 

this speed.  The GP lanes also see more trips in the lower speeds between 20 and 50 mph.  

As indicated above, the proportions of toll lane trips by each income segment are not 

vastly different.  It therefore follows that the speed distributions for each income group 

are very similar. 
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Figure 108: Trip Speed Kernel Densities in Initial Modeling Dataset 

In addition to the household income segmentation, k-means clustering on the 

demographic variables was applied to identify households with similar demographic 

characteristics.  The purpose of the clustering was to reduce potential bias that might be 

introduced by a dataset containing different numbers of trips for different households.  

This should help isolate the household-related error component so that it is no longer 

correlated with other model errors.  Table 40 provides an overview of the results of the 

clustering process.  Notable differences include the income and education of cluster two, 

illustrating highly educated households with higher incomes.  The third cluster groups 

households with older heads-of-household together.  Cluster one is the youngest and the 
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smallest in terms of household size, and has the lowest income.  Cluster four has the 

fewest households and the largest household size. 

Table 40: Household Cluster Overview 

Cluster 

Number of 

Households 

Number 

of Trips 

Mean 

Household 

Income 

Mean 

Household 

Size 

Mean 

Household 

Education 

Mean 

Household 

Age 

1 11,064 538,492 54,308 1.77 3.36 2.81 

2 6,512 245,948 135,881 3.24 3.86 4.22 

3 6,483 291,307 59,970 2.09 2.97 4.88 

4 4,883 226,878 91,572 5.63 3.29 3.50 

 

Logit Modeling 

After processing the data, researchers used binary logit modeling to investigate the 

potential factors influencing lane choice decisions.  The result is akin to a mode choice 

model, as the HOT Express and GP lanes differ in both price and operating conditions at 

any given time.  The dependent variable was the selected lane type (HOT lane vs.GP 

lane), with the base alternative set as the GP facility.  The average speed, transponder 

count, and toll amount factors are alternative specific, with generic coefficients.  Initial 

model investigation occurred across the entire sample and involved different 

demographic variables to examine their effects.  The model that was selected and is 

shown in Table 41 below as the Pooled Model was then used for the segmented and 

clustered data. 

 

Results of Initial Lane Choice Modeling 

Table 41 shows the results of the pooled, segmented, and clustered models, with the t-

statistic for each estimated coefficient in parentheses.  For the pooled model, all of the 

coefficients achieved significance at the 95% confidence level.  This is not unexpected, 

as the sample size was very large.  A visual inspection of the model results reveals a few 



 

 

259 

differences across incomes.  The estimates of the household income coefficients vary 

across the three income segments, with the higher income segment exhibiting the largest 

coefficient.  The coefficient for the lower income segment was the only one to fail to 

achieve significance.  This parameter relates to incomes within each segment, however, 

and may be affected by the actual ranges of incomes within each income segment.  Toll 

amount coefficients are, as expected, negative and significant across all income segments.  

The household size and education estimators are consistently negative across all income 

segments.  However, it may be that correlations between income and other independent 

variables are appearing in these results, as the discussion of demographic variable 

correlation in Chapter 3 (Data Sources) revealed positive correlation coefficients between 

household income and education and between household income and household size.  

The clustered models, designed in part to address this issue, are more varied in their 

estimator magnitudes.  Cluster four is the only demographic/market segment for which 

household size was a positive predictor of HOT lane use; this was the group with the 

largest household size.  Cluster two, with the highest household education and income, 

had the strongest income effect and the smallest education effect (not surprising given the 

variable correlation).  Only cluster three saw a negative impact from household income; 

this was the cluster with the highest head of household age. 

The clustered models had goodness of fit values similar to the pooled and income-

segmented models, with R
2
 values ranging from 0.183 to 0.213.  The primary purpose of 

the cluster analysis was to reduce potential bias in previous results from the presence of 

repeat data.  While the resulting fit measures were not largely different, the signs and 

magnitudes of the coefficients exhibit more variation. 
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The large amount of data yielded almost universally significant coefficients in 

each model.  However, with very large data sets, a statistically significant individual 

model parameter does not necessarily mean that the parameter will lead to a practical 

difference in final model application.  Researchers estimated elasticity values for each 

factor in the model to evaluate the relative impacts of the variables.  The disaggregate 

elasticity values were calculated for each observation and then averaged; with the results 

shown in Table 42.  It should be noted that the repeated observation issue that may bias 

the models also affects the elasticity results.   

Toll elasticity is uniformly inelastic across all income segments and demographic 

clusters.  The values, though small, are the largest of the negative elasticities in the table.  

Higher income households exhibit higher demand elasticity, approaching unity, with 

respect to income, while medium income households appear less likely to choose an HOT 

trip as income group increases.  Again, the income parameter reflects the range of income 

values in that segment.  Households from cluster two exhibit the highest sensitivity with 

respect to income, though the value is still below unitary elasticity.  A similar pattern can 

be observed for household size and age: the higher income segment is more sensitive to 

both of these factors, but the impact is still small.  The lower income segment exhibited 

the largest response to household education, although all segments and clusters had 

negative elasticities.  The highest sensitivity was observed with regards to trip distance; 

these values exceed unit elasticity across all segments and clusters.  However, this 

variable was later concluded to be problematic because the fraction of trips that traversed 

the entire corridor, by definition had to be HOT lane only trips.  This issue is discussed 

further in the Limitations section of this chapter.  After trip distance, the most 
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consistently high elasticity results came from the average speed differences.  At 

approximately 0.35 across all segments and clusters, an increase in HOT lane speed 

relative to GP lane speed increased the probability of choosing the managed lane by a 

positive but small amount.  Dummy variables (direction, GP congestion) were excluded 

from the elasticity calculations. 

The models presented here do not have high goodness-of-fit values, at least by the 

McFadden pseudo-R
2
 metric.  The primary goal of this initial research was not to achieve 

the best fit, but to compare the results across the different income and demographic 

segments.  These differences between the pooled and segmented models were confirmed 

with a chi-squared test.  The results were significant, yielding a test statistic of 6328, 

which far exceeded the critical value of 42.3 at the α = 0.001 confidence level (again, due 

to the very large sample size).  Similarly, the clustered models were significantly 

different than the pooled model, with a test statistic well above the α = 0.001 threshold. 
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Table 41: Initial Model Results 

 
Pooled 

Model 

Lower 

income 

Medium 

Income 

Higher 

income Cluster One Cluster Two Cluster Three Cluster Four 

Intercept -5.76 

(-122.11) 

-4.00 

(-39.52) 

-2.27 

(-9.43) 

-17.12 

(-70.08) 

-4.43 

(-55.95) 

-17.51 

(-69.93) 

-3.95 

(-38.08) 

-5.64 

(-37.07) 

Average Speed 0.032 

(96.1) 

0.038 

(60.57) 

0.031 

(63.02) 

0.028 

(42.38) 

0.033 

(63.79) 

0.031 

(40.51) 

0.034 

(47.84) 

0.028 

(36.2) 

Transponder Count -0.0026 

(-118.37) 

-0.0031 

(-74.53) 

-0.0023 

(-73.18) 

-0.0024 

(-55.82) 

-0.0029 

(-86.72) 

-0.0029 

(-57.26) 

-0.0020 

(-43.17) 

-0.0020 

(-38.31) 

Toll Amount -0.15 

(-90.43) 

-0.16 

(-49.79) 

-0.16 

(-63.29) 

-0.14 

(-41.87) 

-0.15 

(-54.56) 

-0.14 

(-35.5) 

-0.16 

(-43.6) 

-0.18 

(-45.67) 

HOT: GP Congestion 1.90 

(244.15) 

1.87 

(127.19) 

1.86 

(161.8) 

2.03 

(130.39) 

0.67 

(79.96) 

0.88 

(69.09) 

0.56 

(48.39) 

0.45 

(35.49) 

HOT: Southbound AM Trip 0.65 

(119.84) 

0.77 

(75.52) 

0.55 

(70.08) 

0.68 

(62.5) 

0.18 

(148.74) 

0.18 

(96.63) 

0.23 

(133.81) 

0.20 

(107.88) 

HOT: Trip Distance 0.19 

(245.13) 

0.21 

(141.43) 

0.19 

(160.85) 

0.20 

(123.18) 

1.87 

(154.45) 

2.09 

(115.2) 

1.78 

(106.91) 

1.94 

(103.78) 

HOT: log(HH Income) 0.18 

(37.9) 

0.0082 

(0.85)** 

-0.15 

(-6.72) 

1.13 

(55.19) 

0.062 

(8.14) 

1.22 

(62.63) 

-0.045 

(-4.69) 

0.11 

(8.08) 

HOT: Household Size -0.035 

(-23.95) 

-0.030 

(-8.47) 

-0.045 

(-21.05) 

-0.038 

(-13.79) 

-0.048 

(-11.49) 

-0.12 

(-23.73) 

-0.084 

(-16.79) 

0.022 

(5.41) 

HOT: Household Education -0.14 

(-40.6) 

-0.25 

(-42.55) 

-0.089 

(-16.91) 

-0.027 

(-3.43) 

-0.14 

(-25.96) 

-0.068 

(-5.07) 

-0.20 

(-26.35) 

-0.12 

(-13.96) 

HOT: Household Age -0.046 

(-21.05) 

-0.033 

(-8.57) 

-0.029 

(-9.25) 

-0.15 

(-28.76) 

-0.056 

(-9.03) 

-0.20 

(-29.99) 

0.078 

(13.2) 

0.060 

(8.18) 

Log-Likelihood -552750 -157210 -255180 -137190 -228880 -104170 -119090 -96743 

McFadden R
2
 0.188 0.209 0.175 0.203 0.183 0.213 0.204 0.186 

Chi-Squared Test Results (vs. 

Pooled Model) 

N/A Test Statistic: 6328 

Critical Value (0.001): 48.268 

Test Statistic: 7729 

Critical Value (0.001): 63.87 
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Table 42: Initial Models – Elasticity Results 

 Pooled Model Lower 

income 

Medium 

Income 

Higher 

income 

Cluster One Cluster Two Cluster Three Cluster Four 

Average Speed 0.35 0.42 0.34 0.30 0.36 0.34 0.38 0.31 

Transponder Count 0.086 0.089 0.083 0.087 0.091 0.10 0.073 0.067 

Toll Amount -0.24 -0.24 -0.25 -0.21 -0.22 -0.21 -0.25 -0.30 

HOT: Trip Distance 1.10 1.11 1.11 1.14 1.01 1.01 1.31 1.24 

HOT: log(HH Income) 0.14 0.0065 -0.12 0.86 0.049 0.94 -0.036 0.084 

HOT: Household Size -0.023 -0.011 -0.030 -0.036 -0.017 -0.11 -0.041 0.029 

HOT: Household 

Education 

-0.13 -0.21 -0.086 -0.026 -0.13 -0.070 -0.17 -0.11 

HOT: Household Age -0.045 -0.031 -0.029 -0.15 -0.044 -0.22 0.096 0.058 
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Limitations of the Initial Modeling Process 

While this initial research revealed useful and interesting results, certain 

limitations must be noted.  Mixed trips were excluded from this dataset; only those that 

occurred in a single lane type were studied.  There may be different household behaviors 

across income groups with respect to partial trip lane use and origin-destination patterns.  

The use of relative speeds to compare the lane types may have yielded some bias, as free 

flow speeds do constitute a choice of the drivers at the time they are driving.  Inherent for 

any observed choice in the data set is the individual driver’s assessment of the amount of 

time they believe they will save using the lane, for which no data are available.  Even 

though many different households were observed in the one-year period, the average 

number of trips per household in the data set was 45.1, and there still may be a significant 

impact associated with repeat observations of the same users.  The standard binomial 

logit framework used here does not account for repeated observations by the same users, 

so the results may exhibit bias in that regard.  As mentioned earlier, the cluster analysis 

and segmentation was designed to address this issue.  This potential limitation will be 

addressed again later in the dissertation. 

Travel time reliability, which is often cited as a benefit that HOT users are willing 

to pay for (Brownstone & Small, 2005), is not yet included in this research.  In addition, 

the lack of survey data available for this dissertation meant that this research could not 

incorporate trip purpose and other attributes that often play a large role in mode choice 

studies (Li, 2001).  The toll rate cap may change user behavior, as the price does not 

appear to reach market-clearing levels in 2013 (the toll cap is reached and congestion 

forms on the HOT lane).  And while the facility meets its 45mph goal the majority of the 
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time, congestion still occurs in the lanes.  Since the dataset only includes registered RFID 

tag holders, users without tags are not represented.  Finally, the number of transponders 

examined in this initial study was roughly 44,000, which constituted about 13% of the 

total active transponder population (approximately 345,000) for which observation data 

could be paired with demographic data.  This may have introduced some significant bias 

to the results. 

The distance variable incorporated into these models was later discarded, as its 

nature made it highly correlated with the lane choice dependent variable (all through trips 

on the HOT lane are 15.5 miles in length).  The distance variable was calculated by 

finding the difference between the first and last detection gantry.  The issue that made 

this variable unacceptable for modeling purposes was that the gantry locations are 

different across the two lane types.  As a result, the sets of possible distance values differ 

across the two lane types.  For example, only the Express Lane gantries extend for the 

entire length of the corridor.  So, in cases where the trip distance was approximately 

fifteen miles, a GP lane use was not possible.  Later chapters and models exclude the 

distance variable for this reason in lieu of segment counts, which do not vary by lane 

type. 
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Chapter Overview 

The purpose of this initial research was to identify potential factors associated 

with Express Lane use decisions and examine differences across demographic groups.  

The data used for these models included vehicle detections and toll amounts from 2013, 

along with the Epsilon marketing household demographic data.  These data were 

processed and combined to generate HOT and GP lane trips, attributes of those trips and 

corridor conditions, and socioeconomic attributes of the households making the trips. 

Binary logit mode choice models were estimated across different income segments and 

clusters to examine differences in decision making between low, medium, and higher 

income households and between demographically similar households.  The results 

indicated that the income-segmented models yielded different results than the pooled 

model at the 95% confidence level, but the parameters were largely consistent across the 

three segments.  The clustered households exhibited more variation in their responses, 

particularly for the older and larger households.  For the year studied, rates of HOT lane 

use were fairly consistent across the three income groups for which data were available, 

differing by a maximum of 3.9%.  Disaggregate elasticity values revealed low 

sensitivities to nearly all of the explanatory parameters with the exception of trip 

distance, and with income among the higher income users.  These elasticity values 

illustrated varying responses to household income and education, for example, across the 

segmented and clustered households.  It is important to note that this was the first stage in 

the modeling process; a look at the goodness-of-fit measures for the different models 

indicates that there is a lot of room for improvement.  These models also reflect the 
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limitations of revealed preference data; without accompanying survey data, the results are 

likely to be less than ideal. 

The next chapter will expand the scope of analysis to mixed trips, which occur in 

both lane types, and to a longer timeframe of data.  Future models will incorporate a 

number of improvements that were not yet included here.  The main improvements 

include testing interaction terms, identifying frequent users (for which lane choice 

behavior may differ compared to more casual users), incorporating the available panel 

data, and identifying carpool-mode accounts.  The interaction terms will be examined 

along with the correlation between the existing variables, particularly the demographic 

variables.  The study by Goodall and Smith (2010) found large benefits to modeling 

frequent and infrequent users separately, which should help in this research as well.  As 

discussed above, panel data methods should reduce the effects of correlation among an 

individual’s repeated choices.  Users with carpool-mode account types may make lane 

choice decisions differently; future models will address these account types.  Finally, the 

behavior of the higher income segment indicates that there may be more variation within 

that segment; future models will investigate those households at the highest end of the 

income spectrum more closely. 

Certain issues cannot be rectified with the existing data: for example, users may 

not actually reside at the addresses at which their vehicles are registered (as noted by 

Granell, (2002)).  In addition, there are fewer vehicle detectors in the GP lanes than in the 

Express Lanes, and those GP detectors are not always adjacent to an HOT detector.  This 

makes it difficult to compare travel times across the lane types directly, which is why this 
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research used space mean speed for comparison.  Limits on the toll rates, which were in 

effect during the months studied here, may also affect modeling results. 
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CHAPTER 9 

EPSILON-PAIRED VERSUS UNPAIRED TRANSPONDER MODELS 

 

 

 

As discussed in previous chapters, the process of pairing SRTA Express Lane use 

data with Epsilon household demographic data narrows the sample substantially and 

introduces the potential for bias in analytical results.  The purpose of this chapter is to 

examine the paired and unpaired data sets through basic models using operational factors 

to investigate the impact of the data loss caused by the pairing process.  Throughout this 

chapter, ‘paired’ data and ‘matched’ data refer to those trips which could successfully be 

joined to the marketing data set.  Both the paired and unpaired data include all other 

joins: travel time, trip stream, etc. 

The first section provides an overview of the paired and unpaired data used in the 

study.  The methodology section explains which variables were investigated and the 

modeling strategy that was employed.  The results section then presents and discusses the 

model outputs.  Finally, the chapter addresses the limitations of this analysis and 

describes the next steps in this research. 

Data 

The data set used in this analysis consists of the set of all trips in 2013 constructed 

from the individual vehicle detections provided by SRTA, joined to the additional SRTA 

data streams described previously in the Data Processing chapter.  Those streams include 

the Trip summary stream, the Toll Rate stream, and the Account stream.  The constructed 

trips are also joined to the travel time and transponder count databases that the 

researchers created, also using individual vehicle detections.  The data set was not joined 



 

 

270 

to the marketing data; rather the transponders that would have been successfully joined to 

that data were identified.  These matched transponders were those that could be 

successfully paired to the marketing on February 1, 2013.   

Within the 2013 constructed trip dataset, a total of 62,018 (26.5%) transponders 

were successfully paired with the Epsilon demographic data.  The remaining 172,216 

(73.5%) transponders could not be paired with demographic data.  Table 43 below 

presents an overview of the two data sets.  The data set that is paired with demographic 

data has roughly 700,000 more trips than the unmatched data set, and yet the unpaired set 

has 2.78 times the number of transponders as the paired set.  Users in the unpaired data 

set appear less frequently, taking an average of 10.2 trips per transponder, less than a 

third of the average in the paired data set.  Other trip characteristics are more similar: 

average speed differs by only one mile per hour, and the most frequent start and end 

segments in Express Lane trips are consistent across both data sets.  The unpaired users 

use the Express Lanes less frequently.  Furthermore, the GP-exclusive trip rate of the 

users in the unpaired data set exceeds that of the paired users by almost 5%.  Note that 

this table includes trips from all days and time periods; it is not restricted to weekday 

peak-period peak-direction trips. 

 
  



 

 

271 

Table 43: Summary of Paired and Unpaired Data Sets 

 Paired Data Set Unpaired Data Set 

Number of Trips 2,471,952 1,748,947 
Number of Transponders 62,018 172,216 
Average Trips/Transponder 39.9 10.2 
Average HOT Trips/Transponder 19.6 4.5 
Percent of Transponders with at least one HOT trip 73.8% 34.8% 
Average Trip Speed 53.2 mph 54.2 mph 
% HOT Trips 14.8% 13.3% 
% GP Trips 50.8% 55.7% 
% Mixed Trips 34.4% 31.0% 
Most frequent HOT entry point – Southbound Old Peachtree Road Old Peachtree Road 
Most frequent HOT exit point – Southbound I-285 I-285 
Most frequent HOT entry point – Northbound I-285 I-285 
Most frequent HOT exit point – Northbound Old Peachtree Road Old Peachtree Road 

 

As mentioned above, Table 43 showed the average number of trips per Peach Pass 

transponder in the paired and unpaired data sets.  To examine this further, Figure 109 

illustrates the distributions of the number of trips per transponder.  The paired dataset is 

far less concentrated at the low end, with a more substantial tail approaching the higher 

trip counts.  The unmatched dataset has a much larger proportion of transponders that 

take only one trip: over 30% higher than the paired dataset.  Table 43 shows that a far 

higher proportion of matched transponders take at least one HOT lane trip (75% vs. 

35%).  This result agreed with other findings in this dissertation that indicated that the 

households for which Epsilon demographic data were purchased were more frequent 

users of the corridor. 
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Figure 109: Trips per Transponder - Matched vs Unmatched with Demographic Data 
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Figure 110 restricts the distributions to the number of toll lane trips per 

transponder in the matched and unmatched sets.  The results are similar to the previous 

pair of charts, and the differences are similarly stark.  In particular, the proportion of 

users who did not take any Express Lane trips in 2013 is much higher in the unmatched 

data set (68%) than in the matched data set (32%).  Every other trip count bin, from one 

onwards, is smaller in the unmatched set than the matched set.  This is likely associated 

with households outside of the I-85 commutershed for whom we did not purchase data, 

such as Georgia State Route 400 users.   

 

Figure 110: HOT Trips per Transponder - Matched vs Unmatched Data 
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Figure 111 compares the overall trip speed densities for the two datasets.  Here 

the differences are less noticeable: the unpaired dataset has a slightly higher peak near 65 

mph, while the paired trips have marginally more trips near 35 mph.  The similarity in 

distributions is expected given the rates of Express Lane use across the two data sets.  

The higher peak at higher speeds in the unmatched data set, in which the rate of GP-only 

trips was higher, may reflect faster GP-lane trips outside of the peak periods. 

 

 

Figure 111: Trip Speeds - Matched vs Unmatched Trips 
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Methodology 

As in the previous chapter, researchers estimated binary logit models using the paired and 

unpaired data sets.  The variables available for the modeling investigation were restricted 

to operational and trip characteristics; demographic data could not be incorporated as 

they could not be provided for the unpaired transponders.  Variables in the data set 

included: 

 Lane Choice (dependent variable) - HOT lane vs. GP lane 

 Toll Amount ($) - Based upon toll paid for HOT lane use or toll that would have been 

charged based upon GP entry and exit locations 

 Trip Direction - Northbound vs. southbound (used for segmentation) 

 HOT Lane Speed (mph) – Space mean speed of trips in HOT lane along the same trip 

length 

 HOT Lane density (count) – Count of the number of tags per mile detected in the HOT 

lane along the same trip segment.  Transponder counts are based on 15-minute bins. 

 GP Lane Speed (mph) - Space mean speed of trips in GP lane along the same trip length 

 Congested Conditions flags – Indicates speeds less than 40, 35, 30, 25, 20, 15, or 10 mph 

in GP lanes 

 Segment dummy variables: Indicate whether the vehicle was detected in each of the five 

corridor segments (Old Peachtree, Pleasant Hill, Indian Trail, Jimmy Carter, and I-285).  

This detection can occur in either the Express Lanes or the General Purpose lanes. 

 Segment count: Total number of segments in which the vehicle was detected for that trip.  

The detections can occur in the Express Lanes or the General Purpose lanes. 

 Half-hour time interval dummy variables: Indicate which peak-period half-hour interval 

the trip occurred during.  The morning peak period extends from 6:00 AM to 10:00 AM, 

while the afternoon peak begins at 3:00 PM and ends at 7:00 PM. 
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 Seasonal dummy variables: Indicate which of the four seasons the trip occurred in.  

“Winter” includes December, January, and February. “Spring” includes March, April, 

and May.  “Summer” includes June, July, and August.  “Fall” includes September, 

October, and November. 

 Day of week dummy variables: Indicate on which day the trip occurred. 

 

As in the initial modeling work, the dependent variable was the choice to use the 

HOT lane at any point (HOT-incorporating trips vs. GP-exclusive trips), with the base 

alternative set as the GP facility.  The square of the average speed and toll amount factors 

were alternative specific, with generic coefficients.  The first modeling run estimated an 

intercepts-only model and then generated a series of models looking at each variable in 

isolation.  In the case of multiple dummy variables representing a single factor, such as 

the start time of the trip, all of the dummies were included.  The models restricted the 

observations to those weekday trips within the peak period hours and directions: 

southbound trips between 6:00-10:00 AM, and northbound trips between 3:00-7:00 PM.  

Researchers then estimated multivariate models incorporating all of the previously 

examined factors to investigate sign changes and other indicators of collinearity among 

the operation data.  After examining each variable on its own, researchers used the 

random forest technique to evaluate the relative importance of the different factors. 
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Univariate Paired vs. Unpaired Lane Choice Modeling 

The first model estimated included intercept terms only.  Table 44 shows the results of 

this most basic model, with the shares of each sample using the HOT alternative.  The 

intercept values are in line with the share of HOT alternatives; the matched share is 

slightly higher than the unmatched share in the AM peak models, and the intercept 

magnitudes reflect this.  Similarly, the unmatched users in the afternoon peak choose the 

HOT alternative less than 50% of the time.  The resulting intercept is the only negative 

parameter. 

 
Table 44: Matched vs Unmatched Models - Intercept Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) 0.078
***

 0.040
***

 0.152
***

 -0.047
***

 

 
t = 40.801 t = 16.317 t = 79.787 t = -21.237 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.000 0.000 0.000 0.000 

Log Likelihood -758,048.800 -457,673.900 -767,717.900 -558,693.700 

LR Test (df = 1) 0.000 0.000 0.000 0.000 

Note: 
*
p

**
p

***
p<0.01 
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Table 45 shows the results of the paired and unpaired models using the square of 

the difference in average speeds between the HOT and GP lanes.  Here the differences 

between the paired and unpaired segments were minor, but differences between the 

morning and afternoon models exhibited behavior that reappears throughout the chapter 

and the dissertation.  The coefficients for speed difference in the afternoon models 

achieved much higher levels of significance than those of the morning period models; the 

models’ goodness of fit values were higher as well.  Within comparable time period 

models, the results were inconsistent.  Matched users exhibited lower sensitivity to lane 

speed differences in the morning relative to unmatched users, while matched users in the 

afternoon were more sensitive than their unmatched counterparts. 

 
Table 45: Matched vs Unmatched Models - Speed Difference Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -0.182
***

 -0.263
***

 -1.412
***

 -1.374
***

 

 
t = -54.904 t = -62.807 t = -238.213 t = -196.993 

I(avgSpeed) 0.020
***

 0.024
***

 0.077
***

 0.064
***

 

 
t = 95.760 t = 89.372 t = 279.619 t = 202.597 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.006 0.009 0.057 0.040 

Log Likelihood -753,382.600 -453,582.100 -724,216.900 -536,413.800 

LR Test (df = 2) 9,332.425
***

 8,183.590
***

 87,001.810
***

 44,559.790
***

 

Note: 
*
p

**
p

***
p<0.01 

 

  



 

 

279 

Table 46 presents the results with only toll amount in the model.  For trips that did 

not occur in the Express Lanes, the toll amount used was the toll the user would have 

paid had they traversed that particular corridor segment at that specific time in the toll 

lanes.  For the general purpose lanes, the toll was always zero.  Here we see more of a 

difference in the morning peak models: higher toll amounts correlated with lower HOT 

lane use for matched users, but higher HOT lane use for unmatched users.  Afternoon 

peak users also exhibited positive sensitivities to the toll rate.  Again, the afternoon model 

coefficients achieved higher levels of significance. 

 
Table 46: Matched vs Unmatched Models - Toll Amount Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) 0.142
***

 -0.074
***

 -0.095
***

 -0.436
***

 

 
t = 40.067 t = -16.821 t = -30.916 t = -120.013 

tollAmount -0.022
***

 0.041
***

 0.136
***

 0.215
***

 

 
t = -21.424 t = 31.282 t = 100.783 t = 134.348 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.0003 0.001 0.007 0.017 

Log Likelihood -757,819.200 -457,183.600 -762,483.100 -549,175.100 

LR Test (df = 2) 459.082
***

 980.609
***

 10,469.470
***

 19,037.170
***

 

Note: 
*
p

**
p

***
p<0.01 
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Models in Table 47 include only toll lane density at the time of the trip.  The 

differences between the paired and unpaired models were slight, and while the morning 

and afternoon peak models had differing signs, the coefficients were all very close to 

zero.  Here the afternoon models do not exhibit the advantage in coefficient significance 

and goodness of fit that was present in previous models.  The models do not explain 

much, however, and the coefficient significance can be attributed to the large numbers of 

observations in each of the models. 

 
Table 47: Matched vs Unmatched Models - htDensity Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) 0.183
***

 0.280
***

 0.001 -0.088
***

 

 
t = 55.337 t = 65.289 t = 0.145 t = -22.522 

HOT:htDensity -0.001
***

 -0.003
***

 0.002
***

 0.001
***

 

 
t = -38.861 t = -67.882 t = 48.997 t = 12.700 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.001 0.005 0.002 0.0001 

Log Likelihood -757,282.100 -455,225.900 -766,472.400 -558,612.700 

LR Test (df = 2) 1,533.320
***

 4,896.054
***

 2,490.977
***

 161.863
***

 

Note: 
*
p

**
p

***
p<0.01 
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Table 48 presents the four models with the segmentCount variable, which counted 

the total number of corridor segments in which the vehicle was detected (in either lane 

type) for a given trip.  This variable replaced the ‘distance’ variable from earlier models, 

as that factor was highly dependent on the lane type.  The estimated coefficients were 

positive in all four of the models: longer trips increased the likelihood of Express Lane 

use.  In both the morning and afternoon peaks, the unmatched users saw greater increases 

in toll lane use probability with increasing trip length than the matched users.  The 

afternoon models again exhibited higher levels of significance in the segmentCount 

coefficients and better goodness of fit measures overall.  While these single-variable 

models do not have much explanatory power, they do reinforce the idea of separating the 

morning and afternoon trip models.  

 
Table 48: Matched vs Unmatched Models - Segment Count Only 

 

Matched Model 

AM 

Unmatched Model 

AM 

Matched Model 

PM 

Unmatched Model 

PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -1.444
***

 -1.986
***

 -2.215
***

 -2.835
***

 

 
t = -208.714 t = -223.116 t = -317.788 t = -326.001 

HOT:segmentCount 0.411
***

 0.563
***

 0.638
***

 0.757
***

 

 
t = 230.199 t = 239.717 t = 357.566 t = 340.554 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.037 0.070 0.097 0.128 

Log Likelihood -729,882.100 -425,493.500 -693,621.400 -487,393.800 

LR Test (df = 2) 56,333.390
***

 64,360.840
***

 148,192.900
***

 142,599.700
***

 

Note: 
*
p

**
p

***
p<0.01 

 
 

Table 49 presents the time of day dummy variables for the trip start time.  Start 

times were aggregated into half-hour increments, with the first increment (6:00 AM in the 
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morning, 3:00 PM in the afternoon) excluded from the models.  In the AM period 

models, the matched sample coefficient estimates were uniformly larger than those of the 

unmatched sample.  The corresponding t-statistics were larger in all cases as well.  The 

PM peak models followed the same pattern with the exception of the pm1530 coefficient.  

Taking a trip at that time increased the probability of toll lane use more for unpaired 

corridor users than for paired users.  For the remainder of the estimated afternoon 

coefficients, that relationship is reversed.  The afternoon peak models also exhibit lower 

goodness of fit measures and t-statistics overall. 
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Table 49: Matched vs Unmatched Models - Half-Hour Dummies Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -0.588
***

 -0.410
***

 -0.270
***

 -0.406
***

 

 
t = -108.509 t = -58.639 t = -43.923 t = -60.979 

HOT:am630 0.647
***

 0.476
***

 
  

 
t = 87.767 t = 50.003 

  
HOT:am700 0.791

***
 0.577

***
 

  

 
t = 107.600 t = 60.305 

  
HOT:am730 0.777

***
 0.620

***
 

  

 
t = 105.542 t = 63.981 

  
HOT:am800 0.845

***
 0.614

***
 

  

 
t = 111.955 t = 62.228 

  
HOT:am830 0.880

***
 0.637

***
 

  

 
t = 111.121 t = 62.603 

  
HOT:am900 0.827

***
 0.457

***
 

  

 
t = 100.025 t = 44.730 

  
HOT:am930 0.577

***
 0.151

***
 

  

 
t = 66.370 t = 14.353 

  
HOT:pm1530 

  
0.391

***
 0.445

***
 

   
t = 45.958 t = 48.773 

HOT:pm1600 
  

0.559
***

 0.492
***

 

   
t = 68.399 t = 53.944 

HOT:pm1630 
  

0.612
***

 0.482
***

 

   
t = 76.470 t = 53.312 

HOT:pm1700 
  

0.577
***

 0.507
***

 

   
t = 73.274 t = 56.495 

HOT:pm1730 
  

0.472
***

 0.434
***

 

   
t = 59.530 t = 47.502 

HOT:pm1800 
  

0.374
***

 0.308
***

 

   
t = 46.019 t = 33.332 

HOT:pm1830 
  

0.195
***

 0.113
***

 

   
t = 23.081 t = 11.917 
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Table 49 Continued 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.013 0.009 0.006 0.006 

Log 

Likelihood 
-747,872.400 -453,703.300 -762,947.100 -555,608.800 

LR Test (df = 

8) 
20,352.840

***
 7,941.195

***
 9,541.468

***
 6,169.773

***
 

Note: 
*
p

**
p

***
p<0.01 
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The dummy variable for general purpose lane congestion is examined in the models 

shown in Table 50.  The models used the congested40 variable, which is set to one if 

speeds in the general purpose lane are under 40 miles per hour, because previous 

modeling exercises have shown its strength relative to the other congestion dummy 

variables (35 mph down to 10 mph).  The results here were similar across the matched 

and unmatched models: congested GP conditions increased the probability of a decision 

maker taking a toll lane trip.  In the case of afternoon peak trips, paired users exhibited a 

higher level of sensitivity to general purpose congestion than unpaired users.  Again, the 

afternoon period models exhibit higher t-statistics and goodness-of-fit measures. 

 
Table 50: Matched vs Unmatched Models - GP Congestion Dummy Only 

 

Matched Model 

AM 

Unmatched Model 

AM 

Matched Model 

PM 

Unmatched Model 

PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -0.298
***

 -0.339
***

 -0.480
***

 -0.580
***

 

 
t = -106.654 t = -95.735 t = -172.029 t = -177.298 

HOT:congested40 0.725
***

 0.757
***

 1.264
***

 1.067
***

 

 
t = 186.475 t = 151.055 t = 316.305 t = 231.152 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.023 0.025 0.068 0.050 

Log Likelihood -740,380.100 -446,060.000 -715,165.400 -531,020.500 

LR Test (df = 2) 35,337.350
***

 23,227.780
***

 105,104.900
***

 55,346.280
***

 

Note: 
*
p

**
p

***
p<0.01 
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 Table 51 shows the results of the seasonality dummy variables on the four 

models.  The effects were relatively consistent across the matched and unmatched 

models, and across the morning and afternoon peak period models.  Taking a trip in 

spring, summer, or fall increased the likelihood of toll lane use relative to winter trips.  

Only the matched model for the afternoon peak had a positive intercept value, 

corresponding to its highest toll lane trip share. 

 
Table 51: Matched vs Unmatched Models - Seasonal Dummies Only 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -0.033
***

 -0.092
***

 0.027
***

 -0.163
***

 

 
t = -8.636 t = -18.369 t = 7.101 t = -35.777 

HOT:spring 0.137
***

 0.144
***

 0.162
***

 0.125
***

 

 
t = 25.516 t = 20.463 t = 30.364 t = 19.407 

HOT:summer 0.119
***

 0.161
***

 0.201
***

 0.155
***

 

 
t = 21.878 t = 22.977 t = 37.090 t = 24.291 

HOT:fall 0.191
***

 0.217
***

 0.135
***

 0.176
***

 

 
t = 34.752 t = 31.121 t = 25.037 t = 27.958 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.001 0.001 0.001 0.001 

Log Likelihood -757,398.600 -457,151.300 -766,932.600 -558,234.400 

LR Test (df = 4) 1,300.279
***

 1,045.336
***

 1,570.583
***

 918.432
***

 

Note: 
*
p

**
p

***
p<0.01 
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The final univariate models, examining the day of the week on which the trip was 

taken, are shown in Table 52.  The differences between the matched and unmatched 

sample models were not entirely consistent, though they mostly reflect the higher 

likelihood of paired users using the Express Lanes.  One notable difference between the 

morning and afternoon peak models was reflected in the coefficients for the Friday 

dummy variable: in the morning, a Friday trip reduced the probability of using the 

Express Lanes.  In the afternoon, however, Friday trips saw the largest increase in toll 

lane use probability.  The matched and unmatched coefficients for the Friday dummy also 

had the largest t-statistics among all four models. 
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Table 52: Matched vs Unmatched Models – Day of Week Dummies Only 

 
Dependent variable: 

 
hotUse 

 
Matched Model AM Unmatched Model AM Matched Model PM Unmatched Model PM 

 
(1) (2) (3) (4) 

HOT:(intercept) -0.037
***

 -0.060
***

 -0.013
***

 -0.198
***

 

 
t = -8.485 t = -10.908 t = -3.017 t = -38.702 

HOT:tuesday 0.219
***

 0.206
***

 0.108
***

 0.085
***

 

 
t = 36.317 t = 26.621 t = 18.208 t = 11.996 

HOT:wednesday 0.226
***

 0.218
***

 0.146
***

 0.124
***

 

 
t = 37.191 t = 27.860 t = 24.534 t = 17.298 

HOT:thursday 0.218
***

 0.193
***

 0.244
***

 0.211
***

 

 
t = 35.929 t = 24.730 t = 40.612 t = 29.491 

HOT:friday -0.107
***

 -0.129
***

 0.351
***

 0.330
***

 

 
t = -17.448 t = -16.282 t = 56.316 t = 46.162 

HOT Share 0.5195 0.51 0.5379 0.4882 

Observations 1,094,835 660,476 1,112,188 806,350 

R
2
 0.003 0.003 0.002 0.002 

Log Likelihood -755,472.400 -456,122.200 -765,842.500 -557,433.600 

LR Test (df = 5) 5,152.731
***

 3,103.383
***

 3,750.681
***

 2,520.131
***

 

Note: 
*
p

**
p

***
p<0.01 

 

A final set of models, presented below, incorporated all of the variables that were 

examined in isolation in the previous models, for the purpose of investigating whether 

any of them saw changes in their estimated coefficients that may suggest collinearity 

among the operational variables.  Table 53 presents these multivariate models for the 

morning peak period data sets.  The coefficient signs, magnitudes, and t-statistics were 

largely similar, with the only difference appearing in the am930 time interval dummy 

variable.  The unmatched users were less likely to take a toll lane trip at this time versus 

the 6:00 AM base interval, all else being equal.  The paired users saw a positive 
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coefficient for this same time interval.  The matched model yielded consistently higher t-

statistics for each estimated coefficient, though a lower goodness-of-fit value overall.   

At the individual variable level, the average speed difference coefficients saw a 

change in sign from positive to negative when included in the full models.  In the 

univariate models, the toll amount coefficient was negative for the matched AM model 

and positive for the unmatched model.  Here they were negative in both cases.  The 

congested40 dummy variable maintained its sign; collinearity between this variable and 

the average speed difference may explain the change in the latter coefficient’s sign.  The 

season and day of week dummies maintained their signs and relative magnitudes as well.  

The time of day dummy coefficients were also largely the same, with only the am930 

variable in the unmatched sample changing to a negative estimator.  This is likely an 

issue of correlation between the average speeds and transponder counts.  This issue is 

discussed further in Chapter 11 and Appendix A. 
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Table 53: Matched vs Unmatched AM Models 

 
Matched Model AM Unmatched Model AM 

 
(1) (2) 

HOT:(intercept) -3.224
*** 

(t = -234.165) -3.375
*** 

(t = -192.852) 

I(avgSpeed) -0.015
*** 

(t = -54.472) -0.010
*** 

(t = -28.338) 

tollAmount -0.669
*** 

(t = -327.190) -0.631
*** 

(t = -239.123) 

HOT:congested40 1.234
*** 

(t = 190.193) 1.192
*** 

(t = 140.548) 

HOT:spring 0.226
*** 

(t = 37.777) 0.220
*** 

(t = 27.766) 

HOT:summer 0.183
*** 

(t = 30.117) 0.222
*** 

(t = 27.771) 

HOT:fall 0.464
*** 

(t = 73.811) 0.437
*** 

(t = 54.269) 

HOT:htDensity -0.003
*** 

(t = -58.217) -0.003
*** 

(t = -49.780) 

HOT:segmentCount 0.904
*** 

(t = 329.242) 0.990
*** 

(t = 279.028) 

HOT:am630 1.949
*** 

(t = 206.604) 1.706
*** 

(t = 139.562) 

HOT:am700 2.316
*** 

(t = 228.233) 2.009
*** 

(t = 153.031) 

HOT:am730 2.257
*** 

(t = 216.092) 2.026
*** 

(t = 149.404) 

HOT:am800 2.019
*** 

(t = 196.589) 1.741
*** 

(t = 130.162) 

HOT:am830 1.689
*** 

(t = 168.221) 1.417
*** 

(t = 108.796) 

HOT:am900 1.122
*** 

(t = 114.734) 0.715
*** 

(t = 58.006) 

HOT:am930 0.307
*** 

(t = 30.360) -0.113
*** 

(t = -9.064) 

HOT:tuesday 0.238
*** 

(t = 35.408) 0.232
*** 

(t = 26.530) 

HOT:wednesday 0.214
*** 

(t = 31.583) 0.210
*** 

(t = 23.784) 

HOT:thursday 0.196
*** 

(t = 29.072) 0.166
*** 

(t = 18.846) 

HOT:friday -0.927
*** 

(t = -123.441) -0.874
*** 

(t = -90.043) 

HOT Share 0.5195 0.51 

Observations 1,094,835 660,476 

R
2
 0.155 0.171 

Log Likelihood -640,796.000 -379,319.300 

LR Test (df = 20) 234,505.600
***

 156,709.200
***

 

Note: 
*
p

**
p

***
p<0.01 
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Table 54 shows the results for the afternoon peak period trips.  The average speed 

coefficients maintained their positive sign in this case, though the previously positive toll 

amount estimates became negative.  The impact of toll lane transponder density remained 

positive, as did the segment count coefficient.  The half-hour interval dummy variables 

also saw unchanged signs.  Coefficient estimates for these dummy variables were lower 

in the multivariate models until the 6:00 PM time frame, at which point they exceeded the 

univariate model coefficients.  These models continued the trend of marginally-improved 

goodness-of-fit measures in the afternoon relative to the morning, and among unmatched 

data relative to matched data.  The congested40 dummy coefficients were very similar to 

those of the earlier univariate models.  The largest change appeared in the season 

coefficients: whereas in isolation the coefficients were uniformly positive, here the spring 

and summer trips saw a reduced probability of toll lane utilization.  The coefficients for 

fall were much smaller in magnitude and in one case did not achieve significance at the 

95% confidence level.  The results did not point towards a consistent difference between 

the paired and unpaired data, though they do indicate that there may be collinearity 

affecting these models as well. 
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Table 54: Matched vs Unmatched PM Models 

 
Matched Model AM Unmatched Model AM 

 
(1) (2) 

HOT:(intercept) -4.843
***

 (t = -303.926) -5.547
***

 (t = -285.030) 

I(avgSpeed) 0.014
***

 (t = 35.205) 0.006
***

 (t = 13.645) 

tollAmount -0.458
***

 (t = -202.776) -0.355
***

 (t = -134.844) 

HOT:congested40 1.272
***

 (t = 202.514) 1.079
***

 (t = 146.242) 

HOT:spring -0.207
***

 (t = -32.856) -0.194
***

 (t = -25.510) 

HOT:summer -0.275
***

 (t = -43.183) -0.285
***

 (t = -37.793) 

HOT:fall 0.064
***

 (t = 9.593) 0.001 (t = 0.183) 

HOT:htDensity 0.007
***

 (t = 94.212) 0.010
***

 (t = 112.416) 

HOT:segmentCount 1.107
***

 (t = 374.951) 1.252
***

 (t = 342.386) 

HOT:pm1530 0.133
***

 (t = 13.189) 0.248
***

 (t = 22.793) 

HOT:pm1600 0.183
***

 (t = 18.476) 0.161
***

 (t = 14.381) 

HOT:pm1630 0.320
***

 (t = 31.659) 0.145
***

 (t = 12.504) 

HOT:pm1700 0.410
***

 (t = 39.948) 0.286
***

 (t = 24.091) 

HOT:pm1730 0.429
***

 (t = 41.536) 0.314
***

 (t = 26.156) 

HOT:pm1800 0.499
***

 (t = 49.091) 0.354
***

 (t = 30.251) 

HOT:pm1830 0.374
***

 (t = 37.143) 0.260
***

 (t = 22.780) 

HOT:tuesday 0.058
***

 (t = 8.543) 0.024
***

 (t = 2.900) 

HOT:wednesday 0.090
***

 (t = 12.988) 0.049
***

 (t = 5.885) 

HOT:thursday 0.124
***

 (t = 17.657) 0.050
***

 (t = 5.931) 

HOT:friday 0.236
***

 (t = 32.211) 0.158
***

 (t = 18.679) 

HOT Share 0.5379 0.4882 

Observations 1,112,188 806,350 

R
2
 0.205 0.215 

Log Likelihood -610,606.400 -438,564.300 

LR Test (df = 20) 314,222.800
***

 240,258.700
***

 

Note: 
*
p

**
p

***
p<0.01 
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Paired versus Unpaired Modeling Discussion 

 The results of the univariate models did not point to a consistent set of differences 

between the matched and unmatched corridor users.  The matched models yielded larger 

coefficients than their unmatched counterparts for the time of day and day of week 

estimators, but lower coefficients for the segment count variable.  The toll lane density 

and speed difference estimators were similar for both samples.  The AM period paired 

user model yielded a negative toll amount coefficient, but this was not the case for the 

afternoon model.  The main differences between the morning and afternoon models in 

most cases included higher levels of significance for the coefficient estimates in the 

afternoon and different behavior on Friday trips.  Many of the differences between the 

paired and unpaired models, particularly those involving larger positive coefficients for 

the paired models, reflected the higher rate of toll lane use among the paired population.   

The multivariate models continued this trend of exhibiting no consistent 

differences between the paired and unpaired models, outside of the rate of toll lane use.  

Both the AM and PM peak period model sets suggested that collinearity may be affecting 

the results, particularly in the case of the average speed and season variables.   
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Random Forest Variable Exploration 

To further investigate the impact of the various operational variables on both data 

sets, researchers used the random forest method of estimating variable importance.  

Figure 112 shows the random forest variable importance results for the paired and 

unpaired morning trips.  Factors are listed in order of importance (from top to bottom), 

and the variable’s value along the x-axis indicates the impact on model accuracy caused 

by removing that variable.  The results were restricted to the top twenty variables for 

readability’s sake.  In all four cases, the simulation sample size was restricted to one half 

of the full sample so that the computational processes could finish successfully. 

 

Figure 112: Random Forest Results - Paired and Unpaired AM Trips 

 The morning trips in the paired and unpaired datasets yielded similar results from 

the random forest analysis.  The top nineteen variables were the same in both cases, with 

minor differences in order of importance.  Only the twentieth-ranked variable differed 
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between the paired and unpaired samples.  Of particular interest was the relative rank of 

the congested40 variable: in both cases, it sat above all of the other GP congestion 

dummy variables.  Certain variables represented the same underlying data: the htDensity 

variable used the value of the count.HOT variable divided by the length of the HOT trip.  

The avgSpeed.GP value was subtracted from the avgSpeed.HOT value to calculate at the 

avgSpeedDiff variable.  The segmentCount variable was the sum of all of the individual 

corridor segment dummy values (segmentOP, segmentPH, etc.).  The presence of these 

variables, and the similarities among their ranks, reflects the levels of correlation between 

them.  The similarity between the two variable importance charts speaks again to the 

similarity of the lane-choice decision-making behavior among the matched and 

unmatched samples. 

 Figure 113 presents the random forest variable importance results for the 

afternoon peak period matched and unmatched trips.  Here all of the top twenty variables 

were identical, again with only minor differences in their order.  One notable difference 

in these results versus the morning peak results was the relative position of the 

avgSpeed.GP and avgSpeed.HOT variables.  In the afternoon peak results, the average 

general purpose lane speed contributed more to model accuracy than the average toll lane 

speed.  The differences, though, were small in magnitude.  Again, the congested40 

dummy variable outranked the other congested dummies. 
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Figure 113: Random Forest Results - Paired and Unpaired PM Trips 

Chapter Summary 

This exploration of the trip-making behavior of demographic-matched and 

unmatched households revealed minor differences in the rates of toll lane use between the 

two populations, but many similarities in the decision-making factors.  Corridor users in 

the paired data set made more corridor trips per transponder, and more Express Lane trips 

per transponder, than the unpaired users.  This was expected as the demographic data 

purchase was targeted towards the commutershed identified by analyzing the addresses of 

frequent corridor users (Khoeini, 2014).  The examinations of univariate lane choice 

models revealed no large or consistent differences between the paired and unpaired 

samples, and the random forest variable importance investigations yielded very similar 

results for the two populations in both the morning and afternoon peak periods.  The 

combined effect of the various studies in this chapter suggest that while the paired users 
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were more likely to take corridor and toll lane trips, the factors that influence their 

decisions were more similar than different. 
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CHAPTER 10 

VALUE OF TRAVEL TIME SAVINGS ANALYSIS 

 

 

 

The study of the value I-85 HOT lane users place on the time they have saved by using 

the facility began with a paper submitted to the Transportation Research Board in August 

of 2013.  That paper was accepted for presentation at the 2014 Annual Meeting and 

publication in the Transportation Research Record.  The research examined travel time 

savings and toll amounts paid by peak-period HOT users who traversed the entire 

corridor: Old Peachtree Road to I-285 and vice versa.  The TRR paper (Sheikh, 2014) is 

largely reprinted in the Preliminary Analysis section below.  After this initial work, this 

chapter delves further into the value of travel time savings (VTTS) analysis by expanding 

the time frame and scope of trips, incorporating methodological changes that allow for 

partial trips to be examined as well.  The chapter uses the paired data set that ties the 

SRTA lane use data to the Epsilon marketing data to investigate differences in values of 

travel time savings across income segments.  This includes a comparison of the base 

constructed trip data set with the smaller, processed sample that allows for corridor travel 

time comparisons.  The chapter then examines value of travel time distributions for 

different income segments and presents the differences among those distributions.  The 

next section presents the results of attempts to fit the value of travel time savings data to 

various distributions.  After that, the chapter presents a comparison of VTTS results for 

full length trips versus shorter trips.  Finally, the chapter concludes with a discussion of 

the limitations of the analysis. 
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Preliminary Analysis 

As HOT lanes become more prevalent, both in the Atlanta metropolitan region and across 

the country, an understanding of the way users respond to the lanes and the benefits they 

derive is important.  Such an understanding can inform future implementations, 

increasing their efficiency and the welfare gains of the customers.  In that spirit, this 

research uses data from the I-85 Express Lanes to investigate users’ value of travel time 

savings and willingness to pay distributions.  This avenue of investigation is common to 

HOT lanes as the results can be used to help design pricing algorithms that satisfy 

throughput and revenue goals.  The results may be useful for other cities that are 

designing HOT lanes, and for the extensions of the system that are under consideration in 

Atlanta. 

In addition to comparing overall HOT and general purpose (GP) lane 

performance, this research also examines willingness to pay vs. frequency of facility use.  

The travel time and reliability measures are compared for infrequent users, frequent users 

who use the Express Lanes between two and three times a week, and very frequent users 

who use the HOT lane at least three times a week.  The Express Lanes are also contrasted 

with the leftmost GP lane to generate a more conservative estimate of I-85 Express Lane 

travel time savings.  Finally, the study compares the total value of time saved by HOT 

users to the time-value using the average wage rate in the Atlanta metropolitan region. 
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Data Description 

The first source of data used in this analysis was the individual vehicle detection data 

stream provided by SRTA and discussed earlier in Chapter 3, Data Sources.  The 35 

detectors in the Express Lanes and 13 detectors in the general purpose lanes allow the 

SRTA system to detect vehicles with Peach Pass RFID transponders in both lane types.  

The resulting data stream provides a unique transaction number, the unique identification 

number associated with the detected transponder, the specific lane in which the vehicle 

was detected, the gantry at which the detection occurred, and the timestamp of the 

detection.  These data are transmitted to Georgia Tech on a daily basis.   

The second source of data used in this analysis was the Express Lane trip 

summary stream.  These data provide trip characteristics for all trips in the HOT lane on a 

daily basis.  Characteristics include start and end times, start and end points, whether the 

trip was in ‘TOLL’ or ‘NON-TOLL’ mode, the toll amount paid, and the transponder 

identification number.  ‘NON-TOLL’ trips are those taken by vehicles with HOV3+, 

emergency vehicle, and toll exempt accounts (such as alternative fuel vehicles).  Toll 

amounts can be zero when the operating agency overrides the dynamic system, such as in 

the event of an incident.  Unlike the RFID detection stream, these data present only a 

single record for each Express Lane trip.  Only trips in ‘TOLL’ mode that had toll 

amounts greater than zero were included in this analysis. 

The time frame for this preliminary analysis was September, 2012 through May, 

2013 (nine months).  While the HOT facility opened in October of 2011, technical issues 

prevented the use of general purpose detection data necessary for this analysis until 

August of 2012.  Within the nine months under examination, approximately 100 million 
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vehicle detections and 3 million Express Lane trips were recorded.  This study focuses on 

the weekday peak periods of 6-10 AM (southbound) and 3-7 PM (northbound). 

The initial study of corridor through-trips reported in this section calculated travel 

times for the I-85 corridor from the aforementioned vehicle detection stream.  To identify 

trips by vehicles that traversed the entire corridor, the paper examined records of vehicles 

that were detected at the northern- and southern-most general purpose lane detectors, and 

vehicles that were detected at the northern- and southern-most Express Lane detectors, on 

the same day.  The study examined only these trips that traversed the entire length of the 

corridor.  One significant note is that due to the lack of general purpose lane detectors on 

the SR-316 segment of the corridor, trips between SR-316 and I-285 were not considered 

in this analysis.  Those trips account for 8.6% of all toll lane trips in 2012, compared to 

10.9% for trips between Old Peachtree and I-285. 

These general purpose readers do not span the entire length of the corridor: the 

Express Lanes extend approximately two miles beyond the range covered by the general 

purpose detectors.  The resulting corridor length examined in this research was 13.5 

miles, or approximately 88% of the total corridor.  The corridor travel time was 

calculated by calculating the difference between the timestamps of the two detections.  

These records were separated into detections in the general purpose and toll lanes, as well 

as in the northbound and southbound detections. 
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Travel Time Filtering 

The method for calculating travel times described above introduced a number of possible 

issues.  Detections at the endpoints of the corridor did not guarantee that the vehicle 

traversed the length of the corridor in a single trip.  Users chaining trips may have left the 

interstate to make a stop (e.g. food or gas), only to return much later, yielding unusually 

long travel times.  In addition, this method did not protect against mixed trips, in which 

the user traveled in both the HOT and general purpose lanes.  As long as she or he started 

and finished the journey in the same lane type, the intermediate portion of the trip was 

not automatically considered. 

To control for this potentially confounding data, researchers implemented filters 

to remove certain records.  The first of these filters was a limit of two hours for the 

overall travel time.  This value, selected arbitrarily, was judged to be a reasonable ‘first-

pass’ method of eliminating detections that might have been the result of separate trips, 

such as one in the morning and a second in the afternoon.  The second filter addressed the 

mixed trip issue.  Researchers identified vehicles that were detected traveling in the same 

direction in both the HOT and the general purpose lanes on the same day and then 

removed these trips from the data set for this initial analysis.  The remaining trips were 

undertaken by vehicles detected in only the HOT lane or only the GP lanes.  Finally, 

researchers implemented a filter consisting employing travel time mean and standard 

deviation calculations.  This filter maintained a running average, as well as a running 

standard deviation, of thirty travel times.  Records that had travel times that were within 

two times the mean and three times the standard deviation were maintained, while the 

others were removed.  This filter helped remove trips that exited the freeway to make a 



 

 

303 

stop and then returned later.  The researchers implemented this filter to more precisely 

identify and remove chained trips, as well as those data corresponding to multiple trips in 

the same direction on the same day.  These filters were applied to all of the chronological 

travel times from September 1, 2012 through May 31, 2013. 

As discussed above, the general purpose detection gantries do not cover the entire 

span of the Express Lanes.  To address this, the trip summary data, which contains the 

toll paid for each journey, was joined to the RFID detection data so that the disaggregated 

detections for each trip could be identified.  This join of the trip summary and RFID 

detection data allowed researchers to calculate travel times through the span of the 

corridor that was covered by the general purpose detectors, and to connect those times to 

the toll paid for the entire trip.  Because the general purpose detectors cover 88.1% of the 

corridor length, that proportion of the toll amount was used in the successive calculations.  

A potential limitation of this study is that this factor assumes uniform congestion between 

the monitored 88% and unmonitored 12% of the I-85 corridor. 

The nine months in this preliminary study produced a total of 151,517 trip 

summary records in the southbound direction and 176,725 in the northbound direction.  

The RFID detection data set contained 141,143 southbound HOT travel times, 376,654 

southbound general purpose travel times, 145,886 northbound HOT travel times, and 

274,852 northbound general purpose travel times.  After joining the trip summary records 

to the RFID tag read data stream, 108,411 southbound trips and 104,786 northbound trips 

remained for analysis.  These trips contained both positive toll data and HOT travel time 

data for the subsection of the corridor that could be directly compared to the general 

purpose lanes.   



 

 

304 

Reliability Calculations 

The RFID detection dataset was then used to calculate average general purpose travel 

times and travel time reliability for both lane types.  The general purpose travel times 

were aggregated into daily fifteen-minute harmonic means.  Travel time reliability was 

evaluated in fifteen-minute bins at the monthly level using the buffer index measure.  The 

formula, provided by the Strategic Highway Research Program, is as follows: 

              
                                               

                   
 (Margiotta, 2013) 

The buffer index was applied to the average general purpose travel times and to 

the individual HOT trip times to generate buffer times. The buffer times were then added 

to the trip times to compute the planning time metric, where planning time is defined by 

the Federal Highway Administration (FHWA) as the “total time a traveler should allow 

to ensure on-time arrival” (FHWA, 2006).  The results for the AM and PM peak periods 

can be seen below in Figure 114 and Figure 115. 

Value of Travel Time Savings Calculations 

To examine travel time savings in the HOT lane, the HOT toll and RFID detection 

dataset was joined to the set of average travel times for the general purpose lanes.  This 

allowed for the direct comparison of actual Express Lane travel times to average general 

purpose travel times on that same day by 15-minute time intervals.  The average number 

of general purpose corridor trips used to compute these averages was 30 in the 

southbound direction and 25 in the northbound direction.  Trips in which the HOT travel 

time was higher than the GP time, and thus the VTTS was negative, were removed from 

the analysis in the TRB paper.  This was justified by the SRTA policy to refund the tolls 

paid by users who experience breakdown conditions in the HOT lane.  Those trips are 
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retained elsewhere in this dissertation in the choice-based models of Chapters 8 and 12.  

Additionally, trips in which the time savings was less than five seconds were excluded in 

this preliminary analysis as they were not significantly different than zero.  Similar 

research by Wood and Burris (2014) also removed trips with negative or very low values 

of travel time savings.  These parameters resulted in the removal of 186 (0.31%) 

observations from the northbound trips and 808 (1.47%) observations from the 

southbound trips.  Note that further publications of this research will involve a sensitivity 

analysis of this parameters for exclusion. 

Researchers also calculated general purpose lane average travel times for vehicles 

that used only the leftmost general purpose lane (GP lane one).  These vehicles were 

detected in the left GP lane at each scanning gantry, though they could potentially have 

changed lanes and returned in between general purpose lane detection points.  The 

resulting dataset contained individual Express Lane trip records along with the time saved 

relative to average GP travel times. 

Travel Time Variability and Frequent User Groups 

A similar procedure connected the HOT travel time data with the planning time results in 

both the Express and general purpose lanes, allowing for the difference in planning times 

to be computed.  In the absence of survey data, it remains unknown whether the users are 

expecting increased reliability in the HOT lane, rather than only travel time savings.  The 

study also identified frequent and very frequent users of the Express Lanes to investigate 

the differences in their use of the HOT lanes.  ‘Frequent’ users were defined as those who 

use the lane at least twice a week, or seventy-five times over the nine month interval.  

‘Very frequent’ users were those who used the lane at least 115 times, or roughly three 
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times a week (selected arbitrarily to begin examining differences in lane use).  The study 

developed separate value of travel time savings for the frequent, very frequent, and 

infrequent users to see if differences existed.  Finally, researchers compared the total toll 

paid by all Express Lane users in this dataset to the value of that time using the average 

wage rate in the Atlanta region. 

Average Travel Time and Planning Time Results 

The average morning peak southbound travel time from Old Peachtree Road to I-285 was 

889 seconds in the HOT lane and 1047 seconds in the general purpose lanes.  In the 

northbound direction, the average travel times during the afternoon peak were 798 

seconds in the HOT lane and 976 seconds in the general purpose lanes.  Figure 114 

illustrates how those times, along with the associated planning times calculated from the 

buffer index, vary across the morning and afternoon peaks.  The I-85 Express Lanes 

provide substantial travel time and reliability benefits, especially in the morning peak 

period.  Figure 114 also indicates that travel times are lower and more consistent in the 

afternoon peak, but the Express Lanes still provide travel time and reliability 

improvements.  For the figure below, the buffer time values were calculated across all 

nine months of peak period data. 
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Figure 114: Preliminary Analysis - Average Travel and Planning Times 
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Buffer Time Difference Results 

Buffer time, as defined by the FHWA, “represents the extra time (or time cushion) that 

travelers must add to their average travel time when planning trips to ensure an on-time 

arrival” (FHWA, 2006).  The buffer time values for each fifteen-minute interval, 

calculated across all nine months, are shown in Figure 115 for both the morning and 

afternoon peak periods.  The morning peak sees similar results for the HOT and general 

purpose lanes, with the HOT lanes reporting a marginally higher buffer time than the GP 

lanes for two of the time intervals.  The relatively low buffer times for the 7:45 – 8:00 

AM period do not indicate an improvement in traffic but rather show that this period is 

very consistently congested.  Express Lane reliability is more consistent in the 

northbound direction, and the GP buffer time figures are lower as well.  Again, the HOT 

buffer time marginally exceeds that of the GP lanes for two of the time bins. 
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Figure 115: Preliminary Analysis - Average Peak Period Buffer Times 
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Value of Travel Time Savings Distributions 

For each Express Lane trip, the study used the toll paid (multiplied by the trip length 

reduction factor of 0.8806 discussed earlier) and compared the travel time to the average 

GP travel time for that specific day, hour, and fifteen-minute interval.  Using the toll 

amount and the travel time difference, the user’s value of time saved was calculated for 

the HOT lanes.  The range of values of travel time savings was from $0.20/hour to 

$4,000/hour for the study corridor over the nine-month study period.  Note again that 

these figures are based on the five-second minimum travel time difference and the 

exclusion of negative values of travel time savings.  The low values in this range 

occurred when the operating agency set the toll to off-peak rates, including values as low 

as $0.05.  This may have been due to an incident in the lane.  The high values result from 

trips in which the travel time difference equaled the cutoff value for time savings of five 

seconds.  In both the southbound and northbound plots in Figure 116 below, the tail of 

the distribution stretches far beyond the limit of the chart.  The resulting distributions 

resemble gamma distributions, with the southbound figure yielding higher mean and 

median values ($55/hour and $36/hour respectively) and more dispersion than the 

northbound (mean of $34/hour, median of $26/hour).  A later section in this chapter 

explores fitting these data to the gamma and other distributions. 
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Figure 116: Preliminary Value of Travel Time Savings Distributions 
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Summary of Value of Travel Time Measures 

Table 55 presents the differences in median measures of travel time savings, planning 

time savings, and values of travel time savings for infrequent users, frequent users, and 

very frequent users in the preliminary analysis.  The 25
th

- and 75
th

-percentile values are 

given in the square brackets.  These values were calculated using average travel times 

across all general purpose lanes, as well as average travel times for users of GP lane one 

(the left-most lane).  This preliminary study also examined the leftmost lane to find a 

more conservative estimate of HOT lane benefits.  The operating assumption was that the 

left lane would see lower travel times than the combination of all GP lanes, which is 

generally true for the full corridor traverse, and thus the resulting HOT benefits would be 

lower as well.  Isolating the left lane restricted the number of trips used to calculate the 

average travel times: across all lanes, an average of 30 southbound trips and 25 

northbound trips were used for each time interval, while a mean of 7.7 southbound and 

1.7 northbound trips were averaged for each left-most lane interval. 

The results in Table 55 indicate a number of interesting and sometimes 

contradictory trends.  Express Lane users tend to save more time in the morning peak 

than in the afternoon, although the amount of time saved is reduced when compared to 

only the leftmost GP lane.  This holds true across all user groups.  One interesting 

observation from the table is that frequent users tend to save less time per trip on average 

than infrequent users.  Relative to all GP lanes, the infrequent user group saves the most 

time in both directions.  Hence, infrequent users may only be using the lane when it 

provides greater benefits.  The very frequent user group may be using the lane 

irrespective of toll levels and travel time savings, whereas the infrequent user group 
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appears more judicious in their choice to use the lane.  However, infrequent users no 

longer save the most travel time when all are compared to GP lane one users.  The 

planning time savings are also greater in the morning than in the afternoon.  The median 

value of travel time saved per mile was 28.85 seconds/mile in the southbound direction 

and 23.40 seconds/mile in the northbound direction.  These values were estimated using 

the study length of 13.72 miles. 

Median values of travel time savings were higher in the morning than in the 

afternoon.  The infrequent users demonstrate the lowest VTTS compared to the other toll 

lane frequency user groups; this relationship holds in both the AM and PM periods.  

Looking at the Values of Planning Time Savings reveals contradictory patterns: more 

frequent users demonstrate higher VPTS values when examining all general purpose 

lanes, but this relationship is not maintained when looking at GP lane one.  In addition, 

the VPTS figures relative to GP lane one are much higher than those relative to all lanes.  

This makes sense as the time savings are lower when the HOT lane is compared to GP 

lane one, while the tolls remain the same. 
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Table 55: Preliminary Value of Time Calculations (50th, 25th, and 75th percentiles) 

Measure Southbound – AM Peak Northbound – PM Peak 

All GP Lanes – 

Median  

[25%, 75%] 

GP Lane 1 –  

Median 

[25%, 75%] 

All GP Lanes – 

Median 

[25%, 75%] 

GP Lane 1 –  

Median 

[25%, 75%] 

Travel Time Saved  

per Trip (seconds) 

by All HOT Users 

396 

[187,  629] 

(n = 54,080) 

370 

[171, 593] 

(n = 51,059) 

321 

[200, 477] 

(n = 59,606) 

267 

[158, 408] 

(n = 21,617) 

Travel Time Saved  

per Trip (seconds) 

by Infrequent Users  

(<75 trips) 

405 

[194, 636] 

(n = 31,794) 

377 

[175, 599] 

(n = 29,949) 

328 

[202, 486] 

(n = 37,404) 

267 

[158, 411] 

(n = 13,242) 

Travel Time Saved  

per Trip (seconds) 

by Frequent Users  

(>=75 & < 115 trips) 

367 

[163, 604] 

(n = 6,064) 

340 

[144, 571] 

(n = 5,733) 

312 

[200, 465] 

(n = 8,464) 

273 

[163, 411] 

(n = 3,172) 

Travel Time Saved  

per trip (seconds) 

by Very Frequent Users 

(>= 115 trips) 

388 

[188, 622] 

(n = 16,222) 

367 

[174, 590] 

(n = 15,377) 

306 

[194, 461] 

(n = 13,738) 

261 

[153, 398] 

(n = 5,203) 

Planning Time Saved 

per Trip (seconds) 

vs. GP Lanes 

499 

[263, 792] 

(n = 50,158) 

361 

[167, 578] 

(n = 42,602) 

425 

[273, 600] 

(n = 59,501) 

265 

[158, 398] 

(n = 21,040) 

Toll ($) $4.35 

[$2.20, $5.59] 

(n = 54,080) 

$2.02 

[$1.62, $2.72] 

(n = 59,606) 

Toll ($) 

Infrequent Users 

(<75 trips) 

$4.35 

[$2.20, $5.59] 

(n = 31,794) 

$2.02 

[$1.62,$2.59] 

(n = 37,404) 

Toll ($) 

Frequent Users 

(>=75 & < 115 trips) 

$3.43 

[$2.06, $5.50] 

(n = 6,064) 

$2.06 

[$1.62,$2.59] 

(n = 8,464) 

Toll ($) 

Very Frequent Users  

(>= 115 trips) 

$4.35 

[$2.33, 5.59] 

(n = 16,222) 

$2.06 

[$1.62, 2.72] 

(n = 13,738) 

VTTS 

All HOT Users 

($/hour) 

$36.04 

[$25.39, $56.02] 

(n = 54,080) 

$39.08 

[$27.01, $62.71] 

(n = 51,059) 

$25.66 

[$17.36, $37.16] 

(n = 59,606) 

$31.49 

[$21.77, $49.05] 

(n = 21,617) 

VTTS ($/hour) 

Infrequent Users 

(<75 trips) 

$35.51 

[$24.84, 54.83] 

(n = 31,794) 

$38.63 

[$26.50, $61.38] 

(n = 29,949) 

$24.95 

[$16.73, $36.59] 

(n = 37,404) 

$31.07 

[$21.27, $48.35] 

(n = 13,242) 

VTTS ($/hour) 

Frequent Users 

(>=75 & < 115 trips) 

$36.93 

[$25.81, $58.42] 

(n = 6,064) 

$39.86 

[$27.70, $66.37] 

(n = 5,733) 

$26.54 

[$18.34, $37.18] 

(n = 8,464) 

$31.23 

[$22.08, $48.82] 

(n = 3,172) 

VTTS ($/hour) –  

Very Frequent Users 

(>= 115 trips) 

$36.78 

[$26.27, $57.31] 

(n = 16,222) 

$39.52 

[$27.78, $63.81] 

(n = 15,377) 

$26.96 

[$18.64, $38.72] 

(n = 13,738) 

$32.57 

[$22.75, $50.62] 

(n = 5,203) 
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Burris reported a median value of travel time savings of $73/hour for 6:00 to 

10:00 AM for I-394 in Minneapolis in 2008.  The median value reported here for the 

same morning hours is lower ($36/hour), but one important note is that the travel time 

savings in Minneapolis were low: “The small difference between GP and HOT-lane 

speeds resulted in very small TTS.  Thirty-five percent of travelers on the MnPass lanes 

paid for an average TTS of less than a minute.”  The difference was starker in the 

afternoon peak: in Minneapolis, the median VTTS was $116/hour from 2:00 to 7:00 p.m., 

much higher than the $26/hour reported here.  The VTTS results that Burris reported 

from San Diego were also higher than those found in this study, with median values of 

$49/hour in the morning and $54/hour in the afternoon.  Time savings were also lower in 

those cases, with median morning and afternoon values of 1.16 minutes and 1.11 minutes 

respectively (Burris, 2012).  Finally, the median toll amounts are similar across all of the 

frequency groups with one exception: frequent morning users have a median value nearly 

a dollar less than the other user groups.  Their interquartile range remains similar, 

however. 

Value of Time Saved by the I-85 Express Lanes 

Finally, this preliminary study compared the total value of the time saved by Express 

Lane users to an independent average value of that time for the Atlanta metropolitan 

region.  For this comparison, an average value of time of $22.80 per hour was used, 

which is the average hourly wage rate for the Atlanta metropolitan region as reported by 

the US Bureau of Labor Statistics in 2012 (U.S. Bureau of Labor Statistics, 2012).  In the 

southbound direction, HOT users valued the total travel time they saved more than the 

average Atlanta resident would, based upon wage rates.  This was true relative to all GP 
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lanes and to GP lane one, though the difference was greater with GP lane one.  The 

northbound HOT users were much closer to the average Atlanta worker in their value of 

the travel time saved, with a difference of only $225 across all trips.  Relative to GP lane 

one, that difference increased to over $11,000.  These differences reflect the higher 

speeds in the leftmost lane, which resulted in lower time savings for HOT users.  Recent 

work by Khoeini (2013) on the household incomes of HOT users and non-users supports 

this finding: the average household incomes of HOT users exceeded those of non-users 

by over $10,000 per year. 
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Table 56: Preliminary Value of Time Saved Findings 

Measure 

Southbound  

AM Peak 

All GP Lanes 

Southbound  

AM Peak 

GP Lane 1 

Northbound  

PM Peak 

All GP Lanes 

Northbound  

PM Peak 

GP Lane 1 

Total Travel Time 

Saved (hours) 

6,532.09 

(n = 54,080) 

5,832.79 

(n = 51,059) 

5,970.98 

(n = 59,606) 

1,719.44 

(n = 21,617) 

Sum Tolls Paid ($) $233,682.50 $224,873.30 $155,195.50 $57,729.77 

Sum of Apportioned 

(88.06%) Tolls Paid ($) 

$205,503.00 

(n = 54,080) 

$197,760.00 

(n = 51,059) 

$136,363.40 

(n = 59,606) 

$50,726.56 

(n = 21,617) 

Value of Travel Time 

Saved – Average 

Atlanta VOT ($) 

$148,931.70 $132,987.50 $136,138.30 $39,203.23 

 

Discussion and Limitations of Preliminary Analysis 

This research examined willingness-to-pay distributions for users of the I-85 Express 

Lanes, and compared users who use the lane infrequently to those who use it two or three 

times a week. The median value of travel time savings figures fell within the range of 

values seen in the literature, but were lower than those reported by a similar study 

(Burris, 2012).  Results for infrequent users indicated higher levels of travel time savings 

and lower VTTS figures for that group relative to all general purpose lanes.  These users 

may be more selective in their lane choice, paying for trips only when the benefits are 

higher than average.   

This preliminary analysis also compared the travel time variability of the HOT 

lanes relative to that of the GP lanes and found reliability benefits in the Express Lanes.  

It is possible that HOT lane users expect these reliability benefits when they make the 

choice to pay for the lanes, but this effect could not be isolated by revealed preference 

data alone.  In the absence of survey data, the values of travel time savings and potential 
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reliability benefits could not be separated.  The literature concerning this subject, 

discussed previously in the Literature Review chapter, indicated values of reliability 

ranging from roughly $1/hour to $20/hour.  The VTTS results in this study fell at the 

upper end of the range suggested by the econometric literature; more data are required to 

see if the same holds true for the value of reliability.  The total value of the time saved by 

the HOT users exceeded the value of that time using Atlanta’s average wage rate. 

These preliminary findings contribute to the understanding of HOT lane users and 

the benefits they derive from their paid trips.  As could be expected, these users value 

their time more highly than the average Atlanta resident.  Furthermore, the results 

illustrate potential differences between users in the Atlanta metropolitan region and those 

in other cities.  Using VTTS results from other HOT implementations may result in sub-

optimal throughput or revenue results on potential new HOT facilities around Atlanta.  

The remainder of this chapter focuses on expanding the data and methods used in this 

study.  One limitation of this work was the sample of trips: the corridor-length journeys 

investigated here comprise approximately 11% of all the HOT trips.  Excluding the 

segment of the facility along SR-316, which does not have general purpose vehicle 

detectors, may also have biased the results.  Focusing on trips that used only the HOT or 

GP lanes further narrowed the scope of this preliminary analysis.  The use of survey data 

would address a significant limitation of the revealed preference data set.  Survey data 

could be used to separate users’ values of travel time savings and reliability benefits, as 

well as provide trip purpose data to better understand willingness-to-pay differences.   

A more comprehensive analysis, starting in the next section, will include trips that 

traverse shorter segments of the HOT lanes, and trips that use both lane types throughout 
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their duration.  It will also include trips that begin at different points along the corridor, 

and not just the northern- and southern-most locations.  In addition, this preliminary 

analysis used only nine months of data out of the three years that are used elsewhere in 

this dissertation.  Finally, this research did not incorporate the Epsilon marketing data to 

look at demographic differences; this will also be addressed later in this chapter.   

Expansion of Analysis 

The limited analysis discussed above was performed for the purposes of a Transportation 

Research Board (TRB) paper and poster presentation.  This dissertation expands on that 

analysis in a number of ways: by including a longer timeframe (three years’ worth of 

data) and by including partial corridor trips (those that enter mid-facility or depart the 

facility along the corridor), as well as those trips that use both the HOT and GP lanes 

during the trip.  Whereas the previous analysis examined only nine months of trips in 

2012, this analysis now examines all of calendar years 2012, 2013, and 2014.  In 

addition, this section uses the Epsilon marketing data to compare results across different 

income segments and illustrates the differences in those distributions.  The chapter then 

describes attempts to fit the VTTS data to various distributions.  The chapter ends by 

comparing VTTS results for full length trips versus shorter trips and then discussing the 

limitations of the analysis. 
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Methodological Changes 

This expansion required a modification of the methodology used in the TRB paper.  That 

paper included full-corridor trips only, which started at the first gantry and ended at the 

last.  The inclusion of partial or ‘mixed’ trips complicated the analysis as there were now 

many more possibilities for the trip start and end locations.  This issue created the most 

immediate impact in the calculation of the travel time saved.  Because the previous 

analysis included only one pair of HOT lane gantries and one pair of GP lane gantries, 

comparing the travel times across the two lane types was straightforward.  While the 

gantries were not perfectly aligned along the corridor (as discussed previously, the GP 

gantry length was 88% of the HOT gantry length), it was easy to apply a linear reduction 

factor to the HOT travel times.  This factor carried the assumption that congestion was 

comparable in the excluded 12% of the corridor. 

Expanding the analysis to include partial trips brought greater complications due 

to the mismatched alignment of the HOT and GP gantries.  That is, there are very few 

instances where an HOT gantry is directly adjacent to a GP gantry.  As such, the segment 

lengths between gantries are not uniform across both lane types.  The distance between 

the first and last HOT gantry in the Old Peachtree Road segment is not the same as the 

distance between the two GP lane gantries in the same segment.  In fact, the majority of 

segments include only one GP scanner (spanning all GP lanes) within the segment.  

Figure 117 below illustrates the difference in gantry numbers and locations across the 

two lane types in the Old Peachtree Road section of the corridor.  The section contains 

three green GP-lane scanners, labeled SCAN-N6, SCAN-N7, and SCAN-S1.  There are 

nine HOT-lane scanners, labeled OP01 through OP09. 
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Figure 117: I-85 Express Lanes Straight-Line Diagram 
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To address the differences in gantry placement, average GP lane speeds in 

adjacent segments were used to estimate the time saved by the Express Lanes.  This 

allows researchers to control for the differences in segment length caused by the 

mismatched gantries, but also creates its own issues.  The assumption that congestion is 

uniform along the segments in question is still present.  Similarly, varying congestion 

levels in the portion of a segment contained in one lane type but not the other will affect 

the average travel time across that segment.  The estimates of travel time savings were 

then converted to value of travel time savings by dividing the toll amount paid by the 

time saved in hours, so the resulting figure for each trip was reported in $/hour (dollars 

paid per hour saved).  This method resulted in very long tails at the positive end of the 

spectrum and potentially high values at the negative end, resulting from trips in which the 

Express Lanes did not deliver travel time advantages over the general purpose lanes.  For 

the purposes of this chapter, namely comparing results across household income 

segments and attempting to fit the resulting distributions, trips with value of travel time 

savings results under $0/hour and over $500 per hour were excluded from the data set. 

The expansion also generated its own issues and limitations, including the loss of 

data that occurred when joining constructed corridor trips to average travel time 

calculations.  This issue is addressed in more detail in the Data Pairing and Join Loss 

section of the Potential Sample Bias in Paired Vehicle Activity and Marketing Data 

chapter of this dissertation.  There are a number of reasons that a constructed trip may not 

join with an average HOT lane or GP lane travel time value.  There may have been 

insufficient users at the time to compute average travel times for that segment of the 

corridor, though this should be less of an issue when examining peak period trips.  It may 
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also be that the trip includes mistimed vehicle detections, such as a later gantry reporting 

a detection before a gantry that precedes it physically. 

These mistimed detections plagued the RFID readers for the first few months of 

operations; by March of 2012 they had significantly reduced in number.  In the joining 

scripts, these trips with mistimed detections often report physically impossible start and 

end gantries.  For example, a trip may ‘start’ at the fifth southbound GP gantry and ‘end’ 

at the second.  Unless the vehicle was driving northbound in the southbound lanes, this is 

an error.  The number of constructed trip misdetections per month is illustrated below in 

Figure 118; readers can see the drop in misdetections resulting in a low, stable level by 

March of 2012.  This issue is also discussed in Chapter 6, Data Quality and Treatment. 

 

Figure 118: Mistimed Detections in Vehicle Detection Data 

 In addition, any trip that started or ended on SR-316 could not be joined to an 

average travel time, as GP lane travel times could not be calculated for that segment of 
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the corridor.  As mentioned earlier, SR-316 has HOT but no GP vehicle detectors and so 

no trips or travel times starting or ending on that road can be constructed or computed.  In 

2013, 12.18% of Express Lane trips started on SR-316 and 8.65% of Express Lane trips 

ended on SR-316.   

Trips also may not have been successfully joined to travel times if no travel times 

were recorded for that time interval and corridor length.  This may occur during off-peak 

hours, for example, when use of the HOT lane is limited.  Finally, a speed filter applied 

to the HOT and GP trip speeds eliminated data as well.  This filter removed trips whose 

speeds were 0 mph or greater than 100 mph in either the HOT or GP portions of the trip.  

These values often occurred as a result of the mistimed detections reported earlier. 

Comparing Travel-Time-Joined Trips to All Constructed Trips 

The Potential Sample Bias in Paired Vehicle Activity and Marketing Data chapter of this 

dissertation outlines the amount of data preserved at each stage in the joining process, in 

the Data Pairing and Join Loss section.  The data loss table in that section indicates that in 

January of 2013, 43.1% of the full constructed trip data set was represented in the travel 

time-joined data set used in this analysis.  The remaining trips were excluded at various 

stages in the joining process; the majority of these exclusions occurred as a result of the 

Epsilon demographic data join.  Of interest to researchers is the question of the nature of 

these excluded trips; whether they were randomly distributed or whether bias was present 

in their exclusion.  In the case of SR-316 trips, it was clearly a case of bias as all of the 

trips starting or ending there were removed.  Table 57 presents a comparison of included 

and excluded trips from January 2013 for the purposes of identifying other biases. 
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Table 57: Overview of Constructed Trips versus Travel Time-Joined Trips 

 All Constructed 

Trips 

Travel Time-

Joined Trips 

Number of Trips 1,076,511 464,847 

Number of Transponders 120,822 40,957 

Average Trips/Transponder 8.91 11.35 

Average HOT Trips/Transponder 3.05 3.57 

Percent of Transponders with at least one HOT trip 41.5% 51.7% 

Average Trip Speed (mph) 63.8 62.6 

% HOT Trips 12.4% 9.7% 

% GP Trips 65.8% 68.5% 

% Mixed Trips 21.8% 21.8% 

 

The most striking difference between the two data sets is the difference in the 

number of trips and transponders represented.  The travel-time-joined-trips make up 

43.1% of the full constructed trip data set for January 2013, and 33.9% of the total 

transponder count appears in this more restricted sample.  In most other aspects, the 

differences are less pronounced.  Users in the joined data set take more trips and 

marginally more toll lane trips per transponder, though their overall rate of toll lane use is 

2.7% lower than the full sample.  The proportion of transponders in the narrower sample 

with at least one instance of Express Lane use is a full 10% higher than that of the full 

constructed trip data set.  Figure 119 and Figure 120 go into greater detail with regards to 

trip counts by showing the distributions of trips per transponder and toll lane trips per 

transponder, respectively, for January 2013.   
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Figure 119: Trips per Transponder - All Trips versus Travel Time Joined Trips 

 The distributions in Figure 119 reveal that in both the full constructed trip set and 

the travel time joined trip set, more transponders have two associated trips than one.  

Besides this observation, it is also notable that the travel time joined transponders have 

more representation among the higher trip counts.  In this case, transponders that remain 

by the time the travel time join has occurred are more frequent corridor trip-takers. 
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Figure 120: HOT Trips per Transponder - All Trips versus Travel Time Joined Trips 

Figure 120 presents the trip distributions for the toll lane trips only.  As expected 

from Table 57 above, the transponders in the narrower travel time sample are more likely 

to have used the Express Lanes at least once in the month of January, 2013.  The 

remaining differences, between the rates of users with two or more HOT trips, are much 

smaller.  Overall, the travel time-joined sample includes fewer but more frequent users of 

the corridor in general and of the Express Lanes in particular. 

Demographic Component of Value of Travel Time Savings 

A further expansion of the value of travel time savings analysis involved the 

demographic data provided by the Epsilon data purchase.  These data allowed researchers 

to join the trip data to household demographics, so that these results could be compared 

for different demographic segments.  Specifically, this section compares the resulting 

value of travel time segments across users in differing household income segments.  As 

in the Initial HOT Use Choice Analysis chapter of this dissertation, the income segments 

are defined based on annual household income: households in the Lower segment earn 
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less than $50,000 per year, households in the Middle segment earn between $50,000-

100,000 per year, and households in the Higher segment earn more than $100,000 per 

year..  The distributions presented below are for 2013; the results for 2012 and 2014 can 

be found in the Appendix.  An overview of the results is provided at the end of the 

section in Table 58. 

2013 Southbound Distributions and Differences 

This section presents the southbound peak periods’ value of travel time savings 

distributions for calendar year 2013.  Figure 121 illustrates the distribution of value of 

travel time savings for users in the lower income segment.  This sample consists of 9,692 

transponders from 6,086 unique demographic-matched households, making 162,013 trips.  

The median value of $42.55 is $6.51 higher than the $36.04 value reported for 

southbound users relative to all GP lanes in Table 55 above.  While this may be attributed 

to the change in the time frame under examination, the narrowing of the sample by the 

Epsilon marketing data join is a potential source of sample bias as discussed in the 

Limitations section of this chapter and in Chapter 7. 

The addition of mixed trips of both lane types also changes the resulting 

distribution: in the southbound direction, those trips typically have higher mean and 

median values of travel time savings than the unmixed corridor trips.  Those trips are 

explored later in this chapter as well.  The effect of these mixed trips thus complements 

the narrowing of the set of users in the sample.  The maximum allowable toll rate 

increased in 2013 as well, which may potentially push the distributions to the right if the 

time saved remains constant.  Again, if that is occurring, its effects appear to be 

supplementing the sample narrowing effects.  The 95% confidence interval around the 
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median value in Figure 121 was estimated through bootstrap analysis: 1000 simulations 

consisting of 1000 observations arrived at the upper and lower bounds.  That confidence 

interval is portrayed by the pink shaded region on the figure. 

Figure 122 illustrates the medium income segment.  This distribution reflects 

260,922 trips, 14,991 transponders, and 9,577 households.  Here the median value of 

$41.18 is $5.14 higher than that of the initial analysis (which included only through trips 

on the corridor) as shown earlier in Table 55.  Interestingly, the median value of the 

medium income segment is over $1 lower than that of the lower income segment.  The 

bounds of the bootstrapped 95% confidence interval are also lower than those of the 

lower income segment by roughly $1 each.  Otherwise, the two distributions appear 

strikingly similar.   

Figure 123 presents the higher income segment.  This includes 157,743 trips, 

9,396 transponders, and 6,020 households.  The median value here of $41.80 is again 

higher than that of the full set of users over nine months in the initial analysis.  A notable 

characteristic of the 2013 distributions is that the medium income segment exhibits the 

lowest measures of centrality among the three samples; also striking is the fact that the 

lowest income segment has the highest mean and median values.  The differences among 

all three income segments are small: the largest difference in median values, between the 

lower and medium income segments, is only $1.37.  Those two segments also exhibit the 

largest difference in mean VTTS values: $2.14.   
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Figure 121: 2013 Southbound VTTS - Lower Income 
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Figure 122: 2013 Southbound VTTS - Medium Income 
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Figure 123: 2013 Southbound VTTS - Higher Income 

  



 

 

333 

The next set of figures isolates the differences across the VTTS distributions for 

the three income groups, starting with a comparison of the lower income segment and the 

medium income segment.  Figure 124 presents these differences at the $1 bin level; in the 

first chart, the medium income distribution has been subtracted from the lower income 

distribution.  The result shows that the medium income segment generally had higher 

VTTS levels below the $50/hour cutoff mark, after which the lower income distribution 

was more frequently greater.  An important observation to note is the scale of these 

differences: they remain well below 0.25% of the total across the entire distribution. 

The second chart in Figure 124 shows the results of subtracting the higher income 

value of travel time savings 2013 distribution from the lower income distribution.  Here 

the pattern differs slightly; the lower income distribution includes more trips below 

approximately $10/hour and above roughly $45/hour.  The higher income segment 

includes more trips within that interval.  Again, the differences are very small in 

magnitude, remaining below 0.25% for each bin. 

The final chart in Figure 124 compares the medium and higher income segment 

distributions; in this case the higher income distribution was subtracted from the medium 

income distribution.  The largest differences occur below the $50/hour mark, but again 

the scale of the differences is very small.  While the medium income segment includes 

more trips below roughly $10/hour, the size of the distributional differences makes it 

difficult to make any meaningful inferences about behavioral differences among the users 

in the different income segments. 
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Figure 124: 2013 Southbound VTTS Differences 
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2013 Northbound Distributions and Differences 

The next set of figures consists of the value of travel time savings distributions for 

northbound PM-peak period trips in 2013.  Figure 125 illustrates the distribution for the 

lower income segment, and represents 181,275 trips by 11,948 transponders and 7,318 

households.  The median value of the resulting distribution is well below that of the 

initial analysis, which examined corridor-length trips by all users for nine months across 

late 2012 and early 2013.  That distribution had a median value of $25.66, over $7 higher 

than the median exhibited here. 

Figure 126 presents the medium income distribution, representing 18,179 

transponders, 11,398 households, and 291,236 trips.  Again, the distribution is more 

concentrated at the lower end of the value of travel time savings spectrum than Figure 

116 above.  Unlike the southbound VTTS results, the median and mean values of this 

middle income segment are higher than those of the lower and higher income segments 

for the northbound PM-peak trips. 

Figure 127 shows the northbound peak period distribution for higher income 

segment households in 2013.  The 169,600 trips were taken by 12,028 unique 

transponders and 7,630 households.  Here the mean and median measures are the lowest 

of the three income segments, but again the differences are slight.  The centrality 

measures for all three income segments were lower than all of the northbound values in 

Table 55, including those for the infrequent users, which were the lowest VTTS values in 

the whole study. 
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Figure 125: 2013 Northbound VTTS - Lower Income 
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Figure 126: 2013 Northbound VTTS - Medium Income 
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Figure 127: 2013 Northbound VTTS - Higher Income 

 The next figure presents the differences in the distributions for the northbound 

peak Express Lane trips.  Again the magnitudes of the differences are very small: all are 

below the 0.2% line on the charts below.  The patterns that can be discerned from these 

plots say very little due to the very minor scale of the discrepancies.  The first plot 

illustrates the results of the medium income segment subtracted from the lower income 

segment; here the lower income segment appears to have more trips in the VTTS range 

between $0 and $10/hour.  The second chart, in which the higher income VTTS 

distribution is subtracted from the lower, sees more higher-income trips between roughly 

$10/hour and $30/hour.  In comparing the medium and higher income segments, it 

appears that the higher income segment has a higher proportion of trips occurring with a 
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VTTS value below $25/hour.  Once again, however, the scale of the differences indicates 

that even these patterns have little if any practical impact. 

 

Figure 128: 2013 Northbound VTTS Differences 
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Overview of Income Segment Differences in Value of Travel Time Savings 

The most striking observation regarding the value of travel time savings data for the three 

income segments presented above is the similarity in their distributions.  Table 58 

presents an overview of the results for the different income segments, including the inter-

quartile range values and the skewness and kurtosis of each segment.  The various 

measures differ only slightly between the three segments in the two different directions.  

Inter-quartile ranges are much larger in the southbound direction, ranging from $54.06 to 

$55.94.  Similar measures in the northbound direction range from $16.28 to $16.59.  The 

measures of the shapes of the distributions in the form of the skewness values indicate 

long right tails in all cases, with this lack of symmetry more pronounced in the 

northbound direction.  Similarly, the kurtosis results, while similar across income 

segments within a direction, indicate much more peaked-ness in the northbound results.  

The bootstrapped confidence intervals, which represent the 25
th

 and 975
th

 median values 

calculated from 1000 iterations, overlap in both the southbound and northbound 

directions.  This overlap further illustrates the similarities in the distributions; the 

medians cannot be said to be different at the 95% confidence level. 

To support the visual inspection of the distributions, Mann-Whitney tests were 

used to investigate whether the various distributions were equal.  In most cases, the null 

hypothesis was rejected at well over the α=0.05 confidence level.  The only exception 

was the comparison of the higher and lower income segment distributions in the 

northbound PM peak; here the null hypothesis could not be rejected.  Regardless of the 

results of the Mann-Whitney tests, the table illustrates, as the previous plots did, that the 

practical differences in dollars between the distributions are small. 
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 To the extent that these results provide insight into Express Lane user behavior, 

they suggest that users in different household income groups will pay very similar 

amounts of money to save a given amount of time.  As discussed in the Potential Sample 

Bias in Paired Vehicle Activity and Marketing Data chapter, there are many different 

sources of bias in the data set.  Additionally, the measure itself includes its own set of 

limitations: users do not know how much time they will save before choosing to use the 

Express Lanes, for one.  The method of VTTS estimation here also does not account for 

non-linear effects, and so implies that drivers use the same decision-making process in 

choosing to save one second or five minutes.  In light of the previous observation about 

the lack of foreknowledge regarding travel time savings, this limitation may be 

justifiable.  It is also unlikely that drivers think of the cost of their trip in terms of dollars 

per hour, especially those trips where the VTTS exceeds $100/hour.  All of these 

considerations must be acknowledged when interpreting these results. 
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Table 58: Summary Table of 2013 VTTS Distributions by Income Segment 

 Southbound Northbound 

 Lower Medium Higher Lower Medium Higher 

Number of Trips 162,013 260,922 157,743 181,275 291,236 169,600 

Number of Transponders 9,692 14,991 9,396 11,948 18,179 12,028 

Number of Households 6,086 9,577 6,020 7,318 11,398 7,630 

Median VTTS $42.55 $41.18 $41.80 $18.65 $18.88 $18.64 

25th Percentile $24.71 $23.94 $24.18 $12.32 $12.52 $12.42 

75th Percentile $80.65 $78.00 $79.03 $28.83 $29.11 $28.70 

Bootstrapped Confidence 

Intervals for Sample 

Median 

[$39.92, 

$45.53] 

[$38.75, 

$44.04] 

[$38.55, 

$44.15] 

[$17.70, 

$19.59] 

[$18.03, 

$19.87] 

[$17.76, 

$19.55] 

Mean VTTS $67.97 $65.82 $66.49 $24.95 $25.17 $24.70 

Skewness 2.61 2.69 2.67 6.43 6.49 6.37 

Kurtosis 11.17 11.82 11.61 72.08 73.87 74.09 

Mann-Whitney: Versus 

Lower 

N/A p<2.2x10
-16

 p=3.28x10
-10

 N/A p=1.35x10
-11

 p=0.579 

Mann-Whitney: Versus 

Medium 

p<2.2x10
-16

 N/A p=6.45x10
-6

 p=1.35x10
-11

 N/A p=1.37x10
-9

 

Mann-Whitney: Versus 

Higher 

p=3.28x10
-10

 p=6.45x10
-6

 N/A p=0.579 p=1.37x10
-9

 N/A 
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Full-Length Trips versus Partial Trips 

One of the objectives of this expansion of the previous value of travel time savings 

analysis is to compare the results for users who traverse the entire corridor with the 

results of those users who only use a portion of the corridor.  In particular, researchers 

were interested in those users who, during southbound trips, leave the HOT facility 

before the I-285 interchange, and those northbound users who exit the facility after the 

recurring congestion prior to the Jimmy Carter Boulevard exit.  This section of the 

chapter will focus on those partial trips and compare their results to those of full-corridor 

users.  Corridor trips are divided into four categories: through trips (which traverse the 

entire duration of the Express Lanes from Old Peachtree Road to I-285 and vice versa), 

those that begin at one endpoint (Old Peachtree Road for southbound trips, I-285 for 

Northbound trips) and end before the next endpoint, those that begin within the corridor 

(not an endpoint) and continue until the end (I-285 for southbound trips, Old Peachtree 

Road for northbound trips), and finally those that begin and end within the corridor.  

Again, this chapter presents the results from 2013. 

2013 Southbound Full Length versus Partial Trips Comparison 

Table 59 shows the number of southbound trips for 2013 that are full-corridor trips, those 

that start at Old Peachtree Road and end before I-285, those that start after Old Peachtree 

Road and end at I-285, and those that start after Old Peachtree Road and end before I-

285.  Because this data set requires both HOT and GP lane data, trips that originate on 

SR-316 are excluded.  Each category of partial trips far outnumbers the full trips by 

15,627-142,179 trips; the three partial categories include more transponders, households, 

and more frequent trips per transponder as well.  Trip frequency per transponder is lowest 
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in the full trip category, though the average speed is greater.  The average trip speed is 

lowest in the category of trips that occur within the corridor without including either the 

northern-most or southern-most endpoints. 

Table 59: Overview of Southbound 2013 Trips by Length 

 

Full Trips  

(OPS to 285S) 

Partial Trips 

Start at OPS 

End Before 

285S 

Partial Trips  

Start after 

OPS, 

End at 285S 

Partial Trips  

Start and End 

between OPS 

and 285S 

Number of Trips 71,766 87,393 207,574 213,945 

Number of 

Transponders 
10,975 11,484 22,086 19,780 

Number of 

Households 
7,898 8,197 15,835 14,320 

Average Trips per 

Transponder 
6.54 7.61 9.40 10.82 

Average Trip 

Speed (mph) 
55.4 54.2 53.0 49.5 

 

 The value of travel time savings distributions for full trips, Old Peachtree to mid-

corridor trips, mid-corridor trips to I-285, and mid-corridor to mid-corridor trips are 

presented in Figure 129 through Figure 132 respectively.  Unlike the previous income-

segmented distributions, these charts illustrate distinct differences among the four trip 

lengths.  In particular, those trips that begin after Old Peachtree Road see substantially 

higher mean and median VTTS measures.  These two categories, Mid-285 and Mid-Mid, 

see far more trips at the high end of the VTTS spectrum.  The two categories of trips that 

begin at Old Peachtree Road, those that end at I-285 and those that end mid-corridor, 

more closely resemble each other than the remaining two trip categories. 

 Once again, the author performed Mann-Whitney tests to compare the 

distributions.  In each case, the null hypothesis of distributional equality was rejected at 

well over the α = 0.01 confidence level.  As before, this is likely an effect of the size of 

each sample for the four different trip categories.  Unlike the income-segmented trips, the 
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practical differences between the distributions are more apparent among these four 

categories.  The mid-corridor to mid-corridor trips yield the highest median VTTS 

results, and the mean VTTS value for that category is $40.85 higher than that of the 

lowest category (Old Peachtree to mid-corridor) and $11.17 higher than that of the 

second-highest category (mid-corridor to I-285).  The bootstrapped confidence intervals 

overlap between the full length and Old Peachtree to mid-corridor categories, as well as 

between the mid-corridor to I-285 and mid-corridor to mid-corridor categories.  The 

prevailing theme among these four distributions is that those trips that begin at similar 

points on the corridor, either at Old Peachtree or elsewhere within the corridor, are 

similar, regardless of the end points. 
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Figure 129: 2013 Southbound VTTS - Full Length Trips 
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Figure 130: 2013 Southbound VTTS – Old Peachtree to Mid-Corridor Trips 

 



 

 

348 

 

Figure 131: 2013 Southbound VTTS – Mid-Corridor to I-285 Trips 

 



 

 

349 

 

Figure 132: 2013 Southbound VTTS - Mid-Corridor to Mid-Corridor Trips 

2013 Northbound Full Length versus Partial Trip Comparison 

Table 60 presents an overview of northbound trips for 2013 that are full-corridor trips, 

those that start at I-285 northbound and end before Old Peachtree Road, those that start 

mid-corridor and end at Old Peachtree Road, and those that start mid-corridor and end 

mid-corridor.  Unlike the southbound trips, the corridor-length trips in the northbound 

direction are not the least numerous of the four categories.  The least frequent trips are 

those that start mid-corridor and end at Old Peachtree Road.  As was shown in Chapter 3, 

the majority of northbound trips begin at the I-285 segment: the start of the corridor.  

While the mid-corridor to Old Peachtree trips are the least common, they do yield the 

highest average trip speeds.  The most frequently observed category of trips, those that 
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start at I-285 and end mid-corridor, have the highest per-transponder trip frequency and 

the lowest average trip speed. 

Table 60: Overview of Northbound 2013 Trips by Length 

 

Full Trips 

(285N-OPN) 

Partial Trips  

Start at 

285N, 

End Before 

OPN 

Partial Trips 

Start after 

285N, 

End at OPN 

Partial Trips  

Start and End 

between 

285N and 

OPN 

Number of Trips 111,027 294,938 97,540 138,606 

Number of 

Transponders 
15,852 26,090 15,147 23,020 

Number of 

Households 
11,259 18,230 10,923 16,911 

Trips per Transponder 7.00 11.30 6.44 6.02 

Average Trip Speed 

(mph) 
60.7 55.0 61.9 55.2 

 

Figure 133 through Figure 136 present the VTTS distributions for the four 

categories of northbound 2013 trips outlined above.  The VTTS values in these four 

distributions are lower overall than their southbound counterparts; the highest mean 

northbound VTTS, from mid-corridor to Old Peachtree Road, is only $1.27 higher than 

the lowest southbound mean VTTS (that of the full length trip category).  Those users 

who begin at I-285 and exit the Express Lanes before Old Peachtree road exhibit the 

lowest mean and median VTTS values.  The bootstrapped confidence intervals for the 

sample medians are less similar in the northbound direction.  Whereas the southbound 

trips had two pairs of overlapping confidence intervals, in the northbound direction only 

one pair of confidence intervals overlap: those of the full length and mid-corridor to mid-

corridor trips.  As was the case in the southbound direction, Mann-Whitney distributional 

comparison tests reject the null hypothesis of distributional equality among all four trip 

categories.  Again, with a minimum of 97,540 observations in each category, this was 
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expected.  Still, the practical differences between the distributions are more stark in the 

northbound direction. 

 

Figure 133: 2013 Northbound VTTS - Full Length Trips 
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Figure 134: 2013 Northbound VTTS – I-285 to Mid-Corridor Trips 
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Figure 135: 2013 Northbound VTTS – Mid-Corridor to Old Peachtree Road Trips 
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Figure 136: 2013 Northbound VTTS - Mid-Corridor to Mid-Corridor Trips 
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Full-Length versus Partial Trip Comparison Summary 

The differences among the value of travel time savings distributions for different trip 

lengths are far more pronounced than those among different income segments.  Table 61 

provides an overview of the distributional measures for the different trip lengths and 

directions.  Whereas the previous section revealed little variation between low, medium, 

and high income users of the toll lanes, this section illustrated distinct differences 

between full length trips and partial length trips.  As in the income-based distributions, 

the southbound and northbound behaviors were different as well.  The southbound data 

revealed that users taking partial length trips pay more to save less time than those who 

stay in the corridor for the duration.  Users who began their trips at similar locations, 

either at Old Peachtree Road or mid-corridor, exhibited similar VTTS distributions.  The 

bootstrapped median confidence intervals supported this, as they overlapped for the full 

length and Old Peachtree to mid-corridor trips, and also for the mid-corridor to 285 and 

mid-corridor to mid-corridor trip. 

 In the northbound direction, these relationships are different.  Users who enter the 

Express Lanes mid-corridor and exit at Old Peachtree Road more frequently pay higher 

tolls to save less time, as evidenced by the larger tail of the full-trip VTTS distribution.  

In this case, it is the users who begin and I-285 and exit the lane before Old Peachtree, 

short of the full corridor length, who have the lowest mean and median VTTS values.  

Users often do not need to continue in the HOT lane location northward of the Jimmy 

Carter Boulevard segment, the second in the sequence, as the speed differences between 

the HOT and GP lanes decline significantly once congestion associated with the I-85/I-

285 merge is complete.  The distributions are all narrower and more heavily weighted at 
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the lower end than the southbound figures, indicating more time saved and/or lower tails 

paid in the northbound direction.  The differences within the four categories are greater as 

well; only two (full length trips and mid-corridor to mid-corridor trips) exhibit 

overlapping confidence intervals around the median. 

 These comparisons speak to differences in the characteristics and behavior of 

northbound and southbound toll lane trips and trip-takers.  Southbound trips have the 

highest ‘value’ when users stay in the lane for the duration; that is, those trips deliver 

more travel time savings for less cost.  This is not the case for the northbound trips, 

where the full length trips provide higher tolls and lower time savings than those trips 

that end before Old Peachtree Road.  In the northbound direction, the most ‘value’ can be 

found in entering the toll lane at its I-285 beginning and exiting prior to the end of the 

corridor.  This is likely due to differing congestion patterns and driver behavior in the 

morning and afternoon peak periods, as well as different toll schedules for the different 

directions and times. 
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Table 61: Summary Table of 2013 VTTS Distributions by Trip Length 

 Southbound Northbound 

 Full 

Length 

OPS-Mid Mid-285 Mid-Mid Full 

Length 

285-Mid Mid-OPN Mid-Mid 

Number of Trips 71,766 87,393 207,574 213,945 111,027 294,938 97,540 138,606 

Number of 

Transponders 

10,975 11,484 22,086 19,780 15,852 26,090 15,147 23,020 

Number of 

Households 

7,898 8,197 15,835 14,320 11,259 18,230 10,923 16,911 

Median VTTS $30.88 $29.83 $46.59 $53.82 $21.84 $14.75 29.46 20.05 

25th Percentile $21.92 $19.69 $26.05 $27.89 $15.13 $9.99 20.01 13.86 

75th Percentile $44.70 $46.43 $85.48 $105.26 $31.23 $21.98 46.14 30.32 

Bootstrapped 

Confidence Intervals 

for Sample Median 

[$29.74, 

$32.09] 

[$29.83, 

$31.16] 

[$43.86, 

$49.64] 

[$49.17, 

$58.43] 

[$20.85, 

$22.69] 

[$14.10, 

$15.45] 

[$28.13, 

$31.01] 

[$19.15, 

$21.13] 

Mean VTTS $38.91 $41.23 $70.91 $82.08 $25.97 $19.35 $40.18 $25.48 

Skewness 4.95 4.43 2.56 2.12 6.42 8.51 4.59 6.03 

Kurtosis 41.77 31.41 10.90 8.13 89.61 121.19 34.99 74.71 

Mann-Whitney: 

Versus Full 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

Mann-Whitney: 

Versus OP-Mid 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

Mann-Whitney: 

Versus Mid-285 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

Versus Mid-Mid p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A p<2.2x10
-

16
 

p<2.2x10
-

16
 

p<2.2x10
-

16
 

N/A 



358 

 

Chapter Summary 

This investigation of the value of travel time savings for I-85 Express Lane users revealed a 

number of striking findings.  Foremost among these was the similarity of the results across the 

income segments defined in this dissertation.  The differences in VTTS results between lower, 

medium, and higher income households, to the extent that they exist, are marginal at best.  These 

differences most frequently appear on the order of cents rather than dollars.  Likewise, it is not 

the case that higher income households exhibit the highest VTTS results.  In the southbound 

AM-peak trips, the lower income households actually have the highest mean and median values 

of travel time savings.  Overlapping confidence intervals around the median VTTS values 

indicated that the median values could not be said to be different at the 95% confidence level.  It 

may be the case that any variation in behavior occurs not among these three segments but within 

a subset of very-high income households, who earn more than the $100,000/year criteria defined 

for higher income households.  This is explored in other chapters of this dissertation, particularly 

Chapter 12.   

The trip length investigation revealed more distinct differences between users who 

traverse the entire duration of the corridor and those that take partial trips; in that case, the 

southbound and northbound differences were also more pronounced.  In the southbound 

direction, full-length corridor trips provided higher levels of travel time savings for lower toll 

rates.  In the northbound direction, the toll lanes were most beneficial for those users who 

entered the Express Lanes at the beginning and left before the end of the corridor.  The 

differences between the distributions of the northbound and southbound VTTS values likely 

reflect different congestion patterns and trip purposes.  In particular, morning trips likely have a 
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higher proportion of commute trip purposes.  Afternoon trips encounter higher levels of 

congestion near the I-85/I-285 merge, after which the benefits of the Express Lanes decrease. 

A major limiting factor in extending the value of travel time savings analysis with the 

available demographic data is the reduction in sample size that results from the pairing process.  

As discussed in other chapters of this dissertation, the transponders that can be successfully 

paired with the Epsilon marketing data make up approximately 20% of the full SRTA 

transponder population.  In addition, this sample is not wholly representative of the population: it 

is biased towards more frequent users as well as higher income households, households in single 

family dwelling units, and accounts with one vehicle and one transponder.   

The limitations that affect this dataset as a whole extend to this analysis as well.  They 

include the lack of stated preference data and trip data beyond the I-85 corridor.  Without a stated 

preference component to this work, researchers cannot isolate the willingness of users to pay for 

travel time reliability versus speed, for example.  Further, user trip purpose remains unknown for 

all of the trips studied here.  The restriction of trip data to the I-85 corridor paints an incomplete 

portrait of the trips as well.  Users may be willing to pay different toll levels based on the total 

length of their trips; a user for whom I-85 is just a small portion of a commute may be less 

concerned with saving time on it.  Finally, this analysis is limited to toll lane users only by the 

nature of its methodology.  Elsewhere in this dissertation, the analyses will incorporate choice 

modeling methods to include unpriced general purpose lane trips in their datasets, thus giving a 

more complete picture of what corridor users will and will not pay to save travel time. 
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CHAPTER 11 

REGRESSION TREE ANALYSIS 

 

 

 

Regression tree analysis can help identify factors that have potential impact on the dependent 

variable in a model; in this case, that variable is the lane choice decision.  The dataset used in 

this dissertation contains over one hundred variables that may potentially help explain whether a 

user purchases a toll lane trip or remains in the GP lanes.  Regression tree models are used here 

to narrow down that list.  As the dependent variable is a set of discrete values, the analysis used 

here is strictly known as classification tree rather than regression tree.  Both of these methods fall 

under the larger umbrella of Hierarchical Tree-Based Regression; the interpretation of the results 

is similar.  Regression tree analysis is useful in handling discrete variables with more than two 

values, and this method also better handles missing data relative to ordinary least squares 

regression.  The method also is unaffected by multicollinearity.  Downsides of the method 

include the inability to identify all correlations, and also the selection of variables that are not 

causal (Washington, et al., 1997). 

This chapter begins with a discussion of the data used in the initial regression tree 

analysis.  The next section discusses the results of the initial analysis and the problematic 

variables identified.  The chapter continues with additional regression tree results without the 

invalid variables, followed by more variable exploration using the random forest method. 

Regression Tree and Random Forest Data 

The regression tree analysis presented here uses the constructed trip data from 2013 that were 

paired with the Epsilon demographic data as discussed in Chapter 5.  Table 62 provides an 

overview of the data set.  As shown in the Potential Sample Bias in Paired Vehicle Activity and 
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Marketing Data chapter, the rate of GP-Only trips decreases as the Epsilon marketing and 

corridor condition data sets are joined to the base constructed trips.  Afternoon trips are more 

prevalent than AM peak period trips; they also include more Peach Pass transponders from more 

households. 

Table 62: Regression Tree Dataset Overview 

 All Trips AM Southbound Trips PM Northbound Trips 

Total trip count 2,376,450 1,179,060 1,197,390 

GP-Only Trips (%) 1,109,409 (46.7%) 559,868 (47.5%) 549,541 (45.9%) 

HOT-Only Trips (%) 374,543 (15.8%) 205,987 (17.5%) 168,556 (14.1%) 

Mixed Trips (%) 892,498 (37.5%) 413,205 (35.0%) 479,293 (40.0%) 

Unique Households 35,073 27,817 33,530 

Unique Transponders 63,451 47,253 58,204 

 

 

Table 63 through Table 67 present the variables that were included in the initial 

regression tree models.  In all of the hierarchical tree-based regression models, the dependent 

variable is HOT lane use.  This variable has a value of zero if the trip never enters the Express 

Lanes and a value of one if the Express Lanes are used at all during the trip.  This includes the 

full set of trip, operational, and demographic characteristics, as well as certain interaction terms.  

In all of the regression trees presented here, the complexity parameter was set to 0.01.  This 

means that any variable split must increase the model R
2
 goodness of fit measure by 0.01 to be 

included in the model.  In each of the five tables presented, the left-hand column provides the 

name of the element while the right-hand column lists the variable name used in the regression 

tree and random forest figures. 

 

Table 63 outlines the trip characteristic variables.  Many of these, such as the day of week 

indicators, are self-explanatory.  The toll at daily maximum indicator has a value of one if the 

toll amount paid by the user is equal to the maximum toll of that day.  The HOT toll amount is 
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the rate paid by the user or what the user would have paid had they chosen the Express Lanes.  

The corridor segment indicators have a value of one if the user was detected in that corridor 

segment during their trip, in either the HOT or GP lanes.  The segment count is the sum of all of 

those indicators, and represents the total number of segments over which the trip occurred.  Trip 

distance is calculated from the station numbers of the RFID detection gantries.  The hour of day 

and half-hour of day dummy variables indicate the time at which the trip began.  Similarly, the 

month of year and season indicators represent the month and season in which the trip was taken.  

The square of toll amount variable simply squares the HOT toll rate, while the maximum daily 

toll amount represents the highest toll rate recorded for that direction on that day.  The trip exit 

segment variables are dummy indicators that represent the last segment of the user’s trip.  

Similarly, the trip segment path variables present the various combinations of corridor segments.  

The time since January variable counts the number of months since January of 2013; this is 

meant to capture the potential effects of deteriorating lane conditions over the course of the year.  

The dummy variable indicating direction has a value of one when the trip is in the southbound 

direction; this means the trip occurred during the morning peak period as well (a value of zero 

mean the northbound trip occurred in the afternoon peak period). 
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Table 63: Trip Characteristic Variables Included in 2013 Regression Tree Analysis 

Trip Characteristics 

Day of week dummy variables monday, tuesday, wednesday, thursday, friday 

Toll at daily maximum dummy variable tollAtMax 

HOT toll amount tollAmount.HOT 

Corridor segment dummy variables segmentOP, segmentPH, segmentIT, segmentJC, 

segment285 

Count of segments traversed (in either the HOT or 

GP lanes) 

segmentCount 

Trip distance (miles) distancemi 

Hour of day dummy variables sixAm, sevenAm, eightAm, nineAm, threePm, 

fourPm, fivePm, sixPm 

Half hour increment dummy variables am600, am630, am700, am730, am800, am830, 

am900, am930, pm1500, pm1530, pm1600, 

pm1630, pm1700, pm1730, pm1800, pm1830 

Month of year dummy variables january, february, march, april, may, june, july, 

august, september, october, november, december 

Season of year dummy variables winter, spring, summer, fall 

Square of toll amount tollSquared 

Maximum daily toll amount maxToll 

Trip exit segment end285, endJC, endIT, endPH, endOP 

Trip segment path seg1to1, seg1to2, seg1to3, seg1to4, seg1to5, 

seg2to2, seg2to3, seg2to4, seg2to5, seg3to3, 

seg3to4, seg3to5, seg4to4, seg4to5, seg5to5 

Time since january timeSinceJanuary 

Direction  southbound 

 

 Table 64 presents the corridor condition variables used in the regression tree analysis.  

The first set of variables, the congested condition dummies, have a value of one when the 

average general purpose lane speed is below that level (50 mph down to 5 mph).  The average 

speed difference between lane types is the difference in average speeds between the HOT and 

GP lanes.  When a trip occurs across both lane types, that value is the difference over the length 

of the HOT corridor that the user traverses.  The next variable, average speed difference in GP 

portion of mixed trips, presents the difference in average speeds along the portion of the mixed 

trip that occurs in the general purpose lanes.  The htDensity variable counts the Peach Pass 

transponders detected in the HOT lane along the length of the user’s trip and divides that count 
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by the distance in miles.  The transponder counts for the HOT and GP lanes provide only those 

counts without controlling for distance.  Finally, the square of the average speed difference 

simply squares the average speed difference between lane types. 

 
Table 64: Corridor Condition Variables 

Corridor Conditions 

Congested conditions dummy variables (50mph to 

5mph) 

congested50, congested45, congested40, 

congested35, congested30, congested25, 

congested20, congested15, congested10, 

congested05 

Average speed difference between lane types htAvgSpeedDiff 

Average speed difference in GP portion of mixed 

trips 

gpAvgSpeedDiff 

htDensity (vehicles per mile in HOT lane over 15 

minutes) 

htDensity 

Square of average speed difference avgSpeedDiffSquared 

Transponder Counts htTransponderCount, gpTransponderCount 

 

The household characteristic variables are listed in Table 65.  The first, race/ethnicity, 

indicates the racial makeup of the household.  The next sets of variables, indicating the presence 

of adults and children of various ages, report the existence of individuals within the given age 

ranges.  Similarly, presence of one child and presence of multiple children dummy indicators are 

based off of the number of children variable.  The physical structure of the household is 

represented by the living area square footage, property lot size in acres, age of home, and 

dwelling type variables.  Household income is represented three ways: the three-group 

segmentation, the five group segmentation, and as an ordinal variable.  Household education lists 

the average level of education completed by the adults in the household.  Home ownership status 

indicates whether the individuals are likely or probably renters or owners.  Marital status 

indicates whether the occupants are married, while household age represents the age of the head 

of the household.  Length of residence indicates the amount of time individuals with a given last 

name have been present in the house.  Occupation is a categorical variable with twenty-one 
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different values.  Household size presents the total number of individuals, while family 

composition provides sixteen different potential values of family types.  The trip count measure 

was included to examine whether frequent corridor users may behave differently than infrequent 

users.  This measure counts both HOT and GP trips.  Note that this measure occurs at the 

transponder level rather than the household level.   
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Table 65: Household Characteristic Variables 

Household Characteristics 

Race/Ethnicity raceWhite, raceBlack, raceHispanic, raceAsian, 

raceOther 

Presence of adults – unknown age presence.of.adults.unknown.age.enhanced 

Presence of adults – 75+ presence.of.adults.age.75.specific.enhanced 

Presence of adults – 65-74 presence.of.adults.age.65.74.specific.enhanced 

Presence of adults – 55-64 presence.of.adults.age.65.64.specific.enhanced 

Presence of adults – 45-54 presence.of.adults.age.45.54.specific.enhanced 

Presence of adults – 35-44 presence.of.adults.age.35.44.specific.enhanced 

Presence of adults – 25-34 presence.of.adults.age.25.34.specific.enhanced 

Presence of adults – 18-24 presence.of.adults.age.18.24.specific.enhanced 

Presence of children – 0-2 presence.of.children.age.00.02.specific.enhanced 

Presence of children – 3-5 presence.of.children.age.03.05.specific.enhanced 

Presence of children – 6-10 presence.of.children.age.06.10.specific.enhanced 

Presence of children – 11-15 presence.of.children.age.11.15.specific.enhanced 

Presence of children – 16-17 presence.of.children.age.16.17.specific.enhanced 

Number of children tsp.number.of.children.enhanced 

Presence of one child oneChild 

Presence of multiple children onePlusChild 

Living area square footage tsp.living.area.square.feet 

Property lot size in acres tsp.property.lot.size.in.acres 

Age of home ageOfHome 

Dwelling type tsp.advantage.dwelling.type 

Income group (three categories) lowIncome, medIncome, highIncome 

Income group (five categories) incomeGroupsA, incomeGroupsB, 

incomeGroupsC, incomeGroupsD, 

incomeGroupsE 

Household income advantage.household.income.legacy.dollars 

Household education level tsp.advantage.household.education 

Home ownership status tsp.advantage.home.owner 

Number of adults tsp.advantage.number.of.adults 

Marital status tsp.advantage.household.marital.status 

Household age tsp.advantage.household.age.enhanced 

Length of residence tsp.advantage.length.of.residence 

Occupation occupation 

Household size tsp.advantage.household.size.enhanced 

Family composition tsp.family.composition.enhanced 

Trip count (all trips in 2013) tripCount 
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 Table 66 lists the neighborhood characteristic variables present in the marketing data set 

and used in the hierarchical tree-based regression analyses.  The first six variables indicate the 

proportion of households in the given neighborhood with cars, trucks, motorcycles, and motor 

homes.  The remaining variables indicate the average values of those vehicles.  

Table 66: Neighborhood Characteristic Variables 

Neighborhood Characteristics 

Percent of households owning a passenger car percent.of.households.owning.a.registered.passenger.

car 

Percent of households owning a new passenger 

car 

percent.of.households.owning.a.registered.new.passe

nger.car 

Percent of households owning a truck percent.of.households.owning.a.registered.truck 

Percent of households owning a new truck percent.of.households.owning.a.registered.new.truck 

Percent of households owning a motorcycle percent.of.households.owning.a.registered.motorcycle 

Percent of households owning a motor home percent.of.households.owning.a.registered.motor.hom

e 

Average value for new and used vehicles average.cmv.in.thousands.for.all.new.and.used.registe

red.vehicles 

Average value for new and used cars average.cmv.in.thousands.for.new.and.used.registered

.cars 

Average value for new and used trucks average.cmv.in.thousands.for.all.new.and.used.registe

red.trucks 

 

Finally, Table 67  lists the interaction terms added to the data set.  The first of these 

divides the toll amount by the segment count to create a measure of toll rate per corridor 

segment.  This is meant to stand in contrast with the unmodified toll rate, which indicates the full 

amount paid.  The second, toll amount divided by income, was created to investigate whether 

users consider the toll within the context of their overall income when making lane choice 

decisions.  Note that the resulting value is very small due to the difference in magnitude between 

a single toll amount and a household’s annual income.  The income divided by household size 

term was included to better represent potential behavioral differences between households of the 

same income level but different family sizes.   
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Table 67: Interaction Terms 

Interaction Terms 

Toll / Segment Count tollSegments.HOT 

Toll Amount / Income tollIncome.HOT 

Income / Household Size incomeHhSize 

 

Finding Problematic Variables with Regression Trees and Random Forests 

Another benefit of the regression tree analysis used here is its aid in identifying variables that 

may be highly correlated with the dependent variable.  In this case, that means identifying factors 

in the lane choice dataset that were endogenous to the dependent lane choice.  The coded 

distance variable, for example, used the locations of the SRTA HOT and GP gantries to calculate 

the distance of each corridor trip.  However, the HOT and GP gantries are at different locations 

and cover different portions of the corridor.  The GP gantries span approximately 88% of the 

length of the HOT gantries.  This method of calculating corridor trip distance results in distance 

as a discrete variable, rather than continuous, as there is a finite number of combinations of 

distance values that arise from the different start and end gantry combinations.  Because the HOT 

and GP gantries are at different locations, the resulting distance value is highly correlated with 

the type of lane the vehicle trip is in.  Only HOT trips extend the whole length of the corridor, for 

example.  As a result, any corridor trip that exceeds roughly 13.5 miles must be a toll-lane trip.  

This will be illustrated below in Figure 137. 

 Initial regression tree experiments identified this and other variables that needed to be 

removed from future models.  For example, a variable that calculated the speed difference 

between the Express Lanes and the general purpose lanes within the general purpose portion of a 

mixed trip only had values greater than zero during ‘mixed’ trips that used both lane types.  

Thus, any trip in which that variable had a value greater than zero was already known to have a 

toll lane component.  The classification tree models identified this and the previously discussed 
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distance variables as the most powerful explanatory factors, but these are not causal variables 

and were then removed them from the models. 

Figure 137 illustrates the regression tree results of the 2013 constructed trip data set, with 

paired Epsilon demographic data.  In this run, both the morning and afternoon peak trips were 

pooled together.  Note that the .  The most striking element of the figure is the dominance of the 

‘distancemi’ variable.  The instances of this variable far outnumber any other factor in the tree; 

many branches contain multiple references to it.  The problematic average speed difference 

variable discussed in the previous paragraph was identified in the random forest analysis; that 

discussion appears later in this chapter. 

In the regression tree diagrams presented here, each node has three values underneath it.  

The two values in the first row represent the probability of each class at that node.  In the case of 

the topmost node, the 0.47 value refers to the probability of a GP-only trip to the left, while the 

0.53 value refers to the probability of a trip that includes an HOT portion to the right.  This order 

is maintained across all nodes.  The percentage value beneath the probabilities represents the 

observational shares at that node.  Thus the topmost node includes 100% of all observations. 

In this tree, the first split occurs on the distance variable.  A trip distance value greater 

than 14 miles directs the user to the rightmost HOT node.  Here the HOT option has a probability 

value of 100%; all of the trips include toll lane trips; none of them are GP-exclusive.  This node 

represents 15% of the total trips in the data set.  Trips under 14 miles in length make up 85% of 

the total observations.  After the 14 mile distance slice, the next break point is again within the 

trip distance variable.  Here the tree checks whether the trip distance is less than 4.5 miles, and 

then again whether it is less than 2.3 miles.  The distance variable appears an additional five 

times, for a total of eight appearances in this initial regression tree.  The only other variables 
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included are the Jimmy Carter Boulevard dummy, the general purpose lane transponder count, 

and the toll lane density (transponder count divided by distance).
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Figure 137: 2013 Regression Tree Results with Problematic Variables (n = 2,301,286) 
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Regression Tree Results without Problematic Variables 

Performing the initial regression tree analysis helps visualize how significant an impact the 

‘distancemi’ variable had on the toll lane models.  The next step in the regression tree analysis 

was to remove that variable and re-run the models. 

Figure 138 presents the regression results of the paired 2013 constructed trip data with 

both morning and afternoon trips pooled together and the ‘distancemi’ variable excluded from 

the tree design.  The only common factor between this tree and the previous tree is the 

‘htDensity’ variable, which counts the detected transponders per mile in the Express Lanes along 

the length of the user’s trip.  This new tree, which excludes the distance variable, no longer 

includes the raw toll amount variable and the two corridor segment dummy variables (indicating 

the presence of the vehicle in the Jimmy Carter Boulevard or Pleasant Hill Road segments of the 

HOT or GP lanes).  This revised tree adds the segment count variable, which sums up the 

individual segment dummy results, the maximum daily toll amount (maxToll), and the average 

HOT and GP lane speeds.  In the regression tree figures presented here, the percentage value 

listed underneath each ‘leaf’ show the shares of the observations that fall into that leaf. 

The prominence of the segmentCount variable in this tree resembles the position of the 

distance variable in the previous problematic tree diagram.  The segmentCount variable was 

coded to replace the distance variable; it avoids using the specific locations of the HOT and GP 

gantries.  This replacement, while it doesn’t appear in the tree as frequently as the distance 

variable did, is still positioned as the most impactful variable.  Nearly a third of the total trips are 

partitioned out at the first level of the tree, which checks whether or not the segmentCount is 

equal to five (representing all five corridor segments). 
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Figure 138: 2013 Pooled Regression Tree Results Without Problematic Variables (n = 2,301,286) 

 The next pair of figures presents the regression tree results after splitting the data set into 

the southbound morning peak trips and the northbound afternoon peak trips.  Previous chapters, 

such as the Paired Versus Unpaired Data chapter, illustrated the benefits of such a split.  This 

split also makes intuitive sense as morning and afternoon trips typically differ in their trip types 

and purposes.  Figure 139 illustrates the regression tree results for the morning peak period 

southbound trips (1,107,026 trips in the data set).  This model has substantial differences from 

the pooled tree; in particular, the segmentCount factor is less prominent for the AM southbound 

trips.  More impactful is the vehicle’s presence in the Old Peachtree Road segment; that dummy 

variable represents the first branch in the tree.  Like the pooled tree, the AM tree identified the 

htDensity and maxToll variables as predictors of toll lane use.  After the segmentOP variable, the 

most prominent factors are the maximum daily toll value and the average toll lane speed.  The 
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segmentCount variable reappears at the third level of the tree, adjacent to the tollSegments 

interaction term and the toll lane transponder density. 

 

Figure 139: 2013 AM Peak Trips - Regression Tree Results (n = 1,107,026) 
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Figure 140 presented the regression tree results for the afternoon peak period northbound 

trips (1,194,260 observations).  This tree more closely resembles that of the pooled data in its 

structure, particularly in its prioritization of the segmentCount variable, along with the second-

level presence of the average general purpose lane speeds.  The proportion of trips in the HOT 

node when the vehicle is detected on all five segments, 35%, is higher than that of the pooled 

tree.  The segmentOP variable, indicating presence in the Old Peachtree Road segment of the 

corridor, appears here as well, though this factor applies to only 4% of the trips.  Interestingly, 

that variable is in both the southbound AM and northbound PM tree results but not in the pooled 

tree model.  The PM peak tree and the AM peak tree share four variables: along with the 

aforementioned segmentOP dummy variable, the maximum toll, segment count, and toll segment 

factors appear in both models.  The PM tree omits the htDensity parameter which is included in 

the morning model, along with the average toll lane speed, toll lane transponder count variables, 

‘Friday’ dummy indicator, and Pleasant Hill exit dummy indicator. 

 

Figure 140: 2013 PM Peak Trips - Regression Tree Results (n = 1,194,260) 
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 The results of the regression tree analysis for the 2013 constructed trips provide useful 

insights.  In the three preceding models, covering the pooled data, AM-specific data, and PM-

specific data, the only variables that appear in the regression trees are trip-specific and 

operational.  The demographic factors provided by the marketing data set do not appear in these 

regression tree results.  It may be the case that correlation with other variables results in the 

overshadowing of the demographic factors.  The segmentCount variable (a stand in for trip 

distance) and the Old Peachtree Road dummy variable appear at the top of the three different tree 

diagrams.  Toll rates appear in the form of the daily maximum value (maxToll) and interacted 

with the segment count (tollSegments, which divides the toll by the number of segments 

traversed), though not in their unmodified form (tollAmount.HOT).  The average speed variables 

for both the toll lane and general purpose lanes are given greater prominence than the 

transponder count variables.  Again, missing from these results is any sort of demographic factor.  

Despite the inclusion of 41 Epsilon household demographic variables, none of them had enough 

of an effect on HOT lane choice probability to appear in the regression tree results. 

 

Regression Tree Results without Transponder Counts 

An investigation into the correlation between the variables used in these hierarchical tree-based 

regression models, as well as in the initial modeling with in Chapter 8, provided valuable 

insights into the variable relationships.  The results of this correlation analysis can be found in 

Appendix A.  Among the primary findings from this analysis is the strong correlation between 

the transponder count variables and the speed variables.  The toll lane transponder count 

variables were highly, and negatively correlated with the average GP lane speeds (correlation 

coefficient of -0.71) and the average HT lane speeds (correlation coefficient of -0.73).  Toll lane 
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transponder counts were also positively correlated with the 50 mph congestion dummy 

(coefficient of 0.66) as well as the toll amount (0.84).  The general purpose transponder counts 

were also negative correlated with average GP lane speeds (-0.16) and average toll lane speeds (-

0.21), though the magnitudes were much lower.  GP transponder counts were positively 

correlated with the congested50 indicator (0.21) and the toll rate (0.73).  In the regression tree 

models presented above, average lane speed variables were more prominent than transponder 

counts.  These finding led the author to remove the transponder count variables from the 

regression tree models and run them again to re-examine the results with fewer inter-correlations. 

 Figure 141 presents the morning peak period regression tree model minus the transponder 

count and htDensity variables.  Again, perhaps the most striking result of this regression tree 

model is the lack of any demographic factors.  This includes both the three category income 

factor and the five category income factor.  The Old Peachtree Road indicator remains the first 

point at which the data are sliced.  The removal of the transponder count variables (including 

with htDensity) does not result in new variables in the tree; in fact the indicator of trips ending at 

Pleasant Hill Road is also now absent from the model. 
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Figure 141: 2013 AM Peak Regression Tree Minus Transponder Counts (n = 1,107,026) 
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 Figure 142 presents the afternoon peak period regression tree results minus the 

transponder count and htDensity variables.  As was the case with the preceding models, all of the 

demographic factors are absent.  The afternoon peak period tree shown in Figure 140 did not 

include any transponder count variables; the results displayed in this new tree are identical to 

those in the previous diagram. 

 

Figure 142: 2013 PM Peak Regression Tree Minus Transponder Counts (n = 1,194,260) 
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Random Forest Method 

Much like the bootstrap analysis method, which uses repeated random sampling to construct 

confidence intervals, the random forest method extends the regression tree model through 

simulation.  Here multiple regression tree models are estimated using subsamples of both the 

observations and the potential variables.  This allows the power of variables that may be 

excluded from a single regression tree model to be estimated and interpreted (Breiman, 2001). 

 The random forest method is stricter than the regression tree method in that it is more 

sensitive to missing data.  Random forests cannot be estimated with blank data values and as 

such will remove sample rows with any such values.  The demographic data provided by Epsilon 

contains many variables with less than perfect coverage; that is, variables with at least some 

blank rows in the data set.  The table below provides an overview of the variables in the 2013 

paired trip data set that have blank rows.  The proportion of blank rows is based on the total size 

of the weekday peak period and direction data set: 2,376,450 observations. 
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Table 68: Overview of Blank Rows in 2013 Trip Data 

Variable Name Number and Proportion of Blank 

Rows 

presence.of.adults.age.18.24.specific.enhanced 2314803 (97.4%) 

presence.of.adults.age.75.specific.enhanced 2304623 (97.0%) 

presence.of.adults.age.65.74.specific.enhanced 2229638 (93.8%) 

presence.of.children.age.00.02.enhanced 2207316 (92.9%) 

presence.of.children.age.16.17.enhanced 2205759 (92.8%) 

presence.of.children.age.03.05.enhanced 2037399 (85.7%) 

presence.of.children.age.11.15.enhanced 2028157 (85.3%) 

presence.of.children.age.06.10.enhanced 2014093 (84.8%) 

presence.of.adults.age.25.34.specific.enhanced 1989193 (83.7%) 

presence.of.adults.age.55.64.specific.enhanced 1937215 (81.5%) 

presence.of.adults.unknown.age.enhanced 1832071 (77.1%) 

presence.of.adults.age.35.44.specific.enhanced 1723739 (72.5%) 

presence.of.adults.age.45.54.specific.enhanced 1600730 (67.4%) 

tsp.number.of.children.enhanced 1582445 (66.6%) 

tsp.property.lot.size.in.acres 1069121 (45.0%) 

tsp.year.home.built.yyyy 1001235 (42.1%) 

tsp.living.area.square.feet 995676 (41.9%) 

tsp.family.composition.enhanced 122341 (5.1%) 

occupation 103854 (4.4%) 

tsp.advantage.home.owner 27587 (1.2%) 

tsp.advantage.dwelling.type 14736 (0.6%) 

advantage.household.income.legacy.dollars 4437 (0.2%) 

incomeHhSize (interaction term) 4437 (0.2%) 

tollIncome (interaction term) 4437 (0.2%) 

tsp.advantage.household.marital.status 4437 (0.2%) 

tsp.advantage.number.of.adults 4437 (0.2%) 

tsp.advantage.presence.of.children.enhanced 4437 (0.2%) 

percent.of.households.owning.a.registered.passenger.car 208 (0.01%) 

percent.of.households.owning.a.registered.new.passenger.car 208 (0.01%) 

percent.of.households.owning.a.registered.truck 208 (0.01%) 

percent.of.households.owning.a.registered.new.truck 208 (0.01%) 

percent.of.households.owning.a.registered.motorcycle 208 (0.01%) 

average.cmv.in.thousands.for.all.new.and.used.registered.vehicles 208 (0.01%) 

average.cmv.in.thousands.for.new.and.used.registered.cars 208 (0.01%) 

average.cmv.in.thousands.for.all.new.and.used.registered.trucks 208 (0.01%) 

percent.of.households.owning.a.registered.motor.home 208 (0.01%) 
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 To deal with these missing observations, researchers removed those variables with a 

substantial number of blank rows.  These variables, bolded in the table above, had more than 

40% of the total observation count missing.  The resulting data set was then narrowed to only 

complete cases, yielding 1,375,215 observations.  The ‘number of children’ variable was 

replaced by two dummy variables: an indicator of the presence of one child, and an indicator of 

the presence of multiple children. 

To investigate the impact of this narrowing of the data set, the author performed another 

regression tree analysis on the remaining observations.  Figure 143 illustrates the results of this 

analysis, with the southbound AM-peak trips and the northbound PM-peak trips pooled together.  

The results are virtually identical to those of Figure 138, in which the full 2.3 million observation 

pooled sample, with no variables excluded, formed the basis of the regression tree analysis.  The 

same factors have been selected in both tree figures, and the probability values at each node 

differ only by a maximum of 0.02. 

 

Figure 143: 2013 Regression Tree Results with Shortened Data Set (n = 1,331,604) 



383 

 

The random forest method was performed with 500 trees estimated and nine variables 

examined in each tree.  The following figures present the results from the AM peak and PM peak 

random forest analyses.  In each case the method generates two separate measures: variable 

importance and gini importance.  Variable importance refers to the extent to which that variable 

affects model prediction error.  The gini importance factor relates to the ‘purity’ of the nodes that 

result from splits on that variable.  In both cases, higher importance values indicate more 

explanatory power (Liaw, 2002; Breiman, 2001). 

Figure 144 presents the ranked variable importance results from the AM peak period 

southbound trips.  The variables are presented in the order of their impact on model accuracy: in 

this figure, the htDensity has the largest impact and is ranked first.  Here a large gap is present 

between the first variable (htDensity) and the next (daily maximum toll amount in the Express 

Lanes).  Other notable results include the higher priority given to the transponder counts of the 

two lane types compared with the average speeds.  The most significant congestion dummy 

variable is that which is activated at 50 miles per hour, followed closely by the congested45 

dummy.  The segment path that represents the full corridor, seg1to5 (Old Peachtree to I-285), is 

the highest path indicator to appear, followed by the seg2to5 indicator.  By this point in the list, 

however, the impact on model accuracy is close to zero.  As was the case in the regression tree 

results, no demographic variables appear in the top twenty random forest variable importance 

results. 
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Figure 144: 2013 Southbound AM Random Forest Results - Variable Importance (n = 647,573) 
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Figure 145 illustrates the Gini Importance results from the southbound peak trips.  As 

mentioned above, the Gini coefficient measures the impact each variable has on the homogeneity 

of its descendent nodes.  Those variables that yield the most homogenous nodes have the largest 

decrease in their Gini coefficients (Dinsdale, 2013).  This alternate measure provides another 

metric for model variable selection.  In this case, the most impactful variable is once again the 

fifteen-minute measure of toll lane transponder counts per mile (htDensity).  The next two 

variables are toll related: maximum daily toll, and toll divided by segment count.  One 

substantial difference between this figure and the previous variable importance figure is the 

presence of marketing demographic factors.  The most prominent of these are the neighborhood 

factors describing automobile, motorcycle, and truck ownership.  Household income appears at 

the 20
th

 position in the figure, interacted with household size in this case.  Though these 

marketing demographic factors do appear here, compared with the previous regression tree 

models, their impact on node homogeneity is low. 
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Figure 145: 2013 Southbound AM Random Forest Results – Gini Importance (n = 647,573) 
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Figure 146 and Figure 147 present the corresponding charts for the PM peak northbound 

trips.  The most striking difference between the northbound variable importance chart and its 

southbound counterpart is the placement of the segmentCount factor at the top.  In the afternoon 

trips, the previously-dominant htDensity variable is only marginally more impactful than the 

daily maximum toll term.  As in the morning peak period results, the maximum toll is followed 

by the tollSegments interaction term (the toll amount divided by the total segment count, 

including both HOT and GP lane types).  The corridor segment dummy variables are much more 

prominent in these afternoon trips: four of the five appear in the top twelve variables.  The square 

of the toll amount is roughly equivalent with the toll amount itself.  The afternoon trip models 

also benefit from the neighborhood-level auto ownership factors.  The three congestion dummy 

variables that appear here, congested45, congested40, and congested35, are ranked closely 

together, but have little overall impact on model accuracy.   
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Figure 146: 2013 Northbound PM Random Forest Results - Variable Importance (n = 683,885) 
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Figure 147 shows the Gini importance results for the northbound 2013 trips.  As in the 

variable importance chart, the top three factors are htDensity, segmentCount, and the daily 

maximum toll term.  The next four factors include the toll amount and its square, the 

tollSegments interaction term, and the square of the lane type speed difference.  The three GP 

congestion dummy variables that appear in the PM variable importance figure appear here as 

well; the neighborhood auto ownership characteristics are also similar.  The household’s age of 

home appears here and in the previous AM Gini importance chart, though not in either of the 

model accuracy charts.  The only segment indicator that appears here is that of the Pleasant Hill 

corridor segment. 

 

Figure 147: 2013 Northbound PM Random Forest Results – Gini Importance (n = 683,885) 
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Chapter Overview 

The purpose of this chapter was to investigate the most impactful variables out of the hundred-

plus factors available for the modeling analyses.  The results indicated a strong preference for 

trip characteristics and operating conditions, with much less emphasis on household 

demographics.  Across the various regression tree and random forest models, the most significant 

variables identified involved the length of the trip, variations on the toll amount, and the average 

speeds and transponder counts in both lane types. 

The southbound and northbound trips yield different results in both the regression tree 

and random forest analyses.  The most striking of these differences involves the lack of any 

transponder count variable in the PM peak regression tree results; these are represented in every 

other model through the htDensity, htTransponderCount, or gpTransponderCount variables.  

This perhaps speaks to the benefits of the bootstrapped random forest method over a single 

regression tree run.  Other differences are more subtle, including different dummy variables 

indicating congestion at different GP speeds, and the relative ranks of the lane type speed 

difference and the square of that difference. 

The most notable omissions from the regression tree results were the Epsilon 

demographic variables.  In both the pooled model and the time/direction separated models, only 

the trip and operational characteristics appear in the tree diagrams.  The toll variables that appear 

in the regression tree results, the daily maximum toll amount and the tollSegments interaction 

term, indicate a preference for Express Lane use at higher toll levels.  That is, the regression trees 

select toll lane trips when the toll values are higher than the cutoffs.  Though income does appear 

in the random forest results, it is never among the top five factors listed.  Few household 

demographic factors besides income appear; household size appears in its interaction term with 
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income (income divided by household size), and age of home appears near the bottom of the 

morning and afternoon variable importance charts. 

Also notable is the presence of neighborhood demographic variables in the random forest 

results.  The inclusion of these variables was surprising as they are not household- or individual-

specific, and toll lane decision making occurs at the individual level.  The author suspects that 

these variables may be capturing some household attributes that are not present in the household 

or individual variables.  While the marketing data provide household income information, for 

example, they do not provide overall wealth figures or household debts.  This shortcoming is 

present in Census data as well.  If households sort themselves into areas with similar financial 

characteristics, the neighborhood factors may help to provide more of a complete picture of 

household finances than income alone. 

The regression tree and random forest methods come with their own limitations.  Neither 

of them investigate correlation between the included factors.  Note how both htDensity (based on 

the toll lane transponder count) and the htTransponderCount variables both appear in some 

random forest results.  Similarly, lane type speed difference and toll amount both appear 

alongside the squares of those values.  The insights they provide are still valuable, however, and 

the results of this chapter will be used to expand the initial lane choice models for the Modeling 

Extensions chapter. 
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CHAPTER 12 

EXTENSION OF INITIAL MODELING ANALYSIS 

 

 

 

Initial modeling efforts described in Chapter 8 had many avenues for improvement, even within 

the realm of basic binary logit modeling.  Those avenues were described in detail in the 

Limitations section of that chapter.  This chapter describes the improvements to the models that 

were incorporated after final publication of the paper.  The chapter begins with an overview of 

the expanded data set used in the extended modeling analysis.  The next section describes the 

various methodological changes and improvements, beginning with the additional variables and 

interaction terms considered in the models.  The chapter then discusses the model building and 

variable selection strategies that the author used, as well as the mixed logit framework that 

replaces the standard logit framework.  The next section presents the results from the model 

exploration.  The chapter then discusses the results from the mixed logit models, and ends with 

an overview of the elasticity results. 

Data 

One major limitation of the initial modeling work was the scope of the data used in the analysis.  

While it did examine a full year’s worth of constructed trips paired with household 

demographics, the full data set contains more than two additional years’ of data.  Similarly, the 

initial modeling work did not incorporate mixed trips, those that occur across both lane types.  

Further narrowing the sample was the low match rate between the SRTA Peach Pass 

transponders and the Epsilon demographic data due to the structure of the SRTA Account 

database.  The many-to-many join issue between registered transponders and vehicles excluded 

accounts with more than one instance of either record type, so that only accounts with a single 
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vehicle and a single transponder remained.  In addition to reducing the volume of data available 

for the analysis, this restriction also biased the results by including only households with a single 

registered vehicle.   

Expanded Constructed Trip Data Set 

This chapter expands the scope of the data under examination by rectifying many of the issues 

described above.  In particular, the ‘mixed’ trips that were previously excluded from the analysis 

are now included, as are trips by SRTA accounts with multiple transponders.  Table 69 provides 

an overview of the expanded data set for 2013, with the AM and PM peak trips separated.  The 

afternoon period trips include more households, transponders, and observations.  The 

demographic characteristics of both sets of users are similar, with median differences of only one 

unit in the household size and education categories.  For the purposes of this dissertation, only 

trips from calendar year 2013 are included to save model estimation time. 
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Table 69: Expanded 2013 Data Overview 

 Full Dataset – 

2013 

AM Peak Trips PM Peak Trips 

Unique Households Analyzed 36,854 27,774 33,482 

Unique Transponders Analyzed 68,325 47,184 58,122 

Total Trips Monitored 2,656,430 1,177,014 1,194,999 

     HOT-Exclusive Trips 386,370 205,765 168,309 

     GP-Exclusive Trips 1,337,286 558,477 547,978 

     Mixed Trips 932,774 412,772 478,712 

Average Trip Speed (mph) 53.3 49.5 53.2 

Average Segment Count 3.7 3.7 3.7 

Median Household Income [25%; 75%] $62,500 

[$45,000; 

$112,500] 

$62,500 

[$45,000; 

$112,500] 

$62,500 

[$45,000; 

$112,500] 

Median Household Size [25%; 75%] 3 [2; 5] 4 [2; 5] 3 [2; 5] 

Median Household Age [25%; 75%] 5 [4; 6] 5 [4; 6] 5 [4; 6] 

Median Household Education [25%; 75%] 5 [4; 5] 4 [4; 5] 5 [4; 5] 

 

Table 70 presents the 2013 constructed trip data with income segment divisions.  This 

table resembles that of the initial analysis in Chapter 8, with the inclusion of the previously 

excluded trips.  While the Higher income segment has the lowest rate of GP-exclusive trips, and 

thus higher rates of HOT use, that segment’s share of total Express Lane trips is lower than its 

share of households.  This is likely due to differences in trips per household across the three 

segments. 
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Table 70: Expanded 2013 Data Overview - Income Segments 

 Full Dataset Lower 

Income 

($0-50k) 

Medium Income 

($50-100k) 

Higher 

Income 

($100k+) 

Unique Households Analyzed 36,854 10,127 15,588 11,139 

% of Households by Income 100% 27.5% 42.3% 30.2% 

Unique Transponders 

Analyzed 

68,325 19,424 28,907 20,032 

Total Trips Monitored 2,656,430 780,364 1,206,121 669,945 

     HOT-Exclusive Trips 386,370 113,915 167,577 104,878 

     GP-Exclusive Trips 1,337,286 409,743 610,314 317,229 

     Mixed Trips 932,774 256,706 428,230 247,838 

% of HOT-Exclusive Trips 14.6% 14.6% 13.9% 15.6% 

% of GP-Exclusive Trips 50.3% 52.5% 50.6% 47.4% 

% of Mixed Trips 35.1% 32.9% 35.5% 37.0% 

% of Total Trips by Income  29.4% 45.4% 25.2% 

% of HOT Trips by Income  29.5% 43.4% 27.1% 

% of GP Trips by Income  30.7% 45.6% 23.7% 

% of Mixed Trips by Income  27.5% 45.9% 26.6% 

Average Trip Speed (mph) 53.3 53.0 53.5 53.4 

Average Segment Count 3.7 3.5 3.7 3.8 

Methodology 

The preliminary modeling work in the previous chapter had a number of methodological 

shortcomings that this chapter seeks to correct.  The distance variable, calculated via the 

locations of the first and last detected gantries, was highly correlated with the lane type choice 

for reasons described earlier.  The models used a limited set of independent factors, failing to 

incorporate any interaction terms or time-of-trip variables, among others.  Repeated observations 

by the same transponders and households yielded serial correlation that resulted in biased 

estimators.  Other factors, such as the congested dummy variable and the income segments, were 

used without exploring whether they were defined in the most appropriate manner.   

Additional Variables and Interaction Terms 

The first step in the exploratory process was to investigate the available variables that were not 

used in the initial models, and to examine interaction terms that may better describe user 

behavior relative to the individual terms.  Table 71 presents the set of these additional variables 
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and interaction terms that were used to supplement the original data set.  The ‘congested’ dummy 

variable used in the initial analysis was pre-defined without performing any sensitivity analysis.  

General purpose lanes may be ‘congested’ when average speeds are under 40 miles per hour; 

they may also be said to be congested under 30 mph.  For this expanded modeling analysis, the 

author coded a series of dummy variables ranging from 5 miles per hour to 50 miles per hour in 

5mph increments.  The regression tree and random forest methods described in Chapter 11 

identified the most impactful of these dummy variables, though those results varied across the 

different models.  The other additional variables include dummy variables that indicate the time 

at which the trip was started at various levels: month, season, day of week, half-hour time 

interval, and hour-long time interval.  The htDensity factor divides the transponder count in the 

toll lane by the length of the HOT segment traversed; note that this differs from the strict traffic 

engineering definition of density as the counts occur over a fifteen minute duration. 

The interaction terms in the table include toll amount divided by household income, toll 

amount divided by number of segments, and income divided by household size.  Two terms 

square the toll rate and lane type speed difference to examine whether non-linear effects better 

represent those factors.  Note that the data set was restricted to include only trips where this 

speed difference is positive.  The initial models pooled together the southbound trips in the AM 

peak period and the northbound trips in the PM peak period.  The investigation of the paired and 

unpaired trip data examined northbound and southbound trips separately, which resulted in better 

model results in all cases.  This chapter continues using that method. 
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Table 71: Additional Variables and Interaction Terms 

Variable Description 

congested50 through congested05 Variables indicating average GP lane speeds 

Month dummy variables Month in which trip was taken 

Season dummy variables Season in which trip was taken 

Day of week dummy variables Day of week on which trip was taken 

am600 – am930 Dummy indicating half-hour interval for trip start time 

pm1500 – pm1830 Dummy indicating half-hour interval for trip start time 

sixAm – nineAm Dummy indicating hour long interval for trip start time 

threePm – sixPm Dummy indicating hour long interval for trip start time 

htDensity Transponders per mile in HOT lane, 15 minute count 

segmentCount Number of segments traversed 

tollIncome Toll divided by log of household income 

tollSegments Toll divided by number of segments 

incomeHhSize Income divided by household size 

Income Segments: 5 groups Dummy variables indicating presence in one of five income 

segments 

tollRateSquared Square of toll amount 

avgSpeedDiffSquared Square of average speed difference between HOT and GP 

lanes 

 

Alternative Income Segmentation Investigation 

One of the main takeaways from the initial modeling work and the value of travel time savings 

work was the behavioral similarity among the three pre-defined income segments.  The 

boundaries of these segments were selected based on the number of households that fell into 

each income category; the purpose of the selected intervals was to make the household counts 

similar in each segment.  This chapter extends the initial analysis by further segmenting the 

‘Higher’ income group (households with over $100k in annual income) into smaller partitions to 

investigate potential variability in lane choice determinants for those households.  The 

motivation behind this is to examine whether users highest end of the income spectrum exhibit 

different decision making processes than those closer to the Medium/Higher income boundary.   

Model Building Strategy 

The model building process employed in this chapter takes an iterative approach to adding new 

variables.  After examining the impact of the new factors and selecting a new base model, the 
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interaction terms are added to the resulting model by themselves and in various combinations.  

The author used the Akaike Information Criterion (AIC) measure to compare models of different 

parameter counts to investigate whether the benefit of additional variables outweighed the cost of 

their inclusion.  The following table lists and describes the models and the progression of the 

model building strategy. 

Table 72: Model Numbers and Descriptions 

Model Number Description 

Model 1 Recreation of Initial TRB Model (Sheikh, 2015) 

Model 2 Distance variable replaced with segment counts (HOT or GP) 

Model 3 Average speed difference replaced with square of average speed difference 

(positive differences only) 

Model 4a, 4b, 4c Comparison of congestion dummy variables 

Model 5a, 5b Incorporation of selected congestion dummy variables 

Model 6a, 6b Added month and season dummy variables 

Model 7 Added day of week dummy variables 

Model 8 Added trip start time hour dummy variables 

Model 9 Replaced trip start time hour dummy variables with half-hour indicators 

Model 10 Replaced toll variable with square of toll 

Model 11a, 11b Replaced transponder counts with htDensity 

Model 12a, 12b Added tollLogIncome interaction term (toll divided by log(income)) 

Model 13 Added tollIncome interaction term (toll divided by income) 

Model 14 Added income and log(income) divided by household size interaction terms 

Model 15 Added toll divided by segment count interaction term 

Model 16 All interaction terms included 

Model 17 Additional interaction term combinations 

 

Mixed Logit Modeling 

As discussed in the Initial HOT Use Choice Analysis chapter, the standard binary logit 

framework has certain limitations that can affect the modeling results.  Most relevant among 

these for this analysis is the issue of serial correlation, or repeated choices by the same 

individuals.  The standard logit framework assumes independence among the errors in the model; 

this assumption is violated when the same user appears multiple times in the data set.  Repeated 

observations are a defining characteristic of the combined SRTA-Epsilon lane use data set, and 

as such any standard logit model estimated on that data will be biased due to serial correlation.  
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The estimators provided by the standard binary logit framework are also fixed, and may not 

represent the range of responses to a specific variable.  The independence from irrelevant 

alternatives (IIA) property is typically a limitation as well, but in this binary framework there are 

only two alternatives (Train, 1986). 

 To address these issues, the author used the models selected from the standard binary 

logit analysis to estimate mixed logit models of the same design.  The mixed logit framework 

addresses the serial correlation issue by identifying the user making each choice and adjusting 

error terms appropriately.  Mixed logit models also allow for random parameters: the modeler 

specifies a distribution for a parameter, and the model estimates a random variable coefficient to 

fit that distribution.  This allows the models to better represent the potential variation in user 

response to different factors.  For this analysis, all of the models were estimated using 500 

Halton draws for the simulation.  This chapter will present the results of these mixed logit 

models, along with the parameter distributions that arise from each one.  Note that for some of 

the model runs, a random sub-sample of 10,000 records was used.  This restriction was meant to 

save estimation time.  For the model that was selected as the preferred mixed logit model, the 

full data sets were used in both the AM and PM peak periods. 

Modeling Results 

Previous Model with Expanded Data Set 

The extended modeling analysis began by re-estimating the initial models with the newly 

expanded data set.  Table 73 presents the results from the model used in the Initial Use Choice 

Modeling chapter and the Sheikh, 2015 TRB paper.  This table incorporates the additional 

mixed-lane-type trips from 2013; the dependent variable is use of the priced facility for any 

portion of the trip.  Trips which use both lane types are modeled as HOT trips; the corridor 
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conditions used in their records compare the segments which the user traversed in the Express 

Lanes. In the model results tables below, the reported R
2 

measure is McFadden’s pseudo-R
2
 

value for discrete choice models.  This measure measures the log likelihood of the full model 

against the log likelihood of the intercept-only model.  For each model presented in this chapter, 

odds ratios were calculated from the estimated coefficients.  An odds ratio represents the 

increase of the odds of an event given a unit increase in the independent variable for which it was 

estimated.  In this research, the dependent event is the use of the Express Lanes for a portion of a 

trip.  The odds represent the proportion of positive outcomes (HOT use) versus negative 

outcomes (no HOT use); the odds ratio estimates the increase in those odds (Szulimas, 2010).  

The full set of odds ratio results can be found in Appendix C. 

 The re-estimation of the initial model was performed on a much larger data set; over a 

million additional records were included.  The timeframe for the trips, calendar year 2013, did 

not change.  The count of unique Epsilon households increased by nearly 8,000 (27.3%).  The 

results illustrate differences in coefficient signs and magnitudes among the pooled models.  In 

particular, the average speed difference and transponder count estimators flip their signs: 

previously the avgSpeed coefficient was positive while the transponderCount coefficient was 

negative.  The correlation matrices in Appendix A illustrate the high level of correlation between 

vehicle speeds and transponder counts, indicating the reason for this effect.  In addition, the 

Paired versus Unpaired Data chapter identified a similar effect between the average speed 

difference and congested conditions factors.  Once again, the distance variable yields the highest 

t-statistic; for reasons discussed previously, it was removed from all future models.  The 

goodness of fit, as measured by the pseudo-R
2
 value, improves with the additional observations.  

Like the previous pooled model, all of the coefficients are significant at the 95% confidence 
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level, and here most are significant at the 99% confidence level.  Only the household education 

factor sees a decrease in its relative significance.  As in the previous model, age, household size, 

and education all have negative coefficients.  The Data Sources chapter investigated the 

correlation among these demographic factors and found that all three are positively correlated 

with household income. 

 The previous publication did not segment the trip set by peak period and direction; Table 

73 shows the results of this segmentation.  The differences here are in the goodness of fit, the 

average speed difference coefficient, and the household education coefficient.  Segmenting the 

models yields a higher R
2
 value for the afternoon peak, though the morning peak model sees a 

decrease relative to the original pooled model.  The average speed difference coefficient is 

positive in the afternoon, resembling the results from the previous paper rather than the pooled 

and morning peak models in Table 73.  Household education in only the morning peak has a 

positive effect on the probability of toll lane use; while it is significant at the 95% confidence 

level, the estimator is still close to zero in magnitude.  Note that in all of the modeling results 

tables below, the ‘HOT:’ prefix indicates that the coefficient is alternative specific and the 

estimator reflects the change in probability of using the Express Lanes. 
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Table 73: Re-Estimation of Initial Model for TRB 2015 

 Pooled AM Peak – Model 1 PM Peak – Model 1 

Intercept -2.904*** (t = -96.062) -2.236*** (t = -53.675) -3.775*** (t = -85.844) 

avgSpeed -0.012*** (t = -48.708) -0.030*** (t = -93.353) 0.016*** (t = 39.447) 

tollAmount -0.567*** (t = -443.468) -0.558*** (t = -327.322) -0.557*** (t = -264.996) 

transponderCount 0.004*** (t = 245.240) 0.003*** (t = 158.524) 0.004*** (t = 179.556) 

HOT: southbound 0.143*** (t = 36.443)   

HOT: congested40 1.488*** (t = 312.448) 1.469*** (t = 212.343) 1.367*** (t = 200.891) 

HOT: 

log(hhIncomedollars) 0.043*** (t = 14.150) 0.041*** (t = 9.774) 0.062*** (t = 14.222) 

HOT: hhEdu -0.014*** (t = -5.945) 0.011*** (t = 3.418) -0.064*** (t = -19.164) 

HOT: hhAge -0.020*** (t = -13.671) -0.030*** (t = -14.649) -0.013*** (t = -6.110) 

HOT: hhSize -0.039*** (t = -40.095) -0.049*** (t = -36.282) -0.029*** (t = -20.111) 

HOT: distancemi 0.398*** (t = 671.968) 0.367*** (t = 444.069) 0.431*** (t = 490.117) 

HOT Share 0.5355 0.5287 0.5418 

Observations 2,297,048 1,105,171 1,191,877 

R
2
 0.261 0.223 0.307 

Log Likelihood -1,171,791.00 -594,075.40 -569,297.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 In the models in Table 73, the odds ratios of the four demographic factors are all close to 

one (the value that indicates that an increase in the factor value does not change the odds of the 

dependent event).  The highest of those four is income with an odds ratio of 1.06 in the PM peak.  

The lowest, household education, has an odds ratio of 0.938 in the PM peak.  Similarly, the odds 

ratio of the difference in transponder counts is 1.00.  Of the remaining factors, the congested 

conditions dummy variables have the largest odds ratios (4.35 in the morning, 3.93 in the 

afternoon), and the toll amount odds ratios have substantial negative impacts (0.57 in both 

periods). 

 

Additional Variables 

The following series of models examine the impacts of adding additional variables listed in 

Table 71 to the initial model.  After presenting all of the individual models, the goodness of fit 

and Akaike Information Criterion (AIC) values are summarized in Table 86.  The author 

examined the AIC measure to investigate the benefit of each additional variable or set of dummy 
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variables relative to the cost of the additional factors.  Those measures were used to select a 

model to use in further investigations. 

Model 2 – Replacing Distance with Segment Count 

Table 74 presents the results of replacing the problematic ‘distancemi’ variable, which measured 

the distance in miles between corridor gantries, with the ‘segmentCount’ variable, which counts 

the number of corridor segments (out of five) on which the vehicle was detected.  This results in 

a large decrease in the pseudo-R
2
 measure; the decrease exceeds 0.10 in both cases.  Note that 

this decrease represents a correction in the model; the distance variable was not independent and 

as such had a large impact on the goodness-of-fit.  The segmentCount coefficient remains 

positive and, like the removed distance coefficient, has the highest t-statistic of all of the factors.  

Note that in this and all successive tables, the new or changed variables are shaded in grey. 

Table 74: Distance Replaced with segmentCount 

 AM Peak – Model 2 PM Peak – Model 2 

Intercept -2.573*** (t = -67.052) -3.911*** (t = -96.772) 

avgSpeed -0.010*** (t = -35.789) 0.013*** (t = 33.510) 

tollAmount -0.352*** (t = -241.986) -0.340*** (t = -183.642) 

transponderCount 0.0005*** (t = 27.748) 0.003*** (t = 135.881) 

HOT: congested40 1.395*** (t = 220.169) 1.192*** (t = 192.650) 

HOT: log(hhIncomedollars) 0.124*** (t = 32.380) 0.128*** (t = 32.089) 

HOT: hhEdu -0.096*** (t = -33.077) -0.200*** (t = -65.274) 

HOT: hhAge -0.028*** (t = -15.457) -0.006*** (t = -3.385) 

HOT: hhSize -0.044*** (t = -35.465) -0.020*** (t = -15.236) 

HOT: segmentCount 0.655*** (t = 286.978) 0.955*** (t = 396.364) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R
2
 0.102 0.205 

Log Likelihood -686,021.40 -653,349.60 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 In the previous set of models (Model 1), the odds ratios of the distance variables were 

1.44 in the morning peak and 1.54 in the afternoon peak.  The segment count variable odds ratios 

are 1.93 in the morning and 2.60 in the afternoon.  Note that while the range of distance values 
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extend from roughly one mile to fifteen miles, the segment count factor has a minimum value of 

one and a maximum value of five. 

Model 3 – Square of Average Speed Difference 

Table 75 shows the results of squaring the average speed difference factor.  The motivation for 

this change was to investigate potential non-linear impacts of speed differences.  The results 

suggest that this variant is preferable; model fit improves marginally, while the t-statistic 

increases in both the AM and PM peak models.  The afternoon peak coefficient is now negative, 

like the morning peak coefficient and unlike the afternoon peak coefficient in the previous two 

models.  This result is counterintuitive as it suggests that users are more likely to use the Express 

Lanes when they are slower than the GP lanes, though it agrees with the interpretation of the 

transponderCount coefficient: users are more likely to use the Express Lanes when they have 

more Peach Pass holding vehicles than the GP lanes.  This is another case where the magnitudes 

are very close to zero, however. 

Table 75: Square of Average Speed Difference 

 AM Peak – Model 3 PM Peak – Model 3 

Intercept -2.429*** (t = -63.122) -3.464*** (t = -85.773) 

avgSpeed
2
 -0.0002*** (t = -83.558) -0.0002*** (t = -49.912) 

tollAmount -0.370*** (t = -250.724) -0.362*** (t = -191.343) 

transponderCount 0.0003*** (t = 18.684) 0.003*** (t = 133.269) 

HOT: congested40 1.428*** (t = 237.063) 1.374*** (t = 252.782) 

HOT: log(hhIncomedollars) 0.127*** (t = 33.208) 0.124*** (t = 31.049) 

HOT: hhEdu -0.103*** (t = -35.106) -0.195*** (t = -63.643) 

HOT: hhAge -0.029*** (t = -15.778) -0.006*** (t = -3.256) 

HOT: hhSize -0.045*** (t = -35.828) -0.021*** (t = -16.263) 

HOT: segmentCount 0.672*** (t = 291.415) 0.998*** (t = 405.242) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R2 0.106 0.206 

Log Likelihood -683,125.30 -652,655.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 While the goodness of fit and test statistics both improve, the odds ratio measures change 

very little.  Model 2 saw odds ratios of 0.99 and 1.01 for the difference in average speed 
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measures for the AM and PM peaks respectively.  The odds ratios of the squared speed 

differences in Model 3 are 1.00 in both cases. 

Model 4 – Congestion Dummy Comparison 

Table 76 and Table 77 show the results of six univariate models, examining three congestion 

dummy variables each in the morning and afternoon peak periods.  The dummy variables (50, 

45, and 35 mph in the morning; 45, 40, and 35 mph in the afternoon) were previously identified 

in various iterations of the regression tree models presented in Chapter 11.  Of the ten different 

dummy variables, they were found to be the most impactful by the regression tree and random 

forest analyses.  Table 76 presents the results of the AM peak univariate models.  The three 

different congestion dummy variables are similar in sign and magnitude.  The goodness of fit 

measures also differ only marginally, with the congested35 dummy yielding the lowest fit.  Of 

the remaining two, the slightly increased significance of the congested50 dummy makes it the 

favored variable for the morning period models. 

Table 76: AM Congestion Dummy Variable Comparison 

 AM Peak Model 4a AM Peak Model 4b AM Peak Model 4c 

Intercept -0.510*** (t = -139.481) -0.403*** (t = -124.720) -0.185*** (t = -72.586) 

HOT: congested50 0.878*** (t = 203.322)   

HOT: congested45  0.813*** (t = 200.938)  

HOT: congested35   0.698*** (t = 178.124) 

HOT Share 0.5287 0.5287 0.5287 

Observations 1,105,171 1,105,171 1,105,171 

R
2
 0.028 0.027 0.021 

Log Likelihood -742,933.20 -743,613.70 -748,076.60 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

Table 77 presents a similar comparison for the PM peak period.  Here the model fits 

differ by larger amounts, with the 45 mph dummy yielding the best goodness of fit.  The 

congested45 dummy also had the highest t-statistic, and the model had the highest log likelihood 

value.  The regression tree results indicated that the congested40 variable was more impactful, 
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while the random forest method placed more importance on the congested45 variable.  For this 

reason the next model iteration compares both dummies in the presence of the other factors.   

 
Table 77: PM Congestion Dummy Variable Comparison 

 PM Peak Model 4a PM Peak Model 4b PM Peak Model 4c 

Intercept -0.691*** (t = -215.318) -0.462*** (t = -171.212) -0.262*** (t = -111.791) 

HOT: congested45 1.363*** (t = 338.402)   

HOT: congested40  1.256*** (t = 325.504)  

HOT: congested35   1.195*** (t = 294.594) 

HOT Share 0.5418 0.5418 0.5418 

Observations 1,191,877 1,191,877 1,191,877 

R
2
 0.074 0.068 0.056 

Log Likelihood -761,241.20 -766,362.40 -775,714.20 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Model 5 – Incorporating Congestion Dummies in Models 

Table 78 presents the results with the new congestion dummy variables that were identified 

through the regression tree and univariate modeling investigations.  For the morning peak period 

model, the substitution of the congested50 variable for the previously used congested40 variable 

yields an increase in the model fit and the t-statistic for that factor.  The signs and magnitudes of 

the other variables remain similar.  The two afternoon peak models compare the two congestion 

dummy levels presented in Table 77.  While the congested45 dummy performed better than 

congested40 in isolation, the opposite is true in the presence of the other model factors.  Here the 

model with the congested40 dummy has a marginally higher goodness of fit level, and again the 

t-statistic is higher than that of the congested45 estimator. 
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Table 78: Incorporating Congestion Dummies in Models 

 AM Peak – Model 5 PM Peak – Model 5a PM Peak – Model 5b 

Intercept -2.710*** (t = -69.568) -3.247*** (t = -80.849) -3.464*** (t = -85.773) 

avgSpeed
2
 -0.0005*** (t = -144.685) -0.0003*** (t = -80.352) -0.0002*** (t = -49.912) 

tollAmount -0.436*** (t = -279.080) -0.356*** (t = -188.594) -0.362*** (t = -191.343) 

transponderCount -0.0003*** (t = -17.069) 0.003*** (t = 131.399) 0.003*** (t = 133.269) 

HOT: congested50 2.054*** (t = 273.573)   

HOT: congested45  1.386*** (t = 232.182)  

HOT: congested40   1.374*** (t = 252.782) 

HOT: 

log(hhIncomedollars) 0.137*** (t = 35.359) 0.123*** (t = 30.918) 0.124*** (t = 31.049) 

HOT: hhEdu -0.117*** (t = -39.654) -0.187*** (t = -61.025) -0.195*** (t = -63.643) 

HOT: hhAge -0.030*** (t = -16.084) -0.006*** (t = -3.268) -0.006*** (t = -3.256) 

HOT: hhSize -0.043*** (t = -34.549) -0.021*** (t = -16.405) -0.021*** (t = -16.263) 

HOT: segmentCount 0.692*** (t = 292.457) 0.948*** (t = 394.284) 0.998*** (t = 405.242) 

HOT Share 0.5287 0.5418 0.5418 

Observations 1,105,171 1,191,877 1,191,877 

R2 0.121 0.199 0.206 

Log Likelihood -671,423.80 -658,137.90 -652,655.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Model 6 –Month of Year Dummy Variables 

With January as the reference category, the next pair of models used dummy variables to indicate 

the month of the year in which the trip took place.  Table 79 presents the results of these model 

estimates.  In both the AM and PM peak models, the goodness of fit improves very slightly (by 

0.001 in the AM and 0.005 in the PM).  Each of the dummy variables is significant at the 95% 

confidence level, as are the rest of the factors in the models. 
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Table 79: Adding Month Dummy Variables 

 AM Peak – Model 6a PM Peak – Model 6a 

Intercept -2.812*** (t = -71.173) -3.447*** (t = -84.015) 

avgSpeed
2
 -0.0005*** (t = -143.724) -0.0002*** (t = -50.101) 

tollAmount -0.437*** (t = -279.088) -0.423*** (t = -202.483) 

transponderCount -0.0003*** (t = -17.819) 0.003*** (t = 143.899) 

HOT: congested50 2.043*** (t = 271.004)  

HOT: congested40  1.368*** (t = 249.511) 

HOT: log(hhIncomedollars) 0.137*** (t = 35.333) 0.123*** (t = 30.722) 

HOT: hhEdu -0.117*** (t = -39.639) -0.198*** (t = -64.367) 

HOT: hhAge -0.030*** (t = -16.181) -0.006*** (t = -3.368) 

HOT: hhSize -0.044*** (t = -34.568) -0.021*** (t = -16.317) 

HOT: segmentCount 0.694*** (t = 292.088) 1.056*** (t = 406.739) 

HOT: february 0.070*** (t = 6.903) -0.059*** (t = -5.576) 

HOT: march 0.077*** (t = 7.818) -0.043*** (t = -4.141) 

HOT: april 0.160*** (t = 16.008) -0.257*** (t = -24.349) 

HOT: may 0.142*** (t = 14.391) -0.358*** (t = -34.483) 

HOT: june 0.096*** (t = 9.240) -0.350*** (t = -32.699) 

HOT: july 0.091*** (t = 9.146) -0.328*** (t = -31.108) 

HOT: august 0.149*** (t = 14.938) -0.164*** (t = -15.748) 

HOT: september 0.189*** (t = 18.588) 0.188*** (t = 17.635) 

HOT: october 0.212*** (t = 20.949) 0.226*** (t = 21.341) 

HOT: november 0.123*** (t = 11.959) 0.157*** (t = 14.663) 

HOT: december 0.020* (t = 1.898) 0.137*** (t = 12.785) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R
2
 0.122 0.211 

Log Likelihood -670,994.30 -648,711.70 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 For the monthly dummy indicators in the morning peak, the odds ratio measures ranged 

from 1.02 (December) to 1.24 (October).  In the afternoon peak, the minimum value was 0.699 

(May) while the maximum was 1.25 (October).   

Model 6b – Seasonal instead of Monthly Dummy Variables 

Table 80 presents the model estimate results with seasonal rather than monthly dummy variables.  

Here ‘spring’ refers to March, April, and May, ‘summer’ refers to June, July, and August, ‘fall’ 

refers to September, October, and November, and ‘winter’ refers to December, January and 

February.  Model goodness of fit levels decrease by 0.001 in both the morning and afternoon 

cases relative to the previous Model 6a estimates; the change in variables has an irrelevant 

impact on the pseudo-R
2
 values.  Trips in the spring, summer, or fall see an increase in 
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probability of Express Lane use in the morning, relative to the winter season trips.  In the 

afternoon peak, only fall trips have a higher HOT probability than winter trips; spring and 

summer probabilities are lower. 

Table 80: Adding Season dummy variables 

 AM Peak – Model 6b PM Peak – Model 6b 

Intercept -2.782*** (t = -71.171) -3.412*** (t = -84.021) 

avgSpeed
2
 -0.0005*** (t = -144.499) -0.0002*** (t = -49.383) 

tollAmount -0.437*** (t = -279.398) -0.409*** (t = -201.872) 

transponderCount -0.0003*** (t = -16.830) 0.003*** (t = 144.118) 

HOT: congested50 2.043*** (t = 271.200)  

HOT: congested40  1.369*** (t = 250.842) 

HOT: log(hhIncomedollars) 0.137*** (t = 35.307) 0.124*** (t = 30.855) 

HOT: hhEdu -0.117*** (t = -39.660) -0.198*** (t = -64.378) 

HOT: hhAge -0.030*** (t = -16.170) -0.006*** (t = -3.342) 

HOT: hhSize -0.043*** (t = -34.553) -0.021*** (t = -16.262) 

HOT: segmentCount 0.694*** (t = 292.592) 1.043*** (t = 407.222) 

HOT: spring 0.097*** (t = 16.501) -0.243*** (t = -39.271) 

HOT: summer 0.083*** (t = 13.973) -0.300*** (t = -48.270) 

HOT: fall 0.146*** (t = 24.311) 0.150*** (t = 23.892) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R2 0.122 0.21 

Log Likelihood -671,117.00 -649,541.10 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Model 7 – Day of Week Dummy Variables 

Model 7 builds upon the previous iterations by adding dummy variables for the day of the week, 

with Monday as the base alternative.  Table 81 illustrates the improvement in model fit for both 

the AM and PM peak models.  Again, all of the additional variables achieve significance at the 

95% confidence level in both segments.  In the morning peak, Tuesday, Wednesday, and 

Thursday trips result in a higher probability of HOT use than Monday trips, while Friday trips 

see the opposite effect.  For afternoon trips, both Thursday and Friday trips have lower HOT use 

probabilities than Monday trips. 
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Table 81: Adding Day of Week dummy variables 

 AM Peak – Model 7 PM Peak – Model 7 

Intercept -2.840*** (t = -71.090) -3.435*** (t = -83.252) 

avgSpeed
2
 -0.0005*** (t = -143.044) -0.0002*** (t = -49.831) 

tollAmount -0.480*** (t = -291.752) -0.418*** (t = -198.727) 

transponderCount -0.0004*** (t = -24.746) 0.003*** (t = 141.262) 

HOT: congested50 2.054*** (t = 271.283)  

HOT: congested40  1.365*** (t = 248.432) 

HOT: log(hhIncomedollars) 0.137*** (t = 35.351) 0.124*** (t = 30.889) 

HOT: hhEdu -0.116*** (t = -38.815) -0.199*** (t = -64.494) 

HOT: hhAge -0.033*** (t = -17.365) -0.006*** (t = -3.298) 

HOT: hhSize -0.043*** (t = -34.038) -0.021*** (t = -16.370) 

HOT: segmentCount 0.723*** (t = 299.101) 1.056*** (t = 406.578) 

HOT: february 0.106*** (t = 10.301) -0.062*** (t = -5.870) 

HOT: march 0.121*** (t = 12.146) -0.049*** (t = -4.636) 

HOT: april 0.207*** (t = 20.455) -0.262*** (t = -24.772) 

HOT: may 0.190*** (t = 19.087) -0.360*** (t = -34.624) 

HOT: june 0.122*** (t = 11.674) -0.353*** (t = -32.912) 

HOT: july 0.099*** (t = 9.854) -0.339*** (t = -32.005) 

HOT: august 0.187*** (t = 18.568) -0.169*** (t = -16.193) 

HOT: september 0.256*** (t = 25.013) 0.185*** (t = 17.316) 

HOT: october 0.252*** (t = 24.656) 0.220*** (t = 20.785) 

HOT: november 0.183*** (t = 17.609) 0.157*** (t = 14.590) 

HOT: december 0.058*** (t = 5.570) 0.137*** (t = 12.774) 

HOT: tuesday 0.128*** (t = 19.476) 0.023*** (t = 3.427) 

HOT: wednesday 0.162*** (t = 24.293) 0.033*** (t = 4.816) 

HOT: thursday 0.156*** (t = 23.479) -0.089*** (t = -12.633) 

HOT: friday -0.477*** (t = -67.623) -0.065*** (t = -8.748) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R
2
 0.129 0.211 

Log Likelihood -665,422.20 -648,480.70 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 Morning peak period trips see the largest change in Express Lane use probability (relative 

to Mondays) on Fridays; the odds ratio value for that indicator is 0.621.  In the afternoon peak, 

the largest decrease occurs on Friday as well (odds ratio of 0.937). 

Model 8 – Hour of Day Dummy Variables 

Table 82 presents the results of models estimated with dummy variables indicating the hour in 

which the trip was taken.  In both cases, the first hour of the peak period (6am and 3pm) was 

selected as the base alternative.  Goodness of fit values improve once again, though not all of the 

additional variables achieve significance at the 95% confidence level.  For the morning peak 
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trips, both seven and eight AM trips have a higher probability of HOT use, while nine AM trips 

do not yield a significant impact.  Afternoon trips result in higher HOT choice probabilities in 

the five and six PM hours. 

 
Table 82: Adding Hour of Day Dummy Variables 

 AM Peak – Model 8 PM Peak – Model 8 

Intercept -3.337*** (t = -82.311) -3.613*** (t = -85.961) 

avgSpeed
2
 -0.0004*** (t = -112.800) -0.0002*** (t = -47.996) 

tollAmount -0.550*** (t = -301.302) -0.452*** (t = -196.586) 

transponderCount -0.001*** (t = -32.063) 0.004*** (t = 142.939) 

HOT: congested50 1.837*** (t = 236.965)  

HOT: congested40  1.370*** (t = 248.036) 

HOT: log(hhIncomedollars) 0.139*** (t = 35.360) 0.125*** (t = 31.130) 

HOT: hhEdu -0.124*** (t = -41.284) -0.208*** (t = -67.359) 

HOT: hhAge -0.030*** (t = -16.063) -0.006*** (t = -2.955) 

HOT: hhSize -0.045*** (t = -34.934) -0.020*** (t = -15.264) 

HOT: segmentCount 0.809*** (t = 316.730) 1.092*** (t = 407.630) 

HOT: february 0.171*** (t = 16.532) -0.071*** (t = -6.638) 

HOT: march 0.159*** (t = 15.770) -0.057*** (t = -5.430) 

HOT: april 0.266*** (t = 26.052) -0.274*** (t = -25.749) 

HOT: may 0.263*** (t = 26.141) -0.373*** (t = -35.713) 

HOT: june 0.182*** (t = 17.285) -0.370*** (t = -34.359) 

HOT: july 0.109*** (t = 10.744) -0.359*** (t = -33.753) 

HOT: august 0.280*** (t = 27.502) -0.157*** (t = -14.936) 

HOT: september 0.388*** (t = 37.390) 0.234*** (t = 21.738) 

HOT: october 0.380*** (t = 36.838) 0.273*** (t = 25.552) 

HOT: november 0.279*** (t = 26.619) 0.215*** (t = 19.824) 

HOT: december 0.119*** (t = 11.364) 0.196*** (t = 18.131) 

HOT: tuesday 0.177*** (t = 26.555) 0.017*** (t = 2.585) 

HOT: wednesday 0.194*** (t = 28.767) 0.028*** (t = 4.082) 

HOT: thursday 0.188*** (t = 28.044) -0.108*** (t = -15.119) 

HOT: friday -0.630*** (t = -86.912) -0.085*** (t = -11.255) 

HOT: sevenAm 0.782*** (t = 120.569)  

HOT: eightAm 0.630*** (t = 96.211)  

HOT: nineAm 0.028*** (t = 4.014)  

HOT: fourPm  -0.046*** (t = -6.531) 

HOT: fivePm  0.162*** (t = 21.959) 

HOT: sixPm  0.399*** (t = 57.842) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R2 0.141 0.215 

Log Likelihood -656,487.40 -645,592.70 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 In the morning peak period, the largest odds ratio value occurs with the sevenAm 

indicator (2.19).  In the afternoon peak, the highest value occurs with the sixPm indicator (1.49).   
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Model 9 – Half-Hour Dummy Variables 

Model 9 modifies Model 8 by including half-hour rather than hour-long dummy variables.  Table 

83 illustrates the pseudo-R
2
 improvement that this change yields.  The coefficients all achieve 

significance at the 95% confidence level in the morning: the probability of taking a toll lane trip 

increases with any start time interval besides 6:00-6:29 AM.  Toll lane trip probability relative to 

a 3:00-3:29 PM start increases in the afternoon after 5:00 PM.   
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Table 83: Half-Hour Dummies instead of Hour Dummies 

 AM Peak – Model 9 PM Peak – Model 9 

Intercept -4.293*** (t = -103.290) -3.603*** (t = -84.686) 

avgSpeed
2
 -0.0004*** (t = -115.415) -0.0002*** (t = -46.776) 

tollAmount -0.677*** (t = -331.197) -0.458*** (t = -194.910) 

transponderCount -0.001*** (t = -41.514) 0.004*** (t = 139.094) 

HOT: congested50 1.599*** (t = 203.142)  

HOT: congested40  1.367*** (t = 247.301) 

HOT: log(hhIncomedollars) 0.142*** (t = 35.689) 0.125*** (t = 31.171) 

HOT: hhEdu -0.131*** (t = -42.894) -0.209*** (t = -67.619) 

HOT: hhAge -0.028*** (t = -14.334) -0.005*** (t = -2.860) 

HOT: hhSize -0.043*** (t = -33.016) -0.020*** (t = -15.289) 

HOT: segmentCount 0.928*** (t = 339.761) 1.098*** (t = 407.400) 

HOT: february 0.265*** (t = 25.120) -0.071*** (t = -6.659) 

HOT: march 0.235*** (t = 22.909) -0.057*** (t = -5.423) 

HOT: april 0.380*** (t = 36.536) -0.275*** (t = -25.829) 

HOT: may 0.379*** (t = 37.031) -0.374*** (t = -35.798) 

HOT: june 0.274*** (t = 25.603) -0.372*** (t = -34.479) 

HOT: july 0.149*** (t = 14.406) -0.360*** (t = -33.741) 

HOT: august 0.414*** (t = 39.876) -0.153*** (t = -14.575) 

HOT: september 0.586*** (t = 55.155) 0.243*** (t = 22.492) 

HOT: october 0.584*** (t = 55.337) 0.283*** (t = 26.387) 

HOT: november 0.452*** (t = 42.144) 0.224*** (t = 20.639) 

HOT: december 0.217*** (t = 20.271) 0.205*** (t = 18.940) 

HOT: tuesday 0.237*** (t = 35.067) 0.017** (t = 2.509) 

HOT: wednesday 0.242*** (t = 35.404) 0.028*** (t = 4.093) 

HOT: thursday 0.235*** (t = 34.520) -0.108*** (t = -15.107) 

HOT: friday -0.885*** (t = -116.678) -0.086*** (t = -11.291) 

HOT:am630 1.589*** (t = 165.693)  

HOT: am700 1.933*** (t = 187.112)  

HOT: am730 1.988*** (t = 188.155)  

HOT:am800 1.840*** (t = 176.059)  

HOT:am830 1.593*** (t = 155.430)  

HOT:am900 1.122*** (t = 112.116)  

HOT:am930 0.363*** (t = 35.093)  

HOT:pm1530  -0.055*** (t = -5.502) 

HOT:pm1600  -0.136*** (t = -13.554) 

HOT:pm1630  -0.014 (t = -1.337) 

HOT:pm1700  0.077*** (t = 7.469) 

HOT:pm1730  0.207*** (t = 20.287) 

HOT:pm1800  0.405*** (t = 40.743) 

HOT:pm1830  0.345*** (t = 35.451) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R2 0.162 0.215 

Log Likelihood -640,584.30 -645,316.00 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 Within the morning peak period, the largest odds ratios occur among the am700, am730, 

and am800 indicators: all three of those values exceed an odds ratio of six.  In the afternoon 

peak, the largest odds ratio is found with the pm1800 indicator: the value there is 1.50.   
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Model 10 – Square of Toll Amount 

The motivation behind this pair of models was to examine whether a user’s response to the 

Express Lane toll may be non-linear, as was the case for the average speed difference variable.  

Table 84 presents the results of the estimated models.  In both cases the model fit suffers relative 

to Model 9; similarly, the tollAmount
2
 coefficients have lower t-statistics than their unsquared 

counterparts. 
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Table 84: Toll Amount Squared 

 AM Peak – Model 10 PM Peak – Model 10 

Intercept -4.440*** (t = -108.360) -3.281*** (t = -77.818) 

avgSpeed
2
 -0.0004*** (t = -110.085) -0.0002*** (t = -43.613) 

tollAmount
2
 -0.066*** (t = -287.120) -0.047*** (t = -151.550) 

transponderCount -0.001*** (t = -59.567) 0.004*** (t = 156.218) 

HOT: congested50 1.344*** (t = 178.081)  

HOT: congested40  1.231*** (t = 229.964) 

HOT: log(hhIncomedollars) 0.134*** (t = 34.217) 0.124*** (t = 31.129) 

HOT: hhEdu -0.128*** (t = -42.857) -0.205*** (t = -66.629) 

HOT: hhAge -0.027*** (t = -14.059) -0.005** (t = -2.383) 

HOT: hhSize -0.043*** (t = -34.058) -0.020*** (t = -15.513) 

HOT: segmentCount 0.759*** (t = 306.466) 0.954*** (t = 400.957) 

HOT: february 0.225*** (t = 21.793) -0.087*** (t = -8.164) 

HOT: march 0.188*** (t = 18.712) -0.108*** (t = -10.292) 

HOT: april 0.293*** (t = 28.761) -0.306*** (t = -29.032) 

HOT: may 0.311*** (t = 31.082) -0.391*** (t = -37.647) 

HOT: june 0.236*** (t = 22.468) -0.375*** (t = -35.060) 

HOT: july 0.119*** (t = 11.804) -0.373*** (t = -35.235) 

HOT: august 0.337*** (t = 33.170) -0.270*** (t = -25.995) 

HOT: september 0.522*** (t = 50.102) 0.047*** (t = 4.422) 

HOT: october 0.517*** (t = 49.906) 0.074*** (t = 7.011) 

HOT: november 0.400*** (t = 38.005) 0.045*** (t = 4.218) 

HOT: december 0.169*** (t = 16.074) 0.033*** (t = 3.119) 

HOT: tuesday 0.242*** (t = 36.444) 0.001 (t = 0.168) 

HOT: wednesday 0.249*** (t = 37.069) -0.004 (t = -0.601) 

HOT: thursday 0.242*** (t = 36.193) -0.182*** (t = -25.680) 

HOT: friday -0.619*** (t = -85.400) -0.169*** (t = -22.424) 

HOT:am630 1.242*** (t = 136.159)  

HOT: am700 1.583*** (t = 160.303)  

HOT: am730 1.633*** (t = 161.645)  

HOT:am800 1.511*** (t = 150.849)  

HOT:am830 1.351*** (t = 136.286)  

HOT:am900 1.121*** (t = 114.943)  

HOT:am930 0.790*** (t = 79.378)  

HOT:pm1530  -0.142*** (t = -14.472) 

HOT:pm1600  -0.305*** (t = -30.933) 

HOT:pm1630  -0.266*** (t = -26.669) 

HOT:pm1700  -0.213*** (t = -21.374) 

HOT:pm1730  -0.099*** (t = -10.124) 

HOT:pm1800  0.123*** (t = 12.876) 

HOT:pm1830  0.148*** (t = 15.571) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R
2
 0.136 0.205 

Log Likelihood -660,075.60 -653,551.30 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 With the square of the toll amount factor, the corresponding odds ratio values were much 

closer to one than in previous models.  Model 9 saw toll amount odds ratios of 0.508 (morning 

peak) and 0.632 (afternoon peak); Model 10 yielded values of 0.936 (morning peak) and 0.954 
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(afternoon peak).  Note that the values of the factors themselves are squared in Model 10, so that 

a maximum toll amount of $8.50 in Model 9 is represented as $72.25 in Model 10. 

Model 11 – htDensity instead of Transponder Counts 

The last of this series of models replaces the transponderCount variable (an alternative-specific 

variable with a generic coefficient) with the htDensity variable.  The htDensity variable divides 

the transponder count in the Express Lane by the length of that Express Lane segment.  The 

variable differs from the traffic engineering definition of density as vehicles are counted over a 

fifteen-minute interval rather than instantaneously.  Table 85 presents the results of this 

substitution.  The morning and afternoon coefficients differ in their signs: the estimator is 

negative in the morning and positive in the afternoon.  An increase of fifteen minute transponder 

density reduces the probability of using the Express Lanes in the morning, while increasing that 

probability in the afternoon.  Both achieve significance at the 95% confidence level.  The 

pseudo-R
2
 model fit measure is higher than that of Model 9 for the AM period trips, though it is 

lower for the PM peak trips.  Similarly, the t-statistic for the AM peak coefficient has increased 

relative to Model 9, while the PM peak coefficient t-statistic has decreased. 

  



417 

 

 
Table 85: htDensity instead of Transponder Counts 

 AM Peak – Model 11 PM Peak – Model 11 

Intercept -3.608*** (t = -85.398) -4.859*** (t = -113.439) 

avgSpeed
2
 -0.0004*** (t = -125.068) -0.0002*** (t = -49.082) 

tollAmount -0.718*** (t = -343.980) -0.488*** (t = -209.743) 

HOT: htDensity -0.004*** (t = -83.858) 0.008*** (t = 102.099) 

HOT: congested50 1.633*** (t = 225.371)  

HOT: congested40  1.493*** (t = 278.733) 

HOT: log(hhIncomedollars) 0.133*** (t = 33.323) 0.134*** (t = 33.546) 

HOT: hhEdu -0.128*** (t = -41.872) -0.213*** (t = -69.249) 

HOT: hhAge -0.028*** (t = -14.385) -0.007*** (t = -3.798) 

HOT: hhSize -0.043*** (t = -33.187) -0.020*** (t = -15.381) 

HOT: segmentCount 0.878*** (t = 315.853) 1.159*** (t = 396.752) 

HOT: february 0.262*** (t = 24.795) -0.038*** (t = -3.594) 

HOT: march 0.246*** (t = 23.971) 0.048*** (t = 4.627) 

HOT: april 0.395*** (t = 37.934) -0.260*** (t = -24.639) 

HOT: may 0.395*** (t = 38.484) -0.352*** (t = -33.935) 

HOT: june 0.280*** (t = 26.137) -0.331*** (t = -30.906) 

HOT: july 0.144*** (t = 13.956) -0.313*** (t = -29.698) 

HOT: august 0.432*** (t = 41.538) -0.176*** (t = -16.776) 

HOT: september 0.624*** (t = 58.482) 0.119*** (t = 10.977) 

HOT: october 0.625*** (t = 58.913) 0.132*** (t = 12.263) 

HOT: november 0.501*** (t = 46.548) 0.022** (t = 2.029) 

HOT: december 0.238*** (t = 22.203) 0.012 (t = 1.088) 

HOT: tuesday 0.231*** (t = 34.244) 0.067*** (t = 10.059) 

HOT: wednesday 0.231*** (t = 33.948) 0.102*** (t = 15.091) 

HOT: thursday 0.221*** (t = 32.609) 0.120*** (t = 17.445) 

HOT: friday -0.949*** (t = -124.485) 0.261*** (t = 36.633) 

HOT:am630 1.688*** (t = 173.924)  

HOT: am700 2.052*** (t = 196.051)  

HOT: am730 2.096*** (t = 196.150)  

HOT:am800 1.904*** (t = 182.158)  

HOT:am830 1.607*** (t = 158.432)  

HOT:am900 1.080*** (t = 109.233)  

HOT:am930 0.269*** (t = 26.182)  

HOT:pm1530  0.144*** (t = 14.715) 

HOT:pm1600  0.148*** (t = 15.371) 

HOT:pm1630  0.224*** (t = 22.548) 

HOT:pm1700  0.280*** (t = 27.640) 

HOT:pm1730  0.343*** (t = 33.706) 

HOT:pm1800  0.479*** (t = 48.100) 

HOT:pm1830  0.365*** (t = 37.320) 

HOT Share 0.5287 0.5418 

Observations 1,105,171 1,191,877 

R
2
 0.166 0.209 

Log Likelihood -637,634.60 -649,812.10 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 Replacing the difference in transponder count factor with the Express Lane fifteen minute 

transponder density variable yields very little change in the odds ratios, though the two measures 
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are not strictly comparable.  In both cases, the odds ratios in the morning and afternoon peak are 

indistinguishable from a value of one. 

 

Overview of Models with Additional Variables 

The iterative building of the models in this section generally came with model fit improvements 

as more variables were added.  For this reason, the Akaike Information Criterion measure was 

also examined to measure the benefit of the additional variable load in the models.  This measure 

improved understanding of the differences between the models.  For example, Model 6a, which 

included monthly dummy variables, had eight additional variables relative to Model 6b, which 

included the seasonal dummy variables.  The R
2
 improvement in Model 6a was very small: 0.001 

in both cases.  The AIC measure, which was lower for Model 6a in both peak periods, reinforced 

the benefit of the additional monthly variables rather than the smaller set of seasonal variables.  

Similarly, Model 9 used half-hour time increments to look at the impact of trip start times, while 

Model 8 used hour-long time increments.  In both cases, the additional variables improved the 

model fit; the AIC measure further suggested that the benefits of these variables outweighed the 

cost.  Table 86 presents all of the models with their respective R
2
 and AIC measures.  Models 4a, 

4b, and 4c were not included in the AIC comparison as they were all univariate models meant to 

compare the effects of those individual factors.  The highlighted values show the models with the 

highest pseudo-R
2
 value and the lowest AIC values. 
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Table 86: Summary of Models with Additional Variables 

Model AM Peak - R
2
 Value AM Peak – AIC PM Peak – R

2
 Value PM Peak – AIC 

Model 2 0.102 1,461,537 0.205 1,310,389 

Model 3 0.106 1,455,090 0.206 1,309,062 

Model 4a 0.028 N/A 0.074 N/A 

Model 4b 0.027 N/A 0.068 N/A 

Model 4c 0.021 N/A 0.056 N/A 

Model 5a 0.121 1,435,254 0.199 1,320,109 

Model 5b  N/A 0.206 1,309,062 

Model 6a 0.122 1,434,016 0.211 1,301,199 

Model 6b 0.122 1,434,280 0.210 1,302,829 

Model 7 0.129 1,421,294 0.211 1,300,734 

Model 8 0.141 1,399,401 0.215 1,294,921 

Model 9 0.162 1,364,041 0.215 1,294,371 

Model 10 0.136 1,406,813 0.205 1,310,834 

Model 11 0.166 1,358,037 0.209 1,303,683 

 

Though Model 11, in which the transponderCount variable is replaced by the htDensity variable, 

yields the highest R
2
 and lowest AIC values in the AM peak, the author selected Model 9 as the 

base model going forward.  Though the model with htDensity performed better in the morning, 

the exclusion of the transponderCount variable means that the model has no component 

representing vehicle counts in the General Purpose lanes.  The author felt that this shortcoming 

was not worth the 0.004 increase in R
2
.  The remainder of the models in this chapter are built off 

of Model 9 for both peak periods for this reason. 

Interaction Terms 

After adding additional variables that were not included in the Sheikh, 2015 TRB paper, the next 

step in the modeling investigation was to examine interaction terms that had not previously been 

investigated.  As stated above, Model 9 served as the base for both the AM and PM peak periods 

due to its performance and the inclusion of the transponderCount factor for both lane types.   

Model 12 – Toll over log(Income) 

The first of these interaction terms divides the Express Lane toll amount by the log of the 

household income of the user.  This tollLogIncome variable served to investigate whether users 
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consider their own income level along with the toll amount when making lane choice decisions.  

Table 87 and Table 88 present the results from these models.  Table 87 shows the AM peak 

models: 12a excludes the log of the household income on its own, while 12b includes that factor 

as well.  In both cases the tollLogIncome coefficient is significant at the 95% confidence level.  

Note that the resulting odds ratios of the estimated coefficients are very small: less than 0.01 in 

both Models 12a and 12b, indicating a large decrease in HOT use probability given a unit 

increase in toll over log(household income). 
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Table 87: Toll Over log(Income) – AM Peak Models 

 AM Peak – Model 12a AM Peak – Model 12b 

Intercept -2.588*** (t = -124.014) -2.007*** (t = -48.434) 

avgSpeed
2
 -0.0004*** (t = -114.661) -0.0004*** (t = -114.651) 

tollLogIncome -7.343*** (t = -329.696) -7.390*** (t = -328.817) 

transponderCount -0.001*** (t = -42.740) -0.001*** (t = -42.129) 

HOT: congested50 1.589*** (t = 202.287) 1.591*** (t = 202.530) 

HOT: log(hhIncomedollars) () -0.065*** (t = -16.231) 

HOT: hhEdu -0.144*** (t = -49.921) -0.128*** (t = -41.991) 

HOT: hhAge -0.033*** (t = -17.776) -0.027*** (t = -14.172) 

HOT: hhSize -0.049*** (t = -41.034) -0.041*** (t = -31.860) 

HOT: segmentCount 0.917*** (t = 339.795) 0.923*** (t = 338.657) 

HOT: february 0.263*** (t = 24.999) 0.263*** (t = 25.000) 

HOT: march 0.234*** (t = 22.857) 0.234*** (t = 22.828) 

HOT: april 0.376*** (t = 36.245) 0.377*** (t = 36.285) 

HOT: may 0.374*** (t = 36.575) 0.375*** (t = 36.650) 

HOT: june 0.269*** (t = 25.131) 0.269*** (t = 25.158) 

HOT: july 0.145*** (t = 14.062) 0.145*** (t = 14.064) 

HOT: august 0.405*** (t = 39.077) 0.407*** (t = 39.242) 

HOT: september 0.574*** (t = 54.102) 0.577*** (t = 54.347) 

HOT: october 0.572*** (t = 54.244) 0.575*** (t = 54.484) 

HOT: november 0.440*** (t = 41.102) 0.443*** (t = 41.334) 

HOT: december 0.206*** (t = 19.279) 0.208*** (t = 19.487) 

HOT: tuesday 0.237*** (t = 35.128) 0.237*** (t = 35.070) 

HOT: wednesday 0.243*** (t = 35.614) 0.242*** (t = 35.511) 

HOT: thursday 0.236*** (t = 34.686) 0.235*** (t = 34.578) 

HOT: friday -0.865*** (t = -114.512) -0.871*** (t = -115.163) 

HOT:am630 1.561*** (t = 163.527) 1.569*** (t = 164.059) 

HOT: am700 1.902*** (t = 185.079) 1.912*** (t = 185.617) 

HOT: am730 1.958*** (t = 186.199) 1.967*** (t = 186.714) 

HOT:am800 1.816*** (t = 174.362) 1.823*** (t = 174.792) 

HOT:am830 1.576*** (t = 154.242) 1.580*** (t = 154.545) 

HOT:am900 1.117*** (t = 111.882) 1.118*** (t = 111.961) 

HOT:am930 0.371*** (t = 35.984) 0.369*** (t = 35.749) 

HOT Share 0.5287 0.5287 

Observations 1,105,171 1,105,171 

R
2
 0.16 0.16 

Log Likelihood -641,814.40 -641,682.60 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Table 88 presents the PM peak results.  Again, the tollLogIncome coefficients are 

significant at the 95% confidence level both with and without the presence of the separate 

household income variable.  For both the AM and PM peak periods, the goodness of fit measures 

decrease by 0.001 with the inclusion of the tollLogIncome factor; this occurs with or without the 
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inclusion of household income on its own.  The AIC measures for all four Model 12 variants also 

exceed those of Model 9.  Again, the odds ratios for this factor are less than 0.01 in both cases. 

Table 88: Toll Over log(Income) – PM Peak Models 

 PM Peak – Model 12a PM Peak – Model 12b 

Intercept -2.296*** (t = -105.967) -2.640*** (t = -62.804) 

avgSpeed
2
 -0.0002*** (t = -47.050) -0.0002*** (t = -46.871) 

tollLogIncome -5.047*** (t = -195.387) -5.023*** (t = -193.582) 

transponderCount 0.004*** (t = 139.612) 0.004*** (t = 139.813) 

HOT: congested40 1.362*** (t = 246.788) 1.362*** (t = 246.763) 

HOT: log(hhIncomedollars)  0.039*** (t = 9.558) 

HOT: hhEdu -0.198*** (t = -67.718) -0.207*** (t = -67.076) 

HOT: hhAge -0.001 (t = -0.597) -0.005** (t = -2.452) 

HOT: hhSize -0.015*** (t = -11.987) -0.019*** (t = -14.690) 

HOT: segmentCount 1.098*** (t = 409.382) 1.096*** (t = 406.907) 

HOT: february -0.071*** (t = -6.681) -0.072*** (t = -6.699) 

HOT: march -0.058*** (t = -5.491) -0.059*** (t = -5.532) 

HOT: april -0.276*** (t = -25.948) -0.275*** (t = -25.908) 

HOT: may -0.375*** (t = -35.880) -0.375*** (t = -35.854) 

HOT: june -0.373*** (t = -34.625) -0.373*** (t = -34.602) 

HOT: july -0.361*** (t = -33.887) -0.361*** (t = -33.900) 

HOT: august -0.156*** (t = -14.831) -0.158*** (t = -14.977) 

HOT: september 0.239*** (t = 22.171) 0.237*** (t = 21.914) 

HOT: october 0.279*** (t = 26.043) 0.276*** (t = 25.782) 

HOT: november 0.220*** (t = 20.321) 0.218*** (t = 20.101) 

HOT: december 0.202*** (t = 18.616) 0.200*** (t = 18.423) 

HOT: tuesday 0.017** (t = 2.484) 0.016** (t = 2.457) 

HOT: wednesday 0.027*** (t = 4.036) 0.027*** (t = 3.963) 

HOT: thursday -0.109*** (t = -15.221) -0.110*** (t = -15.415) 

HOT: friday -0.087*** (t = -11.458) -0.089*** (t = -11.658) 

HOT:pm1530 -0.058*** (t = -5.801) -0.058*** (t = -5.849) 

HOT:pm1600 -0.141*** (t = -14.004) -0.142*** (t = -14.144) 

HOT:pm1630 -0.019* (t = -1.897) -0.022** (t = -2.110) 

HOT:pm1700 0.071*** (t = 6.867) 0.068*** (t = 6.596) 

HOT:pm1730 0.201*** (t = 19.649) 0.198*** (t = 19.344) 

HOT:pm1800 0.398*** (t = 40.136) 0.396*** (t = 39.862) 

HOT:pm1830 0.340*** (t = 34.971) 0.339*** (t = 34.816) 

HOT Share 0.5418 0.5418 

Observations 1,191,877 1,191,877 

R
2
 0.215 0.215 

Log Likelihood -645,630.40 -645,584.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

Model 13 – Toll over Income 

Table 89 and Table 90 present models similar to the previous set, but with toll divided by the 

unmodified household income rather than the log of household income.  The resulting models 

have poorer goodness of fit measures in all four cases.  The AIC measures increase for both the 
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AM and PM peak periods as well.  The odds ratio measures are zero in both cases, due to the 

very small magnitude of toll/income values (a unit increase is very unlikely). 

Table 89: Toll over Income - AM Peak Models 

 AM Peak – Model 13a AM Peak – Model 13b 

Intercept -1.736*** (t = -87.391) 0.325*** (t = 6.228) 

avgSpeed
2
 -0.0002*** (t = -70.283) -0.0002*** (t = -71.022) 

tollIncome -2,671.174*** (t = -95.458) -3,721.864*** (t = -96.688) 

transponderCount -0.001*** (t = -67.629) -0.001*** (t = -66.211) 

HOT: congested50 0.993*** (t = 139.310) 1.010*** (t = 141.313) 

HOT: log(hhIncomedollars)  -0.215*** (t = -42.622) 

HOT: hhEdu -0.141*** (t = -50.759) -0.107*** (t = -36.887) 

HOT: hhAge -0.029*** (t = -16.329) -0.016*** (t = -9.055) 

HOT: hhSize -0.048*** (t = -41.853) -0.029*** (t = -23.866) 

HOT: segmentCount 0.441*** (t = 219.774) 0.462*** (t = 222.802) 

HOT: february 0.162*** (t = 16.203) 0.164*** (t = 16.412) 

HOT: march 0.145*** (t = 14.981) 0.146*** (t = 15.117) 

HOT: april 0.167*** (t = 16.970) 0.172*** (t = 17.484) 

HOT: may 0.162*** (t = 16.754) 0.166*** (t = 17.207) 

HOT: june 0.164*** (t = 16.238) 0.163*** (t = 16.147) 

HOT: july 0.118*** (t = 12.126) 0.116*** (t = 11.877) 

HOT: august 0.183*** (t = 18.739) 0.187*** (t = 19.132) 

HOT: september 0.237*** (t = 23.800) 0.244*** (t = 24.468) 

HOT: october 0.234*** (t = 23.575) 0.240*** (t = 24.217) 

HOT: november 0.122*** (t = 12.199) 0.128*** (t = 12.772) 

HOT: december -0.075*** (t = -7.473) -0.070*** (t = -6.943) 

HOT: tuesday 0.200*** (t = 31.177) 0.200*** (t = 31.170) 

HOT: wednesday 0.236*** (t = 36.330) 0.235*** (t = 36.165) 

HOT: thursday 0.223*** (t = 34.572) 0.222*** (t = 34.369) 

HOT: friday -0.089*** (t = -13.398) -0.115*** (t = -17.216) 

HOT:am630 0.550*** (t = 65.593) 0.579*** (t = 68.835) 

HOT: am700 0.722*** (t = 80.799) 0.760*** (t = 84.600) 

HOT: am730 0.760*** (t = 83.148) 0.799*** (t = 86.907) 

HOT:am800 0.807*** (t = 87.191) 0.838*** (t = 90.129) 

HOT:am830 0.928*** (t = 99.352) 0.947*** (t = 101.151) 

HOT:am900 0.946*** (t = 102.444) 0.950*** (t = 102.809) 

HOT:am930 0.754*** (t = 80.076) 0.741*** (t = 78.557) 

HOT Share 0.5287 0.5287 

Observations 1,105,171 1,105,171 

R
2
 0.081 0.082 

Log Likelihood -702,319.60 -701,405.50 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Table 90 presents the results from the PM peak models with the tollIncome interaction 

term.  As was the case with the AM peak models, the tollIncome coefficients are significant at 

the 95% confidence level.  Also notable in Model 13b is the negative sign on the household 

income coefficient; in Model 12b, in which the toll amount was divided by the log of the 

household income, this coefficient was positive.  Again the odds ratio measures are zero in both 

cases, for the reason given above. 

Table 90: Toll over Income - PM Peak Models 

 PM Peak – Model 13a PM Peak – Model 13b 

Intercept -1.332*** (t = -63.850) -0.471*** (t = -9.180) 

avgSpeed
2
 -0.0001*** (t = -36.600) -0.0001*** (t = -37.174) 

tollIncome -3,036.830*** (t = -70.929) -3,653.682*** (t = -66.317) 

transponderCount 0.005*** (t = 191.833) 0.005*** (t = 189.918) 

HOT: congested40 1.061*** (t = 206.783) 1.067*** (t = 207.465) 

HOT: log(hhIncomedollars)  -0.092*** (t = -18.373) 

HOT: hhEdu -0.192*** (t = -65.951) -0.176*** (t = -57.970) 

HOT: hhAge -0.004** (t = -2.272) 0.002 (t = 1.031) 

HOT: hhSize -0.021*** (t = -16.970) -0.012*** (t = -9.264) 

HOT: segmentCount 0.857*** (t = 389.581) 0.866*** (t = 383.099) 

HOT: february -0.096*** (t = -9.204) -0.096*** (t = -9.136) 

HOT: march -0.147*** (t = -14.133) -0.144*** (t = -13.886) 

HOT: april -0.314*** (t = -30.119) -0.314*** (t = -30.115) 

HOT: may -0.395*** (t = -38.517) -0.395*** (t = -38.535) 

HOT: june -0.365*** (t = -34.582) -0.367*** (t = -34.757) 

HOT: july -0.380*** (t = -36.337) -0.381*** (t = -36.409) 

HOT: august -0.395*** (t = -38.519) -0.390*** (t = -37.954) 

HOT: september -0.211*** (t = -20.358) -0.200*** (t = -19.202) 

HOT: october -0.196*** (t = -19.142) -0.184*** (t = -17.931) 

HOT: november -0.188*** (t = -17.951) -0.178*** (t = -16.969) 

HOT: december -0.173*** (t = -16.545) -0.164*** (t = -15.678) 

HOT: tuesday -0.019*** (t = -2.875) -0.018*** (t = -2.707) 

HOT: wednesday -0.043*** (t = -6.398) -0.040*** (t = -6.071) 

HOT: thursday -0.289*** (t = -41.362) -0.283*** (t = -40.472) 

HOT: friday -0.288*** (t = -38.696) -0.282*** (t = -37.795) 

HOT:pm1530 -0.220*** (t = -22.837) -0.217*** (t = -22.465) 

HOT:pm1600 -0.451*** (t = -46.761) -0.444*** (t = -45.919) 

HOT:pm1630 -0.505*** (t = -51.980) -0.493*** (t = -50.576) 

HOT:pm1700 -0.515*** (t = -53.597) -0.500*** (t = -51.776) 

HOT:pm1730 -0.427*** (t = -45.419) -0.411*** (t = -43.452) 

HOT:pm1800 -0.156*** (t = -16.899) -0.142*** (t = -15.338) 

HOT:pm1830 0.015 (t = 1.568) 0.022** (t = 2.375) 

HOT Share 0.5418 0.5418 

Observations 1,191,877 1,191,877 

R
2
 0.193 0.194 

Log Likelihood -662,981.50 -662,812.40 
*
p<0.1; 

**
p<0.05; 

***
p<0.01  
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Model 14 – Income over Household Size 

The next potential interaction explored was that of household income over household size.  The 

motivation behind this term was to investigate whether per-person income was a better 

determinant of lane choice decisions: a household making $100,000 annually may behave 

differently if it has two persons versus five persons, for example.  Table 91 presents the results 

from four variants of this model.  The first two, Models 14a and 14b, include the household 

income over household size interaction term.  Model 14b includes household income and 

household size separately as well, whereas Model 14a does not.  Models 14c and 14d follow this 

same pattern but use the log of the household income in the interaction term.  In all four models, 

the odds ratio of the new factors are very close to one: the highest odds ratio value occurs in 

Model14d, in which log(household income)/household size yields an odds ratio of 1.05. 

 
Table 91: Income over Household Size - AM Peak Models 

 AM Peak – 

Model 14a 

AM Peak – 

Model 14b 

AM Peak – 

Model 14c 

AM Peak – 

Model 14d 

Intercept -3.025*** 

(t = -144.869) 

-1.170*** 

(t = -16.543) 

-3.252*** 

(t = -149.712) 

-4.541*** 

(t = -100.381) 

avgSpeed
2
 -0.0004*** 

(t = -115.748) 

-0.0004*** 

(t = -115.499) 

-0.0004*** 

(t = -114.715) 

-0.0004*** 

(t = -115.451) 

tollIncome -0.679*** 

(t = -331.663) 

-0.680*** 

(t = -331.910) 

-0.676*** 

(t = -331.010) 

-0.677*** 

(t = -331.130) 

transponderCount -0.001*** 

(t = -41.427) 

-0.001*** 

(t = -40.767) 

-0.001*** 

(t = -40.670) 

-0.001*** 

(t = -41.539) 

HOT: congested50 1.602*** 

(t = 203.308) 

1.601*** 

(t = 203.147) 

1.594*** 

(t = 202.774) 

1.599*** 

(t = 203.173) 

HOT: hhEdu -0.149*** 

(t = -49.655) 

-0.139*** 

(t = -45.341) 

-0.098*** 

(t = -34.170) 

-0.134*** 

(t = -43.707) 

HOT: hhAge -0.035*** 

(t = -18.128) 

-0.031*** 

(t = -15.993) 

-0.012*** 

(t = -6.411) 

-0.025*** 

(t = -13.113) 

HOT:I(hhIncomeDollars/hhSize) 0.00001*** 

(t = 62.512) 

0.00002*** 

(t = 54.194)   

HOT:log(hhIncomeDollars) 
 

-0.209*** 

(t = -27.591)  

0.136*** 

(t = 34.045) 

HOT: hhSize 
 

0.051*** 

(t = 23.678)  

-0.007** 

(t = -2.267) 

HOT:I(log(hhIncomeDollars)/hh

Size)   

0.041*** 

(t = 26.547) 

0.050*** 

(t = 13.926) 

HOT: segmentCount 0.927*** 

(t = 339.543) 

0.929*** 

(t = 339.678) 

0.932*** 

(t = 341.496) 

0.928*** 

(t = 339.765) 

HOT: february 0.265*** 

(t = 25.139) 

0.265*** 

(t = 25.079) 

0.263*** 

(t = 24.978) 

0.265*** 

(t = 25.098) 
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Table 91 Continued 

HOT: march 0.236*** 

(t = 22.972) 

0.235*** 

(t = 22.930) 

0.233*** 

(t = 22.735) 

0.234*** 

(t = 22.888) 

HOT: april 0.381*** 

(t = 36.613) 

0.381*** 

(t = 36.557) 

0.377*** 

(t = 36.317) 

0.380*** 

(t = 36.526) 

HOT: may 0.380*** 

(t = 37.074) 

0.380*** 

(t = 37.020) 

0.377*** 

(t = 36.853) 

0.379*** 

(t = 36.998) 

HOT: june 0.276*** 

(t = 25.755) 

0.277*** 

(t = 25.860) 

0.273*** 

(t = 25.554) 

0.274*** 

(t = 25.611) 

HOT: july 0.150*** 

(t = 14.482) 

0.151*** 

(t = 14.576) 

0.148*** 

(t = 14.403) 

0.148*** 

(t = 14.388) 

HOT: august 0.415*** 

(t = 39.918) 

0.416*** 

(t = 40.004) 

0.414*** 

(t = 39.921) 

0.413*** 

(t = 39.843) 

HOT: september 0.587*** 

(t = 55.200) 

0.588*** 

(t = 55.280) 

0.586*** 

(t = 55.161) 

0.585*** 

(t = 55.092) 

HOT: october 0.586*** 

(t = 55.401) 

0.587*** 

(t = 55.488) 

0.584*** 

(t = 55.335) 

0.584*** 

(t = 55.283) 

HOT: november 0.454*** 

(t = 42.249) 

0.456*** 

(t = 42.383) 

0.452*** 

(t = 42.167) 

0.452*** 

(t = 42.101) 

HOT: december 0.219*** 

(t = 20.407) 

0.221*** 

(t = 20.566) 

0.217*** 

(t = 20.292) 

0.217*** 

(t = 20.235) 

HOT: tuesday 0.237*** 

(t = 35.077) 

0.237*** 

(t = 34.962) 

0.236*** 

(t = 34.879) 

0.237*** 

(t = 35.066) 

HOT: wednesday 0.242*** 

(t = 35.421) 

0.242*** 

(t = 35.318) 

0.240*** 

(t = 35.193) 

0.242*** 

(t = 35.399) 

HOT: thursday 0.235*** 

(t = 34.579) 

0.235*** 

(t = 34.493) 

0.233*** 

(t = 34.299) 

0.235*** 

(t = 34.525) 

HOT: friday -0.886*** 

(t = -116.669) 

-0.887*** 

(t = -116.761) 

-0.885*** 

(t = -116.778) 

-0.885*** 

(t = -116.633) 

HOT:am630 1.593*** 

(t = 165.926) 

1.596*** 

(t = 166.107) 

1.587*** 

(t = 165.568) 

1.589*** 

(t = 165.606) 

HOT: am700 1.935*** 

(t = 187.181) 

1.938*** 

(t = 187.319) 

1.932*** 

(t = 187.121) 

1.931*** 

(t = 186.989) 

HOT: am730 1.990*** 

(t = 188.221) 

1.992*** 

(t = 188.306) 

1.986*** 

(t = 188.113) 

1.987*** 

(t = 188.083) 

HOT:am800 1.844*** 

(t = 176.245) 

1.845*** 

(t = 176.233) 

1.836*** 

(t = 175.775) 

1.840*** 

(t = 176.030) 

HOT:am830 1.594*** 

(t = 155.405) 

1.594*** 

(t = 155.302) 

1.589*** 

(t = 155.206) 

1.592*** 

(t = 155.394) 

HOT:am900 1.118*** 

(t = 111.680) 

1.116*** 

(t = 111.371) 

1.119*** 

(t = 111.887) 

1.120*** 

(t = 111.947) 

HOT:am930 0.359*** 

(t = 34.742) 

0.358*** 

(t = 34.638) 

0.362*** 

(t = 35.054) 

0.362*** 

(t = 34.999) 

HOT Share 0.5278 0.5278 0.5407 0.5407 

Observations 1,105,171 1,105,171 1,105,171 1,105,171 

R
2
 0.163 0.164 0.161 0.162 

Log Likelihood -639,461.30 -639,074.20 -641,091.50 -640,487.40 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Table 92 presents the results from the afternoon peak models; the four models follow the 

same pattern as those of the AM peak.  Like their morning counterparts, these models all see R
2
 

values that are equal to or within 0.001 of the Model 9 base, and again Model 14b has the lowest 

AIC measure out of all of the models examined so far.  Also like the morning peak models, the 

resulting odds ratios range from 1.00 to 1.02. 

Table 92: Income over Household Size - PM Peak Models 

 PM Peak – 

Model 14a 

PM Peak – 

Model 14b 

PM Peak – 

Model 14c 

PM Peak – 

Model 14d 

Intercept -2.444*** 

(t = -112.967) 

-2.003*** 

(t = -28.326) 

-2.525*** 

(t = -112.318) 

-3.690*** 

(t = -79.885) 

avgSpeed
2
 -0.0002*** 

(t = -46.855) 

-0.0002*** 

(t = -46.638) 

-0.0002*** 

(t = -47.152) 

-0.0002*** 

(t = -46.761) 

tollAmount -0.458*** 

(t = -194.924) 

-0.459*** 

(t = -195.054) 

-0.457*** 

(t = -194.615) 

-0.458*** 

(t = -194.904) 

transponderCount 0.004*** 

(t = 139.061) 

0.004*** 

(t = 139.097) 

0.004*** 

(t = 139.115) 

0.004*** 

(t = 139.093) 

HOT: congested40 1.366*** 

(t = 247.235) 

1.367*** 

(t = 247.279) 

1.361*** 

(t = 246.541) 

1.367*** 

(t = 247.299) 

HOT: hhEdu -0.211*** 

(t = -69.572) 

-0.213*** 

(t = -68.894) 

-0.178*** 

(t = -61.036) 

-0.210*** 

(t = -67.786) 

HOT: hhAge -0.006*** 

(t = -3.135) 

-0.007*** 

(t = -3.895) 

0.007*** 

(t = 3.641) 

-0.005** 

(t = -2.439) 

HOT:I(hhIncomeDollars/hhSize) 0.00001*** 

(t = 39.894) 

0.00001*** 

(t = 28.289)   

HOT:log(hhIncomeDollars) 
 

-0.054*** 

(t = -7.171)  

0.123*** 

(t = 30.439) 

HOT: hhSize 
 

0.028*** 

(t = 12.937)  

-0.007** 

(t = -2.438) 

HOT:I(log(hhIncomeDollars)/hhSiz

e)   

0.011*** 

(t = 7.030) 

0.018*** 

(t = 4.818) 

HOT: segmentCount 1.098*** 

(t = 407.904) 

1.097*** 

(t = 407.270) 

1.101*** 

(t = 408.703) 

1.098*** 

(t = 407.418) 

HOT: february -0.071*** 

(t = -6.641) 

-0.071*** 

(t = -6.659) 

-0.071*** 

(t = -6.647) 

-0.071*** 

(t = -6.666) 

HOT: march -0.058*** 

(t = -5.424) 

-0.058*** 

(t = -5.464) 

-0.058*** 

(t = -5.443) 

-0.058*** 

(t = -5.424) 

HOT: april -0.275*** 

(t = -25.847) 

-0.275*** 

(t = -25.817) 

-0.277*** 

(t = -26.046) 

-0.275*** 

(t = -25.830) 

HOT: may -0.375*** 

(t = -35.817) 

-0.375*** 

(t = -35.816) 

-0.376*** 

(t = -35.936) 

-0.374*** 

(t = -35.808) 

HOT: june -0.371*** 

(t = -34.414) 

-0.371*** 

(t = -34.355) 

-0.373*** 

(t = -34.555) 

-0.372*** 

(t = -34.488) 

HOT: july -0.359*** 

(t = -33.656) 

-0.358*** 

(t = -33.579) 

-0.359*** 

(t = -33.747) 

-0.360*** 

(t = -33.750) 

HOT: august -0.152*** 

(t = -14.485) 

-0.152*** 

(t = -14.446) 

-0.153*** 

(t = -14.567) 

-0.153*** 

(t = -14.588) 

HOT: september 0.244*** 

(t = 22.581) 

0.245*** 

(t = 22.630) 

0.242*** 

(t = 22.452) 

0.243*** 

(t = 22.474) 

HOT: october 0.284*** 

(t = 26.500) 

0.285*** 

(t = 26.567) 

0.282*** 

(t = 26.307) 

0.282*** 

(t = 26.376) 
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Table 92 Continued 

HOT: November 0.225*** 

(t = 20.759) 

0.226*** 

(t = 20.857) 

0.223*** 

(t = 20.570) 

0.224*** 

(t = 20.631) 

HOT: december 0.206*** 

(t = 19.033) 

0.207*** 

(t = 19.126) 

0.204*** 

(t = 18.842) 

0.205*** 

(t = 18.932) 

HOT: tuesday 0.017** 

(t = 2.504) 

0.017** 

(t = 2.485) 

0.017** 

(t = 2.493) 

0.017** 

(t = 2.501) 

HOT: wednesday 0.028*** 

(t = 4.104) 

0.028*** 

(t = 4.099) 

0.028*** 

(t = 4.127) 

0.028*** 

(t = 4.090) 

HOT: thursday -0.108*** 

(t = -15.110) 

-0.108*** 

(t = -15.135) 

-0.107*** 

(t = -14.967) 

-0.108*** 

(t = -15.113) 

HOT: friday -0.086*** 

(t = -11.318) 

-0.087*** 

(t = -11.356) 

-0.085*** 

(t = -11.149) 

-0.086*** 

(t = -11.298) 

HOT:pm1530 -0.054*** 

(t = -5.428) 

-0.054*** 

(t = -5.375) 

-0.057*** 

(t = -5.677) 

-0.055*** 

(t = -5.511) 

HOT:pm1600 -0.135*** 

(t = -13.435) 

-0.134*** 

(t = -13.342) 

-0.138*** 

(t = -13.712) 

-0.136*** 

(t = -13.553) 

HOT:pm1630 -0.012 

(t = -1.151) 

-0.011 

(t = -1.044) 

-0.016 

(t = -1.564) 

-0.013 

(t = -1.313) 

HOT:pm1700 0.079*** 

(t = 7.667) 

0.080*** 

(t = 7.777) 

0.074*** 

(t = 7.212) 

0.077*** 

(t = 7.476) 

HOT:pm1730 0.209*** 

(t = 20.459) 

0.211*** 

(t = 20.594) 

0.205*** 

(t = 20.018) 

0.208*** 

(t = 20.294) 

HOT:pm1800 0.406*** 

(t = 40.890) 

0.409*** 

(t = 41.100) 

0.402*** 

(t = 40.470) 

0.405*** 

(t = 40.754) 

HOT:pm1830 0.346*** 

(t = 35.484) 

0.348*** 

(t = 35.718) 

0.343*** 

(t = 35.247) 

0.345*** 

(t = 35.447) 

HOT Share 0.5407 0.5407 0.5407 0.5407 

Observations 1,191,877 1,191,877 1,191,877 1,191,877 

R
2
 0.215 0.215 0.214 0.215 

Log Likelihood -645,007.40 -644,911.30 -645,784.60 -645,304.40 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Model 15 – Toll over Segment Count 

The next pair of models includes the toll amount divided by the number of segments traversed, to 

investigate whether users consider toll rate as a function of trip length in their lane choice 

decision making.  Table 93 presents the results from the AM peak period data set.  While the 

tollSegments interaction term is significant at the 95% confidence level, and yields the highest 

test statistic in the model, the overall goodness of fit suffers relative to the Model 14 variant.  

The odds ratio for the morning peak tollSegments term is 0.0930, indicating a large decrease in 

toll lane use probability with a unit increase in the toll amount divided by the segment count. 
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Table 93: Toll over Segment Count - AM Peak Model 

 AM Peak – Model 15 

Intercept -1.232*** (t = -30.814) 

avgSpeed
2
 -0.0003*** (t = -105.898) 

tollSegments -2.375*** (t = -321.387) 

transponderCount -0.002*** (t = -87.872) 

HOT: congested50 1.816*** (t = 242.420) 

HOT: hhEdu -0.173*** (t = -58.159) 

HOT: hhAge -0.024*** (t = -13.007) 

HOT: log(hhIncomeDollars) 0.195*** (t = 50.244) 

HOT: hhSize -0.034*** (t = -27.160) 

HOT: february 0.263*** (t = 25.584) 

HOT: march 0.218*** (t = 21.897) 

HOT: april 0.365*** (t = 36.022) 

HOT: may 0.364*** (t = 36.463) 

HOT: june 0.239*** (t = 22.966) 

HOT: july 0.132*** (t = 13.172) 

HOT: august 0.385*** (t = 38.022) 

HOT: september 0.538*** (t = 51.874) 

HOT: october 0.538*** (t = 52.097) 

HOT: november 0.384*** (t = 36.761) 

HOT: december 0.163*** (t = 15.673) 

HOT: tuesday 0.246*** (t = 37.180) 

HOT: wednesday 0.246*** (t = 36.745) 

HOT: thursday 0.240*** (t = 36.064) 

HOT: friday -0.827*** (t = -112.363) 

HOT:am630 1.279*** (t = 141.239) 

HOT: am700 1.523*** (t = 156.005) 

HOT: am730 1.628*** (t = 161.653) 

HOT:am800 1.513*** (t = 151.972) 

HOT:am830 1.265*** (t = 129.947) 

HOT:am900 0.786*** (t = 82.651) 

HOT:am930 0.024** (t = 2.481) 

HOT Share 0.5278 

Observations 1,105,171 

R
2
 0.128 

Log Likelihood -666,537.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

Table 94 presents the results from the PM peak trips with the tollSegments interaction 

term included.  Here the coefficient is again negative and significant at the 95% confidence level, 

though the t-statistic is not the highest one present.  Similar to the AM peak model in the 

previous table, the model goodness of fit measure suffers when the toll amount and segment 

count factors are replaced by the single interaction term.  The odds ratio for the tollSegments 
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term in the afternoon peak is closer to a value of one than in the morning peak (0.355 for the PM 

peak, 0.0930 for the AM peak). 

 
Table 94: Toll over Segment Count - PM Peak Model 

 PM Peak – Model 15 

Intercept -1.817*** (t = -47.329) 

avgSpeed
2
 0.0002*** (t = 66.464) 

tollSegments -1.036*** (t = -118.903) 

transponderCount 0.001*** (t = 35.538) 

HOT: congested40 1.316*** (t = 260.457) 

HOT: hhEdu -0.255*** (t = -90.585) 

HOT: hhAge -0.002 (t = -0.963) 

HOT: log(hhIncomeDollars) 0.200*** (t = 54.624) 

HOT: hhSize -0.009*** (t = -7.237) 

HOT: february -0.033*** (t = -3.430) 

HOT: march 0.005 (t = 0.501) 

HOT: april -0.011 (t = -1.143) 

HOT: may -0.074*** (t = -7.910) 

HOT: june -0.003 (t = -0.293) 

HOT: july -0.024** (t = -2.462) 

HOT: august 0.014 (t = 1.455) 

HOT: september 0.157*** (t = 15.937) 

HOT: october 0.180*** (t = 18.463) 

HOT: november 0.110*** (t = 11.142) 

HOT: december 0.056*** (t = 5.671) 

HOT: tuesday 0.043*** (t = 7.072) 

HOT: wednesday 0.066*** (t = 10.578) 

HOT: thursday 0.040*** (t = 6.193) 

HOT: friday 0.070*** (t = 10.240) 

HOT:pm1530 0.172*** (t = 19.207) 

HOT:pm1600 0.233*** (t = 26.017) 

HOT:pm1630 0.321*** (t = 35.331) 

HOT:pm1700 0.344*** (t = 37.468) 

HOT:pm1730 0.339*** (t = 36.949) 

HOT:pm1800 0.388*** (t = 43.170) 

HOT:pm1830 0.303*** (t = 34.130) 

HOT Share 0.5407 

Observations 1,191,877 

R
2
 0.09 

Log Likelihood -748,055.50 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Model 16 – All Interaction Terms 

The next set of models includes all of the interaction terms from this section: toll amount over 

segment count, toll over income, and income over household size.  Model 16a in the AM and PM 

peak excludes the household income and size measures outside of the interaction terms, while 

Model 16b includes both measures alongside their respective interaction terms.  The inclusion of 

those variables in Model 16b changes the sign of the intercept term, and yields a significant 

coefficient for the household age factor (though the magnitude of the coefficient is still small).  

The pseudo-R
2
 goodness of fit measure improves by 0.002. 

 The toll over log(income) coefficient is positive now, while previously in Model 12 the 

estimator was negative.  The income over household size coefficient remains positive and 

significant as it was in previous models; the tollSegments interaction term also remains negative 

and significant at the 95% confidence level.  The change in the tollLogIncome term may be due 

to correlation with other interaction terms, as the models now have multiple instances of both toll 

and household income represented in their utility equations.  In both 16a and 16b, the goodness 

of fit measures are lower than their previous peaks in Model 14. 

  



433 

 

Table 95: All Interaction Terms - AM Peak Models 

 AM Peak – Model 16a AM Peak – Model 16b 

Intercept 0.322*** (t = 16.653) -1.926*** (t = -43.651) 

avgSpeed
2
 -0.0003*** (t = -98.561) -0.0003*** (t = -99.147) 

tollSegments -2.815*** (t = -272.695) -2.871*** (t = -275.551) 

tollLogIncome 1.527*** (t = 64.643) 1.692*** (t = 70.898) 

transponderCount -0.001*** (t = -69.873) -0.001*** (t = -68.576) 

HOT: congested50 1.695*** (t = 221.016) 1.685*** (t = 219.323) 

HOT:I(log(hhIncomeDollars)/hhSize) 0.022*** (t = 14.852) 0.055*** (t = 15.583) 

HOT: log(hhIncomeDollars)  0.221*** (t = 56.173) 

HOT: hhSize  0.004 (t = 1.547) 

HOT: hhEdu -0.106*** (t = -37.580) -0.162*** (t = -54.274) 

HOT: hhAge -0.001 (t = -0.719) -0.022*** (t = -11.773) 

HOT: february 0.252*** (t = 24.511) 0.253*** (t = 24.587) 

HOT: march 0.210*** (t = 21.003) 0.212*** (t = 21.187) 

HOT: april 0.352*** (t = 34.751) 0.355*** (t = 34.999) 

HOT: may 0.359*** (t = 35.910) 0.362*** (t = 36.125) 

HOT: june 0.236*** (t = 22.677) 0.237*** (t = 22.745) 

HOT: july 0.127*** (t = 12.726) 0.126*** (t = 12.603) 

HOT: august 0.385*** (t = 38.039) 0.385*** (t = 37.931) 

HOT: september 0.547*** (t = 52.608) 0.549*** (t = 52.698) 

HOT: october 0.549*** (t = 53.087) 0.552*** (t = 53.260) 

HOT: november 0.398*** (t = 38.005) 0.400*** (t = 38.186) 

HOT: december 0.167*** (t = 16.046) 0.168*** (t = 16.090) 

HOT: tuesday 0.242*** (t = 36.486) 0.244*** (t = 36.749) 

HOT: wednesday 0.238*** (t = 35.597) 0.240*** (t = 35.821) 

HOT: thursday 0.233*** (t = 34.968) 0.235*** (t = 35.246) 

HOT: friday -0.813*** (t = -110.564) -0.812*** (t = -110.273) 

HOT:am630 1.245*** (t = 137.649) 1.247*** (t = 137.644) 

HOT: am700 1.536*** (t = 157.368) 1.545*** (t = 157.901) 

HOT: am730 1.634*** (t = 162.341) 1.643*** (t = 162.927) 

HOT:am800 1.501*** (t = 150.934) 1.511*** (t = 151.688) 

HOT:am830 1.267*** (t = 130.315) 1.277*** (t = 131.106) 

HOT:am900 0.795*** (t = 83.878) 0.801*** (t = 84.442) 

HOT:am930 0.052*** (t = 5.295) 0.057*** (t = 5.841) 

HOT Share 0.5278 0.5278 

Observations 1,105,171 1,105,171 

R
2
 0.129 0.131 

Log Likelihood -665,561.20 -663,836.90 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

 The PM peak models with all interaction terms included are presented in Table 96.  As in 

the AM peak results, the goodness of fit measures suffer relative to Model 14.  The 

tollLogIncome term, which divides the toll about by the log of the household’s income, is once 

again positive where previously its coefficient was negative.  The coefficient of household 

income divided by household size exhibits more complex behavior; where it was previously 
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positive, it is now negative in the absence of separate household income and size terms and 

positive when those terms are included.  As in Model 15, the tollSegments term remains negative 

and significant at the 95% confidence level. 

Table 96: All Interaction Terms - PM Peak Models 

 PM Peak – Model 16a PM Peak – Model 16b 

Intercept 0.775*** (t = 38.482) -2.425*** (t = -55.509) 

avgSpeed
2
 -0.00002*** (t = -4.250) -0.00002*** (t = -5.838) 

tollSegments -5.164*** (t = -275.038) -5.336*** (t = -279.724) 

tollLogIncome 10.822*** (t = 263.025) 11.211*** (t = 269.019) 

transponderCount 0.003*** (t = 106.525) 0.003*** (t = 109.778) 

HOT: congested40 1.309*** (t = 252.010) 1.325*** (t = 253.890) 

HOT:I(log(hhIncomeDollars)/hhSize) -0.017*** (t = -11.723) 0.015*** (t = 4.329) 

HOT: log(hhIncomeDollars)  0.328*** (t = 84.374) 

HOT: hhSize  -0.007*** (t = -2.650) 

HOT: hhEdu -0.133*** (t = -48.080) -0.215*** (t = -73.396) 

HOT: hhAge 0.028*** (t = 15.862) -0.002 (t = -0.871) 

HOT: february -0.056*** (t = -5.659) -0.058*** (t = -5.808) 

HOT: march -0.029*** (t = -2.951) -0.031*** (t = -3.099) 

HOT: april -0.109*** (t = -11.025) -0.111*** (t = -11.149) 

HOT: may -0.189*** (t = -19.481) -0.194*** (t = -19.993) 

HOT: june -0.138*** (t = -13.806) -0.145*** (t = -14.474) 

HOT: july -0.147*** (t = -14.927) -0.156*** (t = -15.737) 

HOT: august -0.071*** (t = -7.169) -0.077*** (t = -7.816) 

HOT: september 0.182*** (t = 17.810) 0.183*** (t = 17.762) 

HOT: october 0.202*** (t = 19.920) 0.204*** (t = 20.001) 

HOT: november 0.133*** (t = 12.991) 0.135*** (t = 13.115) 

HOT: december 0.107*** (t = 10.466) 0.111*** (t = 10.854) 

HOT: tuesday 0.022*** (t = 3.555) 0.021*** (t = 3.360) 

HOT: wednesday 0.031*** (t = 4.841) 0.028*** (t = 4.398) 

HOT: thursday -0.075*** (t = -11.097) -0.084*** (t = -12.392) 

HOT: friday -0.055*** (t = -7.666) -0.064*** (t = -8.931) 

HOT:pm1530 0.016* (t = 1.724) 0.013 (t = 1.445) 

HOT:pm1600 -0.030*** (t = -3.289) -0.038*** (t = -4.075) 

HOT:pm1630 0.030*** (t = 3.131) 0.024** (t = 2.499) 

HOT:pm1700 0.069*** (t = 7.254) 0.065*** (t = 6.787) 

HOT:pm1730 0.137*** (t = 14.375) 0.137*** (t = 14.306) 

HOT:pm1800 0.290*** (t = 31.317) 0.295*** (t = 31.830) 

HOT:pm1830 0.270*** (t = 29.823) 0.277*** (t = 30.454) 

HOT Share 0.5407 0.5407 

Observations 1,191,877 1,191,877 

R
2
 0.139 0.144 

Log Likelihood -707,686.40 -703,900.70 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Model 17 – Additional Interaction Term Combinations 

The final set of standard binary logit models presented here investigates different combinations 

of the interaction terms, rather than looking at each in isolation and then all together.  Of the 

three combinations represented in Table 97, the best-performing model in the AM peak is Model 

17a, in which the toll over income and income over household interaction terms are both 

included.  The coefficients of all three models are uniformly significant at the 95% confidence 

level; beyond the constants, there are no differences in coefficient signs and only small 

differences in magnitudes. 
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Table 97: Additional Interaction Term Combinations - AM Peak 

 AM Peak – Model 17a AM Peak – Model 17b AM Peak – Model 17c 

Intercept 1.402*** (t = 19.709) -1.456*** (t = -20.910) 0.852*** (t = 12.150) 

avgSpeed
2
 -0.0004*** (t = -114.857) -0.0004*** (t = -110.164) -0.0003*** (t = -99.913) 

tollLogIncome -7.438*** (t = -330.151)   

tollAmount
2
  -0.067*** (t = -287.831)  

tollSegments   -2.315*** (t = -304.822) 

transponderCount -0.001*** (t = -41.305) -0.001*** (t = -58.875) -0.001*** (t = -39.451) 

HOT: congested50 1.596*** (t = 202.689) 1.345*** (t = 178.022) 1.514*** (t = 196.218) 

HOT: hhEdu -0.136*** (t = -44.596) -0.136*** (t = -45.249) -0.141*** (t = -46.396) 

HOT: hhAge -0.031*** (t = -15.921) -0.030*** (t = -15.652) -0.030*** (t = -15.478) 

HOT:I(hhIncomeDollars/hhSize) 0.00002*** (t = 58.585) 0.00002*** (t = 52.678) 0.00002*** (t = 53.735) 

HOT: log(hhIncomeDollars) -0.448*** (t = -58.573) -0.202*** (t = -27.077) -0.193*** (t = -25.770) 

HOT: hhSize 0.061*** (t = 28.070) 0.046*** (t = 21.870) 0.054*** (t = 25.161) 

HOT: segmentCount 0.925*** (t = 338.884) 0.759*** (t = 306.294) 0.348*** (t = 166.440) 

HOT: February 0.264*** (t = 24.968) 0.225*** (t = 21.742) 0.247*** (t = 23.720) 

HOT: march 0.234*** (t = 22.859) 0.188*** (t = 18.722) 0.216*** (t = 21.294) 

HOT: april 0.378*** (t = 36.341) 0.293*** (t = 28.766) 0.355*** (t = 34.538) 

HOT: may 0.376*** (t = 36.683) 0.312*** (t = 31.064) 0.366*** (t = 36.095) 

HOT: june 0.272*** (t = 25.447) 0.238*** (t = 22.703) 0.251*** (t = 23.751) 

HOT: july 0.147*** (t = 14.237) 0.121*** (t = 11.950) 0.130*** (t = 12.801) 

HOT: august 0.409*** (t = 39.418) 0.339*** (t = 33.280) 0.397*** (t = 38.625) 

HOT: September 0.580*** (t = 54.547) 0.524*** (t = 50.220) 0.576*** (t = 54.602) 

HOT: October 0.578*** (t = 54.715) 0.520*** (t = 50.039) 0.582*** (t = 55.428) 

HOT: November 0.447*** (t = 41.644) 0.403*** (t = 38.230) 0.440*** (t = 41.409) 

HOT: December 0.213*** (t = 19.842) 0.172*** (t = 16.345) 0.193*** (t = 18.252) 

HOT: Tuesday 0.237*** (t = 34.968) 0.242*** (t = 36.350) 0.240*** (t = 35.648) 

HOT: Wednesday 0.242*** (t = 35.418) 0.249*** (t = 36.993) 0.236*** (t = 34.785) 

HOT: Thursday 0.235*** (t = 34.550) 0.242*** (t = 36.170) 0.231*** (t = 34.190) 

HOT: Friday -0.875*** (t = -115.484) -0.620*** (t = -85.434) -0.821*** (t = -110.165) 

HOT:am630 1.579*** (t = 164.734) 1.248*** (t = 136.562) 1.339*** (t = 145.856) 

HOT: am700 1.920*** (t = 186.087) 1.588*** (t = 160.497) 1.717*** (t = 171.632) 

HOT: am730 1.975*** (t = 187.125) 1.636*** (t = 161.781) 1.791*** (t = 174.333) 

HOT:am800 1.830*** (t = 175.190) 1.515*** (t = 151.013) 1.632*** (t = 160.980) 

HOT:am830 1.583*** (t = 154.540) 1.352*** (t = 136.143) 1.404*** (t = 141.334) 

HOT:am900 1.113*** (t = 111.193) 1.116*** (t = 114.249) 0.929*** (t = 96.106) 

HOT:am930 0.364*** (t = 35.193) 0.788*** (t = 79.057) 0.204*** (t = 20.441) 

HOT Share 0.5278 0.5278 0.5278 

Observations 1,105,171 1,105,171 1,105,171 

R
2
 0.163 0.138 0.149 

Log Likelihood -639,913.70 -658,649.00 -650,476.70 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Table 98 presents similar results for the interaction term combinations in the PM peak.  

Again, Model 17a outperforms the other two in the R
2
 and log-likelihood measures.  The 

consistency of the estimated coefficients is not as strong as in the morning period models: the 
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day of week and time of day estimators in the PM peak see more variation in their magnitudes 

and significance levels. 

Table 98: Additional Interaction Term Combinations - PM Peak 

 PM Peak – Model 17a PM Peak – Model 17b PM Peak – Model 17c 

Intercept -0.941*** (t = -13.372) -1.723*** (t = -24.538) -1.095*** (t = -15.619) 

avgSpeed
2
 -0.0002*** (t = -46.743) -0.0002*** (t = -43.481) -0.0002*** (t = -47.882) 

tollLogIncome -5.036*** (t = -193.992)  ()  () 

tollAmount
2
  () -0.047*** (t = -151.644)  () 

tollSegments  ()  () -1.589*** (t = -160.935) 

transponderCount 0.004*** (t = 139.749) 0.004*** (t = 156.244) 0.004*** (t = 150.407) 

HOT: congested40 1.363*** (t = 246.814) 1.231*** (t = 229.927) 1.326*** (t = 240.372) 

HOT: hhEdu -0.212*** (t = -68.456) -0.209*** (t = -67.876) -0.204*** (t = -66.154) 

HOT: hhAge -0.007*** (t = -3.559) -0.006*** (t = -3.403) -0.006*** (t = -3.288) 

HOT:I(hhIncomeDollars/hhSize) 0.00001*** (t = 30.051) 0.00001*** (t = 27.708) 0.00001*** (t = 27.845) 

HOT: log(hhIncomeDollars) -0.152*** (t = -20.224) -0.050*** (t = -6.715) -0.055*** (t = -7.345) 

HOT: hhSize 0.032*** (t = 14.700) 0.026*** (t = 12.357) 0.026*** (t = 12.175) 

HOT: segmentCount 1.096*** (t = 406.884) 0.953*** (t = 400.764) 0.866*** (t = 391.825) 

HOT: february -0.072*** (t = -6.695) -0.087*** (t = -8.164) -0.077*** (t = -7.298) 

HOT: march -0.059*** (t = -5.564) -0.109*** (t = -10.333) -0.070*** (t = -6.671) 

HOT: april -0.275*** (t = -25.888) -0.306*** (t = -29.021) -0.263*** (t = -24.996) 

HOT: may -0.375*** (t = -35.867) -0.391*** (t = -37.663) -0.361*** (t = -34.869) 

HOT: june -0.372*** (t = -34.469) -0.374*** (t = -34.940) -0.350*** (t = -32.762) 

HOT: july -0.359*** (t = -33.724) -0.371*** (t = -35.080) -0.343*** (t = -32.559) 

HOT: august -0.156*** (t = -14.801) -0.269*** (t = -25.882) -0.180*** (t = -17.245) 

HOT: september 0.239*** (t = 22.130) 0.048*** (t = 4.543) 0.189*** (t = 17.476) 

HOT: october 0.279*** (t = 26.046) 0.075*** (t = 7.175) 0.223*** (t = 20.814) 

HOT: november 0.221*** (t = 20.393) 0.047*** (t = 4.421) 0.170*** (t = 15.727) 

HOT: december 0.203*** (t = 18.678) 0.035*** (t = 3.290) 0.158*** (t = 14.650) 

HOT: tuesday 0.016** (t = 2.442) 0.001 (t = 0.146) 0.009 (t = 1.399) 

HOT: wednesday 0.027*** (t = 3.986) -0.004 (t = -0.597) 0.012* (t = 1.779) 

HOT: thursday -0.110*** (t = -15.404) -0.182*** (t = -25.713) -0.146*** (t = -20.509) 

HOT: friday -0.089*** (t = -11.685) -0.170*** (t = -22.498) -0.130*** (t = -17.113) 

HOT:pm1530 -0.057*** (t = -5.690) -0.141*** (t = -14.353) -0.089*** (t = -9.059) 

HOT:pm1600 -0.139*** (t = -13.874) -0.303*** (t = -30.737) -0.201*** (t = -20.264) 

HOT:pm1630 -0.018* (t = -1.728) -0.264*** (t = -26.398) -0.113*** (t = -11.167) 

HOT:pm1700 0.072*** (t = 7.008) -0.210*** (t = -21.092) -0.038*** (t = -3.751) 

HOT:pm1730 0.202*** (t = 19.765) -0.097*** (t = -9.837) 0.089*** (t = 8.820) 

HOT:pm1800 0.400*** (t = 40.324) 0.126*** (t = 13.214) 0.306*** (t = 31.078) 

HOT:pm1830 0.342*** (t = 35.149) 0.150*** (t = 15.824) 0.288*** (t = 29.936) 

HOT Share 0.5407 0.5407 0.5407 

Observations 1,191,877 1,191,877 1,191,877 

R
2
 0.215 0.205 0.208 

Log Likelihood -645,127.80 -653,163.00 -651,317.80 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Overview of Interaction Term Investigation 

Table 99 presents an overview of the model results for the interaction term investigation.  The 

cells with highlighted text represent the models with the best goodness-of-fit or AIC measures 

within that category.  Unlike the previous model comparison, here the best performing models in 

the morning and afternoon peaks are the same.  Model 14b has the best goodness of fit measure 

and the lowest AIC value in both time frames.  In both cases, Model 17a is a close second, 

however the additional interaction term in 17a does not provide enough of a benefit to warrant its 

inclusion.  This effect is even more apparent in Models 16a and 16b, in which all of the 

interaction terms were included to little benefit.  For this reason, Model 14b will be the model of 

choice going forwards. 

Table 99: Summary of Models with Additional Interaction Terms 

Model AM Peak - R
2
 

Value 

AM Peak – AIC PM Peak – R
2
 

Value 

PM Peak – AIC 

Model 12a 0.161 1,366,711 0.214 1,294,997 

Model 12b 0.161 1,366,405 0.214 1,294,907 

Model 13a 0.081 1,497,011 0.193 1,329,590 

Model 13b 0.082 1,494,839 0.194 1,329,255 

Model 14a 0.164 1,361,665 0.215 1,293,750 

Model 14b 0.164 1,360,791 0.215 1,293,560 

Model 14c 0.162 1,364,956 0.214 1,295,305 

Model 14d 0.163 1,363,758 0.215 1,294,349 

Model 15 0.125 1,424,731 0.090 1,500,244 

Model 16a 0.128 1,420,074 0.139 1,418,996 

Model 16b 0.130 1,416,159 0.144 1,411,425 

Model 17a 0.163 1,362,616 0.215 1,293,991 

Model 17b 0.138 1,403,695 0.205 1,310,056 

Model 17c 0.150 1,384,399 0.208 1,306,313 

 

Income Segmentation 

As in the previously published paper on the initial modeling work, a primary goal of this 

dissertation is to investigate differences in lane use decision making among different income 

segments.  For that reason, the previously selected Model 14b is estimated below for the Lower, 
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Medium, and Higher income groups.  Like before, those categories are based on the annual 

household income measure in the Epsilon demographic data: ‘Lower’ income households make 

less than $50,000 annually, ‘Medium’ income households make between $50,000 and $100,000, 

and ‘Higher’ income households make over $100,000.  The overview of the different income 

segments can be found earlier in this chapter in Table 70. 

Three Income Segments 

Table 100 presents the results from estimating Model 14b for the AM peak period in calendar 

year 2013.  The first difference can be seen in the intercept terms: only the medium income 

segment has a positive coefficient, and the higher income coefficient is much larger in magnitude 

than either of the others.  This is perhaps counterintuitive as the higher income segment has the 

largest share of HOT trips.  The coefficients for the transponder count difference also vary in 

their signs and magnitudes: the lower income segment has the largest absolute coefficient, while 

the higher income segment has the only positive estimator.  In all cases the values are very close 

to zero, however. 

The household age coefficients are all negative, but their estimators differ by orders of 

magnitude.  The medium income segment age coefficient is the smallest (and fails to achieve 

significance at the 95% confidence level), followed by the lower income segment coefficient.  

The higher income segment has the largest coefficient with the greatest test statistic.  To the 

extent that income increases with age, this may reflect retirement-aged households.  As 

mentioned previously, household age, size, and education are all positively correlated with 

household income. 

Household size also has different impacts on the three different income segments: larger 

households increase toll lane choice probability in the middle income group, but decrease that 
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probability for the lower and higher segments.  The interaction term included here, which divides 

household income by size, is very close to zero.  It fails to achieve 95% significance for the 

lower income segment, where the estimate is zero. 

The household income coefficients are all significant at the 95% confidence level, but 

vary in their signs and magnitude.  The lower and medium segment estimators are both negative, 

indicating that within their income spectrums, a higher household income reduces the probability 

of selecting the toll lane on a given trip.  The higher income segment, however, yields an income 

estimator that is positive and larger than its counterparts.  This effect was also present in the 

initial modeling analysis: the higher income segment had a positive household income 

coefficient which was larger in magnitude than those of the lower and medium segments.  As 

discussed in that chapter as well, that may be due to the greater diversity of household incomes 

within that category.  The lower income segment includes five distinct income values, while the 

medium segment includes two.  In contrast, the higher income segment contains eight.  This 

difference in the income effects among the higher income segment inspired further investigation 

which is described in the next part of this chapter. 

The estimated coefficients for the month and time of day factors are consistent across all 

three income segments.  Coefficient signs are the same, and the magnitudes are likewise very 

similar.  In all three segments, trips in the 7:30 – 7:59 AM interval see the highest increase in 

Express Lane choice probability.  Likewise, Friday trips are the only trips for all three groups 

that see a decrease in toll lane probability relative to Monday trips.  This effect is also evident in 

the monthly coefficients: October yields the largest estimator for all three groups. 

Also of interest are the similarities between the three models.  Toll amount, for example, 

yields coefficients that are close in sign and magnitude across all three income categories.  
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Similarly, the (square of) speed difference coefficients are all negative and very small, while the 

congestion dummy coefficients are all positive with magnitudes that differ by 0.036.  Household 

education is uniformly negative across all segments; again, this factor is positively correlated 

with income.  Finally, the segmentCount variable, which was designed to replace distance, is 

positive and highly significant in all three models.  Goodness of fit, as measured by the 

McFadden’s pseudo-R
2
 value, differ by only 0.05.  Note that McFadden’s pseudo-R

2
 measures 

the log likelihood of the full model against the log likelihood of the intercept-only model. 
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Table 100: Model 14b with 3 Income Segments - AM Peak 

 AM Peak – Lower AM Peak – Medium AM Peak – Higher 

Intercept -1.247*** (t = -8.971) 2.328*** (t = 9.177) -11.780*** (t = -35.412) 

avgSpeed
2
 -0.0003*** (t = -51.375) -0.0003*** (t = -80.858) -0.0004*** (t = -64.548) 

tollAmount -0.694*** (t = -183.049) -0.701*** (t = -237.269) -0.668*** (t = -169.961) 

transponderCount -0.001*** (t = -37.234) -0.0002*** (t = -5.800) 0.0001*** (t = 2.927) 

HOT: congested50 1.446*** (t = 105.719) 1.482*** (t = 133.393) 1.483*** (t = 99.224) 

HOT: hhEdu -0.142*** (t = -27.601) -0.110*** (t = -24.393) -0.126*** (t = -18.818) 

HOT: hhAge -0.030*** (t = -9.138) -0.001 (t = -0.479) -0.114*** (t = -25.670) 

HOT:I(hhIncomeDollars)/hhSize) 0 (t = -0.725) 0.00002*** (t = 26.440) 0.00001*** (t = 11.326) 

HOT: log(hhIncomeDollars) -0.177*** (t = -11.353) -0.545*** (t = -22.225) 0.776*** (t = 25.216) 

HOT: hhSize -0.056*** (t = -10.499) 0.045*** (t = 11.012) -0.010** (t = -2.006) 

HOT: segmentCount 0.989*** (t = 199.890) 0.960*** (t = 242.991) 0.952*** (t = 178.977) 

HOT: february 0.310*** (t = 16.187) 0.245*** (t = 16.182) 0.242*** (t = 12.075) 

HOT: march 0.240*** (t = 12.896) 0.253*** (t = 17.138) 0.243*** (t = 12.411) 

HOT: april 0.413*** (t = 21.942) 0.398*** (t = 26.508) 0.384*** (t = 19.261) 

HOT: may 0.387*** (t = 20.930) 0.379*** (t = 25.710) 0.405*** (t = 20.704) 

HOT: june 0.255*** (t = 13.170) 0.319*** (t = 20.738) 0.281*** (t = 13.728) 

HOT: july 0.101*** (t = 5.416) 0.198*** (t = 13.368) 0.139*** (t = 7.055) 

HOT: august 0.403*** (t = 21.405) 0.444*** (t = 29.853) 0.419*** (t = 21.174) 

HOT: september 0.586*** (t = 30.504) 0.633*** (t = 41.392) 0.625*** (t = 30.807) 

HOT: october 0.587*** (t = 30.685) 0.653*** (t = 42.934) 0.639*** (t = 31.635) 

HOT: november 0.408*** (t = 20.960) 0.549*** (t = 35.634) 0.518*** (t = 25.109) 

HOT: december 0.172*** (t = 8.884) 0.262*** (t = 17.094) 0.305*** (t = 14.877) 

HOT: tuesday 0.290*** (t = 23.706) 0.209*** (t = 21.388) 0.225*** (t = 17.418) 

HOT: Wednesday 0.289*** (t = 23.420) 0.203*** (t = 20.588) 0.228*** (t = 17.392) 

HOT: Thursday 0.276*** (t = 22.400) 0.211*** (t = 21.490) 0.197*** (t = 15.065) 

HOT: Friday -0.924*** (t = -67.837) -0.917*** (t = -84.405) -0.897*** (t = -61.378) 

HOT:am630 1.686*** (t = 98.432) 1.579*** (t = 117.295) 1.551*** (t = 83.740) 

HOT: am700 2.061*** (t = 111.143) 1.898*** (t = 129.459) 1.975*** (t = 99.261) 

HOT: am730 2.190*** (t = 115.371) 1.906*** (t = 127.507) 2.041*** (t = 100.646) 

HOT:am800 2.071*** (t = 110.020) 1.805*** (t = 122.752) 1.787*** (t = 88.583) 

HOT:am830 1.843*** (t = 99.346) 1.523*** (t = 104.676) 1.501*** (t = 76.157) 

HOT:am900 1.237*** (t = 67.561) 1.033*** (t = 73.026) 1.060*** (t = 54.549) 

HOT:am930 0.375*** (t = 19.969) 0.283*** (t = 19.350) 0.257*** (t = 12.775) 

HOT Share 0.5068 0.5202 0.5562 

Observations 342,209 533,623 301,182 

R
2
 0.171 0.166 0.166 

Log Likelihood -196,702.70 -308,201.30 -172,527.40 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Table 101 includes the results from the PM peak model estimates across the three income 

segments.  Once again, the first difference is apparent in the intercept term, for which the higher 

income segment coefficient has the largest, most negative magnitude.  In fact the discrepancies 

are similar to those found in the morning peak models: the household age, income, and size 

factors have the most notable differences.  As in the AM peak models, household age yields a 
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negative coefficient only in the highest income segment.  That segment is also unique in having a 

positive coefficient for household income, just like the morning trips. 

The model similarities also mirror those of the morning period models, starting with the 

effects of the speed difference between the lanes.  As was the case previously, each segment 

coefficient was negative, very small, and significant at the 99% confidence level.  The 

transponderCount coefficients are once again very close to zero, though their test statistics 

indicate high levels of significance.  Toll level coefficients are negative and in the 0.4 to 0.5 

range for all three models.  The congested conditions dummy coefficients are all positive, 

significant, and similarly-sized, while the household education coefficients are all negative, 

significant, and similarly-sized. 

Afternoon toll lane trips exhibit a pattern in the monthly, daily, and half-hour dummy 

coefficients.  Corridor users in the afternoon are less likely to take toll lane trips between 

February and August, relative to their January probability.  From September through December, 

positive coefficients indicate higher HOT probabilities relative to January.  Similarly, Tuesday 

and Wednesday trips are, all else being equal, more likely to be toll lane trips compared to those 

taken on Monday.  That relationship is inverted on Thursday and Friday for all segments.  This 

effect is also apparent in the time of day factors: positive coefficients appear only after 5pm 

(4:30pm for the higher income segment). 

The model goodness of fit measures, represented here as elsewhere by McFadden’s 

pseudo-R
2
, exhibit an inverse pattern relative to the morning trips.  Here the lower income 

segment has the model with the lowest pseudo-R
2
 value, while the higher income segment has 

the highest.  All three models outperform the morning peak models, a result that has been 

consistent throughout the dissertation. 
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Table 101: Model 14b with 3 Income Segments - PM Peak 

 PM Peak – Lower PM Peak – Medium PM Peak – Higher 

Intercept -1.142*** (t = -8.035) -1.128*** (t = -4.261) -4.002*** (t = -11.638) 

avgSpeed
2
 -0.0002*** (t = -34.684) -0.0002*** (t = -29.407) -0.0001*** (t = -14.248) 

tollAmount -0.431*** (t = -98.171) -0.467*** (t = -136.133) -0.476*** (t = -99.870) 

transponderCount 0.003*** (t = 61.096) 0.004*** (t = 99.784) 0.004*** (t = 79.693) 

HOT: congested40 1.367*** (t = 135.420) 1.344*** (t = 165.121) 1.410*** (t = 124.823) 

HOT: hhEdu -0.200*** (t = -38.167) -0.192*** (t = -40.699) -0.299*** (t = -42.010) 

HOT: hhAge 0.012*** (t = 3.759) 0.001 (t = 0.512) -0.077*** (t = -16.555) 

HOT:I(hhIncomeDollars)/hhSize) 0.00000** (t = 1.985) 0.00000*** (t = 4.717) 0.00001*** (t = 13.437) 

HOT: log(hhIncomeDollars) -0.111*** (t = -7.005) -0.112*** (t = -4.359) 0.148*** (t = 4.647) 

HOT: hhSize -0.013** (t = -2.462) -0.020*** (t = -4.617) 0.047*** (t = 9.139) 

HOT: segmentCount 1.068*** (t = 218.616) 1.079*** (t = 272.467) 1.157*** (t = 207.768) 

HOT: february -0.064*** (t = -3.265) -0.067*** (t = -4.286) -0.095*** (t = -4.369) 

HOT: march -0.042** (t = -2.160) -0.054*** (t = -3.484) -0.090*** (t = -4.171) 

HOT: april -0.250*** (t = -12.897) -0.272*** (t = -17.353) -0.323*** (t = -14.851) 

HOT: may -0.376*** (t = -19.675) -0.356*** (t = -23.082) -0.408*** (t = -19.130) 

HOT: june -0.395*** (t = -20.012) -0.333*** (t = -20.980) -0.402*** (t = -18.182) 

HOT: july -0.366*** (t = -18.800) -0.314*** (t = -19.978) -0.438*** (t = -20.109) 

HOT: august -0.184*** (t = -9.500) -0.097*** (t = -6.282) -0.215*** (t = -10.054) 

HOT: september 0.139*** (t = 7.012) 0.328*** (t = 20.554) 0.221*** (t = 10.049) 

HOT: october 0.178*** (t = 9.098) 0.375*** (t = 23.748) 0.250*** (t = 11.440) 

HOT: november 0.092*** (t = 4.621) 0.325*** (t = 20.300) 0.219*** (t = 9.929) 

HOT: december 0.118*** (t = 5.971) 0.266*** (t = 16.593) 0.212*** (t = 9.576) 

HOT: tuesday 0.024* (t = 1.954) 0.012 (t = 1.198) 0.011 (t = 0.775) 

HOT: wednesday 0.049*** (t = 3.960) 0.022** (t = 2.221) 0.003 (t = 0.246) 

HOT: thursday -0.069*** (t = -5.316) -0.117*** (t = -11.095) -0.149*** (t = -10.211) 

HOT: friday -0.031** (t = -2.261) -0.120*** (t = -10.640) -0.106*** (t = -6.772) 

HOT:pm1530 -0.001 (t = -0.037) -0.058*** (t = -3.861) -0.122*** (t = -6.199) 

HOT:pm1600 -0.108*** (t = -5.874) -0.156*** (t = -10.379) -0.128*** (t = -6.395) 

HOT:pm1630 -0.068*** (t = -3.597) -0.037** (t = -2.429) 0.115*** (t = 5.615) 

HOT:pm1700 0.019 (t = 0.984) 0.088*** (t = 5.728) 0.158*** (t = 7.691) 

HOT:pm1730 0.099*** (t = 5.313) 0.229*** (t = 15.018) 0.329*** (t = 16.191) 

HOT:pm1800 0.288*** (t = 15.807) 0.418*** (t = 28.278) 0.548*** (t = 27.612) 

HOT:pm1830 0.241*** (t = 13.371) 0.344*** (t = 23.759) 0.501*** (t = 25.853) 

HOT Share 0.5223 0.5389 0.5684 

Observations 349,783 544,660 300,556 

R
2
 0.199 0.213 0.242 

Log Likelihood -193,922.40 -295,646.70 -155,718.00 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

Five Income Segments 

The investigation of the three-segment lane choice modeling strategy in the previous section 

showed that in two categories, namely the constant term and the household income coefficient, 

the higher income segment differed from the other two in its results.  This prompted the question 

of whether the segmentation strategy was minimizing behavioral differences among the higher 

income segment by grouping them together.  For that reason, this section examines the model 
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selected in this chapter (Model 14b) with five different income segments rather than three.  The 

purpose is to investigate the behavior of the users at the highest end of the income spectrum to 

see if more variability is present in their decisions.   

Table 102 provides an overview of the five income segments.  Segments A and B are 

identical to the Lower and Medium household income segments of the previous sections.  

Segments C through E further subdivide the Higher income segment.  Segment C represents 

annual household incomes of $100-149k, Segment D includes households with annual incomes 

from $150-199k, and Segment E is populated by those households with $200k and more in 

annual income.  The table indicates the small size of these additional: while segments A through 

C all include more than 20% of the households under examination, segments D and E both 

include less than 6% of the total households.  HOT trip rates within segments C through E, 

formerly the Higher income segment, also differ.  The lowest of the segments income-wise, 

segment C, more closely resembles segments A and B in its rate of exclusive toll lane use: 14.4% 

versus 14.6% for the Lower income segment and 13.9% for the Medium income segment.  At 

higher incomes, however, those rates increase: Segment D sees an 18.4% rate of HOT-exclusive 

trips, while Segment E yields a 24% rate of HOT-exclusive trips.  GP-exclusive trip taking also 

decreases with the three sub-segments, going from 48.5% for Segment C to 44.2% in Segment D 

and then finally to 41.3% in Segment E.  Trips by Segment E users have the highest average 

speed, though no discernible pattern is present in the segment count averages. 
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Table 102: Expanded 2013 Data Overview – Five Income Segments 

 Full Dataset Segment A Segment B Segment C Segment D Segment E 

Households Analyzed 36,854 10,127 15,588 8,208 1,932 999 

% of Households by 

Income 
100% 27.5% 42.3% 22.3% 5.2% 2.7% 

Transponders Analyzed 68,325 19,424 28,907 14,610 3,492 1,931 

Total Trips Monitored 2,656,430 780,364 1,206,121 527,287 95,262 47,396 

     HOT-Exclusive Trips 386,370 113,915 167,577 75,949 17,574 11,355 

     GP-Exclusive Trips 1,337,286 409,743 610,314 255,543 42,107 19,579 

     Mixed Trips 932,774 256,706 428,230 195,795 35,581 16,462 

% of HOT-Exclusive 

Trips 
14.6% 14.6% 13.9% 14.4% 18.4% 24.0% 

% of GP-Exclusive Trips 50.3% 52.5% 50.6% 48.5% 44.2% 41.3% 

% of Mixed Trips 35.1% 32.9% 35.5% 37.1% 37.4% 34.7% 

% of Total Trips by 

Income 
 29.4% 45.4% 19.9% 3.6% 1.8% 

% of HOT Trips by 

Income 
 29.5% 43.4% 19.7% 4.5% 2.9% 

% of GP Trips by Income  30.6% 45.6% 19.1% 3.1% 1.5% 

% of Mixed Trips by 

Income 
 27.5% 45.9% 21.0% 3.8% 1.8% 

Average Trip Speed 

(mph) 
53.3 53.0 53.3 53.3 53.4 55.2 

Average Segment Count 3.7 3.5 3.7 3.8 3.7 3.7 

 

The next two tables, Table 103 and Table 104, present the results from the five-segment 

estimation of Model 14b from the previous section.  Segments D and E have the highest shares 

of toll lane alternatives selected, with Segment E exhibiting the highest share of all.  The results 

from Segments A and B are identical to those of the Lower and Medium segments in Table 100, 

as expected.  Many of the estimated coefficients within the previously-singular Higher income 

segment differ when estimated across the three subsegments examined here.  This is first evident 

in the constant term, for which Segment E exhibits the largest, most positive coefficient.  

Segment E also yields the smallest coefficient for the toll amount, though the estimator has the 

same negative sign and is within the same order of magnitude as the other four.  Segment E is the 

only segment to yield a transponderCount coefficient that does not achieve significance at the 

95% confidence level; again, all of the estimators for this factor are very close to zero.  Within 
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the household education category, Segment D stands out as having the largest response to this 

factor.  In the household age factor, Segment E has the largest coefficient magnitude. 

The last two notable differences appear in the coefficients for the household income and 

household size factors.  Among the household income estimators, Segment D stands out in that it 

has the only positive coefficient.  Only among households in the $150-200k annual income range 

does additional income increase the probability of toll lane use.  Segment E has the negative 

coefficient of the largest magnitude; among those users, an increase in income yields the largest 

decrease in toll lane probability across all income segments.  Note that this segment still has the 

largest positive intercept term.  The household size estimators also differ within these high 

income segments: Segment D has an insignificant coefficient that is very close to zero, while 

Segment E once again has the largest negative estimator. 

Among the other factors, the models are more similar than different.  All five segments 

yield negative and significant, but very small, estimators for the square of the average speed 

difference.  The transponderCount coefficients are similarly very small in magnitude; here only 

the Segment E estimator does not achieve significance at the 95% confidence level.  Segment D 

has the largest response to congested conditions in the general purpose lanes, though its 

coefficient differs from those of the other segments by a maximum of 0.275.  Among the 

segmentCount, day of week, month of year, and time of day categories, no notable differences 

are present.  The largest discrepancies within these factors occur in the coefficients for trips 

starting at 9:00 or 9:30 AM: users in Segments D and E have lower probabilities of taking the 

toll lane at these times, relative to users in the other three income segments. 
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Table 103: Model 14b with 5 Income Segments - AM Peak 

 Segment A Segment B Segment C Segment D Segment E 

Intercept -1.247*** (t = -8.971) 2.328*** (t = 9.177) -1.861*** (t = -3.155) -14.513*** (t = -6.497) 8.638*** (t = 3.672) 

avgSpeed
2
 -0.0003*** (t = -51.375) -0.0003*** (t = -80.858) -0.0004*** (t = -58.889) -0.0004*** (t = -24.007) -0.0003*** (t = -12.449) 

tollAmount -0.694*** (t = -183.049) -0.701*** (t = -237.269) -0.699*** (t = -157.507) -0.602*** (t = -56.581) -0.461*** (t = -29.990) 

transponderCount -0.001*** (t = -37.234) -0.0002*** (t = -5.800) 0.0002*** (t = 5.465) -0.0004*** (t = -4.058) -0.0002 (t = -1.340) 

HOT: congested50 1.446*** (t = 105.719) 1.482*** (t = 133.393) 1.456*** (t = 86.940) 1.700*** (t = 41.020) 1.425*** (t = 24.350) 

HOT: hhEdu -0.142*** (t = -27.601) -0.110*** (t = -24.393) -0.107*** (t = -14.220) -0.322*** (t = -15.989) -0.102*** (t = -4.095) 

HOT: hhAge -0.030*** (t = -9.138) -0.001 (t = -0.479) -0.094*** (t = -19.132) -0.104*** (t = -8.207) -0.515*** (t = -22.753) 

HOT:I(hhIncomeDollars)/hhSize) 0 (t = -0.725) 0.00002*** (t = 26.440) 0.00001*** (t = 13.246) 0.00001*** (t = 5.651) 0 (t = -0.662) 

HOT: log(hhIncomeDollars) -0.177*** (t = -11.353) -0.545*** (t = -22.225) -0.114** (t = -2.185) 1.058*** (t = 5.561) -0.548*** (t = -2.803) 

HOT: hhSize -0.056*** (t = -10.499) 0.045*** (t = 11.012) 0.016*** (t = 2.784) 0.01 (t = 0.646) -0.165*** (t = -7.466) 

HOT: segmentCount 0.989*** (t = 199.890) 0.960*** (t = 242.991) 0.989*** (t = 164.322) 0.886*** (t = 62.148) 0.681*** (t = 33.415) 

HOT: february 0.310*** (t = 16.187) 0.245*** (t = 16.182) 0.269*** (t = 11.917) 0.163*** (t = 2.997) 0.141* (t = 1.834) 

HOT: march 0.240*** (t = 12.896) 0.253*** (t = 17.138) 0.241*** (t = 10.961) 0.244*** (t = 4.566) 0.279*** (t = 3.706) 

HOT: april 0.413*** (t = 21.942) 0.398*** (t = 26.508) 0.414*** (t = 18.504) 0.235*** (t = 4.323) 0.335*** (t = 4.336) 

HOT: may 0.387*** (t = 20.930) 0.379*** (t = 25.710) 0.429*** (t = 19.505) 0.338*** (t = 6.384) 0.309*** (t = 4.051) 

HOT: june 0.255*** (t = 13.170) 0.319*** (t = 20.738) 0.285*** (t = 12.415) 0.321*** (t = 5.689) 0.217*** (t = 2.677) 

HOT: july 0.101*** (t = 5.416) 0.198*** (t = 13.368) 0.131*** (t = 5.915) 0.170*** (t = 3.147) 0.225*** (t = 2.925) 

HOT: august 0.403*** (t = 21.405) 0.444*** (t = 29.853) 0.442*** (t = 19.892) 0.338*** (t = 6.287) 0.329*** (t = 4.232) 

HOT: september 0.586*** (t = 30.504) 0.633*** (t = 41.392) 0.651*** (t = 28.554) 0.585*** (t = 10.615) 0.392*** (t = 4.944) 

HOT: october 0.587*** (t = 30.685) 0.653*** (t = 42.934) 0.661*** (t = 29.069) 0.591*** (t = 10.829) 0.485*** (t = 6.107) 

HOT: november 0.408*** (t = 20.960) 0.549*** (t = 35.634) 0.529*** (t = 22.769) 0.524*** (t = 9.391) 0.392*** (t = 4.896) 

HOT: december 0.172*** (t = 8.884) 0.262*** (t = 17.094) 0.304*** (t = 13.162) 0.353*** (t = 6.365) 0.174** (t = 2.206) 

HOT: tuesday 0.290*** (t = 23.706) 0.209*** (t = 21.388) 0.216*** (t = 14.849) 0.264*** (t = 7.512) 0.250*** (t = 4.912) 

HOT: wednesday 0.289*** (t = 23.420) 0.203*** (t = 20.588) 0.230*** (t = 15.629) 0.209*** (t = 5.903) 0.238*** (t = 4.620) 

HOT: thursday 0.276*** (t = 22.400) 0.211*** (t = 21.490) 0.189*** (t = 12.841) 0.231*** (t = 6.500) 0.203*** (t = 3.954) 

HOT: friday -0.924*** (t = -67.837) -0.917*** (t = -84.405) -0.952*** (t = -57.814) -0.752*** (t = -18.897) -0.580*** (t = -10.484) 

HOT:am630 1.686*** (t = 98.432) 1.579*** (t = 117.295) 1.613*** (t = 77.406) 1.472*** (t = 28.412) 1.146*** (t = 16.707) 

HOT: am700 2.061*** (t = 111.143) 1.898*** (t = 129.459) 2.021*** (t = 90.437) 2.062*** (t = 37.491) 1.405*** (t = 17.963) 

HOT: am730 2.190*** (t = 115.371) 1.906*** (t = 127.507) 2.126*** (t = 93.174) 1.887*** (t = 34.126) 1.556*** (t = 19.739) 

HOT:am800 2.071*** (t = 110.020) 1.805*** (t = 122.752) 1.848*** (t = 81.315) 1.600*** (t = 29.203) 1.622*** (t = 20.703) 

HOT:am830 1.843*** (t = 99.346) 1.523*** (t = 104.676) 1.554*** (t = 69.885) 1.545*** (t = 29.073) 0.843*** (t = 11.172) 

HOT:am900 1.237*** (t = 67.561) 1.033*** (t = 73.026) 1.129*** (t = 51.802) 0.866*** (t = 16.140) 0.672*** (t = 9.167) 

HOT:am930 0.375*** (t = 19.969) 0.283*** (t = 19.350) 0.316*** (t = 13.897) 0.051 (t = 0.921) 0.052 (t = 0.727) 

HOT Share 0.5068 0.5202 0.5366 0.6098 0.6734 

Observations 342,209 533,623 238,565 41,962 20,655 

R
2
 0.171 0.166 0.17 0.163 0.128 

Log Likelihood -196,702.70 -308,201.30 -136,646.30 -23,500.00 -11,380.52 
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The results from the five-segment models for the afternoon peak period of 2013 are shown 

below in Table 104.  As in the AM peak models, the share of toll lane trips increases with the 

income segments; Segment E once again has the highest share.  Unlike the morning models, the 

goodness of fit measures also increase with income: Segment E has the highest pseudo-R
2
 value as 

well.  The remaining differences begin again with the intercept term.  In this case, Segment E once 

again has the constant with the largest magnitude, though in this case it is negative.  Segment E also 

exhibits the lowest sensitivity to the toll amount of a given trip.  This relationship is also true for the 

household education measure: while all of the estimators are negative and significant, the Segment 

E coefficient is the smallest in magnitude.   

The household age coefficients reveal a pattern of decreasing impact on toll lane probability 

across the five segments: the coefficient for Segment A is small and positive, and the remaining 

coefficients decrease through Segment E, which has the lowest coefficient.  Household income does 

not yield such a neat pattern: Segments A through C have negative estimators, while those of 

Segments D and E are positive.  Segment E in particular has the largest coefficient magnitude; the 

remainders are all an order of magnitude smaller.  Segment C is unique in the household size 

category: it has the only positive estimator.  Finally, time of day appears to affect lane choice 

decisions among Segment E users the least: of the seven different intervals, only three yield 

significant coefficients for those users.  Once again, the corridor conditions factors (square of 

average speed difference, transponder count in both lane types, and congested condition dummy 

variables) yield very similar results across all segments.
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Table 104: Model 14b with 5 Income Segments - PM Peak 

 Segment A Segment B Segment C Segment D Segment E 

Intercept -1.142*** (t = -8.035) -1.128*** (t = -4.261) 1.521** (t = 2.399) -1.561 (t = -0.693) -19.060*** (t = -7.682) 

avgSpeed
2
 -0.0002*** (t = -34.684) -0.0002*** (t = -29.407) -0.0001*** (t = -14.110) -0.0001*** (t = -4.836) 0.00001 (t = 0.406) 

tollAmount -0.431*** (t = -98.171) -0.467*** (t = -136.133) -0.501*** (t = -93.058) -0.435*** (t = -34.671) -0.266*** (t = -13.888) 

transponderCount 0.003*** (t = 61.096) 0.004*** (t = 99.784) 0.004*** (t = 71.745) 0.004*** (t = 30.650) 0.004*** (t = 17.909) 

HOT: congested40 1.367*** (t = 135.420) 1.344*** (t = 165.121) 1.424*** (t = 111.760) 1.370*** (t = 45.825) 1.273*** (t = 28.346) 

HOT: hhEdu -0.200*** (t = -38.167) -0.192*** (t = -40.699) -0.308*** (t = -38.326) -0.326*** (t = -16.261) -0.084*** (t = -3.215) 

HOT: hhAge 0.012*** (t = 3.759) 0.001 (t = 0.512) -0.072*** (t = -13.974) -0.074*** (t = -5.772) -0.184*** (t = -8.291) 

HOT:I(hhIncomeDollars)/hhSize) 0.00000** (t = 1.985) 0.00000*** (t = 4.717) 0.00001*** (t = 13.917) -0.00002*** (t = -9.602) 0 (t = 1.013) 

HOT: log(hhIncomeDollars) -0.111*** (t = -7.005) -0.112*** (t = -4.359) -0.340*** (t = -6.065) 0.126 (t = 0.661) 1.407*** (t = 6.873) 

HOT: hhSize -0.013** (t = -2.462) -0.020*** (t = -4.617) 0.075*** (t = 12.201) -0.134*** (t = -8.794) -0.161*** (t = -6.961) 

HOT: segmentCount 1.068*** (t = 218.616) 1.079*** (t = 272.467) 1.152*** (t = 183.575) 1.193*** (t = 80.131) 1.146*** (t = 53.055) 

HOT: february -0.064*** (t = -3.265) -0.067*** (t = -4.286) -0.094*** (t = -3.812) -0.143** (t = -2.493) -0.021 (t = -0.253) 

HOT: march -0.042** (t = -2.160) -0.054*** (t = -3.484) -0.084*** (t = -3.412) -0.133** (t = -2.343) -0.095 (t = -1.132) 

HOT: april -0.250*** (t = -12.897) -0.272*** (t = -17.353) -0.286*** (t = -11.668) -0.443*** (t = -7.679) -0.492*** (t = -5.863) 

HOT: may -0.376*** (t = -19.675) -0.356*** (t = -23.082) -0.393*** (t = -16.355) -0.446*** (t = -7.876) -0.487*** (t = -5.854) 

HOT: june -0.395*** (t = -20.012) -0.333*** (t = -20.980) -0.401*** (t = -16.174) -0.372*** (t = -6.233) -0.431*** (t = -4.939) 

HOT: july -0.366*** (t = -18.800) -0.314*** (t = -19.978) -0.430*** (t = -17.573) -0.403*** (t = -6.924) -0.578*** (t = -6.661) 

HOT: august -0.184*** (t = -9.500) -0.097*** (t = -6.282) -0.187*** (t = -7.762) -0.228*** (t = -4.038) -0.471*** (t = -5.589) 

HOT: september 0.139*** (t = 7.012) 0.328*** (t = 20.554) 0.281*** (t = 11.349) 0.155*** (t = 2.687) -0.273*** (t = -3.159) 

HOT: october 0.178*** (t = 9.098) 0.375*** (t = 23.748) 0.311*** (t = 12.590) 0.188*** (t = 3.300) -0.273*** (t = -3.223) 

HOT: november 0.092*** (t = 4.621) 0.325*** (t = 20.300) 0.303*** (t = 12.133) 0.065 (t = 1.125) -0.358*** (t = -4.167) 

HOT: december 0.118*** (t = 5.971) 0.266*** (t = 16.593) 0.270*** (t = 10.795) 0.137** (t = 2.336) -0.253*** (t = -2.963) 

HOT: tuesday 0.024* (t = 1.954) 0.012 (t = 1.198) 0.017 (t = 1.107) -0.042 (t = -1.158) 0.038 (t = 0.714) 

HOT: wednesday 0.049*** (t = 3.960) 0.022** (t = 2.221) 0.008 (t = 0.536) -0.023 (t = -0.633) -0.012 (t = -0.222) 

HOT: thursday -0.069*** (t = -5.316) -0.117*** (t = -11.095) -0.129*** (t = -7.823) -0.258*** (t = -6.688) -0.172*** (t = -3.016) 

HOT: friday -0.031** (t = -2.261) -0.120*** (t = -10.640) -0.116*** (t = -6.594) -0.169*** (t = -4.062) 0.082 (t = 1.341) 

HOT:pm1530 -0.001 (t = -0.037) -0.058*** (t = -3.861) -0.114*** (t = -5.101) -0.285*** (t = -5.650) 0.047 (t = 0.649) 

HOT:pm1600 -0.108*** (t = -5.874) -0.156*** (t = -10.379) -0.128*** (t = -5.605) -0.186*** (t = -3.565) -0.092 (t = -1.238) 

HOT:pm1630 -0.068*** (t = -3.597) -0.037** (t = -2.429) 0.172*** (t = 7.383) -0.200*** (t = -3.811) 0.039 (t = 0.507) 

HOT:pm1700 0.019 (t = 0.984) 0.088*** (t = 5.728) 0.227*** (t = 9.693) -0.235*** (t = -4.430) 0.075 (t = 0.975) 

HOT:pm1730 0.099*** (t = 5.313) 0.229*** (t = 15.018) 0.346*** (t = 14.965) 0.067 (t = 1.264) 0.606*** (t = 7.896) 

HOT:pm1800 0.288*** (t = 15.807) 0.418*** (t = 28.278) 0.554*** (t = 24.439) 0.337*** (t = 6.512) 0.802*** (t = 11.164) 

HOT:pm1830 0.241*** (t = 13.371) 0.344*** (t = 23.759) 0.517*** (t = 23.342) 0.207*** (t = 4.080) 0.802*** (t = 11.588) 

HOT Share 0.5223 0.5389 0.5633 0.5827 0.5958 

Observations 349,783 544,660 235,868 43,494 21,194 

R2 0.199 0.213 0.243 0.244 0.277 

Log Likelihood -193,922.40 -295,646.70 -122,360.80 -22,349.61 -10,332.79 
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Mixed Logit Models 

The mixed logit framework used in the following models addresses some of the issues 

with the standard binary logit models that were previously discussed.  Foremost among 

these is the issue of serial correlation that arises when estimating models with panel data, 

as the author is doing here.  The random parameter estimation of the mixed logit method 

also allows for better understanding of the range of responses to the model’s independent 

variables (Train, 2002).  This section presents the results of the previously designed 

models estimated with the mixed logit framework to address these issues and reduce the 

model bias that results from the standard models. 

The first of these models is presented in Table 105 and Table 106.  These models 

use the previous Model 14b as the basis for their design, and also separate the data into 

three income segments and AM/PM peak segments.  Additionally, this first pair of mixed 

logit models sets the tollAmount coefficient to a random parameter with a normal 

distribution.  The tollAmount coefficient reported in the tables represents the mean of that 

distribution, while the ‘tollAmount Standard Deviation’ rows report the standard 

deviation of that distribution.  The normally-distributed tollAmount random parameters 

have standard deviations ranging from 2.038 to 2.244; in all three segments, that standard 

deviation value achieves significance at the 99% confidence level.  This supports the 

hypothesis that the user responses to toll levels vary within income segments, and include 

both positive and negative responses. 

Like the models in the previous section, the results presented here illustrate 

similarities and differences across the income segments.  As before, the operational 

characteristics (square of average speed difference, count of transponders, congested 
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conditions) yield coefficients that are similar in magnitude, sign, and significance for 

each model.  The toll amount estimators indicate that the Lower income segment has the 

highest sensitivity to toll levels, other factors being equal.  The remaining model 

differences reside primarily in the demographic characteristics: household age, education, 

income, and size.  The lower income segment has the only education coefficient that is 

not negative and significant.  The household age factor is negative and significant at the 

95% confidence level in both the Lower and Higher segments; the Medium segment 

factor is the only positive one.  Goodness of fit results as indicated by McFadden’s 

pseudo-R
2
 value indicate that the mixed logit framework substantially improves model fit 

relative to the standard binary logit method. 

  



453 

 

Table 105: Mixed Logit Model 1a with 3 Income Segments – AM Peak 

 AM Peak – Lower AM Peak – Medium AM Peak – Higher 

Intercept -4.475*** (t = -

19.118) -3.414*** (t = -7.482) 

-8.048*** (t = -

13.787) 

avgSpeed
2
 -0.0004*** (t = -

54.510) 

-0.001*** (t = -

75.295) 

-0.001*** (t = -

60.901) 

tollAmount -0.816*** (t = -

124.283) 

-0.752*** (t = -

143.762) 

-0.632*** (t = -

88.396) 

transponderCount 0.001*** (t = 16.756) 0.002*** (t = 53.459) 0.002*** (t = 35.873) 

HOT: congested50 1.935*** (t = 84.873) 1.971*** (t = 102.604) 2.050*** (t = 78.463) 

HOT: hhEdu 0.030*** (t = 3.414) -0.034*** (t = -4.300) -0.104*** (t = -8.715) 

HOT: hhAge 
-0.028*** (t = -5.212) 0.028*** (t = 5.813) 

-0.081*** (t = -

10.142) 

HOT:I(hhIncomeDollars)/hhSize) -0.00000* (t = -1.780) 0.00000*** (t = 3.104) -0.00000* (t = -1.755) 

HOT: log(hhIncomeDollars) 0.118*** (t = 4.484) 0.025 (t = 0.572) 0.491*** (t = 9.085) 

HOT: hhSize -0.041*** (t = -4.593) -0.016** (t = -2.187) -0.041*** (t = -4.783) 

HOT: segmentCount 1.030*** (t = 142.041) 1.037*** (t = 176.218) 1.086*** (t = 130.783) 

HOT: february 0.456*** (t = 14.371) 0.421*** (t = 16.209) 0.463*** (t = 13.361) 

HOT: march 0.465*** (t = 14.864) 0.496*** (t = 19.154) 0.495*** (t = 14.416) 

HOT: april 0.675*** (t = 21.324) 0.661*** (t = 24.948) 0.693*** (t = 19.830) 

HOT: may 0.526*** (t = 17.499) 0.507*** (t = 20.235) 0.652*** (t = 19.535) 

HOT: june 0.535*** (t = 16.642) 0.525*** (t = 19.435) 0.642*** (t = 18.104) 

HOT: july 0.309*** (t = 10.249) 0.333*** (t = 13.354) 0.412*** (t = 12.180) 

HOT: august 0.627*** (t = 19.864) 0.600*** (t = 23.144) 0.687*** (t = 19.847) 

HOT: september 0.704*** (t = 22.223) 0.646*** (t = 24.841) 0.745*** (t = 20.833) 

HOT: october 0.772*** (t = 24.511) 0.711*** (t = 27.397) 0.802*** (t = 22.481) 

HOT: november 0.459*** (t = 14.981) 0.485*** (t = 19.155) 0.533*** (t = 15.420) 

HOT: december 0.050* (t = 1.684) 0.069*** (t = 2.807) 0.163*** (t = 4.943) 

HOT: tuesday 0.389*** (t = 18.367) 0.330*** (t = 18.753) 0.331*** (t = 13.913) 

HOT: wednesday 0.480*** (t = 22.338) 0.369*** (t = 20.558) 0.402*** (t = 16.639) 

HOT: thursday 0.411*** (t = 19.509) 0.375*** (t = 21.351) 0.367*** (t = 15.430) 

HOT: friday -0.798*** (t = -

39.095) 

-0.808*** (t = -

47.771) 

-0.890*** (t = -

38.737) 

HOT:am630 1.762*** (t = 61.354) 1.684*** (t = 71.363) 1.822*** (t = 53.978) 

HOT: am700 1.932*** (t = 65.404) 1.861*** (t = 76.617) 2.154*** (t = 63.912) 

HOT: am730 1.908*** (t = 64.257) 1.652*** (t = 68.969) 1.908*** (t = 56.733) 

HOT:am800 1.460*** (t = 49.912) 1.258*** (t = 53.100) 1.369*** (t = 40.916) 

HOT:am830 1.017*** (t = 35.443) 0.835*** (t = 35.704) 0.867*** (t = 26.315) 

HOT:am900 0.375*** (t = 13.585) 0.138*** (t = 6.286) 0.203*** (t = 6.539) 

HOT:am930 -0.482*** (t = -

18.311) 

-0.590*** (t = -

28.349) 

-0.580*** (t = -

19.490) 

tollAmount Standard Deviation 2.241*** (t = 242.029) 2.244*** (t = 305.948) 2.038*** (t = 223.190) 

HOT Share 0.507 0.520 0.556 

Observations 342,209 533,623 301,182 

R
2
 0.599 0.619 0.625 

Log Likelihood -95,048.05 -140,855.00 -77,501.39 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Figure 148 presents the parameter distributions for the tollAmount variable for the 

AM peak period three-segment models.  The three curves are similar in shape and 

location; this is especially true of the Lower and Medium income segments.  Also notable 

is the proximity of the mean to the zero value; as a result, all three income segments 

include sizeable portions of their spectrum in both the positive and negative regions.  

This suggests that the response to toll levels is not a simple, constant positive or negative 

value, but rather varies along a spectrum that includes both types of responses. 

 
Figure 148: Normal Distributions for Toll Amount Parameter - AM Models 

 Results for the PM peak period models are presented in Table 106 below.  Once 

again, model fit as represented by McFadden’s pseudo-R
2
 metric indicates better fits with 

the mixed logit framework versus the standard binary logit models.  These models yield 

fewer differences across the three income segments; in particular, the toll amount and 
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household education coefficients are more similar than the morning peak period 

counterparts.  The Higher income segment does yield a toll amount coefficient that is 

smaller in magnitude than those of the Lower and Medium segments, but the difference is 

not as stark as it was previously.  All three segments fail to achieve significance at the 

95% confidence level in their household age estimators, as well as their household 

income and household size estimators.  The magnitudes of these coefficients vary across 

income groups, but they are close to zero. 
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Table 106: Mixed Logit Model 1a with 3 Income Segments – PM Peak 

 PM Peak – Lower PM Peak – Medium PM Peak – Higher 

Intercept -4.171*** 

(t = -16.276) 

-2.753*** 

(t = -5.849) 

-1.488** 

(t = -2.507) 

avgSpeed
2
 -0.0002*** 

(t = -17.749) 

-0.0002*** 

(t = -17.281) 

-0.0001*** 

(t = -11.598) 

tollAmount -0.359*** 

(t = -43.639) 

-0.289*** 

(t = -44.265) 

-0.213*** 

(t = -23.321) 

transponderCount 0.007*** (t = 102.907) 0.008*** (t = 155.630) 0.008*** (t = 116.659) 

HOT: congested40 1.709*** (t = 98.157) 1.687*** (t = 116.033) 1.649*** (t = 82.455) 

HOT: hhEdu 0.018* (t = 1.922) -0.031*** (t = -3.869) -0.016 (t = -1.268) 

HOT: hhAge 0.003 (t = 0.517) -0.001 (t = -0.303) -0.01 (t = -1.223) 

HOT:I(hhIncomeDollars)/hhSize) 0.00001*** (t = 2.931) 0.00001*** (t = 5.600) 0 (t = -0.378) 

HOT: log(hhIncomeDollars) -0.045 (t = -1.576) -0.190*** (t = -4.165) -0.286*** (t = -5.201) 

HOT: hhSize 0.014 (t = 1.409) 0.034*** (t = 4.650) 0.019** (t = 2.086) 

HOT: segmentCount 1.511*** (t = 183.759) 1.587*** (t = 234.261) 1.659*** (t = 174.215) 

HOT: february -0.100*** (t = -3.182) -0.086*** (t = -3.278) -0.152*** (t = -4.259) 

HOT: march -0.088*** (t = -2.792) -0.087*** (t = -3.315) -0.126*** (t = -3.540) 

HOT: april -0.276*** 

(t = -8.700) 

-0.284*** 

(t = -10.777) 

-0.383*** 

(t = -10.565) 

HOT: may -0.472*** 

(t = -15.123) 

-0.419*** 

(t = -16.190) 

-0.480*** 

(t = -13.650) 

HOT: june -0.471*** 

(t = -14.847) 

-0.436*** 

(t = -16.323) 

-0.518*** 

(t = -14.023) 

HOT: july -0.467*** 

(t = -15.092) 

-0.419*** 

(t = -16.157) 

-0.528*** 

(t = -14.754) 

HOT: august -0.213*** (t = -6.594) -0.125*** (t = -4.648) -0.249*** (t = -6.793) 

HOT: september 0.236*** (t = 7.098) 0.426*** (t = 15.557) 0.224*** (t = 6.009) 

HOT: october 0.310*** (t = 9.294) 0.532*** (t = 19.224) 0.303*** (t = 7.946) 

HOT: november 0.176*** (t = 5.343) 0.386*** (t = 14.092) 0.247*** (t = 6.629) 

HOT: december 0.091*** (t = 2.810) 0.266*** (t = 9.757) 0.217*** (t = 5.793) 

HOT: tuesday -0.012 (t = -0.578) 0.011 (t = 0.613) -0.041* (t = -1.716) 

HOT: wednesday 0.02 (t = 0.941) 0.016 (t = 0.907) -0.008 (t = -0.321) 

HOT: thursday -0.131*** (t = -6.023) -0.145*** (t = -7.953) -0.198*** (t = -7.985) 

HOT: friday -0.072*** (t = -3.213) -0.144*** (t = -7.710) -0.099*** (t = -3.827) 

HOT:pm1530 -0.088*** (t = -3.140) -0.120*** (t = -5.153) -0.193*** (t = -6.303) 

HOT:pm1600 -0.160*** (t = -5.519) -0.195*** (t = -8.237) -0.127*** (t = -4.018) 

HOT:pm1630 0.036 (t = 1.237) 0.038 (t = 1.585) 0.161*** (t = 5.042) 

HOT:pm1700 0.214*** (t = 7.193) 0.294*** (t = 12.057) 0.361*** (t = 10.949) 

HOT:pm1730 0.400*** (t = 13.457) 0.509*** (t = 20.793) 0.626*** (t = 19.120) 

HOT:pm1800 0.646*** (t = 22.531) 0.652*** (t = 27.309) 0.755*** (t = 23.336) 

HOT:pm1830 0.521*** (t = 18.764) 0.550*** (t = 23.691) 0.598*** (t = 19.306) 

tollAmount Standard Deviation 3.182*** (t = 255.627) 3.275*** (t = 313.744) 3.060*** (t = 226.386) 

HOT Share 0.522 0.539 0.568 

Observations 348,894 544,660 300,556 

R
2
 0.601 0.625 0.625 

Log Likelihood -96,320.97 -140,890.70 -77,082.36 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

Figure 149 presents the PM Peak parameter distributions for the tollAmount 

variable.  The Medium income segment differs more from the Lower and Higher 

segments here in its larger standard deviation: the resulting distribution is wider and less 
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peaked.  The difference between the segments is less pronounced here than in the 

morning peak.  Like the AM peak period results, the means of these distributions are 

close to zero and the range of responses includes both positive and negative values. 

 

 
Figure 149: Normal Distributions for Toll Amount Parameter - PM Models 

The following pair of models is identical in design to the first mixed logit models 

with one change: the toll amount parameter is now estimated with a log-normal 

distribution rather than a normal distribution.  The toll amount itself is multiplied by 

negative one to make the value negative, so that the log-normal distribution is positive. 

Among the AM peak period models, the largest difference is in the coefficients of 

the (now negative) toll amount term.  Whereas previously all three segments had negative 

coefficients that achieved significance at the 95% confidence level (and represented 

means of the normal distribution), here only the Medium segment estimator (and mean of 
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the log-normal distribution) achieves significance.  The other two values are actually 

negative, though again their t-statistics are sufficiently low that the author cannot reject 

the null hypothesis that they are equal to zero.  The lack of uniform significance in the 

toll amount coefficients indicates that the model with the normal distribution on the toll 

amount is a better choice. 
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Table 107: Mixed Logit Model 1b with 3 Income Segments – AM Peak 

 AM Peak – Lower AM Peak – Medium AM Peak – Higher 

Intercept 
-1.774 (t = -1.118) 8.606** (t = 2.264) 

-13.959*** (t = -

3.901) 

avgSpeed
2
 -0.0004*** (t = -

6.523) 

-0.0005*** (t = -

8.292) -0.001*** (t = -9.995) 

-1*tollAmount -0.012 (t = -0.243) 0.193*** (t = 4.049) -0.05 (t = -1.018) 

transponderCount -0.001* (t = -1.827) 0.001*** (t = 3.182) 0.001 (t = 1.347) 

HOT: congested50 2.396*** (t = 15.244) 2.388*** (t = 13.964) 2.602*** (t = 15.919) 

HOT: hhEdu -0.019 (t = -0.340) -0.259*** (t = -3.797) -0.286*** (t = -3.965) 

HOT: hhAge -0.162*** (t = -4.749) -0.043 (t = -1.047) -0.135*** (t = -2.864) 

HOT:I(hhIncomeDollars)/hhSize) 0.00001 (t = 0.784) 0.0001*** (t = 5.324) 0.00001 (t = 0.776) 

HOT: log(hhIncomeDollars) -0.134 (t = -0.748) -1.131*** (t = -3.047) 1.082*** (t = 3.261) 

HOT: hhSize 0.099 (t = 1.557) 0.192*** (t = 3.053) -0.089* (t = -1.646) 

HOT: segmentCount 1.100*** (t = 24.355) 1.227*** (t = 24.085) 1.202*** (t = 23.196) 

HOT: february 0.415** (t = 1.996) 0.377* (t = 1.718) 0.465** (t = 2.194) 

HOT: march 0.433** (t = 2.161) 0.458** (t = 2.173) 0.393* (t = 1.938) 

HOT: april 0.460** (t = 2.202) 0.450** (t = 2.122) 0.785*** (t = 3.565) 

HOT: may 0.3 (t = 1.543) 0.271 (t = 1.259) 0.623*** (t = 2.902) 

HOT: june 0.295 (t = 1.540) 0.373* (t = 1.679) 0.961*** (t = 4.557) 

HOT: july -0.091 (t = -0.489) 0.1 (t = 0.495) 0.498** (t = 2.494) 

HOT: august 0.476** (t = 2.341) 0.262 (t = 1.195) 0.869*** (t = 4.318) 

HOT: september 0.605*** (t = 3.103) 0.652*** (t = 3.006) 0.817*** (t = 3.737) 

HOT: october 0.304 (t = 1.442) 0.855*** (t = 3.951) 0.977*** (t = 4.569) 

HOT: november 0.352* (t = 1.786) 0.3 (t = 1.452) 0.420* (t = 1.914) 

HOT: december -0.113 (t = -0.603) -0.262 (t = -1.388) 0.269 (t = 1.324) 

HOT: tuesday 0.486*** (t = 3.337) 0.091 (t = 0.607) 0.344** (t = 2.261) 

HOT: wednesday 0.706*** (t = 4.775) 0.459*** (t = 3.011) 0.139 (t = 0.928) 

HOT: thursday 0.711*** (t = 5.080) 0.213 (t = 1.404) 0.329** (t = 2.171) 

HOT: friday -0.769*** (t = -6.152) -1.256*** (t = -8.906) -1.140*** (t = -8.589) 

HOT:am630 1.922*** (t = 10.271) 2.543*** (t = 12.372) 2.048*** (t = 10.356) 

HOT: am700 2.390*** (t = 12.587) 2.826*** (t = 13.167) 2.759*** (t = 13.459) 

HOT: am730 2.324*** (t = 12.138) 2.591*** (t = 12.820) 2.476*** (t = 12.746) 

HOT:am800 1.810*** (t = 10.263) 2.381*** (t = 11.840) 2.181*** (t = 11.500) 

HOT:am830 1.573*** (t = 8.687) 1.917*** (t = 9.956) 1.538*** (t = 8.158) 

HOT:am900 0.901*** (t = 5.197) 0.949*** (t = 5.624) 0.650*** (t = 3.866) 

HOT:am930 -0.138 (t = -0.883) -0.197 (t = -1.274) -0.492*** (t = -3.109) 

-1*tollAmount Standard Deviation 1.570*** (t = 21.981) 1.212*** (t = 23.436) 1.358*** (t = 24.030) 

HOT Share 0.506 0.521 0.549 

Observations 10,000 10,000 10,000 

R
2
 0.333 0.31 0.372 

Log Likelihood -4,621.92 -4,777.70 -4,320.12 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 The resulting distributions of the log-normal toll amount coefficient are presented 

in Figure 150.  The Lower and Higher income segments resemble each other more 

closely than the Medium income segment.  While the Medium segment was the only 

model with a significant toll amount coefficient (and thus log-normal distributional 
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mean), all three distributions had positive, statistically significant standard deviation 

values.  As in the previous model, it is evident that representing response to toll amounts 

is better handled with a range of values rather than a single estimated coefficient. 

 

Figure 150: Log-normal Distributions for Toll Amount Parameter - AM Models 

Table 108 presents the results from the PM peak period models with negative toll 

amount values and log-normal toll amount coefficient distributions.  Unlike the AM 

models, here the coefficient estimates (and distribution means) all achieve statistical 

significance at the 95% confidence level. 
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Table 108: Mixed Logit Model 1b with 3 Income Segments – PM Peak 

 PM Peak – Lower PM Peak – Medium PM Peak – Higher 

Intercept -1.925 (t = -1.183) -7.975** (t = -2.303) -3.521 (t = -1.023) 

avgSpeed
2
 -0.0003*** (t = -

4.337) 

-0.0002*** (t = -

2.741) 

-0.0002*** (t = -

2.843) 

-1*tollAmount -0.264*** (t = -3.412) -0.371*** (t = -4.742) -0.362*** (t = -4.702) 

transponderCount 0.005*** (t = 9.436) 0.006*** (t = 14.233) 0.005*** (t = 11.331) 

HOT: congested40 2.417*** (t = 20.233) 2.453*** (t = 20.397) 2.376*** (t = 19.216) 

HOT: hhEdu -0.210*** (t = -3.582) -0.243*** (t = -4.052) -0.239*** (t = -3.516) 

HOT: hhAge -0.102*** (t = -3.038) -0.003 (t = -0.093) 0.041 (t = 0.851) 

HOT:I(hhIncomeDollars)/hhSize) 
0 (t = 0.136) 

-0.00002** (t = -

1.978) 0 (t = 0.105) 

HOT: log(hhIncomeDollars) -0.065 (t = -0.360) 0.533 (t = 1.583) -0.014 (t = -0.044) 

HOT: hhSize -0.033 (t = -0.549) -0.143** (t = -2.571) -0.03 (t = -0.555) 

HOT: segmentCount 1.643*** (t = 29.452) 1.519*** (t = 29.416) 1.687*** (t = 30.183) 

HOT: february 0.115 (t = 0.602) 0.208 (t = 1.146) 0.08 (t = 0.398) 

HOT: march 0.395** (t = 2.004) -0.199 (t = -1.102) 0.159 (t = 0.848) 

HOT: april 0.013 (t = 0.063) -0.101 (t = -0.545) 0.048 (t = 0.235) 

HOT: may -0.166 (t = -0.880) -0.285 (t = -1.579) -0.307 (t = -1.590) 

HOT: june -0.269 (t = -1.305) -0.202 (t = -1.090) -0.279 (t = -1.347) 

HOT: july -0.374** (t = -2.005) -0.367** (t = -2.029) -0.499** (t = -2.487) 

HOT: august 0.17 (t = 0.845) -0.027 (t = -0.139) 0.016 (t = 0.079) 

HOT: september 0.676*** (t = 3.308) 0.496** (t = 2.538) 0.209 (t = 1.001) 

HOT: october 0.833*** (t = 3.905) 0.469** (t = 2.284) 0.345* (t = 1.682) 

HOT: november 0.366* (t = 1.788) 0.469** (t = 2.313) 0.590*** (t = 2.643) 

HOT: december 0.466** (t = 2.282) 0.25 (t = 1.166) 0.383* (t = 1.764) 

HOT: tuesday 0.171 (t = 1.377) 0.194 (t = 1.575) 0.011 (t = 0.089) 

HOT: wednesday 0.204 (t = 1.564) 0.085 (t = 0.678) 0.079 (t = 0.587) 

HOT: thursday -0.055 (t = -0.408) 0.149 (t = 1.135) -0.029 (t = -0.208) 

HOT: friday 0.024 (t = 0.168) 0.075 (t = 0.532) 0.035 (t = 0.238) 

HOT:pm1530 -0.06 (t = -0.339) 0.012 (t = 0.074) 0.211 (t = 1.242) 

HOT:pm1600 -0.279 (t = -1.517) 0.071 (t = 0.417) 0.353* (t = 1.927) 

HOT:pm1630 -0.092 (t = -0.479) 0.252 (t = 1.441) 0.848*** (t = 4.535) 

HOT:pm1700 0.098 (t = 0.508) 0.299* (t = 1.683) 0.894*** (t = 4.793) 

HOT:pm1730 0.11 (t = 0.577) 0.457** (t = 2.504) 1.035*** (t = 5.625) 

HOT:pm1800 0.458*** (t = 2.652) 0.576*** (t = 3.492) 1.154*** (t = 6.565) 

HOT:pm1830 0.244 (t = 1.456) 0.556*** (t = 3.470) 0.963*** (t = 5.683) 

-1*tollAmount Standard Deviation 2.012*** (t = 18.671) 1.861*** (t = 19.092) 1.930*** (t = 19.161) 

HOT Share 0.530 0.536 0.569 

Observations 10,000 10,000 10,000 

R
2
 0.338 0.315 0.373 

Log Likelihood -4,577.86 -4,730.18 -4,287.08 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Figure 151 illustrates the log-normal distributions for the negative toll amount 

parameters in the PM peak mixed logit models.  Compared to the AM peak distributions, 

the results are much more uniform, with little to distinguish them from each other.  While 

the normally distributed toll amount coefficients were similar, the log-normal coefficient 

distributions are even more so. 

 

 
Figure 151: Log-normal Distributions for Toll Amount Parameter - PM Models 

The final pair of three-segment mixed logit models is presented below in Table 

109 and Table 110.  These models randomize the parameters estimated for the household 

income, rather than the toll amoung, using the normal distribution.  The motivation for 

this was to compare the range of responses to household income across the different 

segments to investigate whether any substantial differences were present.  Table 109 
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displays the results from the AM peak period models.  As before, the majority of the 

model results remain similar in sign and magnitude.  The household income results 

themselves follow the pattern established in previous models, in which the Lower income 

coefficient is close to zero but does not achieve significance at the 95% confidence level.  

The Medium income coefficient is negative and significant, while the Higher income 

coefficient is positive and significant, with the largest magnitude.  The estimated standard 

deviations of the three normal distributions are significant at the 99% confidence level, 

indicating the appropriateness of representing household income response as a range 

rather than as a fixed value. 
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Table 109: Mixed Logit Model 2 with 3 Income Segments – AM Peak 

 AM Peak – Lower AM Peak – Medium AM Peak – Higher 

Intercept 
-4.579*** (t = -2.621) 11.029** (t = 2.490) 

-41.208*** (t = -

9.400) 

avgSpeed
2
 -0.001*** (t = -

10.658) -0.001*** (t = -9.995) 

-0.001*** (t = -

11.326) 

tollAmount -1.402*** (t = -

21.537) 

-1.530*** (t = -

23.615) 

-1.392*** (t = -

24.002) 

transponderCount 0.001 (t = 1.292) 0.001*** (t = 2.687) 0.002*** (t = 5.176) 

HOT: congested50 3.241*** (t = 16.130) 3.093*** (t = 14.739) 2.743*** (t = 14.559) 

HOT: hhEdu -0.254*** (t = -3.716) -0.512*** (t = -6.319) -0.399*** (t = -4.659) 

HOT: hhAge -0.046 (t = -1.109) 0.026 (t = 0.526) -0.220*** (t = -3.889) 

HOT:I(hhIncomeDollars)/hhSize) -0.00003 (t = -1.250) 0.00005*** (t = 3.852) 0 (t = -0.438) 

HOT: log(hhIncomeDollars) -0.101 (t = -0.516) -1.599*** (t = -3.713) 3.242*** (t = 8.062) 

HOT: hhSize -0.259*** (t = -3.695) 0.078 (t = 1.153) -0.199*** (t = -3.232) 

HOT: segmentCount 2.261*** (t = 25.356) 2.135*** (t = 24.408) 2.178*** (t = 28.142) 

HOT: february 0.680*** (t = 2.667) 0.042 (t = 0.161) 0.161 (t = 0.657) 

HOT: march 0.679*** (t = 2.829) 0.479** (t = 1.972) 0.12 (t = 0.498) 

HOT: april 0.992*** (t = 3.978) 0.828*** (t = 3.052) 0.431* (t = 1.721) 

HOT: may 0.514** (t = 2.116) 0.970*** (t = 3.803) 0.605** (t = 2.374) 

HOT: june 0.653** (t = 2.573) 0.559** (t = 2.072) 0.414 (t = 1.611) 

HOT: july 0.094 (t = 0.397) 0.463* (t = 1.804) -0.191 (t = -0.765) 

HOT: august 0.968*** (t = 3.904) 0.746*** (t = 2.958) 0.832*** (t = 3.247) 

HOT: september 1.092*** (t = 4.207) 1.410*** (t = 5.298) 0.894*** (t = 3.568) 

HOT: october 0.863*** (t = 3.610) 1.458*** (t = 5.515) 0.970*** (t = 3.931) 

HOT: november 0.675*** (t = 2.735) 1.309*** (t = 4.961) 0.688*** (t = 2.693) 

HOT: december -0.098 (t = -0.404) 0.08 (t = 0.314) 0.367 (t = 1.457) 

HOT: tuesday 0.499*** (t = 2.921) 0.452*** (t = 2.663) 0.443*** (t = 2.656) 

HOT: wednesday 0.642*** (t = 3.752) 0.373** (t = 2.145) 0.391** (t = 2.360) 

HOT: thursday 0.461*** (t = 2.669) 0.436** (t = 2.509) 0.355** (t = 2.007) 

HOT: friday 
-1.694*** (t = -9.807) 

-2.089*** (t = -

11.428) 

-1.819*** (t = -

10.510) 

HOT:am630 2.426*** (t = 11.501) 3.056*** (t = 12.956) 3.224*** (t = 13.344) 

HOT: am700 3.451*** (t = 14.377) 4.065*** (t = 15.268) 4.293*** (t = 16.499) 

HOT: am730 3.331*** (t = 13.631) 3.981*** (t = 15.381) 3.886*** (t = 15.058) 

HOT:am800 2.838*** (t = 12.061) 3.970*** (t = 16.142) 3.390*** (t = 13.740) 

HOT:am830 2.463*** (t = 10.675) 2.764*** (t = 11.383) 2.458*** (t = 9.997) 

HOT:am900 1.402*** (t = 6.290) 1.834*** (t = 8.204) 1.206*** (t = 5.036) 

HOT:am930 -0.653*** (t = -2.947) 0.086 (t = 0.381) -0.105 (t = -0.429) 

log(hhIncomeDollars) Standard 

Deviation 0.423*** (t = 23.825) 0.389*** (t = 23.037) 0.378*** (t = 27.331) 

HOT Share 0.502 0.526 0.555 

Observations 10,000 10,000 10,000 

R
2
 0.370 0.328 0.398 

Log Likelihood -4,368.68 -4,650.55 -4,134.67 

 

Figure 152 illustrates the parameter distributions that accompany this morning 

peak model.  Notable here is the separation of the three curves.  In particular, the Medium 

and Higher income curves do not visibly overlap with each other or with the zero value 

on the x-axis.  The Lower segment distribution, with its mean that cannot be said to be 
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different from zero, straddles the zero value.  The Higher income curve remains entirely 

in positive coefficient values, while the Medium curve remains entirely within the 

negative values. 

 
Figure 152: Normal Distributions for Household Income Parameter - AM Models 

Table 110 presents the results from the afternoon peak period trip models.  The 

relationships among these models differ from those of the morning peak: here the Lower 

income segment yields the only estimator that can be said to be different from zero at the 

99% confidence level.  The Medium income segment coefficient is also negative, while 

the Higher estimator is positive, but again both fail to achieve significance.  As in the 

morning peak, the remaining factors resemble those of earlier models.  For each segment, 

the standard deviation for the random parameter achieves significance at the 99% 
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confidence level, indicating that in each case the response is better modeled as a 

distribution. 

Table 110: Mixed Logit Model 3 with 3 Income Segments – PM Peak 

 PM Peak – Lower PM Peak – Medium PM Peak – Higher 

Intercept -0.003 (t = -0.002) -4.63 (t = -0.885) -8.339* (t = -1.858) 

avgSpeed
2
 -0.0003*** (t = -

3.624) 

-0.0004*** (t = -

4.309) -0.0001 (t = -1.429) 

tollAmount -1.080*** (t = -

15.486) 

-1.218*** (t = -

14.738) 

-0.993*** (t = -

14.700) 

transponderCount 0.007*** (t = 14.264) 0.011*** (t = 12.925) 0.011*** (t = 19.045) 

HOT: congested40 2.689*** (t = 17.791) 3.113*** (t = 16.330) 2.455*** (t = 16.909) 

HOT: hhEdu -0.591*** (t = -7.740) -0.510*** (t = -5.520) -0.677*** (t = -7.596) 

HOT: hhAge -0.052 (t = -1.212) -0.039 (t = -0.712) -0.172*** (t = -3.017) 

HOT:I(hhIncomeDollars)/hhSize) 0.00003 (t = 1.598) 0.00002 (t = 1.261) 0.00002** (t = 2.287) 

HOT: log(hhIncomeDollars) -0.585*** (t = -2.729) -0.244 (t = -0.482) 0.243 (t = 0.581) 

HOT: hhSize 0.06 (t = 0.797) -0.022 (t = -0.267) 0.099 (t = 1.422) 

HOT: segmentCount 2.529*** (t = 23.996) 2.936*** (t = 21.688) 2.673*** (t = 24.442) 

HOT: february 0.567** (t = 2.233) 0.238 (t = 0.834) -0.208 (t = -0.828) 

HOT: march 0.554** (t = 2.171) 0.454 (t = 1.531) 0.186 (t = 0.748) 

HOT: april -0.173 (t = -0.687) 0.084 (t = 0.292) -0.864*** (t = -3.220) 

HOT: may -0.603** (t = -2.292) -0.739*** (t = -2.643) -0.585** (t = -2.234) 

HOT: june -0.473* (t = -1.842) -0.273 (t = -0.962) -0.761*** (t = -2.926) 

HOT: july -0.721*** (t = -2.850) -0.224 (t = -0.803) -0.838*** (t = -3.027) 

HOT: august 0.083 (t = 0.326) 0.206 (t = 0.727) -0.398 (t = -1.439) 

HOT: september 0.680** (t = 2.571) 1.518*** (t = 4.816) 0.344 (t = 1.261) 

HOT: october 0.803*** (t = 3.060) 1.470*** (t = 4.693) 0.627** (t = 2.135) 

HOT: november 0.958*** (t = 3.651) 0.954*** (t = 3.157) 0.784*** (t = 2.818) 

HOT: december 0.799*** (t = 3.027) 0.954*** (t = 3.177) 0.602** (t = 2.252) 

HOT: tuesday -0.113 (t = -0.707) -0.265 (t = -1.456) -0.091 (t = -0.543) 

HOT: wednesday -0.149 (t = -0.916) -0.157 (t = -0.833) -0.109 (t = -0.660) 

HOT: thursday -0.252 (t = -1.492) -0.271 (t = -1.382) -0.183 (t = -1.075) 

HOT: friday -0.205 (t = -1.176) -0.154 (t = -0.760) -0.331* (t = -1.854) 

HOT:pm1530 0.339 (t = 1.391) 0.638** (t = 2.346) -0.051 (t = -0.215) 

HOT:pm1600 0.248 (t = 1.032) 0.379 (t = 1.363) -0.026 (t = -0.107) 

HOT:pm1630 0.820*** (t = 3.496) 0.641** (t = 2.278) 0.413* (t = 1.714) 

HOT:pm1700 0.897*** (t = 3.747) 1.150*** (t = 3.946) 0.696*** (t = 2.786) 

HOT:pm1730 1.015*** (t = 4.202) 1.287*** (t = 4.492) 0.859*** (t = 3.677) 

HOT:pm1800 1.402*** (t = 5.788) 1.598*** (t = 5.628) 1.706*** (t = 6.926) 

HOT:pm1830 0.893*** (t = 3.805) 1.225*** (t = 4.532) 1.235*** (t = 5.409) 

log(hhIncomeDollars) Standard 

Deviation 0.397*** (t = 22.813) 0.409*** (t = 19.531) 0.346*** (t = 22.585) 

HOT Share 0.527 0.534 0.573 

Observations 10,000 10,000 10,000 

R
2
 0.364 0.350 0.406 

Log Likelihood -4,400.90 -4,492.73 -4,057.75 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Figure 153 illustrates the curves that pair with the household income parameter 

distributions.  The three distributions all overlap each other and the zero point.  The 

separation evident in the morning peak period chart is not present here; the response to 

household income across income segments is more similar in the afternoon.  Another 

notable aspect of these curves is that all three have both positive and negative portions.  

Household income estimators are among those that may flip their signs from one model 

to the next; these results indicate that both categories of responses are appropriate for 

different households and conditions. 

 
Figure 153: Normal Distributions for Household Income Parameter - PM Models 
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Five Segment Mixed Logit Models 

As was the case with the standard binary logit models, the author found value in further 

sub-dividing the ‘Higher’ income group to better model variability in behavior among 

users of that group.  Table 111 presents the results of the mixed logit estimation of these 

five income groups, with the toll amount coefficient represented by a normal distribution, 

for the 2013 AM peak period trips.  Again, the goodness of fit improvement over the 

standard binary logit framework is striking.  Of particular interest is the income estimator 

for the highest income group; it is substantially higher than those of the remaining 

groups.  Note that the intercept term for that income group is much lower than those of 

the others.  Table 112 similarly presents the mixed logit estimates of the PM peak period 

2013 trips with the toll amount coefficient represented by a normal distribution.  Again, 

the $200k income group yields the largest positive household income estimator, and the 

largest negative intercept term, but the magnitudes of these differences are smaller than 

their morning peak counterparts. 

Figure 154 and Figure 155 present the toll amount estimator distributions for the 

AM and PM peak periods, respectively.  In both figures, the two highest income groups 

($150-200k and $200k+) have higher mean values of the toll amount coefficient than the 

first three groups; the $200k+ segment has the highest means of all.  Like the previously 

estimated three-group models, the parameter distributions span positive and negative 

values, indicating differing impacts on Express Lane use probability due to increasing toll 

rates. 
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Table 111: Mixed Logit Model 1a with Five Income Segments - AM Peak 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept -4.475*** (t = -19.118) -3.414*** (t = -7.482) -7.846*** (t = -7.139) 2.241 (t = 0.543) -31.334*** (t = -6.701) 

avgSpeed
2
 -0.0004*** (t = -54.510) -0.001*** (t = -75.295) -0.001*** (t = -48.866) -0.001*** (t = -22.663) -0.0005*** (t = -10.001) 

tollAmount -0.816*** (t = -124.283) -0.752*** (t = -143.762) -0.745*** (t = -89.839) -0.332*** (t = -16.113) -0.167*** (t = -5.188) 

transponderCount 0.001*** (t = 16.756) 0.002*** (t = 53.459) 0.002*** (t = 28.070) 0.001*** (t = 5.348) 0.001*** (t = 2.814) 

HOT: congested50 1.935*** (t = 84.873) 1.971*** (t = 102.604) 2.124*** (t = 68.912) 2.557*** (t = 33.351) 2.250*** (t = 20.077) 

HOT: hhEdu 0.030*** (t = 3.414) -0.034*** (t = -4.300) -0.165*** (t = -11.931) -0.014 (t = -0.385) 0.179*** (t = 3.893) 

HOT: hhAge -0.028*** (t = -5.212) 0.028*** (t = 5.813) -0.092*** (t = -9.960) -0.047* (t = -1.942) -0.187*** (t = -4.666) 

HOT:I(hhIncomeDollars)/hhSize) -0.00000* (t = -1.780) 0.00000*** (t = 3.104) 0 (t = 0.564) 0.00001*** (t = 2.932) -0.00002*** (t = -5.018) 

HOT: log(hhIncomeDollars) 0.118*** (t = 4.484) 0.025 (t = 0.572) 0.507*** (t = 5.207) -0.532 (t = -1.510) 2.528*** (t = 6.537) 

HOT: hhSize -0.041*** (t = -4.593) -0.016** (t = -2.187) -0.028*** (t = -2.665) 0.096*** (t = 3.113) -0.290*** (t = -6.846) 

HOT: segmentCount 1.030*** (t = 142.041) 1.037*** (t = 176.218) 1.051*** (t = 108.828) 1.031*** (t = 43.094) 0.888*** (t = 24.683) 

HOT: february 0.456*** (t = 14.371) 0.421*** (t = 16.209) 0.492*** (t = 12.055) 0.308*** (t = 3.126) 0.269* (t = 1.846) 

HOT: march 0.465*** (t = 14.864) 0.496*** (t = 19.154) 0.458*** (t = 11.463) 0.404*** (t = 4.123) 0.586*** (t = 4.097) 

HOT: april 0.675*** (t = 21.324) 0.661*** (t = 24.948) 0.684*** (t = 16.851) 0.471*** (t = 4.657) 0.684*** (t = 4.819) 

HOT: may 0.526*** (t = 17.499) 0.507*** (t = 20.235) 0.662*** (t = 16.869) 0.578*** (t = 6.058) 0.534*** (t = 4.011) 

HOT: june 0.535*** (t = 16.642) 0.525*** (t = 19.435) 0.603*** (t = 14.638) 0.720*** (t = 6.889) 0.441*** (t = 3.057) 

HOT: july 0.309*** (t = 10.249) 0.333*** (t = 13.354) 0.395*** (t = 9.933) 0.430*** (t = 4.549) 0.253* (t = 1.868) 

HOT: august 0.627*** (t = 19.864) 0.600*** (t = 23.144) 0.718*** (t = 17.689) 0.459*** (t = 4.744) 0.261* (t = 1.844) 

HOT: september 0.704*** (t = 22.223) 0.646*** (t = 24.841) 0.718*** (t = 17.147) 0.728*** (t = 6.908) 0.442*** (t = 2.818) 

HOT: october 0.772*** (t = 24.511) 0.711*** (t = 27.397) 0.768*** (t = 18.395) 0.693*** (t = 6.748) 0.565*** (t = 3.603) 

HOT: november 0.459*** (t = 14.981) 0.485*** (t = 19.155) 0.495*** (t = 12.157) 0.491*** (t = 4.976) 0.417*** (t = 2.903) 

HOT: december 0.050* (t = 1.684) 0.069*** (t = 2.807) 0.150*** (t = 3.849) 0.115 (t = 1.240) -0.048 (t = -0.351) 

HOT: tuesday 0.389*** (t = 18.367) 0.330*** (t = 18.753) 0.302*** (t = 10.859) 0.359*** (t = 5.314) 0.476*** (t = 4.770) 

HOT: wednesday 0.480*** (t = 22.338) 0.369*** (t = 20.558) 0.379*** (t = 13.424) 0.461*** (t = 6.624) 0.562*** (t = 5.414) 

HOT: thursday 0.411*** (t = 19.509) 0.375*** (t = 21.351) 0.351*** (t = 12.739) 0.478*** (t = 6.840) 0.548*** (t = 5.390) 

HOT: friday -0.798*** (t = -39.095) -0.808*** (t = -47.771) -0.917*** (t = -34.173) -0.813*** (t = -12.234) -0.349*** (t = -3.710) 

HOT:am630 1.762*** (t = 61.354) 1.684*** (t = 71.363) 1.818*** (t = 46.075) 2.016*** (t = 19.711) 0.913*** (t = 6.748) 

HOT: am700 1.932*** (t = 65.404) 1.861*** (t = 76.617) 2.124*** (t = 54.196) 2.297*** (t = 23.070) 1.432*** (t = 9.721) 

HOT: am730 1.908*** (t = 64.257) 1.652*** (t = 68.969) 1.872*** (t = 47.462) 1.930*** (t = 19.790) 1.150*** (t = 8.069) 

HOT:am800 1.460*** (t = 49.912) 1.258*** (t = 53.100) 1.316*** (t = 33.391) 1.398*** (t = 14.283) 0.838*** (t = 6.170) 

HOT:am830 1.017*** (t = 35.443) 0.835*** (t = 35.704) 0.827*** (t = 21.384) 1.073*** (t = 11.607) 0.203 (t = 1.549) 

HOT:am900 0.375*** (t = 13.585) 0.138*** (t = 6.286) 0.208*** (t = 5.751) 0.388*** (t = 4.356) -0.423*** (t = -3.380) 
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Table 111 Continued 

HOT:am930 -0.482*** (t = -18.311) -0.590*** (t = -28.349) -0.546*** (t = -15.743) -0.420*** (t = -4.937) -0.888*** (t = -7.796) 

HOT Share 0.507 0.520 0.538 0.617 0.673 

Observations 342,209 533,623 224,862 39,610 19,670 

R
2
 0.599 0.619 0.63 0.626 0.616 

Log Likelihood -95,048.05 -140,855.00 -57,495.02 -9,864.56 -4,770.99 
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Table 112: Mixed Logit Model 1a with Five Income Segments - PM Peak 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept -4.171*** (t = -16.276) -2.753*** (t = -5.849) 3.902*** (t = 3.488) -2.067 (t = -0.522) -13.938*** (t = -3.208) 

avgSpeed
2
 -0.0002*** (t = -17.749) -0.0002*** (t = -17.281) -0.0002*** (t = -11.321) -0.0001*** (t = -3.170) -0.0001 (t = -1.360) 

tollAmount -0.359*** (t = -43.639) -0.289*** (t = -44.265) -0.295*** (t = -28.974) 0.029 (t = 1.208) 0.516*** (t = 11.468) 

transponderCount 0.007*** (t = 102.907) 0.008*** (t = 155.630) 0.009*** (t = 104.981) 0.008*** (t = 43.813) 0.007*** (t = 25.530) 

HOT: congested40 1.709*** (t = 98.157) 1.687*** (t = 116.033) 1.679*** (t = 73.861) 1.543*** (t = 30.125) 1.641*** (t = 20.569) 

HOT: hhEdu 0.018* (t = 1.922) -0.031*** (t = -3.869) 0.021 (t = 1.544) -0.171*** (t = -5.052) -0.102** (t = -2.122) 

HOT: hhAge 0.003 (t = 0.517) -0.001 (t = -0.303) 0.011 (t = 1.227) -0.116*** (t = -5.305) -0.019 (t = -0.476) 

HOT:I(hhIncomeDollars)/hhSize) 0.00001*** (t = 2.931) 0.00001*** (t = 5.600) 0.00000* (t = 1.815) -0.00001*** (t = -4.265) -0.00001** (t = -2.234) 

HOT: log(hhIncomeDollars) -0.045 (t = -1.576) -0.190*** (t = -4.165) -0.789*** (t = -7.976) -0.043 (t = -0.127) 0.803** (t = 2.265) 

HOT: hhSize 0.014 (t = 1.409) 0.034*** (t = 4.650) 0.043*** (t = 4.035) -0.086*** (t = -3.397) -0.036 (t = -0.932) 

HOT: segmentCount 1.511*** (t = 183.759) 1.587*** (t = 234.261) 1.677*** (t = 154.242) 1.610*** (t = 65.594) 1.597*** (t = 43.566) 

HOT: february -0.100*** (t = -3.182) -0.086*** (t = -3.278) -0.155*** (t = -3.786) -0.095 (t = -1.060) -0.185 (t = -1.361) 

HOT: march -0.088*** (t = -2.792) -0.087*** (t = -3.315) -0.146*** (t = -3.606) -0.006 (t = -0.064) -0.147 (t = -1.065) 

HOT: april -0.276*** (t = -8.700) -0.284*** (t = -10.777) -0.369*** (t = -8.917) -0.374*** (t = -4.059) -0.535*** (t = -3.884) 

HOT: may -0.472*** (t = -15.123) -0.419*** (t = -16.190) -0.507*** (t = -12.621) -0.325*** (t = -3.651) -0.521*** (t = -3.892) 

HOT: june -0.471*** (t = -14.847) -0.436*** (t = -16.323) -0.535*** (t = -12.786) -0.303*** (t = -3.203) -0.736*** (t = -5.068) 

HOT: july -0.467*** (t = -15.092) -0.419*** (t = -16.157) -0.551*** (t = -13.571) -0.312*** (t = -3.372) -0.671*** (t = -4.914) 

HOT: august -0.213*** (t = -6.594) -0.125*** (t = -4.648) -0.249*** (t = -5.960) -0.066 (t = -0.709) -0.638*** (t = -4.303) 

HOT: september 0.236*** (t = 7.098) 0.426*** (t = 15.557) 0.260*** (t = 6.090) 0.350*** (t = 3.730) -0.354** (t = -2.447) 

HOT: october 0.310*** (t = 9.294) 0.532*** (t = 19.224) 0.354*** (t = 8.129) 0.282*** (t = 2.896) -0.173 (t = -1.214) 

HOT: november 0.176*** (t = 5.343) 0.386*** (t = 14.092) 0.313*** (t = 7.409) 0.222** (t = 2.316) -0.412*** (t = -2.846) 

HOT: december 0.091*** (t = 2.810) 0.266*** (t = 9.757) 0.284*** (t = 6.670) 0.151 (t = 1.538) -0.269* (t = -1.898) 

HOT: tuesday -0.012 (t = -0.578) 0.011 (t = 0.613) -0.055** (t = -2.032) -0.007 (t = -0.113) 0.03 (t = 0.323) 

HOT: wednesday 0.02 (t = 0.941) 0.016 (t = 0.907) -0.013 (t = -0.469) 0.032 (t = 0.503) -0.023 (t = -0.245) 

HOT: thursday -0.131*** (t = -6.023) -0.145*** (t = -7.953) -0.189*** (t = -6.704) -0.256*** (t = -3.982) -0.198** (t = -2.086) 

HOT: friday -0.072*** (t = -3.213) -0.144*** (t = -7.710) -0.118*** (t = -4.029) -0.156** (t = -2.319) 0.177* (t = 1.777) 

HOT: pm1530 -0.088*** (t = -3.140) -0.120*** (t = -5.153) -0.178*** (t = -5.051) -0.376*** (t = -4.890) 0.061 (t = 0.557) 

HOT: pm1600 -0.160*** (t = -5.519) -0.195*** (t = -8.237) -0.120*** (t = -3.311) -0.209*** (t = -2.622) -0.017 (t = -0.145) 

HOT: pm1630 0.036 (t = 1.237) 0.038 (t = 1.585) 0.188*** (t = 5.135) 0.052 (t = 0.659) 0.211* (t = 1.686) 

HOT: pm1700 0.214*** (t = 7.193) 0.294*** (t = 12.057) 0.408*** (t = 10.809) 0.216** (t = 2.572) 0.215* (t = 1.688) 

HOT: pm1730 0.400*** (t = 13.457) 0.509*** (t = 20.793) 0.635*** (t = 16.893) 0.577*** (t = 6.902) 0.760*** (t = 6.316) 

HOT: pm1800 0.646*** (t = 22.531) 0.652*** (t = 27.309) 0.793*** (t = 21.191) 0.633*** (t = 7.901) 0.709*** (t = 6.157) 
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Table 112 Continued 

HOT: pm1830 0.521*** (t = 18.764) 0.550*** (t = 23.691) 0.633*** (t = 17.776) 0.368*** (t = 4.637) 0.743*** (t = 6.704) 

HOT Share 348,894 544,660 235,228 43,388 21,138 

Observations 0.601 0.625 0.632 0.599 0.609 

R
2
 -96,320.97 -140,890.70 -59,356.57 -11,825.64 -5,569.71 

Log Likelihood 348,894 544,660 235,228 43,388 21,138 
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Figure 154: Normal Distributions for Toll Amount Parameter - 5 Segment AM Models 

 

 
Figure 155: Normal Distributions for Toll Amount Parameter - 5 Segment PM Models 
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Demand Elasticity Results 

As discussed in the Literature Review chapter of this dissertation, elasticity is a measure 

of the relative impact on one measure based on the change in another measure.  The 

measure is reported as a value that represents a percentage change.  If y has an elasticity 

with respect to x of 1.1, for example, that means that a 1% change in x results in a 1.1% 

change in y.  In this analysis, the dependent variable is the probability of choosing the 

Express Lanes on a given trip, while the independent variables are numerous and 

presented below in the various charts.  This section uses Model 14b, with both the three 

income segment and five income segment methods, as the basis for its elasticity analysis.  

The values represented in the charts represent the average of all of the disaggregate 

elasticity values derived from the logit models. 

Figure 156 presents the results from the morning peak period trips, estimated for 

three income segments.  All three segments exhibit nearly unitary elasticity with respect 

to toll amount.  A unitary elasticity value (a value of one, or in this case, negative one) 

indicates that a 1% increase in the toll level results in a 1% decrease in a user’s 

probability of choosing the Express Lanes for a trip.  The only elasticity value that 

exceeds one is that of segment count: it is consistently the highest elasticity result across 

all income segments.  Household education yields negative elasticity values of similar 

magnitudes across all three segments.  Only the Higher income segment exhibits positive 

sensitivity to household income; this result is explored later in the five-segment model 

elasticity results. 
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Figure 156: Elasticity Values - Three Segments - AM 

The averages of the disaggregate elasticity values for the afternoon peak models 

are shown below in Figure 157.  Again, the segmentCount variable yields the highest 

elasticity value across all segments.  It should be noted that when the distance variable 

was included in the earlier models, its average elasticity value was also consistently the 

highest across both time periods and all three income segments.  Toll amount sensitivities 

are much lower in the afternoon peak: while they were at or near negative one in the 

morning, here none of the models report elasticities that exceed -0.5.  Household 

education elasticity levels are also consistently negative, and in fact exceed the toll 

amount levels for all segments.  Unlike the morning trips, the household income factor 

hast little impact on the afternoon trip decision making process.  Other variables yield 

elasticity values that are very close to zero. 
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Figure 157: Elasticity Values - Three Segments - PM 

The next pair of figures illustrate the demand elasticity results generated by the 

five-segment estimates of Model 14b.  Figure 158 presents the morning peak period 

results.  The two additional segments within the earlier Higher income segment 

demonstrate substantial differences relative to the three original segments and to the 

Higher income segment specifically.  The two factors that dominate the elasticity results 

of the previous morning peak models, segment count and toll amount, diminish in 

magnitude as segment income increases beyond the $100-150k category.  Within the 

highest income segment, that of households making $200k+, household age is the factor 

that households are the most sensitive to.  The household income, size, and education 

factors all yield negative elasticity values in the highest segment, though their magnitudes 

are well below one. The $150-200k segment is unique in that it has the greatest 
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sensitivity to household education levels, and also the only positive sensitivity to 

household income within the afternoon peak models. 

 

Figure 158: Elasticity Values - Five Segments - AM 

Figure 159 illustrates the five-segment elasticity results for the afternoon peak 

period.  The segment of users with over $200,000 in annual household income has the 

largest elasticity value with regards to household income and the lowest sensitivity to trip 

segment counts.  In the three-segment analysis, the income effect in the Higher segment 

was very close to zero; the aggregation of the households within that segment disguised 

the behavioral variation within it.  The highest income segment here is also notable for 

having the lowest elasticity with respect to toll amount, though the toll elasticities for all 

of the segments are well below unitary. 
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Figure 159: Elasticity Values - Five Segments – PM 

 Finally, Figure 160 illustrates the averages of the disaggregate elasticity values for 

the morning peak period mixed logit models with five income groups.  Toll amount 

elasticities are similar for the first three income groups; the lowest income group is 

slightly more sensitive to toll rates in the mixed logit model versus the standard logit 

model.  The two highest income groups see less of an impact on Express Lane use 

probability as toll rates increase: the toll amount elasticities for those two groups are 

closer to zero than in the standard logit framework.  Segment count elasticity is higher 

across all five income groups with the mixed logit framework.  The highest income 

group, $200k+, also has a much higher elasticity with respect to household income than 

in the previous models.   
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Figure 160: Mixed Logit Elasticity Values - 5 Segments - AM 

Price Elasticity For Different Toll Amounts 

One shortcoming of the averages of disaggregate elasticity values presented in the 

preceding figures is their inability to demonstrate the sensitivities of a variable to a range 

of values.  Demand elasticity at a price of $10, for example, may not be the same as the 

elasticity when the price is $1.  The next series of figures investigates toll rate elasticity 

across the range of potential toll amounts for users in the income segments defined 

above.  In these charts, the values of the other factors in the model were all set to the 

mean values in the data set.   

Figure 161 shows the results for the three-segment Model 14b in the morning 

peak period.  Each segment exhibits different patterns of toll elasticity.  For much of the 
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range of potential toll values, until nearly $4, the Medium income segment exhibits 

elasticity values very close to zero.  At that point the users begin displaying more 

sensitivity to toll amounts, though they remain the least elastic of the three segments.  

The Lower segment users are also inelastic until roughly the $1 mark; after that their 

curve is steeper than that of the Medium segment.  The Higher income users exhibit the 

highest and most consistently increasing levels of price elasticity; this may be an artifact 

of the remaining factors held constantly at their means. 

 

 

Figure 161: Elasticity by Toll Amount - Three Segments - AM 
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A similar pattern can be observed in Figure 162, which shows the elasticity values 

across the toll range of the afternoon peak period trips.  The pattern here is similar: the 

Higher income segment exhibits a nearly linear rate of change in price demand elasticity, 

while the Lower and Medium segments are slower to increase their sensitivity 

magnitudes.  In all three cases, the afternoon elasticity values are lower in magnitude than 

the morning values: no segment exceeds an elasticity value of -4 in the afternoon, while 

two segments have final elasticity values exceeding -5 in the morning peak. 

 

Figure 162: Elasticity by Toll Amount - Three Segments - PM 
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The previous modeling investigations revealed the benefits of further sub-dividing 

the Higher income segment into smaller categories.  Figure 163 shows the elasticity 

ranges of those sub-segments for the 2013 morning peak period.  Whereas in Figure 161 

the Higher income segment had a constant rate of change with regards to its toll demand 

elasticity, Figure 163 reveals the variety of responses within that category.  The highest 

income segment, representing households with over $200,000 in annual income, is nearly 

perfectly inelastic across the entire range of toll amounts.  The $150-200k segment most 

closely resembles the linear curve seen in Figure 161.  The $100-150k segment exhibits a 

slower rate of elasticity change at lower toll amounts, relative to the $150-200k segment, 

and then yields a steeper curve for higher prices. 
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Figure 163: Elasticity by Toll Amount - Higher Income Segments – AM 
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Finally, Figure 164 shows the afternoon peak elasticity curves for the sub-

segments of the Higher income group.  The $200k+ segment behaves very differently in 

the afternoon, in that those users now exhibit a constant increase in elasticity, the 

magnitudes of which exceed those of the $100-150k segment.  The $150-200k segment is 

most sensitive to toll amounts higher than $2.50.  The lowest segment, $100-150k, has 

the lowest price elasticity response: its non-linear curve only exceeds -1 after the price 

exceeds $6. 

 

Figure 164: Elasticity by Toll Amount - Higher Income Segments - PM 
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Chapter Overview 

This chapter sought to improve upon the initial modeling work presented in Chapter 8 by 

expanding the data set, adding new variables and interaction terms, and investigating 

different methods to address the shortcomings of the earlier analyses.  These 

shortcomings included serial correlation caused by multiple observations of the same 

user, the lack of partial-corridor trips, and the decrease in model performance that 

resulted from the aggregation of morning and afternoon trips as well as high income 

households.  The chapter also examined the random parameter distributions and elasticity 

values that were generated from the various models. 

The model building and selection process involved over twenty different models 

with varying factors and interaction terms.  The final models were selected based on 

coefficient significance, behavioral characteristics, goodness of fit, and the Akaike 

information criterion measure of model quality.  The investigation revealed the benefits 

of separately modeling morning and afternoon peak period trips, and also of further 

segmenting households by income to illustrate the variety of behavior within the higher 

income households.  This segmentation indicated that the three-segment strategy 

disguised substantial behavioral differences among the highest income households on the 

I-85 corridor.  The determinants of lane choice decision-making in the morning peak had 

notable differences from the determinants of the afternoon peak, particularly with regards 

to toll rate sensitivity and the impact of the total corridor segments traversed.  Afternoon 

peak models had better goodness of fit metrics overall, though the pseudo-R
2
 measures 

for both time frames were under 0.400 in all but one of the cases. 
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The mixed logit framework improved the modeling results by addressing the 

serial correlation that resulted from the panel data used in the analysis.  Estimating the 

toll amount and household income coefficients as random rather than fixed parameters 

provided evidence for the varying nature of the impacts of these factors on lane choice 

decisions by households.  The toll amount coefficients, for example, were more 

appropriately modeled as normal distributions that encapsulate both positive and negative 

values to reflect both the ‘signaling’ and demand-reducing effects of toll rates. 

Further segmenting the study households showed that lane choice determinants 

varied more within the ‘Higher’ income segment than across the original three-segment 

structure.  In particular, the five-segment models illustrated lower elasticities with regard 

to corridor segment counts and toll levels for the highest-income households in the 

sample, as well as higher household income level elasticities for afternoon trips by that 

same cohort. 

The models estimated in this chapter also allowed for the measure of price 

elasticity of demand across the spectrum of toll rates charged on the corridor.  The results 

of this analysis suggest a lack of consistent elasticity patterns using these models, 

especially with regards to the morning and afternoon curves for the same sets of users.  

Serial correlation likely biases these results as they do not originate from the mixed logit 

models.  Further investigation may potentially reveal different sensitivities with different 

parameter values; for example, researchers may use the median rather than mean values 

for the remaining factors, or look at different segment counts in isolation.   

Despite the enhancements made to the preliminary models in this chapter, further 

model development remains both possible and desirable.  While the set of variables used 
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in this analysis greatly expanded upon those used in the preliminary modeling efforts, 

further complications arose in the form of collinearity among the operational factors.  The 

transponder count factor was included to provide some measure of the overall demand, 

though a more comprehensive measure that was not restricted to Peach Pass-holding 

vehicles would be preferred.  Estimating the five-segment models with the mixed logit 

framework, while time consuming, would likely provide more insights.  Finally, 

addressing the issues of sample bias and match rates between the SRTA and Epsilon data, 

outlined earlier in this dissertation, could improve models and provide a more 

comprehensive overview of the users and non-users of the Express Lanes. 
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CHAPTER 13 

CONCLUSION 

 

 

 

The I-85 Express Lanes represent the first step in a planned $16 billion investment in 

value-priced facilities in the Atlanta region.  This analysis of user response with regards 

to value of time, lane choice decision determinants, and demand elasticity has important 

implications for demand management and equity analysis.  The research conducted here 

had a number of unique characteristics.  The data set is a combination of two sources that 

are not typically seen in pricing research: disaggregated, automated Express Lane use and 

non-use data and privately sourced household level socioeconomic data.  The methods 

included both familiar studies and innovative uses of the data.  The resulting analysis had 

four different objectives: to measure value of time and price demand elasticity by 

examining the revealed behavior of toll lane users, to improve understanding of 

individual-level lane choice decisions by examining the determinants of lane use, to use 

new and unique data sources to improve modeling outcomes, and to compare the effects 

of trip characteristics among different population segments.  This was accomplished by 

examining users’ value of travel time savings and price elasticity of demand, and 

assessing the potential determinants of Express Lane decision making for different 

population segments.  These data sources, methods, and objectives served to answer the 

question of how consumers respond differently to road pricing based on operational and 

demographic differences.  The research involved in this dissertation fell into three broad 

categories: investigating the data loss and sample bias that arose from the data processing 

methods, examining the value of travel time savings exhibited by users of the Express 
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Lanes, and modeling lane choice behavior with a combination of demographic 

characteristics and corridor conditions. 

Research Findings 

Value of Travel Time Savings 

This dissertation used the revealed preference data of I-85 Express Lane users to 

investigate the monetary value users ascribed to their time on the corridor, by examining 

the toll amounts they paid and the resulting time that they saved.  The analyses examined 

the resulting value of travel time savings distributions across income segments and 

among trips of different lengths.  The differences in these distributions among lower, 

medium, and higher income households were marginal at best.  Differences among the 

mean, median, and other quartile values were on the order of cents rather than dollars.  

The results did not indicate that higher income households had the highest value of travel 

time savings results, as may have been expected.  The ranking of VTTS values by income 

segment was not consistent across time frames or directions.  The trip length 

investigation revealed more distinct differences between users who traverse the entire 

duration of the corridor and those that take partial trips; in that case, the southbound and 

northbound differences were also more pronounced.  An important consideration in 

interpreting these results is that they represent the Express Lane users only; that is, only 

users who chose to make paid trips in the HOT lanes.  Non-users, and general purpose 

lane trips by HOT users, were excluded from this analysis. 
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HOT Lane Choice Modeling 

The modeling work performed here provided a number of insights into toll lane use and 

the determinants of lane choice decisions.  The discrete choice analysis was performed in 

two phases, the first of which will be published in the Transportation Research Record.  

This preliminary analysis was extended with additional variables, observations, and 

methods, the results of which were included in this dissertation. 

The initial analysis involved binary logit mode choice models which were 

estimated across different income segments and household clusters to examine 

differences in decision making between low, medium, and higher income households and 

between demographically similar households.  The results indicated that the income-

segmented models yielded different results than the pooled model at the 95% confidence 

level, but the parameters were largely consistent across the three segments.  The clustered 

households exhibited more variation in their responses, particularly for the older and 

larger households.  For the year studied, rates of HOT lane use were fairly consistent 

across the three income groups for which data were available, differing by a maximum of 

3.9%.  Disaggregate elasticity values revealed low sensitivities to nearly all of the 

explanatory parameters with the exception of the problematic trip distance variable, and 

with income among the higher income users.  These elasticity values illustrated varying 

responses to household income and education, for example, across the segmented and 

clustered households. 

The extensions of the preliminary analysis revealed the benefits of further 

segmenting households by income to illustrate the variety of behavior within the higher 

income households.  This segmentation indicated that the three-segment strategy 
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disguised substantial behavioral differences among the highest income households on the 

I-85 corridor.  The determinants of lane choice decision-making in the morning peak had 

notable differences from the determinants of the afternoon peak, particularly with regards 

to toll rate sensitivity and the impact of the total corridor segments traversed.  Afternoon 

peak models had better goodness of fit metrics overall, though the pseudo-R
2
 measures 

for both time frames were under 0.400 in all but one of the cases.  This indicates that the 

there are many other factors in play in lane choice decision making; the survey and stated 

preference data that is missing from this analysis may play an important role in 

improving those models.  The operational characteristics included in the lane choice 

models, including average lane speeds and transponder counts, yielded similar responses 

across the income segments under examination.  It should be noted that the users 

examined in this study all had registered for Peach Pass transponders, and as such 

represent a self-selecting sample of corridor users.  The similarities in decision making 

factors across the different models and income groups examined is likely a result of this 

effect.  This issue could begin be addressed by providing transponders automatically and 

without cost to those users without Peach Pass accounts, though the sample would still be 

restricted to those users who choose to use them in their vehicles. 

The mixed logit framework improved the modeling results by addressing the issue 

of serial correlation and by estimating the toll amount and household income coefficients 

as random rather than fixed parameters.  The toll amount coefficients, for example, were 

more appropriately modeled as normal distributions that encapsulate both positive and 

negative values to reflect both the ‘signaling’ and demand-reducing effects of toll rates.  

Further segmenting the households showed that lane choice determinants varied more 
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within the ‘Higher’ income segment than across the original three-segment structure.  In 

particular, the five-segment models illustrated lower elasticities with regard to corridor 

segment counts and toll levels for the highest-income households in the sample, as well 

as higher household income level elasticities for afternoon trips by that same cohort. 

Contributions 

This dissertation makes a number of contributions to the study of road pricing in general 

and High Occupancy Toll lanes in particular.  The analysis was among the first in the 

available literature to use revealed preference lane use data for both the toll lane users 

and the unpriced general purpose lane users.  The use of household level marketing data, 

rather than census or survey data, was another unique characteristic of this research.  

Both of these factors involve the application of existing methods to new and unique data 

sources. 

This dissertation outlined the process and pitfalls of combining these two large, 

unique data sets to generate a new one.  The research also provided an overview of the 

characteristics and shortcomings of these specific lane use and demographic data sets.  In 

addition, this dissertation contrasted the use of marketing data with US Census data to 

outline the differences and potential biases that resulted from this choice of data sources. 

At the time of this writing, the author had not found any investigations of toll lane 

use that address repeated observations by users.  The existing literature did not address 

serial correlation concerns among HOT lane use; this dissertation used panel data and the 

mixed logit framework for that purpose.  Nor did the author find any examination of the 

spectrum of responses to factors such as toll amounts; hence this dissertation contributes 

both a better understanding of the range of possible responses and the differences of those 
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responses among household income segments.  In addition to the use of new types of data 

sources, this dissertation also provides some of the first applications of more advanced 

modeling techniques to an area that has not yet seen them. 

This research will also provide the basis for a modeling tool that can use the 

results of this work to investigate Express Lane use decisions in other contexts.  The 

models that form the basis of this dissertation could potentially be generalized to other 

cities and facilities.  The factors included are common enough to allow other researchers 

to closely replicate their design given similar data availability.  These models can be used 

to better understand the potential rates and factors concerning toll lane use for different 

demographic groups in other locations.  The research involved the development of data 

processing and modeling scripts that constructed trips from disaggregated vehicle 

detections, estimated corridor conditions such as travel speeds and travel time reliability, 

and paired trip records with account, toll, and demographic data to provide a 

comprehensive overview of user characteristics and operating conditions at all times 

under examination. 

These results have implications for both existing and new priced facilities.  Along 

with previous work by Smith (2011) and Khoeini (2014), this research offers evidence 

regarding the ‘Lexus Lane’ moniker applied to High Occupancy Toll facilities.  Rates of 

priced lane use and the determinants of lane choice decisions were consistent across 

income segments, with the exception of the highest income households in the sample.  

The analysis of value of travel time savings with a demographic component that looks at 

household income has not yet been seen in the literature; similarly, the findings regarding 

differing behavior among very high income households appear to be unseen in the 
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existing literature.  The use of new data sources, the evaluation of those types of data 

sources, and the application of methods that have previously been unused in this field 

make up the primary contributions of this dissertation. 

Limitations of study 

The data set used in this research was rich and innovative.  The Express Lanes data 

streams provided tremendous amounts of very detailed records in both the HOT and 

General Purpose Lanes, including unique data with decisions to use and not use the toll 

lanes.  The Epsilon credit report data allowed this dissertation to examine recent 

socioeconomic characteristics for a large sample of households.  While the data had these 

advantages, among others, they also came with their own issues. 

Match Rates and Sample Bias in Study Data 

The analytical process revealed a number of ways in which the study data may have been 

biased.  The mechanisms that created the possibility for this bias included matching the 

SRTA data with the vehicle registration database, matching those results with the 

demographic data, and constructing the complete data set.  The impacts of these 

processing stages were seen in the subset of Peach Pass transponders and Epsilon 

households that were present in the final data set.  The resulting sample differed from the 

complete set of SRTA data by primarily including those vehicles that frequently used the 

corridor; the bottom quartile of users ranked by trip frequency were virtually excluded 

from the paired sample. 

 The effects of the various data processing steps in this dissertation on the 

demographics of the sample were examined in different ways.  The Connecting SRTA 

Data to Epsilon Data chapter compared the paired demographic data with the full data 
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purchase.  That chapter also compared the paired households with City of Atlanta 

dwellers using Census ACS data.  The Potential Sample Bias in Paired Vehicle Activity 

and Marketing Data chapter examined the ACS-provided demographic characteristics of 

the GRTI-matched households, Epsilon households, and the households for which the 

SRTA-Epsilon pairing was successful.  That investigation found a substantial bias in the 

SRTA-Epsilon paired sample towards higher income households, while the other 

demographic characteristics examined were largely similar. 

 This dissertation also examined the data loss that occurred in joining the SRTA 

constructed trips with the Epsilon demographic data and with the other streams and data 

sets that were originated with SRTA.  The joining process resulted in the exclusion of a 

significant portion of the constructed trip population: the trips that remained at the end of 

the process differ primarily in the higher rates of toll lane use, lower average speeds, and 

fewer households represented.  The lack of a general purpose lane reader on SR-316 

meant that trips that started or ending on that corridor segment were excluded from the 

final analytical dataset.  As those trips represent roughly a quarter of southbound morning 

peak-period trips, the loss of data is substantial.  The structure of the Account data stream 

was another potential source of bias: left unaddressed, the many-to-many relationships in 

the data stream can restrict analysis only to those accounts with a single transponder and 

vehicle.  Finally, the registration database used for the license plate matching may not 

reflect the actual garage location of the vehicles.  That is, the registration address may 

differ from the current address (Nelson et al., 2008). 
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Revealed Preference Data 

The data used in this proposed study was strictly of the revealed preference variety.  

Other work of this type often includes stated preference components, such as survey 

results, to fill in the holes left by revealed preference data (Bhat & Castelar, 2002; 

Borjesson, 2006).  Without a survey component, this study could not separate trips by trip 

purpose, for example.  This would be a useful form of segmentation in the choice models 

as commute trips may inspire different behavior than leisure or shopping trips.  

Additionally, trip purpose is typically identified as a significant determinant in studies 

that examine willingness-to-pay (Jiang, 2004).  Other potentially useful characteristics 

that may be provided by a survey include job type, school location, use of day care, and 

more.  Similarly, relying only on revealed preference data means that this dissertation 

included no information on the schedules of the drivers.  Schedule preference information 

may be useful in choice studies as users may behave differently if they are late to their 

destination, such as work, versus if they are on time or early.  Other research assigns 

different utility impacts to early or late arrivals; without such information, this study 

cannot make such a distinction.  Additional missing elements with potential model 

impacts that could be provided by household surveys include trip start time versus work 

start time, day care or sports attendance, and trip purpose and destination.  Survey data 

would also be useful in confirming the household characteristics provided by the 

privately sourced demographic data.  Finally, stated preference data allows researchers to 

measure user perceptions rather than actual behavior.  In this context, user perceptions of 

travel time, travel time savings, and travel time reliability would all be relevant to the 

analysis.  Travel time savings, for example, are typically perceived to be much higher 
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than they are in actuality (Devarasetty & Burris, 2013).  The perceptions of these 

measures may explain HOT lane choice better than the actual time savings or reliability 

values; the models may suffer for lack of them.  Capturing the history of a user’s 

experience along the corridor may have similar effects; an investigation of the literature 

concerning the connection between history and perception is still ongoing.   

Data Limitations 

One of the most unique features of the data set was the availability of Peach Pass tag 

reads in the General Purpose lanes, which allowed the author to examine when tag 

holders do not use the HOT lanes.  Unfortunately, one major section of the corridor was 

missing a General Purpose Peach Pass scanner.  State Route 316, which contains a branch 

of the Express Lanes, does not have a GP scanner and so could not be used in the direct 

travel time comparisons.  Figure 165 shows the segment of the Express Lanes corridor 

that includes SR 316; the yellow bars (“G-35”) indicate HOT gantries, while the green 

bars (“SCAN-N6”) represent GP lane gantries.  In the southbound direction, 23.7% 

(482171/2033104) of all of the trips in 2012 began on SR 316, and 15.9% 

(321693/2021543) of northbound 2012 trips ended on SR316.  These trips were excluded 

from the analyses, as the data did not allow for travel time comparisons for that segment 

of the corridor. 
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Figure 165: Express Lanes Diagram - SR316 Focus (Source: Atkins I-85 Express Lane Straight Line Diagram) 

 Another limiting factor of the study also concerned the geographical reach of the 

data: it is limited to the I-85 corridor.  That is, the travel times and lane choice decisions 

and conditions within the scope of the data did not encompass the entire trips made by the 

users.  The trips represented in the data were incomplete, and this may have impacted the 

results.  For example, the decision to use the Express Lanes may be based on total trip 

cost; users may be more willing to pay the toll if it is a smaller proportion of their total 

cost (Li, 2001).  Similarly, the total trip distance may make a user more or less likely to 

purchase better service for a portion of that trip.  These effects could not be estimated 

given the available data.  This is in addition to the trip factors identified above as 

potentially available in survey data: trip purpose, work start time, trip destination, etc.   
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Future Work 

Despite the enhancements made to the preliminary models in this chapter, further model 

development remains both possible and desirable.  While the set of variables used in this 

analysis greatly expanded upon those used in the preliminary modeling efforts, further 

complications arose in the form of collinearity among the operational factors.  The 

transponder count factor was included to provide some measure of the overall demand, 

though a more comprehensive measure that was not restricted to Peach Pass-holding 

vehicles would be preferred.  Additional exploration of the five-segment models with the 

mixed logit framework, while time consuming, would likely provide more insights.  For 

the purpose of designing a modeling tool that could be used in other locations, it would 

be beneficial to perform validation tests on the selected models to investigate their 

accuracy.  While this analysis compared lane use behavior across income segments, 

further work could be done in examining the overall welfare benefits of the facility for 

users and non-users.  The data loss that occurred as part of the dataset construction 

process could be addressed with imputation methods that should reduce the bias caused 

by unsuccessful database joins.  Improving the match rates between the SRTA and 

Epsilon data and addressing the resulting sample bias that occurs, outlined earlier in this 

dissertation, could improve models and provide a more comprehensive overview of the 

users and non-users of the Express Lanes. 

 The data set used and described in this dissertation is rich and very large in its 

scope, with ample opportunity for additional analyses.  The marketing data elements that 

were used in this dissertation ultimately comprised a small subset of the available data; 

further explorations of household demographics such as occupation and retirement status 
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could improve the models and behavioral understanding.  The value of travel time 

savings investigation revealed large differences among trips of differing origins, 

destinations, and lengths; a more thorough examination of this phenomenon would be 

worthwhile.  Toll lane use was examined in a limited binary fashion; much remains to be 

done in examining differing lengths of toll lane trips and the decisions made at each 

potential weave zone.  A closer look at the data loss caused by the various joins in the 

data set construction could reduce potential bias.  Further comparisons between the 

marketing data and the census data, particularly with regards to their impact on the 

modeling work, would likely be beneficial.  New data could also provide many ways to 

expand on this work.  In particular, an expanded household demographic data set could 

increase the sample of households and transponders in the analysis.  Finally, survey data 

that provides stated preference and other data would be a valuable way to supplement the 

analyses conducted here and to give a more comprehensive view of user behavior. 
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APPENDIX A 

CORRELATION MATRICES 

 
Figure 166: AM Peak Period Trips – Model 9 Variable Correlation Matrix 
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Figure 167: AM Peak Period Trips – Model 9 Variables Minus Time/Date Indicators Correlation Matrix 
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Figure 168: PM Peak Period Trips – Model 9 Variables - Correlation Matrix 
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Figure 169: PM Peak Period Trips – Model 9 Variables Minus Time/Date Indicators - Correlation Matrix 
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APPENDIX B 

FITTING VALUE OF TRAVEL TIME SAVINGS DISTRIBUTIONS 

 The distributions for the value of travel time savings exhibited by the users of the 

I-85 Express Lanes were relatively consistent in shape across different years and income 

segments, though the precise measures of centrality and dispersion differed.  In 

particular, the value of travel time savings distributions resemble a gamma distribution.  

To try and recreate these shapes consistently, researchers sought to fit the data to 

different distributional curves.  This section shows the results of this distribution-fitting 

analysis for the value of travel time savings distributions of each income segment in the 

southbound AM peak period and the northbound PM peak period.  In addition to the 

gamma distribution, researchers fit the exponential, logistic, and Weibull distributions as 

well.   

 For each value of travel time savings distribution, researchers estimated 

distributional parameters for the four distributions named above.  The author then drew 

100,000 random draws from each distribution using the parameters that were fit to the 

actual data.  This section presents the results of those estimates and the resulting curves.  

The original distribution is presented in blue, while the attempts to fit the four 

distributions are transparently overlaid on top.  Table 113 and Table 114 summarize the 

parameters for each category of distribution and provide the resulting test statistic from 

the Kolmogorov-Smirnov test.  Researchers employed this test to investigate the 

suitability of the fitted distributions; the null hypothesis of this test says that the two 

samples are drawn from the same distribution.  For each case presented here, the test 

compares the original VTTS data with the fitted distributions. 
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Fitting Southbound VTTS Data to Distributions 

 Figure 170 presents the southbound AM peak period value of travel time savings 

distribution for calendar year 2013 along with the fitted distribution curves.  The top-

most chart shows the results from the lower income segment.  The gamma, Weibull, and 

exponential curves are similar to each other, though a visual inspection suggests that none 

resemble the original distribution very closely.  The logistic curve differs the most from 

the others, with a shifted center and a higher concentration of values between roughly 

$50/hour and $100/hour.  Because the maximum VTTS value in each segment exceeded 

$1000/hour, each curve was fitted to the subset of VTTS data in which the value of travel 

time savings was greater than zero and less than $300/hour. 

 The second chart in Figure 170 shows the medium income segment distribution 

and the corresponding estimated curve results.  The distributions all resemble the lower 

income results very closely; the summary provided in Table 113 below shows how close 

they are.  Just as in the lower income segment results, none of the resulting curves appear 

to fit the original data very closely.  The final plot provides the results for the higher 

income, southbound 2013 distribution.  Once again, the curves all resemble their 

counterparts from the lower and middle income segments very closely, and none of them 

appear to fit the original data very well.  In each case, the gamma and weibull 

distributions most closely approximate the location of the peak of the distribution but not 

the peak itself.  The exponential curve better models the peak of the actual data, but here 

the location is less accurate.  The logistic distribution curve does not resemble the shape 

of the original distribution in either aspect. 
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Figure 170: Southbound VTTS Distribution Fit Curves  
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 Table 113 presents the estimated parameters for each of the four distribution 

categories along with the Kolmogorov-Smirnov test p-values.  As one might expect from 

the visual similarity of all of the estimated curves presented above, the estimated 

parameters for each distribution are nearly identical.  Of the four fitted distributions, the 

logistic parameters vary the most across the three income segments.  The Kolmogorov-

Smirnov test results are consistent for each distribution type and income segment: in 

every case, the null hypothesis of equal distributions is rejected at well over the 99% 

confidence level.   

 
Table 113: Southbound VTTS Distribution Fit Results 

 Lower Income Medium Income Higher Income 

Gamma Distribution    

Shape 1.57 1.56 1.58 

Rate 0.026 0.026 0.027 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Weibull Distribution    

Shape 1.23 1.22 1.23 

Scale 64.99 63.19 63.81 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Logistic Distribution    

Location 50.81 49.38 49.87 

Scale 26.73 26.11 26.19 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Exponential Distribution    

Rate 0.017 0.017 0.017 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16
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Fitting Northbound VTTS Data to Distributions 

The results of the distribution fitting analysis for the northbound, PM peak period trips in 

2013 are shown in Figure 171.  As in the previous charts for the southbound trips, the 

results for the three income segments are very similar.  Once again, the gamma and (to a 

lesser extent) Weibull distributions approximate the location of the distributional peak, 

while the exponential distribution better approximates the magnitude of said peak.  

Because the northbound VTTS distributions are narrower, the data subset for distribution 

fitting was restricted to VTTS values between $0/hour and $150/hour.  Despite this 

narrower estimation frame, none of the estimated distributions resembled the original 

data well. 



510 

 

 
Figure 171: Northbound VTTS Distribution Fit Curves 
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Table 114 presents the parameters of the fitted distributions for the northbound PM peak 

period trips in 2013.  As in the southbound results, the parameters for each distribution 

type are similar across income segments.  Again, the Kolmogorov-Smirnov test for 

distributional equality results in the rejection of the null hypothesis in each case.   

 
Table 114: Northbound VTTS Distribution Fit Results 

 Lower Income Medium Income Higher Income 

Gamma Distribution    

Shape 2.44 2.47 2.50 

Rate 0.10 0.10 0.11 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Weibull Distribution    

Shape 1.49 1.50 1.50 

Scale 26.33 26.66 26.31 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Logistic Distribution    

Location 20.73 21.01 20.71 

Scale 8.34 8.40 8.23 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

Exponential Distribution    

Rate 0.042 0.042 0.043 

Kolmogorov-Smirnov Test 

Result 

p<2.2x10
-16

 p<2.2x10
-16

 p<2.2x10
-16

 

 

Distributional Fitting Overview 

 The purpose of fitting distributions to the value of travel time savings data was to 

investigate whether this behavior of the I-85 Express Lanes users could be replicated for 

future projects using a standard distribution.  That is, whether the value of travel time 

savings distributions could be recreated using an equation containing one or two 

estimated parameters.  The results indicated that the shapes of the actual VTTS data are 

difficult to recreate with the four types of distributions examined here.  Through visual 

inspection and the Kolmogorov-Smirnov test, researchers saw that the unique shape of 
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the actual VTTS data does not lend itself to being approximated by standard distributions.  

It should be noted that the shapes of the estimated distributions were sensitive to the 

subset of actual data over which they were estimated; narrowing the range of VTTS 

results from a maximum of $500/hour to $300/hour or $150/hour made the fitted curves 

more closely resemble the actual distributions.  This had limited impact, however, as 

even the more restricted data ranges did not produce accurate fits among the estimated 

curves. 
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APPENDIX C 

ODDS RATIOS 

 
Table 115: Model 1 Odds Ratios 

 AM Peak – Model 1 PM Peak – Model 1 

Intercept 0.107 0.023 

avgSpeed 0.971 1.02 

tollAmount 0.572 0.573 

transponderCount 1.00 1.00 

HOT: congested50 4.35  

HOT: congested40  3.93 

HOT: 

log(hhIncomedollars) 1.04 1.06 

HOT: hhEdu 1.01 0.938 

HOT: hhAge 0.970 0.987 

HOT: hhSize 0.950 0.972 

HOT: distancemi 1.44 1.54 

 

 
Table 116: Model 2 Odds Ratios 

 AM Peak – Model 2 PM Peak – Model 2 

Intercept 0.076 0.020 

avgSpeed 0.990 1.01 

tollAmount 0.704 0.711 

transponderCount 1.00 1.00 

HOT: congested50 4.03  

HOT: congested40  3.29 

HOT: 

log(hhIncomedollars) 1.13 1.14 

HOT: hhEdu 0.908 0.818 

HOT: hhAge 0.972 0.994 

HOT: hhSize 0.957 0.980 

HOT: segmentCount 1.93 2.60 
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Table 117: Model 3 Odds Ratios 

 AM Peak – Model 3 PM Peak – Model 3 

Intercept 0.088 0.0313 

avgSpeed
2
 1.00 1.00 

tollAmount 0.691 0.696 

transponderCount 1.00 1.00 

HOT: congested50 4.17  

HOT: congested40  3.95 

HOT: 

log(hhIncomedollars) 1.14 1.13 

HOT: hhEdu 0.902 0.823 

HOT: hhAge 0.971 0.994 

HOT: hhSize 0.956 0.979 

HOT: segmentCount 1.96 2.71 

 

 

 
Table 118: Model 5 Odds Ratios 

 AM Peak – Model 5 PM Peak – Model 5 

Intercept 0.0666 0.0313 

avgSpeed
2
 1.00 1.00 

tollAmount 0.647 0.696 

transponderCount 1.00 1.00 

HOT: congested50 7.80  

HOT: congested40  3.95 

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.889 0.823 

HOT: hhAge 0.970 0.994 

HOT: hhSize 0.957 0.979 

HOT: segmentCount 2.00 2.71 
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Table 119: Model 6 Odds Ratios 

 AM Peak – Model 6 PM Peak – Model 6 

Intercept 0.0601 0.0312 

avgSpeed
2
 1.00 1.00 

tollAmount 0.646 0.655 

transponderCount 1.00 1.00 

HOT: congested50 7.71  

HOT: congested40  3.93 

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.889 0.820 

HOT: hhAge 0.970 0.994 

HOT: hhSize 0.957 0.979 

HOT: segmentCount 2.00 2.87 

HOT: february 1.07 0.943 

HOT: march 1.08 0.957 

HOT: april 1.17 0.773 

HOT: may 1.15 0.699 

HOT: june 1.10 0.705 

HOT: july 1.10 0.720 

HOT: august 1.16 0.849 

HOT: september 1.21 1.21 

HOT: october 1.24 1.25 

HOT: november 1.13 1.17 

HOT: december 1.02 1.15 

 
Table 120: Model 6b Odds Ratios 

 AM Peak – Model 6b PM Peak – Model 6b 

Intercept 0.0619 0.0330 

avgSpeed
2
 1.00 1.00 

tollAmount 0.646 0.664 

transponderCount 1.00 1.00 

HOT: congested50 7.71  

HOT: congested40  3.93 

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.889 0.820 

HOT: hhAge 0.970 0.994 

HOT: hhSize 0.957 0.979 

HOT: segmentCount 2.00 2.84 

HOT: spring 1.10 0.784 

HOT: summer 1.09 0.741 

HOT: fall 1.16 1.16 
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Table 121: Model 7 Odds Ratios 

 AM Peak – Model 7 PM Peak – Model 7 

Intercept 0.0584 0.0322 

avgSpeed
2
 1.00 1.00 

tollAmount 0.619 0.658 

transponderCount 1.00 1.00 

HOT: congested50 7.80 3.92 

HOT: congested40   

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.891 0.820 

HOT: hhAge 0.968 0.994 

HOT: hhSize 0.958 0.979 

HOT: segmentCount 2.06 2.87 

HOT: february 1.11 0.940 

HOT: march 1.13 0.952 

HOT: april 1.23 0.770 

HOT: may 1.21 0.698 

HOT: june 1.13 0.703 

HOT: july 1.10 0.713 

HOT: august 1.21 0.845 

HOT: september 1.29 1.20 

HOT: october 1.29 1.25 

HOT: november 1.20 1.17 

HOT: december 1.06 1.15 

HOT: tuesday 1.14 1.02 

HOT: wednesday 1.18 1.03 

HOT: thursday 1.17 0.915 

HOT: friday 0.621 0.937 
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Table 122: Model 8 Odds Ratios 

 AM Peak – Model 8 PM Peak – Model 8 

Intercept 0.0356 0.0270 

avgSpeed
2
 1.00 1.00 

tollAmount 0.577 0.636 

transponderCount 1.00 1.00 

HOT: congested50 6.28  

HOT: congested40  3.93 

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.883 0.812 

HOT: hhAge 0.970 0.994 

HOT: hhSize 0.956 0.980 

HOT: segmentCount 2.25 2.98 

HOT: february 1.19 0.932 

HOT: march 1.17 0.944 

HOT: april 1.30 0.761 

HOT: may 1.30 0.689 

HOT: june 1.20 0.690 

HOT: july 1.12 0.698 

HOT: august 1.32 0.855 

HOT: september 1.47 1.26 

HOT: october 1.46 1.31 

HOT: november 1.32 1.24 

HOT: december 1.13 1.22 

HOT: tuesday 1.19 1.02 

HOT: wednesday 1.21 1.03 

HOT: thursday 1.21 0.898 

HOT: friday 0.53 0.918 

HOT: sevenAm 2.19  

HOT: eightAm 1.88  

HOT: nineAm 1.03  

HOT: fourPm  0.955 

HOT: fivePm  1.18 

HOT: sixPm  1.49 
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Table 123: Model 9 Odds Ratios 

 AM Peak – Model 9 PM Peak – Model 9 

Intercept 0.0137 0.0273 

avgSpeed
2
 1.00 1.00 

tollAmount 0.508 0.632 

transponderCount 1.00 1.00 

HOT: congested50 4.95  

HOT: congested40  3.92 

HOT: 

log(hhIncomedollars) 1.15 1.13 

HOT: hhEdu 0.877 0.811 

HOT: hhAge 0.973 0.995 

HOT: hhSize 0.958 0.980 

HOT: segmentCount 2.53 3.00 

HOT: february 1.30 0.931 

HOT: march 1.26 0.944 

HOT: april 1.46 0.760 

HOT: may 1.46 0.688 

HOT: june 1.32 0.689 

HOT: july 1.16 0.698 

HOT: august 1.51 0.858 

HOT: september 1.80 1.28 

HOT: october 1.79 1.33 

HOT: november 1.57 1.25 

HOT: december 1.24 1.23 

HOT: tuesday 1.27 1.02 

HOT: wednesday 1.27 1.03 

HOT: thursday 1.26 0.898 

HOT: friday 0.41 0.918 

HOT: am630 4.90  

HOT: am700 6.91  

HOT: am730 7.30  

HOT: am800 6.30  

HOT: am830 4.92  

HOT: am900 3.07  

HOT: am930 1.44  

HOT: pm1530  0.947 

HOT: pm1600  0.873 

HOT: pm1630  0.986 

HOT: pm1700  1.08 

HOT: pm1730  1.23 

HOT: pm1800  1.50 

HOT: pm1830  1.41 
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Table 124: Model 10 Odds Ratios 

 AM Peak – Model 10 PM Peak – Model 10 

Intercept 0.0118 0.0376 

avgSpeed
2
 1.00 1.00 

tollAmount
2
 0.936 0.954 

transponderCount 0.999 1.00 

HOT: congested50 3.84  

HOT: congested40  3.43 

HOT: 

log(hhIncomedollars) 1.14 1.13 

HOT: hhEdu 0.879 0.815 

HOT: hhAge 0.974 0.995 

HOT: hhSize 0.958 0.980 

HOT: segmentCount 2.14 2.60 

HOT: february 1.25 0.917 

HOT: march 1.21 0.897 

HOT: april 1.34 0.736 

HOT: may 1.37 0.677 

HOT: june 1.27 0.687 

HOT: july 1.13 0.689 

HOT: august 1.40 0.763 

HOT: september 1.69 1.05 

HOT: october 1.68 1.08 

HOT: november 1.49 1.05 

HOT: december 1.18 1.03 

HOT: tuesday 1.27 1.00 

HOT: wednesday 1.28 0.996 

HOT: thursday 1.27 0.834 

HOT: friday 0.538 0.844 

HOT: am630 3.46  

HOT: am700 4.87  

HOT: am730 5.12  

HOT: am800 4.53  

HOT: am830 3.86  

HOT: am900 3.07  

HOT: am930 2.20  

HOT: pm1530  0.867 

HOT: pm1600  0.737 

HOT: pm1630  0.766 

HOT: pm1700  0.808 

HOT: pm1730  0.905 

HOT: pm1800  1.13 

HOT: pm1830  1.16 
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Table 125: Model 11 Odds Ratios 

 AM Peak – Model 11 PM Peak – Model 11 

Intercept 0.0271 0.00776 

avgSpeed
2
 1.00 1.00 

tollAmount 0.488 0.614 

htDensity 0.996 1.01 

HOT: congested50 5.12  

HOT: congested40  4.45 

HOT: 

log(hhIncomedollars) 1.14 1.14 

HOT: hhEdu 0.880 0.808 

HOT: hhAge 0.973 0.993 

HOT: hhSize 0.958 0.980 

HOT: segmentCount 2.41 3.19 

HOT: february 1.30 0.963 

HOT: march 1.28 1.05 

HOT: april 1.49 0.771 

HOT: may 1.48 0.703 

HOT: june 1.32 0.718 

HOT: july 1.16 0.731 

HOT: august 1.54 0.839 

HOT: september 1.87 1.13 

HOT: october 1.87 1.14 

HOT: november 1.65 1.02 

HOT: december 1.27 1.01 

HOT: tuesday 1.26 1.07 

HOT: wednesday 1.26 1.11 

HOT: thursday 1.25 1.13 

HOT: friday 0.387 1.30 

HOT: am630 5.41  

HOT: am700 7.78  

HOT: am730 8.14  

HOT: am800 6.71  

HOT: am830 4.99  

HOT: am900 2.94  

HOT: am930 1.31  

HOT: pm1530  1.16 

HOT: pm1600  1.16 

HOT: pm1630  1.25 

HOT: pm1700  1.32 

HOT: pm1730  1.41 

HOT: pm1800  1.61 

HOT: pm1830  1.44 
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Table 126: Model 12 AM Peak Odds Ratios 

 AM Peak – Model 12a AM Peak – Model 12b 

Intercept 0.0751 0.134 

avgSpeed
2
 1.00 1.00 

Toll/log(income) 0.000647 0.000617 

transponderCount 1.00 1.00 

HOT: congested50 4.90 4.91 

HOT: 

log(hhIncomedollars)  0.937 

HOT: hhEdu 0.866 0.880 

HOT: hhAge 0.967 0.973 

HOT: hhSize 0.952 0.960 

HOT: segmentCount 2.50 2.52 

HOT: february 1.30 1.30 

HOT: march 1.26 1.26 

HOT: april 1.46 1.46 

HOT: may 1.45 1.45 

HOT: june 1.31 1.31 

HOT: july 1.16 1.16 

HOT: august 1.50 1.50 

HOT: september 1.78 1.78 

HOT: october 1.77 1.78 

HOT: november 1.55 1.56 

HOT: december 1.23 1.23 

HOT: tuesday 1.27 1.27 

HOT: wednesday 1.28 1.27 

HOT: thursday 1.27 1.26 

HOT: friday 0.421 0.418 

HOT: am630 4.77 4.80 

HOT: am700 6.70 6.76 

HOT: am730 7.08 7.15 

HOT: am800 6.15 6.19 

HOT: am830 4.84 4.86 

HOT: am900 3.05 3.06 

HOT: am930 1.45 1.45 
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Table 127: Model 12 PM Peak Odds Ratios 

 PM Peak – Model 12a PM Peak – Model 12b 

Intercept 0.101 0.0713 

avgSpeed
2
 1.00 1.00 

Toll/log(income) 0.00643 0.00658 

transponderCount 1.00 1.00 

HOT: congested40 3.91 3.91 

HOT: 

log(hhIncomedollars)  1.04 

HOT: hhEdu 0.821 0.813 

HOT: hhAge 0.999 0.995 

HOT: hhSize 0.985 0.981 

HOT: segmentCount 3.00 2.99 

HOT: february 0.931 0.931 

HOT: march 0.943 0.943 

HOT: april 0.759 0.759 

HOT: may 0.687 0.688 

HOT: june 0.688 0.689 

HOT: july 0.697 0.697 

HOT: august 0.856 0.854 

HOT: september 1.27 1.27 

HOT: october 1.32 1.32 

HOT: november 1.25 1.24 

HOT: december 1.22 1.22 

HOT: tuesday 1.02 1.02 

HOT: wednesday 1.03 1.03 

HOT: thursday 0.897 0.896 

HOT: friday 0.916 0.915 

HOT: pm1530 0.944 0.943 

HOT: pm1600 0.869 0.868 

HOT: pm1630 0.981 0.979 

HOT: pm1700 1.07 1.07 

HOT: pm1730 1.22 1.22 

HOT: pm1800 1.49 1.49 

HOT: pm1830 1.41 1.40 
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Table 128: Model 13 AM Peak Odds Ratios 

 AM Peak – Model 13a AM Peak – Model 13b 

Intercept 0.176 1.38 

avgSpeed
2
 1.00 1.00 

Toll/income 0.000 0.000 

transponderCount 0.999 0.999 

HOT: congested50 2.70 2.75 

HOT: 

log(hhIncomedollars)  0.807 

HOT: hhEdu 0.869 0.899 

HOT: hhAge 0.971 0.984 

HOT: hhSize 0.953 0.971 

HOT: segmentCount 1.55 1.59 

HOT: february 1.18 1.18 

HOT: march 1.16 1.16 

HOT: april 1.18 1.19 

HOT: may 1.18 1.18 

HOT: june 1.18 1.18 

HOT: july 1.13 1.12 

HOT: august 1.20 1.21 

HOT: september 1.27 1.28 

HOT: october 1.26 1.27 

HOT: november 1.13 1.14 

HOT: december 0.928 0.933 

HOT: tuesday 1.22 1.22 

HOT: wednesday 1.27 1.26 

HOT: thursday 1.25 1.25 

HOT: friday 0.915 0.891 

HOT: am630 1.73 1.78 

HOT: am700 2.06 2.14 

HOT: am730 2.14 2.22 

HOT: am800 2.24 2.31 

HOT: am830 2.53 2.58 

HOT: am900 2.57 2.59 

HOT: am930 2.12 2.10 
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Table 129: Model 13 PM Peak Odds Ratios 

 PM Peak – Model 13a PM Peak – Model 13b 

Intercept 0.264 0.625 

avgSpeed
2
 1.00 1.00 

Toll/income 0.000 0.000 

transponderCount 1.00 1.00 

HOT: congested40 2.89 2.91 

HOT: 

log(hhIncomedollars)  0.912 

HOT: hhEdu 0.825 0.838 

HOT: hhAge 0.996 1.00 

HOT: hhSize 0.980 0.988 

HOT: segmentCount 2.36 2.38 

HOT: february 0.908 0.909 

HOT: march 0.864 0.866 

HOT: april 0.730 0.730 

HOT: may 0.674 0.674 

HOT: june 0.694 0.693 

HOT: july 0.684 0.683 

HOT: august 0.673 0.677 

HOT: september 0.809 0.819 

HOT: october 0.822 0.832 

HOT: november 0.829 0.837 

HOT: december 0.841 0.848 

HOT: tuesday 0.981 0.982 

HOT: wednesday 0.958 0.960 

HOT: thursday 0.749 0.754 

HOT: friday 0.749 0.754 

HOT: pm1530 0.803 0.805 

HOT: pm1600 0.637 0.642 

HOT: pm1630 0.604 0.611 

HOT: pm1700 0.597 0.607 

HOT: pm1730 0.652 0.663 

HOT: pm1800 0.856 0.868 

HOT: pm1830 1.01 1.02 

 

  



525 

 

Table 130: Model 14 AM Peak Odds Ratios 

 AM Peak – 

Model 14a 

AM Peak – 

Model 14b 

AM Peak – 

Model 14c 

AM Peak – 

Model 14d 

Intercept 0.0486 0.288 0.0387 0.0107 

avgSpeed
2
 1.00 1.00 1.00 1.00 

tollAmount 0.507 0.503 0.509 0.508 

transponderCount 1.00 1.00 1.00 1.00 

HOT: congested50 4.96 4.34 4.93 4.95 

HOT: hhEdu 0.861 0.880 0.906 0.875 

HOT: hhAge 0.966 0.969 0.988 0.975 

HOT: income/hhSize 1.00 1.00   

HOT: income  0.806  1.15 

HOT: hhSize  1.05  0.993 

HOT: logIncome/hhSize   1.04 1.05 

HOT: segmentCount 2.53 2.61 2.54 2.53 

HOT: february 1.30 1.30 1.30 1.30 

HOT: march 1.27 1.28 1.26 1.26 

HOT: april 1.46 1.49 1.46 1.46 

HOT: may 1.46 1.47 1.46 1.46 

HOT: june 1.32 1.33 1.31 1.32 

HOT: july 1.16 1.16 1.16 1.16 

HOT: august 1.51 1.52 1.51 1.51 

HOT: september 1.80 1.84 1.80 1.80 

HOT: october 1.80 1.87 1.79 1.79 

HOT: november 1.57 1.64 1.57 1.57 

HOT: december 1.24 1.27 1.24 1.24 

HOT: tuesday 1.27 1.27 1.27 1.27 

HOT: wednesday 1.27 1.26 1.27 1.27 

HOT: thursday 1.27 1.25 1.26 1.26 

HOT: friday 0.412 0.402 0.413 0.413 

HOT: am630 4.92 4.92 4.89 4.90 

HOT: am700 6.93 7.08 6.90 6.90 

HOT: am730 7.32 7.54 7.29 7.29 

HOT: am800 6.32 6.48 6.27 6.30 

HOT: am830 4.92 4.96 4.90 4.92 

HOT: am900 3.06 2.98 3.06 3.07 

HOT: am930 1.43 1.35 1.44 1.44 
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Table 131: Model 14 PM Peak Odds Ratios 

 PM Peak – 

Model 14a 

PM Peak – 

Model 14b 

PM Peak – 

Model 14c 

PM Peak – 

Model 14d 

Intercept 0.0868 0.135 0.0801 0.0250 

avgSpeed
2
 1.00 1.00 1.00 1.00 

tollAmount 0.632 0.633 0.633 0.632 

transponderCount 1.00 1.00 1.00 1.00 

HOT: congested40 3.92 3.90 3.90 3.92 

HOT: hhEdu 0.810 0.807 0.837 0.811 

HOT: hhAge 0.994 0.992 1.01 0.995 

HOT: income/hhSize 1.00 1.00   

HOT: income  0.947   

HOT: hhSize  1.03   

HOT: logIncome/hhSize   1.01 1.02 

HOT: segmentCount 3.00 2.99 3.01 3.00 

HOT: february 0.931 0.930 0.931 0.931 

HOT: march 0.944 0.942 0.944 0.944 

HOT: april 0.760 0.757 0.758 0.760 

HOT: may 0.688 0.687 0.687 0.688 

HOT: june 0.690 0.690 0.689 0.689 

HOT: july 0.699 0.697 0.758 0.698 

HOT: august 0.859 0.856 0.856 0.858 

HOT: september 1.28 1.27 1.27 1.27 

HOT: october 1.33 1.33 1.33 1.33 

HOT: november 1.25 1.25 1.25 1.25 

HOT: december 1.23 1.23 1.23 1.23 

HOT: tuesday 1.02 1.02 1.02 1.02 

HOT: wednesday 1.03 1.03 1.03 1.03 

HOT: thursday 0.898 0.896 0.899 0.898 

HOT: friday 0.917 0.914 0.919 0.917 

HOT: pm1530 0.947 0.946 0.945 0.946 

HOT: pm1600 0.874 0.875 0.871 0.873 

HOT: pm1630 0.988 0.990 0.984 0.987 

HOT: pm1700 1.08 1.09 1.08 1.08 

HOT: pm1730 1.23 1.24 1.23 1.23 

HOT: pm1800 1.50 1.51 1.49 1.50 

HOT: pm1830 1.41 1.42 1.41 1.41 
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Table 132: Model 14b AM - Five Income Groups - Odds Ratios 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept 0.245 12.6 0.106 0.000 18046.40 

avgSpeed
2
 1.00 1.00 1.00 1.00 1.00 

tollAmount 0.502 0.500 0.501 0.550 0.638 

transponderCount 0.999 0.999 1.00 0.999 1.00 

HOT: congested50 5.07 4.96 4.75 6.10 4.48 

HOT: hhEdu 0.849 0.893 0.891 0.723 0.893 

HOT: hhAge 0.971 0.997 0.907 0.924 0.602 

HOT: income/hhSize 1.00 1.00 1.00 1.00 1.00 

HOT: income 0.874 0.577 0.937 2.94 0.532 

HOT: hhSize 0.929 1.05 1.01 1.00 0.836 

HOT: segmentCount 2.63 2.52 2.60 2.32 1.95 

HOT: february 1.36 1.29 1.31 1.19 1.16 

HOT: march 1.25 1.28 1.26 1.24 1.28 

HOT: april 1.48 1.47 1.48 1.27 1.38 

HOT: may 1.45 1.46 1.53 1.38 1.36 

HOT: june 1.28 1.37 1.31 1.38 1.19 

HOT: july 1.11 1.22 1.13 1.19 1.23 

HOT: august 1.50 1.55 1.54 1.38 1.37 

HOT: september 1.75 1.84 1.87 1.79 1.45 

HOT: october 1.72 1.85 1.85 1.77 1.56 

HOT: november 1.44 1.67 1.63 1.63 1.44 

HOT: december 1.16 1.27 1.33 1.40 1.16 

HOT: tuesday 1.34 1.23 1.25 1.33 1.26 

HOT: wednesday 1.35 1.23 1.27 1.27 1.25 

HOT: thursday 1.33 1.24 1.22 1.30 1.22 

HOT: friday 0.408 0.408 0.396 0.476 0.570 

HOT: am630 5.39 4.86 5.02 5.21 3.07 

HOT: am700 7.47 6.53 7.67 8.38 4.14 

HOT: am730 8.57 6.48 8.42 6.84 4.72 

HOT: am800 7.72 5.91 6.32 5.19 4.68 

HOT: am830 6.11 4.53 4.84 5.11 2.30 

HOT: am900 3.49 2.87 3.24 2.58 1.95 

HOT: am930 1.54 1.39 1.47 1.13 1.12 
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Table 133: Model 14b PM - Five Income Groups - Odds Ratios 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept 0.319 0.324 4.58 0.210 0.000 

avgSpeed
2
 1.00 1.00 1.00 1.00 1.00 

tollAmount 0.650 0.627 0.606 0.647 0.766 

transponderCount 1.00 1.00 1.00 1.00 1.00 

HOT: congested40 3.92 3.83 4.15 3.94 3.57 

HOT: hhEdu 0.819 0.826 0.735 0.722 0.919 

HOT: hhAge 1.01 1.00 0.931 0.929 0.832 

HOT: income/hhSize 1.00 1.00 1.00 1.00 1.00 

HOT: income 0.895 0.894 0.712 1.13 4.08 

HOT: hhSize 0.987 0.980 1.08 0.875 0.852 

HOT: segmentCount 2.91 2.94 3.16 3.30 3.14 

HOT: february 0.938 0.935 0.911 0.867 0.979 

HOT: march 0.959 0.947 0.920 0.876 0.909 

HOT: april 0.779 0.762 0.751 0.642 0.611 

HOT: may 0.687 0.700 0.675 0.640 0.614 

HOT: june 0.673 0.717 0.670 0.689 0.650 

HOT: july 0.693 0.731 0.650 0.669 0.561 

HOT: august 0.832 0.907 0.829 0.796 0.624 

HOT: september 1.15 1.39 1.32 1.17 0.761 

HOT: october 1.20 1.46 1.36 1.21 0.761 

HOT: november 1.10 1.38 1.35 1.07 0.699 

HOT: december 1.13 1.30 1.31 1.15 0.776 

HOT: tuesday 1.02 1.01 1.02 0.959 1.04 

HOT: wednesday 1.05 1.02 1.01 0.977 0.988 

HOT: thursday 0.933 0.889 0.879 0.772 0.842 

HOT: friday 0.969 0.887 0.890 0.844 1.09 

HOT: pm1530 0.999 0.944 0.892 0.752 1.05 

HOT: pm1600 0.897 0.856 0.880 0.831 0.912 

HOT: pm1630 0.934 0.964 1.19 0.819 1.04 

HOT: pm1700 1.02 1.09 1.25 0.791 1.08 

HOT: pm1730 1.10 1.26 1.41 1.07 1.83 

HOT: pm1800 1.33 1.52 1.74 1.40 2.23 

HOT: pm1830 1.27 1.41 1.68 1.23 2.23 
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Table 134: Model 15 Odds Ratios 

 AM Peak – Model 15 PM Peak – Model 15 

Intercept 0.292 0.163 

avgSpeed
2
 1.00 1.00 

Toll/segmentCount 0.0930 0.355 

Transponder Count 0.998 1.00 

HOT: congested50 6.15  

HOT: congested40  3.73 

HOT: hhEdu 0.842 0.775 

HOT: hhAge 0.976 0.998 

HOT: 

log(hhIncomedollars) 1.22 1.22 

HOT: hhSize 0.966 0.991 

HOT: february 1.30 0.967 

HOT: march 1.24 1.00 

HOT: april 1.44 0.989 

HOT: may 1.44 0.928 

HOT: june 1.27 0.997 

HOT: july 1.14 0.977 

HOT: august 1.47 1.01 

HOT: september 1.71 1.17 

HOT: october 1.71 1.20 

HOT: november 1.47 1.12 

HOT: december 1.18 1.06 

HOT: tuesday 1.28 1.04 

HOT: wednesday 1.28 1.07 

HOT: thursday 1.27 1.04 

HOT: friday 0.437 1.07 

HOT: am630 3.59  

HOT: am700 4.59  

HOT: am730 5.09  

HOT: am800 4.54  

HOT: am830 3.54  

HOT: am900 2.19  

HOT: am930 1.02  

HOT: pm1530  1.19 

HOT: pm1600  1.26 

HOT: pm1630  1.38 

HOT: pm1700  1.41 

HOT: pm1730  1.40 

HOT: pm1800  1.47 

HOT: pm1830  1.35 
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Table 135: Model 16 AM Peak Odds Ratios 

 AM Peak – Model 

16a 

AM Peak – Model 

16b 

AM Peak – Model 

16c 

Intercept 1.38 0.156 4.25 

avgSpeed
2
 1.00 1.00 1.00 

Toll/segmentCount 0.0600 0.0567 0.0569 

Toll/log(income) 4.61 5.43 5.18 

transponderCount 0.999 0.999 0.999 

HOT: congested50 5.45 5.39 5.41 

HOT: 

log(income)/hhSize 1.02 1.06 

 

HOT: income/hhSize   1.00 

HOT: income  1.25 0.887 

HOT: hhSize  1.00 1.06 

HOT: hhAge 0.999 0.978 0.972 

HOT: hhEdu 0.899 0.850 0.846 

HOT: february 1.29 1.29 1.29 

HOT: march 1.23 1.24 1.24 

HOT: april 1.42 1.43 1.43 

HOT: may 1.43 1.44 1.44 

HOT: june 1.27 1.27 1.27 

HOT: july 1.14 1.13 1.14 

HOT: august 1.47 1.47 1.47 

HOT: september 1.73 1.73 1.74 

HOT: october 1.73 1.74 1.74 

HOT: november 1.49 1.49 1.50 

HOT: december 1.18 1.18 1.19 

HOT: tuesday 1.27 1.28 1.28 

HOT: wednesday 1.27 1.27 1.27 

HOT: thursday 1.26 1.27 1.27 

HOT: friday 0.443 0.444 0.443 

HOT: am630 3.47 3.48 3.50 

HOT: am700 4.65 4.69 4.71 

HOT: am730 5.13 5.17 5.20 

HOT: am800 4.49 4.53 4.55 

HOT: am830 3.55 3.59 3.59 

HOT: am900 2.21 2.23 2.22 

HOT: am930 1.05 1.06 1.05 
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Table 136: Model 16 PM Peak Odds Ratios 

 PM Peak – Model 

16a 

PM Peak – Model 

16b 

PM Peak – Model 

16c 

Intercept 2.17 0.0885 0.378 

avgSpeed
2
 1.00 1.00 1.00 

Toll/segmentCount 0.00572 0.00481 0.00485 

Toll/log(income) 50109 73953 72342 

transponderCount 1.00 1.00 1.00 

HOT: congested40 3.70 3.76 3.76 

HOT: 

log(income)/hhSize 0.983 1.02 

 

HOT: income/hhSize   1.00 

HOT: income  1.39 1.19 

HOT: hhSize  0.993 1.02 

HOT: hhAge 1.03 0.998 0.996 

HOT: hhEdu 0.876 0.806 0.804 

HOT: february 0.945 0.944 0.944 

HOT: march 0.971 0.970 0.969 

HOT: april 0.897 0.895 0.895 

HOT: may 0.828 0.823 0.823 

HOT: june 0.871 0.865 0.866 

HOT: july 0.863 0.856 0.857 

HOT: august 0.932 0.926 0.927 

HOT: september 1.20 1.20 1.20 

HOT: october 1.22 1.23 1.23 

HOT: november 1.14 1.14 1.15 

HOT: december 1.11 1.12 1.12 

HOT: tuesday 1.02 1.02 1.02 

HOT: wednesday 1.03 1.03 1.03 

HOT: thursday 0.928 0.920 0.920 

HOT: friday 0.947 0.938 0.937 

HOT: pm1530 1.02 1.01 1.01 

HOT: pm1600 0.970 0.963 0.965 

HOT: pm1630 1.03 1.02 1.03 

HOT: pm1700 1.07 1.07 1.07 

HOT: pm1730 1.15 1.15 1.15 

HOT: pm1800 1.34 1.34 1.35 

HOT: pm1830 1.31 1.32 1.32 
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Table 137: Model 17 AM Peak Odds Ratios 

 AM Peak – Model 

17a 

AM Peak – Model 

17b 

AM Peak – Model 

17c 

Intercept 4.06 0.233 2.34 

avgSpeed
2
 1.00 1.00 1.00 

tollAmount
2
  0.935  

Toll/segmentCount   0.0988 

Toll/log(income) 0.000588   

transponderCount 0.999 0.999 0.999 

HOT: congested50 4.93 3.84 4.55 

HOT: income/hhSize 1.000 1.00 1.00 

HOT: income 0.639 0.817 0.824 

HOT: hhSize 1.06 1.05 1.06 

HOT: hhAge 0.970 0.971 0.971 

HOT: hhEdu 0.872 0.873 0.869 

HOT: segmentCount 2.52 2.14 1.42 

HOT: february 1.30 1.25 1.28 

HOT: march 1.26 1.21 1.24 

HOT: april 1.46 1.34 1.43 

HOT: may 1.46 1.37 1.44 

HOT: june 1.31 1.27 1.28 

HOT: july 1.16 1.13 1.14 

HOT: august 1.51 1.40 1.49 

HOT: september 1.79 1.69 1.78 

HOT: october 1.78 1.68 1.79 

HOT: november 1.56 1.50 1.55 

HOT: december 1.24 1.19 1.21 

HOT: tuesday 1.27 1.27 1.27 

HOT: wednesday 1.27 1.28 1.27 

HOT: thursday 1.27 1.27 1.26 

HOT: friday 0.417 0.538 0.440 

HOT: am630 4.85 3.48 3.82 

HOT: am700 6.82 4.89 5.57 

HOT: am730 7.21 5.14 6.00 

HOT: am800 6.23 4.55 5.11 

HOT: am830 4.87 3.86 4.07 

HOT: am900 3.04 3.05 2.53 

HOT: am930 1.44 2.20 1.23 
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Table 138: Model 17 PM Peak Odds Ratios 

 PM Peak – Model 

17a 

PM Peak – Model 

17b 

PM Peak – Model 

17c 

Intercept 0.390 0.178 0.335 

avgSpeed
2
 1.00 1.00 1.00 

tollAmount
2
  0.954  

Toll/segmentCount   0.204 

Toll/log(income) 0.00650   

transponderCount 1.00 1.00 1.00 

HOT: congested40 3.91 3.43 3.77 

HOT: income/hhSize 1.00 1.00 1.00 

HOT: income 0.859 0.951 0.947 

HOT: hhSize 1.03 1.03 1.03 

HOT: hhAge 0.993 0.994 0.994 

HOT: hhEdu 0.809 0.811 0.816 

HOT: segmentCount 2.99 2.59 2.38 

HOT: february 0.931 0.917 0.926 

HOT: march 0.943 0.897 0.932 

HOT: april 0.759 0.736 0.769 

HOT: may 0.687 0.676 0.697 

HOT: june 0.689 0.688 0.705 

HOT: july 0.698 0.690 0.709 

HOT: august 0.856 0.764 0.835 

HOT: september 1.27 1.05 1.21 

HOT: october 1.32 1.08 1.25 

HOT: november 1.25 1.05 1.18 

HOT: december 1.22 1.04 1.17 

HOT: tuesday 1.02 1.00 1.01 

HOT: wednesday 1.03 0.996 1.01 

HOT: thursday 0.896 0.833 0.864 

HOT: friday 0.915 0.844 0.878 

HOT: pm1530 0.945 0.868 0.915 

HOT: pm1600 0.870 0.739 0.818 

HOT: pm1630 0.982 0.768 0.893 

HOT: pm1700 1.08 0.810 0.962 

HOT: pm1730 1.22 0.908 1.09 

HOT: pm1800 1.49 1.13 1.36 

HOT: pm1830 1.41 1.16 1.33 
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Table 139: Mixed Logit Model 1a – AM Peak – 5 Income Groups Odds Ratios 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept 0.0114 0.329 0.000391 25.3 0.000 

avgSpeed
2
 1.00 0.999 0.999 0.999 1.00 

tollAmount 0.442 0.471 0.475 0.730 0.846 

transponderCount 1.00 1.00 1.00 1.00 1.00 

HOT: congested50 6.93 7.18 8.36 12.9 9.49 

HOT: hhEdu 1.03 0.966 0.848 0.973 1.20 

HOT: hhAge 0.972 1.03 0.912 0.948 0.829 

HOT: income/hhSize 1.00 1.00 1.00 1.00 1.00 

HOT: income 1.12 0.13 1.66 0.543 12.5 

HOT: hhSize 0.960 0.984 0.972 1.10 0.748 

HOT: segmentCount 2.80 2.82 2.86 2.81 2.43 

HOT: february 1.58 1.52 1.64 1.36 1.31 

HOT: march 1.59 1.64 1.58 1.50 1.79 

HOT: april 1.96 1.94 1.98 1.60 1.98 

HOT: may 1.69 1.66 1.94 1.78 1.70 

HOT: june 1.71 1.69 1.83 2.05 1.55 

HOT: july 1.36 1.40 1.48 1.53 1.29 

HOT: august 1.87 1.82 2.05 1.58 1.30 

HOT: september 2.02 1.91 2.05 2.06 1.56 

HOT: october 2.16 2.04 2.16 2.00 1.76 

HOT: november 1.58 1.62 1.64 1.63 1.52 

HOT: december 1.05 1.07 1.16 1.12 0.953 

HOT: tuesday 1.48 1.39 1.35 1.43 1.61 

HOT: wednesday 1.62 1.45 1.46 1.59 1.75 

HOT: thursday 1.51 1.45 1.42 1.61 1.73 

HOT: friday 0.450 0.446 0.400 0.444 0.706 

HOT: am630 5.83 5.39 6.16 0.749 2.49 

HOT: am700 6.90 6.43 8.36 9.89 4.19 

HOT: am730 6.74 5.22 6.50 6.82 3.16 

HOT: am800 4.30 3.52 3.73 4.03 2.31 

HOT: am830 2.76 2.30 2.29 2.92 1.22 

HOT: am900 1.45 1.15 1.23 1.47 0.655 

HOT: am930 0.617 0.555 0.579 0.656 0.411 
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Table 140: Mixed Logit Model 1a – PM Peak – 5 Income Groups Odds Ratios 

 Segment A 

$0-50k 

Segment B 

$50-100k 

Segment C 

$100-150k 

Segment D 

$150-200k 

Segment E 

$200k+ 

Intercept 0.0154 0.0638 49.5 0.127 0.000 

avgSpeed
2
 1.00 1.00 1.00 1.00 1.00 

tollAmount 0.698 0.749 0.744 1.03 1.675 

transponderCount 1.01 1.01 1.01 1.01 1.01 

HOT: congested40 5.52 5.40 5.36 4.68 5.16 

HOT: hhEdu 1.02 0.969 1.02 0.843 0.903 

HOT: hhAge 1.00 0.999 1.01 0.891 0.981 

HOT: income/hhSize 1.00 1.00 1.00 1.00 1.00 

HOT: income 0.956 0.827 0.454 0.958 2.23 

HOT: hhSize 1.01 1.03 1.04 0.918 0.965 

HOT: segmentCount 4.53 4.89 5.35 5.00 4.94 

HOT: february 0.904 0.918 0.857 0.909 0.831 

HOT: march 0.916 0.917 0.864 0.994 0.864 

HOT: april 0.759 0.753 0.692 0.688 0.586 

HOT: may 0.623 0.658 0.602 0.722 0.594 

HOT: june 0.624 0.647 0.585 0.738 0.479 

HOT: july 0.627 0.658 0.576 0.732 0.511 

HOT: august 0.808 0.883 0.780 0.937 0.528 

HOT: september 1.27 1.53 1.30 1.42 0.702 

HOT: october 1.36 1.70 1.42 1.33 0.841 

HOT: november 1.19 1.47 1.37 1.25 0.662 

HOT: december 1.10 1.30 1.33 1.16 0.764 

HOT: tuesday 0.988 1.01 0.947 0.993 1.03 

HOT: wednesday 1.02 1.02 0.987 1.03 0.977 

HOT: thursday 0.877 0.865 0.828 0.774 0.821 

HOT: friday 0.930 0.866 0.889 0.856 1.19 

HOT: pm1530 0.916 0.887 0.837 0.686 1.06 

HOT: pm1600 0.852 0.823 0.887 0.811 0.983 

HOT: pm1630 1.04 1.04 1.21 1.05 1.23 

HOT: pm1700 1.23 1.34 1.50 1.24 1.24 

HOT: pm1730 1.49 1.66 1.89 1.78 2.14 

HOT: pm1800 1.91 1.92 2.21 1.88 2.03 

HOT: pm1830 1.68 1.73 1.88 1.44 2.10 
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