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SUMMARY 
 

Sickle cell disease (SCD) is a hereditary blood disorder caused by a point 

mutation in the gene encoding hemoglobin. This mutation causes hemoglobin molecules 

to polymerize during de-oxygenation of erythrocytes leading to rod-shaped polymers that 

bend and distort the red blood cell (RBC) membrane, making it more rigid and “sickled”. 

This sickling causes red blood cells to lose their flexibility and become trapped in small 

capillaries and arteries leading to chronic inflammation and many complications such as 

peripheral artery disease, stroke, myocardial infarction, vasculitis and even death.  

 Red blood cell dysregulation is pathognomonic in sickle cell disease. Red blood 

cells have a normal lifespan of about 120 days. In SCD, however, this lifespan is 

significant reduced to around 10 days. The reversible sickling and un-sickling that the 

RBC membrane undergoes makes the cells prone to cell lysis. Additionally, loss of lipid 

asymmetry contributes to this decrease in RBC lifespan. Enzymes known as flippases, 

floppases and scrambleases maintain lipid asymmetry in normal cells by concentrating 

certain lipids on the inner (i.e. phosphatidyl serine, phosphatidylethanolamine) or outer 

(i.e. sphingomyelin, phosphoryl choline) membrane. When lipid asymmetry is lost, due to 

RBC sickling, phosphatidyl serine can be exposed on the RBC membrane, which 

provides a signal for macrophages to clear these damages cells from circulation. To 

compensate for this significant reduction in RBC lifespan in SCD, the body produces 

significantly more premature RBCs, reticulocytes, which may also have a different lipid 

makeup as adult RBCs. Understanding how lipid orientation and metabolism is altered in 

SCD may provide tools to modulate RBC sickling and downstream processes in SCD. 

Sphingolipids are a class of lipids containing a backbone of sphingoid bases. 
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Sphingolipids can be produced de novo and further metabolized through the activity of 

various enzymes to produce intermediates with diverse roles in cellular processes and 

signal transduction. As they are significant components of the red blood cell membrane, 

their expression and orientation may be altered due to sickling events. The orientation of 

dominant lipids in the RBC membrane has been extensively studied in the context of 

SCD but the metabolism of these bioactive lipids has not. Sphingomyelin is the most 

abundant sphingolipid in the RBC membrane and is concentrated on the outer leaflet. 

Ceramide is produced by the hydrolysis of sphingomyelin by sphingomyelinase and is the 

sphingolipid at the center of the metabolic network. Ceramide can be metabolized by 

ceramidase to form sphingosine, which can be phosphorylated to form sphingosine 1-

phosphate (S1P). S1P is stored in significant amounts by RBCs and is a ligand for 5 

known G-protein coupled receptors that contribute to many cellular processes such as cell 

proliferation, motility and phenotype. These lipids not only exist in the RBC plasma 

membrane, but also can be secreted and bound to carrier proteins in blood plasma to 

signal to other cells. 

Sphingolipid metabolism has been implicated in membrane-derived microvessel 

formation. Specifically, sphingomyelinase activity has been shown to result in the 

production of membrane derived microparticles and exosomes. While the exact 

mechanism is unknown, it is thought that conversion of the large polar head sphingolipid 

to the smaller ceramide causes microdomain formation in the RBC membrane and 

subsequent budding. These microparticles can be secreted from RBCs or released into 

circulation upon RBC hemolysis where they can signal to other cells. Microparticles have 

been shown to contribute to many processes in sickle cell disease including vaso-
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occlusions, inflammatory cell activation, thrombosis and apoptosis.  

As microparticles are membrane-derived, they contain bioactive sphingolipids, 

which can signal to other cells in circulation. Additionally, monocytes are known to 

interact with RBCs at a much higher frequency in SCD. Not only do these two cells 

interact, they exchange protein and lipid signals. Monocytes exist in an “activated” state 

in SCD and are more adhesive and pro-inflammatory. Sphingolipids, many of which are 

bioactive, may be transferred from RBCs and activate signaling cascades on circulatory 

monocytes. S1P, in particular, has been shown to modulate monocyte phenotype, 

adhesion and recruitment through receptor signaling and intracellular metabolism. In this 

work, we hypothesized that sickling in SCD may alter sphingolipid metabolism and 

microparticle generation. As a result, sphingolipid-rich microparticles may enhance 

activation of inflammatory cells, like monocytes and neutrophils, in circulation. This 

work examines the metabolism of sphingolipids and generation of microparticles in SCD 

using sphingolipidomic profiling, enzymatic assays and computational modeling. 

Secondly, the crosstalk between S1P, microparticles and monocyte/macrophage 

phenotypes is examined in the context of sickle cell disease and immunomodulation. 

Lastly, the therapeutic potential for altering sphingolipid metabolism to regulate 

microparticle generation and inflammation during SCD is examined. This work, taken 

together, shows that acid sphingomyelinase activity is significantly elevated in RBCs 

during SCD. This results in the production of sphingolipid-rich RBC-derived 

microparticles, which are present in circulation. These microparticles interact with 

myeloid cells and alter pro-inflammatory cytokine secretion and endothelial cell 

adhesion. Pharmacological inhibition of acid sphingomyelinase reduces microparticle 
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generation and subsequent inflammation in a mouse model of SCD. 
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CHAPTER 1 
 

INTRODUCTION 
 
 Sickle cell disease (SCD) is a hereditary genetic blood disorder caused by a point 

mutation in the gene encoding hemoglobin. This mutation causes hemoglobin molecules 

to polymerize during de-oxygenation of erythrocytes leading to rod-shaped polymers that 

bend and distort the red blood cell (RBC) membrane, making it more rigid and “sickled”. 

This sickling causes RBC to lose their flexibility and become trapped in small capillaries 

and arteries. This vaso-occlusion has the potential to cut off blood supply to downstream 

tissues and is often associated with pain but can also lead to many complications such as 

chronic inflammation, ischemia, peripheral artery disease, stroke, myocardial infarction 

and even death (1, 2). The current standards of care for those with SCD are blood 

transfusions and pain management. Transfusions provide a pool of healthy RBC but 

patients must go to the hospital every time they need treatment. Furthermore, there are 

still issues associated with transfusions, including graft rejection and hypertension (3). 

Pain management is reactive and is associated with many side effects and addiction (4).  

Sphingolipids are a class of lipids containing a backbone of sphingoid bases. 

These lipids play diverse roles in cellular processes and signal transduction (5). 

Sphingomyelin is the most abundant sphingolipid in the plasma membrane and is 

hydrolyzed to ceramide by sphingomyelinases. Ceramide can then be converted to 

sphingosine by ceramidases and ultimately sphingosine 1-phosphate (S1P) with 

sphingosine kinases. Sphingosine 1-phosphate, a bioactive intermediate in sphingolipid 

metabolism is stored at high concentrations in red blood cells. S1P acts as an extracellular 

signaling molecule by activating 5 known G-protein coupled receptors (S1P1-5) and as an 
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intracellular signaling metabolite to direct a wide array of cellular processes (6). 

Sphingolipids are integral components of cell plasma membranes. Sphingomyelin 

metabolism and ceramide production have been implicated in processes regulating 

membrane integrity, apoptosis, deformability, cell shape and budding (7, 8), all of which 

are factors that affect red blood cells in SCD. Additionally, RBC store, metabolize and 

transport a significant amount of sphingolipids. RBC-derived microparticles may interact 

with inflammatory cells in circulation, and are potential carriers for sphingolipids. 

Sphingolipid metabolism has been shown to alter the receptor expression, cytokine 

secretion, growth and differentiation of inflammatory cells (9-11). We hypothesized that 

sphingolipid metabolism is altered in SCD and that regulation of sphingolipid 

metabolism may be an effective therapeutic strategy to modulate inflammation-related 

pathologies in the disease. 

 We believe that the dysregulation of sphingolipid metabolism in sickle cell 

disease serves as a feed-forward mechanism of inflammation associated with SCD. Our 

central hypothesis is that chronic inflammation and associated plasma secretion of key 

enzymes of sphingolipid metabolism evokes the hyper-production of ceramide and 

sphingosine, the precursors of S1P. Geometric and biological changes associated with 

sickle cell disease and exacerbated by dysregulated sphingolipid metabolism in sickle 

erythrocytes, leads to the generation of microparticles that can activate 

monocyte/macrophage populations, further enhancing systemic inflammation. Thus, 

regulating sphingolipid metabolism may be a novel tool to therapeutically treat the 

pathogenesis of sickle cell disease. In this proposal, we address the following three 

specific aims: 
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1. Evaluate the role of systemic inflammation in the dysregulation of sphingolipid 

metabolism and subsequent microparticle generation in SCD erythrocytes. Increases 

in the secretion of sphingolipid metabolizing enzymes and geometrical changes in the 

RBC membrane, which occur in SCD, may alter the presence of membrane-borne 

sphingolipids and the activities of membrane-bound enzymes. The objective of this aim is 

to evaluate the role of SCD-associated inflammation in sphingolipid metabolism, the 

resulting changes in the erythrocyte sphingolipidome and the subsequent generation of 

RBC-derived microparticles. To this end we will quantify sphingomyelinase expression 

and activity from inflamed endothelial and myeloid cells with plate-based enzyme 

activity kits, western blotting and ELISA. Additionally, we will measure 

sphingomyelinase activity in the plasma and RBC from SCD donors. We will also 

measure the concentration of sphingosine kinases and ceramidases, enzymes that 

metabolize sphingolipids downstream of sphingomyelin, and bioactive sphingolipids in 

the blood, plasma and red blood cells from SCD donors with lipid extraction and HPLC-

MS quantification. We will quantify the generation of RBC-derived microparticles with 

flow cytometry in SCD and characterize their sphingolipid content through lipidomic 

profiling. Lastly, we will develop a computational model of sphingolipid metabolism in 

AA and SS RBCs to elucidate altered reactions that might be therapeutic targets. This 

aim will reveal whether alterations in sphingolipid metabolism are associated with 

microparticle generation as well as the sphingolipid content of microparticles. It will also 

allow us to utilize our predictive mathematical model to reveal reaction fluxes and 

enzyme activities that might be altered in SS RBCs. This model will be validated 

experimentally and probed for therapeutic intervention to alter sphingolipid enzyme 
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activity and sphingolipid production. 

2. Evaluate the interaction between microparticles and myeloid cells. The objective 

of this aim is to evaluate the interaction of RBC-derived microparticles with 

inflammatory cells and their biological consequences. To this end, we will use 

fluorescent microscopy and lipid-transfer experiments to examine how microparticles are 

internalized, distributed and processed within myeloid cells. We also plan to examine the 

potential of myeloid cells to metabolize microparticle-derived sphingolipids during SCD. 

We will do this through single cell transcriptional analysis of sphingolipid-metabolizing 

enzymes in SCD and non-SCD peripheral blood mononuclear cells. Additionally, we will 

assess monocyte-endothelial cell adhesion and cytokine production after incubation of 

myeloid cells with S1P, RBC and RBC-derived microparticles. This aim will elucidate 

the capacity of myeloid cells to metabolize sphingolipids delivered via microparticles in 

SCD.  

3. Evaluate the therapeutic potential of pharmacological perturbations to 

sphingolipid metabolism to reduce pathological effects of inflammation in SCD. The 

objective of this aim is to determine if pharmacological regulation of sphingolipid 

metabolism can be used to modulate inflammation-associated pathogenesis in SCD. We 

hypothesize that pharmacological reduction of sphingomyelinase activity will reduce the 

production of microparticles, and subsequent chronic inflammation, in mouse models of 

hypoxia- mediated vaso-occlusion in SCD. In this aim, we will utilize a murine model of 

SCD with or without hypoxia to drive microparticle generation. Mice will be housed in a 

hypoxic chamber for 2 hours to induce RBC sickling and chronic inflammation with or 

without a sphingomyelinase inhibitor, amitriptyline. We expect that animals given the 
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sphingomyelinase inhibitor will have reduced microparticle generation and systemic 

inflammation. This aim will allow us to examine the potential of pharmacological 

inhibitors of sphingomyelinase improve systemic inflammation and pathogenesis 

associated with sickle cell disease in a mouse model of acute inflammation and hypoxia.  

 This overall project seeks to understand the role of sphingolipid metabolism and 

immunomodulation during SCD pathogenesis. The project develops pharmacological 

platforms to modulate cellular processes that contribute to the pathologic red blood cell 

sickling and inflammatory cell activation in Sickle Cell Disease. 
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CHAPTER 2 
 

BACKGROUND 
 
 

Sickle Cell Disease is characterized by morbidity, affects quality of life and can be 
deadly 

 
 Sickle cell disease (SCD) is a hereditary genetic blood disorder caused by a point 

mutation in the gene encoding hemoglobin. This mutation causes hemoglobin molecules 

to polymerize during de-oxygenation of erythrocytes leading to rod-shaped polymers that 

bend and distort the RBC membrane, making it less flexible and “sickled”. This sickling 

results in the propagation of vaso-occlusion, when RBCs become trapped in small 

capillaries and arteries, potentially cutting off blood supply to downstream tissues. Vaso-

occlusion is often associated with pain but can also lead to many complications such as 

chronic inflammation, ischemia, peripheral artery disease, stroke, avascular necrosis and 

even death. While bone marrow transplants and gene therapy have been explored in the 

cure of SCD none have been widely used for donor-matching and regulatory reasons. The 

current standard of care for those with SCD is blood transfusions and pain management. 

Transfusions provide a pool of healthy RBC but patients must go to the hospital every 

time they need treatment and there are still issues with graft rejection and hypertension 

(3). Pain management is reactive and is associated with many side effects and addiction 

(4). While medical advancements have improved life expectancy of SCD over the years, 

it remains significantly less than those without the disease. Furthermore, the pain 

associated with SCD is often disruptive to educational, social and recreational life and 

worsens quality of life (12).  
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Vaso-occlusive crisis 

 One of the most common complications of SCD is the vaso-occlusive crisis. This 

crisis comes about when blood vessels are obstructed by sickle cells, causing ischemia in 

tissues and organs down stream of those vessels. While pain is the most common effect, 

irreversible organ damage can also result from the painful crisis. Sickled erythrocytes that 

lose their flexibility and ability to navigate small vessels are thought to initiate vaso-

occlusion by interacting with the vascular endothelium (13). Circulatory inflammatory 

cells have also been implicated in the propagation of vaso-occlusion. Monocytes from 

those living with SCD have been shown to be activated and cause the activation of the 

endothelium, enhancing cellular adhesion (14). Neutrophils have also been shown to 

enhance pathologic cell adhesion through cytokine and ROS production (15). While 

inflammatory cells are key contributors to endothelium activation and vaso-occlusion 

there are no therapies that attempt to regulate inflammatory cell activation and adhesion 

in SCD. 

Treatment for Sickle Cell Disease 

 While advances in gene therapy have elucidated mechanisms to correct the 

mutation for hemoglobin in mutated cells (16, 17), bone marrow transplants remain the 

only clinical cure for SCD. Finding a donor, however, is very difficult and the procedure 

has many associated risks, including death.  

Blood transfusions are employed to prevent crisis by increasing the pool of 

normal red blood cells in a patient. Transfusions prevent many vascular complications of 

SCD by overcoming anemia associated with the disease and preventing vaso-occlusion 

from sickled cells. Blood transfusions however, contain iron and buildup of iron after 
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transfusions can result in heart and liver damage (18). Medicines such as antibiotics, 

hydroxyurea and pain medications have also been used to treat complications of the 

disease. While morbidity is improved through these therapies none of them are long-term 

solutions to the complications of the disease and may require life-long prescriptions and 

visits to the hospital. Additionally, none of these interventions target the cellular basis of 

sickle cell disease: the patient’s red blood cells themselves. There is a critical need for 

therapies that regulate the processes of red blood cell sickling and immunomodulation in 

sickle cell disease. 

Sphingolipid metabolism 

Sphingolipids are a class of lipids containing a backbone of sphingoid bases. 

These lipids play diverse roles in cellular processes and signal transduction (5). Many 

cells can synthesize sphingolipids de novo from the initial rate-limiting enzyme, serine 

Palmitoyl transferase (19). Sphingomyelin is the most abundant sphingolipid in cell 

membranes. Ceramide, lies at the center of the sphingolipid metabolic pathway. It can be 

produced through the metabolism of Serine and Palmitoyl CoA or by hydrolyzing 

sphingomyelin. Ceramide is the direct precursor of sphingosine, which can be 

phosphorylated to produce sphingosine 1-phosphate (S1P) (Figure 2.1). Red blood cells 

do not maintain the ability to produce the enzymes that metabolize sphingolipids but they 

instead can adopt these cells from their surroundings. Sphingomyelinase can be secreted 

from endothelial cells and myeloid cells during many biological processes (20). 

Specifically, erythrocyte apoptosis and chronic inflammation can trigger the secretion of 

acid sphingomyelinase (21-23). As chronic inflammation is characteristic of SCD, it is 

likely that elevations in sphingomyelinase secretion also occur in the disease state. 
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Additionally, sphingosine kinase (SK) 2 can be cleaved and secreted from apoptotic cells 

(24). SK exists in two isoforms and phosphorylates sphingosine into S1P two steps down 

stream of sphingomyelinase activity. S1P is the most studied bioactive sphingolipid and 

is stored at high concentrations in red blood cells. It acts as an extracellular signaling 

molecule by activating 5 known G-protein coupled receptors and as an intracellular 

signaling metabolite to direct a wide array of cellular processes (6).  

 

	
  

Figure 2.1. Diagram of sphingolipid metabolism. De novo sphingolipid production 
starts with the reaction of serine and palmitoyl CoA, mediated by serine palmitoyl 
transferase. Sphingolipids are metabolized in many reversible and irreversible reactions. 
Ceramide is at the center of the sphingolipid metabolism network and can result from the 
hydrolysis of sphingomyelin and result in the production of sphingosine and S1P 
downstream (25). 

	
  
Sphingosine 1-phosphate is a small bioactive signaling lipid 

 Sphingosine 1-phosphate (S1P) is one of the most studied sphingolipids and is an 

intermediate in sphingolipid metabolism (Figure 2.1). S1P acts as an extracellular 

signaling lipid by activating 5 known G-protein coupled receptors (S1P1-5) to initiate 
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diverse cellular functions, including chemotaxis and recruitment of cells (26-28) 

migration and trafficking of hematopoietic stem and progenitor cells within extra 

medullary tissues (29), and regulation of blood recirculation of osteoclastic precursors 

(30). S1P is also a lipid intermediate and can be secreted and then internalized and 

metabolized by other cell types (31). 

 Sphingosine 1-phosphate as been shown to recruit monocytes/macrophages to 

atherosclerotic plaques via S1P3  (32). Fueller et al. discovered that S1P acted as a pro-

inflammatory mediator by activating human monocytes, which contribute to 

inflammation and atherogenesis (33). Weis et al. followed up on this by evaluating the 

role of S1P on monocyte activation and adhesion (34). S1P was shown to induce E-

selectin expression and the adhesion of monocytes to endothelial cells (35). All of these 

processes can contribute to the pathogenesis of sickle cell disease by exacerbating 

inflammation associated with vaso-occlusion (14).  

Sphingolipid metabolism in membrane vesicle formation 

The erythrocyte cell membrane plays critical roles in the size, shape, structure and 

deformability of the cell. Healthy RBCs have flexible membranes that allow the cells to 

bend and navigate through small vessels. As RBC age, loss in the deformability of the 

cells enhances splenic sequestration and clears old/damaged cells from circulation (36). 

Sphingolipids are integral components of cell plasma membranes and contribute to 

membrane integrity, deformability and cell shape. Sphingolipid metabolism changes the 

balance of membrane sphingolipids and can result in changes in cell shape, integrity and 

deformability. Dinkla et al. found that chronic inflammation enhances the secretion of 

acid sphingomyelinase, an enzyme that catalyzes the hydrolysis of sphingomyelinase to 
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ceramide (7). Membrane ceramide synthesis in erythrocytes was associated with the 

appearance of phosphatidyl serine (37) on the outer leaflet of RBC, enhancing apoptosis 

and clearance and contributing to anemia. Additionally, Dinkla et al. found that 

sphingomyelin removal enhanced membrane fragility, vesiculation and invagination (7). 

Consistent with this observation, Trajkovic et al. revealed that ceramide synthesis in 

plasma membranes, through sphingomyelinase, induces the coalescence of membrane 

microdomains promoting membrane budding and exosome formation (8). Increased 

erythrocyte bending, as occurs in SCD, has also been shown to activate neutral 

sphingomyelinase (38). Membrane-derived particles produced through sphingolipid 

metabolism contain bioactive metabolites and can be secreted or released upon apoptosis. 

Microparticles in sickle cell disease 

 Microparticles, once termed “cell dust”, are small vesicles with diameters 

between 100 and 1000nm that bud from the plasma membrane of mechanically stressed, 

dying or activated cells. These particles express antigens and membrane components 

specific to their parent cells and can act as protein/lipid transport vesicles in circulation. 

As these particles are membrane derivatives, sphingolipids can also bud off and be stored 

in these particles. Additionally, microparticles have been shown to be elevated in the 

circulation of those living with sickle cell disease. Particles derived from erythrocytes 

(39), platelets (40) and monocytes (41) have all been evaluated.  

Though microparticle formation is a physiological phenomenon, many 

pathologies are associated with increases in microparticles in circulation such as 

inflammation, atherosclerosis and auto-immunity (42). In 2003, Shet et al. showed that 

tissue factor microparticles contribute to coagulation during SCD (41). Recently, 
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Tantawy et al. expanded on this by attributing platelet- and RBC-derived microparticles 

to coagulation as well as other cardiovascular complications in SCD (40). Soon after, 

Camus at al. discovered that erythrocyte-derived microparticles induce vaso-occlusion in 

the kidney during SCD (43). As sphingolipids are integral parts of RBC membranes it is 

likely that they are present in microparticles and contribute to cell-cell cross talk. 

Microparticles and monocyte modulation 

 Microparticles have been shown to interact with monocytes in circulation. 

Bardelli et al. discovered that monocyte-derived microparticles induce, in an autocrine 

fashion, cytokine release, NF-κB activation and oxygen radical production (44). Barry et 

al. first discovered that platelet-derived microparticles enhanced the adhesion of 

monocytes to endothelium in a dose and time dependent fashion (45). Rautou et al. 

isolated microparticles from atherosclerotic plaques from humans and confirmed their 

thrombogenic potential (46). These authors, however, did not examine the cellular source 

of these pro-thrombotic microparticles. The microparticles, however, were more potent at 

stimulating monocyte adhesion than microparticles derived from asymptomatic plaques. 

More recently, Vasina et al. discovered that microparticles were internalized by 

monocytes and subsequently promoted cytoskeleton rearrangement, hydrogen peroxide 

production, and pro-inflammatory cytokine secretion (47). Pro-inflammatory cytokines 

are known to be elevated in the blood and plasma of those living with sickle cell disease 

and contribute to vascular inflammation. Since monocytes interact with erythrocytes and 

their microparticle products in circulation, this has the potential to enhance their 

inflammatory state and exacerbate inflammation-mediated pathogenesis in SCD. To this 
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date, however, no one has explored the role of RBC-derived microparticles in monocyte 

activation in SCD. 
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CHAPTER 3 

ACID SPHINGOMYELINASE IS ACTIVATED IN SICKLE CELL 

ERYTHROCYTES AND CONTRIBUTES TO INFLAMMATORY 

MICROPARTICLE GENERATION IN SICKLE CELL DISEASE 

 

Introduction 

Sickle cell disease (SCD) is a hereditary blood disorder characterized by mutated 

hemoglobin molecules, which polymerize during deoxygenation to form fibers that 

deform the erythrocyte membrane. These red blood cells (RBCs) contribute to significant 

vascular pathology, including stroke, myocardial infarction, peripheral artery disease and 

even death (48). As the initiating event in the pathology of SCD is the sickling of the 

RBC membrane, it is important to understand how modifications in membrane 

composition might play a role in the disease. 

Sphingolipids are a class of lipids containing a backbone of sphingoid bases. They 

play diverse roles in cellular processes and signal transduction and are significant 

components of cell membranes (5). Sphingomyelin, which comprises 10% of the 

mammalian plasma membrane, is degraded by the hydrolyzing enzyme sphingomyelinase 

(SMase). In recent studies, membrane curvature, and associated increases in mechanical 

bending stresses in RBCs, activated SMase, reducing sphingomyelin and increasing 

ceramide (38). Production of ceramide has a direct effect on a wide range of cell 

processes and alters production of other immediately descendent metabolites such as 

sphingosine and sphingosine 1-phosphate (S1P), which are key regulators of 

inflammation (26-28, 30, 49). Furthermore, SMase has been implicated in lipid 
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microdomain formation, membrane fragility, vesiculation  and microparticle formation 

(7, 50). While the orientation of plasma membrane lipids in SCD and other hemolytic 

anemias has been studied, the consequences of altered distribution and metabolism of 

sphingolipids have been largely unexplored.  

Sickle RBCs are a particularly interesting model system for the relationship 

between membrane stresses, inflammation and sphingolipid metabolism. Acid SMase is 

secreted from endothelial cells and myeloid (20) and erythrocyte apoptosis and chronic 

inflammation, both of which occur in SCD, enhance the secretion of acid SMase (7, 21-

23). The role of acid SMase, and sphingolipid dysregulation more generally, has not been 

studied in the context of SCD. 

In this work, we elucidate mechanisms contributing to the dysregulation of 

sphingolipid metabolism and subsequent MP generation by RBCs in SCD. Membrane 

stresses enhance the activity of acid SMase in the blood, plasma, and RBCs of people 

living with SCD. This results in a significant increase in the presence of sphingosine and 

S1P in RBCs as well as the generation of RBC-derived MPs (Figure 2.1 and Figure 

3.1).  
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Figure 3.1. Schematic of Sphingolipid metabolism and microparticle generation in 
SS RBC. When RBC undergo reversible sickling cycles, their membranes curve, 
introducing membrane stresses caused by the closer interaction of lipids. This increased 
membrane force activates acid sphingomyelinase (A-SMase) on the outer leaflet of the 
plasma membrane (1). Acid SMase hydrolyzes sphingomyelin to form ceramide which 
has a smaller head group and can cause an inward curvature of the membrane which 
reduces membrane stresses. Sphingomyelin can be further metabolized into sphingosine 
and S1P with alkaline ceramidase (CDase) and Sphingosine Kinase (SK1/2), respectively 
(2). Membrane budding results in the formation of membrane-derived vesicles (3), 
containing sphingolipids and proteins, which are internalized into the cell and 
subsequently released into circulation through secretion or hemolysis as microparticles 
(4).  

	
  
These factors enhance monocyte adhesion to endothelial cells and inflammatory 

cytokine production. Pharmacological inhibition of acid SMase with an FDA-approved 

drug, amitriptyline, reduces MP generation and cytokine production. These results 

elucidate a novel mechanism for MP-mediated inflammatory cell activation in SCD (51). 

Additionally, these findings may be relevant to other hemolytic anemias such as 
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paroxysmal nocturnal hemoglobinuria and autoimmune hemolytic anemia and disorders 

rooted in aberrant RBC morphology. 

Materials and Methods 

RBC and MP isolation and fractionation 

Whole blood samples obtained from donors homozygous for sickle (SS) or 

normal (AA) hemoglobin were centrifuged against a Ficoll-Paque density gradient 

(density: 1.077g/mL; GE Healthcare) for 30 minutes at 400 RCF at 4˚C to separate 

plasma, peripheral blood mononuclear cells (PBMCs) and packed RBCs (Figure 3.2).  

 

	
  

Figure 3.2. Scanning electron microscopy images of AA and SS RBCs. Donor blood 
was harvested and fractionated in a Ficoll density gradient to separate plasma and RBCs. 
RBCs were fixed, dehydrated and prepared for SEM imaging. While AA RBCs (top) 
display a normal, discoid shape, SS (bottom) RBCs are sickled and misshapen. SS RBCs 
also appear to have spindle-like protrusions from hemoglobin polymerizations. These 
alterations significantly enhance membrane forces. Scale bars = 5µm. 

 



	
  18 

RBCs were separated into high and low density fractions using stacked Percoll solutions 

centrifuged at 41,000rpm for 30 minutes using a Beckman SW 41 Ti rotor (52). RBC-

derived MPs were obtained by ultracentrifugation of packed RBCs at 10,000 (P2), 37,000 

(P3) or 200,000 (P4) RCF for 1 hour at 4oC. 

Flow cytometry for microparticle quantification 

Whole blood, cultured RBCs or isolated MPs were incubated with antibodies 

against Glycophorin A (catalog #Ab91163, Abcam) and Annexin V (catalog #640906, 

Biolegend). Events were counted with Accucheck counting beads (catalog #PCB100, 

Life Technologies) and analyzed on a BD FACS Aria flow cytometer.  

Protein and enzyme quantification 

Enzyme expression and activation were quantified from biological samples using 

the following kits: SMase activity: catalog #10006964, Cayman Chemical Company, 

Acid SMase expression: catalog #SEB360Hu, USCN Life Science, ACER1 expression: 

catalog #CSB-EL001151HU, CUSABio, Sphingosine kinase 1 and 2 western blot: 

catalog #1000-6822, Cayman Chemical Company and catalog #AB37977, Abcam, 

ICAM-4 antibody: catalog #ABIN901654 (antibodies online), Total and phosphor-

ERK1/2 western blot: catalog #9102, #9101, Cell Signaling. Western blot measurements 

were standardized by loading an equal volume of protein. An equal volume of blood was 

used for activity assays. 

Lipid Extraction and Quantification 

Lipids were extracted following a protocol from Shaner et al. (53) and analyzed 

using a Shimadzu LC-10 AD VP binary pump system coupled to a Perkin Elmer Series 
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200 autoinjector coupled to a 4000 quadrupole linear-ion trap (QTrap) LC-MS/MS 

system. 

Monocyte differentiation and MP internalization 

THP-1 monocytes were seeded at 2x105 cells/well on poly-d-lysine-coated 

coverslips and treated with 100 nM phorbol myristate acetate (PMA) for 72 hours to 

promote adhesion. Primary AA PBMCs were seeded at 1x106 cells/mL in 12 well plates 

in media supplemented with macrophage colony stimulating factor (MCSF) (Peprotech). 

P3 MPs were isolated from packed RBCs as described above and incubated 1:1 with 1µM 

CFSE (Abcam) for 20 minutes at room temperature followed by ultracentrifugation at 

37,000 RCF for 20 minutes at 4oC. The MP pellet was resuspended in PBS and seeded at 

1x106 particles/well on THP-1 or primary isolated monocytes. After 30 minutes, 2 hours 

or 24 hours the conditioned media was collected, and the cells were washed three times 

with PBS before imaging or cell lysis with RIPA buffer. Collected proteins were assessed 

for cytokines using a Milliplex MAP Human Cytokine/Chemokine Premixed 42 Plex 

Assay (catalog #MPXHCYTO60KPMX42, Millipore) on the Luminex platform.  

Monocyte adhesion studies  

GFP-HUVECs (Angioproteomie) were seeded in either an 8 chamber slide or a 

96-well plate and grown to confluence. DRAQ5 (eBioscience) or DiI (Life Technologies) 

labeled THP-1 monocytes or primary isolated PBMCs were pre-treated with vehicle 

media, 1µM S1P or 10% AA/SS plasma for one hour, co-incubated with AA/SS RBCs 

(1:10 Monocyte:RBC) for 18 hours or co-incubated with AA/SS P3 MPs at high (50%), 

medium (20%) or low (10%).concentrations for 18 hours and washed then allowed to 

adhere to confluent HUVECs for 4 hours. Non-adherent cells were washed away with 
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PBS three times and nuclei of adherent cells were stained with DAPI (4,6-diamindino-2-

phenylindole) and imaged with fluorescent microscopy (DRAQ5- or DiI-labeled 

monocytes appear in red). 

Ex vivo RBC studies 

RBCs were isolated as described above and resuspended 1:100 in PBS + 

20mmol/L glucose with 0, 1, 10 or 100µM amitriptyline and incubated at 37oC for 1, 2 or 

24 hours. Cells were resuspended in diH20 for acid SMase activity measurement or PBS 

for flow cytometric measurement of MPs. 

Animals  

Wild-type C57BL/6 mice were obtained from The Jackson Laboratories; 

Heterozygous AS and homozygous SS mice were initially obtained from the sickle 

transgenic breeding colony at Georgia Institute of Technology. Townes’ model sickle 

transgenic mice were heterozygous (AS) or homozygous (SS) for the sickle mutation. 

Saline and 10mpk amitriptyline (dissolved in sterile saline) injections were performed via 

intraperitoneal injection and peripheral blood was drawn via retro-orbital bleed. For 

hypoxia studies, mice were housed in polypropylene hypoxia chamber (Coy Laboratory 

products) and kept at 8% oxygen (using pure O2 and N2 as background gas) for 24 hours. 

All surgical procedures and animal care protocols were approved by the Georgia Institute 

of Technology Animal Care and Use Committee. 

Results 

Sphingolipid metabolism is dysregulated in SCD 

Neutral SMase is known to be activated upon membrane bending (38). While 

neutral SMase activity was largely undetectable in plasma and AA RBCs, there was a 
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small but significant (10pmol/min/mL) increase in neutral SMase activity in SS RBCs 

(Figure 3.3A-B).  

 

 

Figure 3.3. Acid and Neutral Sphingomyelinase activity in AA and SS RBC and 
plasma. Donor blood was harvested and fractionated in a Ficoll density gradient to 
separate plasma and RBC. A plate based assay for sphingomyelinase activity was 
performed at a neutral pH on equal volumes of plasma (A) and RBC (B). Neutral 
sphingomyelinase activity was very low or undetectable in both plasma (A) and RBC (B). 
SMase activity, while still low, was significantly increased in SS RBC (B) relative to AA 
RBC. This is likely due to residual (sub-optimal) acid SMase activity at neutral pH or 
activation of neutral SMase. A plate based assay for acid sphingomyelinase activity was 
performed on equal volumes of plasma (C) and RBC (D). Acid sphingomyelinase activity 
was elevated in both plasma and RBC from SCD donors relative to non-diseased donors. 
A plate based ELISA for sphingomyelinase expression was performed on plasma and 
RBC (E). Sphingomyelinase expression was not altered in the plasma (left) or RBC 
(right) of those living with SCD. Packed RBC from AA and SS donors were stacked onto 
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Percoll density discontinuous layers and spun with ultracentrifugation to separate two 
distinct density (high and low) fractions of cells. F) High density RBC had higher 
sphingomyelinase activity than low density RBC. Low density RBC from SS donors had 
much higher sphingomyelinase activity than low density AA cells and high density RBC 
from SS donors had much higher sphingomyelinase activity than high density AA cells. 
Morphological differences were apparent between the four fractions (G). H) AS and SS 
mice were conditioned with hypoxia (8% oxygen) for 24 hours. Normoxic SS mice 
displayed a significant increase in acid SMase activity relative to normoxic AS mice. 
Hypoxic conditioning further enhanced acid SMase activity in SS mice. Scale bar = 5µm. 
* p < 0.05 measured in a ANOVA relative to AA or AS normoxia. 

 

Acid SMase activity in AA plasma was 0.56 nmol/min/mL but was significantly elevated 

(0.64 nmol/min/mL) in SS plasma (Figure 3.3C). Acid SMase activity in SS RBCs 

(98.06nmol/min/mL) was also significantly elevated in comparison to AA RBCs 

(87nmol/min/mL) (Figure 3.3D). There was a positive correlation (r2=0.84) between acid 

SMase activity in RBCs and plasma (data not shown). Acid SMase expression was not 

altered in plasma and RBCs, suggesting that its increased activity in SCD is due to 

activation (Figure 3.3E). We sought to determine if sickled RBCs had higher levels of 

acid SMase activity, so we used Percoll density centrifugation to separate high- 

(irreversible sickled) and low-density fractions of RBCs (Figure 3.3G) (54). Low density 

SS RBCs, many of which were sickled, displayed increased acid SMase activity relative 

to AA RBCs. Irreversible sickled SS RBCs had the highest acid SMase activity (Figure 

3.3F-G). To confirm the role of RBC sickling in acid SMase activation, we induced 

sickling in SS mice with hypoxic conditioning for 24 hours. Consistent with humans, SS 

mice displayed a significant increase in acid SMase activity in whole blood at normoxic 

baseline. Deoxygenation by hypoxic conditioning further enhanced acid SMase activity 

in SS mice (Figure 3.3H).  
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Multiple lipids can be metabolized downstream of sphingomyelin (Figure 2.1). 

Alkaline ceramidase (ACER1), which converts ceramide to sphingosine (55), was 

measured in RBCs and plasma. ACER1 levels were not altered between AA 

(73.02pg/mL) and SS (79.68pg/mL) RBCs (Figure 3.4A).  

 

	
  

Figure 3.4. Alkaline ceramidase, sphingosine kinase 2, S1P and sphingosine elevated 
in SCD. Donor blood was harvested and fractionated in a Ficoll density gradient to 
separate plasma and RBC. A plate based assay for alkaline ceramidase (ACER1) 
expression was performed on RBCs (A) and plasma (B). ACER1 expression was not 
altered in SCD RBC. ACER1 was not detected in the plasma of those without SCD but 
was elevated in the plasma of those with SCD. RBC were fractionated from donor blood 
and lysed in RIPA buffer. C) Western blotting shows expression of both SK1 and SK2, 
but only SK2 was visibly elevated in SS RBC. D) Relative fold changes in SK1 and K2 
expression reveal a significant increase in SK2 expression in SS RBC. E-F) Donor 
plasma was assessed for SK2 expression and plasma from those living with SS had 
significantly more SK2, relative to AA, suggesting that SK2 is secreted during SCD. 
Lipids were extracted from donor samples and sphingosine and S1P levels in whole 
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blood (G), plasma (H) and RBC (I) was quantified with HPLC-MS. * p < 0.05 measured 
in a t-test.  

 

ACER1 was present at a concentration of 30.39pg/mL in SS plasma, but was not detected 

in AA plasma (Figure 3.4B). Sphingosine is phosphorylated to form the bioactive 

signaling lipid, S1P, by sphingosine kinase 1 and 2 (SK1/2). As S1P is stored at high 

concentrations in RBCs (56), we hypothesized that they would express SK1 and SK2. 

SK1 was expressed at low levels in both AA and SS RBCs. SK2 was also expressed by 

both cell types but was significantly elevated in SS RBCs (Figure 3.4C-D). SK2 levels in 

plasma were assessed via western blot and were significantly increased in SS relative to 

AA plasma (Figure 3.4E-F), suggesting that SK2 may be secreted into circulation in 

SCD. As these enzymes are upstream of sphingosine and S1P, we hypothesized that they 

would be elevated in SCD. HPLC-MS was used to quantify lipids were extracted from 

whole blood, plasma or RBCs. Both sphingosine (202.84nM vs. 77.42nM) and S1P 

(2080nM vs. 593.5nM) were significantly elevated in SS whole blood relative to AA 

blood (Figure 3.4G). Sphingosine and S1P levels were much lower in the plasma but 

there were still significant increases in sphingosine (12.82nM vs. 5.97nM) and S1P 

(77.03nM vs. 35.01nM) levels in SS plasma relative to AA plasma (Figure 3.4H). SS 

RBCs also had significantly more sphingosine (369.71nM vs. 73.41nM) and S1P 

(1000.22nM vs. 249.3nM) compared to AA RBCs (Figure 3.4I). 

RBC-derived MPs express sphingolipids  

We employed the Townes mouse model of SCD to determine whether SS RBCs 

produced more MPs. SS mice have both mouse alpha and beta hemoglobin knocked out 

and human alpha sickle beta globin knocked in. Blood was collected from these mice and 



	
  25 

stained for CD41+ platelet MPs and Glycophorin A+ RBC MPs (57). While platelet MPs 

comprised the vast majority of blood-borne MPs, there was a significant increase in 

RBC-derived MPs in SS mice relative to AS mice (Figure 3.5), corroborating the finding 

that RBC-derived MPs are significantly elevated in SCD (39).  

	
  

Figure 3.5.	
  Platelet and RBC derived Microparticles in AS and SS mice. A) Blood 
was drawn via retro-orbital bleed from AS (left) or SS (right) Townes mice and stained 
with antibodies against PS, CD41 and Glycophorin A. B) Analysis reveals a significant 
increase in Glycophorin A+ (RBC-derived) microparticles in SS mice relative to AS mice 
(left). There were significantly more CD41+ (platelet-derived particles) in both mice but 
no significant differences in their concentration (right). * p<0.05 compared to AS.  
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Preliminary image analysis of human RBC-derived MPs revealed a heterogeneous size 

distribution so we employed ultracentrifugation at 10,000, 37,000 and 200,000 RCF to 

isolate P2, P3 and P4 MPs, respectively (Figure 3.6A).  

	
  

Figure 3.6.	
  RBC derived microparticles contain sphingolipids, are internalized by 
macrophages and enhance cytokine production. A) TEM images were taken of 
microparticles harvested at 10,000 (P2), 37,000xg (P3) or 200,000xg (P4) for one hour. 
Scale bar = 200nm. B) P3 microparticles derived from SS RBCs have an increase in the 
ceramide: sphingomyelin ration. C) P3 particles derived from SS RBCs contain 
significantly more sphingosine and S1P. D) P3 microparticles were labeled with CFSE 
and incubated with M0 THP-1 macrophages for 30 (top) or 120 (bottom) minutes. Scale 
bar = 10µm. E-F) SCD RBC-derived P3 microparticles were incubated with M0 THP-1 
macrophages for 24 hours. Microparticle incubation enhanced the production (E) and 
secretion (F) of inflammatory cytokines IL-6, TNF-a and IL-1β relative to vehicle-treated 
cells (dotted line). G-H) AA and SS RBC-derived P3 microparticles were incubated with 
primary AA macrophages for 24 hours. Microparticle incubation enhanced the 
production (G) and secretion (H) of inflammatory cytokines IL-6, TNF-a and IL-1β 
relative to vehicle-treated cells. * p < 0.05 measured in one-way ANOVA relative to 
vehicle.  

	
  
Their size distribution was between 150 and 400nm (Figure 3.7A).  
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Figure 3.7. Microparticle Characterization and pro-inflammatory cytokine 
production in primary AA PBMCs. A) P2 microparticles were around 300nm on 
average while P3 and P4 microparticles were around 200nm. B) A plate based assay for 
acid sphingomyelinase activity was performed. Acid sphingomyelinase activity was 
largely undetectable in both AA and SS microparticles suggesting that the enzyme is not 
present in these particles. C) P3 microparticles were labeled with CFSE and incubated 
with M0 THP-1 macrophages for 30 or 120 minutes. Flow cytometry was used to 
quantify the number of particles internalized. A higher proportion of cells was 
internalized in 30 minutes than 120 minutes suggesting that microparticles can be 
internalized and subsequently secreted but there were no differences between AA and SS 
microparticles. 

 

Acid SMase activity was largely undetectable in MPs (Figure 3.7B) suggesting that the 

enzyme is not internalized within particles upon generation. Sphingomyelin and ceramide 

were measured in RBCs and MPs. As expected, both RBCs and MPs had an increase in 

the ceramide: sphingomyelin ratio, indicating a shift towards ceramide production 

consistent with SMase activity (Figure 3.6B). Both AA- and SS- derived MPs expressed 

sphingosine and S1P and similar to SS RBCs, SS RBC-derived MPs contained 

significantly more sphingosine and S1P (Figure 3.6C).  

MPs are internalized and modulate cytokine production by monocytes 

To determine whether monocytes internalized RBC-derived MPs, PMA-treated 

THP-1s were incubated with 1x106 CFSE-stained MPs for 30 or 120 minutes. Confocal 

microscopy revealed that MPs were internalized as early as 30 minutes (Figure 3.6D). 

Within 30 minutes, 75% of AA MPs and 84% of SS MPs were internalized (Figure 
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3.7C). Surprisingly, after 120 minutes, a smaller proportion of MPs (37% for AA and 

40% for SS) was internalized by PMA-treated THP-1s, suggesting that MPs can be 

internalized and secreted as intact MPs (Figure 3.7C). MP internalization increased the 

production and secretion of many inflammatory cytokines after 24 hours. Interestingly, 

SSMPs, and not AAMPs, significantly enhanced the production and secretion of IL-6, 

TNF-α and IL-1β, markers of systemic inflammation during SCD (58), relative to 

vehicle-treated cells (Figure 3.6E-F). To interrogate the effects of SSMPs on primary 

AA PBMCs, we incubated PBMCs with SSMPs. SSMPs significantly enhanced the 

production and secretion of these cytokines in primary AA monocytes as much as 120-

fold (Figure 3.6G-H).  

S1P, SS plasma and SS RBC co-incubation enhances monocyte adhesion to endothelial 

cells 

S1P, an immunomodulatory lipid, signals through the activation of 5 known G-

protein coupled receptors (S1P1-5) with diverse biological functions (6). As SS plasma 

and MPs express significantly more S1P than AA plasma and MPs, we wished to explore 

their effects on PBMC adhesion. 1µM S1P or AA/SS plasma was used to pre-treat 

primary AA PBMCs for 1 hour before co-incubation with confluent HUVECs for four 

hours. S1P (43%) and SS plasma (28%) but not AA plasma (-1.7%) resulted in an 

elevation in endothelial adhesion relative to vehicle (Figure 3.8A-B and Figure 3.9).  



	
  29 

	
  

Figure 3.8. S1P treatment and SS RBC co-incubation of monocytes enhances 
endothelial adhesion. A-B) DRAQ5 stained AA PBMCs were incubated with media, 
media with 1µM S1P, media with 10% AA plasma or media with 10% SS plasma for 1 
hour and allowed to adhere to confluent HUVECs for 4 hours. S1P and SS plasma 
enhanced monocyte adhesion while AA plasma reduced monocyte adhesion relative to 
vehicle treated cells. C-D) AA or SS RBCs were co-incubated with THP-1 monocytes 
(10:1) for 18 hours before HUVEC adhesion. Co-incubation of THP-1 monocytes with 
SS RBC significantly enhanced monocyte: HUVEC ratio after 4 hour adhesion (D). 
Representative images (C) show enhanced THP-1 monocytes (red cells) adhered to a 
HUVEC (59) monolayer. Scale bar = 10µm. * p < 0.05 measured in one-way ANOVA or 
t-test relative to vehicle or AA.  
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Figure 3.9. SS plasma, but not AA plasma, enhances primary PBMC adhesion to 
endothelial cells. A-B) GFP HUVECs (59) were grown to confluence and co-incubated 
with THP-1 monocytes (DiI-red) for 10 minutes or 4 hours after 1 hour vehicle treatment 
or 1µM S1P treatment of monocytes. S1P treatment of monocytes significantly enhanced 
the proportion of adherent monocyte after 4 hours. * p<0.05 relative to vehicle. 

 

As RBCs are known to interact with monocytes in circulation (60, 61) we sought 

to interrogate the potential of SS RBCs to directly alter monocyte-endothelial adhesion. 

AA or SS RBCs were incubated with THP-1s at a 10:1 ratio for 18 hours. Thereafter, 

THP-1s were co-incubated with HUVECs and allowed to adhere for four hours (Figure 

3.8C). Co-culture with SS RBCs significantly enhanced THP-1 adhesion to endothelial 

cells, measured by the THP-1:HUVEC ratio (0.78) relative to co-culture with AA RBCs 

(0.19) (Figure 3.8C-D). 

SS RBC-derived MPs enhance PBMC adhesion and express ICAM-4 and elevated p-

ERK1/2 

To confirm whether MPs alone could enhance monocyte-endothelial cell 

adhesion, we incubated primary AA PBMCs with AA- or SS RBC-derived MPs for 24 

hours and allowed them to adhere to endothelial cells for 4 hours. Interestingly, AA 

RBC-derived MP incubation did not enhance adhesion while SS RBC-derived MP 
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incubation resulted in a significant increase in PBMC adhesion at all concentrations 

(Figure 3.10A).  

 

	
  

Figure 3.10. SS RBC-derived MPs enhanced endothelial adhesion and express LW 
and significantly more pErk1/2 than AA RBC-derived MPs. A) RBC-derived 
microparticles were incubated with primary AA PBMCs (62) at three different 
concentrations (low, medium and high) for 18 hours before HUVEC adhesion. AAMPs 
reduced PBMC adhesion, while SSMPs enhanced PBMC adhesion. B) AAMPs and 
SSMPs express ICAM-4 (LW). C-D) Phosphorylated Erk1/2 significantly elevated in 
SSMPs relative to AAMPs. p < 0.05 measured in ANOVA relative to vehicle or AAMPs.  

	
  
Zennadi et al. established an ERK1/2 mediated mechanism for ICAM-4 expression on SS 

RBCs, which mediates RBC adhesion to both monocytes and endothelial cells (37, 61). 

Both AA and SS RBC-derived MPs expressed ICAM-4 (Figure 3.10B). SS RBC-derived 



	
  32 

MPs, however, express significantly activated ERK1/2 as indicated by significantly 

higher phosphor-ERK1/2 to total ERK1/2 than AA RBC-derived MPs (Figure 3.10C-D). 

These results suggest that, similar to SS RBCs, SS RBC-derived MPs may enhance 

monocyte adhesion in an ERK1/2 – ICAM-4 mediated fashion. 

Acid SMase inhibition reduces MP generation and pro-inflammatory cytokine production  

As spleen dysfunction and reduced MP clearance are characteristic of SCD we 

sought to establish a unique role for SMase in MP generation. SS RBCs were cultured in 

media with amitriptyline, a tricyclic anti-depressant and acid SMase inhibitor for 1 or 24 

hours and MPs were quantified by flow cytometry. While 1-hour amitriptyline treatment 

did not alter the production of MPs at any dose, by 24 hours amitriptyline significantly 

reduced the generation of RBC-derived MPs in vitro in a dose-dependent fashion (Figure 

3.11A-C).  
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Figure 3.11.	
  Amitriptyline reduces microparticle generation in RBCs. A-B) Flow 
cytometry showing microparticles and RBC at 1 hour (A) and 24 hours (B). C) 100µM 
Amitriptyline significantly reduces the percentage of microparticles produced from SS 
RBCs 24 hours after treatment. D) 10mpk Amitriptyline significantly reduces acid 
sphingomyelinase activity in C57/Bl6 mice 24 hours after injection. E) Gating strategy 
for identifying microparticles and erythrocyte derived microparticles (EMPs) in vivo. F) 
Amitriptyline reduces the hypoxia-induced increase in microparticle generation relative 
to vehicle treated groups as early as 24 hours after injection. * p<0.05 compared to 
vehicle or normoxia-saline, & p<0.05 compared to 1uM. 

 

We next injected amitriptyline at four concentrations into wild type C57Bl/6 mice and 

found that acid SMase activity was significantly reduced after 24 hours of the highest 

dose. (Figure 3.11D). Hypoxia has been shown to enhance microparticle generation in 

vivo (63). After 24 hours of hypoxic conditioning MPs in blood and erythrocyte-derived 

MPs in blood were significantly elevated relative to pre-hypoxic conditioning (Figure 

3.11F). Amitriptyline reduced hypoxia-induced MP and erythrocyte-derived MP (EMP) 

generation (Figure 3.11E-F). Additionally, two of the three cytokines we showed to be 
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modulated by MPs in monocytes in vitro (IL-6 and IL-1β) were reduced in amitriptyline-

treated mice relative to saline treated mice (Figure 3.12).  

 

	
  

Figure 3.12.	
  In vivo hypoxia cytokine production in mice. Wild type mice were 
conditioned normoxia/hypoxia with intraperitoneal injections of saline or amitriptyline 
for 24 hours. The fold change in IL-6, TNF-a and IL-1B were quantified. Amitriptyline 
significantly reduced the expression of IL-6 and IL-1B during normoxic conditioning, 
relative to saline-injected mice. 

	
  
These results elucidate a role for acid SMase in RBC-derived MP generation and 

systemic inflammation in vivo and establish pharmacological modulation of acid SMase 

as a strategy to modulate these phenomena in SCD. 

Discussion 

SCD is a complex disease with severe pathophysiological effects. In recent years, 

it has been discovered that MPs, which are elevated in SCD, contribute to SCD 

pathogenesis (39-42). In this work, we examined the dysregulation of sphingolipid 

metabolism, MP production and inflammatory cell activation in SCD. Lopez et al. found 

that stresses in RBC membranes transiently enhanced the activation of neutral SMase 

(38). Similarly, Urbina et al. found that SMase activity in unilamellar vesicles in 

Clostridium perfringens α-toxin increased with membrane curvature (64). Our work 
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shows that SS RBCs, which may undergo membrane stresses due to sickling events, 

oxidative damage, ion fluxes and enhanced adhesion have a significant increase in acid 

SMase activity relative to AA RBCs (Figure 3.3D). Irreversibly sickled RBCs had the 

highest acid SMase activity, corroborating these findings (Figure 3.3F-G). Furthermore, 

when RBC sickling was induced in SS mice by hypoxic deoxygenation, there was an 

increase in acid SMase activity confirming that sickling is upstream of acid SMase 

(Figure 3.3H).  More studies need to be performed to elucidate the mechanism 

underlying the sensing of local forces and subsequent activation of SMase in cell 

membranes. 

SMase activity has been implicated in vascular inflammation (65, 66). Becker et 

al. discovered that ceramide production in the lung contributed to inflammatory cytokine 

production during cystic fibrosis and amitriptyline reduced ceramide production, 

inflammatory cytokine production and inflammatory cell recruitment in a mouse model 

of CF (2, 67). Other groups have shown that SMase-mediated ceramide synthesis in 

plasma membranes promotes microvessel formation (7, 8). We found that the ceramide: 

sphingomyelin ratio in SS RBCs and MPs was reduced, which corroborates the finding 

that acid SMase is activated in SS RBCs (Figure 3.6B).  

MPs have been shown to enhance atherosclerosis (42), coagulation (41), vaso-

occlusion in the kidney (43), inflammation (44, 47) and monocyte adhesion (45). RBC-

derived MPs from AA and SS donors were both internalized by THP-1s (Figure 3.6D). 

The internalization, processing and secretion of RBC-derived particles deserves 

significant attention and future studies are needed to completely understand these 

mechanisms. Interestingly, SS MPs enhanced the production and secretion of three 
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cytokines consistently associated with inflammation in SCD, TNF-α, IL-1β and IL-6 

(58), to a much larger extent than AA MPs (Figure 3.6E-H). Additionally, we show that 

SS MPs, and not AA MPs, enhance monocyte adhesion to endothelial cells (Figure 

3.10A) and, similarly, co-incubation of monocytes with SS RBCs enhances monocyte-

endothelial adhesion relative to AA RBCs (Figure 3.8C). Zennadi et al. established an 

ERK1/2 mediated mechanism for ICAM-4 expression on SS RBCs which mediates 

monocyte and endothelial cell adhesion and activation (37, 61), so we wished to 

determine whether RBC derived MPs expressed both ICAM-4 and p-ERK1/2. 

Interestingly, while both AA and SS RBC-derived MPs expressed roughly the same level 

of ICAM-4, SS RBC derived MPs express significantly more activated ERK1/2 (Figure 

3.10C-D). Taken together, these results suggest that, similar to SS RBCs, SS MPs may 

enhance monocyte adhesion in an ERK1/2 – ICAM-4 mediated fashion. Additional 

studies are needed to elucidate this mechanism and lipidomic and proteomic profiling of 

RBC-derived MPs might provide critical insights into the molecules contributing to these 

phenotype-specific alterations in inflammatory cell adhesion and cytokine secretion. 

Others have described inflammatory cell activation in SCD (51).  As both SS plasma, 

RBC and MPs contain significantly more S1P (Figure 3.4H-I, Figure 3.6C), we wished 

to explore the direct effects of S1P on monocyte adhesion. S1P can be pro-inflammatory 

by activating S1P receptors on monocytes (33), inducing E-selectin expression and the 

adhesion of monocytes to endothelial cells (35), and cathepsins-mediated endothelial cell 

activation (68). We recently showed that S1P receptor 3 activation enhances the 

recruitment of anti-inflammatory monocytes to inflamed tissues (49). In this work we 

found that both SS plasma and S1P directly enhance monocyte-endothelial cell adhesion 
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(Figure 3.8A-B). While S1P has been shown to alter monocyte morphology and motility 

through the activation of rho-kinase (69) and receptor tyrosine kinases (70), more 

comprehensive studies need to be performed to elucidate the receptor-specific signaling 

mechanism behind S1P-mediated monocyte adhesion. 

It is important to note that SCD is characterized by significant hyposplenism. As 

the spleen is responsible for the removal of cellular debris, the increase in blood 

microparticles observed in SCD is also a result of impaired spleen function (71). We 

wished to establish a non-redundant role for acid SMase in RBC-derived MP generation, 

so we interrogated MP generation from SS RBCs in vitro, in the absence of spleen 

clearance. Inhibition of acid SMase with amitriptyline significantly reduced MP 

generation from SS RBCs in vitro (Figure 3.11A-C). As amitriptyline and other tricyclic 

antidepressants have been shown to reduce acid SMase activity and exosome formation 

in vivo (2, 67, 72) we explored the ability of acid SMase inhibition to reduce MP 

production in mice. Hypoxia has been shown to enhance MP generation (63) and we 

confirmed that in non-sickled mice with normal functioning spleens, MP production was 

significantly elevated after 24 hours hypoxia. Amitriptyline significantly reduced MP 

generation in normoxic and hypoxic conditioned wild-type mice, confirming a role for 

acid sphingomyelinase in MP generation independent of dysfunctional spleen clearance 

(Figure 3.11F). Additionally, these changes occurred in concert with pro-inflammatory 

cytokine reduction in vivo (Figure 3.12). Taken together, these results show that acid 

SMase, which is activated in sickled RBCs (Figure 3.3C-H), enhances RBC-derived MP 

production and systemic inflammation in a mechanism independent of impaired spleen 

clearance in SCD. The role of systemic hypoxia, and local hypoxia in sickle cell due to 
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transient vasoocclusions, in acid SMase activation cannot be ruled out by these studies 

and needs to be explored. 

There are multiple lipids metabolically downstream of sphingomyelin that have 

diverse biological effects. Erythrocytes convert ceramide into sphingosine with ACER1 

(55). To date, this enzyme has not been detected in plasma; however, we detected 

ACER1 in SS plasma (Figure 3.4B), suggesting that it can be released into circulation 

through secretion or hemolysis. Ceramide synthesis in erythrocyte membranes is 

associated with eryptosis and clearance (73). Additionally, the chronic stress induced by 

sickled RBCs in circulation during SCD results in an increase in the apoptosis of white 

blood cells (74). Weigert et al. found that cellular apoptosis leads to the activation and 

secretion of SK2 (24). Consistent with these findings, we found that SK2 is increased in 

both the plasma and RBCs of SCD donors (Figure 3.4C-F). While more studies need to 

be performed to fully understand the source and mechanism of ACER1 and SK2 

secretion into plasma, it is apparent that complex mechanical and biological cues in SCD 

result in dysregulated sphingolipid enzyme expression and activation, causing a 

significant increase in sphingosine and S1P (Figure 3.4G-I).  

Our findings reveal for the first time that sphingolipid metabolism is dysregulated 

in SCD. As this dysregulation is a result of altered enzyme activation and expression in 

stressed cells, these results are likely applicable to other hemolytic anemias and their 

interrogation is warranted. Additionally, they elucidate a novel mechanism for 

microparticle generation in SS RBCs. Membrane stresses imposed on RBCs in SCD 

activate acid SMase, which, in concert with other sphingolipid enzymes, results in 

elevated S1P and MP production (Figure 3.1). SS RBC-derived MPs, containing S1P, 
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activate monocytes by enhancing endothelial cell adhesion and pro-inflammatory 

cytokine production. These findings elucidate potential new strategies to regulate 

inflammatory processes in SCD through modulating sphingolipid metabolism but are not 

unique to SCD. These results are not unique to SCD and can be applied to many other 

diseases rooted in alterations in sphingolipid metabolism. Modulating sphingolipid 

metabolism may be a novel way to pharmacologically control systemic inflammation 

present in many human diseases. 
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CHAPTER 4 

EXTENSIVE SPHINGOLIPIDOMIC CHARACTERIZATION AND MODELING 

OF SS AND AA RED BLOOD CELLS AND MICROPARTICLES 

 

Introduction 
 

Many diseases have very complex pathologies, despite having very simple 

origins. This is the case with sickle cell disease (SCD), which causes a host of vascular 

complications as a result of a single point mutation in the gene encoding hemoglobin. 

The pathophysiology of SCD involves many organ systems, signaling systems and cell 

types. The complexity of diseases like SCD makes it difficult to find biological targets 

for therapy or cure. In recent years, the “-omics” movement has dominated much of the 

exploration around human diseases and disorders (75, 76). Researchers are taking a much 

more top-down approach to elucidate genetic and molecular targets for therapy. With the 

advent of tools and techniques that can characterize complete genetic, proteomic and 

lipidomic profiles from biological samples, researchers are generating large sets of data 

that can be mined to elucidate unique states and dysregulations that exist in SCD and 

other diseases. 

Sickle cell disease is caused by the polymerization of hemoglobin molecules in 

red blood cells (RBCs). These hemoglobin polymers form rod-like structures that distort 

the RBC plasma membrane and leads to severe vasculopathy such as stroke, 

atherosclerosis and peripheral arterial disease. While the genetic basis of SCD has been 

known for decades (77), molecular dysregulation in SCD has been widely understudied. 

As alterations in the RBC membrane are pathognomonic in SCD, there is reason to 
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believe that the balance of lipids, which comprise the RBC plasma membrane, may be 

altered in the disease state. Sphingolipids are membrane-derived lipids which have been 

shown to act as bioactive signaling mediators (5, 78). We sought to determine whether 

sphingolipid metabolism was dysregulated in SCD and whether distinct lipid species 

were up- or down- regulated in the disease state.  

The contribution of sphingolipids to diseases is not a new discovery. Niemann-

Pick disease (NPD), for example, is a group of lysosomal storage diseases caused by the 

mutation of the gene which encodes for acid sphingomyelinase (SMase) (79). Acid 

SMase hydrolyzes sphingomyelin into ceramide, and thus loss of acid SMase function in 

NPD results in the accumulation of sphingomyelin in lysosomes, which can be harmful to 

the spleen, lungs, liver, brain and bone marrow (80). Similarly, Farber disease is a much 

rarer lysosomal storage disease caused by deficiency in the enzyme ceramidase, which 

leads to pathological storage of sphingolipids in various parts of the body (81). While 

sphingolipid metabolizing enzymes are not directly mutated in SCD, others have shown 

dysregulation in S1P (82), sphingosine and ceramides (83). Sphingolipids are significant 

components of RBC plasma membranes, so it is important to understand how alteration 

of these lipids might play a role in the disease. 

Sphingomyelin is the most abundant sphingolipid in the red blood cell RBC 

membrane (84) and is hydrolyzed by a class of enzymes known as sphingomyelinases. 

Our previous work has shown that acid SMase is activated in SS RBCs and may be a 

result of membrane sickling (83). Not only does this activity alter the balance of 

sphingolipids in RBCs, it contributes to the generation of membrane-derived vesicles 

called microparticles. Others have implicated SMase in RBC membrane modifications 
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and invaginations (7), and membrane bending has been shown to activate neutral 

sphingomyelinase in red blood cell membranes (38). In 1982 Allan et al. showed that SS 

RBCs lose 2-3% of their lipid content due to the sickling cycle. Lipids are lost as 

spectrin-free spicules in the form of rods and microspheres (39). These rods can 

eventually degrade to form sub-micron sized microparticles. RBC-derived MPs, which 

can also bud directly from the membrane, contain sphingolipids and thus can serve as 

signaling mediums to cells in circulation. We sought to determine whether the expression 

of sphingolipids that exist in the metabolic network was altered in RBCs and MPs in 

SCD. We hypothesized that there would be distinct sphingolipidomic differences in 

RBCs and their MP byproducts between AA and SS donors. To this end, we performed 

an extensive sphingolipidomic analysis of AA and SS RBCs and MPs to determine if 

there were distinct differences in their lipid profiles. From this lipidomic analysis we 

were able to distinguish the disparities in sphingolipid distribution between AA and SS 

samples at steady state.  However, this information did not tell us which enzymes or 

reactions might be altered, revealing potential areas of therapy.  

Mathematical modeling has been employed in conjunction with proteomics and 

lipidomics to predict changes in reaction flux between metabolites.  For instance, Cowart 

et al. discusses the importance of combining lipidomic data with modeling to reveal novel 

signal transduction pathways involved in sphingolipid metabolism elucidating potential 

therapy targets (85). Models of sphingolipid metabolism have also been developed by 

incorporating transcriptomic and lipidomic data in order to predict enzyme targets for 

anti-cancer drugs and changes in sphingolipid metabolism during infection (86, 87). To 

investigate dysregulation in the sphingolipid metabolic pathway in SCD we utilized 
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lipidomic data as inputs in a computational model in order to predict changes in 

sphingolipid metabolic reaction flux and enzyme activity between AA and SS RBCs. Of 

the 29 reactions modeled, 7 were decreased and 1 was increased more than 2-fold in SS 

RBCs relative to AA RBCs. Importantly the model reveals several rate-limiting steps in 

sphingolipid metabolism (i.e. phosphatase and ceramidase activity) that may control the 

maximum flux of metabolites. These findings show, for the first time, that several 

reactions in sphingolipid metabolism are altered in SCD and contribute to the altered 

sphingolipid state in SCD. Additionally, the discovery of rate-limiting steps may provide 

more potent therapeutic targets for sphingolipid modulation.  

Methods 

RBC and MP isolation and fractionation 

Whole blood samples from donors homozygous for sickle (SS) or normal (AA) 

hemoglobin were centrifuged against a Ficoll-Paque density gradient (density: 

1.077g/mL; GE Healthcare) for 30 minutes at 400 RCF at 4˚C to separate plasma, 

peripheral blood mononuclear cells (PBMCs) and packed RBCs. RBCs were separated 

into high and low density fractions using stacked Percoll solutions centrifuged at 

41,000rpm for 30 minutes using a Beckman SW 41 Ti rotor (52). RBC-derived MPs were 

obtained by ultracentrifugation of packed RBCs at 10,000 (P2), 37,000 (P3) or 200,000 

(P4) RCF for 1 hour at 4oC. 

Flow cytometry for microparticle quantification 

Whole blood, cultured RBCs or isolated MPs were incubated with antibodies 

against Glycophorin A (catalog #Ab91163, Abcam) and Annexin V (catalog #640906, 
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Biolegend). Events were counted with Accucheck counting beads (catalog #PCB100, 

Life Technologies) and analyzed on a BD FACS Aria flow cytometer.  

Protein and enzyme quantification 

Enzyme expression and activation were quantified using the following kits: 

SMase activity: catalog #10006964, Cayman Chemical Company; Acid SMase 

expression: catalog #SEB360Hu, USCN Life Science; ACER1 expression: catalog 

#CSB-EL001151HU, CUSABio; Sphingosine kinase 1 and 2 western blot: catalog 

#1000-6822, Cayman Chemical Company and catalog #AB37977, Abcam; ICAM-4 

antibody: catalog #ABIN901654, Antibodies online; Total and phosphor-ERK1/2 

western blot: catalog #9102, #9101, Cell Signaling. Western blot measurements were 

standardized by loading an equal volume of protein. An equal volume of blood was used 

for activity assays. 

Lipid Extraction and Quantification 

Lipids were extracted following a protocol from Shaner et al. (53) and analyzed 

using a Shimadzu LC-10 AD VP binary pump system coupled to a Perkin Elmer Series 

200 autoinjector coupled to a 4000 quadrupole linear-ion trap (QTrap) LC-MS/MS 

system. Sphingolipids of various variable chain lengths (13-26) in 9 classes (Table 4.1) 

were quantified. Separate protocols were used for quantifying long chain bases (with no 

variable chains) and complex sphingolipids (with 13-26 long side chains). C12 and C17 

sphingolipids, which are not naturally produced, were used as internal controls. 

Table 4.1. Classes of sphingolipids quantified by HPLC-MS. Table 4.1 continued. 

Name Abbreviation Class 
Ceramide Cer Complex 

Ceramide 1-phosphate C1P Complex 
Dihydroceramide DHCer Complex 

Dihydrosphingosine DHSphingosine (Sa) Long chain base 
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(sphinganine) 
Dihydrosphingosine 1-

phosphate (sphinganine 1-
phosphate) 

DHS1P (SaP) Long chain base 

Glucosylceramide GluCer Complex 
Sphingomyelin SM Complex 

Sphingosine  Long chain base 
Sphingosine 1-phosphate S1P Long chain base 

 

Mathematical Modeling 

Lipidomic Data 

For the modeling component of our study we used the average total value of each 

lipid class (ceramides, sphingomyelins, etc.) in AA and SS RBC samples.  

Flux Balance Analysis 

The first component of our modeling strategy is to compute biologically feasible 

sets of steady-state fluxes for AA and SS RBC sphingolipid networks. This is 

accomplished through flux balance analysis which has been described extensively 

elsewhere (88).  In short, for each metabolite in the network, a flux balance is written as 

follows 

𝑑𝑋!
𝑑𝑡 = 𝑠!"𝑣!

!

 

where Xi is the concentration of metabolite i, sij is the stoichiometric coefficient of 

metabolite i in reaction j, and vj is the flux through reaction j.  This can be compactly 

represented in matrix form as follows 

𝑑𝑋
𝑑𝑡 = 𝑆𝑣 
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where X is the vector of the concentration of all metabolites in the network, S is the 

stoichiometric matrix of the network, and v is the vector of all reaction fluxes in the 

network.  At steady-state, this reduces to  

0 = 𝑆𝑣 

In order for a set of reaction fluxes to be biologically feasible, they must not only 

satisfy this equation (the steady-state constraint), they must also fall within reasonable 

values based on experimental data. Thus, irreversible reactions should not have negative 

flux values which corresponds to flux in the reverse direction. Nor should they exceed a 

maximum rate based on experimental measurements. Thus, any feasible set of fluxes 

must obey the constraints 

0 ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥 

where vmax is the vector maximum value that each flux is allowed to take. The vmax 

values may be different between AA and SS RBCs. 

The stoichiometric matrix, S, is based on the known or supposed architecture of 

the network. It is know that RBCs contain the enzymes sphingosine kinase (89), 

sphingomyelinase (38), and alkaline ceramidase (55). There are conflicting reports in the 

literature as to whether RBCs contain sphingomyelin synthase and lipid phosphate 

phosphatases. It is also possible that RBCs contain glucosylceramidase activity. We also 

include ceramide kinase because of the observed high concentration of ceramide-1-

phosphate though the presence of this enzyme has never been investigated in RBCs. 

Additionally, it is likely that all sphingolipids exhibit some degree of exchange with the 

plasma (90). Thus, the master stoichiometric matrix used in this model is as follows 
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The advantage of including all speculative reactions into the master stoichiometric matrix 

is that the effects of their presence or absence can easily be investigated by changing the 

vmax value for that reaction (setting vmax to a value of zero for absence) while using the 

same stoichiometric matrix throughout.  

 In order to locate solutions which satisfy both the steady-state and flux limit 

constraints we use a linear least-squares optimization algorithm implemented through the 

MATLAB program lsqlin.  Because there are generally an infinite number of solutions to 

this problem we randomly generate a large number of initial values for each flux to 

initialize the algorithm in order to get a full sampling of the solution space.  

Once we have sets of biologically feasible fluxes for AA and SS RBCs we move on to 

the second component of our modeling strategy. For this, we propose that each reaction 

can be represented as a power law as follows 

𝑣! = 𝛾! 𝑋!
!!,!

!  

where vj is the rate of reaction j, γj is the rate constant for reaction j,  Xi is the 

concentration of metabolite I, and fj,i is the kinetic order for the effect of metabolite I on 

reaction j. For this model, the only metabolite affecting a reaction will be its substrate. 

The rate constant effectively lumps together all aspects of the system which affect the 

rate of the reaction that are not dependent on the concentrations of metabolites. This 
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includes concentration of enzymes, enzyme phosphorylation, ion concentrations, etc. 

Using this rate law we can separate out the influence of metabolite concentrations on 

reaction rates. This can be seen as follows 

𝛾! =
𝑣!
𝑋!
!!,!

!
 

 Thus, we can use the biologically feasible sets of fluxes from the first 

component of our model together with the lipidomic data to determine whether the 

change in a flux between AA and SS is driven by changes in substrate concentration or 

by a change in some other variable affecting the reaction rate.  

Statistical analysis 

All correlation analyses, volcano analyses and principal component analysis for 

sphingolipidomic data were performed on statistical analysis software. All other analyses 

were performed with t-tests or ANOVA at a significance level of 5% unless otherwise 

stated. 

Results 

Extensive sphingolipidomic analysis of AA/SS RBCs and MPs 

Lipids were extracted from RBCs and MPs harvested from AA and SS human 

donors and prepared for HPLC-MS quantification of sphingolipids. Nine sphingolipid 

classes were quantified. Five of these sphingolipids have variable fatty acyl side chains 

and are referred to as complex sphingolipids: sphingomyelins, ceramides, 

glucosylceramides, ceramide 1-phosphates and dihydroceramides. Four of the 

sphingolipids do not have fatty acyl side chains and are known as long chain bases 

(LCBs): dihydrosphingosine, dihydrosphingosine 1-phosphate, sphingosine and 

sphingosine 1-phosphate. The fatty acyl-chain of the complex sphingolipids can range in 
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length from 13 (C13) to 26 carbons (C26) and have variable degrees of unsaturation. 

Within each species, we quantified the amount of each of the detectable varied chained 

lipids, which resulted in 86 measurements for each sample. While the distribution of 

lipids varied from class to class, the majority of the complex lipids were C16 or C24 in 

both AA and SS RBC and MP samples (Figures 5.1 and 5.2).  

	
  

 

Figure 4.1 Extensive quantitative analysis of complex sphingolipids in AA and SS 
RBCs. Complex sphingolipids between 13 and 26 fatty acyl chain lengths were detected 
and quantified under the ceramide (A), glucosylceramide (B), dihydroceramide (C), 
ceramide 1-phosphate (D) and sphingomyelin (E) families. C16 and 24 ceramides, 
glucosylceramides, dihydroceramides and sphingomyelins were the most prevalent lipids 
while C18 C1P was the most prevalent in AA and SS RBCs. 
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Figure 4.2 Extensive quantitative analysis of complex sphingolipids in AA and SS 
MPs. Complex sphingolipids between 13 and 26 fatty acyl chain lengths were detected 
and quantified under the ceramide (A), glucosylceramide (B), dihydroceramide (C), 
ceramide 1-phosphate (D) and sphingomyelin (E) families. C16 and 24 ceramides, 
glucosylceramides, dihydroceramides and sphingomyelins were the most prevalent lipids 
while C18 C1P was the most prevalent in AA and SS MPs. 

	
  
Ceramides and LCBs elevated in SCD 

Statistical analysis of large sphingolipid metabolome-wide data can be performed 

to elucidate alterations in lipid metabolism (91). We sought to use our 86 sphingolipid 

measurements across all samples to determine if specific lipids were significantly up- or 

down-regulated in SCD. These differences in lipids, if existent, may serve as potential 

therapeutic targets for pathological processes in SCD. To this end we employed volcano 

plot analysis, which visualizes the relationship connecting changes between genotypes 

and significance of differences in expression for all 86 lipids we quantified in each 
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sample. We found eight sphingolipids that were significantly different between AA and 

SS RBCs (Figure 4.3). Seven of them were increased (ceramide 16:0, ceramide 18:1, 

ceramide 22:0, sphingosine, sphinganine, sphingosine 1-phosphate and sphinganine 1-

phosphate) while one was decreased (sphingomyelin 19:0) (Figure 4.3B-C).  

 

 

Figure 4.3 Long chain bases, ceramides and sphingomyelin significantly altered in 
SS RBCs and MPs. A) Volcano analysis reveals 8 sphingolipids that are significantly 
altered (p < 0.05) between AA and SS RBCs. B) LCBs (sphingosine, sphinganine, S1P 
and SaP) are significantly increased in SS RBCs relative to AA RBCs. C) Ceramides 
16:0, 18:1 and 22:0 are significantly increased and sphingomyelin 19:0 is significantly 
decreased in SS RBCs, relative to AA RBCs. D) LCBs also increased in SS MPs relative 
to AA MPs. E) Ceramides 18:0, 18:1 and 22:0 are increased in SS MPs and SM 19:0 is 
decreased in SS MPs relative to AA MPs.  

	
  
Interestingly, 4 of the 7 lipids that were increased in SS RBCs were the 4 LCBs (Figure 

4.3B) and the other 3 were ceramides (Figure 4.3C). We have previously shown that acid 

sphingomyelinase, the enzyme the produces ceramides from sphingomyelin, is activated 

in sickle erythrocytes (83) and elevated ceramide is consistent with this result. Consistent 

with this observation, sphingomyelin 19:0 was the only sphingolipid significantly 
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reduced in SS RBCs (Figure 4.3C). We sought to determine if RBC-derived 

microparticles harbored similar changes in sphingolipid content so we looked at 

expression levels of these 8 lipids in MPs as well. As expected, LCBs (Figure 4.3D) and 

ceramides 16:0, 18:1 and 22:0 (Figure 4.3E) were significantly elevated in SS MPs 

relative to AA MPs and sphingomyelin 19:0 was reduced (Figure 4.3E). 

Chain length distribution within species 

Sphingolipids are known to play roles in biological processes, but much is 

unknown about the specific roles that distinct lipids play in biology. Recent evidence, 

however, has shown that sphingolipids of specific chain lengths can produce distinct 

biological responses (92, 93). We wished to determine if there were changes in the 

proportion of sphingolipids within the lipid classes between AA and SS RBCs or MPs. 

SS RBCs expressed roughly the same amount of sphingomyelin, increased amounts of 

ceramide, dihydroceramide and glucosylceramide and decreased amounts of ceramide 1-

phosphate as AA RBCs (Figure 4.4A-E).  
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Figure 4.4 Complex sphingolipid expression and fatty acyl chain in AA and SS 
RBCs. A-E) Sphingomyelin (A), ceramide (B), dihydroceramide (C), glucosylceramide 
(D) and ceramide 1-phosphate (E) expression was quantified in AA and SS RBCs.  F-J) 
The percentage of each fatty acyl chain (13-26) within each complex sphingolipid class 
for AA (top) and SS (bottom) RBCs is shown. (n=10). *p< 0.01, ** p<0.0001 measured 
in ANOVA relative to AA RBCs. 

  

C16 and C24 lipids are the most abundant in AA and SS RBCs in the sphingomyelin, 

ceramide, dihydroceramide and glucosylceramide classes while C18, C16 and C20 lipids 

are the most abundant for C1P (Figure 4.4F-J). Interestingly, several differences 

emerged when we looked at the distribution of the ceramides, dihydroceramides and 

glucosylceramides in SS and AA RBCs. The two most abundant chain lengths in all three 

classes are the C16- and C24- carbons (Figure 4.4G-I). SS RBCs express a higher 

proportion of C16 ceramides and a lower proportion of C24 ceramides relative to AA 
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RBCs (Figure 4.4G). The same trend is observed with dihydroceramides in SS RBCs 

relative to AA RBCs (Figure 4.4H). These data suggest that acid SMase, which is 

activated in SS RBCs, may preferentially hydrolyze C16 ceramides and 

dihydroceramides relative to C24 sphingolipids. Interestingly, the opposite trend was 

observed with glucosylceramides. C24 glucosylceramides are increased and C16 

glucosylceramides are decreased in SS RBCs relative to AA RBCs (Figure 4.4D). 

SS MPs showed very similar trends. SS MPs expressed roughly the same amount 

of sphingomyelin and C1P and increased amounts of ceramide, dihydroceramide and 

glucosylceramide and decreased amounts of ceramide 1-phosphate as AA RBCs (Figure 

4.5A-E).  

 

Figure 4.5 Complex sphingolipid expression and fatty acyl chain in AA and SS MPs. 
A-E) Sphingomyelin (A), ceramide (B), dihydroceramide (C), glucosylceramide (D) and 



	
  55 

ceramide 1-phosphate (E) expression was quantified in AA and SS MPs.  F-J) The 
percentage of each fatty acyl chain (13-26) within each complex sphingolipid class for 
AA (top) and SS (bottom) MPs is shown. (n=10). *p< 0.01, ** p<0.0001 measured in 
ANOVA relative to AA MPs. 

  

As with RBCs, C16 and C24 lipids are the most abundant in AA and SS MPs in the 

sphingomyelin, ceramide, dihydroceramide and glucosylceramide classes while C18, C16 

and C20 lipids are the most abundant for C1P (Figure 4.5F-J). The two most abundant 

chain lengths in ceramides, dihydroceramides and glucosylceramides are the C16- and 

C24- carbons (Figure 4.5G-I). SS MPs express a higher proportion of C16 ceramides 

and a lower proportion of C24 ceramides relative to AA MPs (Figure 4.5G). The same 

trend is observed with dihydroceramides in SS MPs relative to AA MPs (Figure 4.5H). 

As with SS RBCs, opposite trend was observed with glucosylceramides in MPs. C24 

glucosylceramides are increased and C16 glucosylceramides are decreased in SS MPs 

relative to AA MPs (Figure 4.5D). 

Changes in total lipid class in SS RBCs and MPs 

In addition to exploring differences in unique lipids between AA and SS RBCs 

and MPs, we wished to determine if specific classes of lipids were altered in SCD. All of 

the lipids within each class of lipids (sphingomyelin, ceramide, dihydroceramide, 

ceramide 1-phosphate, glucosylceramide, sphingosine, sphinganine, sphingosine 1-

phosphate and sphinganine 1-phosphate) were summed for each of the four types of 

samples measured and averaged across the sample set. When all of these lipids, 

normalized to protein content, are summed together, we get an idea of the total amount of 

lipid in the RBCs or MPs. The total concentration of sphingolipids (pmol/mg protein) 



	
  56 

was reduced in SS RBCs (4615.7pmol/mg protein) relative to AA RBCs (5031.11 

pmol/mg protein) (Figure 4.6A).  

 

 

Figure 4.6 Sphingolipid concentration is reduced in SS RBCs, increased in SS MPs 
and AA/SS donors express different proportions of sphingolipids. A-B) The total 
concentration (pmol sphingolipids per mg protein) of sphingolipids is reduced in SS 
RBCs (A) and increased in SS MPs (B). Sphingomyelin is the most abundant lipid in 
both RBCs and MPs, followed by C1P, which is decreased in SS RBCs (A), and 
ceramide, which is increased in SS RBCs and MPs (A-B). There is about a 60-fold 
increase in lipid concentration of MPs relative to RBCs. The distribution of less abundant 
sphingolipids (ceramide, sphingosine, glucosylceramide, S1P, SaP, dihydroceramide and 
sphinganine) is also altered between AA and SS RBCs and MPs (A-B). 

	
  
Consistent with this observation, the sphingolipid concentration in SS MPs (346853.1 

pmol/mg protein) was elevated relative to AA MPs (302270 pmol/ mg protein) (Figure 

4.6B). This supports the finding, from Allan et al., that sickled RBCs lose their 

membrane lipid content to microparticles (39). More interestingly, however, we also 
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observed differences in the proportion of sphingolipid classes in RBCs and MPs. 

Specifically, SS RBCs expressed less C1P, more ceramide and more LCBs than AA 

RBCs and SS MPs expressed more ceramide and more LCBs than AA MPs (Figure 4.6). 

Modeling approach 

To develop a mathematical model of sphingolipid metabolism we relied on flux 

balance analysis. A metabolic network can be created by outlining the reaction fluxes 

(arrows) through metabolites (letters) (Figure 4.7A). 

 

 

Figure 4.7 Modeling approach to elucidating enzyme/transport flux in RBCs. A) 
Schematic showing how molecular species can be represented by the reactions that create 
and consume them. B) At steady state, consistent with conservation of mass, the 
summation of these fluxes must be zero. C) A stoichiometric matrix (S) can be created 
based on the network architecture to define the bounds of the reactions. D) Solving this 
matrix for the reaction fluxes, vi, gives flux for each reaction in the network. E) 
Simplified sphingolipid metabolism network including import and export processes 
(arrows). 
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At steady state, the time derivative of all of the metabolites must be zero (Figure 4.7B). 

A stoichiometric matrix (S) can be generated to define the architecture of the metabolic 

network including all reactions, reactants and fluxes (Figure 4.7C). This matrix can be 

solved for the reaction fluxes to determine the relative amounts of flow through each 

reaction (Figure 4.7D). These reaction fluxes are constrained on the low end by zero 

because flux cannot be negative and on the high end by biologically reasonable values for 

RBC sphingolipid transport which were experimentally measured. Ultimately, these 

fluxes can be used to calculate the reaction rate constants, or activity, of the 

enzymes/transport processes based on metabolite concentrations. By comparing changes 

in reaction and transport flux and reaction constants between AA and SS RBCs we can 

predict reactions that may be dysregulated in SCD. 

Modeling Results 

A metabolic model of sphingolipid metabolism accounting for enzymatic and 

transport flux between sphingolipid metabolites measured in RBCs contains 29 distinct 

reactions. (Figure 4.7E). Eleven of these reactions represent enzymatic flux between 

metabolites while the other 18 represent import (9) and export (9) of the metabolites from 

the RBC. Modification of enzymatic and transport parameters between AA and SS RBCs 

based on experimentally measured changes allows the model to predict biologically 

feasible reaction fluxes for all of these processes between AA and SS RBCs. 

Table 4.2. Simulated sphingolipid reaction flux in AA and SS RBCs. 29 biologically 
accurate sphingolipid reaction fluxes (column 1) were computed for AA and SS RBCs. 
Column 2 describes the metabolites involved in the reaction. Column 3 lists the enzymes 
controlling the reaction. Columns 4 and 5 list the flux of metabolites through the reaction 
for AA and SS RBCs, respectively. Column 6 lists the fold change (SS flux over AA 
flux) for all 29 reactions. *, reactions that were altered more than 2-fold between AA and 
SS RBCs. Sa: sphinganine, DHC: dihydroceramide, So: sphingosine, Cer: ceramide, SaP: 
sphinganine 1-phosphate, C1P: ceramide 1-phosphate, S1P: sphingosine 1-phosphate, 
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SM: sphingomyelin, GCer: Glucosylceramide, (L): Long chain base (LCB), (C): 
Complex sphingolipid. Table 4.2 continued. 

Rxn # Description Enzyme AA RBC 
(pmol/min/
mg protein) 

SS RBC 
(pmol/mi
n/mg 
protein) 

SS/AA 
flux 

1 Sa from DHC Ceramidase 0.65 0.22 0.34* 
2 So from Cer Ceramidase 4.17 0.49 0.12* 
3 SaP from Sa Sphingosine Kinase 1.32 3.60 2.73* 
4 Sa from SaP Phosphatase 0.95 0.94 0.99 
5 C1P from Cer Ceramide Kinase 34.52 44.29 1.28 
6 Cer from C1P Phosphatase 0.98 0.99 1.01 
7 S1P from So Sphingosine Kinase 2.89 3.70 1.28 
8 So from S1P Phosphatase 0.21 0.10 0.46* 
9 SM from Cer Sphingomyelin 

Synthase 
184.29 195.27 1.06 

10 Cer from SM Sphingomyelinase 220.73 242.73 1.10 
11 Cer from GCer Glucosylceramidase 5.68 2.07 0.37* 
12 Sa import (L) na 19.81 20.90 1.06 
13 DHC import (C) na 0.10 0.10 0.99 
14 Cer import (C) na 0.10 0.10 1.00 
15 So import (L) na 65.74 66.00 1.00 
16 SaP import (L) na 20.96 21.00 1.00 
17 C1P import (C) na 0.08 0.06 0.76 
18 S1P import (L) na 65.93 66.00 1.00 
19 SM import (C) na 44.79 44.88 1.00 
20 GCer import (C) na 0.55 0.55 1.00 
21 Sa export (L) na 22.69 18.34 0.81 
22 DHC export (C) na 0.18 0.01 0.03* 
23 Cer export (C) na 0.21 0.40 1.85 
24 So export (L) na 115.47 198.62 1.72 
25 SaP export (L) na 20.65 23.64 1.14 
26 C1P export (C) na 33.47 43.83 1.31 
27 S1P export (L) na 668.21 931.66 1.39 
28 SM export (C) na 21.91 4.45 0.20* 
29 GCer export (C) na 0.25 0.04 0.16* 
 

Transport (import/export) flux of LCBs, which have one hydrophobic carbon chain, 

which would allow for relatively fast transport across the cell membrane, is much faster 

than enzymatic flux (Table 4.2, (L)). Import and export of sphingosine, sphinganine, SaP 

and S1P were between 19.81 (AA RBC sphinganine import) and 931.66 pmol/min/mg 
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protein (SS RBC S1P export) while the enzymatic fluxes producing these species were 

between 0.22 (SS RBC sphinganine production from dihydroceramide) and 4.17 

pmol/min/mg protein (AA RBC sphingosine production from ceramide) (Table 4.2). 

Complex sphingolipids, conversely, which have two hydrophobic carbon chains, have 

much higher enzymatic fluxes than transport fluxes. Enzymatic flux producing complex 

sphingolipids are as high as 242.73 pmol/min/mg protein (SS RBC ceramide from 

sphingomyelin) while transport fluxes are limited to 44.88 pmol/min/mg protein (SS 

RBC sphingomyelin import) (Table 4.2). Of the 29 reactions assessed eight were altered 

by more than two fold between AA and SS RBCs. Sphinganine production from 

dihydroceramide (ceramidase), sphingosine production from ceramide (ceramidase), 

sphingosine production from S1P (phosphatase), ceramide production from 

glucosylceramide (glucosylceramidase), dihydroceramide export, sphingomyelin export 

and glucosylceramide export were all decreased by more than 2-fold while sphinganine 

1-phosphate production from sphinganine (sphingosine kinase) was increased by more 

than 2-fold (Table 4.2). Importantly, alterations in reactions with relatively smaller fluxes 

(rate limiting reactions) seem to dominate changes observed between AA and SS RBCs. 

Acid sphingomyelinase, for example, which is activated in SS RBCs controls the 

formation of ceramide from sphingomyelin (83). The model predicts, however, that flux 

through this reaction is not altered significantly in SS RBCs. This is likely because its 

speed is determined by the downstream speed of other reactions (i.e. sphingosine kinase-

mediated production of S1P from sphingosine). These results suggest that reactions with 

smaller fluxes (rate limiting steps) are the best therapeutic targets for modulating 

sphingolipid metabolism in SCD given their control of the metabolic speed. 
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Discussion 

In this work we show, for the first time, that sphingolipid metabolism is 

significantly dysregulated in SCD. While many groups have studied the asymmetry of 

phospholipids in SCD (94, 95) few have thoroughly studied the expression, metabolism 

and orientation of sphingolipids in the context of SCD. Sphingolipids are an important 

component of RBC membranes and have been shown to regulate many biological 

processes. These lipids are also present in RBC-derived microparticles, which are known 

to be elevated in SCD. The production of these inflammatory MPs is known to contribute 

to much of the pathology of SCD. By using systems biology and modeling approaches, 

we can learn valuable information about disease from information collected from donor 

samples. In this work, HPLC-MS was used to quantify 86 distinct sphingolipid species 

from AA and SS RBCs and their MP byproducts. We show, for the first time, the 

distribution of an extensive panel of membrane-derived sphingolipids in RBCs and MPs 

derived from AA and SS individuals. Specifically, not only had a thorough sphingolipid 

characterization across classes never been performed on RBCs, the differences present in 

the sickle cell disease state had also never been interrogated. These results elucidated two 

distinct sphingolipidomic states between AA and SS RBCs and MPs that may contribute 

to the disease pathology. 

In this work we quantified complex and long chain bases existent in RBCs and 

found that, by in large, most lipids were present at about the same level in AA and SS 

RBCs (Figure 4.1). In MPs, which can be a product of sphingolipid metabolism (83), we 

found that the distribution of sphingolipids between AA and SS donors was also roughly 

the same (Figure 4.2).  
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To determine whether any lipids were significantly altered in SCD from our data 

set we performed a volcano analyses on all 86 sphingolipids to identify any lipids that 

were significantly elevated or reduced in SS RBCs. This analysis revealed 8 lipids that 

were significantly altered in SS RBCs and MPs. Four of them (sphingosine, sphinganine, 

sphingosine 1-phosphate and sphinganine 1-phosphate) (Figure 4.3B,D) are long chain 

bases, some of which have been shown to have bioactivity. Sphingosine 1-phosphate is 

the most widely recognized bioactive sphingolipid. It is stored at high concentrations in 

RBCs and is a ligand for 5 known G-protein coupled receptors (S1P1-S1P5) (5). In our 

previous work we showed that inflammatory cells respond differentially to S1P3 

activation and contribute to microvascular remodeling and inflammation (96). Given that 

these bioactive lipids are significantly increased in SS RBCs and MPs, their 

consequences on cellular processes and inflammation in SCD should be thoroughly 

evaluated. Of the other 4 lipids, the 3 increased lipids were ceramides and the 1 decreased 

lipid was a sphingomyelin in SS RBCs and MPs, consistent with our previous 

observation that sphingomyelinase activity is increased in SS RBCs (83). RBC-derived 

microparticles have been shown to contribute to vasculopathy (97) and inflammation (41) 

in SCD, and the contribution of these particular lipids to these phenomena should be 

explored moving forward. 

In recent years, evidence supporting unique roles of distinct chain-length 

sphingolipids is growing. Grosch et al. provided a comprehensive review of how many 

specific ceramides contribute to apoptosis, inflammation, cancer autophagy and 

Alzheimer’s (98). Osawa et al. discovered that C16 ceramide regulates hepatocyte 

apoptosis in a TNF- mediated fashion (92) and Seumois et al. discovered that C16- and 
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C24-ceramide production results in spontaneous neutrophil apoptosis (93). To determine 

whether SS RBCs or MPs expressed a different distribution of complex chain lengths, we 

summed the C13-C26 complex lipids across species and compared the distribution of 

different fatty acyl length lipids between AA and SS RBCs and MPs. While there were 

few differences in the distribution of most lipids (Figures 5.4 and 5.5), the ceramide 

species seemed to have the most altered states in SCD. We found that the levels of C16- 

and C24- ceramides were altered in SS RBCs and MPs, relative to AA samples. SS RBCs 

and MPs expressed more C16- ceramides and dihydroceramides and a less C24- 

ceramides and dihydroceramides than AA RBCs and MPs (Figure 4.4B-C and 5.5B-C). 

These data suggest that SMase, which is activated in SS RBCs, may preferentially 

hydrolyze C16 ceramides and dihydroceramides relative to C24 sphingolipids. 

Interestingly, C24 glucosylceramides were increased, and C16 glucosylceramides were 

decreased, in SS RBCs and MPs relative to AA RBCs and MPs (Figure 4.4D and 5.5D). 

More extensive studies need to be performed to fully understand the mechanism behind 

this shift in the balance of distinct chain length ceramides as well as the functional 

consequences of this shift in the context of SCD. 

We next looked at changes in the proportion of total lipid families. The 

concentration of sphingolipids was reduced in SS RBCs relative to AA RBCs (Figure 

4.7A). The exit pathway in sphingolipid metabolism is the degradation of sphingosine 1-

phosphate to yield ethanolamine phosphate and hexedecanal, or sphinganine 1-phosphate 

to yield hexadecanal, by S1P lyase. As S1P lyase is not active in RBCs (99) we reasoned 

that some form of sphingolipid export was occurring in SS RBCs. We, and others, have 

shown that SS RBCs produce membrane-derived microparticles which can be released 
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into circulation and contribute to vascular pathology (83, 100, 101). In fact, 2-3% of their 

lipid content is lost to membrane-derived spicules and microparticles due to RBC sickling 

(39). To this end, we examined RBC-derived microparticles from AA and SS donors and 

found that sphingolipid content was increased by roughly 15% in SS particles (Figure 

4.7B). Our recent work showed that acid sphingomyelinase, which hydrolyzes 

sphingomyelin, the most abundant sphingolipid in plasma membranes, to ceramide, is 

activated in sickle RBCs and contributes to MP production (83). Consistent with this 

observation, we found that SS RBCs and MPs contained significantly more ceramide 

species than AA RBCs and MPs. Interestingly, ceramide has been shown to induce the 

budding of exosomes to form multivesicular endosomes in a mouse cell line (8). Further 

studies need to be performed to examine the role of ceramide in RBC vesicle formation, 

fusion and trafficking. Ceramide is also at the hub of sphingolipid metabolism and is the 

precursors for many sphingolipid species. The long chain bases are produced when 

ceramide and dihydroceramide are cleaved by ceramidase. Our previous work showed 

that ceramidase is secreted into the plasma in SCD and sphingosine is significantly 

increased in SS RBCs and MPs which is consistent with these findings (83). C1P was 

reduced in SS RBCs and bioactive long chain bases (sphingosine, sphinganine, S1P and 

sphinganine 1-phosphate) were also found to be significantly increased in SS RBCs and 

MPs (Figure 4.7). 

While these findings are interesting, they only tell us about the distribution of 

sphingolipids at steady state and nothing about the reactions, or enzymes, that produce 

them. Mathematical models have been used to predict changes in reaction flux between 

metabolites in sphingolipid metabolism (86, 87). We used a similar approach to model 
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sphingolipid metabolism in AA and SS RBCs. Using experimentally measured enzymatic 

and transport fluxes, or relative changes between AA and SS RBCs, we constrained the 

model to produce biologically feasible fluxes for 29 reactions that are present in 

sphingolipid metabolism. Interestingly, transport (import and export) flux was much 

larger than enzymatic flux for AA and SS LCBs (Table 4.2, (L)). This is likely due to 

their smaller hydrophobic domain and relatively larger water solubility than complex 

sphingolipids. Conversely, enzymatic fluxes were larger than transport fluxes for 

complex sphingolipids (Table 4.2, (C)). Our model simulation revealed 7 fluxes, of 29 

total, which are altered by more than two fold between AA and SS RBCs. These fluxes 

suggest that ceramidase, phosphatase and glucosylceramidase activity may be decreased 

in SS RBCs (Table 4.2) but these enzyme activities should be measured experimentally. 

Additionally, the export of dihydroceramide, sphingomyelin and glucosylceramide were 

reduced. It will be interesting to see if these lipids occur at smaller concentrations in SS 

plasma and the biological consequences of their altered expression. The one enzymatic 

flux that was increased more than 2-fold was sphinganine 1-phosphate production from 

sphinganine, which is mediated by sphingosine kinase. This is consistent with reports that 

sphingosine kinase is activated in SS RBCs (89). Interestingly, the model predicts that 

flux through sphingomyelinase (which is elevated in SS RBCs (83)) is not altered 

significantly in SS RBCs. This is likely because its speed is determined by the 

downstream speed of other reactions (i.e. sphingosine kinase-mediated production of S1P 

from sphingosine – which has a much smaller flux). These results suggest that reactions 

with smaller fluxes (rate limiting steps) are the best therapeutic targets for modulating 

sphingolipid metabolism in SCD given their control of the metabolic speed. Directly 
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inhibiting sphingosine kinase activity, instead of sphingomyelinase, for example might 

have a much larger effect on the bioactive S1P expression in SCD. This work reveals for 

the first time that sphingolipid metabolism is significantly dysregulated in SCD, leading 

to altered balance of specific lipids, specific fatty acyl chain lengths and specific 

reactions modulated by enzymes. Additionally, this work may elucidate many 

sphingolipid molecules and metabolizing-enzymes that can be used as effective 

therapeutic targets in SCD. 
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CHAPTER 5 

FUTURE CONSIDERATIONS 

Background 

 Sickle cell disease is a hereditary genetic blood disorder caused by a point 

mutation in the gene encoding for hemoglobin. This mutation causes hemoglobin 

molecules to polymerize during de-oxygenation of erythrocytes leading to rod-shaped 

polymers that bend and distort the red blood cell membrane, making it more rigid and 

“sickled”. This sickling causes RBC to lose their flexibility and become trapped in small 

capillaries and arteries. This vaso-occlusion has the potential to cut off blood supply to 

downstream tissues and is often associated with pain but can also lead to many 

complications such as chronic inflammation, ischemia, peripheral artery disease, stroke, 

myocardial infarction and even death. Reorganization of the RBC membrane due to 

sickling has been explored in the context of phospholipids, which are significant 

components in the RBC membrane. Phosphatidyl serine, in particular, is translocated 

from the inner to the outer leaflet of RBCs and serves as a sign for clearance. 

Sphingolipids, which are also integral components of RBC membranes, can be bioactive 

signaling molecules but their orientation and metabolism in RBCs during SCD has not 

been studied extensively. By exploring the orientation and metabolism of sphingolipids in 

SCD, and their consequences in the disease state, we may be able to develop more 

effective therapies to treat the disease. 

Erk1/2 signaling in SS RBCs and MPs 

 Sickle cell disease and systemic inflammation go hand in hand. Sickle RBCs can 

activate a variety of cell types including platelets, smooth muscle cells, endothelial cells 
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monocytes, macrophages and neutrophils through direct interaction, adhesion or 

molecule-mediated stimulation (14, 51). Numerous studies have shown the relationship 

between sickle RBCs and inflammatory cells (51, 68). Erk phosphorylation in sickle 

RBCs has been shown to activate ICAM-4 and lead to monocyte and endothelial cell 

adhesion (37, 61). Zennadi et al. showed that sickle RBCs signaled through Erk1/2 to 

promote RBC adhesion and activation but the idea that their microparticle byproducts 

could also signal, independent of the RBCs, is a novel one. An interesting insight from 

this chapter was the discovery that RBC-derived MPs from SS RBCs contained 

constitutively activated Erk1/2. Interestingly, Erk1/2 has been shown to be activated 

downstream of S1P1 activation. In ongoing studies, we are measuring the expression of 

S1P1 on RBCs and MPs from people living with or without sickle cell disease. As S1P is 

significantly elevated in both SS RBCs and MPs, relative to AA particles, it is possible 

that the Erk1/2 activation observed in SS RBCs and MPs is mediated by S1P. Our work 

shows, for the first time, that SS RBC-derived MPs also have constitutively active Erk 

and may potentially use this signaling cascade to activate monocytes in a fashion similar 

to RBCs. It will be interesting to see if MPs can also modulate their expression and 

activation of membrane-bound proteins like ICAM-4 in a fashion similar to SS RBCs. 

The location of Erk in SS RBCs and MPs will also be important to look at in the future. It 

will be interesting to see if the membrane localization of Erk in RBCs or MPs permits it 

to respond to biophysical changes produced in SS membranes.  

Microparticle sources in SCD 

Sphingolipids have been shown to play roles in lipid raft formation and membrane 

vesiculation (7). Interestingly, the production of ceramide caused the production of 
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membrane-derived micro-vessels and the loss of the biconcave discoid shape of red blood 

cells (7, 8). Furthermore, both hypotonic and hypertonic forces in RBCs activate neutral 

sphingomyelinase, the enzyme that mediates the conversion of sphingomyelin to 

ceramide in RBCs (38). The pro-inflammatory interaction of RBC-derived microparticles 

with monocytes in sickle cell combined with the role of sphingolipids in microparticle 

production creates a particularly interesting area of exploration rooted in sphingolipid 

metabolism and inflammation. However, microparticles from multiple cell sources have 

been shown to play significant roles in systemic inflammation in SCD. RBCs, platelets 

and other cells have been shown to produce these membrane-bound particles when 

activated which can activate other cells in circulation (41-45, 47). While this work 

focused on RBC-derived MPs there is much room for exploration into the roles of MPs 

from other cell types in SCD. Platelets in particular have been shown to contribute to 

vascular pathology in vaso-occlusion in SCD (40). Platelets, which also contain bioactive 

lipids, may also harbor sphingolipid dysregulations similar to those discovered in RBCs 

and their interrogation deserved attention. 

Sphingolipid modulation of monocyte phenotype 

 In Appendix A of this work show how local polymeric delivery of S1P receptor 

compounds can be immunomodulatory and, specifically, recruit regenerative cells, which 

lead to enhanced vascular remodeling. Our results demonstrate that S1P3 activation in 

remodeling tissues can preferentially recruit anti-inflammatory monocytes, which 

contribute to wound healing and microvascular remodeling. The major contribution of 

this work is the discovery that S1P receptor agonists can be used in polymeric scaffolds 

to preferentially recruit subsets of inflammatory cells. Others have explored the role of 
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sphingolipids in immunomodulation but it remains to be discovered whether these lipids 

can directly differentiate and polarize monocytes (102). It will be very valuable to 

perform systematic experiments using unique sphingolipids at varying doses and time 

periods in vitro to assess changes to monocyte phenotype. In the context of sickle cell, it 

will be interesting to assess whether the sphingolipids found to be significantly altered in 

this work also promoted monocyte/macrophage phenotype transition. To this end, we 

have begun experiments to perform single cell transcriptional analysis for all of the 

sphingolipid metabolizing enzymes as well as pro- and anti-inflammatory markers, 

cytokines, integrins, cathepsins and matrix metalloproteases (see Appendix B) on 

primary-isolated peripheral blood mono-nuclear cells from people living with and 

without sickle cell disease. Preliminary results have shown differences in the mRNA 

content of both sphingolipid metabolizing enzymes and markers of inflammation in AA 

and SS PBMCs. By correlating changes in sphingolipid metabolizing enzyme production 

with changes in markers of monocyte transition, we may be able to determine which 

lipids, if any, promote phenotype changes in monocytes and ultimately inflammation in 

SCD. Additionally, genome-wide exploration of distinct phenotypes of inflammatory 

cells in people living with and without SCD may provide more valuable information 

regarding the sphingolipid changes in distinct inflammatory states. 

 Our work also shows, for the first time, that RBC-derived MPs are internalized by 

monocytes and macrophages and elicit biological responses. Monocyte adhesion as well 

as macrophage cytokine production/secretion and enzyme expression are altered upon SS 

MP internalization. Preliminary work is also showing increased expression of cathepsins, 

which contribute to vascular inflammation in SCD, in SS MP-treated macrophages. As 
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monocytes are known to exist in at least two distinct phenotypes, it will be interesting to 

explore what distinct phenotypes internalize circulating MPs in vivo. Anti-inflammatory, 

or patrolling, monocytes that contribute to wound healing and neovascularization or 

inflammatory monocytes that respond to infection and inflammation may respond very 

differently to MP internalization and this should be explored. 

Amitriptyline in acid sphingomyelinase inhibition 

 In chapter 3 of this work I describe results showing that acid sphingomyelinase is 

activated in sickle RBCs, leading to microparticle production and downstream activation 

of monocytes and macrophages. Blood collected from people with SCD revealed 

consistent elevation in acid SMase in RBCs consistent with increases in ceramide, 

sphingosine and S1P in whole blood, plasma, RBCs and MPs from people living with 

SCD. I also show that inhibition of acid sphingomyelinase with a tricyclic antidepressant, 

amitriptyline, significantly reduces acid SMase activity, MP production and systemic 

inflammation both in vitro and in mouse models of SCD. A limitation of this work, 

however, is the sole us of amitriptyline as a SMase inhibitor. The mechanism by which 

amitriptyline inhibits SMase is indirect. Amitriptyline inserts into the inner leaflet of the 

RBC membrane and subsequently cases acid sphingomyelinase to detach: functionally 

inhibiting its activity. Amitriptyline, therefore, is not specific to acid SMase and also has 

other targets (i.e. NO and PGE2). Indeed, the drug may act on acid lipase, phospholipase 

A and C and other sphingolipid hydrolases by a similar mechanism. Furthermore, 

amitriptyline, as a tricyclic antidepressant, inhibits the uptake of adrenaline, dopamine, 

and serotonin and affects the cholinergic and histaminergic systems (67). These studies 

should be repeated with a putative acid SMase inhibitor or with genetic knockdown to 
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demonstrate whether a more selective pharmacological inhibition of SMase is effective in 

reducing the generation of RBC MPs in SCD.  Becker et al. began to systematically 

explore other acid SMase inhibitors for cystic fibrosis but many of these compounds 

work through the same mechanism (2, 67).  

C1P and complex sphingolipid expression in erythrocytes 

 Another interesting observation from chapter 4 was the abundance of ceramide 1-

phosphayte (C1P) in both AA and SS RBCs. While it has been shown that S1P is present 

in abundance in RBCs, no studies to date, have measured the amount of C1P in RBCs 

and it was not expected to be present at such a high concentration. Measuring individual 

enzymes is a much more difficult task than measuring their sphingolipid products, but it 

will be interesting to measure the enzymes that regulate C1P production (i.e. ceramide 

kinase and ceramide phosphatase). C1P has also been shown to be a stem cell 

chemoattractant, along with S1P, so measuring the respective affects of these lipids on 

other cells may be particularly valuable in cell mobilization and homing. In addition to 

C1P abundance, the balance of C16- and C24- ceramides in SCD was particularly 

interesting. SS RBCs and MPs shifted towards a higher proportion of C16 ceramides and 

a lower proportion of C24 ceramides relative to AA RBCs and MPs. The same trend was 

observed with dihydroceramides in SS RBCs and MPs relative to AA RBCs and MPs. In 

future studies, it will be valuable to explore whether acid SMase, which is elevated in SS 

RBCs, preferentially hydrolyzes C16 ceramides and dihydroceramides relative to C24 

sphingolipids. Additionally, the role of these distinct sphingolipids in the context of SCD 

will be very interesting to explore. Specifically, in vitro experiments should be performed 
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to explore the role of C16 and C24 ceramides on monocyte adhesion, cytokine production 

and phenotype transition.  

Sphingolipid modeling for disease 

For the past several decades, the “-omics” movement has dominated much of the 

exploration around human diseases and disorders (75, 76). Researchers are taking a much 

more bottom-up approach to elucidate genetic and molecular targets for therapy. In 

chapter 4, it is shown that high performance liquid chromatography analysis of all 

sphingolipids in biological samples can elucidate distinct sphingolipidomic differences 

between AA and SS samples. Specifically, we show that long chain bases (sphingosine, 

S1P, dihydrosphingosine and dihydrosphingosine 1-phosphate) and ceramide species are 

significantly elevated in SS RBCs and MPs relative to AA RBCs and MPs. By generating 

large sets of data measuring steady state or dynamic levels of sphingolipids we can apply 

systems biology and statistical analysis approaches to glean metabolic changes that may 

result in dysregulated balances of sphingolipids, which contribute to inflammation in 

SCD. While describing these changes is valuable and may elucidate potential biomarkers 

or therapeutic targets, it is much more powerful to be able to model these changes and 

build predictive tools based on lipid/enzyme concentrations. All of the work presented in 

chapter 4 was taken from ‘steady state’ samples. Donors were not taking any medications 

for SCD treatment and had not been hospitalized recently. In ongoing efforts, however, 

we are taking dynamic measurements of sphingolipid content in AA and SS RBCs and 

MPs to get a better picture of how these lipids change over time. This information will 

allow us to build flux-based models that elucidate specific reactions, in the metabolic 

pathway, that may dominate the changes observed at the steady state. 
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In this work, we used extensive sphingolipidomic quantification of AA and SS 

RBCs and experimental measurements of enzyme activity and transport flux to 

mathematically model AA and SS RBC sphingolipid metabolism. The simulation 

predicts relatively fast import/export for LCBs and enzymatic flux for complex 

sphingolipids as well as 7 significantly altered fluxes. Importantly, the model elucidates 

rate-limiting reactions that have relatively slower speeds and would serve as effective 

therapeutic targets. This work targeted acid sphingomyelinase, which is significantly 

activated in SS RBCs, to modulate sphingolipid metabolism and MP production. 

According to the model, however, the maximum flux through this reaction is much faster 

than other reactions in the metabolic network. Enzymes mediating slower reactions (rate 

limiting enzymes) may be much better therapeutic targets because of their greater impact 

on sphingolipid flux. Models like this can be particularly valuable in understanding how 

enzymatic/transport changes in SS RBCs contributes to the observed dysregulation in 

sphingolipid metabolism. 

Conclusion 

 In conclusion, this dissertation shows for the first time that sphingolipid 

metabolism is dysregulated in sickle cell disease and that this dysregulation contributes to 

vascular inflammation in the disease state. This work shows that membrane stresses in 

sickle RBCs activate acid sphingomyelinase, a membrane bound enzyme that hydrolyzes 

sphingomyelin, the most abundant plasma membrane sphingolipid, to ceramide. Other 

metabolic changes in SCD lead to the production of sphingosine and sphingosine 1-

phosphate, which are also elevated in SCD. Additionally, these lipid alterations enhance 

the production of RBC-derived microparticles, which are released into circulation and 
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activate monocytes and macrophages, enhancing pro-inflammatory cytokine production 

and endothelial adhesion. S1P receptor-specific compounds can be used to preferentially 

modulate the recruitment of distinct monocyte phenotypes to vasculature, which may be 

useful for regenerative strategies in SCD. Acid SMase inhibition, with amitriptyline, 

reduced RBC microparticle production and subsequent inflammation in vitro and in 

mouse models of sickle cell disease. Finally, systems biology approaches elucidate many 

distinct sphingolipids that were altered in SS RBCs and MPs and may be useful 

biomarkers or therapeutic targets.  It will be very interesting to see how these 

pharmacological strategies pan out in humans and in other hemolytic anemias and 

whether the lipidomic alterations described here can be used as new pharmacological 

targets for treating complications of sickle cell disease. 
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Figure 5.1. Schematic of Sphingolipid metabolism and microparticle mediated 
inflammation in SCD. 1) Membrane stresses in SS RBCs activate acid 
sphingomyelinase (A-SMase) on the outer leaflet of the plasma membrane. 2) 
Sphingomyelin can be further metabolized into sphingosine and S1P with alkaline 
ceramidase (CDase) and Sphingosine Kinase (SK1/2), respectively. 3) Membrane 
budding results in the formation of sphingolipid-rich microparticles. 4) Microparticles are 
released into circulation. 5) Monocytes internalize microparticles. 6) S1P and other 
sphingolipids initiate signaling cascades. 7) Pro-inflammatory cytokines are produced 
and secreted. 8) Monocyte adhesion is enhanced. Acid sphingomyelinase inhibition with 
amitriptyline reduces microparticle formation and subsequent inflammation.  
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APPENDIX A 

SPHINGOSINE 1-PHOSPHATE RECEPTOR 3 REGULATES IMPLANT 

ARTERIOGENESIS BY RECRUITMENT OF ANTI-INFLAMMATORY 

MONOCYTES TO MICROVESSELS 

Introduction 
 

 The microvasculature is an intricate network of blood vessels whose primary 

purpose is to deliver oxygen and nutrients throughout body.  The process of 

microvascular network growth and remodeling is governed by a continuum of gene 

expression patterns and molecular signaling events in several cell types working across 

multiple time and length scales. Microvascular endothelial cells (EC) produce a number 

of growth factors and cytokines, such as MCP-1 (103), SDF-1α (104, 105) and VEGF 

(106) that regulate the recruitment, proliferation, differentiation and activation of cells in 

their proximity. Elucidating these “angiocrine” factors that utilize the body’s endogenous 

repair mechanisms may be critical to improving the treatment of ischemic tissue diseases 

and enhancing regenerative capacity of biomedical implant materials. 

 Sphingosine 1-phosphate (S1P) is a naturally occurring bioactive lipid found in 

nanomolar concentrations in plasma through production by red blood cells, activated 

platelets and EC. Disrupting the balance of high S1P levels in circulation and low levels 

in tissues results in extreme conditions such as lymphopenia, neutrophilia, and vascular 

barrier dysfunction (26). S1P signals pleiotropic cellular functions, including chemotaxis 

and recruitment of cells (26-28), through the activation of combinations of five known G-

protein coupled receptors (S1P1-S1P5) (29, 107, 108). Recent studies also indicate that 

S1P plays a significant role in the migration and trafficking of hematopoietic stem and 
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progenitor cells within extra medullary tissues (27) and regulates blood recirculation of 

osteoclastic precursors (30). Furthermore, S1P receptor signaling plays critical roles in 

the formation and stabilization of microvascular networks (109). We have shown that 

local activation of S1P receptors 1 and 3, with the synthetic S1P analog FTY720, 

enhances microvascular remodeling through expansion of arterioles and capillary 

networks (110). Modulation of S1P receptors on ECs may be a novel way to control the 

localization of circulating cells that contribute to tissue regeneration and wound healing.  

 Monocytes and macrophages were once thought to be homogenous populations of 

cells, with a uniform role in immunity; however, monocyte/macrophages are now 

recognized as highly plastic cells that can exist in many subpopulations along a spectrum 

of activation from pathogen clearance to tissue regeneration (111).  These cells are 

referred to as monocytes while in circulation and macrophages when in the tissue space 

and have critical roles in injury-induced neovascularization, arteriogenesis and 

angiogenesis (112-115). In the context of inflammation and wound healing, two subsets 

of macrophages are dominant (116, 117). Classically activated inflammatory 

monocytes/macrophages (IM), also known as M1 macrophages, phagocytose debris and 

clear damaged cells and are recruited from circulation shortly after injury (within hours). 

On the order of hours to days after injury, a second wave of alternatively activated anti-

inflammatory monocytes/macrophages (AM) is recruited that play roles in tissue 

remodeling and angiogenesis (117, 118). AM are also known as M2 macrophages and 

exist in at least three states (M2a, M2b and M2c) depending on their roles in allergy, 

immunoregulation and tissue remodeling, respectively (119).  IM express high levels of 

CCR2, CD16, Ly6C and Gr1 on their surface and secrete inflammatory cytokines such as 
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TNF-α, IL-6 and IL-1. Conversely, AM express high levels of CX3CR1, CD206 and 

CD14 and secrete cytokines such as IL-10, TGF-β and IL-1RA (119). Given that 

monocyte/macrophages respond quickly to local changes in the microvasculature and are 

often the key targets of signaling from EC, discovering factors that alter the phenotype of, 

or preferentially recruit, these cells may be critical to controlling healing and 

regeneration.  

 In this chapter we explore how local polymeric delivery of S1P receptor 

compounds can recruit regenerative cells and lead to enhanced vascular remodeling. Our 

results demonstrate that S1P3 activation on EC is critical for SDF-1α and other pro-

regenerative cytokine production and that S1P3 receptor expression in both the bone 

marrow and the tissue is necessary for FTY720-mediated vascular remodeling. We show 

that CX3CR1hi, CD206+ AM, express higher levels of surface S1P3 and show enhanced 

SDF-1α mediated chemotaxis after FTY720 treatment. Local AM recruitment to the 

perivascular niche in tissues after FTY720 treatment results in enhanced arteriogenesis in 

muscle and soft tissue. Novel strategies, involving S1P receptor signaling, to modulate 

the secretion of endogenous angiocrine factors that recruit regenerative cells can be 

employed to enhance blood vessel growth and the integration and functionality of tissue 

engineered (TE) implants. 

Materials and Methods 
 

Animals and Treatments 

Wild type C57BL/6 and NG2-DSred mice were obtained from The Jackson 

Laboratories, heterozygous CX3CR1-eGFP mice were a generous gift from Dr. Klaus 

Ley (La Jolla) and S1P3-/- mice were a kind gift of Dr. Richard Proia (NIH). NG2-DSred 
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mice were crossed with the CX3CR1-eGFP mice to generate DsRed-NG2 CX3CR1-

eGFP mice. Mice in all studies were male, 8-12 weeks, weighing 18-25 g. The murine 

dorsal skinfold window chamber model and spinotrapezius ligation model with polymer 

implantation were performed as described previously (34) and explained in detail in SI 

methods. All surgical procedures and animal care protocols were approved by the 

University of Virginia Animal Care and Use Committee.  

Fabrication of Poly(Lactic-Coglycolic Acid) Thin Films and Encapsulation of 

Sphingosine 1-Phosphate Receptor-Targeted Compounds.  

Poly(lac- tic-coglycolic acid) (PLAGA) thin films were fabricated by using a 

solvent-casting technique as described (34). A total of 350 mg of PLAGA was combined 

with 2 mL of methylene chloride (Fisher Scientific) in a borosilicate liquid scintillation 

vial (20-mL capacity; Fisher Scientific) and vortexed until completely dissolved. For 

1:200 (drug weight:polymer weight) FTY720 (Cayman Chemical), VPC01091, or 

Compound 26 (Kevin Lynch, University of Virginia) loaded films, 1.75 mg of drug was 

added to the solution. The polymer/drug solution was quickly poured into a P35 Petri 

dish (Nunc; area = 8.8cm2) lined with Bytac Teflon paper. Films were allowed to dry at 

−20 °C for 7 d, and then were stored at room temperature in a desiccator until needed. All 

films were lyophilized (Labconco FreeZone 2.5; Labconco) for 24 h before being used 

for experiments to remove any excess solvent. For implantation in vivo, films with a 

diameter of 1 mm were extracted by using a 1-mm biopsy punch (Acuderm) and rinsed in 

70% (vol/vol) ethanol for ∼30 s and then washed in sterile Ringer’s solution (137.9 mM 

NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.9 mM CaCl2, and 23 mM NaHCO3) for an 

additional 30 s. Films had an average thickness of 517 ± 41 µm, as measured with 
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calipers (L. S. Starrett Co.). 

Fabrication of Nanofiber Scaffolds and Encapsulation of FTY720.  

A 1:1 mixture of polycaprolactone (PCL; Sigma) and PLAGA (Lake- shore 

Biomaterials) was dissolved in a 3:1 (vol/vol) chloroform: methanol solution. The final 

concentration of polymer solution was 18% (wt/vol). The solution was agitated at room 

temperature until the polymer dissolved, followed by loading into a 3-mL rubber-free 

syringe. Electrospinning was performed at a flow rate of 1.0 mL/h, an applied voltage of 

19 kV, and a working distance of 10 cm. Nanofibers were collected on a stationary 

aluminum plate and then stored in a desiccator until use. To make drug- loaded 

nanofibers, FTY720 (Cayman Chemical) was dissolved in 3:1 chloroform:methanol 

solution, and 1:1 PCL/PLAGA was added at a concentration of 20% (wt/vol). The final 

drug:polymer ratio was 1:200. 

Generation of Bone Marrow Chimeric Mice.  

To generate bone mar- row (BM) chimeric mice, donor mouse tibia were 

harvested and flushed of marrow. Recipient mice were lethally irradiated with a total 

dosage of 10.5 gray (33) (5.5- and 5-Gy doses, 3 h apart) before transplantation of 2 × 

106 donor cells in 150 µL of PBS via tail vein injection. The cells were allowed to 

engraft for 6 wk before experimentation. 

Dorsal Skinfold Window Chamber Surgical Procedure.  

Mice were implanted with dorsal skinfold window chambers (APJ Trading Co.). 

Mice were treated with a preanesthetic of atropine (0.08 mg/ kg IP) and further 

anesthetized by using i.p. injections of ketamine (80 mg/kg) and xylazine (8 mg/kg). For 

nanofiber implantation, anesthesia was induced with isoflurane gas in a chamber (2–3%), 
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and the surgical plane was maintained with a nose cone (1–2%) equipped with a 

scavenging apparatus for the procedure. Dorsal skin was shaved, depilated, and sterilized 

by using triplet washes of 70% ethanol and iodide. A double-layered skin fold was 

elevated off the back of the mouse and pinned down for surgical removal. The titanium 

frame of the window chamber was surgically fixed to the underside of the skinfold. The 

epidermis and dermis were removed from the top side of the skinfold in a circular area 

(diameter = ∼12 mm) to reveal the underlying vasculature. Exposed tissue was kept 

hydrated with sterile Ringer’s solution (137.9 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 

1.9 mM CaCl2, and 23 mM NaHCO3). The titanium frame was then mounted on the top 

side of the tissue and attached to its underlying counterpart. The dorsal skin was sutured 

to the two titanium frames, and the exposed tissue was sealed with a protective glass 

window. Mice were allowed to recover in heated cages and subsequently were 

administered buprenorphine via s.c. injection (0.1–0.2 mg/kg) as a postoperative 

analgesic. All mice received a laboratory diet and water ad libitum throughout the time 

course of the experiment. 

Implantation of Thin Films and Intravital Image Acquisition.  

PLAGA thin films were implanted into the window chamber 7 d after surgical 

implantation, hereafter referred to as day 0. Mice were anesthetized via 2% isoflurane 

mixed with 1 mL/min O2. Subsequently, the glass window was removed to expose the 

thin layer of vessel networks. The window chamber was flooded with 1 mM adenosine in 

Ringer’s solution (3 × 5 min) to maximally dilate all vessels and maintain tissue 

hydration. Following the last ad- ministration of adenosine, the solution was aspirated, 

and two films (either both loaded or both unloaded) were placed equidistant from one 
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another and from each edge of the window. The mouse was then mounted to a 

microscope stage and imaged noninvasively by using a 4× objective on an Axioskope 40 

microscope (Carl Zeiss). Images were captured by using an Olympus MicroFire color 

digital camera and PictureFrame image acquisition software (Optronics). Individual 

images were later photomerged into a single image of the entire microvascular network 

by using Adobe Photoshop CS. Mice were initially imaged on day 0 following film 

implantation and again on days 3 and 7. 

Quantitative Microvascular Metrics.  

Intravital microscopy montages of entire vascular windows at days 0, 3, and 7 

were analyzed by using a combination of Adobe Photoshop CS and ImageJ (http:// 

rsb.info.nih.gov/ij/) software packages. First, circles with a diameter of 5 mm (or 2-mm 

concentric radius from outer edge of one film) were cropped around each film, with no 

overlap of the two circles. 

Changes in Microvascular Length Density.  

For microvascular length density measurements, vessels located within these 

cropped images were traced by using Photoshop and skeletonized by using ImageJ. These 

binary images were analyzed by counting the total number of pixels, representing the 

total length of all traced vessels. Pixels were converted to millimeters by using the 

conversion factor (350 pixels = 1 mm) calculated from an image of a micrometer at the 

same imaging conditions (4×). Pixel length was divided by total area of the region of 

interest (a circle with diameter of 5 mm; A = 19.63 mm2). The limit of resolution of 

vessels that can be visualized in this manner is 10 µm. 

Changes in Microvascular Diameter.  
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To assess changes in luminal diameter, arteriole–venule pairs were identified in 

the 2-mm cropped images. In these intravital images, vessels are visualized by blood 

column width. Therefore, arterioles and venules were identified on the basis of size only; 

venule diameters were larger than arteriolar diameters on day 0. Identical vessel segments 

were labeled on day-0, -3, and -7 images at the bisection of each vessel segment in 

between branch points. Internal diameters based on blood column widths were measured 

by using ImageJ. Day-0 diameter measurements were used to bin vessels by size at the 

onset of the experiment to track how initial size affects lumenal expansion potential. This 

metric is limited to vessels that are visible at all three time points, and the limit of 

resolution is ∼10 µm. 

BM Harvest and Cell Sorting.  

Mice tibia and femurs were harvested with scissors and forceps. The ends of the 

bone were cut with bone cutters, and marrow was flushed with sterile saline by using a 

syringe and 25-gauge needle. BM was collected, filtered, and resuspended in sterile PBS 

+ 10% FBS for flow cytometry staining. SSCloCD45+CD11b+Gr1+Ly6C+ 

inflammatory subtype of monocytes (IM) and SSCloCD45+CD11b+Gr1−Ly6C− anti- 

inflammatory subtype of monocytes (AM) were sorted for in vitro and adoptive transfer 

experiments.  

Adoptive Transfer.  

SSCloCD45+CD11b+Gr1−Ly6C− AMs were sorted from mouse BM and stained 

with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindo- carbocyanine perchlorate (DiI) for 20 

min. Host mice received 800,000 IMs or 175,000 AMs i.v. via retro orbital sinus 24 h 

before backpack surgery. Blood was collected immediately before surgery and at 1 and 3 
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d after surgery. Dorsal tissue was also harvested 3 d after surgery for flow cytometric 

analysis. 

Dorsal Tissue Immunohistochemistry.  

Five-micrometer-thick sections were cut from paraffin-embedded s.c. dorsal 

tissue. Sections were de-waxed with 100% xylenes, 100% ethanol, 95% ethanol, 70% 

ethanol, and 50% ethanol in series for 3 min each. Antigens were retrieved by high-

temperature pressure cooking of slides for 15 min in 10 mM sodium citrate buffer (pH 6). 

Endogenous peroxidase activity was blocked by incubation of specimens with 3% 

hydrogen peroxide in 40% methanol for 10 min followed by nonspecific blocking with 

2.5% horse serum. Slides were incubated with 1:50 rabbit anti-mouse MHCII (Novus), 

CD206 (Bioss), and F4/80 (AbCam) overnight at 4 °C in a humidified chamber. Slides 

were washed and fluorescent secondary antibodies or anti-rabbit peroxidase secondary 

antibodies, and diaminobenzidine–peroxidase substrate kit (Vector Lab) were used to 

stain slides. Hematoxylin counterstaining was performed for 5 min to stain tissue and 

cells on specimens. 

Dorsal Tissue Digestion for Single-Cell Suspensions and Protein.  

To measure the recruitment of cells to inflamed tissue, dorsal skinfold window 

chambers were implanted on CX3CR1–eGFP mice. Ninety- five percent of CX3CR1, 

also known as fractalkine, can be attributed to monocytes. Two FTY720-loaded or 

unloaded PLAGA films were implanted on the day of surgery. Three days after, two 8-

mm biopsy punches were taken around each implant in each animal. This dorsal tissue 

was treated with 1 mg/mL collagenase (Sigma) at 37 °C and further disaggregated with a 

cell strainer to create a single-cell suspension. For protein analysis, single-cell 
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suspensions were placed in 1× radioimmunoprecipitation assay buffer with protease and 

phosphatase inhibitors for 5 min on ice. The lysed cells were then centrifuged to pellet 

out debris, and the lysate was stored at −80 °C until analysis. 

Spinotrapezius Ligation.  

Spinotrapezius ligation was performed similarly to previous studies (13). In 

summary, DsRed–NG2 CX3CR1–eGFP mice were anesthetized via i.p. injection of 

ketamine/xylazine/atropine (60/4/0.2 mg/kg). The position where the fat pad ends (∼1–2 

cm from the head posteriorly) was found, and an incision (∼0.5 cm, parallel to the spine) 

was made 1 cm laterally from the spine at this location. Under a dissecting microscope, 

blunt manipulation of the tissue was performed to locate the spinotrapezius. The main 

feeding arteriole was located and followed upstream until it exited the spinotrapezius and 

entered the fat pad. Blunt dissection was used to isolate the arteriole from its associated 

venule, and care was taken to minimize mechanical manipulation of the muscle and 

tissue. Two ligatures were placed on the arteriole by using 10-0 sutures followed by 

ligation of the arteriole between the ligatures. Tissue was returned to its original position. 

A small 1-mm disk of PLAGA (either empty or loaded with FTY720) was placed 

between the fascia and spinotrapezius before closing the wound with 8-0 non-resorbable 

sutures. One week later, the mouse was euthanized, and the whole spinotrapezius was 

harvested. 

Spinotrapezius Tissue Immunohistochemistry.  

Both spinotrapezius muscles were harvested from each mouse and permeabilized 

with 0.2% saponin in PBS overnight (18 h) at 4 °C. Muscles were blocked for 1 h (5% 

mouse serum, 0.2% saponin, 0.5% BSA in PBS) before being treated with primary 
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antibody overnight at 4 °C. Spinotrapezius tissues were immunolabeled for smooth 

muscle α-actin [mural cell stain, IA4-Cy3 (Sigma-Aldrich), 1:300] and isolectin 

[endothelial cell (EC) stain, IB4–Alexa 647 (Invitrogen), 1:200]. Muscles were washed 

five times at 20 min per wash (0.2% saponin and 0.5% BSA in PBS) before being whole 

mounted on a coverslip. 

Spinotrapezius Imaging and Data Analysis.  

Whole-mounted spinotrapezius tissue was imaged by using confocal microscopy 

(Nikon; model TE200-E2; 4×, 10×, 20×, and 60× objectives). Analyses of the confocal 

images were conducted by using ImageJ imaging software to quantify vascular lengths 

and diameters. Tortuosity of arterioles was determined by tracing the path a vessel took 

and dividing it by the absolute distance of the start and end point. All tortuosity data were 

acquired in regions of the vessel where no branching occurred. The 10× images were 

taken of the primary watershed, i.e., the immediate downstream region of the ligated 

arteriole. Green fluorescent positive cells were counted. Additionally, cells touching or 

aligned with vessels were considered to be associated with the vessel. All vascular 

analysis was performed by a single blinded person who had no knowledge of the 

treatment groups. 

Intravital Microscopy of Rolling in Dorsal Skinfold Window Chamber. 

Intravital microscopy of dorsal skinfold window chambers was performed on a 

Nikon Eclipse 80i microscope equipped with an EXFO XCite 120 xenon light source for 

epifluorescence microscopy; Nikon 32 B2E/C, G2E/C, and UV2E/C filter cubes; and 10× 

and 20× objectives. Video was taken by using a high-speed Photometrics HQ2 CCD 

camera cooled to −30 °C controlled by Nikon NIS Elements Advanced Research 
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software with a 2D object tracking package (Version 3.22.00; Laboratory Imaging) 

running on an HP DC7900 PC. Mice were anesthetized by using isoflurane for the 

duration of the imaging. The glass coverslip was removed from the window chamber 

before video acquisition. One-minute videos were taken of perfused vessels near implants 

immediately after surgery and 1 d after surgery. Green fluorescent positive cells captured 

in the video were separated into three categories, flowing, rolling, and adhered, based on 

the speed of the cells. Flowing cells had no abnormal changes in velocity. Rolling cells 

exhibited a stop–start/variable velocity characteristic, whereas adhered cells remained 

stationary for at least 10 s. In addition, the highest intensity for cells in focus was 

recorded. One person did all of the video acquisition and analysis. 

Flow Cytometry.  

Immunostaining and flow cytometry analyses were performed according to 

standard procedures and analyzed on a FACSCanto flow cytometer (BD Biosciences). 

Monoclonal antibodies to CD45, CD11b, Ly6C, and Gr1 (Abcam, Biolegend, and 

eBiosciences) were used to detect and sort inflammatory and anti-inflammatory 

monocytes and macrophages. 

Cell Culture.  

Human primary isolated pericyte capillary cells were cultured in Pericyte Growth 

Medium (Angio-Proteomie) in the presence of 1 µM sphingosine 1-phosphate (S1P) 

receptor compounds for 160 h with medium change every 48 h. Human umbilical vein 

ECs (HUVECs) were cultured in EBM-2 medium (Lonza) with 5% FBS and 1% 

penicillin/streptomycin (Pen/ Strep) in the presence of 1 µM S1P receptor compounds for 

24 h. Human THP-1 monocytes were differentiated to macrophages with 100 nM phorbol 
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myristate acetate treatment for 2 d and polarized to M1 and M2 macrophages with 20 

ng/mL IL-4 or 5 ng/mL TNF-α + 20 ng/mL IFN-α, respectively. Murine primary isolated 

AMs and IMs were serum starved for 2 h before 1-h treatment with 12.5 nM S1P receptor 

compounds and chemotaxis assays in transwell chambers. For transwell migration assays, 

cells were plated at the top of 8-µm pore-size transwell inserts and allowed to migrate 

toward 12.5 nM SDF-1 for 4 h. Murine RAW 264.7 cells (ATCC) were cultured in high-

glucose DMEM supplemented with 10% FBS, 2 mM L-glutamine, 1% Pen/Strep, and 1 

mM sodium pyruvate. Macrophages were polarized to M1 cells by treatment with 1 

µg/mL LPS and 20 ng/mL IFN-γ, or M2 cells by treatment with 10 ng/mL IL-4 for 16 h. 

Mouse WEHI–274.1 monocytes between passages 25 and 30 were cultured in low-

glucose DMEM supplemented with 5% FBS and 1% Pen/Strep. For monocyte 

polarization, LPS (Sigma) was dissolved in the medium at a concentration of 100 ng/mL 

Monocytes were incubated in this medium at 37 °C in 5% CO2 just before seeding. 

PLAGA thin films were placed in 96-well plates, and 2.5 × 105 cells per mL were seeded 

onto them and cultured for as long as 14 d. The films were recovered at several time 

points: 2 h after incubation on day 0 and on days 1–7, 10, and 14, for a total of 30 films. 

Protein Analysis.  

For Western blotting analysis, total cellular protein was isolated, quantified, and 

electrophoresed by standard methods. Proteins were transferred to low-fluorescence 

PVDF membrane, blocked with blocking buffer for fluorescent Western blotting 

(Rockland Immunochemicals). Membranes were incubated with primary antibodies 

overnight for S1P1 (Novus Biologicals; NB120-11424), S1P3 (Novus Biologicals; 

NBP1- 95141), and β-actin (Sigma Aldrich). After washing with Tris- buffered saline 
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with Tween-20 (TBST), blots were incubated with the appropriate infrared-conjugated 

secondary for 45 min, washed in TBST, and imaged on the LI-COR Odessey infrared 

imaging system. 

Real-Time PCR.  

Total RNA was isolated by Ribozol extraction, and cDNA was generated from 

500 ng of total RNA by reverse transcription with random primers (Applied Biosystems). 

Quantitative PCR with SYBR green was performed on a StepOne Plus thermo cycler 

(Applied Biosystems). The S1P3 receptor mRNA expression (F: 5′-

GTTACTTCAACAGTCCACGAGA-3′; R: 5′- AGATGCGCCTTGCAGAA-3′) was 

normalized to GAPDH as an internal control (F: 5′-ACCACAGTCCATGCCATCAC-3′; 

R: 5′-TCCACCACCCTGTTGCTGTA-3′) (IDT). Quantitation was performed by the 

ΔΔCT method. 

Cytokine Measurement.  

Protein isolated from backpack tissue and cell culture-conditioned medium was 

assayed for cytokine release by using Luminex bead arrays (Millipore). Panels consisting 

of interferon-γ (IFN-γ), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), interleukin 6 (IL-

6), interleukin 12 (IL-12 - p40), interleukin 17 (IL-17), tumor necrosis factor α (TNF-α), 

interleukin 12 (IL-12 - p70), granulocyte colony stimulating factor (G-CSF), granulocyte 

macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor 

(M-CSF), interleukin 5 (IL- 5), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 9 

(IL-9), interleukin 2 (IL-2), interleukin 3 (IL-3), interleukin 4 (IL-4), interleukin 10 (IL-

10), interleukin 13 (IL-13), interleukin 15 (IL- 15), eotaxin, interferon-inducible protein 

10 (IP-10), macrophage inflammatory protein 2 (MIP-2), keratinocyte chemoattractant 
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(KC), leukemia inhibitory factor (LIF), monocyte chemo- attractant protein 1 (MCP-1), 

macrophage inflammatory protein 1α (MIP-1α), macrophage inflammatory protein 1β 

(MIP-1β), monokine induced by gamma interferon (MIG), epidermal growth factor 

(EGF), fibroblast growth factor 2 (FGF-2), transforming growth factor α (TGF-α), Fms-

related tyrosine kinase 3 ligand (Flt-3L), fractalkine, interferon α2 (IFNα2), interferon γ 

(IFNγ), growth-related oncogene (98), monocyte chemoattractant protein 3 (MCP-3), 

macrophage derived chemokine (MDC), platelet derived growth factor AA (PDGF-AA), 

platelet derived growth factor BB (PDGF-BB), soluble cluster of differentiation 40 ligand 

(sCD40L), interleukin 17a (IL-17a), interleukin 1 receptor antagonist A (IL-1RA), 

vascular endothelial growth factor (VEGF), tumor necrosis factor β (TNF-β) and 

regulated on activation, normal T-cell expressed and secreted (RANTES) were used to 

quantify the cytokine secretion profile of monocytes, HUVECs, and in tissue protein 

ELISA for SDF-1α and MCP-1 (R&D Systems) were used to quantify protein levels from 

tissue and HUVEC lysate. 

Statistical Analyses.  

All statistical analyses were performed by using Minitab 15 statistical software 

(Minitab). Results are presented as mean ± SEM, unless otherwise noted. Comparisons 

were made by using a one-way ANOVA, followed by Tukey’s test for pairwise 

comparisons. Diameter analysis was performed by using a general linear model (GLM) 

ANOVA with an unbalanced nested design, followed by Tukey’s test for pairwise 

comparisons. The model for the GLM ANOVA was as follows: drug group film number 

(drug group), where drug group represents S1P, for example, and film number represents 

each n number (i.e., mouse 5 left film). Significance was asserted at P < 0.05. Where 
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specified, power calculations were performed with α = 0.05 and power = 0.80 to 

determine statistically significant sample size. 

Results 

FTY720 enhances inflammation-associated microvascular network growth  

Dorsal skinfold window chambers (“backpacks”) were implanted on wild type 

C57Bl/6 mice and a superficial layer of dermis was excised to expose the underlying 

vasculature (120). FTY720-loaded or unloaded 1mm diameter, 0.5mm height 50:50 poly 

(lactic-co-glycolic acid) (PLAGA) thin films were implanted directly after surgery (acute 

treatment) and sham animals underwent surgery with no film implantation (Figure 

A.1A).  
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Figure A.1. FTY720 enhances inflammation associated microvascular growth. (A) 
Schematic of acute and delayed PLAGA film implantation. (B) MCP-1 and SDF-1α in 
backpack tissue over 7 days. (C) Microvascular networks surrounding PLAGA implants 
at 0 and 7 days post implantation when implanted on day of surgery (acute) or 7 days 
after surgery (delayed). Delayed FTY720 promotes growth of new vessels (arrowheads), 
vessel tortuosity (arrows) and arterial diameter enlargement (red arrowheads). Arteriolar 
diameter expansion (D) and length density (E) significantly enhanced after acute (left) 
FTY720 implantation. Delayed FTY720 treatment also significantly enhanced arteriolar 
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diameter expansion (D) and length density (E) (right). (F) Cytokine quantification (fold 
change from sham) in tissue surrounding FTY720-loaded implants shows significant 
reduction of inflammatory cytokines with FTY720 3 days after implantation (G) FTY720 
reduces ratio of MCP-1:SDF-1α in tissue around implant on day 1 post surgery. P<0.05 
compared to sham or day 0. Scale bar = 100µm.  

 

These sham animals served as a control for the injury stimulus of the surgery. To 

investigate the local tissue secretion of inflammatory chemokines in the acute post-

surgery period, we evaluated the concentration of the chemokines MCP-1 (a potent IM 

chemoattractant) and SDF-1α (a potent stem cell chemoattractant) over a 7-day period 

after backpack implantation. Four-millimeter diameter biopsies were taken from sham-

treated backpack tissue and quantification of MCP-1 and SDF-1α was performed by 

ELISA. The post-surgery period was characterized by early MCP-1 expression peaking at 

day 1 and later induction of SDF-1α, peaking at day 7. MCP-1 was elevated almost 10 

fold from 159.23pg/µg on the day of surgery to 1437.17pg/µg 1 day after surgery. By 3 

days post-surgery the level had significantly decreased to 560.32pg/µg and was 

maintained through day 7 (569.29pg/µg) (Figure A.1B). On the other hand, SDF-1α 

remained relatively low on day 0 and 1 post-surgery (69.72 and 143.09 pg/µg, 

respectively) but was significantly elevated (558.64pg/µg) by 3 days post-implantation 

and remained elevated through day 7 (736.28pg/µg) (Figure A.1B).   

Vascular parameters were assessed by imaging on day 0, 3 and 7 post-acute 

implantation of the window chamber and films. A reduction in lumenal arteriole diameter 

was observed from 0- 3 days after implantation in sham (-9.59%) and acute-PLAGA (-

1.79%) treated mice while mice with acute-FTY720 implantation had an increase in 

arteriolar diameter expansion (22.93%) relative to day 0 (Figure A.1C and Figure A.1D, 

left). Mice in the sham (-32.88%) and acute-PLAGA (-33.52%) groups showed 
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reductions in vascular length density, a measure of network expansion and angiogenesis, 

as well, while mice in the acute-FTY720 group had much smaller reductions (-8.74%) 

(Figure A.1C and Figure A.1E, left). By 7 days post-implantation lumenal diameter 

expansion was observed in sham (30.46%) and PLAGA (22.86%) treated mice and 

FTY720 significantly increased arteriolar diameter expansion (87.02%) (Figure A.1D, 

left). The sham (-17.72%) and acute-PLAGA (-35.61%) groups showed a reduction in 

length density while there was an increase in length density with acute-FTY720 (21.98%) 

(Figure A.1E, left).  

Since FTY720 increases microvascular remodeling when delivered acutely after 

injury while inflammatory cues dominate relative to regenerative cues, we wished to 

determine whether FTY720 also enhances remodeling after the peak of the inflammatory 

response. To this end, we altered our backpack model by adding two “delayed” groups 

where polymer films were implanted 7 days post-surgical implantation of the window 

chamber (delayed-PLAGA or delayed-FTY720) (Figure A.1A). Images were then taken 

7, 10 and 14 days post-implantation of the chamber (0, 3 and 7 days post-implantation of 

the delayed film). Indeed, mice in the delayed-FTY720 group also show significant 

increases in both arteriolar diameter expansion (60.10%) and length density (107.34%) 

relative to delayed-PLAGA mice 3 days after implantation (Figure A.1C, Figure A.1D, 

right and Figure A.1E, right). At 7 days post-implantation there were still more 

noteworthy increases in arteriolar diameter expansion (84.97%) and length density 

(153.20%) relative to delayed-PLAGA (Figure A.1D, right and Figure A.1E, right). 

Enhanced vessel tortuosity (arrows), new vessel growth (arrowheads) and diameter 

enlargement (red arrowheads) are classic signs of arteriogenesis and were observed with 
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delayed-FTY720 treatment (Figure A.1C). These results suggest that with delayed 

delivery, after macrophage infiltration, FTY720 promotes robust local microvascular 

network growth in the peri-implant space by the expansion of arterioles. We have termed 

this effect of both acute and delayed promotion of arteriolar remodeling through 

biomaterial release of FTY720 “implant arteriogenesis.” The goals of the current study 

were to investigate the role of S1P receptors in the early phase of inflammatory response 

and therefore the following studies are all acute film implantation unless otherwise noted. 

FTY720 reduces inflammatory cytokine secretion in backpack tissue 

 To test whether the local release of FTY720 modulated the secretion of 

inflammatory cytokines, we digested backpack tissue 3 days after acute implantation and 

quantified a panel of inflammatory cytokines with luminex multiplexed magnetic bead 

technology. Local activation of S1P receptors by FTY720 significantly decreased the 

expression of many cytokines associated with implant rejection and poor wound healing. 

Specifically, FTY720 significantly reduced the secretion of TNF-α (410.5 to -6.3), MIP-

1β (215.7 to 54.7), RANTES (143.8 to -27.3) and MIP-1α (33.7 to -0.73) relative to 

unloaded PLAGA films in the backpack model (Figure A.1F, Figure A.2).  
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Figure A.2. FTY720 reduces inflammatory cytokine concentration in tissue. 
Cytokine quantification (fold increase over sham) in tissue surrounding FTY720-loaded 
implants shows significant reduction of inflammatory cytokines with FTY720 3 days 
after implantation (Ud. Is undetectable by luminex).  

 

Additionally, anti-inflammatory and pro-regenerative cytokines (i.e. IL-5, IL-10 and 

GCSF) were elevated with FTY720 release (Figure A.2). These results suggest that local 

S1P receptor activation alters the concentration and balance of inflammatory and 

regenerative cytokines, which, as a result, may affect the recruitment of inflammatory 

and regenerative cells. Interestingly, FTY720 implantation reduced the MCP-1: SDF-1α 

ratio (10.71) relative to sham (18.55) and PLAGA-treated (18.3) peri-implant tissues after 

only 1 day (Figure A.1G). 
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FTY720 differentially regulates the recruitment, rolling and adhesion of distinct 

monocyte subsets  

 Geissman et al. characterized two populations of macrophages with distinct 

migratory roles during inflammation in mice: a CX3CR1loCCR2+Ly6C+ M1-like subset, 

recruited to inflamed tissues and a CX3CR1hiCCR2−Ly6C− M2-like subset recruited to 

non-inflamed tissues (121). As these cells transmigrate into tissues they develop distinct 

differentiation states, while maintaining their polarization, as macrophages. For the 

remainder of this paper we refer to these cells as monocytes when in circulation and 

macrophages when in tissue.  In order to determine how these two distinct subsets of 

macrophages are affected by FTY720 during an inflammatory stimulus, backpacks were 

implanted on CX3CR1-eGFP mice (Figure A.3A).  
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Figure A.3. FTY720 regulates monocyte rolling and adhesion and recruits AM to 
tissue surrounding implants. (A) Schematic for CX3CR1-eGFP mice surgeries, 
imaging and tissue harvest. (B-C) FTY720 released from thin films in backpack tissue 
decreased CD45+/CD11b+/Ly6C+/CX3CR1- IM (red box) infiltration and increased 
CD45+/CD11b+/Ly6C-/CX3CR1+ AM (blue box) infiltration 3 days after surgery. (D-E) 
FTY720-loaded polymer films decrease total number of flowing, rolling and adherent 
monocytes around subcutaneous implants one hour (D) and one day (E) after surgery 
relative to sham. (F) Average CX3CR1 expression of rolling and adherent monocytes one 
hour after surgery is suggestively higher with FTY720. (G) Average CX3CR1 expression 
of rolling and adherent monocytes in tissue one day after surgery is significantly 
increased with FTY720 relative to PLAGA. (H) There is a significant increase in CD206 
staining, and a decrease in MHCII staining (brown staining), in vessels (arrows) directly 
around FTY720-loaded implants 7 days post-surgery. Blood vessel diameter also 
increased with FTY720 treatment. Scale bar = 100µm.  

 

The two subsets of macrophages, CD45+CD11b+Ly6C-eGFPhi AM and 

CD45+CD11b+Ly6C+eGFPlo IM were easily distinguished with flow cytometry (Figure 

A.4). 
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Figure A.4. Gating strategy for sorting AM and IM. Cells were stained and sorted for 
CD45+/CD11b+ cells and Ly6C-/CX3CR1hi are AM while Ly6C+/CX3CR1lo are IM.  

	
  
FTY720 decreased the proportion of CD45+/CD11b+ (myeloid) cells that were IM (12%) 

relative to unloaded PLAGA (19%) and increased the proportion of AM (10%) relative to 

unloaded PLAGA (7%) in tissues around implants 3 days post-implantation (Figure 

A.3B and Figure A.3C).  

To determine whether the rolling and adhesion of monocytes was altered with 

FTY720, intravital microscopy was used to capture one-minute videos of monocytes in 

the backpack of CX3CR1-eGFP mice (Figure A.3A). One hour after surgery, there were 

markedly less monocytes that were flowing (1.4 per minute), rolling (1.2) and adherent 

(1.4) around FTY720-loaded polymer films (Figure A.3D) compared to sham (12, 5.25, 

2.5, respectively) and PLAGA-treated (6.33, 2.66, 7.5, respectively) tissues. The 

reduction of total numbers of monocytes relative to PLAGA and sham controls persisted 

at 24 hours post-surgery (Figure A.3E). Secondary analysis of the CX3CR1-eGFP 

Ly
6C

 

CX3CR1-GFP 

AM 

IM 
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expression intensity, in arbitrary units, on recruited cells at 1 and 24 hours showed that 

FTY720 significantly enhanced the recruitment of CX3CR1hi AM. There were no 

significant differences in the CX3CR1 intensity of flowing (282.6, 290, 269.7), rolling 

(319.8, 342.48, 373.7) or adherent (265.7, 275.6, 309.2) cells between sham, PLAGA-

treated or FTY720-treated tissues, respectively, but the intensity of both rolling and 

adherent cells treated with FTY720 was suggestively higher 1 hour after surgery (Figure 

A.3F). By 24 hours post-surgery, the fluorescent intensity, in arbitrary units, of rolling 

(293.2 +/- 12.3) and firmly adherent (273 +/- 7.7) cells was significantly enhanced by 

FTY720 relative to sham (260 and 222.9 +/- 8.9) and unloaded PLAGA-treated (229.5 

+/- 6.3 and 227.85 +/- 1.9) tissues (Figure A.3G). These results, taken together, suggest 

that local FTY720 delivery selectively recruits CX3CR1hi AM that are able to firmly 

adhere to the endothelium before extravasation into the tissue. 

S1P, the naturally occurring ligand for S1P receptors, has been shown to alter the 

recruitment and adhesion of inflammatory cells to endothelium (122). 7 days after 

implantation of S1P-loaded films in the backpack model, there was a significant 

reduction in the adhesion of CD11b+ inflammatory cells to the surrounding endothelium 

(14.5) relative to unloaded PLAGA films (33.3) (Figure A.5A).  

 



	
  102 

 

Figure A.5. S1P reduces CD11b+ cell recruitment to endothelium and local FTY720 
does not mobilize monocytes into circulation (A) Reduction of CD11b+ cells lining 
lumen of vessels (arrows) around S1P-loaded implants. (B) FTY720 delivered locally 
does not mobilize monocytes into circulation.  Backpacks were implanted on mice and 
blood was drawn 3 days after implantation to quantify percentage of monocytes. 
Unloaded or FTY720-loaded PLAGA did not result in a significant increase in 
monocytes in circulation. P<0.05 compared to PLAGA. Scale bar = 100µm.  

	
  
To further characterize the inflammatory cells infiltrating tissues surrounding 

implants FTY720 encapsulated in nanofibers was implanted in the backpack model for 7 

days before tissue was harvested for immunohistochemical staining for CD206 (an M2 

marker) and MHCII (an M1 marker). Tissue surrounding unloaded implants had 

significant recruitment of MHCII+ cells (brown) to vessels (arrows) relative to FTY720-

loaded implants (Figure A.3H). FTY720 delivery also enhanced the recruitment of 

CD206+ cells to vessels in the tissue (Figure A.3H, brown cells). Furthermore, blood 

vessels (arrows) surrounding FTY720-loaded implants were larger than those 

surrounding unloaded implants supporting the role of FTY720 in microvessel diameter 

enlargement. The local changes in macrophage content were not due to mobilization of 

monocytes into circulation as monocyte counts did not significantly differ with PLAGA 

nanofibers implantation (Figure A.5B). 
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S1P1 and S1P3 activation result in reduced secretion of inflammatory cytokines from 

macrophages and enhanced secretion of regenerative cytokines from endothelial cells. 

We wished to elucidate the mechanism of FTY720-induced alteration of angiocrine 

signaling so we sorted and treated marrow-derived AM and IM or HUVEC with FTY720 

or SEW2871 (a selective S1P1 agonist) and collected the conditioned media for cytokine 

quantification (Figure A.6A).  

 

	
  

Figure A.6. S1P3 activation reduces the secretion of inflammatory, and increases the 
secretion of regenerative cytokines from AM, IM and EC (A) Schematic of in vitro 
conditioned media harvest for cytokine assays. (B) Conditioned media from HUVEC 
treated with FTY720 for one hour show an increase in regenerative cytokines relative to 
SEW2871 and vehicle. (C) SDF-1α production from HUVEC cultured with VPC0101 
was completely ablated relative to FTY720. (D-E) Inflammatory cytokine secretion is 
decreased in conditioned media from primary isolated marrow-derived murine AM (D) 
and IM (E) treated for one hour with FTY720 or SEW2871 P<0.05 compared to 
SEW2871/VPC01091.  
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HUVEC were treated with FTY720 or SEW2871 for 1, 6 or 24 hours to quantify 

differences in angiocrine cytokine secretion. Cases where SEW2871 and FTY720 elicit 

the same change in secretion of factors suggests a dominant role for S1P1 in regulating 

the secretion of that cytokine; cases where FTY720 and not SEW2871 stimulated 

cytokine changes support a role for S1P3-dominated regulation of the secretion. As early 

as one hour after treatment, the secretion of many pro-regenerative cytokines (Flt-3L, 

fractalkine, IL-10, MDC, IL-1RA) (59, 119, 123, 124) were elevated in FTY720-treated 

endothelial cells (Figure A.6D). These increases persisted throughout 24 hours of 

treatment (Figure A.7C).  
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Figure A.7. Inflammatory and Regenerative cytokine secretion from HUVEC, AM 
and IM treated with FTY720/SEW2871 for 1, 6 and 24 hours. (A-C) Inflammatory 
(left) and regenerative (right) cytokine quantification (fold increase over vehicle) in 
conditioned media from HUVEC treated with 1uM FTY720 or SEW2871 for 1 (A), 6 (B) 
and 24 (C) hours. S1P1 activation promotes regenerative cytokine secretion early and 
maintains a balance late. S1P3 activation enhances secretion of regenerative cytokines 
from 1 to 24 hours treatment. (D-E) Inflammatory cytokine quantification (fold increase 
over vehicle) in conditioned media from AM (D) and IM (E) treated with 1uM FTY720 
or SEW2871 for 1 hour. S1P1 and S1P3 regulate the secretion of distinct cytokines from 
AM and IM and decrease most inflammatory cytokines relative to vehicle. Dotted line 
represents fold change of 1, P<0.05 compared to SEW2871.  

	
  
To confirm the role of S1P3 in the secretion of regenerative cytokines, HUVEC were 

cultured for 24 hours with an established S1P1 agonist/S1P3 antagonist, VPC01091 (122). 

S1P3 antagonism completely abated the secretion of SDF-1α (Figure A.6E). 

Activation of both S1P1 and S1P3 resulted in reduced secretion of many inflammatory 

cytokines 1 hour after treatment of both AM and IM (Figure A.7D-E). Of the seven 

inflammatory cytokines that were significantly decreased in tissue treated with FTY720 

(Figure A.1F), S1P3 activation on AM resulted in significant decreases in five cytokines 

(TNF-α, MIP-1β, RANTES, IL-6 and MIP-1α) (Figure A.6C) and did not change MCP-1 

and IL-1β secretion. S1P3 activation on IM also resulted in significant decreases in five 

(TNF-α, IL-6, MIP-1α, MCP-1 and IL-1β) of the seven cytokines (Figure A.6D) while 

S1P1 activation significantly reduced the secretion of only MIP-1β and RANTES from 

IM (Figure A.6D). These results, taken together, show that endothelial cells and 

macrophages work together to push local tissue towards regeneration in the presence of 

FTY720 by reducing the secretion of inflammatory cytokines and increasing the secretion 

of regenerative cytokines. 

FTY720 differentially modulates the chemotaxis of AM and IM towards SDF-1α  
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 While both subsets of macrophages express CXCR4, the receptor that responds to 

SDF-1α, Ly6C+ IM gradually lose CXCR4 expression (125). Furthermore, CXCR4+ 

cells have been shown to potently induce angiogenesis (126-128). Locally released S1P 

receptor compounds are phosphorylated, taken into EC and secreted where they can then 

interact with cells in circulation. We wished to assess whether S1P receptor signaling 

could regulate the chemotaxis of monocytes towards SDF-1α through direct activation of 

S1P1 or S1P3. AM (CD45+CD11b+Ly6C-eGFPhi) and IM (CD45+CD11b+Ly6C+eGFPlo) 

were sorted based on their receptor expression profile from CX3CR1-eGFP mice using 

FACS. The two distinct cell types showed differential chemotactic responses towards 

SDF-1α (Figure A.8A-B, white bars).  
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Figure A.8. S1P3 activation promotes SDF-1α chemotaxis of AM and S1P3 is 
elevated on AM A-B) FTY720, but not SEW2871, enhances chemotaxis of marrow-
derived AM (A), but not IM (B) towards SDF-relative to vehicle. C) RAW264.7 
macrophages were polarized to M1 and M2 phenotypes and treated with FTY720 for 1 
hour. Membrane S1P3 expression was higher in RAW264.7 M2 macrophages and 
elevated with FTY720. D) Murine IM and AM were harvested from BM and sorted and 
treated for one hour with FTY720. Membrane S1P3 protein was higher in AM and 
enhanced with FTY720 treatment. E) mRNA was extracted from AM and IM and PCR 
was performed to measure transcription of S1P1 and S1P3, which was also elevated in 
AM. Results show a trend toward increased expression of S1P3 in AM cells. F) Polarized 
THP-1 were stained with antibodies against S1P3 (62), CD16 (59) and DAPI (blue). M2 
macrophages express significantly higher levels of membrane S1P3. Dotted line 
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represents fold change of 1, *, P<0.05 compared to vehicle-vehicle. #, P = 0.09 
compared to IM. Scale bar = 10µm.  

 

AM showed a 2.03 fold increase in migration towards SDF-1α over basal media (Figure 

A.8A), while IM showed only a 1.19-fold increase (Figure A.8B). Pre-treatment with 

FTY720 enhanced AM chemotaxis towards SDF-1α by 3.72-fold over plain media but 

did not affect the chemotaxis of IM towards SDF-1α (0.99 fold change over plain media). 

Pre-treatment with SEW2871, a S1P1 specific agonist, did not enhance SDF-1α mediated 

chemotaxis of AM (1.21-fold increase) supporting our hypothesis that these responses are 

mediated through S1P3 (Figure A.8A-B). These data show that FTY720 preferentially 

promotes the chemotaxis of AM towards SDF-1α in an S1P3-dependent manner. Walter 

et al. observed a similar S1P3-dependent SDF-1α mediated chemotaxis in endothelial 

progenitor cells (28).  

S1P3 expression is significantly enhanced in anti-inflammatory macrophages, relative to 

inflammatory macrophages, and FTY720 enhances this expression 

 To interrogate the mechanism involved in the distinct subtype-specific differences 

in SDF-1α mediated chemotaxis, we postulated that S1P3 receptor expression was 

different between AM (M2-like) and IM (M1-like). Murine M0 RAW264.7 macrophages 

were polarized to M1 and M2 phenotypes by treatment with LPS+IFN-γ or IL-4, 

respectively. M2-polarized RAW264.7 macrophages expressed more S1P3 protein (1.6 

fold over M0) compared to M1-polarized cells (0.5 fold over M0) (Figure A.8C). 

Surprisingly, FTY720 enhanced the expression of S1P3 in M0 (1.8 fold) and M2 (1.8 

fold) macrophages but not M1 macrophages (0.8 fold). S1P1 was higher in both M1 (1.5 

fold) and M2 (1.9 fold) phenotypes relative to M0 but was not different or elevated with 
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FTY720 treatment (Figure A.8C). These data suggest that S1P3 is either down-regulated 

in M1 macrophages, up-regulated in M2 macrophages, or both. We confirmed the 

differential expression of S1P3 in BM primary isolated AM and IM. The S1P3 protein 

expression in AM was increased 2.63-fold relative to IM. One hour FTY720 treatment 

resulted in a 1.91-fold increase in S1P3 in IM and a 2.94 increase in S1P3 in AM (Figure 

A.8D). There was no difference in mRNA expression of S1P1 between AM and IM; 

however, in agreement with to the protein results, AM had an increasing trend of S1P3 

mRNA over IM with significance at an alpha level of 0.1 (Figure A.8E), suggesting that 

these differences in S1P3 expression were transcriptionally regulated. To assess whether 

human macrophages shared these phenotypic profiles, human THP-1 macrophages were 

polarized to M1 and M2 phenotypes with LPS and IFN-γ, or IL-4, respectively and cells 

were fixed and stained with antibodies against S1P3. M2 polarized macrophages express 

less CD16, an M1 marker, and significantly more S1P3 on their surface (Figure A.8F). 

S1P1 expression was not changed between M0, M1 or M2 cell types. Taken together, 

these results reveal S1P3 as a novel marker for distinguishing anti-inflammatory or M2 

macrophages from inflammatory or M1 macrophages as well as the receptor that 

enhances the SDF-1α chemotaxis with FTY720 treatment. This differential expression of 

S1P3 is likely the source of the differential response to SDF-1α mediated chemotaxis after 

FTY720 treatment of monocytes (Figure A.8A-B). 

FTY720-induced microvascular growth is dependent on S1P3 activation on circulating 

and local cells 

To interrogate the role of S1P3 on circulatory cells (i.e. monocytes) and local cells 

(i.e. endothelial cells) during microvascular remodeling in the backpack model we 
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created S1P3 bone marrow chimeras by lethally irradiating wild type mice and injecting 

S1P3
-/- (global knockout) marrow-derived cells into the tail vein (BM S1P3

-/-) (Figure 

A.9A, top).  

	
  

Figure A.9. FTY720 induced microvascular growth is dependent on S1P3 activation 
on local and circulatory cells.  (A) Schematic of S1P3

-/- BM and WT BM chimera 
generation. (B-C) S1P3 activation is critical for maximum arteriolar diameter expansion 
(B) and length density (C) expansion on both marrow derived cells as well as local 
vascular cells. *, P<0.05 relative to WT-PLAGA. P: PLAGA, F: FTY720, V: VPC01091, 
C: Compound 26.  
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Selective knockout of S1P3 on marrow-derived cells eliminated the vessel diameter 

expansion induced by acute implantation of FTY720 in the backpack. Three days after 

polymer implantation BM S1P3
-/- mice treated with FTY720 showed a significant 

reduction in arteriolar diameter expansion (8.35%) and length density (11.9%) relative to 

wild type chimeras (60.1% and 107.34%, respectively) (Figure A.9B-C). S1P3
-/- mice 

reconstituted with wild type marrow (Fig. 5A, bottom) did not recover this reduction in 

growth (8.36% and 11.9%, respectively) and mice treated locally with PLAGA eluting 

VPC01091 showed similar reductions in diameter expansion (27.76%) and length density 

(11.99%) (Figure A.9B-C). Surprisingly, delivery of a specific S1P1 agonist, Compound 

26 (C), in the backpack model resulted in significant increase in arteriolar diameter 

expansion (63.58%) (Figure A.9B) but not length density (27.8%) (Figure A.9C) which 

suggested an S1P1 dependent mechanism for arteriolar remodeling. S1P1 activation has 

already been shown to enhance the recruitment of pericytes, which enlarge small 

arterioles and capillaries (109). To assess the role of S1P1 activation in the proliferation 

of pericytes, primary human microvascular pericytes were treated with 1uM FTY720 or 

SEW2871 and assessed longitudinally for proliferation. Both compounds enhanced the 

proliferation of pericytes over the course of 7 days, which supports the role of S1P1 

activation in pericyte proliferation/viability (Figure A.10).  
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Figure A.10. S1P1 activation enhances pericyte proliferation. 1uM SEW2871 and 
FTY720 enhance proliferation of primary isolated pericytes after 48 hours of treatment *, 
P<0.05 compared to vehicle. 

	
  
While S1P1 activation alone promotes arteriolar enlargement through pericyte 

recruitment and/or proliferation, without S1P3 activation microvascular networks do not 

undergo significant network-wide growth and maturation of vessels. Furthermore, the 

“length density” metric is only enhanced with S1P3 activation (Figure A.9C) and 

encompasses new vessels, and vessels that were smaller than the threshold of detection 

by imaging (roughly 10µm in diameter) initially and expanded above this threshold. 

Therefore enhanced length density due to S1P3 activation also represents small capillaries 

that expand above 10µm: arteriogenesis. We show here that S1P3 regulates both 

circulatory cells (monocytes) and local cells (EC) and is critical for FTY720-induced 

microvascular remodeling. These results, taken together, indicate that S1P1 and S1P3 

activation contribute to maximum diameter and network expansion but S1P3 is critical in 

the SDF-1α dependent recruitment of regenerative macrophages for arteriogenesis. 
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FTY720 enhances arteriogenesis of ischemic arterioles and promotes the peri-vascular 

localization of AM  

In order to examine the spatial localization of CX3CR1hi AM to vascular networks, 

we employed a mouse model of skeletal muscle ischemia, the spinotrapezius ligation 

model. Main feeder arterioles were ligated in DsRed-NG2/CX3CR1-eGFP mice 

promoting consequent arteriolar remodeling (Figure A.11A). 

  

	
  

Figure A.11. FTY720 recruits AM to ischemic vessels in the spinotrapezius ligation 
model and enhances arteriogenesis.  (A) Diagram of smooth muscle actin-stained 
whole-mounted spinotrapezius muscle with ligation (red cross) and film implantation 
(blue circle). (B) Immunohistochemistry images of the spinotrapezius vasculature 
surrounding an unloaded PLAGA film (left) or FTY720-loaded film (right) (10x 
magnification) obtained 7 days after ligation and implantation in a DsRed-NG2 
CX3CR1-eGFP mouse. Left: Blue is perfused lectin of endothelium and red NG2-
expressing perivascular cells illustrate remodeling vasculature. CX3CR1-GFP+ cells can 
be seen in the interstitial space proximal to the “remodeling” artery (white arrow) 
induced by ligation. Right: Encapsulation and delivery of FTY720 results in CX3CR1-
GFP+ cell recruitment (green arrows) together with increased sprouting and remodeling 
of microvascular networks. (C) FTY720 significantly increased overall CX3CR1+ cell 
content as well as CX3CR1+ cells directly associated with remodeling vessels. (D) 
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Further analysis of remodeling arterioles revealed significant CD206+ cell recruitment 
with FTY720. P<0.05 Scale bars = 50µm. 

 

These mice express DsRed on pericytes and eGFP on monocytes. Quantitative 

analysis of microvascular remodeling in peri-implant blood vessels from whole muscle 

showed that sustained local delivery of FTY720 enhanced classic signs of arteriogenesis, 

including increased tortuosity and collateralization of branching microvascular networks. 

FTY720-loaded scaffolds enhanced the growth of lectin-positive capillaries from 

remodeling arterioles relative to unloaded PLAGA scaffolds (Figure A.11B). The 

tortuosity of vessels surrounding FTY720 loaded PLAGA thin films was significantly 

greater than that surrounding unloaded PLAGA films (1.133 vs. 1.078) (Figure A.12).  

	
  

Figure A.12. Tortuosity of ischemic vessels correlated with CX3CR1+ cell 
recruitment with FTY720. Enhanced tortuosity (actual vessel length divided by end-to-
end length) of vessels was observed in the remodeling watershed of FTY720-treated 
muscles along with higher CX3CR1+ content. Tortuosity was positively correlated with 
CX3CR1+ cell content in watershed. FTY720 significantly enhanced tortuosity (average 
= 1.17) relative to unloaded PLAGA (average = 1.1).  
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Small increases in tortuosity can significantly enhance the surface area for oxygen 

and nutrient transport, which is critical for regeneration in ischemic tissue. Significantly 

more CX3CR1-eGFPhi cells were observed within one cell length away from vessels 

around FTY720-releasing implants (43.1 vs. 10.7) relative to unloaded PLAGA implants. 

Closer examination of vessel networks revealed significantly more AM directly 

associated with remodeling vessels downstream of arterial ligation, per field of view, in 

FTY720 treated tissues (33.5 vs. 7.4) relative to unloaded PLAGA implants (Figure 

A.11B-C). Interestingly, the tortuosity of vessels in the remodeling watersheds was 

positively correlated with CX3CR1-eGFPhi cell association and both were elevated with 

FTY720 treatment (Figure A.12). We wished to further characterize the phenotype of the 

CX3CR1+ cells recruited to remodeling vessels in the spinotrapezius and stained for 

CD68, a pan-macrophage marker, and CD206, an M2 macrophage marker. Paralleling 

FTY720-dependent recruitment of CD206+ macrophages in inflamed tissue (Figure 

A.3H), muscles treated with FTY720 resulted in a significant recruitment of CD206+ 

cells to the perivascular space around remodeling vessels (Figure A.11D). These results 

strongly suggest that local delivery of the S1P1/S1P3 agonist, FTY720, promotes 

phenotypically selective localization of endogenous host anti-inflammatory cells that 

enhance vascularization and recovery in response to injury. 

Discussion 

Activation of EC after injury triggers programs that release angiocrine cytokines 

which accelerate tissue repair through the recruitment of inflammatory cells (129). For 

example, IL-4, propagates TH2 (anti-inflammatory) immune responses by stimulating the 
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proliferation of AM and S1P receptor signaling has been shown to skew immune 

responses towards a TH2-cell response (102). Together, the recruitment and polarization 

of cells by locally produced angiocrine factors can concentrate regenerative cells and 

enhance tissue repair, vascular remodeling and implant integration. The results presented 

here reveal that local S1P3 activation can enhance tissue regeneration through the 

recruitment of CD45+CD11b+Ly6C-eGFPhi AM during tissue injury and ischemia 

(Figure A.13). 

	
  

Figure A.13. FTY720 promotes the generation of a regenerative module after injury 
and implantation. Microvascular injury and biomaterial implant leads to the production 
of pro-inflammatory cytokines and chemokines (e.g. MCP-1) from local and recruited 
cells. This enhances the recruitment of CX3CR1 low IM (orange cells) which clear debris 
and pathogens in the inflamed tissue (left). FTY720, through S1P3 agonism, enhances the 
production of pro-regenerative chemokines (e.g. SDF-1α) by endothelial cells and the 
chemotaxis of CX3CR1 high AM (green cells) resulting in the recruitment of AM which 
contribute to neo-vascularization and arteriogenesis (right).  

 

 Other groups have shown that different subsets of macrophages contribute to 

wound healing and microvascular remodeling when recruited to tissues (130, 131). 

During acute inflammation in the backpack, a model of wound healing and inflammation, 

FTY720 (a potent S1P1/3 agonist) released from PLAGA films significantly enhanced 
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microvascular growth 3 and 7 days post-surgery. When FTY720-loaded films were 

implanted 7 days post-surgery, after for significant inflammatory cell recruitment, the 

microvascular growth responses there was substantial microvascular growth relative to 

PLAGA (Figure A.1D, right and Figure A.1E, right) suggesting that FTY720 acts on 

cells recruited days after insult.  

Though PLAGA is biocompatible, as it degrades it releases products that are 

ultimately engulfed by tissue-resident macrophages, eliciting an inflammatory response 

(132). In characterizing the polymer films we noted a significant decrease in 

hydrophobicity of the polymer, which is to be expected based on the amphipathic 

structure of the FTY720 molecule (Figure A.14A-B).  
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Figure A.14. FTY720 reduces the hydrophobicity of PLAGA and monocyte 
spreading but not phagocytosis. A-B) FTY720 lowers the contact angle of water on, 
and increases hydrophilicity of, PLAGA films. C) LPS stimulated WEHI monocytes 7 
days after being seeded on unloaded (top) PLAGA polymer films are more spread out 
than those seeded on FTY720-loaded (bottom) films. This implied that FTY720 mediates 
an effect on cell morphology. D) The PLAGA-unloaded polymer with cells exhibited 
increased porosity compared to the PLAGA-FTY720 polymer with cells. This suggested 
an increased phagocytosis or interaction of the cells with the polymer. E) FTY720 does 
not alter the phagocytosis of M0, M1 or M2 macrophages. P<0.05 compared to PLAGA.  

 

Interestingly, increased hydrophilicity decreased cell spreading and adhesion to 

the polymer surface, which implied that FTY720 mediates an effect on cell morphology 

(Figure A.14C). Due to the difference in cell morphology on the polymer surface, we 

further investigated the morphology of the polymer after 14 days of culture. The 
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PLAGA-unloaded polymer with cells exhibited increased porosity compared to the 

PLAGA-FTY720 polymer with cells (Figure A.14D). In order to determine the effect of 

FTY720 on phagocytic activity, we used polarized macrophages of M0, M1 and M2 

types in a fluorescent bead phagocytosis assay where cells were incubated with beads for 

4 hours and the number of internalized beads was quantified. There were no significant 

changes in bead phagocytosis with FTY720 co-treatment in any of the polarized cell 

types (Figure A.14E). Taken together, these data indicate that the increase in porosity of 

the cells/PLAGA-unloaded polymer is more likely due to increase contact morphology of 

the inflammatory monocytes with the film than an increase in phagocytosis.  

Subsequent to biomaterial implantation inflammatory cytokines are secreted by 

EC to recruit monocytes. There was a significant reduction in many pro-inflammatory 

cytokines in tissues treated with FTY720-loaded PLAGA films (Figure A.1F and Figure 

A.2). While S1P has already been shown to regulate monocyte adhesion to EC through 

the expression of adhesion molecules (133, 134) its role in the production of chemotactic 

molecules has not been assessed to this point. We focused on two specific chemokines, 

MCP-1 and SDF-1α, which are known to recruit inflammatory cells and regenerative 

cells, respectively, in vivo. MCP-1 secretion peaked early in wound healing followed by 

SDF-1α secretion (Figure A.1B). Interestingly, peak SDF-1α expression also 

corresponded with the time point where maximal enhancements in microvascular 

remodeling were observed with FTY720 (Figure A.1D-E). In agreement with the 

reduction of many other inflammatory cytokines, tissue surrounding FTY720-loaded 

implants had a lower MCP-1:SDF-1α ratio (Figure A.1G). Marrow-derived AM and IM 

and HUVEC were treated with FTY720 or SEW2871 to determine the contributors to 
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S1P receptor-specific changes in cytokine secretion. While activation of both S1P1 and 

S1P3 resulted in a reduction in the secretion of inflammatory cytokines from AM and IM, 

S1P3 activation consistently reduced the secretion of more inflammatory cytokines  

(Figure A.6B-C, and Figure A.7D-E). S1P3 activation on HUVEC resulted in an 

increase in the secretion of regenerative cytokines (Figure A.6D and Figure A.7A-C). 

Furthermore, conditioned media from HUVEC treated with FTY720 contained a 

significantly higher amount of SDF-1α relative to VPC01091, an established S1P3 

antagonist, which completely abated the secretion of SDF-1α from HUVEC (Figure 

A.6E). These results show that S1P3, and to a lesser extent S1P1, activation alters the 

angiocrine secretome by reducing the secretion of inflammatory cytokines from 

macrophages and increasing the secretion of regenerative cytokines from endothelial 

cells. 

SDF-1α is a more potent chemoattractant for AM, than IM, and FTY720 further 

enhanced chemotaxis in an S1P3-dependent fashion (Figure A.8A-B). Keul et al. showed 

that the recruitment of monocytes that contributed to atherosclerosis was dependent on 

S1P3 (32). Furthermore, van der Pouw et al. recently performed a comprehensive genome 

analysis between classically and alternatively activated macrophages and found that S1P3 

was one of the top 40 genes most differentially regulated between the two subsets (135). 

We assessed the expression of membrane S1P3 in murine and human monocytes and 

macrophages and found that S1P3 was significantly elevated in anti-inflammatory (M2) 

macrophages relative to inflammatory (M1) macrophages. FTY720 enhanced this 

expression (Figure A.8C-D and Figure A.8F). This difference in S1P3 expression was 

transcriptionally regulated as S1P3 mRNA from primary isolated murine AM was 
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significantly elevated (Figure A.8E). This differential expression is likely responsible for 

the differential SDF-1α mediated chemotaxis between the two subtypes. 

Local S1P3 activation results in the recruitment of CX3CR1+, CD206+ 

macrophages to vessels surrounding polymer implant (Figure A.3B-C and Figure A.3H) 

Monocyte extravasation in an activated tissue follows three steps: flowing, rolling and 

firm adhesion, governed by a host of different molecules (122). Fong et al. discovered a 

mechanism of monocyte rolling and firm adhesion mediated by fractalkine and its 

receptor, CX3CR1 (136). FTY720 significantly reduced the number of flowing, rolling 

and adhering CX3CR1+ monocytes and macrophages, relative to sham and PLAGA 

groups, between 1 hour and 24 hours post-implantation (Figure A.3D-E). However, the 

rolling and adherent cells around FTY720-loaded implants one day post-implantation 

expressed significantly higher levels of CX3CR1 confirming that FTY720 specifically 

recruits highly CX3CR1 expressing AM relative to IM (Figure A.3G). These results, 

taken together, support a multi-factorial role for FTY720 in the recruitment of AM. 

FTY720 directly enhances the secretion of SDF-1α from EC and the chemotaxis of AM 

towards SDF-1α resulting in a lower proportion of CD45+CD11b+Ly6C+eGFPlo IM and a 

higher proportion of CD45+CD11b+Ly6C-eGFPhi AM in injured tissue (Figure A.3C).  

In addition to EC and AM, pericytes participate in many events during 

inflammation (137) and vascular remodeling (138). Others have already noted that S1P1 

activation enhances the recruitment of pericytes to developing or remodeling vessels and 

that these cells are involved in the arteriogenic process through proliferation and 

differentiation processes (109, 139). Recent evidence by Stark et al. identifies 

interactions between arterial pericytes and CX3CR1+ monocytes during inflammation 
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(137), which may suggest that pericytes play multiple roles in regulation of vascular and 

inflammatory modulation. The current literature does not describe a role for S1P 

receptors in the interaction between monocytes and pericytes, however, we can not rule 

out a role of vascular mural cells in angiocrine type signaling. To further examine the 

roles of S1P1 and S1P3 in pericytes we examined the proliferation of human 

microvascular pericyte cultures. Agonism of either S1P1 & S1P3 (FTY720) or S1P1 alone 

(SEW2871) induces statistically significant increases in cell number over 7 days in vitro 

(Figure A.10). It is important to note that while our data implies that S1P1 activation 

alone, with Compound 26, is sufficient in promoting significant arteriolar diameter 

expansion (Figure A.9B) wild type mice have endogenous S1P that has the potential of 

activating functional S1P3. When S1P3 is antagonized in the presence of S1P1 activation, 

as with S1P3
-/- BM chimeras treated with FTY720, significant arteriolar diameter 

expansion is not observed (Fig. 5B). Our results show that S1P3 activation on monocytes 

recruited from circulation as well as local EC is critical in order for microvascular 

networks to undergo robust growth and expansion (Figure A.9B-C). 

 Others have found that macrophages recruited to blood vessels can play roles in 

vessel support and stabilization in a “chaperoning” manner (140) and several studies have 

shown that skeletal muscle ischemia results in local up-regulation in SDF-1α (32,33); the 

spatial localization of recruited AM was assessed around remodeling vessels. As 

expected, in vessels surrounding FTY720-loaded PLAGA scaffolds in ischemic muscle 

there was a significant increase in cells expressing high levels of CX3CR1. This was 

accompanied by an increase in capillary expansion (Figure A.11B-C). Upon closer 

observation these cells adopted a peri-vascular location and were in direct contact with 
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vessels, especially at the arteriolar bases of new collaterals (Figure A.11B). Additional 

staining revealed that CD68+/CD206+ cells (M2 macrophages) were significantly 

recruited to remodeling vessels with FTY720 treatment and not unloaded PLAGA 

(Figure A.11D). In addition to this, tortuosity, a classic sign of arteriogenesis, was 

significantly increased in vessels surrounding FTY720-loaded implants (Figure A.12). 

 These findings provide novel and exciting insight into the mechanism of 

macrophage-supported implant arteriogenesis during ischemia and wound healing. S1P3 

plays a critical, non-redundant, role in conditioning local tissues with angiocrine factors 

like SDF-1α and preferentially recruiting AM (Figure A.13). These cells are able to 

extravasate into inflamed tissue and contribute to arteriogenesis, which has the potential 

to promote tissue regeneration and enhance biomaterial implant integration and 

functionality. These data also provide support for the use of FTY720, and other S1P3-

activating compounds for the therapeutic induction of arteriogenesis. In this regard, it is 

notable that FTY720 is now approved in the United States for use as an 

immunomodulatory agent for multiple sclerosis. 
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APPENDIX B 

List of primers 

Gene Name Left primer Right primer 
SPTLC1 tggaagagagcactgggtct gctacctccttgatggtgga 
KDSR ccaccagacacagacacacc ccgagagcatgtacccatct 
SPHK1 ggcgtcatgcatctgttcta caaacacacctttcccatcc 
SPHK2 ggctgtccttcaacctcatc cagtcagggcgatctaggag 
SGPP1 aggaagtggtgctggaattg gcaggctaaaggaatggtga 
SGPP2 tcctcttggttcgtcagctt cacaaaggttgtagcgcaga 
SGPL1 cttgatgcacttcggtgaga gttccaccccttagcagtca 
LPPR1, 
LPPR2 

tgcaagccaaactacaccag tcgactgctcttcgtcttga 

LPPR3 gaacaagatcccgaaggaca gtagggcatggagagagtgc 
CERS1  cagtgacgtgcagcttgagt ctggtggcatacaggacctt 
CERS2 tcagcattgcctctgatgtc ccagcaggtaatcggaagag 
CERS3 ggatcacgatggactcgtct ttgccttgtggaatgtttga 
CERS4 tggagctgggggactgatta cctgccaaaaccactcgttg 
CERS5 gttctgggacatccgacagt caatggtgaccaagtgatgc 
CERS6 ggtttcgacaaagacgcaat agcaatgcctcgtattccac 
ASAH1 tctacgccacccttttcgtg gactaaggcgacgcaactcc 
ACER3 ctggtacatcgccgagttct accaggatcccattcctacc 
DEGS1 gagctgatggcgtcgatgta gacctgtgccacggtattga 
SGMS1 tagttggcacgctgtacctg gtgttagcatgaccgtgtgg 
SGMS2 aggagcttagccctccactc aacagaatctgcgtcccact 
SMPDL3B ctataccagcaatgcgctga gccttgttttgcgtcttctc 
SMPD4  ggttcgtccagcagaaactc aaagcccacaaacaacttgg 
ENPP7 aagaagggaggctggagaag gtgctccccattgttgaact 
CERK gggcacccctcaattgtgta cagcatgaggaacggtgtct 
DGKZ  gtctctaaggtgacactcggg cgacgcttagacgacaggag 
KSR1 atggatccccacagatggta cagattctgtcctccgaagc 
PRKCA cctaaaggctgaggttgctg atttagtgtggagcggatgg 
PRKCB tgaaggggaggatgaagatg taagggggctggatctcttt 
ENPP2 atggattacagccaccaagc atccattaattgccccacaa 
PP1A actatgtggacaggggcaag caggcagttgaagcagtcag 
PP2A ccacacagttccagacatgg actgtggccaccaagttttc 
SMPD2 catggtgactggttcagtgg tctgccttcttggatgtgtg 
SMPD1 ctgactctcgggttctctgg aggttgatggcggtgaatag 
PPAP2C agttcttcctggtggccttt cctcctccttcagacagtgc 
PPAP2B tcgagacaagcaccatcaag accgcgacttcttcaggtaa 
PPAP2A tcaactgcagcgatggttac gcccacataaatggatacgg 
LPPR5 gccctgtgtaagcccaatta agtctggttcccttggcttt 
PLA2G4A tggctctgtgtgatcaggag gagccagaaagaccagcaac 
PARP1 ggtggatgggttctctgagc accccttgcacgtacttctg 
PARP2 gaagctgacagtggcacaaa tgtccggattagtggaggag 
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PARP3 agggccctgagaagaagaag tggttcagggtgcagttgta 
PARP4 gggcactgttggtgtctttt ctgccttccatggtgctaat 
MMP9 gagaccggtgagctggatag tacacgcgagtgaaggtgag 
MMP12 atgcagcacttcttgggtct tcacggttcatgtcaggtgt 
CCL2 ccccagtcacctgctgttat tggaatcctgaacccacttc 
M1P-1 gcttgttgctgtccttggat gagtgaacacgggatgcttt 
CCL5 cgctgtcatcctcattgcta acacacttggcggttctttc 
ITGA3 cccaactacaggcgaaacat gcatccgcaaaggtaaagag 
ITGAM gggaagtggcaaggaatgta ctgcgtgtgctgttctttgt 
ITGA4 atcggagctccacaagaaga gcagaatcagaccgaaaagc 
ITGAL agagtccaggcttctgtcca tacaggatggggatgatggt 
ICAM1 ggctggagctgtttgagaac aggagtcgttgccataggtg 
B3gnt5 ctggcttgggaagatcaaag cacgatgaacacgaccaatc 
UGCG ctttgctgccaccttagagc cttcggcaatgtactgagca 
HES4 tggacgccctcagaaaagag ttcacctccgccagacactc 
CDKN1C tttagagcccaaagagcccc accagtgtaccttctcgtgc 
ADA gacccgctcatcttcaagtc ggtcgagaagctccctcttt 
C1QB ccccagggataaaaggagag ttttctgggtggccttgtag 
C1QA ccaggaagaaccgtaccaga ccttgttggtggtgtcacag 
SH2D1B gcgagtcgataccaggagtc cccctgatttggtttttcaa 
MTSS1 cccgtcatctcagatcccta agtcatgctccgtggtctct 
RHOC acagcagggcaggaagacta ttcatcttggccagctctct 
CKB catatcaagctgcccaacct accagctccacctctgagaa 
S100A12 aggagcttgcaaacaccatc ctttgtgggtgtggtaatgg 
C19orf59 agagccatcctgagcctgta tctcttcgcatgcttgtacg 
PADI4 gaaatccacaggttcctcca caccccggtgaggtagagta 
ALOX5AP gcgtttgctggactgatgta gagatggtggtggagatcgt 
PROK2 ctatgggcaaactgggagac agacatgggcaagtgtgatg 
MOSC1 tggtgacgtggaactgaaaa acacagggtctcccactttg 
VCAN cagggaacctggtgaagaaa cttccacagtgggtggtctt 
CD14 ctgcaacttctccgaacctc ccagtagctgagcaggaacc 
QPCT ccctcaatcccactgctaaa tcttgtctaaggcacgagca 
S1PR1 ccacaacgggagcaataact cagaatgacgatggagagca 
S1PR2 tggaaaaccttctggtgctc caggaggctgaagacagagg 
S1PR3 tggtcatctgcagcttcatc gaacatactgccctccctga 
S1PR4 agccttctgcccctctactc gatcatcagcaccgtcttca 
S1PR5 gcatctactgccaggtacgc agcaacagcagcaggaagag 
CSF1 cccagtgtcatcctggtctt gcagttccacctgtctgtca 
CSF2 atgtgaatgccatccaggag agggcagtgctgcttgtagt 
IFNG tgaccagagcatccaaaaga ctcttcgacctcgaaacagc 
IL1B cgatgcacctgtacgatcac tctttcaacacgcaggacag 
IL4 actgcttccccctctgttct gtccttctcatggtggctgt 
IL10 agaacagctgcacccacttc gcatcacctcctccaggtaa 
TGFB1 gggactatccacctgcaaga cctccttggcgtagtagtcg 
CXCR4 ggtggtctatgttggcgtct tggagtgtgacagcttggag 
CX3CR1 gccttcaccatggatcagtt gacactcttgggcttcttgc 
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CD14 ctgcaacttctccgaacctc ccagtagctgagcaggaacc 
MRC1 acggactgggttgctatcac ttccacctgctccataaacc 
CXCL12 gccgattcttcgaaagccatta ctaggctttgcccaggttga 
CTSK gggtcagtgtggttcctgtt cccacatatgggtaggcatc 
CTSS tctctcagtgcccagaacct gccacagcttctttcaggac 
CTSL1 gtggacatccctaagcagga tttcaaatccgtagccaacc 
CTSL2 tccgtgagcctctgtttctt ctagccatgaagccaccatt 
CTSV tccgtgagcctctgtttctt ctagccatgaagccaccatt 
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APPENDIX C 

List of cytokines 

Cytokine Abbreviation 
Epidermal growth factor  EGF 

Eotaxin  
Fibroblast growth factor 2  FGF-2 

Fms-related tyrosine kinase 3 ligand Flt-3L 
Fractalkine  

Granulocyte colony stimulating factor  G-CSF 
Granulocyte macrophage colony 

stimulating factor  
GM-CSF 

Growth-related oncogene  GRO 
Interferon α2  IFNα2 
Interferon-γ  IFN-γ 

Interleukin 1-α  IL-1α 
Interleukin 1-β  IL-1β 

Interleukin 1 receptor antagonist A  IL-1RA 
Interleukin 2  IL-2 
Interleukin 3  IL-3 
Interleukin 4   IL-4 
Interleukin 5  IL- 5 
Interleukin 6  IL-6 
Interleukin 7  IL-7 
Interleukin 8  IL-8 
Interleukin 9  IL-9 
Interleukin 10  IL-10 
Interleukin 12  IL-12 - p40 
Interleukin 12  IL-12 - p70 
Interleukin 13  IL-13 
Interleukin 15  IL- 15 
Interleukin 17  IL-17 
Interleukin 17a  IL-17a 

Interferon-inducible protein 10  IP-10 
Keratinocyte chemoattractant  KC 

Leukemia inhibitory factor  LIF 
Macrophage colony stimulating factor  M-CSF 

Macrophage derived chemokine  MDC 
Macrophage inflammatory protein 1α  MIP-1α 
Macrophage inflammatory protein 1β  MIP-1β 
Macrophage inflammatory protein 2  MIP-2 
Monocyte chemoattractant protein 1  MCP-1 
Monocyte chemoattractant protein 3  MCP-3 

Monokine induced by gamma interferon  MIG 
Platelet derived growth factor AA  PDGF-AA 
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Platelet derived growth factor BB  PDGF-BB 
Regulated on activation, normal T-cell 

expressed and secreted  
RANTES 

Tumor necrosis factor α   TNF-α 
Tumor necrosis factor β  TNF-β 

Transforming growth factor α  TGF-α 
Soluble cluster of differentiation 40 ligand  sCD40L 

Stromal derived factor 1α  SDF-1α 
Vascular endothelial growth factor  VEGF 
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