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SUMMARY

Paralinguistic events are useful indicators of the affective state of a speaker.

These cues, in children’s speech, are used to form social bonds with their caregivers.

They have also been found to be useful in the very early detection of developmental

disorders such as autism spectrum disorder (ASD) in children’s speech. Prior work

on children’s speech has focused on the use of a limited number of subjects which

don’t have sufficient diversity in the type of vocalizations that are produced. Also,

the features that are necessary to understand the production of paralinguistic events

is not fully understood. To account for the lack of an off-the-shelf solution to detect

instances of laughter and crying in children’s speech, the focus of the thesis is to

investigate and develop signal processing algorithms to extract acoustic features and

use machine learning algorithms on various corpora. Results obtained using base-

line spectral and prosodic features indicate the ability of the combination of spectral,

prosodic, and dysphonation-related features that are needed to detect laughter and

whining in toddlers’ speech with different age groups and recording environments.

The use of long-term features were found to be useful to capture the periodic prop-

erties of laughter in adults’ and children’s speech and detected instances of laughter

to a high degree of accuracy. Finally, the thesis focuses on the use of multi-modal

information using acoustic features and computer vision-based smile-related features

to detect instances of laughter and to reduce the instances of false positives in adults’

and children’s speech. The fusion of the features resulted in an improvement of the

accuracy and recall rates than when using either of the two modalities on their own.

xiv



CHAPTER I

INTRODUCTION

Researchers in voice recognition and understanding have focused mainly on speech

recognition systems that identify“what” is being said. Recently, a plethora of work

has been focused on trying to detect emotion or affect in speech to help understand

“how” speech is uttered under various conditions. Emotion recognition from speech

can be potentially useful for both diagnostic and commercial applications. Depres-

sion, a major cause of disability and loss of productivity in adults [3], affects the pitch,

speaking rate, loudness, and various articulation gestures in adult speech. Conver-

sations involving customer service representatives and clients or consumers can be

monitored for the affective state of the latter to gauge the performance of repre-

sentatives in resolving issues related to service. Of late, there has been a focus on

analyzing the non-verbal aspects, or paralinguistic cues, of human speech for affective

classification.

Paralinguistic cues are the non-phonemic aspects of human speech that can be

used for changing the semantic content of an utterance. These cues are character-

ized by such signatures as modulation of pitch, amplitude, and temporal patterns in

speech. Humans are capable of interpreting affective information from speech but, are

likely also to rely on the paralinguistic component in speech [4]. The paralinguistic

cues in human speech encompass a wide variety of differentiators that are discussed

in [5]. These cues, shown in Table 1, characterize physiological and emotional states

and are produced naturally or voluntarily.

These paralinguistic phenomena can be considered to have varied nuances in the

way they are produced and used as a result of the emotional state of the speaker or

1



Table 1: List of paralinguistic differentiators in human speech.

Paralinguistic Differentiators

Laughter, crying, shouting, sighing, gasping, panting,
yawning, coughing, spitting, belching, hiccuping, and sneezing.

to change the semantic content of an utterance. For instance, laughter, as described

in Charles Darwin’s seminal work on emotions [6], is primarily used to express joy

or happiness. This may occur as a result of a visual stimulus (watching a situational

comedy or “sitcom” on television), auditory stimulus (listening to a stand-up come-

dian in a nightclub), or physical stimulus (tickling). Thus, laughter can be thought

of as being related to social bonding. On the other hand, laughter can also be used to

be dismissive or to ridicule someone, which is often seen in television debates and can

also be used in cases of “schadenfreude” or “malicious pleasure” where one may use

laughter to express joy at someone else’s misfortune. A spoken phrase with laugh-

ter included would be interpreted by the listener as a phrase spoken in jest or, if

modulated with whining, it could be perceived as frustration in speech. The phrase,

“Yeah right” is an example of a commonly used utterance for expressing sarcasm. It

has a positive literal meaning, though the semantic value is negative. The study by

Tepperman et al. 2006 [7] found that laughter was an important contextual feature in

identifying sarcasm in speech and the phrase, when used in conjunction with laughter

or in adjacent turns of laughter with either speaker, was an important objective cue

for detecting sarcasm. When it comes to visual cues, research has shown that fa-

cial expressions conveying emotions are innate rather than being acquired during the

growing process. This has led to the development of the theory of the universality of

emotions with various facial expressions representing the same type of emotion being

expressed across various cultures [8]. A fine-grained distinction within a particular

facial expression can be useful in characterizing social behavior. For instance, smil-

ing is generally thought of as expressing joy or happiness, but can also be used to
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avoid an awkward situation. Research by Ekman et al. 1990 [9] has supported the

theory of distinguishing between various types of smiling rather than treating a facial

expression such as smiling as being representative of a single class of behavior.

The main focus of this work is to detect laughter and fussing/crying in toddlers’

speech using acoustic features, and to explore the use of long-term acoustic features

that characterize the periodic structure of laughter. The work also focuses on using

multi-modal information to detect laughter in children’s as well as adults’ speech

to detect laughter using acoustic and computer vision-based features. Paralinguistic

cues, such as laughter and crying, play an important role in children’s early commu-

nication, and these cues are useful in conveying the affective state of the speaker. It

can also be used to analyze children’s communicative behaviors in social interactions

with their caregivers. Laughter is primarily used to express positive affect and has

been found to usually follow a state of anticipatory arousal, especially tickling [10].

Fussing/Crying could indicate that the child is upset or disinterested in the task be-

ing initiated by the caregiver in a dyadic setting. These cues have been found to be

important markers in the very early detection of autism spectrum disorder (ASD)

[11, 12], and the diarization of such events in extended recordings can be a useful aid

in the diagnosis of developmental disorders [13, 14].
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CHAPTER II

BACKGROUND AND PRIOR WORK

2.1 Infant Vocal Development

The advent of vocal development takes place in the infant’s first year of life. The

models of infant vocal development were proposed in the 1970s and 1980s by many

researchers [1, 15, 16, 17, 18]. These models include similar vocalization types, ages

of emergence, and a number of levels of vocal development that are widely accepted

benchmarks, but that have operational differences and distinct terminologies. The

evolutionary path for infant vocal development, shown in Figure 1, can be described

using the four-stage model prescribed by Oller et al. 1999 [1]. This model does not

take into account vegetative sounds such as coughing, sneezing, and burping, or fixed

vocal signals such as crying and laughter. The vocalizations which are considered as

precursors to speech produced by the infants are described in the model as proto-

phones. It is of interest to note that vegetative sounds and fixed vocal signals are

present in other species, while protophones are unique to humans.

Research by Nathani et al. 2006 [2] has shown that inclusion of non-speech vocal-

izations in the model of language development provides foundational elements used

for speech production. The Stark Assessment of Early Vocal Development-Revised

(SAEVD-R) scale uses five levels to differentiate the different landmarks in infant vo-

cal development. The scale, in which the progression of protophones and non-speech

vocalizations is described, is shown in Figure 2.

The progression of speech begins with Level 1, the production of quasi-resonant

(QR) nuclei that are faint, low-pitched grunt-like sounds cannot be transcribed as

vowels. The QR nuclei are characterized by the lack of energy above 2000 Hz. In
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Figure 1: Stages of infant vocal development proposed by Oller et al. 1999 [1]

Level 2, at 1-4 months of age, infants develop control over the production of sounds

using their vocal tract. Protophones in this stage are of a longer duration than

QR nuclei and are fully-resonant (FR) with energy over a wide range of frequencies.

The third level, the expansion phase, which occurs at 3-8 months of age, consists of

isolated vowels that are longer than QR and FR and are fully transcribable. This stage

also marks the beginning of marginal babbling. The fourth level, occurring at 5-10

months of age, consists of babbling that is a repetitive production of consonants and

vowels with adult-like formant transitions. The fifth level consists of the production

of syllables with complex articulatory and phonatory characteristics and occurs just

before production of words.

The majority of the paralinguistic cues are produced during the first stage and

these include vegetative sounds such as laughter, coughs, and sneezes. Sustained

crying and fussing occur in the first two months of life (Level 1) and are produced

when the child is hungry or in pain. Laughter and chuckles are produced during the

stage of controlled phonation (Level 2) as the child develops voluntary control of the

vocal tract.
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Figure 2: Stages of infant vocal development proposed by Nathani et al. 2006 [2]

2.2 Role of Paralanguage in Children’s Speech

Affective expression has been viewed as serving a function for cognitive development

and is suggested to be non-dissociable. In an infant’s vocalizations, the term “func-

tional flexibility” [19] is employed to characterize the affective nature of vocalizations.

Functional flexibility in infants implies that the change in facial affect associated with

an infant’s vocalization should correspond to an observable change in the communica-

tive act of the infant and the caregiver’s action in response to the infant’s social act.

Research by Oller et al. 2013 [19] has shown that protophones such as squeals, growls,

and vocants or vowel-like sounds were primarily rated as neutral with some cases of

positive and negative affect.

Laughter, a rhythmic smile-linked vocalization, resulted in an overwhelming pos-

itive affect while crying, resulted in negative affect. In the first six months of life,
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infants normally produce laughter in response to intense auditory or tactile stimula-

tion and in the second half of the first year; laughter is produced in response to subtle

and complex social and visual stimulation. Crying is one of the vocal behaviors that

promotes proximity with the mother and is considered as a part of attachment be-

havior [20]. Crying generally arouses alarm or displeasure in an infant and is used to

elicit intervention to terminate its recurrence. Crying has been characterized as a se-

quence of inspiratory and expiratory phonation episodes with the former being short

in duration while the latter is of a long duration involving phonation, dysphonation,

or hyperphonation of a long duration [21].

2.3 Interaction of vocal and facial cues in children’s par-
alanguage

Paralinguistic events can be thought of not only emanating from one source such as

vocal, facial, or body movement cues but as a result of an interaction between all of

them. Studies have found laughter to be a result of stereotyped exhalation of air out-

side the mouth cavity along with rhythmic head and body movements [22]. Laughter

can also be thought of being linked with smiling even though they have different

phylogenetic origins [23]. Research by Scarpa et al. 1997 [24] has shown differences

in heart rate and skin conductance in three-year old children who exhibit inhibitory

behaviors such as crying compared to no crying behavior being displayed. From the

point of view of multi-modal analysis, using the speech and vision modalities would

be of significant use considering the plethora of work being done in extracting acoustic

and visual features and applying these techniques to children’s social behaviors. The

research in this thesis focuses on using these two modalities to detect laughter.

Smiling has been hypothesized to have evolved from the silent bared-teeth display

of chimpanzees and laughter was likely to have evolved from the relaxed open-mouth

display or play face shown by non-human primates during play encounters. The

functions of smiling varies across various primates from being restricted to submission
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or appeasement [25, 26] to performing a socio-positive function. Laughter on the other

hand is a function of social play [27, 28]. In infants, different types of smiles have been

found to be used for different play types between parents and infants [29]. Work done

by Messinger et al. 1999 [30] has shown that infants produce more Duchenne smiles

(contraction of zygomatic major and orbicularis oculi muscles) than non-Duchenne

ones and found that more than half of the Duchenne smiles involved opening of the

mouth which could be a precursor to laughter. Smiling and laughter have been shown

[31] to be produced by toddlers in the presence of other children and adults and serves

to form social bonds. The major difference that was noted in the research was that

smiling occurred as an accompaniment to incidental events than was the case with

laughter which was produced in response to events that were deemed to be frivolous.

2.4 Databases

A considerable amount of research has been devoted to the study of adults’ paralin-

guistic cues and their role in detecting the affective state of the speaker. Recent

research has focused on detecting laughter in various corpora such as ICSI [32], AMI

[33], AVLC [34], and MAHNOB [35]. These databases consist of recording from multi-

participant meetings using a single (audio) or multiple (audio and video) modalities.

Also, these databases have recordings which are of spontaneous or simulated in na-

ture.

Databases involving children’s speech with a large sample size are scarce. The

main challenge involving the analyses of data of children’s speech is the variation in

the vocalizations during a child’s development in the early stages. This may result in

having an acoustic feature space that may not generalize well to data from children

at a different stage of development. Since the focus of this research is to detect

paralinguistic cues such as laughter and crying in children’s speech, a description

of the various corpora in which these cues are analyzed would be of interest. An
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early work by [36] analyzed the laughter produced by children at three years of age.

The study involved analyzing children during their interaction with the mother for

two episodes of 30 minutes each. The study was an attempt at studying the acoustic

characteristics of various types of laughter; comment, chuckle, rhythmical, and squeal.

The number of the subjects in the study was low (N=4 ). Subsequently, research

by Hudenko et al. 2009 [11] involved analyzing the differences in laughter in children

with ASD (N=15 and 8 to 10 years of age) with those of typically developing children.

Furthermore, in [19] the pre-linguistic vocalizations from nine infants in a longitudinal

study at different stages of their development (3 to 5, 6 to 7, and 10 to 12 months of

age) were analyzed. The goal of the study was to analyze the emotional content of

the vocalizations.

These databases involve analyses that are focused on a small set of subjects and

are not automated in the detection of laughter. These issues were addressed in the

work by Batliner et al. 2010 and Batliner et al. 2011 [37, 38], which had speech

recordings from adolescents in a naturalistic setting wherein the subjects interacted

with the Artificial Intelligence Robot (AIBO) by Sony. The robot was controlled

by a human operator and was made to perform a fixed, pre-determined sequence of

actions. Crying, on the other hand, has been analyzed for detection of developmental

and pathological disorders such as hearing loss and hypothyroidism [39]. It has also

been used for identification of infants [40]. The automated classification of crying

and non-crying sounds in infants’ speech was studied by [41] with acoustic analysis

and machine learning techniques applied to recordings of children in a pre-school

environment. Research by Abou-Abbas 2015 [21] used crying data from 1 to 53 day

old infants recorded in hospitals in Canada and Lebanon and consisted of subjects

who were healthy and those having a pathological condition.

Most of these databases consist of recordings in a laboratory environment which is

noise-free or with a low number of subjects. Recordings from real-world environments,
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though desirable, are difficult to obtain due to privacy issues and the laborious nature

of encoding vocalizations. The ideal middle ground would be to analyze databases,

such as the Multimodal Dyadic Behavior Dataset and Strange Situation which are

described in Sections 4.1.1 and 5.2 , which consist of children’s speech and paralin-

guistic samples with varying degree of background noise and cross-talk to get a sense

of the generalization properties of the acoustic features and the models developed

using machine learning techniques.

2.5 Findings

Owing to the differences in the acoustic feature space due to the development in the

child’s articulatory and phonatory system, it is imperative to have an understanding

of the acoustic features that would help characterize the child’s speech from laughter

and crying. The study by Nwokah et al. 1993 [36] found no differences in the number

and duration of laughter events in children when compared with adults. The key

difference was the in the fundamental frequency which was in the higher range of

female laughter (400-500 Hz). Research by Hudenko et al. 2009 [11] analyzed the

frequency of voiced and unvoiced laughter in children with ASD and compared it with

typically developing children and found that children with ASD produced almost no

unvoiced laughter than the controls whose laughs were 37-48% unvoiced.The work

by Batliner et al. 2010 and Batliner et al. 2011 [37, 38] extracted 5967 spectral and

prosodic acoustic features for their work in discriminating laughter from children’s

speech for complete turns and at the word level. The acoustic features were extracted

using the open-source acoustic feature extraction tool, openSMILE. The relevant

features were selected by using a leave-one-subject-out methodology by computing

the Pearson correlation coefficient between the features and the classes. The base

classifier used was a support vector machine (SVM) and the accuracy for detecting

laughter in children’s speech was 82%. The relevant features for this task were the
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zero-crossing rate, energy, pitch, mel-frequency cepstral coefficients (MFCC), and

distribution of signal energy among spectral bands. These features characterize the re-

occurring nature of laughter and are describing a pattern of repeating change between

voiced and unvoiced segments and associated changes in speech spectra. Crying,

like laughter, has been shown to have a higher fundamental frequency compared to

babbling at different stages of an infant’s development in the first year. The work

done by Ruvolo et al. 2008 [41] used spatio-temporal box filter features extracted

from sonograms of crying episodes. These features capture the beat, rhythm, and

cadence of crying which has a highly rhythmic structure. Using the Tabu feature

selection method [42] on 2,000,000 features and Gentle-boost [43], the area under the

receiver operating characteristic (ROC) curve was 94.67% for four-second clips and

97% for eight-second clips. The performance degrades with the decrease in the length

of the crying clip with the accuracy falling below chance level (50%) for clips smaller

than 600 ms. The work done by Abou-Abbas et al. 2015 [21] used a 7-state Hidden

Markov Model (HMM) to detect instances of inspiratory and expiratory periods of

newborn infants crying using 50-ms window of mel-frequency cepstral coefficients

(MFCC) resulted in an accuracy of 78% and for only the expiratory period resulted

in an accuracy of 84%.

2.6 Summary

The automatic detection of paralinguistic events is a relatively nascent topic compared

to adults’ paralinguistic event detection, and it poses several challenges owing to the

fact that the recordings consist of sample sizes that are low in number. As described

by Schuller et al. 2013 [44], which is relevant to an adult’s paralinguistic analysis, but

could also be said of children’s paralinguistics, the key challenges are the coupling of

tasks, novel feature extraction and robustness. The studies described show the use

of some of the basic acoustic features, but not the entire gamut of features that can

11



be employed. Another interesting aspect of this area of research is to build feature

selection schemes that can characterize the nature of paralinguistic events and also

generalize well to other datasets with subjects of different age groups and recording

environments. It would be beneficial to use information from other modalities such

as smile detection in computer vision for improving the analysis of laughter detection

due to the simultaneous occurrence of both events. Multi-modal analysis could also

help in obtaining high-level information about when speech occurs with smiling, which

could potentially provide information about the affective nature of vocalization.
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CHAPTER III

DATABASES

3.1 Introduction

For the purposes of the research in this thesis, several of databases involving chil-

dren’s interactions with their caregivers were employed. As described in Section 2.4,

databases involving children’s speech do not have sufficient diversity in terms of num-

ber of subjects, the age range, and the environments in which the data is collected.

Owing to the fact that acoustic features which have been designed for adults’ speech

may not necessarily generalize well when applied to children’s speech, the features

that are required to study paralinguistic event detection in children’s speech is quite

poorly understood. This thesis has made an attempt to analyze data recorded in

laboratory and ‘in-the-wild’ environments to gain an understanding of which features

are robust enough to detect laughter and crying in children’s speech when trained

on data in clean environments and tested on data collected in noisy conditions. The

purpose of this chapter is to enlighten the reader about the potential challenges a

researcher might encounter owing to the differences in the way paralinguistic events

are produced, the context in which they are produced, the recording environments,

and the age group of the subjects. Merely building models on one dataset might not

be sufficient to validate the accuracy when tested on data recorded in noisy condi-

tions. This chapter focuses on three datasets involving children’s speech and they are

the Multi-modal Dyadic Behavior Dataset (MMDB), Strange Situation, FAU-Aibo

Emotion Corpus (AEC), the Weill Cornell Medical College (WCMC), the Oxford

Vocalizations (OxVoc) Sounds and the Infant Brain Imaging Study (IBIS) datasets.

Along with these datasets, the SSPNet Vocalizations Corpus (SVC) consisting of
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adults’ laughter and fillers using only the audio modality and MAHNOB Laugh-

ter database which consists of multi-modal data recordings of adults’ laughter was

also used to validate the syllable-level acoustic features and multi-modal detection of

laughter which will be discussed in the future chapters.

3.2 Multi-modal Dyadic Behavior Dataset

The Multi-modal Dyadic Behavior (MMDB) dataset [45] consists of recordings of

semi-structured interactions between a child and an adult examiner. The recordings

are of multi-modal in nature and consists of video, audio, and physiological data. The

sessions of the MMDB were recorded in the Child Study Lab (CSL) at the Georgia

Institute of Technology, Atlanta, USA.

The protocol in this study is the Rapid ABC play protocol which is a short

(3-5 minute) interaction between a trained examiner and a child who is assessed

for interaction based on social attention, back-and-forth interactions, and nonverbal

communication which have been indicative of socio-communicative milestones. The

Rapid-ABC consists of five stages, which is illustrated in Figure 3, and these consist

of greeting the child by calling his or her name, rolling a ball back-and-forth with the

child, reading a book and eliciting responses from the child, placing the book on the

head and pretending it to be a hat, and engaging the child in a game of tickling.

The annotations of the MMDB dataset were performed by research assistants in

the CSL and were coded for the different stages of the Rapid-ABC protocol. For the

speech modality, the child’s vocalization events such as speech, laughter, and whining

along with the examiner’s transcribed speech events were annotated.

The database currently has recordings from 182 subjects with 99 males and 83

females (aged 15-29 months) and there were 54 follow up visits. The annotations

of the social behaviors were performed using the open-source annotation tool ELAN

and the screenshot of the ELAN software with the annotations for one of the MMDB
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Figure 3: Stages of the dyadic interaction between child and examiner in the MMDB.

sessions is shown in Figure 4.

The dataset is significant in a multitude of ways, mainly from the fact that this

represents one of the very few datasets available to the scientific community which

has a rich variation in the number of subjects and the range of ages. From the

speech perspective, there are vocalizations involving laughter and whining and they

are present in a significant number compared to earlier studies with most of the

laughter samples emanating during the tickling stage of the Rapid-ABC. The child’s

vocalizations are recorded using lavalier microphones which are in close proximity

to the child and are generally free from any type of noise. From the multi-modal

perspective, this dataset represents a challenging prospect to analyze the interaction

of laughter and smiling in children and fuse information from audio and video sources

to detect instances of laughter.
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Figure 4: MMDB session annotations in ELAN.

3.3 FAU-Aibo Emotion Corpus

The FAU-Aibo Emotion Corpus (FAU-AEC) [37, 38], recorded at the Friedrich-

Alexander University, Erlangen-Nuremberg, Germany, consists of recordings of ado-

lescents during an interaction with Sony’s pet AIBO robot. The corpus was recorded

with 51 subjects (21 males and 30 females) whose ages ranged from 10-13 years. The

robot was controlled by a human operator to perform a set of actions that would

elicit naturalistic reactions from the subjects.

The significance of this dataset is that it has data that is annotated at the word

and chunk level for children’s speech and laughter which are of a spontaneous nature

and has a significant number of samples (N = 236) of laughter.

3.4 Infant Brain Imaging Study

A set of recordings consisting of infants’ speech which has been recorded in the homes

of their caregivers and external environments such as grocery stores, playschools, and

shopping malls. The data has been provided by research collaborators from the
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University of North Carolina, Chapel-Hill (UNC, Chapel-Hill) and these are recorded

at four different locations across the country. These sites including UNC, Chapel-Hill

are Children’s Hospital of Philadelphia, Philadelphia,PA, University of Washington,

Seattle, WA, and Washington University in St. Louis, St. Louis, MO. There are

85 subjects in this study and the data is recorded at two time instances during the

growth of the infant at 9 and 15 months of age. Data is collected from infants who

are at low and high risk of ASD. The distribution of the subjects based on their risk

factors is shown in Table 2.

Table 2: Risk factor of ASD for the subjects in the IBIS study at 9 and 15 months
of age.

Low Risk High Risk
9 months of age 16 37
15 months of age 7 25

The recordings of the child’s interactions with their caregivers is 16 hours in length

and were recorded using the Language Environment Analysis (LENA) device which

is a portable digital language processor. The LENA device is a light-weight audio

recorder which can easily fit inside the vest worn by an infant. The recorder, shown

in Figure 5, has the ability to record single channel audio data at a sampling rate of

16 kHz.

The software provided along with the recorder is a data mining tool, LENA Ad-

vanced Data Extractor (ADEX), which can potentially be useful for analyzing the

various segments in day-long recordings. The tool has the capability of segmenting

and parsing various information about the audio events of interest. These include the

child’s and adult’s vocalizations, cross-talk, background noise, electronic noise, and

turn-taking events [46].

The LENA software does not provide a fine-grained analysis of the child’s non-

verbal vocalizations and does not provide timestamps of when the child laughed,

cried, or produced any other kind of paralinguistic vocalizations. These important
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Figure 5: LENA audio recording device used for infant vocal development analysis.

measures are key in understanding the social behaviors of children when they interact

with their caregivers and given the fact that these are recordings of children who are

high and low risk of ASD, the atypical characteristics of these events might be useful

for the very early detection of ASD. For the data collected in the study, a research

assistant at the Georgia Institute of Technology labeled the segments using various

categories as enlisted in Table 3. The reasoning behind relabeling the segments is to

ensure that there is ground truth for the paralinguistic events and to use a majority

vote based on the outputs of three voice activity detectors (VAD).

Table 3: Labels used for the segments using the annotation tool developed at
Georgia Institute of Technology for the IBIS dataset.

Type Category of sound event

Child
Speech, other vocalizations,

whining, crying, laughter, other
child

Adult Male and female (near and far)
Noise Toys, overlap, other

The importance of this dataset lies in the fact that these are recordings which are
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recorded “in-the-wild” and constitute an important part in the scheme of validating

models trained in laboratory environments, which are sound-treated and the vocal-

izations are produced in a completely different context, by testing them on the IBIS

dataset. An important aspect of this dataset is also the presence of infant-directed

speech and whether a causal relationship exists between adults’ speech directed to-

wards infants and the paralinguistic event produced by the child.

3.5 Weill Cornell Medical College Database

The Weill Cornell Medical College (WCMC) corpus is a preliminary study of indi-

viduals with ASD to develop behavioral and neurophysiological measures sensitive

to change in response to treatments. There are 16 families who have consented to

taking part in the study and their children will participate in one week of home data

collection and another at the Center for Autism and Developing Brain (CADB) in

White Plains, NY. The study is meant to recruit children between the ages of 5 to

18 and may have limited (two or three phrases) vocabulary. The LENA device is

used to record the audio data in both the locations. The data was annotated by two

research assistants at WCMC using the annotation tool as described in the preceding

subsection with the same set of labels.

3.6 Strange Situation

The Strange Situation protocol [47] is used for analyzing attachment behaviors of

children with their caregivers. Attachment behaviors are observed in almost every

child but an insecure attachment may result in developmental problems for the child.

The strange situation protocol consists of eight episodes, each of which is three min-

utes in duration. In episodes 1–3, the child (in the company of the caregiver) is rst

confronted with a strange environment (a play room) and then with a stranger (an

unknown research assistant). During the fourth episode, the caregiver leaves the room

and the infant is left with the stranger. The caregiver returns during the fth episode
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and the stranger leaves. The caregiver then leaves again (episode 6), which means

the infant is alone in the room. The stranger returns (episode 7), and eventually the

caregiver also returns(episode 8).

The stressful situations which elicit attachment behaviors in children include the

environment in which the child is in, the stranger with whom the child is with, and

the separation events from the caregiver. The goal is to evaluate how the child reacts

to being reunited with the mother, specifically, whether he/she approaches her, is

soothed by the contact, and returns to play. This is indicative of their attachment

behaviors with the caregiver and can be classified into one of three categories: se-

cure, insecure avoidant, or insecure ambivalent. These attachment styles along with

the classification criteria using crying [48] during the reunion episodes are shown in

Table 4. The detection of crying is an important behavior considered in the scoring

of this assessment.

Table 4: Classification criteria using crying in the Strange Situation protocol for the
three different attachment categories as described by Waters, 1978

Attachment
behavior

Crying

Avoidant
Low (preseparation), high
or low (separation), low

(reunion)

Secure
Low (preseparation), high
or low (separation), low

(reunion)

Ambivalent

Occasionally
(preseparation) , high

(separation), separation)
moderate to high (reunion)

The Strange Situation dataset that has been analyzed in this thesis was provided

by research collaborators from the University of Miami, Coral Gables, FL, USA.

This dataset consists of strange situation recordings from 34 infants of 12 months

of age and were recorded using the LENA device. The annotations provided by the
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collaborators consists of child’s speech, crying, and laughter. The dataset is beneficial

from the point of view of testing models trained on the MMDB and testing it on the

Strange Situation corpus. The importance of the dataset emanates from the fact

that the recordings come from noisy conditions, different age groups, and the type of

crying produced in the Strange Situation consists of wailing while that of the MMDB

is more of whimpering in nature.

3.7 Oxford Vocalizations Sounds Database

The Oxford Vocalizations (OxVoc) Sounds database is a collection of sound events

of adults, infants, and domestic animals. These sound events are of a spontaneous

nature and consists of events comprising of happy, sad, and neutral emotional states

for humans. The adults’ laughter and neutral speech events were obtained from video

diary blogs and product reviews (primarily sourced from YouTube.com). This dataset

will be used for validating our methods using novel acoustic features that captures

the periodic structure of laughter for adults’ speech.

3.8 SSPNet Vocalizations Corpus

The SSPNet Vocalizations Corpus (SVC) is a large collection of telephonic conversa-

tions (using a Nokia N900) of 120 adults (63 females and 57 males). The duration

of the corpus is 8 hours and 25 minutes and the protocol consisted of participants

having to talk about the Winter Survival Task. The data was annotated for laugh-

ter (N=2988) and fillers(N=1158). Again, the significance of this dataset is that it

allows us to validate the predictive power of the novel acoustic feature which will be

discussed in Chapter VI.

3.9 MAHNOB Laughter Database

The MAHNOB Laughter database [35] consists of recordings of 22 adults when they

are shown short funny clips. This corpus is a multi-lingual corpus consisting of 12
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males an 10 females. The average age along of males and females is 27 (standard

deviation: 3) and 28 (standard deviation: 4) respectively. There are different types

of laughter that are produced by the participants and this includes spontaneous and

posed laughter. The recording protocol consists of showing several funny clips, used

in previous research and from the internet, which lasted from a few seconds to two

minutes. The subjects were also told to speak about a subject or interact with a

friend or operator in English as well are their native language. The video recordings

were done using a digital video recorder at 25 frames per second (fps) and it also

has an in-built stereo microphone. A lapel microphone (single channel, sampling

rate of 44.1 kHz) was used to record the audio in close proximity to the speakers.

Thermal imaging was also used to record the data. The data was synchronized using

a cross-correlation measure between the audio signals of the lapel and video recorder

microphones. The data was annotated by a single rater and ELAN was used for

annotation purposes.

The dataset has been used in this thesis to test the predictive power of the long-

term syllable-level intensity features to detect laughter and for using OMRON’s Okao

library for detecting smiles. The fusion of multi-modal features from these two modal-

ities can be used to improve the detection of laughter.
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CHAPTER IV

DETECTION OF LAUGHTER IN TODDLERS’ AND

ADOLESCENTS’ SPEECH

4.0.1 Laughter Detection in Children’s Speech Using Spectral and Prosodic
Features

There has already been work done on how to detect vocalizations such as laughter, in

adults’ speech. Detection of laughter in children’s speech is less well explored and has

important potential application in the clinical psychology domain. As described in

Sections 2.4 and 2.5, previous research in analyzing paralinguistic events focused on a

small set of acoustic features and with limited number of subjects. This section deals

with the detection of laughter in the FAU-AEC using spectral and prosodic acoustic

features from speech and laughter samples from children’s vocalizations and verbal-

izations. The approach employed uses formant-based features that have not been

explored in [37] and that have been found to have different articulatory kinematics

for laughter in children’s speech [49]. The information-gain-based feature selection

technique was used in conjunction with a robust experimental setup, described in

Section 4.0.1.3, to extract features with good class separability power.

4.0.1.1 Corpora

The datasets employed in the analyses are the Aibo Emotion Corpus (AEC) recorded

at Friedrich-Alexander University (FAU), Erlangen-Nuremberg, Germany and the

Multimodal Dyadic Behavior Dataset (MMDB) recorded at the Child Study Lab

(CSL) at the Georgia Institute of Technology, Atlanta, GA.
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FAU-Aibo Emotion Corpus The FAU-AEC corpus [37, 38] consists of interac-

tions between children and Sony’s pet robot Aibo. The vocalizations and verbaliza-

tions are spontaneous in nature as the children were led to believe that the robot was

responding to their instructions. The laughter samples were annotated as well as the

different types of laughter. These include speech which is modulated with laughter,

voiced laughter, unvoiced laughter, and voiced-unvoiced laughter. In this stage of

the research, the various types of laughter were treated as a single class. Sentences

uttered by children were annotated as speech. The number of speech samples was

13478 and the number of laughter samples was 236. The research by Batliner et al.

[37, 38] used samples of laughter which also had speech in them. We focused on

extracting just the laughter portions from the samples as our focus was on building

training models that will generalize well on to the MMDB dataset which had tod-

dlers’ vocalizations including speech and laughter. Also, for the purpose of duration

normalization, we removed the silent portions in the speech samples of the FAU-AEC

using a voice activity detector using Praat [51] as that would have resulted in features

that would not have resulted in generalization when trying to match the conditions

of the MMDB dataset. There is a discrepancy in the number of samples used by

FAU and the current study by 16 events for speech and one for laughter. This is due

to certain data being missing in the disseminated set. This discrepancy constitutes

only 0.12% of the original dataset (13731 speech and laughter samples) and analysis

differences are statistically insignificant when comparing results with FAU’s.

Multi-Modal Dyadic Behavior Dataset The second dataset that was used was

the MMDB [45]. In the context of the proposed research, the child may produce

vocalizations in response to the activities and prompts made by the adult. Laughter

is one of the key vocalizations that has been annotated and whose detection would aid

in the diarization of the child’s acoustic events and also help in analyzing the child’s
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affective communication along with the level of engagement of the child with the

adult. Twenty MMDB sessions were used for testing detection of laughter. The ages

of the participants ranged from 15-29 months with a mean age of 22.45 months and a

standard deviation of 4.62 months. The number of laughter and speech samples used

for detection was 34 (17 for each class), with average duration of the laughter samples

being 1.7 s, and average duration of a speech sample being 1.17 s. The differences

between the datasets are the age groups, the context of the activity, and the presence

of cross-talk in some of the samples with the adult talking in the background.

4.0.1.2 Feature Extraction and Selection

The open-source audio feature extractor, openSMILE [50], was used to extract 988

spectral and prosodic features using a 30 ms Hamming window with 10 ms overlap.

The 52 acoustic features extracted using openSMILE are listed in Table 5.

Table 5: Spectral and prosodic acoustic features extracted using openSMILE.

Feature Number of
Low-level

Descriptors

Intensity 2
Loudness 2

Mel-frequency cepstral coefficients 24
Pitch 2

Probability of voicing 2
Pitch envelope 2

Line spectral frequencies 16
Zero-crossing rate 2

Table 6: Statistical measures evaluated for each acoustic feature.

Statistical Measure

Max./Min. value and respective relative position within input,
range, arithmetic mean,

2 linear regression coefficients and linear and quadratic error,
standard deviation, skewness, kurtosis,

quartile 1 - 3, and 3 inter-quartile ranges.
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The features, listed in Table 5, were extracted for each sample and 19 statistical

measures, described in Table 6, were calculated for each acoustic feature. Along with

these features, formant-based features were extracted using a 30 ms Hamming win-

dow with 10 ms overlap. The features were extracted using the widely-used speech

analysis tool PRAAT [51], which used the Burg algorithm [52]. The first three for-

mant frequencies, their respective bandwidths, the ratio of formant frequencies and

bandwidths, the Euclidean distance between the formant frequencies, the Euclidean

distance between formant bandwidths, and the Euclidean distance between the ratio

of the formant frequencies were extracted, as shown in Table 15. The 14 statisti-

cal measures, described in Table 16, were measured, resulting in 294 formant-based

frequencies. The resultant dimensionality of the feature space turned out to be 1282.

Table 7: Formant-based features extracted using Praat for the FAU-AEC dataset

Feature Number of
low-level

descriptors

Formant frequency 3
Formant bandwidth 3

Ratio of formant frequencies 3
Ratio of bandwidths of formants 3

Euclidean distance between 3
formant frequencies

Euclidean distance between 3
formant bandwidths

Euclidean distance between 3
ratio of formant frequencies

Table 8: Statistical measures evaluated for each formant-based feature.

Statistical Measure

Arithmetic mean, median,
mode, standard deviation,

maximum and minimum values, flatness,
skewness, kurtosis,

25th quartile, 75th quartile,
inter-quartile ranges, 1st percentile, 99th percentile
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One of the proposed research objectives was to evaluate the predictive power

of features that are able to discriminate between laughter and speech in children’s

speech. Therefore, a feature selection algorithm based on information gain was used.

Information gain is often used in decision trees [53] and measures the number of bits

of information obtained for class prediction by knowing the presence or absence of a

sample point in the classes.

Let {wi} M
i=1 be the set of classes, and for any attribute, {Xj} N

j=1, which has been

discretized to N levels, the information gain of the attribute is given in (3).

IG(wi, Xj) = H(wi)−H(wi|Xj), (1)

where H(wi) is the entropy of the class wi and H(wi|Xj) is the conditional entropy

of the class wi given the discretized attribute Xj. Using the definition of entropy, (3)

can be rewritten in terms of probabilities, as shown in (2):

IG(wi, Xj) = −
M∑
i=1

Pr(wi)log2Pr(wi)

+
N∑
j=1

M∑
i=1

Pr(Xj)Pr(wi|Xj)log2Pr(wi|Xj) (2)

The information gain for each feature is evaluated and ranked in increasing order.

The reduction in the dimensionality of the feature set is described in the next section.

4.0.1.3 Experimental Design

The experimental setup in [37] used 250 random sub-samples from the 13494 available

samples of speech. A speaker-independent validation approach was used to select the

features. In that approach, the sample points from one speaker were held out and

a correlation-based feature selection was performed using the sample points from

the remaining 50 speakers. Finally, the intersection of the features selected for 51

speakers was obtained, which resulted in a reduced feature set of 30 acoustic features.
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Considering the large number of samples annotated as speech and the relatively small

number selected (250), the previous method does not take into account the various

levels of intonation in speech produced by the subjects in the study and this might

not be captured using a small subset of speech samples. Five sets of 250 random

sub-samples of speech were used. The analysis pipeline is shown in Figure 6. After

the features have been extracted from the five different sets, as described in Section

3, and concatenated with the features from the laughter samples, feature selection

based on ranking according to information gain was performed for each of the five

sets. The number of features to be ranked according to the information gain was set

to 100 for each set, and then the intersection of the features was obtained for the

five sets. This process resulted in a reduced feature set of 30 spectral and prosodic

features which are listed in Table 9.

Table 9: Acoustic features selected using feature selection based on information
gain and experimental setup using five sets of data.

Feature Number of
features selected

Probability of voicing 12
Pitch 5

Mel-frequency cepstral coefficient 5
Line spectral frequency 3

First formant f. requency 5

4.0.1.4 Feature Interpretation

The selected features are important in the understanding of production of laughter in

children’s speech. The relevant features can be classified into three groups, pitch and

voicing-based, spectral-based, and linear predictive coding (LPC)-based features.

Pitch and Voicing-Based Features Based on the findings of [54], the probability

of voicing is greater in speech than in laughter for adults. This fact has been supported

for children’s speech too [49]. This could be due to the vowel-consonant structure of
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Figure 6: Diagrammatic representation of the methodology using five randomly
sub-sampled sets of data along with the selection of features.

laughter. The work of [49] also suggests that the fundamental frequency (f0) of

children during laughter is high due to a high sub-glottal pressure and thin vocal

folds [55]. The pitch and voicing-based features constitute nearly 60% of the features

selected.

Spectral-Based Features The fourth MFCC was the only spectral-based feature

that was selected using the experimental setup described in the previous section.

The MFCC-based features, which emulate the psychoacoustical modeling of the hu-

man auditory system, have also been found to be prominent features in detection of

laughter in adults’ speech [56].
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LPC-Based Features The LPC-based features consist of line spectral frequencies

(LSF) and the first formant (F1) frequency. A pair of LSFs are the two resonant

conditions that describe the vocal tract being either fully open or fully closed at the

glottis [57]. In reality, the resonances occur when the glottis is neither fully open

or fully closed and these are represented by formants as can be seen in Figure 7.

Therefore, the LSFs and the formants share a symbiotic relationship. The findings

of [49] suggest that laughter in children tends to have a high F1 owing to the fact of

a more open mouth or a low jaw with young children exhibiting extreme kinematics

with these articulators. These tend to become more controlled with development in

age.

Figure 7: Spectrum of vocal tract response for the vowel /e/. The dashed and solid
vertical lines represent the odd and even line spectral frequencies (LSF) respectively.
The order of the LPC filter used is 10.

4.0.1.5 Results

For the purpose of classification, training models were developed on the reduced fea-

ture set using a variety of classifiers that include Gaussian mixture models using

expectation-maximization (GMM-EM), multi-layer perceptrons (MLP), radial basis

function neural networks (RBF-NN) and SVM with a multitude of kernels. The classi-

fication was performed using WEKA [58], an open-source machine learning software.

The results using the various classifiers for a 10-fold cross-validation are shown in

Table 10. The results indicate consistent accuracy for the five sets of data.
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Table 10: Classification results using a 10-fold cross-validation scheme with various
classifiers with average accuracy and standard deviation over the five sets of data.

Accuracy
Classifier (mean ±

standard deviation)

MLP 95.04 ± 2.67%
RBF-NN 95.44 ± 2.70%

SVM (Linear kernel) 95.30 ± 2.68%
SVM (Polynomial kernel, degree=2) 95.82 ± 2.27%

SVM (RBF kernel) 95.96 ± 2.28%
GMM-EM 94.16 ± 3.25%

To evaluate the predictive nature of the selected features, the problem was treated

as an unsupervised problem and clustering using GMM-EM and k-means was per-

formed. The results are shown in Table 11. The error rate indicates that the features

have robust predictive power.

Table 11: Clustering with GMM-EM and k-means with average error rate and
standard deviation over the five sets of data.

Clustering Algorithm Error rate
(mean ± standard deviation

k-means 7.19 ± 3.67%
GMM-EM 5.71 ± 3.16%

To compare the proposed research work with the baseline results [37], the testing

evaluation of a leave-one- speaker-out validation was performed. This validation was

performed to ensure speaker independence. The classifier used for testing is an SVM

with a quadratic kernel (degree = 1.65) and a complexity parameter (C=0.005). SVM

was chosen for its superior generalization properties [59].

Table 12: Classification results of FAU using a support vector machine (SVM) on
the FAU-AEC dataset.

Predicted Speech Predicted Laughter
True Speech 11054 2440

True Laughter 38 199

The accuracy of FAU’s classification scheme is 81.95% and the average accuracy
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per class is 82.95% as shown in Table 12. The accuracy of the classification scheme

is 94.43% and the average accuracy per class is 94.46% as shown in Table 13.

Table 13: Classification results using a support vector machine (SVM) with a
polynomial kernel of degree = 1.65 and a complexity parameter (C = 0.005) on the
FAU-AEC dataset with the proposed experimental design.

Predicted Speech Predicted Laughter
True Speech 12726 752

True Laughter 13 223

The results shown in Tables 12 and 13 indicate that the proposed method out-

performs the baseline results 12.48% in terms of absolute improvement. The results

in Table 13 also indicate an equal error rate of 5.54% for the classes of laughter and

speech as this takes into account the huge imbalance between the classes.

An attempt was made to check if the models trained using the FAU corpus gen-

eralize to other datasets. This was done by testing on the MMDB dataset, described

in Section 2 of the paper. Testing was performed on a relatively small number (17)

of data points for each class. Again, an SVM was used with a linear kernel and the

results are shown in Table 14.

Table 14: Classification results of the proposed research using a support vector
machine (SVM) with a linear kernel and a complexity parameter (C = 1) trained on
the data from the FAU-AEC dataset and testing on the MMDB dataset.

Predicted Speech Predicted Laughter
True Speech 12 5

True Laughter 5 12

The accuracy of the classification scheme both overall and per class was 70.58%,

which is significantly above chance (50%).

The results indicate a moderate generalization of the trained models on to other

datasets. It is likely that for the lower than expected accuracy was due to differences

in the age groups of the children in both the datasets. Our study has in many cases

shown large acoustic and age differences, and there are instances of cross-talk in
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the MDBD dataset, which is not present in the FAU-AEC dataset and the speech

samples in the MMDB dataset used for testing consisted of vocalizations, such as

whining and crying along with other verbalizations whereas the FAU-AEC speech

models were trained on intelligible speech. Nevertheless, the results on the MMDB

dataset show our analyses generalize somewhat over highly mismatched conditions.

4.0.1.6 Conclusions

The research in this section was an attempt to analyze paralinguistic events in ado-

lescents’ speech using acoustic features. The experimental setup involving the use

of randomly selected subsets of the FAU-AEC data captured the variations of the

vocalizations of the database. The use of formant-based features was explored to

discriminate between speech and laughter, and it was found found that the articu-

latory kinematics in the vocal tract during speech and laughter possess information

to discriminate between them. In answer to the question of how generalizable the

methods might be, models trained on a disjoint dataset, with subjects different in age,

with different activity contexts, and with different amounts of cross-talk, all showed

detection results significantly better than chance. We conclude that the proposed

methods are using cues that are general to the task, and not specific to any one data

set.

4.1 Detection of Laughter in Children with Autism Spec-
trum Disorder in Various Recording Environments

In this section of the research, the Weill Cornell Medical College (WCMC) corpus has

been used for the purpose of detecting laughter in children with ASD. The uniqueness

of this experiment is to test the generalization of features extracted from data recorded

in a clinical setting and testing it in noisy environment home recordings.
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4.1.1 Corpora

4.1.1.1 Weill Cornell Medical College Corpus

The dataset used in the detection of laughter in adolescents’ and toddlers’ speech with

ASD was the WCMC which consists of home and clinic recordings of 16 children (aged

5-18 years of age) on the autism spectrum. The child’s speech segments were labeled

as speech, laughter, whining, crying, and other vocalizations for both the recording

settings. For the clinic or baseline recordings, the number of laughter samples was 132

with a mean duration of 0.99 s and for the non-laughter segments (all other segments

of child’s speech other than laughter), the number of samples was 3293 with a mean

duration of 1.09 s. In the home recordings, the number of laughter samples was 146

with a mean duration of 0.99 s and for the non-laughter segments the number of

samples was 3537 with a mean duration of 1.13 s.

4.1.2 Feature Extraction and Selection

As described in Section 9, openSMILE was used to extract the baseline spectral and

prosodic features. The features, listed in Table 5, were extracted for each sample

and 19 statistical measures, described in Table 6, were calculated for each acoustic

feature. Along with these features, formant-based features were extracted using a

30 ms Hamming window with 10 ms overlap. The features were extracted using the

widely-used speech analysis tool PRAAT [51], using the Burg algorithm [52]. The first

four formant frequencies and their respective bandwidths, along with the delta and

delta-delta features were extracted as shown in Table 15. The 14 statistical measures,

described in Table 16, were measured, resulting in 336 formant-based frequencies. The

resultant dimensionality of the feature space turned out to be 1325.

As described in Section 4.0.1.2, the information gain criterion was used to select

the features that are informative about detecting laughter. The information gain for

each feature is evaluated and the top 100 features were selected.
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Table 15: Formant-based features extracted using Praat for the WCMC dataset

Feature Number of
low-level

descriptors

Formant frequency 12
Formant bandwidth 12

Table 16: Statistical measures evaluated for each formant-based feature.

Statistical Measure

Arithmetic mean, median,
mode, standard deviation,

maximum and minimum values, flatness,
skewness, kurtosis,

25th quartile, 75th quartile,
inter-quartile ranges, 1st percentile, 99th percentile

4.1.3 Methodology

The experimental setup consists of building training models using the baseline record-

ings and testing it on the home recordings. In order to prevent overfitting to the

majority class (non-laughter), we decided to randomly select 500 samples of it which

would give sufficient diversity in terms of the type of vocalizations produced. The

top 100 features selected using the information gain criterion is show in Table 17

Table 17: Acoustic features selected using feature selection based on information
gain using the WCMC dataset.

Feature Number of
features selected

Probability of voicing 5
Pitch 23

Zero-crossing rate 5
Loudness and Intensity 10

Mel-frequency cepstral coefficient 32
Line spectral frequency 19

First and second formant frequencies and bandwidths 6
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4.1.4 Results

For the purpose of classification, training models were developed on the reduced

feature set and a cost sensitive classifier scheme was used. The cost sensitive matrix

is given in (2) and is used to balance the instances in each class.

C =

0 3.77

1 0

 (2)

Using a linear kernel SVM as the base classifier, the results using a 10-fold cross-

validation is shown in Table 18.

Table 18: Classification results of the 10-fold cross-validation using the baseline
recordings for training models.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 451 49

True Laughter 21 111

The average accuracy is 88.9% and the average recall is 88.9%. These results

indicate that given data recorded in relatively clean recording conditions it is possible

to discriminate between laughter and non-laughter events in children with ASD.

In order to test the predictive nature of the models, we tested our models on

features extracted using the home recordings. The results are shown in Table 19 The

Table 19: Classification results of the 10-fold cross-validation using the baseline
recordings for training models.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 3220 317

True Laughter 30 116

average accuracy is 90.6% and the average recall is 90.6%. These results are pretty

consistent with the test set results and indicate that it is possible to detect laughter

in noisy conditions given training models in clean environments.
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4.1.5 Conclusions

The research in this section attempted to detect laughter in children with ASD using

spectral and prosodic features. The research in this section is one of the first few

studies which has attempted to detect laughter in children on the autism spectrum.

The selected features have been shown to be predictive enough to detect laughter in

not only clean recording conditions but also in noisy environments as well.
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CHAPTER V

PARALINGUISTIC EVENT DETECTION IN TODDLERS’

INTERACTIONS WITH CAREGIVERS

5.1 Introduction

Paralinguistic cues, such as laughter and crying, play an important role in children’s

early communication, and these cues are useful in conveying the affective state of the

speaker. The cues have also been found to be important markers in the very early

detection of autism spectrum disorder (ASD) [11, 12], and the diarization of such

events in extended recordings can be a useful aid in the diagnosis of developmental

disorders [13, 14]. It can also be used to analyze children’s communicative behaviors

in social interactions with their caregivers. The main focus of our work is to detect

laughter and fussing/crying in toddlers’ speech using acoustic features. Laughter is

primarily used to express positive affect and has been found to usually follow a state

of anticipatory arousal, especially tickling [10]. Fussing/Crying could indicate that

the child is upset or disinterested in the task being initiated by the caregiver in a

dyadic setting.

In this part of the research, the Multi-modal Dyadic Behavior (MMDB) dataset,

the Strange Situation [47] corpus, was used for the purpose of developing detectors for

laughter, fussing/crying, and child’s speech consisting of verbalizations and vocaliza-

tions. The spectral and prosodic features were extracted using openSMILE [50], Praat

[51], and VoiceSauce [60]. A brute force method of extracting features from toddlers’

speech has been explored compared to earlier methods of using heuristics, described

in Section 2.5 based on the type of paralinguistic cues to be analyzed. This enables

the study of the gamut of acoustic features that have previously been less explored
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for this type of analyses. A combination of wrapper and filter-based feature selection

approaches to reduce the dimensionality of the feature set was employed. The main

aim of the analyses in this section is to investigate the generalization properties of

the selected features to datasets that are disparate in not only the age range, but also

the type of fussing/crying samples.

5.2 Corpora

The datasets that have been employed in this study are the Multi-modal Dyadic Be-

havior (MMDB) dataset, described in Section 4.1.1 and a set of 10 practice Strange

Situations that had been conducted in multiple laboratories and were nationally dis-

tributed by researchers at the University of Minnesota, Minneapolis, MN.

5.2.1 Multi-modal Dyadic Behavior Dataset

There were 35 sessions randomly selected, which constitutes the training data, for de-

tecting the child’s paralinguistic events (laughter and fussing/crying) and the speech.

The test set consists of 11 sessions. The ages of the participants ranged from 15 to 30

months with a mean of 21.65 and a standard deviation of 4.84. For analysis, the focus

was on the child’s verbal behavior for detecting instances of laughter, fussing/crying,

and speech which were annotated by two research assistants in the CSL. The number

of samples along with the mean and standard deviation of the duration of the sam-

ples of laughter, fussing/crying, and speech of the training and test sets are shown in

Table 20. Owing to the large number of samples of children’s speech and to prevent

overfitting of the training data, the speech class was balanced by randomly selecting

58 samples.

5.2.2 Strange Situation Dataset

Recordings were made during the Strange Situation procedure [47]. The procedure

consists of eight 3-minute episodes including two separations from the mother, each
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Table 20: Number of training and testing examples of MMDB dataset for speech,
laughter, and fussing/crying along with the mean and standard deviation of duration
of the samples.

Dataset Type of Vocalization
Number of
samples (N)

Duration (s)
(mean±standard

deviation)

Training Set

Speech (before
balancing)

501 1±0.87

Speech (after balancing) 58 1.14±0.66
Laughter 54 1.31±1.28

Fussing/Crying 62 2.65±4.21

Testing Set
Speech 122 1.23±0.92

Laughter 35 1.12±0.90
Fussing/Crying 30 1.68±0.83

followed by a reunion [48]. The episodes are arranged in a manner to create a series of

stressful situations for the infant. The goal is to evaluate how the child reacts to being

reunited with the mother, specifically, whether he/she approaches her, is soothed by

the contact, and returns to play. The detection of crying is an important behavior

considered in the scoring of this assessment. In this dataset, only the fussing/crying

events were annotated (N=62). The mean duration of the samples was 4.35 seconds

and the standard deviation was 4.62.

The type of fussing/crying differs in both the corpora. The subjects in the

MMDB dataset usually whimper to indicate discomfort with the activities, while

in the Strange Situation recordings, the subjects cry when they are separated from

the mothers.

5.3 Feature Extraction

The acoustic features were extracted using the open-source audio feature extraction

tool, openSMILE [50]. There were 57 low-level descriptors (LLD), shown in Table 21

extracted using a 30 ms Hamming window with 10 ms overlap. The delta and delta-

delta measure for each LLD was also computed and the number of LLDs was 171.
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There were 39 statistical measures, shown in Table 22, computed from the LLDs for

each sample. The dimensionality of the feature set using openSMILE was 6669 and

is relatively larger in comparison to the feature set used for the analyses in Section

4.0.1.2.

Table 21: Spectral and prosodic acoustic features extracted using openSMILE.

Feature
Number of
low-level

descriptors

Log-energy 3
Magnitude of Mel-Spectrum 78

Mel-frequency Cepstral Coefficients 39
Pitch 3

Pitch envelope 3
Probability of voicing 3

Magnitude in frequency band (0− 250Hz,
250− 650Hz, 0− 650Hz, 1000− 4000Hz, and

3010− 9123Hz)
16

Spectral Rolloff (25th ,50th, 75th, and 90th percentile) 12
Spectral Flux 3

Spectral Position (Centroid, Maximum, and Minimum) 3
Zero-Crossing Rate 3

Table 22: Statistical measures evaluated for openSMILE features.

Statistical Measure

Max./Min. value and respective relative position within input, range,
arithmetic mean,3 linear regression coefficients and linear and quadratic

error, standard deviation, skewness, kurtosis, centroid, variance, number of
non-zero elements, quadratic, geometric, absolute mean, arithmetic mean of
contour and non-zero elements of contour, 95th and 98th percentiles, number
of peaks, mean distance from peak, mean peak amplitude, quartile 1 - 3, and

3 inter-quartile ranges.

The formant-based features were extracted using Praat [51] and the cepstral peak

prominence (CPP) was extracted using VoiceSauce [60]. The first four formant fre-

quencies, resonances in the vocal tract [61], and their respective bandwidths were

extracted. The delta and delta-delta for the formant-based frequencies were also
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extracted. The CPP is an approximate measure of breathiness in speech and is com-

puted by measuring the difference between the peak of the cepstrum and a linear

regression line fitted to the cepstrum [62]. It also gives a measure of the periodicity

of the signal. These features are shown in Table 23. The total number of low-level

descriptors for formant and CPP-based features was 25. The statistical measures,

shown in Table 24, were computed for these features and the dimensionality of the

formant-based and CPP features was 350.

Table 23: Formant-based and cepstral peak prominence features.

Feature
Number of
low-level

descriptors

Formant frequency 12
Formant bandwidth 12

Cepstral peak prominence 1

Table 24: Statistical measures evaluated for formant-based and cepstral peak promi-
nence features.

Statistical Measure

Arithmetic mean, median, mode, standard deviation, maximum
and minimum values, flatness, skewness, kurtosis, 25th quartile,
75th quartile, inter-quartile ranges, 1st percentile, 99th percentile

5.4 Feature Selection

A two-pronged method of using both filter and wrapper-based approaches was used

for feature selection. This incorporates the advantages of evaluating the intrinsic

properties of the dataset using the filter-based method and the ability to generalize

well by avoiding overfitting using the wrapper-based method. There is the added

benefit of reduction in computation by selecting the k top features using the filter-

based method, and then performing a wrapper-based feature selection on the reduced

dimensionality feature set. The wrapper-based approach employs the correlation-

based (CFS) and information gain ratio (IGR) feature selection techniques.
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5.4.1 Correlation-based Feature Selection

The CFS [63] method selects features that are highly correlated with the class and

uncorrelated with each other. For a subset of features S which contains k features

and c classes, let rcf be the mean feature-class correlation and rff be the mean

feature-feature correlation, then the heuristic merit Ms is computed as shown in (3),

Ms =
krcf√

k + k(k − 1)rff
, (3)

The CFS method evaluates the correlation between a feature (k=1) and the class.

The correlation between the feature and the class is computed using the Pearson

correlation coefficient.

5.4.2 Information Gain Ratio Feature Selection

The information gain ratio (IGR) [64] is the information gain normalized by the

intrinsic information of the feature. The information gain measures the number of

bits of information obtained for class prediction by knowing the presence or absence

of a sample point in the classes [65].

Let {wi} M
i=1 be the set of classes and for any attribute, {Xj} N

j=1, which has been

discretized to N levels, the information gain of the attribute is given in (4).

IG(wi, Xj) = H(wi)−H(wi|Xj), (4)

where H(wi) is the entropy of the class wi and H(wi|Xj) is the conditional entropy of

the class wi given the discretized attribute Xj. One problem with the information gain

criterion is that it favors features with a large number of values [64] and sometimes

leads to overfitting.

The intrinsic information of the feature is computed by measuring the entropy of

the class as shown in (5).

IV (Xj) = H(Xj), (5)
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where H(Xj) is the entropy of the feature.

Features with high intrinsic value are considered to be less useful in discriminat-

ing between classes. The IGR, shown in (6), reduces the bias towards multi-valued

features.

GR(wi, Xj) =
H(wi)−H(wi|Xj)

H(Xj)
, (6)

The filter method which gives the highest accuracy when using the openSMILE

features, since they form the majority of the features in the set, using a 10-fold

cross-validation using an SVM with sequential minimization optimization (SMO) for

the binary classification tasks and a multi-class one-class-against-all SVM for the

tertiary classification task, was selected as shown in Table 25. These were used as the

intermediate feature set for the wrapper-based method. For the binary classification

tasks, the threshold for ranking and selecting the openSMILE features was 100 and for

the tertiary classification, the threshold was 200. The higher threshold for the tertiary

scheme would enable the multi-class one-class-against-all classifier to discriminate

between one class and the other classes which are treated as a singular class. For the

formant and CPP-based features, the threshold was 50 for the three schemes.

Table 25: Results of 10-fold cross-validation using a support vector machine (SVM)
with linear kernel for the filter-based feature selection methods for the openSMILE
features along with results for formant and CPP-based features.

Wrapper- Accuracy
Classification based openSMILE Formant and

Task Feature features CPP-based
Selection features

Speech vs. CFS 81.3% 79.5%
Laughter IGR 75.9% 75.9%

Speech vs. CFS 83.3% 67.5%
Fussing/Crying IGR 78.3% 68.3%

Speech vs. CFS 68.4% 56.6%
Laughter vs. Fussing/Crying IGR 70.1% 60.1%

For the binary selection tasks, the CFS method is used to select the top 100
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openSMILE and 50 formant and CPP-based features. For the tertiary classification,

IGR is employed to extract the top 200 openSMILE features and 50 formant and

CPP-based features. It is of interest to note, from Table 25 that the results are

better than chance for both the feature sets for all the classification tasks.

5.4.3 Sequential forward selection

The sequential forward selection (SFS) employs an SVM with SMO and a linear

kernel for the binary classification tasks. The tertiary classification scheme employs a

Multi-class classifier using a one class-against-all SVM with SMO and a linear kernel.

This method selects the feature which generates the highest accuracy in the feature

set and iteratively adds features to the set until there is no more improvement in the

accuracy. The methodology employed in this study is shown in Fig 8.

Figure 8: Method for selection of features using wrapper and filter-based feature
selection methods for classification.

The purpose of the study is to understand which features are meaningful in

discriminating between laughter, fussing/crying, and speech. As mentioned in Sec-

tion 5.3, the two groups of features employed were the openSMILE and the formant

and CPP-based features. These features were concatenated, after the filter-based fea-

ture selection, to form a 150-dimension feature set for the binary classification tasks

and for the tertiary classification task, the dimensionality of the feature set was 250.

The features were then processed to remove those with missing values and having

less than 30% unique values. This was done to ensure that outliers did not affect
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the classification results. The SFS feature selection algorithm was used to further

reduce the dimensionality of the feature set. The features and the number of statis-

tical measures, selected using the wrapper and filter-based approaches, for the three

classification schemes are shown in Table 26.

Table 26: Features selected for binary and tertiary classification tasks using com-
bination of wrapper and filter-based features selection methods.

Feature

Number of statistical measures

Speech vs.
Laughter

Speech vs.
Fuss-

ing/Crying

Speech vs.
Laughter
vs. Fuss-

ing/Crying
Mel-frequency cepstral coefficient 1 6 3

Magnitude of mel-cepstrum 2 2 1
Pitch - 2 1

Probability of voicing 1 - 1
Log Energy - - 1

Cepstral Peak Prominence 2 - -
Spectral Rolloff 1 - -

Spectral Centroid 1 - -
Fourth formant bandwidth 1 - -

5.5 Feature Interpretation

The MFCCs and the spectrum of the mel-spectrum constitute a major chunk of the

features selected for the binary and tertiary classification tasks. The MFCCs, which

aspects of human perception , have been found to discriminate well between adoles-

cents’ speech and laughter [65]. The pitch-related features, probability of voicing,

pitch, and cepstral peak prominence, have also been found useful for all the classifi-

cation tasks. These features are particularly useful for discriminating between speech

and laughter, primarily due to the consonant-vowel structure of laughter. Whining

or fussing has been found to exhibit higher pitch and varied pitch contours [66] when

compared to adult-directed speech in children. The formant-based features, which
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were extracted using LPC analysis, weren’t a part of the final feature set for de-

tecting crying and the tertiary classification task. In comparison to the results in

Section 4.0.1.6, the first formant frequency was not a part of the final feature set for

detecting laughter. This can be attributed to the fact that children produce vocal-

izations which have a high pitch and the harmonics in the spectrum causes shifts in

the positions of the formant frequencies.

5.6 Results

For the purpose of classification, training models were developed using the three

reduced feature sets from the MMDB dataset. The classifier used is an SVM with

SMO with a linear kernel and the open-source classification tool, WEKA [58]. A 10-

fold cross-validation was performed on the three datasets and the results are shown

in Table 27.

Table 27: Classification results using a 10-fold cross-validation scheme with support
vector machine (SVM) with a linear kernel.

Classification Scheme
Average
Recall

Average
Accuracy

Speech vs. Laughter 92.78% 92.85%
Speech vs. Fussing/Crying 88.49% 90.00%

Speech vs. Fussing/Crying vs. Laughter 76.43% 76.43%

The results indicate that the laughter, fussing/crying, and speech can be discrim-

inated robustly with the binary and tertiary classification schemes.

In order to test for the generalization of the results, a test set was devised consist-

ing of 11 sessions selected randomly from the MMDB dataset. Seven sessions were

used for the binary classification task of detecting laughter and the remaining 4 were

used for detecting fussing/crying. The tertiary classification task used the combina-

tion of these. A grid search was performed by varying the complexity parameter,

C.

47



Table 28: Classification results of test set of MMDB using SVM with linear kernel
along with the complexity parameter, C, chosen using the grid search.

Classification Task Accuracy Precision Recall
Complexity

(C)

Speech (N=87) vs.
Laughter (N=35)

77.87% 74.44% 78.51% 0.059

Speech (N=33) vs.
Fussing/Crying (N=30)

79.37% 80.72% 85.91% 2.1

Speech (N=122) vs.
Laughter (N=35) vs.

Fussing/Crying (N=30)
69.73% 66.15% 71.87% 4.12

The results, shown in Table 28, indicate that the accuracy of classifying laughter

and fussing/crying in children’s speech is 77.87% and 79.37% respectively. For the

tertiary scheme, the accuracy is 69.73%. These results are significantly better than

chance and show that the trained models generalize well to a test set from the MMDB

dataset.

The Strange Situation dataset, as mentioned in Section 5.2.2, has only the fuss-

ing/crying events annotated. In order to test the trained models from the MMDB

(Speech vs. Fussing/Crying) on this dataset, the features of the speech samples (N

= 33) from the MMDB test set were concatenated with the features from the fuss-

ing/crying samples (N=62) of the Strange Situation dataset. This can be considered

as a cross-corpus testing set. This gives a better sense of the generalization properties

of the selected features and the trained models.

Table 29: Classification results of using trained models of MMDB (Speech vs. Fuss-
ing/Crying) and testing on a cross-corpus test set of MMDB and Strange Situation
datasets using SVM with linear kernel and complexity parameter, C=2.1.

Classification Task Accuracy Precision Recall

Speech(N = 33) vs.
Fussing/Crying (N= 62)

71.6% 73.4% 71.6%

The results, shown in Table 29, indicate that trained models generalize well and

are capable of discriminating between speech and fussing/crying with an accuracy of
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71.6%. The findings are significant due to the different age groups of the partici-

pants, recording conditions, and the type of fussing/crying. The MMDB consists of

fussing/crying or whimpering whereas the Strange Situation dataset consists of crying

episodes. This indicates that the acoustic features are capable of not only capturing

the characteristics of fussing/crying but also that of crying.

5.7 Conclusions

The research in this section has demonstrated the capability of robustly discriminating

between children’s speech, laughter, and fussing/crying. The combination of wrapper

and filter-based features selection algorithms, which encapsulates the intrinsic prop-

erties of the dataset and generalizability, has the ability to select acoustic features

that are relevant to laughter, fussing/crying, and children’s speech. Through various

experiments, it has been shown that these features have the predictive power to de-

tect laughter and fussing/crying in children’s speech. The selected features, trained

on samples containing mainly fussing, are capable of robustly detecting crying when

tested on to a database with a different age group.
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CHAPTER VI

LONG-TERM FEATURES FOR DETECTION OF

LAUGHTER IN CHILDREN’S AND ADULTS’ SPEECH

6.1 Introduction

The previous two chapters focused on detecting laughter and crying in adolescents’

and toddlers’ speech using the baseline spectral and prosodic features. These fea-

tures have been found to useful in detecting paralinguistic events to a significantly

high degree of accuracy and generalized well to other datasets when trained on data

recorded on subjects of a different age group and recording conditions. The features

that were relevant to the tasks have also been found to be useful in detecting laugh-

ter in adults’ speech and have also been used for speech recognition purposes. The

techniques described above primarily use an agnostic process where features relevant

to the database have been extracted and selected. The logical extension of this re-

search is to investigate the use of features that can characterize the periodic nature

of laughter using a long window.

Static short-term acoustic features have been widely employed to detect laughter

in adults. These include prosodic features such as pitch, and energy, and spectral

features such as mel-frequency cepstral coefficients [67]. These features are gener-

ally computed at the frame-level (30 ms Hamming window with 10 ms overlap) and

capture the characteristics of stationary short-term windowed speech signal.

Laughter has been characterized as having a sonic structure which consists of a

series of short vowel-like notes or syllables which are about 75 milliseconds long and

repeated at regular intervals of about 210 milliseconds (4.76 Hz) apart [68]. Similar

vowel sounds are used to define the structure of laughter and there are intrinsic
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constraints that define what constitutes laughter. For instance, the “ha-ha-ha” or

“ho-ho-ho” structure would constitute laughter but not “ha-ho-ha-ho” which would

sound unnatural. Research by Provine 1996 [68] has also shown that laughter in males

has an average fundamental frequency of 276 Hz while that of females, about 502 Hz,

is expectedly higher. The stereotypic structure of laughter is a result of the vocal

apparatus and it is difficult to produce laughter which has a longer note duration than

75 milliseconds. An even longer inter-note interval makes laughter sound unnatural.

Therefore, laughter can be considered to have a structural symmetry even though the

symmetry does not exist in the amplitude which tends to decrease with the duration

of the laugh. This can be attributed to the fact that humans run out of air ,and

therefore a decrescendo in amplitude is observed.

Research [69] has shown that the use of long-term or syllabic level features conveys

information about the rhythmic “ha-ha” structure of laughter. In that work, the Fast

Fourier Transform (FFT) of the intensity contour is computed using a window size

of 50 frames with a hop size of one frame and the magnitude in the bins between 4–6

Hz is summed. This a priori information about adults’ laughter in conjunction with

other baseline acoustic features has been found to be useful in detecting laughter with

an accuracy of 90% on the SSPNet Vocalisation Corpus.

This chapter would focus on building upon the work by [69] by developing a

novel acoustic feature that captures the periodic properties in the intensity contour of

laughter. Section 6.2 enlists the various databases consisting of children’s and adults’

laughter that have been used in this analysis. Section 6.3 describes the long-term

syllable-level feature that has been developed and the succeeding section discusses

the feature selection methods employed in this work.
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6.2 Databases

The research in this chapter will focus on using long-term syllable-level features to

detect laughter in children’s and adults’ speech. For this purpose, six datasets will

be used. For the adults’ laughter detection, the MAHNOB Laughter database, SVC,

and OxVoc Sounds database will be used. For children’s speech, MMDB, Strange

Situation, and IBIS datasets will be analyzed. The MAHNOB Laughter dataset

consists of vocalizations produced by adults while listening to funny clips and data has

been annotated for speech and laughter. The number of samples and their duration

is shown in Table 30.

Table 30: Samples of laughter and speech from the MAHNOB Laughter database

with their respective mean and standard deviation of the duration.

Class

Number

of

Samples

Duration (s)

(mean±standard

deviation)

Speech 541 2.88 ± 2.18

Laughter 381 1.69 ± 2.45

For the SSPNet Vocalizations Corpus, which consists of telephonic conversations of

adults, the number of samples along with the durations (mean ± standard deviation)

is shown in Table 31.
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Table 31: Samples of laughter and speech from the SSPNet Vocalizations Corpus

with their respective mean and standard deviation of the duration.

Class

Number

of

Samples

Duration (s)

(mean±standard

deviation)

Speech(Filler) 1941 0.51 ± 0.25

Laughter 784 0.96 ± 0.72

For the OxVoc database, which consists of vocalizations produced by adults on

social media, the number of samples along with the durations (mean ± standard

deviation) is shown in Table 32.

Table 32: Samples of laughter and speech from the OxVoc Sounds database with

their respective mean and standard deviation of the duration.

Class

Number

of

Samples

Duration (s)

(mean±standard

deviation)

Speech 30 0.91 ± 0.2

Laughter 30 1.5 ± 0

For detecting laughter in children’s speech, we have used the MMDB, Strange

Situation, and the IBIS dataset databases. The MMDB dataset, which consists of

speech, laughter, and crying samples, has been used as the training data and the

other three datasets are used as testing data. Table 33 shows the number of samples

along with the durations (mean ± standard deviation) for all the datasets.
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Table 33: Number of training and testing examples of MMDB, Strange Situation,

and IBIS datasets for speech, laughter, and fussing/crying along with the mean and

standard deviation of duration of the samples.

Dataset Type of Vocalization
Number of

samples (N)

Duration (s)

(mean±standard

deviation)

MMDB

Speech 200 1.14±0.66

Laughter 128 1.31±1.28

Fussing/Crying 142 2.65±4.21

Strange Situation

Speech 171 1.23±0.92

Laughter 11 1.12±0.90

Fussing/Crying 129 1.68±0.83

IBIS

Speech 510 1.23±0.92

Laughter 48 1.12±0.90

Fussing/Crying 421 1.68±0.83

6.3 Long-term intensity-based feature

In this work, we have introduced a new measure to capture the long-term periodic

structure of laughter using the energy or intensity contour. The work by [69] uses a

priori information about the frequency range (4–6 Hz) in which the sonic structure of

laughter is apparent in the magnitude spectrum of the intensity contour of laughter.

The advantage of this measure is that it is not dependent on the bandwidth of the

audio signal and can be generalized for signals recorded at various sampling rates.

This research will not use the apriori information about the frequency with which the

sonic structure manifests but uses window lengths of varying sizes that can encompass
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different syllable lengths. In the first step, the intensity or energy contour of the

speech signal is computed using a Hamming window of 30 ms length and 10 ms

overlap as shown in (7).

E[n] =
n∑

n=1

x[n]2 (7)

, where x[n] is the windowed speech signal frame and E[n] is the energy or intensity

of the signal.

Figure 9: Waveform of laughter sample from the MAHNOB database along with the
spectrogram displayed below it.

In Figure 9, the repetitive structure of laughter can clearly be seen in the spectro-

gram, while such a structure is not apparent for speech as seen in Figure 10. Using the

intensity contour, the Hamming window length is again varied from 5 to 20 frames (in

steps of 5) for adults’ laughter and 5 to 45 frames (in steps of 4) for children’s laughter
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Figure 10: Waveform of speech sample from the MAHNOB database along with the
spectrogram displayed below it.

with different overlap window lengths. The reason for using different window lengths

is due to the fact that these were the ranges of window lengths that resulted in good

accuracies as will be discussed in Section 6.4. From this syllable-level segment, the

autocorrelation of the intensity contour is computed as shown in (8).

Rxx[j] =
∑
n

xnx̄n−j (8)

Then, a polynomial regression curve is fitted to the one-sided autocorrelation

function and the absolute error is computed between the curve and the autocorrelation

function. The idea behind computing the error is that greater the periodic structure

of the signal, which would be the case for laughter, higher would be the error than

for speech. Since, the audio signals for adults’ laughter detection we are using in

this work consists of clean signals, we are fitting regression line to the autocorrelation
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function. On the other hand, since the children’s audio signals might consist of

noise or cross-talk, we are varying the degree, d, of the polynomial regression curve

from 1 to 3. Also, for the children’s speech we are using 4 different overlap window

lengths ranging from 12.5% to 50% overlap whereas for adults’ speech we don’t user

overlapping windows for computing the autocorrelation. This results in 42 low-level

descriptors for adults’ speech and 36 low-level descriptors for children’s speech. There

were 14 statistical measures computed from the features and these are shown in Table

34.

Table 34: Statistical measures evaluated for syllable-level intensity features.

Statistical Measure

Arithmetic mean, median, mode,

standard deviation, maximum and

minimum values, flatness, skewness,

kurtosis, 25th quartile, 75th quartile,

inter-quartile ranges, 1st percentile, 99th

percentile

From this, we also obtained the delta and delta-delta features which resulted in

an overall dimensionality of 168 features for adults’ speech and 1512 features for

children’s speech.

6.4 Results

For the adults’ laughter detection, we used the MAHNOB Laughter and SSPNet Voice

databases for training our models. The OxVoc corpus consisting of adults’ laughter

and speech has fewer number of samples compared to the other two corpora and it

would be pertinent to use the OxVoc samples for testing purposes.

Using the MAHNOB Laughter database, we trained our models using a linear
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kernel SVM and the results of the 10-fold cross-validation are shown in Table 35.

Table 35: Classification results of the 10-fold cross-validation using the syllable-

level intensity features extracted from the MAHNOB Laughter database using a linear

kernel SVM with cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 507 34

True Laughter 23 358

The accuracy is 93.81%, the average recall rate is 93.83%, and the average

precision rate is 93.49%. Having trained the models on the MAHNOB database and

testing on the OxVoc database, the confusion matrix is shown in Table 36.

Table 36: Classification results of testing on OxVoc dataset having trained on

MAHNOB Laughter database using the syllable-level intensity features using a linear

kernel SVM with cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 30 0

True Laughter 1 29

The accuracy is 98.33%, the average recall rate is 98.33%, and the average

precision rate is 98.38%.

Using the SSPNet Vocalizations Corpus, we trained our models using a linear

kernel SVM and the results of the 10-fold cross-validation are shown in Table 37.
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Table 37: Classification results of the 10-fold cross-validation using the syllable-level

intensity features extracted from SSPNet Vocalizations Corpus using a linear kernel

SVM with cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 1695 246

True Laughter 135 649

The accuracy is 86.01%, the average recall rate is 85.05%, and the average

precision rate is 82.56%. Having trained the models on the SSPNET Vocalizations

Corpus and testing on the OxVoc database, the confusion matrix is shown in Table

38.

Table 38: Classification results of testing on OxVoc dataset having trained on

SSPNet Vocalizations Corpus using the syllable-level intensity features using a linear

kernel SVM with cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 30 0

True Laughter 5 28

The accuracy is 91.67%, the average recall rate is 91.67%, and the average

precision rate is 92.85%.

The results show that the features are able to discriminate laughter from speech

in adults’ speech very robustly using various corpora with significantly good general-

ization across various corpora.

Having trained models on adults’ speech, we wanted to check the viability of these

features on children’s speech and for this purpose we trained models using the MMDB

dataset and tested the models on the Strange Situation and IBIS datasets. Using the

same methodology for the adults’ laughter detection, we ranked the top 200 features
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based on the correlation feature selection method. The results will be discussed in

two categories, the first one will deal with classifying laughter against combinations

of various categories (speech, whining, and non-laughter which consists of speech

and whining) using only the top 50 features ranked by CFS syllable-level intensity

features and the other will be the combination of baseline acoustic and syllable-level

features by ranking the top 100 features using CFS. The selected features for the

three classification tasks are shown in Figure 11.

Figure 11: Features selected for the three classification tasks viz. speech vs. laugh-
ter, whining vs. laughter, and non-laughter vs. laughter

Using the MMDB corpora for training, the results of the 10-fold cross validation

are shown in Table 40 for speech vs. laughter using the top 200 syllable-level features

using CFS.
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Table 39: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features using a linear kernel SVM (C = 1) with

cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 153 47

True Laughter 41 87

The accuracy is 73.17% and the average recall rate is 72.23%.

When the baseline features are used in conjunction with the syllable-level fea-

tures and ranked using CFS, the results of the 10-fold cross-validation for speech vs.

laughter are shown in Table 40.

Table 40: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features using a linear kernel SVM (C = 1) with

cost-sensitive learning for speech vs. laughter.

Predicted Speech Predicted Laughter

True Speech 169 31

True Laughter 19 109

The accuracy is 84.75% and the average recall rate is 84.82%.

Having trained models on the MMDB dataset, the model is tested on the test

sets from the IBIS dataset, whose results are shown in Table 41, and on the Strange

Situation corpus, whose results are shown in Table 42.
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Table 41: Classification results of using the IBIS dataset as the test set with

models training with the MMDB dataset using the baseline and syllable-level intensity

features using a linear kernel SVM (C = 0.0011)with cost-sensitive learning for speech

vs. laughter.

Predicted Speech Predicted Laughter

True Speech 434 76

True Laughter 7 41

The accuracy is 85.12% and the average recall rate is 85.25%.

Table 42: Classification results of using the Strange Situation corpus as the test set

with models training with the MMDB dataset using the baseline and syllable-level

intensity features using a linear kernel SVM (C = 0.0012) with cost-sensitive learning

for speech vs. laughter..

Predicted Speech Predicted Laughter

True Speech 143 28

True Laughter 1 10

The accuracy is 84.06% and the average recall rate is 87.26%.

For laughter vs. whining, the results of the 10-fold cross-validation using the

MMDB dataset with the syllable-level features are shown in Table 43.

Table 43: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features using a linear kernel SVM (C = 1) with

cost-sensitive learning for laughter vs. whining.

Predicted Whining Predicted Laughter

True Whining 103 39

True Laughter 37 91
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The accuracy is 71.85% and the average recall rate is 71.81%.

When the baseline features are used in conjunction with the syllable-level features

and ranked using CFS, the results of the 10-fold cross-validation for whining vs.

laughter are shown in Table 44.

Table 44: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features using a linear kernel SVM (C = 1) with

cost-sensitive learning for speech vs. laughter.

Predicted Whining Predicted Laughter

True Whining 115 27

True Laughter 30 98

The accuracy is 79.25% and the average recall rate is 78.77%.

Having trained models on the MMDB dataset, the model is tested on the test

sets from the IBIS dataset, whose results are shown in Table 45, and on the Strange

Situation corpus, whose results are shown in Table 46.

Table 45: Classification results of using the IBIS dataset as the test set with

models training with the MMDB dataset using the syllable-level intensity and baseline

acoustic features using a linear kernel SVM (C = 0.001) with cost-sensitive learning

for laughter vs. whining.

Predicted Whining Predicted Laughter

True Whining 341 80

True Laughter 9 39

The accuracy is 81.02% and the average recall rate is 81.12%.
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Table 46: Classification results of using the Strange Situation corpus as the test set

with models training with the MMDB dataset using the syllable-level intensity and

baseline acoustic features using a linear kernel SVM (C = 0.0005) with cost-sensitive

learning for laughter vs. whining.

Predicted Whining Predicted Laughter

True Whining 116 13

True Laughter 1 10

The accuracy is 90% and the average recall rate is 90.41%.

For laughter vs. non-laughter, the results of the 10-fold cross-validation using the

MMDB dataset with the syllable-level intensity features are shown in Table 47.

Table 47: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features using a linear kernel SVM (C = 1) with

cost-sensitive learning for laughter vs. non-laughter.

Predicted Non-laughter Predicted Laughter

True Non-laughter 262 80

True Laughter 35 93

The accuracy is 75.53% and the average recall rate is 74.63%.

When the baseline features are used in conjunction with the syllable-level features

and ranked using CFS, the results of the 10-fold cross-validation for non-laughter vs.

laughter are shown in Table 48.
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Table 48: Classification results of 10-fold cross validation on the MMDB dataset

using the syllable-level intensity features and baseline features using a linear kernel

SVM (C = 0.1) with cost-sensitive learning for speech vs. laughter.

Predicted Non-Laughter Predicted Laughter

True Non 283 59

True Laughter 29 99

The accuracy is 81.27% and the average recall rate is 80.04%.

Having trained models on the MMDB dataset, the model is tested on the test

sets from the IBIS dataset, whose results are shown in Table 49, and on the Strange

Situation corpus, whose results are shown in Table 50.

Table 49: Classification results of using the IBIS dataset as the test set with

models training with the MMDB dataset using the syllable-level intensity and baseline

acoustic features using a linear kernel SVM (C = 0.0002) with cost-sensitive learning

for laughter vs. non-laughter.

Predicted Non-laughter Predicted Laughter

True Non-laughter 771 160

True Laughter 11 37

The accuracy is 82.53% and the average recall rate is 79.94%.
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Table 50: Classification results of using the Strange Situation corpus as the test set

with models training with the MMDB dataset using the syllable-level intensity and

baseline acoustic features using a linear kernel SVM (C = 0.00025) with cost-sensitive

learning for laughter vs. non-laughter.

Predicted Non-laughter Predicted Laughter

True Non-laughter 250 50

True Laughter 1 10

The accuracy is 83.60% and the average recall rate is 87.12%.

The results indicate that the syllable-level features are capable of detecting laugh-

ter from speech, whining, and , when both these events are treated as a single class,

non-laughter to a reasonably high degree of accuracy and more importantly, a high

recall rate as well. The significance of these results lie in the fact that the features

trained on the MMDB dataset generalize well when applied to the Strange Situation

and IBIS datasets which consists of data recorded in completely different conditions,

subjects with a different age group, and with subjects at risk of ASD.

6.5 Conclusion

The research in this section investigated the use of a novel acoustic feature that

captures the periodic characteristics of laughter. The results of the adults’ laughter

detection show that the features are not only capable of detecting laughter to a high

degree of accuracy and recall but can generalize well to other datasets. The features

are also capable of discriminating laughter from other events in children’s speech

and when augmented with other acoustic features tends to generalize well to other

datasets.
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CHAPTER VII

MULTI-MODAL DETECTION OF LAUGHTER IN

ADULTS’ AND CHILDREN’S SPEECH

7.1 Combining acoustic and visual features to detect laugh-
ter in adults’ speech

7.1.1 Introduction

Paralinguistic cues are non-phonemic aspects of human speech that are characterized

by modulation of pitch, amplitude, and articulation rate [70]. These cues convey

information about the affective state of the speaker and can be used to change the

semantic content of a phrase being uttered. Research [71] has shown that the phrase,

“Yeah right”, when modulated with laughter indicates sarcasm. Paralinguistic cues

encompass the commonly produced ones such as crying and coughing to those that

are widely considered to be social taboos such as belching and spitting [5].

Charles Darwin, in his seminal work on emotions in animals, described laughter

as a paralinguistic cue to primarily used to convey joy or happiness [72]. Laughter

is a signal which consists of vowel-like bursts that has been found to be a highly

variable signal. Research [73] has found adults produce laugh-like syllables, which

are repetitive in nature and the production rates in laughter are higher than those of

speech-like sounds. Laughter also tends to have a higher pitch and variability com-

pared to speech. Laughter is a socially rich signal that manifests itself in different

forms. Laughter bouts have been classified as being “song-like” which consists of

modulation of pitch, “snort-like” with unvoiced portions, and “unvoiced grunt-like”

[73]. Furthermore, research has [74] used laughter labels based on the type of stim-

ulus used to produce it. This includes joy, taunting, schadenfreude, and tickling.
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Although, laughter is considered to be a signal for indicating positive affect, the per-

ception of laughter can change based on the context in which it is used. Research [75]

has shown that in speed dating situations, women were rated to be flirting if they

laughed while interacting with men.

Smiling is one of the most common facial expressions used while interacting with

friends or peers [76]. Smiles can manifest as Duchenne smiles, activated using the

Zygomaticus Major and Orbicularis Oculii muscles concurrently, which are used to

express positive affect. When only the Zygomaticus Major muscle is activated, the

smile is considered to be forced [77]. Smiles, like laughter, can also be used to mask

the true affective state of an individual. False smiles can be used to indicate that

a person is happy while masking the true affective state which could range from

deception to disgust [78].

There is limited understanding about the interaction between smile and laughter

and one [79] hypothesis is that smiles have their origins in the silent bared-teeth

submissive grimace of primates, and laughter evolved from the relaxed open-mouth

display. Since, spontaneous smiles have been linked with laughter [22], this Chapter

attempts to use the information about smiles to reduce false positives in detecting

laughter using only the audio modality.

The chapter deals with the study of acoustic and visual features along with the

fusion of the features to perform a multi-modal analysis of laughter in adults’ and

children’s speech. The chapter briefly describes the data from the MMDB corpus

used for training the models in Section 7.1.2. Section 7.1.3 describes the syllable-level

acoustic and vision-based smile features extracted from the dataset. The methodology

to create the feature set is described in Section 7.1.4 and the classification results are

discussed in Section 7.1.5.
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7.1.2 Database

For the adults’ speech, the MAHNOB Laughter database, described in Section 3.9

was used. The database consists of spontaneous and posed laughter samples in a

multi-lingual setting. The spontaneous laughter samples were elicited using a large

collection of humorous video clips and the posed laughter samples were generated on

command. The data was recorded using video and audio modalities. The video was

recorded using digital video and thermal cameras. The audio was recorded using a

lapel microphone as well as from the in-built microphone of the video camera. The

corpus consists of 22 subjects but this study used data from the 15 subjects (9 males,

6 females) who provided consent for their recorded data to be published. For the

purpose of our analyses, we used only the spontaneous laughter samples. We used

audio from the lapel microphones and video recorded using digital video camera, all

produced in a naturalistic manner. The samples used in the analyses along with the

durations (mean ± standard deviation) for each class is shown in Table 51.

Table 51: Samples of laughter and speech from the MAHNOB Laughter database
with their respective mean and standard deviation of the duration.

Class
Number

of
Samples

Duration (s)
(mean±standard

deviation)

Speech 541 2.88 ± 2.18
Laughter 381 1.69 ± 2.45

7.1.3 Acoustic and Vision-based feature extraction

Previous research has focused on using short-term prosodic and spectral acoustic fea-

tures [80, 81, 82] for detecting laughter in corpora involving multi-speaker meetings.

In computer vision, smiles have been described [83] as having a Facial Action Coding

Units (FACS) coding consisting of lip corners pulled up and laterally along with vary-

ing levels of mouth opening. Also, visual features corresponding to head movements

and facial expressions, were estimated using particle filtering tracking schemes [84].
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This research focuses on using long-term acoustic features as described in Chapter

VI and the use of a smile tracking software, described in the following subsections.

7.1.3.1 Audio Features

This research builds upon the idea of [69] by extracting features from the energy

contour of the speech signal at the syllable-level but uses a different approach to

measure the periodicity of the intensity contour by computing the autocorrelation of

the intensity values.

As shown in Figure 12, the energy of the short-term speech signal is computed with

a 30 ms Hamming window with a 10 ms overlap and the energy contour is extracted

from it. The energy contour is smoothed using a median filter of window length of

five samples to mitigate the effects of noise or extraneous vowels or consonants. The

normalized one-sided autocorrelation function is computed for the smoothed energy

contour using frames of varying length (5-20 frames with a step size of five). A linear

regression line is fitted to the resulting autocorrelation function and the absolute error

is computed from it. The error would be high for a periodic signal and vice-versa for

a non-periodic signal.

7.1.3.2 Vision Features

The Omron Okao Vision library1 is used to detect the subject’s face, track the facial

landmarks and extract visual features within the video signal. The Okao Vision

library is a commercial facial analysis software that integrates face detection and

tracking, facial landmark tracking, and face recognition. Face detection is performed

at every frame, which is then processed by a face tracker to obtain the final position

of a subject’s face. The tracker provides a face identification (ID) number for each

face in view and allocates a new ID when a new face is in view or the face tracker

loses track due to occlusion. The a priori information of the first face, the subject’s,

1http://www.omron.com/r d/coretech/vision/okao.html
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Figure 12: Schematic diagram of the feature extraction process of the energy contour
at the syllabic level.

being tracked, is incorporated in the smile detection output generator to filter out

instances of another person’s face. With this pipeline, and due to a clear view of the

subjects’ faces in the dataset, we verify that the system is able to track all faces in

the dataset.

Facial landmarks, e.g. mouth and eye corners, are then automatically estimated

within a bounding box in each frame, based on image visual features. These land-

marks are further used to estimate the smile degree of the subject, as well as its

confidence. We use both the smile degree and its confidence as our vision features.
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A median filter with a window of 10 frames was used to smooth the features. The

frames when the face tracker did not detect the face due to occlusion all had their

features set to zero. Two instances of when there is a smile and a lack of one are

shown in Figures 14 and 13 respectively.

Figure 13: Analysis of smile detection when subject S001 does not smile.

7.1.4 Methodology

To account for the different frame rates of the audio and video modalities, we com-

puted 14 statistical measures, as shown in Table 52 from speech and laughter seg-

ments.

Table 52: Statistical measures evaluated for acoustic and visual features.

Statistical Measure

Arithmetic mean, median, mode,
standard deviation, maximum and

minimum values, flatness, skewness,
kurtosis, 25th quartile, 75th quartile,

inter-quartile ranges, 1st percentile, 99th

percentile

For the audio features, the delta and delta-delta (first and second derivatives)
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Figure 14: Analysis of smile detection when subject S001 smiles

measures were computed; for the visual features, only the delta measure was com-

puted. Features that had not-a-number entries were removed and were normalized

using z-score. For the audio features, the dimensionality was 168 and for the visual

features, it was 48. The overall dimensionality of the audio-visual feature set was 216.

7.1.5 Results

A random forest (RF) classifier with 100 trees was trained using WEKA [58] on the

speech and laughter samples. The cost-sensitive learning method [85] was used to

account for the imbalance of the classes in the dataset. The cost matrix is given in

(9) and balances the number of instances of each class.

C =

 0 1

1.42 0

 (9)

The evaluation process consists of performing a leave-one-speaker-out cross-validation

with training models on N−1 speakers and testing on the N th speaker. We performed

three experiments on laugher classification: using only audio features, using only vi-

sual features, and the combination of both visual and audio features. Using only the
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audio features, the confusion matrix for speech vs. laughter is shown in Table 53. The

accuracy is 93.06%, the average recall rate is 93.11%, and the average precision rate

is 92.69%. The results show that the syllabic features capture the periodic nature

of laughter and are capable of discriminating between speech and laughter.

Table 53: Classification results of the leave-one-speaker-out cross-validation using
only acoustic features with a random forest (RF) with 100 trees and cost-sensitive
learning.

Predicted Speech Predicted Laughter
True Speech 502 39

True Laughter 25 356

The confusion matrix of just using the visual features is shown in Table 54 and the

accuracy is 89.48%, the average recall rate is 89.29%, and the average precision rate

is 89.09%. The results are good considering that the features extracted using the

vision modality can discriminate between speech and laughter which were annotated

using only the audio modality. For fusion, the audio and visual features were con-

Table 54: Classification results of the leave-one-speaker-out cross-validation using
only visual features with an RF with 100 trees and cost-sensitive learning.

Predicted Speech Predicted Laughter
True Speech 489 52

True Laughter 45 336

catenated and fed to the classifier. The confusion matrix of the early fusion method

is shown in Table 55. The accuracy is 96.85%, the average recall rate is 96.97%,

and the average precision rate is 96.6%. The results are significant as the fusion of

the features resulted in not only an improvement in the accuracy but a reduction in

the false positive rates for laughter and speech.

7.1.6 Conclusion

The detection of laughter in adults’ speech has been demonstrated with a very high

level of accuracy. In this research, we explored the use of novel syllable-level acoustic
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Table 55: Classification results of the leave-one-speaker-out cross-validation using
fusion of audio and visual features with an RF with 100 trees and cost-sensitive
learning.

Predicted Speech Predicted Laughter
True Speech 521 20

True Laughter 9 372

features to capture the periodic “ha-ha” structure of laughter. The use of visual

features pertaining to smile were able to robustly discriminate between speech and

laughter due to the fact that laughter and smiles are linked to each other. Our study

demonstrates a significant improvement in accuracy and reduction of error rate by the

proposed multi-modal early fusion of acoustic and visual features. These results are

good enough to explore the use of the audio-visual features in naturalistic settings

and specifically in situations where children interact with caregivers and peers, in

order to analyze their social behaviors.

7.2 Multi-modal Laughter Detection in Toddlers’ Speech When
Interacting With Caregivers

7.2.1 Introduction

The research in the preceding sections talks about performing multi-modal laughter

detection in adults’ speech and shows the improvement obtained from fusing the

features from the audio and vision modalities compared to using either one of them. A

logical extension of this work would be to analyze the data from children’s interactions

with caregivers. Previous research on smiling type and play type during parent-infant

play has shown varying conclusions about the frequency of smiling with infants smiling

more at the mother compared to the father during visual games, object play, and social

games. While research which showed smiling preference for fathers involved games of

physical and idiosyncratic nature.

This section deals with the investigation of acoustic and visual features for the

purpose of detecting laughter events in children’s interaction with caregivers. Section
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7.2.2 deals with the samples of the database along with the challenges encountered in

extracting visual information from the videos. Section 7.2.3 describes the features and

the feature selection techniques employed. Section 7.2.4 discusses the use of restricted

Boltzmann machine (RBM) for the purpose of performing multi-modal fusion with

a brief description of the architecture employed as well. The penultimate section

has a discussion about the results and followed by what this study has learnt from

performing multi-modal fusion of acoustic and visual features.

7.2.2 Database

The MMDB corpus was used for the purpose of analysis and the modalities used were

the audio from the lavalier microphones and the Canon side-view cameras for analyz-

ing the smiles of the child. For the purposes of detecting laughter, the problem was

treated as a laughter vs. non-laughter classification problem where the non-laughter

elements included child’s speech and whining. There were a number of difficulties

experienced while analyzing the videos of the child. One major problem was that

OMRON’s smile tracker was used to initialize the face of the child automatically and

given that the parent was also in the view of the camera, the parent’s face would be

mistaken for the child’s face. To overcome this issue, a manual selection of the child’s

face was done by selecting the frame when the child’s face was detected by the smile

tracker. This process mitigated the false positives of the child’s face being detected.

The other issues that were faced while detecting the child’s face were when the face

was obscured from the view of the camera due to the examiner or parent moving in

front of the child, the child turning his or her face away from the view of the camera,

or the child moving away from the view of the camera by getting distracted by an

object in the room. These were issues that could potentially be addressed by using

information from the AXIS cameras, but that would be pertinent to whether the

child’s face can be accurately detected using them.

76



Having detected the child’s face and extracting the information about the smile,

the child’s speech annotations were lined up with the frame-level results of the Canon

videos. The annotations in ELAN are relative to the Canon videos and therefore the

synchronization is a simple process of lining up the various events belonging to other

modalities. Once the annotations have been lined up, we need to take into account

that the smile detector can produce false negatives due to the tracker failing to track

the face when the child’s face is in view. For this purpose, we used a threshold method

wherein only the laughter and non-laughter annotations are used when for more than

70% of the duration of the event, the smile detector produces a valid output (a vector

of non-zero features).

7.2.3 Feature Extraction and Selection

The openSMILE features, described in Section 5.3, along with the syllable-level in-

tensity features, described in Section 6.3, were extracted from the laughter and non-

laughter samples. For the visual features, the OMRON Okao smile detection system

was used to extract the frame-level features as described in Section 7.1.3.2, and the

features that were used for analyses were the smile strength. In this part of the re-

search, there were two methods employed for feature selection. The first technique is

the combination of the filter and wrapper-based techniques as used in Section 5.4 with

the filter-based technique used being the correlation-based feature selection technique

followed by the wrapper-based technique which is the sequential-forward selection

method with a linear kernel SVM as the base classifier. The other technique em-

ployed was using a restricted Boltzmann machine (RBM) with contrastive divergence

and this is widely used in image classification and of late, in speech recognition for

the purposes of learning deep learning models.

An RBM is a undirected graphical model which consists of bipartite graphs. There

are two types of variables in the architecture, a set of visible units, V , and followed by
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hidden units, H. There are no connections within V and H, as shown in Figure 15,

and thus each set of units is conditionally independent of the other.

Figure 15: Structure of a restricted Boltzmann machine (RBM) with connections
between visible layer, V , and hidden layer, H.

For every possible connection between the binary visible, v, and hidden units, h,

the RBM assigns an energy and this is given using the equation shown in (10)

E(v, h) = −
∑

i,j
Wijvihj −

∑
i
aivi −

∑
j
bjhj. (10)

where vi and hj are the binary states of the visible unit i and hidden unit j. The

a and b are the biases of the visible and hidden units respectively. Wij represents the

weights or the strength between the visible and hidden units.

The conditional probabilities of each of the visible and hidden units is given in

(11) and (12),

p(hj = 1 | v) = σ(bj +
∑

i
Wijvi) (11)

p(vi = 1 | h) = σ(ai +
∑

j
Wijhj) (12)

where
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σ(x) =
1

1 + e−x
(13)

is the logistic function.

The probability that is assigned to every possible joint configuration (v, h) is given

in (14),

p(v, h) =
e−E(v,h)

Z
=

e−E(v,h)∑
u,g e

−E(u,g)
(14)

where Z is the partition function. The marginal distribution of the visible units

is given as

p(v) =
∑

h
p(v, h) (15)

and the gradient of the average log-likelihood is given as

∂logp(v)

∂wij

=< vihj >0 − < vihj >∞ (16)

The < . >∞ cannot be computed efficiently as it involves the normalization con-

stant Z and it is a sum of over all configurations of the variables making the problem

intractable. This can be avoided by using the contrastive divergence (CD) algorithm

by sampling from the distribution using Gibbs sampling. This involves setting the

initial values of the visible units to the feature set and then sampling the hidden units

given the visible units. After this, the visible units are then sampled using the hidden

units and the process is alternated between the two. This is shown in Figure 16.This

sampling requires using the conditional distributions given in (11) and (12) which are

easy to compute. The CD algorithm is given as,

∂logp(v)

∂wij

=< vihj >0 − < vihj >k (17)

For the purposes of research in this section, the Gaussian- Bernoulli RBM was used

to deal with feature sets that used acoustic and visual modalities. In this method, the
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Figure 16: Working of the contrastive divergence (CD) algorithm between the hidden
and visible units in an RBM.

visible units are treated as originating from a Gaussian distribution and the hidden

units are binary. The equation of the energy function becomes,

E(v, h) = −
∑

i

(vi − ai)2

2σ2
i

−
∑

i,j

vi
σ2
i

hjWij −
∑

j
bjhj. (18)

The conditional probabilities of the visible and hidden units are modified as shown

in (19) and (20).

p(vi = v | h) = N (v | ai +
∑

j
Wijhj, σ

2
i ) (19)

p(hj = 1 | v) = σ(bj +
∑

i
Wij

vi
σ2
i

) (20)

where N (· | µ, σ2) is a Gaussian probability density function with mean µ and

variance σ2.

7.2.4 Methodology

Using the feature selection techniques described in the preceding subsections, we em-

ployed two methodologies for the multi-modal analysis. In the first part, as shown in

Figure 17, we used the CFS on the acoustic features and concatenated with the vi-

sual features followed by passing the feature set through a sequential forward selection
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(SFS) with the base classifier being a linear kernel SVM.

The features selected using this scheme is shown in Table 56 and include spectral

centroid, syllable-level intensity, and smile confidence features.

Table 56: Acoustic and visual features selected using feature selection based on
combination of filter and wrapper-based methods using the MMDB dataset.

Feature Number of
features selected

Spectral centroid 2
Syllable-level Intensity Autocorrelation Error 1

Smile confidence 1

Figure 17: Architecture of the system employed for multi-modal laughter detection
using combination of filter and wrapper-based feature selection schemes.

For the multi-modal analysis using RBMs, the method employed is the bimodal

deep belief network (DBN) architecture [86]. Here, the lower layers learn the audio

and video features separately followed by concatenating and feeding them to another

RBM, as shown in Figure 18, which learns the correlations between the various modal-

ities. For this architecture, we employed the Gaussian-Bernoulli RBM for the first

layers followed by a Bernoulli-Bernoulli RBM for the top-most layer. This is a similar

architecture that has been previously used in multi-modal emotion recognition by

[87]. The only parameter being varied is the number of hidden units with all the

other parameters such as learning rate, number of iterations for the CD algorithm,

and batch size being constant. The number of hidden units varied from 10 to 50

with a step size of 10. A grid search is performed for finding the configuration of
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the number of hidden units for each RBM that results in the best accuracy using a

10-fold cross-validation scheme.

Figure 18: Architecture of the system employed for multi-modal laughter detection
using RBMs.

7.2.5 Results

Owing to the fact that the number of samples used in this study was small due to

the various limitations in analyzing the videos as described earlier, a 10-fold cross-

validation was performed on the dataset with a linear kernel SVM. Considering the

imbalance in the training data, we used a cost-sensitive classification scheme with the

cost matrix given as,

C =

 0 1

1.81 0

 (21)

Classification using the acoustic features from the filter based method, where the

top 100 audio features are ranked, resulted in a confusion matrix for laughter vs.
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non-laughter as shown in Table 57.

Table 57: Classification results of the 10-fold cross-validation using only acoustic
features with a linear kernel SVM and cost-sensitive classification scheme.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 116 24

True Laughter 22 55

The result was an accuracy of 78.8% and an average recall rate of 77.14%.

The recall rate of the laughter class is comparatively lower to the non-laughter class

and the fusion with the visual features would help in reducing the number of missed

detections.

Classification using only the video features, resulted in a confusion matrix for

laughter vs. non-laughter as shown in Table 58.

Table 58: Classification results of the 10-fold cross-validation using only visual
features with a linear kernel SVM and cost-sensitive classification scheme.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 111 29

True Laughter 12 65

The result was an accuracy of 81.1% and an average recall rate of 77.14%. The

recall rate for the laughter class using visual features is significantly better than just

using the acoustic features.

The combination of the features from both modalities followed by performing

sequential forward selection (SFS) which yields in the reduced feature set as shown

in Table 56 and resulted in the confusion matrix shown in Table 59.

Table 59: Classification results of the 10-fold cross-validation using visual and
acoustic features as enlisted in with a linear kernel SVM (C=0.1) and cost-sensitive
classification scheme.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 123 17

True Laughter 13 64
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The accuracy is 86.2% which this is significantly higher than using the features

from either modality alone. The recall rate for the non-laughter class is significantly

higher than either of the two modalities but the one for laughter is slightly lower than

that of visual modality alone. Nonetheless, these results are indicative that the use of

multi-modal information would definitely enhance the classification over using either

of the modalities alone.

For the multi-modal RBM architecture described in the previous section, using

only the audio features with 40 hidden units in the RBM, resulted in a confusion

matrix as given in Table 60.

Table 60: Classification results of the 10-fold cross-validation using RBM architec-
ture with 40 hidden units for audio features with a classification scheme using linear
kernel SVM with cost-sensitive learning.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 122 18

True Laughter 18 59

For the visual the features, the confusion matrix is shown in Table 61. This is the

best result obtained using 10 hidden units in the RBM.

Table 61: Classification results of the 10-fold cross-validation using RBM architec-
ture with 10 hidden units for visual features with a classification scheme using linear
kernel SVM with cost-sensitive learning.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 113 27

True Laughter 16 61

The best results were obtained using 40 hidden units for the speech RBM, 10

hidden units for the visual features RBM, and finally 25 hidden units for the top

most RBM which uses the outputs of the speech and visual RBMs. The confusion

matrix is shown in Table 62.

With the use of the RBM architecture, the accuracy of the system is 88.94%

and the recall rate for non-laughter, 92.14%, is better than that of the previous
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Table 62: Classification results of the 10-fold cross-validation using RBM architec-
ture with 25 hidden units for visual and acoustic features with a classification scheme
using linear kernel SVM with cost-sensitive learning.

Predicted Non-Laughter Predicted Laughter
True Non-Laughter 129 11

True Laughter 13 64

methodology.

7.2.6 Conclusions

This section has focused on using multi-modal information for the detection of laugh-

ter in children’s speech while interacting with their caregivers in a semi-structured

environment. The integration of visual features using the OMRON Okao smile track-

ing system has the ability to capture the smile characteristics in children’s laughter.

The audio and the vision modalities on their own are capable of discriminating be-

tween laughter from non-laughter events but when the features are combined, there

is an improvement in the classification accuracy. The use of the multi-modal archi-

tecture using a restricted Boltzmann machine yields in a significant improvement in

the accuracy over using an RBM for features of only one modality.
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CHAPTER VIII

CONCLUSIONS

Paralinguistic cues are known to convey the affective state of the speaker and espe-

cially in children are used as a form of communication with their caregivers.The de-

tection of these events in hours of audio data could be potentially useful for clinicians

for analyzing the atypical characteristics of these events in children with developmen-

tal disorders. The thesis has explored the use of acoustic features for the detection of

these events across various datasets with different age groups, recording conditions,

and protocols. Along with using features from only one modality, the thesis has also

focused on using information from the vision modality to help improve the detection

of laughter in children’s speech.

The work in Chapters IV and V explored the use of spectral and prosodic acoustic

features for the purpose of detecting laughter in children’s speech. The research in

these chapters focused on extracting features that characterize laughter and whining

in adoloscents and toddlers speech. The research on detecting adoloscents laughter

revealed that along with the baseline acoustic features, the formant-based features

convey information about laughter using the feature selection algorithms employed.

The significant finding of this study was the generalization of the results when mod-

els trained on adolescents’ laughter were effective when tested on toddlers’ laughter.

Chapter IV investigated not only the predictive power of features useful for detecting

laughter in adoloscents speech but also their generalization properties on toddlers

speech as well. An important finding was the detection of laughter in children with

ASD using both the baseline and formant-based features which encompasses a wide
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age range (5-18 years). The significant finding in this research was the generaliza-

tion of the features selected using data recorded in relatively clean conditions in the

laboratory to noisy data in home environments.

Chapter V is an extension from the work of detecting laughter in adoloscents

speech to a completely different age group involving toddlers speech. The research

in this chapter involves detecting instances of laughter and whining from toddlers

speech while interacting with an examiner in a semi-structured interaction. The

main finding of this work has been the use of dysphonation-related features (cepstral

peak prominence) for classifying toddlers’ laughter in their speech. These features

likely capture the high pitch characteristics and breathy component of laughter. The

important finding in this research has also been the generalization of the features on

to a testing set consisting of data from subjects not part of the database as well as

on to a different dataset involving infants in the Strange Situation protocol with a

different recording environment.

An extension of this work is to investigate the development of features that would

characterize laughters tonic structure. In Chapter VI, the thesis has focused on a novel

syllable-level feature that uses time-series analysis to detect instances of laughter.

These features were found to be robust enough to detect laughter in adults speech to

a very high degree of accuracy and generalized well when applied to other datasets. In

childrens speech, the features were moderately predictive to detect laughter and when

augmented with baseline acoustic features, they were able to discriminate between

childrens laughter from speech and whining and generalized well when applied to data

recorded from infants in day long recordings with varying recording conditions and

age group. The contribution of this research has been the ability to use long-term

features which have been hypothesized in previous research to detect laughter.

The concluding portion of the thesis deals with the use of multi-modal informa-

tion to detect laughter in childrens speech. The first part of Chapter VII used adults
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laughter database where the syllable-level intensity features were investigated along

with computer vision-based smile related features. The important finding in this

research was that using information from the vision modality was useful in detect-

ing laughter in adults as well as childrens speech for events pertaining to the audio

modality. The contribution of this work was in the investigation of the fusion of audio

and video-related features and the subsequent improvement that was obtained in the

detection of laughter.
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