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SUMMARY

Robot motion planning is one of the central problems in robotics, and has received

considerable amount of attention not only from roboticists but also from the control and

artificial intelligence (AI) communities. Despite the different types of applications and

physical properties of robotic systems, many high-level tasks of autonomous systems can

be decomposed into subtasks which require point-to-point navigation while avoiding in-

feasible regions due to the obstacles in the workspace. This dissertation aims at develop-

ing a new class of sampling-based motion planning algorithms that are fast, efficient and

asymptotically optimal by employing ideas from Machine Learning (ML) and Dynamic

Programming (DP). First, we interpret the robot motion planning problem as a form of

a machine learning problem since the underlying search space is not known a priori, and

utilize random geometric graphs to compute consistent discretizations of the underlying

continuous search space. Then, we integrate existing DP algorithms and ML algorithms

to the framework of sampling-based algorithms for better exploitation and exploration, re-

spectively. We introduce a novel sampling-based algorithm, called RRT#, that improves

upon the well-known RRT∗ algorithm by leveraging value and policy iteration methods as

new information is collected. The proposed algorithms yield provable guarantees on cor-

rectness, completeness and asymptotic optimality. We also develop an adaptive sampling

strategy by considering exploration as a classification (or regression) problem, and use on-

line machine learning algorithms to learn the relevant region of a query, i.e., the region that

contains the optimal solution, without significant computational overhead. We then extend

the application of sampling-based algorithms to a class of stochastic optimal control prob-

lems and problems with differential constraints. Specifically, we introduce the Path Integral
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- RRT algorithm, for solving optimal control of stochastic systems and the CL-RRT# al-

gorithm that uses closed-loop prediction for trajectory generation for differential systems.

One of the key benefits of CL-RRT# is that for many systems, given a low-level tracking

controller, it is easier to handle differential constraints, so complex steering procedures are

not needed, unlike most existing kinodynamic sampling-based algorithms. Implementation

results of sampling-based planners for route planning of a full-scale autonomous helicopter

under the Autonomous Aerial Cargo/Utility System Program (AACUS) program are pro-

vided.
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Chapter I

INTRODUCTION

1.1 Motivation

Robot motion planning is one of the canonical problems in the field of robotics, and it

has received an extensive amount of attention not only from roboticists but also from

the control and artificial intelligence (AI) communities [39, 79, 81]. Despite the differ-

ent types of applications and physical properties of robotic systems, many high-level tasks

of autonomous systems can be decomposed into subtasks that require point-to-point nav-

igation of the robot while avoiding some infeasible regions due to the obstacles in the

workspace. Furthermore, robot motion planning has found many successful applications

beyond robotics such as computer animation, computational biology, virtual prototyping,

and game AI [32, 41, 45, 79, 88].

Although there are variations of the problem depending on the applications and con-

straints, loosely speaking, the robot motion planning can be stated as follows. Given a

complete description of the geometry of a robot and of the workspace, an initial state, and a

goal region, the motion planning problem is to find a control input that can move the robot

from its initial state to the goal region, while obeying its differential constraints, i.e., the

dynamics of the system, and not colliding with obstacles in the environment. This prob-

lem goes by different names in the community, depending on the constraints that the robot

is subject to. For instance, a simpler variant of the problem is called the mover’s prob-

lem [104], or the piano movers’ problem [107, 108]. In this widely-studied problem, the

robot is assumed to be a rigid body whose configuration has finite parameterization and is

able to move freely, i.e., there are no differential constraints. The goal is to find a collision-

free path for the robot to move from an initial configuration to a goal configuration. The
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mover’s problem is then generalized and extended for the motion planning of the articu-

lated robots, e.g., the robotic manipulators in manufacturing assembly lines. This problem

is called the generalized mover’s problem and the robot is modeled as the union of multiple

rigid bodies that are mounted with freely-moving joints [104, 105]. In this thesis, motion

planning problems without differential constraints are called (geometric) path planning

problems. Path planning problems are ubiquitous and arise in many practical applications

beyond robotics. Many algorithmic approaches are developed and the complexity of these

problems have been well analyzed (see [89]).

An important milestone was achieved in a landmark paper by Lozano-Prez, where plan-

ning problems were abstracted into a class of problems, called spatial planning, in an uni-

fied way by using the notion of the configuration space [89]. The main benefit of the

abstraction is that a robot with a complex geometric shape is represented with a single

point in the configuration space. The dimension of the configuration space is the number

of degrees of freedom of a robot, or the minimum number of parameters needed to specify

its configuration.

1.2 Thesis Statement and Contributions

The contributions of this thesis span several fields. First, we develop a novel sampling-

based algorithm, called the RRT# algorithm along with several variants, that leverage

dynamic programming for better exploitation and machine learning algorithms for bet-

ter exploration. Next, we proposed an algorithm that uses policy iteration for exploitation

which can be massively parallelized. The proposed algorithms yield provable guarantees

on correctness, completeness and asymptotic optimality. We also extend the applications of

sampling-based algorithms to a class of stochastic optimal control problems. We introduce

a novel algorithm, called the path integral RRT (PI-RRT) algorithm, for optimal control of

stochastic systems. We finally introduce a sampling-based algorithm that uses closed-loop

prediction for trajectory generation. One of the key benefits of the latter algorithm is that it
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can be applied to many systems having complex dynamics and does not require a complex

steering procedure unlike the most of the existing kinodynamic sampling-based algorithms.

Last but not least, in order to encourage knowledge transition from academia to industry,

we apply a variant of the proposed algorithms for high-level route planning of a full-scale

autonomous rotorcraft. The developed route planner is tested extensively in simulations

and actual flight tests.

1.2.1 Exploitation using Dynamic Programming Algorithms

We analyze the existing asymptotically optimal algorithms, e.g., RRG, RRT∗, and a mas-

sively version of RRT∗ [27], and reveal the connection between their asymptotic optimality

properties and dynamic programing principles. It is shown that the rewiring step introduced

in the RRT∗ algorithm is essentially a form of policy iteration algorithm. We then propose

a novel algorithm, called the RRT#, that is shown to be asymptotically optimal, while

achieving faster convergence. We develop a more elaborate replanning procedure that im-

plements asynchronous value iteration algorithm in order to propagate new information

better [8, 9, 11]. Next, we consider different forms of DP, e.g., policy iteration, to develop

highly parallelizable motion planners [15].

1.2.2 Exploration using Machine Learning Algorithms

Most of the sampling-based algorithms implement a form rejection sampling owing to their

simplicity. We first show that the samples that are in collision can also provide useful infor-

mation about the topology of the underlying search space, and hence they can be leveraged

to guide the future samples towards the free space. We then propose a machine learning

(ML)-inspired approach to estimate the relevant region of a motion planning problem dur-

ing the exploration phase of sampling-based path-planners. The algorithm guides the ex-

ploration, so that it draws more samples from the relevant region as the number of iterations

increases. The approach works in two steps: first, it predicts if a given sample is collision-

free (classification phase) without calling the collision-checker, and it then estimates if it
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is a promising sample, i.e., if it has the potential to improve the current best solution (re-

gression phase), without solving the local steering problem. We show in Chapter 6 that

the proposed exploration strategy can be seamlessly integrated to the RRT# algorithm.

Numerical simulations demonstrate the efficiency of the proposed approach [10, 11, 14].

1.2.3 Stochastic Motion Planning via Sampling-based Algorithms

We consider optimal control of dynamical systems which are represented by nonlinear

stochastic differential equations. It is well-known that the optimal control policy for this

problem can be obtained as a function of a value function that satisfies a nonlinear par-

tial differential equation, namely, the Hamilton-Jacobi-Bellman equation. This nonlinear

PDE must be solved backwards in time, but this computation is intractable for large scale

systems. Under certain assumptions, and after applying a logarithmic transformation, an

alternative characterization of the optimal policy can be given in terms of a path integral.

Path Integral (PI) based control methods have recently been shown to provide an elegant

solution to a broad class of stochastic optimal control problems. One of the implementation

challenges with this formalism is the computation of the expectation of a cost functional

over the trajectories of the unforced dynamics. Computing such expectation over trajecto-

ries that are sampled uniformly may induce numerical instabilities due to the exponentia-

tion of the cost. Therefore, sampling of low-cost trajectories is essential for the practical

implementation of PI-based methods. In this thesis, we use incremental sampling-based

algorithms to sample useful trajectories from the unforced system dynamics, and make a

novel connection between the RRT algorithm and information-theoretic stochastic opti-

mal control. We show in Chapter 7 the results from the numerical implementation of the

proposed approach to dynamical systems that are injected with different intensity levels of

noise. [7]

4



1.2.4 Motion Planning using Closed-Loop Prediction

We analyze variants of the RRT algorithm that were successfully implemented in real

robotic applications, e.g., the CL-RRT algorithm that used by Team MIT at DARPA Ur-

ban Challenge. Unlike the kinodynamic RRT algorithm, the CL-RRT algorithm does not

sample randomly control inputs but instead samples reference trajectories that are inputted

to a low-level tracking controller designed beforehand. Each sampled reference trajectory

is then associated with a state trajectory which is computed via closed-loop prediction, that

is, the reference trajectory is sent to the tracking controller, and the closed-loop system is

simulated forward in time. We leverage the idea of closed-loop prediction, and propose the

first asymptotically optimal algorithm, called the CL-RRT#, that uses closed-loop predic-

tion for trajectory generation. The proposed algorithm incrementally grows a graph in the

space of reference trajectories and search over alternative reference trajectories that yields

lower cost state trajectories. Unlike the kinodynamic variants of asymptotically optimal

algorithms, the CL-RRT# does not require a complex steering procedure, and therefore it

is trivial to extend it to systems having complex dynamics given a low-level tracking con-

troller. We show in Chapter 8 that the proposed algorithm can be easily applied to a wide

range of dynamical systems yielding satisfactory performance [3].

1.2.5 High-level Route Planning of an Autonomous Rotorcraft

Unmanned Aerial Systems (UAS) have become ubiquitous in many civilian and military

applications due to advances in computation and sensing technologies. Recently, the Office

of Naval Research (ONR) has announced a five-year program, called Autonomous Aerial

Cargo Utility System (AACUS), with primary focus on the development of unmanned Ver-

tical Take Off and Landing (VTOL) air systems that are capable of performing cargo and

delivery operations [42]. As a part of this thesis, we develop an RRT#-based algorithm

for high-level route planning of a full-scale autonomous helicopter. The goal is to develop

a fast route planner that is capable of finding paths that leverage the capabilities of the

5



autonomous helicopter, e.g., the path have to be smooth, not have sharp turns, and are

compliant with the restrictions enforced by the aviation administration, e.g., staying within

predefined safe-flight spaces, and avoid no-fly zones. The RRT# algorithm together with

an efficient collision checker is integrated to the route planner of the helicopter and is tested

in several missions during flight tests. Extensive numerical simulations and flight test re-

sults demonstrate that the implemented route planner is able to find paths for missions

of large operating environments (50km × 50km × 10000 ft) within the order of seconds

without requiring extensive memory usage [4].

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides a survey of the different approaches

for the solution of the robotic motion planning problem. Chapter 3 introduces a novel

class of sampling-based motion planing algorithms and presents how existing dynamic

programming algorithms can be used on incrementally growing random geometric graphs.

Chapter 6 explains novel adaptive sampling strategies that build upon machine learning

algorithms and discusses their integration to sampling-based motion planning algorithms.

Chapter 7 extends applications of the RRT algorithm within path integral framework for

solution of a class of stochastic optimal control problems. Chapter 8 presents the first

asymptotically optimal sampling-based algorithm that uses closed-loop prediction for tra-

jectory generation. Chapter 9 demonstrates the application of the proposed methodology

on a real-world planning problem, specifically explains the implementation of the RRT#

algorithm for high-level route planning of a helicopter. Finally, in Chapter 10 we conclude

the thesis with some remarks and give some potential research avenues for future work.
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Chapter II

RELATED WORK

2.1 Exact Methods

These methods are most extensively applied to the motion planning problem during 1980s.

The main idea of this approach is to partition the robot’s free space into a collection of non-

overlapping cells and to construct a connectivity graph representing cell adjacency. One of

the first exact cell decomposition methods for solving the general motion planning problem

was given in [108]. These methods are nice and come with completeness guarantees, since

they solve the problem without resorting to an approximation of the search space. However,

exact methods are not scalable and need to perform on an exponentially growing number

of cells as the dimension of the search space and the number of obstacles increase.

2.2 Graph Seach-based Planners

Graph search-based planners first generate a graph representation of the robot motion plan-

ning problem, and te constructed graph encodes the collision-free configurations (or states)

of the robot as its nodes and the feasible robot motions and transitions between each pair

of configurations as its edges. Once a reasonable graph is computed, then a graph search

algorithm is employed to compute the optimal path (e.g., Dijkstra’s graph search algo-

rithm [44]). Unfortunately, the main limitation of these planners is poor scalability to

planning problems with high-dimensional search space. The memory and computation

time requirements of the Dijkstra’s algorithm become very expensive on high-resolution

graphs due to its uninformed node expansion strategy. To remedy these drawbacks, several

heuristic-based graph search algorithms have been proposed to guide the computations to-

wards the relevant region of the planning problem, e.g., the region that is a smaller subset
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of the search space and contains the shortest path.

For example, the A∗ algorithm uses an admissible and consistent cost-to-go function

approximation and expands the nodes from frontier set based on their f-value (summation

of the cost-to-come and heuristic value of a node). This helps the A∗ algorithm to restrict

the search effort to a provably minimum number of nodes [52]. Similarly, the Anytime

Repairing A∗ (ARA∗) algorithm computes a suboptimal solution with a known bound very

quickly by using highly inadmissible heuristics at the beginning of the search [86]. Then,

by using better heuristics, the quality of initial suboptimal solution is iteratively improved

during subsequent iterations given additional computation time The anytime capability of

ARA∗ allows planning engineers to make a trade-off between solution quality and search

effort on different planning problems, that is, we can terminate the algorithm at any stage

and retrieve the current best solution. Several extensions of the A∗ algorithm with re-

planning capabilities were developed in order to solve the planning problems in dynamics

environments, i.e., edge connections and weights in the graph changes. Notable exam-

ples include the LPA∗ algorithm [71], the D∗ algorithm [112], and the D∗ algorithm [70].

These algorithms leverage the previously computed solution and attempt to repair it when

the graph is updated due to some changes in the environment.

2.3 Sampling-based Motion Planners

Sampling-based motion planners avoid construction of an explicit representation of the

configuration space due to the burden of high computation and memory requirements. In-

stead, these methods incrementally build discrete data structures, e.g., a tree or a graph,

that approximately represent the configuration space and then use some search techniques

to extract the solution encoded in the discrete representation [68, 69, 82]. Sampling-based

planners are proven to be very successful in many practical applications [87]. Therefore,

they have become popular since the early 1990s and are considered the state-of-the-art re-

sults for motion planning in high-dimensional space up to date [22, 101, 113, 115, 123].
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Sampling-based methods are very efficient in terms of memory requirements since they

avoid explicit construction of the collision-free space, as opposed to most exact cell de-

composition algorithms. However, these methods sacrifice completeness guarantees and

are not able to distinguish infeasible queries. Instead, they come with some relaxed notion

of completeness and provide probabilistic completeness guarantees, that is, for sampling-

based planners, the probability that the planner fails to compute a solution, if one exists,

decays to zero as the number of samples approaches infinity [19, 57, 67, 77]. Furthermore,

the probability of failure diminishes exponentially, under the assumption that environment

has good “visibility” properties [19, 57].

To date, there are two most popular classes of sampling-based motion planning algo-

rithms, notably, Probabilistic Roadmaps (PRMs) [67, 69] and Rapidly-exploring Random

Trees (RRTs) [80,82]. These algorithms compute a discrete representation of the collision-

free space by randomly generating collision-free samples and connecting them to their

neighbors. Despite their similarities, the algorithms differ in the way that they build a

graph on the collision-free configuration space. Also, the PRM algorithm and its variants

are multiple-query methods, whereas the RRT algorithm and its variants are single-query

methods.

The PRM algorithm works in two phases: a learning phase and a query phase. In

the learning phase, a probabilistic roadmap is constructed and stored as a graph whose

nodes correspond to collision-free configurations (the milestones) and edges correspond to

collision-free paths between these configurations. These paths are computed using a simple

and fast local planner. In the query phase, for any given start and goal configurations of the

robot, the algorithm connects these configurations to the corresponding nearest nodes of

the roadmap; the roadmap is then searched for a path joining the initial and goal nodes by

a graph search algorithm. The PRM algorithm has been proven to be very successful for

motion planning problems in high-dimensional spaces [69] and is probabilistically com-

plete [67]. There has been considerable amount of research effort devoted to improving the
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PRM algorithm and its variants [32, 56, 77].

The PRM algorithm is better-suited for solving motion planning problems that have

highly structured and static workspace, e.g., robotic manipulators in factory assembly lines.

The learning phase, i.e., the construction of a roadmap, usually takes considerable amount

of time since it requires extensive number of collision checking. It is worth to building a

roadmap only if the same configuration space is expected to be used repeatedly for differ-

ent queries. However, there are many practical applications that do not require using the

same configuration space several times, for instance, a mobile robot that navigates in an

unknown environment. Due to the nature of these applications, researchers have developed

online incremental sampling-based planning algorithms such as the RRT algorithm, which

is a single-query counterpart to the PRM algorithm [55, 82]). Instead of constructing a

roadmap, tree-based planners incrementally build a tree and quickly explore the configu-

ration space with a set of rich trajectories. These planners do not require connecting two

states exactly and more easily handle systems with differential constraints. The RRT al-

gorithm has been proven to be probabilistically complete [82]. Owing to their success

in effectively handling systems with differential constraints, researchers have developed

many variants of the basic RRT algorithm and have applied them to applications beyond

robotics [26, 30, 31, 41, 48, 124]. Finally, researchers have implemented motion planners

that use the RRT algorithm as their core planning algorithm for robotic competition exper-

imental platforms [33, 72, 75, 116].

2.4 Asymptotically Optimal Motion Planners

Recently, popular sampling-based algorithms such as RRT and PRM are proven to be sub-

optimal almost surely. Asymptotically optimal variants, such as RRG, PRM∗ and RRT∗

have been proposed [65], in order to remedy this undesirable behavior. The seminal work

of [65] has sparked a renewed interest to asymptotically optimal probabilistic, sampling-

based motion planners. Several variants have been proposed that utilize the original ideas
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of [65]; a partial list includes FMT∗ [61], RRTX [95] among others. All of these algo-

rithms compute a sparse yet consistent discretization of the underlying continuous search

space and extract the solution encoded in the discrete representation. They randomly gen-

erate collision-free samples from the search space and connect the points that are near-by

to each other, i.e., within in a ball of some radius. The key step is the connection radius

which shrinks as the number of points increases, thus avoiding a large number of connec-

tions. This improves computational and memory efficiency. Last but not least, it is recently

shown that this type of planners can quickly find time-optimal trajectories for manipulators

with acceleration limits by using moderate simplification of the underlying dynamics [74].

2.5 Trajectory Optimization

Robot motion planning can be formulated as a trajectory optimization problem within the

optimal control framework by defining proper actions, dynamics and cost functional. The

solution of such trajectory optimization problem can be characterized by using techniques

built upon dynamic programming of Bellman [21] or the maximum principle by Pontrya-

gin [100]. However, solving a planning problem in high-dimensional search space is still an

open problem since both approaches have some limitations when solving practical motion

planning problems and yield different benefits compare to each other. First, the techniques

that leverage dynamic programming need to compute the optimal value function over the

entire search space in order to recover the optimal actions. Representing such value func-

tion in high-dimensional, continuous state spaces is a tedious task and suffers from the

curse of dimensionality, that is, any functional representation that uses uniform discretiza-

tion schemes requires a number of discrete values that is exponential in the dimensionality

of the search space [21]. Nonetheless, these technique have some merits on small scale

problems since they provide a feedback policy. On the other hand, the techniques based on

the maximum principle do not suffer from the curse of dimensionality since they focus on

individual trajectories rather than a value function or a policy defined on the entire search

11



space. Therefore, these techniques can be practically applied to problems in large, contin-

uous state and action spaces. However, the main drawback of such approaches is that the

maximum principle provides necessary conditions for the optimal solution and yields open

loop policies. Also, in order to recover the optimal actions, these techniques need to solve

a two-point boundary value problem by forming the co-state equations, which is not easy

to solve in general.

Some practical dynamic programming methods were developed in order to mitigate

the curse of dimensionality by concerning only a single trajectory. Popular examples in-

clude local trajectory optimizers such as differential dynamic programming (DDP) tech-

nique [60]. In DDP, a trajectory of interest is optimized in its local neighborhood in a

differential sense by means of a Taylor expansion, and the algorithms runs in a backward-

forward scheme to solve several ordinary differential equations which are formed using

a second order expansion of the dynamics and cost function, in a manner analogous to

Newton’s method. Also, some variants of DDP have been proposed using only first order

dynamics for efficiency at the expense of losing quadratic convergence rate [120]. There

are some other trajectory optimization methods such as CHOMP [103] and STOMP [62]

that have been successfully applied to many practical problems. These optimizers can solve

problems that have complex differential and task constraints, and are capable of generat-

ing smooth trajectories. However, they do have some drawbacks, such as getting stuck in

local optima. Also, since hard constraints such as avoiding obstacles are represented as

high costs in the cost functional, a locally optimal trajectory is not necessarily feasible,

and it may violate hard constraints. Therefore, the performance of trajectory optimizers

is highly dependent on a good initial guess and proper tuning of the parameters for the

specific problem. CHOMP and STOMP use random restarts to avoid getting stuck at local

optima. In practice, sampling-based planners are used to compute good initial guesses and

run as complimentary to trajectory optimizers. A recent survey of local trajectory methods

can be found in the thesis by Levine [85].
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Chapter III

DYNAMIC PROGRAMMING FOR MOTION PLANNING

3.1 Overview of Dynamic Programming

Dynamic programming solves sequential decision-making problems having a finite num-

ber of stages. A sequential decision making problem with finite stages is a is a tuple

〈X , U, f, g, G, xinit〉 where

• X is the set of all possible states of the system, i.e., the state space;

• U is the set of controls, i.e., the control space;

• f : X × U 7→ X is a transition function, a mapping specifying the next state f(x, u)

if control u is executed when the system is in state x;

• g : X × U 7→ R is a cost function that gives a real value g(x, u) obtained if control

u is executed when the system is in state x;

• G : X 7→ R is a cost function that gives a real value G(x) obtained if the final state

is x;

• xinit ∈ X is the initial state of the system.

We are interested in minimizing the total cost associated with a policy

Π =
{
{µ0, µ1, . . . , µN−1} : µk ∈M, k = 0, 1, . . . , N − 1

}
,

whereM is the set of functions µ : X 7→ U defined by

M = {µ : µ(x) ∈ U(x), ∀x ∈ X} .
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The total cost of a policy π = {µ0, µ1, . . . , µN−1} ∈ Π over a finite number of stages

and starting at the initial state v0 = xinit is

Jπ(v0) = G(vN) +
N−1∑

k=0

g(vk, µk(vk)), (1)

where the state sequence {vk}Nk=1 is generated by the transition function f under the policy

π:

vk+1 = f(vk, µk(vk)), k = 0, 1, . . . , N − 1.

The optimal cost function is

J∗(x) = inf
π∈Π

Jπ(x), x ∈ X .

Given a sequential decision problem of the form (25)-(27), it is well known that the optimal

cost function satisfies the following Bellman equation:

J∗(x) = inf
u∈U(x)

{
g(x, u) + J∗(f(x, u))

}
, ∀x ∈ X . (2)

The previous optimization results in an optimal policy µ∗ ∈M, that is,

µ∗(x) ∈ argmin
u∈U(x)

{
g(x, u) + J∗(f(x, u))

}
, ∀x ∈ X . (3)

Note that if we are given a policy µ ∈M (not necessarily optimal) we can compute its cost

from

Jµ(x) = g(x, µ(x)) + Jµ(f(x, µ(x))), ∀x ∈ X . (4)

It follows that J∗(x) = infµ∈M Jµ(x), x ∈ X . By introducing the expression

H(x, u, J) = g(x, u) + J(f(x, u)), x ∈ X , u ∈ U(x).

and letting the operator Tµ for a given policy µ ∈M,

(TµJ)(x) = H(x, µ(x), J), x ∈ X , (5)

we can define the Bellman operator T

(TJ)(x) = inf
u∈U(x)

H(x, u, J) = inf
µ∈M

(TµJ)(x), x ∈ X , (6)

14



which allows us to write the Bellman equation (2) succinctly as follows

J∗ = TJ∗, (7)

and the optimality condition (3) as

Tµ∗J
∗ = TJ∗. (8)

This interpretation of the Bellman equation states that J∗ is the fixed point of the Bellman

operator T , viewed as a mapping from the set of real-valued functions on X into itself.

Also, in a similar way, Jµ, the cost function of the stationary policy µ, is a fixed point of

Tµ (see (4)).

There are three different classes of DP algorithms to compute the optimal policy µ∗ and

the optimal cost function J∗.

Value Iteration (VI)

This algorithm computes J∗ by relaxing Eq. (2), starting with some J0, and generating a

sequence
{
T kJ

}∞
k=0

via the iteration

Jk+1 = TJk (9)

The generated sequence converges to the optimal cost function due to the contraction prop-

erty of the Bellman operator T . This method is an indirect way of computing the optimal

policy µ∗, using the information of the optimal cost function J∗.

Policy Iteration (PI)

This algorithm starts with an initial policy stationary µ0 and generates a sequence of sta-

tionary policies µk by performing Bellman updates. Given the current policy µk, the typical

iteration is performed in two steps:

i) Policy evaluation: compute Jµk as the unique solution of the equation

Jµk = TµkJµk .
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ii) Policy improvement: compute a policy µk+1 that satisfies

Tµk+1Jµk = TJµk .

Optimistic Policy Iteration (O-PI)

This algorithm works the same as PI, but differs in the policy evaluation step. Instead of

solving the system of linear equations exactly in the policy evaluation step, it performs an

approximate evaluation of the current policy and uses this information in the subsequent

policy improvement step.

3.2 Random Geometric Graphs

The main difference between standard shortest path problems on graphs and sampling-

based methods for solving motion planning problems is the fact that in the former case

the graph is given a priori, whereas in the latter case the path is constructed on-the-fly

by sampling randomly allowable configuration points from Xfree and by constructing the

graph G incrementally, adding one or more vertices at a time. Of course, such an iterative

construction raises several questions, such as: is the resulting graph connected? under

what conditions one can expect that G is an accurate representation of Xfree? how does

discretized the actions/control inputs to move between sampled successor vertices, etc. All

these questions have been addressed in a series of recent papers [64, 65] so we will not

elaborate further on the graph construction. Suffice it to say that such random geometric

graphs (RGGs) can be constructed easily and such graphs have been the cornerstone of the

recent emergence of asymptotically optimal sampling based motion planners.

For completeness, and in order to establish the necessary connections between DP al-

gorithms and RRGs, we provide a brief overview of random graphs as they are used in this

chapter. For more details, the interested reader can peruse [23] or [98].

In graph theory, a random geometric graph (RGG) is a mathematical object that is usu-

ally used to represent spatial networks. RGGs are constructed by placing a collection of
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vertices drawn randomly according to a specified probability distribution. These random

points constitute the node set of the graph in some topological space. Its edge set is formed

via pairwise connections between these nodes if certain conditions (e.g., if their distance

according to some metric is in a given range) are satisfied. Different probability distribu-

tions and connection criteria yield random graphs of different properties.

An important class of random geometric graphs is the random r-disc graphs. Given

the number of points n and a nonnegative radius value r, a random r-disc graph in Rd is

constructed as follows: first, n points are independently drawn from a uniform distribution.

These points are pairwise connected if and only if the distance between them is less than

r. Depending on the radius, this simple model of random geometric graphs possesses

different properties as the number of nodes n increases. A natural question to ask is how

the connectivity of the graph changes for different values of the connection radius as the

number of samples goes to infinity. In the literature, it is shown that the connectivity of

the random graph exhibits a phase transition, and a connected random geometric graph is

constructed almost surely when the connection radius r is strictly greater than a critical

value r∗ =
{

log(n)/(nζd)
}d, where ζd is volume of the unit ball in Rd. If the connection

radius is chosen less than the critical value r∗, then, multiple disconnected clusters occur

almost surely as n goes to infinity [98].

Recently, novel connections have been made between motion planning algorithms and

the theory of random geometric graphs [65]. These key insights have led to the development

of a new class of algorithms which are asymptotically optimal (e.g., RRG, RRT∗, PRM∗).

For example, in the RRG algorithm, a random geometric r-disc graph is first constructed

incrementally for a fixed number of iterations. Then, a post-search is performed on this

graph to extract the encoded solution. The key step is that the connection radius is shrunk

as a function of vertices, while still being strictly greater than the critical radius value. By

doing so, it is guaranteed to obtain a connected and sparse graph, yet the graph is rich

enough to provide asymptotic optimality guarantees. The authors in [65] showed that the
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RRG algorithm yields a consisted discretization of the underlying continuous configuration

space, i.e., as the number of points goes to infinity, the lowest-cost solution encoded in the

random geometric graph converges to the optimal solution embedded in the continuous

configuration space with probability one. In the next chapters, we leverage this nice feature

of random geometric graphs to get a consistent discretization of the continuous domain of

the robot motion planning problem. With the help of random geometric graphs, the robot

motion planning problem boils down to a shortest path problem on a discrete graph.

3.3 From RRGs to DP

Let G = (V,E) denote the graph constructed by the RRG algorithm at some iteration,

where V and E ⊆ V × V are finite sets of vertices and edges, respectively. Based on the

previous discussion, G is connected and all edge costs are positive, which implies that the

cost of all the cycles in G are positive. Using the previous notation, we can define on this

graph the sequential decision system (25) where x′ ∈ succ(G, x) and transition cost as

in (26). Each parent assignment for each node in G defines a policy. Convergence of DP

algorithms is guaranteed and the resulted optimal policy µ is proper.
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Chapter IV

MOTION PLANNING USING VALUE ITERATION METHODS

4.1 Problem Formulation

Let X denote the state space, which is assumed to be an open subset of Rd, where d ∈ N

with d ≥ 2. Let the obstacle region and the goal region be denoted by Xobs and Xgoal,

respectively. The obstacle-free space is defined by Xfree = X \ Xobs. Let the initial state

be denoted by xinit ∈ Xfree. The neighborhood of a state x ∈ X is defined as the open ball

of radius r > 0 centered at x, that is, Br(x) = {x′ ∈ X : ‖x− x′‖ < r}. The straight-line

segment between given two points x, x′ ∈ Rd is denoted by Line(x, x′) = {θ ∈ R, 0 ≤

θ ≤ 1 : θx + (1 − θ)x′}. Let G = (V,E) denote a graph, where V and E ⊆ V × V are

finite sets of vertices and edges, respectively. In the sequel, we will use graphs to represent

the connections between a (finite) set of points selected randomly from Xfree. With a slight

abuse of notation, we will use x to denote both a point in the spaceX and the corresponding

vertex in the graph.

Geometric r-disc graph: Let V ⊂ Rd be a finite set, and r > 0. A geometric r-disc

graph G(V ; r) = (V,E) in d dimensions is an undirected graph with vertex set V and edge

set E = {(u, v) : ‖u− v‖ < r}.

Successor vertices: Given a vertex v ∈ V in a directed graph G = (V,E), the set-valued

function succ : (G, v) 7→ V ′ ⊆ V returns the vertices in V that can be reached from vertex

v,

succ(G, v) := {u ∈ V : (v, u) ∈ E} .

Predecessor vertices: Given a vertex v ∈ V in a directed graph G = (V,E), the set-

valued function pred : (G, v) 7→ V ′ ⊆ V returns the vertices in V that are the tails of the
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edges going into v,

pred(G, v) := {u ∈ V : (u, v) ∈ E} .

Parent vertex: Given a directed graph G = (V,E) and a vertex v ∈ V , the function

parent : v 7→ u returns a unique vertex u ∈ V such that (u, v) ∈ E and u ∈ pred(G, v).

Spanning tree: Given a directed graph G = (V,E), a spanning tree of G can be defined

such that T = (Vs, Es), where Vs = V and Es = {(u, v) : (u, v) ∈ E and parent(v) =

u}.

Edge cost value: Given an edge e = (u, v) ∈ E, the function c : e 7→ r returns a

non-negative real number. Then c(u, v), where v ∈ succ(G, u), is the cost incurred by

moving from u to v.

Cost-to-come value: Given a vertex v ∈ V , the function g : v 7→ r returns a non-

negative real number r, which is the cost of the path to v from a given initial state xinit ∈

Xfree. We will use g∗(v) to denote the optimal cost-to-come value of the vertex v which can

be achieved in Xfree.

Heuristic value: Given a vertex v ∈ V , and a goal region Xgoal, the function h :

(v,Xgoal) 7→ r returns an estimate r of the optimal cost from v to Xgoal; we set h(v) = 0

if v ∈ Xgoal. It is an admissible heuristic if it never overestimates the actual cost of reach-

ing Xgoal. In this chapter, we always assume that h is an admissible heuristic. It is well

known that inadmissible heuristics can be used to speed-up the search, but they may lead

to suboptimal paths [97].

We wish to solve the following motion planning problem: Given a bounded and con-

nected open set X ⊂ Rd, and the sets Xfree and Xobs = X\Xfree, and given an initial point

xinit ∈ Xfree and a goal region Xgoal ⊂ Xfree, find the minimum-cost path connecting xinit

to the goal region Xgoal. If no such path exists, then report that no solution is possible.

Next, we present an iterative algorithm that finds the optimal path connecting a se-

quence of points sampled randomly from Xfree. The algorithm is based on ideas similar to

those found in the RRT∗ algorithm [65], with one important distinction. While the RRT∗
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algorithm is based on a local rewiring of the tree after the addition of a new vertex, the

proposed algorithm incorporates, at each iteration, a replanning step similar to what is im-

plemented in the LPA* and D* algorithms [70, 71] to efficiently propagate changes in the

relevant part of the graph owing to the inclusion of the new vertex. As a result, the proposed

algorithm ensures that at each iteration, the optimal path in the current graph is computed.

On the contrary, in the RRT∗ algorithm there is no guarantee that the interim path at

any intermediate iteration is optimal. Path optimality in RRT∗ is ensured only at the limit,

as the number of sampled points tends to infinity. Since any algorithm will be terminated

after a finite number of iterations, it is important to ensure that at termination, the returned

path is optimal, given the available data up to that point. Furthermore, it is important

that the computation of the optimal path at each iteration is done efficiently. This means

that any prior information from previous iterations is taken into consideration during the

next replanning step. In our implementation, this is done by keeping track of the most

“promising” vertices in the graph (these are the vertices that can be part of the optimal

path) and by updating the cost-to-come values of these vertices as new information becomes

available. It is shown that this amounts to implementing a dynamic-type programming step

at each iteration, after a suitable reordering of the variables (in order to encode the updated

information), similarly to what is done in Gauss-Seidel relaxation methods for the solution

of fixed point problems. The details of the proposed algorithm are given in Sections 4.3 and

4.4. First, it is important to review the main ideas behind relaxation methods to iteratively

solve a system of equations.

4.2 Overview of Relaxation Methods

Relaxation methods are iterative methods for solving systems of equations, including al-

gebraic systems of nonlinear equations and optimization problems in numerical mathemat-

ics [25]. These methods can be written informally as

x(k + 1) = f(x(k)), k = 0, 1, . . . , (10)
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where each x(k) ∈ Rn is an n-dimensional vector, and f : Rn 7→ Rn is a vector-valued

function. Equation (10) generates a sequence of improving approximate solutions for the

equation x = f(x) for any given initial guess x(0). The key issue with iterative methods is

whether iteration (10) converges. If the sequence {x(k)}∞k=1 converges, i.e., if x(k) → x∗

as k →∞, and the function f is continuous, then x∗ is a fixed point of f , that is, it satisfies

the equation x∗ = f(x∗).

An important issue with relaxation methods is speed of convergence. One way to im-

prove the convergence rate is to carry out the calculations for all components of x(k) in

(10) simultaneously. To this end, let xi(k) denote the ith component of x(k) and let fi

denote the ith component of the function f . Then, equation (10) can be rewritten as

xi(k) = fi(x1(k − 1), . . . , xn(k − 1)), i = 1, . . . , n. (11)

A simple way to parallelize iteration (10) is to create n processes (or threads) and employ

each one of them to update a different component of x according to (11). At the kth

stage of the iteration, x(k − 1) is readily computed and stored in the previous stage for

usage in future stages. Therefore, each process knows the values of all components of

x(k − 1) that are needed for the computation of f . The new values of the components

of x(k) are computed in parallel and exchanged between the processes in order to start

the next stage. This approach of parallelization speeds up an iterative method such as

(10) most of the times, but it may not be practical if x has too many components. For

example, there may be few processes available, or the creation of a new process may be an

expensive task in terms of time and memory. Therefore, a coarse-grained parallelization

of iteration (10) may be desirable in some applications. In particular, assume that the

domain of f can be decomposed as the Cartesian product of lower dimensional subspaces

according to Rn =
∏p

j=1 Rnj , where
∑p

j=1 nj = n. Accordingly, the vector x ∈ Rn

can be decomposed conformally as x = (x1, . . . , xj, . . . , xp), where xj ∈ Rnj is the jth
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block-component of x. Subsequently, equation (10) can be written as

xj(k) = f j(x1(k − 1), . . . , xj(k − 1), . . . , xp(k − 1)), j = 1, . . . , p, (12)

where each f j : Rn 7→ Rnj is the jth block component of f . Each one of the p processes

is assigned the computation of a different block-component f j , according to equation (12).

This approach is called block-parallelization [25].

One of the primary differences in iterative methods is how the previously computed

information is incorporated to update the new value of x at each iteration. In equation (11),

all of the components of x(k) are updated simultaneously. This type of iteration is called

Jacobi type iteration. Alternatively, the iteration step can be modified such that the compo-

nents of x are updated one at a time with respect to the most recent information available.

That is, (11) can be modified as

xi(k) = fi(x1(k), . . . , xi−1(k), xi(k − 1), . . . , xn(k − 1)), i = 1, . . . , n. (13)

This is called Gauss-Seidel type iteration. Since Gauss-Seidel type methods incorporate the

most recent information, they typically converge to the solution of the problem faster than

their Jacobi type counterparts. Therefore, Gauss-Seidel type methods are more desirable

than Jacobi type ones. On the other hand, a Gauss-Seidel iteration (sometimes called a

sweep) may have more interdependencies when computing the different components of x.

Hence, a Gauss-Seidel iteration is implemented sequentially. On the other hand, Jacobi

type methods have greater potential for massively parallel implementation.

4.2.1 Relaxation Methods for Solving Shortest Path Problems

Let G = (V,E) be a directed graph where V and E ⊆ V × V are the vertex and edge sets,

respectively, and let Vgoal = V ∩ Xgoal be the goal set of vertices. Let us assume that there

exist a path from every vertex vi ∈ V to Vgoal. Let J∗(vi) be the optimal cost-to-go value

of the vertex vi ∈ V , which is computed as the unique solution of the following Bellman
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equation

J∗(vi) =





minvj∈succ(G,vi) (c(vi, vj) + J∗(vj)) , vi ∈ V \ Vgoal,

0, vi ∈ Vgoal.

(14)

Once Bellman’s equation is solved, i.e., all optimal cost-to-go values J∗(vi) are computed,

the optimal path from any given vertex vi to Vgoal can be easily constructed by starting

at vi and traversing iteratively from the current vertex vj ∈ V to any of its successors

vk ∈ succ(G, vj) that yields the minimum cost-to-go value J∗(vj) (ties can be broken

arbitrarily), until Vgoal is reached. Iterative methods can be developed for computing the

cost-to-come values efficiently by simply relaxing Bellman’s equation [25]. The Bellman-

Ford algorithm is an efficient algorithm to solve (14). It is used to solve the single-source

shortest-path problem where the edge costs may be negative [20,47]. Two different versions

of the Bellman-Ford algorithm are given below, and both of these algorithms converge to

J∗(vi) for all vi ∈ V , for arbitrary initial conditions. The nice property of converging to

the optimal solution from any initial condition makes the Bellman-Ford algorithm a good

choice to use to implement the exploitation step of incremental sampling-based algorithms,

where the shortest path problem must be solved repeatedly as new information is obtained

during previous exploration steps.

The Jacobi version of the Bellman-Ford algorithm works as follows. The initial con-

ditions are set as J0(vi) = 0 for all vi ∈ Vgoal and J0(vi) = ∞ for all vi ∈ V \ Vgoal. It

is assumed that the algorithm terminates after N iterations meaning that for all N ≤ k,

Jk(vi) = Jk−1(vi) for all vi ∈ V . Then, the kth iteration of the Jacobi-type Bellman-Ford

algorithm is written as

Jk(vi) =





minvj∈succ(G,vi)
(
c(vi, vj) + Jk−1(vj)

)
, vi ∈ V \ Vgoal,

0, vi ∈ Vgoal.

(15)

This algorithm is well suited for massively parallel implementation since the cost-to-

go values of all vertices vi can be updated in parallel. This form is also known as value
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iteration.

The Gauss-Seidel version of the Bellman-Ford algorithm uses the same initial con-

ditions and termination criterion as the Jacobi version. Let o : {1, . . . , n} 7→ V be an

ordering function that determines the cost-to-come value update order of the vertices of a

Gauss-Seidel iteration. Then the kth iteration of the algorithm is written as

Jk(vo(`)) =





minvj∈succ(G,vo(`))
(
c(vo(`), vj) + Jk

′
(vj)

)
, vo(`) ∈ V \ Vgoal,

0, vo(`) ∈ Vgoal,

(16)

where k′ = k if vj ≺ vo(`) and k′ = k − 1 if vo(`) ≺ vj . Here the notation v ≺ u

means that vertex v is updated before vertex u. Since cost-to-come values of vertices are

updated with respect to the given order at each iteration, different updating orders typically

generate different results. An ordering which increases parallelism at each iteration, while

converging to the correct solution, is favored.

4.3 The RRT# Algorithm - Overview

The solution of Bellman’s Equation gives the optimal path from any vertex to the goal

vertex set. In our problem, the initial point xinit is given a priori. Therefore, Bellman’s

Equation can be rewritten in terms of the cost-to-come values as follows:

g∗(vi) =





0, vi = xinit,

minvj∈pred(G,vi) (g∗(vj) + c(vj, vi)) , vi ∈ V \ {xinit}.
(17)

We can rewrite both Jacobi and Gauss-Seidel versions of the Bellman-Ford algorithm

in terms of cost-to-come values by relaxing equation (17). To this end, let nk be the number

of vertices (i.e., states) and let gk ∈ Rnk be the nk-dimensional vector whose components

are the cost-to-come values of the vertices during the kth iteration of the Bellman-Ford

algorithm, i.e., let gki = gk(vi). Let now fJ be a vector-valued function defined as follows

fJi(g
k−1) =





0, vi = xinit,

minvj∈pred(G,vi)(g
k−1
j + c(vj, vi)), vi ∈ V \ {xinit}.

(18)
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Then, the Jacobi iteration can be succinctly written as gk = fJ(gk−1). The initial conditions

are given by g0
i = 0 for vi = xinit and g0

i =∞ for all vi ∈ V \ {xinit}.

The value computed by fJi at the kth iteration is the one-step lookahead cost-to-come

estimate of the vertex vi, called the locally minimum cost-to-come estimate, or lmc-value

of the vertex vi for short (also called rhs-value in [71]). We therefore write lmck(vi) =

fJi(g
k). The vertex vi is called stationary (or consistent, see [71]) if its g-value is equal

to its lmc-value, that is, if gk(vi) = lmck(vi) which, in turn, implies that gki = fJi(g
k).

Otherwise, the vertex vi it is called nonstationary.

Similarly, for the Gauss-Seidel version of the Bellman-Ford algorithm, let gk,` ∈ Rnk

be the nk-dimensional vector whose components are the cost-to-come values of the vertices

after the cost-to-come value of `th order vertex is updated during the kth iteration of the

algorithm, that is, gk,`i = gk+1
i if vi � vo(`) and gk,`i = gki if vo(`) ≺ vi. The initial

conditions are set similarly to the previous case, namely, g0,0
i = 0 for vi = xinit and

g0,0
i =∞ for all vi ∈ V \ {xinit}. Then, a Gauss-Seidel iteration can be written succinctly

as gk,0 = fG(gk−1,0), where

fGo(`)(g
k−1,`−1) =





0, vo(`) = xinit,

minvj∈pred(G,vo(`))(g
k−1,`−1
j + c(vj, vo(`))), vo(`) ∈ V \ {xinit}.

(19)

During each iteration, the components of gk−1,0 are updated one at a time by gk−1,`
o(`) =

fGo(`)(g
k−1,`−1) where gk,0 = gk−1,nk . The lmc-value of the vertex vi at stage (k, `) is

defined as lmck,`(vi) = fGi(g
k,`) for Gauss-Seidel type iterations and the vertex vi is called

stationary if gk,`(vi) = lmck,`(vi), which implies gk,`i = fGi(g
k,`).

Based on the previous reformulation of the Bellman-Ford algorithm in terms of Jacobi

and Gauss-Seidel iterations, we can now give the details of the RRT# algorithm. The

RRT# algorithm performs two tasks, namely exploration and exploitation, during each

iteration. The exploration task implements the extension procedure of the RRG algorithm,

and is subsequently followed by the exploitation task which implements the Gauss-Seidel
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version of the Bellman-Ford algorithm as in equation (19). A brief description of each of

these steps is given below.

Exploration: This step samples randomly a point inXfree and then extends the underlying

graph toward the sampled point by including it as a new vertex in the current graph by

connecting the missing edges. The following procedures are part of the exploration step.

Sampling: Sample : N → Xfree is a function that returns independent, identically

distributed (i.i.d) samples from Xfree.

Nearest neighbor: Nearest is a function that returns a point from a given finite set V ,

which is the closest to a given point x in terms of a given distance function.

Near vertices: Near is a function that returns the n closest points in a given finite set V

to a given point x in terms of a given distance function.

Steering: Steer is a function that returns the point in a ball centered around a given

state x that is closest, with respect to the given distance function, to another given point

xnew.

Collision checking: Given two points x1, x2 ∈ Xfree, the Boolean function ObstacleFree(x1, x2)

checks whether the line segment connecting these two points belongs to Xfree. It returns

True if the line segment is a subset of Xfree, i.e., Line(x1, x2) ⊂ Xfree, and False other-

wise.

Graph extension: Extend is a function that extends the nearest vertex of the graph G

toward the randomly sampled point xrand.

Exploitation: This step implements the task of improving the cost-to-come values of the

current vertices as new information becomes available. It also encodes the lowest-cost

path information for the promising vertices (see equation (20) below) and v∗goal (the goal

vertex that has the lowest cost-to-come value in the goal set) as a spanning tree rooted at

the initial vertex. Cost-to-come values of nonstationary vertices are updated in an order

based on their f-values, i.e., an underestimate of the cost of the optimal path from the initial
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vertex to the goal set passing through the vertex of interest, and ties are broken in favor of

vertices which have smaller g-values at each iteration of the Gauss-Seidel version of the

Bellman-Ford algorithm. Note that the algorithm works so that stationarity of just a subset

of vertices (rather than of all vertices) suffices to compute the optimal path from xinit to

Xgoal. Details of the procedures used in the exploitation step are given below.

Ordering: Given a vertex vi ∈ V , the function Key : vi 7→ ki returns a real vector

ki ∈ R2, whose components are ki1(vi) = lmc(vi)+h(vi) and ki2(vi) = lmc(vi). The com-

ponents of the key correspond to the f- and g-values in the A∗ algorithm, respectively [93].

The precedence relation between keys is determined according to lexicographical ordering.

Given two keys k1, k2 ∈ R2, the Boolean function 4 : (k1, k2) 7→ {False, True} re-

turns True if and only if either k11 < k21 or (k11 = k21 and k12 ≤ k22), and returns False

otherwise.

Promising vertices: Given a graph G = (V,E) with xinit ∈ V , let g∗(vi) be the optimal

cost-to-come value of the vertex vi that can be achieved on the given graph G, and let

v∗goal = argminvi∈V ∩Xgoal
g∗(v). The promising vertices Vprom ⊂ V is the set of vertices that

satisfy the following relation

Vprom = {vi ∈ V : [f(vi), g
∗(vi)] ≺ [f(v∗goal), g

∗(v∗goal)]}, (20)

where f(vi) = g∗(vi) + h(vi). Only promising vertices have the potential to be part of the

optimal path from xinit to Xgoal. Therefore, all promising vertices must be stationary at the

end of each iteration.

Relevant region: Let x∗goal ∈ Xgoal be the point in the goal region that has the lowest

optimal cost-to-come value in Xgoal, i.e., x∗goal = argminx∈Xgoal
g∗(x). The relevant region

ofXfree is the set of points x for which the optimal cost-to-come value of x, plus the estimate

of the optimal cost moving from x to Xgoal is less than the optimal cost-to-come value of

x∗goal, that is,

Xrel = {x ∈ Xfree : g∗(x) + h(x) < g∗(x∗goal)}. (21)
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Points that lie in the Xrel have the potential to be part of the optimal path starting at xinit

and reaching Xgoal.

Replanning: Given a graph Gk = (V k, Ek) at the kth iteration, a goal region Xgoal ⊂

Xfree and an arbitrary vector gk−1,0 ∈ Rnk of cost-to-come values of all vi ∈ V k, where

gk−1,0
i = 0 for vi = xinit, the function Replan : (Gk,Xgoal, g

k−1,0) 7→ (Gk,Xgoal, g
k,0)

operates on the nonstationary vertices iteratively until all promising vertices become sta-

tionary. The Replan function is used to propagate the effects of the topological changes in

the graph as new vertices are added with each iteration.

Priority of vertices: The priority of vertices is the same as the priority of their associated

keys, and a priority queue is used to sort all of the nonstationary vertices of the graph based

on their respective key values. The following functions are defined to manage the priority

queue.

Updating queue: Given a vertex vi ∈ V , the function UpdateQueue changes the queue

based on the g- and lmc-values of the vertex vi. If the vertex vi is nonstationary, then it is

either inserted into the queue or its priority in the queue is updated based on its up-to-date

key value if it is already inside the queue. Otherwise, the vertex is removed from the queue

if it is a stationary vertex. The order of expanded vertices is determined by selecting the

vertex of minimum key value in the queue for expansion at each step.

Finding minimum: The function findmin() returns the vertex with the highest priority

of all vertices in the queue. This is the vertex of minimum key value.

Removing a vertex: Given a vertex vi ∈ V , the function remove() deletes the vertex vi

from the queue.

Updating priority: Given a vertex vi ∈ V , and a key value, the function update()

changes the priority of the vertex vi in the priority queue by reassigning the key value of

the vertex vi with the new given key value.

Inserting a vertex: Given a vertex vi ∈ V , and a key value, the function insert() adds

the vertex vi with the given key value into the queue.
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4.4 The RRT# Algorithm - Details

The main body of the RRT# algorithm is given in Algorithm 1 and it is similar to the

other RRT-variants (RRT, RRG, RRT∗, etc.) with the notable exception that it keeps track

of vertex stationarity using the key values of all current vertices in the graph. One of the

important differences between the RRT∗ and RRT# algorithms is that all vertices in the

tree computed by the RRT∗ algorithm have a uniform type based on their finite cost-to-

come value, whereas in the RRT# algorithm the vertices have four different types based

on their one-step lookahead estimates of the cost-to-come value. In the RRT# algorithm,

each vertex v is classified into one of the following four categories, based on the values of

its (g(v), lmc(v)) pair.

• Stationary with finite key value: g(v) <∞, lmc(v) <∞ and g(v) = lmc(v)

• Stationary with infinite key value: g(v) =∞, lmc(v) =∞

• Nonstationary with finite key value: g(v) <∞, lmc(v) <∞ and g(v) 6= lmc(v)

• Nonstationary with infinite g-value and finite lmc-value: g(v) =∞, lmc(v) <∞

Stationary vertices with infinite key value are always non-promising, whereas for the rest

of the cases the vertices can be either promising or non-promising.

Algorithm 1: Body of the RRT# Algorithm

1 RRT#(xinit, Xgoal, X )
2 V ← {xinit}; E ← ∅;
3 G ← (V ,E);
4 for k = 1 to N do
5 xrand ← Sample(k);
6 G ← Extend(G, xrand);
7 Replan(G,Xgoal);

8 (V ,E)← G; E′ ← ∅;
9 foreach x ∈ V do

10 E′ ← E′ ∪ {(parent(x), x)}
11 return T = (V ,E′)

30



The algorithm starts by adding the initial point xinit into the vertex set of the underly-

ing graph. Then, it incrementally grows the graph in Xfree by sampling randomly a point

xrand from Xfree and extending the graph toward xrand. The Replan procedure, which is

provided in Algorithm 3, then propagates the new information due to the extension across

the whole graph in order to improve the cost-to-come values of the promising vertices in

the graph. All computations due to the sampling and extension steps, followed by exploita-

tion (Lines 4-6 of Algorithm 1), form a single iteration of the algorithm. The process is

repeated for a given fixed number of iterations. The spanning tree of the final graph which

is rooted at the initial vertex, and which contains the lowest-cost path information for the

promising vertices and v∗goal, is returned at the end.

This spanning tree (Line 7 in Algorithm 1) contains information about the lowest-cost

path for each promising vertex and v∗goal, which can be achieved on the current graph. It

utilizes the information provided by the exploration step to the highest degree, and is one

of the key difference between the RRT# algorithm and other RRT-variants, including the

RRT∗ algorithm. In addition, in the RRT# algorithm the g-values of the promising vertices

are equal to their respective optimal cost-to-come values that can be achieved through the

edges of the graph. This allows us to initialize the g-value of a new vertex with a smaller

estimate value during extension if it has any promising neighbor vertex. This estimate keeps

improving to the best possible value whenever new information becomes available on any

part of the graph. Hence, the g-value of each promising vertex in the graph converges to its

optimal cost-to-come value very quickly.

The Extend procedure used in the RRT# algorithm is given in Algorithm 2. During

each iteration, the Extend procedure tries to extend the graph toward the randomly sampled

point xrand ∈ Xfree. First, the closest vertex in the graph xnearest is found in Line 3, then

xnearest is steered toward the randomly sampled point xrand in the next line. If the line

segment connecting the steered point xnew and xnearest is feasible, then the new point xnew

is prepared for inclusion to the vertex set of the graph. Then, a local search is performed in
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Algorithm 2: Extend Procedure for RRT# Algorithm

1 Extend(G,x)
2 (V ,E)← G; E′ ← ∅;
3 xnearest ← Nearest(G, x);
4 xnew ← Steer(xnearest, x);
5 if ObstacleFree(xnearest, xnew) then
6 Initialize(xnew, xnearest);
7 Xnear ← Near(G, xnew, |V |);
8 foreach xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 if lmc(xnew) > g(xnear) + c(xnear, xnew) then
11 lmc(xnew) = g(xnear) + c(xnear, xnew);
12 parent(xnew) = xnear;

13 E′ ← E′ ∪ {(xnear, xnew), (xnew, xnear)};

14 V ← V ∪ {xnew};
15 E ← E ∪ E′;
16 UpdateQueue(xnew);

17 return G′ ← (V ,E)

some neighborhood of xnew (i.e., inside the set of vertices returned by the Near procedure)

in order to find the local minimum cost-to-come estimate value and the corresponding

parent vertex. This is done in Lines 8-13 of Algorithm 2. The new vertex xnew and all

extensions resulting in feasible paths are added to the vertex and edge sets of the graph in

Lines 14-15. In the end, the new vertex is decided to be inserted in the priority queue or

not based on its stationarity in the UpdateQueue procedure.

Algorithm 3: Replan Procedure

1 Replan(G,Xgoal)
2 while q.findmin() ≺ Key(v∗goal) do
3 x = q.findmin();
4 g(x) = lmc(x);
5 q.delete(x);
6 foreach s ∈ succ(G, x) do
7 if lmc(s) > g(x) + c(x, s) then
8 lmc(s) = g(x) + c(x, s);
9 parent(s) = x;

10 UpdateQueue(s);
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Algorithm 4: Auxiliary Procedures

1 Initialize(x, x′)
2 g(x)←∞;
3 lmc(x)←∞;
4 parent(x)← x′;
5 if x′ 6= ∅ then
6 lmc(x)← g(x′) + c(x′, x);

7 UpdateQueue(x)
8 if g(x) 6= lmc(x) and x ∈ q then
9 q.update(x,Key(x));

10 else if g(x) 6= lmc(x) and x /∈ q then
11 q.insert(x,Key(x));

12 else if g(x) = lmc(x) and x ∈ q then
13 q.delete(x);

14 Key(s)
15 return k = (lmc(x) + h(x),lmc(x));

A newly inserted vertex may be nonstationary if it has a finite lmc-value. Therefore,

the spanning tree needs to be checked, and appropriate operations must be performed in

order to update lowest-cost path information, if necessary. The Replan procedure, which

is provided in Algorithm 3, is called to update the spanning tree by operating on the nonsta-

tionary and promising vertices of the graph, iteratively. It simply pops the most promising

nonstationary vertex from the priority queue, if there are any, and this nonstationary ver-

tex is made stationary by assigning its lmc-value to its g-value. Then, its new g-value

is propagated among its neighbors in order to improve their lmc-values in Lines 6-10 of

Algorithm 3. However, this information propagation may also cause some vertices to be-

come nonstationary; therefore, all resulting nonstationary vertices are inserted in the pri-

ority queue as well. This process continues until there are no nonstationary promising

vertices left in the priority queue.

Note that the termination condition in Line 2 of Algorithm 3 ensures that when the

Replan procedure terminates, all promising and nonstationary vertices are expanded. This

would be clearly true if the Replan(Gk,Xgoal) procedure were allowed to operate on all
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nonstationary vertices of the graph, that is, if the termination condition in Line 2 of Algo-

rithm 3 were replaced by the condition “queue is not empty.” In such a case, the Replan

procedure would expand all vertices until they all became stationary before the procedure

terminated. However, the termination condition in Line 2 of Algorithm 3 actually ensures

much more, namely, that all promising vertices (and only those) are made stationary, so

there is no need to expand the non-promising vertices. This is important for efficiency

since a non-promising vertex cannot be part of the optimal path. Therefore, there is no

need to expand non-promising vertices, thus speeding up the whole algorithm. The details

of how this is achieved are given in Theorem 1 in the following section.

Note that without loss of generality, we will assume that the goal region consists of

a single point (i.e., Xgoal = xgoal) and the graph is grown from xgoal to xinit. Therefore,

the proofs are presented based on the cost-to-go (J-value) and one-step lookahead cost

(J̄-value) estimates of the nodes of the graph.

4.5 Key Results and Proofs

Lemma 1

The cost-to-go and one-step lookahead cost values of each vertex v ∈ V k are nonincreasing

with each step of each iteration of the Replan(Gk, xinit) procedure.

Proof. Let us consider a vertex v ∈ V k at the kth iteration of the RRT# algorithm.

The one-step lookahead cost v is either infinite (J̄k−1,0(v) = ∞) or has a finite value

(J̄k−1,0(v) <∞) at the beginning of the kth iteration. The former occurs when the cost-to-

go value of each successor vertex of v is infinite, whereas the latter occurs when there is at

least one successor vertex of v with finite cost-to-go value. As shown in Line 11 of Algo-

rithm 2 and Line 8 of Algorithm 3 , the one-step lookahead cost value of vertex v is updated

only if Bellman updates are performed for its successors. This situation occurs when one

of the successor vertices of v is expanded, and this expansion results in an improvement

in the current one-step lookahead cost value of v. Therefore, assuming that the vertex u is
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expanded at the `th step, we have that J̄k−1,`(v) = c(v, u) + Jk−1,`(u) < J̄k−1,`−1(v) where

u ∈ succ(Gk, v), otherwise J̄k−1,`(v) = J̄k−1,`−1(v). Finally, we have that J̄k−1,`(v) ≤

J̄k−1,`−1(v) for all 0 < ` ≤ nk, where nk is the last step of the Replan(Gk, xinit) procedure.

Let `i (i = 0, 1, . . . ) denote the step when vertex v is expanded and is made station-

ary, that is, Jk−1,`i(v) = J̄k−1,`i(v) = J̄k−1,`i−1(v). The cost-to-go value of each vertex,

other than the expanded one, remains unchanged during a step of the Replan(Gk, xinit)

procedure. Therefore, Jk−1,`(v) = J̄k−1,`i(v) for all `i ≤ ` < `i+1. This implies that

Jk−1,`(v) = Jk−1,`−1(v) for all `i < ` < `i+1. For the cost-to-go value of v at the `i+1th

step, we may therefore write Jk−1,`i+1(v) = J̄k−1,`i+1(v) ≤ J̄k−1,`i(v) = Jk−1,`i+1−1(v). It

follows that Jk−1,`(v) ≤ Jk−1,`−1(v) for all 0 < ` ≤ nk.

Lemma 2

If a vertex v ∈ V is nonstationary at stage (k, `), then its cost-to-go value is greater than

its one-step lookahead cost value, i.e., Jk−1,`(v) > J̄k−1,`(v). Consequently, the J- and

J̄-values of a vertex v satisfy the relation Jk−1,`(v) ≥ J̄k−1,`(v) at any given time.

Proof. Let us assume that vertex v is stationary at the beginning of the `th step of the

kth iteration of the RRT# algorithm, that is, Jk−1,`−1(v) = J̄k−1,`−1(v), and it becomes

nonstationary due to the expansion of vertex u at the `th step. As discussed in Lemma 1, the

J-value of each vertex remains unchanged except for the J-value of the expanded vertex,

and hence, Jk−1,`(v) = Jk−1,`−1(v). Furthermore, the J̄-value of v is updated only if one of

its successors is expanded, and this expansion yields an improvement in its current J̄-value,

that is, J̄k−1,`(v) = c(v, u) + Jk−1,`(u) < J̄k−1,`−1(v), where u ∈ succ(Gk, v). Therefore,

whenever v is nonstationary, we have Jk−1,`(v) = Jk−1,`−1(v) = J̄k−1,`−1(v) > J̄k−1,`(v).

Also, it holds Jk−1,`(v) = J̄k−1,`(v) whenever vertex v is stationary. Hence, it follows that

Jk−1,`(v) ≥ J̄k−1,`(v) for at any given step.

Lemma 3

Let u ∈ V k be the vertex selected for expansion at the `th step of the kth iteration, that
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is, let u be the nonstationary vertex of highest priority in the queue. Then, the following

relations hold for any vertex v ∈ V k due to the expansion of the vertex u:

i) If v is nonstationary, then Keyk−1,`(v) � Keyk−1,`−1(u).

ii) If v is stationary and becomes nonstationary at the next step, then Keyk−1,`(v) �

Keyk−1,`−1(u).

Proof. First, we need to state some general observations. Without loss of generality, we

assume that the vertices v and u are distinct. When vertex u ∈ V k is expanded at the `th

step, it becomes stationary at the next step, and thus Jk−1,`(u) = J̄k−1,`(u) = J̄k−1,`−1(u).

Therefore, we have Keyk−1,`(u) = Keyk−1,`−1(u). Also, the J-values of all other vertices

remain unchanged, that is, Jk−1,`(v) = Jk−1,`−1(v) for all v ∈ V k; only their J̄-values

may be updated. The latter occurs if v ∈ pred(Gk, u). Therefore, a vertex v ∈ V k can be

made nonstationary only if v ∈ pred(Gk, u) and its J̄-value is also updated. This situation

happens when the J-value of one of the successors of v (in this case u) has been decreased,

thus resulting in a decrease of the J̄-value of v.

Case i): There are three possibilities in this case. First, the key value of the vertex v

is not updated and therefore v remains nonstationary. This implies that Keyk−1,`(v) =

Keyk−1,`−1(v). Since the vertex u is selected for expansion before vertex v, it has higher pri-

ority than vertex v, and thus, Keyk−1,`−1(u) � Keyk−1,`−1(v). It follows that Keyk−1,`(v) =

Keyk−1,`−1(v) � Keyk−1,`−1(u).

Next, assume that the key of vertex v is updated but v still remains nonstationary during

the expansion of vertex u. It follows that, necessarily, u ∈ succ(Gk, v). In this case, the

J̄-value of v is decreased after the expansion of vertex u, and we have that J̄k−1,`(v) <
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J̄k−1,`−1(v). It follows that

Keyk−1,`(v) = [h(xinit, v) + J̄k−1,`(v), J̄k−1,`(v)]

= [h(xinit, v) + c(v, u) + Jk−1,`(u), c(v, u) + Jk−1,`(u)]

� [h(xinit, u) + Jk−1,`(u), Jk−1,`(u)]

= [h(xinit, u) + J̄k−1,`−1(u), J̄k−1,`−1(u)]

= Keyk−1,`−1(u).

Finally, assume that vertex v is nonstationary and it becomes stationary during the

expansion of vertex u. Since vertex v is nonstationary at stage (k − 1, ` − 1), it follows

that Jk−1,`−1(v) > J̄k−1,`−1(v) according to Lemma 2. Its J-value remains unchanged and

it becomes stationary at the next step due to the expansion of the vertex u. It follows that

J̄k−1,`(v) = Jk−1,`(v) = Jk−1,`−1(v) > J̄k−1,`−1(v) which contradicts Lemma 1. Hence,

due to the expansion of a vertex at the `th step, no vertex other than the expanded one

becomes stationary at the next step.

Case ii): Since vertex v becomes nonstationary at the next step due to the expansion of

vertex u, it follows that u must be one of the successors of v. That is, u ∈ succ(Gk, v)

and J̄k−1,`(v) = c(v, u) + Jk−1,`(u). Furthermore, the J̄-value of the vertex v is decreased

during the expansion of vertex u, and thus, Jk−1,`(u) = J̄k−1,`(u) = J̄k−1,`−1(u). It follows

that Jk−1,`(v) = Jk−1,`−1(v) = J̄k−1,`−1(v) > J̄k−1,`(v) and thus Jk−1,`(v) > J̄k−1,`(v).

Similarly to Case i), it can be shown that Keyk−1,`(v) � Keyk−1,`−1(u).

Note that if v is stationary and remains stationary after the expansion of u, nothing can

be said about their key values.

Proposition 1

During the kth iteration, the key value of the vertex with the highest priority in the queue is

nondecreasing during the execution of the Replan(Gk, xinit) procedure.
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Proof. Let the vertex u be the nonstationary vertex of the highest priority in the queue at

stage (k − 1, ` − 1) of the Replan(Gk, xinit) procedure and let kk−1,`−1
min denote the corre-

sponding minimum key value in the queue at this time, i.e., let kk−1,`−1
min = Keyk−1,`−1(u).

We claim that kk−1,`−1
min � kk−1,`

min for 0 < ` ≤ nk, where nk is the last step of the

Replan(Gk, xinit) procedure.

To see this, let u be the vertex selected for expansion and made stationary at the

`th step during the kth iteration. The contents of the queue may change in two differ-

ent cases: a stationary vertex v may become nonstationary, in which case Jk−1,`−1(v) =

J̄k−1,`−1(v), Jk−1,`(v) 6= J̄k−1,`(v) and Keyk−1,`−1(u) ≺ Keyk−1,`(v) according to Lemma

3, Case ii); and/or a nonstationary vertex, say v, may remain nonstationary, in which case

Jk−1,`−1(v) 6= J̄k−1,`−1(v), Jk−1,`(v) 6= J̄k−1,`(v) and hence Keyk−1,`−1(u) � Keyk−1,`(v),

according to Lemma 3 Case i). Hence, after the inclusion of these potentially nonstationary

vertices into the queue, the key value of the next nonstationary vertex of the highest priority

will be greater than or equal to Keyk−1,`−1(u), and thus kk−1,`−1
min � kk−1,`

min , for 0 < ` ≤ nk,

thus completing the proof.

Proposition 2

If a vertex vi ∈ V k is stationary with Keyk−1,`−1(v) � kk−1,`−1
min where kk−1,`−1

min is the key of

highest priority vertex in the queue at stage (k−1, `−1) in the Replan(Gk, xinit) procedure,

then it remains stationary until the procedure terminates.

Proof. Let us assume that vertex vi ∈ V k is stationary with Keyk−1,`i−1(vi) � kk−1,`i−1
min ,

where kk−1,`i−1
min is the key value of the nonstationary vertex of the highest priority in the

queue at the `ith step of the kth iteration of the algorithm. Suppose, on the contrary, that

there exists a vertex vj ∈ V k at some future step such that the vertex vi becomes nonsta-

tionary after expansion of the vertex vj at the `jth step. It holds that Keyk−1,`j−1(vj) ≺

Keyk−1,`j(vi) according to Lemma 3 Case ii) and kk−1,`i−1
min � k

k−1,`j−1
min = Keyk−1,`j−1(vj)

since `i ≤ `j according to Theorem 1. It follows that Keyk−1,`i−1(vi) � kk−1,`i−1
min �
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Keyk−1,`j−1(vj) ≺ Keyk−1,`j(vi), which implies that

Keyk−1,`i−1(vi) = [h(xinit, vi) + J̄k−1,`i−1(vi), J̄
k−1,`i−1(vi)]

≺ Keyk−1,`j(vi) = [h(xinit, vi) + J̄k−1,`j(vi), J̄
k−1,`j(vi)].

This results in J̄k−1,`i−1(vi) < J̄k−1,`j(vi) which contradicts Lemma 1. Hence, vertex vi

remains stationary until the Replan(Gk, xinit) procedure terminates.

Theorem 1

Given the graph Gk = (V k, Ek), a goal setXgoal, and an initial state xinit, the Replan(Gk, xinit)

procedure incrementally operates on all nonstationary and promising vertices, and only

those. Thus, the J̄-values of the promising vertices are equal to their respective optimal

cost-to-go values when the procedure terminates at the end of the kth iteration.

Proof. Let V k
exp denote the set of all vertices that are expanded during the Replan(Gk, xinit)

procedure. When a vertex is expanded at some step in the Replan(Gk, xinit) procedure it

becomes stationary at the next step and remains stationary until the procedure terminates

(i.e., its key value does not change). We need to show that all nonstationary and promising

vertices are expanded before the Replan(Gk, xinit) procedure terminates, that is, we need to

show that V k
prom ⊆ V k

exp. To this end, let `t be the step at which the termination condition in

Algorithm 3 is satisfied for the first time, i.e., let Keyk−1,`t−1(xinit) � Keyk−1,`t−1(vt) where

vt is the nonstationary vertex that is selected for expansion at the `tth step, and assume that

there exist a nonstationary and promising vertex vi ∈ V k
prom, satisfying [fk(vi), J

∗k(vi)] ≺

[fk(xinit), J
∗k(xinit)], which is not expanded before the Replan(Gk, xinit) procedure termi-

nates at the end of the kth iteration.

Should Algorithm 3 were allowed to expand all nonstationary vertices, then vertex vi

would be selected for expansion at the `ith step after the vertex vt (i.e., `t ≤ `i) and

Keyk−1,`i(vi) = [fk(vi), J
∗k(vi)] according to Theorem 6 of [71]. Since the vertex vi is

expanded after the vertex vt, its key value has lower priority than the key value of vt, so
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that Keyk−1,`t(vt) � Keyk−1,`i(vi) as shown in Proposition 1. It follows that

[fk(xinit), J
∗k(xinit)] = Keyk−1,`t−1(xinit) � Keyk−1,`t−1(vt)

= Keyk−1,`t(vt) � Keyk−1,`i(vi)

= [fk(vi), J
∗k(vi)],

which yields that [fk(xinit), J
∗k(xinit)] � [fk(vi), J

∗k(vi)]. This implies that the vertex vi

is a non-promising vertex, leading to a contradiction. Hence, all promising vertices are

expanded before the Replan(Gk, xinit) procedure terminates at the beginning of the `tth

step, and V k
prom ⊆ V k

exp.

To show that V k
exp ⊆ V k

prom let us assume that a nonstationary vertex vi ∈ V k is ex-

panded at the `ith step in the Replan(Gk, xinit) procedure, i.e., vi ∈ V k
exp. It then follows

that Keyk−1,`i(vi) = [fk(vi), J
∗k(vi)] where fk(vi) = h(xinit, vi)+J∗k(vi) as shown in The-

orem 6 of [71]. Also, as shown in Lemma 9 of [71], Keyk−1,`i(vi) ≺ [fk(xinit), J
∗k(xinit)].

It follows that [fk(vi), J
∗k(vi)] ≺ [valuek(xinit), J

∗k(xinit)], which implies that the vertex

vi is a promising vertex, and hence V k
exp ⊆ V k

prom. This implies that the set of expanded

vertices is equal to the set of nonstationary and promising vertices. Therefore, we have that

Keyk−1,`i(vi) = [fk(vi), J
∗k(vi)] = [h(xinit, vi) + J̄k−1,`i(vi), J̄

k−1,`i(vi)] for any promis-

ing vertex vi where `i < `t is the step when the vertex vi is expanded. Finally, it fol-

lows that Jk−1,`i(vi) = J̄k−1,`i(vi) = J∗k(vi) for any promising vertex vi ∈ V k when the

Replan(Gk, xinit) procedure terminates at the beginning of the `tth step.

Theorem 2

Given the graph Gk = (V k, Ek) and an initial state xinit, the J̄-value of xinit is equal to the

optimal cost-to-go value when the Replan(Gk, xinit) procedure terminates at the end of the

kth iteration.

Proof. First, we claim that xinit is never expanded before the Replan(Gk, xinit) proce-

dure terminates. Hence, it remains nonstationary (i.e., it has an infinite J-value and fi-

nite J̄-value) all the time. This follows from the fact that whenever xinit is selected for
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expansion, the condition at Line 2 in Algorithm 3 is satisfied. Therefore, the procedure

terminates immediately without expanding xinit. We therefore only need to show that,

upon termination, the optimal cost-to-go value for xinit in the current graph has been com-

puted by the Replan(Gk, xinit) procedure even though xinit is never expanded. To this

end, let `t be the step at which the termination condition in Algorithm 3 is satisfied for

the first time, i.e., let Keyk−1,`t−1(xinit) � Keyk−1,`t−1(vt) where vt is the nonstationary

vertex that is selected for expansion at the `tth step. If the assertion were not true, and

the Algorithm 3 were allowed to continue expanding all vertices, then necessarily xinit

would be selected for expansion after vertex vt. Let `ith be the step when xinit is se-

lected for expansion. According to the assumption we have that `t ≤ `i. We then have

that Keyk−1,`i(xinit) = [fk(xinit), J
∗k(xinit)] where fk(xinit) = h(xinit, xinit) + J∗k(xinit) as

shown in Theorem 6 of [71]. Since vt is selected for expansion before xinit, its key value

has higher priority, i.e., Keyk−1,`t(vt) � Keyk−1,`i(xinit) as shown in Proposition 1. Also,

since J∗k(xinit) is the optimal cost-to-go value of xinit that can be achieved in the current

graph Gk, it follows that [fk(xinit), g
∗k(xinit)] � Keyk−1,`(xinit) for all ` ≥ 0. One then

obtains

[fk(xinit), J
∗k(xinit)] � Keyk−1,`t−1(xinit) � Keyk−1,`t−1(vt)

= Keyk−1,`t(vt) � Keyk−1,`i(xinit)

= [fk(xinit), J
∗k(xinit)],

which yields

Keyk−1,`t−1(xinit) = [fk(xinit), J
∗k(xinit)]

= [h(xinit, xinit) + J̄k−1,`t−1(xinit), J̄
k−1,`t−1(xinit)].

Hence, J̄k−1,`t−1(xinit) = J∗k(xinit) when the Replan(Gk, xinit) procedure terminates at the

beginning of the `tth step, and the correct cost-to-go value of xinit is computed at that step.

Running the algorithm after the `tth step will therefore not improve the cost-to-go value of

xinit.
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Theorem 3

Let Gk = (V k, Ek) and T k = (V k, Ek
s ) denote the graph and the spanning tree that is

rooted at the vertex Xgoal and constructed by the Replan(Gk, xinit) procedure, respectively,

at the kth iteration, and let σ be the corresponding unique path from any head vertex

vi ∈ V k to xgoal encoded by the tree T k. Then, this path is the lowest-cost path with

respect to the current graph Gk if the head vertex vi is a promising vertex or if vi = xinit.

Proof. Let σ denote the unique path from the head vertex vi to xgoal encoded in the tree T k

such that σ(τj) = vpj for 0 ≤ τj ≤ 1 and j = 0, 1, . . . , ni where τ0 = 0, τni = 1 and vpj

are vertices along the path. We have σ(τ0) = vp0 = vi and σ(τni) = vpni = xgoal. Also,

the parent vertex of each vertex is given by µ(vpj) = vpj+1
. Let us consider the paths in Gk

from any promising vertex or xinit to Xgoal. First, note that if the head vertex of the path

σ is a promising vertex or xinit, then all of the intermediate vertices along the path σ are

promising. Second, when the Replan(Gk, xinit) procedure terminates at the end of the kth

iteration, the J̄-values of all promising vertices and of xinit are equal to their corresponding

optimal cost-to-go values as shown in Theorem 3. Hence, J̄k−1,nk(v) = J∗k(v) for all

v ∈ V k
prom ∪ {xinit}. We can thus write

J∗k(vpj) = J̄k−1,nk(vpj) = Jk−1,nk(vpj)

= c(vpj , vpj+1
) + Jk−1,nk(vpj+1

)

= c(vpj , vpj+1
) + J̄k−1,nk(vpj+1

)

= c(vpj , vpj+1
) + J∗k(vpj+1

),

for any vertex vpj along the path σ, which shows that each vertex on σ has achieved the

optimal cost-to-go value.

Theorem 4

Let Gk = (V k, Ek) denote the graph at the kth iteration. Then, the relationship J∗k+1(xinit) ≤

J∗k(xinit) holds for all k, and the estimated optimal cost decreases with each iteration.
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Proof. Without loss of generality, let k ≥ N , whereN is the iteration such that xinit ∈ V N ,

i.e., the cost of the lowest-cost path from xinit to Xgoal encoded by the graph Gk is finite.

Otherwise, the claim holds trivially. Let now nk denote the index of the new sampled ver-

tex, which is created in the Extend(Gk−1, xrand) procedure at the beginning of the kth

iteration, that is, let vnk = xnew. The J-value of vnk is initialized with infinity, i.e.,

Jk−1,0(vnk) = ∞ and its J̄-value can be a finite value or infinite (the latter occurs if all

neighbor vertices have infinite J-values). Therefore, the new vertex can be either station-

ary with infinite key value (in which case Jk−1,0(vnk) = J̄k−1,0(vnk) =∞) or nonstationary

with finite key value (in which case Jk−1,0(vnk) = ∞, J̄k−1,0(vnk) < ∞). If the new ver-

tex is stationary, then it is not inserted into the queue. The Replan(Gk, xinit) procedure

thus terminates without updating the cost-to-go value of any vertex when it is subsequently

called after the Extend(Gk−1, xrand) procedure. Therefore, the lowest-cost path computed

in the previous iteration will not be modified, and thus J∗k(xinit) = J∗k−1(xinit). When the

new vertex is nonstationary, it is inserted into the queue. There are two different cases to

consider depending on the type of the new vertex:

Case 1: Let us consider the case when vnk is a non-promising vertex. Let us also as-

sume that Keyk−1,0(vnk) ≺ Keyk−1,0(xinit). Then the cost-to-go value of vnk is updated at

Line 4 in the Algorithm 3, since all other nonstationary vertices in the queue have lower

priority than xinit, i.e., Keyk−1,0(xinit) � Keyk−1,0(vi) for all nonstationary vi ∈ V k. This

implies that vnk is a promising vertex, which leads to a contradiction. Therefore, neces-

sarily Keyk−1,0(xinit) � Keyk−1,0(vnk) and the Replan(Gk, xinit) procedure will terminate

immediately without updating the cost-to-go value of any vertex. Thus, the lowest-cost

path computed during the previous iteration will not be modified, and hence, J∗k(xinit) =

J∗k−1(xinit).

Case 2: Let us consider the case when vnk is a promising vertex. First, let us assume that

Keyk−1,0(xinit) � Keyk−1,0(vnk) in the very beginning of the Replan(Gk, xinit) procedure.
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We then have Keyk−1,0(xinit) � Keyk−1,0(vi) for all nonstationary vi ∈ V k. Therefore,

the Replan(Gk, xinit) procedure terminates without updating the cost-to-go value of any

vertex. This implies that vnk is a non-promising vertex, leading to a contradiction. Hence,

we have that Keyk−1,0(vnk) ≺ Keyk−1,0(xinit) and the cost-to-go value of the new vertex is

updated at the first step in the Replan(Gk, xinit) procedure. Since the sequence computed

by the Asynchronous Value Iteration algorithm converges to the optimal cost-to-go values

from any initial values, the Replan(Gk, xinit) procedure will compute the lowest-cost path

encoded by Gk by expanding all nonstationary and promising vertices. If the cost of the

lowest-cost path from xinit to Xgoal passing through the new vertex is better than that of the

lowest-cost path computed at the previous iteration, we then have J∗k(xinit) < J∗k−1(xinit);

otherwise J∗k(xinit) = J∗k−1(xinit).

To summarize, we have a monotonic decrease in the cost of the lowest-cost path en-

coded by Gk, and thus we have that J∗k+1(xinit) ≤ J∗k(xinit) for all N ≤ k, where N is the

first iteration when a finite cost path from xinit to Xgoal is achieved.

Theorem 5

Let Y RRT#

k denote the cost of the path from xinit to xgoal computed by the RRT# algorithm

at the kth iteration. The RRT# algorithm is asymptotically optimal, that is, Y RRT#

k → c∗

as k →∞ with probability one.

Proof. Since the RRT# algorithm adopts the Extend procedure of the RRG algorithm,

they both create the same graph Gk at the end of the kth iteration. The RRT# algo-

rithm, in addition, keeps a spanning tree T k that is rooted at the vertex xgoal and con-

tains lowest-cost path information for a subset of vertices (namely, all promising vertices,

along with xinit) as shown in Theorem 4. Let Y RRG
k denote the cost of the lowest-cost

path from xinit to xgoal in Gk, which is computed by the RRG algorithm, at the kth it-

eration. In the RRT# algorithm, this path is incrementally computed and stored in a

spanning tree T k by the Replan(Gk, xinit) procedure at the end of each iteration, that is,
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Y RRT#

k = J̄k(xinit) = Y RRG
k . In addition, since the RRG algorithm is asymptotically opti-

mal, we have that Y RRG
k → c∗ as k → ∞ with probability one, where c∗ is the cost of the

optimal path from xinit to xgoal in Xfree. Hence, it also follows that Y RRT#

k = Y RRG
k → c∗

as k →∞ with probability one, which completes the proof.

4.6 Numerical Simulations

The RRT# algorithm was developed in C++ and run on a computer with a 2.40 GHz

processor and 12GB RAM running the Ubuntu 11.10 Linux operating system. A Fi-

bonacci heap was implemented as priority queue to store inconsistent vertices during the

search [49]. Extensive simulations were run to compare the performance of the RRT# al-

gorithm with the RRT∗ algorithm, whose C implementation is available to download from

the RRT∗ author’s website (http://sertac.scripts.mit.edu/rrtstar/).

Both RRT# and RRT∗ algorithms were run on three different problem types with the

same sample sequence in order to demonstrate the difference in their behavior while grow-

ing the tree. All problems tested require finding an optimal path in a square environment

minimizing the Euclidean path length. The heuristic value of a vertex is the Euclidean dis-

tance from the vertex to the goal. In the first problem type, there are no obstacles in the

environment, whereas there are some box-like obstacles in the second and third problem

types. In the third problem type, the environment is more cluttered than the one in the

second problem type, containing many widely distributed small obstacles.

For the first problem type, the trees computed by both algorithms at different stages

are shown in Figure 1. The initial state is plotted as a yellow square and the goal region

is shown in blue with magenta border (upper right). The minimal-length path is shown in

red. As shown in Figure 1, the best path computed by the RRT# algorithm converges to

the optimal path. As mentioned earlier, one of the important differences between the RRT∗

and RRT# algorithms is that the latter classifies the vertices in one of the following four

categories based on the values of its (g(v), lmc(v)) pair: Consistent with finite key value
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(shown in green), consistent with infinite key value (shown in black), inconsistent with

finite key value (shown in blue), and inconsistent with infinite g-value and finite lmc-value

(shown in red).

Since only the points in the relevant region Xrel have the potential to be part of the opti-

mal path, the RRT# algorithm tries to approximate Xrel with the set of promising vertices

Vprom and tends to stop rewiring the parts of the tree which lie outside of the Xrel as itera-

tions go to infinity. As seen in Figure 1, for this particular scenario,Xrel is an elliptic region,

which is much smaller than the whole Xfree. Therefore, uniform random sampling on Xfree

results in too many vertices of different types (green, black, red, and blue vertices) outside

of the relevant region during the search. The estimate of Xrel can be used to implement

more intelligent sampling strategies, if needed.
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Figure 1: The evolution of the tree computed by RRT∗ and RRT# algorithms is shown in
(a)-(d) and (e)-(h), respectively. The configuration of the trees (a), (e) is at 250 iterations,
(b), (f) is at 500 iterations, (c), (g) is at 2,500 iterations, and (d), (h) is at 25,000 iterations.

In the second problem type, the same experiment was carried out and both algorithms

were run in an environment with several obstacles. The configuration of the trees for both
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the RRT∗ and RRT# algorithms at different stages are shown in Figure 2.
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Figure 2: The evolution of the tree computed by RRT∗ and RRT# algorithms is shown in
(a)-(d) and (e)-(h), respectively. The configuration of the trees (a), (e) is at 250 iterations,
(b), (f) is at 500 iterations, (c), (g) is at 2,500 iterations, and (d), (h) is at 25,000 iterations.

In the third problem type, both algorithms were run in a more cluttered environment,

where there are many different homotopy classes containing the local minimum solution

for the problem. As shown in Figure 3, both algorithms switch between paths which have

locally best cost, eventually converging to the optimal solution.

Finally, in the fourth problem type, both algorithms were run in a obstacle-free envi-

ronment where there are different cost zones. The cost coefficient of each zone from top to

bottom is 1.5, 0.75, 2.5, 0.75, and 1.5, respectively and 1 elsewhere. As seen in Figure 4,

both algorithms compute the optimal path which has longer segments in low-cost zones.

4.7 Variants of the RRT# Algorithm

Too many non-promising vertices are included in the tree computed by the RRT# algo-

rithm as observed in the previous simulations. This is owing to the fact that the RRT#
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Figure 3: The evolution of the tree computed by RRT∗ and RRT# algorithms is shown in
(a)-(d) and (e)-(h), respectively. The configuration of the trees (a), (e) is at 250 iterations,
(b), (f) is at 500 iterations, (c), (g) is at 2,500 iterations, and (d), (h) is at 25,000 iterations.
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Figure 4: The evolution of the tree computed by RRT∗ and RRT# algorithms is shown in
(a)-(d) and (e)-(h), respectively. The configuration of the trees (a), (e) is at 250 iterations,
(b), (f) is at 500 iterations, (c), (g) is at 2,500 iterations, and (d), (h) is at 25,000 iterations.
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algorithm includes all new vertices in the graph regardless of their type. A simple vertex

selection criterion can be used in the Extend procedure in order to prevent the algorithm

from growing the tree towards the region outside Xrel. However, being over-selective on

vertex inclusion may degrade the performance of the algorithm – and thus lead to a sub-

optimal solution – since the cost-to-come value of all vertices, which is used to decide if

a new vertex is promising or not, is an estimate of the optimal one. In this section, we

propose three variants of the baseline RRT# algorithm.

Algorithm 5: Extend Procedure for RRT#
1 Algorithm

1 Extend(G,x)
2 (V ,E)← G; E′ ← ∅;
3 xnearest ← Nearest(G, x);
4 xnew ← Steer(xnearest, x);
5 if ObstacleFree(xnearest, xnew) then
6 Initialize(xnew);
7 Xnear ← Near(G, xnew, |V |);
8 foreach xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 if lmc(xnew) > g(xnear) + c(xnear, xnew) then
11 lmc(xnew) = g(xnear) + c(xnear, xnew);
12 parent(xnew) = xnear;

13 E′ ← E′ ∪ {(xnear, xnew), (xnew, xnear)};

14 if parent(xnew) 6= ∅ then
15 V ← V ∪ {xnew};
16 E ← E ∪ E′;
17 UpdateQueue(xnew);

18 return G′ ← (V ,E)

RRT#
1 : In the first variant, which is given in Algorithm 5, if a new vertex happens to be

consistent with infinite key value (black vertex), it is not included in the graph. This

situation can happen if all of the neighbor vertices of the new vertex are inconsistent

with infinite g-value and finite lmc-value (red vertices). First, the estimates of the

cost-to-come-value of the new vertex xnew are initialized with infinite cost, and its

parent vertex is set to ‘null’ in Line 6. Then, a better value for the lmc-value of the
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new vertex is searched among its neighbor vertices. During this search, the parent of

the new vertex remains unassigned only if there are no any neighboring vertices with

finite g-value.

RRT#
2 : In the second variant, the algorithm becomes more selective on vertices to be

added to the graph and the “parent(xnew) 6= ∅ ∧ Key(parent(xnew)) ≺ Key(x∗goal)”

condition is checked in Line 14. Simply, a new vertex is included to the graph only

if its parent is a promising vertex.

RRT#
3 : Lastly, the third variant is most selective on vertex for inclusion and Key(xnew) ≺

Key(x∗goal) condition is checked, that is, only promising new vertices are included in

the graph.

4.8 Numerical Simulation

The same experiments as before were carried out for the three variants of the RRT# al-

gorithm. As seen in the figures below, all variants successfully prevent the inclusion of

vertices which lie in the unfavorable regions of the search space. As seen in Figures 5(e),

7(e), 9(e), and 11(e), the RRT#
1 algorithm does not include any black vertices in the tree

(these are the vertices that are consistent with infinite key value, hence non-promising), but

still computes a solution for the problem, which is as good as the one computed by the

RRT∗ and RRT# algorithms. However, there are still many red (i.e., non-promising and

inconsistent with infinite g-value and finite lmc-value) vertices included in the tree. This is

owing to the fact that these vertices are never made consistent until the last iteration, since

they mostly lie outside of Xrel. Therefore, they remain in the priority queue and need to

be sorted during each iteration. This makes the Replan procedure slower. In the RRT#
2

algorithm, the number of red vertices included into the tree is reduced by simply enforcing

them to have a promising parent vertex for the new vertex that is considered for extension.

Red vertices are mostly included into the branches of the tree that are formed outside of the

Xrel during exploration phase. As seen in Figures 5(v), 7(v), 9(v), and 11(v), the RRT#
2
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algorithm tends not to include vertices into the branches of the tree which are very far away

from the optimal solution. Lastly, the RRT#
3 algorithm includes a new vertex into the tree

only if it is a promising one. Therefore, all vertices in the tree, other than the goal vertices,

are either green or blue, which are located around the boundary of Xrel.
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Figure 5: The evolution of the tree computed by RRT#
1 and RRT#

2 algorithms is shown
in (a)-(e) and (i)-(v), respectively. The configuration of the trees (a), (i) is at 250 iterations,
(b), (ii) is at 500 iterations, (c), (iii) is at 2,500 iterations, (d), (iv) is at 10,000 iterations,
and (e), (v) is at 25,000 iterations.
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Figure 6: The evolution of the tree computed by RRT#
3 algorithm is shown in (a)-(f). The

configuration of the trees in (a) is at 250 iterations, in (b) is at 500 iterations, in (c) is at
2,500 iterations, in (d) is at 5,000 iterations, in (e) is at 10,000 iterations, and in (f) is at
25,000 iterations.
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Figure 7: The evolution of the tree computed by RRT#
1 and RRT#

2 algorithms is shown
in (a)-(e) and (i)-(v), respectively. The configuration of the trees (a), (i) is at 250 iterations,
(b), (ii) is at 500 iterations, (c), (iii) is at 2,500 iterations, (d), (iv) is at 10,000 iterations,
and (e), (v) is at 25,000 iterations.
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Figure 8: The evolution of the tree computed by RRT#
3 algorithm is shown in (a)-(f). The

configuration of the trees in (a) is at 250 iterations, in (b) is at 500 iterations, in (c) is at
2,500 iterations, in (d) is at 5,000 iterations, in (e) is at 10,000 iterations, and in (f) is at
25,000 iterations.
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Figure 9: The evolution of the tree computed by RRT#
1 and RRT#

2 algorithms is shown
in (a)-(e) and (i)-(v), respectively. The configuration of the trees (a), (i) is at 250 iterations,
(b), (ii) is at 500 iterations, (c), (iii) is at 2,500 iterations, (d), (iv) is at 10,000 iterations,
and (e), (v) is at 25,000 iterations.
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Figure 10: The evolution of the tree computed by RRT#
3 algorithm is shown in (a)-(f).

The configuration of the trees in (a) is at 250 iterations, in (b) is at 500 iterations, in (c) is
at 2,500 iterations, in (d) is at 5,000 iterations, in (e) is at 10,000 iterations, and in (f) is at
25,000 iterations.
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Figure 11: The evolution of the tree computed by RRT#
1 and RRT#

2 algorithms is shown
in (a)-(e) and (i)-(v), respectively. The configuration of the trees (a), (i) is at 250 iterations,
(b), (ii) is at 500 iterations, (c), (iii) is at 2,500 iterations, (d), (iv) is at 10,000 iterations,
and (e), (v) is at 25,000 iterations.
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Figure 12: The evolution of the tree computed by RRT#
3 algorithm is shown in (a)-(f).

The configuration of the trees in (a) is at 250 iterations, in (b) is at 500 iterations, in (c) is
at 2,500 iterations, in (d) is at 5,000 iterations, in (e) is at 10,000 iterations, and in (f) is at
25,000 iterations.
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4.9 Numerical Simulations in High-dimensional Planning Problems

We tested the RRT∗, the RRT# and its variant algorithms on several scenarios to evaluate

their performance.

Figure 13: Initial and goal configurations of HUBO (6D)

4.9.1 Motion Planning for Single-Arm Manipulation (6 DoFs)

In this section, we test all algorithms on planning problems in high-dimensional search

spaces. First, we simulate a simple workspace in which there are a table and two boxes

along with a humanoid robot (HUBO), as shown in Figure 13. At the initial step, the

HUBO is at rest with its right arm on one side of the two boxes, and is tasked to move its

right arm to the other side of the boxes as, shown in the left-most and right-most subfigures

of Figure 13, respectively.

Table 1: Results for Single-Arm Planning Problem
Solution RRT∗ RRT# RRT#

1 RRT#
2 RRT#

3

First
Time (s) 15.38 (7.45) 14.26 (7.71) 13.88 (7.48) 13.84 (6.97) 13.81 (6.52)

Cost (rad) 6.22 (2.20) 4.55 (1.49) 4.56 (1.71) 4.67 (1.69) 4.63 (1.48)

Final
Time (s) 1316.67 (338.89) 1187.92 (270.23) 1195.90 (283.00) 1079.40 (249.38) 675.39 (122.59)

Cost (rad) 5.43 (2.20) 2.60 (0.36) 2.65 (0.43) 2.65 (0.42) 2.62 (0.35)
# of Vertices 4360.17 (121.83) 4237.25 (84.36) 3394.96 (433.75) 2256.34 (235.21) 1572.20 (292.14)

A Monte-Carlo study was performed in order to compare the convergence rate and

variance for all algorithms. All algorithms were run for 5,000 iterations and their results

were averaged over 100 trials. The averaged results of all algorithms are summarized in

Table 1. As seen below, the RRT# algorithm and its three variants outperformed the RRT∗
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algorithm in all cases at finding the lower-cost path. Among all of them, the RRT#
3 is the

fastest algorithm and computes the best solution in a much shorter amount of time.
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Figure 14: The convergence rate of the algorithms in 6D

The convergence rate, the variance in trials, as vertical bars, and the completion time,

as filled circles, of all algorithms are shown in Figure 14. The RRT∗ algorithm has the

slowest convergence rate and the largest variance, and the RRT#
3 algorithm has the fastest

convergence rate and the smallest variance in the trials. Animations of the 6DOF and

12DOF cases shown in Figures 13 and 15 can be found in https://goo.gl/FFOUON.

Figure 15: Initial and goal configurations of HUBO (12D)

4.9.2 Motion Planning for Dual-Arm Manipulation (12 DoFs)

In the final set of simulations, we tested all algorithms for a planning problem in a 12D

search space. At the initial step, both arms of the HUBO lie on each side while it is
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standing, and then the HUBO is commanded to move its right and left arms to pre-grasp

poses for the stick and steering wheel, respectively, as shown in Figure 15.

Table 2: Results for Dual-Arm Planning Problem
Solution RRT∗ RRT# RRT#

1 RRT#
2 RRT#

3

First
Time (s) 111.47 (45.17) 108.73 (48.22) 107.42 (43.14) 103.14 (44.37) 100.07 (40.71)

Cost (rad) 10.57 (2.12) 6.71 (1.70) 6.65 (1.76) 6.67 (1.62) 6.59 (1.45)

Final
Time (s) 6390.98 (714.09) 5455.71 (610.22) 4811.12 (305.10) 4170.12 (272.15) 2457.38 (221.71)

Cost (rad) 9.72 (3.71) 4.96 (0.84) 4.93 (0.78) 4.94 (0.72) 4.92 (0.67)
# of Vertices 22470.14 (571.40) 21347.72 (351.74) 16147.81 (315.77) 8451.78 (307.97) 6187.18 (312.15)

A Monte-Carlo study is performed in order to compare the convergence rate and vari-

ance in the trials of all algorithms. All algorithms were run for 20,000 iterations, and their

results were averaged over 25 trials. The averaged results for all algorithms are summa-

rized in Table 2. The RRT# and its variant algorithms outperform the RRT∗ algorithm at

finding lower-cost paths at the final iteration on average. Among them, the RRT#
3 is the

fastest algorithm, and computes the best solution in a much shorter amount of time.
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Figure 16: The convergence rate of the algorithms in 12D

The convergence rate, the variance in trials, as vertical bars, and the completion time, as

filled circles, of all algorithms are shown in Figure 16. Among them, the RRT∗ algorithm

has the slowest convergence rate and the largest variance in the trials. The RRT#
3 algorithm

has the fastest convergence rate and the smallest variance.
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4.10 Conclusion

In this chapter, a new incremental sampling-based algorithm, denoted by RRT# is pre-

sented, which offers asymptotically optimal solutions for motion planning problems. The

RRT# algorithm relies heavily on the random geometric graph data structure and the RRG

algorithm [98], which is known to have asymptotic optimality properties. A bottleneck

of optimal sampling-based algorithms is the slow convergence to the optimal solution, al-

though sampling-based algorithms are capable of finding a feasible solution, often almost

in real-time. By incorporating stationarity information of all current vertices in the tree

(essentially by comparing the current cost-to-come values of the vertices with the cost-to-

come values via one of the neighboring vertices) we can have more informed estimates

of the optimal values of the potential paths, thus speeding up convergence. Furthermore,

once a feasible path has been found, vertex stationarity can be used to estimate the region

where the optimal solution should be found. This results in an initial convergence rate that

is better than the one achieved by the RRT∗ algorithm.
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Chapter V

MOTION PLANNING USING POLICY ITERATION METHODS

5.1 Overview

Recent progress in randomized motion planners has led to the development of a new class

of sampling-based algorithms that provide asymptotic optimality guarantees, notably the

RRT∗ and the PRM∗ algorithms among others. Careful analysis reveals that the so-called

“rewiring” step in these algorithms can be interpreted as a local policy iteration (PI) step

(i.e., a local policy evaluation step followed by a local policy improvement step) so that

asymptotically, as the number of samples tend to infinity, both algorithms converge to the

optimal path. Policy iteration, along with value iteration (VI) are common methods for

solving dynamic programming (DP) problems. Based on this observation, the RRT# algo-

rithm was proposed, which performs, during each iteration, Bellman updates (aka “back-

ups”) on those vertices of the graph that have the potential of being part of the optimal path

(i.e., the “promising” vertices). The RRT# algorithm thus utilizes dynamic programming

ideas and implements them incrementally on randomly generated graphs to obtain high

quality solutions. In this work, and based on this key insight, we explore a different class

of dynamic programming algorithms for solving shortest-path problems on random graphs

generated by iterative sampling methods. This class of algorithms utilize policy iteration

instead of value iteration and are better suited for massive parallelization.

In this chapter, we depart from the previous VI-based algorithms and we propose, in-

stead, a novel class of algorithms based on policy-iteration (PI). Some preliminary results

were presented in [13]. Policy iteration is an alternative to value iteration for solving dy-

namic programming problems and fits naturally into our framework, in the sense that a

policy in a graph search amounts to nothing more but an assignment of a (unique) parent to
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each vertex. Use of policy iteration has the following benefits: first, no queue is needed to

keep track of the cost of each vertex. A subset of vertices is selected for Bellman updates

and policy improvement on these vertices can be done in parallel at each iteration. Second,

for a given graph, determination of the optimal policy is obtained after a finite number of

iterations since the policy space is finite [23]. The determination of the optimal value for

each vertex, on the other hand, requires an infinite number of iterations. More crucially,

in order to find the optimal policy only the correct ordering of the vertices is needed, not

their exact value. This can be utilized to develop approximation algorithms that speed up

convergence. Third, although policy iteration methods are often slower than value iteration

methods, they tend to be better amenable for parallelization and are faster if the structure

of the problem is taken into consideration during implementation.

5.2 Problem Formulation

Let X denote the configuration (search) space, which is assumed to be an open subset

of Rd, where d ∈ N with d ≥ 2. The obstacle region and the goal region are denoted

by Xobs and Xgoal, respectively, both assumed to be closed sets. The obstacle-free space

is defined by Xfree = X \ Xobs. Elements of X are the states (or configurations) of the

system. Let the initial configuration of the robot be denoted by xinit ∈ Xfree. The (open)

neighborhood of a state x ∈ X is the open ball of radius r > 0 centered at x, that is,

Br(x) = {x′ ∈ X : ‖x− x′‖ < r}.

We will approximate Xfree with an increasingly dense sequence of discrete subsets of

Xfree. That is, Xfree will be approximated by a finite set of configuration points selected

randomly from Xfree. Each such discrete approximation of Xfree will be encoded in a graph

G = (V,E) with V being the set of vertices (the elements of the discrete approximation of

Xfree) and with edge setE ⊆ V ×V encoding allowable transitions between elements of V .

Hence, G is a directed graph. Transitions between two vertices x and x′ in V are enabled

by a control action u ∈ U(x) such that x′ is the successor vertex of x in G under the action
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u. Let U = ∪x∈VU(x). We use the mapping f : V × U → V given by

x′ = f(x, u), u ∈ U(x), (22)

to formalize the transition from x to x′ under the control action u. In this case, we say

that x′ is the successor of x and that x is the predecessor of x′. The set of predecessors of

x ∈ V will be denoted by pred(G, x), and the set of successors of x will be denoted by

succ(G, x). Also, we let pred(G, x) = pred(G, x) ∪ {x}. Note that, using the previous

definitions, the set of admissible control actions at x may be equivalently defined as

U(x) = {u : x′ = f(x, u), x′ ∈ succ(G, x)}. (23)

Thus, the control set U(x) defines unambiguously the set succ(G, x) of the successors of

x, in the sense that there is one-to-one correspondence between control actions u ∈ U(x)

and elements of succ(G, x) via (22). Equivalently, once the directed graph G is given,

for each edge (x, x′) ∈ E corresponds a control u ∈ U(x) enabling this transition. It

should be remarked that the latter statement, when dealing with dynamical systems (such

as robots, etc) amounts to a controllability condition. Controllability is always satisfied

for fully actuated systems, but may not be satisfied for underactuated systems (such as

for many case of kinodynamic planning with differential constraints). For sampling-based

methods such as RRT∗ this controllability condition is equivalent to the existence of a

steering function that drives the system between any two given states.

Once we have abstractedXfree using the graph G, the motion planning problem becomes

one of a shortest path problem on the graph G. To this end, we define the path σ of length

N in G to be a sequence of vertices σ = (x0, x1, . . . , xN) such that xk+1 ∈ succ(G, xk)

for all k = 0, 1, . . . , N − 1. When we want to specify explicitly the first node of the path

we will use the first node as an argument, i.e., we will write σ(x0). The kth element of

σ will be denoted by σk. That is, if σ(x0) = (x0, x1, . . . , xN) then σk(x0) = xk for all

k = 0, 1, . . . , N . A path is rooted at xinit if x0 = xinit. A path rooted at xinit terminates at a

given goal region Xgoal ⊂ Xfree if xN ∈ Xgoal.
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To each edge (x, x′) encoding an allowable transition, we associate a cost c(x, x′).

Given a path σ(x0), the cumulative cost along this path is then

N−1∑

k=0

c(xk, xk+1). (24)

Given a point x ∈ X , a mapping µ : x 7→ u ∈ U(x) that assigns a control action to

be executed at each point x is called a policy. Under some assumptions on the connectiv-

ity of the graph G and the cost of the directed edges, one can use DP algorithms and the

corresponding Bellman equation in order to compute optimal policies. Note that a station-

ary policy µ for this problem defines a graph whose edges are (x, f(x, µ(x))) ∈ E for all

x ∈ V . The policy µ is proper if and only if this graph is acyclic, i.e., the graph has no

cycles. Thus, there exists a proper policy µ if and only if each node is connected to the

Xgoal with a directed path. Furthermore, an improper policy has finite cost, starting from

every initial state, if and only if all the cycles of the corresponding graph have nonnegative

cost [23]. Convergence of the DP algorithms is proven if the graph is connected and the

costs of all its cycles are positive [24]. In our case, the graph computed by the RRG al-

gorithm is a connected graph by construction, and all edge cost values are positive, which

implies that the costs of all its cycles are positive. Therefore, convergence is guaranteed

and the resulting optimal policy is proper.

In terms of DP notation, our system has the following equation

x′ = f(x, u) (25)

where the cost function is defined as

g(x, u) = c(x, f(x, u)). (26)

It follows that the corresponding Bellman’s equation takes the form

J∗(x) = min
u∈U(x)

{
c(x, f(x, u)) + J∗(f(x, u))

}
. (27)
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Figure 17: Overview of the PI based RRT# Algorithm

5.3 DP Algorithms for Sampling-based Planners

The sampling-based motion planner which utilizes VI, i.e., RRT#, was presented in [9].

The RRT# algorithm implements the Gauss-Seidel version of the VI algorithm and pro-

vides a sequential implementation. In this chapter, we follow up on the same idea and

propose a sampling-based algorithm which utilizes PI algorithm as shown in Figure 17.

The body of PI-based RRT# algorithm is given in Algorithm 6. The algorithm includes

a new vertex and a couple new edges into the existing graph at each iteration. If this new

information has a potential to improve the existing policy, then, a slightly modified PI algo-

rithm is called subsequently in the Replan procedure. For the sake of efficiency, unlike the
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standard PI algorithm, policy improvement is performed only for a subset vertices which

have the potential to be part of the optimal solution.

Algorithm 6: Body of the RRT# Algorithm (Sync. PI)

1 RRT#(xinit, xgoal, X )
2 V ← {xgoal}; S ← V ; E ← ∅;
3 G ← (V ,E);
4 for k = 1 to N do
5 xrand = Sample(k);
6 (G, S′)← Extend(G, S, xinit, xrand);
7 if |S′| > |S| then
8 S ← Replan(S′, xinit, xgoal);

9 (V ,E)← G; E′ ← ∅;
10 foreach x ∈ V do
11 E′ ← E′ ∪ {(x, µ(x))};
12 return T = (V ,E′);

The Extend procedure is given in Algorithm 7. If a new vertex is decided for inclu-

sion, its control is initialized by performing policy improvement in Lines 6-14. Then, it is

checked in Line 15 if the new vertex has a potential to improve the existing policy. If so, it

is included to the set of vertices which are selected to perform policy improvement.

The Replan procedure which implements the PI algorithm is shown in Algorithm 8.

The policy improvement step is performed in Lines 2-9 until the existing becomes almost

stationary. Note that the for-loop in the Replan procedure can run parallel.

The policy evaluation step is implemented in Algorithm 9. Algorithm 9 solves a system

of linear equations by exploiting the underlying structure. Simply, the existing policy forms

a tree in the current graph and the solution of the system of linear equations corresponds to

the cost of each path connecting vertices to the goal region via edges of the tree.
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Algorithm 7: Extend Procedure for RRT# Algorithm (Sync. PI)

1 Extend(G, S, xinit, xrand)
2 (V ,E)← G; E′ ← ∅;
3 xnearest = Nearest(G, xrand);
4 xnew = Steer(xrand, xnearest);
5 if ObstacleFree(xnew, xnearest) then
6 J(xnew) = c(xnew, xnearest) + J(xnearest);
7 µ(xnew) = xnearest;
8 Xnear ← Near(G, xnew, |V |);
9 foreach xnear ∈ Xnear do

10 if ObstacleFree(xnew, xnear) then
11 if J(xnew) > c(xnew, xnear) + J(xnear) then
12 J(xnew) = c(xnew, xnear) + J(xnear);
13 µ(xnew) = xnear;

14 E′ ← E′ ∪ {(xnew, xnear), (xnear, xnew)};

15 if h(xinit, µ(xnew)) + J(µ(xnew)) ≤ J(xinit) then
16 S ← S ∪ {xnew};
17 V ← V ∪ {xnew};
18 E ← E ∪ E′;
19 G ← (V ,E);
20 return (G, S);

Algorithm 8: Replan Procedure (Sync. PI)

1 Replan(G, S, xinit, xgoal)
2 Loop
3 foreach x ∈ S do
4 J ′ = J(x);
5 foreach v ∈ succ(G, x) do
6 if J ′ > c(x, v) + J(v) then
7 J ′ = c(x, v) + J(v);
8 µ(x) = v;

9 ∆J(x) = J(x)− J ′;
10 if maxx∈S ∆J(x) ≤ ε then
11 return S;

12 S ← Evaluate(G, xinit, xgoal);
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Algorithm 9: Evaluate Procedure (PI)

1 Evaluate(G, xinit, xgoal)
2 (V ,E)← G;
3 if xinit ∈ V then
4 x = xinit;
5 while x 6= xgoal do
6 q.push front(x);
7 x = µ(x);

8 J(xgoal) = 0;
9 while q.empty() do

10 x = q.pop front();
11 J(x) = c(x, µ(x)) + J(µ(x));

12 else
13 J(xinit) =∞;

14 S ← {xgoal};
15 q.push back(xgoal);
16 while q.nonempty() do
17 x = q.pop front();
18 if h(xinit, x) + J(x) ≤ J(xinit) then
19 foreach v ∈ children(x) do
20 J(v) = c(v, x) + J(x);
21 S ← S ∪ {v};
22 q.push back(v);

23 return S;
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5.4 Theoretical Analysis

Let Gk = (V k, Ek) be the graph at the end of the kth iteration of the PI-RRT# algo-

rithm. Given a vertex x ∈ V k, let the control set Uk(x) and the successor set succ(Gk, x)

be divided into two disjoint sets
{
Uk,∗(x), Uk,′(x)

}
and

{
Sk,∗(x), Sk,′(x)

}
, respectively,

as follows: Uk(x) = Uk,∗(x) ∪ Uk,′(x) where Uk,∗(x) = arg min
u∈Uk(x)

H(x, u, Jk,∗) and

Uk,′(x) = Uk(x) \ Uk,∗(x) and succ(Gk, x) = Sk,∗(x) ∪ Sk,′(x) where Sk,∗(x) = {x∗ ∈

V k : ∃u∗ ∈ Uk,∗(x) s.t. x∗ = f(x, u∗)} and Sk,′(x) = succ(Gk, x) \ Sk,∗(x). Further-

more, letMk denote the set of all policies at the end of the kth iteration of the PI-RRT#

algorithm, that is, Mk = {µ : µ(x) ∈ Uk(x), ∀x ∈ V k}. Given a policy µ ∈ Mk and

an initial state x, σµ(x) denotes the path resulting from executing the policy µ starting at

x. That is, σµ(x) = (x0, x1, . . . , xN) such that σµ0 (x) = x and σµN(x) ∈ Xgoal for N > 0,

where σµj (x) is the jth element of σµ(x). By definition, note that xj+1 = f(xj, µ(xj)) for

j = 0, 1, . . . , N − 1. Finally, let Σk(x) be the set of all paths rooted at x and let Σk,∗(x)

denote the set of all paths of lowest-cost rooted at x that reach the goal region at the kth

iteration of the algorithm, that is, Σk,∗(x) = {σ ∈ Σk(x) : σ = σµ(x) such that

∃µ ∈ Mk, Jµ(x) = Jk,∗(x)}. Note that the set Σk,∗(x) may contain more than one paths.

LetNk(x) denote the shortest path length in Σk,∗(x), that is,Nk(x) = min
σµ(x)∈Σk,∗(x)

len(σµ(x)).

Let us define the following sets for a given policy µk,i ∈ Mk and its corresponding

value function Jµk,i at the end of ith policy improvement step and at the kth iteration of the

PI-RRT# algorithm:

a) The set of vertices in Gk whose optimal cost function value is less than that of xinit, i.e.,

the set of promising vertices, i.e., V k
prom = {x ∈ V k : Jk,∗(x) < Jk,∗(xinit)}

b) The set of promising vertices in Gk whose optimal cost function value is achieved by

executing the policy µk,i, i.e., Ok,i = {x ∈ V k : Jµk,i(x) = Jk,∗(x) < Jk,∗(xinit)}

c) The set of vertices that can be connected to the goal region with an optimal path of

length less than or equal to `, i.e., Lk,` = {x ∈ V k : Nk(x) ≤ `}
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d) The set of promising vertices that are connected to the goal region via optimal paths

whose length is less than or equal to `, i.e., P k,` = Lk,` ∩ V k
prom = {x ∈ V k : Nk(x) ≤

` andJk,∗(x) < Jk,∗(xinit)}. Note that the set of promising vertices that can be con-

nected to the goal region via optimal paths whose length is exactly ` + 1 is given by

∂P k,` = P k,`+1 \ P k,`.

e) The set of vertices that are selected for Bellman update during the beginning of the ith

policy improvement, i.e., Bk,i = {pred(Gk, x) : x ∈ V k, Jµk,i(x) < Jµk,i(xinit)}

Lemma 4

The sequence Ok,i generated by the policy iteration step of the PI-RRT# algorithm is non-

decreasing, that is, Ok,i ⊆ Ok,i+1 for all i = 0, 1, . . ..

Proof. This lemma is proven by showing that if the optimal cost function and policy of a

point are computed at some iteration, then these solution will not be updated as the number

of iterations goes.

First, note that Ok,0 = V k ∩Xgoal 6= ∅. Let now i > 0 and assume that x ∈ Ok,i. Then,

by definition, we have that Jµk,i = Tµk,iJµk,i where µk,i is the policy computed at the end of

ith policy improvement step at the kth iteration of the PI-RRT# algorithm. The previous

expression implies that (Tµk,iJµk,i)(x) = Jk,∗(x), and hence µk,i(x) ⊆ Uk,∗(x). Similarly,

the cost function Jµk,i satisfies Jµk,i(x) = Jk,∗(x) < Jk,∗(xinit) ≤ Jµk,i(xinit) which yields

Jµk,i(x) < Jµk,i(xinit). It follows that the vertex x and its predecessors will be selected for

Bellman update during the next policy improvement, that is, pred(Gk, x) ∈ Bk,i.

After policy improvement, the updated policy and the corresponding cost function are

given by (Tµk,i+1Jµk,i)(x) = (TJµk,i)(x) = Jk,∗(x) which implies (Tµk,i+1Jµk,i)(x) =

Jk,∗(x) and hence µk,i+1(x) ⊆ Uk,∗(x). Similarly, Jk,∗(x) ≤ Jµk,i+1(x) ≤ Jµk,i(x) =

Jk,∗(x) and hence Jµk,i+1(x) = Jk,∗(x) < Jk,∗(xinit). It follows that x ∈ Ok,i+1.

Lemma 5

The sequence Lk,` is non-decreasing, that is, Lk,` ⊆ Lk,`+1 for ` = 0, 1, . . .. Furthermore,
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for all x ∈ ∂Lk,` = Lk,`+1 \ Lk,`, there exists x∗ ∈ Lk,` such that x∗ ∈ Sk,∗(x).

Proof. This lemma is proven by using an induction argument. Once the base case is shown

to be held, the induction case is proven by leveraging the principle of optimality for shortest

path problems, that is, any subarc of an optimal path is also optimal.

For ` = 0 we have that Lk,0 = V k ∩ Xfree 6= ∅. Let now ` > 0 and assume that

x ∈ Lk,`. Then, by definition, there exists a policy µ ∈Mk such that the vertex x achieves

its optimal cost function value, i.e., Jµ(x) = Jk,∗(x), and the optimal path connecting x to

the goal region has length less than or equal to `, that is, len(σµ(x)) ≤ ` < ` + 1, which

implies, trivially, that x ∈ Lk,`+1.

To show the second part of the statement, first notice that, by definition, the vertices in

the set ∂Lk,` are the ones which can be connected to the goal region via an optimal path

of length exactly (` + 1). Let us now assume that x ∈ ∂Lk,` and let σµ(x) ∈ Σk,∗(x) be

the optimal path of length (` + 1) between x and the goal region. Let σµ1 (x) = x∗ and

σµ(x∗) be the sub-arc rooted at x∗ resulting from applying µ. By construction of the path

σµ(x), we have that x ∈ pred(Gk, x∗). Also, since σµ(x) is the optimal path rooted at x,

the control action applied at vertex x needs to be optimal , i.e., µ(x) ∈ Uk,∗(x) and σµ(x∗)

is the optimal path which connects x∗ to goal region due to the principle of optimality,

σµ(x∗) ∈ Σk,∗(x∗). This implies that x∗ ∈ Sk,∗(x) and x∗ ∈ Lk,` since the length of the

path σ′ is `, i.e., len(σµ(x∗)) = `.

Corollary 1

The sequence P k,` is non-decreasing, that is, P k,` ⊆ P k,`+1 for ` = 0, 1, . . .. Furthermore,

for all x ∈ ∂P k,` = P k,`+1 \ P k,`, there exists x∗ ∈ P k,` such that x∗ ∈ Sk,∗(x).

Lemma 6

For a given vertex x ∈ Bk,i, if Jµk,i(x∗) = Jk,∗(x∗) and x∗ ∈ Sk,∗(x) hold, then we have

µk,i+1(x) ⊆ Uk,∗(x) and Jµk,i+1(x) = Jk,∗(x) at the end of (i + 1)th policy improvement

step at the kth iteration of the PI-RRT# algorithm.
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Proof. This lemma is proven by analyzing the cost function value and policy for a point

during the Bellman update when its successors that are along the optimal path have already

achieved their optimal cost function value and policy.

Let us check how the function H(x, ·, Jµk,i) changes with respect to controls from

Uk,∗(x) and Uk,′(x). At the beginning of (i + 1)th policy improvement step, the new

policy µk,i+1 is computed as follows. For all x ∈ Bk,i

µk,i+1(x) ∈ arg min
u∈Uk(x)

H(x, u, Jµk,i)

= arg min
u∈Uk(x)

{
g(x, u) + Jµk,i(f(x, u))

}
.

For u∗ ∈ Uk,∗(x) and u′ ∈ Uk,′(x), we have the following:

H(x, u∗, Jµk,i) = g(x, u∗) + Jµk,i(f(x, u∗))

= g(x, u∗) + Jµk,i(x
∗) = g(x, u∗) + Jk,∗(x∗)

< g(x, u′) + Jk,∗(x′)

= g(x, u′) + Jk,∗(f(x, u′))

≤ g(x, u′) + Jµk,i(f(x, u′))

= H(x, u′, Jµk,i)

which implies that

H(x, u∗, Jµk,i) < H(x, u′, Jµk,i) ∀u∗ ∈ U∗(x), u′ ∈ U ′(x).

Hence, it follows that

µk,i+1(x) ∈ argmin
u∈Uk(x)

H(x, u, Jµk,i) = argmin
u∈Uk,∗(x)

H(x, u, Jµk,i) ⇒ µk,i+1(x) ⊆ Uk,∗(x).

Let us check the cost function Jµk,i+1 for x∗ ∈ Sk,∗, which is subsequently computed

during the policy evaluation step for the new policy µk,i+1.

Jk,∗(x∗) ≤ Jµk,i+1(x∗) ≤ Jµk,i(x
∗) = Jk,∗(x∗) ⇒ Jµk,i+1(x∗) = Jk,∗(x∗) ∀x∗ ∈ Sk,∗(x)
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We can now write Jµk,i+1(x) as follows:

Jµk,i+1(x) = g(x, u∗)+Jµk,i+1(f(x, u∗)) = g(x, u∗)+Jµk,i+1(x∗) = g(x, u∗)+Jk,∗(x∗) = Jk,∗(x)

which implies that Jµk,i+1(x) = Jk,∗(x).

Lemma 7

For a given policy µk,i and its corresponding cost function Jµk,i , if P k,` ⊆ Ok,i holds, then

we have that ∂P k,` ⊆ Bk,i, which implies P k,`+1 ⊆ Bk,i, before the beginning (i + 1)th

policy improvement step. Then, P k,`+1 ⊆ Ok,i+1 holds after (i + 1)th policy improvement

step.

Proof. This lemma is proven by using the fact that tails of optimal paths are extended at

least by one segment after each policy improvement step.

We have P k,` ⊆ Ok,i by our assumption and know that the sequence P k,` is non-

decreasing due to Lemma 5, i.e., P k,` ⊆ P k,`+1. Since the sequence Ok,i is also non-

decreasing due to Lemma 4, i.e., Ok,i ⊆ Ok,i+1, this implies that P k,` ⊆ Ok,i+1. Therefore,

we only need to show if the boundary set ∂P k,` is a subset of Ok,i+1 by end of (i + 1)th

policy improvement.

As shown in Lemma 5, we have that for all x ∈ ∂P k,`, there exists x′ ∈ P k,` such

that x′ ∈ Sk,∗(x), which also implies x ∈ pred(Gk, x′). Since P k,` ⊆ Ok,i, we have the

following:

Jµk,i(x
′) = Jk,∗(x′) < Jk,∗(xinit) ≤ Jµk,i(xinit) ⇒ Jµk,i(x

′) < Jµk,i(xinit)

Therefore, pred(Gk, x′) ∈ Bk,i which implies that all vertices of ∂P k,` are selected for

Bellman update before (i+ 1)th policy improvement step, i.e., ∂P k,` ⊆ Bk,i and P k,`+1 ⊆

Bk,i.

As shown in Lemma 6, since Jµk,i(x′) = Jk,∗(x′), x′ ∈ Sk,∗(x) holds, all vertices of
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∂P k,j achieve their optimal policy and cost function value after end of the policy improve-

ment, i.e., µk,i+1(x) ⊆ Uk,∗(x) and Jµk,i+1(x) = Jk,∗(x). This implies that ∂P k,` ⊆ Ok,i+1

and P k,`+1 ⊆ Ok,i+1 which completes the proof.

Lemma 8

All vertices whose optimal cost function value is less than that of xinit and are along optimal

paths whose length is less than or equal to i achieve their optimal cost function value at the

end of ith policy improvement step, that is, P k,i ⊆ Ok,i holds for i = 0, 1, . . . when using

policy µk,i and its corresponding cost function Jµk,i .

Proof. This lemma is proven by using an inductive argument. Once the base case is shown

to be held, the induction case is proven by showing that tails of the optimal paths that

connect promising vertices to the goal region are extended at least by one segment after a

policy improvement step.

Our claim P k,i ⊆ Ok,i will be proven by using an induction argument.

Basis i = 0: First, note that V k
goal 6= ∅. Let now assume x ∈ V k

goal, then, we have that

Nk(x) = 0 and Jk,∗(x) = 0 < Jk,∗(xinit). Therefore, P k,0 = V k
goal holds. Also,

for all x ∈ P k,0, we have that Jµk,0(x) = Jk,∗(x) = 0 < Jk,∗(xinit) which implies

P k,0 ⊆ Ok,0.

Basis i = 1: The set of vertices along optimal paths whose length is less than or equal

to one is a subset of goal vertices and their predecessors, that is, P k,1 = P k,0 ∪

{x ∈ V k : ∃x′ ∈ V k ∩ Xgoal s.t. x ∈ pred(Gk, x′), c(x, x′) < Jk,∗(xinit)}. For all

x′ ∈ V k
goal, we have that Jµk,0(x′) = 0 < Jµk,0(xinit). Therefore all goal vertices

and their predecessors are selected for Bellman update at the beginning of the first

policy improvement step, i.e., Bk,0 = {pred(Gk, x′) : x′ ∈ V k
goal} which implies

P k,1 ⊆ Bk,0. All vertices in P k,1 will achieve its optimal cost function value at the

end of the first policy improvement step, that is, Jµk,1(x) = Jk,∗(x) = c(x, x′) where

x ∈ P k,1, x′ ∈ Sk,∗(x) and x′ ∈ Vgoal, which implies P k,1 ⊆ Ok,1.
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Inductive step: Let us assume P k,i ⊆ Ok,i holds and we need to show this assumption

implies P k,i+1 ⊆ Ok,i+1 at the end of (i + 1)th policy improvement step. Proof of

such property is a direct result of Lemma 7 when a special case ` = i is considered.

Theorem 6 (Optimality of Each Iteration)

The optimal action and the cost function value for the initial vertex is achieved when the

Replan procedure of the PI-RRT# algorithm terminates after a finite number of policy

improvement steps.

Proof. This theorem is proven by using the fact that termination of the Replan procedure

is guaranteed since the policy space is finite. The optimality result can easily be derived

for the cases when the Replan procedure terminates by performing a number of policy

improvement steps that happens to be more than the number of segments of the optimal

path connecting xinit to the goal region. For earlier termination, it is shown that the optimal

cost function value and policy for xinit had already been computed.

We will investigate the case in which the algorithm terminates before performingNk(xinit)

policy improvement steps. Otherwise, the optimality property is a straightforward result

due to Lemma 8 if the Replan procedure terminates after performing more than or equal

to Nk(xinit) policy improvement steps.

Let us assume, ad absurdum, that the Replan procedure terminates at the end of ith

policy improvement step at kth iteration with a suboptimal cost function value for the ini-

tial vertex, that is, Jµk,i−1(xinit) > Jk,∗(xinit). Since the termination condition holds, we

observe no policy update for all vertices in Bk,i−1 after performing a policy improvement

attempt. That is, for all x ∈ Bk,i−1, we have µk,i(x) = µk,i−1(x).

We know that P k,i−1 ⊆ Ok,i−1 holds for i = 1, 2, . . . as shown in Lemma 8. This

implies that P k,i ∈ Bk,i−1 holds at the beginning of ith policy improvement step and P k,i ⊆

Ok,i holds at the end of ith policy improvement due to Lemma 7. This means that all
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vertices in P k,i achieve the optimal action and the cost function value at the end of ith policy

improvement step. That is, for all x ∈ P k,i, we have that µk,i(x) = µk,∗(x) and Jµk,i(x) =

Jk,∗(x).

Since for all vertices in Bk,i−1 there is no update observed between policies µk,i and

µk,i−1, we have that µk,i(x) = µk,i−1(x) = µk,∗(x) holds for all x ∈ P k,i ⊆ Bk,i−1. Let us

check the cost function value of vertices in P k,i at the beginning of ith policy improvement

step. We already know that vertices in P k,i−1 have achieved their optimal cost function

value. Since P k,i = P k,i−1 ∪ ∂P k,i−1 holds, we only need to check cost function values for

vertices in the boundary set ∂P k,i−1. For all vertices in ∂P k,i−1, their cost function value

can be expressed as Jµk,i−1(x) = g(x, µk,i−1(x)) + Jµk,i−1(f(x, µk,i−1(x))). We already

know that µk,i−1(x) = µk,∗(x) holds for all vertices in ∂P k,i−1 ⊆ Bk,i−1.

Let us define µk,∗(x) = u∗ ∈ Uk,∗(x) and x∗ ∈ Sk,∗(x) such that x∗ = f(x, u∗). Since

x∗ ∈ P k,i−1 holds, the optimal successor achieves its optimal cost function value, that is,

Jµk,i−1(x∗) = Jk,∗(x∗). Then, for all vertices in ∂P k,i−1, we can express their cost function

value as Jµk,i−1(x) = g(x, u∗) + Jk,∗(x′) = Jk,∗(x). This result shows that all vertices in

P k,i already achieve the optimal action and the cost function value at the beginning of ith

policy improvement step, that is, P k,i ⊆ Ok,i−1. We just show that P k,i−1 ⊆ Ok,i−1 implies

P k,i ⊆ Ok,i−1 for all i = 1, 2, . . .. It follows that P k,` ⊆ Ok,i−1 holds for ` = 0, 1, . . . by

using this inductive argument.

Let us consider the case when ` = Nk(xinit)− 1. We have that P k,Nk(xinit)−1 ⊆ Ok,i−1,

this implies that all vertices which may be intermediate vertices along optimal paths be-

tween xinit and goal region achieve their optimal action and cost function value at the

beginning of ith policy improvement step. Note that xinit is selected for Bellman update

at the beginning of ith policy improvement step since its cost function value can be writ-

ten as Jµk,i−1(xinit) = g(xinit, u) + Jµk,i−1(x′) where u ∈ Uk(xinit) and x′ ∈ Sk(xinit)

such that u = µk,i−1(xinit) and x′ = f(xinit, u). This implies that xinit ∈ pred(Gk, x′)

and Jµk,i−1(x′) < Jµk,i−1(xinit), therefore, we have xinit ∈ Bk,i−1. However, since the
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termination condition holds, Bellman update for xinit does not yield any update in its

action during ith policy improvement step, that is, µk,i(xinit) = µk,i−1(xinit). We also

know that Sk,∗(xinit) ⊆ P k,Nk(xinit)−1 holds by definition, and all vertices in Sk,∗(xinit)

have the optimal action and the cost function value since P k,N−1 ⊆ Ok,i−1 holds, that is,

µk,i−1(x′) = µk,∗(x′) and Jk,i−1(x′) = Jk,∗(x′) for all x′ ∈ Sk,∗(xinit). Then, we have

µk,i(xinit) ⊆ Uk,∗(xinit) and Jµk,i(xinit) = Jk,∗(xinit) at the end of ith policy improve-

ment step due to Lemma 6. This implies µk,i−1(xinit) = µk,i(xinit) = µk,∗(xinit). Now,

we can check the cost function value of xinit at the beginning of ith policy improvement

step as follows, that is, Jµk,i−1(xinit) = g(x, µk,i−1(xinit)) + Jµk,i−1(f(x, µk,i−1(xinit))).

We know that µk,i−1(xinit) = µk,∗(x). Let us define µk,∗(xinit) = u∗ ∈ Uk,∗(xinit)

and x′ ∈ Sk,∗(xinit) such that x′ = f(x, u∗). Since we have x′ ∈ P k,Nk(xinit)−1, x′

achieves the optimal cost function value, that is., Jµk,i−1(x′) = Jk,∗(x′). Then, we have

Jµk,i−1(xinit) = g(x, u∗) + Jk,∗(x′) = Jk,∗(xinit).

Finally, we prove that Jµk,i−1(xinit) = Jk,∗(xinit) which leads a contradiction with our

initial assumption of terminating with a suboptimal cost function value for initial vertex.

Hence, when the Replan procedure terminates at the beginningNk(xinit)th policy improve-

ment steps, as we have shown, it already computes the optimal action and cost function

value for xinit. If it terminates more than or equal to Nk(xinit) policy improvement steps,

then, the optimality result follows from Lemma 8. The Replan procedure is guaranteed to

terminate after a finite number of policy improvement steps since the policy space is finite.

This is owing to properties of policy iteration methods [23].

Theorem 7 (Termination at Finite Step)

Let Gk = (V k, Ek) be the graph built at the end of kth iteration. Then, the Replan proce-

dure of the PI-RRT# algorithm terminates after at most (N
k

+ 2)th policy improvement

steps where N
k

= maxx∈V kprom N
k(x).

Proof. This theorem is proven by using the fact that the sequence Bk,i with respect to i has
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a limiting super set, i.e., the set of promising vertices and their predecessors. Then, it is

shown that the termination condition of he Replan procedure holds when the optimal cost

function value and policy for all vertices in the limiting set of Bk,i are computed, which

takes at most as many policy improvement steps as the number of segments of the longest

optimal path connecting vertices in the limiting set of Bk,i to the goal region.

Let us assume, ad absurdum, that the Replan procedure does not terminate at the end

of (N
k

+ 2)th policy improvement step at kth iteration. This implies that there exists a

point x ∈ Bk,N
k
+1 such that its cost function value is reduced, and its policy is updated at

the end of (N
k

+ 2)th policy improvement step. That is, there exists a control u ∈ Uk(x)

that yields J
µk,N

k
+1

(x) > g(x, u) + J
µk,N

k
+1

(x′) where x′ ∈ Sk(x) such that µk,N
k
+1 6=

µk,N
k
+2(x) = u and x′ = f(x, u). We will check if the preceding inequality makes sense

by analyzing the value of J
µk,N

k
+1

(x).

Let us define the following set: V
k

prom = {pred(Gk, x) : x ∈ V k
prom}

By definition we have P k,N
k

= V k
prom, and this implies V k

prom ⊆ Ok,N
k ⊆ Ok,N

k
+1

due to Lemma 8 and Lemma 4. For all x ∈ V k
prom, we have J

µk,N
k
+1

(x) = Jk,∗(x) <

Jk,∗(xinit) ≤ J
µk,N

k
+1

(xinit), and this implies pred(G, x) ∈ Bk,N
k
+1. Therefore, V

k

prom ⊆

Bk,N
k
+1 by definition. Since V k

prom ∈ Ok,N
k

and V
k

prom ⊆ Bk,N
k
+1, it can also be shown,

similar to Lemma 7, that all vertices of V
k

prom achieve its optimal cost value and policy

after (N
k

+ 1)th policy improvement step, that is, J
µk,N

k
+1

(x) = Jk,∗(x), µk,N
k
+1(x) ⊆

Uk,∗(x) ∀x ∈ V k

prom.

Note that for the successor vertex of xinit along the optimal path between xinit and the

goal region we have that Nk(x′) = Nk(xinit) − 1 ≤ N
k

since x′ ∈ V k
prom. This implies

that Nk(xinit) ≤ N
k

+ 1, and therefore, we have that J
µk,N

k
+1

(xinit) = Jk,∗(xinit) due

to Lemma 8. By definition, for all x ∈ V k with pred(Gk, x) ∈ Bk,N
k
+1, we have that

J
µk,N

k
+1

(x) < J
µk,N

k
+1

(xinit). Since J
µk,N

k
+1

(xinit) = Jk,∗(xinit), we have the following:

Jk,∗(x) ≤ J
µk,N

k
+1

(x) < J
µk,N

k
+1

(xinit) = Jk,∗(xinit) ⇒ Jk,∗(x) < Jk,∗(xinit)

Therefore, we also have x ∈ V k
prom and pred(Gk, x) ∈ V k

prom which implies thatBk,N
k
+1 ⊆
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V
k

prom. Following the two preceding results, we have Bk,N
k
+1 = V

k

prom.

If these results are used for, by our initial assumption, the point x ∈ BN
k
+1 = V

k

prom

whose policy is updated during (N
k

+ 2)th policy improvement step, we have Jk,∗(x) =

J
µk,N

k
+1

(x) > g(x, u) + J
µk,N

k
+1

(x′) = g(x, u) + Jk,∗(x′). This leads the contradiction

Jk,∗(x) > g(x, u) + Jk,∗(x′) which completes the proof.

Theorem 8 (Asymptotic Optimality)

Let Gk = (V k, Ek) be the graph built at the end of kth iteration. As k → ∞, the pol-

icy µk,N
k
(xinit) and its corresponding cost function J

µk,Nk
(xinit), where Nk is maximum

number of policy improvement steps performed during the kth iteration, converge to the

optimal policy µ∗(xinit) and the corresponding optimal cost function Jµ∗(xinit) associated

with continuous state space.

Proof. Let Gk = (V k, Ek) be the graph that is constructed by the RRG algorithm at the

beginning of kth iteration. In the PI-based RRT# algorithm, the optimal cost function

value of xinit with respect to Gk is computed during the Replan procedure at the end of kth

iteration, that is, J
µk,Nk

(xinit) = Jk,∗(xinit) and µk,Nk
(xinit) = µk,∗(xinit). Since the RRG

algorithm is asymptotically optimal, Gk will encode the optimal path between xinit and

goal region as the number of iterations goes to infinity. This implies that J
µk,Nk

(xinit) =

Jk,∗(xinit) → J∗(xinit) and µk,Nk
(xinit) = µk,∗(xinit) → µ∗(xinit). Therefore, the PI-based

RRT# algorithm is asymptotically optimal.

5.5 Numerical Simulations

We have implemented both the baseline RRT# and PI-RRT# algorithms in MATLAB and

performed Monte Carlo simulations on shortest path planning problems in two different 2D

environments. The initial and goal points are shown in Figure 18 in yellow and dark blue

squares, respectively. The obstacles are shown in red and the best path computed during

each iteration is shown in yellow.
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The results are averaged over 100 trials and each trial is run for 10,000 iterations. There

is no vertex rejection rule applied during the extension procedure. We compute the total

time required to complete a trial and measure the time spent on non-planning (sampling,

extension, etc.) and planning related procedures of the algorithms, separately. The growth

of the tree is shown in Figure 18. At each iteration, a subset of promising vertices is

determined during the policy evaluation step and policy improvement is performed only

for these vertices. The promising vertices are shown in magenta in Figure 18.
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Figure 18: The evolution of the tree computed by PI-RRT# algorithm is shown in (a)-(d)
for the problem with less cluttered environment, and (e)-(h) for the problem with cluttered
environment. The configuration of the trees (a), (e) is at 200 iterations, (b), (f) is at 600
iterations, (c), (g) is at 1,000 iterations, and (d), (h) is at 10,000 iterations.

For the first problem, the average time spent for non-planning (left) and planning (right)

related procedures in RRT# and PI-RRT# algorithms are shown in blue and red colors,

respectively in Figure 19. As seen in the left figure, PI-RRT# is slightly faster than RRT#,

especially when adding a new vertex to the graph. Since there is no priority queue in

the PI-RRT# algorithm, it is much cheaper to include a new vertex, and there is no need

for ordering. As seen in the right figure, the relation between time and iteration is linear
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when the number of iterations becomes large in the log-log scale plot, which implies a

polynomial relationship, i.e., t(n) = cn, where t(n) is the time required to complete n

iterations. The fitted time-iteration lines (dashed) for RRT# and PI-RRT# are shown in

magenta and green, respectively. In our implementation, we used one processor to perform

policy improvement due to simplicity. However, policy improvement step can be done in

parallel. One can then divide the set of promising vertices into disjoint sets and assign each

of the subsets to a different processor.
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Figure 19: The time required for non-planning (left) and planning (right) procedures
to complete a certain number of iterations for the first problem set. The time curve for
RRT# and PI-RRT# are shown in blue and red, respectively. Vertical bars denote standard
deviation averaged over 100 trials.

Let np denote the number of processors and N denote the computational load per pro-

cessor, i.e, L = n/np, where n is number of iteration and can be considered as an upper

bound on the number of promising vertices. By simple algebra, one can show that the load

per processor needs to satisfy the following relationship for PI-RRT# algorithm in order

to outperform the baseline RRT# algorithm for faster planning.

L =
n

np

>
c0

cpi

n1+t0−tpi

The PI-RRT# algorithm can be a better choice than the RRT# algorithm for prob-

lems in high-dimensional search spaces since in those spaces, one needs to run planning
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algorithms for a large number of iterations in order to explore the space densely. This re-

quirement induces a bottleneck on the RRT# algorithm since the replanning procedure is

performed sequentially and requires ordering of vertices. Therefore, this operation may

take longer as the number of vertices increases significantly. On the other hand, the PI-

RRT# algorithm does not require any ordering of vertices and one can keep the replanning

tractable by employing more processors (e.g., spawning more threads) as needed in order

to keep the desired load per processor requirement. Given the current advancement in par-

allel computing technologies, e.g., GPUs, a well designed parallel implementation of the

PI-RRT# may yield real-time execution performance for some problems that are known to

be infeasible with the existing algorithms.
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Figure 20: The time required for non-planning (left) and planning (right) procedures to
complete a certain number of iterations for the second problem set. The time curve for
RRT# and PI-RRT# are shown in blue and red, respectively. Vertical bars denote standard
deviation averaged over 100 trials.

5.6 Conclusion

In this chapter, we show how policy iteration methods can be utilized in the framework of

sampling-based algorithms. This novel connection between DP and RRGs yields different

types of algorithms which have asymptotic optimality guarantees and execution models

(sequential, parallel). The benefit of the proposed algorithm is that the replanning step can

be massively parallelized, which can be exploited by computational powers of GPUs.
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Chapter VI

MACHINE LEARNING FOR MOTION PLANNING

6.1 Overview

Sampling-based motion planning algorithms need to incorporate efficient exploration strate-

gies in order to gather information about the possibly high-dimensional search space. Most

exploration strategies implement a form of rejection sampling in order to collect a large

number of collision-free configurations. Rejection sampling is used mainly owing to its

implementation simplicity. However, this approach is redundant since not all collision-free

configurations have the potential to be part of the optimal solution at a given query. In this

chapter, we propose to use machine learning ideas in order to estimate the relevant region of

the search space, that is, the region where the optimal path is more likely to be found. The

result is that future samples are drawn from the relevant region with increased probability,

as the number of iterations increases.

The idea of using machine learning fits naturally within the framework of sampling-

based algorithms since an incremental dataset describing the topology of the configuration

space is readily available from previous samples. Robotic motion planning can be in-

terpreted as a form of learning problem, since the high-dimensional configuration search

space is not known explicitly a priori. Therefore, its solution inherently poses a fundamen-

tal problem, which is known as the exploration versus exploitation dilemma. Specifically,

as the motion planner starts gathering more information about the search space, it may favor

exploitation of the current knowledge in order to improve the best solution which has been

computed so far. This is mainly due to the fact that the space requirements of an exact rep-

resentation of the configuration space grows very quickly with the problem dimensionality

and the number of obstacles, and hence exhaustive search is impractical (for example, it
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has been proven in [104] that the general motion planning problem is PSPACE-complete).

Therefore, a motion planner needs to devote some time for exploitation, i.e., to produce

a “good enough” solution based on the available information, as exploration progresses.

However, concentrating only on improving the current best solution may cause the plan-

ner to get stuck in a local minimum since potentially better solutions may have not been

explored yet. Therefore, a motion planner should perform the exploration and exploitation

tasks in harmony, striking a balance between the two.

Despite the recent advances in the development of motion planners for high-dimensional

spaces using sampling-based methods [9, 61, 65, 69, 80, 95], efficient exploration still re-

mains a challenging issue for sampling-based planners [83]. However, for many problems

an admissible heuristic and an approximation of the optimal cost-to-come (or cost-to-go)

function is available during the search. In such cases, one can characterize the relevant

region of the given task, i.e., the subset of the search space which contains the optimal

solution. In this context, exploration can be viewed as a problem of learning the rele-

vant region associated with the given task. Interestingly, the authors of this paper have

shown that this region can be approximated incrementally as a by-product of the RRT#

algorithm [9].

In this chapter, we follow up on this insight and use machine learning ideas in order to

achieve better exploration of the search space. This is based on the simple fact that since

incremental sampling-based algorithms collect a lot of data about the planning problem

as iterations progress, one can utilize this information to provide informative labels of

the collected samples (obstacle or free) and to associate approximate cost (utility) values

with each sample. These labels, collectively, can be used to guide the selection of future

samples. By employing active learning and by inferencing based on the collected data, one

can guide future samples toward the favorable region of the search space without invoking

the computationally expensive collision checking and local steering procedures [40], thus

speeding up the algorithm.
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The proposed adaptive sampling strategy is integrated in the RRT# algorithm to guide

the future exploration of the search space. We give a detailed explanation of the proposed

adaptive sampling strategy in the subsequent sections. Our numerical simulations demon-

strate that the proposed adaptive sampling strategy can reduce the number of vertices in the

underlying search graph significantly, yet the path-planner is able to produce high quality

paths.

6.2 Related Work

A plethora of approaches have been developed in order to guide the sampling strategy

toward a specific part of the configuration space. A comparative study of these approaches

can be found in [51]. The majority of these methods try to address the so-called “narrow

passage problem,” which deals with drawing more samples from difficult and complex parts

of the configuration space [53, 54]. More recently, Bialkowski has proposed an approach

which guides samples towards the free space [28]. In [35], the authors have proposed an

entropy-guided exploration strategy to guide sampling toward the regions that would yield

maximal expected information gain. The approach is elegant but owing to the computations

involved it appears to be more appropriate for an off-line construction of the graph, which

is the case for multi-query algorithms, such as PRM. In [37] the authors keep a history

of extension attempts for each state and the results (success or fail), which are used to

compute the utility of each state in an information-theoretic sense. This algorithm guides

exploration in a way so as to increase the overall utility.

Most closely related to our work is the work in [36] and [96]. In [36] the authors pro-

pose an approximate approach based on machine learning ideas for multi-query algorithms

that attempts to reduce collision-checking time. However, the current work differs from

this approach in several ways. First, the authors of [36] only focus on adapting the sam-

pling strategy to collect more collision-free samples, not for learning the relevant region.

Their exploration strategy is tailored to reduce the variance of an approximated model of
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the configuration space. Although active sampling generates useful samples which yield

an accurate model, these configurations are not necessarily related to the solution of the

task of interest. This is mainly due to the fact that the approach in [36], similarly to [35],

is designed for multi-query algorithms, i.e., the task is not known a priori. Second, our

approach is built on fundamentally different assumptions even when only the “learning

the configuration space problem” (classification) is considered. In [36] it is assumed that

the feature vector and its label (x, y) are jointly Gaussian, and the prediction algorithm is

developed by utilizing the nice properties of Gaussian distributions (i.e., conditional dis-

tribution of multivariate Gaussian distribution is also a Gaussian). This assumption seems

to be reasonable for typical classification problems when there is no information about the

underlying structure. However, in the context of sampling-based motion planning, one has

some extra information. For example, when rejection sampling is used, we know that the

underlying class conditional distribution is a uniform pdf which is defined over a bounded

domain and has support which is unknown but can be explored. The use of Gaussian dis-

tributions, which do not have compact support, conflicts with the underlying structure of

the problem. In our approach, we leverage this key observation and estimate the class con-

ditional distributions directly by estimators on a bounded domain, without resorting to the

relaxation of y being continuous.

Finally, in [96], the authors proposed an approach which uses instance-based learn-

ing techniques. Their approach stores previous local planning queries and their outcomes

(in-collision or collision-free) in a table. Then, a k-NN density estimator computes the

probability of a given query point to be in-collision without calling the actual collision

checker. The exact collision checking processes is postponed, and is performed only for

those points that have a small probability of being in-collision. This idea is also used in our

work and can be considered as an alternative way of estimating the posterior distribution.

However, it is known that k-NN density estimators have several drawbacks, e.g., they are

prone to local noise, yield an estimate distribution with heavy tails, etc; also, the resulting
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density estimate is not a true pdf since its integral over the whole configuration space di-

verges [29]. Our approach, on the other hand, does not have any such problems thanks to

the nice properties of kernel density estimators.

6.3 Machine Learning Guided Exploration
6.3.1 Problem Formulation

Let X denote the configuration space, which is assumed to be an open subset of Rd, where

d ∈ N with d ≥ 2. Let the obstacle region and the goal region be denoted by Xobs and

Xgoal, respectively. The obstacle-free space is defined by Xfree = X \ Xobs. Let the initial

configuration be denoted by xinit ∈ Xfree. Let G = (V,E) denote a graph, where V and

E ⊆ V × V are finite sets of vertices and edges, respectively. We will use graphs to

represent the connections between a (finite) set of configuration points selected randomly

fromXfree. Given a vertex v ∈ V , the function g : v 7→ c returns a non-negative real number

c, which is the cost of the path to v from a given initial state xinit ∈ Xfree. We will use g∗(v)

to denote the optimal cost-to-come value of the vertex v which can be achieved in Xfree.

Given a vertex v ∈ V , and a goal region Xgoal, the heuristic function h : (v,Xgoal) 7→ c

returns an estimate c of the optimal cost from v to Xgoal; we set h(v) = 0 if v ∈ Xgoal. The

function h is an admissible heuristic if it never overestimates the actual cost of reaching

Xgoal. In this chapter, we always assume that h is an admissible heuristic. We wish to solve

the following problem:

Optimal motion planning problem: Given a bounded and connected open set X ⊂

Rd, the sets Xfree and Xobs = X\Xfree, an initial point xinit ∈ Xfree and a goal region

Xgoal ⊂ Xfree, find the minimum-cost path connecting xinit to Xgoal.

In sampling-based algorithms, the planning algorithm avoids exhaustive discretization

of the search space by randomly drawing configurations which are incorporated into a tree

or a graph. The method of random generation of these configurations is called a sampling

strategy. A good sampling strategy should adapt to the topology of the search space and
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provide information that can improve the computed solution.

Learning problem: Let x∗goal ∈ Xgoal be the point in the goal region that has the lowest

optimal cost-to-come value in Xgoal, i.e., let x∗goal = argminx∈Xgoal
g∗(x). The relevant

region of Xfree is the set of points x for which the optimal cost-to-come value of x, plus the

estimate of the optimal cost moving from x to Xgoal is less than the optimal cost-to-come

value of x∗goal, that is,

Xrel = {x ∈ Xfree : g∗(x) + h(x) < g∗(x∗goal)}. (28)

Points that lie in Xrel have the potential to be part of the optimal path starting at xinit and

terminating in Xgoal. Our goal is to learn Xrel and develop a sampling strategy that draws

samples only fromXrel. This problem can be formulated as a combination of a classification

and a regression problem. First, we need to predict the label of a given arbitrary point

x ∈ X , and then its cost-to-come value needs to be computed approximately, using some

regression technique to check if inequality (28) is satisfied.

6.3.2 Approach

Before explaining our approach, some terminology needs to be introduced. Let X and Y

denote the space of input and output values, respectively. Let x(i) ∈ X be the feature vector

of the ith example, also called “input” variables, and let y(i) ∈ Y be its label, also called

the “output” or target variable. A pair
(
x(i), y(i)

)
is called a training example. The training

set is a list of m training examples of the form D =
{

(x(1), y(1)), . . . , (x(m), y(m))
}

. In

a supervised learning framework, given the training set D, a learning algorithm seeks a

function ŷ` : X 7→ Y so that ŷ`(x) is a “good” predictor for the corresponding value of

y. The function ŷ` is called a hypothesis, for historical reasons. The target variable that

needs to be predicted can be continuous or it may take a finite number of discrete values.

The learning problem is a regression problem when Y is continuous, and is a classification

problem if Y is a discrete set.
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Two problems arise in the context of sampling-based algorithms: a classification prob-

lem, i.e., the prediction of the label of an unobserved sample x, and a regression problem,

i.e., the prediction of the optimal cost-to-come value of the sample x.

6.3.3 Learning the Configuration Space

Given the training set D =
{

(x(i), y(i)) : i = 1, . . . ,m
}

where the pair
(
x(i), y(i)

)
denotes

a randomly drawn point and its label computed by the collision-checker at the ith iteration,

we wish to find a function ŷcs : X 7→ {−1, 1} that gives a good prediction for determining

if a given point x is in the obstacle space or the free space.

This problem can be solved efficiently via a Bayesian classifier, which makes decisions

based on class conditional distributions and priors [29]. The approach computes two ap-

proximate probability density functions (pdf) in order to determine where the obstacle-free

and obstacle spaces lie in the search space, based on the available data at any given iteration.

Then, the classifier uses the Bayesian rule to predict if a given point x is in Xfree or Xobs. A

real collision checking is performed only for points which are classified as collision-free.

All of the samples, regardless if they are in collision or not, are stored in a list which forms

the training set D. A kernel density estimator is used to learn the associated class condi-

tional distributions. The kernel density estimator f̂X(x) for the estimation of the density

value fX(x) at point x is defined as

f̂X(x) =
1

m

m∑

i=1

KH
(
x− x(i)

)
, (29)

where H is the bandwidth matrix (nonsingular) and KH : Rd 7→ R denotes the multivariate

kernel function which is defined as follows:

KH(x) =
1

det(H)
K(H−1x). (30)

We use a diagonal bandwidth matrix for the sake of simplicity, i.e., H = diag(h, . . . , h)

where the kernel function K satisfies the following properties:

i) K is a density function, that is,
∫
Rd K(x) dx = 1 and K(x) ≥ 0.
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ii) K is symmetric, that is,
∫
Rd xK(x) dx = 0.

Typical kernels involve the Uniform, Gaussian and Epanechnikov kernel functions [110].

In this work, we use the Epanechnikov kernel function

K(x) =
d+ 2

2ζd
(1− xᵀx)I(xᵀx ≤ 1), (31)

where I(·) is the indicator function and ζd is the measure (volume) of the unit sphere in Rd.

6.3.4 Proposed Adaptive Sampling Strategy

The proposed adaptive sampling strategy is given in Algorithm 10. First, the algorithm

initializes the lists used to store the collected samples with the empty set and initializes the

sampling pdf f̂X with a pdf which is uniform over X . Then, the algorithm incrementally

samples from f̂X in Line 5. In the subsequent step, a collision-checking operation is per-

formed for the randomly generated sample xrand. The sample xrand is stored in either Xfree

or Xobs based on the result of the collision-checking.

In Lines 8 and 11, the DensityEstimator procedure implements a nonparametric den-

sity estimation method. In this work, we have implemented a kernel density estimator that

uses the multivariate Epanechnikov kernel with variable, but uniform in all dimensions,

bandwidth. In our implementation, the bandwidth h is updated as a function of the size of

the training set D as follows

h ∝ (log(|D|)/|D|)1/d. (32)

The Epanechnikov kernel in (31) has been used instead of, say, a Gaussian kernel be-

cause of its finite support. This property makes querying the density value of a given point

tractable. For any kernel of finite support, the summation in equation (29) needs to be per-

formed for only the local neighbors of the query point. This neighbor set can be computed

efficiently using specific spatial data structures, such as, kd-trees [106]. Simply, the density

value of point x is computed using equation (29) and it predicts how likely is for the point x
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Algorithm 10: Adaptive Sampling Algorithm#

1 AdaptiveSampling(X )
2 Xobs ← ∅; Xfree ← ∅;
3 f̂X(·)← puniform(·|X );
4 for i = 1 to N do
5 xrand ← SampleDensity(f̂X);
6 if OnObstacle(xrand) then
7 Xobs ← Xobs ∪ {xrand};
8 bobs ← DensityEstimator(Xobs);

9 else
10 Xfree ← Xfree ∪ {xrand};
11 bfree ← DensityEstimator(Xfree);

12 f̂X ← Classifier(X, bobs, bfree);

13 X ← (Xobs, Xfree);
14 return X;

to be in the obstacle-free or obstacle spaces. In Line 12, the Classifier procedure imple-

ments a Bayesian classifier and the label of a given point x is determined by the following

Bayesian decision rule:

ŷcs(x) =





1 if qfree(x) ≥ qobs(x),

−1 otherwise,
(33)

where qobs(x) := ηP (x|y = −1)P (y = −1) and qfree(x) := ηP (x|y = 1)P (y = 1),

where η = 1/P (x) is a normalizing coefficient. This classifier separates the configuration

space X into two approximate sets of obstacle X̂obs and obstacle-free X̂free regions, i.e.,

X̂obs = {x ∈ X : ŷcs(x) = −1} and X̂free = {x ∈ X : ŷcs(x) = 1}. At each iteration,

the class density functions are approximated by the kernel density estimator based on the

available data, as follows

bobs = P (x|y = −1) =
1

|Xobs|
∑

x′∈Xobs

KHo (x− x′)

bfree = P (x|y = 1) =
1

|Xfree|
∑

x′∈Xfree

KHf
(x− x′)

where Ho = diag(ho, . . . , ho) and Hf = diag(hf , . . . , hf) are computed according to

equation (32) using the sizes of Xobs and Xfree, respectively.
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The class priors are computed as the ratio of the samples in each class according to the

expression P (y = −1) = |Xobs|/|X| and P (y = 1) = |Xfree|/|X|. Finally, having the

X̂obs and X̂free sets, the Classifier procedure returns the following pdf which is uniform

over X̂free:

f̂X(x) =





1/µ(X̂free) if x ∈ X̂free,

0 if x ∈ X̂obs.

(34)

6.3.5 Learning the Cost-to-come (or cost-to-go) Value

Given the set of training data D =
{

(x(i), y(i)) : i = 1, . . . ,m
}

where the pair
(
x(i), y(i)

)

denotes a randomly drawn point along with its lmc-value (see Ref. [9]) computed by the

replanning procedure at the ith iteration, we wish to find a function ŷcv : X 7→ R that gives

a good estimate of the cost-to-come value of a given point x.

Due to the incremental setting of the sampling-based algorithms, we consider locally

weighted learning based methods [18], which are a form of lazy learning, to solve the

aforementioned regression problem owing to their easy training. In this method, the train-

ing data is stored in memory and only a small subset is retrieved to answer a specific query.

Relevance of the data is measured by using a distance function (e.g., nearby points look

alike or have similar features). For regression problems, the method fits a surface to nearby

points using a distance weighted regression as follows:

ŷcv(x) =

∑
i y

(i)w(x, x(i))∑
iw(x, x(i))

. (35)

The weighting function w(x, x′) measures the relevance of two points and can be de-

fined by using a kernel function, for example, w(x, x′) = KHv(x − x′) where Hv =

diag(hv, . . . , hv) is computed from equation (32) according to size of vertex set V . In

the proposed approach, whenever a new sample is examined for inclusion in the graph,

first its cost-to-come value is estimated using the lmc-values of the neighbor vertices ac-

cording to equation (35). Then, the new sample is included in the graph if its approximate
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cost-to-come value satisfies the following inequality, which is a relaxed version of (28)

X̂rel = {x ∈ X̂free : ĝ(x) + h(x) < lmc(x∗goal)}. (36)

6.3.6 Integration to the RRT# Algorithm

The proposed approach can be seamlessly integrated to the RRT# algorithm [9]. In fact,

the proposed approach can be used with any single-query sampling-based motion planning

algorithm, as long as it provides information of the cost-to-come (or cost-to-go) values for

all the vertices. However, it is essential for the planning algorithm to provide accurate esti-

mates of these cost values to achieve a good performance. In this chapter we have chosen

the RRT# algorithm to leverage its fast convergence properties, which is the result of using

a relaxation step for the local rewiring of the graph. Details of the RRT# algorithm and its

variants can be found in [9] and [12]. Instead of implementing a uniform sampling strat-

egy, the Sample procedure of the RRT# algorithm is replaced with the proposed adaptive

sampling strategy. The details of the Sample procedure is given in Algorithm 11.

The Extend procedure of the RRT# algorithm is also modified, and relevancy of a new

sample is checked by the proposed approach in Algorithm 12 before invoking any collision

checker or solving the local steering problem. If the new sample is predicted to be part of

the relevant region, then the typical operations of the RRT# algorithm are performed for

the inclusion of the new sample in the current graph. Lines 2-11 implement the Bayesian

classifier and compute the posterior distribution of the new sample. If the new sample is

predicted to be in the obstacle-free space, then the locally weighted regression is applied

in Lines 13-20 to determine if the new information has the potential to improve the current

best solution.
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Algorithm 11: Sample Procedure #

1 Sample(f̂X )
2 (X, bobs, bfree)← f̂X ; (Xobs, Xfree)← X;
3 x← SampleDensity(f̂X);
4 while OnObstacle(x) do
5 Xobs ← Xobs ∪ {x}; X ← (Xobs, Xfree);
6 bobs ← DensityEstimator(Xobs);
7 f̂X ← Classifier(X, bobs, bfree);
8 x← SampleDensity(f̂X);

9 Xfree ← Xfree ∪ {x}; X ← (Xobs, Xfree);
10 bfree ← DensityEstimator(Xfree);
11 f̂X ← Classifier(X, bobs, bfree);
12 return (f̂X , x);

13 SampleDensity(f̂X )
14 (X, bobs, bfree)← f̂X ; (Xobs, Xfree)← X;
15 Pp,obs = |Xobs|/|X|; Pp,free = |Xfree|/|X|;
16 do
17 x← Sample(X );
18 Pc,obs = bobs(x); Pc,free = bfree(x);
19 qobs(x) = Pc,obs · Pp,obs; qfree(x) = Pc,free · Pp,free;
20 while qfree(x) < qobs(x)
21 return x;

6.4 Simulation Results

We have performed several simulations in order to confirm the efficiency of the proposed

approach. Here we present the results for a two-link robot moving in the plane to demon-

strate that the proposed adaptive sampling strategy is capable of generating a high-number

of collision-free samples. The workspace and configuration space of the two-link robot

are shown in Figure 21. Objects are intentionally placed in the workspace to form narrow

passages in the configuration space. The sampling strategy has also been integrated to the

RRT# algorithm to solve a path planning problem in 2D environment in order to visualize

the growth of the search tree.

97



Algorithm 12: Relevancy Check Procedure#

1 IsRelevant(G, X , x)
2 (V ,E)← G; (Xobs, Xfree)← X;
3 Pp,obs = |Xobs|/|X|; Pp,free = |Xfree|/|X|;
4 Sobs ← Near(Xobs, x, |Xobs|); Pc,obs = 0;
5 foreach x′ ∈ Sobs do
6 Pc,obs = Pc,obs +KHo(x− x′);

7 Sfree ← Near(Xfree, x, |Xfree|); Pc,free = 0;
8 foreach x′ ∈ Sfree do
9 Pc,free = Pc,free +KHf

(x− x′);

10 Pc,obs = Pc,obs/|Sobs|; Pc,free = Pc,free/|Sfree|;
11 qobs(x) = Pc,obs · Pp,obs; qfree(x) = Pc,free · Pp,free;
12 if qfree(x) ≥ qobs(x) then
13 ĝ(x) = 0; wtotal = 0;
14 Xnear ← Near(G, x, |V |);
15 foreach x′ ∈ Xnear do
16 w(x, x′) = KHv(x− x′);
17 ĝ(x) = ĝ(x) + lmc(x′)w(x, x′);
18 wtotal = wtotal + w(x, x′);

19 ĝ(x) = ĝ(x)/wtotal;
20 Key(x) = (ĝ(x) + h(x), ĝ(x));
21 return Key(x) ≺ Key(v∗goal);

22 return False;

6.4.1 2D-link Robot

We first tested if the proposed adaptive sampling strategy generates a large number of

collision-free configurations. Both uniform and adaptive sampling strategies were used to

generate 100,000 samples. In order to demonstrate that the proposed approach eventually

draws samples from difficult parts of the configuration space, e.g., narrow passages, all

points on the boundary of obstacles were sampled offline and used to initialize the obstacle

list Xobs of the classifier. By doing so, all narrow passages are blocked at the start of the

algorithm.

Figure 22 compares the ratio of the collision-free samples over the total number of sam-

ples (r = |Xfree|/|X|) in a trial for uniform and adaptive sampling strategies, respectively.

The ratio plots for adaptive and uniform sampling strategies are shown in green and blue
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Figure 21: Workspace and configuration space of a 2-link robot.

colors, respectively. It is seen that this ratio converges to one for the proposed approach,

whereas it lingers around r = µ(Xfree)/µ(X) for a uniform sampling strategy, shown in

red color.
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Figure 22: Ratio of the number of collision-free samples over the total number of samples
starting from intermediate iterations: left is with i = 1, and right is with i = 50, 001.

The distribution of samples drawn by the uniform and sampling strategies is shown

Figure 23. The free space and configuration space obstacles are shown in white and red,

respectively. The samples that are free of and on collisions are shown in green and black,

respectively. The proposed adaptive sampling strategy significantly reduces the number of

points drawn from the obstacle space and generates samples inside the narrow passages
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shown, whereas the uniform sampling strategy results in a large number of points on the

obstacle space, depending the measure of µ(Xobs).

(a) 2,500 samples (b) 100,000 samples

(c) 2,500 samples (d) 100,000 samples

Figure 23: The distribution of samples randomly drawn by uniform and adaptive sampling
strategies is shown in (a)-(b) and (c)-(d), respectively.

6.4.2 Path Planning in 2D Environment

In this problem, our aim is to find an optimal path that connects a given initial point to

the goal region, while minimizing the Euclidean path length in a square environment. The

Euclidean distance from a given state to the goal set was used as an admissible heuristic for

that state. The growth of the tree at different stages is shown in Figure 24. The initial state
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is plotted as a yellow square,the goal region is shown in dark blue with (upper middle), and

the obstacles are shown in dark red. The minimal-length path is shown in yellow. As shown

in Figure 24, the lowest-cost path computed by the algorithm converges to the optimal

solution. Note that in these simulations we have used a slightly different implementation

of the algorithms, namely, the tree is rooted to the goal set instead of the initial state and

the growth of the tree is reversed.
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(d) 20,000 iterations

Figure 24: Evolution of the tree shown at different iterations.

It is seen that once an initial solution is computed, exploration is prevented from going

toward the unfavorable regions of the configuration space. This helps to greatly reduce the

number of vertices kept in the graph, yet it computes high quality solutions.
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(a) 100 iterations (b) 20,000 iterations

Figure 25: Learned configuration space.

The learned configuration space at different stages of the process are shown in Fig-

ure 25. The correctly predicted free space is shown in white color, the correctly predicted

obstacle space is shown in dark red, the incorrectly predicted obstacle and free spaces are

shown in black color, and the unexplored regions (no prediction is available) are shown in

gray color. These plots show how the configuration space looks like from the classifier’s

perspective. The configuration space is densely gridded and all points are queried to the

Bayesian classifier. The results are plotted based on the predicted labels. As seen in Fig-

ure 25-(b), the classifier builds an almost exact model of the configuration space, at least in

the neighborhood of the relevant region.

The approximate f-value function (heuristic value plus cost-to-go) at different stages is

shown in Figure 26. Low and high values of the f-value function are shown in blue and

red colors, respectively, and the intermediate values are shown using gradient colors. This

function is used to determine if a candidate sample is promising or not.

The approximate relevant region at different stages is shown in Figure 27. The true

relevant and approximate regions are shown in blue and purple colors, respectively, and

their intersection is shown in green color. In Figure 27-(a), the exact relevant region is

plotted based on the true cost-to-go values, which are computed off-line. Since a solution
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(a) 100 iterations (b) 20,000 iterations

Figure 26: Approximate f-value function (cost-to-go plus heuristic value).

has not been found yet, the algorithm considers initially the whole configuration space

as the relevant region. As seen in the next figures, however, the algorithm progressively

computes an approximation of the actual relevant region. In these plots the purple and

green regions denote the incorrect and correct predictions, respectively.

6.5 Conclusion

In this chapter, we propose a novel adaptive sampling strategy and integrate it to the RRT#

algorithm, an asymptotically optimal sampling-based path-planning algorithm. The pro-

posed adaptive sampling strategy utilizes the history of computed information, specifically,

the label of the samples and their cost-to-come (or cost-to-go) values, to guide the explo-

ration towards the region of the search space where samples having a great potential to

improve the existing solution are more likely to be found. The approach utilizes ideas from

machine learning to make predictions about how likely is for a new sample to be part of the

free space and improve the current solution, without calling the computationally expensive

collision checking and local steering procedures. Simulations demonstrate the effective-

ness of the proposed approach, both in terms of reducing the number of samples lying in

the obstacle space, and exploring the relevant region efficiently.
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(a) 100 iterations (b) 2,500 iterations

(c) 5,000 iterations (d) 20,000 iterations

Figure 27: Approximate relevant region.
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Chapter VII

STOCHASTIC MOTION PLANNING

7.1 Overview

This chapter considers optimal control of dynamical systems which are represented by non-

linear stochastic differential equations. It is well-known that the optimal control policy for

this problem can be obtained as a function of a value function that satisfies a nonlinear

partial differential equation, namely, the Hamilton-Jacobi-Bellman equation. This nonlin-

ear PDE must be solved backwards in time, and this computation is intractable for large

scale systems. Under certain assumptions, and after applying a logarithmic transforma-

tion, an alternative characterization of the optimal policy can be given in terms of a path

integral. Path Integral (PI) based control methods have recently been shown to provide

elegant solutions to a broad class of stochastic optimal control problems. One of the im-

plementation challenges with this formalism is the computation of the expectation of a

cost functional over the trajectories of the unforced dynamics. Computing such expecta-

tion over trajectories that are sampled uniformly may induce numerical instabilities due

to the exponentiation of the cost. Therefore, sampling of low-cost trajectories is essential

for the practical implementation of PI-based methods. In this chapter, we use incremental

sampling-based algorithms to sample useful trajectories from the unforced system dynam-

ics, and make a novel connection between Rapidly-exploring Random Trees (RRTs) and

information-theoretic stochastic optimal control. We show the results from the numerical

implementation of the proposed approach to several examples.
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7.2 Introduction

In [118, 119], the authors showed the connection between Kullback-Leibler (KL) and Path

Integral (PI) control with an information-theoretic view of stochastic optimal control. In

addition, the same authors derived the iterative path integral optimal control without relying

on policy parameterizations, as in [117]. We review the work in [118,119] starting with the

definitions of free energy and relative entropy and their connections to dynamic program-

ming. In addition, we discuss how the iterative scheme developed in [118] and [119] can

be modified to incorporate incremental sampling-based methods such as Rapidly-exploring

Random Trees (RRT) to guide sampling [39, 83]. An early approach which leverages the

RRT algorithm to solve stochastic optimal control problems for linear systems under envi-

ronmental uncertainty is given in [92].

Within the mathematical framework of path integral control, the Feynman-Kac lemma

plays an essential role, since it creates a connection between Stochastic Differential Equa-

tions (SDEs) and backward Partial Differential Equations (PDEs). This fundamental con-

nection between SDEs and backward PDEs has inspired new avenues for the development

of stochastic control algorithms such as Policy Improvement with Path Integrals (PI2) [117]

that rely on forward sampling. PI2 has been applied to a plethora of motor control tasks

from robotic object manipulation and locomotion to general trajectory optimization and

gain scheduling [34, 114, 117], but it relies on a suitable parameterization of the opti-

mal control policy. While policy parameterization such as Dynamic Movement Primitives

(DMPs) [59] improves sampling by steering trajectories in high-dimensional state spaces

towards areas of interest, it does not exploit the feedback structure provided by the path

integral control framework. In PI2 trajectories are sampled from the initial state of the task,

the optimal parameter variations are computed, and the parameters are updated. In the next

iteration, trajectories are sampled again from the same initial state and the iterative process

continues until convergence. It is clear that in the case of policy parameterization one has

to explicitly design the structure of the feedback control policy and then treat the gains as
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parameters to be optimized.

With respect to information theoretic formulations of policy search methods, [99], our

work here does not depend on policy parameterizations and is grounded on the Relative

Entropy - Free Energy Dualities and their connection to Dynamic Programming Principle.

7.3 Notation

A probability space is a triple (Ω, F , p) where (Ω,F) is a measurable space with Ω a non-

empty set, which is called the sample space, F ⊆ 2Ω a σ-algebra of subsets of Ω, whose

elements are called events, and p is a probability measure on F , that is, p is a finite measure

on F with p(Ω) = 1.

A real random variable is a function X : Ω → R with the property that {ω ∈ Ω :

X(ω) ≤ x} ∈ F for each x ∈ R. Such a function is said to be F-measurable. An extended

(real) random variable can also take the values ±∞. If X is a random variable on the

probability space (Ω, F , p), then its expectation is defined by

Ep [X] =

∫

Ω

X(ω) dp(ω), (37)

provided that the integral in the right-hand side exists. As usual, and for notational simplic-

ity, in the sequel we will drop the explicit dependence on ω ∈ Ω in (37). In other words,

the notation Ep [X] is another (shorter) notation for the integral
∫
Xdp.

7.4 Stochastic Control Based on Free Energy and Relative Entropy Du-
alities

Let (Ω,F) be a measurable space where Ω is a non-empty set and F ⊆ 2Ω is a σ-algebra

of subsets of Ω, and let P(Ω) be the set of all probability measures defined on (Ω,F).

Definition 1

Let p ∈ P(Ω) be a probability measure, x = x(ω), ω ∈ Ω be a random variable, t, ρ ∈ R

be real numbers, and let J (x, t) be a measurable function. The Helmholtz free energy of
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J (x, t) with respect to p is defined by

Ep (J (x, t); ρ) = log

(∫
exp (ρJ (x, t)) dp

)

= logEp [exp (ρJ (x, t))] . (38)

Definition 2

Let p, q ∈ P(Ω) be two probability measures. The relative entropy of p with respect to q is

defined as1:

KL (q‖p) =





∫
log

(
dq

dp

)
dq if q� p and log

(
dq

dp

)
∈ L1,

+∞ otherwise.
(39)

We will also consider the function ξ(x, t), defined by

ξ(x, t) = 1
ρ
Ep (J (x, t); ρ) = 1

ρ
logEp [exp (ρJ (x, t))] . (40)

To derive the basic relationship between free energy and relative entropy [43], we express

the expectation Ep taken under the probability measure p as a function of the expectation

Eq taken under the probability measure q. More precisely, we have:

Ep [exp (ρJ (x, t))] =

∫
exp (ρJ (x, t))

dp

dq
dq.

By taking the logarithm of both sides of the previous equation and by making use of

Jensen’s inequality [43], it can be shown that:

logEp [exp (ρJ (x, t))] ≥
∫
ρJ (x, t) dq−KL (q‖p) . (41)

Let ρ < 0. By multiplying both sides of (41) with −1/|ρ|, one obtains:

ξ(x, t) = − 1

|ρ|Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +
1

|ρ|KL (q‖p) (42)

1Given two probability measures p and q, we say that q is absolutely continuous with p and write q � p
if q = 0⇒ p = 0, see page 161 of [94].
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where Eq [J (x, t)] =

∫
J (x, t) dq. The inequality (42) provides us with a duality relation-

ship between relative entropy and free energy. Essentially, one could define the following

minimization problem:

− 1

|ρ|Ep (J (x, t); ρ) = inf
q∈P(Ω)

(
Eq [J (x, t)] +

1

|ρ|KL(q‖p)

)
. (43)

It can be shown that the infimum in (43) is attained at q∗, where

dq∗ =
exp (−|ρ|J (x, t))∫
exp (−|ρ|J (x, t)) dp

dp. (44)

One can put q∗ in (43) to verify that the right-hand side of the equation is indeed equal to

its lower bound [43].

A rather intuitive way of writing (42) is to express it in the following form:

− 1

|ρ|Ep (J (x, t); ρ)

︸ ︷︷ ︸
Helmholtz Free Energy

≤ Mean State Cost +
1

|ρ| Information Cost
︸ ︷︷ ︸

Non-Equilibrium Free Energy

(45)

where “Mean State Cost” and “Information Cost” are defined as Eq [J (x, t)] and KL (q‖p),

respectively.

In the next sections, we derive the form of (43) for the case when x is the state of a

nonlinear stochastic differential equation affine in noise and control.

7.4.1 Application of the Legendre Transformation to Stochastic Differential Equa-
tions

We consider the general uncontrolled and controlled stochastic dynamics affine in noise as

follows:

dx = A(x) dt+ C(x) dw(0), (46)

dx = F(x,u) dt+ C(x) dw(1), (47)

where x ∈ Rn denotes the state of the system, u ∈ Rm denotes the control input, C(x) ∈

Rn×m is the diffusion matrix, F(x,u) ∈ Rn is the drift dynamics, and w(0),(1) ∈ Rm are
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Wiener processes (Brownian motion). The upper-scripts (0) and (1) are used to distin-

guish the two noise processes in the uncontrolled and controlled dynamics, respectively.

The drift term A(x) ∈ Rn is defined by A(x) = F(x, 0). The diffusion matrix may

be partitioned as C(x) =

[
0 Cᵀ

c(x)

]ᵀ
where 0 ∈ R(n−m)×m and Cc(x) ∈ Rm×m

is invertible. Similarly, the drift term in the controlled dynamics may be partitioned as

F(x,u) =

[
Fᵀ

1(x,u) Fᵀ
2(x,u)

]ᵀ
where F1(x,u) ∈ R(n−m) and F2(x,u) ∈ Rm; and the

drift term in the uncontrolled dynamics may be partitioned as A(x) =

[
Aᵀ

1(x) Aᵀ
2(x)

]ᵀ

where A1(x) ∈ R(n−m) and A2(x) ∈ Rm. The class of systems whose matrices can be

partitioned as such contains rigid body, and multi body dynamics as well as kinematic mod-

els such as the ones considered in this work. Henceforth, for simplicity, we will assume

that m = n. The case when m < n can be treated similarly; see for instance [122]. Let

Σ(x) = C(x)Cᵀ(x) ∈ Rm×m and also define the following quantity:

δF(x,u) = F(x,u)−A(x) = F(x,u)− F(x, 0), ∀x,u.

To the system (47) we also associated the state cost

J (x(·), t) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ. (48)

where the function q : (x, t) 7→ r returns a non-negative real number r for a given state x

and time t. With a slight abuse of notation we will also use J (x, t) to denote the value of

J (x(·), t) along the trajectory x(·) starting from x = x(t) at time t. Expectations evaluated

on trajectories generated by the uncontrolled dynamics and controlled dynamics will be

represented by Ep[ · ] and Eq[ · ], respectively. The following fact can be found in [122].

Proposition 3

Given the measures p, q induced by the trajectories of (46) and (47), respectively, the

Radon-Nikodym derivative of q with respect to p is defined by

dq

dp
= exp

(∫ tf

t

δFᵀ(x(τ),u(τ))C−1(x(τ)) dw(1)(τ)

)
+

exp

(∫ tf

t

1
2δF

ᵀ(x(τ),u(τ))Σ−1(x(τ)) δF(x(τ),u(τ)) dτ

)
. (49)
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Given equation (49), the relative entropy term in (42) takes the form:

1

|ρ|KL(q‖p) = Eq

[
1

2|ρ|

∫ tf

t
δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
,

Substituting the previous expression of the Kullback-Leibler divergence into (42) one

obtains

− 1

|ρ|Ep (J (x, t); ρ) ≤ Eq [J (x, t)] +

Eq

[
1

2|ρ|

∫ tf

t
δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
.

The previous equation can be written in the form (45) with state cost term defined as

Eq [J (x, t)] and information cost defined as Eq

[
1

2|ρ|
∫ tf
t δFᵀ(x(τ),u(τ))Σ−1(x(τ))δF(x(τ),u(τ)) dτ

]
.

Next, we further specialize the class of systems where (45) is applied to, and discuss its con-

nections to stochastic optimal control as in [43, 118, 119]. To this end, let us consider the

special case of (46) and (47) with uncontrolled and controlled stochastic dynamics of the

following form, respectively:

dx = f(x) dt+
1√
|ρ|

B(x) dw(0), (50)

dx = f(x) dt+ B(x)

(
u dt+

1√
|ρ|

dw(1)

)
, (51)

where x ∈ Rn denotes the state of the system, B(x) ∈ Rn×m is the control/diffusion

matrix, f(x) ∈ Rn is the passive dynamics, u ∈ Rm is the control vector and w(0),(1) are

m-dimensional Wiener noise processes.

For the dynamics in (50) and (51) the form of the Radon-Nikodym derivative in (49)

can be computed as follows. Noticing that δF(x,u) = B(x)u, C(x) = B(x)/
√
|ρ| and

Σ(x) = B(x)Bᵀ(x)/|ρ|, and substituting these expressions in (49) yields

dq

dp
= exp (|ρ|η(u, t)) and

dp

dq
= exp (−|ρ|η(u, t)), (52)

where η(u, t) is given by:
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η(u, t) =
1

2

∫ tf

t
uᵀ(τ)u(τ) dτ +

1√
|ρ|

∫ tf

t
uᵀ(τ) dw(1)(τ). (53)

Substitution of (52) and (53) into inequality (42) yields the following result:

− 1

|ρ| logEp [exp (−|ρ|J (x, t))] ≤ Eq [J (x, t) + η(u, t)]. (54)

Since the noise and the control terms are uncorrelated and the expectation of the noise

is zero, the expectation on the right side of the inequality in (54) is further simplified as

follows:

− 1

|ρ| logEp [exp (−|ρ|J (x, t))]

︸ ︷︷ ︸
ξ(x,t)

≤ Eq

[
J (x, t) + 1

2

∫ tf

t

u(τ)ᵀu(τ) dτ

]
.

︸ ︷︷ ︸
Total Cost

(55)

The right-hand side term in the above inequality corresponds to the cost function of a

stochastic optimal control problem that is bounded from below by the free energy. Sur-

prisingly, inequality (55) was derived without relying on any principle of optimality. In-

equality (55) essentially defines a minimization process in which the right-hand side part

of the inequality is minimized with respect to η(u, t) and therefore with respect to the cor-

responding control u. At the minimum, when u = u∗, the right-hand side of inequality in

(55) attains its optimal value ξ(x, t). Under the optimal control u∗, and according to (44),

the corresponding optimal distribution takes the form

dq∗ =

exp
(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t
q(x(τ), τ) dτ

)

∫
exp

(
− |ρ|Φ(x(tf))

)
exp

(
−|ρ|

∫ tf

t
q(x(τ), τ) dτ

)
dp

dp. (56)

The work [118,119] inspired by early mathematical developments in control theory [43,

46], has shown that the value function ξ(x, t) in (55) satisfies the Hamilton-Jacobi-Bellman

equation and it has made the connection with more recent work in machine learning [63,

121] on Kullback-Leibler and path integral control.
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7.4.2 Connection with Dynamic Programming (DP)

An important question that arises is: What is the link between (55) and the principle of op-

timality in dynamic programming? To address this question, we show that ξ(x, t) satisfies

the Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal control problem

(51)-(48) and hence, ξ(x, t) is the corresponding value function of the following minimiza-

tion problem

ξ(x, t) = min
u(τ)
t≤τ≤tf

Eq

[
Φ(x(tf)) +

∫ tf

t

(
q(x(τ), τ) + 1

2uᵀ(τ)u(τ)
)

dτ

]

= min
u(τ)
t≤τ≤tf

Eq

[
J (x, τ) + 1

2

∫ tf

t

uᵀ(τ)u(τ) dτ

]
, (57)

where the expectation is computed over the trajectories of (51). To see this, we introduce

Ψ(x, t) , Ep [exp (ρJ (x, t))] and apply the Feynman-Kac lemma [50] to arrive at the

backward Chapman-Kolmogorov partial differential equation (PDE)

−∂tΨ(x, t) = −|ρ|q(x, t)Ψ(x, t) + fᵀ(x)∇Ψx(x, t) +
1

2|ρ| tr (∇Ψxx(x, t)B(x)B(x)ᵀ)

(58)

with boundary condition Ψ(x(tf), tf) = exp
(
− |ρ|Φ(x(tf)

)
, which governs the evolution

of Ψ(x, t) along the trajectories of (51) subject to x = x(t). Since ξ(x, t) = − log Ψ(x, t)/|ρ|,

it follows that ∂tΨ(x, t) = −|ρ|Ψ(x, t)∂tξ(x, t),∇Ψx(x, t) = −|ρ|Ψ(x, t)∇ξx(x, t) and

∇Ψxx(x, t) = |ρ|Ψ(x, t)∇ξxx(x, t) − |ρ|2Ψ(x, t)∇ξx(x, t)∇ξᵀx(x, t). In this case, it can

be shown that ξ(x, t) satisfies the nonlinear PDE

−∂tξ(x, t) = q(x, t) +∇ξᵀx(x, t)f(x)− 1
2
∇ξᵀx(x, t)B(x)Bᵀ(x)∇ξx(x, t)

+
1

2|ρ| tr (∇ξxx(x, t)B(x)Bᵀ(x)) , (59)

subject to the boundary condition ξ(x(tf), tf) = Φ(x(tf)). The nonlinear PDE (59) cor-

responds to the HJB equation associated with the optimal control problem (57) and hence

ξ(x, t) is the corresponding minimizing value function [111]. It is important to note, how-

ever, that the principle of optimality was not used to derive (59).
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7.4.3 Path Integral Control with Initial Sampling Policies

According to (55), one need to sample trajectories under the uncontrolled dynamics and

evaluate the left-hand side of (55) on these trajectories in order to find the value function

ξ(x, t). However, in high-dimensional spaces, it is desirable to steer sampling toward spe-

cific areas of the state space. To do so, we have to incorporate an initial control policy into

the uncontrolled dynamics. Therefore, instead of sampling from the uncontrolled dynam-

ics (50), we sample trajectories based on the following stochastic dynamics:

dx = f(x) dt+ B(x)

(
uin dt+

1√
|ρ|

dw(1)

)
, (60)

where uin is an initial control policy. In [118, 119], the authors derived an iterative PI

control without relying on previous policy parameterizations. More precisely, when sam-

pling trajectories from the dynamics (60) the work in [119] and [118] showed that the value

function ξ(x, t) is expressed as

ξ(x, t) = − 1

|ρ| log

(∫
exp (−|ρ|S (x,uin(x, t), t)) dqin

)

where the term S(x,uin) is defined as

S(x,uin) = Φ(x(tf)) +

∫ tf

t

q(x(τ), τ) dτ

︸ ︷︷ ︸
J (x,t)

+
1

2

∫ tf

t

uᵀ
in(τ)uin(τ) dτ +

1√
|ρ|

∫ tf

t

uᵀ
in(τ) dw(1)(τ)

︸ ︷︷ ︸
η(uin,t)

, (61)

where the term η(uin, t) appears due to sampling based on the dynamics (60), while the

term J (x, t) is the state-dependent part of the total cost function in (55). The path integral

control is now expressed as [118]

uPI(x, t) dt = uin(x, t) dt+ δu(x, t), (62)

where the term δu(x, t) is defined by

δu(x, t) =
1√
|ρ|

Eq∗
[
dw(1)

]
=

1√
|ρ|

∫
dw(1) dq∗, (63)
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and where the expectation is taken under the optimal probability

dq∗ =
exp (−|ρ|S(x,uin))∫

exp (−|ρ|S(x,uin)) dqin

dqin. (64)

During implementation, equation (63) is approximated as

δu(x, t) =
1√
|ρ|

#traj∑

k=1

pkdw(1)(ωk)

pk =
exp (−|ρ|S(xk,uin))∑#traj
`=1 exp (−|ρ|S(x`,uin))

(65)

The initial policy uin can be a suboptimal control law, a hand-tuned PD, PID control, or

feedforward control. In this chapter, we consider a feedforward control given by the RRT

algorithm as the initial control policy. The RRT algorithm is proven to be a simple, it-

erative algorithm that quickly searches complicated, high-dimensional spaces for feasible

paths. It grows a space-filling tree by drawing a random sample from the search space and

connecting the nearest point in the tree to the new random sample at each iteration. This

helps the tree to grow its branches toward unexplored regions of the search space quickly,

i.e., achieving Voronoi bias [39, 81, 83]. In this case, the RRT-based optimal path integral

control takes the form

uPI(x, t) dt = uRRT(t) dt+ δu(x, t). (66)

In the next section, we discuss how to use the RRT algorithm to compute the initial control

policy uRRT.

7.5 Trajectory Sampling via Sampling-based Algorithms

In high dimensional state spaces, sampling of useful trajectories from the unforced dynam-

ics can be a tedious task. This issue can be addressed by first computing a “good enough”

initial trajectory and then sampling local trajectories in the neighborhood of this trajectory.

In the proposed approach, we use a probabilistic algorithm to find uin in (60) and compute

an initial trajectory quickly. Probabilistic methods have proven to be very efficient for the
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solution of motion planning problems with dynamic constraints in high dimensional search

spaces. Among them, Rapidly-exploring Random Trees (RRTs) [39, 81, 83] are among the

most popular for solving single query motion planning problems. The main body of the

RRT algorithm is given in Algorithm 13.

In the proposed approach, we leverage the speed and exploration capabilities of the

RRT algorithm to compute an initial policy quickly by modifying the RRT primitive pro-

cedures. The proposed algorithm PI-RRT uses the path-integral approach to compute op-

timal trajectories that incorporate the system uncertainty (i.e., the risk of collision with

obstacles). Since both final time and final state are given, the search space is formed by

adding an additional time dimension T to the state space X . Our search space, goal set and

free space are thus defined as Z = X ×T , Zgoal = Xgoal×Tgoal, and Zfree = Z \Zgoal, re-

spectively. The RRT algorithm is then run to find a trajectory starting from an initial point

zinit = (xinit, tinit) to the goal set Zgoal while avoiding the obstacles in X . The primitive

procedures borrowed by the RRT algorithm are Sample, Nearest, Steer and Extend. In

addition, given a trajectory σ, the Boolean function ObstacleFree(σ) checks whether σ

belongs to Zfree or not. It returns True if the trajectory is a subset of Zfree, i.e., σ ⊂ Zfree,

and False otherwise. Details for these procedures can be found in [65]. In addition, the

PI-RRT algorithm uses the following procedures:

Steer : Given two points z1 and z2 in Zfree, Steer extends z1 toward z2 by sampling

trajectories from the unforced dynamics of the system. Specifically, the procedure sam-

ples a set of trajectories emanating from z1 and returns the closest end point of this set of

trajectories to the point z2 with respect to a given distance function.

Extend: is a function that extends the nearest vertex of the graph G toward the randomly

sampled point zrand. Since time always flows in forward direction, we make sure that

Extend computes valid connections, i.e., it returns false if the time value of zrand is less

than that of the nearest vertex in the graph. The Extend procedure of the RRT algorithm

is shown in Algorithm 14.
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ExtractPath: is a function that process on a tree data structure and extracts the infor-

mation of the collision free trajectory starting from the current state to the goal set and the

corresponding the control signal. The RRT Algorithm returns a tree G which contains the

information of control inputs at each vertex of the tree at Line 5. Then, the ExtractPath

procedure is subsequently called at the next line and it concatenates the control inputs by

backtracking from the goal set toward the current state.

Execute: is a function that performs some initial portion of a given control signal on

the system.

MeasureState: is a function that returns the current state of the system after it is

executed with some control input. Since the system is subjected to noise, there is usually a

difference between the real and the simulated state.

ComputeVariation: is a function that implements the path-integral control approach.

After the RRT Algorithm computes a feasible trajectory and the corresponding control

input, a fixed number of trajectories are locally sampled in the vicinity of this trajectory.

Then, the correction term in control is computed as simply a weighted average of the noise

profiles that create the local trajectories.

Algorithm 13: Body of the RRT Algorithm
1 RRT(zinit, Zgoal, Z)
2 V ← {zinit}; E ← ∅;
3 G ← (V ,E);
4 for i = 1 to N do
5 zrand ← Sample(i);
6 G ← Extend(G, zrand);

7 return G

The body of the path-integral based RRT algorithm is shown in Algorithm 15. It runs in

a receding horizon fashion, that is, it computes a “good enough” control input and executes

the first portion of the control signal at each time step. The algorithm starts by initializing

the current time and state with the initial values in Lines 2-3. The algorithm then computes

an initial policy in Line 5 by using the RRT algorithm. The steering procedure in the RRT
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Algorithm 14: Extend Procedure for RRT Algorithm
1 Extend(G,z)
2 (V ,E)← G;
3 znearest ← Nearest(G, z);
4 (znew,σnew,unew)← Steer(znearest, z);
5 if ObstacleFree(σnew) then
6 V ← V ∪ {znew};
7 E ← E ∪ {(znearest, znew)};
8 return G′ ← (V ,E)

algorithm is slightly modified in order to sample dynamically feasible trajectories. The

steering procedure first samples a fixed number of trajectories from the unforced dynamics

and then chooses the one that has the closest terminal state toward the desired point. Once a

trajectory that reaches the goal set has been computed, the corresponding trajectory σRRT,

along with control the signal uRRT, are extracted from the computed data structure in Line

6. Then, the algorithm proceeds by locally sampling trajectories around (σRRT,uRRT) and

computes the variation in the control δu(x, t) according to (63) by using information of

local trajectories. Since we have M number of local trajectories, the expectation in (63)

is numerically approximated by using the expression in (65). For each local trajectory

σk, a cost value is computed as S(σk,uRRT) and its desirability value is computed by

exponentiating the corresponding cost value, i.e., dk = exp(−|ρ|S(σk,uRRT)). Then, the

variation term in control δu(x, t) is computed by taking the weighted average of all noise

profiles which create the local trajectories and the weight of each trajectory is computed as

the normalized desirability value, i.e., pk = dk/Σ
N
`=1d`. The iteration of the algorithm is

completed by executing the first τ times of the computed control signal and the algorithm

keeps repeating the same steps until the final time is reached.

7.6 Comparison with Existing Methods

In [92], the authors introduced Chance Constrained Rapidly-exploring Random Trees (CC-

RRT) algorithm to solve motion planning problems involving uncertainty in the location
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Algorithm 15: Body of the PI-RRT Algorithm
1 PI-RRT(zinit, Zgoal, Z)
2 (ti,xi)← zinit; (tf ,Xgoal)← Zgoal;
3 zi ← zinit;
4 while ti < tf do
5 G ← RRT(zi, Zgoal, Z);
6 (σRRT,uRRT)← ExtractPath(G);
7 δu[ti,tf ] ← ComputeVariation(uRRT,M);
8 u← uRRT + δu;
9 Execute(u[ti,ti+τ ]);

10 xi ← MeasureState(ti + τ); ti ← ti + τ ;
11 zi ← (xi, ti);

of the obstacles. Their approach is applicable for linear systems subject to process noise

and/or uncertain obstacles which are assumed to be convex polyhedra. Due to the uncer-

tainties in the problem, it may not be possible to identify a path guaranteed to be collision

free surely. Therefore, the main idea in [92] is to relax this feasibility condition and intro-

duce the notion of chance constraints, which guarantees probabilistic feasibility of com-

puted trajectories. Under the assumption of Gaussian noise, probabilistic feasibility at each

time step can be established through simple simulation of the state conditional mean and

the evaluation of linear constraints. After some algebraic operations, these probabilistic

inequality constraints are converted into deterministic ones that yield conservative bounds

in lieu of the inequality constraints representing the obstacles. Although both our approach

and the CC-RRT algorithm leverage the RRT algorithm, they differ from each other in

several ways. The PI-RRT algorithm can be applied to nonlinear systems which is affine in

control and it does not impose any condition on the shape of the obstacles. Also, since the

PI-RRT algorithm tries to compute the desirability function, i.e., the value function under

exponentiation, it provides guarantees of optimality, whereas the CC-RRT algorithm only

ensures path feasibility and relies on random sampling of controls to compute good enough

trajectories without any guarantees.
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7.7 Numerical Simulations

In this section, we present a series of simulated experiments using a kinematic car model.

We are interested in controlling a vehicle, whose motion is described by the following

kinematic equations:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = w/r, (67)

where x, y are the Cartesian coordinates of a reference point of the vehicle, v is its speed,

w is the control input and r is a positive constant. We assume that the admissible control

inputs, are restricted by w ∈ [−1, 1]. We would like to find an optimal policy for the

heading rate w to move the vehicle from a given initial configuration (xi, yi, θi)
ᵀ to a final

configuration (xf , yf , θf)
ᵀ within some fixed final time tf .

Let x1 = x, x2 = y, x3 = θ be the states and u = w be the control input of the system.

Then (67) can be rewritten as

ẋ1 = v cos x3, ẋ2 = v sin x3, ẋ3 = u/r. (68)

Assuming the system is subjected to noise of intensity α in the control channel, (68) can be

written in the standard form



dx1

dx2

dx3




=




v cos x3

v sin x3

0




dt+




0

0

1/r




(u dt+ α dw), (69)

where f , B and ρ in (60) are defined as follows

f(x) =




v cos x3

v sin x3

0



, B =




0

0

1/r



, ρ = − 1

α2
.

The following parameters were used in the numerical simulations: x0 =

(
−9 0 0

)ᵀ

,

t0 = 0, xf =

(
9 0 0

)ᵀ

, tf = 10, dt = 0.1, v = 2.0.
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7.7.1 Example 1: Single-slit Obstacle

The objective in this problem is to find trajectories for the vehicle in a square environment

with a box-like obstacle having a single slit. The trajectories computed by the PI-RRT

algorithm at different stages are shown in Figure 28. The initial state is plotted as a yel-

low square and the goal region is shown in blue with magenta border (right-most). The

computed path by the RRT algorithm following the unforced dynamics is shown in yellow.

The locally sampled trajectories which are bundled around the yellow trajectory are shown

in different colors. The trajectory of the vehicle due to execution of the control policy for

some finite time horizon is shown in magenta.
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Figure 28: The trajectories computed by the PI-RRT algorithm for stochastic optimal
control of the kinematic car model under different levels of noise injected to the control
channel: (a)-(c) is with α = 0.25, (e)-(g) is with α = 0.50, and (i)-(k) is with α = 1.0.

121



To understand how the intensity of the noise level affects the patterns of the trajectories

of the system, we run the algorithm and analyzed the situation for three different cases,

α = 0.25, 0.5 and 1.0 corresponding to low, medium and high intensity noise levels in the

control channel. As shown in Figure 28 (a)-(c), the PI-RRT algorithm computes trajectories

that pass through the slit most of the time when there is low intensity noise in the control

channel. As a first step, the PI-RRT algorithm computes a baseline trajectory using the

RRT algorithm. The vertices and the edges of the tree computed by the RRT algorithm

are shown in green and blue colors, respectively. During the simulations, it was observed

that this baseline trajectory does not necessarily pass through the slit. The RRT algorithm

sometimes returns a baseline trajectory that passes close by the upper or the lower sections

of the obstacle due to both the noise which is observed in the dynamics and the randomized

nature of the algorithm itself. The PI-RRT algorithm then samples a bundle of trajectories

around the baseline trajectory in order to compute the variation term for the new control

input. The new control input is computed by summing up the baseline control policy re-

turned by the RRT algorithm and the variation term, which is the weighted average of the

contribution of each locally sampled trajectory. These weights are computed by using the

cost information of each locally sampled trajectory. We observed that the distribution of the

trajectories, which pass close to the upper or lower corners or through the slit, changes as

the intensity of the noise increases. For higher intensity of the noise, the PI-RRT algorithm

computes trajectories which do not pass through the slit but rather pass close to the upper or

lower corners. This change in the distribution of trajectories is shown in Figures 28 (e)-(g)

for medium intensity noise and in Figures 28 (i)-(k) for high intensity noise.

7.7.2 Example 2: Double-slit Obstacle

Next, we consider a more challenging motion planning problem. In this case, there are two

slits on the obstacle block and the length of the slits is longer than in the previous example.

The longer length of the slits results in a higher probability of collision while traversing
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through the slit, which makes the motion planning problem more challenging.

A study was performed in order to compare the performance of the PI-RRT algorithm

with the RRT algorithm. No variation term in the control input was computed for the RRT

algorithm, and it was simply executed in a receding horizon fashion. All algorithms were

run for 6000 iterations to find a baseline trajectory. The results over 100 trials are shown

in Figures 29, 30 and 31. The trajectories that result in collision are plotted in Figure 29

(a), (d) for the low noise level, Figure 30 (a), (d) for the medium noise level, and Figure 31

(a), (d) for the high noise level for the RRT and PI-RRT algorithms, respectively. Also,

the distribution of collision-free trajectories is plotted in Figure 29 (c), (f) for the low noise

level, Figure 30 (c), (f) for the medium noise level, and Figure 31 (c), (f) for the high noise

level for the RRT and PI-RRT algorithms, respectively. The distribution of trajectories and

the number of trajectories which result in a collision are summarized in Table I. Under the

‘Success’ column, the rows of the table contain the number of collision-free trajectories

which pass through the bottom corner, bottom slit, top slit and top corner of the block.

As shown in Table 3, the PI-RRT computes safer control policies which reduce the risk of

having a collision. On the other hand, both the RRT and the PI-RRT compute trajectories

that are almost equally distributed over both slits.

In summary, it was observed that the behaviors of both algorithms are similar for the

case with high noise level. As the noise level decreases, most of the failed cases, not sur-

prisingly, occur when the algorithms try to compute a path that passes through the slits. Our

simulation results demonstrate that the PI-RRT algorithm tends to compute trajectories that

have larger clearance from obstacles and hence outperforms the standard RRT algorithm,

resulting in a smaller failure rate.

Table 3: Monte-Carlo Results for Double-Slit Obstacle
α = 0.25 α = 0.50 α = 1.00

Success Fail Success Fail Success Fail
RRT 0 24 20 0 56 23 8 11 27 31 48 0 0 44 8
PI-RRT 0 44 45 0 11 35 9 8 37 11 47 0 0 49 4
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Figure 29: Distribution of trajectories for kinematic car model under low intensity of
noise injected to the control channel (α = 0.25) is shown in (a)-(c) for the RRT algorithm,
and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown
in (a), (d). The collision-free trajectories at an intermediate stage are shown in (b), (e), and
at the final stage are shown in (c), (f).
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Figure 30: Distribution of trajectories for kinematic car model under medium intensity of
noise injected to the control channel (α = 0.50) is shown in (a)-(c) for the RRT algorithm,
and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown
in (a), (d). The collision-free trajectories at an intermediate stage are shown in (b), (e), and
at the final stage are shown in (c), (f).
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Figure 31: Distribution of trajectories for kinematic car model under high intensity of
noise injected to the control channel (α = 1.0) is shown in (a)-(c) for the RRT algorithm,
and in (d)-(f) for the PI-RRT algorithm. The trajectories which hit the obstacles are shown
in (a), (d). The collision-free trajectories at an intermediate stage are shown in (b), (e), and
at the final stage are shown in (c), (f).
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7.8 Conclusion

In this chapter, the PI-RRT algorithm is proposed in order to solve a class of stochastic

optimal control problems. The proposed approach makes a novel connection between in-

cremental sampling-based algorithms and path integral control. The PI-RRT algorithm

benefits the nice properties of importance sampling and finds an efficient way to compute

an expectation operation over the distribution of trajectories of the uncontrolled dynamics,

i.e., the target distribution of trajectories. The expectation operation is essential in order to

compute the optimal path integral control law. At each iteration, the initial control policy

computed by the RRT algorithm is inputed to the system, and the expectation is performed

as a weighted summation over the distribution of trajectories of the controlled dynamics

under the initial control policy instead of the target distribution. It is observed that the

proposed approach remedies the numerical instability of the original path integral control

during the simulations.
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Chapter VIII

MOTION PLANNING USING CLOSED-LOOP PREDICTION

8.1 Overview

Motion planning under differential constraints, the kinodynamic motion planning prob-

lem, is one of the canonical problems in robotics. Currently, state-of-the-art is provided

by kinodynamic variants of popular sampling-based algorithms such as Rapidly-exploring

Random Trees (RRTs). However, this problem remains challenging due to, for example,

issues of how to include complex dynamics and guarantee optimality. Especially, if the

open-loop dynamics are unstable, then exploration of high quality solutions by random

sampling in control space becomes a very tedious task. Possible ways to remedy these

issues are to search for a reference trajectory, which can be easily followed by using a

stabilizing tracking controller, and to employ ideas from recently proposed asymptotically

optimal sampling-based algorithms to optimize over the space of reference trajectories. In

this chapter, we describe a new sampling-based algorithm, called CL-RRT#, which lever-

ages ideas from the RRT# algorithm and a variant of the RRT algorithm that generates

trajectories using closed-loop prediction. The idea of planning with closed-loop prediction

allows us to handle complex unstable dynamics. The search technique presented in the

RRT# algorithm provides us to improve the solution quality by searching over alternative

reference trajectories. Numerical simulations computed for a car model demonstrate the

benefits of the proposed approach.
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8.2 Introduction

Motion planning problems have been studied by both the robotics and the controls research

communities for a long time, and many algorithms have been developed for their solu-

tion [78, 81]. These problems are ubiquitous in many applications, to achieve higher level

of autonomy and challenging several reasons, for example, including state and control con-

straints, high-state dimensionality, complex differential constraints that arise from system

dynamics, and solution quality. Loosely speaking, given a system that is subject to a set of

differential constraints, an initial state, a final state, a set of obstacles, and a goal region,

the motion planning problem is to find a control input that drives the system from its initial

state to the goal region. This problem is computationally hard to solve and a basic version

of the problem, called the piano mover’s problem, was shown to be PSPACE-hard [104].

A common approach to solve the motion planning problems is to divide the problem

into two or more subproblems. In the first subproblem, an obstacle-free geometric path

is computed from the initial point to the goal region. Then, in the next subproblem, a

controller is designed to track the computed geometric path with a suitable time parame-

terization while considering the differential and control constraints. The main drawback of

this approach is lack of dynamic feasibility guarantee. Nonetheless, it has been successfully

applied to robotic applications in which the underlying system has redundant control au-

thority (e.g., robotic manipulators). Since it is usually nontrivial to capture the differential

constraints at a geometric level to guide the search in the first subproblem, it is quite pos-

sible that the computed obstacle-free geometric path may not be tracked by the underlying

control system or can be tracked at the expense of large control effort at best.

Another important class of algorithms is randomized planners that remedy the issue

with dynamic feasibility guarantee by solving the motion planning problem in one step

without resorting to any intermediate problems. Notably, the kinodynamic version of the

RRT algorithm incrementally grows a tree of trajectories in the state space by sampling

random control inputs and simulating the motion of the system with these random control
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inputs over a time period [81–83]. Therefore, the trajectories that are generated by the

RRT algorithm are dynamically feasible by construction. Recently, the RRT algorithm

and its variants were successfully applied to many robotic system [72, 84] and different

class of stochastic problems [7, 58]. Unlike the standard RRT algorithm, these variants

were usually implemented to compute a solution quickly and improve it in the remaining

time until the execution of the motion plan. The quality of the solution computed by the

RRT algorithm is still unboundedly suboptimal despite these engineered implementations.

One possible reason of suboptimality of the RRT algorithm is that exploration via ran-

dom selection of control inputs becomes very inefficient when the dynamics are complex

and unstable. In practice, the underlying dynamical systems are desired to exhibit certain

motion behaviors that yield high quality solution, but these behaviors may not be achieved

easily by randomly chosen control inputs. To remedy this drawback, the authors in [76]

proposed a new algorithm, called CL-RRT, that uses closed-loop prediction for trajectory

generation. Instead of sampling in the space of controls, the proposed approach grows a

tree in the space of reference trajectories and each path of the tree represents a reference

trajectory that acts as an input to the closed-loop system. The desired behaviors of the

system are prescribed as specifications for a tracking controller that is used to track a given

reference trajectory. Each edge of the tree is associated with a segment of a reference

trajectory and a state trajectory of the system that is computed by closed-loop prediction.

Instead of using Euclidean distance function, some heuristics are used to guide the explo-

ration of the tree. Finally, the CL-RRT algorithm returns a reference trajectory that yields

the lowest-cost state trajectory of the system.

The poor suboptimality property of the RRT algorithm has led many researchers to de-

velop different class of sampling-based algorithms with improved solution properties. To

this end, the authors in [65] presented the first rigorous analyses regarding the optimality

properties of the RRT algorithm. The RRT algorithm computes a solution that converges
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to a non-optimal solution with probability one. Furthermore, they introduced a new algo-

rithm with asymptotic optimality guarantee, called RRT∗, and it performs an additional

rewiring step that improves the existing solution with constant asymptotic computational

overhead. This important result has sparked interests in development of other sampling-

based algorithms with optimality guarantees [9, 61]. Later, the same authors developed

variants of the RRT∗ algorithm to solve motion planning problems under differential con-

straints [64, 66] and showed that the proposed algorithms are asymptotically optimal when

a steering procedure that satisfies certain conditions is provided. However, developing ef-

ficient steering procedures that solves point-to-point motion planning without considering

obstacles is not trivial for many dynamical systems. Steering procedures are known only

for certain dynamical systems, e.g., time-optimal motion planning problems for Dubins

vehicle or double integrator.

In this chapter we develop a new asymptotically optimal motion planning algorithm,

called CL-RRT#, that leverages ideas from the CL-RRT [76] and the RRT# algorithms [9,

12,13]. To handle differential constraints, instead of sampling directly in the control space,

the proposed approach samples in the output space and incrementally grows a graph whose

edges correspond to segments of reference trajectories. The algorithm also keeps another

graph to store state trajectories of the closed-loop system when it is inputed with a cer-

tain path in the graph of reference trajectories. To improve the quality of solutions, the

CL-RRT algorithm searches among alternative paths of the graph of reference trajectories

similar to RRT#. As search progresses, the proposed algorithm checks different reference

trajectories and simulates the system model forward in time as needed. Finally, the algo-

rithm chooses and returns the segments of reference trajectories that yield a lower-cost state

trajectory of closed-loop system.

The chapter is organized as follows. Section 8.3 gives an overview of the problem

formulation and notation. Section 8.4 is devoted to the discussion about the details of the

proposed algorithm, the CL-RRT#algorithm. Numerical results are presented for some
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dynamical systems in Section 8.5 to demonstrate the nice features of the algorithm. Finally,

the last section contains conclusion and future work.

8.3 Problem Formulation
8.3.1 Notation and Definitions

Let X ⊆ Rn, Y ⊆ Rp and U ⊆ Rm be compact sets. We assume that the system dynamics

can be described by a nonlinear differential equation of the form

ẋ(t) =f(x(t), u(t)), x(0) = x0,

y(t) =h(x(t), u(t)), (70)

where the system state x(t) ∈ X , the system output y(t) ∈ Y , the control u(t) ∈ U , for

all t, x0 ∈ X , and f and h are smooth (continuously differentiable) functions describing

the time evolution of the system dynamics. Let X denote the set of all essentially bounded

measurable functions mapped from [0, T ] to X for any T ∈ R>0 and define Y and U

similarly. The functions in X , Y , and U are called state trajectories, output trajectories,

and controls, respectively.

Let Xobs and Xgoal, called the obstacle space and the goal region, be open subsets of

X . Let Xfree, also called the free space, denote the set defined as X \Xobs.

The smooth function h describes the output y that we wish to control. Loosely speak-

ing, we are particularly interested in the class of control problems in which we wish to

track a time-varying reference trajectory r(t), called the trajectory-generation problem.

We assume that given a desired output value y′ ∈ Y , and a current output value y ∈ Y of

the system, the control law φ : (y′, y) 7→ u ∈ U computes a control input such that the

closed-loop simulation of the system yields a good tracking performance as time evolves.

8.3.2 Problem Statement

Given the state space X , obstacle region Xobs, goal region Xgoal, and smooth functions f

and h that describe the system dynamics, find a reference trajectory r ∈ Y with domain
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[0, T ] for some T ∈ R>0 such that the unique corresponding state trajectory x ∈ X , output

trajectory y ∈ Y , and control u ∈ U that are computed by closed-loop simulation,

• obeys the differential constraints,

ẋ(t) = f(x(t), u(t)) x(0) = x0,

y(t) = h(x(t), u(t)) for all t ∈ [0, T ],

• avoids the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T ],

• reaches the goal region, i.e., x(T ) ∈ Xgoal,

• and minimizes the cost functional J(x, u, r) =
∫ T

0
g(x(t), u(t), r(t)) dt

8.3.3 Primitive Procedures

Following are definition of the primitive procedures that are used by the CL-RRT# algo-

rithm (for details, see [65]).

Sampling Let Sample : ω 7→ {Samplei(ω)}i∈N0
⊂ Yfree be a map from Ω to the se-

quences of points in Yfree, such that the random variables Samplei, i ∈ N0, are independent

and identically distributed (i.i.d.).

Nearest Neighbor Node Given a graph Gy = (Vy, Ey), where Vy ∈ Y , a point Y ∈ Y ,

the function Nearest : (Gy,Y) 7→ vy ∈ Vy returns the node in Vy that is “closest” to Y in

terms of a given distance function. The Euclidean distance is used in the work, and hence

Nearest(Gy = (Vy, Ey),Y) := argmin
vy∈Vy

‖vy.Y −Y‖.

Near Neighbor Nodes Given a graph Gy = (Vy, Ey), where Vy ∈ Y , a point Y ∈ Y ,

and a positive real number d ∈ R>0, the function Nearest : (Gy,Y, d) 7→ vy ∈ V ′y ⊂ Vy

returns the nodes in Vy that are contained in a ball of radius d centered at Y, i.e.,

Near(Gy = (Vy, Ey, r),Y) :=
{
vy ∈ Vy : ‖vy.Y −Y‖ ≤ d

}
.
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Steering Given two points yfrom, yto ∈ Y , the function Steer : (yfrom, yto) 7→ y′ returns

a point y′ ∈ Y such that y′ is “closer” to yto than yfrom is. In this work, the point y′ returned

by the function Steer will be such that y′ minimizes ‖y′ − yto‖ while at the same time

maintaining ‖y′ − yfrom‖ ≤ η, for a predefined η > 0, i.e.,

Steer(yfrom, yto) := argmin
y′∈Bη(yfrom)

‖y′ − yto‖.

Closed-loop Prediction Given a state x ∈ Xfree, and an output trajectory σy ∈ Y , the

function Propagate : (x, σy) 7→ σx ∈ X returns the state trajectory that is computed by

simulating the system dynamics forward in time with the initial state x, and the reference

trajectory σy.

Collision Test Given two points yfrom, yto ∈ Gy, the Boolean function ObstacleFree(yfrom, yto)

returns True if the line segment between yfrom and yto lies in Yfree, i.e., y = (1− θ)yfrom +

θyto ∈ Yfree, θ ∈ [0, 1], and False otherwise.

Cost-to-come Values Given a graph Gy = (Vy, Ey), let g∗ denote the optimal cost-to-

come value of the node vy ∈ Vy that can be achieved in Gy. Each node vy ∈ Vy is associated

with two estimates of the optimal cost-to-come value (see [9, 71]). The g-value of vy is the

cost of the path to vy from a given initial state yinit ∈ Yfree. The one step look-ahead g-value

of vy is denoted with ḡ and defined as follows:

vy.ḡ =





0, if vy.Y = yinit,

min
ey∈Ey,pred

(vy,pred.g + Cost(σ)) , otherwise,

where Ey,pred = incoming(Gy, vy), vy,pred = ey.tail, and σ is the state trajectory that

is computed via closed-loop prediction, i.e., the dynamical system is simulated forward in

time with the initial state vy,pred.pσ.back() and the reference trajectory ey.σ.
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Heuristic Value Given a node vy ∈ Vy, and an output goal region Ygoal, the function

ComputeHeuristic : (vy, Ygoal) 7→ r returns an estimate r of the optimal cost from

vy to Ygoal; it return zero if vy ∈ Ygoal. Heuristic value of each node vy is stored in vy.h

during its construction. A heuristic is called admissible if it never overestimates the actual

cost of reaching Ygoal. In this chapter, we always assume that ComputeHeuristic is

implemented as an admissible heuristic.

Queue Operations Nodes of the computed graphs are associated with some keys and

priority queues are used to sort these nodes based on the precedence relation between keys.

Following functions are implemented to maintain a given priority queue Q:

• Q.top key() returns the highest priority of all nodes in the priority queueQ with the

smallest key value if the queue is not empty. IfQ is empty, thenQ.top key() returns

a key value of k = [∞;∞].

• Q.pop() deletes the node with the highest priority in the priority queueQ and returns

a reference to the node.

• Q.update(vy, k) sets the key value of the node vy to k and reorders the priority queue

Q.

• Q.insert(vy, k) inserts the node vy into the priority queue Q with the key value k.

• Q.remove(vy) removes the node vy from the priority queue Q.

Initialization Given an initial point xinit ∈ X , a goal region in the output space Ygoal ⊂

Y , the function Initialize : (xinit, Ygoal) 7→ (Gy,Gσ,Q,Qgoal) returns a graph Gy that

has only node vy whose output point is vy.Y = OutputMap(xinit), a graph Gσ that has the

only node vσ whose trajectory is a single point vσ.σ = xinit, and empty priority queues Q

and Qgoal that are used for ordering of nongoal and goal nodes which represent points in

Y , respectively.
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Exploration Given a tuple of data structures S = (Gy,Gσ,Q,Qgoal), where Gy and Gσ
are graphs whose nodes represent points in Y and trajectories in X , respectively, andQ and

Qgoal are priority queues that are used for ordering of nongoal and goal nodes that represent

points in Y , a goal region in the output space Ygoal ⊂ Y , and a point Y ∈ Y , the function

Extend : (S, Ygoal,Y) 7→ S ′ = (G ′y,G ′σ,Q′,Q′goal) includes a new node, multiple edges

to Gy and multiple nodes, edges to Gσ, updates the priorities of nodes in Q and Qgoal and

returns an updated tuple S ′.

Exploitation Given a tuple of data structures S = (Gy,Gσ,Q,Qgoal), where Gy and Gσ
are graphs whose nodes represent points in Y and trajectories in X , respectively, andQ and

Qgoal are priority queues that are used for ordering of nongoal and goal nodes that represent

points in Y , the function Replan : S 7→ S ′ = (G ′y,G ′σ,Q′,Q′goal) rewires the parent node

of the nodes in Gy based on their cost-to-come values, includes new nodes and edges in

Gσ if necessary, i.e., propagating dynamics of the system for new sequence of reference

trajectories, and returns an updated tuple S ′.

Construction of Solution Given a tuple of data structures S = (Gy,Gσ,Q,Qgoal), the

function ConstrSolution : S 7→ Tx returns a tree whose edges and nodes represent

simulated trajectories in X and the corresponding internal states of the nodes of Gy. These

trajectories are computed by propagating the dynamics with reference trajectories that are

encoded in a tree of Gy, which is formed by the edges between nodes of Gy and their parent

nodes.

Graph Operations The following functions are used in the CL-RRT# algorithm.

• Given a node v ∈ V in a directed graph G = (V,E), the set-valued function succ :

(G, v) 7→ V ′ ⊆ V returns the nodes in V that are the heads of the edges emanating

from v, that is,
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succ(G, v) := {v′ ∈ V : e.tail = v and e.head = v′, e ∈ E} .

• Given a node v ∈ V in a directed graph G = (V,E), the set-valued function pred :

(G, v) 7→ V ′ ⊆ V returns the nodes in V that are the tails of the edges going into v,

that is,

pred(G, v) := {v′ ∈ V : e.tail = v′ and e.head = v, e ∈ E} .

• Given a node v ∈ V in a directed graph G = (V,E), the set-valued function

outgoing : (G, v) 7→ E ′ ⊆ E returns the edges in E whose tail is v, that is,

outgoing(G, v) := {e ∈ E : e.tail = v} .

• Given a node v ∈ V in a directed graph G = (V,E), the set-valued function

incoming : (G, v) 7→ E ′ ⊆ E returns the edges in E whose head is v, that is,

incoming(G, v) := {e ∈ E : e.head = v} .

List Operations The following functions are used in the CL-RRT# algorithm.

• Given a list of nodes Vz, where its nodes represent points in Z, and a point z ∈ Z,

the function find : (Vz, z) 7→ vz ∈ Vz returns the node in Vz that satisfies vz.z = z

if there exists any such node, null reference otherwise.

• Given a list of nodes Vz, where its nodes represent points in Z, the function back

returns a reference to the last node in the list if it is not empty, and null reference

otherwise.

• Given a list of nodes Vz, where its nodes represent points in Z, the function front

returns a reference to the first node in the list if it is not empty, and null reference

otherwise.
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8.4 The CL-RRT# Algorithm
8.4.1 Details of Data Structures

Each node vy in the graph Gy is an OutNode data structure, the fields of that are summa-

rized in Table 4. Each node vy is associated with a reference point y ∈ Rm. It contains

two estimates of the optimal cost-to-come value between the initial reference point and y,

namely, cost-to-come value g and one step look-ahead g-value ḡ. It also keeps a heuristic

value h which is an underestimate of the optimal cost value between y and Ygoal in order to

guide and reduce the search effort. Whenever ḡ is updated during the replanning procedure,

the reference node that yields the corresponding minimum cost-to-come value is stored in

the parent reference node py. Lastly, the trajectory which is computed by closed-loop pre-

diction when the system is simulated with the reference trajectory between the nodes py

and vy is stored in the parent trajectory node pσ and its terminal state represents the internal

state associated with vy.

Table 4: The node data structure for points in output space (OutNode)
field type description
y vector ∈ Rp output point associated with this

node
g real ∈ R cost-to-come value
ḡ real ∈ R one step look-ahead g-value
h real ∈ R heuristic value for the cost be-

tween y and Ygoal

py OutNode reference to the parent output
node

pσ TrajNode reference to the parent trajec-
tory node

Each edge ey in the graph Gy is a OutEdge data structure, the fields of which are

summarized in Table 5. Each edge ey is associated with a trajectory r ∈ Y . It also contains

two output nodes, namely, tail and head, which represent the tail and the head output

nodes of ey, respectively.

Each node vσ in the graph Gσ is a TrajNode data structure, the fields of which are
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Table 5: The edge data structure for trajectories in output space (OutEdge)
field type description
r trajectory ∈ Y output trajectory associated

with this edge
tail OutNode reference to the tail output

node
head OutNode reference to the head output

node

summarized in Table 6. Each node vσ is associated with a trajectory σ ∈ X . It contains

an output edge ey which corresponds to the reference trajectory that yields σ as the closed-

loop prediction. It also keeps a list of outgoing output edges outgoing, and this list is used

to compute outgoing trajectory nodes emanating from the terminal state of σ.

Table 6: The node data structure for trajectories in state space (TrajNode)
field type description
σ trajectory ∈ X state trajectory associated

with this node
ey OutEdge reference to the output

edge
outgoing OutEdge array list of outgoing output

edges

Each edge eσ in the graph Gσ is a TrajEdge data structure, the fields of which are

summarized in Table 7. Each edge eσ is associated with a trajectory σ ∈ X . It contains two

trajectory nodes, namely, tail and head which represent the tail and the head trajectory

nodes of eσ, respectively.

Table 7: The edge data structure for trajectories in state space (TrajEdge)
field type description
σ trajectory ∈ X state trajectory associated with this edge

tail TrajNode reference to the tail trajectory node
head TrajNode reference to the head trajectory node
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8.4.2 Details of the Procedures

The body of the CL-RRT# algorithm is given in Algorithm 16. First, the algorithm initial-

izes the tuple of data structures S that is incrementally grown and updated as exploration

and exploitation are performed (Line 3). The tuple S contains the graphs Gy and Gσ, which

are used to store output nodes and state trajectory nodes, respectively, and the priority

queues Q and Qgoal. The details of the Initialize procedure are given in Algorithm 17.

The graph Gσ is created with no edges and vσ as its only node. This node represents a state

trajectory that contains only the initial state xinit. Then, likewise, the graph Gy is initialized

with no edges and vy as its only node that represents yinit. The g- and ḡ-values of vy are set

with zero cost value. The parent trajectory node of vy is set with the reference to the node

vσ.

Algorithm 16: The CL-RRT# Algorithm

1 RRT#(xinit, Xgoal, X)
2 Ygoal := OutputMap(Xgoal);
3 S ← Initialize(xinit,Ygoal);
4 for k = 1 to N do
5 yrand ← Sample(k);
6 S ← Extend(S ,Ygoal,yrand);
7 S ← Replan(S);

8 Tx ← ConstrSolution(S);
9 return Tx;

The algorithm iteratively builds a graph of collision-free reference trajectories Gy by

first sampling an output point yrand from the obstacle-free output space Yfree (Line 5) and

then extending the graph towards this sample (Line 6), at each iteration. The cost of the

unique trajectory from the root node to a given node vy is denoted as Cost(vy). It also

builds another graph Gσ to store the state trajectories computed by simulation of the closed-

loop dynamics when a reference trajectory is tracked. Once a new node is added to Gy after

the Extend procedure, the Replan procedure is called to improve the existing solution

by propagating the new information (Line 7). The dynamic system is simulated for dif-

ferent reference trajectories as needed during the search process, and the computed state
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trajectories are added to the graph Gσ as new nodes along with the corresponding controls

information.
Algorithm 17: The Initialize Procedure

1 Initialize(xinit, Ygoal)
2 σ ← {xinit};
3 vσ ← TrajNode(σ,∅,∅);
4 yinit ← OutputMap(xinit);
5 vy ← OutNode(yinit);
6 vy.g← 0; vy.ḡ← 0;
7 vy.h← ComputeHeuristic(yinit,Ygoal);
8 vy.pσ ← vσ;
9 Vy ← {vy}; Ey ← ∅;

10 Vσ ← {vσ}; Eσ ← ∅;
11 Gy ← (Vy, Ey); Gσ ← (Vσ, Eσ);
12 Q ← ∅; Qgoal ← ∅;
13 return S ← (Gy,Gσ,Q,Qgoal);

Finally, when a predetermined maximum number of iterations is reached, the ConstrSolution

procedure is called to extract the spanning tree of Gy that contains the lowest-cost reference

trajectories (Line 8) and this tree is returned. The details of the ConstrSolution procedure

is given Algorithm 18.
Algorithm 18: The ConstrSolution Solution Procedure

1 ConstrSolution(S)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; X ← ∅;
4 foreach vy ∈ Vy do
5 σ ← vy.pσ.σ;
6 vx ← StateNode(σ.back());
7 Vx ← Vx ∪ {vx};
8 vx,parent ← find(Vx,σ.front());
9 if vx,parent = ∅ then

10 vx,parent ← StateNode(σ.front());
11 Vx ← Vx ∪ {vx,parent};
12 ex ← StateEdge(vx,parent, vx, σ);
13 Ex ← Ex ∪ {ex};
14 X ← X ∪ {σ.back()};
15 return Tx = (Vx, Ex);

The Extend procedure is given in Algorithm 19. The procedure first extends the nearest

output node vy,nearest to the output sample Y (Lines 4-5). The output trajectory that extends
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Figure 32: Extension of the graphs computed by the CL-RRT# algorithm. Trajectories in
the output and state spaces are shown in orange and green colors, respectively. Whenever
a new node in the output space is added, then several incoming and outgoing edges are
included to the graph in the vicinity of the new node, i.e., region colored with cyan.

the nearest output node vy,nearest towards the output sample Y is denoted as rnew. The final

output point on the output trajectory rnew is denoted as ynew. If rnew is collision-free, then

a new output node vy,new is created to represent the new output point ynew (Line 8), and

the following changes in the vicinity of vy,new on both graphs are shown in Figure 32. The

initial node is shown as a square box, the obstacles are shown in red color, and the graphs

Gy and Gσ are shown in orange and green colors, respectively in Figure 32. The members

of the node vy,new are set as follows. First, the Near procedure is called to find the set of

neighbor output nodes Vnear in the neighborhood of the new output point ynew (Line 9).

Then, the set of incoming edges Ey,pred and outgoing edges Ey,succ of the new output node

vy,new are computed by using the information of the neighbor output nodes (Lines 10-19).

Once the new output node vy,new is created together with the set of incoming edges Ey,pred

and outgoing edges Ey,succ connecting it to its neighbor output nodes Vnear, the Extend

procedure attempts to find the best incoming edge that yields a segment of a reference

trajectory which incurs minimum cost to get to vy,new among all incoming edges in Ey,pred

(Lines 20-34). That is, for any incoming edge ey in Ey,pred, the algorithm first gets the

information of the predecessor output node vy,pred and its internal state xpred by using the
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information of the parent state trajectory node vσ,pred (Lines 22-24). Then, the algorithm

simulates the system dynamics forward in time with the state xpred being the initial state

and ey.r being the reference trajectory to be tracked, (Line 25). If the state trajectory

σ computed by closed-loop prediction is collision-free, a new trajectory node vσ,new is

created together with its list of outgoing output trajectories being initialized with Ey,succ

(Line 27). Whenever a new trajectory node vσ,new is created, the outgoing state trajectories

emanating from the final state of the state trajectory vσ,new.σ via closed-loop prediction are

not immediately computed for the sake of efficiency. Instead, the algorithm keeps the set of

candidate outgoing output trajectories, i.e., the edges in Ey,succ, in a list vσ,new.outgoing,

and the simulation of the system dynamics for these output trajectories is postponed until

the head output node of the output edge vσ,new.ey is selected for the Bellman update during

the Replan procedure. Once the new state trajectory node vσ,new and the edge between the

predecessor state trajectory node vσ,pred and itself are created (Lines 27-28), they are added

to the set of nodes and edges of the graph Gσ, respectively (Lines 29-30). If the incoming

output edge ey between the predecessor output node vy,pred and the new output node vy,new

yields a collision-free state trajectory σ that incurs cost less than the current cost of vy,new,

then, the ḡ-value of vy,new is set with new lower cost, vy,pred and vσ,new are made the new

parent output node and the new parent state trajectory node of vy,new, respectively (Lines

31-34). After successful creation of the new output node vy,new, it is added to the graph Gy
together with all of its collision-free output edges (Line 36). Likewise, all trajectory nodes

and edges created during the simulation of the system dynamics are added to the graph Gσ
(Line 37). Lastly, the priority queues Q and Qgoal are updated accordingly by using the

information of the new output node vy,new, i.e., reordering of the priorities after insertion

of vy,new to the queue Q and reordering the goal output nodes in Qgoal if vy,new happens to

be a goal output node (Lines 38-39).

The Replan procedure is given in Algorithm 20 (see [9]). The algorithm improves cost-

to-come values of output nodes by operating on the nonstationary and promising nodes of
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the graph Gy. It simply pops the most promising nonstationary node from the priority queue

Q, if there are any, and this nonstationary node is made stationary by assigning its ḡ-value

to its g-value (Lines 5-6). Then, the g-value of the output node vy is used to improve

the ḡ-values of its neighbor output nodes. Before this operation, the algorithm computes

the set of all outgoing state trajectories emanating from internal state of the output node

V (Lines 9-16). To do so, the algorithm first gets the information of the internal state x

by using the parent state trajectory node of vy (Lines 7-8). For any outgoing edge ey in

vσ.outgoing, the algorithm first gets the information of the successor output node vy,succ

by using the output edge ey (Line 10). Then, the algorithms simulates the system dynamics

forward in time with the state x being the initial state and ey.r being the reference trajectory

to be tracked (Line 11). If the state trajectory σ computed by closed-loop prediction is

collision-free, a new trajectory node vσ,succ is created together with its list of outgoing

output trajectories being initialized with the set of outgoing output edges of vy,succ (Line

13). Also, a state trajectory edge between vσ and vσ,succ is created (Line 14). Then, the new

state trajectory node and edge are tentatively added to the set of nodes and edges of the

graph Gσ (Lines 15-16). This step continues until all candidate outgoing output trajectories

are processed in the closed-loop simulation, then the list vy.outgoing is cleared up (Line

17). All newly computed state trajectory nodes and edges are added to the graph Gσ (Line

18). For each outgoing state trajectory σ, the algorithm adds up its cost incurred by reaching

to the successor output node vy,succ to the g-value of vy and compare this new cost value

with the current ḡ-value of vy,succ (Line 22). If the outgoing state trajectory edge σ yields

cost less than the current cost of vy,succ, then, the ḡ-value of vy,succ is set with new lower

cost, vy and vσ,succ are made the new parent output node and the new parent state trajectory

node of vy,succ, respectively (Lines 23-25). Lastly, the priority queues Q and Qgoal are

updated accordingly by using the update information of the successor output node vy,succ,

i.e., reordering of the priorities after updating the key value of vy,succ to the queue Q and

reordering the goal output nodes in Qgoal if vy,succ happens to be a goal output node (Lines
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26-27). These steps are repeated until there is no promising nonstationary output node left

in the priority queue Q, i.e., Q.top key() � Qgoal.top key().

The auxiliary procedures used in the Extend and Replan procedures are shown in

Algorithm 21. The UpdateQueue procedure is used to maintain the priority queue Q

whenever a new output node is created or key value of an output node that is already in

the queue is updated. During a call to the UpdateQueue procedure with the priority

queue Q and the output node vy, there are three possible cases. For the first case, if vy is a

nonstationary output node, i.e., vy.g 6= vy.ḡ, key value of vy is updated and priorities in the

queue reordered accordingly (Line 3). For the second case, if vy is a nonstationary output

node and it is not in the queue, then it is inserted to the queue Q with its key value (Line

5). Lastly, if vy is a stationary output node, i.e., vy.g = vy.ḡ, and it is in the queue Q, then,

it is removed from the queue Q (Line 7).

The constructor procedures for node and edge data structures used in the CL-RRT#

algorithm are given in Algorithm 18.

8.4.3 Properties of the Algorithm

The CL-RRT# algorithm provides both dynamic feasibility guarantee, that is, the lowest-

cost reference trajectory computed by the algorithm can be tracked by the low-level con-

troller, and asymptotic optimality guarantees, that is, the lowest-cost reference trajectory

computed by the algorithm converges to the optimal reference trajectory almost surely. The

former property is an immediate result of using closed-loop prediction during the search

phase. During extension of the graph Gy, if some segments of a reference trajectory can

not be tracked, i.e., not dynamically feasible, then, the corresponding state trajectory is not

stored in the graph Gσ constructed by the algorithm. The former property is due to the

asymptotic optimality property of the RRT# algorithm [9]. The proposed algorithm incre-

mentally grows a graph Gy in the output space in a similar fashion as the RRG algorithm

does [64]. Therefore, the lowest-cost path encoded in Gy converges to the optimal output
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trajectory in the output space almost surely. In addition, the lowest-cost output trajectory

encoded in the graph Gy is extracted at the end of each iteration in a similar fashion as

the RRT# algorithm does. Given the cost function that associates each edge in Gy with a

non-negative cost values being monotonic and bounded, the proposed algorithm is asymp-

totically optimal.
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Algorithm 19: The Extend Procedure#

1 Extend(S, Xgoal, y)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; (Vσ, Eσ)← Gσ;
4 vy,nearest ← Nearest(Gy,y);
5 rnew ← Steer(vy,nearest.y,y);
6 if ObstacleFree(rnew) then
7 ynew ← rnew.back();
8 vy,new ← OutNode(ynew);
9 vy,new.h← ComputeHeuristic(ynew,Ygoal);

10 Vnear ← Near(Gy,ynew,|Vy|) ∪ {vy,nearest};
11 Ey,succ ← ∅; Ey,pred ← ∅;
12 foreach vy,near ∈ Vnear do
13 r ← Steer(ynew,vy,near.y);
14 if ObstacleFree(r) then
15 ey ← OutEdge(vy,new,vy,near,r);
16 Ey,succ ← Ey,succ ∪ {ey};
17 r ← Steer(vy,near.y,ynew);
18 if ObstacleFree(r) then
19 ey ← OutEdge(vy,near,vy,new,r);
20 Ey,pred ← Ey,pred ∪ {ey};

21 V ′σ ← ∅; E′σ ← ∅;
22 foreach ey ∈ Ey,pred do
23 vy,pred ← ey.tail;
24 vσ,pred ← vy,pred.pσ;
25 xpred ← vσ,pred.σ.back();
26 σ ← Propagate(xpred,ey.r);
27 if ObstacleFree(σ) then
28 vσ,new ← TrajNode(σ,ey,Ey,succ);
29 eσ ← TrajEdge(vσ,pred,vσ,new,σ);
30 V ′σ ← V ′σ ∪ {vσ,new};
31 E′σ ← E′σ ∪ {eσ};
32 if vy,new.ḡ > vy,pred.g + Cost(σ) then
33 vy,new.ḡ← vy,pred.g + Cost(σ);
34 vy,new.py ← vy,pred;
35 vy,new.pσ ← vσ,new;

36 Vy ← Vy ∪ {vy,new}; Ey ← Ey ∪ Ey,succ ∪ Ey,pred;
37 Vσ ← Vσ ∪ V ′σ; Eσ ← Eσ ∪ E′σ;
38 Gy ← (Vy, Ey); Gσ ← (Vσ, Eσ);
39 Q ← UpdateQueue(Q,vy,new);
40 Qgoal ← UpdateGoal(Qgoal,vy,new,Xgoal);

41 return S ← (Gy,Gσ,Q,Qgoal);
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Algorithm 20: Replan Procedure#

1 Replan(S, Xgoal)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vσ, Eσ)← Gσ;
4 while Q.top key() ≺ Qgoal.top key() do
5 vy ← Q.pop();
6 vy.g← vy.ḡ;
7 vσ ← vy.pσ;
8 x← vσ.σ.back();
9 foreach ey ∈ vσ.outgoing do

10 vy,succ ← ey.head;
11 σ ← Propagate(x,ey.r);
12 if ObstacleFree(σ) then
13 vσ,succ ← TrajNode(σ,ey,outgoing(Gy,vy,succ));
14 eσ ← TrajEdge(vσ,vσ,succ,σ);
15 Vσ ← Vσ ∪ {vσ,succ};
16 Eσ ← Eσ ∪ {eσ};

17 vσ.outgoing← ∅;
18 Gσ ← (Vσ, Eσ);
19 foreach vσ,succ ∈ succ(Gσ,vσ) do
20 σ ← vσ,succ.σ;
21 vy,succ ← vσ,succ.ey.head;
22 if vy,succ.ḡ > vy.g + Cost(σ) then
23 vy,succ.ḡ← vy.g + Cost(σ);
24 vy,succ.py ← vy;
25 vy,succ.pσ ← vσ,succ;
26 Q ← UpdateQueue(Q,vy,succ);
27 Qgoal ← UpdateGoal(Qgoal,vy,succ,Xgoal);

28 return S ← (Gy,Gσ,Q,Qgoal);
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Algorithm 21: Auxiliary Procedures#

1 UpdateQueue(Q, vy)
2 if vy.g 6= vy.ḡ and vy ∈ Q then
3 Q.update(vy,Key(vy));

4 else if vy.g 6= vy.ḡ and vy /∈ Q then
5 Q.insert(vy,Key(vy));

6 else if vy.g = vy.ḡ and vy ∈ Q then
7 Q.remove(vy);

8 return Q;

9 UpdateGoal(Qgoal, vy, Ygoal)
10 vσ ← vy.pσ;
11 x← vσ.σ.back();
12 if x ∈ Xgoal then
13 if vy ∈ Qgoal then
14 Qgoal.update(vy,Key(vy));

15 else
16 Qgoal.insert(vy,Key(vy));

17 return Qgoal;

18 Key(vy)
19 return k = (vy.ḡ + vy.h, vy.h);
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Algorithm 22: Node and Edge Constructor Procedures#

1 OutNode(y)
2 vy.y ← y;
3 vy.g←∞; vy.ḡ←∞;
4 vy.h← 0;
5 vy.py ← ∅; vy.pσ ← ∅;
6 return vy;

7 OutEdge(vy,from, vy,to, r)
8 ey.tail← vy,from;
9 ey.head← vy,to;

10 ey.r ← r;
11 return ey;

12 TrajNode(σ, ey, Ey)
13 vσ.σ ← σ;
14 vσ.ey ← ey;
15 vσ.outgoing← Ey;
16 return vσ;

17 TrajEdge(vσ,from, vσ,to, σ)
18 eσ.tail← vσ,from;
19 eσ.head← vσ,to;
20 eσ.σ ← σ;
21 return eσ;

22 StateNode(x)
23 vx.x← x;
24 return vx;

25 StateEdge(vx,from, vx,to, σ)
26 ex.tail← vx,from;
27 ex.head← vx,to;
28 ex.σ ← σ;
29 return ex;
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8.5 Numerical Simulations

The proposed algorithms are tested on a system of unicycle dynamics which is described

by the following set of equations

ẋ1 = x4 sin(x3), ẋ2 = x4 cos(x3), ẋ3 = u1, ẋ4 = u2,

y1 = x1, y2 = x2,

where x1, x2 are the cartesian coordinates of a reference point of the vehicle, x3 is the

vehicle’s heading angle, x4 is the translational velocity of the vehicle, u1, u2 are the control

inputs for the angular and translational velocity. Each control input takes values in an

interval, i.e., ui ∈ [uli, u
u
i ]. A simple controller similar to pure-pursuit controller is designed

to track a given reference path [1]. The heading command is generated by following a look-

ahead point on a given reference path. The speed command is given as a desired cruise

speed vcrs. Each command is tracked by using a proportional controller.

In the first scenario, the goal is to navigate the vehicle from one waypoint to another

in the counter-clockwise direction on a race track while minimizing the Euclidean path

length. The size of the race track is (100m×100m) and the origin is located at its center.

The CL-RRT#algorithm was run for 1500 iterations, and the solution trees computed by

the algorithm at different stages are shown in Figure 33. Initially, the vehicle stays at the

waypoint (−25,−45) with zero heading angle and speed (yellow square at bottom-left),

and then it is tasked to move to the waypoint (48, 33) (red square at top-right). As seen in

Figure 33(a)-(d), the algorithm incrementally grows a graph in the output space (x1, x2),

and each path in the graph correspond to a geometric reference path that is inputted to

the closed-loop system. It is observed that the CL-RRT#algorithm quickly computes a

long reference path. Then, it seeks alternative paths of the graph as more information is

explored and improves the existing solution if closed-loop simulation of a new reference

path yields lower cost. The nodes and edges of the graph correspond to waypoints and

straight line segments. The lowest-cost path is shown in yellow color, and its length is
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127.164. The corresponding state trajectories computed during closed-loop simulation are

shown Figure 33(e)-(h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 33: The evolution of the solution trees for reference paths and state trajectories
computed by CL-RRT# are shown in (a)-(d) and (e)-(h), respectively. The trees (a), (e) are
at 50 iterations, (b), (f) are at 100 iterations, (c), (g) are at 500 iterations, and (d), (h) are at
1500 iterations.

In the second scenario, the goal is to navigate the vehicle on the race track continuously.

The vehicle is tasked to navigate sequentially to a set of waypoints presumably coming

from a high-level navigator. In each stage, the CL-RRT#algorithm was run for 1,500 iter-

ations to find a motion plan from the current state of the vehicle to a desired next waypoint.

Each next waypoint is sent to the motion planner as the vehicle gets close to the current

waypoint. In this simulation, the vehicle is tasked to navigate four waypoints sequentially.

The solution trees of reference paths and corresponding state trajectories for each step are

shown in Figure 34. As seen during simulations, leveraging the dynamics information of

the vehicle during the search phase allows the algorithm to construct dynamically feasible

paths and avoid shortest paths that pass near-by the boundary of the track.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 34: The evolution of the trees for reference paths and state trajectories computed
at 1,500 iterations by CL-RRT# are shown in (a)-(d) and (e)-(h), respectively. The trees
(a), (e) are computed during the first waypoint navigation, (b), (f) are computed during the
second waypoint navigation, (c), (g) are computed during the third waypoint navigation,
and (d), (h) are computed during the fourth waypoint navigation.

8.6 Conclusion

In this chapter, we present a new asymptotically optimal motion planning algorithm, called

CL-RRT#, that uses closed-loop prediction for trajectory-generation. The approach is

a hybrid of the CL-RRT and the RRT# algorithms. It incrementally grows a graph of

reference trajectories that can be inputted to a low-level tracking controller and chooses

the one that yields the lowest-cost state trajectory of the closed-loop system. The pro-

posed approaches provides dynamic feasibility by construction and asymptotic optimality

guarantee, i.e., converging to the optimal reference trajectory given a controller. Several

simulation results on a system of unicycle dynamics were performed and the proposed ap-

proach is used for point-to-point navigation of the vehicle. Simulation results demonstrate

the expected nice properties of the algorithm.
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Chapter IX

HIGH-LEVEL ROUTE PLANNING FOR AN AUTONOMOUS

ROTORCRAFT

9.1 Overview

The Autonomous Aerial Cargo/Utility System (AACUS) is a five-year program announced

by the Office of Naval Research (ONR) and its primary focus is the development of con-

trol and sensor technologies to enable unmanned Vertical Take Off and Landing (VTOL)

air systems to be tasked in cargo and delivery operations. AACUS encompasses the de-

velopment of technologies that will allow any field personnel with no special training to

command and control of unmanned vehicles, e.g., point-to-point navigation, autonomous

landing, obstacle detection and avoidance. The developed unmanned systems are expected

to be highly reliable for precision cargo delivery evacuating human casualties from remote

sites.

Typical mission scenarios and the desired attributes of the AACUS is shown in Fig-

ure 35. As seen, during different phases of a mission, the autonomous vehicle is expected

to have the capability of solving many point-to-point motion planning problems on-the-fly.

As a part of this thesis, some variants of the RRT# algorithm is developed for the solution

of high-level route planning of an autonomous rotorcraft.

The developed route planner software consists of four important modules: an effi-

cient collision checker, a core planning algorithm, a path smoothing algorithm, and the

speed profile computation algorithm. Sampling-based algorithms require efficient collision

checkers to query if a given point or line segment yield a violation of feasibility require-

ment. To this end, an efficient collision checker that leverages the geometry of obstacles is

developed. The RRT# algorithm is modified in order to compute a path that satisfies some
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additional constraints, e.g., heading and flight-path angles constraints, and used as the core

planning algorithm of the route planner. A path smoothing algorithm is also developed to

reduce the number waypoints of the computed raw path. Finally, a dynamic programming

based algorithm is developed in order to determine the speed profile of the vehicle along

the smoothed path without violating performance constraints.

Figure 35: AACUS Logistics Mission with Replanning (courtesy of ONR [42])

The details of the implemented algorithms are given in the following sections. Numer-

ical simulations are performed in several mission scenarios.

9.2 Problem Formulation
9.2.1 Notation and Definition

LetX ⊂ R3 denote the safe-flight space of the vehicle andX is formed as the union of non-

convex polygonal prism. This is the volume of airspace within which flight of the vehicle is

allowed. Let Xobs and Xgoal, called the obstacle space and the goal region, be open subsets

ofX . LetXfree, also called the free space, denote the set defined asX\Xobs. Obstacle space

is a generic term that represents the set within which flight of the vehicle is not possible.
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It is composed of different sets Xterr, Xnfs, and Xocs that denote the terrain, the no-flight

space, and the occupied space by objects, respectively, i.e., Xobs = Xterr ∪ Xnfs ∪ Xocs.

The terrain information is given as Xterr = {x = (x1, x2, x3) ∈ X : x3 ≤ hterr(x1, x2)}

where the function hterr : R2 7→ R+ gives the maximum altitude of the terrain at a given

point in 2D.

A path is a mapping σ : [0, 1] 7→ Rd, where d ∈ N, d ≥ 2. Let Σ denote the set of all

paths, Σfree the set of collision-free paths. Let ψ and γ denote the heading angle and flight

path angle of the vehicle that are defined as follows:

ψ(s) = arctan2 (σ′2(s), σ′1(s),

γ(s) = arctan2 (σ′3(s), ‖σ′1,2(s)‖),

where σ′ =
dσ

ds
is the tangent vector of the path σ. A speed profile is a mapping V :

[0, 1] 7→ R≥0 and let V denote the set of feasible speed profiles of the vehicle.

Let P be a positively oriented, piecewise linear, simply closed curve in x1x2-plane and

be specified by a sequence of points {x1, x2, . . . , xk} where xi ∈ R2. That is, P is a

connected series of line segments in which only consecutive segments intersect and only

at their endpoints (simple), also the first point coincides with the last one (closed), and

one always has the curve interior to the left when traveling on P . Let Poly(P ) denote the

region bounded by P and the curve P itself. Given such curve P , and two altitude values

h1, h2 ∈ R≥0 with h1 ≤ h2, let a polygonal prism be defined as follows:

PolyPrism(P, h1, h2) = {x ∈ R3 : x1,2 ∈ Poly(P ) and h1 ≤ x3 ≤ h2}

Given a point x ∈ R3, and two angle values γ1, γ2 ∈ [0, π/2] with γ1 ≤ γ2, let a

cone, whose pointing vertex is x and opening angle is restricted by γ1 and γ2, be defined as

follows:

Cone(x, γ1, γ2) , {x′ ∈ R3 : z = x′ − x and γ1 ≤ arctan2 (z3, ‖z1,2‖) ≤ γ2},

where xi,j , (xi xj)
ᵀ.
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Table 8: Nomenclature for high-level routing problem

xinit = initial position of the vehicle (x1, x2, x3) (m)
xgoal = goal position of the vehicle (x1, x2, x3) (m)

γmin, γmax = minimum and maximum values of the flight path angle (rad), respectively
Vmin, Vmax = minimum and maximum values of the speed of the vehicle (m/s), respec-

tively
γ

to
,γto = minimum and maximum values of angles used to define the left circular

cone at xinit, respectively
γ

ldg
,γldg = minimum and maximum values of angles used to define the left circular

cone at xgoal, respectively
rto, rldg = radius values of the cylinders located at xinit and xgoal, respectively
ψto,ψldg = heading angle constraints at the takeoff and landing regions, respectively

hr = range of the altitudes BBox(X) (m)
hcrz = desired cruise altitude above the ground (m), i.e., the distance to the plane

x3 = 0

Given a point x ∈ R3, a radius r ∈ R>0, and a length h ∈ R>0, let a cylinder, that is

aligned with vertical altitude direction, be defined as follows:

Cyl(x, r, h) , {x′ ∈ R3 : z = x′ − x and ‖z1,2‖ ≤ r, z3 ≤ h}.

Given a nonempty set X ′ ∈ R3, let its minimum bounding box be defined as follows:

BBox(X ′) , {x ∈ R3 : xi ∈ [xi, xi] where xi , inf
x∈X′

xi and xi = sup
x∈X′

xi, i = 1, 2, 3}

9.2.2 Problem Statement

Given the state spaceX , obstacle regionXobs, and goal regionXgoal, find a path σ : [0, 1] 7→

X and a speed profile V : [0, 1] 7→ [Vmin, Vmax]

• starts from the initial state, i.e., σ(0) = xinit,

• reaches the goal state, i.e., σ(1) = xgoal,

• avoids the obstacle region, i.e., σ(s) ∈ Xfree for all s ∈ [0, 1]

• obeys flight path angle constraint, i.e., γ(s) ∈ [γmin, γmax],
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• stays in the takeoff cone, i.e., σ(s) ∈ Cone(xinit, γto
, γto) for all z = σ(s) − xinit

such that ‖z1,2‖ ≤ rto

• stays in the landing cone, σ(s) ∈ Cone(xgoal, γldg
, γldg) for all z = σ(s)− xgoal such

that ‖z1,2‖ ≤ rldg

• obeys the takeoff direction constraint, i.e., ψ(s) = ψto for all σ(s) ∈ Cyl(xinit, rto, hr)

• obeys the landing direction constraint, i.e., ψ(s) = ψldg for all σ(s) ∈ Cyl(xgoal, rldg, hr)

• satisfies the performance constraint of the vehicle, i.e, V ∈ V

• σ ∈ arg min
σ′∈Σ

J(σ′)

9.2.3 Primitive Procedures

Sampling Procedure

The sampling procedure is given in Algorithm 23. It uniformly generates samples on a

non-convex set which is formed as a list of polygonal prisms. The algorithm leverages

some preprocessed information of polygonal prisms that form Ofly, which is computed in

the InitEnvironment procedure. First, the algorithm randomly picks a polygonal prism

ofly from the list Ofly (Lines 2-3). Then, it randomly selects one of the convex pieces of

ofly (Lines 4-6). Lastly, algorithm easily generates a random point xrand from the minimum

bounding box of oconv (Line 8) and subsequently checks if xrand lies inside oconv (Line

9). These steps are repeated until a point within oconv is generated, and then, the random

sample xrand is returned.

Polygonal prisms are preprocessed in the InitEnvironment procedure in order to

speed up sampling and collision checking process. Each polygonal prism is decomposed

into convex pieces and their minimum bounding boxes are computed. The InitEnvironment

procedure is given in Algorithm 24. It creates a polygonal prism object for each entry of the

safe-flight space and adds the object to the list Ofly (Lines 3-9). A flyable polygonal prism
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Algorithm 23: Sample Procedure

1 Sample(Ofly)
2 i← RandInt(1,Ofly.size());
3 ofly ← Ofly[i];
4 Oconv ← ofly.pieces;
5 i← RandInt(1,Oconv.size());
6 oconv ← Oconv[i];
7 do
8 xrand ← GenerateSample(oconv.bbox);
9 while ¬OnInterior(oconv,xrand)

10 return xrand;

object is created by using information of a set of ordered points P and an altitude interval

[hmin, hmax] (Line 6). After its creation, a simple convex decomposition algorithm is used

to slice the polygonal prism into convex pieces (Lines 7-8), and the created object is added

to the Ofly list (Line 9). Then, likewise, the same steps are repeated for each entry of the

obstacle space and all created objects are added to the Oobs list (Lines 10-16). Lastly, all

geometric objects in both lists are pairwise compared and checked if they have intersection,

and an obstacle is added to the list of a flyable polygonal prism if it intersects (Lines 17-20).

Finally, both Ofly and Oobs are formed into a structure Oenv and the algorithm returns Oenv

(Lines 21-22).
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Figure 36: A non-convex polygon

The simple convex decomposition algorithm works in two steps, namely, triangulation

and joining the convex pieces. The triangulation algorithm is given in Algorithm 25, and

its steps are explained on a simple non-convex polygon in Figure 36. The algorithm starts
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Algorithm 24: Initialize Environment Procedure

1 InitEnvironment(Θ)
2 (Θfly,Θobs)← Θ;
3 Ofly ← ∅;
4 foreach θ ∈ Θfly do
5 (P , hmin, hmax)← θ;
6 ofly ← PolyPrism(P ,hmin,hmax);
7 Otri ← Triangulate(ofly);
8 ofly.pieces← JoinConvexSets(Otri);
9 Ofly.push back(ofly);

10 Oobs ← ∅;
11 foreach θ ∈ Θobs do
12 (P , hmin, hmax)← θ;
13 oobs ← PolyPrism(P ,hmin,hmax);
14 Otri ← Triangulate(oobs);
15 oobs.pieces← JoinConvexSets(Otri);
16 Oobs.push back(oobs);

17 foreach ofly ∈ Ofly do
18 foreach oobs ∈ Oobs do
19 if HasIntersection(ofly,oobs) then
20 ofly.obstacles.push back(oobs);

21 Oenv ← (Ofly,Oobs);
22 return Oenv;

with the first point of the point set of the polygon and tries to remove the point x from

the point set P by forming a triangle around itself. If the line formed by its preceding and

succeeding points lies within the polygon formed by P (Line 10), then a triangle is created

as a polygonal prism by using the point set formed by its preceding point, itself, and its

succeeding point (Lines 11-13). The newly created triangle otri is added to the list Otri

(Line 14), and X is removed from P (Line 15). These steps are repeated until no further

triangles can be formed, i.e, the size of P becomes less than three (Line 7). The resulted

triangulation is shown in Figure 37.

As seen, the triangulation algorithm yields many small triangles, therefore an joining

algorithm is subsequently is called to form larger convex sets by joining these small tri-

angles. The joining algorithm is given in Algorithm 26. The algorithm iteratively works

on each convex set o in the list O and attempts to form a larger convex set by join o with
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Figure 37: Triangulation of a non-convex polygon

Algorithm 25: Simple Triangulation Algorithm

1 Triangulate(o)
2 P ← o.points;
3 hmin ← o.hmin;
4 hmax ← o.hmax;
5 Otri ← ∅;
6 x← P .front();
7 while P .size() ≥ 3 do
8 xprev ← prev(x);
9 xnext ← next(x);

10 if Line(xprev,xnext) ∈ Polygon(P) then
11 P ′ ← {xprev, x, xnext};
12 otri ← PolyPrism(P ′,hmin,hmax);
13 otri.p← o;
14 Otri.push back(otri);
15 P .remove(x);

16 x← xnext;

17 return Otri;

its neighbor sets. These steps are repeated until no further convex set can be created by

joining. The final convex decomposition of the polygon is shown in Figure 38.

Minimum bounding boxes of convex pieces are computed after the convex decomposi-

tion of polygonal prisms. Convex pieces and their minimum bounding boxes are shown in

Figure 39.

Whenever a random sample is generated within the minimum bounding box of a convex

piece, the Ray Casting Algorithm is used to determine if the point lies inside the convex

piece or not [109]. An example case is shown in Figure 40. The algorithm first draws a line
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Algorithm 26: Join Convex Sets Procedure

1 JoinConvexSets(O)
2 Oconv ← ∅;
3 while O.size() > 0 do
4 o← O.pop front();
5 Onear ← GetNeighbors(O, o);
6 while Onear.size() > 0 do
7 onear ← Onear.pop front();
8 if IsConvex(Join(o, onear)) then
9 o← Join(o, onear);

10 O′near ← GetNeighbors(O, onear);
11 Onear ← Onear ∪ O′near;
12 O.remove(onear);

13 Oconv.push back(o);

14 return Oconv;
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Figure 38: Convex decomposition of a non-convex polygon
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Figure 39: Convex pieces of a non-convex polygon and their minimum bounding boxes
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that is parallel to x1-axis and emanates from the query point, and then, counts the number

of intersection of this line with the edges of the convex piece. If the number of intersections

is odd, then the query point is decided to be inside the convex pieces.

Figure 40: The Ray Casting Algorithm is used for determining interior points of non-
convex polygons.

Collision Checking Procedure

The collision checking procedure leverages the geometric information of obstacles and is

implemented in the HasIntersection procedure. Given a line segment, and a polygonal

prism, the HasIntersection procedure checks if the line intersects with any face of the

polygonal prism. This approach is more efficient than checking if any point of a discrete

set of points on the line lies inside the polygonal prism, especially for long line segments.

9.3 Route Planning Algorithm
9.3.1 Details of Data Structures

We assume that the initial and the goal nodes are given as (xinit, yinit, zinit, ψinit, Vinit) and

(xgoal, ygoal, zgoal, ψgoal, Vgoal), respectively.

9.3.2 Details of the Procedures

The body of the RoutePlanner algorithm is given in Algorithm 29. First, the algorithm

reads the geometric information about the operating environment and initializes efficient

data structures to represent the geometric shapes (Line 2) by calling the InitEnvironment
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Algorithm 27: Node and Edge Constructor Procedures

1 StateNode(x)
2 vx.x← x;
3 vx.g←∞;
4 vx.ḡ←∞;
5 vx.h← 0;
6 vx.px ← ∅;
7 return vx;

8 StateEdge(vx,from,vx,to,σ)
9 ex.tail← vx,from;

10 ex.head← vx,to;
11 ex.σ ← σ;
12 return ex;

Algorithm 28: Polygonal Prism Constructor Procedure

1 PolyPrism(P , hmin, hmax)
2 o.hmin ← hmin;
3 o.hmax ← hmax;
4 o.points← P ;
5 o.bbox← BoundingBox(P ,hmin,hmax);
6 o.pieces← ∅;
7 o.p← ∅;
8 o.obstacles← ∅;
9 return o;

procedure. The non-convex polygonal prisms that form the safe-flight space are decom-

posed into convex pieces. Intersection between non-convex polygonal prisms of the safe-

flight space and regions that represent occupied space and non-flight space is checked. An

object is added to the list of a non-convex polygonal prism if they have non-zero intersec-

tion. The computed lists are returned with the output parameter Oenv. Then, the initial and

goal positions of the vehicle together with additional heading and speed constraints at the

takeoff and landing regions are read from the parameter file Θ (Lines 3-4). The feasibil-

ity and planner parameters are formed subsequently (Lines 5-6). The RRT#algorithm is

called with planner parameters θpln to find a geometric path between xinit and xgoal while

satisfying feasibility parameters θfeas (Line 7). Once a geometrically feasible path is com-

puted, the raw path is smoothed by calling the SmoothPath procedure (Lines 8-9). Finally,
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the ComputeSpeedProfile is called to compute a feasible speed value for each way point

of the smoothed path (Line 10) and the resulted path σ′ is returned (Line 11).

Algorithm 29: Body of the Route Planner Algorithm

1 RoutePlanner(Θ)
2 Oenv ← InitEnvironment(Θ);
3 (xinit, ψto, Vto)← GetInitialState(Θ);
4 (xgoal, ψldg, Vldg)← GetGoalState(Θ);
5 θfeas ← GetFeasibilityParams(Θ);
6 θpln ← (Oenv, ψto, ψldg);
7 (σ,Oenv)← RRT#(θpln,θfeas,xinit,xgoal);
8 θopt ← GetOptimizerParams(Θ);
9 σ ← SmoothPath(Oenv,θfeas,θopt,σ);

10 σ′ ← ComputeSpeedProfile(σ,Vto,Vldg);
11 return σ′;

The RRT# Algorithm for Route Planner

The RRT# algorithm used for the route planner is given in Algorithm 30. First, the al-

gorithm calls the InitPlanner procedure to create the search graph with initial and goal

nodes and a set feasible edges based on the heading constraints (Line 2). Then, the algo-

rithm incrementally grows the graph for fixed number of iterations (Lines 4-7). Once a

fixed number iterations is completed, the algorithm extracts the solution path by starting

from the goal node and backtracking over the parent node of each node along the optimal

path (Lines 8-13). Finally, the computed path along with a data structured representing the

environment are returned (Line 14).

Initialization of the Planner

The InitPlanner procedure is given in Algorithm 31. This procedure creates a graph

with the initial node, the goal node, and a set of feasible edges satisfying heading angle

constraints (ψto, ψldg). Then, two artificial cylinders centered at xinit and xgoal are created

to block the takeoff and landing regions to prevent further inclusion of new nodes by the

planning algorithm.
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Algorithm 30: Body of the RRT# Algorithm

1 RRT#(θpln,θfeas,xinit,xgoal)
2 (G,Oenv)← InitPlanner(θpln,θfeas,xinit,xgoal);
3 (Ofly,Oobs)← Oenv;
4 for k = 1 to N do
5 xrand ← Sample(Ofly);
6 G ← Extend(Oenv,θfeas,G,xrand);
7 G ← Replan(G);

8 σ ← ∅;
9 (V ,E)← G;

10 vx ← find(V,xgoal);
11 while vx 6= ∅ do
12 σ.push front(vx.x);
13 vx ← vx.px;

14 return (σ,Oenv);

First, the heading constraints are read from the planner parameter structure θpln (Line

1). Then, the initial node is created by using the initial state xinit, and it is added to node

set after its g-, ḡ- and h-values are set properly (Lines 3-7). To enforce takeoff heading

constraints, the algorithm computes the set of points which yields feasible edges satisfying

the heading angle ψto constraint in the ComputeTakeoffPoints procedure (Line 8). Ad-

ditional nodes and edges are created for the set of points Xpts (Lines 8-18). Similar steps

are repeated for the goal state xgoal and the set of points that yields feasible edges satis-

fying the heading angle ψldg constraint (Lines 19-27). Once all feasible edges are created

on both takeoff and landing regions, artificial obstacles are placed there in order to prevent

the RRT# algorithm to create new nodes in the neighborhood of xinit and xgoal. Cylinders

centered at xinit and xgoal are created and added to the obstacle set Oobs (Lines 28-39).

Finally, the constructed graph G and the list Oenv are returned (Line 41).
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Algorithm 31: The Initialize Planner Procedure

1 InitPlanner(θpln,θfeas,xinit,xgoal)
2 (Oenv, ψto, ψldg)← θpln;
3 vx,init ← StateNode(xinit);
4 vx,init.g← 0;
5 vx,init.ḡ← 0;
6 vx,init.h← ComputeHeuristic(xinit,xgoal);
7 V ← {vx,init};
8 Xpts ← ComputeTakeoffPoints(Oenv,θfeas,xinit,ψto);
9 foreach x ∈ Xpts do

10 vx ← StateNode(x);
11 σ ← Steer(xinit,x);
12 vx.ḡ← Cost(σ);
13 vx.g← vx.ḡ;
14 vx.h← ComputeHeuristic(x,xgoal);
15 vx.px ← vx,init;
16 ex ← StateEdge(vx,init,vx, σ);
17 V ← V ∪ {vx};
18 E ← E ∪ {ex};
19 vx,goal ← StateNode(xgoal);
20 V ← V ∪ {vx,goal};
21 Xpts ← ComputeLandingPoints(Oenv,θfeas,xgoal,ψldg);
22 foreach x ∈ Xpts do
23 vx ← StateNode(x);
24 vx.h← ComputeHeuristic(x,xgoal);
25 ex ← StateEdge(vx,vx,goal,σ);
26 V ← V ∪ {vx};
27 E ← E ∪ {ex};
28 (Ofly,Oobs)← Oenv;
29 rto ← θfeas.rto;
30 (f, oinit)← OnFlyZone(Ofly,xinit);
31 hmin ← oinit.hmin; hmax ← oinit.hmax;
32 ocyc ← Cylinder(xinit,rto,hmin,hmax);
33 Oobs.push back(ocyc);
34 rldg ← θfeas.rldg;
35 (f, ogoal)← OnFlyZone(Ofly,xgoal);
36 hmin ← ogoal.hmin; hmax ← ogoal.hmax;
37 ocyc ← Cylinder(xgoal,rldg,hmin,hmax);
38 Oobs.push back(ocyc);
39 Oenv ← (Ofly,Oobs);
40 G ← (V ,E);
41 return (G,Oenv);
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Bisection Based Feasibility Checking Algorithm

The IsFeasible procedure is given in Algorithm 32. Each segment added to the graph

needs to satisfy the following conditions:

• lying entirely in the safe-flight space

• avoids occupied and no-flight spaces

• satisfy flight path angle constraints

• lying within the cones centered at the takeoff and landing regions

• satisfying heading angle constraints

One possible approach to check feasibility of a line segment could be to get a discrete

set of points on the line segment and to check if each individual point satisfies the desired

constraints. Although this approach is easier to implement, it is less efficient and requires

more computation since the number of points increases with the path length for a desired

resolution. Another approach is to develop a bisection based feasibility checking algorithm

that leverages the geometric information (e.g. convexity) of the safe-flight spaces. The idea

is to divide a long line segment into short segments and to check if each individual segment

lies entirely in the safe-flight space. If both end points of the line segment lie inside the

same convex piece, then, this implies that it belongs to the safe-flight space and no further

division is required.

Given the environment Oenv, the feasibility parameters θfeas, and the end points x and

x′, the IsFeasible procedure begins by forming a line segment that has end points x and

x′ and adds it to the list L (Lines 3-4). Then, the individual line segments are checked for

feasibility and subdivided into two pieces as required in a loop. First, the line segment at the

top of the list L is popped and set to l at the beginning of the loop (Line 6). Then, both end

points of l are checked if they lie inside the safe-flight space Ofly in the OnFlightSpace

algorithm. If so, the corresponding polygonal prisms that contain the end points are also
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returned (Lines 7-8). If any of end points is outside of Ofly, then the algorithm returns

False. If the length of l is less than or equal to a predefined value, then, the feasibility

of the end points are checked individually and the algorithm returns False if there is a

collision (Lines 11-13). For the last case, i.e., both end points lie inside the safe-flight

space, the algorithm first finds the corresponding convex pieces that contain the end points

(Lines 15-16). If both end points belong to the same convex piece, then, the line segment l is

not subdivided further. Its feasibility value is subsequently checked by the HasCollision

procedure and False is returned if there is a collision (Lines 17-19). If both end points

belong to different convex pieces, then, l is subdivided into two equal line segments, and

they are added to the list L (Lines 21-25). Finally, if the algorithm does not return with

False value due to a collision or finding a line segment that lies outside the safe-flight

space, then, it returns True (Line 26).
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Algorithm 32: Feasibility Check Procedure

1 IsFeasible(Oenv,θfeas,x,x′)
2 (Oobs,Ofly)← Oenv;
3 `← Line(x,x′);
4 L.push back(`);
5 while L.size() > 0 do
6 `← L.pop front();
7 (fp, op)← OnFlightSpace(Ofly,`.p);
8 (fq, oq)← OnFlightSpace(Ofly,`.q);
9 if ¬fp ∨ ¬fq then

10 return False;

11 else if |`| ≤ dmin then
12 if HasCollision(Oenv,θfeas,`.p,`.q) then
13 return False;

14 else
15 op,conv ← GetConvexPiece(op,`.p);
16 oq,conv ← GetConvexPiece(oq,`.q);
17 if op,conv = oq,conv then
18 if HasCollision(Oenv,θfeas,`.p,`.q) then
19 return False;

20 else
21 xmiddle ← (`.p+ `.q)/2;
22 `′ ← Line(p,xmiddle);
23 L.push back(`′);
24 `′ ← Line(xmiddle,q);
25 L.push back(`′);

26 return True;

Path Smoothing Algorithm

The raw path computed by the RRT# algorithm usually contains many waypoints and short

segment. This raw path is smoothed by using an algorithm similar to line-of-sight filter. The

path smoothing algorithm is given in Algorithm 33. Since the first and last line segments of

the raw path are precomputed and satisfy the heading angle constraints, these segments are

first excluded from smoothing process (Lines 2-3). Then, the path optimizer parameters

are read, and intermediate segments of the raw path are optimized by the OptimizePath

procedure (Lines 4-5). Finally, the first and last segments are integrated to the optimized

path, and the resulted path is returned (Lines 6-8).
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Algorithm 33: The Smooth Path Procedure

1 SmoothPath(Oenv,θfeas,θopt,σ)
2 xinit ← σ.pop front();
3 xgoal ← σ.pop back();
4 θopt ← GetOptimizerParams(Θ);
5 σ ← OptimizePath(Oenv,θfeas,θopt,σ);
6 σ.push front(xinit);
7 σ.push back(xgoal);
8 return σ;

The path optimizer algorithm is given in Algorithm 34. First, the algorithm reads the

parameters for path shortening and relaxing algorithms (Lines 2-3). Then, the raw path is

shortened by using a line-of-sight filter in the ShortenPath procedure. This step yields a

path with fewer waypoints and of lower cost (Line 4). The shortened path usually passes

very close to the obstacles, and this may reduce the clearance of the path in certain di-

rections. In order to provide enough clearance for the path, the algorithm first increases

the number of waypoints on the optimized path in the RefinePath procedure, then it sub-

sequently attempts to perturb these waypoints away from the obstacles in the RelaxPath

procedure (Lines 5-6). Then, the relaxed path is shortened one more time in the forward

direction to reduce the number of waypoints, and length of each segment is made to be less

or equal than lmax (Lines 8-10). Finally, the computed path is returned (Line 11).

Algorithm 34: Path Optimization Procedure

1 OptimizePath(Oenv,θfeas,θopt,σ)
2 (Ns,fb, fref , ldisc)← GetShortenParams(θopt);
3 (Nr,fb, Npoints, lper)← GetRelaxParams(θopt);
4 σ ← ShortenPath(Oenv,θfeas,Ns,fb,fref ,ldisc,σ);
5 σ ← RefinePath(ldisc,σ);
6 σ ← RelaxPath(Oenv,θfeas,Nr,fb,Npoints,lper,σ);
7 Ns,fb ← 1; fref ← False; ldisc ← 0;
8 σ ← ShortenPath(Oenv,θfeas,Ns,fb,fref ,ldisc,σ);
9 lmax ← θopt.lmax;

10 σ ← RefinePath(lmax,σ);
11 return σ;

The path refinement algorithm is given in Algorithm 35. Given a positive length value
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lmax ∈ R>0, and a path σ ∈ Σfree, it processes over each segment and ensure its length to

be less than or equal to lmax by adding additional middle waypoints if necessary.

Algorithm 35: Path Refinement Procedure

1 RefinePath(lmax,σ)
2 x← σ.front();
3 σ′.push back(x);
4 while x 6= σ.back() do
5 l← ‖σ.next(x)− x‖;
6 N ← ceil(l/ lmax);
7 ∆x← (σ.next(x)− x)/N ;
8 x′ ← x+ ∆x;
9 for n = 1 to N do

10 σ′.push back(x′);
11 x′ ← x′ + ∆x;

12 x← σ.next(x);

13 return σ′;

The path shortening algorithm is given in Algorithm 36. It uses a line-of-sight filter and

runs in a forward-backward scheme to improve quality of a given path.

The path relaxation algorithm is given in Algorithm 37. It relaxes a given path by run-

ning in a forward-backward scheme and perturbing the waypoints of the path slightly. In

each iteration, the algorithm detects where the obstacles are located and moves the way-

points in the opposite direction.
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Algorithm 36: Path Shortening Procedure

1 ShortenPath(Oenv,θfeas,Nfb,fref ,lmax,σ)
2 for k = 1 to Nfb do
3 if fref = True then
4 σ ← RefinePath(σ,lmax);

5 σ′ ← ∅;
6 xfrom ← σ.front();
7 σ′.push back(xfrom);
8 xto ← σ.next(xfrom);
9 while xto 6= σ.back() do

10 if ¬IsFeasible(Oenv,θfeas,xfrom,σ.next(xto)) then
11 σ′.push back(xto);
12 xfrom ← xto;

13 xto ← σ.next(xto);

14 σ′.push back(xto);
15 σ ← σ′.reverse();

16 if Nfb is even then
17 σ′ ← σ;

18 return σ′;
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Algorithm 37: Path Relaxation Procedure

1 RelaxPath(Oenv,θfeas,Nfb,Npoints,lper,σ)
2 for k = 1 to Nfb do
3 σ′ ← ∅;
4 x← σ.front();
5 σ′.push back(x);
6 x← σ.next(x);
7 while x 6= σ.back() do
8 if ‖x− σ.prev(x)‖ < lmin∨
9 ‖σ.next(x)− x‖ < lmin then

10 x′ ← σ.next(x);
11 while x′ 6= σ.back() ∧ IsCollinear(σ.prev(x),x,x′) do
12 x′ ← σ.next(x′);

13 xnew ← PerturbPoint(x,σ.prev(x),x′);
14 fpn ← IsFeasible(Oenv,θfeas,σ.prev(x),xnew);
15 fnn ← IsFeasible(Oenv,θfeas,xnew,σ.next(x));
16 if fpn ∧ fnn then
17 x← xnew;

18 σ′.push back(x);
19 x← σ.next(x);

20 σ′.push back(x);
21 σ ← σ′.reverse();

22 if Nfb is even then
23 σ′ ← σ;

24 return σ′;
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9.4 Numerical Simulations

The simulation framework is implemented in standard C++ language and communicates

with different components via Robot Operating System (ROS) [102]. Therefore, the route

planner is integrated to the framework as a ROS package. It gets ROS message which

contains mission specific information, computes a feasible route quickly, and publishes the

solution as a ROS message to the ROS nodes of interest. In these numerical simulations,

the route planner is used to solve several high-level route planning problems in order to

demonstrate its efficiency and capabilities. Each mission takes place at locations of dif-

ferent terrain characteristics, non-convex safe-flight space, and no-flight space. For each

mission, the computed route is shown in blue color from top and side views in Figures 41,

45, 49. Due to safety requirements, the safe-flight space is shrunk, and the no-flight spaces

are expanded by some margins. This allows the algorithm to compute a route which has

enough clearance from the boundaries as seen in Figures 42, 46, 50. The nodes that are

populated by the RRT# algorithm as iterations go are also shown in the same figures. They

are plotted with different colors depending on the iteration at which they are created. The

nodes that are created at earlier and late iterations are shown in blue and red colors, respec-

tively. The cylinders of different radius and desired heading angle directions at take-off

and landing regions are shown in black. The same results are plotted in 3D from a different

perspective in Figures 43, 47, 51, and with the nodes in Figures 44, 48, 52.

In addition to simulations, the route planner was also tested extensively during the real

flight tests on June 2015. During a test scenario, the pilot invoked the planner with specific

mission information before the take-off, and the route information was shown on pilot’s

display once it was computed. Then, the pilot tried to fly the helicopter by tracking the

computed route. The implemented route planner successfully completed all piloted flights.
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Mission 1

Figure 41: The computed route by the planner for Circus mission. The flight path angle
constraints are seen clearly from the side view.

Figure 42: The nodes which are populated by the planner during Circus mission. The
cone constraints at take-off and landing regions are seen clearly from the side view.
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Figure 43: The computed route by the planner for Circus mission (3D view). The planner
computes a path that climbs to the desired cruise altitude quickly as seen in the middle of
the route.

Figure 44: The nodes which are populated by the planner during Circus mission (3D
view). Different colors of the nodes show the growth direction of the underlying graph.
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Mission 2

Figure 45: The computed route by the planner for Verde River, Arizona mission. The
flight path angle constraints are seen clearly from the side view.

Figure 46: The nodes which are populated by the planner during Verde River, Arizona
mission. The cone constraints at take-off and landing regions are seen clearly from the side
view.
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Figure 47: The computed route by the planner for Verde River, Arizona mission (3D
view). The planner computes a path that climbs to the desired cruise altitude quickly as
seen in the middle of the route.

Figure 48: The nodes which are populated by the planner during Verde River, Arizona
mission (3D view). Different colors of the nodes show the growth direction of the underly-
ing graph
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Mission 3

Figure 49: The computed route by the planner for Sedona, Arizona mission. The flight
path angle constraints are seen clearly from the side view.

Figure 50: The nodes which are populated by the planner during Sedona, Arizona mis-
sion. The cone constraints at take-off and landing regions are seen clearly from the side
view.
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Figure 51: The computed route by the planner for Sedona, Arizona mission (3D view).
The planner computes a path that climbs to the desired cruise altitude quickly as seen in
the middle of the route.

Figure 52: The nodes which are populated by the planner during Sedona, Arizona mission
(3D view). Different colors of the nodes show the growth direction of the underlying graph
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9.5 Conclusion

In this chapter, we present a demonstration of the proposed algorithms on a real-world

engineering problem, i.e., the high-level route planning of a rotorcraft. Several numerical

simulations were performed in order to demonstrate the capabilities of the route planner on

different missions. The implemented route planner was also tested in real flight tests, and

it performed successfully during piloted flights.
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Chapter X

CONCLUSION

10.1 Contributions
10.1.1 Novel Connection Between DP and Sampling-based Motion Planning

We presented a new interpretation of optimal motion planning problem as a form of ma-

chine learning problem. This new interpretation defines two subtasks, namely, exploitation

and exploration, and presents how these tasks can be implemented within the framework of

sampling-based algorithms. We used DP and ML algorithms to implement the exploitation

and exploration tasks, respectively. Specifically, VI and PI methods are used to exploit the

information collected so far and extract the best solution encoded in the underlying data

structure. Each method yields different implementation model, e.g., sequential or parallel.

It is shown that PI methods yield a massively parallel implementation that can leverage

state-of-the-art GPUs. We presented numerical simulations to demonstrate the efficiency

of the proposed sampling-based motion planning algorithms.

10.1.2 Machine Learning Guided Exploration

Collecting good samples can be a very tedious task in high-dimensional search problems.

To achieve better exploration, we utilized ML algorithms to develop adaptive sampling

strategies without incurring high computational overhead. Most of the sampling-strategies

aim to collect samples from free space. We took this goal one step further and identified

the relevant region of a query, i.e., a subset of the free space that contains the optimal

solution. We introduced a two-step test that quickly decides whether a given sample has

the potential to improve the existing solution. The proposed adaptive sampling method can

be seamlessly integrated to any single-query sampling-based motion planning algorithm.

We presented numerical simulations to demonstrate the efficiency of the proposed adaptive
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sampling methods.

10.1.3 Stochastic Motion Planning

We extended the applications of sampling-based algorithms and utilized them in order to

solve a class of stochastic optimal control problems. Specifically, path integral control

framework gives another way to compute optimal policies for stochastic motion planning

problems. This alternative approach requires sampling of trajectories from uncontrolled

dynamics and use them to compute path integral control law. We used the RRT algorithm

to sample useful trajectories from challenging dynamics and presented the first sampling-

based algorithm which leverages path integral framework. We presented numerical simu-

lations to demonstrate the efficiency of the proposed Path Integral - RRT algorithm.

10.1.4 Optimal Motion Planning via Closed-loop Prediction

We presented the first asymptotically optimal sampling-based motion planning algorithm

which uses closed-loop prediction. Several approaches have been developed to solve opti-

mal kinodynamic motion planning problem. A widely used approach is to solve the prob-

lem in two steps: first finding geometrically feasible path and second computing the con-

trols by tracking this path via a low-level controller. Despite its applicability to many

systems, this approach lacks dynamic feasibility guarantee. The other popular approach is

kinodynamic sampling-based motion planners which randomly sample controls and grow

a graph in the state space. The main drawback of kinodynamic motion planners with op-

timality guarantees is that they require complex steering procedures which are not readily

available. To remedy these challenges, we developed the CL-RRT# algorithm which is

a hybrid of both approaches. Given a low-level tracking controller, it grows a graph in

the output space and computes the lowest-cost reference trajectory that can be inputted to

the controller. The controls are not sampled directly, instead they are computed during

closed-loop simulation of the system. The CL-RRT# algorithm provides dynamic fea-

sibility guarantees by construction and is asymptotic optimal. We presented numerical
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simulations and demonstrated the efficiency of the proposed CL-RRT# algorithm.

10.1.5 Knowledge Transfer from Academia to Industry

We implemented the RRT# algorithm for the high-level route planning of a rotorcraft under

AACUS project. The implemented route planner was tested through extensive simulations

and used in real flight tests. It was integrated to the flight control system of a full scale

helicopter and performed very well during piloted flight tests.

10.2 Future Work and Open Problems
10.2.1 Real-time Motion Planning

As shown in Chapter 3, some versions of the RRT# algorithm have great potential for

massive parallelization. These algorithms can be implemented on state-of-the-art GPUs

and tested on high-dimensional robotic system for real-time motion planning.

10.2.2 Different ML Algorithms for Exploration

In this thesis, we used a few ML algorithms to solve exploration for motion planning. We

proposed an approach which boils down to solve classification and regression problems.

There is a plethora of algorithms to solve these central problems. A nice follow-up work

can be to implement different ML algorithms for exploration and benchmark their perfor-

mance. Also, for the sake of simplicity we used the configuration of the robot as the feature

vector of the machine learning problem. The underlying configuration space can have very

different topology depending on the geometry of the robot, location of the obstacles in

the workspace and their geometric properties. Another interesting work can be to learn

good features for the classification and regression problems and to investigate if alternative

features yield better performance or not.
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10.2.3 Applications of the CL-RRT# Algorithm

It was shown that the performance of the CL-RRT# algorithm highly depends on the de-

signed low-level tracking controller. One possible future work can be to use different track-

ing controllers on the same problem and compare their solutions. Another nice follow-up

work can be to apply the CL-RRT# algorithm to complex dynamical systems for which

standard kinodynamic planners are not applicable.

10.2.4 Sampling-based Path Integral Control Algorithms

We presented only the standard RRT algorithm within the path integral control framework.

There is a plethora of singe-query sampling-based motion planning algorithms that can be

used in the same way. A nice follow-up work can be integration of different sampling-

based algorithms to path integral control framework and compare of their performance.

Due to the formulation of the path integral control, many algorithms require sampling of

trajectories and expectation operation which can be done in parallel.

First, a parallel version of the algorithm can be implemented by sampling local trajecto-

ries or computing several initial trajectories simultaneously. Second, since there exist many

variants of the standard RRT algorithm, one can implement different sampling-based algo-

rithms to compute initial trajectories and incorporate them within the path integral frame-

work. For example, the RRT∗ and the RRT# algorithms, which are both asymptotically

optimal, can be used to compute bundles of good initial trajectories in a single pass; how-

ever, such an algorithm would require more elaborate computations for implementing the

steering function, e.g., backward integration of a stochastic differential equation. Another

work can be the implementation of parallel versions of the proposed algorithm on GPUs

and application of the PI-RRT algorithm to robotic systems with many states/degrees of

freedom.
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10.2.5 Bi-directional Search Algorithms

For the proposed algorithms, it is crucial to reach the target set as early as possible in order

to converge to the optimal solution faster. In that respect, a bi-directional version of the

RRT# algorithm (like the RRT-connect in [73]) can be developed in order to shorten the

first time-to-connect to the goal set, and this will help to identify the relevant region in very

early iterations. Hence, the bi-directional version can improve the exploration, convergence

rate, and memory requirement further by guiding samples towards the relevant region.

10.3 Final Remarks

There are a lot of open problems to solve optimal motion planning problems in an effi-

cient way. Historically, these problems have been studied by different people in robotics,

control and AI communities. Each community focuses on different aspects of the same

problem. The high-dimensionality of the search space and the geometry of the robot are

more challenging for robotics problems whereas differential constraints become more dif-

ficult to address in many control problems due to under-actuation. Perhaps it is time for a

closer collaboration between the different communities in order to unify the strengths and

the expertise of the various available approaches.
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