
DEVELOPING AGILE MOTOR SKILLS
ON VIRTUAL AND REAL HUMANOIDS

A Thesis
Presented to

The Academic Faculty

by

Sehoon Ha

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology
December 2015

Copyright c© 2015 by Sehoon Ha

DEVELOPING AGILE MOTOR SKILLS
ON VIRTUAL AND REAL HUMANOIDS

Approved by:

Dr. C. Karen Liu, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Jun Ueda
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Greg Turk
School of Interactive Computing
Georgia Institute of Technology

Dr. Katsu Yamane
Disney Research Pittsburgh

Dr. Jarek Rossignac
School of Interactive Computing
Georgia Institute of Technology

Date Approved: 31 July 2015

To my parents,

Sangsoo Ha and Jiwon Lee,

who have given me the best love and support

throughout my life.

iii

ACKNOWLEDGEMENTS

I cannot begin to express my thanks to my wife, Jennifer Gahee Kim, who sincerely

supports me with love, wisdom, insight, and delicious food. It is very special to share

my life with someone who is not just my wonderful wife, but also the greatest friend

a person could ever have. You make my life happier than ever.

I also want to thank my mother Jiwon Lee and my father Sangsoo Ha for guiding

me throughout my life. I would not have been able to find, start, and finish my

academic life without their unconditional love and support.

I am also grateful to my brother Jihoon, his family Eunchae and Dongkwon,

and parents-in-law Eungyoung Lee and Boogyun Kim for encouraging me to pursue

my degree. Especially, my brother has been a great tutor who teaches me how to

add numbers, how to program, how to solve puzzles, and many more in the most

interesting ways.

I want to thank the members of my committee: Greg Turk, Jarek Rossignac, Jun

Ueda, Katsu Yamane, and my advisor C. Karen Liu. Each of you encouraged and

help me to become a much stronger and solid researcher with insightful suggestions

on my research direction and communication skills.

I would like to extend my sincere thanks to my lab-mates who have shared in-

valuable discussions during the entire program: a co-advisor Yuting Ye, Jie Tan,

Yunfei Bai, Karthik Raveendran, Sumit Jain, Yuting Gu, Chen Tang, John Turner,

Alex Clegg, Kihwan Kim, Chirs Wojtan, Jason Williams, Jihun Yu, Tina Zhou, Mark

Luffel, Topraj Gurung, Kristin Siu, Yunseong Song, Jeongseok Lee, Wenhao Yu, and

many more. In addition, I would like to thank my friends/mentors: Yeongjin, Seong-

min, Jaeshik, Yeongseok, and Donggu. I am really sorry if I forgot anyone.

iv

I wish to particularly thank Evan Kanso, Jovan Popović, Jim McCann, and Katsu

Yamane, who provided me with encouragement and patience throughout the duration

of my internships. These experiences widen my research horizons.

Special thanks to my mentors, Wangjae Lee and Jaehong Kim, who guides my

life to a better direction.

I would like to express my deepest appreciation to my advisor, C. Karen Liu. I feel

extremely fortunate to have her as my advisor. Her intellectual insights and creativity

for research problems inspired to become a better researcher. Her enthusiasm for

research encourages me to keep working on more challenging problems, which is one

of the most valuable lessons learned in my life. It was a great honor to be under

her supervision for the last six years. I will miss all interactions with you, Karen,

including both insightful discussions and fun jokes.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xv

I INTRODUCTION . 1

1.1 Falling Strategies for Humanoids . 3

1.1.1 Falling and Landing Motion Control for Virtual Characters . 4

1.1.2 Multiple Contact Planning for Humanoid falls 5

1.2 Learning Framework for General Agile Motions 6

1.2.1 Iterative Design of Dynamic Controllers 6

1.2.2 Optimization with Failure Learning 7

1.2.3 Optimization for Parametrized Motor Skills 8

1.3 Transferring Controllers from Simulation to Hardware 8

1.4 Contributions . 9

II BACKGROUND . 11

2.1 Physics-based simulation of agile motor skills 11

2.1.1 Physics-based simulation for character animation 11

2.1.2 Physics-based controllers for agile motions 12

2.2 Control of humanoid falls . 13

2.2.1 Falling detection techniques 13

2.2.2 Falling damage reduction strategies 14

2.3 Human-in-the-loop interfaces . 15

2.4 Policy search algorithms . 16

2.4.1 Model-free policy search algorithms 16

2.4.2 Model-based policy search algorithms 17

vi

2.4.3 Policy search algorithms for parametrized tasks 18

III FALLING AND LANDING MOTION CONTROL FOR VIRTUAL
CHARACTERS . 21

3.1 Motivation . 22

3.2 Overview . 24

3.3 Landing Strategy . 25

3.4 Airborne Phase . 28

3.5 Landing Phase . 32

3.5.1 Impact Stage . 33

3.5.2 Rolling Stage . 35

3.5.3 Getting-Up Stage . 36

3.6 Results . 36

3.6.1 Evaluation . 40

3.6.2 Limitations . 42

3.7 Discussion . 42

IV MULTIPLE CONTACT PLANNING FOR HUMANOID FALLS 45

4.1 Motivation . 45

4.2 The Problem . 47

4.3 The Algorithm . 48

4.3.1 Abstract Model . 48

4.3.2 Multiple Contacts . 50

4.4 Experiments . 56

4.4.1 Simulation Results . 56

4.4.2 Hardware Results . 59

4.4.3 Limitations . 60

4.5 Conclusion . 61

V ITERATIVE DESIGN OF DYNAMIC CONTROLLERS 63

5.1 Motivation . 63

vii

5.2 Overview . 66

5.3 Coaching Stage . 68

5.3.1 Instructions . 68

5.3.2 Control Rigs . 68

5.3.3 Instruction Interpreter . 70

VI OPTIMIZATION WITH FAILURE LEARNING 73

6.1 Practicing Stage . 73

6.1.1 CMA-C . 76

6.1.2 Analysis on Toy Problems 80

6.1.3 Analysis on Real Problems 82

6.2 Parameterization and Concatenation 83

6.3 Results . 83

6.3.1 User Input . 84

6.3.2 Training Dynamic Skills . 85

6.3.3 Limitations . 89

6.4 Conclusion . 90

VII OPTIMIZATION FOR PARAMETRIZED MOTOR SKILLS . . 92

7.1 Motivation . 92

7.1.1 Related work . 94

7.2 Parameterized Optimization Problems 96

7.2.1 Parameterized Motor Skills 97

7.3 Optimization Algorithms . 98

7.3.1 Baseline algorithm: CMA-ES 99

7.3.2 Our Algorithm for Parameterized Optimization Problem . . . 99

7.4 Result . 104

7.4.1 Parameterized Motor Skills 105

7.4.2 Parameterized CEC’15 Problems 110

7.4.3 Comparison with Individual Learning Approach 111

viii

7.4.4 Hardware experiment . 112

7.5 Conclusion . 113

VIIIMODEL-BASED LEARNING FOR VIRTUAL AND REAL CHAR-
ACTERS . 114

8.1 Motivation . 114

8.2 Overview . 116

8.3 Learning the Dynamics Model . 117

8.3.1 Dynamics Bias Formulation 117

8.3.2 Gaussian Process . 118

8.3.3 Learning . 119

8.3.4 Prediction . 120

8.4 Data-Efficient Reinforcement Learning 121

8.5 Results . 122

8.5.1 Bongoboard Balancing . 123

8.5.2 Dynamics Bias Learning . 127

8.5.3 Policy Search . 127

8.5.4 Policy Performance . 128

8.6 Conclusion and Future Work . 129

IX CONCLUSION . 132

9.1 Summary . 132

9.2 Future work . 134

9.2.1 Real-time controllers for non-planar falls 134

9.2.2 A more intuitive learning interface 135

9.2.3 Dynamics bias learning for humanoids 136

REFERENCES . 138

VITA . 147

ix

LIST OF TABLES

1 Control parameters. 34

2 Initial conditions of the examples shown in the video (in order of ap-
pearance) . 36

3 The initial conditions and the results of BioloidGP simulations. . . . 57

4 The initial conditions and the results of Atlas simulations. 59

5 Control rigs. 70

6 Interpretation of instructions. Each instruction is associated with a
control rig, an objective term and/or a contraint. qf , qprevf : the fi-
nal state of the current motion and the previous motion. C,S,P,L
: the center of mass, center of pressure, linear momentum, and angu-
lar momentum. poslimb, rotlimb : the limb position and orientation.
qjoint, ksjoint : the joint angle and stiffness. 71

7 CMA-C evaluation on five problems. CMA-C improves the computa-
tion by four to five times. µ, λ, and σ represents CMA parent size,
population size, and step size. Ĉ, P̂, L̂, and Ŝ indicate the desired
COM, linear momentum, angular momentum, and the COP. 75

8 CMA-C on the toy problem I (Table 7) with various ratios of the
infeasible area to the feasible area. All other conditions are the same. 81

9 CMA-C on the toy problem II (Table 7) with various magnitude and
frequency of noise. All other conditions are the same. 81

10 Instructions used to train a precision jump. 84

11 Results on Parameterized CEC’15 Problems 110

12 Parameters used for the experiments. 126

13 Average number of experiments required at different noise levels and
inertial parameter errors. 128

x

LIST OF FIGURES

1 A fall of a virtual character. 4

2 A two-step falling strategy of a humanoid robot 5

3 A challenging stunt that a character jumps twice and rolls on the ground. 7

4 A design of a simple legged robot on a bongoboard. 8

5 A cat is able to right itself as it falls to land on its feet, irrespective of
its initial orientation. 15

6 Difference between a real robot and its simulation model results differ-
ent motions from same controllers. 17

7 A simulated character lands on the roof of a car, leaps forward, dive-
rolls on the sidewalk, and gets back on its feet, all in one continuous
motion. 21

8 Three stages in the landing phase. 25

9 The left and middle are the desired landing poses for the hands-first
strategy and the feet-first strategy, respectively. The right is the ready-
to-roll pose for the feet-first strategy, which we track only the upper
body. 25

10 Landing condition variables. 26

11 Samples for hands-first landing strategy. Successful samples are bounded
between top and bottom planes along θ(T) axis. The middle plane,
average of the two, indicates the linear relation of the ideal landing
condition. 27

12 Samples in the space of v
(T)
z , ω

(T)
y , and θ(T). The spinning velocity ω

(T)
y

has minimal effect on the success of a sample. 28

13 Among 16 poses in Q, pose 1, 2, 9, and 13 are frequently selected by
the airborne controller . 31

14 Landing phase controller. 32

15 Two-step impact stage for the feet-first strategy. 33

16 Hands-first landing motion. 37

17 Left: The character model used for most examples. Right: A character
with a disproportionately large torso and short legs. 39

xi

18 Maximal stress for each joint from a hands-first landing motion. Re-
sults are quantitatively similar across all of our simulations. Green:
Ragdoll motion. Blue: Our motion. Orange: Joint stress scaled by mass. 41

19 Feet-first landing motion. 43

20 The abstract model consists of a telescopic inverted pendulum and a
massless stopper. 48

21 Contact graphs . 51

22 First row: BioloidGP forward falling from a one-foot stance due to a
5.0N push. Second row: BioloidGP forward falling from a one-foot
stance due to a 8.0N push. Third row: Atlas forward falling from a
two-feet stance due to a 1000N push. Fourth row: Atlas forward falling
from a two-feet stance due to a 2000N push. 56

23 COM trajectories between the abstract model (Blue) and the robot
(Red). Top left: BioloidGP forward falling from a one-foot stance due
to a 5.0N push. Top right: BioloidGP forward falling from a one-foot
stance due to a 8.0N push. Bottom left: Atlas forward falling from
a two-feet stance due to a 1000N push. Bottom right: Atlas forward
falling from a two-feet stance due to a 2000N push. 58

24 We measured the acceleration at the head of BioloidGP (Left). For
both 0.0N (Middle) and 0.5N (Right) cases, the planned motions (Red)
yielded about 68% of the maximum acceleration of the unplanned mo-
tions (Blue). 60

25 Two precision jumps on narrow rails. 64

26 Overview diagram. 67

27 The user can adjust the positions of hands by giving an instruction
“TRANSLATE hands forward BY 0.5m”. The instruction will add an
IKPose rig for arms and modify the desired position of hands by 0.5m
in the forward direction. 72

28 A comparison of a single SVM and multiple SVMs. Left: Using a single
SVM to represent the feasible region (purple triangle), the SVM cannot
be activated after eight samples, due to the lack of positive samples.
Right: If the feasible regions is represented by the intersection of three
constraints, each of which is approximated by an individual SVM, eight
samples are sufficient to active two SVMs (shown in green and blue).
Dashed lines indicate the current SVM approximation of constraints. 79

xii

29 Contour of the trained SVMs for the second toy problem (Table 7).
The feasible region classified by SVMs is filled with red. The ground
truth feasible region is outlined by the dashed lines. For clarity, the
figure is zoomed into the region from [−5, 5]2 to [3, 5]2 82

30 We use these three target poses for all the initial controllers, except for
the rolling phase of drop-and-roll. 85

31 Monkey vault and wall-backflip. 87

32 Steps of our algorithm for parameterized optimization problems. (a)
define a parameterized distribution that maps a task parameter to
control parameters. (b) draw a set of samples from the parameterized
distribution. (c) select the elite samples for each task and update the
mean by applying regression. (d) update the covariances. 101

33 Top: Vertical jump with parameterized target height, 3cm to 8cm (8cm
is shown). Middle: Kick with parameterized target distance, 0.3m to
0.6m (0.6m is shown). Bottom: Walk with parameterized target speed,
6.7cm/s to 13.3cm/s (13.3cm/s is shown). 104

34 Comparison on three parameterized control problems. The cost (Equa-
tion (38)) is computed by averaging seven optimization trials. In all
problems, our algorithm converges faster than CMA-ES, especially
when the parameterized skill function is of cubic form. 106

35 The impact of task discretization on convergence. More discrete tasks
slow down the convergence of CMA-ES significantly, while it has neg-
ligible impact on our algorithm. 109

36 Comparison between our algorithm and the individual learning ap-
proach. The quality of the low-resolution policy (shown in green) is
comparable with the high-resolution one (shown in blue) for those six
tasks used for training (dotted vertical lines). However, for those tasks
corresponding to interpolated policy parameters, there is a significant
discrepancy between the quality of low-resolution and high-resolution
policies. In contrast, our policy (shown in red) learned with only six
tasks (M = 6) is comparable to the high-resolution one. 111

37 BioloidGP hardware. 112

38 Framework of our approach. 116

39 Direct policy search. 117

40 Robot balancing on a bongoboard. 124

xiii

41 Simulation result of a policy optimized for the Lagrangian model (left
column) and Box2D model (right column). In each snapshot, the left
and right figures are the Box2D and Lagrangian model simulations
respectively. 125

42 Velocity field of the learned dynamics model. Cyan: training data; red:
prediction; blue: ground truth. 127

43 Change of cost function value in Box2D simulations over iterations. . 129

44 Balancing success rate in Box2D simulation with noise, starting from
various initial wheel and board angles. (a) The policy has been opti-
mized with Box2D simulation without noise. (b) The policy has been
optimized with Box2D simulation with noise. 131

xiv

SUMMARY

Demonstrating strength and agility on virtual and real humanoids has been an

important goal in computer graphics and robotics. However, developing physics-

based controllers for various agile motor skills requires a tremendous amount of prior

knowledge and manual labor due to complex mechanisms of the motor skills. The

focus of the dissertation is to develop a set of computational tools to expedite the

design process of physics-based controllers that can execute a variety of agile motor

skills on virtual and real humanoids. Instead of designing directly controllers real

humanoids, this dissertation takes an approach that develops appropriate theories and

models in virtual simulation and systematically transfers the solutions to hardware

systems.

The algorithms and frameworks in this dissertation span various topics from spe-

cific physics-based controllers to general learning frameworks. We first present an

online algorithm for controlling falling and landing motions of virtual characters.

The proposed algorithm is effective and efficient enough to generate falling motions

for a wide range of arbitrary initial conditions in real-time. Next, we present a robust

falling strategy for real humanoids that can manage a wide range of perturbations

by planning the optimal contact sequences. We then introduce an iterative learning

framework to easily design various agile motions, which is inspired by human learn-

ing techniques. The proposed framework is followed by novel algorithms to efficiently

optimize control parameters for the target tasks, especially when they have many

constraints or parameterized goals. Finally, we introduce an iterative approach for

exporting simulation-optimized control policies to hardware of robots to reduce the

xv

number of hardware experiments, that accompany expensive costs and labors.

xvi

CHAPTER I

INTRODUCTION

The human desire of being physically impressive has a long history dated back to

ancient Greece. The ancient Olympic Games celebrated the glory of physical domi-

nance of body strength, as well as athletic agility, to achieve the goals faster and more

effortlessly. Today, physical agility continues to captivate our imagination in various

areas, such as sports, entertainment, or robot industry. In film or game industries,

agile motions are important content to make their games or movies more fun and

entertaining. Besides entertainment values, being agile and strong also holds great

practical values for robotic technologies, which can help search and rescue. When

the Fukushima Daiichi nuclear meltdown occurred in 2011, it was too dangerous for

human operations because of high radiation levels. A few robots were deployed to

measure temperature and radioactivity but failed due to limited speed and range of

operations [4]. The robots would have achieved the assigned tasks if they had had

enough agility to locomote on uneven terrains and climb over disaster debris.

Although “agile” motions include several examples, jumping, vaulting, or rolling,

they are not precisely defined to be discussed. The word “agile” is defined as “able

to move quickly, easily, effortlessly, and gracefully”. While moving “quickly” can

be directly associated with high-momentum motions, moving “easily”, “effortlessly”,

and “gracefully” are more difficult to physically quantify. For instance, moving “eas-

ily” can be due to different reasons, such as the innate strength of the subject, the

accumulated experience, or the ability to negotiate with the environment. In this

disseration, we define “agile motions” as “able to move quickly and effortlessly in

a complex environment” , which highlights high momentum and well-coordinated

1

strategies that exploit the environment. One great example that showcases a suite of

agile motions is Parkour, a sport that features moving from the current location to

the destination in the most efficient way. The skills of Parkour are well aligned with

our definition of agile motions because they require high momentum and dynamic

planning to negotiate with the obstacles and features in the environment.

Agile motor skills are difficult tasks for humanoids. Although the grand goal would

be to achieve agile motor skills on humanoid robots, there are many unsolved prac-

tical issues to directly design agile motions on the hardware, such as control delays,

sensor noises, or safety concerns. Unlike biped walking where adequate models and

control theories are already available, agile motions have not been studied extensively

in the literature of computer animation and robotics. Therefore, the appropriate ap-

proach toward agile real humanoids is to first develop theoretical models and control

algorithms on the physics-based simulation, where researchers in computer graphics

can generate complex and impressive motions; then the next step is to transfer the

solution to real hardware with additional processes, such as tuning parameters or

revising control mechanisms. Simulation-developed solutions will greatly reduce the

expensive cost of hardware experiments and prevent unexpected dangerous situations.

The aim of this dissertation is to develop a set of computational tools to expedite

design process of physics-based controllers that can execute a variety of agile motor

skills on virtual and real humanoids. Especially, we are interested in three unique

challenges for developing agile motions on humanoids.

The first goal is to develop falling and landing controllers for virtual and real hu-

manoids to ensure the safety. Safe falling and landing motions are fundamental motor

skills for real humans when they learn agile motions, because learning and execut-

ing agile motions often accompany both intentional and inadvertent falls. Similarly,

falling and landing controllers are required for humanoids to protect fragile body

parts and joints, so that we can safely develop controllers in the remaining chapters.

2

The second goal is to develop a set of general computational tools for designing

a variety of agile motion controllers in virtual simulation. The tools include a new

interface for easily developing adequate control architectures and novel algorithms for

efficiently finding the optimal control parameters. The motivation of these tools is

that designing and fine-tuning individual controllers is not a practical approach for

agile motions: they are not well-understood unlike other motions such as running

or reaching, and cover a wide range of diverse skills which are governed by different

control mechanisms and principles.

The final goal is to design a new algorithm that helps us deploy a control policy

from simulation to a physical system. Although the tools from the second challenge

help us to easily develop controllers in simulation, the developed controllers are less

likely to work on physical systems due to accumulated small errors. Therefore, we

develop a new algorithm that finds a control policy for hardware by learning the

discrepancy between virtual and real systems.

These additional, unique challenges motivated us to address the following prob-

lems in this dissertation, as steps to achieve agile motions on virtual and real hu-

manoids.

1.1 Falling Strategies for Humanoids

Falling and landing motions are a set of fundamental motor skills in various agile

motions to protect humanoids themselves. Because athletic movements frequently

involves transitions between airborne and contact phases, humanoids must know how

to absorb the shock at the landing moment and avoid damage to the body parts.

In addition, well-executed falling motions will lead a smooth transition to the next

motion.

We discuss two different falling controllers for virtual and real humanoids. In

Chapter 3, we discuss falls with the airborne phases for a virtual humanoid, which

3

are inspired by agile jumping and falling motions of Parkour practitioners. The main

objective of this chapter is to develop a robust online algorithm for generating natural

and agile falling motions from a range of initial conditions, such as heights and speeds.

However, the proposed algorithm relies on the manually designed rolling controller,

and does not explicitly minimize the joint stress of virtual characters. In Chapter 4, we

focus on falls without the airborne phases for real humanoids, which can be initiated

by unexpected perturbations. The algorithm in this chapter attempts to find the

optimal strategy that reduces the maximum impact to body parts of robots, instead

of simply using the rolling strategy as proposed in the Chapter 3. The effectiveness

of both presented strategies are validated by measuring amounts of joint stresses or

contact forces to body parts in physics simulation, and experimentally tested on a

small-size humanoid.

1.1.1 Falling and Landing Motion Control for Virtual Characters

Figure 1: A fall of a virtual character.

4

In Chapter 3, we show how to create a robust controller for generating agile and

natural falling motions of the virtual character that can land from various heights

and velocities. The goals of the controller are to reduce the joint stress at the impact

and get back on its feet to prepare the next action (Figure 1).

Inspired by falling skills of Parkour, we formulate the falling problem with three

phases, airborne, impact, and rolling based on the contact states of a virtual character.

First, two sub-controllers are designed for the airborne and rolling phases and a

regression analysis is conducted to find an optimal landing angle that can connect two

sub controllers at the impact phase. we will demonstrate that the motion generated

by the proposed controller looks natural and induces smaller joint stress, which is still

four times lower than a uncontrolled rag-doll motion.

1.1.2 Multiple Contact Planning for Humanoid falls

Figure 2: A two-step falling strategy of a humanoid robot

Chapter 4 describes a robust falling strategy which plans for appropriate responses

to a wide variety of falls, from a single step to recover from a gentle nudge, to a rolling

motion to break a high-speed fall. Our key observation is that many existing falling

techniques [104, 110, 6] assume specific sequences of contacts and aim to break specific

ranges of falls and requires us to an additional decision layer to choose the best falling

strategy to the given state. Instead, our multiple contact planning algorithm provides

a unified framework for various existing falling strategies, which can adjust the number

and order of contacts with respect to different magnitudes of perturbations. In the

proposed continuous space of strategies, our algorithm can efficiently find the best

5

contact sequences for the given initial state using a simplified model and dynamic

programming. To verify our framework, a variety of scenarios are tested on simulated

humanoids and the actual hardware (Figure 2) to show that our algorithm plans

versatile and effective falling strategies that successfully reduce damage to robots.

1.2 Learning Framework for General Agile Motions

Unlikely well-defined tasks such as reaching or walking, agile motions cover a wide

range of diverse skills such as vaulting, flipping, or rolling. Because these agile motions

are governed by different mechanisms and principles, manually designing and fine-

tuning specialized controllers for all tasks is not a practical approach. Design of an

individual physics-based controller for a new motor skill is a time-consuming task

which requires a lot of manual efforts from the controller designer, from the design of

the control mechanism to the tweaking of low-level control parameters.

Our goal is to design an intuitive and efficient learning framework for general motor

skills, including jumping, flipping, vaulting, and rolling. For an easy-to-use learning

framework, we develop a novel interactive interface for designing controllers using only

human-readable instructions inspired by how human coaches teach dynamic motor

skills. Further, the parameters of the designed controllers are efficiently optimized

using our novel algorithms to reduce a turn-around time. Using the proposed interface

and optimization techniques, users can intuitively and easily develop physics-based

controllers for general agile motor skills.

1.2.1 Iterative Design of Dynamic Controllers

In Chapter 5, we describe an iterative framework to design physics-based controllers

that executes very agile stunts (Figure 3). The aim of this chapter is to design an

intuitive and interactive framework that a user can easily design complex controllers

only using high-level, human-readable instructions, which is inspired by a human

learning process of coaching and practicing stages. During the coaching stage, the

6

Figure 3: A challenging stunt that a character jumps twice and rolls on the ground.

user provides instructions for revising task objectives, adding constraints, or updating

control mechanisms based on the current skill level. To enable interactive coaching,

we introduce “control rigs” as an intermediate layer of control module which allows

more coordinated control of the low level control variables and and provides more

intuitive mapping to high-level human instructions. During the practicing stage,

control parameters are efficiently determined using CMA-ES, which will be further

improved in the following chapters. The details of controllers development process

using our iterative learning framework are shown with example iterative training

procedures of Parkour motions.

1.2.2 Optimization with Failure Learning

In Chapter 6, we describe a new optimization algorithm for highly constrained prob-

lems, which are formulated when the user imposes numerous instructions to the vir-

tual character. A controller with many constraints is difficult to be optimized due

to the relatively small feasible regions with many local minima. Our key idea comes

from humans ability to learn from failure. Because failure in the real world is usually

associated with pain or injury, humans tend to be very effective in characterizing the

cause of failure and trying to avoid the same mistakes in the future. Under the con-

cept of “learning from failure”, the proposed algorithm CMA-C (Covariance Matrix

Adaptation with Classification) utilizes the failed simulation trials to approximate an

7

infeasible region in the space of control rig parameters so that it can predict valid-

ity of newly generated samples, resulting in a faster convergence than the standard

CMA-ES.

1.2.3 Optimization for Parametrized Motor Skills

In Chapter 7, we explain an evolutionary optimization algorithm for learning pa-

rameterized skills to achieve whole-body dynamic tasks. The parametrization of the

learned motor skills is an essential ability because a robot can adapt the skill to a

new situation, without learning the entire motor skill from scratch. Instead of main-

taining a single Gaussian distribution, the algorithm reduces the number of samples

by evolving a parametrized probability distribution which describes a mapping from

a task parameter to the optimal control parameters. we test the proposed optimiza-

tion algorithm for learning three parametrized dynamic motor skills on a simulated

humanoid robot, including jumping, kicking, and walking.

1.3 Transferring Controllers from Simulation to Hardware

Figure 4: A design of a simple legged robot on a bongoboard.

In Chapter 8, we describe an iterative approach for learning hardware models

and optimizing control policies using simulation. The proposed learning framework

8

is designed for reducing the number of expensive hardware experiments. Computer

simulation is often used to replace hardware experiments, but it is difficult to obtain

accurate simulation models and simulation-optimized control policies are not likely

to work on hardware. To fill the gap between two system, we propose an algorithm

for learning hardware models and optimizing policies. Instead of learning hardware

models from scratch, the proposed approach only learns the difference from simulation

models using Gaussian process. As a proof of concept, we validate the algorithm on

two different simulation models, one with perfect contacts and one with realistic

contacts, by finding a balancing controller for a simple bipedal robot on a bongo

board (Figure 4).

1.4 Contributions

The control and optimization methods discussed in this dissertation provide several

contributions to the computer animation and robotics community. These contribu-

tions are as follows:

• A falling and landing strategy for virtual characters. The falling strategy

presented in the dissertation generates a natural falling and landing motion that

falls from a wide range of heights and initial speeds, continuously rolls on the

ground, and gets back on its feet without inducing large stress on joints at any

moment.

• A multiple contact falling strategy for robots. We introduce a falling

strategy for humanoid robots to break a fall with minimal damage to the body

parts by utilizing multiple contact points.

• An iterative learning framework for dynamic motor skills. We propose

an iterative and interactive learning framework using human readable instruc-

tions that can teach a variety of agile motions to virtual characters. Starting

9

from a basic controller, the proposed framework allows a user to easily train com-

plex physics-based controllers with only intuitive high-level instructions from

the user.

• An optimization technique for highly constrained problems. We in-

troduce a novel efficient optimization algorithm, CMA-C, that is designed for

the problem with many constraints and smaller feasible regions. The algorithm

converges faster than the standard CMA-ES, by approximating the infeasible

region using learned classifiers.

• An optimization technique for parametrized tasks. We introduce an effi-

cient evolutionary optimization algorithm for learning parametrized whole-body

dynamic tasks. By evolving parameterized sample distributions, our algorithm

converges faster than the baseline algorithm, CMA-ES.

• A model-based policy search for reducing hardware experiments. We

propose an iterative approach for learning hardware model and optimizing poli-

cies with as few hardware experiments as possible by learning dynamics bias,

which is difference between simulation and hardware models.

10

CHAPTER II

BACKGROUND

The aim of this chapter is to review relevant prior work done in computer graph-

ics and robotics, and biomechanics. We will start with a brief discussion on various

physics-based animation techniques for generating realistic and agile motions of vir-

tual humanoids. We then briefly outline control strategies for reducing damage of

humanoid falls in both robotics and graphics, which inspired the proposed falling

strategies in this dissertation. Afterward, we will review the human-in-the-loop prin-

ciple, which is adopted for designing our learning framework for general agile motions.

Because this dissertation proposes several policy search algorithms for optimizing the

controllers in simulation and deploying them on hardware, we will conclude this chap-

ter with a review of relevant prior optimization techniques in computer graphics and

robotics.

2.1 Physics-based simulation of agile motor skills

Throughout the entire sessions, this dissertation utilizes physics simulation to gen-

erate agile motions of virtual characters and test control policies before deploying

on real robots. Various physics-based animation techniques have been proposed in

computer graphics to plan and control various motor skils, ranging from locomotion

to agile stunts of Parkour.

2.1.1 Physics-based simulation for character animation

Physics-based character animation is a promising approach to creating realistic and

interactive animations, but designing controllers remains difficult largely due to the

complex relationship between the control and the state variables. Early work [38, 106]

11

demonstrated that a variety of motions can be achieved by controlling the individual

joints with manually designed state machines. Since this seminal work was pub-

lished, researchers in computer animation have been searching for new control algo-

rithms that are more robust, more generalizable, and more automatic. Using motion

capture data for reference trajectories was a step toward a more automatic process

for controller design [113, 90], however, the simulated motions cannot deviate much

from the input data. An improved approach applied linear or nonlinear quadratic

regulators to track reference trajectories, leading to more robust controllers against

perturbations [20, 71]. Combination of PD servos and a specialized balance controller

driven by a simple state machine was a very successful strategy [109], which enabled

much follow-on work in biped control [101, 14, 55, 43]. Global planning of momen-

tum has also been applied to a wide range of motion from standing balance [61] to

locomotion [67, 108] to highly dynamic motion [34, 59, 9, 112] Coros et al. adopted

Jacobian transpose control from robotics literature [96] to generate stable biped and

quadruped locomotion [14, 15]. Ha et al. further demonstrated the effectiveness of

the Jacobian transpose control on dynamic stunts [60, 34, 33].

2.1.2 Physics-based controllers for agile motions

Physics-based controllers for agile motions are more extensively developed in virtual

simulation due to the limitation of hardware. The work presented in Chapter 3, 5,

and 6 is inspired by prior animation techniques designed for various motor tasks.

Previous work has demonstrated that highly dynamic motions with a long ballistic

phase can be synthesized using physics simulation or kinematic approaches. Hodgins

et al. [38, 106] showed that carefully crafted control algorithms can simulate highly

athletic motions, including diving, tumbling, vaulting, and leaping. Faloutsos et al.

[24] composed primitive controllers to simulate more complex motor skills, such as a

kip-up move or a dive down stairs. Liu et al. [60] successfully tracked contact-rich

12

mocap sequences using a sampling-based approach. They showed that vigorous mo-

tions with complex contacts, such as a dive-roll or a kip-up move, can be dynamically

simulated, provided full body mocap sequences as desired trajectories. Zhao and van

de Panne [111] provided a palette of parametrized actions to build a user interface for

controlling highly dynamic animation. Other techniques directly edit ballistic mo-

tion sequences under the constraints imposed by conservation of momentum [62, 91],

or apply a hybrid method for synthesizing dynamic response to perturbation in the

environment [88]. If the contact positions and timing are known, spacetime optimiza-

tion techniques can also generate compelling dynamic motions [58, 25, 86, 95]. This

thesis the approach of physical simulation, but we seek for a more general and robust

control algorithm such that the controller can operate under a wide range of initial

conditions and allow for runtime perturbations.

2.2 Control of humanoid falls

A goal of falling strategies is to minimize damage or joint stress to humanoid when

it falls. This is an important problem to protect virtual and real humanoids during

learning and executing agile motor skills, which has been well studied within a variety

of research areas, such as computer graphics, robotics, biomechanics, and martial arts.

2.2.1 Falling detection techniques

Although the falling strategies proposed in Chapter 3 and 4 majorly focus on reduc-

ing damage to body parts, they require a fall detection module for predicting and

estimating falls, which is assumed in this disseration. It will predict a fall and try

to recover the balance if it is possible, and activate a falling controller if falling is

inevitable. Various machine learning techniques has been proposed to detect falls,

such as Principal Component Analysis [46] or Supported Vector Machine [48]. Horn

and Gerth [39] detects unstable situations with Gaussian Mixture Model or Hidden

Markov Model and activates appropriate reflex controls, such as crouching. Renner

13

and Benke [80] proposed to detect instability using an aggregated sensor deviation

and stabilize the gait with manually designed reflex controllers. The falling strategies

presented in this dissertation focus on control of falling motions to reduce damage

when the robot detects falling, presumably with one of the above techniques.

2.2.2 Falling damage reduction strategies

In this section, we will review the related work on the falling strategies proposed in

Chapter 3 and 4. Various techniques in different disciplines have been proposed to

minimize damage on a humanoid when it falls. Fujiwara et al. [29, 31, 28, 27] proposed

falling techniques inspired by Japanese martial arts (Ukemi). Ogata et al. [76, 75]

evaluates the risk of falling with predicted ZMP and optimizes COM trajectories to

reduce damage. Ruiz-del-Solar et al. [85, 84] designed low damage falling sequences

for soccer robots and verified them in the simulation. Wang et al. [104] formulated

an optimization of whole body trajectories as a nonlinear programming problem and

solved it with heuristics. Lee and Goswami [54] proposed a control strategy that

reorients the robot to fall with a backpack for absorbing shock. Yun and Goswami

[110] addressed a “tripod” strategy that stops with a swing foot and two hands to

maintain the final COM location higher from the floor. To protect the surround-

ing environment, [32] proposed a fall direction-changing strategy that utilizes foot

placement and inertia shaping.

Besides the related work for falls caused by external perturbations, there are ad-

ditional works that focus on falls from higher places. In those cases, control strategies

during long airborne phase become critical for safe landing. The falling algorithm in

Chapter 3 draws inspiration from kinesiology literature and sport practitioners. In

particular, the techniques developed in freerunning and parkour community are of

paramount importance for designing landing control algorithms capable of handling

arbitrary scenarios [23, 40]. In robotics, Bingham et al. [11] proposed an algorithm

14

that leverages nonholonomic trajectory planning inspired by the falling cat to orient

an articulated robot through configuration changes to achieve a pose that reduces the

impact at landing.

Figure 5: A cat is able to right itself as it falls to land on its feet, irrespective of its
initial orientation.

Many animals have astonishing capabilities to achieve different maneuvers in the

air by manipulating their body articulations. Cats are known for landing with feet

from any initial falling condition [45, 65, 87] (Figure 5). Lizards swing their tails

to stabilize their bodies during a leap [56]. Pigeons reorient their bodies to achieve

a sharp turn when flying at low speed [81]. These behaviors inspire scientists and

engineers to develop intelligent devices and control algorithms. This dissertation has

a similar goal that we study how human body can change shape in the air to reduce

damage at landing.

2.3 Human-in-the-loop interfaces

Without human guidance, fully automated optimization algorithms sometimes pro-

duce undesired solutions due to unexpected factors or situations. For instance, finding

the optimal jumping motion with the desired height can be achieved in many different

joint trajectories, and excessive usages of hips or heels make some optimal motions

15

look unnatural. In Chapter 5, we propose the semi-automatic learning framework

which involves a human in the optimization process to effiently find optimal and

natural motions within a short amount of time. This paradigm is so called human-in-

the-loop (HITL) optimization, which has proven effective for various problems, such

as vehicle planning [105] or interface optimization [78]. The level of user interac-

tion varies from simply selecting of the generated solutions [89] to directly editing

the search parameters and constraints [92]. Unlike most previous work which pri-

marily focused on developing user interaction and visualization techniques for HTIL

optimization systems, we develop a new controller design framework that exploit the

nature of HITL computation paradigm.

2.4 Policy search algorithms

From Chapter 6 to 8, we describe policy search algorithms for finding optimal con-

trollers. In this section, we will review existing algorithms that are classified into two

categories based on the existance of simulation models. We will also cover related

work on special cases, optimization of parameterized motor skills.

2.4.1 Model-free policy search algorithms

Chapter 6 and 7 are inspired by existing model-free policy optimization techniques

where the policy is improved through a number of hardware trials [68, 52]. Unfor-

tunately, these methods generally require hundreds of trials, which is unrealistic for

tasks such as humanoid balancing and locomotion. One way to overcome this issue is

to limit the parameter space by using task-specific primitives [73] or to provide a good

initial trajectory by human demonstration [10]. However, it is not clear how to extend

these approaches to dynamically unstable robots or tasks that cannot described by

joint trajectories.

Various optimization techniques have been applied to improve the motion quality

or the robustness of the controller. In character animation, a sampling-based method,

16

Covariance Matrix Adaption Evolution Strategy (CMA-ES) [35], has been frequently

applied to discontinuous control problems, such as biped locomotion [101, 102, 103],

parkour-style stunts[59, 33], or swimming [98]. To compensate the expensive cost

of sampling-based algorithm, different approaches have been proposed, including ex-

ploiting the domain knowledge [101, 102, 103], shortening the problem horizons [90],

or using a classifier to exclude infeasible samples [33]. Based on the previous success

of CMA-ES, we proposed new sampling-based algorithms that resemble the evolution

process of distribution.

2.4.2 Model-based policy search algorithms

Figure 6: Difference between a real robot and its simulation model results different
motions from same controllers.

Chapter 8 proposes a model-based policy search algorithms that utilizes simula-

tion to reduce the number of hardware trials. In this category of algorithms, difference

between a robot and its simulation model becomes a serious problem (Figure 6). Clas-

sical parameter identification techniques [47] partially solve this problem by fitting

model parameters to experimental data, but they are still limited to factors that can

actually be modeled. Furthermore, these approaches assume that the data set is large

17

enough to accurately estimate the parameters. In large and unstable systems such as

humanoid robots, it is often difficult to collect enough data [107].

A number of researchers have attempted to overcome the drawbacks of these

approaches by combining simulation and real-world data [97, 66, 77]. Abbeel et

al. [7] used an inaccurate model to estimate the derivative of the cost with respect to

the policy parameters. Ko et al. [49] used Gaussian Process to model the difference

between a nonlinear dynamics model and the actual dynamics and applied the model

to reinforcement learning for yaw control of a blimp. However, they do not iterate

the process to refine the model. Deisenroth et al. [22] also used Gaussian Process

for learning the dynamics model from scratch. Similarly, Morimoto et al. [69] used

Gaussian Process for learning simplified dynamics of human locomotion. Sugimoto

et al. [94] used sparse pseudo-input Gaussian Process (SPGP) that accounts both

variances of inputs and outputs to handle sensor noises. Instead, Tangkaratt et al. [99]

used least-squares conditional density estimation (LSCDE) to learn the dynamics

model without Gaussian assumption on the transitions. Cutler et al. [16] trained a

policy in multiple fidelity simulators with discretized actions. Ross and Bagnell [82]

theoretically proved that their iterative system identification method converges even

the system is not in the assumed class. Please refer to Section 6 of [51] for more

complete survey on this topic.

2.4.3 Policy search algorithms for parametrized tasks

There is a large body of research work on generalization of learned motor skills to

achieve new tasks, which is discussed in Chapter 7. da Silva et al. [19, 17, 18] intro-

duced a framework to represent the policies of related tasks as a lower-dimensional

piecewise-smooth manifold. Their method also classifies example tasks into disjoint

lower-dimensional charts and model different sub-skills separately. Much research

aimed to generalize example trajectories to new situations using dynamic movement

18

primitives (DMPs) to represent control policies [42]. A DMP defines a form of con-

trol policies which consists of a feedback term and a feedforward forcing term. Ude

et al. [100] used supervised learning to train a set of DMPs for various tasks and

built a regression model to map task parameters to the policy parameters in DMPs.

Muelling et al. [70] proposed a mixture of DMPs and used a gate network to ac-

tivate the appropriate primitive for the given target parameters. Kober et al. [53]

trained a mapping between task parameters and meta-parameters in DMPs using a

cost-regularized kernel regression. Through reinforcement learning framework, they

computed a policy which is a probability distribution over meta-parameters. Matsub-

ara et al. [63] trained a parametric DMP by shaping a parametric-attractor landscape

from multiple demonstrations. Stulp et al. [93] proposed to integrate the task param-

eters as part of the function approximator of the DMP, resulting in more compact

model representation which allows for more flexible regression. Neumann et al. [74]

modified the existing learning algorithm (REPS) to learn a hierarchical controller

that has parameterized options.

All these methods described above depend on collecting a set of examples. This

presents a bottleneck to learning because an individual control policy needs to be

learned for each task example drawn from the distribution of interest. da Silva et al.

further proposed using unsuccessful policies as additional training samples to acceler-

ate the learning process [17]. For dynamic motor skills which involve intricate balance

tasks, unsuccessful policies generated during training a particular task are of no use to

other tasks because they often lead to falling motion. Hausknecht et al. [37] demon-

strated a quadruped robot kicking a ball to various distances, but whole-body balance

was not considered in their work. Another challenge regarding dynamic tasks is that

each task can be achieved by a variety of policies, some of which might be overfitting

the task. Interpolating these overfitted policies can lead to unexpected results. In

this dissertation, we proposed a new algorithm that tends to generate more coherent

19

mapping between task parameters and policy parameters because we simultaneously

learn the policies for the entire range of the tasks.

The next chapter will describe falling strategies for virtual characters and real robots,

which are essential for protecting humanoids from severe damage.

20

CHAPTER III

FALLING AND LANDING MOTION CONTROL FOR

VIRTUAL CHARACTERS

Figure 7: A simulated character lands on the roof of a car, leaps forward, dive-rolls
on the sidewalk, and gets back on its feet, all in one continuous motion.

This chapter introduces a new method to generate agile and natural human land-

ing motions in real-time via physical simulation without using any mocap or pre-

scripted sequences. We develop a general controller that allows the character to fall

from a wide range of heights and initial speeds, continuously roll on the ground, and

get back on its feet, without inducing large stress on joints at any moment. The

character’s motion is generated through a forward simulator and a control algorithm

that consists of an airborne phase and a landing phase. During the airborne phase,

the character optimizes its moment of inertia to meet the ideal relation between the

landing velocity and the angle of attack, under the laws of conservation of momentum.

The landing phase can be divided into three stages: impact, rolling, and getting-up.

To reduce joint stress at landing, the character leverages contact forces to control

linear momentum and angular momentum, resulting in a rolling motion which dis-

tributes impact over multiple body parts. We demonstrate that our control algorithm

can be applied to a variety of initial conditions with different falling heights, orien-

tations, and linear and angular velocities. Simulated results show that our algorithm

21

can effectively create realistic action sequences comparable to real world footage of

experienced freerunners.

3.1 Motivation

One of the great challenges in computer animation is to physically simulate a virtual

character performing highly dynamic motion with agility and grace. A wide variety

of athletic movements, such as acrobatics or freerunning (parkour), involve frequent

transitions between airborne and ground-contact phases. How to land properly to

break a fall is therefore a fundamental skill athletes must acquire. A successful landing

should minimize the risk of injury and disruption of momentum because the quality

of performance largely depends on the athlete’s ability to safely absorb the shock

at landing, while maintaining readiness for the next action. To achieve a successful

landing, the athlete must plan coordinated movements in the air, control contacting

body parts at landing, and execute fluid follow-through motion. The basic building

blocks of these motor skills can be widely used in other sports that involve controlled

falling and rolling, such as diving, gymnastics, judo, or wrestling.

We introduce a new method to generate agile and natural human falling and

landing motions in real-time via physical simulation without using motion capture

data or pre-scripted animation (Figure 7). We develop a general controller that allows

the character to fall from a wide range of heights and initial speeds, continuously roll

on the ground, and get back on its feet, without inducing large stress on joints at

any moment. Previous controllers for acrobat-like motions either precisely define

the sequence of actions and contact states in a state-machine structure, or directly

track a specific motion capture sequence. Both cases fall short of creating a generic

controller capable of handling a wide variety of initial conditions, overcoming drastic

perturbations in runtime, and exploiting unpredictable contacts.

22

Our method is inspired by three landing principles informally developed in freerun-

ning community. First, reaching the ground with flexible arms or legs provides cushion

time to dissipate energy over a longer time window rather than absorbing it instantly

at impact. It also protects the important and fragile body parts, such as the head,

the pelvis, and the tailbone. Second, it is advisable to distribute the landing impact

over multiple body parts to reduce stress on any particular joint. Third, it is crucial

to utilize the friction force generated by landing impact to steer the forward direction

and control the angular momentum for rolling, a technique referred to as ”blocking”

in the freerunning community. These three principles outline the most commonly

employed landing strategy in practice: landing with feet or hands as the first point

of contact, gradually lowering the center of mass (COM) to absorb vertical impact,

and turning a fall into a roll on the ground, with the head tightly tucked at impact

moment.

However, translating these principles to control algorithms in a physical simula-

tion is very challenging. During airborne, the controller needs to plan and achieve

the desired first point of contact and the angle of attack, in the absence of control

over the characters global motion in the air. Instead of solving a large, nonconvex

two-point boundary value problem, we develop a compact abstract model which can

be simulated efficiently for real-time applications. To strike the balance between ac-

curacy and efficiency, our algorithm replans the motion frequently to compensate the

approximation due to the simplicity of the model. When the character reaches the

ground, the controller needs to take a series of coordinated actions involving active

changes of contact points over a large area of human body. Our algorithm executes

three consecutive stages, impact, rolling, and getting-up by controlling poses, momen-

tum, and contacts at key moments. Furthermore, the airborne and landing phases

are interrelated and cannot be considered in isolation: the condition for a successful

landing defines the control goals for the airborne phase while the actions taken during

23

airborne directly impact the landing motion. We approach this problem in a reverse

order of the action sequence: designing a robust landing controller, deriving a suc-

cessful landing condition from this controller, and developing an airborne controller

to achieve the landing condition.

We demonstrate that our control algorithm is general, efficient, and robust. We

apply our algorithm to a variety of initial conditions with different falling heights,

orientations, and linear and angular velocities. Because the motion is simulated in

real-time, users can apply perturbation forces to alter the course of the character in

the air. Our algorithm is able to efficiently update the plan for landing given the

new situations. We also demonstrate different strategies to absorb impact, such as

a dive roll, a forward roll, or tumbling. The same control algorithm can be applied

to characters with very different body structures and mass distributions. We show

that a character with unusual body shape can land and roll successfully. Finally,

our experiments empirically showed that the algorithm induces smaller joint stress,

except for the contacting end-effectors. In the worst case of our experiments, the

average joint stress is still four times lower than landing as a passive ragdoll.

3.2 Overview

We introduce a physics-based technique to simulate strategic falling and landing mo-

tions from a wide range of initial conditions. Our control algorithm reduces joint

stress due to landing impact and allows the character to efficiently recover from the

fall. The character’s motion is generated through a forward simulator and a control

algorithm that consists of an airborne phase and a landing phase. These two phases

are related by an appropriate landing strategy, which describes the body parts used

for the first contact with the ground, a desired landing pose, and an ideal landing

condition that describes the relation between landing velocities and the angle of at-

tack in successful landing motions. We develop two most common types of landing

24

Impact Roll Get-up

Figure 8: Three stages in the landing phase.

strategies: hands-first and feet-first, and introduce a sampling method to derive the

ideal landing condition for each strategy.

At the beginning of a fall, the character first decides on a landing strategy. During

the airborne phase, the character optimizes its moment of inertia to achieve the ideal

landing condition. The landing phase is divided into three stages: impact, rolling,

and getting-up (Figure 8). The impact stage begins when the character reaches the

ground. During the impact stage, the character leverages the friction forces from the

ground to control linear and angular momentum. After the COM moves beyond the

hand contact area, the character switches to the rolling stage in which continuous

change of contact carries out. In preparation for standing up, the character needs

to maintain the rolling direction and plant its feet on the ground. When the COM

passes through the first foot, the character starts to elevate the COM in order to

compete the landing process in an upright position.

3.3 Landing Strategy

Figure 9: The left and middle are the desired landing poses for the hands-first
strategy and the feet-first strategy, respectively. The right is the ready-to-roll pose
for the feet-first strategy, which we track only the upper body.

25

Given an initial condition at the beginning of a fall, the character can choose to

land with the hands-first strategy or the feet-first strategy. In general, the hands-first

strategy is chosen only for aesthetics purpose because it is less robust and suitable

only for falls with planar angular momentum (about the pitch axis). In contrast, the

feet-first strategy can handle a wide range of arbitrary initial conditions because it

includes an extensive foot-ground contact duration to modulate the momentum before

rolling. A landing strategy also includes a desired landing pose. Our algorithm only

requires a partial pose to stretch the arms or legs at landing, depending on whether

the hands-first or the feet-first strategy is chosen. We manually specify this partial

pose for each strategy (Figure 9).

Vz
Vy

ωx

θ

Figure 10: Landing condition variables.

An integral part of our landing strategy is the landing condition, a simple equation

that compactly characterizes successful landing motions. If the character manages

to turn a fall into a roll and gets back on its feet at the end of the roll, we consider

it successful. Because a successful landing highly depends on whether the character

is able to control the momentum at the moment of the first contact (T),

our algorithm defines the landing condition as a relation between the global linear

velocity v(T), global angular velocity ω(T), and the angle of attack θ(T), which approx-

imates the global orientation of the character (Figure 10). The actual coefficients of

the landing condition depend on the design of the landing controller, which cannot

be derived analytically, but can be learned from examples generated by the landing

26

controller. We apply a sampling method, similar in spirit to the approach Coros

et al. [13] presented for biped locomotion, to determine the landing condition for a

particular landing strategy.

5.0
4.0

3.0
2.02.0

1.0

3.0

3.2

3.0

2.8

2.6

2.4

2.2

(T)ωx (Rad/s)(T)
Vz (m/s)

(T)
θ (Rad)

4.0 5.0 6.0

3.2

3.0

2.8

2.6

2.4

2.2

θ (Rad)

Vy (m/s) Vz (m/s)
(T)

(T)

(T)

Figure 11: Samples for hands-first landing strategy. Successful samples are bounded
between top and bottom planes along θ(T) axis. The middle plane, average of the
two, indicates the linear relation of the ideal landing condition.

For the hands-first strategy with planar motion, we consider a four-dimensional

space spanned by θ(T), v
(T)
y , v

(T)
z and ω

(T)
x . Given a sample in the parameter space, we

run our landing controller to test whether the character can successfully get up at the

end. Empirical results from thousands of random samples show that the successful

region is mostly continuous and linear (Figure 11). We can bound the successful

samples in the θ(T) axis using two hyperplanes. Taking the average of the maximum

and the minimum planes, we derive a linear relation between the angle of attack and

the landing velocities as

θ(T) = a v(T)
y + b v(T)

z + c ω(T)
x + d (1)

where a, b, c, and d are the coefficients of the fitted hyperplane. Note that Equation

(1) is a sufficient but not necessary condition for successful landing. Most points be-

tween the maximal and minimal hyperplanes also lead to successful landing motions.

This means that even when the character cannot meet the landing condition exactly,

it still has a good chance to land successfully. For the feet-first strategy, in theory, we

need to consider all six dimensions of linear velocity and angular velocity. However,

our empirical results show that non-planar velocities do not affect θ(T) as long as they

27

stay within a reasonable bound (Figure 12). As a result, the feet-first strategy is

able to handle non-planner falling motion using the same parameters (but different

coefficients) in Equation (1).

(T)
θ (Rad)

(T)ωy (Rad/s)

(T)
Vz (m/s)

Figure 12: Samples in the space of v
(T)
z , ω

(T)
y , and θ(T). The spinning velocity ω

(T)
y

has minimal effect on the success of a sample.

3.4 Airborne Phase

Once the character decides on a landing strategy, the goal of the airborne phase is to

achieve the corresponding landing pose and landing condition. Because momentum is

conserved in air, the linear velocity, the total airborne time T , as well as the angular

momentum are already determined by the initial condition of the fall. However, the

character can still control the angular velocity ω
(T)
x and the angle of attack θ(T) by

varying its pose (i.e. actuated degrees of freedom (DOFs) excluding the global position

and orientation) to change the moment of inertia. To most effectively achieve the

desired landing condition, we design our airborne algorithm based on the strategy

employed in platform diving competition, where a highly trained athlete performs a

sequence of predefined poses to manipulate the final orientation and angular velocity.

To this end, our airborne controller uses a PD servo to track a sequence of poses

that lead to the ideal landing condition. The sequence of poses is replanned frequently

to correct the errors caused by perturbation and numerical approximation. Each

time the algorithm makes a new plan, an optimal sequence of poses from the current

28

moment to the landing moment is computed. This sequence starts with the current

pose q0 and ends at the desired landing pose qT (determined by the landing strategy),

with a duration of T seconds. Our control algorithm searches for an intermediate pose

q∗ and a duration ∆t∗, such that the character can reach the ideal landing condition by

changing to q∗ immediately and holding the pose q∗ for ∆t∗ seconds before changing

to the final pose qT .

We formulate an optimization to solve for an intermediate pose q and its holding

duration ∆t that can best achieve the ideal landing condition. The cost function

g(q,∆t) is defined in Equation 2.

g(q,∆t) = θ(T)(q,∆t)− a v(T)
y − b v(T)

z − c ω(T)
x (θ(T))− d (2)

Note that ω
(T)
x is a function of θ(T) because we need global orientation of the character

at time T to compute the global angular velocity. If we can compute θ(T), Equation

(2) can be readily evaluated. Unfortunately, for a complex 3D multibody system, an

analytical solution for θ(T) is not available. We could resort to numerical simulation

of the entire airborne phase, in which the character goes through q0, q∗, and qT

subsequently. However, involving forward simulation of a full skeleton in the cost

function is too costly for our real-time application. Instead, we simulate a simple

proxy model with only six DOFs. When the character is holding a pose, the proxy

model behaves like a rigid body with a fixed inertia. When the character transitions

from one pose to another, we assume the inertia of the proxy model changes linearly

within a fixed duration ∆tC (∆tC = 0.1s in our implementation). By simulating the

proxy model for the duration of T , we obtain the angle of attack θ(T) and angular

29

velocity ω(T) as follows.

R(θ(T)) = R(θ(0)) +

∫ ∆tc

t=0

[I−1
A (t)L]R(θ(t))dt

+

∫ ∆tc+∆t

t=∆tc

[I−1(q, θ(t))L]R(θ(t))dt

+

∫ 2∆tc+∆t

t=∆tc+∆t

[I−1
B (t)L]R(θ(t))dt

+

∫ T

t=2∆tc+∆t

[I−1(qT , θ
(t))L]R(θ(t))dt; (3)

ω(T) = I−1(qT , θ
(T))L (4)

where R is the rotation matrix, I(q) is an inertia matrix evaluated at pose q, and

L is the angular momentum. IA(t) is an interpolated inertia matrix between I(q0)

and I(q), and similarly, IB(t) is an interpolated matrix between I(q) and I(qT). The

operator [] represents the skew symmetric matrix form of a vector.

To formulate an efficient optimization for real-time application, we represent the

domain of intermediate pose as a finite set of candidate poses, instead of a continuous

high-dimensional Euclidean space. This simplification is justified because a handful

of poses is sufficient to effectively change the moment of inertia of the character.

As a preprocess step, our algorithm automatically selects the candidate set Q from a

motion capture sequence in which the subject performs range-of-motion exercise. The

selection procedure begins with a seed pose q̄0 and increments the set by adding a new

pose q̄new which maximizes the diversity of inertia (Equation 5). In our experiment,

16 poses are sufficient to present a variety of moment of inertia (Figure 13).

q̄new = argmax
q∈M

(min
q̄j∈Q
‖I(q)− I(q̄j)‖)} (5)

where M contains the poses in the range-of-motion sequence, Q contains the currently

selected candidate poses, and I(q) computes the inertia of pose q.

To find optimal q∗ and ∆t∗ for each plan, we start from the current pose as q0

and loop over each candidate pose in Q. For each candidate pose q̄i, we search for

30

the best ∆t such that g(q̄i,∆t) is minimized. The search can be done efficiently using

one-dimensional Fibonacci algorithm and the proxy-model simulation. The optimal

intermediate pose q∗ and its optimal duration ∆t∗ are used for airborne control.

Pose 1 Pose 2 Pose 9 Pose 13

Figure 13: Among 16 poses in Q, pose 1, 2, 9, and 13 are frequently selected by the
airborne controller

By design, our algorithm trades off accuracy for efficiency; we use a fast but less

accurate proxy-model simulation and a small set of predefined poses. Our algorithm

is very efficient so that the character can frequently reassess the situation and replan

new poses to correct any errors or adapt to unexpected perturbations.

The frequency of replanning can be determined differently for q∗ and ∆t∗. In our

implementation, we replan q∗ at a much lower frequency than ∆t∗ to avoid unnatural

frequent change of poses. In addition, we stop replanning when the character is within

31

0.3 seconds away from the ground.

3.5 Landing Phase

During landing, the character braces for impact, executes rolling action, and gets

up on its feet. Although these three stages take very different actions, they share

common control goals: modulating the COM and posing important joints. We apply

the same control mechanism via virtual forces and PID joint-tracking to produce the

final control forces for the forward simulator (Figure 14).

PID

Figure 14: Landing phase controller.

Virtual forces are effective in controlling the motion of the COM. To achieve a

desired acceleration of the COM, c̈, we compute the virtual force as fv = mc̈ where m

is the mass of the character. The equivalent joint torque as if applying fv to a point

p on the body is τv = JT (p)fv, where J(p) is the Jacobian computed at the body

point p. If p is on a body node in contact with the ground, we apply the opposite

force (fv = −mc̈) in order to generate a ground reaction force that pushes the COM

in the desired direction. To prevent the character from using excessively large joint

torques, we limit the magnitude of the sum of virtual forces. A successful landing

motion also requires posing a few important joints at each of the three stages. We

track these partial poses with PID servos: τp = kp(q̄− q)+ki
∫

(q̄t− qt)dt−kv q̇, where

kp, ki and kv are the proportional, integral, and derivative gains respectively, and q̄

is the desired joint angle. The final control torque is τv + τp. We limit the magnitude

of the virtual force to 3000N to prevent excessive usage of joint torques.

32

3.5.1 Impact Stage

Impact stage is the most critical stage during landing, which requires careful con-

trol and execution. Human athletes tend to act like a spring to absorb the effect

of impact by flexing their joints between the points of first contact and the COM.

Meanwhile, they also utilize friction force from the ground contact to adjust forward

linear momentum and angular momentum. Applying these principles, our algorithm

utilizes virtual force technique to achieve contact forces for desired momentum. In

addition, we use joint tracking to provide sufficient stiffness at contacting limbs and

smooth transition to the next stage. If the character chooses the hands-first strategy,

the final pose at the end of compression can seamlessly connect to the rolling stage.

With the feet-first strategy, an additional “thrusting” step is required to transition to

the rolling stage. We define a “ready-to-roll” pose that guides the character toward

a rolling motion (Figure 9, Right). During this additional step, the character tracks

the ready-to-roll pose while using its feet to thrust forward after its COM compressed

to the lowest point (Figure 15).

Compression Thrusting

Figure 15: Two-step impact stage for the feet-first strategy.

Virtual force. The most important goal during the impact stage is to stop

the downward momentum before the character tragically crashes into the ground.

We do so by applying virtual forces to control the vertical position and velocity of

the COM. In addition, our algorithm favors virtual forces that result in temporally

smooth ground reaction forces to distribute the impact evenly over time. With these

33

Table 1: Control parameters.
Hip Lower spine Upper spine Neck Knee

kp 90.0 300.0 180.0 10.0 60.0

kd 20.0 60.0 40.0 2.0 13.0

Ankle Clavicle Shoulder Elbow Wrist

kp 15.0 180.0 120.0 60.0 9.0

kd 6.0 40.0 27.0 13.5 4.0

c̄y ¯̇cy ¯̇cx/z kv kp (Eq 8)

Value 0.4m 0.0m/s 4.0m/s 500 800

control goals, our algorithm aims to use constant acceleration of the COM to achieve

the desired COM position c̄y and velocity ¯̇cy from the current state (cy and ċy).

c̈y =
1

2
(¯̇c2
y − ċ2

y)/(c̄y − cy) (6)

A virtual force of −mc̈y in the vertical direction is then evenly distributed to the

end-effectors that are in contact with the ground.

Virtual forces in the horizontal direction are important to achieve the desired

forward linear momentum and angular momentum at the end of compression, or to

achieve the desired forward thrust for the feet-first strategy. We use a simple feedback

mechanism to compute the desired horizontal acceleration of the COM.

c̈x/z = kv(¯̇cx/z − ċx/z) (7)

where ¯̇cx/z is the desired COM velocity in forward and lateral directions and kv is the

damping coefficient. The corresponding virtual force is distributed to the contacting

end-effectors inversely proportional to their distances to the COM.

Joint tracking. In addition to virtual forces, we use PID servos to maintain joint

angles of the torso and limbs that are not in contact, while limbs in contact with the

ground act like viscous dampers (PID control with a zero spring coefficient). We also

use PID control to keep the chin tucked to reduce the chance of the head impacting

the ground. Please see Table 1 for all the parameters in our implementation. We set

the constant integral gain ki of contacting limbs as 50, and 0 for all other joints.

34

3.5.2 Rolling Stage

Once the character’s COM passes the hand-ground contact area with sufficient for-

ward linear and angular momentum, rolling becomes a relatively easy task. As long

as the character is holding a pose with a flexed torso, a reasonable rolling motion will

readily carry out. If the character wishes to land back on its feet and get up after

rolling, it must also maintain forward momentum and lateral balance during the roll.

Virtual force. To this end, we apply a virtual force to guide the horizontal

position of the COM toward the feet area, while restricting it above the support

polygon formed by contact points. The virtual force is applied on the character’s

hands so that it can use the entire upper body to maintain momentum and balance.

The virtual force produces the desired acceleration of the COM computed using a

feedback mechanism:

c̈x/z = kp(c̄x/z − cx/z) (8)

where the desired position c̄ is set to be the location of the left foot.

Joint tracking. During rolling, the character tracks a simple pose to tuck the

head, flex the torso, and position the legs appropriately. We treat legs asymmetrically

to both facilitate momentum control and improve the aesthetics of the motion. When

the character rolls on its back, it brings the left knee closer to the chest and casually

stretches the right leg. This arrangement helps the character to regulate the angular

velocity using the right leg while getting ready to stand up on its left foot. Based

on the forward angular velocity at the beginning of the rolling stage, we adjust the

desired tracking angles for the right knee as:

θR = max((1− ωx/ωMAX)π, 0) (9)

where we set ωMAX as 3.3rad/s for all experiments.

35

Table 2: Initial conditions of the examples shown in the video (in order of appearance)
Hands-first landing strategy

~Cy(m) vx(m/s) vy(m/s) vz(m/s) ωx(Rad/s) ωy(Rad/s) ωz(Rad/s)

10.6 0.0 0.0 4.0 8.7 0.0 0.0

5.8 0.0 0.0 2.3 5.0 0.0 0.0

10.6 0.0 0.0 6.0 2.5 0.0 0.0

2.5 0.0 0.4 8.0 5.0 0.0 0.0

Feet-first landing strategy
~Cy(m) vx(m/s) vy(m/s) vz(m/s) ωx(Rad/s) ωy(Rad/s) ωz(Rad/s)

6.0 0.0 0.0 5.0 4.0 -1.0 -5.8

2.7 0.0 -1.0 0.0 0.0 0.0 0.0

5.5 1.0 0.0 0.0 0.0 5.0 0.0

9.6 -2.0 0.0 -3.5 0.9 2.1 -3.9

3.5.3 Getting-Up Stage

The last stage of landing phase is to stand up using the remaining forward momentum.

When the COM passes the foot contact, the character will start to elevate its COM

to a desired height.

Virtual force. Similar to previous stages, we again apply virtual forces on the

feet and the hands to control the vertical and the horizontal positions of the COM

respectively. We compute c̈y using the same formula from Section 3.5.1 with different

desired height of the COM. For c̈x/z, we use the same formula as in Section 3.5.2.

Joint tracking. During the getting-up stage, our algorithm simply tracks the

torso and the head to straighten the spine and untuck the chin.

3.6 Results

To evaluate the generality of our algorithm, we simulated landing motions with a

wide range of initial conditions (Table 2), various landing styles (hands-first, feet-

first, consecutive rolls), and different skeleton models. We also demonstrated that

our algorithm is robust to unpredicted runtime perturbations and different physical

properties of the landing surface. Please see the accompanying video to evaluate the

quality of our results.

36

Figure 16: Hands-first landing motion.

Feet-first landing strategy. The most recommended landing strategy from freerun-

ning community is the feet-first landing. Our results verify that the feet-first landing

strategy is indeed very robust for falls with arbitrary linear and angular momentum.

There are two key advantages of using feet as the first point of contact. First, average

human has longer and stronger legs than arms. Using legs to land provides more time

and strength to compress and absorb vertical impact. Second, the feet-first strategy

has an additional thrusting step after compression and before rolling stage. During

the thrusting step, the character can utilize the contact forces to drastically change

37

the linear and angular velocity in preparation for rolling. Our results show that a

successful forward roll can be carried out even when the character is falling with

backward and lateral linear velocity or nonplanar angular velocity.

For the feet-first strategy, the coefficients of the landing condition in Equation (1)

are: a = −0.01, b = −0.06, c = −0.03, and d = 0.45. When the character transitions

to the rolling stage, we specified an asymmetric ready-to-roll pose to increase the

visual appeal of the motion.

Hands-first landing strategy. Using hands as the first point of contact can gen-

erate visually pleasing stunts (Figure 16). For falls with dominant planar velocity (vz

and ωx), the hands-first strategy performs as well as the feet-first strategy. However,

when the initial condition has large lateral linear momentum or angular momentum

in yaw and roll axes, the hands-first strategy becomes less robust. Unlike the feet-first

strategy, which has an additional thrusting step, the hands-first strategy is unable to

change forward direction drastically after landing. This imposes stringent conditions

on the contact forces because, in order to roll successfully, the contact forces must

counteract non-planner momentum, while stopping downward momentum and main-

taining forward momentum. Such forces usually violate the unilateral constraint of

ground reaction force.

For the hands-first strategy, the coefficients of the landing condition are: a =

−0.01, b = −0.06, c = −0.03, and d = 3.08. Note that the coefficients are identical

to those of the feet-first strategy except for the constant term, indicating that the

gradient of the angle of attack with respect to the landing velocity is the same between

feet-first and hands-first landing strategies.

Consecutive rolls. Once the character starts rolling, it is rather effortless to con-

tinue on. By looping the end of the rolling stage back to the beginning, we showed

that the character was able to make two consecutive rolls to break a fall with large

38

forward speed. Falling on multiple surfaces is also easy to simulate using our con-

troller. One example demonstrated a continuous sequence of the character landing on

the roof of a car, leaping forward, landing again on the sidewalk, and finishing with

a dive roll (Figure 7). With our controller, a variety of impressive action sequences

can be generated easily without any recorded or pre-scripted motions.

height: 164 cm
weight: 59 kg
DOFs: 49

X

Y

Z

Figure 17: Left: The character model used for most examples. Right: A character
with a disproportionately large torso and short legs.

Different skeleton models. The character model we used to generate most exam-

ples has a height of 164cm, a weight of 59 kg, and 49 DOFs. The controllers designed

for this character can be applied to a drastically different character whose torso is

twice as long and twice as wide, comparing to the default character. It also has very

short legs and a small head (Figure 17). We tested both hands-first and feet-first

landing strategies on this new character. The results are similar in quality to the

default character, although the new character hits its head on the ground because it

is difficult to tuck the head with such a short neck. All the control parameters remain

the same for the second character, except for c̄y increasing by 5cm and the desired

landing angle increasing by 0.25rad.

Runtime perturbations. One great advantage of physical simulation is that the

outcome can be altered on the fly based on user interactions. We demonstrated

the interactivity of our simulation in two different ways. First, the user can directly

39

“drag” the character to a different location or orientation when the character is in the

air. This example shows off robustness and efficiency of our airborne controller. As

the character being relocated, it starts to recalculate and finds a new plan to execute

in real-time. Second, we let the user shoot cannons at the character as a source of

external forces. When a cannon hits the character, it exerts force and torque on the

character, causing a passive response followed by active replanning and execution.

Different landing surfaces. We tested our controller on surfaces with different

elasticities and friction coefficients. When the character lands on an elastic surface,

such as a gymnastic floor or a trampoline, the character tumbles in the air instead

of rolling on the ground. We generated a continuous sequence where the character

stopped the fall on an elastic surface by tumbling three times and finishing with a

forward roll. This example shows that various interesting acrobatic sequences can be

generated by simply concatenating our falling and rolling controllers repeatedly. In

another example, we reduced the friction coefficient to simulate an icy surface. The

character was able to use the same control algorithm to roll, but failed to stand up

at the end.

3.6.1 Evaluation

Performance. All the results shown in the video were produced on a single core

of 3.20GHz CPU. Our program runs at 550 frames per second. The bottleneck of

the computation is the optimization routine in the airborne controller. We use Open

Dynamic Engine to simulate the character. The time step is set at 0.2 millisecond,

and runs the airborne optimization in 50 Hz.

Joint stress. We approximated joint stress as the constraint force that holds two

rigid bodies together at a joint. For each joint, we computed the maximal joint stress

during the landing phase (Figure 18). We observed that, in most trials, the joints

40

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Hips Knee Ankle Lower
Spine

Upper
Spine

Neck Clavicle Shoulder Elbow Wrist

Ragdoll
Our motion
Scaled

Figure 18: Maximal stress for each joint from a hands-first landing motion. Results
are quantitatively similar across all of our simulations. Green: Ragdoll motion. Blue:
Our motion. Orange: Joint stress scaled by mass.

which endure the most impact are those connected to contacting end-effectors (i.e.

hands or feet). The spine joints (lumbar and thoracic vertebrae) and hip joints are

also subject to large impact. However, when we scaled each joint by the total mass

it supports (e.g. the hip joint supports the mass of the entire leg), we found that the

joint stress has low variance across the entire character’s body, with the exception of

the joints near the end-effectors.

When we compared the joint stress between our motion and a passive ragdoll

motion with the same initial condition, the ragdoll motion caused much more damage

on the neck and the spine (Figure 18). In fact, the only joints that endured similar

amount of stress were those used for the first point of contact (e.g. wrists or ankles).

These results validate that our controller indeed produces safer landing motion and

protects important body parts. We repeated the experiments for different initial

conditions. In the worst case of our experiments, the average joint stress is still

four times lower than landing as a passive ragdoll. The data also show that our

controller generates less damaging landing motion even when the character cannot

roll successfully, such as dropping from 20 meters.

41

Comparison with video footages. We compared our simulated motion side-by-

side with a collection of video footages ([8]). The simulations are based on the same

landing strategy and our best guess of the initial conditions from the videos. Al-

though it is not possible to achieve identical motions, results show that our motion

is qualitatively similar to the video footages.

3.6.2 Limitations

The main limitation of our work is the lack of balance control after the character

stands up. There are many existing balance control algorithms we could implement.

However, we chose to defer the implementation until we decide on what the char-

acter’s next action should be. In the freerunning scenario, the character transitions

to running motion seamlessly right after a roll. If freerunning is our goal, we would

modify the current get-up control algorithm to provide more forward thrust. Other

possibilities of the next action include walking, stepping, jumping, or standing still.

Different next actions will result in different balance strategies. Ideally, a character

should be equipped with motor skills to execute all different balance strategies and

autonomously determines which strategy to execute, but this is considered out of the

scope of this work.

Another limitation is the predefined landing pose for each landing strategy. This

inflexibility can negatively affect the character’s ability to adapt to different environ-

ments. For example, if the character lands on a narrow wall, the landing pose needs

to be adjusted on the fly. One possible solution is to use a simple inverse kinematics

method to compute desired joint angles before landing.

3.7 Discussion

We introduced a real-time physics-based technique to simulate strategic falling and

landing motions. Our control algorithm reduces joint stress due to landing impact

42

Figure 19: Feet-first landing motion.

and allows the character to efficiently recover from the fall. Given an arbitrary ini-

tial position and velocity in the air, our control algorithm determines an appropriate

landing strategy and an optimal sequence of actions to achieve the desired landing

velocity and angle of attack. The character utilizes virtual forces and joint-tracking

control mechanisms during the landing phase to successfully turn a fall into a roll.

We demonstrated that our control algorithm is general, efficient, and robust by simu-

lating motions from different initial conditions, characters with different body shapes,

different physical environments, and scenarios with real-time user perturbations. The

algorithm guides the character to land safely without introducing the large stress at

every joint except for the contacting end-effectors.

Freerunning is a great exemplar to demonstrate human athletic skills. Those

wonderfully simple yet creative movements provide a rich domain for future research

directions. Based on the contribution of this work, we would like to explore other

highly dynamic skills in freerunning, such as cat crawl, underbar, or turn vault. These

motions are extremely interesting and challenging to simulate because they involve

sophisticated planning and control in both cognitive and motor control levels, as well

as complex interplay between the performer and the environment.

The landing strategies described in this work are suitable for highly dynamic

activities, but not optimal for low-clearance falls from standing height. There is a

vast body of research work in biomechanics and kinesiology studying fall mechanics

43

of human from standing height. One future direction of interest is to integrate this

domain knowledge with physical simulation tools to explore new methods for fall

prevention and protection.

44

CHAPTER IV

MULTIPLE CONTACT PLANNING FOR HUMANOID

FALLS

This chapter introduces a new planning algorithm to minimize the damage of hu-

manoid falls by utilizing multiple contact points. Given an unstable initial state of

the robot, our approach plans for the optimal sequence of contact points such that

the initial momentum is dissipated with minimal impacts on the robot. Instead of

switching among a collection of individual control strategies, we propose a general

algorithm which plans for appropriate responses to a wide variety of falls, from a

single step to recover a gentle nudge, to a rolling motion to break a high-speed fall.

Our algorithm transforms the falling problem into a sequence of inverted pendulum

problems and use dynamic programming to solve the optimization efficiently. The

planning algorithm is validated in physics simulation and experimentally tested on a

BioloidGP humanoid.

4.1 Motivation

A humanoid in an interactive environment is often exposed to the risk of falling due

to unexpected contacts or perturbations. A fall can potentially cause detrimental

damage to the robot and enormous cost to repair. To reduce the likelihood of damag-

ing robots during online operations, researchers and engineers often cover the robot

exterior with soft guards to absorb the impact of falls [64, 50]. Though practical,

these extra parts can potentially limit the range of motion or change the contact

behaviors.

Alternatively, the robot can learn how to fall safely like humans do. Fujiware et al.

45

[29, 31, 30, 28, 27] proposed fall strategies inspired by Ukemi, a set of techniques used

in Judo. Ogata et al. [76, 75] evaluated the risk of falls using predicted the zero

moment point (ZMP) and optimized the center of mass trajectory to reduce damage.

Ruiz-del-Solar et al. [85, 84] designed falling sequences for simulated robots playing

soccer. Wang et al. [104] directly solved joint trajectories of a three-link robot subject

to the full-body dynamics. Lee and Goswami [54] proposed a control strategy that

reorients the robot to fall on its backpack. Yun and Goswami [110] described a

“Tripod” strategy that utilizes a swing foot and two hands to stop the fall with an

elevated center of mass. Goswami et al. [32] proposed a direction-changing fall control

strategy that utilizes foot placement and inertia shaping to protect both the robot

and objects/humans in the surroundings.

These existing methods are effective for specific scenarios in which the pertur-

bations are assumed within certain range. To select the best method for the given

scenario, an additional decision making process that classifies initial conditions is re-

quired. In this chapter, we hypothesize that there exists a continuous space of falling

strategies which can be characterized by the sequence of contact positions on the

robot. In this hypothesized space, the existing falling techniques can be viewed as

special cases. For example, the strategy proposed by Ogata et al. [76] employed a

single contact at hands. Fujiwara et al. [27] proposed to use two contacts, knees and

hands, to stop a fall with higher initial momentum. In Judo, multiple contact points

from shoulders to hips are used during a forward roll to break a high-speed fall [6].

We introduce a general algorithm that unifies the existing techniques for falling

strategies. Our algorithm reacts to a wide range of initial perturbations by auto-

matically determining the total number of contacts, the order of contacts, and the

position and timing of contacts. The sequence of contact is optimized such that the

initial momentum is dissipated with minimal damage on the robot. We introduce an

abstract model, which consists of an inverted pendulum and a telescopic “stopper”,

46

to approximate the reactive motion when humans fall. The efficient optimization is

achieved by recursive planning in the space of abstract model using dynamic pro-

gramming. We demonstrate that our algorithm plans various falling strategies with

different contact sequences on simulated humanoids and on the actual hardware.

4.2 The Problem

Consider a biped humanoid on the ground with an unstable initial state due to a large

initial velocity. If the robot cannot recover its balance, what is the least damaging

way to fall on the ground? It is well known that the damage incurred at the instance

of impact is mainly due to the sudden change of momentum, which requires a large

impulse applied in a very short period of time. To completely stop a fall, the robot has

no choice but to absorb the initial momentum in its entirety. However, the change of

momentum needs not to happen so suddenly. With an ideal control policy, the robot

should be able to reduce the magnitude of the impulse at peak by distributing one

large impulse to multiple smaller impulses over multiple contacts with the ground.

In the discretized time domain, we define the instantaneous impulse at each time

step n as

jn =

∫ h(n+1)

hn

fy(t)dt = hfy(hn) (10)

where h is the discretized time interval and fy(t) is the sum of the vertical contact

forces at time t. Because the robots considered in this work are made of hard materi-

als, the contacts between the robot and the ground can be approximated as collisions

between two ideal rigid bodies. With this assumption, the largest instantaneous im-

pulse during each contact period typically occurs at the impact moment, the instance

when the contact first establishes. The maximum impulse for the entire falling process

can then be defined as max jn, n ∈ T , where T = {t̂(i)|i = 1 · · · k}. We denote an

impact moment for the contact i as t̂(i) and the total number of contacts as k. Using

this expression, the goal of our problem is to find a sequence of contact locations on

47

the robot and their timing, such that max jn is minimized.

4.3 The Algorithm

Our approach to this problem is inspired by the observation on how humans extend

a leg or an arm at the appropriate moment to stop a fall. In this section, we will

describe an abstract model to approximate this behavior, use this model to plan the

optimal sequence of contacts, and finally execute the plan on the humanoid robots.

4.3.1 Abstract Model

Figure 20: The abstract model consists of a telescopic inverted pendulum and a
massless stopper.

The falling motion of biped humanoids has been modelled by a simple 2D inverted

pendulum with a massless telescopic rod [31, 28]. The pivot and the center of mass

(COM) of the pendulum represent the center of pressure (COP) and the COM of

the robot respectively in the sagittal plane. To model the behavior of breaking a fall

using contact, we add an additional massless telescopic rod, called a stopper, to the

standard telescopic inverted pendulum (Figure 20). The configuration of our abstract

model can be defined by the pendulum length (r1), the angle between the pendulum

rod and the vertical line (θ1), the length of the stopper (r2), and the angle between

the pendulum rod and the stopper rod (θ2). We assume that the abstract model has

control over r1, θ2, r2, but θ1 is left unactuated. By controlling these three variables,

our goal is to minimize the vertical impulse at the contact.

48

Because the stopper is massless, the equations of motion of the abstract model

only depend on θ1 and r1 and can be written as:

r1θ̈1 + 2ṙ1θ̇1 − g sin θ1 = 0 (11)

mr̈1 −mr1θ̇
2
1 +mg cos θ1 = τr1 , (12)

where m is the mass of the robot and g is the gravitational constant. The control

force τr1 is computed based on the desired velocity of the pendulum rod, ṙd1:

τr1 =
m

h
(ṙd1 − ṙ1)−mr1θ̇

2
1 +mg cos θ1. (13)

Though not involved in the equations of motion, the stopper will change the

momentum of the abstract model whenever it establishes a contact with the ground.

Let the COM of the pendulum and the tip of the stopper be (x1, y1) and (x2, y2)

respectively, with respect to the pivot (0, 0). The momentum due to the vertical

impulse j generated by the stopper at the contact can be expressed as:

P+
y = mẏ1

+ = mẏ1
− + j

L+ = Iθ̇1
+

= Iθ̇1
− − (x2 − x1)j,

(14)

where P and L are linear and angular momentum of the abstract model and I is the

estimated inertia. Because we do not know the fullbody pose when planning in the

space of the abstract model, we approximate the inertia using the initial configura-

tion of the robot at the beginning of the fall. The superscripts − and + denote the

quantities before and after the impact respectively. For inelastic collision, the vertical

velocity at the tip of the stopper after the impact should be equal to zero, leading to

the following equation:

0 = ẏ+
2 = ẏ+

1 − (x2 − x1)θ̇+
1

= (ẏ−1 +
j

m
)− (x2 − x1)(θ̇−1 −

(x2 − x1)j

I
)

= (
1

m
+

1

I
(x2 − x1)2)j + ẏ−2 .

(15)

49

Equation (15) gives a formula to compute the vertical impulse j:

j = − ẏ−2
1
m

+ 1
I
(x2 − x1)2

. (16)

4.3.2 Multiple Contacts

Multiple abstract models can be strung together to model falling with a sequence of

contacts. Each abstract model describes the motion from the impact moment t̂i to

the next impact moment t̂i+1. The first abstract model is initialized by the initial

states of COM and COP of the robot at the beginning of the fall. As the current

stopper hits the ground, a new abstract model is initialized: the COM of the current

pendulum at t̂i+1 becomes the initial COM of the new abstract model and the tip

of the current stopper becomes the pivot of the new abstract model. Using multiple

abstract models to represent the falling motion, our goal is to search for a sequence

of contacts whose maximum vertical impulse is minimized.

Before we formulate the search problem formally, it is important to note that

the number of contacts used to break a fall, in theory, can be arbitrarily large. In

the limit, if a robot could morph into a rolling ball without slipping, the number of

contacts would be infinite and the vertical impulse of the fall would be zero (the initial

momentum is never dissipated). In practice, however, the robot has only a limited

number of preferred contact points, such as feet, knees, or hands. Furthermore, these

contact points can only be applied in certain sequences due to the hardware design

and kinematic constraints.

Utilizing these constraints, we introduce a data structure, called a contact graph,

to narrow down the search space to only those contact sequences achievable by a

given robot. A contact graph is a directed graph G(Vc, Ec) which vertices are the

preferred contact points on the robot. If there exists an edge from node c1 to node

c2, it indicates that c2 is a valid subsequent contact point to c1. Given a robot, we

can design a contact graph to represent all possible falling strategies the robot can

50

Figure 21: Contact graphs

employ. For example, a path from feet to knees to hands in Figure 21 represents the

falling strategy described in [29].

Plan for contact sequence With the contact graph and the initial state of the

robot as input, we now describe our algorithm that searches for an optimal sequence

of contacts using multiple abstract models.

We formulate the problem as a Markov Decision Process, a framework for mod-

eling decision making with a long-term cost. We define a state at each impact mo-

ment as x = {c1, t̂, θ1, r1, θ̇1, ṙ1} ∈ X , where c1 denotes the contact point on the

robot, t̂ denotes the time when the impact occurs, and other parameters describe

the position and the velocity of the pendulum at the impact moment. An action

a = {c2, θ2,∆t, ṙ
d
1} ∈ A describes the contact point on the robot used as the stopper

(c2), the position of the stopper at the next impact moment (θ2), the elapse time

from the previous impact moment to the next impact moment (∆t), and the desired

speed of the pendulum length during the current contact (ṙd1). Note that the length

51

of the stopper r2 at the next impact moment can be derived from r1, θ1, and θ2 by

calculating the intersection of the stopper and the ground.

Our goal is to search for the best action sequence in A to minimize the maximum

impulse. The long-term cost of an action a taken at a state x can be expressed as

max
(
g(x, a), v(f(x, a))

)
, (17)

where g(x, a) is the local cost function which computes the vertical impulse due to

the action a taken at the state x, f(x, a) is the transition function which outputs the

state after taking a at x, and v(x) is the cost-to-go function that yields the minimal

impulse starting from x following the best actions. The cost-to-go function can be

expressed recursively as

v(x) = min
a

max(g(x, a), v(f(x, a))). (18)

Determining the best action from a given state is a 4D search problem. Every evalua-

tion of an action (Equation (17)) invokes a cost-to-go function (Equation (18)), which

recursively generates another 4D search problem. Although the recursive search ex-

ponentially expands with the number of contacts, the state space we need to consider

is quite limited due to the monotonicity nature of falling motion. That is, as the robot

falls, θ1 changes monotonically from the initial value to 0 (or π). Likewise, θ̇1 will

never exceed the range between the initial velocity and 0. As a result, the algorithm

visits a large number of repeated states during the search. We exploit this prop-

erty using dynamic programming with k-nearest neighbor algorithm to significantly

expedite the search (details later).

Algorithm 1 shows the evaluation of the cost-to-go function. For a given state

x, we search in the 4D action space with respect to the bounds in each dimension.

The range of the desired rod velocity (ṙd1) is based on the specifications of the robot

(Line 6). The elapse time between two consecutive impact moments (∆t) is bounded

by the time that takes the pendulum to fall from θ1 to the ground (Line 9). The actual

52

Algorithm 1: cost-to-go(x)

1 if θ̇1 < 0 then
2 return 0;

3 if kNN has x then
4 return kNN [x];

5 j̄ =∞;
6 for ṙd1 ∈ V do
7 xnow = x;
8 ∆t = 0;
9 while θnow1 < π/2 do

10 S = generate stoppers(xnow,∆t);
11 for c2, θ2 ∈ S do
12 a = {(c2, θ2,∆t, ṙ

d
1)};

13 x+ = f(xnow, a);
14 j+ = g(xnow, a);
15 j∗ = cost-to-go(x+);
16 j̄ = min(j̄,max (j+, j∗));

17 xnow = simulate pendulum(xnow, ṙd1);
18 ∆t = ∆t+ h;

19 kNN [x] = j̄;
20 return j̄;

Algorithm 2: generate stoppers(x,∆t)

1 S = ∅;
2 for c2 ∈ {c2|(c1 → c2) ∈ Ec} do
3 for θ2 ∈ [−π, π] do
4 r2 = r1cos(θ1)/− cos(θ1 + θ2);
5 if Kc1→c2 [r1][r2][θ2] = 0 then
6 continue;

7 if |θ2 − θ̂2(c1, c2)| > (t̂+ ∆t)θ̇max then
8 continue;

9 S = S ∪ {(c2, θ2)};

10 return S;

53

range of ∆t depends on a forward simulation process (Line 17). The candidates of c2

are defined by the contact graph and the corresponding range of θ2 for each candidate

is determined by the kinematic limits of the robot. c2 and θ2 together define a set of

feasible stoppers, S, for the next contact (Line 10). Algorithm 2 describes the details

on generating the feasible stopper set.

The feasibility of the stopper depends on whether the robot can achieve the kine-

matic constraints imposed by r1, r2, θ2 for a particular contact transition from c1 to

c2 (Line 5). Instead of solving an inverse kinematic problem, we expedite the feasi-

bility test by building lookup tables as a preprocess. We first create 10000 distinctive

random configurations of the robot within its joint limits. For each connected pair

of nodes (c1, c2) in the contact graph, we create a 3D lookup table Kc1→c2 [r1][r2][θ2].

If the attributes of an entry (i.e. r1, r2, and θ2) match r1, r2, and θ2 extracted from

one of the 10000 robot configurations within tolerance intervals, we mark that entry

one, and zero otherwise. With this lookup table, we can efficiently accept or reject a

proposed stopper based on the kinematic constraints of the robot.

In addition, we need to make sure that the stopper can reach the proposed θ2

within t̂ + ∆t second from its initial position, θ̂2(c1, c2), at the beginning of the fall.

For each pair of connected contact points (c1, c2) on the contact graph, we precompute

the angle θ̂2(c1, c2), defined as the angle between the vector from c1 to COM and the

vector from COM to c2, on the initial configuration of the robot. If the proposed θ2

cannot be achieved by moving at the maximum speed in t̂ + ∆t seconds, we reject

the proposed stopper (Line 7).

Whenever we need to evaluate the cost-to-go of a new state, we first check whether

there exists a previously visited state sufficiently close to the new state. If so, the

cost-to-go of the previously visited state is returned (Line 3). If not, we recursively

expand the search to the next contact. The similarity function measures the Euclidean

distance between two states weighted by w = [100.0, 1.0, 1.0, 0.1, 2.0, 4.0] to account

54

for the different units in different dimensions of the state space.

Algorithm 1 terminates when the velocity of the pendulum is zero or negative

(Line 2), indicating that the initial momentum is completely dissipated. After the

termination, we do a forward pass to recover the sequence of contacts by following

the best actions. For each contact i, we record the state at the impact moment x(i)

and the optimal action a(i) that leads to the state of the next impact moment x(i+1).

We define the contact plan as P = {(x(1), a(1)) · · · (x(k), a(k))}, where k is the total

number of contacts.

Plan for whole-body motion The final step is to execute the contact plan solved

by Algorithm 1 on the humanoid robot. Our approach is to solve for a sequence of

whole-body configurations, q(1), · · · ,q(k), to match the contact plan. q(i) is defined

as a set of actuated joint angles which will be tracked by the robot during contact i

using PID control. For each (x(i), a(i)) in P , we formulate an optimization problem

as follows:

q(i) = argmin
q

(
‖z(q, c

(i)
1)− p0‖2 + ‖c(q)

− p1(x(i))‖2 + ‖z(q, c
(i)
2)− p2(x(i), a(i))‖2

)
. (19)

The first term in the objective function tries to match the current contact position of

the robot, z(q, c
(i)
1), to the pivot of the abstract model, p0. The second term tries to

match the COM of the robot, c(q), to the position of the pendulum, p1(x(i)). Finally,

the third term tries to match the next contact position of the robot, z(q, c
(i)
2), to the

tip of the stopper, p2(x(i), a(i)). After solving the optimal sequence of poses, the

robot is commanded to track the pose q(i) from the beginning of contact c
(i)
1 to the

beginning of contact c
(i)
2 .

55

4.4 Experiments

We evaluated our multiple contact planning algorithm on two simulated humanoids,

BioloidGP [1] and Atlas [2], as well as the actual hardware of BioloidGP. Our al-

gorithm was compared against a naive approach without planning–the robot sim-

ply tracks the initial pose throughout the fall. For the two simulation settings, our

evaluation metric is the maximum impulse as previously defined. For the hardware

experiments, we measured the maximum acceleration of the head.

4.4.1 Simulation Results

We used an open source physics engine, DART [21, 57] with 0.0005s time step (h)

to simulate the motion of the humanoids. Contacts and collisions were handled by

an implicit time stepping, velocity-based LCP (linear-complementarity problem) to

guarantee non-penetration, directional friction, and approximated Coulomb friction

cone conditions.

Figure 22: First row: BioloidGP forward falling from a one-foot stance due to a 5.0N
push. Second row: BioloidGP forward falling from a one-foot stance due to a 8.0N
push. Third row: Atlas forward falling from a two-feet stance due to a 1000N push.
Fourth row: Atlas forward falling from a two-feet stance due to a 2000N push.

56

Table 3: The initial conditions and the results of BioloidGP simulations.

Mag.(N) Unplanned Planned Ratio Contacts Remarks
0.5 0.8889 0.2063 23.2% right toes, left heel, left toes Stepping
1.5 0.6789 0.2776 40.9% right toes, left heel, left toes, hands Tripod
5.0 0.9312 0.3885 41.7% right toes, left heel, left toes, hands Tripod
8.0 1.2170 0.5884 48.4% right toes, left heel, left toes, hands, head, right heel Rolling

4.4.1.1 BioloidGP

BioloidGP is a small humanoid robot with 16 degrees of freedom (DOFs) (34.6cm,

1.6kg). Our first set of tests applied pushes with different magnitudes to the robot.

Starting with the same one-foot stance, we ran four tests with pushes ranging from

0.5N to 8.0N, applied for 0.1 second at beginning of the fall. We set the joint angle

limits at ±150◦ and the torque limits at 0.6Nm. We approximated the speed limit

of the COM in the vertical direction and set the limits of the rod length velocity ṙd1

at ±0.03m/s. The input contact graph is shown in Figure 21. Due to the relatively

large feet of BioloidGP, heels and toes were treated as two separate contacts.

Table 3 describes the details of the initial conditions and the results of each test.

The columns of the table denote the magnitude of perturbation, the maximum im-

pulses of the unplanned and the planned motions, the impact ratio of planned to un-

planned motion, the optimal contact sequence, and a short description of the emergent

falling strategy. As we expected, our planning algorithm used more contacts when

the initial momentum was large. For a push with 0.5N, the robot took a single step

to recover the fall. For the cases of 1.5N and 5.0N, our algorithm planned a contact

sequence with the left heel, the left toe, and both hands, reminiscent to the Tripod

strategy proposed by [110]. When we increased the magnitude of the push to 8.0N,

the rolling strategy, effective for breaking high speed falls [6], automatically emerged.

Please refer to the supplementary video and Figure 22 for all the results.

Comparing to unplanned motions, our algorithm only caused 23.2% to 48.4% of

the maximum impulse. To verify how well the contact plan P was executed, we com-

pared the COM trajectories between the abstract model and the robot (Figure 23).

57

Figure 23: COM trajectories between the abstract model (Blue) and the robot (Red).
Top left: BioloidGP forward falling from a one-foot stance due to a 5.0N push. Top
right: BioloidGP forward falling from a one-foot stance due to a 8.0N push. Bottom
left: Atlas forward falling from a two-feet stance due to a 1000N push. Bottom right:
Atlas forward falling from a two-feet stance due to a 2000N push.

Most plans were executed well with an exception of the 8.0N case due to the accumu-

lated errors over a longer motion sequence. Still, in this case the maximum impulse

was significantly reduced due to the distribution of impulse over multiple contacts.

The contact graph is an important input that defines all possible contact sequences

for the given humanoid. We ran an additional test to modify the contact graph of

the BioloidGP robot. By removing the “hands” node, the 8.0N push resulted in a

hands-free rolling sequence.

4.4.1.2 Atlas

We also evaluated our algorithm on a large humanoid, Atlas (188cm, 150kg, 28DOFs).

We followed the joint limits and the torque limits described in the URDF file provided

by Boston Dynamics [2]. The limits of the rod length velocity ṙd1 were set at ±0.3m/s.

We ran six test cases with three initial settings: a forward push from a one-foot stance

pose, a forward push from a two-feet stance pose, and a backward push from a two-

feet stance pose. For each setting, we pushed the robot with two different magnitudes.

58

Table 4: The initial conditions and the results of Atlas simulations.

Initial Stance Direction Mag.(N) Unplanned(Ns) Planned(Ns) Ratio Contacts
One foot Forward 1000 363.9 37.8 10.4% right foot, left foot
One foot Forward 2500 401.5 281.1 70.0% right foot, left foot, hands
Two feet Forward 1000 392.8 214.0 54.5% feet, knees
Two feet Forward 2000 322.7 199.7 61.8% feet, knees, hands
Two feet Backward 300 338.8 176.5 52.1% feet, hands
Two feet Backward 500 344.6 243.9 70.8% feet, hips, hands, back

The input contact graphs are shown in Figure 21.

Table 4 shows the initial settings and the results for all the tests. Again, our

algorithm suggested to use more contacts for pushes with higher magnitudes. For

the same setting (falling forward from a one-foot stance pose), we observed a change

of strategy from taking a small step (1000N) to using Tripod strategy (2500N). In

the case of falling forward from a two-feet stance pose, the robot landed on its knees

when the push was weak (1000N), similar to the strategy proposed by [30]. When the

external force became stronger (2000N), the robot utilized an additional contact with

hands, similar to the strategy reported in [27, 75]. For backward falls, the robot was

able to stop a gentle nudge (300N) using only hands but needed to use three contacts,

hips, hands, and back, to stop a stronger push (500N), similar to [29]. Please refer

to the supplementary video and Figure 22 for all the results.

Comparing to unplanned motions, our algorithm caused 10.4% to 70.8% of the

maximum impulse. Because Atlas has relatively short arms, the backward falls pre-

sented more challenges than the forward falls. The planned and executed COM

trajectories for falling forward from a two-feet stance pose are compared in Figure 23.

4.4.2 Hardware Results

Finally, we ran two experiments on the hardware of BioloidGP (Figure 24). In the

first experiment, BioloidGP started with a statically unbalanced position and zero

velocity. The optimal plan simply used hands to stop the COM from descending. In

the second experiment, the robot was pushed forward by a linear actuator with the

magnitude of 0.5N. In this case, BioloidGP used two contacts, knees and hands, to

59

Figure 24: We measured the acceleration at the head of BioloidGP (Left). For both
0.0N (Middle) and 0.5N (Right) cases, the planned motions (Red) yielded about 68%
of the maximum acceleration of the unplanned motions (Blue).

stop the fall. We attached an accelerometer to the head of BioloidGP and measured

the maximum acceleration during the fall. For both cases, the maximum acceleration

resulted from our algorithm was about 68% of that resulted from the unplanned

motion (Figure 24).

We ran an additional experiment to show that BioloidGP is capable of deploying

the rolling strategy to stop a high-speed fall. We gave BioloidGP a strong shove by

hand at the beginning. The large initial momentum resulted in a somersault motion

with five contacts. Due to the safety concern, we did not perform the same experiment

to produce an unplanned motion for comparison. All the hardware experiments can

be viewed in the supplementary video.

4.4.3 Limitations

Our algorithm has a few limitations. First, the planning takes 1.0 to 10.0 seconds

to compute in all our experiments. As a result, the algorithm is not ready to deploy

in the real-world situations where robots need to react autonomously in real-time.

However, our preliminary results show that an optimized contact plan typically can

reduce damage for a range of initial conditions, not just for the initial conditions it

was optimized for. For example, the optimized contact plan of BioloidGP for 5.0N

push yields 35% to 50% of the maximum impulse for pushes ranging from 2.5N to

6.5N. The preliminary results imply that it is possible to precompute a set of contact

plans which sparsely covers the space of all possible initial conditions. The robot

60

can choose one plan with the most similar initial condition to the online situation to

execute.

The two criteria we use to exclude the infeasible stoppers in Algorithm 2 are

tend to be too conservative. In particular, using θ̂2(c1, c2) from the initial robot

configuration to approximate the position of the stopper at each impact moment can

be erroneous as the angles between limbs are continuously changing during the fall.

Adding other criteria, such as torque limits, to exclude infeasible stoppers might lead

to more efficient search.

Our algorithm is limited to planar motion. Falls that require non-planar plans,

such as those described in [110] and [32] cannot be effectively stopped by our algo-

rithm. One possible future work is to use a more complex model, such as a reaction

mass pendulum with a rigid body inertial mass, proposed by [32].

Finally, we observed that many motions did not end with an balanced, erect

stance, because a balanced final pose is not the goal of our planning algorithm. If a

balanced final pose is a desired feature, we can simply activate an additional static

balance controller after the last contact is executed. Because the momentum at the

final contact is near zero, maintaining a static balance is not a difficult task.

4.5 Conclusion

We presented a general algorithm to minimize the damage of humanoid falls by uti-

lizing multiple contact points. For an initial state with arbitrary planar momentum,

our algorithm optimizes the contact sequence using abstract models and dynamic

programming. Unlike previous methods, our algorithm automatically determines the

total number of contacts, the order of contacts, and the position and timing of con-

tacts, such that the initial momentum is dissipated with minimal damage to the

robot.

The discovered optimal falling strategies in this paper may not be identical to the

61

strategies of real humans [5] due to the different joint structures or mass distribu-

tions. For instance, BioloidGP and a human take different contact sequences during a

forward roll. A roll of a human changes contacts continuously from shoulders to hips,

while a roll of BioloidGP makes discrete contacts at its head and left foot (Figure 22).

It can be due to the simplicity of the input contact graph, or the existence of a flexible

spine that helps continuous transitions of contacts. For another case when the fall is

initiated from the two feet stance, our strategy finds knees and hands as optimal but

a falling strategy of Judo proposes to break a forward fall with only both hands. The

reason can be that humans try to avoid to make contacts at joints, which are more

fragile than limbs.

62

CHAPTER V

ITERATIVE DESIGN OF DYNAMIC CONTROLLERS

Inspired by how humans learn dynamic motor skills through progressive process of

coaching and practices, we introduce an intuitive and interactive framework for devel-

oping dynamic controllers. The user only needs to provide a primitive initial controller

and high-level, human-readable instructions as if s/he is coaching a human trainee,

while the character has the ability to interpret the abstract instructions, accumulate

the knowledge from the coach, and improve its skill iteratively. We introduce “control

rigs” as an intermediate layer of control module to facilitate the mapping between

high-level instructions and low-level control variables. Control rigs also utilize the

human coach’s knowledge to reduce the search space for control optimization. In

addition, we develop a new sampling-based optimization method, Covariance Matrix

Adaptation with Classification (CMA-C), to efficiently compute control rig param-

eters. Based on the observation of human ability to “learn from failure”, CMA-C

utilizes the failed simulation trials to approximate an infeasible region in the space

of control rig parameters, resulting a faster convergence for the CMA optimization.

We demonstrate the design process of complex dynamic controllers using our frame-

work, including precision jumps, turnaround jumps, monkey vaults, drop-and-rolls,

and wall-backflips.

5.1 Motivation

Mastering a dynamic motor skill, such as a handstand in gymnastics, or a precision

jump in Parkour, usually requires an iterative process with interactive coaching and

repetitive practices. Based on the current skill level of the trainee, the coach gives

63

Figure 25: Two precision jumps on narrow rails.

instructions that emphasize the key areas for improvement. The trainee then inter-

nalizes the new information and improves the skill through practices. The learning

process alternates between coaching and practicing stages until the skill is acquired. In

contrast, teaching a physically simulated character a new motor skill entirely depends

on the effort of the controller developer, from the design of the control architecture

to the tweaking of low-level control parameters. We hypothesize that the controller

development can be greatly simplified by exploiting the same learning principles hu-

mans use to acquire new motor skills. In addition, if designing new controller can be

done in the similar fashion as coaching a human trainee, the existing controllers can

be easily adapted, extended, or concatenated for new situations.

This paper attempts to formalize the methodologies humans use to learn dynamic

motor skills. We present an algorithmic framework to facilitate the iterative learning

process of coaching and practicing. During the coaching stage, the user only needs to

provide a primitive initial controller and high-level, human-readable instructions as if

s/he is coaching a human trainee. For example, a human coach typically uses high-

level instructions, such as “extend the legs” or “push the ground”, rather than specific

descriptions of joint angles. During the practicing stage, the character is capable of

64

following the instructions and improving its motor skill effectively on its own. That

is, the character has the autonomous ability to interpret the abstract instructions,

accumulate the knowledge from the coach, and optimizes its motion based on the

guidance.

The main challenge of this work is to formalize these elusive principles of human

learning into mathematical models for controller design. Our underlying assumption

is that any motor skill can be achieved by using simple proportion-derivative (PD)

style control and Jacobian transpose control at every actuated joint and every body

part, if the control parameters are properly determined. This formulation, however,

introduces a prohibitively large space of control variables for the existing optimization

methods. Our controller design framework solves this issue by utilizing human coach-

ing knowledge to select an appropriate subset of control variables (coaching stage)

and relying on a new sampling-based optimization method to determine the value of

control variables (practicing stage).

Using high-level, human-readable instructions can potentially simplify the con-

troller design, but directly mapping high-level instructions to low-level control vari-

ables is a challenging task. We introduce an intermediate layer of control module,

called control rigs, to interpret the human instructions during the coaching stage. A

control rig simultaneously controls a set of low-level control variables in a coordinated

fashion. For example, a control rigs flexes legs uses a single parameter, the distance

between the waist and the feet, to control the target joint angles of the PD con-

trollers on the hips, knees, and ankles. With this intermediate layer, mapping human

instructions to the low-level control variables can be done automatically by selecting

appropriate control rigs. In addition, using control rigs instead of low-level variables

reduces the search space for the optimization. We design a set of control rigs from

frequently used instructions for Parkour training. These control rigs are general and

can be reused for coaching different sports.

65

To determine the control variables efficiently during the practicing stage, we in-

troduce the concept of “learning from failure” using a sampling-based optimization

method. Our key insight is that the failed samples contain as much useful information

as the successful ones. For example, falling on the ground or hitting obstacles are valu-

able experiences to learn vaulting. Instead of throwing away those failed simulation

trials, our algorithm uses them to approximate the boundary of the feasible region

in the control variable space. Having an approximated feasible region accelerates

the optimizations by preventing the character to repeat failures committed before.

Based on this idea, we build Support Vector Machines in concert with Covariance

Matrix Adaptation (CMA), called Covariance Matrix Adaptation with Classification

(CMA-C). The main advantage of CMA-C is that it exploits every simulated trial;

the successful ones are used to contract the covariance matrix while the failed ones

are used to refine the boundary of feasible region.

We demonstrate the design process of complex dynamic controllers using our

framework, including precision jumps, turnaround jumps, monkey vaults, drop-and-

rolls, and wall backflips. We show that the character started out with basic controllers;

using PD control to track a few roughly specified poses; and were able to learn these

complex dynamic skills within minutes with only a few high-level instructions from

the user. Once a controller is developed, parameterizing it to a family of similar

controllers for concatenation can be done without additional effort from the user.

5.2 Overview

We introduce a general framework to design dynamic controllers using high-level,

human-readable instructions (Figure 26). The iterative process begins with an input

controller. We view the initial controller as a blackbox because our algorithm does

not interact with its internal implementation. For all our experiments, we used a

simple pose-tracking controller with 4 to 6 keyframes. During training, the initial

66

controller is improved iteratively through alternating stages of coaching and practic-

ing. The output is a new controller that meets the requirements of the user. Once a

controller is developed, we can generalize it by parameterization or concatenation for

new situations.

Figure 26: Overview diagram.

During each coaching stage, the user provides high-level instructions to correct

undesired behaviors, change task objectives, or add different styles to the motion.

According to the type of the instructions, the instruction interpreter automatically

selects the appropriate control rigs, and modifies constraints or the objective function

for the optimization.

During each practicing stage, the control optimizer searches for control rig pa-

rameters using our new algorithm, Covariance Matrix Adaptation with Classification

(CMA-C). The control optimizer uses the current estimate of rig parameters to gen-

erate motion samples. A controller can be represented as a function g, which takes

the current state qt as input and generates torque τt. In addition, we denote s as a

function that simulates the motion from a given state under a given controller, and

outputs the final state qf of the simulation.

qf = s(qt, g) (20)

67

5.3 Coaching Stage

The coaching stage takes in high-level user instructions and interprets them by re-

vising the task objective or adding constraints. We introduce “control rigs”, as an

intermediate layer between high-level instructions and low-level control variables. A

control rig, predefined by our framework, is a function of a set of low-level control

variables. It allows for more coordinated control of the low-level variables and pro-

vides more intuitive mapping to high-level instructions. The main advantage of using

control rigs is that it reduces the optimization time significantly by suggesting the

most effective directions to optimize. Although a control rig needs to be manually

defined, it can be shared by different instructions or repurposed for new motor tasks.

5.3.1 Instructions

Although coaching strategies and styles vary widely, the basic instructions commonly

used to break down a complex movement are surprisingly consistent. Most instruc-

tions provide a numerical or categorical correction to improve a particular part of

the body. For example, “Lower the center of mass more” or “raise your arms to 45

degrees”. From observing Parkour training sessions and tutorials, we define a set of

coaching instructions in Table 6.

5.3.2 Control Rigs

A control rig r is a pre-defined function of a set of low-level PD or Jacobian Transpose

controllers. A PD controller tracks the target joint angle based on the feedback rule:

τ = ks(θ̂ − θ) − kd(θ̇), where ks and kd are the gain and the damping coefficient

of the joint and θ̂ is the desired value for the joint angle. A Jacobian Transpose

controller computes the required joint torques to produce the desired “virtual force”,

fv, at a point x, using the Jacobian Transpose mapping: τ = JT (x)fv, where J(x) is

the Jacobian matrix at x. These two types of low level controllers, when combined

properly, can effectively control the pose and global motion of the character. A control

68

rig, τ = r(qt,p), takes in the current state qt and the rig parameters p to produce

torques which are added to the total torques applied to the character.

We keep a set of active control rigs, R = {r1, ..., rm}, during training. As the user

provides more instructions, more control rigs are included to the active set. With

optimized parameters P = {p1, ...,pm}, we obtain an improved controller gR.

gR(q,P) = g(q) +
m∑
i=1

ri(q,pi) (21)

In this paper, we designed five control rigs from common instructions used for

learning gymnastics and Parkour. Each control rig, ri, has a set of arguments deter-

mined by the instruction from which ri is created, and a set of rig parameters which

are optimized during the practicing stage (Table 5).

1. TargetJoints rig consists of the PD controllers on a set of joints specified by the

instruction. The rig parameters are defined as the target joint angles of the PD

controllers.

2. IKPose rig solves for the joint angles to meet a desired relative position of two

bodies specified by the instruction. The solved joint angles are then used as the

target angles for a set of PD controllers.

3. Stiffness rig adjusts the gains of the PD controllers on a set of joints specified

by the instruction. The rig parameters are defined as the gains.

4. VirtualForce rig consists of a Jacobian Transpose controller which computes

required torques to produce a virtual force at the center of mass of a body link

specified by the instruction. The rig parameter is defined as the desired virtual

force

5. FeedbackVirtualForce rig consists of a Jacobian Transpose controller on a body

link specified by the instruction. Instead of treating the desired virtual force as

69

Table 5: Control rigs.
Rig Type <Arguments> Description Rig Parameters
TargetJoints <joint a, · · · > Command a set of joints to achieve desired

angles simultaneously.
Desired joint angles

IKPose <body a, body b> Compute a target pose to meet the desired
relative position between body a and body b.
Command joints to achieve the target pose.

Desired distance or de-
sired angles

Stiffness < joint a, · · · > Command a set of joints with desired stiff-
ness.

Gains

VirtualForce <body a> Apply torques which produce the desired vir-
tual force at the center of mass of body a.

a Desired virtual force
in end-effector frame

FeedbackVirtualForce <body a, Ĉ > b Apply torques which produce the virtual
force at the cetner of mass of body a. The
virtual force is computed by a feedback rule.

-

afu is in the direction of C - S. fv is orthogonal to fu and parallel to the contacting surface.
bWe use the following feedback rule on the center of mass of the whole body: fv = ks(Ĉ−C)−kdĊ,

where ks = 300 and kd = 6.

a rig parameter, it is computed using the feedback rule: fv = ks(Ĉ−C)− kdĊ,

where C and Ĉ are the center of mass of the whole body and its desired position.

Intuitively, this rig computes the torques that generate a virtual force to bring

the center of mass closer to the desired position.

We show that these five control rigs are sufficient to generate the motor skills

demonstrated in the result section.

5.3.3 Instruction Interpreter

The instruction interpreter translates a human-readable instruction into two possible

actions: modifying the task objective or adding constraints for the optimization prob-

lem. In addition, if these actions involve new control rigs, the instruction interpreter

will add them to the optimization domain. We define a set of simple rules that map

the instructions to the control rigs. Please see details in Table 6.

The task objective. The task objective is evaluated at the final state of the

motion by an objective function .

f(P) =
n∑
i=1

‖hi(s(q0, gR)− ĥi‖ (22)

When the user specifies an instruction from Table 6 (except for the last instruction,

70

Table 6: Interpretation of instructions. Each instruction is associated with a control
rig, an objective term and/or a contraint. qf , qprevf : the final state of the current
motion and the previous motion. C,S,P,L : the center of mass, center of pressure,
linear momentum, and angular momentum. poslimb, rotlimb : the limb position and
orientation. qjoint, ksjoint : the joint angle and stiffness.
Instruction Introduced control rig Introduced objective / constraint
FLEX|EXTEND joint BY θ TargetJoints<joint> ‖qjoint(qf)− θ‖
MOVE a direction BY δ IKPose< b contact, root> c ‖C(qf) · d− (C(qprevf) · d + δ)‖
TRANSLATE limb direc-
tion BY δ

IKPose<root, limb> ‖poslimb(qf) · d− (poslimb(q
prev
f) · d + δ)‖

ROTATE limb direction BY
δ

IKPose<root, limb> ‖rotlimb(qf) · d− (rotlimb(q
prev
f) · d + δ)‖

SPEED NEAR ˆ̇C VirtualForce<contact> ‖Ċ(qf)− ˆ̇C‖
SPEEDUP/ SLOWDOWN
γ %

VirtualForce<contact> ‖P(qf)− (P(qprevf) ∗ γ)‖

TURNFASTER/
TURNSLOWER γ %

VirtualForce<contact> ‖L(qf)− (L(qprevf) ∗ γ)‖

BALANCE FeedbackVirtualForce< con-
tact, Ĉbal >

‖Ċ(qf)‖

RELAX|STIFFEN joint BY
γ %

Stiffness<joint> ‖ksjoint(qf)− (ksjoint(q
prev
f) · γ)‖

PUSH/PULL limb
AGAINST surface

VirtualForce<limb> -

PLACE body|C|S NEAR
body|C|S|constant

- ‖posbody|C|S(qf)− posbody|C|S|constant(qf)‖

d body|C|S IN RELATION
TO body|C|S|constant

- relation(body|C|S, body|C|S|constant)

aWe used a dictionary to translate the dir keyward into direction vector d. For instance, if the
dir keyword is “upward”, d = (0, 1, 0)T .

b“contact” indicates the body parts in contact
cWe project C(q) in the desired direction, d, specified in the instruction.
dThe last instruction creates a constraint, instead of an objective function.

which will be explained in the next paragraph), a new term, ‖hi(qf) − ĥi‖, will be

added to the objective function. hi is a function that evaluates a quantity derived from

the final state. ĥi is the desired value for that quantity. For example, to interpret

the instruction “TRANSLATE hands forward BY 0.5m” (Figure 27), the keyword

“forward” is first mapped to the predefined direction d = [1, 0, 0]T . Then hi(qf) is

defined as the average position of the hands in the forward direction (poshands(qf)·d).

Finally, the desired value ĥi is computed by adding 0.5m to the previous average

position of the hands in the forward direction (poshands(q
prev
f) · d + 0.5).

Although we use the final state in Equation 22, in our implementation the entire

motion sequence is available for evaluation. Thus the cost function can depend on

any state in the motion sequence. In addition, we can formulate a cost function that

71

Figure 27: The user can adjust the positions of hands by giving an instruction
“TRANSLATE hands forward BY 0.5m”. The instruction will add an IKPose rig for
arms and modify the desired position of hands by 0.5m in the forward direction.

affects the timing of the motion by evaluating the elapsed time for each phase.

Constraints. Most dynamic motor skills are subject to constraints, such as main-

taining balance or contact conditions. When the character’s motion fails to meet any

of the constraints, the simulation will terminate immediately. The failed motion adds

a penalty term, K(Tmax−t), to the objective function (Equation 22) to penalize early

failure. t indicates the time when failure occurs, and K and Tmax are set to 1000 and

2 respectively. Tmax can be adjusted based on the expected duration of the successful

motion.

In our instruction set, the last instruction (Table 6) introduces a constraint to

enforce spatial relationship between two body parts. For example, “head IN FRONT

OF root” instruction places a lower bound on the x position of head (d·(poshead(qf)−

posroot(qf)) > 0 where d = (1, 0, 0)T).

72

CHAPTER VI

OPTIMIZATION WITH FAILURE LEARNING

6.1 Practicing Stage

The practicing stage optimizes the parameters of each control rig selected by the

coaching stage. Although the search space is largely reduced by using control rigs

rather than low-level control variables, we still need to solve a non-convex and discon-

tinuous optimization problem. Much previous work in computer animation applied

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to problem in this na-

ture. The standard procedure at each iteration involves generating samples in the

control variable space, using the samples to simulate motions, and evaluating each

motion according to the cost function.

However, the standard CMA-ES does not exploit two distintive features of our

problem. First, our problem has a clear definition of infeasible samples, such as

the control parameters that result in an imbalanced motion. Second, because our

framework is an iterative process, we have a series of optimization problems sharing

very similar feasible regions. Without leveraging these features, the standard CMA-

ES spends much computation time on repeatedly evaluating failed samples.

We designed a new algorithm, called CMA-C, based on the observation of human’s

ability to learn from failure. Because failure in the real world is usually associated

with pain or injury, humans tend to be very effective in characterizing the cause of

failure and trying to avoid the same mistakes in the future. To this end, CMA-

C simultaneously builds a set of Support Vector Machines (SVMs) along with the

evolution of CMA. Each SVM approximates the infeasible region of a particular type

of failure. CMA-C accelerates the optimization by preventing redundant evaluations

73

of failed samples. Moreover, the constructed SVMs can be reused by subsequent

optimizations because they share similar feasible regions, further speeding up the

computation significantly.

74

T
a
b
le

7
:

C
M

A
-C

ev
al

u
at

io
n

on
fi
ve

p
ro

b
le

m
s.

C
M

A
-C

im
p
ro

ve
s

th
e

co
m

p
u
ta

ti
on

b
y

fo
u
r

to
fi
ve

ti
m

es
.
µ

,
λ

,
an

d
σ

re
p
re

se
n
ts

C
M

A
p
ar

en
t

si
ze

,
p

op
u
la

ti
on

si
ze

,
an

d
st

ep
si

ze
.

Ĉ
,

P̂
,

L̂
,

an
d

Ŝ
in

d
ic

at
e

th
e

d
es

ir
ed

C
O

M
,

li
n
ea

r
m

om
en

tu
m

,
an

gu
la

r
m

om
en

tu
m

,
an

d
th

e
C

O
P

.

P
ro

b
le

m
O

b
je

ct
iv

e
fu

n
ct

io
n

C
on

st
ra

in
ts

(c
1
|c

2
|.

..
)

µ
λ

σ
D

om
ai

n
F

ea
si

b
le

re
gi

on
N

oi
se

C
M

A
-E

S
(e

va
ls

/t
ot

a
l

ti
m

e)
C

M
A

-C
(e

va
ls

/
to

ta
l

ti
m

e)

T
oy

1
f

(x
,y

)
=

0
.1

((
x

−
3
.9

)2
+

(y
−

3
.9

)2
)

(x
>

4
or
y
>

4)
|

x
+
y
<

7
.5

4
8

5
[−

5,
5]

2
C

on
ve

x
A

sy
m

m
et

ri
c

R
an

-
d

om

66
3.

2
/

8
m

s
1
4
4
.8

/
7
0
m

s

T
oy

2
f

(x
,y

)
=

0
.1

((
x

−
3
.9

)2
+

(y
−

3
.9

)2
)

(x
>

4
or
y
>

4)
|

x
+
y
<

7
.5

4
8

5
[−

5,
5]

2
C

on
ve

x
S

y
m

m
et

ri
c

U
n

d
u

-
la

ti
on

10
26

.4
/

9
m

s
2
2
9
.6

/
1
1
6
m

s

T
oy

3
f

(x
,y

)
=

0
.1

((
x

−
3
.1

)2
+

(y
−

3
.6

)2
)

(x
>

4
or
y
>

4)
|

(x
<

3
or
y
<

3
or

(x
<

3.
5

an
d
y
<

3.
5)

)

4
8

5
[−

5,
5]

2
N

on
co

n
-

ve
x

S
y
m

m
et

ri
c

U
n

d
u

-
la

ti
on

10
27

.2
/

1
0
m

s
2
0
5
.2

/
1
0
7
m

s

L
ea

n
in

g
‖C

(q
f
)
−

Ĉ
‖2

F
al

l
fo

rw
ar

d
|F

al
l

b
ac

k
w

ar
d
|T

im
e-

ou
t

5
10

1
[−

1,
1]

4
-

-
12

6.
25

/
1
4
8
s

2
3
.7

5
/

3
2
s

T
h

ru
st

in
g
‖P

(q
f
)
−

P̂
‖2

+
‖L

(q
f
)
−

L̂
‖2

F
al

l
fo

rw
ar

d
|F

al
l

b
ac

k
w

ar
d
|

N
eg

a-
ti

ve
an

gu
la

r
m

o-
m

en
tu

m

5
10

1
[−

1,
1]

3
-

-
10

1.
25

/
1
5
s

7
7
.5

/
1
2
s

L
an

d
in

g
‖C

(q
f
)
−

Ĉ
‖2

+
‖S

(q
f
)
−

Ŝ
‖2

F
al

l
fo

rw
ar

d
|

F
al

l
b

ac
k
w

ar
d
|

In
va

li
d

co
n
ta

ct

5
10

1
[−

1,
1]

4
-

-
10

5.
0

/
2
1
0
s

2
2
.5

/
4
4
s

75

6.1.1 CMA-C

CMA-C is designed for solving a general optimization problem with multiple con-

straints.

x∗ = argmin
x

f(x)

subject to ci(x) = 0, where i = 1 · · ·n
(23)

In our formulation, the cost function f(x) evaluates the performance of the sim-

ulated motion generated by a given set of control rig parameters (i.e. x refers to P).

Each constraint ci(x) represents a type of failure when the motion cannot satisfy it.

ci(x) can be in the form of inequality constraint, but we only show equality constraints

for clarity. CMA-C can be applied to any problem with the form of Equation (23),

but it is particularly effective when evaluating f(x) is costly or when the problem is

highly constrained.

Our main idea is to construct classifiers using SVMs while running CMA. For

each constraint, we build a SVM to represent its feasible region. Every time a sample

is randomly drawn, we first use SVMs to predict whether this sample will satisfy

all constraints. If so, we evaluate it using f(x). Otherwise, the sample is discarded

without evaluation. In the context of our problem, we use SVMs to predict whether

a set of control variables yields successful motion before we simulate it. If a sample

is predicted to satisfy all the constraints, we evaluate its cost and assign a label for

each SVM: +1 if the sample indeed satisfies the corresponding constraint and −1

otherwise. At the end of each CMA iteration, we refine the boundary of each SVM

using all the samples. Algorithm 3 and 4 outline the procedure of CMA-C.

When the SVM makes a correct prediction, it speeds up the convergence of CMA.

When the SVM makes an incorrect prediction (i.e. generates a sample with −1 label),

our algorithm still utilizes the negative sample to improve the boundary of the feasible

region. However, there are two issues with this algorithm when applied in practice.

76

Algorithm 3: CMA-C

1 Initialize m,C, σ;
2 Initialize SVM1..n;
3 while not terminate do
4 for i = 1→ λ do
5 xi = selectSample(m,C, σ, SVM1..n);
6 (fi, ei,1, ..., ei,n) = fitness(xi);

7 sort(x1..λ);
8 (m,C, σ) = updateCMA(x1..λ, f1..λ,m,C, σ);
9 for i = 1→ n do

10 if enough samples for SVMi and γi is null then
11 γi = 1/2(kσ)2

12 updateSVM(SVMi, γi,x1..λ, e1..λ,i);

Algorithm 4: selectSample()

Data: m,C, σ, SVM1..n

Result: selected sample x
1 while not reach maximum trials do
2 x = gaussianSelection(m, σ2C);
3 reject = False;
4 for i = 1→ n do
5 if SVMi.activated() and SVMi.predict(x) < 0 then
6 reject = True;
7 break;

8 if not reject then
9 return x

10 return gaussianSelection(m, σ2C);

77

First, a SVM requires a sufficient number of positive and negative samples before

it can be activated. This requirement imposes a long “warm-up” time if the initial

CMA distribution has low likelihood to generate feasible samples. Second, although

SVMs can use kernels to represent non-linear boundaries, tweaking kernel parameters

in SVMs can greatly affect the results of classification.

The first issue is exasperated by problems with a large number of constraints

and a relatively small feasible region, such as the problem of developing parkour

controllers. To reduce the warm-up time, we represent each constraint with a SVM

individually, instead of using one aggregate SVM to represent the intersection of all

constraints. During the optimization, we superimpose all the activated SVMs and

approximate the feasible region by taking the intersection of all positive regions.

Building multiple SVMs significantly reduces the warm-up time because a positive

sample for an aggregate SVM must satisfy all constraints, where as a positive sample

for each separate SVM only needs to satisfy one constraint. Collecting enough positive

samples to activate an aggregate SVM clearly takes much longer time than activating

each individual SVM (Figure 28). In our toy problems, the first SVM is constructed

after 17.2 evaluation on average, an aggregate SVM requires 101.7 evaluations.

In addition, we propose a stochastic sampling scheme to address the general issue

due to insufficient samples at the beginning of the optimization. This scheme accepts

a sample with the probability of a sigmoid function 1
1+e−αx

, where x is the signed

distance from the sample to the boundary. With a smaller α, this stochastic scheme

is more conservative about accepting and rejecting samples. As more samples are

available and the SVM boundary becomes more accurate, we can increase α to have

a harder rule. In our experiments, we use α = 4 throughout the entire optimization.

The second issue regards the tuning of the kernel parameters. We chose a fre-

quently used kernel, Gaussian radial basis function (RBF), in our implementation.

k(xi,xj) = exp(−γ‖xi − xj‖2) (24)

78

Figure 28: A comparison of a single SVM and multiple SVMs. Left: Using a single
SVM to represent the feasible region (purple triangle), the SVM cannot be activated
after eight samples, due to the lack of positive samples. Right: If the feasible regions is
represented by the intersection of three constraints, each of which is approximated by
an individual SVM, eight samples are sufficient to active two SVMs (shown in green
and blue). Dashed lines indicate the current SVM approximation of constraints.

Intuitively, a RBF adds a “bump” around each sample. The bump with the ideal

size, determined by γ, should overlap with a few neighboring samples. If γ is too

large, the trained SVMs will over-fit the data. If it is too small, the classification will

have very low accuracy. Consequently, tuning γ requires the knowledge of the current

sample distribution.

Fortunately, we know the exact sample distribution because all the samples are

drawn from the current estimate of Gaussian distribution, x ∼N(m, σ2C), provided

by CMA. With this information, we set γ to cover only portion of the current CMA

gaussian distribution, using a simple rule:

γ = 1/2(kσ)2 (25)

where k determines the proportion of the radial basis function with respect to the

sample distribution. We use k = 0.1 for all the experiments.

79

6.1.2 Analysis on Toy Problems

In addition to the real problems on motion control, we designed three 2D problems

to evaluate and visualize the results of CMA-C. We found that CMA-C outperforms

CMA-ES significantly when the problem has a large portion of infeasible region or

when the infeasible region is highly nonlinear or discontinuous. In other words, if the

optimizer is more likely to be “trapped” in the infeasible region, CMA-C has a better

chance to “escape” and converge at a feasible and optimal solution.

The first two toy problems have convex feasible regions, while the third one has

a non-convex feasible region (Figure 29, Table 7). To mimic the nonlinearity and

discontinuity in the objective function of the real problems, we added random noise

to the objective function of the toy problems. For the first toy problem, we add

different levels of random noise in feasible and infeasible regions as follows:

ftoy(x, y) =

f(x, y) + kftoy · (rand(0, 1)) if ∀i, ci = 0

f(x, y) + kinftoy · (rand(0, 1)) otherwise

(26)

where kftoy = 0.05 and kinftoy = 2.0. In the second and third problems, we add same

sinusoidal noise in both feasible and infeasible regions:

ftoy(x, y) = f(x, y)

+ ktoy · |sin(ωtoy · (x+ y)) + sin(ωtoy · (x− y))|
(27)

where the magnitude and frequency of the sinusoidal function ktoy = 2.0 and

ωtoy = 10.0.

We compared the performance of standard CMA-ES and CMA-C on each problem

by evaluating 20 times with different initial seeds. For a problem with costly sample

evaluation routines, such as the controller design problem focused in this paper, CMA-

C significantly reduces the total computation time. However, if the sample evaluation

time is negligible, such as our toy examples, reducing the number of evaluations does

80

Table 8: CMA-C on the toy problem I (Table 7) with various ratios of the infeasible
area to the feasible area. All other conditions are the same.

Area Ratio CMA-ES
(evals)

CMA-C
(evals)

Performance
gain

50 237.2 153.2 155%
200 663.2 144.8 458%
800 1343.6 200.0 672%

Table 9: CMA-C on the toy problem II (Table 7) with various magnitude and fre-
quency of noise. All other conditions are the same.

ktoy ωtoy CMA-ES
(evals)

CMA-C
(evals)

Performance
gain

1.0 10.0 638.8 195.2 327%
2.0 10.0 1026.4 229.6 447%
4.0 10.0 1820.4 309.2 589%
1.0 20.0 735.2 220.0 334%
2.0 20.0 1079.6 272.0 397%
4.0 20.0 1574.8 348.0 452%

not speed up the total computation time. In fact, CMA-C can be slower than CMA-

ES due to the additional computation on constructing SVMs.

To further evaluate the performance of CMA-C, we conducted two sets of analyses

by varying the ratio of the infeasible area to the feasible area (problem I) and the level

of noise (problem II). Both analyses were designed to add difficulty in finding feasible

solutions to the optimization problem. Our results, shown in Table 8 and Table 9,

indicate that the performance of CMA-C increases when either the magnitude of the

noise in the infeasible region or the infeasible area increases, while the frequency of

noise does not have a significant correlation to the performance gain.

In addition, we validated the approximated feasible regions by visualizing the

difference between constructed SVM and the ground truth (Figure 29). The results

show that the non-convex SVM boundary in the second problems match the ground

truth well. The only difference resides in the upper left corner of the L-shape feasible

region in the second problem.

81

Figure 29: Contour of the trained SVMs for the second toy problem (Table 7). The
feasible region classified by SVMs is filled with red. The ground truth feasible region
is outlined by the dashed lines. For clarity, the figure is zoomed into the region from
[−5, 5]2 to [3, 5]2 .

6.1.3 Analysis on Real Problems

We also evaluated the performance of CMA-C on the problems of controller design

(Table 7). On average, CMA-C performed five times faster than CMA-ES to achieve

the same optimal value. In some cases, CMA-C reached desired objective value,

while CMA-ES got stuck in the local minima. The advantage of CMA-C is even

more prominent when solving a series of optimizations with gradually introduced

constraints, because CMA-C can simply overlap the new SVM with previously con-

structed ones. However, when the infeasible region is relatively small, the difference

in performance between CMA-C and CMA-ES is not obvious. For example, thrusting

controller does not fully exploit the advantages of CMA-C due to its relatively small

infeasible region.

82

6.2 Parameterization and Concatenation

Once a controller is developed, generalizing it to a family of similar controllers can

be done easily by parameterizing the task objective function (Equation (22)):

f(P ,u) =
n∑
i=1

‖hi(qf)− ĥi(qf ,u)‖ (28)

where u is the varying task parameter among the parameterized controllers. For

example, if u represents the forward leaning angle and hi evaluates the center of mass

position at the final state, we can produce a family of new targets for the center of

mass by varying u in ĥi(qf ,u). Because all the controllers share the same constraints,

the SVMs built for the original controller can be reused. As a result, optimizing a

family of parameterized controllers can be done efficiently without additional user

effort.

Our framework also supports concatenation of controllers by utilizing the param-

eterized controllers. Given two controller A and B, the naive way to optimize both

controllers is putting them together in one big problem and optimizing control param-

eters PA and PB simultaneously. To resolve the issue of increasing dimensionality, we

first parameterize A with the task parameter u to generate a family of controllers A.

When optimizing B, we include u as a free variable along with other rig parameters

for B. The simulated motions depend on u because different u results in different

initial states of the simulation. Once the optimizer obtains an optimal value u∗, we

choose one controller whose task parameter is the closest to u∗ from A. Finally we

concatenate the chosen controller and B to generate a longer motion sequence.

6.3 Results

We developed a few different Parkour movements to demonstrate the generality of

our framework. All the results shown in the video were produced on a single core

of 3.20GHz CPU. Our program runs at 1000 frames per second with the time step

83

of 0.5 millisecond. We used RTQL8 [83], an open-source simulator for multibody

dynamics based on generalized coordinates. The character has 33 degrees of freedom.

Except for the first six degrees of freedom that describe the global translation and

orientation, all other degrees of freedom can be actuated.

Table 10: Instructions used to train a precision jump.
Phase Instruction
Leaning MOVE downward BY 0.1m
Leaning MOVE downward BY 0.2m
Leaning head IN FRONT OF root
Thrusting SPEED near [1.2, 2.4, 0.0]T

Thrusting SLOWDOWN 20%
Thrusting spin about z FORWARD
Airborne PLACE feet NEAR [0.8, 0.0, 0.0]T

Airborne PLACE COM NEAR [0.7, 0.4, 0.0]T

Airborne MOVE upward BY 0.1m
Landing PLACE COM NEAR [0.7, 0.5, 0.0]T

Landing BALANCE
All RELAX arms BY 30%
Leaning FLEX elbows BY 20◦

Airborne FLEX elbows BY 80◦

6.3.1 User Input

Our system requires the user to break down a complex motion into phases and provide

an initial controller for each phase. Determining the phases of a motion is at the

user’s discretion. In our experiments, we simply used the timing of contact change to

determine phases. Similarly, the initial controllers do not have significant impact on

the final controllers. All the initial controllers we used in our experiments were simple

PD controllers with the same gains and damping coefficients. The only goal of each

controller was to track a single target pose roughly defined by the user (Figure 30).

During the training process, the user needs to provide instructions iteratively to

improve the motor skill of the character. However, we observed that the character

could successfully learn a motor skill, even when the instructions were clearly not

84

Figure 30: We use these three target poses for all the initial controllers, except for
the rolling phase of drop-and-roll.

optimal. For example, in the scenario of training a precision jump (Table 10), the

user gave repetitive commands using “MOVE downward BY” instruction to adjust

the leaning angle of the character. For more complex cases, we believe that the user’s

prior knowledge about the motion will become an important factor. This is also

true for learning motions in real world; a better coach can diagnose problems of the

movement more precisely and effectively.

When the user gives conflicting instructions, such as “SPEEDUP 200%” and

“TRANSLATE torso backward”, the optimizer will yield a solution which tries to

achieve both conflicting goals, but the resulting motion could be undesirable or un-

predictable.

6.3.2 Training Dynamic Skills

Precision Jump. A precision jump is a jumping motion that lands on a narrow

target, such as the top of a wall or a rail. The precise distance and the smaller target

require more accurate and coordinated control. We broke the entire sequence into

four phases based on the contact state: leaning, thrusting, airborne, and landing.

We trained each phase separately and applied parameterization and concatenation

85

technique to sequence them into one controller for precision jump. The final state

of the motion satisfies the balance condition, which limits the ground projection of

center of mass within the suppor polygon and the velocity of center of mass to near

zero.

The initial controller for each phase was a simple PD controller tracking a roughly

designed pose (Figure 30). Because of the lack of control on the global state, the

initial controller resulted in falling motion immediately. In all of our examples, we

designed initial controllers in the same fashion.

Training all four phases took 14 instructions in total. We listed all the instructions

in Table 10. For each phase, the average number of control rigs used was 3.25, which

resulted in 4.25 rig parameters to optimize. The optimization time for each phase

on average took two minutes. The task parameters we used for parameterizing four

phases are the leaning angle, thrusting direction, and airborne traveling distance.

The average time spent on parameterization of one phase is 30 minutes.

During the coaching stages, we first gave instructions to guide global motion so

the character can successfully perform the jump without falling. Later, we added

instructions to modify styles on the upper body. The instructions we used might not

be the most effective ones because we are not experts in Parkour. For example, we

used a few consecutive instructions to lower the center of mass, which could have been

done in one instruction. Similarly, we instructed the character to flex the elbows in

the leaning phase and later added the same style in the airborne phase. Although

the total number of instructions can be reduced, our goal here is to demonstrate how

this framework is used by a non-expert who tends to give imprecise and incremental

instructions based on the feedback from the trainee.

Turnaround Jump. A turnaround jump requires the performer to jump in place

while turning in a precise angle. Although it consists of the same four phases as a

precision jump, the difference is that it involves asymmetric motion and the control

86

of angular momentum.

In our experiment, training all phases of a turnaround jump required nine instruc-

tions. For each phase, the average number of control rigs was 3.75 and the average

number of rig parameters was 4.75. The optimization time for each phase was on

average one minute. We parameterized the thrusting angular momentum, which took

12 minutes to complete.

We found that the coaching skill of the human user can also improve by using

this framework. Because of our previous experience in coaching a precision jump, we

used fewer instructions to train a turnaround jump. We also gained better insight on

developing more natural landing controller. That is, we instructed the character to

raise its center of mass at landing so that the character had more room to absorb the

impact.

Figure 31: Monkey vault and wall-backflip.

Monkey Vault. A monkey vault is a basic Parkour movement for getting over

obstacle without slowing down the motion (Figure 31). The performer approches

the obstacle with squat position and uses the hands to reach for the vault. As the

performer jumps in the air, s/he leans forward and tucks the legs against the upper

body. Since the hands are placed wider than the shoulder width, the legs can pass

through in between the arms. We broke the vaulting motion into six phases: leaning,

thrusting, airborne, pushing, extending, and landing.

Training all six phases of a monkey vault took 26 instructions. For each phase,

87

the average number of control rigs was 2.33 and the average number of rig parameters

was 3.66. The optimization time for each phase was on average three minutes. We

parameterized the monkey vault controller by its leaning angle, thrusting direction,

pushing direction, and extending velocity. The computation time for parameterization

was 40 minutes for each phase.

Training a monkey vault was the most challenging task among all our experiments

because our intuition of monkey vault was limited. For example, it was not clear

to us when the character should accelerate or which direction the character should

push. The instructions we used were more back-and-forth and repetitive due to our

unfamiliarity to this motor skill.

Drop-and-roll. The purpose of rolling in Parkour is to protect joints from the

landing impact. We designed a rolling controller from a standing position and later

showed that it can be concatenated to a precision jump or a monkey vault to com-

plete a drop-and-roll motion. We broke the rolling motion to three phases: leaning,

thrusting, and follow-through.

Training the entire rolling motion required eight instructions. For each phase, the

average number of control rigs was 2.66 and the average number of rig parameters

was 4.66. The optimization time for each phase was on average 1 minute. We param-

eterized the rolling controller by the leaning angle and the angular momentum at the

thrusting phase. The computation time for parameterization was about ten minutes

for each phase.

Developing a drop-and-roll controller is relatively easy because it has only three

phases and the follow-through phase is very passive. As long as the angular momen-

tum is sufficient, the character naturally goes into rolling motion.

Wall-backflip. A wall-backflip is a combination of a wall-run and a backflip (Figure

31). The performer jumps toward the wall, kicks the wall at contact, flips backward in

88

the air, and lands on both feet. We broke the task into six phases: leaning, thrusting,

airborne, kicking, flipping, and landing.

Training all six phases require 18 instructions. For each phase, the average number

of control rigs was 2.66 and the average number of rig parameters was 4.00. The

optimization time for each phase was on average two minutes. We parameterized the

controller by the angular momentum at the kicking phase. The computation time for

parameterization was about 30 minutes for each phase.

The experience of coaching monkey vault greatly helped us to train a wall-backflip.

They share similar phases, but the main difference is that the character needs to max-

imize the backward angular momentum at the kicking phase. Without optimization,

the direction of the kicking force would have been a difficult parameter to tune because

it must generate sufficient angular momentum without causing slipping contact.

6.3.3 Limitations

Our controllers are able to withstand some perturbations. For example, the same

precision jump controller trained for landing on the floor can be applied to landing

on a rail. However, most controllers become unstable when additional push forces are

applied to the character. We suspect that the instability is due to the feedforward

nature of the virtual force control rig.

Using contact states to break a task into smaller phases is a good strategy for

the examples we demonstrated, but it is not sufficient for more complex and timing-

sensitive motor skills, such as tic-tac or wall-run. These movements switch controllers

not only based on contact states, but also on character’s pose, speed, or spatial

relation to the environment. One possible solution is to design more sophisticated

control rigs which include time-varying rig parameters.

In the absence of a running controller, we were not able to generate some mo-

tor skills which require a high initial forward momentum to carry out the motion

89

smoothly. We believe that the monkey vault motion can be largely improved if we

concatenate it with an adequate running controller.

Although the performance of CMA-C on our Parkour problems is five times faster

than the standard CMA on average, the large variance in performance gain (150%

to 650%) indicates that further evaluation on a broader set of benchmark problems

is needed. Our toy problems do not provide comprehensive analyses on CMA-C

because they made specific assumptions about the shape of the cost functions, such

as asymmetric random noise or symmetric undulation. These assumptions may not

reflect the true landscape of the cost functions in the Parkour problems. We conjecture

that the success of CMA-C on the Parkour problems is due to the large infeasible

regions and multiple local minima in the cost functions, which may cause standard

CMA to converge slower.

6.4 Conclusion

We present a novel framework for controller design using human coaching and learning

techniques. The framework takes in a blackbox controller and improves it through an

iterative learning process of coaching and practicing. The user can directly give high-

level instructions to the virtual character using control rigs while the character can

efficiently optimize its motor skill using a new sampling-based optimization method,

CMA-C. Once a controller is developed, parameterizing it to a family of similar

controllers for concatenation can be done without additional effort from the user.

In this work, we demonstrated that developing complex motor controllers does not

need any motion trajectories. However, if the user wishes to utilize motion examples

to train the virtual character, instead of verbal instructions, our framework can be

adapted by including a control rig that modulates the reference trajectories, similar

to the sampling approach proposed by Liu et al. [60, 59].

Our current implementation requires the user to construct instructions as a script

90

according to the template grammars. One possible future direction is to augment

our framework with a natural language processor so the user can use more colloquial

commands to train the character, such as “Lower your body a bit more”, instead

of “MOVE COM down BY 0.2m”. In addition, we would like to explore Kinet-

like sensors to enable the possibility of “teaching by demonstration”. Therefore,

one possible future direction is to augment our framework with two different types of

interfaces: a natural language processor and a Kinect-like sensor. These two interfaces

will allow the user to train the character by describing the motion in human language

while demonstrating the movement using his/her own body.

91

CHAPTER VII

OPTIMIZATION FOR PARAMETRIZED MOTOR SKILLS

Learning a parameterized skill is essential for autonomous robots operating in an

unpredictable environment. Previous techniques learned a policy for each example

task individually and constructed a regression model to map between task and pol-

icy parameter spaces. However, these techniques have less success when applied to

whole-body dynamic skills, such as jumping or walking, which involve the challenges

of handling discrete contacts and balancing an under-actuated system under gravity.

This paper introduces an evolutionary optimization algorithm for learning parame-

terized skills to achieve whole-body dynamic tasks. Our algorithm simultaneously

learns policies for a range of tasks instead of learning each policy individually. The

problem can be formulated as a nonconvex optimization whose solution is a closed

segment of curve instead of a point in the policy parameter space. We develop a new

optimization algorithm which maintains a parameterized probability distribution for

the entire range of tasks and iteratively updates the distribution using selected elite

samples. Our algorithm is able to better exploit each sample, greatly reducing the

number of samples required to optimize a parameterized skill for all the tasks in the

range of interest.

7.1 Motivation

Being able to reinterpret learned motor skills to create and perform appropriate mo-

tions in new situations is an essential ability for autonomous robots. One promising

approach to achieving skill generalization is to teach robots not just the skill for a

specific task, but a parameterized skill, the ability to tackle a family of related tasks

varying by some parameters. Instead of switching from policy to policy as the task

92

description varies, a parameterized skill automatically maps the task parameters to

appropriate policy parameters and executes the control policy optimally according to

the task.

The challenge of learning a parameterized skill lies in learning the mapping be-

tween task parameters and policy parameters. Many existing techniques ([93, 17])

learn a policy for each example task individually and construct a regression model

to map between task and policy parameter spaces. Successful learning of parameter-

ized skills for manipulation tasks, such as throwing darts [53, 19], reaching objects

[100, 63, 26], or hitting a table tennis ball [53], have been demonstrated. However, it

is unclear whether these techniques can be applied to learning whole-body dynamic

skills, such as jumping or walking, which involve the challenges of handling discrete

contacts and balancing an under-actuated system under gravity. Because a whole-

body dynamic task can often be achieved by multiple distinctive policies, learning

each task individually might lead to a set of incoherent policies which invalidates the

regression model. This is equivalent to solving a set of highly nonconvex optimization

problems and attempting to interpolate all the arbitrarily chosen local minima.

This paper aims to develop new algorithms for learning parameterized skills for

whole-body dynamic tasks. Instead of learning each task individually and later build-

ing a regression model, we propose to simultaneously learn the policies for a range of

tasks. A naive approach to achieve this goal is to formulate the search of the map-

ping function between task parameters and policy parameters as an nonconvex (due

to dynamic differential equations) and nondifferentiable (due to contacts) optimiza-

tion and apply a sampling-based, gradient-free solver, such as CMA-ES [36], to find

the solution. This approach can be highly ineffective when the mapping function is

complex and sample generation is computationally expensive.

In this paper, we develop a new evolutionary optimization algorithm to tackle

93

above issues arise from learning parameterized skills. Similar to CMA-ES, our op-

timization algorithm draws samples from the current probability distribution and

selects elite samples to update the probability distribution for the next generation.

Unlike CMA-ES, however, we maintain a parameterized probability distribution for

the entire range of tasks, instead of a single distribution for only one task. Solving

multiple tasks simultaneously, our algorithm is able to better exploit each sample,

greatly reducing the number of samples required to optimize a parameterized skill for

all the tasks in the range of interest.

We demonstrate the algorithm on a simulated humanoid robot, BioloidGP [1],

learning three parameterized dynamic motor skills, including vertical jump, kick a

ball, and walk. We also deploy the walking policy to the hardware of BioloidGP.

Furthermore, we demonstrate the sample efficiency of our algorithm by comparing

with CMA-ES on solving four CEC’15 benchmark problems [12].

7.1.1 Related work

There is a large body of research work on generalization of learned motor skills to

achieve new tasks. da Silva et al. [19, 17, 18] introduced a framework to represent

the policies of related tasks as a lower-dimensional piecewise-smooth manifold. Their

method also classifies example tasks into disjoint lower-dimensional charts and model

different sub-skills separately. Much research aimed to generalize example trajectories

to new situations using dynamic movement primitives (DMPs) to represent control

policies [42]. A DMP defines a form of control policies which consists of a feed-

back term and a feedforward forcing term. Ude et al. [100] used supervised learning

to train a set of DMPs for various tasks and built a regression model to map task

parameters to the policy parameters in DMPs. Muelling et al. [70] proposed a mix-

ture of DMPs and used a gate network to activate the appropriate primitive for the

given target parameters. Koberet al. [53] trained a mapping between task parameters

94

and meta-parameters in DMPs using a cost-regularized kernel regression. Through

reinforcement learning framework, they computed a policy which is a probability dis-

tribution over meta-parameters. Matsubara et al. [63] trained a parametric DMP by

shaping a parametric-attractor landscape from multiple demonstrations. Stulp et al.

[93] proposed to integrate the task parameters as part of the function approximator of

the DMP, resulting in more compact model representation which allows for more flex-

ible regression. Neumann et al. [74] modified the existing learning algorithm (REPS)

to learn a hierarchical controller that has parameterized options.

All these methods described above depend on collecting a set of examples. This

presents a bottleneck to learning because an individual control policy needs to be

learned for each task example drawn from the distribution of interest. da Silva et al.

further proposed using unsuccessful policies as additional training samples to acceler-

ate the learning process [17]. For dynamic motor skills which involve intricate balance

tasks, unsuccessful policies generated during training a particular task are of no use to

other tasks because they often lead to falling motion. Hausknecht et al. [37] demon-

strated a quadruped robot kicking a ball to various distances, but whole-body balance

was not considered in their work. Another challenge regarding dynamic tasks is that

each task can be achieved by a variety of policies, some of which might be overfitting

the task. Interpolating these overfitted policies can lead to unexpected results. Our

method tends to generate more coherent mapping between task parameters and pol-

icy parameters because we simultaneously learn the policies for the entire range of

the tasks.

Various optimization techniques have been applied to improve the motion qual-

ity or the robustness of the controller. In computer animation, a sampling-based

method, Covariance Matrix Adaption Evolution Strategy (CMA-ES) [36], has been

frequently applied to discontinuous control problems, such as biped locomotion [102,

103], parkour-style stunts[59, 33], or swimming [98]. To compensate the expensive

95

cost of sampling-based algorithm, different approaches have been proposed, including

exploiting the domain knowledge [102, 103], shortening the problem horizons [90], or

using a classifier to exclude infeasible samples [33]. Based on the previous success

of CMA-ES, we developed a new sampling-based algorithm tailored to optimizing

parameterized motor skills.

7.2 Parameterized Optimization Problems

Let us begin with a general optimization problem, whose goal is to find a point in Rn

that minimizes a given objective function f(x). By varying some parameters in the

objective function, we can create a family of similar optimization problems, whose

objective functions are denoted as f(x;w). We define the varying parameter w ∈ [0, 1]

as task interpolation parameter, which controls the values of some parameters in

f(x). The solution to such a parameterized problem is no longer a point in Rn,

but rather a closed segment of curve, which can be represented by a function of the

task interpolation parameter, x(w), with a closed domain [0, 1]. The function form

of the solution segment, x(w) is unknown in many cases but can be approximated

by a simpler function. We assume this simple function is continuous and can be

represented by some function parameters φ ∈ F . For example, we can assume that

x(w) is a linear line segment,

xφ(w) = (1− w)φ0 + wφ1 (29)

where φ = [φT0 ,φ
T
1]T are the parameters that define the solution segment. Likewise,

we can assume that x(w) is a cubic curve segment:

xφ(w) = (1 − w)3φ0 + 3w(1 − w)2φ1 + 3w2(1 − w)φ2 + w3φ3 (30)

where φ is [φT0 , ..,φ
T
3]T .

Our goal is to develop an efficient optimization method to find the solution segment

(parameterized by φ) for the entire family of problems simultaneously. To this end,

96

we define a new objective function which evaluates the integral of the parameterized

objective function over the closed domain:

f̂(φ) =

∫ 1

0

f(xφ(w);w)dw. (31)

In practice, however, f̂(φ) can only be numerically approximated in most dynamic

control problems, whose objective function f is usually not closed-form. To this end,

we discretize f̂(φ) as follows:

f̂(φ) =
1

M

∑
wi∈w

f(xφ(wi);wi) (32)

where w is a set of real values evenly discretizing the range [0, 1] and M is the size

of the set w. For example, if M = 6, w is {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

7.2.1 Parameterized Motor Skills

The parameterized optimization problem provides a general framework for learning

parameterized motor skills for robots. We will begin with the notations of a standard

control problem and extend them to a parameterized problem. A controller C =

{π, f} consists of a policy function π and a cost function f . A policy function outputs

the control force τ t for a given state st,

τ t = π(st; x) (33)

where x is the vector of policy parameters. Starting from the initial state of the robot

s0, a physics simulator generates a sequence of motions S(x) = {s0, · · · , sT} according

to the equations of motion and the policy parameters x. The motion quality produced

by the policy parameters can be evaluated by the cost function:

f(x) =
∑
j

‖hj(S(x))− ĥj‖2
(34)

where f evaluates a set of features hj(S(x)), at a given state of the motion (s ∈ S(x)).

The desired value of each feature is denoted as ĥj. For example, a feature hj(st) can

97

be the center of mass of the robot at the state st and ĥj can be the desired position

of the center of mass.

To create controllers that can achieve a range of tasks, rather than specializing in

only one specific task, we redefine the policy parameters as xφ(w), a mapping between

a given task interpolation parameter w and the policy parameter x. We define xφ(w)

as parameterized skill function. Likewise, we represent the desired target value ĥj as

a function of the task interpolation parameter, w, between two desired values ĥ0
j and

ĥ1
j :

ĥj(w) = (1− w)ĥ0
j + wĥ1

j

where 0 ≤ w ≤ 1.

(35)

The parameterization redefines the policy function and the cost function as follows:

τ t = π(st; xφ(w)), (36)

f(xφ(w);w) =
∑
j

‖hj(S(xφ(w)))− ĥj(w)‖2 (37)

Analogous to Equation (32), the goal of the parameterized optimization is to find

the best mapping parameters φ that minimizes the objective function,

f̂(φ) =
1

M

∑
wi∈w

f(xφ(wi);wi). (38)

7.3 Optimization Algorithms

For most control problems involving dynamic equations and contacts, the objective

function f̂(φ) (Equation (38)) is highly non-convex and often non-differentiable. A

common practice is to use a sampling-based optimization algorithm to find the op-

timal solution. In particular, CMA-ES [36] has been successfully applied to many

high-dimensional control problems. We will first summarize the core ideas of CMA-

ES and use it as a baseline to compare with our new optimization algorithm.

98

7.3.1 Baseline algorithm: CMA-ES

CMA-ES is a sampling-based, derivative-free evolutionary algorithm for solving opti-

mization problems. The evolution process updates a multivariate normal distribution

xk∼m + σN (0,C) for k = 1..λ (39)

where m is the mean, σ is the step size, and N (0,C) is the multivariate normal

distribution with zero mean and covariance matrix C. Initially, m is set to zero

and C is set to identity. In each generation, λ new candidates are sampled from

the current multivariate normal distribution. All the samples are evaluated by the

objective function and the best µ samples are selected to update the mean and the

covariance matrix for the next generation. When the termination criteria are met,

the final mean value is output as the optimal point of the optimization. A number

of follow-on research introduced different schemes for sample selection and different

rules for updating the probability distribution. A comprehensive introduction can be

found in the tutorial by Hansen et al. [36].

The rule for adapting covariance matrix is a key characteristic of CMA-ES. Among

different versions, (1+1)-CMA-ES [41] has the simplest mechanism to evolve covari-

ance matrix. In every generation, if a sample is not better than the mean from the

previous generation, it will be discarded and a new one will be drawn. The process

repeats until a better sample is generated (called elite sample). The elite sample will

replace the mean and update the covariance matrix via a procedure called update-

Cov, which details are summarized in Appendix. updateCov takes as input the

previous mean and the elite sample, and outputs the adapted covariance matrix C.

7.3.2 Our Algorithm for Parameterized Optimization Problem

Directly applying CMA-ES to solve a parameterized optimization problem is difficult

due to the expanded dimensionality. Consider a policy parameter space X = Rn and

a cubic representation for the parameterized skill function, xφ(w), where F = R4n.

99

The dimension of F can be higher if we use more complex function forms to represent

xφ(w). Sampling in the high-dimensional F can result in very slow convergence for

CMA-ES.

We propose a new sampling-based algorithm to combat the issue of expanded

dimensionality. Our key idea is to sample in the space of policy parameters, X ,

instead of the space of F . This alternative sampling space will lead to the same

solution because there is a one-to-one mapping between a point in F and a curve

segment in X . Using CMA-ES to evolve the mean point in F is equivalent to evolving

the mean segment in X . The obvious advantage of drawing samples from the space

of policy parameters is that the dimensionality is invariant to the complexity of the

parameterized skill function. Moreover, evaluating a sample x only requires one trial

of a simulation S(x) (Equation (37)), while evaluating a sample φ requires integration

of f over w ∈ [0, 1]. Using the discretized approximation shown in Equation (38),

every evaluation of φ costs M simulation trials.

Since we are solving for a solution segment rather than a single solution point, the

definitions of the mean and covariance matrix also need to be modified. We define a

continuous function: mφ(w) : [0, 1] 7→ Rn to represent the mean segment. Similarly,

we also need to parameterize the covariance matrix C with the task interpolation

parameter as C(w). Unlike the mean segment, we do not represent C(w) as a con-

tinuous function because accurate estimation of continuous C(w) requires a large

number of sample evaluations. We choose a simpler way to estimate the covariance of

the parameterized probability function by maintaining one covariance matrix C(wi)

for each discretized task interpolation parameter wi.

One iteration of our algorithms consists of three steps to update the parameter-

ized distribution: drawing new samples, selecting elite samples, and updating the

distribution (Figure 32). The following sections will describe details on each step.

100

Figure 32: Steps of our algorithm for parameterized optimization problems. (a)
define a parameterized distribution that maps a task parameter to control parameters.
(b) draw a set of samples from the parameterized distribution. (c) select the elite
samples for each task and update the mean by applying regression. (d) update the
covariances.

7.3.2.1 Drawing samples

To draw samples from the current parameterized mean mφ(w) and covariance matrix

C(w), we define the following probability distribution:

xk∼
1

M

∑
wi∈w

(
mφ(wi) + σN (0,C(wi))

)
(40)

where k is the sample index, σ is the global step size that controls the scale of the

distribution (the details will be explained later), and wi is one of the M discretized

task interpolation parameters. This formulation is equivalent to drawing samples

101

from a mixture of Gaussian models with a uniform weight.

7.3.2.2 Selecting samples

We draw λ samples from the current probability distribution and mix the new samples

with µ samples from the previous generation. From this pool of samples, we select

the best ν samples for each task wi by evaluating the task cost using Equation (37).

We make ν = µ/M so that the size of elite sample set remains µ from generation to

generation. We denote each elite sample as x̄ki , the kth sample for the task wi.

Note that we use a set of various objective functions (Equation (37)) with different

wi to select elite samples, instead of a single objective function that sums up the costs

over the range of the task. We prefer specialized samples (excellent for a particular

task but mediocre on other tasks) rather than “well-rounded” samples (adequate

for all tasks), because we need to keep the diversity in the elite sample pool in

order to evolve the entire range of tasks. If we only keep “well-rounded” samples,

the sample pool will become more and more assimilated due to the single objective

function. Eventually, the mean segment will converge to a single point instead of a

curve segment.

7.3.2.3 Updating the model

After sample selection step, we can proceed to use these µ elite samples to update

the probability model. If the new model results in lower objective cost, we accept the

new model and move on to the next generation. Otherwise, we reject the new model

and repeat the steps of drawing samples and selecting samples described above.

To compute a new mean segment, we apply regression on the µ elite samples to

solve for the mapping parameters φ: mφ(w).

φ = argmin
φ

∑
wi∈w

ν∑
k=1

‖x̄ki −mφ(wi)‖. (41)

However, using all the selected samples tend to yield suboptimal mφ(w) because

102

some samples might have relatively high task costs (Equation (37)). Alternatively,

we could use only the best sample for each task to fit mφ(w), but these best samples

might not be well aligned with the assumed function form of mφ(w), resulting in huge

error in regression and a suboptimal mean segment.

We propose a new scheme to update the mean segment mφ(w). Instead of using

all the elite samples or only the best elite sample for each task, we search for the

best combination of samples such that it minimizes the task cost and the regression

error at the same time. Our algorithm first combines samples into groups of M by

randomly selecting one sample for each task wi, i.e. selecting one from x̄1
i , · · · , x̄νi .

Once a group g is formed, we use the following function to evaluate the cost of the

group.

fgroup(g) =
∑
wi∈w

f(x̄gii ;wi) + αmin
φ

∑
wi∈w

‖x̄gii −mφ(wi)‖ (42)

where gi indicates the index of selected sample for task wi. α (=10.0) adjusts the

weights between the task cost and the regression error. Note that each evaluation

of Equation (42) involves solving a regression for φ, but the computational cost for

regression is fairly low.

Because the number of possible groups can be potentially very large (= νM), our

algorithm only tests 100 randomly selected groups. The function parameters φ that

yield the best group g∗ in Equation (42) are used to define the new mean segment:

φ = argmin
φ

∑
wi∈w

‖x̄g
∗
i
i −mφ(wi)‖. (43)

The new mean segment will be compared to the current mean by evaluating its

cost (Equation (38)). If the new mean has a lower cost, we accept it, increase the

step size, and move on to updating the covariance matrix. Otherwise, we discard the

new mean, decrease the step size, and try again with another set of samples redrawn

from the current model.

103

The step size update is based on the standard 1/5-success-rule.

σ =

σ · exp(1/3) if a new model is accepted

σ/exp(1/3)(1/4) otherwise

(44)

Finally, to adapt the parameterized covariance matrices, we apply the update rules

used in (1+1)-CMA-ES. For each covariance C(wi), we call the procedure update-

Cov with the newly accepted mean and the previous mean segments.

7.4 Result

Figure 33: Top: Vertical jump with parameterized target height, 3cm to 8cm (8cm
is shown). Middle: Kick with parameterized target distance, 0.3m to 0.6m (0.6m
is shown). Bottom: Walk with parameterized target speed, 6.7cm/s to 13.3cm/s
(13.3cm/s is shown).

We compared our algorithm and the baseline algorithm, CMA-ES, on three dy-

namic motor control problems and four parameterized CEC’15 problems. The base-

line algorithm uses CMA-ES to search for the mapping parameter φ ∈ F that min-

imizes the objective function f̂(φ) (Equation (38)), while our algorithm follows the

procedure described in Section 7.3.2.

For all problems, we measured the number of sample evaluations and/or the qual-

ity of the final solution. Evaluating a sample in a motor control problem involves

104

simulating a sequence of motion, which is typically the bottleneck of using a sampling-

based optimizer to solve a control problem. Because of the stochastic nature of our

algorithm, for each problem we ran nine optimization trials with different initial seeds

and reported the average results of seven trials, excluding the best and the worst tri-

als. Our algorithm generates λ = 16 samples at each iteration and maintains µ = 48

elite samples, while CMA-ES generates λcma = 16 samples each iteration and selects

µcma = 8 elite samples.

7.4.1 Parameterized Motor Skills

The primary goal of this work is to learn controllers for parameterized dynamic motor

skills. We experimented three dynamic tasks, vertical jump, kick a ball, and walk

(Figure 33), on a small humanoid, BioloidGP [1] (34.6cm and 1.6kg). All motions

were simulated using an open source physics engine, DART [21, 57], with 0.0005s

as the simulation time step. We set the joint angle limits at ±150◦ and the torque

limits at 0.6Nm. Contact and collision were handled using implicit time-stepping,

velocity-based LCP (linear-complementarity problem) to guarantee non-penetration,

directional friction, and approximated Coulomb friction cone conditions.

The parameterized walking skill was also demonstrated on the hardware. Please

see the supplementary video for simulated motion sequences and recorded video

footages.

We used two simple control mechanisms to define the policy parameter space and

let our algorithm find the optimal policy. The first control mechanism is to use PD

servos to track target poses. The second one is to control the desired force a body link

exerts to the world using Jacobian transpose [96]. The definitions of cost function

vary by tasks and will be described in the following subsections.

105

Figure 34: Comparison on three parameterized control problems. The cost (Equa-
tion (38)) is computed by averaging seven optimization trials. In all problems, our
algorithm converges faster than CMA-ES, especially when the parameterized skill
function is of cubic form.

106

7.4.1.1 Vertical Jump

Our goal is to learn a parameterized vertical jump skill ranging from 3cm to 8cm.

We designed two objective terms to achieve desired motion: the balance term and

the apex height of center of mass.

fjump(x;w) = ‖hbalance(S(x))‖2 + (hapex(S(x))− ((1− w)ĥ0
apex + wĥ1

apex))
2 (45)

where hapex(S(x)) evaluates the height of center of mass at apex of the jump. We

set ĥ0
apex = 0.22 and ĥ1

apex = 0.27 since the robot’s center of mass height is 0.19m at

the rest pose. hbalance(S(x)) evaluates the state of balance by computing the squared

sum of horizontal distances between the center of mass and the center of pressure

over the entire motion.

We broke a vertical jump into three phases: preparing, thrusting, and landing.

The policy πjump is then defined by six parameters: the target hip, knee, and ankle

angles during preparing phase, the intended magnitude of force exerted to the ground

during thrusting phase, and the target hip and knee angles during landing phase.

Because the humanoid hardware is not sufficiently powerful to perform vertical

jumps, we remove the torque limits during the thrusting phase.

7.4.1.2 Kick a Ball

Inspired by the work on quadrupeds playing soccer [37], the goal of this example is

to learn a parameterized skill to kick a ball such that it travels a desired distance

ranging from 0.3m to 0.6m. Although in previous work a quadruped was allowed

to fall after kicking a ball, we required our biped humanoid to maintain an upright

balanced posture throughout the entire motion. The objective function is defined as

follows:

fkick(x;w) = ‖hbalance(S(x))‖2 + ‖hball(S(x))− ((1− w)ĥ0
ball + wĥ1

ball)‖2 (46)

107

where hball(S(x)) is the final position of the ball, ĥ0
ball is [0, 0.03, 0.3]T , and ĥ1

ball is

[0, 0.03, 0.6]T . We broke the motion into three phases: leg lifting, backward leg swing,

and forward leg swing, with six parameters for policy πkick: the target hip angle during

leg lifting, the target hip and knee angles during backward leg swing, and the target

hip, knee, and ankle angles during forward leg swing.

7.4.1.3 Walk

The goal is to learn a locomotion controller such that the humanoid can walk at

different speeds ranging from 6.7cm/s to 13.3cm/s. We measured the walking speed

over three seconds of simulation. The objective function is defined as

fwalk(x;w) = ‖hbalance(S(x))‖2 + ‖hcom(S(x))− ((1− w)ĥ0
com + wĥ1

com)‖2 (47)

where hcom(S(x)) is the center of mass position at the final frame, ĥ0
com is [0, 0.19, 0.15]T ,

and ĥ1
com is [0, 0.19, 0.40]T . One step of walk (half gait cycle) consists of three phases:

take-off (foot leaving the ground) swing (leg swinging forward), and contact (the other

foot touching the ground). We defined seven parameters for policy πwalk including the

duration of the swing phases, the target hip, knee, and ankle angles for the take-off

phase, and the target hip, knee, and ankle angles for the swing phase. We started

from a manually designed policy which produces successful walk at 8.5cm/s. Based

on the parameter values of this manual controller, we set the bounds for the policy

parameters in the optimization.

7.4.1.4 Results

We compared our algorithm and CMA-ES with the linear parameterized skill func-

tion, as well as the cubic one. Our algorithm outperforms CMA-ES in all three

problems (Figure 34). When solving linear parameterized skill functions, CMA-ES

required approximately 2.5 times more samples than our algorithm. When solving cu-

bic parameterized skill functions, our algorithm yielded a better solution with almost

108

Figure 35: The impact of task discretization on convergence. More discrete tasks
slow down the convergence of CMA-ES significantly, while it has negligible impact
on our algorithm.

no slowdown in convergence. CMA-ES, on the other hand, became extremely slow

and could not find any good solution when terminated at maximal iterations (12000).

Comparing the difference in linear and cubic parameterized skill functions on our

algorithm, an interesting observation is that, among three motor skills, cubic param-

eterization results in significant improvement only for the vertical jump problem. We

conjecture the reason being that the intended force exerted to the ground during the

thrusting phase has a highly nonlinear relationship with the resulting height of the

jump. A cubic parameterized skill function captures this nonlinearity better than the

linear one.

In addition, we investigated the impact of task discretization on the convergence

rate. Specifically, we solved the vertical jump problem using different numbers of

discrete tasks, M = 6 and M = 21, and compared the results in Figure 35. Although

finer discretization (M = 21) should result in a better solution, it slows down the

convergence because more samples evaluations are required. Since CMA-ES directly

optimizes f̂(φ), it becomes three to four times slower when M = 21. On the other

hand, Figure 35 shows that our algorithm does not suffer from slower convergence

rate when the number of discrete tasks increases.

109

Table 11: Results on Parameterized CEC’15 Problems
Function Dim Ours(evals) CMA-ES(evals) Ratio
Sphere 5 6309.7 7151.1 0.88
Sphere 10 9460.3 13404.9 0.71
Sphere 20 16395.4 23539.7 0.70

Bent-Cigar 5 1402.6 2666.6 0.53
Bent-Cigar 10 3092.0 5724.9 0.54
Bent-Cigar 20 5824.3 11196.9 0.52

Function Dim Ours(cost) CMA-ES(cost) Ratio
Weierstrass 5 0.00093 0.03549 0.026
Weierstrass 10 0.00105 0.15398 0.007

Schefel 5 0.00444 0.07025 0.063
Schefel 7 0.00848 0.25131 0.034

7.4.2 Parameterized CEC’15 Problems

We tested the performances of our algorithm and the baseline algorithm on four pa-

rameterized problems from the benchmark CEC’15 [12] which was designed for testing

evolutionary optimization algorithms. We selected two unimodal problems (Sphere

and Bent-Cigar) and two multimodal problems (Weierstrass and Schwefel) from the

benchmark set. However, the objective functions in CEC’15 were designed for testing

standard single-task optimizations rather than for parameterized optimization prob-

lems. Therefore, we took the original objective function f(x) and parameterized it

by shifting, rotating, and scaling it with the parameter w:

f(x;w) = swf(Rw(x− tw)) (48)

where tw,Rw, sw are linear functions of w and represent the shift, rotation, and scale

parameters for the task w. The parameterized skill function is assumed linear in w

for all four problems.

The results are shown in Table 11. For unimodal functions, we compared the

average number of samples required to reach the convergence threshold (= 0.001).

Our algorithm requires 52% − 88% samples comparing to CMA-ES on Sphere and

Bent-Cigar problems. For multimodal problems, comparing the number of samples is

110

not informative because one algorithm might use fewer samples but returns a very bad

local minimum, while the other spends more samples to find a better local minimum

or even the global one. Therefore, we compared the cost of the solution found by

each algorithm instead of the number of samples used. For Weierstrass and Schwefel,

the cost of solution for our algorithm is 0.7% − 6.3% of that of CMA-ES. From the

four problems we evaluated, the performance gain increases as the dimension of the

problem grows, although further investigation with more problem sets is needed to

verify this trend.

7.4.3 Comparison with Individual Learning Approach

Figure 36: Comparison between our algorithm and the individual learning approach.
The quality of the low-resolution policy (shown in green) is comparable with the high-
resolution one (shown in blue) for those six tasks used for training (dotted vertical
lines). However, for those tasks corresponding to interpolated policy parameters,
there is a significant discrepancy between the quality of low-resolution and high-
resolution policies. In contrast, our policy (shown in red) learned with only six tasks
(M = 6) is comparable to the high-resolution one.

Alternatively, a parameterized policy can be trained by defining a set of tasks,

learning a policy for each task separately, and interpolating the policies using a re-

gression model. We refer this method as individual learning approach. We solved the

111

Figure 37: BioloidGP hardware.

vertical jump problem using individual learning approach with two different resolu-

tions of task discretization. In the low-resolution setting, we individually learned six

tasks evenly across the entire task range (i.e. M = 6) and applied linear regression on

the learned policy parameters. We repeated the same process in the high-resolution

setting except that this time we individually learned 51 tasks (i.e. M = 51). The qual-

ity of the low-resolution policy is comparable with the high-resolution one for those

six tasks used for training (dotted vertical lines in Figure 36). However, for those

tasks corresponding to interpolated policy parameters, there is a significant discrep-

ancy between the quality of low-resolution and high-resolution policies. In contrast,

our policy learned with only six tasks (M = 6) is comparable to the high-resolution

one.

7.4.4 Hardware experiment

Our evaluation also includes deploying the learned walking policy on the hardware

(Figure 37). The only difference in the parameterized policy for the real robot is

that we decreased the bounds of the policy parameters during the optimization. This

reduction results in more stable walk but decreases the maximal target speed from

13.3cm/s to 10.0cm/s.

112

7.5 Conclusion

We presented a new evolutionary optimization algorithm for learning parameterized

dynamic motor skills. Instead of individually acquiring optimal policies for each task,

our algorithm simultaneously learns the policies for the entire range of tasks. The

key insight of our algorithm is to sample in the space of policy parameters rather

than directly sample in the high-dimensional space of parameterized skill function

parameters. Since the solution in a parameterized problem is a curve segment rather

than a point, our approach maintains a parameterized probability distribution along

the mean segment and evolves it using selected elite samples. We demonstrated that

our algorithm shows faster convergence when comparing to the baseline algorithm,

CMA-ES, especially when using a cubic parameterized skill function.

Although our algorithm optimizes parameterized tasks automatically, it is the

user’s responsibility to set a feasible task range achievable by the given parameteriza-

tion of the control policy. If the range is too wide, the optimization will not converge

to a good solution due to the intrinsic limitations of the space of policy parameters.

For future consideration, we plan on extending the task interpolation parameters

into higher dimensions, which may afford greater flexibility of the resultant motor

skills considerably. For example, currently we parameterize the jump controller to act

in the vertical direction only, which obviates its use in general navigation applications.

A consequence of increasing the dimension of the task parameter is that it will require

the mean function be extended to the hyperplane in this new parameter space instead

of a segment.

113

CHAPTER VIII

MODEL-BASED LEARNING FOR VIRTUAL AND REAL

CHARACTERS

Conducting hardware experiment is often expensive in various aspects such as po-

tential damage to the robot and the number of people required to operate the robot

safely. Computer simulation is used in place of hardware in such cases, but it suf-

fers from so-called simulation bias in which policies tuned in simulation do not work

on hardware due to differences in the two systems. Model-free methods such as Q-

Learning, on the other hand, do not require a model and therefore can avoid this issue.

However, these methods typically require a large number of experiments, which may

not be realistic for some tasks such as humanoid robot balancing and locomotion.

This paper presents an iterative approach for learning hardware models and opti-

mizing policies with as few hardware experiments as possible. Instead of learning the

model from scratch, our method learns the difference between a simulation model and

hardware. We then optimize the policy based on the learned model in simulation.

The iterative approach allows us to collect wider range of data for model refinement

while improving the policy.

8.1 Motivation

Conducting hardware experiments is a cumbersome task especially with large, com-

plex and unstable robots such as full-size humanoid robots. They may require multiple

people to operate to ensure safety of both operators and the robot; control failures

can cause major damage; and even a minor damage is difficult to troubleshoot due

to complexity.

114

For this reason, simulation is often used to replace hardware experiments. Unfor-

tunately, it is difficult to obtain accurate simulation models, and therefore it suffers

from so-called simulation bias [51] in which policies tuned in simulation cannot realize

the same task with the hardware system due to differences in the two systems.

This paper presents an iterative approach for model learning and policy optimiza-

tion using as few experiments as possible. Instead of learning the hardware model

from scratch, our method reduces the number of experiments by only learning the

difference from a simulation model, which provides estimations for unobserved states.

The policy is then optimized through simulations using the learned model. We repeat

this process iteratively so that we can refine the model because the improved policy

is more likely to realize wider range of motions.

The assumption is that three things are essential to policy learning for complex

robots:

• Learning only the difference from a model is essential to reduce the number of

hardware experiments. The model can also be used for optimizing the initial

policy.

• Iterative process is important for inherently unstable robots because we cannot

collect enough data using a policy trained only in simulation.

• The learned model should be stocastic so that it can model sensor and actuator

noises.

Our target task in this paper is balancing of bipedal robot on a bongoboard.

To prove the concept, and to better control the noise conditions, we shall use two

simulation models instead of a simulation model and a hardware system. One of the

models is derived by Lagrangian dynamics assuming perfect contact conditions, while

the other model is based on a 2D physics simulation engine with a more realistic

115

Simulation Hardware

Policy

Dynamics Bias Learning

Policy Search

resultsupdate

control input

update

cost

Figure 38: Framework of our approach.

contact model. These models are different enough that a policy optimized for the

former cannot stabilize the latter.

The rest of the paper is organized as follows. Section 8.2 gives an overview of our

framework, followed by more details on the model learning in Section 8.3 and policy

optimization in Section 8.4. Section 8.5 presents simulation results and analysis. We

finally conclude the paper in Section 8.6.

8.2 Overview

We developed an iterative reinforcement learning process to alternatley refine the

model and policy. Figure 38 illustrates the approach.

The three main components are simulation, hardware, and policy. Simulation is

based on a model of the robot hardware, and cheap to run. Hardware is the real robot

and therefore more expensive to run. Both simulation model and robot hardware are

controlled by control inputs computed by the policy.

The framework includes two iteration loops that run with different cycles. The

outer loop (solid arrows) is the dynamics bias learning process that uses the exper-

imental data from hardware to train the simulation model. The inner loop (dashed

arrows) is the policy search process that uses the simulation model to optimize the

policy based on a given cost function.

Our framework adapts some of the ideas used in prior work. Similarly to [49], we

116

Hardware

PolicyPolicy Search

control input

update

cost

Figure 39: Direct policy search.

use Gaussian Process to model the difference between a dynamics model and actual

robot dynamics. On the other hand, we also adopt the iterative learning scheme as

in [7] because the performance of the initial controller is usually not good enough

to learn accurate dynamics model. We also chose to directly optimize the policy

parameters instead of learning the value function, as in [22].

We compare our framework with conventional direct policy search represented

in Figure 39. This approach only has the policy search loop that uses the hardware

directly to obtain the control cost for policy search. It usually requires a large number

of hardware trials, which is unrealistic for our target robots and tasks.

The goal of this work is to reduce the number of dynamics bias learning loops

that involve hardware experiments. On the other hand, we can easily run many

policy search loops because we only have to run simulations.

8.3 Learning the Dynamics Model

8.3.1 Dynamics Bias Formulation

A general form of dynamics of a system with n states and m inputs can be written

as

xt = xt−1 + f (xt−1,ut−1) (49)

where

x ∈ <n : robot state

u ∈ <m : input

f : <n ×<m → <n : system dynamics function.

117

The goal of learning is to obtain f such that the model can accurately predict

the system’s behavior. In this paper, we employ one of the non-parametric models,

Gaussian Process (GP) model. Learning f without prior knowledge, however, is

expected to require a large amount of data to accurately model the system dynamics.

For many robots, we can obtain an approximate dynamics model by using, for

example, Lagrangian dynamics. We denote such model by f ′. Instead of learning f

that requires a large amount of data, our idea is to learn the difference between f ′

and the real dynamics:

xt = xt−1 + f ′ (xt−1,ut−1) + gD (xt−1,ut−1) (50)

where gD : <n×<m → <n is the difference model to be learned and D represents the

set of data used for learning the model. In this paper, we call gD as dynamics bias.

Our expectation is that f ′ is a good approximation of the system dynamics, and

therefore learning gD requires far smaller data set than learning f from scratch.

8.3.2 Gaussian Process

Gaussian Process (GP) [79] is a stochastic model that represents the relationship

between r inputs x̃ ∈ <r and a scalar output y. For the covariance function, we use

the sum of a squared exponential and noise functions:

k (x̃, x̃′) = α2 exp

(
−1

2
(x̃− x̃′)T Λ−1 (x̃− x̃′)

)
+ δx̃,x̃′σ

2 (51)

where α2 is the variance of the latent function, σ2 is the noise variance, and Λ−1 is

a positive-definite matrix. Assuming that Λ−1 is a diagonal matrix whose elements

are {l1, l2, . . . , lr}, the set of parameters θ = (l1, l2, . . . , lr, α
2, σ2) is called hyper-

parameters.

With N pairs of training inputs x̃i and outputs y = [y1y2 . . . yN]T , we can predict

the output for a new input x̃∗ by

y∗ = kT∗K
−1y (52)

118

with variance

σ2 = k(x̃∗, x̃∗)− kT∗K−1k∗ (53)

where K = {k(x̃i, x̃j)} ∈ <N×N and k∗ = {k (x̃∗, x̃i)} ∈ <N .

The hyper-parameters are normally optimized to maximize the marginal likelihood

of producing the training data. In our setting, however, optimizing hyper-parameters

often results in over-fitting due to the small number of training data. We therefore

manually adjust the hyper-parameters by looking at the policy optimization results.

Once we determinte the hyper-parameters, we apply the same hyper-parameters for

all testing scenarios.

8.3.3 Learning

We collect the input and output data from hardware experiments to train the dy-

namics bias model. For multiple-output systems, we use one GP for each dimension

and train each GP independently using the outputs obtained from the same set of

inputs.

The inputs to the GP models are the current state and input, x̃t =
(
xTt−1 u

T
t−1

)T
,

while the outputs are the difference between the measured state and the prediction

of the simulation model:

∆t = xt − xt−1 − f ′ (xt−1,ut−1) . (54)

We collect a set of input and output pairs from hardware experiments.

The computational cost for learning increases rapidly as the training data in-

creases. We therefore remove some of the samples from learning data set. First, we

downsample the data because similar states do not improve model accuracy. We then

remove the samples where the robot and board are no longer balancing on the wheel.

Next, we discard the samples whose states are too far away from the static equilib-

rium state or too difficult to recover balance since designing a controller in such areas

of the state space does not make much sense.

119

Finally, we discard the frames that are far from the prediction by the simulation

model in order to remove outliers that may happen due to sensor erros in hardware

experiments.

To summarize, samples with the following properties are not included in the train-

ing data:

1. The board touches the ground.

2. The board and wheel are detached.

3. The distance from the static equilibrium state is larger than a threshold.

4. The global angle of the robot body exceeds a threshold.

5. The global angle of the board exceeds a threshold.

6. The norm of the velocity exceeds a threshold.

7. The distance from the state predicted by the Lagrangian model is larger than

a threshold.

8.3.4 Prediction

In policy search, we use the dynamics bias model to predict the next state xt given

the current state xt−1 and input ut−1. The GP model predicts the mean ∆̄t and

variance σt of the output, and the mean value is commonly used as the prediction. A

problem with this method is that the prediction is not accurate if the input is far from

any of the training data, especially when the traning data is sparse as in our case.

Here, we take advantage of the system dynamics model f ′ by weighing the prediction

of the GP such that we rely on the model as the prediction variance becomes larger,

i.e.,

xt = xt−1 + f ′(xt−1,ut−1) + exp
(
−d|σ2|2

)
∆̄t (55)

120

where d > 0 is a user-defined coefficient. If
(
xTt−1 u

T
t−1

)T
is far away from any learning

data, then the last term of (55) is nearly zero, meaning that we mostly use the

prediction by the model.

8.4 Data-Efficient Reinforcement Learning

Algorithm 5 summarizes our framework. The algorithm starts from an empty learning

data set D = ∅ and the assumption that the simulation model is accurate, i.e., g = 0.

At each iteration, we first search for an optimal policy using the simulation model

f ′ + g. If the optimal policy does not give satisfactory results with the simulation

model, we clear the model and restart from scratch. Otherwise, we evaluate the policy

by a few hardware experiments to obtain the maximum cost as well as a new data set

Di for learning. If the policy successfully achieves the control objective on hardware,

we terminate the iteration. Otherwise, we append Di to the existing data set and

re-learn the dynamics bias model g and repeat the same process until the maximum

number of iterations is reached.

The cost function for policy optimization is

Z = c(T − tfail) + max
1≤t≤T

xTt Rxt +
T∑
t=0

uTt Qut (56)

where c is a user-defined positive constant, T is the number of simulation frames,

tfail is the frame at which the simulation failed, and R ∈ <n×n,Q ∈ <m×m ≥ 0 are

user-defined weight matrices. We set c = Zmax to make sure that the cost function

value always exceed Zmax if a policy fails to keep the robot balanced for T frames.

The first term penalizes policies that cannot balance the model for at least T frames.

To determine failure, we use the criteria 1)–6) described in Section 8.3.3. The second

term tries to minimze the maximum distance from the static equilibrium state. The

third term considers the total energy consumption for control.

Any numerical optimization algorithm can be used for optimizing the policy p

using the simulation model. We have found that the DIRECT algorithm [44] works

121

Algorithm 5: Data-efficient reinforcement learning

Require: nominal model f
1: initialize D = ∅ and g = 0
2: i← 0
3: while i < Nout do
4: p← policy optimized for g
5: Zg ← evaluate policy p on g
6: if Zg > Zmax then
7: initialize the simulation model: D = ∅ and g = 0
8: end if
9: Zr, Di ← evaluate p with hardware experiments

10: if Zr < Zmax then
11: break
12: end if
13: D ← D ∪Di

14: g ← gD
15: i← i+ 1
16: end while

best for our problem. Theoretically, the DIRECT algorithm is capable of finding the

globally optimal solution relatively quickly. Because our optimization problem has

many local minima, we selected the DIRECT algorithm instead of CMA-ES, which

has been commonly used in this dissertation. We terminate the algorithm when the

relative change in the cost function value in an optimization step is under a threshold

ε, or the number of cost function evaluations exceeds a threshold Nin. DIRECT also

requires the upper and lower bounds for each optimization parameters.

8.5 Results

While the final goal of this work is to optimize a policy for hardware systems, this

paper focuses on proof of concept and uses two different simulation models in place

of a simulation model and hardware. Using a well-controlled simulation environment

also gives us the opportunity to explore different noise types and levels.

122

8.5.1 Bongoboard Balancing

The task we consider is balancing on bongoboard of a simple legged robot shown

in Figure 40(a). Specifically, we apply the output-feedback controller developed by

Nagarajan and Yamane [72] and attempt to optimize the gains through model learning

and policy search. The state of the system is x = (αw αb θ
r
1 α̇w α̇b θ̇

r
1)T (see

Figure 40(a)), and the outputs we use for feedback control are z = (xp ẋp θ
r
1 θ̇

r
1 αf)

T

as indicated in Figure 40(b).

The system has three degrees of freedom, and the only input is the ankle torque.

Therefore the number of states is n = 6 and the number of inputs to the model is

m = 1. Then the number of inputs to the GP becomes r = n+m = 7.

The output-feedback controller takes the five outputs of the models and compute

the ankle torque by

u = Hz (57)

where H = (h1 h2 . . . h5) is the feedback gain matrix. The policy search process

computes the optimal values for the five elements of the gain matrix. In our im-

plementation, we optimize a different set of parameters ĥ that are mapped to the

elements of H by

hi =

 exp(ĥi)− 1 if ĥi ≥ 0

− exp(−ĥi) + 1 if ĥi < 0
(58)

instead of directly optimizing hi.

As mentioned above, we use two models in this paper, one corresponding to the

simulation and the other corresponding to the hardware blocks for Figure 38.

The first model is derived by the Lagrangian dynamics formulation as described

in [72]. This model assumes perfect contact condition, i.e. no slip or detachment of

contacts between the floor and wheel, the wheel and board, as well as the board and

robot feet.

The second model, used in lieu of hardware, is based on a 2D physical simulation

123

2

,

,

,

,

Link-2
Pelvis

Link-1

, ̇

, ̇

(a) (b)

Figure 40: Robot balancing on a bongoboard.

engine called Box2D [3], which uses maximal (Eulerian) coordinate system and a

spring-and-damper contact model. To make the simulation realistic, we add three

types of noise:

• Torque noise: a zero-mean gaussian noise of variance σ2
τ is added to the robot’s

ankle joint torque.

• Joint angle noise: a zero-mean Gaussian noise of variance σ2
p is added to the

wheel (αw), board (αb), and robot (θr1) angles used for feedback control.

• Joint velocity sensor noise: a zero-mean Guassian noise of variance σ2
v is added

to the wheel (α̇w), board (α̇b), and robot (θ̇r1) anglular velocities.

We also randomly choose the initial states in Box2D simulations for collecting training

data for dynamics bias model learning because it is impossible to set exact initial

states in hardware experiments.

Even though both are simulation, the results may be different due to different

contact models and coordinate systems. In fact, a policy optimized for the Lagrangian

model does not always balance the robot in the second model, which justifies the need

for our framework even in this simple setup. Figure 41 show an example of using a

policy optmized for the Lagrangian and Box2D models for both the Box2D model

124

t Policy for Lagrangian model Policy for Box2D model

0s

1s

2s

3s

4s

5s

Figure 41: Simulation result of a policy optimized for the Lagrangian model (left
column) and Box2D model (right column). In each snapshot, the left and right figures
are the Box2D and Lagrangian model simulations respectively.

and the Lagrangian model. Both policies can successfully balance the model for

which they are designed, but not the other model. With the policy designed for the

Lagrangian model, the Box2D simulation fails before t = 3 sec when the board leaves

the wheel. The Lagrangian model simulation with the policy designed for Box2D

model fails when the board hits the ground before t = 2 sec.

Table 12 summarizes the parameters we used for the experiments.

125

Table 12: Parameters used for the experiments.
Dynamics Bias Model

Λ−1 diag(1, 1, 1, 1, 1, 1)
α2 1
σ2 e−4

d 1.0
Policy Optimization

c 200
T 5000
Q 10−6

R diag(10, 10, 10, 0.1, 0.1, 0.1)
Nout 10
Zmax 200

experiments per iteration 2
DIRECT parameters

parameter bounds −10 ≤ ĥi ≤ 10
Nin 1000
ε 10−6

Simulation Setting
maximum torque 100 Nm

timestep 0.001 s

126

−2

−1

0

1

2

3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

wheel angle αw (rad)
board angle αb (rad)

jo
in

t
an

g
le

 θ
1
 (

ra
d
)

training data

prediction

ground truth

Figure 42: Velocity field of the learned dynamics model. Cyan: training data; red:
prediction; blue: ground truth.

8.5.2 Dynamics Bias Learning

To ensure that the GP models can accurately predict the dynamics bias, we draw the

vector field in the 3-dimensional subspace (αw αb θ
r
1) of the state spate. An example

is shown in Figure 42, where the cyan arrows represent the training data and red and

blue arrows depict the prediction and ground truth computed at different states. This

example uses 571 samples obtained from four Box2D simulations. As shown here, the

corresponding red and blue arrows match well, indicating that the GP models can

accurately predict the dynamics bias.

8.5.3 Policy Search

We run our method for different noise levels and inertial parameter error magnitudes

to investigate the relationship between the number of experiments required and the

discrepancy between the model and hardware. Furthermore, to test the robustness

against model errors, we conducted the same set of experiments when the inertial

parameters of the Box2D model are 20% larger than those in the Lagrangian model.

Table 13 shows the average number of experiments required to obtain a policy that

can successfully balance the robot in Box2D simulation for 5 seconds. For reference,

127

Table 13: Average number of experiments required at different noise levels and
inertial parameter errors.

Torque Position Velocity # of experiments
σ2
τ σ2

p σ2
v no error 20% error

0 0 0 6.4 2.8
0.001 0 0 7.3 3.5
0.01 0 0 9.5 4.8
0.1 0 0 5.5 2.5
0.1 1.0× 10−6 1.0× 10−3 7.5 3.5
0.1 2.0× 10−6 2.0× 10−3 4.4 4.4
0.1 4.0× 10−6 4.0× 10−3 7.0 3.3
0.1 8.0× 10−6 8.0× 10−3 9.6 5.0
0.1 1.6× 10−5 1.6× 10−2 4.6 5.5
0.1 3.2× 10−5 3.2× 10−2 4.0 3.5
0.1 6.4× 10−5 6.4× 10−2 6.0 4.0
0.1 1.28× 10−4 1.28× 10−1 4.0 3.6

a 12-bit rotary encoder combined with a 50:1 gear measures the output joint angle

at a resolution of 3.1× 10−5 rad.

The results do not show any clear relationship between the noise level and the

number of experiments required, which implies that larger noise or error does not

necessarily require more experiments. Also, it is interesting that the numbers of

experiments with inertial parameter errors are generally lower than their counterparts

without errors. We suspect that the larger inertia lowered the natural frequency of

the system, making the control easier in general.

Figure 43 shows three examples of cost function value change in Box2D simulation.

The cost generally remains flat for a few iterations and then declines rapidly, probably

when the dynamics bias model becomes accurate enough.

8.5.4 Policy Performance

Since the Box2D simulation includes noise, simulation results vary even if the robot

starts from the same initial state and uses the same policy. We therefore compute

the success rate from various initial states to evaluate the performance of a policy.

128

0 1 2 3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

10
6

number of iterations

c
o
st

 i
n
 B

o
x
2
D

 s
im

u
la

ti
o
n

Noise= 0.01, 1e−6, 1e−3

Noise= 0.1, 4e−6, 4e−3

Noise= 0.1, 8e−6, 8e−3 , Mass=20%

Figure 43: Change of cost function value in Box2D simulations over iterations.

Figure 44 depicts the balancing success rates starting from various wheel and board

angles, using a policy optimized with Box2D simulation without noise (a) and with

noise (b). This result clearly shows that the policy optimized in noisy environment

can successfully balance the robot from a wider range of initial states under noisy

actuator and sensors.

8.6 Conclusion and Future Work

This paper presented a framework for model learning and policy optimization of

robots that are difficult to conduct experiments with. The key idea is to learn the

difference between a model and hardware rather than learning the hardware dynamics

from scratch. We also employ an iterative learning process to improve the model and

policy This approach is particularly useful for tasks such as humanoid balancing and

locomotion where a dynamics model is necessary to obtain a controller to collect the

initial set of data.

We conducted numerical experiments through bongoboard balancing task of a

simple bipedal robot, and demonstrated that the framework can compute a policy

that successfully completes the test task with only several hardware experiments. The

policy obtained from noisy simulation proved to have higher balancing performance

than the one obtained from clean simulation. The number of hardware experiments

129

did not show clear correlation with the noise level or magnitude of inertial parameter

error.

Future work besides experiments with actual hardware system includes establish-

ing a guideline for determining the hyper-parameters of GP and extension to more

complex robot models. Another interesting direction would be to explore different

representation of dynamics bias instead of the additive bias considered in this paper.

130

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

initial wheel angle αw (rad)

in
it

ia
l

b
o
ar

d
 a

n
g
le

 α
b
 (

ra
d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

(a)

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

initial wheel angle αw (rad)

in
it

ia
l

b
o
ar

d
 a

n
g
le

 α
b
 (

ra
d
)

su
cc

es
s

ra
te

(b)

Figure 44: Balancing success rate in Box2D simulation with noise, starting from
various initial wheel and board angles. (a) The policy has been optimized with Box2D
simulation without noise. (b) The policy has been optimized with Box2D simulation
with noise.

131

CHAPTER IX

CONCLUSION

Within this dissertation, we have presented a set of algorithms and frameworks for

developing agile motor skills on virtual and real humanoids. In this final chapter, we

will summarize the proposed techniques and preliminary results, and suggest future

research directions that could provide the next steps toward more effective systems

for real humanoids.

9.1 Summary

The dissertation started from designing controllers for the specific falling strategies

on simulated characters and finished with general computational tools for developing

various motor skills on real humanoids. Using the proposed techniques, various mo-

tor skills can be intuitively designed in virtual simulation and easily transferred to

physical systems. Several optimization algorithms were also designed to develop more

versatile and robust physics-based controllers for humanoids within a short amount

of time. Further, various falling scenarios of virtual and real humanoids were ex-

tensively studied to ensure safety of humanoids and to achieve smooth transitions

between motor skills.

Chapter 3 described a method to generate agile falling and landing motions of

virtual characters in real-time via physical simulation without using motion capture

data or pre-scripted animation. By designing novel controllers based on three land-

ing principles informally developed in Parkour community, we can develop a robust

controller that allows the character to fall from a wide range of heights and initial

speeds, roll on the ground, and get back on its feet, without inducing large stress on

joints at any moment.

132

Chapter 4 introduced a new planning algorithm to minimize the damage of hu-

manoid falls by utilizing multiple contact points. Instead of selecting among a col-

lection of manually designed control strategies, we proposed a novel algorithm which

plans for appropriate falling motions to a wide variety of falls. Our algorithm covers

various falling strategies from a single step to recover from a gentle nudge, to a rolling

motion to break a high-speed fall.

The iterative learning framework of Chapter 5 allows users to intuitively develop

dynamic controllers for virtual characters only using high-level, human-readable in-

structions. We introduced control rigs that formulate an intermediate layer for facil-

itating mapping between high-level instructions and manipulating multiple low-level

control variables. The control rigs are design for utilizing the human coach’s knowl-

edge and reducing the search space for control optimization.

The optimization problems formulated in Chapter 5 can be efficiently solved us-

ing a new sampling-based optimization method, Covariance Matrix Adaptation with

Classification (CMA-C), explained in Chapter 6. Inspired by the human ability to

learn from failure, CMA-C utilizes the failed simulation samples to approximate in-

feasible regions, resulting in a faster convergence than the standard CMA-ES.

Chapter 7 shows how to optimize a parameterized motor skill which is essential

for autonomous robots operating in an unpredictable environment. Our algorithm

achieves a faster convergence rate by evolving a parameterized probability distribution

for the entire range of tasks.

The method described in Chapter 8 provides us a framework for reducing hardware

experiments which is usually very time-consuming and costly. The goal of this method

is to learn the difference between simulation and hardware systems, and optimize a

control policy that works on the target system. Instead of learning the model from

scratch, our method learns only the difference between virtual and real system and

reduces numbers of hardware experiments.

133

The proposed frameworks and algorithms in this disseration are designed to formu-

late the pipeline for developing agile motor controllers on virtual and real humanoids.

The steps of the pipeline include formulating control architectures, optimizing control

parameters in simulation, and transferring controllers to hardware, while ensuring the

safety of humanoids. Using the proposed pipeline, controller designers can progres-

sively design controllers using only high-level human-readable instructions, within a

short amount of time. Further, the developed solution can be transferred to physical

systems, with a reduced number of hardware experiments. Although the steps of the

pipeline are verified individually, on a small set of tasks, mostly in virtual simula-

tion, they are not examined as an integrated system. To test the full capability of

the pipeline on real humanoids, we expect the following challenges that need to be

addressed.

9.2 Future work

This section presents a few interesting future directions for improving the proposed

techniques in this dissertation.

9.2.1 Real-time controllers for non-planar falls

In Chapter 4, we presented a falling strategy that breaks a fall by utilizing multiple

contact points to reduce damage to humanoids. However, the proposed strategy

requires two major revisions in order to be deployed on real robots: achieving real-

time performance and handling non-planar falls.

Real-time planning of falls. Planning of falling motions must be very efficient

to provide enough time for executing planned motions. However, the current imple-

mentation of the algorithm takes a few seconds, which is far from real-time so that a

controller can be deployed to hardware of robots. One possible option is to compute

falling motions for various initial cases in the pre-processing stage. When a fall is

134

predicted, we can simply select the optimal falling motion that is designed for the

closest scenario to the current state, instead of computing it online.

Planning of non-planar falls. Although we previously focused on planar falls

in the sagittal plane as a proof of concept for the multiple contact falling strategy,

humanoid falls can accompany all rotations in pitch, yaw, and roll axes. An intuitive

approach for handling non-planar cases is to use a more complex abstract model,

such as an inertia-loaded pendulum, that can account inertia and momentum in all

axes. Because the proposed algorithm is not confined to the specific choice of the

abstract model, we can easily incorporate different models by augmenting state and

action spaces. However, the discretization of spaces and computation of dynamic

programming must be improved for efficiency because more dimensions would increase

the computation time tremendously, which is so called a curse of dimensionality.

9.2.2 A more intuitive learning interface

In Chapter 5, we presented the learning framework for teaching virtual characters how

to execute dynamic motor skills using only high-level human-readable instructions.

However, the current design of the framework still requires a long and repetitive

sequence of instructions for complex motions with a large number of target angles,

which is not straightforward for novice users. Therefore, designing a more intuitive

interface will help users to efficiently develop more complex motions.

Motion capture systems. Extending the framework with motion capture systems

may reduce the number of instructions to describe the motion. With the motion

capture system, a user can act out the motion instead of teaching the motion with

several instructions. Note that this is different from simply reconstructing the capture

motions because a user may not be agile enough to perform the athletic target motion

such as a back-flip, or the captured motion cannot be executed by humanoids due

135

to differences between a user and a humanoid including body dimensions or joint

structures.

Hierarchical composition of controllers. Another technique to prevent the rep-

etition of similar instructions is to formulate a hierarchical structure of controllers that

further extends the current concept of “control rigs”. Control rigs formulate an in-

termediate control layer that can manipulate multiple low level controllers. Similarly,

the key idea is to adopt a tree structure to hierarchically decompose a complex motor

skill to primitive movements. For instance, a drop-and-roll motion can be decomposed

into a jump, a transition, and a roll that are previously trained, and it can be served

as another component for an even more complex motion. This hierarchical structure

allows users to describe a motion in higher level of instructions such as “jump further”

or “roll faster”. In addition, re-optimizing controllers in this representation can be

done much more efficiently than learning new controllers from scratch, by conducting

the optimization in the reduced parameter space.

9.2.3 Dynamics bias learning for humanoids

We previously demonstrated a framework for learning dynamic bias for a simple legged

robot in Chapter 8, but it is not fully validated on a full-scale humanoid. Because

humanoid robots usually have much higher degrees of freedom than simple robots, a

näıve approach will require a tremendous amount of data infeasible to be obtained.

There are several possible approaches for resolving this issue. For instance, a high

dimensional parameter space can be projected into a lower dimensional space using a

simplified model, which is a common approach to decrease the number of dimensions

[94]. Another possibility is to employ the concept of active learning. Instead of exe-

cuting the current best policy, we can find the most informative policy that maximizes

the amount of data we can get from a single hardware experiment [18]. In addition,

we can use multiple simulators as the work of Cutler and his colleagues [16] that

136

efficiently solves reinforcement problems in the discretized grid setting. Although it

is required to extend the approach for continuous spaces, optimizing the policy with

multiple simulators will give us a chance to obtain more robust controllers that work

for a wider range of scenarios.

137

REFERENCES

[1] BioloidGP, http://en.robotis.com/.

[2] Boston Dynamics, http://www.bostondynamics.com.

[3] “Box2d — a 2d physics engine for games.” http://box2d.org/.

[4] Fukushima Daiichi nuclear disaster, https://en.wikipedia.org/wiki/
Fukushima Daiichi nuclear disaster.

[5] Ukemi of Judo, http://www.judo-ch.jp/english/knowledge/ukemi/.

[6] Zenpo Kaiten Ukemi, http://en.wikipedia.org/wiki/Uke (martial arts).

[7] Abbeel, P., Quigley, M., and Ng, A., “Using inaccurate models in re-
inforcement learning,” in Proceedings of the 23rd International Conference on
Machine Learning, pp. 1–8, 2006.

[8] Advanced Parkour Roll Techniques, http://youtu.be/bbs7wDqViY4, 2011.

[9] Al Borno, M., de Lasa, M., and Hertzmann, A., “Trajectory optimiza-
tion for full-body movements with complex contacts.,” IEEE Trans. on visual-
ization and computer graphics, 2013.

[10] Atkeson, C. and Schaal, S., “Robot learning from demonstration,” in In-
ternational Conference on Machine Learning, pp. 12–20, 1997.

[11] Bingham, J. T., Lee, J., Haksar, R. N., Ueda, J., and Liu, C. K.,
“Orienting in mid-air through configuration changes to achieve a rolling landing
for reducing impact after a fall,” 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3610–3617, Sept. 2014.

[12] Chen, Q., Liu, B., Zhang, Q., and Liang, J., “Evaluation Criteria for CEC
2015 Special Session and Competition on Bound Constrained Single-Objective
Computationally Expensive Numerical Optimization,” CEC, 2015.

[13] Coros, S., Beaudoin, P., and van de Panne, M., “Robust task-based
control policies for physics-based characters,” in ACM Trans. Graph, 2009.

[14] Coros, S., Beaudoin, P., and van de Panne, M., “Generalized biped
walking control,” ACM Trans. Graph., vol. 29, pp. 130:1–130:9, July 2010.

[15] Coros, S., Karpathy, A., Jones, B., Reveret, L., and Van De Panne,
M., “Locomotion skills for simulated quadrupeds,” ACM Transactions on
Graphics (TOG), pp. 1–11, 2011.

138

[16] Cutler, M., Walsh, T. J., and How, J. P., “Reinforcement learning with
multi-fidelity simulators,” 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3888–3895, 2014.

[17] da Silva, B. C., Baldassarre, G., Konidaris, G., and Barto, A.,
“Learning parameterized motor skills on a humanoid robot,” 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 5239–5244,
May 2014.

[18] da Silva, B. C., Konidaris, G., and Barto, A., “Active Learning of Param-
eterized Skills,” Proceedings of the 31st International Conference on Machine
Learning (ICML 2014), 2014.

[19] da Silva, B. C., Konidaris, G., and Barto, A. G., “Learning Parame-
terized Skills,” Proceedings of the 29th International Conference on Machine
Learning, 2012.

[20] da Silva, M., Abe, Y., and Popović, J., “Interactive simulation of stylized
human locomotion,” in ACM SIGGRAPH 2008 papers, pp. 82:1–82:10, 2008.

[21] DART, Dynamic Animation and Robotics Toolkit, http://dartsim.github.io/.

[22] Deisenroth, M. and Rasmussen, C., “PILCO: A model-based and data-
efficient approach to policy search,” in Proceedings of the 28th International
Conference on Machine Learning, pp. 465–472, 2011.

[23] Edwardes, D., The Parkour and Freerunning Handbook. It Books, August
2009.

[24] Faloutsos, P., van de Panne, M., and Terzopoulos, D., “Composable
controllers for physics-based character animation,” in SIGGRAPH, pp. 251–260,
Aug. 2001.

[25] Fang, A. C. and Pollard, N. S., “Efficient synthesis of physically valid
human motion,” ACM Trans. on Graphics (SIGGRAPH), pp. 417–426, July
2003.

[26] Forte, D., Gams, A., Morimoto, J., and Ude, A., “On-line motion syn-
thesis and adaptation using a trajectory database,” Robotics and Autonomous
Systems, vol. 60, pp. 1327–1339, Oct. 2012.

[27] Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M.,
Kanehiro, F., Nakaoka, S., and Hirukawa, H., “An optimal planning of
falling motions of a humanoid robot,” in Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, pp. 456–462, IEEE, 2007.

[28] Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M.,
Kanehiro, F., Nakaoka, S., and Hirukawa, H., “Towards an optimal
falling motion for a humanoid robot,” Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pp. 524–529, Dec. 2006.

139

[29] Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., and
Hirukawa, H., “UKEMI: Falling motion control to minimize damage to biped
humanoid robot,” in Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, pp. 2521–2526, IEEE, 2002.

[30] FUJIWARA, K., KANEHIRO, F., KAJITA, S., and HIRUKAWA, H.,
“Safe knee landing of a human-size humanoid robot while falling forward,”
Intelligent Robots and Systems, 2004, pp. 503–508, 2004.

[31] Fujiwara, K., Kanehiro, F., Kajita, S., Yokoi, K., Saito, H.,
Harada, K., Kaneko, K., and Hirukawa, H., “The first human-size hu-
manoid that can fall over safely and stand-up again,” IEEE-RSJ International
Conference on Intelligent Robots and Systems, no. October, pp. 1920–1926,
2003.

[32] Goswami, A., Yun, S.-k., Nagarajan, U., Lee, S.-H., Yin, K., and
Kalyanakrishnan, S., “Direction-changing fall control of humanoid robots:
theory and experiments,” Autonomous Robots, vol. 36, no. 3, pp. 199–223, 2014.

[33] Ha, S. and Liu, C. K., “Iterative training of dynamic skills inspired by human
coaching techniques,” ACM Transactions on Graphics, vol. 33, 2014.

[34] Ha, S., Ye, Y., and Liu, C. K., “Falling and landing motion control for
character animation,” ACM Trans. Graph, vol. 31, no. 6, p. 155, 2012.

[35] Hansen, N. and Kern, S., “Evaluating the CMA evolution strategy on mul-
timodal test functions,” in Parallel Problem Solving from Nature - PPSN VIII,
vol. 3242 of LNCS, pp. 282–291, 2004.

[36] Hansen, N., Müller, S., and Koumoutsakos, P., “Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix adapta-
tion (cma-es),” Evolutionary Computation, vol. 11, no. 1, pp. 1–18, 2003.

[37] Hausknecht, M. and Stone, P., “Learning powerful kicks on the aibo ers-7:
The quest for a striker,” RoboCup 2010: Robot Soccer World Cup XIV, no. June,
2010.

[38] Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F.,
“Animating human athletics,” in SIGGRAPH, pp. 71–78, Aug. 1995.

[39] Hohn, O. and Gerth, W., “Probabilistic Balance Monitoring for Bipedal
Robots,” The International Journal of Robotics Research, vol. 28, pp. 245–256,
2009.

[40] How to Land a Jump in Parkour, http://www.wikihow.com/Land-a-Jump-in-
Parkour, 2011.

140

[41] Igel, C., Suttorp, T., and Hansen, N., “A Computational Efficient Co-
variance Matrix Update and a (1 + 1) -CMA for Evolution Strategies,” Pro-
ceedings of the 8th annual conference on Genetic and evolutionary computation
(GECCO), pp. 453—-460, 2006.

[42] Ijspeert, A. J., Nakanishi, J., and Schaal, S., “Learning attractor land-
scapes for learning motor primitives,” Advances in neural information process-
ing systems, 2002.

[43] Jain, S. and Liu, C. K., “Controlling physics-based characters using soft
contacts,” ACM Trans. Graph. (SIGGRAPH Asia), vol. 30, pp. 163:1–163:10,
Dec. 2011.

[44] Jones, D., Perttunen, C., and Stuckman, B., “Lipscitzian optimization
without the Lipschitz constant,” Journal of Optimization Theory, vol. 79, no. 1,
pp. 157–181, 1993.

[45] Kane, T. R. and Scher, M. P., “A dynamical explanation of the falling cat
phenomenon,” Int J Solids structures, no. 55, pp. 663–670, 1969.

[46] Karssen, J. G. D. and Wisse, M., “Fall detection in walking robots by
multi-way principal component analysis,” Robotica, vol. 27, 2008.

[47] Khalil, W. and Dombre, E., Modeling, identification and control of robots.
London, U.K.: Hermès Penton, 2002.

[48] Kim, J., Kim, Y., and Lee, J., “A machine learning approach to falling
detection and avoidance for biped robots,” SICE Annual Conference (SICE),
pp. 562–567, 2011.

[49] Ko, J., Klein, D., Fox, D., and Haehnel, D., “Gaussian processes and
reinforcement learning for identification and control of an autonomous blimp,”
in IEEE International Conference on Robotics and Automation, pp. 742–747,
2007.

[50] Kobayashi, K., Yoshikai, T., and Inaba, M., “Development of humanoid
with distributed soft flesh and shock-resistive joint mechanism for self-protective
behaviors in impact from falling down,” IEEE International Conference on
Robotics and Biomimetics, pp. 2390–2396, 2011.

[51] Kober, J. and Bagnell, J.A. amd Peters, J., “Reinforcement learning
in robotics: A survey,” the International Journal of Robotics Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[52] Kober, J. and Peters, J., “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems, pp. 849–856, 2008.

141

[53] Kober, J., Tübingen, M. P. I., and Peters, J., “Reinforcement Learn-
ing to Adjust Robot Movements to New Situations,” IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, vol. 22, pp. 2650–2655,
2010.

[54] Lee, S.-H. and Goswami, A., “Fall on Backpack: Damage Minimization of
Humanoid Robots by Falling on Targeted Body Segments,” Journal of Compu-
tational and Nonlinear Dynamics, vol. 8, 2012.

[55] Lee, Y., Kim, S., and Lee, J., “Data-driven biped control,” ACM Trans. on
Graphics (SIGGRAPH), vol. 29, July 2010.

[56] Libby, T., Moore, T. Y., Chang-Siu, E., Li, D., Cohen, D. J., Jusufi,
A., and Full, R. J., “Tail-assisted pitch control in lizards, robots and di-
nosaurs,” Nature, vol. advance online publication, January 2012.

[57] Liu, C. K. and Jain, S., “A short tutorial on multibody dynamics,” Tech.
Rep. GIT-GVU-15-01-1, Georgia Institute of Technology, School of Interactive
Computing, 08 2012.

[58] Liu, C. K. and Popović, Z., “Synthesis of complex dynamic character mo-
tion from simple animations,” ACM Trans. on Graphics (SIGGRAPH), vol. 21,
pp. 408–416, July 2002.

[59] Liu, L., Yin, K., van de Panne, M., and Guo, B., “Terrain runner: con-
trol, parameterization, composition, and planning for highly dynamic motions,”
ACM Trans. Graph, vol. 31, no. 6, p. 154, 2012.

[60] Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W., “Sampling-
based contact-rich motion control,” ACM Transactions on Graphics (TOG),
vol. 29, no. 4, p. 128, 2010.

[61] Macchietto, A., Zordan, V., and Shelton, C., “Momentum control for
balance,” ACM Transactions on Graphics (TOG), vol. 28, no. 3, p. 80, 2009.

[62] Majkowska, A. and Faloutsos, P., “Flipping with physics: motion edit-
ing for acrobatics,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation, (Aire-la-Ville, Switzerland, Switzerland),
pp. 35–44, 2007.

[63] Matsubara, T., Hyon, S.-H., and Morimoto, J., “Learning paramet-
ric dynamic movement primitives from multiple demonstrations.,” Neural net-
works, vol. 24, pp. 493–500, June 2011.

[64] Missura, M., Wilken, T., and Behnke, S., “Designing effective humanoid
soccer goalies,” RoboCup 2010: Robot Soccer World Cup XIV, pp. 374—-385,
2011.

142

[65] Montgomery, R., “Gauge theory of the falling cat,” in Dynamics and Control
of Mechanical Systems (Enos, M. J., ed.), pp. 193–218, American Mathemat-
ical Society, 1993.

[66] Moore, A. and Atkeson, C., “Prioritized sweeping: Reinforcement learning
with less data and less time,” Machine Learning, vol. 13, pp. 103–130, 1993.

[67] Mordatch, I., de Lasa, M., and Hertzmann, A., “Robust physics-based
locomotion using low-dimensional planning,” ACM Trans. Graph., vol. 29,
pp. 71:1–71:8, July 2010.

[68] Morimoto, J. and Doya, K., “Acquisition of stand-up behavior by a real
robot using hierarchical reinforcement learning,” Robotics and Autonomous Sys-
tems, vol. 36, no. 1, pp. 37–51, 2001.

[69] Morimoto, J., Atkeson, C. G., Endo, G., and Cheng, G., “Improv-
ing humanoid locomotive performance with learnt approximated dynamics via
Gaussian processes for regression,” IEEE/RSJ International Conference on In-
telligent Robots and Systems, pp. 4234–4240, 2007.

[70] Muelling, K., Kober, J., and Peters, J., “Learning table tennis with a
Mixture of Motor Primitives,” 2010 10th IEEE-RAS International Conference
on Humanoid Robots, pp. 411–416, Dec. 2010.

[71] Muico, U., Lee, Y., Popović, J., and Popović, Z., “Contact-aware non-
linear control of dynamic characters,” in ACM SIGGRAPH 2009 papers, SIG-
GRAPH ’09, (New York, NY, USA), pp. 81:1–81:9, ACM, 2009.

[72] Nagarajan, U. and Yamane, K., “Universal balancing controller for robust
lateral stabilization of bipedal robots in dynamic, unstable environments,” in
Proceedings of IEEE International Conference on Robotics and Automation,
pp. 6698–6705, 2014.

[73] Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., and
Kawato, M., “Learning from demonstration and adaptation of biped locomo-
tion,” Robotics and Autonomous Systems, vol. 47, pp. 79–91, 2004.

[74] Neumann, G., Daniel, C., Kupcsik, A., Deisenroth, M., and Peters,
J., “Information-theoretic motor skill learning,” Proceedings of the AAAI Work-
shop on Intelligent Robotic Systems, 2013.

[75] Ogata, K., Terada, K., and Kuniyoshi, Y., “Real-time selection and gen-
eration of fall damage reduction actions for humanoid robots,” Humanoids 2008
- 8th IEEE-RAS International Conference on Humanoid Robots, pp. 233–238,
2008.

[76] Ogata, K., Terada, K., and Kuniyoshi, Y., “Falling motion control for
humanoid robots while walking,” Humanoid Robots, 2007 7th IEEE-RAS In-
ternational Conference on, pp. 306–311, Nov. 2007.

143

[77] Peng, J. and Williams, R., “Incremental multi-step Q-Learning,” Machine
Learning, vol. 22, pp. 283–290, 1996.

[78] Quiroz, J., Louis, S., and Dascalu, S., “Interactive evolution of XUL user
interfaces,” Proceedings of the 9th annual conference on Genetic and evolution-
ary computation, p. 2151, 2007.

[79] Rasmussen, C. and Kuss, M., “Gaussian Processes in reinforcement learn-
ing,” in Advances in Neural Information Processing Systems, vol. 16, 2003.

[80] Renner, R. and Behnke, S., “Instability Detection and Fall Avoidance for a
Humanoid using Attitude Sensors and Reflexes,” 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2967–2973, 2006.

[81] Ros, I. G., Bassman, L. C., Badger, M. A., Pierson, A. N., and
Biewener, A. A., “Pigeons steer like helicopters and generate down- and
upstroke lift during low speed turns,” Proceedings of the National Academy of
Sciences (PNAS), vol. 108, no. 50, 2011.

[82] Ross, S. and Bagnell, J., “Agnostic system identification for model-based re-
inforcement learning,” in International Conference on Machine Learning, 2012.

[83] RTQL8, RTQL8, http:bitbucket.org/karenliu/rtql8, 2012.

[84] Ruiz-del Solar, J., “Fall detection and management in biped humanoid
robots,” Robotics and Automation (ICRA), IEEE International Conference on,
pp. 3323–3328, 2010.

[85] Ruiz-del Solar, J., Palma-Amestoy, R., Marchant, R., Parra-
Tsunekawa, I., and Zegers, P., “Learning to fall: Designing low damage
fall sequences for humanoid soccer robots,” Robotics and Autonomous Systems,
vol. 57, pp. 796–807, 2009.

[86] Safonova, A., Hodgins, J. K., and Pollard, N. S., “Synthesizing physi-
cally realistic human motion in low-dimensinal, behavior-specific spaces,” ACM
Trans. on Graphics (SIGGRAPH), vol. 23, no. 3, pp. 514–521, 2004.

[87] ScienceTweets, http://sciencetweets.eu/photochemistry/archive/fullsize/cat-
falling fc51ab5347.jpg, 2015.

[88] Shapiro, a., Pighin, F., and Faloutsos, P., “Hybrid control for interactive
character animation,” Computer Graphics and Applications, pp. 455–461, 2003.

[89] Sims, K., “Artificial evolution for computer graphics,” SIGGRAPH Comput.
Graph., vol. 25, pp. 319–328, July 1991.

[90] Sok, K. W., Kim, M., and Lee, J., “Simulating biped behaviors from human
motion data,” ACM Trans. Graph, vol. 26, no. 3, 2007.

144

[91] Sok, K. W., Yamane, K., Lee, J., and Hodgins, J., “Editing dynamic
human motions via momentum and force,” ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 2010.

[92] Sreevalsan-Nair, J., Verhoeven, M., Woodruff, D., Hotz, I., and
Hamann, B., “Human-guided enhancement of a stochastic local search: Vi-
sualization and adjustment of 3d pheromone,” Engineering Stochastic Local
Search Algorithms. Designing, Implementing and Analyzing Effective Heuris-
tics, vol. 4638, pp. 182–186, 2007.

[93] Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., and Sigaud, O., “Learn-
ing Compact Parameterized Skills with a Single Regression,” Proc. IEEE-RAS
International Conference on Humanoid RObots - HUMANOIDS, 2013.

[94] Sugimoto, N. and Morimoto, J., “Trajectory-model-based reinforcement
learning : Application to bimanual humanoid motor learning with a closed-
chain constraint,” IEEE-RAS International Conference on Humanoid Robots,
2013.

[95] Sulejmanpašić, A. and Popović, J., “Adaptation of performed ballistic
motion,” ACM Trans. on Graphics, vol. 24, no. 1, 2004.

[96] Sunada, C., Argaez, D., Dubowsky, S., and Mavroidis, C., “A coordi-
nated jacobian transpose control for mobile multi-limbed robotic systems,” in
ICRA, pp. 1910–1915, 1994.

[97] Sutton, R., “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Proceedings of the 7th In-
ternational Conference on Machine Learning, pp. 216–224, 1990.

[98] Tan, J., Gu, Y., Turk, G., and Liu, C. K., “Articulated swimming crea-
tures,” in ACM SIGGRAPH 2011 papers, pp. 58:1–58:12, 2011.

[99] Tangkaratt, V., Mori, S., Zhao, T., Morimoto, J., and Sugiyama,
M., “Model-based policy gradients with parameter-based exploration by least-
squares conditional density estimation.,” Neural networks, vol. 57, Sept. 2014.

[100] Ude, A., Gams, A., Asfour, T., and Morimoto, J., “Task-Specific Gener-
alization of Discrete and Periodic Dynamic Movement Primitives,” IEEE Trans-
actions on Robotics, vol. 26, pp. 800–815, Oct. 2010.

[101] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Optimizing walking
controllers,” ACM Trans. Graph, vol. 28, no. 5, 2009.

[102] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Optimizing walking
controllers for uncertain inputs and environments,” ACM Trans. Graph, vol. 29,
no. 4, 2010.

145

[103] Wang, J. M., Hamner, S. R., Delp, S. L., and Koltun, V., “Optimizing
locomotion controllers using biologically-based actuators and objectives,” ACM
Trans. Graph, vol. 31, no. 4, p. 25, 2012.

[104] Wang, J., Whitman, E. C., and Stilman, M., “Whole-body trajectory
optimization for humanoid falling,” American Control Conference (ACC), 2012,
pp. 4837—-4842, 2012.

[105] Waters, C. D. J., “Interactive Vehicle Routeing,” The Journal of the Oper-
ational Research Society, no. 9, 1984.

[106] Wooten, W. L., Simulation of Leaping, Tumbling, Landing, and Balancing
Humans. PhD thesis, Georgia Institute of Technology, 1998.

[107] Yamane, K., “Practical kinematic and dynamic calibration methods for force-
controlled humanoid robots,” in Proceedings of IEEE-RAS International Con-
ference on Humanoids Robots, (Bled, Slovenia), p. (in press), October 2011.

[108] Ye, Y. and Liu, C. K., “Optimal feedback control for character animation
using an abstract model,” ACM Trans. Graph, vol. 29, no. 4, 2010.

[109] Yin, K., Loken, K., and van de Panne, M., “Simbicon: simple biped
locomotion control,” in SIGGRAPH, p. 105, 2007.

[110] Yun, S.-k. and Goswami, A., “Tripod Fall : Concept and Experiments of
a Novel Approach to Humanoid Robot Fall Damage Reduction,” Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pp. 2799–2805,
2014.

[111] Zhao, P. and van de Panne, M., “User interfaces for interactive control
of physics-based 3d characters,” I3D: ACM SIGGRAPH 2005 Symposium on
Interactive 3D Graphics and Games, 2005.

[112] Zordan, V., Riverside, U. C., Brown, D., and Columbia, B., “Control
of Rotational Dynamics for Ground and Aerial Behavior,” Transactions on
Visualization and Computer Graphics, 2014.

[113] Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M., “Dynamic re-
sponse for motion capture animation,” ACM Trans. on Graphics (SIGGRAPH),
vol. 24, pp. 697–701, July 2005.

146

VITA

Sehoon ha was born in Geoje island, Korea in 1985. He graduated from Gyungnam

Science High School in 2003. He attended Korea Advanced Institute of Science and

Technology in Daejon, Korea, where he majored computer science. During his un-

dergraduate years, Sehoon participated ACM International Collegiate Programming

Contests and won several awards including 3rd in 2005 Asia Regional and 13th in

2006 World Final. In his senior year at KAIST, Sehoon performed research on recon-

structing motion capture data in the Theory of Computation lab with Dr. Sungyong

Shin. After two years of military service, he graduate from KAIST in 2009.

After visiting Georgia Institute of Technology as an exchange undergraduate stu-

dent in 2009, he decided to pursuit his doctorate degree in computer graphics lab at

Georgia Tech, under the supervision of Professor C. Karen Liu. In 2010, Sehoon vis-

ited University of Southern California in Los Angeles, California to collaborate with

Professor Eva Kanso. In 2012, Sehoon worked at Adobe Research in Boston, Mas-

sachusetts and Seattle, Washington where he collaborated with Dr. Jovan Popović

and Dr. Jim McCann. In 2014, Sehoon worked at Disney Research in Pittsburgh,

Pennsylvania where he collaborated with Dr. Katsu Yamane. In the Fall of 2015,

Sehoon completed all the requirements for the doctorate degree in computer science.

147

