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SUMMARY 

While it has been known for almost a century that energy metabolism in cancer cells is 

dysfunctional, only recently has the importance of metabolism in cancer come to be more 

generally recognized. Dysfunctional metabolism is now acknowledged as a hallmark of cancer, 

and recently, further examples of altered metabolism in cancer cells have been demonstrated. 

Despite some targeted study of metabolism in cancer, its systems-level dynamics remain 

relatively unexplored, and a deeper understanding of these metabolic behaviors could profoundly 

affect the way that cancer is understood or even treated. Cancer stem cells are stem-like cancer 

cells that have been identified within tumors and are also poorly understood. Cancer stem cells 

are a major concern for effective cancer treatment: they have self-renewal capabilities, can 

differentiate into cancer cells, and exhibit chemo- and radioresistance; they are thus suspected as 

a primary cause of cancer recurrence. The purpose of this thesis was to characterize cancer 

metabolism in vitro using epithelial ovarian cancer as a model on an untargeted, systems-level, 

basis with particular attention paid to the difference between cancer stem cell metabolism and 

cancer cell metabolism.  

Gene expression analysis of ovarian cancer stem cells and ovarian cancer cells previously 

identified several metabolic pathways that were significantly enriched in differentially expressed 

genes between cancer stem cells and their parental isogenic cell line. To determine if there were 

substantial metabolic changes corresponding with these transcriptional differences, two-

dimensional gas chromatography coupled to mass spectrometry was used to measure the 

metabolite profiles of the ovarian cancer and cancer stem cell lines (Chapter 2). These two cell 

lines exhibited significant metabolic differences in both intracellular and extracellular metabolite 

measurements. Pathway analysis of intracellular metabolomics data revealed close overlap with 
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metabolic pathways identified from gene expression data, with four out of six pathways found to 

be enriched in gene-level analysis also enriched in metabolite-level analysis. One of the most 

significantly enriched pathways, arginine and proline metabolism, contains multiple metabolites 

that are each statistically significantly different between the two cells. Two of those metabolites, 

proline and putrescine, have been previously implicated in cancer, but the changes displayed 

between normal and cancer cells are discordant with the changes they display between cancer 

cells and cancer stem cells. This behavior can be explained in the context of current research in 

stem cell metabolism, suggesting that ovarian cancer stem cells may exist in a metabolic balance 

between potency and proliferation. Overall, metabolism in this ovarian cancer stem cell line is 

distinct from that of more differentiated isogenic cancer cells, showing similarities to stem cell 

metabolism that suggest the potential importance of metabolism for the cancer stem cell 

phenotype. 

The in vitro cell culture conditions for this initial work, though, differ drastically from in vivo 

tumor conditions. To capture the metabolic profiles that would be more likely in a tumor in vivo, 

biologically-based perturbations were applied to the ovarian cancer cell and cancer stem cell 

grown in vitro (Chapter 3). Glucose deprivation, hypoxia, and ischemia are all conditions that 

occur naturally in tumors; they all perturbed ovarian cancer and cancer stem cell metabolism, but 

not in the same ways between the cell types. Hypoxia had a much larger effect on ovarian cancer 

cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell 

metabolism. Chemotherapeutics treatment with docetaxel caused metabolic changes mostly in 

amino acid and carbohydrate metabolism in ovarian cancer cells, though the most significantly 

altered metabolite was uracil. Ovarian cancer stem cell metabolism was not affected by 
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docetaxel. These differences will deepen our understanding of the metabolic changes occurring 

within the in vivo tumor.  

To expand the model system of cancer metabolism to be even more representative of in vivo 

conditions, metabolic profiles were taken of an in vitro model of the epithelial-mesenchymal 

transition (EMT), a well-known process in embryonic development now believed to take part in 

tumor metastasis and the origin of cancer stem cells (Chapter 4). Metabolic samples were taken 

over a mesenchymal to epithelial transition (MET) and a subsequent EMT. During the two 

phenotypic changes, no corresponding metabolomic changes were detected, suggesting that 

EMT/MET does not perturb cellular metabolism.  

This work explores the metabolic differences between an ovarian cancer cell line and its isogenic 

cancer stem cell line under various conditions, providing the first-ever characterization of 

ovarian cancer stem cell metabolism. This systems-level characterization of cancer metabolism 

may ultimately be key in the development of chemotherapeutics that target metabolic pathways; 

related future work and the broader relevance of the findings of this thesis are presented in 

Chapter 5. 
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Chapter 1 Background and introduction 

Portions of this chapter are reproduced under license from our published review, Applications of 

metabolomics in cancer research, in the Journal of Carcinogenesis.1 

1.1. Cancer & cancer stem cells 
Cancer is the second leading cause of death in the United States, accounting for 25% of total 

deaths.2 In recent years, it has even overtaken heart disease related deaths in those younger than 

80.2 Ovarian cancer was the fifth leading cause of cancer-related deaths in American women in 

2010.3 Worldwide, ovarian cancer was newly diagnosed in 226,000 females and was responsible 

for 140,000 deaths in 2008.4 Ovarian cancer targets mostly women over 50 and is the most fatal 

gynecological cancer, mainly because 70% of the cases detected are at an advanced stage, when 

five-year survival rates are 30%.2, 5 Epithelial ovarian cancer is the most prevalent form of 

ovarian cancer, accounting for around 90% of cases.6  

Cancer cells (CCs) differ from normal cells by a number of distinguishable hallmarks that were 

enumerated by Hanahan and Weinberg in 2000.7 The most well-known of these six hallmarks are 

CCs’ ability to proliferate uncontrollably and invade nearby tissues or distant tissues through 

metastasis.8 Others include inactivation or evasion of growth suppressors, mutation into 

immortal cells that can replicate indefinitely, inducement of angiogenesis, and evasion of 

apoptotic as well as autophagic signaling pathways.7 Continuing research has prompted the 

addition of four new hallmarks of cancer: genomic instability, an ability to harness the immune 

system’s tumor-promoting potential and inactivate its destructive abilities, and an altered 

metabolism in order to enhance growth rate and evade destruction.9 It is the altered metabolism 
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of cancer that is the focus of this thesis; further details on cancer metabolism will be discussed in 

section 1.2.  

CCs within tumors display differing levels of differentiation and proliferation capabilities.10, 11 A 

number of theories exist to explain the heterogeneity of CCs within a tumor, including the 

stochastic model and cancer stem cell model. The stochastic model, illustrated in Figure 1.1b, 

postulates that any cancerous cell has the potential to form a tumor. A mutation (which has an 

equal chance of happening in any cancerous cell) is required to give normal cancerous cells the 

potential to populate the heterogeneous cells within a tumor To become a tumor-forming cell, a 

cancerous cell undergoes a mutation that has an equal chance of happening in any cancerous cell. 

The cancer stem cell model, shown in Figure 1.1c, is arranged in a hierarchy with the top tier 

formed by cancer stem cells (CSCs). CSCs have the potential for self-renewal and differentiation 

into the heterogeneous cells that form the tumor.10, 12 CSCs may arise from mutations of different 

cells: normal stem cells, progenitor cells, or differentiated cells with the ability to self-renew.10, 12 

After the CSCs, varying degrees of differentiated cells fill the next level and fully differentiated 

CCs lie at the bottom of the hierarchy.12 The main difference between these two models is that in 

the stochastic model, every cell has the potential to form a tumor through a mutation, while in 

the cancer stem cell model, only the CSCs have the potential to form a tumor. 

When these models were initially created, most people believed that only one model could be 

correct. Now, researchers believe that tumor heterogeneity actually occurs through a mixture of 

these two models.10, 11, 13, 14 In this combined model, shown in Figure 1.1d, CSCs are the only 

cancerous cells with the potential of forming a tumor, but the CSC state is not static. Instead, 

CSCs can transition to a differentiated state and other cancerous cells can transition to CSC state 

forming a new CSC (CSC2 in Figure 1.1d). 
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Figure 1.1: Tumor heterogeneity is more plastic than originally modeled. a) Typical stem cell 

hierarchy with stem cells at the top, followed by progenitor cells, and finally, fully differentiated, mature 

cells. b) Stochastic model (or clonal modal) where every cell has an equal chance of forming a tumor. 

Mutations (lightning bolts) can give cancerous cells the ability to form a tumor, as shown in the yellow 

and green transformed cells. c) The cancer stem cell follows closely the normal stem cell hierarchy, where 

only the CSCs have the ability to form a tumor. Each CSC (pink cells) has the potential for asymmetric 

and symmetric replication as well as the potential to form a tumor. d) The combined model of tumor 

heterogeneity has aspects of both the stochastic and cancer stem cell modal. Here, only CSCs (CSC1; 

pink) have the ability to form a tumor, but mutations can generate new CSCs (CSC2; blue), which also 

have tumor forming potential. Reprinted by permission from Macmillan Publishers Ltd: [Nat. Rev. 

Cancer] Visvader, J.E. & Lindeman, G.J, 200810, copyright (2008). 

Original evidence for CSCs came from isolation of cells from hematological malignancies and 

transplantation into animal models.12, 15, 16 The first evidence for solid tumor CSCs was found in 

breast cancer.10, 17 Tumor cells were isolated from human breast cancer tumors and pleural 

effusions and sorted based on cell surface markers. Only one group of CCs (a small fraction of 

the total number of cells) was able to completely reconstitute the original tumor upon 
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transplantation. These cells were labeled as CSCs. CCs that did not have the CSC markers were 

not able to reconstitute the original tumor, even when using 100 times the amount of CSCs used 

to form the tumor. Currently, CSCs are isolated and identified by their cell surface markers, but 

the lack of unique surface markers solely marking CSCs is proving problematic for complete 

isolation.18 Nonetheless, CSCs have been isolated from numerous cancers,19 including ovarian 

cancer.6, 20-23 

Recently, a link has been found between CSCs and epithelial-mesenchymal transition (EMT).24, 

25 EMT is a normal event during embryonic development, where epithelial cells are induced into 

a mesenchymal phenotype in order to develop more advanced structures and functions.26 

Epithelial cells have strong cell-cell adhesion through multiple types of junctions, which makes 

them tightly packed and immobile. Mesenchymal cells do not form junctions; instead, they have 

migratory and invasive properties. CCs have hijacked the EMT, albeit incompletely, resulting in 

further tumor progression and induction of metastasis. Normal CCs undergoing EMT have been 

shown to acquire CSC-like behavior,24, 25 as shown in Figure 1.2. During EMT, normal CCs 

obtain some stem cell-like properties, including self-renewal capabilities. By acquiring CSC-like 

behavior, these newly metastatic cells become perfectly situated to form a new tumor as CSCs 

inherently have the properties needed for a cell to form a metastatic lesion.27  
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Figure 1.2: Tumor CSCs can be induced by EMT. Intrinsic CSCs are formed from mutations in stem 

cells, progenitor cells, or differentiated cells that have gained self-renewal powers. EMT-induced CSCs 

are caused by signals from the reactive stroma that induce the CCs to undergo EMT. The EMT forms 

mesenchymal cells with CSC properties. From Chaffer et al, 201127. Reprinted with permission from 

AAAS.  

CSCs pose a major problem for cancer treatments, as they exhibit resistance to traditional 

chemotherapeutics.10, 19, 28 CSCs are believed to be able to resist chemotherapy through several 

approaches, including ATP (adenosine triphosphate)-binding cassette (ABC) drug pumps that 

expel chemotherapeutics from the cell,29 entrance into quiescence which grants resistance to 

toxins targeting fast replicating cells, and resistance to apoptosis.19, 28 Since CSCs are 

chemotherapeutic resistant and have the ability to recapitulate a new tumor, CSCs are believed to 

be a major cause of cancer recurrence. A significant challenge in ovarian cancer treatment is the 

fact that most patients die of its recurrence, after initial treatment.5 Ovarian cancer stem cells 

(OCSCs) have not only been shown to be resistant to traditional chemotherapeutics, but have 

proliferated in the presence of chemotherapy, leading to the necessity of OCSC-targeted 

therapeutics.30, 31 One area of research that could lead to therapeutic targets is the study of CSC 

metabolism and how it differs from CC metabolism. 
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1.2. Cancer metabolism 
Broadly defined, metabolism is the set of processes catalyzing the production of energy and 

cellular building blocks (amino acids, nucleotides, lipids, etc.) from the nutrients a cell takes up 

from the environment. These building blocks, and the biochemical intermediates generated 

during their production and utilization, are collectively referred to as metabolites. Metabolite 

levels integrate the effects of gene regulation, post-transcriptional regulation, pathway 

interactions, and environmental perturbations; this downstream synthesis of diverse signals 

ultimately makes metabolites direct molecular readouts of cell status that reflect a meaningful 

physiological phenotype.32-35 Therefore, it is not surprising that metabolism is altered in cancer 

since there are many other alterations in cancer cells that would be reflected in metabolism. One 

major question stems from this, though; does the altered metabolism merely reflect the cancer 

state or does the altered metabolism additionally contribute to and sustain the cancer state? 

1.2.1. Warburg effect and supporting mutations 
Though reprogramming of energy metabolism was only recently recognized as an emerging 

hallmark of cancer,9 altered cancer metabolism was first identified almost a century ago when 

Warburg discovered that cancer cells primarily use anaerobic glycolysis to produce their energy 

instead of oxidative phosphorylation, even in the presence of oxygen – a phenomenon known as 

the Warburg effect or aerobic glycolysis.36, 37  

Over the years, many common cancer mutations have been shown to support the Warburg 

effect.38 AKT1, HIF, and p53 together cause increased flux of glucose through glycolysis and 

down-regulation of flux through the tricarboxylic acid (TCA) cycle (Figure 1.3), thereby 

supporting the Warburg effect and carcinogenesis.39-47 AKT1 is a downstream effector in the 

PI3K pathway, which is up-regulated in cancer. AKT1 administers growth and survival signaling 

and has a strong effect on metabolism27: it stimulates glycolysis through phosphorylation of 
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glycolytic enzymes and transcriptional up-regulation of glucose transporters.39 Hypoxia-

inducible factor 1 (HIF1), whose induction is caused by the highly hypoxic conditions present in 

tumors, induces the Warburg effect by increasing glycolytic transport and expression of 

enzymatic genes while down-regulating the TCA cycle, a critical pathway that feeds electrons to 

oxidative phosphorylation.40 HIF1 decreases TCA cycle flux via pyruvate dehydrogenase41-43, 

the enzyme linking glycolysis and the TCA cycle. p53, a commonly down-regulated gene in 

cancer, has several regulatory functions that control metabolism38. Although p53 promotes 

expression of hexokinase (the first enzyme in glycolysis),44 it also stimulates oxidative 

phosphorylation,45 induces the expression of TP53-induced glycolysis and apoptosis regulator 

(TIGAR) (an enzyme that down-regulates glycolysis),46 and down-regulates phosphoglycerate 

mutase (PGAM1) (a glycolytic enzyme)47. Therefore, even though p53 normally promotes 

hexokinase, overall, the down-regulation of p53 in cancer still supports the Warburg effect. 

Loss-of-function mutations of mitochondrial enzymes succinate dehydrogenase (SDH) and 

fumarate hydratase (FH) also support the Warburg effect.48 The mutations of these two tumor 

suppressors allow for build-up of succinate and fumarate in the mitochondria, leading to their 

eventual escape. These metabolites have been shown to inhibit prolyl hydroxylases (PHDs) – a 

family of enzymes that participate in multiple pathways, one of which is to tag HIF for 

degradation.48-51 Therefore, accumulation of succinate and fumarate support HIF accumulation, 

which leads to increased glucose transfer into the cell and suppression of the TCA cycle, as 

discussed above. 

Pyruvate kinase (PK) is another commonly altered enzyme in cancer with metabolic implications 

(Figure 1.3). PK converts phosphoenolpyruvate (PEP) into pyruvate and is a rate-limiting step in 

glycolysis. There are four human isoforms of PK: L, R, M1 and M2. L and R are limited to a few 
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specific cell types. M1 is expressed in most adult cells, and M2 is expressed in self-renewing 

cells, like embryonic stem cells.52 PKM2 is less active than PKM1, is activated allosterically by 

fructose-1,6-bisphosphate (FBP), and is negatively regulated through tyrosine kinase signaling in 

CCs. 53, 54 Expression of less-active, rate-limiting PKM2 leads to a smaller flux of its catalyzed 

reaction and an accumulation of upstream glycolytic intermediates.38 Interestingly, most CCs 

express the isoform PKM2, switching over from PKM1 expression during carcinogenesis. 

Research into PKM2’s effect on cancer has shown that CCs expressing PKM2 consume less 

oxygen and produce more lactate than the same CCs expressing PKM1, suggesting a significant 

role in the manifestation of the Warburg effect.55 Lung CCs expressing PKM2 in vivo showed 

faster tumor development, a greater number of tumors, and larger tumors than the same cells 

expressing PKM1.55 

Expression of PKM2 in most cancer cells causes the rate-limiting step of glycolysis to become 

even slower, which would normally result in accumulation of glycolytic intermediates and the 

natural down-regulation of glycolysis. However in cancer cells, glycolytic intermediates are 

rerouted down one of the many pathways that branch off from glycolysis. One of the most 

notable of these pathways is the pentose phosphate pathway (PPP), which produces NADPH 

(nicotinamide adenine dinucleotide phosphate, reduced) and ribose-5-phosphate, both important 

reagents for biosynthetic pathways required for proliferation. It has been discovered that p53, 

discussed above as a regulator of many metabolic pathways, also controls flux into the PPP via 

control of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the rate-limiting 

reaction between glycolysis and the PPP.56 In normally functioning cells, cytoplasmic p53 

inhibits G6PD and thus limits metabolic flux through the PPP.56 Since p53 is inactivated in most 

tumors, cytosolic p53 is not present to inhibit G6PD in CCs, increasing the flux into the PPP and 
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increasing production of NADPH and ribose-5-phosphate.56 These metabolites are then used by 

the highly proliferative cells. 

 

Figure 1.3. Illustration of important relationships between metabolome, proteome, and genome in 

cancerous cells. Glycolysis breaks down glucose into pyruvate, which is then fermented to lactate; 

pyruvate flux through the TCA cycle is down-regulated in cancer cells. Pathways branching off of 

glycolysis (such as the PPP) generate biochemical building blocks to sustain the high proliferative rate of 

cancer cells. Specific genetic and enzyme-level behaviors are described in the main text. Blue boxes are 

enzymes important in transitioning to a cancer metabolic phenotype; orange boxes are enzymes that are 

mutated in cancer cells. Green ovals are oncogenes that are up-regulated in cancer; red ovals are tumor 

suppressors that are down-regulated in cancer. Abbreviations are as defined in the abbreviations section. 

Figure from Vermeersch, et al, 2013.1 

Even with most CCs expressing less-active PKM2 over PKM1, they still produce abnormally 

high levels of lactic acid. This increase in lactic acid production suggests the possible existence 
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of another path from PEP to pyruvate, as pyruvate fermentation produces lactic acid. An 

alternative pathway has been found, shown in Figure 1.3, that converts PEP to pyruvate through 

the phosphorylation of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1).57 PEP has 

been shown to directly phosphorylate PGAM1 without requiring enolase conversion of PEP to 2-

phosphoglycerate.57 The phosphorylation reaction produces pyruvate without producing ATP, 

allowing pyruvate production to be decoupled from energy generation and the low activity of 

PKM2.57 By decoupling energy generation from glycolysis, pyruvate production from PEP can 

continue, regardless of ATP regulation or dependence on PKM2. This continuous pyruvate 

production accounts for the high levels of lactic acid characteristic of CCs.  

A consequence of the Warburg effect is an elevated amount of lactic acid production, which is 

expelled by the CCs into their environment.37 The lactic acid and CO2 (generated by the PPP) 

produced is enough to lower the extracellular pH from 7.4 (physiological pH) to below 6.5 in 

some tumor locations.58 This acidic environment helps cancer cells to decrease sensitivity to 

hypoxia, stimulate metastasis, and increase drug resistance.59, 60 Recent research indicates that 

lactate might help suppress immune response to the tumor, as well as induce chronic 

inflammation in the tumor site.61 Overall, the acidic environment of the tumor helps maintain and 

further tumorigenic potential. 

1.2.2. Glutaminolysis 
Along with aerobic glycolysis, another pathway discovered to have increased flux in cancer cells 

is glutaminolysis.62 Glutaminolysis is a catabolic pathway that converts glutamine to lactate, 

producing NADPH. By increasing the flux through glutaminolysis, cancer cells are able to 

produce an abundance of NADPH, completely covering the needs of fatty acid biosynthesis.62 
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Glutamine has also been shown to play an important role in cancer metabolism by serving as an 

anaplerotic precursor to oxaloacetate (OAA), a TCA intermediate.62  

c-Myc, a protein produced by the oncogene MYC, interacts with HIF to regulate several 

enzymes involved in glucose metabolism, shown in Figure 1.3, but has also recently been shown 

to play a role in glutaminolysis.63, 64 Mitochondrial glutaminase (GLS) expression correlated with 

Myc expression in several different cell lines, including a human prostate cancer cell line.64 GLS 

is a mitochondrial enzyme that converts glutamine to glutamate, the first step in the anaplerotic 

conversion of glutamine to OAA. Through characterization of the relationship between GLS and 

Myc expression, it was discovered that Myc indirectly regulates GLS through two microRNAs, 

miR-23a and miR-23b.64 miR-23a/b target the 3’ UTR of GLS and inhibit GLS expression. Myc 

alleviates miR-23a/b inhibition by transcriptionally repressing these two microRNAs, which in 

turn allows for increased GLS expression. The effect of Myc upon the conversion of glutamine 

to proline has also been studied. It was shown that Myc stimulates proline production by 

suppressing proline oxidase, also known as proline dehydrogenase (POX/PRODH), through 

miR-23b*64, 65 (miR-23b & miR-23b* are processed from the same transcript). POX/PRODH is 

an enzyme involved in the first step of proline catabolism. This enzyme has been shown to act 

like a tumor suppressor66-69 - when proline is metabolized to glutamine, electrons are produced 

and in turn produce ROS, which eventually leads to apoptosis. It is not yet known why proline 

production is stimulated through conversion of glutamine. 

The effect of GLS suppression on glutamine-dependent tumor cells has also been studied. Tumor 

cells are able to use glucose sources to compensate for the lack of glutamine using the enzyme 

pyruvate carboxylase.70 In some glutamine-independent cancer cell lines in which GLS 

suppression had no effect, pyruvate carboxylase was also found to be active. During 
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gluconeogenesis, pyruvate carboxylase is responsible for producing oxaloacetate. The 

mechanism of pyruvate carboxylase induction is not yet known, but it is believed to be 

complex.70 Pyruvate carboxylase may allow glutamine-dependent cancer cells a pathway for 

resistance against glutamine-targeted therapies. 

1.2.3. Altered Metabolism: Byproduct or Condition of Cancer? 
Cancer metabolism is clearly different from normal cellular metabolism, but it has still not been 

conclusively determined if this alteration is a byproduct or a necessary condition of cancer. 

Originally, Warburg postulated his effect as a condition of cancer, and not as a product of the 

cells being cancerous.37 Recently, experimental evidence has been offered in favor of the 

metabolism shift being a determinant of cancer. As mentioned above, when CCs were forced to 

express PKM1 over PKM2 in vivo, decreased tumor growth and development rate were seen. 

PKM1 expression was shown to favor oxidative phosphorylation over glycolysis, showing that 

CCs not partaking in the Warburg effect were at a proliferative disadvantage to those that did. 

Further experimental support has been provided by a dicholoroacetate-activated shift from 

glycolysis to oxidative phosphorylation in CCs causing a decreased growth rate and apoptotic 

sensitivity in the CCs, two cancer hallmarks.71 The fact that this metabolic alteration has the 

capability to cause CCs to lose defining hallmarks suggests that cancer metabolism is a necessary 

condition of cancer rather than just a byproduct. 

Further evidence of metabolism assisting in the carcinogenic transition comes from the 

additional regulatory roles that metabolites play in controlling proliferation. For example, some 

metabolites can also serve as signaling molecules. Diacylglycerol, a lipid that plays a structural 

role in membranes, acts as a second messenger in mammalian cells; deregulation of 

diacylglycerol can lead to cancer progression through activation of protein kinase C, a family of 
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kinases that regulate cellular process such as proliferation and apoptosis.72 Arginine, a metabolite 

involved in many anabolic pathways, plays a role as a signaling molecule in angiogenesis, tumor 

development, and apoptosis.73 Along with having roles as signaling molecules, metabolites can 

also directly control gene expression in three different ways: they can bind to regulatory regions 

of mRNAs, activate transcription factors upon binding, and take part in epigenetic regulation 

such as post-transcriptional modification of histones.73 Since metabolism assists in the transition 

to a cancerous state and affects many pathways through signaling and control of gene expression, 

it serves as a potential target for cancer therapeutics.74, 75 

1.2.4. Cancer stem cell metabolism 
Though study of CSC metabolism is an emerging field, there are suggestions that CSC 

metabolism would differ from CC metabolism. CSCs exist in a state of quiescence, and therefore 

their metabolic demands are probably quite different from the fast-growing state of CCs. Along 

with this, one of the assays used to separate CSCs from CCs is based on the enzymatic activity of 

aldehyde dehydrogenase (ALDH).76ALDH activity is higher in CSCs and is thought to be 

connected to their chemoresistance.77 Intriguingly, ALDH activity is higher in quiescent CSCs, 

suggesting that this difference is not merely an artifact of a slower metabolic rate of CSCs 

compared to CCs, which indicates that both enzymes and metabolite levels in pathways 

associated with ALDH could also differ to some extent between these two cells.  

As previously described, one of the most well-known metabolic alterations in cancer is the 

Warburg effect. In an effort to determine if CSCs utilize anaerobic glycolysis to the same extent 

CCs do, one group looked at glycolysis utilization in glioma and glioma stem cells (GSCs).78 

They discovered that GSCs have much lower glycolysis activity than glioma cells and mainly 

use oxidative phosphorylation for most of their ATP generation, although GSCs were still able to 
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switch freely between the two energy-generating pathways. They theorized that glioma cells 

switch to anaerobic glycolysis during differentiation from GSCs. Interestingly, another group has 

looked at CSCs in glioblastomas and has found the exact opposite holds true for these CSCs; 

they have high flux through glycolysis and use this pathway for most of their energy 

generation.79 Based on these observations, it is possible that different CSC populations could 

have unique metabolic profiles that vary between different cell types. 

Even though there has been some preliminary research done on CSC metabolism, most of it has 

been extremely focused on glycolysis and the Warburg effect. Only one study has been done that 

looks at system-wide metabolic differences between CCs and CSCs, and that study focused more 

on the metabolic differences between freshly derived CSCs and cultured CSCs and the tumors 

formed from these cells.80 With a better understanding of systems-level metabolic differences 

between CSCs and CCs, we would better understand how CSCs function and therefore be better 

prepared to isolate and treat these cells. 

1.3. Metabolomics and cancer 
Metabolomics is the emerging field focused on comprehensive profiling of metabolites in a 

sample, whether intracellular or from circulating biofluids. The ability of metabolomics to 

measure high-throughput, system-wide phenotypes gives it great power in the field of oncology 

to further characterize what is happening in cancer cells.  

1.3.1. Metabolomics analytical technology 
Metabolites are very chemically diverse; they range from non-polar, long chain lipids to polar, 

small amino acids. Due to this vast chemical diversity, no single analytical method can measure 

at once all possible metabolites. Therefore, researches will either confine themselves to a smaller 

range of metabolites or combine multiple metabolomics technologies to cover a wider range. The 
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two dominant metabolomics technologies are nuclear magnetic resonance (NMR) spectroscopy 

and mass spectrometry (MS) coupled to a separation technique. Both of these technologies and 

the roles they play in metabolomics are extensively detailed elsewhere,81-83 but a brief 

description will be given here.  

1.3.1.1. Nuclear Magnetic Resonance 

NMR spectroscopy provides quantitative and structural information and can measure a wide 

range of metabolites with little to no sample preparation. Techniques including high resolution 

NMR (HR-NMR) spectroscopy and high resolution magic angle spinning NMR (HR-MAS-

NMR) spectroscopy have been used to profile cancer metabolism in biofluids as well as tissue 

samples, and are particularly valuable since they do not destroy samples, allowing for parallel 

analysis with other techniques.84, 85 Another emerging technology, hyperpolarized NMR 

spectroscopy, has been used to characterize cancer metabolism by tracing metabolite levels in 

vivo86, with potential applications in clinical diagnosis or treatment of cancer.87 One limitation of 

NMR spectroscopy, though, is its low sensitivity and thus higher limits of detection for 

metabolites. Additionally, in complex mixtures the interpretability of NMR spectra and 

association with specific metabolite identities can be difficult.  

1.3.1.2. Mass Spectrometry 

MS provides semi-quantitative information with very high sensitivity, allowing the analysis of 

low-abundance metabolites. MS-based analyses can be broadly divided into direct injection 

techniques – including direct infusion mass spectrometry (DIMS)88 and direct analysis in real 

time (DART-MS)89 – and separation-coupled techniques, including gas chromatography (GC-

MS), liquid chromatography (LC-MS), and capillary electrophoresis (CE-MS). Common types 

of mass spectrometers include time-of-flight (TOF), quadrupole time-of-flight (QTOF), 
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quadrupole, and orbitrap. Separation methods and MS can also be combined in series (GCxGC-

MS or LC-MS/MS) to gain better separation or more structural information. However, many 

MS-based techniques require extensive sample preparation and usually can only measure 

specific subsets of metabolites. 

1.3.1.3. Data Handling, Processing, and Analysis 

The complex raw data captured by metabolomics instruments must first be converted into 

human-interpretable measurements; the resulting vast datasets then require significant analysis 

and interpretation. Numerous data processing techniques and packages have been created for all 

steps of this data-processing pipeline.90 Packages vary depending on the technology used to 

generate the data set and the goal of the processing. For example, packages aimed at specific 

technologies (XCMS for LC-MS)91 will have different metabolite identification methods than 

packages aimed at another technology (ChromaTOF for GC-TOF-MS). Even though packages 

differ, most processing pipelines follow a similar trend (but not necessarily in this order): 

quantification of analyte levels in some way, identification of analytes, and finally alignment of 

analytes across multiple samples. Analysis of these processed metabolomic data sets can involve 

several different techniques, many of which can be categorized as univariate or multivariate 

analysis.92 Univariate analyses only assess one variable at a time; common examples include fold 

change calculations and statistical hypothesis testing (t-test, ANOVA) with false discovery rate 

correction. Multivariate analyses takes into account two or more variables and include 

correlations, principal components analysis (PCA), partial least squares discriminant analysis 

(PLS-DA), and set/pathway enrichment analysis. Both uni- and multivariate approaches are 

usually used for analysis of metabolomics data sets, in order to capture metabolite variation on 

both an individual and a systems-scale level. 
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1.3.2. Metabolomics-based discoveries of altered cancer metabolism 
The system-wide analyses of metabolomics allow a unique opportunity for the study of cancer 

biology by enabling deep investigation of targeted aspects of cancer metabolism while also 

allowing discovery-based analysis of metabolism writ large.  

For example, NADP+-dependent isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) are 

commonly subject to gain-of-function point mutations in gliomas.93 Using metabolomics, it was 

discovered that mutated IDH1 and IDH2 catalyze (R)-2-hydroxyglutarate (2HG), a rare 

metabolite, from α-ketoglutarate (α-KG) (Figure 1.3).94 2HG has been referred to as an 

oncometabolite, as its production helps to further the cancer phenotype.94, 95 Metabolic profiling 

on glioma cells using LC-MS/MS and GC-MS showed that IDH1/2 mutations caused N-

acetylated amino acid and TCA cycle intermediate levels to drop and biosynthetic molecules to 

accumulate, while not affecting glycolytic intermediates.96 The effects of IDH1/2 mutations on 

the metabolome were very similar to the changes caused by treating normal cells with 2HG, 

showing that it is production of the oncometabolite 2HG and not the loss of IDH1/2’s normal 

function that causes these changes.96  

Another (though somewhat disputed97) example of mechanistic insight from metabolomics is in 

sarcosine’s putative role in prostate cancer progression. Samples from patients with benign, 

localized and metastatic prostate cancer were profiled using both LC-MS and GC-MS. From this 

metabolic profiling, sarcosine levels were identified as increasing from benign to metastatic 

prostate cancer. In vitro, sarcosine levels were shown to directly correlate to a cell’s level of 

invasiveness. Further investigation showed that sarcosine is regulated by an androgen receptor 

and ETS gene fusions through transcriptional control of its regulatory enzymes.98  
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A final example of metabolomics-based mechanistic insight is the recent study of extracellular 

metabolite profiles across the NCI-60 cancer cell lines.99 Glycine consumption was found to be 

correlated with proliferation rate in cancerous cells, but not in proliferative non-cancerous cells, 

suggesting cancer-specific behavior. De novo purine nucleotide biosynthesis was one pathway 

involved in the increased glycine consumption. Follow-up analysis of breast cancer gene 

expression data revealed that glycine mitochondrial enzyme expression correlated with cancer 

mortality.  

1.3.3. Biomarkers and diagnosis 
A central focus in cancer metabolomics research is biomarker discovery. Metabolites are 

reasonable biomarkers and diagnostics, as they can be easily measured from noninvasive urine or 

blood samples. Many groups are attempting to use metabolic profiles as biomarkers or diagnostic 

tools since levels of multiple metabolites can provide better classification than a single entity. 

For example, the diagnostic capability of a set of 113 cis-diol structured urinary metabolites for 

liver cancer resulted in a lower false-positive rate than the traditional tumor marker alpha-

fetoprotein when classifying liver cancer against hepatocirrhosis and chronic hepatitis 

samples.100 Essentially every type of cancer is being investigated for metabolic biomarkers and 

diagnosis, including breast,101-107 colon,108-113 kidney,114-117 liver,100, 118-124 and ovarian.  

A major focus in ovarian cancer metabolomics research has been in early detection, as the 5-year 

survival rate when caught in early stages is greater than 90%, but when diagnosed in later stages 

(as it is for most patients) is almost inverted.125, 126 A number of studies have attempted to use 

metabolomics analysis of urine or serum as an early diagnosis tool.89, 127, 128 One particularly 

promising model used DART-MS to profile the metabolome of 44 ovarian cancer patients and 50 
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healthy patients through serum samples, obtaining 99% separation accuracy using a customized 

algorithm.89 

1.3.4. Emerging applications of metabolomics in cancer research 

1.3.4.1. Metabolomics and Metastasis 

Metabolomics research has shown promising results for detection of metastasis. Metabolic 

profiles of serum or urine samples suggest predictive capabilities for diagnosing metastases 

forming from gastric cancer129, colorectal cancer 130, kidney131, 132, and breast cancer104, 105, 133. 

Other studies have focused on specific metastatic sites such as leptomeningeal carcinomatosis134 

and bone metastases135, the latter of which contain higher levels of cholesterol for prostate cancer 

metastases when compared to other cancerous bone metastases and normal bone.  

1.3.4.2. Staging of Cancer 

Beyond detection, metabolomics may also serve a role in distinguishing between different stages 

of cancer. In one study, GC-MS analysis of serum from pancreatic cancer patients was able to 

distinguish between Stage III, Stage IVa, and Stage IVb groups.136 Another study used GC-TOF-

MS to analyze ovarian cancer samples and showed metabolic distinction between ovarian 

carcinomas and borderline tumors.137 In colorectal cancer, HR-MAS-NMR profiling not only 

distinguished between tumor and adjacent mucosa samples, but also between the mucosa 

samples themselves based on the stage of their adjacent tumor.138 

1.3.4.3. Metabolomics and Treatment 

An emerging field of study for metabolomics is pharmacometabolomics – the use of 

metabolomics to predict physiological responses for drug efficacy and/or toxicity. There are 

currently few pharmacometabolomics studies in oncology, but research in the area is expected to 
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grow139, particularly since pharmacometabolomics is already achieving widespread attention in 

other fields140-146. In a pharmacometabolomic study of toxicity effects of capecitabine on 

colorectal cancer patients, lipoprotein-derived lipid levels were discovered to correlate with the 

intensity of toxicity, yielding predictive capabilities.147 In another study, metabolic profiling of 

serum before and during chemotherapy from breast cancer patients with metastasis found that 

metabolite profiles from HER-2 positive patients treated with paclitaxel and lapatinib correlated 

with overall survival and time to progression (though the correlation did not hold across the 

entire population).148 

1.4. Thesis overview 
Metabolomics holds great promise for advancing the understanding, diagnosis, and treatment of 

cancer. The approach has already been used to uncover and verify mechanisms of carcinogenesis 

and proliferation, identify numerous candidate diagnostic biomarkers in biofluid and biopsy 

samples, and even contribute to the staging of cancers and the characterization of treatment 

efficacy. However, one area metabolomics research has not been applied to is the differences 

between CC and CSC metabolism. Applying proven metabolomics techniques to CC and CSC 

metabolism will allow further understanding in an area of cancer that has been largely 

unexplored until now. 

The purpose of this thesis was to profile CC and CSC metabolism in vitro using epithelial 

ovarian cancer as a model through three different approaches: (a) studying their baseline 

metabolic differences, (b) profiling metabolic differences in response to biologically based 

perturbations, and (c) profiling metabolic changes during mesenchymal-epithelial transition 

(MET).  
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1.4.1. Baseline metabolic differences between OCCs and OCSCs 
As discussed above, there are initial indications that CSC and CC metabolism differ. For 

instance, CSCs are known to proliferate at a lower rate than CCs and could have different 

metabolic requirements based purely on their proliferation rates. In order to fully understand the 

differences between these two cells, a comparison between OCCs and OCSCs during normal 

growth was made. This comparison provided baseline differences between the two cell types. 

Profiling the cells over a period of 48 hours determined how the cells change during their normal 

feeding cycle and if there are significant changes over time during normal growth. Baseline 

differences can be used to understand the different metabolic requirements of the OCSCs as 

compared to the OCCs. 

1.4.2. Metabolomic differences between OCCs and OCSCs in response to 
biologically based perturbations 

In vitro growth conditions differ drastically from growth conditions found within the tumor. In 

vitro, all cells are supplied with an overabundance of nutrients, plenty of oxygen, and their 

environment is cleaned out every two to four days to remove buildup of expelled molecules and 

to provide fresh supplies of nutrients. Tumor conditions are nowhere near as ideal or stable as in 

vitro conditions. Cells do not grown in a monolayer, therefore the cells in the middle of the 

tumor do not receive an adequate supply of nutrients or oxygen, even with angiogenesis. Overall, 

these cells are growing in conditions far from ideal, and therefore they must alter their 

metabolism to continue to proliferate and sustain the tumor. 

To mimic the harsh conditions in the in vivo tumor environment, biologically based perturbations 

were applied to the in vitro grown OCCs and OCSCs. The perturbations chosen for these 

experiments were glucose deprivation, hypoxia, ischemia, and chemotherapeutic treatment, 

which were applied over a period of 48 hours with time points taken. Profiling and comparing 
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OCC and OCSC metabolism in response to these perturbations can further understanding on how 

the two cells handle the stresses encountered in the tumor microenvironment. 

1.4.3. Metabolic changes during MET  
As discussed above, the epithelial to mesenchymal transition (EMT) occurs normally during 

embryonic development. Research into tumor metastasis has led to the belief that CCs use EMT 

to gain metastatic potential. Cells undergoing EMT have also been shown to obtain stem-like 

properties. MET is the reversal of EMT, and would mimic CCs losing stem-like properties. This 

experiment profiled the metabolism of OCCs undergoing MET – induced through microRNA 

transfection - and then the reverse EMT as the microRNA levels drop. Metabolic changes during 

differentiation-like conditions might give insight into metabolic pathways that could be targeted 

to stop the plastic transition between CSCs and CCs.  
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Chapter 2 OVCAR-3-derived ovarian cancer stem cells display 

distinct metabolic profiles 

This chapter is taken from OVCAR-3-derived ovarian cancer stem cells display distinct 

metabolic profiles, which is under review in PLOS ONE. 

2.1. Introduction 
Ovarian cancer is the most deadly gynecological cancer and the 5th leading cause of cancer-

related death in United States women. An estimated 15,500 U.S. women died from ovarian 

cancer in 2012.1 Even though response to the first-line treatment is high, most patients (50-75%) 

relapse after the treatment.2 Recently, side populations of cancer cells with ABC-transporter 

activity and ability to efflux certain compounds have been identified in many different types of 

tumors, including ovarian cancer.3-5 These cells are referred to as cancer stem cells because of 

their many unique properties: they have self-renewal and differentiation capabilities and exhibit 

resistance to the effects of radiation and anticancer drugs.6 Based on these properties, they are 

suspected as a primary cause of ovarian cancer recurrence.7, 8 

We have previously established an ovarian cancer stem cell (OCSC) line as a sub-population of a 

widely-used ovarian cancer cell (OCC) line, OVCAR-3.8 These cells were shown to demonstrate 

numerous characteristics of cancer stem cells, including self-renewal, the ability to produce 

differentiated progeny, increased expression of genes associated with cancer stem cells, higher 

invasiveness, migration potential, and enhanced chemoresistance. Transcriptional analysis 

identified changes in various signaling pathways including TGF-beta-dependent induction of 

epithelial-to-mesenchymal transition, regulation of lipid metabolism, and NOTCH and 

Hedgehog signaling. In addition, six pathways associated with metabolism were identified as 
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being enriched with genes differentially expressed between OCSCs and OCCs, suggesting a 

potential role of metabolic differences as a cause or consequence of the phenotypic differences 

between the two cell types.  

Since transcriptional changes do not always directly translate to changes in metabolism, we 

sought to directly test the prediction that OCCs and isogenic OCSCs may display significant 

differences in metabolism. Metabolomics is the systems-scale analysis of the levels of small-

molecule biochemical (metabolic) intermediates in the cell. Metabolomics is a field that is 

increasingly being brought to bear on the study of cancer, with promising results including 

insights into disease mechanisms as well as the identification of circulating biomarkers for 

potential use in diagnostics.9-12 Metabolomics has the potential to reveal key intracellular 

pathways or metabolites and their related enzymes in OCSCs that may serve as potential 

therapeutic targets, as well as secreted or intracellular metabolites that may find potential use in 

diagnostic tests. However, to date metabolomics has rarely been exploited to study cancer stem 

cells. To our knowledge, the only reported application of metabolomics in this context was its 

use to study the differences between tumors derived from fresh glioma stem cells and cultured 

glioma stem cells in vivo using nuclear magnetic resonance spectroscopy.13 

In this study, we analyzed the intracellular and extracellular metabolomic profile of both ovarian 

cancer cell types in vitro over two days using two dimensional gas chromatography-mass 

spectrometry (GCxGC-MS). Consistent with gene expression-driven predictions, we identified 

significant differences between the metabolism of these two cell types. Our findings are 

consistent with the hypothesis that metabolic changes may contribute to the functional 

differences between ovarian cancer stem cells and their more differentiated progeny that 
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represent the majority of bulk tumor tissue. More generally, our findings are consistent with the 

mounting body of evidence that altered metabolism is one of the hallmarks of cancer.14 

2.2. Results & Discussion 

2.2.1. OCCs and OCSCs have significant differences on an individual 
metabolite level 

GCxGC-MS analysis of OCCs and OCSCs detected 211 intracellular and 203 extracellular 

reproducibly measurable analytes overall, including unknowns and analytes that did not map to 

known human metabolites (based on KEGG and HMDB identifications available in 

MetaboAnalyst). Differences due purely to growth media differences were removed for the 

intracellular data set, using the medium control experiment as a basis (as described in section 

2.4.7), but could not be completely removed from the extracellular data set. Since the 

intracellular samples showed no medium-related artifacts and thus allowed for the most direct 

interpretation, moving forward we focused our attention and analysis on those data.  

Once these analytes were removed, the resulting intracellular dataset contained 177 unknown 

and known analytes, which included 40 unique and annotated metabolites. Basic univariate 

analysis of metabolite levels provided insight into the differences between the two cell types. Of 

the 40 intracellular metabolites, 27 were significantly different (t-test, all time points, false 

discovery rate (FDR) < 0.05) between the two cell types, shown in Table 2.1. Nineteen of these 

27 metabolites had a fold change greater than two. Based on these statistical differences, 

metabolism seems to be fundamentally altered in OCSCs, though it is impossible to conclude 

based on metabolite levels alone (without fluxes) whether this may be due to increased or 

decreased metabolism.  



 

 34 

Table 2.1: List of intracellular metabolites statistically significant between OCCs and OCSCs and 

their fold changes. Fold changes represent the change of OCC levels with respect to OCSC levels of the 

metabolite. 

Metabolite p value FDR log2(FC) 

Gamma-Aminobutyric acid 2.75E-16 1.10E-14 2.741 

D-Psicose 4.96E-10 9.91E-09 1.997 

Erythronic acid 4.57E-08 6.10E-07 1.411 

Pyrophosphate 6.38E-08 6.38E-07 2.792 

Fumaric acid 1.04E-07 8.29E-07 1.751 

Erythritol 8.14E-07 5.43E-06 4.243 

Putrescine 4.54E-05 2.59E-04 1.739 

L-Isoleucine 6.83E-05 3.34E-04 1.187 

L-Proline 7.51E-05 3.34E-04 2.736 

L-Glutamate 8.80E-05 3.52E-04 1.107 

L-Lysine 1.68E-04 6.11E-04 -1.155 

Mannitol 2.06E-04 6.86E-04 0.702 

Cholesterol 4.01E-04 1.23E-03 0.543 

Glycerol 4.62E-04 1.25E-03 -0.754 

Pyroglutamic acid 4.69E-04 1.25E-03 0.833 

Ethanolamine 6.40E-04 1.51E-03 -0.626 

L-Aspartic acid 6.15E-04 1.51E-03 1.265 

Uridine 5'-monophosphate 1.09E-03 2.43E-03 0.675 

3,7-Dimethyl-3-octanol 2.01E-03 4.00E-03 -0.364 

Glycine 1.92E-03 4.00E-03 0.987 

L-Malic acid 2.10E-03 4.00E-03 1.611 

N-Decane 4.08E-03 7.09E-03 -0.536 

Mannose 6-phosphate 4.05E-03 7.09E-03 0.600 

Glycerol-3-phosphate 1.43E-02 2.38E-02 0.439 

Citric acid 1.62E-02 2.60E-02 -0.267 

Hydrogen sulfide 2.00E-02 3.08E-02 0.599 

Hexadecane 2.26E-02 3.34E-02 -0.586 

 

2.2.2. Metabolomic analysis reveals distinct metabolic profiles between 
OCCs and OCSCs 

Unsupervised dimensional reduction using principal components analysis (PCA) showed 

complete separation for the intracellular metabolic profiles between OCCs and OCSCs, as seen 

in Figure 2.1. PCA of intracellular annotated metabolite measurements showed that the distinct 

metabolic profiles between the two cell types were captured mostly in principal component (PC) 
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1 with the second PC providing additional separation, as seen in Figure 2.1B. In both of the 

intracellular plots, the second PC shows some separation between different time points. The fact 

that this unsupervised method was able to separate sample classes so strongly in the first few PCs 

suggests the presence of true metabolic differences that are not artifacts of data analysis. PCA 

based on the entire measured dataset (including unknowns, not just the identified human 

metabolites) yielded similar separation (Figure 2.1A), with a number of unknowns having high 

loading scores in PCs 1 and 2, suggesting that the differences between the two cell types are not 

limited to just the well-characterized sections of cellular metabolism.  

 

Figure 2.1: Principal components analysis easily distinguishes between the metabolic profiles of 

OCCs and OCSCs. Red points are OVCAR-3 cells, and green points are ovarian cancer stem cells at six 

different time points with three biological replicates at each time point. Principal component (PC) axes 

include the percentage of variation captured by each axis. A) PC 1 captures the cell type separation for the 

unknown and annotated analytes, with PC 2 capturing some time point separation. B) Including only the 

profiles of annotated metabolites shows complete cell type separation in PC 1 and some time point 

separation in PC 2. 
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Analysis of the PCA loadings revealed the metabolites that were the most important in causing 

the separation seen in the intracellular PCA plots. Fumarate, erythronic acid, psicose, 

pyrophosphate, gamma-aminobutyric acid, aspartate, isoleucine, uridine 5'-monophosphate, 

putrescine, and glutamate are most responsible for the cell type separation in the intracellular 

data set. Interestingly, putrescine, aspartate, glutamate, and fumarate are all involved in the 

arginine and proline pathway, which was identified in gene set enrichment analysis as 

significantly enriched in the OCSC phenotype (discussed in more detail below).  

Hierarchically clustered heatmaps of the intracellular metabolic profiles also revealed distinct 

patterns, shown in Figure 2.2. The samples for OCC and OCSC cluster together tightly, showing 

the similarity within each specific cell type. Two main groups of analytes are evident within the 

clustered heatmap. Group 1 metabolites have higher levels in OCCs than OCSCs across all 

samples. This group consists mostly of amino acids and carbohydrates. Again, interestingly, 

putrescine, fumarate, glutamate, aspartate, and proline (metabolites involved in the arginine and 

proline pathway discussed below) all fall within group 1 of intracellular metabolites. Group 2 

metabolites have higher levels in OCSCs and lower levels in OCCs across all samples, including 

numerous aliphatic compounds, such as diacetone alcohol, ethanolamine, N-decane, and 

hexadecane.  
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Figure 2.2: Hierarchical clustering demonstrates clear separation between cell type and major 

trends in analyte levels. Columns represent hierarchically clustered samples, color-coded according to 

cell type. Rows represent hierarchically clustered analytes. Analyte levels are mean-centered and unit-

variance on a per-metabolite basis. The intracellular profile consists of two major groups with clearly 

separate behavior between the cell types. In group 1, OCC analyte levels are generally higher than OCSC 

analyte levels. Group 2 analyte levels are lower in OCCs than OCSCs.  

Analysis into time series trends showed smaller clusters of metabolites whose levels varied with 

time (increasing or decreasing) in one cell line but did not substantially vary in the other cell line 

(see Figure 2.3). Further analysis into the metabolites from these clustered groups show that the 

metabolites have similar trends over time, as shown in Figure 2.4. In one group (Figure 2.4A), 

metabolites from time series cluster 1 in the hierarchical clustered heatmap, all metabolites have 

higher levels in OCCs than in OCSCs and this group is enriched in amino acids and 

carbohydrates. The second group (Figure 2.4B) consists of metabolites with higher levels in 
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OCSCs than OCCs (cluster group 3 from time series ordered hierarchical clustered heatmap) and 

is enriched in aliphatic acyclic compounds and lipids. 

 

Figure 2.3: Time series ordered hierarchical clustering shows clusters of analytes with levels that 

increase or decrease with time. Columns represent time series ordered samples, color-coded according 

to cell type and time point. Rows represent hierarchically clustered analytes. Analyte levels are mean-

centered and unit-variance on a per-metabolite basis. Three intracellular analyte clusters show clear 

temporal dependence. In group 1, OCC analyte levels are consistently high while OCSC analyte levels 

increase after 30 minutes. Group 2 analyte levels are consistently higher in OCCs while OCSCs start high 

and then start to decrease at 8 hours. Group 3 analytes are high in OCSCs while they decrease over time 

in OCCs. 
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Figure 2.4: Time series plots of metabolite groups determined from clustered heatmap analysis. 
Plots of metabolite levels over time with groups determined from clusters assigned from heatmap 

analysis. Thin lines represent individual metabolite median levels and thick lines represent complied 

median level for the metabolite group. Normalized peak area has been log transformed and autoscaled.A) 

Metabolites from cluster 1 from time series ordered hierarchical clustering with OCC metabolite levels 

higher than OCSC metabolite levels. B) Metabolites from cluster 3 from time series ordered hierarchical 

clustering with OCSC metabolite levels higher than OCC metabolite levels. 

2.2.3. Gene set and metabolic pathway enrichment analysis results show 
strong concordance 

Using metabolite pathway enrichment analysis (MPEA) in MetaboAnalyst, 36 pathways were 

found to be significantly enriched for intracellular metabolic differences between OCCs and 

OCSCs, listed in Table 2.2. Gene set enrichment analysis (GSEA) revealed 11 KEGG pathways 

significantly enriched in OCSC phenotype, listed in Table 2.3. Out of those 11 pathways, only 

six include metabolic reactions that convert endogenous metabolites, four of which overlapped 

with the pathway results from MPEA: (i) arginine and proline metabolism, (ii) fructose and 

mannose metabolism, (iii) primary bile acid biosynthesis, and (iv) steroid hormone biosynthesis. 

This close overlap in the GSEA and MPEA results suggests strong concordance between 

transcriptional and metabolomic data and supports the validity of the identified differences. 
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Table 2.2: Significantly enriched KEGG pathways determined using metabolite pathway 

enrichment analysis. 

KEGG Pathway p value FDR 

Butanoate metabolism 3.19E-11 1.37E-09 

beta-Alanine metabolism 1.84E-10 3.95E-09 

Arginine and proline metabolism 1.32E-09 1.89E-08 

Alanine, aspartate and glutamate metabolism 1.97E-09 2.12E-08 

Tyrosine metabolism 1.05E-08 9.07E-08 

Phenylalanine metabolism 4.50E-08 3.22E-07 

Citrate cycle (TCA cycle) 5.36E-08 3.29E-07 

Aminoacyl-tRNA biosynthesis 4.60E-07 2.47E-06 

Nicotinate and nicotinamide metabolism 7.96E-07 3.80E-06 

Glutathione metabolism 2.96E-06 1.27E-05 

Lysine degradation 4.76E-06 1.71E-05 

Lysine biosynthesis 4.39E-06 1.71E-05 

Fructose and mannose metabolism 8.70E-06 2.88E-05 

Nitrogen metabolism 3.32E-05 1.02E-04 

Histidine metabolism 3.87E-05 1.11E-04 

Glycerolipid metabolism 4.80E-05 1.29E-04 

Primary bile acid biosynthesis 5.48E-05 1.39E-04 

Valine, leucine and isoleucine biosynthesis 6.83E-05 1.47E-04 

Porphyrin and chlorophyll metabolism 6.68E-05 1.47E-04 

Valine, leucine and isoleucine degradation 6.83E-05 1.47E-04 

D-Glutamine and D-glutamate metabolism 7.62E-05 1.56E-04 

Glyoxylate and dicarboxylate metabolism 1.12E-04 2.18E-04 

Biotin metabolism 1.67E-04 3.12E-04 

Pantothenate and CoA biosynthesis 2.06E-04 3.69E-04 

Glycerophospholipid metabolism 2.77E-04 4.76E-04 

Steroid hormone biosynthesis 3.94E-04 6.52E-04 

Glycine, serine and threonine metabolism 8.93E-04 1.32E-03 

Pyrimidine metabolism 8.90E-04 1.32E-03 

Cyanoamino acid metabolism 8.93E-04 1.32E-03 

Purine metabolism 1.89E-03 2.63E-03 

Thiamine metabolism 1.89E-03 2.63E-03 

Pyruvate metabolism 2.93E-03 3.86E-03 

Galactose metabolism 2.96E-03 3.86E-03 

Cysteine and methionine metabolism 4.05E-03 5.12E-03 

Methane metabolism 7.23E-03 8.89E-03 

Amino sugar and nucleotide sugar metabolism 1.60E-02 1.91E-02 
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Table 2.3: Gene set enrichment analysis: KEGG pathways significantly enriched in OCSC 

phenotype 

KEGG Pathway p value FDR q-val 

Fructose and mannose metabolism 0.00000 0.01334 

Metabolism of xenobiotics by cytochrome P450 0.00000 0.07636 

Renin-angiotensin system 0.00960 0.09388 

Glycosaminoglycan biosynthesis-keratan sulfate 0.00606 0.10337 

Starch and sucrose metabolism 0.01152 0.10737 

ABC transporters 0.00191 0.11004 

Drug metabolism-other enzymes 0.00971 0.11724 

Primary bile acid biosynthesis 0.01200 0.12187 

Arginine and proline metabolism 0.01304 0.12491 

PPAR signaling pathway 0.00378 0.13570 

Steroid hormone biosynthesis 0.01232 0.15972 

 

One of these pathways, arginine and proline metabolism, was particularly interesting based on 

the number of metabolites found within the pathway that were each individually statistically 

significantly different in OCSCs as compared to OCCs. These six metabolites (aspartate, 

fumarate, glutamate, gamma-aminobutyric acid, proline, and putrescine) were all found to be 

lower in OCSCs than OCCs, as seen in Figure 2.5. Two of these metabolites, proline and 

putrescine, demonstrated strong concordance between their levels and the levels of 

corresponding enzymes immediately upstream and downstream in the metabolic pathway, as 

shown in Figure 2.6, justifying a closer look at the role that these two metabolites can play in 

cancer and cancer stem cells. In order to further confirm the identity of proline and putrescine, 

pure standards were run on the GC-MS and compared to the intracellular samples. The retention 

times and mass spectra of the two standards were consistent with those of the annotated 

metabolites measured in the experimental samples. 
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Figure 2.5: Metabolites in arginine and proline metabolism differ significantly between OCCs and 

OCSCs. All of the identified metabolites within the arginine and proline pathway were statistically 

significantly different between OCCs and OCSCs (FDR < 0.05) and were depleted in OCSCs. Box and 

whisker graphs depict the normalized peak area differences between the two cell types: dark black lines 

are the median, boxes identify the middle 50% values, dashed lines show two standard deviation bounds, 

and circles indicate outliers. 

 



 

 43 

 

Figure 2.6: Metabolic and transcriptional differences between OCCs and OCSCs in arginine and 

proline metabolism. Differences are shown on the modified KEGG arginine and proline metabolism 

pathway (pathway is modified to show only reactions involved in human metabolism). Boxes with red 

and blue outlines are genes up-regulated and down-regulated, respectively, in OCSCs as compared to 

OCCs. Metabolites with blue ovals have lower levels in OCSCs compared to OCCs. 
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2.2.4. Proline & putrescine have been implicated in cancer 
Putrescine is a polyamine, a class of molecules that has been shown to play an important role in 

cell growth and survival.15, 16 Polyamines have been shown to affect numerous processes in 

normal and cancer cells, including proliferation, apoptosis, cell-cell interactions, and 

angiogenesis.17 Specific mechanisms underlying these modes of action have not yet been 

completely elucidated; however, their critical role in DNA replication is supported by the 

reduced rate of DNA elongation and S-phase arrest in polyamine depleted cells.18 Total 

polyamine levels are higher in highly proliferative cells, like cancer cells, and lower in cells with 

low proliferation rates.16 However, we note that the medium control experiment, which induced 

significantly slower growth in OCCs, did not induce a change in putrescine levels, suggesting 

that a decrease in proliferation is not necessarily the cause of decreased putrescine levels. 

Polyamine catabolism has been implicated in cancer, as the process can cause DNA damage and 

mutation via production of reactive aldehydes, production of reactive oxygen species (ROS), or 

depletion of free radical scavengers.19 Many cancer therapeutics have been targeted toward 

enzymes in the polyamine metabolism pathway, with promising initial results.19, 20  

Likewise, proline metabolism is important to cellular processes, both in its catabolism and 

anabolism, and has been implicated in cancer.21-23 Proline catabolism by proline 

dehydrogenase/oxidase (PRODH/POX) produces pyrroline-5-carboxylate, along with free 

electrons that can either be donated to the electron transport chain or used to generate ROS. 

During periods of high stress, PRODH/POX expression is induced to help rescue the cell through 

energy production or produce ROS to induce autophagy. Proline anabolism from glutamate has 

been implicated in cancer via its control by the transcription factor MYC, which represses 

PRODH/POX expression though microRNA control and induces expression of P5CS and PYCR, 

enzymes that convert glutamate to proline.24 During glutamate conversion to proline, NAD(P)+ is 
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regenerated from NAD(P)H for possible use in glycolysis and the pentose phosphate pathway. 

Knockdown of P5CS or PYCR has been shown to inhibit anaerobic glycolysis, thus indicating 

that proline anabolism from glutamate contributes to establishment of the Warburg effect.24 

2.2.5. Differences in proline & putrescine levels between OCCs and OCSCs 
may be explained by stem cell metabolism 

With both proline and putrescine and their respective pathways known to be already altered in 

cancer compared to normal tissues, it is perhaps surprising to find that both of these metabolites 

are now altered again in OCSCs relative to OCCs. The metabolic similarities between cancer 

stem cells and normal stem cells have already been widely commented upon – for example, both 

reprogram their energy metabolism to aerobic glycolysis to help support immortality.25, 26 

Reprogramming to aerobic glycolysis is characteristic of cancer cells in general, though, and 

therefore can not be used as a distinguishing characteristic of stem cell metabolism. Though stem 

cell metabolism is a field with significantly fewer published reports than cancer metabolism, 

recent discoveries in the field can begin to shed light on the biological meaning behind the 

changes of proline and putrescine in OCSCs given their previously-known alterations in cancer. 

Putrescine has long been known to promote differentiation. More recently, in a study comparing 

mouse embryonic stem cells (mESCs), induced pluripotent stem cells (iPSCs), and fibroblasts, 

polyamine levels were found to be statistically significantly reduced in iPSCs, though 

interestingly they were similar between fibroblasts and mESCs.27 In a systems-scale comparison 

of metabolite levels between mESCs and iPSCs, polyamines were one of the few metabolite 

groups that showed a difference between the two cell types; the others were amino acids and 

phosphatidylcholine and phosphatidylethanolamine lipid structures (not measured in this work). 

This finding suggests that OCSCs may generally occupy a state similar to iPSCs, with a shift 

from standard cancer metabolism towards a more stem-like metabolism, but not necessarily 
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identical to the normal stem cells that they in some ways emulate. In this case, the depletion of 

putrescine, with its role in differentiation, may help to maintain the OCSCs in a more stem-like 

state. 

Proline has recently been shown to induce differentiation in mESCs towards an epiblast stem cell 

state.28, 29 By adding biologically relevant concentrations of proline to mESC media, changes 

were noticed in proliferation, phenotype, and differentiation kinetics. These changes were similar 

to the ones caused by addition of MEDII media to the normal stem cell media, a common 

protocol for initiating differentiation of mESCs.28 Further investigation showed that these 

changes were induced by catabolism of proline to pyrroline-5-carboxylate.29 In addition, proline 

has been shown to act as a signaling molecule that controls stem cell behavior via an epigenetic 

mechanism.17 This suggests that OCSCs may use proline metabolism in a similar way to stem 

cells and by keeping a lower intracellular concentration of proline, the OCSCs help retain their 

stemness. 

Taken together, then, the trends identified are consistent in the context of what is known at the 

intersection of both the cancer metabolism and stem cell metabolism fields. While it is to be 

expected that proline and putrescine are accumulated in OCCs based on their roles in or 

correlations with proliferative phenotypes and cancer metabolism, these metabolites would 

display effects suppressing the observed stem cell-like phenotypes of OCSCs. Specifically, high 

levels of either of these metabolites may tend to promote differentiation of OCSCs into less 

stem-like cell types, and thus maintenance at lower levels would facilitate the stemness 

associated with cancer stem cells. 
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2.2.6. Comparison of OCSC differences to other cancer stem cell studies 
An interesting picture emerges when differences in metabolite abundances between OCCs and 

OCSCs are compared with differences in metabolite abundances between ovarian borderline 

tumors and invasive ovarian carcinomas. While tissue concentrations of glycine, proline, 

glutamate, and fumarate are higher in invasive ovarian carcinomas relative to non-invasive 

borderline tumors,30 our data show that OCSCs display lower concentrations of these metabolites 

relative to OCCs. Glycine plays a role in rapid proliferation of cancer cells via the glycine 

biosynthesis pathway10 and the SOG pathway31. The SOG pathway consists of serine synthesis, 

one-carbon metabolism, and the glycine cleavage system and supports rapid proliferation 

through energy production. Considering the role of glycine in rapid proliferation of cancer cells, 

the role of fumarate in the malignant phenotype via aberrant activation of hypoxia response 

pathways,32 and the role of glutamate in anabolic processes and replenishing of the tricarboxylic 

acid cycle intermediates during cell growth (anaplerosis),33 it is somewhat intriguing that OCSCs 

are metabolically more similar to indolent and relatively benign borderline tumor cells with 

respect to these cancer-relevant metabolites. We hypothesize that certain phenotypic similarities 

between cancer stem cells and cells with less malignant potential (or non-malignant cells), might 

be associated with quiescence of these cell types and might play an important role in failure of 

cancer therapies designed to target aggressively growing clinical cancers. Similarly, our results 

imply that OCSCs are less dependent on polyamines than their more differentiated progeny, 

which may not be purely growth-associated (as discussed in greater detail above). This lower 

dependence of OCSCs on polyamines could be a more broadly applicable property of quiescent 

cancer stem cells that can explain the general failure of inhibitors of polyamine synthesis in 

clinical cancer trials.17  
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Our results are also partially consistent with a recent metabolomics study of glioma-stem cells 

(GSCs), specifically the cultured GSCs (CGSCs). The in vivo tumors formed from CGSCs were 

noted to have increased concentrations of glycine and choline-containing compounds and 

decreased concentrations of glutamine, glutamate, taurine, and total creatine.13 In our results, we 

did not detect choline-containing compounds, taurine, or creatine. We did, however, notice 

decreasing trends in both glycine and glutamate. One caveat on comparing these two 

experiments, though, is that the CGSCs were compared to normal tissue, while our OCSCs were 

compared to cancerous cells.  

2.2.7. Limitations 
In this work we did not use control cells that would represent cells of origin or nonmalignant 

counterparts of epithelial ovarian cancer cells, since our primary interest was the identification of 

metabolic differences that can explain other biological differences between OCSCs and their 

more differentiated progeny (e.g. quiescence and drug resistance) rather than cancer vs. normal 

metabolomic differences that have already been more widely examined. Furthermore, 

identification of the appropriate normal control would be complicated, if not impossible, due to 

the fact that the cell of origin of epithelial ovarian cancers is still debated. Thus, the strength of 

our work is in that we compare the metabolism of isogenic cancer cell lines that differ only in 

their cell stemness and differentiation status. 

We also note that the extent of biological interpretation of our data has been limited by the 

content of available databases and by conservative data processing decisions meant to increase 

confidence in the results. The metabolites used in our data analyses are not only limited by our 

ability to establish the biochemical identities of metabolites measured by our instrument using 

mass spectral databases, but also by the incompleteness of databases available for pathway-level 
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analysis. We have also used a high similarity threshold during chromatogram processing to 

ensure that, when a metabolite is assigned a name, we have high confidence that the assigned 

name accurately reflects the metabolite’s identity. Based on these conservative decisions, we 

have thus potentially omitted other significant metabolites that did not meet confidence 

thresholds or were not available in the databases we used. Thus, there may be further support for 

any of the pathways discussed here, or potentially even for other pathways, as being important to 

OCSC metabolism; only with further refinement of pathway databases and analytical tools can a 

more thorough biological analysis be performed. 

Finally, this work only studied one specific cancer cell line and its isogenic cancer stem cell line. 

It would be desirable to perform similar analyses for multiple isogenic cancer stem cell/cancer 

cell line pairs, as cancer is well-known to be a heterogeneous disease. However, there are very 

few ovarian cancer stem cell lines in existence, and none available in repositories for purchase. 

As such, the next steps in this work would be to derive or acquire more of such cancer stem cell 

lines to verify the broad applicability of the results obtained here. 

2.3. Conclusions 
Overall, we have shown that an OCC line and its derived OCSCs have different metabolic 

profiles that are consistent with predictions based on previously observed transcriptional profiles. 

Both multivariate and univariate data analyses indicate that there are many significant 

differences in the metabolism of these two isogenic cell types; however, none of these 

differences were previously known. Analysis of the metabolic and transcriptional differences 

between these OCCs and OCSCs revealed the arginine and proline metabolism pathway as 

playing a particularly important role in the differences between the cell types. Proline and 

putrescine both play important roles in cancer, and have been identified as serving important 
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roles in stem cell metabolism. The conflicting roles for these metabolites in these two different 

contexts may place them in a delicate balance in OCSCs. Proline and putrescine thus may play a 

major role in the maintenance of the OCSC phenotype.  

2.4. Methods 

2.4.1. Cell culture 
The OVCAR-3 cell line was obtained from the Developmental Therapeutic Program (DTP) of 

the National Cancer Institute (NCI). The OVCAR-3 ovarian cancer cells (OCCs) were cultured 

in R10 medium: RPMI-1640 (Cellgro, Mediatech Inc., Manassas, VA) supplemented with 10% 

fetal bovine serum (FBS, Invitrogen, Grand Island, NY) and 1% antibiotic-antimycotic solution 

(Cellgro, Mediatech Inc., Manassas, VA). Authenticity of the OVCAR-3 cell line was confirmed 

using short tandem repeat profiling performed by IDEXX RADIL (Columbia, MO) in October 

2013. Cells were grown until confluence and subcultured at a ratio of 1:4. Immediately before 

any time-course sampling began, OCCs were passaged and seeded in 6-well plates (Greiner Bio-

One, Monroe, NC) with a surface area of 6.9 cm2 at a density of 3x105 cells/well (4.35x104 

cells/cm2) and incubated for 24 hours in 2 mL R10 medium to allow the cells to attach and 

recover; the medium was removed, wells were washed once with PBS, and then 2 mL of fresh 

R10 medium was added to begin the experiment. 

Ovarian cancer stem cells (OCSCs) were previously derived from a side population of OVCAR-

3. OCSCs are less adherent than OVCAR-3 cells and, unlike OVCAR-3 cells that are grown as 

adherent monolayers, are grown as spheroids in stem cell media to help support their stemness as 

previously described.8 Briefly, the OCSCs were cultured in ultra-low attachment petri dishes 

(Corning Incorporated, Corning, NY) in stem cell medium: DMEM/F12 (1:1) (Cellgro, 

Mediatech Inc., Manassas, VA) supplemented with 0.4% bovine serum albumin (BSA, Sigma-
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Aldrich, St. Louis, MO), 20 ng/mL epidermal growth factor (EGF, Invitrogen, Grand Island, 

NY), 10 ng/mL basic fibroblast growth factor (bFGF, Sigma-Aldrich, St. Louis, MO), 5 µg/mL 

insulin (Sigma-Aldrich, St. Louis, MO), and 1% antibiotic-antimycotic solution (Cellgro, 

Mediatech Inc., Manassas, VA). The spheroids were dissociated and reseeded at a density of 105 

cells/mL each week. To begin the time-course experiment, OCSCs were dissociated and seeded 

into ultra-low attachment 6-well plates (Corning Incorporated, Corning, NY) with a surface area 

of 6.9 cm2 containing 2mL of fresh stem cell medium at a density of 3x105 cells/well. Both the 

OCC and OCSC experiments were performed in biological triplicate. 

2.4.2. Sampling Protocols 
Samples were taken at 0 minutes, 15 minutes, 30 minutes, 8 hours, 24 hours, and 48 hours to 

capture both short- and long-term metabolic profiles. For OCCs, medium was removed and snap 

frozen in liquid nitrogen for extracellular analysis. Cells were then quickly washed with 1mL 

PBS at 37°C, which was aspirated off, and then 700 µL of 80:20 methanol/water solution at -

80°C was added immediately. The plate was then incubated at -80°C for 15 minutes. After 

incubation, remaining cellular debris were harvested using a cell scraper (BD Falcon, San Jose, 

CA) for intracellular analysis. For OCSC cells, the media-cell mixture was transferred to a 15 

mL centrifuge tube and centrifuged at 1,900 g for 30 seconds at room temperature. The 

supernatant was removed and snap frozen in liquid nitrogen for extracellular analysis. The cell 

pellet was quickly resuspended in 1mL PBS at 37°C and then immediately centrifuged again at 

1,900 g for 30 seconds at room temperature. The wash solution was discarded and the cell pellet 

was resuspended in 700 µL of 80:20 methanol/water at -80°C. The samples were then incubated 

at -80°C for 15 minutes. 



 

 52 

For both cell types, the intracellular solution was then transferred to a microcentrifuge tube in a 

cold ethanol bath and centrifuged at 5,000 g for 5 minutes at -4°C. The supernatant was retained, 

and the pellet was subsequently re-extracted twice in 100 µL of the cold 80:20 methanol/water 

solution, with all supernatants being pooled.34 Intracellular and extracellular samples were stored 

at -80°C and -20°C, respectively, until analysis. 

2.4.3. Media Control 
To control for the differences in media, a secondary experiment was performed where OCCs 

were grown in parallel in their normal media and OCSC media (both media formulations are 

described above) for 48 hours. Intracellular and extracellular samples were taken at 0, 24, and 48 

hours in the same manner as described above for the OCCs. Cell counts were also taken (data not 

shown) and it was discovered that OCCs grow slower in the OCSC medium than they do in their 

normal medium, mimicking the slower growth rate of OCSCs. Intracellular and extracellular 

samples were analyzed and on the GCxGC-MS and processed with the OCC and OCSC data (as 

described in section 2.4.7).  

2.4.4. Extracellular Sample Extraction 
Immediately before two dimensional gas chromatography-mass spectrometry (GCxGC-MS) 

analysis, an acetonitrile precipitation was performed on the extracellular samples to remove 

protein.35 Briefly, the extracellular samples were thawed on ice and 75 µL was removed for 

GCxGC-MS analysis. 150 µL of ice-cold acetonitrile was added to the sample, and the sample 

was vortexed for one minute. The sample was then centrifuged at 21,100 g for 7 minutes, and the 

supernatant removed for GCxGC-MS analysis. 

2.4.5. GCxGC-MS Analysis 
Before derivatization, both intracellular and extracellular samples were vacuum concentrated in a 

CentriVap at 40°C until completely dry. For the intracellular samples, a volume equated to 
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7.5x104 cells for each sample was vacuum concentrated in order to achieve a concentration of 

3x104 cells equivalents/µL after derivatization. For the extracellular samples, the entire 

supernatant from the extracellular extraction was vacuum concentrated.  

The samples were derivatized following the protocol laid out by Fiehn, et. al.36 Briefly, 10 µL 

(extracellular) or 2.5 µL (intracellular) of 40 mg/mL O-methylhydroxylamine hydrochloride (MP 

Biomedicals, LLC, Santa Ana, CA) in pyridine was added to the dried sample and shaken at 

1400 rpm for 90 minutes at 30°C. 90 µL (extracellular) or 22.5 µL (intracellular) of N-methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) + 1% trimethylchlorosilane (TMCS) (Thermo 

Scientific, Lafayette, CO) was then added to the samples which were then shaken at 1400 rpm 

for 30 minutes at 37°C. Samples were centrifuged at 21,100 g for 3 minutes and 50 µL 

(extracellular) or 15 µL (intracellular) of the supernatant was added to an autosampler vial. 

Samples were spiked with 0.25 µL (extracellular) or 0.10 µL (intracellular) of a retention time 

standard solution consisting of fatty acid methyl esters (FAMEs) and an internal standard of 

nonadecanoic acid methyl ester dissolved in dimethylformamide. 

A LECO Pegasus 4D instrument with an Agilent 7683B autosampler, Agilent 7890A gas 

chromatograph and time-of-flight mass spectrometer (TOF-MS) was used to analyze the 

samples. The first column was an HP-5, 30 m long x 0.320 mm ID x 0.25 µm film thickness 

(Agilent, Santa Clara, CA), and the second was an Rtx-200, 2 m long x 0.25 mm ID x 0.25 µm 

film thickness (Restek, Bellefonte, PA). Specific autosampler, gas chromatography, and mass 

spectrometry methods can be found in Appendix A. 

2.4.6. Data Analysis 
Sample runs were first analyzed in ChromaTOF (LECO, St. Joseph, MI) to determine baseline, 

peak area, and peak identification. Briefly, settings included a baseline offset of 0.5, automatic 
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smoothing, 1st dimension peak width of 10 seconds, 2nd dimension peak width of 0.10 seconds, 

and a match of 700 required to combine peaks with a minimum signal-to-noise (S/N) of 5 for all 

subpeaks. Peaks were required to have a S/N of 10 and have a minimum similarity score of 800 

before assigning a name. Unique mass was used for area and height calculation.  

To align the samples, MetPP (http://metaopen.sourceforge.net/metpp.html) was used.37 Sample 

files and a derivatization reagent blank file were uploaded from ChromaTOF. Unknowns were 

retained during the peak alignment process. The derivatization reagent blank file was used to 

subtract peaks attributable only to derivatization reagents from the sample files. On-the-fly 

alignment was used with quality control samples manually selected as the peak list for primary 

alignment. Peak alignment was performed using the default criteria. 

After alignment, further processing of the data was done following the procedure laid out by 

Dunn, et. al.38 Batch effects were removed from the intracellular data set using LOESS. During 

LOESS correction, one of the OCC and OCSC 24 hour biological replicates were identified as an 

outlier and removed. LOESS was also performed on the extracellular data set, but batch effects 

were amplified in the samples after correction due to quality control (QC) sample run errors so 

the original data set was used for subsequent analysis. To remove analytes that were not 

reproducibly detected, analytes for which more than half of the values were missing in the QC 

samples or for which the QC samples had a coefficient of variance larger than 0.5 (excluding 

missing values) were removed from the data set. Then, missing values were manually corrected 

using small value correction only if all the values were missing in a set of biological replicates. 

Finally, MetaboAnalyst (http://metaboanalyst.ca/) was used for statistical and enrichment 

analysis, applying both the statistical analysis and time series analysis modules.39 For both 
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analyses, remaining missing values were k-nearest neighbors (KNN) imputed. Data was filtered 

using the interquantile range method and then log-transformed using generalized logarithm 

transformation (base 2) and autoscaled.  

For removal of media effects, the media control samples were isolated from the OCC and OCSC 

samples and analyzed using MetaboAnalyst. Any metabolites found to have significant 

differences (t-test, all time points, FDR < 0.05) in the media control experiment were then 

removed from the main data set to eliminate any metabolic changes due to media differences. 

This was done for both the intracellular and extracellular data sets. 

For enrichment analysis, both metabolite set enrichment analysis (MSEA) and metabolite 

pathway enrichment analysis (MPEA) yielded similar results, so only MPEA results were 

considered further. The entire time series was uploaded as discrete data with compound names. 

Metabolites were properly matched to their HMDB codes before processing the data. Data 

processing followed the same steps as listed above for missing value imputation and data 

normalization. The Homo sapiens pathway library was used for analysis and an in-house 

metabolite reference library based on detectable metabolites for our system was uploaded. 

Global test was used for pathway enrichment analysis, with relative-betweeness centrality as the 

pathway topology analysis. Pathways with an FDR < 0.05 were considered significantly 

enriched.  

For gene set enrichment analysis (GSEA) of OCSC and OCC gene expression data, .CEL files 

corresponding to 3 replicated cultures of OCSC and OCC (GeneChip® Human Genome U133 

Plus 2.0 Array), generated as previously described8, were processed and normalized by GCRMA 

method (http://arrayanalysis.org) and used for GSEA 
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(http://www.broadinstitute.org/gsea/index.jsp) without pre-filtering of probe sets using the 

following parameters: OCC vs. OCSC as categorical phenotypes; signal-to-noise metric; gene set 

permutation type; curated KEGG gene sets (186 gene sets, Molecular Signatures Database v4.0). 

Gene sets were considered significantly enriched in a given phenotype if their FDR q value was 

< 0.20. The dataset employed in this analysis is available in the Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo/) as series GSE28799.  

2.4.7. Effects due to growth media differences successfully removed from 
OCC vs OCSC intracellular metabolomics data 

OCSCs require stem cell medium to retain their stem-like properties and therefore, they are 

grown in different media than the OCCs. Since growth in different media could cause metabolic 

changes and confound the metabolic differences seen between the two cell types, we designed a 

media control experiment that would allow us to remove any metabolic changes due purely to 

media effects. OCCs were grown in their normal R10 medium and in stem cell medium and 

intracellular and extracellular samples were taken at 0, 24, and 48 hours. These samples were 

analyzed and processed with the OCC and OCSC intracellular and extracellular samples. The 

media control samples were then isolated from the OCC and OCSC samples and analyzed on 

their own. Any analyte identified as statistically different between only the media control 

samples was removed from the entire data set.  

Before removing the analytes with statistically significant differences from the intracellular 

dataset, the samples from the two different media types separated in principal component (PC) 2, 

seen in Figure 2.7A. Even though separation is seen between these two media controls, it is 

captured in PC2, which represents a smaller proportion of the overall variance than the 

separation between OCCs and OCSCs, captured in PC1. Once the significant analytes were 

removed, the separation decreased between the two media controls in the all analyte dataset 
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(Figure 2.7B) and no principal components analysis (PCA)-based separation could be found 

based on annotated metabolites only (Figure 2.7C), showing that the differences between OCC 

and OCSC intracellular metabolism are not simply due to growth in different media. The 

intracellular datasets with media effects removed are the basis for all of the biologically-related 

discussion following, and so any differences in these analytes between OCCs and OCSCs should 

not be attributed to medium differences.  

In the extracellular dataset, a large difference between the OCCs in R10 medium and OCCs in 

stem cell medium was seen before removal of the statistically different analytes, as seen in 

Figure 2.8A. After removal, in both the unknown and known compound data set and the 

metabolite only data set, there is still separation visible between the two media control samples 

(Figure 2.8B and C). This separation is less than that seen between the OCC and OCSC 

extracellular samples, but because the media effect was not completely removed, we will focus 

only on the intracellular samples.  
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Figure 2.7: Intracellular media effects are successfully removed from OCC vs OCSC comparisons. 
Principal components analysis of OCC (red), OCSC (blue), and the two media control (OCCs grown in 

R10 medium (green) and stem cell medium (cyan)) intracellular samples. OCCs (red) and OCCs grown in 

R10 medium (green) are similar samples, but the OCCs grown in R10 medium were grown at a different 

time than OCCs and only have three time points instead of six. (A) Media effects are clearly seen in PC 2 

through the separation of two media control samples. (B) After removing media effects, the two media 

control samples are overlapping, showing the reduction of media effects in the intracellular analysis. (C) 

Focusing only on annotated metabolites, the media effects are further reduced. 
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Figure 2.8: Extracellular media effects cannot be removed through simple removal of statistically 

significantly different analytes. Principal components analysis of OCC (red), OCSC (blue), and the two 

media control (OCCs grown in OCC media (green) and OCSC media (cyan)) extracellular samples. (A) 

OCCs (red) and OCCs grown in R10 medium (green) are similar samples, but the OCCs grown in R10 

medium were grown at a different time than OCCs and only have three time points instead of six. Media 

effects are clearly seen in PC 1 through the separation of two media control samples. (B) After removing 

media effects, the two media control samples are closer, showing the reduction of media effects, but are 

still separated. (C) Focusing on annotated metabolites only, the media effects are still noticeable. 
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Chapter 3 Chemotherapeutic and environmental perturbations 

cause different metabolic responses in an ovarian cancer stem cell 

line compared to its isogenic parental cell line 

3.1. Introduction 
Since 1924, when Warburg discovered anaerobic glycolysis, it has been known that cancer 

cellular metabolism is distinct from normal cellular metabolism.1, 2 It is only recently that the 

important role metabolism plays in cancer has become more generally recognized. Dysfunctional 

metabolism is now acknowledged as a hallmark of cancer, and multiple different examples of 

altered metabolism in cancer cells have been demonstrated.3, 4 Most cancer cellular metabolism 

studies are usually performed using in vitro cell culture. Cell culture conditions are ideal: an 

overabundance of an energy source (usually in the form of glucose) is supplied, oxygen 

concentration is kept high, and cells are grown in monolayers to keep nutrient and oxygen 

transfer high to all cells. Unfortunately, these in vitro conditions drastically differ from the 

conditions found in vivo in the tumor environment, which are far from ideal. With the fast 

growth of tumors, angiogenesis cannot occur quickly enough to supply the entire tumor with 

capillaries, resulting in nutrient fluctuations, hypoxia, and ischemia (a state of depleted oxygen 

and glucose) – particularly in the center of tumor. Along with poor cellular growth conditions, 

most tumors are also treated with chemotherapeutics to attempt to eradicate the tumor. These 

differences in environmental conditions can actually be critical in correctly understanding and 

treating cancer cells. For example, differences between in vitro cellular growth conditions and 

the in vivo tumor environment have been identified as responsible for the inconsistency in 
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clinical and in vitro lethal concentration for metformin.5 It is thus critical to attempt to study 

cancer cells under conditions relevant to their natural tumor environment.  

Another important characteristic of tumors that may not be well represented in in vitro models is 

the heterogeneous population of cancer cells. Part of the heterogeneous population are cells 

referred to as cancer stem cells due to their stem-like properties: they can differentiate and self-

renew, and they are chemo and radio-resistant. Thus, to fully understand tumor metabolism we 

must characterize the metabolism of both cancer cells and cancer stem cells. Any differences in 

metabolic behaviors between these two cells types could allow us to start to understand how the 

two different cell types handle some of the stresses encountered in a tumor. Understanding the 

metabolic effects of these stresses could lead to a more complete model of cancer pathology and 

the development of metabolism-targeted cancer therapies. 

Here, we use ovarian cancer cells (OCCs) and ovarian cancer stem cells (OCSCs) as a model 

system for isogenic cancer cells and cancer stem cells. We subjected them to biologically 

inspired environmental in vitro perturbations and measured their metabolic responses. Since 

OCCs and OCSCs are already known to exhibit significant metabolic differences during normal 

growth,6 we hypothesized that these two cell types may also have differing metabolic responses 

to the environmental perturbations. The perturbations used in this study are glucose deprivation, 

hypoxia, ischemia, and chemotherapeutic treatment. Docetaxel, a common first line treatment for 

ovarian cancer, was chosen as the chemotherapeutic. These perturbations are applied over a 

period of 48 hours with metabolomics measurements being made throughout that period using 

two-dimensional gas chromatography-mass spectrometry (GCxGC-MS).  
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3.2. Results & Discussion 

3.2.1. Univariate analysis and time series analysis reveals no metabolic 
change for OCSCs upon docetaxel treatment 

To profile cellular metabolism, GCxGC-MS was used to analyze the intracellular samples 

collected during the docetaxel treatment for both the OCCs and OCSCs. Both unknown analytes 

and annotated analytes result from this data processing pipeline. Because of the limited scope of 

metabolite mass spectrum databases and the conservative identification cutoff we employ in data 

processing, some of the unannotated analytes may be endogenous metabolites that have not yet 

had a mass spectrum deposited in a database, or their mass spectral similarities to library spectra 

may fall under our conservative naming cutoff. Therefore, these unknown analytes can still be 

important to the metabolic profile of the cells, and so they were included for most downstream 

analyses except enrichment analyses (which require metabolite identifies). Lists of annotated 

metabolites in this work come from unique matches to known human metabolites in either the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) or the Human Metabolome Database 

(HMDB), followed by a manual confirmation of similarity between the annotated peak spectrum 

and the library spectrum. For the OCCs, 198 reproducible analytes were detected, including 

unknown analytes and annotated analytes that were not included in human metabolic databases, 

with 46 unique metabolites were annotated as known human metabolites. For the OCSCs, 115 

reproducible analytes were detected overall and 31 unique metabolites were mapped to either 

KEGG or HMDB.  

For OCSCs, univariate analysis in MetaboAnalyst revealed no statistically significant differences 

(FDR corrected p value < 0.05) between the control and docetaxel treated cells overall (t test 

across all time points). When looking at the individual time points, only one unknown analyte 

was found to be statistically significantly different between the control and docetaxel treated 
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cells, at 48 hours. For the OCCs, on the other hand, significant metabolome-scale changes were 

apparent during univariate analysis. Analysis of variance (ANOVA) was used to determine the 

differences between the three treatments: docetaxel at IC50, docetaxel at 1.5x IC50, and control. 

The number of statistically significant analytes found during ANOVA is shown in Table 3.1. 

Two-sample t tests were also performed on each individual docetaxel treatment versus control, 

with the number of statistically significant analytes shown in Table 3.1.  

Table 3.1: Number of statistically significant analytes found in OCC analysis. The number of 

statistically significant analytes (FDR < 0.05) found during ANOVA (Control vs IC50 vs 1.5x IC50) or t-

test analysis (Control vs IC50 and 1.5x IC50). 

Time Points Control vs IC50 vs 1.5x IC50 Control vs IC50 Control vs 1.5x IC50 

All 31 18 24 

24 22 15 14 

48 22 8 8 

 

Two-way ANOVA was used to identify FDR-corrected p values for group, time, and interaction 

effects. Group effects relate to the difference in analytes between the experiment conditions, the 

time effect measures how the analyte changes with time across all the conditions, and the 

interaction effect captures effects where the combination of time and group effects are not 

additive. Analysis of the OCSC intracellular data using two-way ANOVA again demonstrated 

very little change over time between the control and docetaxel treated cells, with only two 

analytes showing statistically significant differences in the group category; neither of these were 

analytes that mapped to an annotated metabolite. Two-way ANOVA on OCC intracellular data 

revealed many more analytes that were statistically significantly different between the two 

docetaxel treatments and control cells than were found using one-way ANOVA. The numbers of 

metabolites with statistically significant effects are shown in Table 3.2.  
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Table 3.2: Number of statistically significantly different analytes in OCC using two-way ANVOA 

time series analysis. The number of statistically significant analytes (FDR < 0.05) found during time 

series analysis using two-way ANOVA. 

Category Control vs IC50 vs 1.5x IC50 Control vs IC50 Control vs 1.5x IC50 

Group 42 31 41 

Time 67 48 51 

Interactions 36 29 29 

 

The annotated metabolites identified as having statistically significant group effects are shown in 

Table 3.3 for both docetaxel concentrations and for each concentration individually. All of the 

metabolites identified as statistically significant via one-way ANOVA for both docetaxel 

concentrations were also found as statistically significant via t tests for at least one of the 

concentrations individually. All of the metabolites with significant group effects for either 

concentration also had significant group effects for both docetaxel concentrations together. For 

the 1.5x IC50 concentration, three metabolites, including gamma-aminobutyric acid (GABA), 

were identified as having significant group effects that had not been detectable when analyzing 

both docetaxel concentrations together, suggesting that docetaxel at 1.5x IC50 has greater 

metabolic effects over 48 hours than docetaxel at IC50.   
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Table 3.3: Metabolites identified as statistically significantly different during chemotherapeutic 

treatment using two-way ANOVA for OCCs.

 
Metabolite Group Time Interactions 

C
o

n
tr

o
l 

v
s 

IC
5
0
 v

s 

1
.5

x
 I

C
5
0
 

Uracil 2.12E-04 3.65E-12 2.48E-07 

Phosphoric acid 5.77E-04 1.90E-06 3.24E-06 

Arachidonic acid 5.77E-04 1.75E-05 3.24E-06 

Ethanolamine 3.24E-03 1.33E-08 1.11E-04 

D-Glucose 3.38E-03 5.24E-03 6.43E-04 

Mannose 6-phosphate 0.010 0.187 0.337 

C
o

n
tr

o
l 

v
s 

IC
5
0
 

Uracil 0.019 5.08E-09 1.79E-06 

Phosphoric acid 0.030 1.61E-04 5.39E-04 

Ethanolamine 0.036 4.64E-06 6.99E-04 

D-Glucose 0.036 8.18E-04 4.90E-03 

C
o
n
tr

o
l 

v
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1
.5

x
 I

C
5

0
 

Uracil 3.85E-04 4.65E-07 6.66E-05 

Arachidonic acid 7.39E-03 6.00E-05 9.66E-05 

Hexadecane 0.025 0.287 0.522 

D-Glucose 0.029 0.016 3.59E-03 

Mannose 6-phosphate 0.038 0.320 0.491 

4-Hydroxy-L-proline 0.039 0.262 0.793 

 

Uracil, a nucleobase used for RNA production, allosteric regulation, and as a coenzyme, always 

showed the most significant group effect, most significant time effect, and the most or second 

most significant interaction effect in the three data sets of analyses. Uracil levels in docetaxel 

treated cells spiked at 24 hours (with over 700-fold change from the control) and then leveled off 

at 48 hours, at which time the uracil in the control cells reached similar levels. The quicker 

spiking of uracil levels in docetaxel treated OCCs could be the cell reacting to the stress by 

increasing production of uracil or the docetaxel treatment blocking pathways that utilize uracil. 

These docetaxel-induced changes in uracil levels are particularly noteworthy, as recent clinical 

studies have shown that synthetic analogs of uracil (such as 5-flurouracil or tegafur/uracil), 

which inhibit enzymes using uracil as a substrate, when administered in combination with 

docetaxel cause improved treatment results for gastric cancer, prostate cancer, and lung 
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metastases.7-10 Therefore, if docetaxel treatment does increase cellular dependence on uracil in 

the cells that are somewhat docetaxel resistant, then this would help explain why the addition of 

a competitive inhibitor for uracil improves patient treatment results. 

3.2.2. PCA further confirms metabolic change in OCCs but not in OCSCs 
upon docetaxel treatment 

Principal components analysis (PCA) allows for graphical interpretation of data through 

unsupervised dimensional reduction. PCA on OCSCs alone further supported the results from the 

basic and time series univariate analysis. No separation is evident between control and docetaxel 

treated cells, with the only separation seen between the initial time point and the later time points 

(24 and 48 hours), as shown in Figure 3.1A, and PC1 fully responsible for capturing this 

separation. PCA loading scores indicate that fumarate, psicose, and other unknown analytes are 

responsible for the separation seen in PC1. PCA on only the 24 or 48 hour time points showed 

the same lack of separation between control and docetaxel treated OCSCs. Previous work has 

shown that OCSC viability does not vary greatly over 96 hours of docetaxel treatment.11 Overall, 

this non-perturbation of metabolism suggests quite powerful resistance of the OCSCs to 

docetaxel. Cancer stem cells are generally less susceptible to chemotherapeutic treatments than 

their cancer cell counterparts, but it is not known how susceptible their cellular metabolism is to 

chemotherapeutics. Here, it seems that OCSCs are able prevent any systematic change in 

metabolism, whether through an active role (removing docetaxel or inhibiting docetaxel uptake) 

or through a passive role (such as their low division rate). Either way, the OCSCs exhibit no 

metabolic stress. 
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Figure 3.1: PCA of docetaxel perturbations highlights the different metabolic responses of OCCs 

and OCSCs. PCA of metabolic profiles of OCSCs (A) and OCCs (B) in response to docetaxel over 48 

hours. Dotted ovals represent 95% confidence intervals of the membership of each sample class. (A) PC1 

separates the initial time point and the later times points, but there is no separation between control and 

docetaxel treated cells, suggesting that docetaxel has little to no effect on the metabolism of OCSCs over 

a 48 hour period. (B) PCA shows clear separation between control and docetaxel treated OCCs, as well as 

separation between the two treatment levels, and separation between the time points for all treatments and 

controls. PCI and PC2 both are responsible for the separation between different experimental groups as 

well as time.  

The clear effect of docetaxel on OCC metabolism is further supported with PCA, as seen in 

Figure 3.1B. Docetaxel-treated samples cluster together away from both the control and initial 

samples with distinct separation between the different concentrations and time points. Even 

though the separation is small between the different time points and between the different 

treatment levels (each in different PCs), the differences are clear and consistent. The control 

samples cluster together high in PC1 or PC2, with large variation between the 24 hour samples, 

which lie closer to the initial samples, and the 48 hour samples. The control OCCs have a much 

larger variance between the 24 and 48 hour time points compared to the variance between 

docetaxel treated OCCs. PC1 and 2 seem to be equally responsible for capturing the separation 

between treatment and time points. Unknown analytes, leucine, and fumarate are most important 
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in PC1 separation. For PC2, unknown analytes and glucose are largely responsible for 

separation. 

3.2.3. Metabolite pathway enrichment analysis reveals important pathways in 
metabolic docetaxel response for OCCs 

Metabolic pathway enrichment analysis (MPEA) in MetaboAnalyst found 14 pathways 

statistically significantly enriched for differences between control and docetaxel treated OCCs. 

In order to find only the pathways enriched for docetaxel differences and not between the initial 

state and these treatments, only the 24 and 48 hour time points were included in this analysis. 

Table 3.4 shows the pathways that were enriched. Most of the pathways affected by docetaxel 

are amino acid and carbohydrate metabolism pathways, but pathways involved in nucleotide 

metabolism, cofactor and vitamin metabolism, and lipid metabolism have also been altered. 

Pantothenate and CoA biosynthesis and pyrimidine metabolism both involve uracil, further 

highlighting that docetaxel treatment causes a perturbation in uracil metabolism. 

Table 3.4: Metabolic pathways significantly enriched for differences between control and docetaxel 

treated OCCs. 

KEGG Pathway Raw p FDR 

Amino sugar and nucleotide sugar metabolism 0.002 0.033 

Citrate cycle (TCA cycle) 0.002 0.033 

Glycerophospholipid metabolism 0.004 0.033 

Butanoate metabolism 0.004 0.033 

Nicotinate and nicotinamide metabolism 0.005 0.033 

Alanine, aspartate and glutamate metabolism 0.005 0.033 

Arginine and proline metabolism 0.005 0.033 

Glutathione metabolism 0.007 0.040 

Pyrimidine metabolism 0.010 0.047 

Arachidonic acid metabolism 0.011 0.047 

Pantothenate and CoA biosynthesis 0.013 0.050 

beta-Alanine metabolism 0.014 0.050 

Fructose and mannose metabolism 0.015 0.050 
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Unsurprisingly, MPEA identified no pathways significantly enriched for differences between 

control and docetaxel treated OCSCs, further supporting all previous findings that docetaxel does 

not affect OCSC metabolism over a 48 hour period.  

3.2.4. Glucose deprivation, hypoxia, and ischemia affect OCC and OCSCs in 
a time-dependent manner 

GCxGC-MS analysis was used to profile the metabolism of the OCCs and OCSCs over the 48 

hour period. For OCCs, 98 intracellular analytes were reproducibly detected with 35 of these 

analytes annotated to unique metabolites. For OCSCs, 81 reproducibly measured intracellular 

analytes were detected with 32 annotated to unique metabolites.  

Two-way ANOVA was used to analyze the data to account for changes as a function of both 

time and treatment. OCC and OCSC samples were analyzed with all conditions together, and 

with each of the conditions individually compared against the normal condition. The number of 

analytes with statistically significant effects indicated by these analyses (FDR < 0.05) is shown 

in Table 3.5.  

Table 3.5: Number of statistically significant analytes for OCCs and OCSCs using two-way 

ANOVA. 

  

All Analytes Metabolites 

  

Group Time Interaction Group Time Interaction 

O
C

C
s 

All Conditions 40 69 45 14 22 12 

Glucose Deprived 

vs Control 14 49 20 1 15 5 

Hypoxic vs Control 23 52 23 7 15 4 

Ischemia vs Control 26 42 34 9 13 10 

O
C

S
C

s 

All Conditions 21 52 27 7 19 5 

Glucose Deprived 

vs Control 11 33 17 3 14 5 

Hypoxic vs Control 4 34 9 0 10 2 

Ischemia vs Control 12 31 15 5 12 3 
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Individual annotated metabolites found to have statistically significant group effects for all 

conditions or for any individual condition are shown in Figure 3.2 for OCCs and OCSCs. Five 

metabolites had significant group effects for both OCCs and OCSCs when including all 

conditions, representing a core of conserved metabolites with a major role in responding to one 

or more of these environmental stressors. One of these metabolites, phosphoethanolamine, is a 

substrate for many cell membrane phospholipids that has recently been shown to induce both cell 

cycle arrest and apoptosis in cancer cells.12, 13 Here, intracellular phosphoethanolamine levels for 

both OCCs and OCSCs stay fairly consistent over 48 hours for the control cells, but for the 

metabolic perturbations, the levels steadily increase over 48 hours. Because the 

phosphoethanolamine levels increase slightly but consistently for all metabolic perturbations, the 

reaction seems to be a generalized metabolic stress response. This reaction could be indicative of 

increased phospholipid membrane turnover or an apoptotic response to the increasing stress 

levels. Thus far, the apoptotic effects of phosphoethanolamine have only been studied in a 

controlled dose manner;12, 13 it would be interesting to determine if the cells themselves use 

phosphoethanolamine as an apoptotic inducer. 
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Figure 3.2: Environmental perturbations cause different metabolite-level changes in OCCs and 

OCSCs. Heatmap displays false discovery rate corrected p values for OCC and OCSC group effects for 

different metabolites during two-way ANOVA. Metabolites are shown in the rows, with the conditions 

represented in the columns. The darker the blue, the more statistically significantly different the 

metabolite differences are between the stated condition and the control. The five metabolites at the top 

represent a core, conserved set of metabolites with overall significance in both cell types.  

Other types of stress-responsive analytes are also evident in this analysis. For example, there are 

numerous analytes that would not have been detectable as having significant group effects 

without the combination of all of the metabolic perturbations studied herein. This group, which 

includes 4-hydroxy-L-proline, GABA, and threonine for OCCs, can be seen as a “weak core 

response”: not like the strong, individually significant core response observed for mannose-6-

phosphate across all perturbations for OCCs, but nonetheless consistent in its small effect across 

all perturbations so as to yield an overall significant effect.  

3.2.5. PCA shows separation between environmental perturbations for both 
OCCs and OCSCs 

To assess the differences between cell types for the perturbations, PCA was used to examine the 

results of each perturbation individually, for OCCs and OCSCs together. Again, analytes whose 
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differences were due to the differences in media or extraction method were removed as discussed 

in the methods. PCA revealed separation between OCCs and OCSCs for each individual 

condition as shown in Figure 3.3, with the hypoxic perturbation showing the most distinct 

separation between the cell types. PC1 and PC2 are both responsible for separation of the OCC 

and OCSC samples as well as time point separation in different perturbations. For the control, 

the analytes most responsible for separation between OCCs and OCSCs are unknowns, myristic 

acid, and threonine. Unknowns, threonine, tyrosine, leucine, and valine are the analytes 

important for separation in glucose deprivation. The analytes most important for hypoxic 

separation are unknowns, 3,8-dimethylundecane, and ribose. Unknowns, n-dodecane, 4,6-

dimethyldodecane, and 2,3,5,8-tetramethyl-decane are the most important analytes for separation 

between OCCs and OCSCs in ischemia. It is clear that both hypoxia and ischemia amplify the 

differences between OCCs and OCSCs evident in the normoxic condition; the effects of glucose 

deprivation are less evident in this analysis, though the differences become more evident in later 

analyses.  
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Figure 3.3: Control, glucose deprived, hypoxic, and ischemic conditions show varying effects on the 

differences between the two cell types. PCA of both cell types and all time points for four 

environmental conditions captured varying separation between OCCs and OCSCs. The greatest metabolic 

difference between the two cell types is during hypoxia; both hypoxia and ischemia amplify the 

differences between OCCs and OCSCs compared to control. PC1 and PC2 both capture separation 

between the cell types as well as time point separation in the different conditions. Dotted ovals represent 

95% confidence intervals of the membership of each sample class. 

To further characterize the effects of the perturbations on OCC and OCSC metabolism, PCA was 

performed on each cell type individually for all perturbations together. Plotting all conditions 

across all time points showed differences between the different conditions for both cell types, but 

only at later time points (data not shown). This suggests that the effects of these perturbations are 

not extremely fast, even though they are each tied closely to cellular metabolism; the impacts of 

these perturbations are best observed accumulated over days. For clarity and to facilitate 
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interpretation, time points at 2, 4, and 8 hours were removed from further visualizations and 

analyses, and PCA was performed for all conditions at 0, 24 and 48 hours, as seen in Figure 3.4.  

 

Figure 3.4: PCA for OCCs and OCSCs shows differences between environmental perturbations at 

later time points for each cell type. PCA shows separation between conditions and time points at later 

time points. In both cell types, PC1 plays a large role in separating time points, and PC2 captures 

variation between the conditions. Dotted ovals represent 95% confidence intervals of the membership of 

each sample class. A) Control samples show little temporal variation in OCCs. Effects of ischemia are not 

additive based on the effects of glucose deprivation and hypoxia individually at 48 hours, but are much 

more similar to the effects of glucose deprivation than they are to hypoxia. B) OCSC control samples 

display much greater temporal variation compared to OCCs. There is no metabolic distinction between 

control and hypoxic cells, and 48-hour ischemia samples again show non-additive effects compared to 

glucose-deprived and hypoxic conditions. 

For OCCs, shown in Figure 3.4A, PC1 plays a large role in separating the different time points, 

with hydroxyproline, threonine, and tyrosine being most important analytes for the separation. 

PC2 plays a large role in separating the treatment conditions, with unknown analytes causing 

most of the separation between conditions. The control and initial samples are more similar to 

each other than the other conditions based on their close clustering, showing that the applied 

perturbations induce significant changes in metabolism. The effects of ischemia, even though it 
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is a combination of the glucose deprived and hypoxic conditions, are not additive based on the 

effects of glucose deprivation and hypoxia individually; instead, the 48 hour time points 

experience much greater differences for ischemia than for either of the two individual treatments. 

The overall proximity of the ischemia treatment to the glucose deprivation suggests that the 

metabolic impacts of ischemia are driven more strongly by glucose deprivation than by hypoxia.  

PCA of OCSC samples again shows differences between conditions during the later time points, 

as seen in Figure 3.4B. PC1 captures significant time variance, with an unknown, phenylalanine, 

pyroglutamate, and tyrosine responsible for most of the variance. PC2 captures significant 

separation between the treatments, with 2,9-dimethyldecane, hexadecane, and cis-1,4-

dimethylcyclooctane most responsible for separation. Similar to the OCCs, glucose deprivation 

shifted the OCSCs’ metabolic profile away from the control, and ischemia showed a nonadditive 

extra effect on metabolism at 48 hours. Unlike OCCs, though, the control samples display 

substantial changes and variability between time points; this is to be expected based on previous 

work indicating temporal changes in metabolism of OCSCs.6 In addition, the hypoxic samples 

completely overlap the control, showing that hypoxia did not substantially alter the metabolic 

profile of the OCSCs from its normal state as it did to OCCs. Hypoxic conditions have been 

shown to support stemness within cancer stem cells in vitro and cancer stem cells have been 

located in hypoxic niches within the tumor.14, 15 Therefore, it is possible that OCSCs have 

adapted to hypoxic environments to the point where hypoxia no longer puts more stress on their 

metabolism compared to growth under normal oxygen concentrations.  

3.2.6. MPEA further supports that OCCs and OCSCs respond to hypoxia and 
glucose deprivation differently 

Using MPEA in MetaboAnalyst, 21 KEGG pathways for OCCs and 23 KEGG pathways for 

OCSCs were identified as being statistically significantly enriched (FDR < 0.05) in differences 
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between the normal, glucose deprived, hypoxic, and ischemic conditions across all time points. 

Figure 5 breaks the pathway responses into three categories: “strong core” responses in either 

cell type are significant for multiple individual conditions as well as all individual conditions 

together. “Weak core” responses are significant only for all conditions together, but never for 

any individual condition, suggesting the combination of many small, individually insignificant 

effects to reflect a significant core response. The remaining class of pathways are “perturbation-

specific” responses: they are significant for only one perturbation in a cell type, which may or 

may not drive overall significance for all conditions. Within these subtypes, we can then further 

identify which of these responses are conserved between cell types, and which are unique to cell 

types. 

Overall, 18 of the statistically significantly enriched pathways overlap between OCCs and 

OCSCs, indicating that many of the changes caused by the metabolic perturbations are similar 

between the two cells. However, 6 pathways were exclusively enriched in the OCCs and 5 

pathways were exclusive for OCSCs. Detailed investigation of why these pathways were only 

altered in one cell type during all the perturbations may help to further explain the differences in 

metabolism between OCCs and OCSCs. 
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Figure 3.5: MPEA results show different trends in enriched pathways for OCCs, OCSCs, and both.  
Heatmap displays false discovery rate corrected p values for metabolite pathway enrichment analysis 

results for (A) OCCs, and (B) OCSCs. KEGG pathways are shown in the rows with the conditions 

represented in the columns. Strong core response pathways are those with significant enrichment in all 

conditions and in at least one individual condition; weak core response pathways are those enriched only 

in all conditions; perturbation specific pathways are those that are only enriched for a unique individual 

condition. The darker the blue, the more statistically significantly enriched the pathway is for metabolic 

differences. Grey boxes represent pathways with FDR > 0.05. All: glucose deprived vs hypoxia vs 

ischemia vs control; GlucDep: glucose deprived vs control; Hypoxia: hypoxia vs control; Ischemia: 

ischemia vs control. 
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To determine which pathways are most affected by each perturbation, each individual condition 

was compared against the control condition using MPEA. In OCCs, glucose deprivation resulted 

in only two pathways significantly enriched, amino sugar and nucleotide sugar metabolism and 

fructose and mannose metabolism pathways, both strong core responses. Therefore, it appears 

that glucose deprivation in OCCs only directly affects sugar metabolism pathways and the cells 

adjust their metabolism to meet their energy and other requirements without systems-scale 

metabolic impact. In contrast, glucose deprivation resulted in 14 significantly enriched pathways 

in OCSCs that are widespread throughout metabolism, including amino acid metabolism, 

carbohydrate metabolism, lipid metabolism, and cofactor and vitamin metabolism. The 

differences in lipid metabolism pathways, glycerophospholipid metabolism and sphingolipid 

metabolism, are largely driven by differences in phosphoethanolamine levels between the control 

and glucose deprived cells, discussed previously. Overall, these findings suggest that OCSCs 

might be more dependent on glucose than OCCs, since glucose deprivation has a much larger 

effect on OCSC metabolism than OCC metabolism. This is particularly surprising given the 

substantially lower proliferation rate of OCSCs and the known significant glycolytic flux of the 

Warburg effect in bulk cancer cells. 

Under hypoxic conditions, 12 pathways were significantly enriched for metabolic differences for 

OCCs. Out of these 12, two pathways were perturbation-specific responses, phenylalanine 

metabolism and phenylalanine, tyrosine and tryptophan biosynthesis, both of which are amino 

acid metabolism pathways. Tyrosine and phenylalanine are the metabolites most responsible for 

the differences in these two pathways, both of which have lower levels in hypoxic conditions. 

Along with these two pathways, there are three other amino acid metabolism pathways enriched 

for statistically significant differences along with aminoacyl-tRNA biosynthesis, which prepares 
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for translation. In all of these pathways, the amino acids driving the differences have lower levels 

in hypoxia than the control. Therefore, hypoxic conditions seem to be causing significant overall 

changes in amino acid metabolism, whether via decreased production or increased consumption. 

Hypoxia also has an observable effect on sulfur metabolism; the sulfur metabolism pathway 

supplies sulfur for cysteine and methionine metabolism, both of which are enriched for 

metabolites with lower levels in hypoxia. The only metabolites with higher levels in hypoxia are 

citric acid and malic acid, both of which play a major role in the TCA cycle. For OCSCs, in 

contrast, hypoxia only resulted in one pathway being significantly enriched (glyoxylate and 

dicarboxylate metabolism), thus reinforcing the idea that OCSCs have fairly completely adapted 

to a hypoxic environment. 

Ischemia caused 16 pathways to be significantly enriched for metabolic differences for the 

OCCs, ten of which are perturbation-specific responses (though nine of them drive significance 

in the overall analysis as well). For OCSCs, 15 pathways were statistically significantly enriched. 

9 of these pathways are in common between the two cell types, showing a surprisingly well-

conserved ischemia response conserved between the two cell types, especially considering that 

the responses to hypoxia and glucose deprivation alone are not at all conserved, being very cell 

type-specific. Interestingly, for both cells there are some metabolic pathways that are enriched 

for differences under glucose deprived or hypoxic conditions that are not seen under ischemic 

conditions, which suggests that the effect ischemia has on the cells is not an additive affect of 

glucose deprivation and hypoxia.  

Overall, OCCs and OCSCs have different trends in pathway response to the environmental 

perturbations, but do display some level of conservation. The conserved strong core response 

module consists of amino sugar and nucleotide sugar metabolism and fructose and mannose 
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metabolism, which are in the strong core modules of both cell types. The conserved core 

response module can be broadened to also include cysteine and methionine metabolism; glycine, 

serine, and threonine metabolism; and pyruvate metabolism. Each of these display strong core 

responses across the perturbations in one cell type and weak core responses across the 

perturbations in the other cell type. These five pathways are the ones that the two cell types use 

very similarly in responding to these environmental stresses, representing a core, conserved 

response between the cell types. This leaves three (weak or strong) core responses in OCCs and 

thirteen (weak or strong) core responses in OCSCs as the cell type-specific core responses; many 

of these core responses pathways in one cell type may be perturbation-specific in the other, 

though some (for example, tyrosine metabolism) are core in one but not at all significant in the 

other. Taken together, though, the set of core responses is much larger in OCSCs, indicating that 

OCSCs are responding more similarly to the different environmental perturbations while OCCs 

are dominated by more perturbation-specific responses. 

3.2.7. Limitations 
For this work, only one isogenic cancer cell and cancer stem cell line pair was used. Therefore, 

the results found here only correspond to differences between these two particular ovarian cancer 

cell lines. It would be desirable to expand this study to other isogenic cancer cell and cancer stem 

cell line pairs, but, unfortunately, there are very few such cell lines, and they are not easily 

obtainable. As such cell line pairs become more widely available, these metabolic experiments 

should be expanded to additional cell lines to determine if the results shown here are 

characteristic of this specific isogenic pair or if they are indicative of broader isogenic (ovarian) 

cancer cell and cancer stem cell line differences. 
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Another limitation of this study is the constraint of biological interpretation due to metabolite 

identification. Over half of the analytes that are retained in the final data set are labeled as 

unknown analytes, due to low match scores during our conservative metabolite identification 

step during processing. Additionally, the database used for metabolite pathway enrichment 

analysis does not include all of the metabolites identified within our data set. Therefore, there 

may be additional changes, especially in the metabolite pathway enrichment analysis, that are not 

currently detected because of lack of metabolite identification. Greater efforts must be made 

toward increasing the number of metabolites available within these databases in order for a 

complete understanding of the changes detected in these experiments. And, as previously noted, 

even conservative annotation score thresholds can yield false identifications on occasion. 

Finally, our chemotherapeutic perturbation was only applied under normal cell culture 

conditions, which, as discussed for metformin, can cause different results than what would be 

seen under tumor conditions. To further explore the metabolic changes caused by 

chemotherapeutics, future work will include applying chemotherapeutic and environmental 

perturbations at the same time. 

3.3. Conclusions 
In this study, OCC and OCSC were shown to have different metabolic reactions to biologically 

based perturbations applied in vitro to mimic in vivo tumor conditions. Docetaxel treatment did 

not affect the metabolism of OCSCs, showing that these cells are chemo-resistant even on a 

metabolic level. Docetaxel had a substantial effect on OCCs, especially in amino acid 

metabolism and carbohydrate metabolism. Docetaxel also caused increased levels of uracil 

compared to the control, which may help explain why treatment with competitive inhibitors of 

uracil in conjunction with docetaxel improves tumor treatment. OCCs and OCSCs also reacted 
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differently to glucose deprivation, hypoxia, and ischemia perturbations. Glucose deprivation 

alone did not have a large affect on OCC metabolism, but did perturb many pathways in the 

OCSCs, a surprising result based on the relative proliferation rates of the cells and the known 

high glycolytic flux associated with the Warburg effect and cancerous proliferation. Hypoxia had 

the reverse affect, affecting the metabolism of OCCs but not OCSCs, likely indicative of the 

ability of hypoxic conditions to support CSC stemness in vivo. Ischemia affected the metabolism 

of both cell types in many of the same pathways, suggesting that OCCs and OCSCs respond to 

this stress in a similar way. However, the ischemia response in both cells is not simply an 

additive response of the glucose deprivation and hypoxia conditions, especially since one of 

those conditions essentially yielded no response in each cell type.  Both pathway-level analysis 

and metabolite-level analyses helped to identify core metabolic responses to multiple 

perturbations common across both cell types, including an increase in phosphoethanolamine 

levels for all perturbations for both cell types as a generic stress response. Five metabolic 

pathways were identified as a conserved core response module, responding to multiple 

environmental perturbations in each cell type. Overall, these metabolic differences seen during 

chemotherapeutic and environmental perturbations in vitro help to provide much-needed detail to 

characterize the inherent differences in metabolism between OCCs and OCSCs; this information 

could potentially be used in the development of targeted treatments against OCSCs. 

3.4. Methods 

3.4.1. Cell culture 
The OVCAR-3 cell line was obtained from the Developmental Therapeutic Program (DTP) of 

the National Cancer Institute (NCI). The OVCAR-3 ovarian cancer cells (OCCs) were cultured 

in R10 medium: RPMI-1640 (Cellgro, Mediatech Inc., Manassas, VA) supplemented with 10% 

fetal bovine serum (FBS, Invitrogen, Grand Island, NY) and 1% antibiotic-antimycotic solution 
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(Cellgro, Mediatech Inc., Manassas, VA). Authenticity of the OVCAR-3 cell line was confirmed 

using short tandem repeat profiling performed by IDEXX RADIL (Columbia, MO) in October 

2013. Cells were grown until confluence and subcultured at a ratio of 1:4. 

Ovarian cancer stem cells (OCSCs) were previously derived from a side population of OVCAR-

3. OCSCs are less adherent than OVCAR-3 cells and, unlike OVCAR-3 cells that are grown as 

adherent monolayers, are grown as spheroids in stem cell media to help support their stemness as 

previously described.11 Briefly, the OCSCs were cultured in ultra-low attachment petri dishes 

(Corning Incorporated, Corning, NY) in stem cell medium: DMEM/F12 (1:1) (Cellgro, 

Mediatech Inc., Manassas, VA) supplemented with 0.4% bovine serum albumin (BSA, Sigma-

Aldrich, St. Louis, MO), 20 ng/mL epidermal growth factor (EGF, Invitrogen, Grand Island, 

NY), 10 ng/mL basic fibroblast growth factor (bFGF, Sigma-Aldrich, St. Louis, MO), 5 µg/mL 

insulin (Sigma-Aldrich, St. Louis, MO), and 1% antibiotic-antimycotic solution (Cellgro, 

Mediatech Inc., Manassas, VA). The spheroids were dissociated and reseeded at a density of 105 

cells/mL each week.  

3.4.2. Environmental perturbation experiments 
There were four environmental perturbations used in these experiments: chemotherapeutic, 

glucose deprived, hypoxia, and ischemia. According to the American Cancer Society, the 

common first line chemotherapeutic treatment for ovarian cancer is a combination of a platinum 

compound, like cisplatin, and a taxane compound, such as docetaxel. Docetaxel was chosen as 

the chemotherapeutic treatment because it interrupts cellular division and thus would more likely 

have a direct effect on metabolism over cisplatin, which causes DNA crosslinking. Docetaxel 

disrupts cellular division through suppression of microtubule dynamics in the cells, which 

eventually leads to apoptosis.16 For OCCs, two different concentrations of docetaxel dissolved in 
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dimethylsulfoxide (DMSO) were given to the cells, the IC50 value (10nM) and 50% above the 

IC50 value (1.5x IC50) (15nM). IC50 values for OCCs were reported in previous work.11 For the 

OCSCs, only the higher concentration of docetaxel (1.5x IC50 of the OCCs) was given to the 

cells since the higher concentration would be more likely to have an impact on the OCSCs. 

Solutions of docetaxel dissolved in DMSO at 100μM and 150μM were used to obtain the desired 

final required concentrations for IC50 and 1.5x IC50. An equivalent amount of DMSO was added 

to control media to account for effects of DMSO. 

For glucose-deprived conditions, RPMI-1640 (Cellgro, Mediatech Inc., Manassas, VA) and 

DMEM-F12 (US Biological, Massachusetts, MA) without glucose were obtained and used to 

make glucose-free R10 and stem cell media as described above. For hypoxic conditions, cells 

were placed in a hypoxic chamber with 2% oxygen at the beginning of the experiment. Ischemic 

conditions were a combination of glucose deprived and hypoxic conditions. 

Immediately before applying the environmental perturbations, OCCs were passaged and seeded 

in 6-well plates (Greiner Bio-One, Monroe, NC) with a well surface area of 6.9 cm2 at a density 

of 3x105 cells/well in 2mL of R10 medium and incubated for 24 hours to allow the cells to attach 

and recover. The medium was then removed, wells were washed once with PBS, and then 2mL 

of fresh experimental medium (prepared as described above) was applied to begin the 

experiment. OCSCs were dissociated and seeded into ultra-low attachment 6-well plates 

(Corning Incorporated, Corning, NY) containing 2mL of fresh experimental stem cell medium 

(prepared as described above) at a density of 3x105 cells/well with a well surface area of 6.9 cm2. 

Both the OCC and OCSC experiments were performed in biological triplicate. 
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3.4.3. Sampling protocols 
For the chemotherapeutic perturbation, samples were taken at 0 minutes, 24 hours, and 48 hours. 

For the hypoxic and glucose deprived perturbation, samples were taken at 0 minutes, 2 hours, 4 

hours, 8 hours, 24 hours, and 48 hours. The additional short-term time points were taken since 

the direct metabolic nature of the perturbations might cause a fairly rapid metabolic response. 

For OCCs, medium was removed and cells were quickly washed with 1mL PBS at 37°C, which 

was aspirated off, and then 700 µL of 80:20 methanol/water solution at -80°C was added 

immediately. The plate was then incubated at -80°C for 15 minutes. After incubation, remaining 

cellular debris were harvested using a cell scraper (BD Falcon, San Jose, CA) for intracellular 

analysis. For OCSCs, the media-cell mixture was transferred to a filter cup (Microcheck II 

beverage monitor, Pall, Port Washington, NY) with a pre-wetted membrane (0.45 µm pore 

Express PLUS Polyethersulfone membrane, Millipore, Billerica, MA) and the medium was 

filtered from the cells. The cells were then quickly washed with 4mL PBS at 37°C. The filter was 

then removed and placed upside down in a petri dish containing 1.5mL of 80:20 methanol/water 

solution at -80°C. The samples were then incubated at -80°C for 15 minutes. After 15 minutes, 

the petri dish was removed and the filter was flipped over and washed using the 1.5mL 80:20 

methanol/water solution to remove any debris still caught in the filter. An extraction blank was 

made for the OCSCs following the same procedure above but only 4mL PBS was washed 

through the filter. 

For both cell types, the intracellular solution was then transferred to a microcentrifuge tube in a 

cold ethanol bath and centrifuged at 5,000 g for 5 minutes at -4°C. The supernatant was retained, 

and the pellet was subsequently re-extracted twice in 100 µL of the cold 80:20 methanol/water 

solution, with all supernatants being pooled.17 Intracellular and extracellular samples were stored 

at -80°C and -20°C, respectively, until analysis. 
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3.4.4. Growth media experiment 
To control for the differences in media between the two cell types, a secondary experiment was 

performed where OCCs were grown in parallel in R10 media and stem cell media for 48 hours. 

Intracellular samples were taken at 0, 24, and 48 hours in the same manner as described above 

for the OCCs. Cell counts were also taken (data not shown) and showed that OCCs grow slower 

in the OCSC medium than they do in their normal medium, mimicking the slower growth rate of 

OCSCs.  

3.4.5. GCxGC-MS analysis 
Before derivatization, intracellular samples were vacuum concentrated in a CentriVap at 40°C 

until completely dry. The volume that was vacuum concentrated was varied for each sample in 

order to yield a final concentration of 3x103 live cell equivalents/µL after derivatization, based 

on the cell density at the sample time. The samples were derivatized following the protocol laid 

out by Fiehn, et. al.18 Briefly, 2.5 µL of 40 mg/mL O-methylhydroxylamine hydrochloride (MP 

Biomedicals, LLC, Santa Ana, CA) in pyridine was added to the dried sample and shaken at 

1400 rpm for 90 minutes at 30°C. 22.5 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide 

(MSTFA) + 1% trimethylchlorosilane (TMCS) (Thermo Scientific, Lafayette, CO) was then 

added to the samples which were then shaken at 1400 rpm for 30 minutes at 37°C. Samples were 

centrifuged at 21,100 g for 3 minutes and 10 µL of the supernatant was added to an autosampler 

vial. Samples were spiked with 0.10 µL of a retention time standard solution consisting of fatty 

acid methyl esters (FAMEs) and an internal standard of nonadecanoic acid methyl ester 

dissolved in dimethylformamide. 

A LECO Pegasus 4D instrument with an Aglient 7683B autosampler, Agilent 7890A gas 

chromatograph and time-of-flight mass spectrometer (TOF-MS) was used to analyze the 

samples. The first column was an HP-5, 30 m long x 0.320 mm ID x 0.25 µm film thickness 
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(Agilent, Santa Clara, CA), and the second was an Rtx-200, 2 m long x 0.25 mm ID x 0.25 µm 

film thickness (Restek, Bellefonte, PA). Specific autosampler, gas chromatography, and mass 

spectrometry methods can be found in Appendix A. 

3.4.6. Data analysis 
Sample runs were first analyzed in ChromaTOF (LECO, St. Joseph, MI) to determine baseline, 

peak area, and peak identification. Briefly, settings included a baseline offset of 0.5, automatic 

smoothing, 1st dimension peak width of 24 seconds, 2nd dimension peak width of 0.10 seconds, 

and a match of 700 required to combine peaks with a minimum signal-to-noise (S/N) of 5 for all 

subpeaks. Peaks were required to have a S/N of 10 and have a minimum similarity score of 800 

before assigning a name. Unique mass was used for area and height calculation.  

To align the samples, MetPP (http://metaopen.sourceforge.net/metpp.html) was used.19 Sample 

files and a derivatization reagent blank file were uploaded from ChromaTOF. Unknowns were 

retained during the peak alignment process. The derivatization reagent blank file for OCCs or the 

extraction blank file for OCSCs was used to subtract peaks attributable only to sample 

preparation reagents from the corresponding cells’ sample files. On-the-fly alignment was used 

with quality control samples manually selected as the peak list for primary alignment. Peak 

alignment was performed using the default criteria. This was done for the OCC data only, 

OCSCs only, and the combined OCC and OCSC data set for both metabolic perturbation 

experiments. For the combined OCC and OCSC data sets, blank peaks were not deducted during 

alignment; instead they were aligned with the metabolite samples for later removal. 

After alignment, further processing of the data was done based on the procedure laid out by 

Dunn, et. al.20 Batch effects were removed from the intracellular data set using LOESS. To 

remove analytes that were not reproducibly detected, analytes for which more than half of the 
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values were missing in the QC samples or for which the QC samples had a coefficient of 

variance larger than 0.5 were removed from the data set. Then, missing values were manually 

corrected using small value correction only if all the values were missing in the biological 

replicate. Annotated analytes were then compared to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) or the Human Metabolome Database (HMDB); if they were listed in KEGG 

or HMDB they were identified as metabolites. The metabolites were then verified by a manual 

confirmation of similarity between the annotated peak spectrum and the library spectrum. 

Manual confirmation resulted in tetrahydrofuran and pyruvaldehyde peaks re-annotated from 

metabolite peaks to unknown peaks. 

Finally, MetaboAnalyst (http://metaboanalyst.ca/) was used for statistical and enrichment 

analysis, applying both the statistical analysis and time series analysis modules.21 For both 

analyses, remaining missing values were k-nearest neighbors (KNN) corrected. Data was filtered 

using the interquantile range method and then log-transformed using generalized logarithm 

transformation (base 2) and autoscaled.  

For enrichment analysis, both metabolite set enrichment analysis (MSEA) and metabolite 

pathway enrichment analysis (MPEA) yielded similar results, so only MPEA results were 

considered further. The entire time series was uploaded as discrete data with compound names. 

Metabolites were properly matched to their HMDB codes before processing the data. Data 

processing followed the same steps as listed above for missing value imputation and data 

normalization. The Homo sapiens pathway library was used for analysis and an in-house 

metabolite reference library based on detectable metabolites for our system was uploaded. 

Global test was used for pathway enrichment analysis, with relative-betweeness centrality as the 
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pathway topology analysis. Pathways with an FDR < 0.05 were considered significantly 

enriched.  

3.4.7. Removal of media and extraction effects 
For the combined OCC and OCSC data sets only, differences potentially due to media effects 

and extraction methods were removed. To specifically identify media effects, MetaboAnalyst 

was first used to analyze the OCC media control samples. Any analytes found to have 

statistically significant differences (t-test, all time points, FDR < 0.05) between the OCCs grown 

in R10 and OCCs grown in stem cell media were then removed from the combined data set to 

eliminate metabolic changes due to media differences.  

The different extraction methods for the OCCs and OCSCs resulted in systematic differences 

because of analytes extracted from the filter used for OCSCs. To identify differences due to 

extraction methods, the derivatization reagent blanks and filter extraction blanks were analyzed 

in MetaboAnalyst. Again, any analytes found to have statistically significant differences (t-test, 

FDR < 0.05) between the two blanks were removed from the combined OCC and OCSC data set. 
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Chapter 4 Metabolic changes during mesenchymal to epithelial 

transition 

4.1. Introduction 
The epithelial to mesenchymal transition (EMT) is an important process in embryonic 

development, allowing the epithelial phenotype cells to transition to a mesenchymal phenotype 

in order to populate all the developing tissues in the embryo.1 Epithelial cells have a block-like 

shape and have tight cell-to-cell junctions, some of which are formed by cadherin 

transmembrane proteins such as E-cadherin. Mesenchymal cells have an elongated spindle shape 

and are more mobile than epithelial cells; they do not form cell-to-cell junctions. Recent cancer 

research has led many to believe that the EMT process is being utilized by tumors for 

metastasis.2  

EMT is triggered in the primary tumor through interactions with the tumor microenvironment. 

Signaling from the stroma cells can induce tumor cells to produce transcription factors that 

trigger EMT.2 After undergoing EMT, the new mesenchymal cells can migrate away from the 

tumor and throughout the body. Upon reaching a potential metastatic site, the cells undergo the 

reverse process, mesenchymal to epithelial transition (MET), and form a metastatic lesion. 

Forming a new metastatic lesion is not straightforward, as the cells have to adhere and grow in 

an unfamiliar and usually unwelcoming environment. Recent research into EMT provides a 

hypothesis of how cancer cells overcome this hurdle: EMT can give stem-like properties to the 

cancer cells.3, 4 It has been shown that after undergoing EMT, cells obtain stem-like properties, 

such as stem cell markers, the ability to form spheres in culture, and chemoresistance.5-7 This 
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evidence suggests that EMT allows for the metastatic event and gives the cancer cells the 

properties necessary to successfully form a metastatic lesion.   

There has been no clinical evidence cancer cells undergoing the EMT-MET process for 

metastasis, but many groups have been able to model one or both of the transitions. EMT is 

usually induced in one of two ways: expression of transcription factors or through microRNA 

transfection. Research into microRNAs has shown that they are important regulators of EMT, 

since many target transcription factors that have been identified as playing a role in EMT.8-12 

Representative examples of these transcription factors include ZEB, Snail, Slug, Twist, which 

are responsible for regulating many different cellular pathways, but all commonly repress 

epithelial markers, such as E-cadherin, to facilitate EMT.13-15 

The McDonald group was able to induce and sustain MET by transfecting HEY cells with a 

microRNA, miR-429.16 Based on their results, a larger study was designed where 

transcriptomics, metabolomics, microRNA and protein measurements were all taken at identical 

time points during the process, tracking multiple omic-level changes in the cell. The experiment 

was designed to allow for an initial MET, followed by EMT. The cells were transfected initially 

with miR-429 to induce MET, and then with no other transfection to sustain the levels of miR-

429, the cells subsequently underwent EMT during the latter part of the experiment. Presented 

here are the results of the metabolomics analysis of the experiment. 

4.2. Results & Discussion 

4.2.1. Mesenchymal to epithelial transition causes changes in phenotype and 
known mesenchymal and epithelial biomarkers 

HEY cells were transfected with either miR-429 to induce MET or a control scrambled 

microRNA, specifically designed to avoid targeting any known microRNA binding sites. HEY 
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cells were initially transfected and then profiled over a period of 144 hours. After a period of 48 

hours, clear morphological differences were noticed between miR-429 transfected and control 

cells, as shown in Figure 4.1. Control cells still had their original mesenchymal morphology, 

while miR-429 transfected cells had transitioned into an epithelial morphology. After a period of 

144 hours, both miR-429 and control cells displayed their original mesenchymal morphology, as 

shown in Figure 4.1. During the experiment, known markers of MET were profiled and 

displayed changes correlating with a MET to EMT during the 144 hour period (data not shown). 

These phenotypic changes, along with morphological and supporting transcriptomic data, 

indicate that the HEY cells did undergo a MET and then a corresponding EMT. 

 

Figure 4.1: miR-429 transfected cells shift from a mesenchymal to epithelial back to mesenchymal 

morphology over the experimental time period. Untransfected HEY cells show the typical 

mesenchymal morphology with elongated spindles. Once transfected with miR-429, the HEY cells 

exhibit a shift towards an epithelial morphology, with the most cells exhibiting the morphology at 48 

hours. After 48 hours, the cells show a clear shift back to mesenchymal morphology, with the change 

complete at 144 hours. Control transfected cells do not show a noticeable morphological change over the 

experimental time frame. 
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4.2.2. Metabolic profiling of MET 
To capture both the immediate and late term effects of miR-429 transfection on the metabolome, 

a collection of early and late time points were taken. The early time points were expected to 

capture any changes that occurred due to the transfection and were taken at 0, 3, 5, and 7 hours. 

The late time points were designed to capture metabolic changes in response to MET and were 

taken at 24, 48, 72, and 144 hours. Both intracellular and extracellular samples were taken at 

each time point in biological triplicate for both the miR-429 and scrambled microRNA 

conditions. All the samples were then run on a two-dimensional gas chromatograph – mass 

spectrometer (GCxGC-MS). After initial analysis, it was discovered that two of the three 

intracellular 24 hour time point control samples were identified as outliers both during the 

alignment step as well as during initial principal components analysis. Therefore, the 

intracellular 24 hour time points were removed from subsequent analysis. As all the samples for 

this experiment were the same cell type, differences due to cells grown in different media were 

not an issue as they were in Chapter 2 and Chapter 3. Therefore, results gained from extracellular 

samples are valid. 

4.2.2.1. Univariate analysis across all time points does not reveal consistent 

differences between control and miR-429 transfected cells 

Overall, 253 intracellular and 252 extracellular analytes were detected and aligned across all the 

samples (see Methods for details on detection and alignment). These analytes included unknown 

and identified (annotated) analytes, as well as metabolites. (In this paper, analytes that are 

identified in the Human Metabolite Database (HMDB) or in the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database are referred to as metabolites.) After removal of unknown and 

annotated analytes not associated with HMDB or KEGG, there were 63 unique intracellular and 
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82 unique extracellular metabolites. Initial analysis of the control and miR-429 transfected cells 

showed that neither the intracellular nor extracellular samples exhibited large changes across all 

the time points. For the intracellular samples, there was only one analyte, heptacosane, that had a 

statistically significant difference (FDR-corrected p-value of 0.022) between control and miR-

429 transfected cells across all the time points. For the extracellular samples, again there was 

only one metabolite, glucaric acid, that had a statistically significant difference (FDR-corrected 

p-value of 1.47x10-5) between control and miR-429 transfected cells across all the time points.  

This lack of difference between the control and miR-429 transfected cells was expected when all 

time points were included in the analysis since the HEY cells started out as a mesenchymal 

phenotype, then transitioned to an epithelial phenotype, and finally moved back to a 

mesenchymal phenotype. Therefore, if metabolism does change with MET, there should not be a 

consistent metabolic difference across the entire set of time points. Instead, a metabolic change is 

expected to be observable within a short time window wherein analysis should reveal a distinct 

difference between the control and miR-429 transfected cells. 

4.2.2.2. PCA shows intracellular metabolic differences at 72 hours due to MET-EMT 

Since a consistent metabolic change across all time points was not seen (or expected) in 

univariate analysis, the intracellular and extracellular data sets of annotated and unknown 

compounds were analyzed with principal component analysis (PCA). PCA allows for a graphical 

interpretation of the data and would therefore show cases were single time points exhibited 

differences between the control and miR-429 transfected cells. Again, analyzing the entire 

dataset across all time points, neither the intracellular nor extracellular data showed a difference 

between the control and miR-429 transfected conditions, as shown in Figure 4.2. Even though 

there was no difference between control and miR-429 transfected cells, distinct separation was 
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observed between early and late time points, as seen in Figure 4.3. This indicates that the time 

from the start to the finish of this experiment caused a larger variation in the metabolic data than 

did the transfection.  

 

Figure 4.2: Principal components analysis shows no difference between control and miR-429 

transfected samples. (A) PCA of intracellular samples shows no difference between control, initial, and 

miR-429 transfected cells. (B) PCA of extracellular samples shows no difference between control, initial, 

and miR-429 transfected samples. 
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Figure 4.3: Principal components analysis shows clear difference between early and late time point 

samples. (A) Intracellular metabolomics data shows clear separation between late and early time point 

samples. (B) Late and early time points group together in the extracellular samples, but the distinction is 

not as clear as in the intracellular samples. 

To further break down the datasets into individual time points and to help remove some of the 

time variation, the intracellular and extracellular matrices were split into early and late time 

points and PCA was performed on each group separately. For the earlier time points, Figure 4.4, 

neither the intracellular nor extracellular samples show separation between time points or control 

and miR-429 transfected cells. Therefore, it is likely that no substantial metabolic changes occur 

in either the intracellular or extracellular samples from the beginning of the experiment through 

seven hours. 

The later time points, shown in Figure 4.5, exhibit clear separation by time point. In the 

intracellular samples (Figure 4.5A), separation was observed clearly by time point but this 

separation was also seen for the controls, suggesting the changes were not associated with MET. 

However, at 72 hours there is some separation seen between the control and miR-429 transfected 
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cells. The extracellular samples (Figure 4.5B) showed no separation by condition, but did 

suggest a trend of time point dependence on PC 1. Overall, most of the observed metabolic 

changes are likely due to changes in cellular growth, but small changes contributed to MET-

EMT may occur intracellularly at 72 hours. The same results were seen using the annotated 

metabolite-only intracellular and extracellular data sets. 

 

Figure 4.4: PCA shows no separation between time points for early time points only. Neither 

intracellular (A) nor extracellular (B) samples show only clear separation between time points or miR-429 

transfected cells at the early time points. 
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Figure 4.5: PCA shows some separation between time points for late time points only. Intracellular 

samples (A) show a clear separation between time points, but only separation between control and miR-

429 transfected cells at 72 hours. Extracellular samples (B) show no difference between either time points 

or control and miR-429 transfected cells. 

4.2.2.3. Time series analysis reveals a MET-EMT metabolic hysteresis effect  

To further explore the MET-EMT differences seen intracellularly at 72 hours, two different 

analysis techniques were used to analyze the samples in a time-based manner. First, two-way 

ANOVA was used in MetaboAnalyst time series analysis, which takes greater advantage of the 

time series nature of the experiment. Two-way ANOVA uses a linear regression model to 

separate out effects based on group (miR-429 vs control), time, and interaction variables. 

Statistical values are assigned to the variables and are shown in Table 4.1 for intracellular and 

extracellular samples. Two-way ANOVA was performed on both the unknown and annotated 

compounds data set and the metabolite only data set. Most of the analytes with statistically 

significant values fall into the time variable, meaning that the analyte has a very similar time 

trend between control and miR-429 transfected cells. However, there are a few analytes for both 

the intracellular and extracellular samples that show statistically significant differences between 
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the control and miR-429 transfected cells. The metabolites that are statistically significantly 

different in the group category are listed in Table 4.1. The intracellular metabolites that differ 

between miR-429 and control transfected cells are all different classes, suggesting that miR-429 

induced MET-EMT is not affecting a specific metabolism pathway, but instead slightly perturbs 

many different metabolites. The same holds true for the extracellular metabolites.  

Table 4.1: Time series analysis results from two-way ANOVA. Number of analytes with a FDR 

corrected p value < 0.05 from time series analysis for intracellular and extracellular samples. The group 

term captures differences between control and miR-429 transfected cells; time term captures similarity 

between time series trends for each analyte; the interaction term captures the remaining effects. 

 
Intracellular Extracellular 

 
All Analytes Metabolites All Analytes Metabolites 

Group 26 7 21 9 

Time 143 46 101 39 

Interaction 41 10 29 9 

 

Table 4.2: Metabolites identified as statistically significantly different for the group category using 

two-way ANOVA. 

Metabolites Group Time Interaction 

Intracellular 

6-Phosphogluconic acid 1.05E-03 3.54E-19 5.45E-15 

Pyroglutamic acid 1.05E-03 4.63E-15 1.41E-11 

L-Malic acid 1.05E-03 9.49E-14 1.59E-12 

L-Arginine 1.61E-03 4.45E-12 9.65E-07 

2-Methylbenzoic acid 5.96E-03 4.65E-18 5.45E-15 

Uridine 5'-monophosphate 0.0222 2.20E-15 3.28E-06 

N-Decane 0.0427 0.2618 0.7521 

Extracellular 

L-Serine 1.39E-04 3.06E-27 1.25E-26 

Pentadecane 1.39E-04 1.30E-21 2.29E-21 

Carbodiimide 4.94E-04 8.07E-19 3.41E-17 

D-Psicose 5.26E-04 1.63E-19 2.71E-19 

L-Lactic acid 3.78E-03 5.43E-19 2.84E-18 

Pyridoxine 5.08E-03 9.20E-21 1.20E-17 

Methanol 5.62E-03 9.76E-23 2.37E-13 

Serotonin 9.39E-03 9.76E-23 1.96E-13 

D-Glucaric acid 3.45E-02 0.0516 0.4198 
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Delving further, each time point was individually analyzed through t-test and fold change 

analysis to determine differences between control and miR-429 transfected cells. This was done 

for both the intracellular and extracellular samples. Unsurprisingly, no statistically significant 

differences were detected between the control and miR-429 transfected cells in any of the early 

time points (0, 3, 5, and 7 hours) either in the intracellular or extracellular samples. Interestingly 

though, when looking at the later time points, there are a small number of metabolites that are 

consistently different between control and miR-429 transfected cells at both 72 and 144 hours. 

Extracellularly, there are two metabolites that have consistently lower levels in miR-429 

transfected cells. These metabolites are pyridoxine and glucarate. In the intracellular samples, 

there are two metabolites that have consistently lower levels in the miR-429 transfected cells as 

compared to the control transfected cells. These two metabolites are pyroglutamate and 6-

phosphogluconate. Recently, 6-phosphogluconate has been shown to inhibit EMT extracellularly 

through competitive inhibitory interactions with the cytokine glucose phosphate isomerase/AMF 

in breast cancer cells.17 No further studies were performed on intracellular levels of 6-

phosphogluconate, though, but since the levels of 6-phosphogluconate dropped during EMT, it is 

possible that intracellular levels are kept lower to avoid any possible membrane transportation to 

extracellular regions. Overall, these metabolites show that the cells are not metabolically the 

same as they initially were, suggesting some degree of metabolic hysteresis occurs during MET-

EMT.  

4.3. Conclusions 
Overall, there does not appear to be a system-wide metabolic perturbation caused by MET-EMT. 

Most large differences in metabolism were seen between time points, not between control and 

miR-429 transfected cells. This indicates that normal cellular growth and media depletion have a 

larger effect on cellular metabolism than the transfection of miR-429. Thus, a phenotypic change 
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large enough to detect morphologically did not affect the metabolome in a large way, perhaps 

contrary to expectation. This observation is particularly surprising and interesting in light of the 

other widespread changes observed during this phenotypic change in the protein, transcriptomic, 

and microRNA data. There do appear to be small changes during MET-EMT between control 

and miR-429 transfected cells though, suggesting a small hysteresis effect caused by the MET-

EMT. 

4.4. Methods 

4.4.1. MicroRNA Transfection 
The HEY cells were provided by Gordon Mills, Department of Molecular Therapeutics, 

University of Texas, MD Anderson Cancer Center. MicroRNA transfection of the HEY cells was 

based on the method developed in Chen, et al, 2011.16 HEY cells were seeded in a six well plate 

with a surface area of 6.9 cm2 at a density of 1x105 cells per well (1.45x104 cells/cm2) for the late 

time points and 3 x 105 cells per well (4.35x104 cells/cm2) for the early time points. After 24 

hours, the cells were transfected with 30 nM of miR-429 miRNA oligonucleotides (Ambion, 

Austin, TX) using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA). The Ambion Pre-

miRNA Precursor Negative Control was used as a control.  

4.4.2. Time Point Collection 
For the early time points, cells were harvested at 0, 3, 5, and 7 hours after microRNA 

transfection. For the late time points, cells were harvested at 24, 48, 72, and 144 hours. The 144 

hours samples were subcultured at 72 hours, reseeded at the original density, and then allowed to 

grow for another 72 hours at which point they were harvested as detailed below. 

4.4.3. Metabolite quenching and extraction 
Plates were removed from the incubator and media from each well was removed and snap frozen 

in liquid nitrogen for the extracellular samples. Cells were then quickly washed with 1mL PBS at 
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37°C, which was aspirated off, and then 700µL of 80:20 methanol/water solution at -80°C was 

added immediately. The plate was then incubated at -80°C for 15 minutes. After incubation, 

remaining cellular debris were harvested using a cell scraper (BD Falcon, San Jose, CA) for 

intracellular analysis. The intracellular solution was then transferred to a microcentrifuge tube in 

a cold ethanol bath and centrifuged at 5,000 g for 5 minutes at -4°C. The supernatant was 

retained, and the pellet was subsequently re-extracted twice in 100µL of the cold 80:20 

methanol/water solution, with all supernatants being pooled.18 Both intracellular and 

extracellular samples were stored at -80°C until analysis.  

4.4.4. Extracellular Sample Extraction 
Immediately before two dimensional gas chromatography-mass spectrometry (GCxGC-MS) 

analysis, an acetonitrile precipitation was performed on the extracellular samples to remove 

protein.19 Briefly, the extracellular samples were thawed on ice and 75µL was removed for 

GCxGC-MS analysis. 150µL of ice-cold acetonitrile was added to the sample, and the sample 

was vortexed for one minute. The sample was then centrifuged at 21,100 g for 7 minutes, and the 

supernatant removed for GCxGC-MS analysis. 

4.4.5. GCxGC-MS Analysis 
Before derivatization, both intracellular and extracellular samples were vacuum concentrated in a 

CentriVap at 40°C until completely dry. For the intracellular samples, a volume equated to 

7.5x104 cells for each sample was vacuum concentrated in order to achieve a concentration of 

3x104 cells/µL after derivatization. For the extracellular samples, the entire supernatant from the 

extracellular extraction was vacuum concentrated. The samples were derivatized using the 

protocol laid out by Fiehn, et. al as a basis.20 Briefly, 2.5µL of 40mg/mL O-

methylhydroxylamine hydrochloride (MP Biomedicals, LLC, Santa Ana, CA) in pyridine was 

added to the dried sample and shaken at 1400 rpm for 90 minutes at 30°C. 22.5µL of N-methyl-
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N-(trimethylsilyl) trifluoroacetamide (MSTFA) + 1% trimethylchlorosilane (TMCS) (Thermo 

Scientific, Lafayette, CO) was then added to the samples which were then shaken at 1400 rpm 

for 30 minutes at 37°C. Samples were centrifuged at 21,100 g for 3 minutes and 15µL of the 

supernatant was added to an autosampler vial. Samples were spiked with 0.10µL of a retention 

time standard solution consisting of fatty acid methyl esters (FAMEs) and an internal standard of 

nonadecanoic acid methyl ester dissolved in dimethylformamide. 

A LECO Pegasus 4D instrument with an Aglient 7683B autosampler, Agilent 7890A gas 

chromatograph and time-of-flight mass spectrometer (TOF-MS) was used to analyze the 

samples. The first column was an HP-5, 30m late x 0.320mm ID x 0.25µm film thickness 

(Agilent, Santa Clara, CA), and the second was an Rtx-200, 2m late x 0.25mm ID x 0.25µm film 

thickness (Restek, Bellefonte, PA). Specific autosampler, gas chromatography, and mass 

spectrometry methods can be found in Appendix A. 

4.4.6. Data Analysis 
Sample runs were first analyzed in ChromaTOF (LECO, St. Joseph, MI) to determine baseline, 

peak area, and peak identification. Briefly, settings included a baseline offset of 0.5, automatic 

smoothing, 1st dimension peak width of 21 seconds for intracellular and 12 seconds for 

extracellular, 2nd dimension peak width of 0.10 seconds, and a match of 700 required to combine 

peaks with a minimum signal-to-noise (S/N) of 5 for all subpeaks. Peaks were required to have a 

S/N of 10 and have a minimum similarity score of 800 before assigning a name. Unique mass 

was used for area and height calculation.  

To align the samples, MetPP (http://metaopen.sourceforge.net/metpp.html) was used.21 Sample 

files and a derivatization reagent blank file were uploaded from ChromaTOF. Unknowns were 

retained during the peak alignment process. The derivatization reagent blank file was used to 
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subtract peaks attributable only to derivatization reagents from the sample files. On-the-fly 

alignment was used with quality control samples manually selected as the peak list for primary 

alignment. Peak alignment was performed using the default criteria. 

After alignment, further processing of the data was done using an in-house written MATLAB 

program. Quality control samples were used to remove analytes that were inconsistently 

measured. If more than half of the values for a given analyte were missing in the quality control 

samples or if the quality control samples had a coefficient of variance larger than 0.5 excluding 

missing values, the entire analyte was removed. Then, missing values were manually corrected 

using small value correction if all the values were missing in the biological replicate. 

Finally, MetaboAnalyst (http://metaboanalyst.ca/) was used for statistical and enrichment 

analysis, applying both the statistical analysis and time series analysis modules.22 Once the data 

was uploaded, remaining missing values were k-nearest neighbors (KNN) corrected. Data was 

filtered using the interquantile range method and then log-transformed using generalized 

logarithm transformation (base 2) and autoscaled. Analysis was performed using both unknown 

and annotated analytes together and annotated analytes only. 
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Chapter 5 Conclusions and recommendations for future work 

5.1. Conclusions 
The work done in this thesis explored the differences in metabolism between ovarian cancer stem 

cells (OCSCs) and ovarian cancer cells (OCCs) through three separate avenues: (1) by defining 

the baseline metabolic differences between the two cell types, (2) by determining the differences 

between OCCs and OCSCs in their metabolic response to biologically based perturbations, and 

(3) by profiling the metabolic changes that occurred during the mesenchymal to epithelial 

transition (MET) and epithelial to mesenchymal transition (EMT). This is the first metabolomics 

study that characterizes the differences between an isogenic ovarian cancer cell line and ovarian 

cancer stem cell line. To date, there are only a handful of papers addressing cancer stem cell 

metabolism in any way and only one other paper studying metabolic differences on a systems-

scale. Characterization of the metabolic differences between cancer cells and cancer stem cells 

provides us a greater understanding of how metabolic dynamics are altered and, once identified, 

may help us the ability to utilize these alterations for targeted treatment. 

5.1.1. OVCAR-3-derived ovarian cancer stem cells display distinct metabolic 
profiles 

Previous gene expression analysis of OCSCs and OCCs identified several metabolic pathways 

that were significantly enriched in differentially expressed genes. However, the relationship of 

enzyme expression to metabolic phenotype is complex and does not imply a direct one-to-one 

correlation. To determine if there were substantial metabolic changes corresponding with these 

transcriptional differences, two-dimensional gas chromatography coupled to mass spectrometry 

was used to measure the metabolite profiles of the OCCs and OCSCs. These two cell lines 

exhibited significant metabolic differences in intracellular metabolite measurements. Pathway 
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analysis of intracellular metabolomics data revealed close overlap with metabolic pathways 

identified from gene expression data, with four out of six pathways found to be enriched in gene-

level analysis also enriched in metabolite-level analysis. One of the most significantly enriched 

pathways, arginine and proline metabolism, contained six metabolites that are each statistically 

significantly different between the two cells. Two of those metabolites, proline and putrescine, 

have been previously implicated in cancer, but the changes displayed between normal and cancer 

cells were discordant with the changes they displayed between the OCCs and OCSCs.  

Lower levels of proline and putrescine in OSCSs may be explained in the context of current 

research in stem cell metabolism, where proline has been shown to cause differentiation and 

putrescine was found to have different levels in mESCs and induced pluripotent stem cells 

(iPSCs). These findings suggest that OCSCs may exist in a metabolic balance between potency 

and proliferation. This is noteworthy because OCSCs are thought to be transient (OCSCs may 

switch to OCCs and vice versa) and as the cancer cells become more stem-like, their metabolism 

must transition from supporting a highly proliferative phenotype to supporting a higher potency 

phenotype. Therefore, metabolism may play a larger role in retaining stemness than heretofore 

believed and further research into stem cell and cancer stem cell metabolism may reveal other 

metabolites that support stemness. Overall, metabolism in this OCSC line is distinct from that of 

more differentiated isogenic cancer cells, showing similarities to stem cell metabolism that 

suggest the potential importance of metabolism for the cancer stem cell phenotype. 

5.1.2. Metabolic perturbations of OCCs and OCSCs 
Chemotherapeutic, glucose deprivation, hypoxia, and ischemia perturbations were applied to 

OCCs and OCSCs grown in vitro to profile the heterogeneous metabolic profiles that would be 

expected in a tumor. Docetaxel was selected as the chemotherapeutic used for this experiment, 



 

 112 

and it caused metabolic changes mostly within amino acid and carbohydrate metabolism in 

OCCs but did not affect OCSC metabolism. Docetaxel also increased the levels of uracil within 

the OCCs, which may be indicative of increased cellular dependence on uracil under docetaxel 

treatment. If this were the case, it would help to explain why treating tumors with docetaxel and 

a competitive inhibitor of uracil was shown to improve treatment results over treatment with 

docetaxel only.  

Glucose deprivation, hypoxia, and ischemia all perturbed OCC and OCSC metabolism, but not 

equally. Hypoxia had a much larger effect on OCC metabolism, while glucose deprivation had a 

greater effect on OCSC metabolism. OCSCs may not respond to hypoxic conditions because 

they are normally found within a hypoxic niche in the tumor and therefore, their metabolism 

might be adapted to a hypoxic environment. The different responses to glucose deprivation 

suggests that OCSCs are much more dependent on glucose than OCCs, which may indicate that 

OCSCs utilize glucose differently than OCCs. Cancer cells have adapted different pathways for 

supplying their energy requirements, such as glutaminolysis, which can help negate glucose 

deprivation. These pathways may be lacking in OCSCs or OCSCs may use glucose for anabolic 

pathways that OCCs do not, which could explain the widespread alterations in OCSC 

metabolism during glucose deprivation. Ischemia perturbed metabolism in both of the cell types 

in many of the same pathways, suggesting that OCCs and OCSCs respond to this stress similarly. 

Both cells had metabolic pathways statistically significantly enriched under ischemia that did not 

appear in hypoxia for OCCs or in glucose deprivation for OCSCs, suggesting that ischemia is not 

simply an additive affect of hypoxia and glucose deprivation.  

Even though OCCs and OCSCs responded differently to the three metabolic perturbations, there 

were a few metabolites that were altered in all of the conditions for both cell types. One of these 



 

 113 

metabolites, phosphoethanolamine, showed a similar increasing trend in response to all the 

perturbations for both cell types, suggesting the phosphoethanolamine may just be responding to 

the stress the cells are under and not the specific perturbation. Recent research has also shown 

that phosphoethanolamine can induce apoptosis in cancer cells, suggesting some possible 

interaction between these stress and apoptotic pathways potentially metabolic in nature. 

Therefore, OCSCs and OCCs may be increasing phosphoethanolamine levels to induce apoptosis 

in response to the stress the cells are undergoing.  

5.1.3. Metabolic changes during mesenchymal to epithelial transition 
System-wide metabolic changes were not detected during MET-EMT in HEY cells. Instead, 

most of the metabolic differences were temporal, suggesting that normal cellular growth and 

media depletion have a larger effect on the cellular metabolism than miR-429 induced MET-

EMT. A small number of metabolic differences were detected between control and miR-429 

transfected cells while shifting back from epithelial to mesenchymal phenotype, which hints at a 

possible hysteresis effect caused by the MET-EMT. Overall, the lack of system-wide metabolite 

changes was contrary to expectation since miR-429 induced MET-EMT caused a phenotypic 

change large enough to detect morphologically and was observed in the protein, transcriptomic, 

and microRNA data collected alongside the metabolomics data. The differences noticed during 

MET-EMT in the other data may affect areas of metabolism (such as lipid metabolism) are not 

captured well by the techniques used in this study.  

5.2. Relevance of thesis work 
Altered metabolism has recently been identified as a hallmark of cancer. Many of the common 

oncogenes (such as HIF, PI3K, Myc, and p53) have been shown to alter metabolism, as well as 

mutations of key metabolic enzymes. Most of these discoveries have been made through studies 

of individual enzymes or pathways, but recently, metabolomics has begun to be used for 
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characterization of cancer metabolism, biomarker and diagnostic discovery, staging of cancer, 

and pharmacometabolomics. One area of cancer research that before this thesis had not been 

explored is characterization of the differences between cancer cell and cancer stem cell 

metabolism.  

The work in this thesis used metabolomics to explore the metabolic differences between isogenic 

ovarian cancer and cancer stem cell lines. The baseline characterization and chemotherapeutic 

and environmental perturbations experiments had not been performed before with isogenic 

cancer cell and cancer stem cell lines. The experimental setup can be used for any isogenic 

cancer and cancer stem cell lines to expand cancer stem cell characterization into other cancer 

types. Besides the isogenic pair characterization, profiling the metabolic changes induced during 

mesenchymal-to-epithelial and epithelial-to-mesenchymal had never been reported before, even 

if no large-scale metabolic changes were detected. Moving forward, this same experimental 

design could be applied toward studying different areas of the metabolome during EMT and 

MET that were not captured here (such as lipids). 

The novel findings of this thesis suggest a number of conclusions and future directions that 

would not have been possible without this work. First, it showed that there can be substantial 

metabolic differences between otherwise isogenic cells both in continuous culture propagation 

and in response to environmental challenges. Furthermore, some of the metabolic differences 

may result directly from the stemness of the cells, drawing the relationship between cancer stem 

cells and cancer cells closer to that of normal cells and stem cells (though this hypothesis still 

needs further validation as described in section 5.3.1). It was also found that OCSCs do not 

respond metabolically to docetaxel, suggesting that OCSCs are fully resistant to docetaxel. Also, 

OCSCs did not experience a metabolic shift while under hypoxic conditions, yet did during 
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glucose deprivation, suggesting that OCSCs have metabolically adapted to hypoxic conditions 

yet still depend on glucose for their altered metabolism despite their slow rate of proliferation.  

Overall, the work in this thesis starts to fill in large gaps in the current knowledge of ovarian 

cancer stem cell metabolism and lays a foundation for continuing characterization of other 

cancer stem cell types. Importantly, the information and insight gleaned from this work can be 

used in the development of future therapeutics or treatment combinations to specifically target 

cancer stem cells, a putatively important cause of cancer recurrence and mortality, via 

metabolism. 

5.3. Recommendations for future work 
Moving forward, the next immediate steps for this project should involve validation experiments 

for further support of the hypothesis that differences in proline and putrescine levels between 

OCCs and OCSCs are directly related to the stemness of the cell. These experiments are 

described in section 5.3.1. After the validation experiments, the next experiments should involve 

expansion of the biologically based perturbations, especially for chemotherapeutics, as detailed 

in section 5.3.2. The metabolic response to different chemotherapeutics, such as treatments 

targeted toward the OCSCs, may reveal increased cellular dependence on certain pathways or 

metabolites, which could provide further targeted treatments to be supplied in conjunction with 

the chemotherapeutic. Finally, these experiments should be expanded to other cancer stem cell 

lines, as described in section 5.3.4, to determine if the results shown here are specific to the 

OCCs and OCSCs profiled or if they apply to cancer stem cells in general. Because cancer stem 

cell lines are not easily obtained, another option for expansion would be to mimic the tumor 

stroma in vitro with the OCCs and OCSCs and profile the metabolic responses of the cells in 

response to the biologically based perturbations already tested to determine the effect tumor 
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stroma interactions have on cellular metabolism. These experiments are described in greater 

detail in section 5.3.3. 

5.3.1. Proline and putrescine validation experiments 
During characterization of the baseline differences of OCSCs and OCCs, proline and putrescine 

were found to be key metabolites that might help explain the differences in metabolism between 

the two cells types in terms of the cell stemness. To support these findings, further validation 

studies should be performed to determine if the lower levels of proline and putrescine found in 

OCSCs do indeed help these cells retain their stem like state. 

5.3.1.1. Gene knockdown 

One such study would involve the knockdown, silencing, or inhibition of key enzymes used to 

metabolize proline and putrescine in OCCs to determine if these cells would then shift toward a 

more stem like state. For proline, proline oxidase (POX), which catalyzes the oxidation of 

proline to pyrroline-5-carboxylate (P5C), should be inhibited as it has been shown previously 

that the production of P5C from proline causes differentiation of mouse embryonic stem cells 

(mESCs).1 POX was also found to be down-regulated in OCSCs as compared to OCCs during 

gene expression analysis. Therefore, inhibition of POX would drastically reduce the production 

of P5C, which might shift the OCCs towards a more stem-like state. For putrescine, no singular 

enzymatic reaction has been linked to the ability of putrescine to cause differentiation, so 

different enzymes that produce putrescine should be tested. N1-acetylpolyamine oxidase 

(APAO), which catalyzes the breakdown of spermidine to putrescine in the polyamine 

catabolism pathway, would be one possible choice for knockdown as the polyamine catabolism 

pathway is known to be dysregulated in cancer. After inhibition or knockdown, expression of 

CD44 can be used to determine if the OCCs have become more stem-like, as OCSCs have been 
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shown to have higher expression of CD44 than OCCs.2 Measurement of CD44 expression can be 

performed using flow cytometry. Phenotypic changes might also occur and indicate a shift 

toward OCSCs.  

5.3.1.2. Metabolic flux analysis 

Another experiment that can be performed to validate our findings regarding proline and 

putrescine would be to use metabolic flux analysis to profile the arginine and proline metabolism 

pathway. Profiling the flux for the OCCs and OCSCs will allow us to determine how the flow of 

metabolites through the arginine and proline metabolism pathway differs; for instance, if the 

metabolic flux is shunted off to avoid certain reactions (such as proline oxidation to P5C) for the 

OCSCs. The results from these experiments will not directly tie the levels of proline and 

putrescine to differentiation, but will further support that the arginine and proline metabolism 

pathway is utilized differently in the two cells.  

5.3.2. Other biological perturbations 
In this work, glucose deprivation, hypoxia, ischemia, and a chemotherapeutic treatment were 

applied as biologically-inspired perturbations to bring the in vitro environment closer to the in 

vivo tumor microenvironment and to determine the differences between OCCs and OCSCs in 

their response to these perturbations. Besides these four, other biologically-inspired perturbations 

can also be applied to this system to gain further insight into tumor metabolism. Lactic acid 

production is elevated in cancers cells due to the increased flux through glycolysis.3 The lactic 

acid and CO2 (generated by the PPP) produced by the cancer cells is enough to lower the 

extracellular pH from 7.4 (physiological pH) to below 6.5 in some tumor locations.4 This acidic 

environment helps cancer cells to decrease sensitivity to hypoxia, stimulate metastasis, and 

increase drug resistance.5, 6 Pilot experiments performed during this thesis work showed that 
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lowering media pH alone had no effect, but it would be interesting to combine a lowered media 

pH with hypoxia or a chemotherapeutic treatment to determine if the metabolism of the OCCs or 

OCSCs respond differently than when they subjected to hypoxia and chemotherapy only.  

Another perturbation that might have effect on cancer cellular metabolism is estrogen. Estrogen, 

a steroid hormone, has been found to alter OCC proliferation. 17β-estradiol (E2) has been shown 

to promote cell proliferation in OVCAR-3 cells.7 It has also been found that 4-hydroxy E2 (4-

OHE2) can induce OVCAR-3 expression of HIF-1α.8 To determine the metabolic response of 

the OCCs and OCSCs, estrogen would be supplied to the cells at varying physiological levels. 

As estrogen induces the expression of HIF-1α, OCCs and OCSCs might exhibit metabolic 

profiles similar to those from the hypoxia studies. 

As stated in Chapter 3, ovarian cancer is commonly treated with a platinum compound and a 

taxane compound. Docetaxel, a taxane, was chosen as the initial chemotherapeutic treatment for 

the metabolic perturbation experiment due to the fact that it interrupts cellular division and thus 

would likely have an effect on cellular metabolism. Other chemotherapeutics should be explored 

in order to determine the metabolic responses to different chemotherapies, especially those with 

different method of actions. For example, cisplatin, a platinum compound and one of the most 

frequently used first line treatments against ovarian cancer, reacts with DNA to form DNA 

adducts that trigger signal transduction pathways which can evidently lead to apoptosis.9 Since 

docetaxel and cisplatin have differing methods of action, it is expected that the cellular 

metabolism response would differ as well. Another interesting chemotherapeutic option would 

be to use one that is targeted toward cancer stem cells. Since chemotherapeutics targeted toward 

cancer stems are only just now being developed, this is an option that could only be explored in 

future. 
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5.3.3. Profile metabolism of OCICs and OCCs in response to stroma 
The environment surrounding the tumor (its microenvironment) lends important stimulatory 

biological signaling to the tumor. Through these interactions, the tumor is able to expand and 

resist interferences from the body (e.g., the immune system) or outside sources (e.g., 

chemotherapy). Stroma lends greater drug resistance to the tumor cells they surround; therefore, 

tumor-stroma interaction pathways are emerging as possible therapeutic targets.10 Because of the 

drug resistance that the stroma interactions give to the tumor, high-throughput screening methods 

are being developed to identify chemotherapeutics with increased activity against stroma cells.11 

In order to better understand how these interactions may impact metabolism, the tumor 

microenvironment can be simulated in vitro to determine how tumor-stroma interactions affect 

the OCCs’ and OCSCs’ response to environmental perturbations. 

The results of this study would identify whether interactions between the stroma and CCs cause 

metabolic changes that help to sustain the tumor under applied stress. Metabolic pathways that 

undergo regulation from the tumor-stroma signaling could be identified by comparison to the 

data from the OCCs or OCSCs only. With this information, potential inhibitors or activators of 

the metabolic pathways involved in the tumor-stroma interactions could be identified and used as 

therapeutics to make the tumor more sensitive to other treatments. 

5.3.4. Explore metabolism differences using different cell lines for ovarian 
cancer and expand into other cancers 

Besides the isogenic system used for the studies in this work, there exist a few other isolated 

cancer stem cells in ovarian cancer and other cancers.12-15 Extending this same study into other 

cancer stem cells would help to determine if the results found here are specific to this cell 

system, to ovarian cancer, or to cancer stem cells in general. The drawback to this extension is 

that these other isolated cancer stem cells are difficult to obtain. They are not available through 
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traditional means (such as ATCC) and would only be obtainable through direct contact with the 

group that isolated the cancer stem cells. Hopefully, as the research into cancer stem cells 

continues, these cells will be more easily obtainable which would allow the continuation of this 

research. 
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APPENDIX A 

AS Method 
An Agilent 7683 autosampler was used. Three pre-washes with pyridine were performed before 

each injection. The sample was then pumped into the syringe 4 times. The syringe size was 10µL 

with a sample volume of 1µL injected into the inlet. Three post-washes with pyridine were 

performed after injection. 

GC Method 
An Agilent 7890 gas chromatograph adapted to GCxGC analysis was used. The first column was 

an HP-5, 30m long x 0.320mm ID x 0.25µm film thickness (Agilent, Santa Clara, CA), and the 

second was an Rtx-200, 2m long x 0.25mm ID x 0.25µm film thickness (Restek, Bellefonte, 

PA). The excluded masses in auto mass defect mode option was chosen. Helium was used as the 

carrier gas with a corrected constant flowrate of 1.00mL/min. An inlet septum purge flow of 

3mL/min was chosen. The inlet was operated in splitless mode with a purge flow of 100mL/min 

set to start 30 seconds after injection, yielding a total flow of 101mL/min. Gas saver mode was 

used, with a flow of 20mL/min set to start a minute after injection. 

Table A1: Main Oven Temperature Program for Intracellular and Extracellular Samples 

Rate (°C/min) Target Temp (°C) Duration (min) 

Initial 70 1 

10 315 2 

 

The main oven temperature program can be found in Table A1. The secondary oven temperature 

offset was 5°C and the modulator temperature offset was 20°C from the main oven. An 

equilibration time of 60 seconds was set for the ovens. The modulation timing is listed in Table 

A2. The transfer line was set to 320°C for the entire run. 
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Table A2: Modulation Timing 

# Start (s) End (s) Modulation Period (s) Hot Pulse Time (s) Cold Pulse Time (s) 

Intracellular Samples 

1 Start 575 5.00 1.00 1.50 

2 575 797 6.00 1.50 1.50 

3 797 End 4.00 1.50 0.50 

Extracellular Samples 

1 Start 492 4.00 0.50 1.50 

2 492 747 5.00 1.00 1.50 

3 747 1099 4.00 1.00 1.00 

4 1099 End 4.00 1.50 0.50 

 

MS Method 
A LECO Pegasus IV D time of flight mass spectrum (TOF-MS) was used. The total MS method 

time was based on the GC method time. The acquisition delay was set to 240 seconds, with the 

filaments being turned off until then. The collection mass range was from 50 to 500u. The 

acquisition rate was set to 200 spectra/second. The detector voltage was set to 100V above the 

optimized voltage with the electron energy set to -70V. The mass defect mode was set to manual 

with the mass defect 0mu/ 100u. The ion source temperature was 220°C and the run had to wait 

for the ion source temperatures to reach the set point before starting acquisition. 

 


