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SUMMARY 

 

Problem detection is a critical component in nursing, such that superior detection 

could lead to quicker intervention, even if the nature of the problem is not yet clear. A 

critical problem intensive care nurses typically engage in is detecting the threat of an 

impending hospital-acquired infection. The purpose of this study was to investigate the 

effects of the presence of risk factors, expertise, and time pressure on problem detection. 

The results suggested that time pressure seemed to have a detrimental effect on problem 

detection, and nurses benefitted from the presence of more risk factors. When not under 

time pressure, nurses were more sensitive in their problem detection judgments, and only 

needed one risk factor to trigger problem detection. Experienced nurses were more 

sensitive to the type of infection at detection, and were more likely to identify the 

problem correctly after information had been accumulated. These results suggest that 

problem detection was differentially affected by risk factors based on the presence or 

absence of time pressure. In addition, experienced nurses took a different approach to 

problem detection when compared to novices. Finally, problem detection and problem 

identification can in some situations occur simultaneously, but are distinct processes.  
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CHAPTER 1 

INTRODUCTION 

 

 When working in a dynamic environment, operators will inevitably run 

into problems they must manage to maintain performance. The first step to managing 

these problems is detecting whether there is, in fact, a problem. Problem detection can be 

defined as “the process by which people first become concerned that events may be 

taking an unexpected and undesireable direction that potentially requires action” (Klein, 

Pliske, Crandall & Woods, 2005, p14). What is included in this definition is that a person 

may or may not necessarily identify the problem at this stage, thus distinguishing 

problem detection from problem identification (Klein et al., 2005). Problem detection is a 

critical component in managing performance, primarily because the quicker an operator 

can detect a problem, the quicker the operator can intervene (Klein et al., 2005; Woods & 

Sarter, 2000). Allwood (1984) found that when participants were detecting statistical 

errors, those who were good at detecting errors often had superior performance overall. 

Allwood argued that although both good and poor performers make errors, what 

separates the good from the bad is the ability to detect when an error is present.  

There are several different approaches to explain how individuals detect a 

problem. At a psychological level, Drew, Evans, Vo, Jacobson and Wolfe (2012) 

explained how radiologists detect problems in scanned images through two competing 
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pathways that guide visual search. The first is a selective pathway that allows the 

radiologist to identify objects, and the second is a nonselective pathway that allows the 

radiologist to understand the entire image. These two pathways together are needed to 

identify lesions or abnormalities, but Drew et al. argued that the nonselective pathway is 

critical for detecting problems by experts.  

Much of the past research has concerned error detection, as opposed to problem 

detection. Error detection is similarly defined, such that an individual has recognized an 

error has occurred, without necessarily knowing what the error is (Zapf & Reason, 1994). 

Although error detection and problem detection are not entirely synonymous, the 

literature on error detection can contribute to a deeper understanding of problem 

detection.  Past research has focused on categorizing and breaking down the processes 

involved in error detection, including cognitive mechanisms (Sellen, 1994), categories of 

detection (Konotiannis & Malakis, 2009), and detection strategies (Allwood, 1984). 

The underlying mechanisms for error detection are comparable to problem 

detection. The literature on error detection suggests that there are two primary forces that 

lead to detection: internal and external. Internal detection is when an individual’s 

expectation does not match what is occurring in the world (Allwood, 1984; Reason, 

1990). For internal detection to occur, the individual must be actively involved in a task 

or a situation. For example, internal detection can be awareness-based, planning-based, or 

action-based (Kontogiannis & Malakis, 2009; Sellen, 1994). Awareness-based detection 

occurs when individuals revise their situation understanding, and through this revision 

process an error is detected.  Planning-based detection occurs when the individual revises 

a plan for new actions, and action-based detection occurs while the action is being carried 
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out (Kontogiannis & Malakis, 2009). All three of these detection mechanisms involve an 

active understanding and comparison of what is expected to what is observed in the 

world, and it is through this mismatch that detection occurs.  

On the other hand, error detection can also occur through external processes, 

where an individual recognizes changes in the environment (Allwood, 1984; Blavier, 

Rouy, Nyssen, & DeKeyser 2005; Reason, 1990). This can be achieved through a 

limiting function, a third party, or an outcome (Kontogiannis & Malakis, 2009; Reason, 

1990; Sellen, 1994).  Limiting-functions detection is when the nature of the error 

prohibits any further action needed to accomplish the task from being performed (Sellen, 

1994). For example, pulling the emergency brake instead of the gear shift prohibits the 

car from any further movement. Third party is simply when another person or automation 

points out the error (Reason, 1990). For example, stall alerts on aircrafts point out that the 

pilot has climbed too quickly. Outcome-based detection is either when the individual’s 

expected outcome does not match what is observed, or when the individual identifies a 

familiar error pattern forming (Kontogiannis & Malakis, 2009; Sellen, 1994). For 

example, calculating a correlation coefficient greater than one alerts the person that a 

mistake had been made.  This particular type of detection implies that detection is based 

on what is observed in the environment after an action is completely executed. Overall, 

the two detection mechanisms, internal and external, seem to suggest that error detection 

can either be initiated from an individual’s internal expectation or triggered by the 

external environment. 

In addition to the mechanisms involved in detection, certain characteristics of the 

situation also appear to have an effect. For example, in error detection, the type of error 
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plays a role in one’s ability to detect (Blavier et al., 2005; Rizzo, Bagnara, & Visciola, 

1987). According to the literature, detection appears to be easiest when detecting slips, 

yet hardest when detecting omissions and mistakes (Blavier et al., 2005; Rizzo et al., 

1987). Slips are a particular kind of error where the individual maintains the correct 

intention for an action, but produces an error in the execution of the planned action 

(Blavier et al., 2005). Therefore, quicker detection occurs because the action does not 

match the expectation; thus seems to be largely triggered by internal mechanisms. 

Mistakes, on the other hand, are a type of error that occurs because the individual has an 

incorrect intention, but executes the intention correctly (Blavier et al., 2005). This means 

that the expectation matches the outcome, but the expectation is incorrect, making 

detection a bit more difficult as well as more reliant on external detection mechanisms, 

such as limiting functions or third party. These results suggest that there are situational 

characteristics that can play a role in detection.  

Although many problems may be rooted in error, not all problems are errors. For 

example, from a resilience engineering perspective, Hollnagel argued that accidents occur 

by concurrences of interacting components, and although all of the individual 

components are not in error, it is the interaction that leads a system into crossing over the 

safety boundary into failure (Hollnagel, 2007). Similarly, Woods and Sarter (2000) 

discuss the “going sour accidents,” where trivial events accumulate in such a way that 

leads to catastrophic accidents. In other words, one small event or error could be 

dismissed as trivial, yet the consequences could unravel, triggering a chain of events 

leading to a larger unmanageable problem. This suggests that problems are not always as 

clear or definable as errors, thus detecting problems can be a more complex process. 
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There have been two predominant approaches to understanding problem detection 

in the literature. Cowan provided a model of problem recognition, defined as “how 

individuals in organizational contexts recognize problems” (Cowan, 1986, p763). 

Cowan’s model involves three distinct stages: gestation/latency, categorization, and 

diagnosis. The gestation stage is when the problem initially begins manifesting itself in 

the environment, thus the human is not really involved in the process at this stage. 

However, the human must scan the environment to progress to the categorization stage. 

Categorization, in Cowan’s view, is to categorize the change in the environment as either 

a ‘problem’ or ‘not a problem.’ To be able to make that categorization, Cowan argued 

that the human must reach a certain threshold of capture arousal to attempt to clarify the 

change in environment, which is typically done by comparing the current environment to 

the human’s expectation of the environment. Once the human has categorized the 

situation as a problem, the human then searches for more information to identify or 

generate a plausible hypothesis for the problem. Here, Cowan is confounding problem 

detection with problem identification, although it is not explicitly stated whether or not 

the human has accurately identified the problem at the diagnosis stage. Although this 

model does a good job describing external detection mechanisms, it fails to fully account 

for internal detection mechanisms (Allwood, 1984; Blavier et al., 2005; Reason, 1990).   

Klein et al. (2005), on the other hand, propose a different approach to problem 

detection. Although they agree with Cowan (1986) that problems arise from 

“disturbances” that lead to a discrepancy, they do not believe that these disturbances must 

accumulate to a point where the discrepancy is large enough for detection. Instead, they 

propose that the disturbances prompt individuals into making sense of the discrepancy, 
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thus suggesting problem detection as more of an active and involved process (Klein et al., 

2005).  Klein et al. argue that the operator generates an expected state in the form of a 

cognitive frame. The frame therefore dictates what is considered as cues to either 

reinforce or contradict the expectation, and at the same time the cues from the 

environment guide the construction of the frame. The cues perceived from the 

environment can also activate related traces from memory to further generate the 

cognitive frame. Klein et al. (2005) argue that detection occurs when people question the 

existing frame based on the cues experienced, and once that questioning occurs, they can 

either preserve the existing frame or reframe until they understand the nature of the 

problem. Generally speaking, Klein et al.’s and Cowan’s approaches to problem detection 

both include an external component where a change in the environment occurs that is 

undesireable. However, Klein takes a more comprehensive approach, including both 

internal and external mechanisms involved in detection as well as incorporates a more 

active approach to detection where the individual must be engaged in the situation 

(Allwood, 1984; Blavier et al., 2005; Reason, 1990).  

Klein et al. (2005) therefore provide a comprehensive approach to how problem 

detection occurs in the moment. The authors then acknowledge that there are a variety of 

factors that affect detection, and mention that the existing literature is lacking in 

empirical research to understand when and how problem detection is better or worse. 

Thus, the current experiment attempts to take a step towards empirically uncovering the 

underlying factors that affect detection. However, uncovering what variables affect 

detection in the moment and how is only one piece of the puzzle. If and when problem 

detection occurs, how confident is the individual in their detection decision? Does 
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confidence also change depending on the situational and individual variables? Does the 

individual know what the problem is at the time of detection, or does identification occur 

after the initial detection judgment? These questions, in addition to what affects problem 

detection, are not entirely addressed by Klein et al.’s (2005) approach.  

If one views problem detection as a process of developing hypotheses about 

whether or not a problem exists, then problem detection as well as the associated 

processes can be explained by the decision-making and judgment model, HyGene 

(Thomas, Dougherty, Sprenger, & Harbison, 2008). HyGene states that individuals take 

in cues from the environment and then match those cues with traces in memory. These 

memory traces are then scrutinized to generate hypotheses about the situation, which are 

categorized as a set of leading contender hypotheses (SOC). The SOC then drives the 

individual’s probability judgments and subsequent searches for diagnostic information to 

determine a single hypothesis. However, the number of traces and subsequent hypotheses 

that are retained depends on both task characteristics and cognitive limitations. The 

HyGene model therefore incorporates Klein et al.’s (2005) approach, such that cues are 

actively considered, and subsequent cues can either reinforce or contradict a particular 

hypothesis. HyGene also addresses the fact that both internal (cognitive limitations) and 

external (task characteristics) affect detection. However, HyGene also considers how 

those factors drive future behaviors and judgments, thus provides a more exhaustive 

approach.  

It is important to note that problem detection in dynamic environments can be 

quite difficult. Moray (1981) explored several different characteristics of dynamic 

environments that affect detection. For example, operators are typically receiving 
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information from multiple information sources, which are typically changing and 

interacting in complex ways (Moray, 1981). In addition, much of the information the 

operator is receiving can be ambiguous or missing (Moray, 1981). Detection can also 

vary depending on the nature of the problem. Problems can range from being completely 

unexpected and unmanageable to routine and easily solvable. The current experiment 

focused on a particular type of problem in-between the two extremes; one where 

operators are trained to handle, yet does not occur routinely. Hospital-acquired infections 

(HAIs) are an interesting problem in the healthcare industry that is gaining attention. Any 

patient in a hospital runs the risk of developing an HAI, yet research is still trying to 

understand how HAIs occur and how they can be avoided. The current experiment 

therefore selected the problem of the development of HAIs in an attempt to uncover how 

nurses detect and identify the threat of an HAI. 

HAIs are a dangerous problem in the healthcare industry, typically leading to an 

increase in patient length of stay and increased healthcare costs for both patients and 

hospitals (Kohn, Corrigan, & Donaldson, 2000). Additionally, the incidence of HAIs is 

increasing to an alarming rate, with studies reporting as many as 1.7 million American 

patients per year (Klevens et al., 2007). The more common HAIs to date include central 

line-associated bloodstream infections (CLABSI), catheter-associated urinary tract 

infection (CAUTI), clostridium difficile (c diff), surgical site infection, methycillin-

resistant staphylococcus aureus (MRSA), and ventilator-associated pneumonia (VAP) 

(Center for Disease Control, 2012).  CLABSIs are a particularly deadly infection, 

resulting in over 30,000 estimated deaths in the US alone (Klevens et al., 2007). 

Additionally, it is estimated that around 59% of patients in the intensive care unit (ICU) 
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and 24% of patients not in the ICU have had a central venous catheter placed during their 

stay in a hospital, thus the opportunity for contracting a CLABSI is particularly high for 

patients in the ICU (Climo, Diekema, Warren, Herwaldt, & Perl, 2003). In fact, 

Marschall et al. (2007) estimated that of the patients who have central venous catheters in 

an ICU, the rate of actually developing a CLABSI is 5.2 per 1,000 catheter days. Thus, 

the risk runs high for a patient to develop a CLABSI, particularly if they are in an ICU. 

However, many of the CLABSIs that occur are preventable (Center for Disease Control, 

2011). 

Because CLABSIs are by and large considered a preventable disease (Center for 

Disease Control, 2011), a variety of efforts have been made to reduce the incidence of 

CLABSI. For example, evidence-based best practices for managing a central line have 

been established in order to prevent infection (Hughes & Collins, 2008; Marschall et al., 

2008). These include strategies such as using hand hygiene, chlorhexidine-based 

antiseptic, maximum barriers, changing the dressing and insertion site, and using 

checklists for these dressing changes, to name a few (Marschall et al., 2008). These 

strategies can also be combined into one functional unit, referred to as “care bundles”  

(Costello, Morrow, Graham, Potter-Bynoe, Sandora & Laussen, 2007). Many of these 

practices are emphasized through educational programs and surveillance (Marshall, 

2007). However, these strategies are implemented to prevent CLABSI from occurring, 

but of course these strategies do not address the process of detecting the problem of an 

impending CLABSI.  

Another area of infection research has attempted to address this problem by 

identifying the risk factors that put a patient at an increased risk of developing a CLABSI. 
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For example, one major factor is how long the patient has a central line placed (Advani, 

Reich, Sengupta, Gosey, & Milstone, 2011; Kelly, Conwaym Wirth, Potter-Bynoe, Billet, 

& Sandora, 2011; Sengupta et al., 2010; Wylie et al., 2010). Sengupta et al. found that the 

risk of developing a CLABSI changes depending on the number of days a peripherally 

inserted central catheter (PICC) line is placed. Specifically, they found that within the 

first 18 days of placing a PICC line, risk of infection increased at a rate of 14% per day. 

From day 18 to 35, the risk of infection decreased, but after day 35, risk increased again 

at a rate of 33% per day (Sengupta et al., 2010). Thus, the number of days the line is 

placed changes the amount of risk of developing an infection.  Other risk factors include 

whether patient is in the ICU, whether the line was placed in the ICU, how many 

catheters are placed, and where the lines are placed (Advani et al., 2011; Wylie et al., 

2010). Specifically, if two or more catheters are placed in the ICU and if there are lines 

inserted in the lower parts of the body (such as the femoral vein), risk is increased 

(Advani, 2011; Wylie, 2010). There are several other characteristics of the patient that 

result in an increased risk for developing an infection. For example, if the patient has 

non-operative cardiovascular disease, an underlying malignancy, or an underlying 

metabolic condition, the risk of developing an infection is increased (Advani et al., 2011; 

Wylie et al., 2010). Also, if the patient has had parenteral nutrition, blood transfusions, or 

a gastronomy tube, they will have increased risk (Advani et al., 2011; Kelly et al., 2011; 

Wylie et al., 2010).  

The rather extensive list of risk factors that have been identified for predisposing 

a patient towards developing a CLABSI (or any other HAI) implies that health care 

providers should be attending to and acknowledging these risk factors. Thus, the 
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proposed experiment aims to examine whether the presence of risk factors does in fact 

trigger problem detection.  

The particular provider population of interest for the current study is the nurses 

working in the NICU. Nurses are typically on the front lines in terms of managing patient 

care. One study found that nurses made as many as 238 decisions over a two-hour period 

(Bucknall, 2000). Nurses spend a considerable amount of time with their patients 

managing their care, and thus their ability to detect problems is critical. Again, because 

nursing is such a dynamic environment, detecting problems becomes more difficult. 

However, it is hypothesized that the relative experience of the nurse will affect detection. 

A variety of both qualitative and quantitative differences exist between experts 

and novices (Benner, 1982; Benner, Tanner, & Chelsa, 2009). For example, experts tend 

to be superior in terms of managing dynamic situations by making contingency plans and 

preparing for unforeseen events (Xiao, Milgram, & Doyle, 1997). In addition, experts can 

recognize patterns better and thus are better at detecting abnormalities (Ericsson, 

Charness, Feltovich, & Hoffman, 2006). This implies that expert nurses are better 

equipped to manage the ambiguity in their environment, which could compensate for 

detection difficulty (Moray, 1981).  

Experts perceive patterns in more meaningful ways than novices as well as 

generate superior mental models (Ericsson et al., 2006; Hutton & Klein, 1999). This 

implies that experts should have not only a clearer understanding of the observed and 

expected state, but they should recognize the presence of the risk factors as more 

meaningful and important when compared to novices.  
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In addition to having a clearer expected state, experts tend to be more able to 

adjust plans and expectations in the face of new information (Waag & Bell, 1997). This 

suggests that experts should therefore be better at reframing a situation as problematic in 

the face of discrepant information according to Klein et al. (2005). Klein et al. also 

highlight the notion that experts are not only better at detecting problems, particularly 

with the more subtle cues, but also have stronger expectancies associated with these cues. 

Thomas, Dougherty, Sprenger, & Haribson (2008) have also found differences in 

decisions and judgments based on the level of experience. Finally, some studies have 

found that experts generally perform quicker and make fewer errors than novices (Hutton 

& Klein, 1999), suggesting that experts should then also be able to detect problems more 

quickly and more accurately. However, it has also been found that experts often spend 

more time assessing situations when compared to novices (Ericsson, et al., 2006). This 

could imply that although experts may be faster at detecting a problem, they may take 

longer to appropriately identify the problem. 

Based on these findings, it would make sense that experts should be superior in 

their problem detection. It has been shown that expertise does in fact play a role in 

detection. For example, Kundel and Nodine (1975) found that radiologists were able to 

detect lesions in chest radiographs 70% of the time in under one fifth of a second. Thus in 

such a short amount of time, expert radiologists were able to detect better than chance 

whether there was a problem. Drew et al. (2012) argued that expertise plays a role 

because expert radiologists know where to look, thus guiding their detection search 

strategies. This information taken together suggests that expertise, in addition to the 

presence of risk factors, should play a role in nurses’ detection of an impending infection. 



 
13 

Expertise is typically operationalized based on performance outcomes (Ericsson, Whyte, 

& Ward, 2007). However, because performance records were unavailable, years of 

experience was used as a surrogate for expertise. A previous study evaluating NICU 

nurses’ risk assessment was successfully able to elicit differences based on years of 

experience (Militello, 1995), thus a similar approached was used for this experiment. 

In addition to varying levels of expertise, it was hypothesized that time pressure 

will play a role in problem detection. Time pressure occurs frequently in the health care 

environment, which results in a restricted range of options or strategies to perform their 

work (Hassall & Sanderson, 2012). Under time pressure, operators tend to switch to more 

rule-based heuristic strategies (Hassall & Sanderson, 2012; Rothrock & Kirlik, 2003). In 

addition, Dougherty and Hunter (2003b) found that individuals generate fewer 

hypotheses and report higher probability judgments while under time pressure compared 

to no time pressure. Therefore, it is suggested that similar approaches will be taken in 

detection, such that nurses will tend to use these heuristic short-cuts, thus leading them to 

detect a problem faster than when they had the ability to take their time.  

However, it was also hypothesized that nurses would not be as accurate in their 

identification judgments when placed under time pressure. It has been shown that 

individuals will choose to perform strategies that minimize time and effort (Gray, Sims, 

Fu & Schoelles, 2006), and thus when placed under time pressure, trying to identify the 

problem may be too laborious whereas detecting whether there is a problem can be less 

so.  Nurses have in fact developed strategies for managing time pressure (Bowers, 

Lauring & Jacobson, 2000), but the strategies nurses use to detect problems have not yet 

received scientific scrutiny.  
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Overall, the current experiment aimed to examine several hypotheses. The first 

hypothesis was that nurses would more readily to detect a problem of an impending 

infection if the patient possessed more risk factors. The more risk factors present, the 

more cues available to lead the individual to reframe the situation as problematic.  

Second, it was hypothesized that problem detection would be better among 

experienced nurses than when compared to less experienced nurses. Experienced nurses 

would more readily recognize the risk factors as cues to a problem (Drew et al., 2012), 

thus would be both faster and more accurate in detecting problems. It was also 

hypothesized that experienced nurses would be less reliant on more risk factors to detect 

a problem compared to novices. This was because expert nurses should have greater 

expectancies and more memory traces with all the risk factors presented (Hintzman, 

1988; Klein et al. 2005), and so detection performance should be high even when only 

one risk factor is present, perhaps resulting in little room for improvement. However, for 

less experienced nurses, more cues would be more useful in generating a clearer 

hypothesis. 

Nurses should also be faster to make a problem detection response when under 

time pressure when compared to no time pressure, although problem identification 

accuracy may be impaired. Because nurses will be forced to make a decision in such a 

small amount of time, nurses may be more likely to say there is a problem before 

generating a clear hypothesis. However, these time constraints could impair accurate 

identification. In addition, it was hypothesized that experienced nurses would be less 

affected by time pressure when compared to novices because the experienced nurses have 
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superior mental models associated with the cues (Ericsson et al., 2006; Hutton & Klein, 

1999).  

It was also anticipated that in the presence of multiple risk factors, experienced 

nurses under time pressure would detect problems the fastest. This was hypothesized 

because the more cues presented, the more traces are activated among experts leading to 

faster detection, which is further facilitated by the notion that experts are more adaptable 

in managing the time pressure. On the other hand, novices would have less frames 

associated with the cues, so fewer frames and fewer cues available should impair 

detection. Also, because novices are less adaptable to the changing environment, they 

would perform the worst under time pressure. 

In terms of problem identification, it was hypothesized that in the presence of 

multiple risk factors, experienced nurses not under time pressure would be most accurate 

in problem identification. This is because experienced nurses have superior mental 

models with more frames associated with each cue, and the absence of time constraints 

should allow these nurses to carefully evaluate the cues. On the other hand, it was 

hypothesized that in the presence of one risk factor, novice nurses under time pressure 

would be least accurate in problem identification.  
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CHAPTER 2 

METHOD 

Participants 

Participants were nurses working in the Neonatal Intensive Care Unit (NICU) at 

the Medical Center of Central Georgia (MCCG) in Macon, GA. A total of 24 nurses (all 

female) participated in this study, and were compensated $25 for one hour of 

participation. Participants’ ages ranged from 22-55 years of age. Experienced nurses were 

categorized as nurses working in the NICU for at least 10 years at MCCG (M=18.33 

years, SD=5.97), whereas novice nurses were categorized as nurses working in the NICU 

for less than two years (M=1.29 years, SD=0.78). Previous research has demonstrated 

differences in experienced and novices by grouping nurses with more than five years of 

experience and less than three years respectively (Militello, 1995), thus the grouping used 

in the current experiment was deemed sufficient. Nurses were recruited via nurse 

managers.  

Design 

The experiment was a 2 (Time pressure: time pressure, no time pressure) x 2 

(Experience: experienced, novice) x 2 (Risk factors: one risk factor, three risk factors) x 3 

(Infection Type: CLABSI, Other HAI, None) mixed design. Time pressure and 

experience were between subjects variables, and risk factors and infection type were 

within. Before the experiment began, participants were randomly assigned to a time 

pressure condition.  
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Stimuli and Apparatus 

Apparatus  

 The experiment was controlled using E-Prime 2.0. E-Prime was run on a 

laboratory-owned laptop and recorded participant responses as well as reaction times and 

durations for each response.  

Case Study Construction 

A total of 18 case study templates were constructed in collaboration with 

experienced nurses in the NICU. Half of the templates pertained to patients with a 

CLABSI, and the other half pertained to patients with other types of HAIs. Each of these 

individual templates contained seven neutral facts about the patient and three risk factors.  

Templates were initially derived from patient reports, but were completely de-identified 

of any personal information. From there, the individual facts pertaining to each case 

study were revised to generate enough neutral and risk factor facts.  

Templates were then used to generate individual case studies for each risk factor 

condition, each containing seven facts (see Table 1). The One Risk Factor condition 

contained six neutral facts and one risk factor, the Three Risk Factors condition contained 

four neutral facts and three risk factors, and the None condition contained seven neutral 

facts and no risk factors. Each case study was arranged in the same structure, such that 

the first, second, and last fact contained neutral facts (non-risk factors). These particular 

neutral facts were identical across the One Risk Factor, Three Risk Factors, and None 

within a template.   
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For each family, one risk factor was randomly selected to appear in both the one 

risk factor and three risk factors condition, which was yoked across conditions. For the 

One Risk Factor condition, this yoked risk factor was randomly selected to appear in 

either the third or fourth fact within a case study. For the Three Risk Factor conditions, 

the yoked risk factor appeared as the last of the three risk factors. The other two risk 

factors were randomly slotted, with the first risk factor appearing in the same position as 

it did in the One Risk Factor condition.  This meant that in the Three Risk Factor 

conditions, the participant was not exposed to the yoked risk factor until the participant 

had seen the other two risk factors to measure how additional risk factors in addition to 

the one risk factor affects detection. An example layout for each condition within a 

family is presented in Table 1. All case studies are presented in Appendix B.  

Table 1 

Sample Layout of One, Three, and no Risk Factors Conditions for a CLABSI Family.  

One Risk Factor Three Risk Factors None 

Day of Life 23 Day of Life 23 Day of Life 23 
Adjusted Gestational Age 
35 weeks 

Adjusted Gestational Age 35 
weeks 

Adjusted Gestational Age 35 
weeks 

PICC line day 21 Very low birth weight Isolette 
On NC 2 IL 21-25% On NC 2 IL 21-25% On NC 2 IL 21-25% 
NPO Preterm labor NPO 
Hypothermia PICC line day 21 Hypothermia 
Black Male Black Male Black Male 
Note. Risk factors appear in bold. Each participant was exposed to only one of these case 
studies. 

 

Each case study generated within a family was presented to different participants 

as a way to constrain the impact of the individual case study content. A demonstration of 

this method is displayed in Table 2. A nurse educator and nurse practitioner validated 
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case studies by sorting each case study into CLABSI, other HAI, and None. Revisions 

and refinements were provided until agreement was reached.  

Table 2  

Proposed Distribution of Case Studies Across Conditions and Participants for CLABSI 

Condition.  

 1 Risk Factor 3 Risk Factors None 
Participant 1 A B C 
Participant 2 B C A 
Participant 3 C A B 
Note. Letters A, B, and C Represent case study families that were transformed to the 
appropriate condition. Procedure was identical for the other HAI condition.   

 

The total number of case studies per experimental condition per participant is 

displayed in Table 3. This resulted in a total of 36 cases per case study-type (CLABSI, 

other HAI, None). For the case studies that led to a CLABSI or other HAI problems, half 

of the case studies contained three risk factors and half of the case studies contained one 

risk factor.  

 
Table 3 

Proposed Number of Cases For Each Condition 

 Time Pressure No Time Pressure 
Case Study Experienced Novice Experienced Novice 

CLABSI 36 36 36 36 
3 Risk Factors 18 18 18 18 
1 Risk Factor 18 18 18 18 

Other HAI 36 36 36 36 
3 Risk Factors 18 18 18 18 
1 Risk Factor 18 18 18 18 

Non-HAI 36 36 36 36 
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Instructions 

Nurses were provided with two forms of instructions. The first form was a general 

set of instructions that explained the task and the purpose of the experiment. These 

instructions were in paper format and were available to the nurse throughout the 

experiment to be used as a reference, and is provided in Appendix A.  

In addition to a paper copy of the instructions, another set of instructions appeared 

on the screen immediately before the experiment began. A sample of the online 

instructions appears in Appendix B.  

If the nurse was assigned to the time pressure condition, there were additional 

sentences that read, “Assume you have a high patient load and have other more acute 

patients to monitor. Therefore, it is important to work through each case study as quickly 

as possible so you can attend to your other patients. Your responses will be timed and 

your elapsed time will be displayed.” Another screen appeared after the original 

instructions page that reminded participants once more that time will be recorded and 

therefore should work through each case study as quickly as possible. 

Case Study Content 

An example of a case study appears in Appendix C. Appendix C displays the 

series of screens the nurse was exposed to throughout each case study. This example case 

study is for a participant in the no time pressure condition, thus the additional information 

pertaining to time pressure does appear. The second screen in Appendix C is the first 

screen of a case study. The top of the screen shows the first neutral fact about the patient, 

and the bottom of the screen asks the nurse “Is this patient at risk for infection?” If the 
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nurse decided that the patient is at increased risk, the nurse should select the “Yes” 

button. If the nurse decided that the patient is not at an increased risk, the nurse selects 

“Continue” to receive the next fact. In the example in Appendix C, the nurse decided the 

patient is at increased risk after the fifth fact was presented.  

Once this button was selected, the nurse was prompted to answer three questions 

pertaining to her decision: problem detection confidence, problem identification, and 

problem identification confidence. Once these three questions were answered, the nurse 

continued to receive the next fact and the problem detection question disappeared. When 

the nurse had read the new fact and was ready to move on, the nurse answered the same 

confidence and identification questions. These questions were answered based on the new 

information acquired after the nurse had already detected the problem. This procedure 

continued until all seven facts have been presented. After all seven facts were presented, 

the nurse was prompted to identify the probability that the patient will develop an 

infection. This question was presented at the end of each case study regardless of whether 

the nurse selected “Yes.” 

Measures 

Problem Detection 

Problem detection was measured in two ways. The first problem detection 

measure was the total time from the time the first fact appears on the screen at the 

beginning of each case study to the time the nurse selects “Yes.” In addition to how long 

it took the nurse to detect a problem, the number of facts needed to detect the problem 

was also recorded. However, the yoked risk factor appeared in different positions across 
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conditions. Thus, the type of risk factor can potentially confound this measurement. 

Regardless, the total time-to-detect was compared across all experimental conditions.  

The second problem detection measure was the total time the yoked risk factor is 

presented to the nurse. Thus, from the time the screen with the yoked risk factor is 

presented to the time the nurse either selected “yes” or continued to the next screen was 

recorded. For example, the time for the risk factor “PICC line day 21” from Table 3 was 

measured in both the one and three risk factor conditions. This time measurement was 

compared between the one versus three risk factor case studies for both CLABSI and 

other HAI conditions. Because the yoked risk factor was the identical across conditions, 

it allowed us to compare any potential benefit of additional risk factors. 

In addition to time measurements, nurses also provided confidence ratings in their 

decisions immediately after selecting “Yes” as well as after each other fact subsequently 

presented for the rest of the case study. Confidence ratings were recorded and analyzed 

for each case study.  

Problem Identification 

After the nurse selected “Yes,” making an affirmative problem detection 

judgment, and provided a confidence rating, the nurse was also asked to identify what 

they thought was wrong with the patient. This question was asked immediately after 

detection as well as after each remaining fact for the rest of the case study. Identification 

accuracy was analyzed at detection and after more information becomes available. Once 

the nurses identified the problem, they were asked to provide another confidence rating in 
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their identification. These confidence ratings were also presented immediately after 

selecting “Yes” as well as after every other fact. 

Infection Probability 

Nurses were asked to estimate the probability that the patient would develop an 

infection. This question was asked at the end of each cases study regardless of whether or 

not the nurse detected a problem. Thus, nurses provided a probability judgment for each 

individual case study.  

Questionnaire 

After all case studies were completed, nurses were instructed to complete a post 

study questionnaire. The post study questionnaire attempted to elicit any strategies used 

for detection. The questionnaire also attempted to elicit which cues were more important 

than others. The questionnaire was electronically administered; a copy of the 

questionnaire appears in Appendix D.  

Procedure 

When the nurses arrived, they were given a consent form and had the opportunity 

to read and ask questions about the experiment. Once informed consent was obtained, the 

nurse was presented with both the paper and online instructions. Nurses engaged in two 

practice trials to familiarize themselves with the task. The experimenter worked through 

the practice case studies with the nurse and answered any questions about the experiment. 

The content of the practice case studies was identical for all nurses. Once the practice 

case studies were completed, the experiment paused and the experimenter asked the nurse 

if she had any remaining questions. If the nurse was in the time pressure condition, the 
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experimenter reminded the nurse to work as quickly as possible and the responses would 

be timed. If there were no remaining questions, the nurse was instructed to begin.  

Each nurse performed the same tasks for all 18 case studies. Each case study was 

presented in a same format as the screens presented in Appendix C. After the nurse 

completed a case study, a screen was presented for five seconds informing the nurse that 

the particular case study was complete. Each case study was presented in a random order 

for each participant. After the nurse completed all case studies, the experiment closed and 

the nurse was administered the post-study questionnaire. Finally, nurses were 

compensated for their participation and the experiment concluded.  
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CHAPTER 3 

RESULTS 

Manipulation Check 

To ensure that the manipulation of time pressure was sufficient, a manipulation 

check was performed by analyzing the time spent on the cues. Average time spent on the 

cues excluding the time spent on answering questions was calculated for each case study 

for each participant.  Time spent on answering questions was excluded since reading and 

typing speed is confounded with cognitive processing speed. These times were analyzed 

using an independent sample T-Test for each level of Time Pressure. Means and standard 

deviations are presented in Appendix E. Results indicated that there was a significant 

effect of Time Pressure, such that participants spent less time on cues while under time 

pressure, t(22)=2.394, p<.05. Mean time spent on cues for each level of time pressure is 

displayed in Figure 1.  

 

Figure 1. Mean time spent on cues for each level of time pressure.  
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Overall, participants spent more time on the cues when not under time pressure 

than when under time pressure. Thus, time pressure was considered an appropriate 

variable to conduct further analyses, including more precise evaluations of the cues.  

Problem Detection 

Detection Sensitivity 

Sensitivity analyses were conducted to determine when nurses were detecting a 

problem, and how their detections varied across experimental conditions. Although there 

were signal and non-signal case studies (e.g., cases that included a risk factor and cases 

that contained all neutrals), detection on signal trials could not always be considered a 

“hit” in the signal-detection theory sense if the nurse detected a problem before any risk 

factors appeared. Thus, calculating d primes for each trial was not considered an 

appropriate metric.  

Instead, cumulative detection was used to assess detection sensitivity. For each 

condition, cumulative detection was calculated along the cues. In other words, each case 

study was scored based on when along the case study the nurse detected a problem. An 

example of this scoring process is displayed in Table 4. Each experimental condition 

containing risk factors had a total of three case studies for each nurse. For the One Risk 

Factor condition, this nurse (mistakenly) detected a problem at the first neutral fact (N1) 

in the first case study, detected a problem at the risk factor (RF1) in the second case 

study, and did not detect a problem on the third case study (see Column 1, Table 4). For 

the Three Risk Factor condition, this nurse detected a problem at the first neutral fact 

(N1) in the first case study, detected a problem at the second risk factor (RF2) in the 



 
27 

second case study, and detected a problem at the third risk factor (RF3) in the third case 

study (see Column 2, Table 4).  

For case studies in the None condition (containing all neutrals), there were a total 

of six case studies for each nurse. Neutral cues located in the same position as the risk 

factors were included to compare cumulative detection between signal and non-signal 

trials. In column 3 in Table 4, the nurse detected a problem at the second neutral fact 

(N2), and did not detect a problem in the remaining five case studies. These scores were 

then plotted across the cues for each condition.  

Table 4 

Cumulative Detection Scoring 

One Risk Factor Three Risk Factors None 

   N1 (1) a N1 (1) N1 (0) 
N2 (1) N2 (1) N2 (1) 

  RF1 (2) b RF1 (1) N3 (1) 
 RF2 (2) N4 (1)  
 RF3 (3) N5 (1) 

a First neutral fact where the nurse mistakenly detected a problem in the first case study. b 

First risk factor where the nurse detected a problem in the first risk factor. Numbers in 
parenthesis represent cumulative scoring. Items in bold represent risk factors or 
equivalent neutral facts for None condition.  

 

The cumulative detection scores were averaged across all nurses for each 

experimental condition. For the None condition, cumulative detection scores were 

divided in half to allow for equal comparison across all conditions. These cumulative 

detection scores were then plotted across the cues for each condition, and are displayed in 

Figure 2. Follow-up analyses further examining signal and no signal trials are discussed 

in following sub-sections. 
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Figure 2. Cumulative detection across cues for each between subjects condition.  

Average cumulative detection is displayed in Figure 2 for each between-subjects 

condition. One Risk Factor conditions are displayed as solid broken lines and Three Risk 

Factor conditions are displayed as dashed broken lines. The black solid line indicates the 

None condition. Generally speaking, cumulative detection was higher for signal trials 

than non-signal trials.  Overall, cumulative detection was lower for the None condition 

than the Risk Factor conditions. This was also generally true comparing the initial neutral 

facts with the risk factors within a case as well.  In fact, the initial neutral facts were 
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roughly similar to the initial neutral facts of the None condition. The following sections 

discuss further analyses of the results displayed in Figure 2.  I begin with an analysis of 

the None conditions (black line) in Figure 2. 

No-Signal-Trial-Detection 

To provide a baseline assessment of nurses’ problem detection sensitivity using 

this procedure, cumulative detection was examined for the None condition. A 

2(Experience) x 2(Time Pressure) x 5(None Cue Position) mixed ANOVA was used to 

evaluate whether experience or time pressure produced differential effects on detection 

when no signal was present. The results revealed a significant Mauchly’s test of 

sphericity, thus the Huynh-Feldt approach was employed to adjust for epsilon. Means and 

standard deviations are displayed in Appendix E. A significant main effect was found for 

None Cue Position, F(4,80) = 19.965, p < .01, ηp
2=.496, indicating that cumulative 

detection varied across the five none cues. Tests of within-subjects contrasts revealed a 

significant linear effect F(1,20) = 35.862, p < .01, ηp
2=.642, as well as a significant cubic 

effect, F(1,20) = 4.865, p < .01, ηp
2=.196. Because we were looking at cumulative 

detection, the line should never be decreasing and therefore, if anything, increases are 

likely as more problem detection judgments are made. The cubic effect however, 

demonstrates that cumulative detection increases from N1 to N2, then levels off slightly 

from N2 to N4, and then increases again from N4 to N5. The slight increase in sensitivity 

could be due to the nurses’ expectation of a risk factor to occur. However, it should be 

noted that by N4 and N5, cumulative detection is always below signal trials by this point. 

In addition, there were no significant main effects or interaction effects of time pressure 
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or experience, thus detection in the None condition was the same regardless of experience 

or time pressure. 

Signal-Trial Detection 

A separate assessment was conducted only on trials containing risk factors at 

some point in the trial. A 2(Experience) x 2(Time Pressure) x (Infection Type) x 2(Risk 

Factors) x 2(Cue Type: Neutral, Risk Factor) Mixed ANOVA was used to examine if 

cumulative detection significantly increased when a risk factor was presented, as well as 

how cumulative detection varied across conditions. To accomplish this, cumulative 

detection on N1 and N2 were averaged for each condition, generating the Neutral Cue 

Type. For the One Risk Factor conditions, the neutral cue was compared against 

cumulative detection on the one risk factor. For the Three Risk Factor conditions, the 

neutral cue was compared against cumulative detection on the third risk factor. Results 

from the ANOVA are displayed in Table 5, with means in Figure 2. Means and standard 

deviations are also reported in Appendix E.  

 

Table 5 

Significance Tests for Cumulative Detection Sensitivity 

Variable F df p ηp
2 

Cue Type 118.39 1, 20 .000** 0.855 
Risk Factors     9.66 1, 20 .006** 0.326 
Infection Type 15.53 1, 20 .001** 0.437 
Experience 1.43 1, 20 .245 0.067 
Time Pressure 0.57 1, 20 .459 0.028 
Experience x Time Pressure 0.37 1, 20 .55 0.018 
Cue Type x Time Pressure 4.50 1, 20 .047* 0.184 
Cue Type x Experience 0.59 1, 20 .452 0.029 
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Table 5 continued     
Risk Factors x Experience 0.01 1, 20 .943 0.000 
Risk Factors x Time Pressure 2.76 1, 20 .112 0.121 
Infection x Experience 4.84 1, 20 .040* 0.195 
Infection x Time Pressure 0.21 1, 20 .650 0.010 
Cue Type x Risk Factors 14.85 1, 20 .001** 0.426 
Cue Type x Infection 0.40 1, 20 .537 0.019 
Risk Factors x Infection 0.53 1, 20 .475 0.026 
Cue Type x Experience x Time Pressure 0.10 1, 20 .755 0.005 
Risk Factors x Experience x Time Pressure 0.05 1, 20 .831 0.002 
Infection x Experience x Time Pressure 0.59 1, 20 .452 0.029 
Cue Type x Risk Factors x Experience 0.19 1, 20 .663 0.010 
Cue Type x Risk Factors x Time Pressure 6.71 1, 20 .018* 0.251 
Cue Type x Infection x Time Pressure 2.04 1, 20 .169 0.092 
Cue Type x Infection x Experience 0.03 1, 20 .866 0.001 
Risk Factors x Infection x Experience 0.29 1, 20 .600 0.014 
Risk Factors x Infection x Time Pressure 0.53 1, 20 .475 0.026 
Cue Type x Risk Factors x Infection 2.04 1, 20 .169 0.092 
Cue Type x Risk Factors x Experience x Time Pressure 1.44 1, 20 .244 0.067 
Cue Type x Infection x Experience x Time Pressure 0.003 1, 20 .955 0.000 
Risk Factors x Infection x Experience x Time Pressure 0.06 1, 20 .811 0.003 
Cue Type x Risk Factors x Infection x Experience 0.85 1, 20 .367 0.041 
Cue Type x Risk Factors x Infection x Time Pressure 0.57 1, 20 .459 0.028 
Cue Type x Risk Factors x Infection x Experience x 
Time Pressure 

0.06 1, 20 .804 0.003 

Note: * = p<.05 
          ** = p<.01 

Results for the significant three-way interaction between Cue Type, Risk Factors, 

and Time Pressure are displayed in Figure 3. A post-hoc analysis was conducted to 

analyze the lower-order two-way interactions at each level of time pressure separately. 

Under time pressure, a significant two-way interaction was found between Risk Factors 

and Cue Type, F(1,10) = 28.457, p<.01. Under no time pressure however, there was no 

significant two-way interaction between Risk Factors and Cue Type, F(1,10) = .628, 

p=.446. 
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Figure 3. Mean cumulative detection for the three-way interaction between Time 
Pressure, Risk Factors, and Cue Type with standard error bars.  
 

While under time pressure, nurses’ sensitivity to detecting a problem on the risk 

factors varied depending on the risk factor condition. As shown in the graph on the left 

side of Figure 3, cumulative detection is higher than neutrals on both the one and three 

risk factor conditions, with cumulative detection highest in the three risk factor condition. 

This suggests that even under time pressure, nurses are able to distinguish the risk factors 

as a signal, but also benefit from a second or third risk factor in their problem detection 

judgments.  

Under no time pressure, nurses’ problem detection on neutral facts was also equal 

between the one and the three risk factor conditions. However, as shown in the graph on 

the right side of Figure 3, cumulative detection is the same across one and three risk 

factor conditions for both neutral and risk factors. Again, cumulative detection is higher 

on the risk factors compared to the neutrals, but nurses’ did not benefit from the 

additional risk factors in their problem detection judgments in the absence of time 

pressure. With only a single risk factor, nurses’ detection was already quite high when 

they are given time to consider the cue. 
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In addition to the three-way interaction, a significant two-way interaction was also 

found between Experience and Infection Type (Figure 4). This interaction shows that the 

main effect of infection type—more frequent detection of CLABSI—was especially 

evident among the experienced nurses.  This is perhaps due to experienced nurses’ 

superior ability to recognize individual infection types, but it is also likely that detection 

sensitivity is higher for CLABSI because the experience distinguishing our nurse groups 

is experience with the more common infection, CLABSI.  CLABSI is a more common 

threat in the MCCG NICU, thus more experienced nurses may have had more exposure 

to CLABSI patients.  

 

Figure 4.  Mean cumulative detection for experience and infection type with standard 

error bars.  

Overall Detection Sensitivity 

Generally speaking, these results demonstrate that the procedure employed was 

sensitive enough to produce variations in problem detection judgments. In addition to 
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demonstrating the success of the methodology, these results suggest that sensitivity varies 

based on experience, time pressure, risk factors, and infection type. Time pressure 

appears to play a critical role in detection sensitivity. Time pressure tends to lead to a 

need for more cues to initiate problem detection, whereas a lack of time pressure allows 

nurses to evaluate each cue carefully, thus only one risk factor is needed to trigger 

problem detection. In addition, experience does play a minor role in detection in the sense 

that experienced nurses were differentially detecting problems based on the type of 

infection.  

Detection Times 

Detection time was also used to evaluate problem detection under the assumption 

that faster detection was associated with superior detection ability.  

Time-to-Detect 

Detection times were recorded for each response from the time the first cue was 

presented to the time the nurse selected ‘Yes’. Means and standard deviations were 

calculated for each condition excluding the None category, and are displayed in 

Appendix E. Mean reaction times were analyzed using a 2(Experience) x 2(Time 

Pressure) x 2(Risk Factors) x 2(Infection type) split-plot ANOVA. Because there were 

cases in which the participant did not detect a problem across a particular condition, 

pairwise deletion was used to account for missing data. 

A significant main effect was found for Infection type, F(1,18) = 6.66, p<.05, ηp
2 

=0.291, such that participants were overall faster at detecting a CLABSI problem 

compared to other HAI problems (Figure 5). Faster detection for CLABSI may be 
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explained by the possibilities that there are more cases indicating a CLABSI than any 

other specific HAI, but also that the risk factors indicating a CLABSI may typically be 

more diagnostic of a CLABSI, such as the patient’s central line day.  

 

Figure 5. Mean time-to-detect with standard error bars for each infection type.  

Risk Factor Encoding Time 

A separate analysis was conducted in order to compare how long nurses spent on 

the risk factors when they were exposed to only one risk factor versus when they were 

exposed to all three. Is the third risk factor analyzed quickly to confirm an existing 

position, or is it analyzed as slowly or more slowly, to interpret and integrate it with 

previous cues?  Based on the case study construction, within a family, the identical cue 

presented in the one risk factor condition was placed third in the three risk factor 

condition. Thus, time spent on that individual cue could be compared across groups 

without any impact of the cue’s diagnosticity, familiarity, or even sentence length. Mean 

durations on the one risk factor in the One Risk Factor condition and mean durations on 
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the last risk factor in the Three Risk Factor condition were calculated for each nurse for 

each case study containing a risk factor. A 2(Experience) x 2(Time Pressure) x 2(Risk 

Factors) split-plot ANOVA was conducted on those durations. Means and standard 

deviations are displayed in Appendix E. A significant main effect was found for Time 

Pressure, such that nurses spent less time on that cue when under time pressure compared 

to when they were not under time pressure, F(1,20) = 7.35, p<.05, ηp
2 = 0.269, which is 

consistent with the findings from the manipulation check. The main effect of time 

pressure is displayed in Figure 6.  

 

Figure 6. Mean duration on yoked-cue for each level of Risk Factors and Time 

Pressure.  

 

However, no significant main effect of risk factors was found, such that nurses 

spent the same amount of time on the yoked risk factor, F(1, 20) = 3.937, p=.061, ηp
2 = 

0.164. Thus, it can be inferred that encoding the accumulation of three risk factors did not 

differ from encoding one single risk factor when it comes to time. These results along 
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with the time-to-detect results suggest that speed, unlike sensitivity, did not play a major 

role in problem detection. 

Probability Judgments 

In addition to detection sensitivity and speed, nurses were also asked at the end of 

each case study to report the probability that a patient would develop an infection. These 

probability judgments were elicited to investigate whether nurses were incorporating the 

risk factors into their cognitive frames, resulting in higher likelihood assessments. At the 

end of each case study, participants were asked to judge on a 0-100 scale the probability 

that the patient would develop an infection. A 2(Experience) x 2(Time Pressure) x 3(Risk 

Factors: One, Three, and None) mixed ANOVA was conducted on mean probability 

judgments. Results from the ANOVA are displayed in Table 6, and means and standard 

deviations are displayed in Appendix E. A significant main effect was found for risk 

factors as displayed in Figure 7, F(2,20) = 15.78, p<.01, ηp
2=0.441. Results are displayed 

in Figure 7.  

Table 6 

Significance tests for Probability Judgments.  

 

Variable F df p ηp
2 

Risk Factors 15.78 2, 20 0.000** 0.441 
Experience 1.30 1, 20 0.268 0.061 
Time Pressure 2.80 1, 20 0.110 0.123 
Risk Factors x Experience 2.77 2, 20 0.075 0.122 
Risk Factors x Time Pressure 2.12 2, 20 0.133 0.096 
Experience x Time Pressure 0.69 2, 20 0.415 0.033 
Risk Factors x Experience x Time Pressure 0.81 2, 20 0.452 0.039 
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A post-hoc analysis was conducted to examine the relationship of the main effect 

of risk factors. Three pairwise t-tests were conducted to compare each risk factor level 

with each other, using the Bonferroni procedure to correct for alpha. A significant effect 

was revealed for both the One Risk Factor versus None condition, t(23) = 3.597, p<.016 , 

and the Three Risk Factor versus None condition, t(23) = 5.589, p<.016. However, there 

was no significant difference found between the One Risk Factor and Three Risk Factor 

conditions, t(23) = 1.449, p=.161. Thus, nurses were incorporating the risk factors into 

their probability judgments, yet the amount of risk factors did not statistically increase 

nurses’ probability.  

 

Figure 7. Mean probability judgments for the main effect of risk factor 
conditions. Significant pairwise t-tests are indicated with brackets and asterisks. 
 

The presence of risk factors did result in a significant increase in nurses’ 

probability judgments, suggesting nurses were in fact incorporating risk factors into their 
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risk assessments. This finding is consistent with the increase in cumulative detection as 

displayed in Figure 2. However, there was no significant difference found between the 

one and three risk factor conditions, suggesting that additional risk factors did not 

significantly affect nurses’ probability judgments.  

In summary, nurses were able to recognize the risk factors as a signal to a 

problem, and their ability to recognize the risk factors depended on both experience and 

time pressure. Nurses were also able to incorporate the risk factors into their probability 

judgments of the likelihood of developing an infection, yet more risk factors did not 

statistically increase probability. Thus, the results on problem detection demonstrate that 

although speed did not produce differential effects, the quality of nurses’ detection 

judgments were meaningful. 

Problem Identification 

In addition to evaluating problem detection ability, the current experiment also aimed to 

investigate the relationship between problem detection and problem identification. Thus, 

problem identification judgments were included in the experiment to see if the nurses 

actually knew the nature of the problem. Problem identification judgments were first 

provided at initial detection, and then after every remaining cue until the end of the case 

study. Problem identification was examined at two points: at the time of detection and at 

the end of the case study. Nurses either provided a correct identification, incorrect 

identification, or simply said, ‘don’t know.’ Binary logistic regression was used for both 

analyses to assess the variables that predicted a correct response. For these analyses, 
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correct identifications were coded as 1, and incorrect and ‘don’t know’ identifications 

were coded as 0. The None condition was excluded from the following analyses.  

An initial analysis was conducted predicting correct identification only at the 

point of detection with Experience, Time Pressure, Risk Factors, and Infection Type as 

predictors. The omnibus chi square was not significant, therefore these predictor 

variables alone were not sufficient for predicting a correct identification at detection, χ2 

(4) = 7.262, p=.123. 

A second analysis was then conducted predicting identification at the end of the 

case study, with Experience, Time Pressure, Risk Factors, Infection Type, and Correct 

Identification At Detection as predictors. Thus, this analysis was identical to the first, 

except an additional predictor of correct identification at detection was added. The 

omnibus chi square was significant, suggesting a sufficient prediction equation, χ2 (5) = 

85.606, p<.01. Nagelkerke’s R2 and -2 log likelihood for this equation was .461 and 

194.406 respectively, suggesting moderate variance and fit explained by the model. 

Results for each predictor in the equation are presented in Table 7.  

Table 7 

Binary Logistic Regression Results for Each Predictor for Correct Identification.  

Predictor ß SE Wald df p Exp (ß) 

Experience .819* .366 5.997 1 .025 2.267 
Time 

Pressure 
-.533 .361 2.174 1 .140 .587 

Risk Factors .364 .361 1.018 1 .313 1.439 
Infection 2.209** .383 33.359 1 .000 9.109 

Correct At 
Detection 

2.715** .479 32.150 1 .000 15.109 

Note: * p <.05. 
          ** p<.01 
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Experience, Infection, and Correct Identification at Detection were all significant 

predictors of correctly identifying the problem at the end of the case study. Descriptive 

statistics for each significant predictor are displayed in Table 8.  

 

 

Table 8 

Proportion of correct responses for each significant predictor. 

Predictor Suma Nb Proportion 
correctc 

Experience    
     Experienced 62 111 0.56 
     Novice 42 99 0.42 
Infection    
     HAI 29 104 0.28 
     CLABSI 75 106 0.71 
ID at Detection    
    Correct 46 55 0.84 
    Incorrect 56 147 0.38 
a Number of cases a correct identification was provided per variable. b Total cases an 
identification was provided per variable. c Proportion of total cases correct identification 
was provided per variable.  
 

Based on the proportion of correct responses for each level of the significant 

predictors, experienced nurses’ problem identifications at the end of the case study were 

more accurate when compared to those of novices.  In addition, nurses were more 

accurate in identifying a CLABSI infection as compared to another HAI.  Again, this 

finding may be because not only were there more CLABSI cases in the experiment and 

the operational environment, it can be argued that the risk factors indicating a CLABSI 

were more diagnostic of a CLABSI compared to the other HAIs. Finally, nurses were 
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more likely to identify the problem correctly at the end of a case study if they correctly 

identified the problem at detection. This suggests that if nurses accurately detect and 

identify simultaneously, they are more likely to remain accurate even in the face of new 

evidence.  

Failure to Identify 

A separate analysis was conducted to specifically examine the instances in which 

a nurse provided a ‘don’t know’ problem identification. To determine what variables 

predicted a failure to identify a problem, binary logistic regression was used. Specifically, 

‘don’t know’ responses both at detection and at the end of the case study were coded as 

‘1’, and both correct and incorrect problem identifications were coded as ‘0’. This means 

that cases were included only if there was an opportunity to identify a problem. The None 

condition was included in the following analyses. 

A first analysis was conducted only examining ‘don’t know’ responses at 

detection. Experience, Time Pressure, Risk Factors, and Infection Type were included as 

predictors in the binary logistic regression equation. The omnibus chi square was 

significant, χ2 (4) = 13.775, p<.01, and Nagelkerke’s R2 and -2 log likelihood were 0.060 

and 371.960 respectively. Regression results for each variable are displayed in Table 9. 

Experience was the only significant predictor, such that experienced nurses were more 

likely to provide a ‘don’t know’ response at detection compared to novices.  

Table 9 

Binary Logistic Regression Results for Each Predictor for ‘Don’t Know’ at Detection.  

Predictor ß SE Wald df p Exp (ß) 



 
43 

Experience  .907** .263 11.885 1 .001 2.476 
Time 

Pressure 
-.002 .252 .000 1 .994 .998 

Risk Factors  .093 .224 .174 1 .676 1.098 
Infection  .056 .222 .063 1 .802 1.057 

Note: * p <.05. 
          ** p<.01 

 

A second analysis was conducted only examining ‘don’t know’ responses at the 

end of the case study. For this analysis, Experience, Time Pressure, Risk Factors, 

Infection Type and whether nurses provided a ‘don’t know’ at detection were included as 

predictors. The omnibus chi square was also significant,  χ2 (5) = 76.708, p<.01, with 

Nagelkerke’s R2 and -2 log likelihood of 0.331 and 253.854 respectively. Thus, the 

prediction equation examining ‘don’t know’ responses at the end of the case study 

demonstrated superior fit compared to the prediction equation examining ‘don’t know’ 

responses at detection. Regression results for each predictor variable are displayed in 

Table 10.  

Table 10 

Binary Logistic Regression Results for Each Predictor for ‘Don’t Know’ at the End of the 

Case Study.  

Predictor ß SE Wald df p Exp (ß) 

Experience -.667 .350 3.633 1 .057 .513 
Time 

Pressure 
 .186 .322 .366 1 .562 1.205 

Risk Factors  .672* .300 5.022 1 .025 1.958 
Infection -.575* .281 4.023 1 .040 .563 

Don’t Know 
at Detection 

2.649** .347 58.227 1 .000 14.134 

Note: * p <.05. 
          ** p<.01 
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Risk Factors, Infection Type, and if nurses provided a ‘don’t know’ at detection 

were all significant predictors, yet Experience is no longer a significant predictor at the 

end of the case study. Descriptive statistics for each significant predictor are displayed in 

Table 11.  

Table 11 

Proportion of ‘Don’t Know’ Responses at the End of the Case Study for Each Significant 

Predictor. 

Predictor Suma N b  Proportion 
‘Don’t know’ c  

Risk Factors    
     One Risk Factor 20 90 22.22 
     Three Risk Factors 23 113 20.35 
     None 23 80 28.75 
Infection    
     HAI 29 100 29.0 
    CLABSI 14 103 13.59 
    None 23 80 28.75 
‘Don’t Know’ At 
Detection? 

   

    Yes 48 89 53.93 
     No 18 218 08.25 
a Number of cases a ‘don’t know’ was provided per variable. b Total cases an 
identification was provided per variable. c Proportion of total cases ‘don’t know’ was 
provided per variable.  

 

Overall, nurses were more likely to provide a ‘don’t know’ at the end of the case 

study in the None condition compared to the Three Risk Factor and the One Risk Factor 

condition. Also, nurses were more likely to provide a ‘don’t know’ identification in both 

the None condition and the HAI condition compared to the CLABSI condition. Finally, 

nurses were more likely to provide a ‘don’t know’ response at the end of the case study if 

they provided a ‘don’t know’ response at detection.  
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Problem Detection Versus Problem Identification 

The remaining results aimed to investigate how problem detection and problem 

identification are related. In the post-study questionnaire, nurses were asked to report 

both problem detection and problem identification strategies. One particular question 

asked, “Did you ever find yourself identifying the infection at the same time you decided 

that the patient was at risk? If so, please indicate how often.” Nurses responded by rating 

on a one to ten scale with 1 rated as ‘Never’ and 10 rated as ‘Every Time’.  A second 

question asked, “Did you ever find yourself deciding the patient was at risk but had not 

yet identified what was wrong with the patient? If so, please indicate how often.” Nurses 

responded on an identical scale. Responses to these scales were averaged across each 

between-subject cell. To examine whether nurses reported identifying at detection or 

identifying after detection was analyzed using a 2(Experience) x 2(Time Pressure) x 2 

(Question) mixed ANOVA. There were only two cases where a nurse did not provide a 

response, thus pairwise deletion was used to account for the missing data. Results 

revealed a significant main effect of question type F(1,18) = 4.918, p<.05. Nurses 

reported problem detection and problem identification as separate behaviors more often 

than performing the two simultaneously. However, there was no effect of Experience, 

F(1,18) = .032, p=.860, nor Time Pressure, F(1,18) = .127, p=.725. These findings 

provide further evidence for the face validity of the distinction between detection and 

identification, such that nurses reported that they treated detection and identification as 

separate processes when conducting the experiment.  

Confidence Judgments 
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Nurses were prompted to provide confidence judgments in both their detection 

and identification for each judgment after the nurse detected a problem. If the nurse 

provided a ‘don’t know’ problem identification, she was instructed to type a confidence 

of zero. To evaluate nurses’ confidence when an actual identification was attempted, 

problem identification confidence judgments of zero were excluded from this analysis, 

but are discussed separately.   

Confidence judgments were examined both at the point of detection and at the end 

of each case study. Mean confidence judgments were analyzed using a 2(Experience) x 

2(Time Pressure) x2(Position) x 2(Question Type) mixed ANOVA.  Means and standard 

deviations are presented in Appendix E. The Position variable was a within subjects 

variable with two levels, at the point of detection and at the end of case study.  The 

Question Type variable was also a within subjects variable with two levels. The Question 

type variable represents the two separate dependent variable measurements, problem 

detection confidence and problem identification confidence, at both positions. 

Significance tests are displayed in Table 12. There was one case in which a nurse did not 

provide any confidence judgments for problem identification at the end of the case study, 

therefore pairwise deletion was used to account for the missing data. 

 

Table 12 

Significance tests for Confidence Scales.  

Variable F df p ηp
2 

Position 0.01 1, 19 0.909 0.001 
Question Type 0.39 1, 19 0.539 0.020 
Experience 0.36 1, 19 0.556 0.019 
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Table 12 continued     
Time Pressure 5.11 1, 19 0.036* 0.212 
Position x Question Type 0.73 1, 19 0.404 0.037 
Position x Experience 6.89 1, 19 0.017* 0.266 
Position x Time Pressure 2.24 1, 19 0.151 0.105 
Question Type x Experience 0.12 1, 19 0.729 0.006 
Question Type x Time Pressure 0.78 1, 19 0.390 0.039 
Experience x Time Pressure 0.35 1, 19 0.562 0.018 
Position x Question Type x Experience 4.84 1, 19 0.040* 0.203 
Position x Experience x Time Pressure 1.55 1, 19 0.788 0.004 
Question Type x Experience x Time Pressure 2.24 1, 19 0.229 0.075 
Position x Question Type x Time Pressure 6.31 1, 19 0.021* 0.249 
Position x Question Type x Experience x Time 
Pressure 

0.91 1, 19 0.351 0.046 

Note: * = p<.05 
          ** = p<.01 
Significant variables are highlighted in bold.  

Position, Question Type, and Experience 

A significant three-way interaction was found for the effect of Position, Question 

Type, and Experience, as displayed in Figure 8. Follow-up analyses were conducted to 

examine the lower order two-way interactions for each Question Type separately. For 

Problem Detection, a significant two-way interaction was found between Position and 

Experience, F(1,22)=5.82. p<.05. However, for Problem Identification, no significant 

two-way interaction was found between Position and Experience, F(1,21)=2.72, p=0.144. 

For problem detection confidence, experienced nurses started off less confident at 

detection, but became very confident after all information was accumulated. Novice 

nurses on the other hand, started off very confident at detection, but became significantly 

less confident after all information was accumulated. Problem identification confidence 

however, did not vary based on experience or position.  
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Figure 8. Mean confidence ratings for each level of Position, Question Type, and 
Experience with standard error bars.  
 

Position, Question Type, and Time Pressure 

There were two effects modifying the main effect of Time Pressure.  A separate 

significant three-way interaction was also found for the effect of Position, Question Type, 

and Time Pressure, as displayed in Figure 9. Post-hoc analyses were conducted to 

analyze the two-way interactions for each level of Position separately. There was a 

significant two-way interaction between Time Pressure and Question Type at detection, 

F(1,22)=4.63. p=.043, but there was no significant two-way interaction between Time 

Pressure and Question Type at the end of the case study, F(1,21)=0.14. p=.717. Overall, 

detection confidence was substantially higher under time pressure compared to not under 

time pressure. In terms of problem detection confidence under time pressure, nurses were 

confident at detection, yet became even more confident at the end of the case study. Thus, 

not only were nurses more confident while under time pressure, nurses became even 
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more confident in their problem detection judgments after more information had 

accumulated. On the other hand, problem detection confidence not under time pressure 

resulted in low confidence at detection and even lower confidence at the end of the case 

study. Thus, nurses were less confident in their problem detection judgments, but became 

even less confident as more information was accumulated.  

 

Figure 9. Mean confidence ratings for each level of Position, Question Type, and Time 
Pressure with standard error bars. 
 

Problem identification confidence did not vary based on position. However, it is 

interesting to note that for both time pressure and no time pressure conditions, problem 

detection and problem identification confident at detection varied, yet at the end of the 

case study, problem detection and problem identification confidence were equal, 

suggesting detection and identification are treated the same at the end of the case study. 

Since nurses reported higher probability judgments in the cases with risk factors 

compared to none, a similar approach was taken to investigate whether overall 

confidence was also higher in the cases containing risk factors. A 3-way between-
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subjects ANOVA was conducted with mean confidence in the One, Three, and None 

Risk Factor conditions. Results revealed that there was no significant difference in 

overall confidence between the risk factor conditions, F(2,40) = 1.04, p = 0.363. Thus, 

confidence judgments did not follow the overall probability judgments. However, 

confidence judgments were taken both at the point of detection and at the end of the case 

study, whereas probability judgments were only taken at the end of the case study.  
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CHAPTER 4 

DISCUSSION 

The results of this study provided useful information about the variables that 

affect problem detection.  According to HyGene (Thomas, Dougherty, Sprenger, & 

Harbison, 2008), people use cues from the environment to generate hypotheses by 

matching the cues with traces from memory, which then informs decision-making and 

probability judgments. This process is affected by both task characteristics and cognitive 

limitations (Thomas, Dougherty, Sprenger, & Harbison, 2008). In the current experiment, 

nurses had to decide if and when a problem of infection risk was developing, and 

subsequently make both identification hypotheses and probability judgments. The results 

of this experiment suggest that both task characteristics (time pressure and risk factors) 

and cognitive limitations (experience) did in fact affect both detection hypotheses and 

probability judgments.  

Risk Factors, Time Pressure, Infection Type, and Experience 

Varying the presence of risk factors affected both problem detection hypotheses 

and probability judgments. Because the presence of risk factors led to increased 

cumulative detection compared to cases with no risk factors, it can be argued that the risk 

factors did in fact serve as diagnostic cues that constrained the number of alternative 

hypotheses held in the SOC, therefore supporting a problem detection decision. This 

notion is also supported by the fact that nurses were more likely to attempt problem 

identification at the end of the case study in cases where risk factors were present. Also, 

the presence of risk factors led to increased probability judgments at the end of the case 

study when compared to cases with no risk factors. Again, because the cues were more 
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diagnostic of an infection, the nurse was more likely to have a correct hypothesis and had 

to consider fewer alternatives, leading to increased probability judgments. It should be 

noted, however, that confidence judgments were not affected by the amount of risk 

factors. This is perhaps because nurses may be treating confidence in their decisions 

differently than the objective likelihood of the patient developing an infection. 

Time pressure also played a large role in nurses’ detection decisions and 

judgments. Dougherty and Hunter (2003b) revealed that time pressure led to the 

generation of fewer hypotheses and increased probability judgments. The results of the 

current experiment also support these findings. If fewer hypotheses were being generated, 

the nurses would then have needed more diagnostic information to make a detection 

decision. In the current experiment, nurses required more cues under time pressure in 

order to make an affirmative problem detection decision.  In addition, nurses’ confidence 

judgments were significantly higher while under time pressure compared to the no time 

pressure condition. This implies that because there was a constrained number of 

hypotheses held in the SOC, and these hypotheses were generated with more diagnostic 

cues, nurses were able to initiate a more refined information search once a detection 

judgment was made, leading to higher confidence judgments (Dougherty & Hunter, 

2003b).    

Although this experiment did not originally set out to make predictions about how 

different infection types affected problem detection, the results revealed some interesting 

findings. Similar to the introduction of more risk factors, varying the type of infection 

also seemed to constrain the number of competing hypotheses in the SOC. This notion 

was primarily supported by nurses’ problem identification judgments. Nurses were more 



 
53 

likely to both attempt problem identification and to provide an accurate identification for 

cases indicating a CLABSI infection. This finding is probably due to the fact that 

CLABSI infections are more common at this particular hospital; therefore the nurses have 

more memory traces associated with this particular infection type, leading to clearer 

hypotheses concerning the nature of the infection.  

Finally, nurses seemed to differ in their detection decisions and judgments based 

on their relative experience. It can be argued that experienced nurses have more extensive 

memory traces associated with both detecting and identifying problems with their 

patients. This implies that experienced nurses should be better able to recognize the cues 

in the environment and match the cues more closely with memory traces, leading to more 

accurate hypotheses and judgments. The results of this experiment provided some support 

for this claim. Experienced nurses were more sensitive to the type of infection compared 

to novices, suggesting that experienced nurses had more constrained hypotheses in the 

SOC when making a detection decision.  

Furthermore, experienced nurses were also more likely to accurately identify a 

problem at the end of the case study. Thomas, Dougherty, Sprenger, and Harbison (2008) 

argue that the hypotheses maintained in the SOC drives the individual to seek further 

information to hone in on a single hypothesis. This suggests that if experienced nurses 

did in fact have fewer hypotheses held in the SOC, and thus have fewer competing 

hypotheses, then they should be more successful in their information search to find the 

correct hypothesis.  

Additionally, experienced nurses were more likely to defer identification at 

detection. This finding suggests that experienced nurses may be more careful in their 
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detection and identification decisions. Thus, although experienced nurses may have a 

more refined set of hypotheses held in the SOC at detection, experienced nurses are still 

more reluctant to provide identification until more diagnostic information is obtained. 

This idea is also supported by the nurses’ confidence ratings. Experienced nurses’ 

were initially less confident in their decisions and then became more confident as more 

information accumulated, whereas novice nurses were initially more confident in their 

decision and became less confident as more information accumulated. This suggests that 

experienced nurses started off more cautious in their decisions as they were still 

considering between alternative hypotheses. Once a problem detection decision was 

made, experienced nurses then searched for cues that would distinguish one hypothesis 

from another, leading to increased accuracy and confidence.    

Detection Vs Identification 

The results of this experiment produced some mixed results regarding the 

relationship between problem detection and problem identification. Based on nurses’ 

reports from the post study questionnaire, nurses treated detection and identification as 

separate processes. This is mostly consistent with the behavioral data, such that problem 

detection and problem identification confidence tend to vary based on both experience 

and time pressure. However, problem detection and problem identification confidence are 

equal within each experience and time pressure condition. This suggests that by the end 

of the case study, problem detection and problem identification were treated as the same 

process. In addition, if can be argued that if the hypotheses held in the SOC drive a 

detection decision, those hypotheses are then used to guide the nurses’ analysis of the 

subsequent cues to make an identification decision. Thus, nurses treat problem detection 
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as a distinct process from problem identification at the point of detection, but once an 

initial detection judgment is made; that detection decision is then used to drive 

identification, combining them into one process. 

Application 

The results of this experiment can have important implications for the nursing 

domain and prevention of HAIs. Problem detection sensitivity under time pressure could 

potentially be impaired if only one risk factor is available, thus could lead to breakdowns 

in safety. Interventions should be introduced to increase the salience of risk factors in 

order to overcome the limitation of time pressure. This could be accomplished by 

designing alerts or warnings, or increase the visual salience of these risk factors both on 

the patient and on the EHR. In addition, supplemental training on the type of risk factors 

could also pose a benefit to novice nurses, leading to a closer link between detection and 

identification.  

Limitations and Future Research 

Although this experiment has demonstrated promise in both the methodology and 

results, there are a few limitations that need to be considered. As mentioned previously, 

years of experience were used as a surrogate for expertise. However, more years of 

experience do not always equate with expertise. Thus, operationally defining expertise by 

performance may yield more valid results. Additionally the task was conducted in an 

online format with one fact presented at a time. In an actual nursing environment, nurses 

are constantly bombarded with multiple cues and must processes cues all at once. Thus, 

future experiments could take the information used in this paradigm into a simulated 

environment to see if detection and identification change. Another limitation of this 
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experiment is the nature of problem detection in the NICU. Because all patients in an 

ICU are at an increased risk for infection, and neonates are always at an increased risk for 

infection even if they are considered “healthy”, the nature of the case studies never began 

as truly neutral. Thus, future studies should apply this experimental paradigm to other 

domains to see if and how problem detection shifts. Future research should also explore 

the nuances of what leads to quicker and more accurate identification after detection has 

occurred. Finally, the current experiment only investigated the effects of three variables 

on problem detection. This is by no means an exhaustive list of all the factors that affect 

detection, thus future experiments should incorporate are more complete model. 

Nevertheless, the current study supplied important evidence that problem 

detection is a complex decision process that is dependent on a variety of different factors. 

The presence of risk factors narrowed the amount of possible hypotheses, leading to 

increased accuracy and confidence. The presence of time pressure also narrowed the 

amount of possible hypotheses, leading to an increased reliance on more diagnostic cues 

and increased confidence. The type of infection also played a role, as more memory 

traces were associated with CLABSI infections. Experienced nurses also demonstrated 

more careful consideration of the cues, leading to increased accuracy. Finally, nurses did 

in fact treat problem detection and problem identification as separate processes, yet these 

processes were blended together at the end of the case study. 
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APPENDIX A 

PAPER INSTRUCTIONS 

General Instructions 

• You will be presented with a series of case studies that pertain to 

individual patients.  

• The goal of the experiment is to understand how quickly and 

accurately nurses decide if there is a problem with a patient, such 

that an intervention is needed.  

• A problem in this sense is defined as “the process by which people 

first become concerned that events may be taking an unexpected 

and undesireable direction that potentially requires action” (Klein et 

al., 2005, p14) 

• Case studies will be presented in a format of seven facts presented 

one at a time.  

• A question will appear on the side of the screen that asks if the 

patient is at an increased risk of infection. It will remain on the 

screen as you receive new facts.  

• You can make your decision at any point during the process. 

• Not all patients will necessarily have an increased risk of infection. 

•  If and when you have decided that: 

o  the patient is at risk beyond the level of risk when the 

patient was first admitted 

o  based on the new information action is required 



 
58 

• Select YES as quickly as possible. 

•  Once the button is selected, you will be asked a few follow-up 

questions about your choice.  

 

Remember: you can make your decision at any point during the 

process, and not everyone will have a greater risk of infection than 

when they entered the hospital. 
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APPENDIX B 

SAMPLE CASE STUDY LAYOUT 

In this example, the participant detected the problem after the fifth fact was presented. 
Risk factors in this example are “Very low birth weight, preterm labor, and PICC line 
day 21”.  
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APPENDIX C 

CASE STUDIES 

Case Studies for each condition. Risk factors appear in bold.  

 
Family Infection One Risk Factor Three Risk Factors None 
A VAP Day Of Life 21 Day Of Life 21 Day Of Life 21 
  AGA 26 3/7 AGA 26 3/7 AGA 26 3/7 
  Birth weight 570 g multiple intubations Has primary nurse 
  prolapsed cord prolapsed cord prolapsed cord 
  Breech apgars 1,6 chest tube Breech apgars 1,6 
  Female Birth weight 570 g Female 
  isolette isolette isolette 
B GBS Term infant now Day Of 

Life 10 
Term infant now Day 
Of Life 10 

Term infant now Day 
Of Life 10 

  Twin B Twin B Twin B 
  Increased episodes of 

A'sB'sD's Foley C section 
  Current weight 3255 g Young maternal age Current weight 3255 g 
  RDS RDS RDS 
  

On NcPAP 
Increased episodes of 
A'sB'sD's On NcPAP 

  White female White female White female 
C Staph Black male Black male Black male 
  Prolapsed cord Prolapsed cord Prolapsed cord 
  C section C section C section 
  Day of Life 97 Birth weight 770g Breech 
  Mom GBS (-) 15 days PROM Mom GBS (-) 
  On RA Day of Life 97 On RA 
  Apgar 0,3,6 Apgar 0,3,6 Apgar 0,3,6 
D Enterococcus 

faecalis Day of life 95 Day of life 95 Day of life 95 
  Triplet C Triplet C Triplet C 
  Current weight 2860 g Current weight 2860 g Current weight 2860 g 
  

Birth weight 1150 g Birth GA 27 weeks 
Mat transport form 
Valdosta 

  AGA 40 4/7 PROM 11 days AGA 40 4/7 
  Cleft lip Birth weight 1150 g Cleft lip 
  

Abdominal distention 
with ileus noted on KUB 

Abdominal distention 
with ileus noted on 
KUB 

Abdominal distention 
with ileus noted on 
KUB 

E Staph Epi AGA 41 4/7 AGA 41 4/7 AGA 41 4/7 
  Twin Twin Twin 
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  Current weight 3430g Day of life 77 Current weight 3430g 
  

Infant noted to be 
lethargic 

Infant noted to be 
lethargic 

Emergent C section due 
to breech and 
transverse presentation 
of infant 

  No central access Birth GA 30 4/7 No central access 
  

On RA 
Infant noted to be 
lethargic On RA 

  On 45 mL Ng feeds 
(neosure) nothing by 
moutn until ST cleared 

On 45 mL Ng feeds 
(neosure) nothing by 
moutn until ST cleared 

On 45 mL Ng feeds 
(neosure) nothing by 
moutn until ST cleared 

F MRSA Current weight 1600 g Current weight 1600 g Current weight 1600 g 
  AGA 34 weeks AGA 34 weeks AGA 34 weeks 
  

Birth weight 885 g 
Increased apnea, 
brady, desats Isolette 

  Transport from outlying 
facility Birth GA 25 3/7 

Transport from 
outlying facility 

  Apgars 0,1,4,7 Birth weight 885 g Apgars 0,1,4,7 
  On NC 2IL 24% On NC 2IL 24% On NC 2IL 24% 
  Feeding intolerant Feeding intolerant Feeding intolerant 
G Necrotizing 

enterocolitis Day of life 13 Day of life 13 Day of life 13 
  On NcPAP On NcPAP On NcPAP 
  Spitting Spitting Spitting 
  

Preterm labor 
Extremely low birth 
weight Isolette 

  No IV Formula fed No IV 
  Full feeds Preterm labor Full feeds 
  Black female Black female Black female 
H UTI Day of Life 14 Day of Life 14 Day of Life 14 
  Current weight 2235 g Current weight 2235 g Current weight 2235 g 
  Foley OG NG feeding Crib 
  AGA 36 6/7 Female AGA 36 6/7 
  On RA On RA On RA 
  No transfusions Foley No transfusions 
  No IV access No IV access No IV access 
I MRSA Day of Life 13 Day of Life 13 Day of Life 13 
  AGA 33 4/7 AGA 33 4/7 AGA 33 4/7 
  

Erythema left knee 
Very low birth 
weight Mom pre-eclampsia 

  Preterm labor Preterm labor Preterm labor 
  Chronic HTN Erythema left knee Chronic HTN 
  HELLP syndrome Full enteral feeds HELLP syndrome 
  

Breast milk OGQ3 hours 
Breast milk OGQ3 
hours 

Breast milk OGQ3 
hours 
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J CLABSI Day of Life 5 Day of Life 5 Day of Life 5 
  Current weight 1800 g Current weight 1800 g Current weight 1800 g 
  On HFOV On HFOV On HFOV 
  

UAV/UAC access 
Receiving PRBC’s x 
3, Plts x 2 Has primary nurse 

  
Oliguria 

Extremely low birth 
weight Oliguria 

  Currently on full feeds 
and mild hypotension 
that resolved following 
further evaluation UAV/UAC access 

Currently on full feeds 
and mild hypotension 
that resolved following 
further evaluation 

  Isolette Isolette Isolette 
K CLABSI Day of Life 48 Day of Life 48 Day of Life 48 
  AGA 33 weeks AGA 33 weeks AGA 33 weeks 
  Line day 45 HAI/IL via PICC Has primary nurse 
  Episodes of 

apnea/bradycardia 26 week twin 
Episodes of 
apnea/bradycardia 

  Male Line day 45 Male 
  Isolette Isolette Isolette 
L CLABSI Day of Life 69 Day of Life 69 Day of Life 69 
  Birth weight 1820 g Birth weight 1820 g Birth weight 1820 g 
  Current weight 2790 g Current weight 2790 g Current weight 2790 g 
  

PICC line day 66 
Preterm infant born 
at 33 weeks gestation Has primary nurse 

  
AGA 41 2/7 weeks 

Receiving long term 
TPN/IL AGA 41 2/7 weeks 

  On RA PICC line day 66 On RA 
  Isolette Isolette Isolette 
M CLABSI Day of Life 11 Day of Life 11 Day of Life 11 
  AGA 28 3/7 AGA 28 3/7 AGA 28 3/7 
  

PICC line day 11 
Catheter inserted 
after first week of life 

Resolving Grade II 
IVH 

  Current weight 1600g Current weight 1600g Current weight 1600g 
  On vent Birth GA 26 6/7 On vent 
  Crib PICC line day 11 Crib 
  Black female Black female Black female 
N CLABSI Day of Life 15 Day of Life 15 Day of Life 15 
  AGA 25 5/7 AGA 25 5/7 AGA 25 5/7 
  

PICC line day 15 
PROM 72 hours 
prior to delivery PICC line day 15 

  White female Preterm labor White female 
  Eclampsia Eclampsia Eclampsia 
  Oscillator support PICC line day 15 Oscillator support 
  Increased bradycardia 

and desats on oscillator 
Increased bradycardia 
and desats on 

Increased bradycardia 
and desats on oscillator 
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oscillator 
O CLABSI AGA 30 1/7 weeks AGA 30 1/7 weeks AGA 30 1/7 weeks 
  Day Of Life 6 Day Of Life 6 Day Of Life 6 
  PICC line day 3 Birth GA 29 2/7 On NcPAP 
  

No transfusions 
Receiving trophic 
feeds No transfusions 

  Murmur present PICC line day 3 Murmur present 
  Isolette Isolette Isolette 
  Has primary nurse Has primary nurse Has primary nurse 
P CLABSI Day of Life 10 Day of Life 10 Day of Life 10 
  C-section due to 

worsening maternal pre-
eclampsia 

C-section due to 
worsening maternal 
pre-eclampsia 

C-section due to 
worsening maternal 
pre-eclampsia 

  No transfusions No transfusions No transfusions 
  

PICC line day 4 
Receiving trophic 
feeds White female 

  NIPPV support Birth GA 29 2/7 NIPPV support 
  Few desats PICC line day 4 Few desats 
  Isolette Isolette Isolette 
Q CLABSI Day of life 27 Day of life 27 Day of life 27 
  Current weight 1795 g Current weight 1795 g Current weight 1795 g 
  AGA 32 6/7 AGA 32 6/7 AGA 32 6/7 
  

Broviac line day 18 
Receiving multiple 
transfusions Has primary nurse 

  Placenta previce-active 
bleeding 

On continuous 
elecare (12cc/hr) 

Placenta previce-active 
bleeding 

  On NC 2IL 26% Broviac line day 18 On NC 2IL 26% 
  Crib Crib Crib 
R  Day of Life 23 Day of Life 23 Day of Life 23 
  AGA 35 weeks AGA 35 weeks AGA 35 weeks 
  

PICC line day 21 
Very low birth 
weight Isolette 

  On NC 2L 21-25% On NC 2L 21-25% On NC 2L 21-25% 
  On NPO Preterm labor On NPO 
  Hypothermia PICC line day 21 Hypothermia 
  Black male Black male Black male 
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APPENDIX D 

POST-STUDY QUESTIONNAIRE 

Age:  
 
Gender: M F 
 
Experience:  
 
If applicable, how many years have you been in nursing school?  
 
If applicable, how many years have you been working as a floor nurse?  
 
Have you worked in any other unit before this one? If so, please state the other units and 
for how many years.  
 
Did you have a particular strategy for deciding when the patient was at an increased risk 
for infection?  
 __YES 
 __NO 
 If YES, please explain: 
  
 
 
Did you find yourself selecting “Yes” at the very first sign that something with the 
patient has gone awry? If so, please indicate how frequently you used this strategy. 
 
1 2 3 4 5 6 7 8 9 10 
Not at all   Sometimes   Every Time 
 
Did you find yourself selecting “Yes” after two or more facts indicated that something 
with the patient has gone awry?  If so, please indicate how frequently you used this 
strategy. 
 
1 2 3 4 5 6 7 8 9 10 
Not at all   Sometimes   Every Time 
 
 
Were there any situations that led you to switch from one strategy to another?  
 
Did you find yourself prolonging selecting “Yes” until you had a better idea what the 
problem was with the patient?  If so, please indicate how frequently you used this 
strategy. 
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1 2 3 4 5 6 7 8 9 10 
Not at all   Sometimes   Every Time 
 
Please rank from the following the facts that were the most important in determining that 
the patient was at risk for infection. 
 [List of All Risk Factors in Case Studies] 
 
Were there a particular number of facts that you gathered before deciding to select “yes”? 
If so, how many?  
 __1 fact 
 __2 facts 
 __3 facts  
 __4 facts 
 __5 facts 
 __6 facts 
 __7 facts 
 __Other:  
 
 
Did you ever find yourself identifying the infection at the same time you decided that 
the patient was at risk? If so, please indicate how often. 
 
1 2 3 4 5 6 7 8 9 10 
Never      Sometimes            Every Time 
 
Did you ever find yourself deciding the patient was at risk but had not yet identified 
what was wrong with the patient? If so, please indicate how often. 
 
1 2 3 4 5 6 7 8 9 10 
Never      Sometimes            Every Time 
 
 
 IF selects a 2 or above:  
 For the instances when you decided that there was a problem with the patient but 
had not  yet identified the problem, what was your strategy for selecting “yes”? 
  __Immediately select “yes” but delay identification until more information 
was    available 
  __delay selecting “yes” until more information was gathered 
  __Immediately select “yes’ and attempt to identify with less confidence 
  __Other:  
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APPENDIX E 

MEANS AND STANDARD DEVIATIONS 

 

 Time Spent on Cues: Manipulation Check 

 M (SD) 
Time Pressure 3.01 (0.70) 
No Time 
Pressure 

4.15 (1.50) 

 

Baseline detection: None only   

 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
Cue     
   N1 2.67 (1.75) 1.00 (2.00) 1.17 (1.17) 0.33 (0.52) 
   N2 3.33 (2.34) 2.00 (2.45) 1.33 (1.34) 1.17 (1.95) 
   N3 3.33 (2.34) 2.83 (1.84) 1.67 (1.63) 1.17 (1.94) 
   N4 3.50 (2.07) 3.17 (1.84) 1.83 (1.72) 1.67 (2.25) 
   N5 4.00 (1.67) 4.00 (1.79) 2.50 (1.87) 2.17 (2.14) 
 
Signal-trial detection 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
One Risk 
Factor 

    

   CLABSI     
      Neutral 1.75 (0.94) 1.08 (1.02) 0.83 (1.13) 0.83 (0.68) 
      Cue 2.17 (0.75) 2.67 (0.81) 1.50 (1.64) 2.50 (0.55) 
   Other HAI     
      Neutral 1.00 (0.89) 0.92 (0.97) 0.50 (1.00) 0.75 (0.27) 
      Cue 1.17 (0.75) 2.00 (1.27) 1.17 (1.17) 2.00 (0.63) 
Three Risk 
Factors 

    

   CLABSI     
      Neutral 1.50 (1.38) 1.33 (1.33) 0.67 (1.21) 0.67 (0.75) 
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      Cue 2.83 (0.41) 2.83 (0.41) 2.00 (1.10) 2.67 (0.52) 
    Other HAI     
        Neutral 0.58 (0.66) 0.83 (1.13) 0.58 (0.66) 0.75 (0.88) 
        Cue 2.50 (0.55) 2.17 (0.75) 2.17 (0.75) 2.33 (0.52) 
 
Time-To-Detect 
 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
OneRiskFactor      
   CLABSI 8.39 (3.87) 11.23 (4.69) 8.66 (3.36) 9.61 (3.69) 
   OtherHAI 12.63 (9.28) 12.57 (3.13) 13.60 (8.10) 13.98 (6.31) 
ThreeRiskFactors     
   CLABSI 9.22 (3.91) 10.77 (3.71) 14.61 (14.00) 13.74 (7.33) 
   OtherHAI 16.94 (7.66) 10.61 (4.03) 13.22 (5.95) 14.11 (5.49) 
 
Cue-Encoding Speed 
 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
RiskFactorCondition     
   One 3.33 (0.92) 3.50 (1.80) 2.08 (0.70) 3.59 (1.26) 
   Three 3.55 (0.84) 4.62 (0.92) 2.76 (1.46) 4.76 (2.66) 
 
Probability Judgments 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
Risk Factor 
Condition 

    

   None 64.86 (29.83) 41.86 (14.37) 45.11 (21.35) 41.08 (30.59) 
   One 68.44 (21.87) 52.92 (15.67) 58.58 (16.96) 59.72 (17.96) 
   Three 83.69 (16.17) 61.69 (20.23) 65.69 (24.96) 48.27 (20.93) 
 
Questionnaire 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
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QuestionType     
   IDAtDetection 4.75 (3.30) 5.83 (1.60) 6.17 (1.60) 5.17 (1.60) 
   NoIDAtDetection 7.75 (2.06) 6.67 (2.07) 6.17 (2.56) 7.83 (1.17) 
 
 
Confidence Judgments 
 Experienced Novice 
 Time Pressure No Time 

Pressure 
Time Pressure No Time 

Pressure 
 M (SD) M (SD) M (SD) M (SD) 
At Detection     
   Detection 75.65 (23.99) 70.55 (26.99) 83.74 (14.56) 67.65 (21.97) 
   Identification 83.89 (22.67) 68.31 (25.02) 83.88 (13.85) 60.80 (20.65) 
At End of Case 
Study 

    

   Detection 84.74 (16.46) 74.09 (23.12) 84.23 (13.01) 52.09 (28.02) 
   Identification 90.41 (14.87) 71.49 (24.36) 83.47 (14.96) 64.05 (17.66) 
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