
SPINE-BASED DEFORMATION WITH LOCAL VOLUME
PRESERVATION

A Dissertation
Presented to

The Academic Faculty

by

Wei Zhuo

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Computer Science in the
School of Interactive Computing

Georgia Institute of Technology
December, 2014

Copyright c© 2014 by Wei Zhuo

SPINE-BASED DEFORMATION WITH LOCAL VOLUME
PRESERVATION

Approved by:

Professor Jarek Rossignac,
Committee Chair
School of Interactive Computing
Georgia Institute of Technology

Professor Karen Liu
School of Interactive Computing
Georgia Institute of Technology

Professor Jarek Rossignac, Advisor
School of Interactive Computing
Georgia Institute of Technology

Professor Greg Turk
School of Interactive Computing
Georgia Institute of Technology

Professor Stefanie Hahmann
Applied Mathematics
Grenoble Institute of Technology, IN-
RIA Research

Professor George M. Turkiyyah
Department of Computer Science
American University of Beirut,
KAUST

Date Approved: July 30, 2014

DEDICATION

To my husband,

my parents,

and my grandparents.

iii

PREFACE

This dissertation is an original intellectual product of the author’s doctoral work.

Two images, Figure 3 and Figure 4 in Chapter 1, are intended to illustrate poten-

tial applications. Their contents have been selected from results returned by public

image search tools with relevant keywords. Chapter 2 is a literature survey which

presents images from related published work with proper references and citations.

The rest of the images in this dissertation are produced by programs written for

research projects that fund the author’s doctoral study.

Portions of the dissertation, or preliminary mathematical models and experi-

ments on deformation driven with non-stretchable spine curve, have been published as

Wei Zhuo and Jarek Rossignac, ”Fleshing: Spine-driven Bending with Local Volume

Preservation”, Computer Graphics Forum (CGF), VOL. 32, NO. 2, 2013 and Wei

Zhuo and Jarek Rossignac, ”Curvature-based Offset Distance: Implementation and

Applications”, Computer & Graphics, VOL. 36, NO. 5, 2012. These two publications

are also presented at Eurographics (EG 2013) and Shape Modeling International (SMI

2012).

This work was supported in part by NSF Grant Number 0811485. Any opinions,

findings and conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of NSF.

iv

ACKNOWLEDGEMENTS

I gratefully acknowledge the support and encouragement provided by my advisor,

Professor Jarek Rossignac, during the time I spent at Georgia Tech. I feel extremely

fortunate to have crossed path with him and to have the opportunity to work with

him so closely for many years. He has been a most valued mentor and friend during

tough times. He has cultivated me with his fantastic taste of research while allowing

me the freedom of pursuing problems I found most important and interesting; at the

same time, in critical moments, he has always been available to provide sincere and

determined opinions, helping me make the right decisions.

I would like to acknowledge the feedback received from members of my thesis

committee: Professor Karen Liu, Professor Stefanie Hahmann, Professor Greg Turk

and Professor George M. Turkiyyah. I would like to thank them for interesting

discussions and inspiring suggestions on my research which helped me look at my

work in a broader context.

The friendship, companionship and support of my colleagues from the geometry

research group in the School of Interactive Computing would be hard to replace. A

big thanks to all my collaborators at Lawrence Berkeley National Lab, IBM T.J.

Waston Research Center, and the School of Computational Science Engineering at

Georgia Tech.

Finally, I would like to dedicate this work to my husband and my parents, whose

love and patience have been my constant source of inspiration, without which this

work would have been impossible. My achievement is also theirs.

v

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiv

I INTRODUCTION . 1

1.1 What is spine-based deformation? 1

1.2 Assumptions . 3

1.3 Key contributions . 5

1.4 Applications . 6

1.4.1 Applications for deformation driven by a spine curve 6

1.4.2 Applications for deformation driven by a spine surface 9

1.5 Challenges with local volume preservation 10

1.5.1 Local volume preservation through thickness correction . . . 11

1.5.2 Local volume preservation through offset distance correction 14

1.5.3 Theoretical framework . 16

1.6 Precise problem formulation . 17

II LITERATURE SURVEY . 19

2.1 Deformation driven by spine curve 19

2.1.1 Planar shape and image deformation 19

2.1.2 Bender tool . 22

2.2 Existing techniques in global volume compensation 24

2.2.1 Volume compensation in freeform deformation 24

2.2.2 Machining with equivolumetric offset 26

vi

2.3 Approaches to local volume preservation 27

2.3.1 Divergence-free displacement field 27

2.3.2 Iterative normal displacement 28

2.3.3 Local volume preservation in fluid simulations 29

2.4 Variations of Spine-based modeling 29

2.4.1 Medical modeling . 30

2.4.2 Twist compensated frame . 30

III DEFORMATION WITH 2D SPINE CURVE 32

3.1 Planar Non-stretchable Spine Curve 32

3.1.1 Formulation and derivation 32

3.1.2 Existence Condition . 34

3.2 Planar Stretchable Spine Curve . 34

3.2.1 Formulation and derivation 34

3.2.2 Existence Condition . 36

3.3 Discretization and Implementation 37

3.3.1 A family of curvature-based offsets 37

3.3.2 A series of successive curvature-based offsets 37

3.3.3 Selective smoothing . 39

3.4 Projection, normal, curvature and stretch parameters for parametric
and polygonal curve . 40

3.5 Results and analysis . 41

IV DEFORMATION WITH NON-STRETCHABLE 3D SPINE CURVE
46

4.1 Formulation and derivation . 47

4.1.1 Normal solution . 48

4.1.2 Binormal solution . 48

4.1.3 Radial solution . 49

4.2 Implementation and Existence Condition 49

4.2.1 Unbending-transfer-bending technique 50

vii

4.2.2 Normal propagation . 53

4.2.3 Summary . 55

4.3 Results and Analysis . 55

V DEFORMATION WITH STRETCHABLE 3D SPINE CURVE . 62

5.1 Formulation and derivation . 62

5.1.1 Normal solution . 63

5.1.2 Binormal solution . 64

5.1.3 Radial solution . 64

5.2 Implementation and Existence condition 65

5.2.1 Unbending-transfer-bending technique for stretchable spine . 65

5.2.2 Discretization of stretchable spine curve 69

5.3 Results and Analysis . 70

VI FORMULATION FOR DEFORMATION WITH SPINE SURFACE
76

6.1 Spine Surface Deformation . 76

6.2 Implementation and Existence condition 78

6.3 Results and Analysis . 80

VII ACCURACY AND SAMPLING . 87

7.1 Problem description . 87

7.2 Proposed approaches . 88

7.2.1 More accurate curvature, normal estimators 89

7.3 Results and analysis . 90

VIIIRELATION TO PHYSICAL REALISM 97

8.1 Basis bending modes: Normal and Binormal 98

8.2 Problem with combining two basis bending modes 99

8.3 Solution for a compromise between two bending modes 100

8.4 Relationship between curvature and local volume variations 104

8.5 Realtime performance . 104

viii

IX CONCLUSION . 106

REFERENCES . 111

VITA . 117

ix

LIST OF TABLES

1 The relative volumetric errors for mixed types of bend and unbend
mappings. 55

x

LIST OF FIGURES

1 Overview of the steps in spine-based deformation. 2

2 Sliding a dolphin along a 3D curve by adjusting the registration pa-
rameter globally. 5

3 Models suitable for deformation driven by a spine curve. 7

4 Models suitable for deformation driven by a spine surface. 8

5 Local area preservation through thickness correction. 12

6 Local area preservation through offset distance correction. The yellow
dot represents the centroid. 13

7 Barr 1984, Global and local deformation of solid primitives 20

8 Hsu, Lee and Wiseman 1984, Skeletal strokes 20

9 Variable offset bending . 21

10 Llamas et al. 2005, Bender: A virtual ribbon for deforming 3D shapes 23

11 Zhuo and Rossignac 2012, global volume compensation with minimized
Hausdorff error [63] . 24

12 Angelidis, Cani, Wyvill and King 2006, Swirling sweepers. 25

13 Rohmer, Hahmann and Cani 2008, Local volume preservation for skinned
characters . 28

14 Wang, Jüttler, Zheng and Liu 2008, Computation of Rotation Mini-
mizing Frames . 30

15 Hanson and Ma 1995, Roof-top analogy for approximating twist-minimized
frame [24] . 31

16 A series of successive curvature-based offsets. 38

17 Bending incompressible shape and layers with an arc. 42

18 Deformation of a spine-aligned grid driven by bending and stretching
a spine. Every rectangular cell preserves its area. 43

19 Using color mapping, we see how the area of each cell in the grid
changes. The spine is the bottom curve. 45

20 Depending on the direction to move the point in cross section, there
is an additional degree of freedom for 3D spine curve (right) compared
with the 2D spine curve (left). 47

xi

21 Showing the Frenet normal (blue) and the twist-compensated nor-
mal (green) along a twisted tube. 53

22 Reconstruction according to registrations with the Frenet frame (left)
and the twist-compensated frame (right) on a trefoil knot and a helix. 54

23 Showing the effects of rotation between the unbending and bending
steps. 56

24 Frontal and crossectional views of a cylindrical model after bending. . 57

25 Unbending and bending a extrusion model. 58

26 Crossectional views of the extrusion model after unbending and bending. 59

27 The original bunny and the deformed bunny without correction. . . . 60

28 The deformed bunny with normal, binormal and radial correction. . . 61

29 Stretching, compressing and bending a cylindrical surface. The spacing
along the spine is shown on the cylinder. 70

30 Results of applying the normal, binormal and radial schemes on cylin-
drical surface. 72

31 Results of applying the normal, binormal and radial schemes on thin-
ning the bunny. 73

32 Deformation of a bunny driven by stretching, compressing and bending
a 3D spine curve. 74

33 Identify the valid root in a cubic equation. 80

34 Overview of the deformation driven by a spine surface. 81

35 Stretching and compression of a bunny driven by a spine surface with
volume preservation. 82

36 Deformation of spheres driven by a spine surface. 84

37 Using color mapping, we see how the volume of each sphere changes. 85

38 Deformation by a spine surface which is initially curved. 86

39 Results of using simple and more accurate projections in deformation
with a finely sampled spine curve. 91

40 Results of using simple and more accurate projections in deformation
with a coarsely sampled spine curve. 93

41 Results of using simple and more accurate projections in deformation
with a spine surface. 94

42 Deformations of a subdivision mesh at different levels of subdivisions. 95

xii

43 Bending a cloud of cubes at different, initial uniform sizes. 95

44 Plot of the percentage mean absolute error versus the cube size. . . . 96

45 The crossectional plots of the deformation results computed by the
normal, radial and binormal methods with the curvature increasing
from left to right. 102

46 Using checker texture and tone mapping, we see a decreased local vol-
ume variation after applying radial offset distance correction (right). . 103

47 Compare the local curvatures (bottom) with the local volumes of the
wedges of the twisted tube in Figure 46 105

xiii

SUMMARY

In shape modeling applications, deformation is the process of applying a

continuous, non-affine transformation to a shape. The definition of the deformation

should be independent of the representation of the shape. In practice, the shape

is often represented by its boundary, which is defined by a set of vertices and by

connectivity information. The transformation is often applied to these points.

A deformation algorithm takes the original shape and designer’s choices as in-

puts, and outputs the deformed shape. This dissertation dedicates to introducing

spine-based deformation: Any distortion to the shape is controlled by a low dimen-

sional proxy, which is a spine curve or surface. Considering a sometimes important

constraint to preserve the shape’s volume during deformation, this thesis addresses a

suite of problems in spine-based deformation with local volume preservation, meaning

that the volume of any subset of the shape is preserved. Although our deformation

model may be applied to the control points or vertices of a surface model that is

not a water tight boundary of a solid, in this thesis, the term shape will refer to a

solid model which has a clearly defined interior and volume. Previously proposed

local or global volume compensation techniques are typically based on iterations that

introduce a complexity bilinear in the numbers of vertices and iterations. we present

a family of closed-form solutions for shape deformation with mathematically exact

local volume preservation, and demonstrate their power in the context of interactive

bending, rotating, sliding or stretching a 2D or 3D shape. The overall complexity is

linear in the number of vertices.

Proposed spine-based deformation framework adopts the following assumptions

in geometric modeling:

xiv

• When the spine is a curve, a plane normal to the spine curve remains normal

to the spine curve after deformation. The parameter associated with the point

at which the plane intersects the curve is unchanged.

• When the spine is a surface, a line normal to the spine surface remains normal to

the spine surface after deformation. The parameters associated with the point

at which the line intersecting the plane remain unchanged.

With these assumptions, we compute the closed-form formulation for the deformation

that guarantees local volume preservation and is expressed using real roots of low

degree polynomials and simple point and vector expressions. Due to its simplicity,

our solution may be used to deform complex models in realtime during interactive

manipulation or animation, where the behavior of the spine has been designed or is

computed in realtime through simulation.

xv

CHAPTER I

INTRODUCTION

Before discussing related work and introducing theoretical or technical challenges,

we first describe what is the spine-based deformation. We have mentioned that the

change of the shape is due to manipulating operations such as bending or stretching

of a lower dimensional proxy which we called the spine. However, in order to let the

proximal spine’s movements determine an object’s deformation, the object needs to

be registered to the spine at first. Also, after deforming the spine we need to decide

how to reconstruct the object from the proximal spine and registration parameters.

This chapter provides the fundamental framework and describes a list of assumptions

in spine-based deformations.

1.1 What is spine-based deformation?

In shape modeling, the term ‘deformation’ is used to describe the process of applying

a continuous, spatially-varying transformation to an object. Our focus is on a specific

type of deformations defined by bending or stretching a spine curve or surface, that

pierces or lies near the shape. For instance, one may want to interactively stretch

or bend a shape by stretching or bending a proximal curve through control point

manipulation. Likewise, one may use a spine surface as the proxy to control the

deformation. More details of the application scenarios are given in Section 1.4.

As shown in Figure 1 which provides an overview of the steps in spine-based

deformation, the designer starts with a shape S0, and specifies an initial version C0

of the spine, which needs to be a smooth curve that may pierce S0 or not. Then

the designer specifies the new positions or time-evolution of the control points of the

spine, such that the spine C changes from C0 to C1. Then spine-based deformation

1

C0 C1

S0 S1

user manipulation

registration transformation

S0

C0 C1

S1

registration reconstruction

spine bending

Figure 1: Overview of the steps in spine-based deformation.

2

algorithm computes the current position of each vertex of the shape and displays the

resulting deformed shape S1. Notice that the deformation calculation can be easily

parallelized for each vertex of the shape, which makes it possible to accelerate using

GPU.

1.2 Assumptions

Before describing the contributions made for this type of deformation, we introduce

the most important assumptions in order for this framework to work for spine curves

and spine surfaces respectively.

Assumption I: Cross-section preserving

In the deformation driven by a spine curve, a cross-section is a collection of points

of the shape registered to the same point on the spine curve. Assume that C0(s) is

a point on the initial version C0 of the spine curve. Here s is the parameter along

the spine curve. The registration step associates the parameter s with a point P0 of

S0, such that C0(s) is the closest projection of P0 onto on to the spine curve C0. All

points of S0 associated with a particular parameter s of are called a cross-section,

which is formally defined as the point set {P0, P0 ∈ S0, arg min dis(C0(s), P0) = s}.

Note that each cross-section is planar.

One important assumption in deformation driven by a spine curve is cross-section

preserving. During the deformation, points on the solid of the same cross-section

will remain in the cross-section associated with the same parameter s. Note that

the shapes of the initial and deformed cross-sections may be different, but they are

both planar. Therefore, the deformation driven by a spine curve has the following

assumptions: First, planes normal to the curve, or cross-sections remain normal to

the curve after deformation. Second, the parameter s of any cross-section remain the

same during bending.

Often, the spine curve may represent the central axis of an elongated object. The

3

designer defines the initial spine maybe by placing a few control points for it. Then

she defines its deformation over time, maybe by specifying a few key positions for

each control point that will be interpolated by the motion of that control point. For

each time t, the deformation algorithm computes the current position of each vertex

of the solid and displays the resulting triangulated surface.

Assumption II: Normal segment preserving

Similarly, in deformation controlled by a spine surface, the spine may represent the

medial surface of a flat object. The designer defines the initial spine surface by

placing a few control points for it. And then she specifies its deformation over time,

either by control point manipulation or scripted animation. At each time frame, the

deformation algorithm computes the current position of each vertex of the shape and

displays the result.

One important assumption in deformation driven by a spine surface is normal

segment preserving. Specifically, assume that C0(u, v) is a point on the initial spine

surface. Here we need two parameters u, v for surface parameterization. We associate

the parameters u, v with a point P0 of S0 such that C0(u, v) is the closest projection

of P0 onto C0. All points of S0 associated with a set particular parameters u, v form

a line segment normal to C0 at C0(u, v). During the deformation, points of a line

segment will remain in the line associated with the same surface parameters.

Formally speaking, all points of S0 associated with a particular pair of parameters

u, v on C0 are called a normal segment, which is formally defined as the point set

{P0, P0 ∈ S0, arg min dis(C0(u, v), P0) = (u, v)}. Note that each normal segment is

one-dimensional. All points of a normal segment remain within one normal segment

after the deformation with the same pair of parameters.

Implications

With Assumption I or II, the registration parameter s, or (u, v) remains invariant

during transformation. This implicates that only the offset value from the spine is

4

Figure 2: Sliding a dolphin along a 3D curve by adjusting the registration parameter
globally.

allowed to change during the deformation. Note that Assumption II is a reasonable

assumption in classical mechanics on thin plate bending [43]: straight lines normal to

the base surface remain straight and normal to the base surface after deformation. We

extend this assumption to the deformation driven by a 3D curve: cross sections normal

to the spine curve remain planar and normal to the spine curve after the deformation,

and arrive at Assumption I. Note that these assumptions are not strict restrictions

on the possible effects in spine-driven deformation: the registration parameter s or

(u, v) is considered invariant only when deriving the offset value for local volume

preservation. While effects such as sliding along the spine is still possible to create

by programming the global change (See Figure).

1.3 Key contributions

With the constraints formulated in Section 1.2, it is now possible to define spine-based

deformation formally, in terms of a mathematical formulation of the mapping from

the initial to the deformed position for each point of the input shape. This is one of

the key contributions of this dissertation. Another key contribution reported in this

thesis is a family of such mappings, while satisfying the requirements of preserving

5

cross-sections and normal segments, that preserve the local volume everywhere during

the deformation. Details of the problem on local volume preservation is discussed in

Section 1.5. Section 1.6 summarizes a full list of properties of our solutions presented

in this dissertation.

1.4 Applications

When considering the applications related to spine-based deformation, we should first

consider shapes or models that are suitable for deformation with a proxy curve or

surface. In fact, in an interactive session, designer efforts such as shape modeling,

spine specification and control point manipulation are critical aspects of the appli-

cation’s utility. In this section we mainly focus on the motivation and application

scenarios for deformations driven by spine curves and surfaces. Sample models and

shape suitable for this type of deformation are also briefly discussed.

1.4.1 Applications for deformation driven by a spine curve

Deformations driven by a spine curve are motivated by applications in modeling and

animating tube-like structures, such as hoses, wires, ducts, and also the animations of

a trunk, snake, or a tongue, as illustrated in Figure 3. In these models, it is intuitive

to specify a curve, which may represent the central axis of an elongated part.

In one interactive shape-editing application developed by Llamas et. al. [35], the

designer manipulates the spine using two frames, each controlled by a tracker in a

different hand. The orientations of the trackers define the end-tangent directions to

the spine. The total torsion along the spine is controlled by the rotations of the

trackers around the corresponding tangents.

To help with simulation or animation applications, the designer should define

the initial spine together with its evolution over time, as previously mentioned in

Section 1.1. To do so, she would specify only a few control points of the spine and

a few key positions for each control point that will be interpolated by the motion of

6

Figure 3: Models suitable for deformation driven by a spine curve.

7

Figure 4: Models suitable for deformation driven by a spine surface.

8

that control point. Then for each time t, the deformation algorithm computes the

current position of each vertex of the solid and displays the resulting deformed solid.

In those applications, the spine curve is the proxy which the designer uses to

control the shape change. The deformation of the proxy curve itself is not the focus

of this dissertation. Nevertheless, it is essential to compute changes of the thickness

of the “meat” attached to the curve, due to the proxy curve’s bending or stretching.

For example, if the “meat” is a volume-preserving finite element mesh, how should

the deformation algorithm compute the position of each cell vertex while the cell

remains incompressible?

1.4.2 Applications for deformation driven by a spine surface

Deformations driven by a spine surface are motivated by applications in modeling

plate-like structures, such as sheets, mattresses, smoothly bendable boards, and also

the animations of creatures with soft shells or deformable membranes. We also antic-

ipate potential applications in mechanics on thin plate bending, sheet-stamping and

machining processes. Figure 4 shows a few examples suitable for deformation driven

by a spine surface. In this models, it is intuitive to specify a surface, which may fit a

part resembling to a thin plate.

Typically in machining or deposition process, the spine surface is static and is

usually referred as the base or backbone surface. The material removal rate at a

point on the base surface is characterized by the ratio of the removed volume to the

local surface area at the point. For constant material removal rate, the milling depth

is not a constant and should adapt to the local curvature of the base surface. Hence,

if the base surface is developable, the milling depth can be computed by a locally

volume-preserving bending of a plane into the base surface. Similarly, the deposition

amount is characterized by the increased volume to the local surface area. We show

that the thickness of the deposited layer can be computed by a special form of the

9

curvature-sensitive formula in our bending framework.

In modeling the deformation or animations of plate-like structures, the spine sur-

face is the proxy which the designer uses to control the shape change. The deformation

of the shape is completely determined by the change of the proxy surface as men-

tioned in Section 1.1. Instead of focusing on the deformation of the thin plate or the

proxy surface itself, we are interested in the answer to this question: How does the

thickness of the “meat” attached to the proxy surface change due to the bending and

stretching of the proxy surface? For example, if the “meat” is a volume-preserving

finite element mesh. Assume that the volume of each cell in the mesh is incompress-

ible. Then our deformation algorithm should compute the exact shape of each cell

while each cell volume remains a constant everywhere during the transformation.

1.5 Challenges with local volume preservation

Physically plausible simulations that involve biological creatures or deformable shapes

made of incompressible materials require that the volume be preserved. Spine-based

deformation has a wide range of applications in tissue modeling, surgical planning

or even image editing. In these solutions, the area or the volume of the deformed

region needs to be preserved for correctness or control quality. For example, during

an animation where no external forces or torques are exerted on an incompressible

body, the momentum and kinetic energy are preserved. Both depend on the mass

and hence of the volume (if one assumes constant density). Hence, changes of volume

during an animation will result in surprising changes of velocity.

It is much simpler to preserve global volume than local volume. For example,

one may dilate the entire solid by a specific amount to compensate for the undesired

volume gain or loss [17]. In fact, one of the contribution of our deformation algorithm

is to provide a simple formula for computing that dilation amount for arbitrary (not

necessarily convex) solids [63]. Unfortunately, preserving the global volume is not

10

sufficient for a physically plausible behavior.

1.5.1 Local volume preservation through thickness correction

Local volume preservation means to preserve the volume of “any chunk” in space,

not just the summed volume of “all chunks” of a solid during transformation. Here

we provide a 2D example to illustrate the effect of local volume preservation. Strictly

speaking, the requirement becomes local area preservation in 2D as we want to pre-

serve the area of any region in space during spine-based deformation.

Let us consider the two-dimensional version of the local volume preserving (or local

area preserving) problem. As shown in Figure 5, the blue curve represents the spine

that stabs a piece of incompressible material which has a layered structure along

the spine curve. Assume that initially the layers are of the same thickness. Then

the designer bends the spine curve downward and the layers along it are deformed

accordingly. Here the question is how does each layer deform?

We show two versions of the deformed result in Figure 5. In the center of the

figure, the thickness of each layer of the piece of material remains the same. At the

bottom of the figure, the layers on the convex side of the spine becomes thinner, and

the layers on the concave side of the spine becomes thicker. Which scenario is correct

if we want the area of each layer to be preserved?

The answer is that the bottom of Figure 5 shows the correct deformed result if we

want the area of each layer remain unchanged. Due to that a layer on the convex side

of the spine is stretched, its thickness should decrease as the layer’s length increases

in order to compensate the area gain. On the contrary, a layer on the concave side of

the spine is compressed, its thickness should increase as the layer’s length decreases

in order to compensate the area loss.

11

Figure 5: Local area preservation through thickness correction.

12

Figure 6: Local area preservation through offset distance correction. The yellow dot
represents the centroid.

13

1.5.2 Local volume preservation through offset distance correction

Section 1.5.1 introduces an example of local volume preservation through thickness

correction. To support more general planar shape deformation with local volume

preservation, we extend the solution from correcting the thickness to correcting the

offset distance of each point on the solid to the spine curve.

As shown in Figure 6, the blue curve represents the spine which stabs the center

of a piece incompressible material which has the boundary of a ellipse. Note that

the shape does not need to be an ellipse as shown later by an example in Figure 17.

Assume that the designer bends the spine downward without stretching. This causes

the shape to deform accordingly. The question is how does the shape look like after

the deformation?

We show two versions of the deformed result underneath. The first version is shown

in the center of Figure 6, where offset distance on each side of the spine remains the

same after bending. The other version is shown at the bottom of the figure, where

the offset distance increases on the concave side, and decreases on the convex side of

the spine. Which scenario is the correct one if we want the area of the shape to be

preserved locally?

The answer is not obvious but the bottom of Figure 6 shows the correct deformed

result if we want local area preservation. Due to that the region on the convex side

of the spine is stretched, the offset distance should decrease so as to compensate the

area gain. On the contrary, the region on the concave side of the spine is compressed,

and the offset distance should increase in order to compensate the area loss on the

concave side. Naive deformation result without offset distance correction is shown in

the center of Figure 6, where the area of the region above the spine is enlarged while

the area of the region below is reduced. It appears that some area initially below the

spine has magically transferred through and moved above the spine.

When the local area is preserved, the portion above the spine are stretched along

14

the spine and therefore become narrower, closer to the spine. Portions below are

subject to the inverse effect: they are pushed away from the spine. This also affects

the movement of the center of mass, which is visualized as a yellow dot in Figure 6.

The center of mass is initially sits on the spine curve. After spine bending, the center

of mass may change its relative position to the spine. In the correct deformation

scenario where the “meat” are pushed away from the spine on the concave side, the

center of mass tends to move below the spine.

Limiting or existence condition

When reconstruct the deformed point as the offset from the spine curve or surface,

we need to prevent the condition that the offset distance exceeds the local radius of

curvature. Otherwise, there is a local self intersection, hence no valid solution for

the result to be locally volume preserving. To avoid this condition, the original point

needs to be within the valid region defined by C0 and C1. For example in Figure 6

the updated offset distance h1 = f(h0) should satisfy h1 <
1
κ1

, where κ1 is the local

curvature of C1. Therefore the original offset distance should satisfy h0 < f−1(1
κ1

),

where f denotes solver that updates the offset distance. In the following chapters, we

will define and derive the limiting condition for the valid solution to exist for every

type of spine-driven deformation.

Topological limitations on the spine

Kälberer and et. al. [29] studied projective field-based methods for parameterization

of tube-like surfaces offset from spines with bifurcations. They have shown that a

branch with Y-junction causes a singularity in the projective field and to the param-

eterization. (A branch with T-junction can cause an additional singularities.) Our

framework relies on the assumption that the closest projection of a point on the

spine should be unique. In the existence of a junction, the valid space for a point

15

to have a unique projection is reduced, degenerating to the lower-dimensional spine

at the junction. Compared with work on skeleton-based deformation that allows

junctions (e.g. [55, 34, 60]), our approach does not compute the deformed point as a

distance weighted combination of points offset from multiple anchor points. Instead,

we focus on computing the exact offset distance from one anchor point that leads to

local area or volume preservation. Note that our approach may still be used to defor-

mation driven by a spine with bifurcations. For instance, one may use our approach

to efficiently compute the offset distances for points in the valid region to avoid ex-

pensive iterations for preserving the local volume while switch to distance-weighted

interpolation for points outside the valid region.

1.5.3 Theoretical framework

Section 1.5.1 and 1.5.2 introduces planar deformation driven by a spine curve via

thickness correction and offset distance correction in order to preserve the volume

locally. Nevertheless, there are several assumptions need to be relaxed to support

more general spine-based deformation with local volume preservation. First, the

designer should be able to stretch the spine in addition to bending. In this case, the

shape around the spine curve should be compressed or stretched axially as well as in

directions normal to the spine, as discussed in Chapter 3. Second, the deformation

should be in 3D, which has an additional degree of freedom compared to 2D. For the

deformation driven by a 3D spine curve, there is an extra degree of freedom in the

binormal direction, as discussed in Chapter 4. Finally, if the spine is a surface, an

additional parameter is required for anchoring a point in space to the proxy surface,

as discussed in Chapter 6.

To support spine-based deformation with local volume preservation as well as with

various spine proxies, we introduce the mathematical framework. In order to formal-

ize the notion of local volume preservation, one must introduce the measure of the

16

local volume change everywhere in the solid during its deformation. Let P0 denote a

point in space of the solid before deformation and P1 the corresponding point after

deformation. The transformation from P0 to P1 satisfies the requirements specified in

Section 1.1. Let M represent the transformation, P1 = M(P0). The Jacobian matrix

of the transformation is JM = ∂P1

∂P0
, where P1 and P0 are also regarded as mappings

from local parameters to points in space. Given particular local parameters for P0

and P1, JM is affine, meaning M is locally affine. However the overall spine-based de-

formation M is not an affine transformation, so JM is spatially varying. Interestingly,

the determinant of the Jacobian of the transformation, det(JM), is a good measure of

the local volume change. There is a local expansion if the corresponding det(JM) is

larger than 1. The reverse is local contraction if the corresponding det(JM) is smaller

than 1. For local volume preservation, the determinant det(JM) should equal to 1

exactly everywhere.

1.6 Precise problem formulation

After having introduced the framework of spine-based deformation, we now turn to

the problem formulation. Recall that the designer starts with a shape S0 and specifies

an initial spine C0, which is a smooth curve that may pierce the solid S0 or not. Then

the designer deforms C0 to C1. The solution for any shape to maintain its original

volume during deformation is to obtain a mapping M : S0 → S1, such that M

preserves volume locally (i.e., vol(U) = vol(M(U)), for any subset U of S0). A list

of requirements for M to be valid and producing plausible deformation results is the

following.

1. Topology-independent : M should operate on any shape topology and indepen-

dent of S0. The input solid can be represented by either a triangle or a quad

surface, or even a point cloud. M is a space transformation irrelevant to the

representation of S. M is fully defined by C0 and C1. This allows the designer

17

to deform meshes without changing their connectivities.

2. Homeomorphism: M should be a homeomorphism between S0 and S1. This

is important because we want the mapping to be invertible: M−1(P1) = P0,

where M−1 is defined by the initial spine as C1 and the final spine as C0. The

homeomorphsim requirement is met as long as both S0 and S1 are valid without

self-intersections caused by sharp bending.

3. Crossection/Normal-preserving : M should preserve the local parameter on the

spine. In deformation driven by a spine curve, the local parameter s of the

closest projection C(s) of the point should remain the same. In deformation

driven by a spine surface, the local parameters u, v of the closest projection

C(u, v) of the point should remain the same.

4. Locally volume preserving : Last but most important, det(JM) = 1, meaning that

M is local volume preserving everywhere. In another words, vol(U) = vol(M(U)

for any subset U of S0. This is important for the physical plausibility of digital

simulations, especially when they involve interactions between evolving, incom-

pressible solids and surrounding fluids.

18

CHAPTER II

LITERATURE SURVEY

We present here an expository account of work related to spine-based deformation.

Section 2.1 introduces models and tools for deformation driven by spine curve. Sec-

tion 2.2 describes a intuitive problem and related solutions in global volume com-

pensation. Section 2.3 discusses divergence-free deformation for preserving the vol-

ume locally in skeletal and surface-driven deformation. Finally, Section 2.4 presents

variations of spine-based modeling in medical modeling and the key towards twist-

minimization.

2.1 Deformation driven by spine curve

This section presents several planar spine-based deformation models and a tool to-

wards 3D bending. We refer to the type of deformation driven by non-stretchable

spine as bending. Section 2.1.1 discusses four planar bending models in a chronologi-

cal order of their emergence, which also happens to reflect the degree of complexity

of each model. Section 2.1.2 discusses Bender tool that support the deformation of

3D objects in detail.

2.1.1 Planar shape and image deformation

In 1984, Barr [7] presents a bending model in which the spine is the X-axis. The

purpose is to simulate global linear bending where the length of the spine does not

change, while the bending angle changes linearly in the bent region as shown in

Figure 7. The spine is an arc with constant curvature k in the bent region. The offset

distance from the spine does not change in this bending. This leads to the scenario

shown in the center of Figure 5 or Figure 6 as discussed in Section 1.5.

19

Figure 7: Barr 1984, Global and local deformation of solid primitives

Figure 8: Hsu, Lee and Wiseman 1984, Skeletal strokes

20

Variable-offset bending by Chirikjian

Variable-offset bending applied to image deformation
by Zhuo and Rossignac

Figure 9: Variable offset bending

Later, Hsu, Lee and Wiseman apply a bending model similar to the one proposed

by Barr to graphics design [27]. In this work, the spine is a user-specified planar

curve, representing an artistic brush stroke, rendered with textures. They draw the

textures using the normal to the spine curve as the local y-axis. The work supports

more general bending in which the spine curve does not need to change linearly, or

have constant curvature, in the bent region. They also deal with sharp bending, by

trimming local self-intersections as shown in Figure 8.

The two approaches mentioned above do not preserve area of the shape locally.

A drawback of the bending models described so far is that it can not produce the

correct result for simulating the deformation of incompressible material. Usually on

bending a physical object, the material on the concave side of the spine is compressed

while stretched on the convex side. The way that the planar shapes deform, or the

amount by which the material shrinks or expands should preserve the area of any

subset in the material.

21

For the reason mentioned above, Chirikjian [16] proposed a mathematically precise

approach for 2D bending with local area preservation. The solution is to update the

offset distance based on the curvature of the spine as follows:

h1 −
kh2

1

2
= h0,

where h1 and h0 are the updated and the original offset distances; k is the curvature

after spine bending. Initially the spine is straight. The result applied onto an orig-

inally uniform grid is shown at the top of Figure 9, which is also the same as the

scenario shown at the bottom of Figure 5.

In our work on curvature-based offset distance [63], we use this variable offset

formula for bending an image with local area preservation. To alleviate the drawback

of insufficient sampling, we use the spine-aligned grid. The deformed image is a

texture mapping of the original image with the deformed grid, as shown at the bottom

of Figure 9.

2.1.2 Bender tool

To support not just planar bending but the deformation of 3D objects and surfaces,

Llamas, Powell, Rossignac and Shaw present a Bender tool [35], which allows the user

manipulates the spine using two frames, each controlled by a tracker in a different

hand. The orientations of the trackers define the end-tangent directions to the spine.

The spine is modeled as a bi-arc curve [48]. The designer presses buttons that have

been engineered on the trackers to indicate the moment where the current shape of

the spine and of the torsion should be registered as the grab ribbon. Then, as the

designer manipulates the two trackers, the current ribbon is computed at each frame.

In Bender, the mapping of the vertices of the solid is performed as follows. For each

vertex P0 of the solid, Bender computes the parameter s of the closest projection C0(s)

of P0 onto the spine of the grab ribbon. P0 is expressed in the local frame at C0(s),

P0 = C0(s)+xT0(s)+yN0(s)+zB0(s). Bender also computes the distance d between

22

Figure 10: Llamas et al. 2005, Bender: A virtual ribbon for deforming 3D shapes

P0 and C0(s). To compute the mapping P1, Bender identifies the corresponding

frame T1(s), N1(s), B1(s) on the current ribbon. However, instead of mapping P0 to

P̄1 = C1(s) + xT1(s) + yN1(s) + zB1(s), they compute the screw motion M such that

M(0) is identity and M(1) maps P0 to P̄1. Then, it applies a fraction M(f(d)) of

that screw motion to P0 and obtain P1 = M(f(d))P0, where f(d) is a decay function

modeled using a cosine square expression of the distance from P0 to C0(s).

The Bender approach is designed to support local tweaks, where the effect of

the tweak blends smoothly with the unchanged surrounding, as shown in Figure 10.

Specifically, to produce useful bending of tubular parts, the authors propose to change

the f function to give it a plateau region. In this case, there is no attenuation and

the effect of their mapping is similar to the one proposed here with two differences:

(1) They can support an unnatural twist designed by the operator and distributed

uniformly along the spine. (2) Even within the plateau region, their bending does

not preserve the local volume.

23

Figure 11: Zhuo and Rossignac 2012, global volume compensation with minimized
Hausdorff error [63]

2.2 Existing techniques in global volume compensation

Maintaining the volume is important for modeling deformations where the volume

occupied by the shape remains constant, and in physics-based simulations where

material incompressibility matters [31]. In general, volume can be efficiently corrected

by uniform scaling the shape by s = 3

√
Vt
V0

, where V0, Vt are current and target

volumes [17]. However, uniform scaling may produce unbounded Hausdorff error

between the original shape and the scaled shape, especially when the shape contains

parts that are long and thin, as shown in Figure 11.

2.2.1 Volume compensation in freeform deformation

As a post-processing step, area or volume preservation has been studied for multi-

level shape editing. Hahmann, Sauvage and Bonneau [23] present multiresolution

24

3.2.1. Preserving coherency and volume
If the magnitude of the input vector ~t is too

large, the deformation of Eq. (7) will produce a
self-intersecting surface, and will not preserve vol-
ume. The reason for self-intersection is introduced
in Section 2, and explained in detail in [12]. The
volume is not preserved because the blending
operator ! blends the transformation matrices,
but not the streamlines. To correct this, it is nec-
essary to subdivide ~t into smaller vectors. The
number of steps must be proportional to the
speed and inversely proportional to the size of
the tool. We use:

s ¼ maxð1; d4k~tk=reÞ. ð9Þ

As the circle sweeps space, it defines a cylinder.
Thus, the swirling-sweeper is made of ns basic defor-
mations. Fig. 3 illustrates this decomposition ap-
plied to a shape.

3.3. Swirling-sweepers algorithm

We summarize the swirling-sweepers algorithm:

Input point h, translation~t, and radius r
Compute the number of required steps s
Compute the angle of each step, hi ¼ 2k~tk

nrs
for each step j from 0 to s % 1 do

for each point p in the tool’s bounding box do
M = 0
for each swirl i from 0 to n % 1 do

M += l2r(kp % cijk) logMij

end for
p = (expM) Æ p

end for
end for

The point cij denotes the center of the ith swirl of
the jth ring of swirls. For efficiency, a table of the
basic-swirl centers, cij, and a table of the rotation

Fig. 3. A volume-preserving deformation is obtained by decomposing a translation into circles of swirls. Three steps have been used for
this illustration. As the artist pulls the surface, the shape gets thinner. The selected point’s transformation is precisely controlled.

Fig. 2. By arranging n basic swirls in a circle, a more complex deformation is achieved. In the rightmost image: with 8 swirls, there are no
visible artifacts due to the discrete number of swirls.

A. Angelidis et al. / Graphical Models 68 (2006) 324–332 327

3.2.1. Preserving coherency and volume
If the magnitude of the input vector ~t is too

large, the deformation of Eq. (7) will produce a
self-intersecting surface, and will not preserve vol-
ume. The reason for self-intersection is introduced
in Section 2, and explained in detail in [12]. The
volume is not preserved because the blending
operator ! blends the transformation matrices,
but not the streamlines. To correct this, it is nec-
essary to subdivide ~t into smaller vectors. The
number of steps must be proportional to the
speed and inversely proportional to the size of
the tool. We use:

s ¼ maxð1; d4k~tk=reÞ. ð9Þ

As the circle sweeps space, it defines a cylinder.
Thus, the swirling-sweeper is made of ns basic defor-
mations. Fig. 3 illustrates this decomposition ap-
plied to a shape.

3.3. Swirling-sweepers algorithm

We summarize the swirling-sweepers algorithm:

Input point h, translation~t, and radius r
Compute the number of required steps s
Compute the angle of each step, hi ¼ 2k~tk

nrs
for each step j from 0 to s % 1 do

for each point p in the tool’s bounding box do
M = 0
for each swirl i from 0 to n % 1 do

M += l2r(kp % cijk) logMij

end for
p = (expM) Æ p

end for
end for

The point cij denotes the center of the ith swirl of
the jth ring of swirls. For efficiency, a table of the
basic-swirl centers, cij, and a table of the rotation

Fig. 3. A volume-preserving deformation is obtained by decomposing a translation into circles of swirls. Three steps have been used for
this illustration. As the artist pulls the surface, the shape gets thinner. The selected point’s transformation is precisely controlled.

Fig. 2. By arranging n basic swirls in a circle, a more complex deformation is achieved. In the rightmost image: with 8 swirls, there are no
visible artifacts due to the discrete number of swirls.

A. Angelidis et al. / Graphical Models 68 (2006) 324–332 327

Figure 12: Angelidis, Cani, Wyvill and King 2006, Swirling sweepers.

deformation of curves which satisfy the bilinear constraint of constant enclosed area.

In order for the volume to converge to the target value, they evaluate the current area

at each iteration, and adjust the control vertices. The cost of volume evaluation is

proportional to the number of vertices. The work of Hirota, Maheshwari and Lin [25]

computes and corrects the volume of a shape at multiple subdivision levels so that

the volume does not need to be evaluated at the highest subdivision level at each

iteration.

Angelidis, Cani, Wyvill and King [2] define the basic operation, called a swirl, that

locally twists the space around an axis. By arranging multiple swirls in a circle such

that the twist axes of these swirls are coplanar and radially outward, they can achieve

the effect of pulling along the direction normal to the twist axes. This simulates a

stretching along the spine as shown in Figure 12. The overall transformation also

preserves the volume locally.

25

2.2.2 Machining with equivolumetric offset

In machining with constant material removal rate, Moon [36] identifies a quadratic

formula for offsetting backbone curves with uniform flux: The increased area is evenly

distributed along the boundary. The formula is h − kh2

2
= r, where h is the milling

depth and r is the material removal rate. In [63], we show how to generate a series

of contours of this curvature-aware offsetting. Directly offsetting according to the

formula exhibits an increasing amount of discontinuities where the curvature of the

previous offset changes rapidly. We propose to use the combination of curvature-

aware offsetting and selective smoothing to produce concentric offset contours that

are smooth and approach a constant area-to-length ratio.

In differential geometry, a classical theorem due to Steiner [54] establishes the

differential relationship between the surface properties and the volume enclosed: The

amount of increased volume is a closed-form expression of the offset distance, surface

area, Gaussian and mean curvatures. To preserve the total volume, one can grow

or shrink the shape uniformly (via constant distance normal offsetting rather than

global scaling) based on global curvatures in one step without iteration. For example,

we compute the constant offset distance from the base surface that regain the target

global volume: Instead of evaluating the curvatures everywhere on the surface, we

define and evaluate the global curvatures to compute the constant offset distance[63].

We demonstrate the accuracy of our single step computation on triangle and quad

meshes of various shapes.

Alternatively, Moon [37]’s solution is to compute the variable offset distance from

the base surface that makes the deposition amount locally proportional to the surface

area. Computational results were verified on cylindrical, ellipsoidal and catenoid

surfaces.

26

2.3 Approaches to local volume preservation

The above subsection was focused on solutions that changed the boundary of a shape

to adjust its global volume by a prescribed amount. Here we discuss prior art on the

more delicate problem of ensuring that a continuous deformation process (such as

one simulating the physical behavior of shapes, plastics, or fluids) remains divergence

free at all points and at all times. This type of deformation process preserves the

local volume, and is essential to a more natural, physically plausible behavior of the

deformation.

2.3.1 Divergence-free displacement field

In deformation driven by a base surface, local volume preservation aims at preserving

the local volume distribution between the base surface and the offset surface. Botsch

and Kobbelt [10] explore the degrees of freedom in the position for a offset point to

satisfy the local volume preserving constraint: They do not require the offset direction

to be normal to the base surface. This is a departure from Reddy’s classical model

of bending thin plates [43], where the assumption is that lines remain normal to the

base surface after bending. Moon’s approach to equivolumetric offset [37] has the

assumption of requiring the offset direction to be normal to the base surface.

However, it does not applicable to surface bending with local volume preservation

as it assumes a static base surface. The formula may not be directly applicable

to regular surface deformation as it does not take any local surface stretching or

compression factor into account.

Local volume-preserving deformation of a object aims at obtaining a divergence-

free displacement field for all points of the object: ∇ · V = 0, where V is the vector-

valued function denoting the displacement vector defined everywhere within the ob-

ject. In finite element simulations [8], the displacement field is computed by time

integration. At each time step, the processing consists of: (1) Evaluating the strain

27

Figure 13: Rohmer, Hahmann and Cani 2008, Local volume preservation for skinned
characters

and stiffness tensors from the object geometry and material property. (2) Comput-

ing the force field everywhere within and on the object from the evaluated strain and

stiffness. (3) use the force field to update the velocity field. (4) correcting the velocity

field to ensure that it has zero divergence.

2.3.2 Iterative normal displacement

In skeleton-driven deformation with local volume preservation, Rohmer, Hahmann

and Cani [45] localize the volume correction on different regions of the shape’s bound-

ary. They use a constant, spatially-varying correction map specified according to the

material property associated with each region. To correct the volume, they offset each

point by a amount proportional to the correction map at each point. To avoid local

self-intersections, they detect if an offset point is within its region determined by an

automatic segmentation of the space around the skeleton. If a point is not within its

region, they translate the point until it reaches the border of its associated region,

as illustrated in Figure 13. Their subsequent work [46] further shows that a stylized

deformation, such as isotropic inflation, bulging, or rippling effects, is possible by

using 1D profile curves to control the correction map.

28

2.3.3 Local volume preservation in fluid simulations

Volume-preservation is essential in fluid simulations, solid-fluid coupling, and the

interaction between fluid and bubbles or other media. The incompressibility is usually

obtained by linearly solving for the implicit pressure values that make the velocity

field divergence-free. This procedure is also called ‘projection’ [53], and follows the

‘diffusion’ and ‘advection’ processes.

Raveendran, Thuerey, Wojtan and Turk [41, 42] use volume-preserving morphing

to interpolate liquids between control shapes. Their morphing algorithm produces a

motion that is smooth while conserving the total volume. This effect is achieved by

minimizing the objective function that is the sum of squares of local differences while

subject to the total volume constraint requiring that the oriented interior volume

equals a constant. Taking the derivative of this total volume constraint and applying

Green’s theorem result into a simplified form of the total volume constraint: The

constraint that the sum of the volume associated with each chunk inside the boundary

mesh should be a constant is equivalent to the constraint that the area weighted sum

of the out-flux of the velocity field on the boundary mesh should be zero.

2.4 Variations of Spine-based modeling

After discussed prior work and techniques on spine-driven deformation with local

volume preservation, we review here some of the variations of spine-based models in

other contexts without volume preservation concerns. We have already mentioned

that stroke design can be automated by curve bending [32]. In addition, Hsu and Lee

extend the bending model to animating 2.5D cartoons [26]. They anchor different

parts (which may have overlaps) of a image to a spine. The user can twist, bend or

stretch the spine for deforming the parts and generate an animation.

29

Figure 14: Wang, Jüttler, Zheng and Liu 2008, Computation of Rotation Minimizing
Frames

2.4.1 Medical modeling

Spine-based models in object recovery proves useful in vision research [39]. Various

types of objects contain parts that may be formulated as generalized cylinders, which

are the results of a possibly varying cross section along a path specified by a spine

that may be an arbitrary space curve. The cross section needs not be connected

so as to have bifurcations. In [4], Antiga, Ene-Iordache and Remuzzi extract such

structures for blood vessels reconstruction and meshing from MR angiography. They

also compute central paths and maximal inscribed balls in the vessel for blood vessel

surface analysis, and use that paths as spine to generate deformed vessel surface.

Variations of deformation driven by a spine surface are suitable for simulating or

controlling a layered structure, such human tissue modeling [40].

2.4.2 Twist compensated frame

We first discuss spine curve registration that defines a point P with respect to the

spine by the spine’s parameter and also by the relative position of the point on the

cross-section at s with regard to the spine. To register the point with respect to

that cross-section, we need a frame consisting of two orthogonal vectors. That frame

is defined at each point of the spine by a normal direction. A natural candidate is

the Frenet normal which provides a convenient local frame along the curve. However,

using the Frenet frame introduces unwanted twists as show in the top row of Figure 14.

30

T
N

T

N
N

T
T

N

(a) (b) (c)

N

T

T

NN

T

N

N

B

T

T

B

B

NB

???

N
T

T

T

T

T

N2

N2

N1

T
N2

T

N1

N1
N1

N2

N1
N2

Figure 15: Hanson and Ma 1995, Roof-top analogy for approximating twist-
minimized frame [24]

Wang, Jüttler, Zheng and Liu compute the rotation minimized frame as the better

alternative to the Frenet frame. Hanson and Ma [24] define the solution in terms

of parallel transport. They present the parallel transport algorithm that computes

a smoothly varying frame consisting of a pair of parallel vectors orthogonal to each

other. Their algorithm makes use of the rotation matrix [21] for generating the parallel

transport frame along a piecewise linear approximation of a 3D curve.

31

CHAPTER III

DEFORMATION WITH 2D SPINE CURVE

Spine based deformation has a wide range of applications in tissue modeling, surgical

planning or image design and editing. Often in these applications, the area or the

volume of the deformed region needs to be preserved for correctness and control

quality. This chapter formally introduce this problem in 2D. Section 3.1 gives the

formulation and derivation for the deformation driven by a planar non-stretchable

spine curve with local area preservation. Section 3.2 extends the solution to planar

stretchable spine curve. Section 3.3 discusses the implementation and Section 3.5

presents experimental results and analysis.

3.1 Planar Non-stretchable Spine Curve

Assume that a planar curve stabs a piece of incompressible material. If the curve

is bent downwards, how will the shape deform? We ask this question and provide

two solutions in Section 1.5: In the first solution, the offset distance of any point

on the planar shape remain the same. In the second solution, the offset distance

decreases on the convex side of the curve and increases on the concave side. The

following mathematical formulation explains the correct scenario in which the area of

any subset of the planar shape is preserved locally during the deformation.

3.1.1 Formulation and derivation

Let C(s) represent a planar curve in space. We assume that the spine curve is non-

stretchable and s is the arc-length parameter. By non-stretchable we mean that, the

length of the spine curve is preserved after bending. Also, let T (s), N(s) and k denote

vectors representing the unit tangent, normal, and curvature at C(s). Let P denote

32

a point near C, that is defined by the parameters s and h as follows,

P (s, h) = C(s) + hN(s).

Take the derivatives on both sides with respect to s and h,

dP

ds
= C ′(s) + h

dN(s)

ds
= T (s)(1 + hk),

dP

dh
= N(s).

In bending defined by a planar curve, the mapping P0 → P1 is determined by C0 →

C1. In order to preserve the local area, we allow the offset distance h to change from

h0 to the computed value h1. Following is the derivation of the closed-form solution

of h1 in term of k1, k0, h0. The Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− k1h1)dh1/(1− k0h0)dh0.

In order to preserve the local area everywhere, we must set det(∂P1

∂P0
) = 1. Therefore,

(1− k1h1)dh1 = (1− k0h0)dh0.

Integrating on both sides yields,

h1 −
1

2
k1h

2
1 = h0 −

1

2
k0h

2
0. (1)

The value of h1 is the root of the above quadratic equation,

h1 =
1−

√
1− 2k1h0 + k1k0h2

0

k1

. (2)

If the spine curve is initially a straight line, i.e. k0 = 0, the solution of the offset

distance can be simplified to

h1 =
1−
√

1− 2k1h0

k1

. (3)

33

3.1.2 Existence Condition

Note that h1 is a variable offset distance depending on the local curvatures k0, k1 and

the original offset distance h0 according to Equation 1. In order to let h1 have a valid

solution, the right hand side of Equation 2 should be real. This means that k0, k1

and h0 should satisfy the following inequality,

1− 2k1h0 + k0k1h
2
0 > 0. (4)

If the spine curve is initially straight, or k0 = 0, then the constraint becomes

1− 2k1h0 > 0. (5)

Therefore the spine curve can not bend too much: the signed curvature k1 of the

spine curve after bending should satisfy k1 <
1

2h0
everywhere on the curve.

3.2 Planar Stretchable Spine Curve

In some applications, the designer may want to not only bend the spine, but also

compress or stretch the shape along the spine. In other words, the length of the

spine curve is not preserved during deformation. Regions of the shape near portions

of the spine that have been contracted become thicker so as to compensate for the

area loss resulting from the spine contraction. Of course, by symmetry, regions where

the spine is elongated become thinner. Local spine contraction or elongation may

be modeled by changing the parameterization or, in simple situations, by moving

the control points tangentially to the spine. The following mathematical formulation

provides the solution of the variable offset distance for the planar shape’s area to be

preserved locally during a deformation defined by a contraction or elongation of the

spine.

3.2.1 Formulation and derivation

Let C(s) represent a planar curve in space, where s is not the arc-length parameter.

The length of the curve may not be preserved during deformation. In this case we

34

say that C(s) is a stretchable spine as the speed of the curve |C ′(s)| is not a unit

everywhere. We can still use l to denote the arc-length parameter such that l(s) is

the arc-length of C from its origin to C(s). The relationship between s and l is,

l(s) =

∫ s

s0

|C ′(s)|ds,

where |C ′(s)| is the magnitude of the speed of the curve. And the derivative relation-

ship between them is

dl = |C ′(s)|ds.

T (s), N(s) are vectors representing the unit tangent, normal at C(s). Let P denote

a offset point near C, we have

P (s, h) = C(s) + hN(s).

Therefore,

dP

ds
= C ′(s) + h

dN(s)

ds
= T (s)(1 + hk)|C ′(s)|,

dP

dh
= N(s).

Similarly in the deformation P0 → P1 driven by C0 → C1 (where C is planar stretch-

able), we allow only one parameter, the offset distance h, to change from h0 to h1

in order to compensate the local area. Following is the derivation of the closed-form

solution of h1 in term of k1, k0, h0, and the speed of curve |C ′0(s)|, |C ′1(s)|.

The Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− k1x1)|C ′1(s)|dh1/(1− k0x0)|C ′0(s)|dh0.

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− k1h1)|C ′1(s)|dh1 = (1− k0h0)|C ′0(s)|dh0.

Integrating on both sides yields,

(h1 −
1

2
k1h

2
1)|C ′1(s)| = (h0 −

1

2
k0h

2
0)|C ′0(s)|

35

We define the local stretch of the curve as the ratio of the speed magnitudes:

σ =
|C ′0(s)|
|C ′1(s)|

Then the closed-form solution to the offset distance h1 is the root of the following

quadratic equation,

h1 −
1

2
k1h

2
1 = (h0 −

1

2
k0h

2
0)σ (6)

Note that the formula is similar to the non-stretchable spine (Equation 1) except that

we need to scale the right hand side by the local stretch parameter, σ. The solution

to the updated offset distance h1 is,

h1 =
1−

√
1− 2σk1h0 + σk0k1h2

0

k1

(7)

If the spine curve is initially a straight line, i.e. k0 = 0, the solution to the offset

distance can be simplified to

h1 =
1−
√

1− 2σk1h0

k1
. (8)

3.2.2 Existence Condition

h1 is a variable offset distance that depends on the local curvatures k0, k1, the original

offset distance h0 and the local stretch parameter according to Equation 6. In order

to let h1 exists (as a real root), the right hand side of Equation 7 should be real. This

means that k0, k1, h0 and σ should satisfy the following inequality,

1− 2σk1h0 + σk0k1h
2
0 > 0. (9)

If the spine curve is initially straight, or k0 = 0, then the constraint becomes

1− 2σk1h0 > 0. (10)

And in that special case the spine curve can not bend or compress too much: the

signed curvature k1 of the spine curve after bending should satisfy k1 <
1

2σh0
every-

where on the curve. So in general h0 should be less than h0 <
1

2k1
.

36

3.3 Discretization and Implementation

In this section, we report results of several approaches that we have explored for

implementing 2D spine-based deformation with local area preservation. Section 3.3.1

explains how to implement planar spine-driven deformation by using spine-aligned

grid with a family of offsets from one backbone curve. Section 3.3.2 introduces a

variant where an offset curve is also the backbone curve for the following offset curve.

This type of offsets can be applied to modeling machining tool path with constant

material removal rate [63].

3.3.1 A family of curvature-based offsets

When the goal is to deform the portion of an image around the original spine C0,

such as a stylized stroke [26], in order to avoid the cost of registering the grid points

to the original spine, we advocate using a spine-aligned grid, as shown in Figure 18.

In this approach, the deformed image is texture mapped onto the deformed grid. We

generate the initial grid by estimating the normal at each vertex Pi of the initial spine

and by generating points offset in both directions by jr, with j being an integer in

some valid range. At each such grid-point, we record its coordinates in the image

as texture coordinates. To display the deformed image, we use the same process to

establish the normal at each vertex of the bent spine, and generate the corresponding

grid points, but instead of offsetting them by jr, we offset them by a curvature-based

distance h1 computed by Equation 2 with jr as h0, where k0, k1 and σ are estimated

from the discrete spine curve before and after bending or stretching.

3.3.2 A series of successive curvature-based offsets

We recall the quadratic formula proposed in the context of machining:

1

2
kh2 + h− r = 0

37

Figure 16: A series of successive curvature-based offsets.

38

where k is the local curvature of the progenitor curve P , h is the depth of cut, and

r is the material removal rate to feed rate ratio. General milling tools have sufficient

degrees of freedom which allow them to follow arbitrary planar paths. One of the

challenges is to define a tool path that leads to constant material removal rate in

milling for a target shape modeled by P . Since we want to keep the translational speed

of the milling tool as constant as possible, the removed area per unit length should

also be constant in order to achieve stable power consumption. Let this constant be

r, solving the above equation gives the offset distance that defines the tool path with

removed area per unit length equal to r.

In practice, the tool path consists of a set of concentric offsets from P . They form

a set of successive offsets {Oj}, j = 1, 2, . . . from P :

O1(s) = P (s) + h1(k1 = kP , h0 = r)NP (s)

Oj+1(s) = Oj(s) + h1(k1 = kOj , h0 = r)NOj(s)

And h1(k1, h0) is computed with the corresponding parameters according to Equa-

tion 3.

3.3.3 Selective smoothing

However, it is known in differential geometry that the curvature transformation is

a second-order operator on the base curve. Naturally, the curvature-based distance

function h1(k1, h0) is second order as well. Hence only Cd−2 continuity is observed

in the offset when P (s) is Cd continuous. This loss of smoothness is undesirable in

generating a smooth offset curve. Hence, our smoothing strategy focuses on producing

a curvature-compatible offset curve, where a point with non-negative curvature is

mapped to a offset point with non-negative curvature, and the same for non-positive

curvature. Selective Smoothing is similar to the Laplacian smoothing except that

only points with non-compatible curvatures are subject to the operation. It consists

of two steps in each iteration: Select and Smoothen.

39

Let koi denote the discrete curvature at the i-th vertex on the offset curve O; ki

and Ni denote the signed curvature and the unit normal at P .

Select : Check each vertex Oi in O and put i into a smoothing list L if ki and koi

are of different signs.

Smoothen : Compute a list of Laplacian vectors Vi at vertices of L; Move each

vertex of L along the unit normal Ni by the dot product of Vi and Ni, and then

empty L.

In Figure 16, we are able to generate a large series of consecutive curvature-based

offsets using selective smoothing.

3.4 Projection, normal, curvature and stretch parameters
for parametric and polygonal curve

Given C(s) the parametric representation of a spine curve, the parameter s of the

projection of a point P onto a spine curve C(s) is formulated as argminsdist(P,C(s)),

where dist(P,C(s)) is the distance from C(s) to P . The normal N(s) is defined

by the normalized derivative of the unit tangent norm(dT (s)
ds

), where norm(V) is

the normalized version of a vector V . The curvature is then the magnitude of the

derivative of the unit tangent, |dT (s)
ds
|. Also, as mentioned earlier the local stretch of

the curve is defined as the ratio of the speed magnitudes, σ =
|C′0(s)|
|C′1(s)| .

Next we discuss implementation problems when the spine C is a polygonal curve

with a list of vertices Cj. The parameter s of the projection of a point P onto C is

computed by argminjdist(P,C
j). The normal N j at vertex Cj is computed as the

normalized vector Cj−1Cj+1 turned left. The curvature kj at Cj is approximated by

the inverse of the radius of the circle interpolating the three vertices, Cj−1, Cj and

Cj+1. Note that we consider the resulting curvature is positive if the chain of the three

vertices Cj−1CjCj+1 is a left-turn, and negative if it is a right-turn. Finally, to obtain

the local stretch parameter, we compute the local speed at Cj as |Cj−1Cj|+ |CjCj+1|

40

and take the ratio of the speed values obtained before and after a deformation of the

spine.

For brevity, we assume that these parameters are only evaluated at vertices of

the polygonal curve. While in the more accurate implementation (see Chapter 7), we

need to evaluate these parameters on edges of the polygonal curve as interpolations

of these parameters at nearby vertices.

3.5 Results and analysis

We start results with a trivial example, Figure 17, that shows bending an arbitrary

planar shape with an arc. The rectangular region around the shape is striped to

show how the normal offset distance changes in two different bending schemes, both

of which are without stretching where the length of the arc remains as a constant. In

the center, we offset each point from the spine without correction based on curvature:

The offset distance remain the same, h1 = h0. Therefore, the thickness of each layer

does not change. This leads to area loss for the layers below the spine, and area gain

above the spine, despite that the total area of all shown layers remain unchanged. At

the bottom, we offset each point by distance h1, adjusted from h0 based on curvature

according to Equation 1. Therefore the thickness of each layer changes: it becomes

thicker for the layers on the concave side of the spine, and thinner for the layers on

the convex side. This leads to the effect that the area of each layer remains the same

after bending.

Figure 18 shows an example of deformation of a spine-aligned grid driven by

bending and stretching a spine curve. The spine is modeled by a polynomial curve

interpolating four control points. We used Neville’s algorithm to compute a series of

points on the curve. The spine is initially straight. The center image shows bending

the spine into an arc without stretching. The bottom image shows stretching and

compressing the spine without bending by moving two center control points closer

41

Figure 17: Bending incompressible shape and layers with an arc.

42

Figure 18: Deformation of a spine-aligned grid driven by bending and stretching a
spine. Every rectangular cell preserves its area.

43

along the spine. After bending, stretching or compressing the spine curve, the offset

distance for each grid point is updated according to Equation 8. The offset distance

increases when the spine bends concavely or compresses axially, and decreases when

it bends convexly or stretches axially. In this way, the area of each cell in the grid is

preserved after deformation. Note that the cells are not exactly quads, but each have

two straight sides.

To better reflect the area change in each quadratic cell in the spine-aligned grid,

Figure 19 uses color mapping to map area loss to blue and area gain to red in a

color ramp. The top image is the original spine with grid. The center of Figure 19 is

without offset distance correction, and shows significant area change in most of the

quad cells. At the bottom, the area of each quad cell is roughly preserved with the

offset distance corrected according to the local curvature and stretch parameter.

The area is not perfectly preserved due to sampling and round-off errors. One way

to reduce the error is to use more vertices to define each cell as we have discussed in

one of our previous work [63]. Note that the boundary of each cell is represented as

a polygon with 10 vertices and that the local area preserving deformation is applied

to each one of them.

44

-1 +1

Figure 19: Using color mapping, we see how the area of each cell in the grid changes.
The spine is the bottom curve.

45

CHAPTER IV

DEFORMATION WITH NON-STRETCHABLE 3D SPINE

CURVE

In 2D, we compute the curve parameter s and distance h of a point to its closest

projection C0(s) on the spine before deformation. We reconstruct the point after

deformation by using the same s and update h according to the local curvature and

stretch parameters. In 3D, we compute the curve parameter s and the projection

vector C0(s)P for a point P in the 3D space. The projection vector can be updated

by any displacement that remains orthogonal to the spine curve’s tangent. Therefore,

there is an additional degree of freedom to reconstruct the point, compared with the

2D case, as shown in Figure 20. In order to preserve the local volume of any chunk

in space, we want to adjust the offset vector by adding a displacement. Even though

we assume that this displacement must remain in the cross section, there are still

two degrees of freedom to move the point. This chapter discusses the closed-form

solutions for spine-driven deformation with local volume preservation in 3D.

Here we assume that the 3D spine curve is non-stretchable. The deformation of the

curve is length-preserving. The curve parameter s itself is also the arc-length param-

eter. The length-preserving deformation of the spine curve can be implemented, for

example, by uniformly sampling a polynomial curve interpolating a few control points.

The polynomial curve is then adjusted by control point manipulation. The length of

the spine curve is preserved by resampling the polynomial curve while keeping the

number of samples and the distance between consecutive samples as constants. Other

methods for length preservation, such as [50], can also be viable implementations as

long as they provide the arc-length parameter for any point on the curve during the

46

Q0X0 O0

Q1X1 O1

Q0 O0

O1

X0

X1

Q1

Figure 20: Depending on the direction to move the point in cross section, there is an
additional degree of freedom for 3D spine curve (right) compared with the 2D spine
curve (left).

deformation. Nevertheless, uniform resampling is a convenient way to achieve length

preservation and to obtain the arc-length parameter without reparameterization.

4.1 Formulation and derivation

Let C(s) represent a 3D curve in space. Let T (s), N(s) and B(s) be unit vectors

representing the Frenet tangent, normal and binormal at C(s). Let P denote an offset

point near C, such that,

P = C(s) + xN(s) + yB(s).

Therefore,

dP

ds
= T (s) + x

dN(s)

ds
+ y

dB(s)

ds
.

Using Frenet Serret formulae [18] yields,

dN

ds
= −κT + τB,

dB

ds
= −τN.

Therefore,

dP

ds
= (1− kx)T − τyN + τxB

47

∂P

∂(s, x, y)
=


(1− kx) −τy τx

0 1 0

0 0 1



T

N

B


In the following solutions, we first assume that the bending occurs in the osculating

plane spanned by T and B. We will relax this assumption in Section 4.2 that allows

the solutions to extend to the general case. Specifically, Section 4.1.1 and Section 4.1.2

presents two intuitive solutions that explain how to compute values of x1 and y1

after bending. Section 4.1.3 proposes another solution, as a compromise between the

previous two, to the family.

4.1.1 Normal solution

In the normal solution, we allow the parameter x to change from x0 to x1. Hence the

Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− κ1x1)dx1/(1− κ0x0)dx0

Let det(∂P1

∂P0
) = 1, we have,

(1− κ1x1)dx1 = (1− κ0x0)dx0

Integrating on both sides yields,

x1 − κ1x
2
1/2 = x0 − κ0x

2
0/2 (11)

The solution x1 is the root of this quadratic equation. The other coordinate remains

unchanged (y1 = y0). Hence, the point P moves along N relative to the Frenet frame.

4.1.2 Binormal solution

In the binormal solution, we allow the parameter y to change from y0 to y1 but keep

x constant. The Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− κ1x)dy1/(1− κ0x)dy0

48

det(∂P1

∂P0
) = 1 gives,

(1− κ1x1)|C ′1(s)|dy1 = (1− κ0x0)|C ′0(s)|dy0

Integrating on both sides yield,

(1− κ1x)y1 = (1− κ0x)y0. (12)

The solution y1 is linearly related to y0. The other coordinate remains unchanged (x1 =

x0). The point P moves along B relative to the Frenet frame.

4.1.3 Radial solution

In addition to the normal and binormal direction, the point P can move in a direction

radially outward within the cross section. In the radial solution, both x and y are

updated, however their ratio tan θ = y
x
, remains unchanged during deformation. So

the radial solution can be seen as a compromise between the normal and binormal

solutions. A point P near the spine is expressed as,

P = C(s) + r cos θN(s) + r sin θB(s)

In the radial solution, the offset distance r from the spine is adjusted from r0 to

r1. The Jacobian determinant of the transformation is then expressed (in r0 and r1)

as,

det(
∂P1

∂P0

) =
r1dr1(1− κ1r1 cos θ)

r0dr0(1− κ0r0 cos θ)
.

Let det(∂P1

∂P0
) = 1. Then solve for r1,

− 2

3
κ1 cos θr3

1 + r2
1 = −2

3
κ0 cos θr3

0 + r2
0 (13)

The solution r1 is the root of the above cubic equation.

4.2 Implementation and Existence Condition

Before describing the implementation details, we first explain some of the experi-

mental procedures. To demonstrate the correctness of the solutions, we initially use

49

relatively simple extrusion models, which are produced by sweeping a user specified

planar cross-section along spine curves which are circular arcs. This allows us to

better see the differences among the three solutions by showing the before and after

images of the crossection of the extrusion model. After verifying the formulae, we

implement them to general shapes and spine curves. However, the solutions pro-

vided by Equation 11, 12 and 13 assume that the bending (change of curvature) does

not change the local Frenet frame. To support more general bending, Section 4.2.1

presents a technique that allows a change of basis in bending with general non-planar

3D curve.

4.2.1 Unbending-transfer-bending technique

To support more general bending, we split the computation of the offset distance into

three general steps:

1. unbending: first solve for the updated value assuming that the initial spine

C0(s) locally becomes a straight line. Specifically, for each point P0, we first

evaluate the local parameter (x0, y0 or r0) of P0 in the local Frenet frame. Then

we compute the unbending image of the local parameter produced by assuming

κ1 = 0 in the formula.

2. transfer: We use the unbending image of the local parameter to produce a

point, and compute its local coordinates in the original twist-compensated

frame. Then we change the basis to the deformed twist-compensated frame,

and evaluate the local parameter in the local Frenet frame of the deformed

spine.

3. bending: After obtaining the local parameter in the new frame, we compute the

bending image of the local parameter by assuming κ0 = 0 in the formula. In

this way, the spine is transformed from a straight line to its deformed version

C1.

50

We include in the following the formulae for steps 1 and 3. Step 2 will be motivated

and discussed in Section 4.2.2. We provide three versions, that correspond to the

three solutions, of unbending and of bending.

As for the Normal solution in Section 4.1.1, Equation 11 is limited to cases where

the local curvature is changed, but the Frenet frame remains constant. To support

non-planar spine curve bending, we provide below its decomposition into normal

unbending and bending, which may be combined with the twist-compensation. To

solve x1, we break Equation 11 into two steps:

Normal Unbending : Assume that C0(s) is first straightened and we solve for the

unbending image x∗,

x∗ = x0(1− 1

2
κ0x0). (14)

As x∗
x0
≥ 0, the condition for a valid solution of r∗ to exist is |κ0x0| ≤ 2.

Normal Bending : We then bend the straight spine into C1 and solve for x1 using x∗:

− 1

2
κ1x

2
1 + x1 = x∗. (15)

Hence, the closed-form solution for x1 is

x1 =
1−
√

1− 2κ1x∗
κ1

.

In order for x1 to be valid, the existence condition for κ1:

κ1x∗ ≤
1

2
, (16)

and when κ1 reaches this curvature limit, x1 = 2x∗.

As for the Binormal solution in Section 4.1.2, Equation 12 is limited to cases

where the local curvature is changed, but the Frenet frame remains constant. To

support non-planar spine curve bending, we provide below its decomposition into

normal unbending and bending. To solve y1, we break Equation 12 into the following

steps:

51

Binormal Unbending : (similar to normal unbending) In Equation 12, we set κ1 = 0,

y∗ = y1. This gives,

y∗ = (1− κ0x)y0. (17)

In order for y∗ to be valid, we have κ0x ≤ 1.

Binormal Bending : Let κ0 = 0, y0 = y∗ and we have,

y1 =
1

1− κ1x
y∗. (18)

In order for y1 to be valid, we have

κ1x < 1. (19)

When κ1 reaches this curvature limit, y1 becomes unbounded.

As for the Radial Solution in Section 4.1.3, Equation 13 is limited to cases where

the local curvature is changed, but the Frenet frame remains constant. To support

non-planar spine curve bending, we provide below its decomposition into radial un-

bending and bending. To solve r1, we break Equation 13 into two steps:

Radial Unbending : We first assume that C0(s) is straightened into a line (i.e. κ1 = 0)

and solve for the unbending image r∗:

r∗ = r0

√
1− 2

3
κ0 cos θ0r0. (20)

In order for r∗ to exist, 2
3
κ0 cos θr0 < 1. As cos θ varies in [−1, 1], an sufficient

condition for r∗ to exist is |κ0r0| ≤ 3
2
.

Radial Bending : We then bend the straight spine into C1 and solve for r1 using r∗:

− 2

3
κ1 cos θ1r

3
1 + r2

1 = r2
∗. (21)

In order to conclude the existence condition, we normalize the unknown and

the coefficients in Eq. 36. Specifically, let λ = r1
r∗

and α = −2
3
κ1r∗ cos θ, then

52

Figure 21: Showing the Frenet normal (blue) and the twist-compensated nor-
mal (green) along a twisted tube.

Eq. 36 becomes αλ3 + λ2 = 1. Let f(λ) = αλ3 + λ2 − 1, which has two local

extrema (minimum at λ1 = 1 and maximum at λ2 = − 2
3α

). If α > 0, λ2 < 0,

then f(0)f(1) < 0 and f ′ > 0 ∈ [0, 1], and hence there exists a valid solution

in [0, 1]. If α > 0, λ2 > 0, then a valid solution exists only if f(λ2) > 0, or

equivalently α2 < 4
27

. Again since cos θ varies in [−1, 1], an sufficient condition

for r1 to exist is |α| < 2
3
√

3
, or

|κ1r∗| ≤
1√
3
, (22)

and when κ1 reaches this curvature limit, r1 =
√

3r∗.

4.2.2 Normal propagation

In order to perform the transfer step, one computes the local frame along the initial

spine curve, registers the point to a frame at the closest projection on the spine. This

amounts to computing the local coordinates. Then one computes the local frame

along the deformed spine curve and constructs the deformed point using the local

53

Figure 22: Reconstruction according to registrations with the Frenet frame (left)
and the twist-compensated frame (right) on a trefoil knot and a helix.

coordinates. The local frame is usually aligned with the local tangent of the spine.

The remaining issue is how to determine the other two basis vectors around the tan-

gent. A natural candidate for the local frame is the Frenet frame {T (s), N(s), B(s)}

at C(s) where N(s) and B(s) are the normal and binormal. We have used the Frenet

frame to derive the three solutions in Section 4.1.

Although the Frenet frame provides a convenient local frame along the curve, it

is not appropriate for registration and reconstruction, because it contains undesired

twists and sudden changes of the normal direction, as shown in Figure 21 and Fig-

ure 22. To address this problem, we use a twist-compensated local frame. Its rotation

with respect to the Frenet frame is defined by the integral of the torsion [49, 19].

We construct the twist-compensated normal using parallel transport by projecting

the normal at the current vertex to the normal plane of the next vertex on the spine.

Therefore, given an initial normal, the twist-compensated normal is obtained by prop-

agation along the spine curve.

54

Unbending Bending Bending with Rotation
Radial 1.27E-5 3.77E-5 3.97E-5
Normal 5.33E-5 9.93E-5 1.03E-4

Binormal 9.39E-5 1.85E-4 2.14E-4

Table 1: The relative volumetric errors for mixed types of bend and unbend map-
pings.

4.2.3 Summary

The implementation employs unbending-transfer-bending technique and normal prop-

agation for registration and reconstruction with twist-compensated frames. While it

is clear that the unbending and the bending step preserves the volume locally, the

transfer step involves changing the basis vectors from the initial frame to the frame

on the spine after deformation. This amounts to a rotation around the spine. Fig-

ure 23 shows the result of unbending, bending without and with a rotation on the

extrusion model shown in Figure 23(a) with its cross-section embedded in a grid.

The rotation step changes the deformation results as shown by the crossectional plots

in Figure 23(b). However, the volume of the extrusion model is not altered by the

rotation step, as shown in Table 1, which reports the volume of the extrusion model

by multiplying the area of the cross-sectional shape with the distance travelled by

its centroid [22]. Notice that the radial method nearly preserves straight lines even

though it is not an affine transformation.

4.3 Results and Analysis

Figure 24 shows the deformation of two layers of tube surfaces driven by bending a

straight spine into a circular arc. We show three types of correction to the original

tube surfaces. Each shows the transverse and the frontal views of the bent tubes,

and the cross section is dynamically plotted on the top-right. The red marks indicate

how points move along the normal, binormal and radial direction. For example,

the application of the normal solution to the cylindrical tube surfaces is shown by

55

(a) Two specified axes of unbending and bending, and the rotation angle (π/4) for a initial
extrusion model on the right

(b) From left to right we show the cross sections of the naive unbend and bend mappings
and, in addition, the bend mappings with rotation. The top, center, and bottom rows are
corresponding to the radial, normal and binormal solutions.

Figure 23: Showing the effects of rotation between the unbending and bending steps.

56

(a) original

(b) normal

(c) binormal

(d) radial

Figure 24: Frontal and crossectional views of a cylindrical model after bending.
57

Figure 25: Unbending and bending a extrusion model.

Figure 24 (c). As shown in the cross-sectional plot, points are constrained to slide

in the normal direction. Similar to the 2D solution, the tube surface stretches on

the concave side and shrinks on the convex side of the circular spine in order to

compensate for local compression and expansion. When reaching the curvature limit

in Inequality 29, the tube surface starts to intersect itself. Note that the normal

solution has a more stringent curvature limit than the radial one (Inequality 37) for

the same initial tube surface. Figure 24 (d) shows the application of the binormal

solution to the cylindrical tube surfaces. As shown in the cross-sectional plot, points

can only move in the binormal direction: they expand or shrink bilaterally on the

concave or the convex side of the circular spine. When reaching the curvature limit

in Inequality 33, the tube surface becomes flat on the concave side. Note that the

binormal solution has the least stringent curvature limit among the three solutions.

Figure 25 presents a example with unbending and bending a extrusion model.

The extrusion model is produced by sweeping an arbitrary planar crossection along

a smooth 3D spine curve. For example, the user draws a contour and indicates the

point stabbed by the spine. The initial solid is in blue. The solid after unbending

and bending are in green and red respectively. The crossectional views of radial,

normal, binormal unbending and bending are shown in Figure 26. Notice that the

radial fleshing nearly preserves straight lines even though it is not an affine map.

Figure 27 shows bending a triangle mesh representing a bunny, with the initial

spine shown in green. The deformed the spine is shown in red. On the right, we shown

58

Figure 26: Crossectional views of the extrusion model after unbending and bending.

the result obtained using the standard reconstruction without volume-preserving cor-

rection, for which the total volume change is 9%. Figure 28 show the results produced

by the three correction schemes: radial, normal, and binormal, for which the total

volume change (due to sampling and round off errors) is less than 0.3%.

59

original bunny and initial spine

standard deformation without correction

Figure 27: The original bunny and the deformed bunny without correction.

60

Normal

Binormal

Radial

Figure 28: The deformed bunny with normal, binormal and radial correction.

61

CHAPTER V

DEFORMATION WITH STRETCHABLE 3D SPINE

CURVE

In this chapter, we relax the assumption of non-stretchable 3D spine curve. The

deformation of the spine curve does not need to be length-preserving. This allows

the designer to stretch the spine curve and the model registered on it. We can

use the natural parameter directly instead of the arc-length parameter. We include

the derivation for local volume preserving deformation with stretchable 3D spine in

Section ?? for completeness.

5.1 Formulation and derivation

Let C(s) represent a 3D curve in space. For 3D stretchable spine, s is the natural

parameter instead of the arc-length parameter. Same as the 2D case, the derivative

relationship between s and the arclength l is

dl = |C ′(s)|ds.

Let T (s), N(s) and B(s) be unit vectors representing the Frenet tangent, normal and

binormal at C(s). Let P denote an offset point near C, such that,

P = C(s) + xN(s) + yB(s).

Therefore,

dP

ds
= C ′(s) + x

dN(s)

ds
+ y

dB(s)

ds
,

or,

dP

dl
= T (s)|C ′(s)|+ x

dN(s)

dl
|C ′(s)|+ y

dB(s)

dl
|C ′(s)|

62

according to the derivative relationship.

Using the Frenet Serret formulae [18] yields,

dN

dl
= −κT + τB,

dB

dl
= −τN.

Therefore,

dP

ds
= (1− kx)|C ′(s)|T − τy|C ′(s)|N + τx|C ′(s)|B

∂P

∂(s, x, y)
=


(1− kx)|C ′(s)| −τy|C ′(s)| τx|C ′(s)|

0 1 0

0 0 1



T

N

B


Notice how the derivation takes the magnitude of the speed of the curve |C ′(s)|

into account: A variable parameterized by s is multiplied by |C ′(s)| when taking

the derivative with respect to the arclength. This differentiates the derivation of

stretchable formulae from non-stretchable ones.

5.1.1 Normal solution

In the normal solution, we allow the parameter x to change from x0 to x1. Hence the

Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− κ1x1)|C ′1(s)|dx1/(1− κ0x0)|C ′0(s)|dx0

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− κ1x1)|C ′1(s)|dx1 = (1− κ0x0)|C ′0(s)|dx0

Integrating on both sides yields

(x1 − κ1x
2
1/2)|C ′1(s)| = (x0 − κ0x

2
0/2)|C ′0(s)|.

Let σ represent the local stretch, or the ratio of the curve’s speed before and after

the deformation:

σ =
|C ′1(s)|
|C ′0(s)|

.

63

Then the solution x1 is the quadratic root of the following equation,

(x1 − κ1x
2
1/2)σ = x0 − κ0x

2
0/2 (23)

5.1.2 Binormal solution

In the binormal solution, we allow the parameter y to change from y0 to y1. The

Jacobian determinant of the transformation is

det(
∂P1

∂P0

) = (1− κ1x1)|C ′1(s)|dy1/(1− κ0x0)|C ′0(s)|dy0

For locally volume-preserving transformation, det(∂P1

∂P0
) = 1, therefore,

(1− κ1x1)|C ′1(s)|dy1 = (1− κ0x0)|C ′0(s)|dy0

Integrate on both sides, we have

(1− κ1x1)|C ′1(s)|y1 = (1− κ0x0)|C ′0(s)|y0

Let σ represent the local stretch, or the ratio of the curve’s speed before and after

the deformation:

σ =
|C ′1(s)|
|C ′0(s)|

.

The solution y1 is linearly related to y0 as shown in the following equation,

(1− κ1x1)y1σ = (1− κ0x0)y0 (24)

5.1.3 Radial solution

The radial solution is a compromise between the normal and binormal solution. A

point P near the spine is expressed as,

P = C(s) + r cos θN(s) + r sin θB(s)

In the radial solution, the offset distance from the spine is adjusted from r0 to r1.

The Jacobian determinant of the transformation is then expressed (in r0 and r1) as,

det(
∂P1

∂P0

) =
r1dr1(1− κ1r1 cos θ)|C ′1(t)|
r0dr0(1− κ0r0 cos θ)|C ′0(t)|

.

64

Let det(∂P1

∂P0
) = 1. Then solve for h1, we have

|C ′1(t)|(−2

3
κ1 cos θr3

1 + r2
1) = |C ′0(t)|(−2

3
κ0 cos θr3

0 + r2
0).

Let σ represent the local stretch during deformation:

σ =
|C ′1(s)|
|C ′0(s)|

.

The solution r1 is a cubic root of the following equation,

(−2

3
κ1 cos θr3

1 + r2
1)σ = (−2

3
κ0 cos θr3

0 + r2
0). (25)

5.2 Implementation and Existence condition

The implementation procedure for 3D stretchable spine curve is very similar to the

implementation for non-stretchable spine curve discussed in Section 4.2. However,

there are two differences. First, the implementation of the stretchable spine curve

is simplified from the requirement of length preservation. Second, the solutions are

not only based on the local curvature, but also on the local stretch, which should be

considered in an intermediate step as explained in the following section.

5.2.1 Unbending-transfer-bending technique for stretchable spine

Like the case for deformation with non-stretchable spine, the solution provided by

Equation 23, 24 and 25 assume that the bending and stretching do not change the

local Frenet frame. To support more general bending, we split the computation of

the offset distance into three general steps:

1. unbending: first update the offset distance assuming that the initial spine C0(s)

locally becomes a straight line.

2. transfer: rotate the Frenet frame or equivalently compute the local coordinates

of P in the rotated Frenet frame and scale the offset distance according to the

local stretch parameter.

65

3. bending: after transferring to the new frame, compute the offset distance as-

suming that the straight spine bends into C1(s).

Section 4.2 presents the formulae for steps 1 and 3, as the second step is the same

change of basis for all three solutions. Here for stretchable spine, the transfer step is

different among the three solutions and we include formulae for all steps.

As for the Normal solution in Section 4.1.1, Equation 11 is limited to cases where

the local curvature is changed, but the Frenet frame remains constant. To support

non-planar spine curve bending, we provide below its decomposition into normal

unbending and bending, which may be combined with the twist-compensation. To

solve x1, we break Equation 11 into two steps:

Normal Unbending : Assume that C0(s) is first straightened and we solve for the

unbending image x∗,

x∗ = x0(1− 1

2
κ0x0). (26)

As x∗
x0
≥ 0, the condition for a valid solution of r∗ to exist is |κ0x0| ≤ 2.

Normal Transfer : Given x∗, we solve for a transferred value xt based on local stretch,

xt = x∗/σ (27)

The local normal offset distance is inversely proportional to the local stretch

paramter.

Normal Bending : We then bend the straight spine into C1 and solve for x1 using xt:

− 1

2
κ1x

2
1 + x1 = xt. (28)

Hence, the closed-form solution for x1 is

x1 =
1−
√

1− 2κ1xt
κ1

.

66

In order for x1 to be valid, the existence condition for κ1:

κ1xt ≤
1

2
, (29)

and when κ1 reaches this curvature limit, x1 = 2xt.

As for the Binormal solution in Section 4.1.2, Equation 12 is limited to cases

where the local curvature is changed, but the Frenet frame remains constant. To

support non-planar spine curve bending, we provide below its decomposition into

normal unbending and bending. To solve y1, we break Equation 12 into two steps:

Binormal Unbending : Similarly, in Equation 12, we set κ1 = 0, y∗ = y1. This gives

us

y∗ = (1− κ0x)y0. (30)

In order for y∗ to be valid, we have κ0x ≤ 1.

Binormal Transfer : Given y∗, we solve for a transferred value yt based on local

stretch,

yt = y∗/σ (31)

The local binormal offset distance is inversely proportional to the local stretch

paramter.

Binormal Bending : Let κ0 = 0, y0 = yt and we have,

y1 =
1

1− κ1x
yt. (32)

In order for y1 to be valid, we have

κ1x < 1. (33)

When κ1 reaches this curvature limit, y1 becomes unbounded.

67

As for the Radial Solution in Section 4.1.3, Equation 13 is limited to cases where

the local curvature is changed, but the Frenet frame remains constant. To support

non-planar spine curve bending, we provide below its decomposition into radial un-

bending and bending. To solve r1, we break Equation 13 into two steps:

Radial Unbending : We first assume that C0(s) is straightened into a line (i.e. κ1 = 0)

and solve for the unbending image r∗:

r∗ = r0

√
1− 2

3
κ0 cos θ0r0. (34)

In order for r∗ to exist, 2
3
κ0 cos θr0 < 1. As cos θ varies in [−1, 1], an sufficient

condition for r∗ to exist is |κ0r0| ≤ 3
2
.

Radial Transfer : Given r∗, we solve for a transferred value rt based on local stretch,

rt = r∗/
√
σ (35)

Different from the normal or binormal transfer step, The local radial offset

distance should be inversely proportional to the square root of the local stretch

paramter. This is because that the area of the cross section is proportional to

r2 while linear in x or y if the other is unchanged.

Radial Bending : We then bend the straight spine into C1 and solve for r1 using rt:

− 2

3
κ1 cos θr3

1 + r2
1 = r2

t . (36)

In order to conclude the existence condition, we normalize the unknown and

the coefficients in Eq. 36. Specifically, let λ = r1
rt

and α = −2
3
κ1rt cos θ, then

Eq. 36 becomes αλ3 + λ2 = 1. Let f(λ) = αλ3 + λ2 − 1, which has two local

extrema (minimum at λ1 = 1 and maximum at λ2 = − 2
3α

). If α > 0, λ2 < 0,

then f(0)f(1) < 0 and f ′ > 0 ∈ [0, 1], and hence there exists a valid solution

in [0, 1]. If α > 0, λ2 > 0, then a valid solution exists only if f(λ2) > 0, or

68

equivalently α2 < 4
27

. Again since cos θ varies in [−1, 1], an sufficient condition

for r1 to exist is |α| < 2
3
√

3
, or

|κ1rt| ≤
1√
3
, (37)

and when κ1 reaches this curvature limit, r1 =
√

3rt.

Summary. Compare to non-stretchable spine, the formulae for stretchable spine

take the local stretch parameter σ into consideration. In implementation, this stretch

parameter scales the normal, binormal, or radial offset distances linearly or sublinearly

in addition to the change of basis. As a result, the volume loss or gain due to spine

compression or extension is compensated by taking both the local curvature and the

local stretch into consideration.

5.2.2 Discretization of stretchable spine curve

Previously we have discussed length-preserving spine curve in Chapter 4, where we

basically want a smooth spine and a uniform arc-length or natural parameterization

of it. We must be able to compute the arc-length parameter of the closest projection

of a point onto the spine. Stretchable spine curve relaxes this requirement. It can be

a smooth spine with any parameterization that describes the location of all points on

the spine. The choice of representation for the spine is orthogonal to our contribution.

Nevertheless, we implement two formulations for the spine curve:

1. A low degree, interpolating polynomial, which we evaluate using Nevilles al-

gorithm [33]. The degree of the spine curve evaluated with Neville algorithm

interpolating n control points is at most n− 1.

2. A quintic NUBS, which we evaluate using de Casteljaus algorithm. The former

one is interpolating and convenient for simple spines (up to 5 control points).

The latter has more flexibility and local control: it can be used to model more

complex curves and also closed loops.

69

Figure 29: Stretching, compressing and bending a cylindrical surface. The spacing
along the spine is shown on the cylinder.

5.3 Results and Analysis

Figure 29 shows the deformation of a cylindrical surface driven by a 3D spine curve.

The curve is modeled by a polynomial using Neville algorithm that interpolates four

control points. The user can drag any control point to bend or stretch the 3D curve.

As the user deforms the spine curve, the cylindrical surface aligned with the spine

is deformed accordingly. The top of Figure 29 shows the original cylindrical surface

which is a evenly spaced straight tube registered to a uniformly sampled line with

70

four control points. In the center, we keep the control points aligned, but move the

two interior control points: the center-left one is moved apart from the leftmost one

and towards the center-right one. As a result, the cylindrical surface is tapered on

the left and compressed on the right to form a ring ridge as shown in the figure.

The user can also move the control points in space to bend the spine curve as

desired. The bottom of Figure 29 shows the deformation result with local volume

preservation: The volume of any wedge formed by a quad on the cylindrical surface

and the corresponding line segment on the spine is preserved by our radial deformation

algorithm presented in this section.

Figure 30 shows the results of applying the normal, binormal and radial solutions

to the cylindrical surface model corresponding to the center image of Figure ??,

where the difference among the three solutions is the most obvious. The normal

and binormal schemes stretch the cylindrical surface in directions orthogonal to each

other, while the radial solution stretches the cylindrical surface isotropically within

the cross section. Although the normal and the binormal solutions look othorgonal

to each other, the binormal solution is not a 90o rotation of the normal one if there

is a bending in addition to stretching.

Figure 31 shows the results of thinning a bunny: We keep the control points

aligned, but move the two interior control points apart from each other to stretch the

belly of the bunny. The normal solution makes the bunny looks thinner in the normal

direction while the binormal solution creates such an effect in the other direction. The

radial solution is a compromise between the previous two.

Figure 32 shows the deformation of a bunny driven by a 3D spine curve. Again,

the spine curve is modeled by a B-spline using Neville algorithm that interpolates

four control points.

The bunny is registered to the spine curve. As the user deforms the spine curve,

the bunny is deformed accordingly. The top of Figure 29 shows the original bunny

71

Normal

Binormal

Radial

Figure 30: Results of applying the normal, binormal and radial schemes on cylindrical
surface.

72

Normal

Binormal

Radial

Figure 31: Results of applying the normal, binormal and radial schemes on thinning
the bunny.

73

Figure 32: Deformation of a bunny driven by stretching, compressing and bending
a 3D spine curve.

74

registered to a evenly spaced line with four control points. In the center of the figure,

we move the two interior control points apart to create a stretch. At the bottom of

Figure 32, we move two interior control points near each other to create a compression.

As shown in the two figures, the bunny deforms while being stretched or compressed

by the spine.

75

CHAPTER VI

FORMULATION FOR DEFORMATION WITH SPINE

SURFACE

In spine-based deformation, the proxy spine can also be a surface. For spine surface,

we need three parameters in the registration step in principle. This includes the

distance h from the point in space to the closest projection on the surface, and

the surface parameters u and v of the closest projection. Compared to the spine

curve, there is an additional parameter to determine the projection on spine surface.

However, there is only one normal at each projection and therefore one degree of

freedom to move the point. In order to preserve the local volume of any chunk in

space, we adjust the normal offset distance h based on the local curvatures of the

surface.

This chapter extends the formulation of spine curve to spine surface. Section 6.1

discusses the formulation and derivation of local volume preserving deformation driven

by a spine surface. Section 6.2 introduces the implementation and existence condition.

Section 6.3 presents the results and analysis.

6.1 Spine Surface Deformation

Let S(u, v) denote a two-dimensional sub-manifold, parameterized by u, v, of three-

dimensional Euclidean space. Let P denote a offset point from S,

P (u, v, h) = S(u, v) + hN(u, v).

76

Therefore the 3× 3 Jacobian matrix is,

∂P

∂(u, v, h)
=


Su(u, v) + hNu(u, v)

Sv(u, v) + hNv(u, v)

N(u, v)

 .
The determinant of the above Jacobian is,

det(
∂P

∂(u, v, h)
) = (Su(u, v) + hNu(u, v))× (Sv(u, v) + hNv(u, v)).

Let m = m(u, v) denote the local mean curvature and g = g(u, v) denote the local

Gaussian curvature. Due to that the mean curvature is the divergence of the normal

field at S(u, v), and the Gaussian curvature is the cross product of the Hessian of the

normal, the above equation can be reduced to the following:

det(
∂P

∂(u, v, h)
) = (1− 2hm+ h2g)|Su × Sv|

Note that (1− 2hm+h2g) is equivalent to (1−hk1)(1−hk2) where k1 and k2 are

principle curvatures.

During the deformation driven by the spine surface, we allow the parameter h to

change from h0 to h1. In order for the deformation to be locally volume preserving,

we have,

det(
∂P1

∂P0

) = 1

Therefore,

(1− 2h1k1 + h2
1g1)|S1u × S1v|dh1 = (1− 2h0k0 + h2

0g0)|S0u × S0v|dh0

Integrate on both sides, we have

(h1 − h2
1m1 +

h3
1

3
g1)|S1u × S1v| = (h0 − h2

0m0 +
h3

0

3
g0)|S0u × S0v| (38)

Therefore, the updated offset distance h1 is the solution of the above cubic equation.

77

Let σ denote the local stretch parameter for the spine surface,

σ =
|S1u × S1v|
|S0u × S0v|

. (39)

Then Equation 38 becomes

h1 − h2
1m1 +

h3
1

3
g1 = (h0 − h2

0m0 +
h3

0

3
g0)/σ. (40)

Therefore the solution of the updated offset distance h1 is the root of the above cubic

equation.

6.2 Implementation and Existence condition

The solution provided by Equation 40 specifies the relationship of the offset distance

before and after the deformation: The offset distance changes according to the local

gaussian curvature g, the local mean curvature k and the local stretch parameter σ.

In the deformation driven by spine surface, the offset distance is always along the

normal. Since the normal for registration and for updating the offset distance are the

same, we do not need to have the transfer step to change the basis: Equation 40 can

be used to compute the solution directly. However, we can still interpret the solver

that solves Equation 40 into the following three steps:

1. unbending: first update the offset distance assuming that the initial spine

S0(u, v) locally becomes a flat surface.

2. transfer: scale the unbending image according to the offset distance.

3. bending: after transferring to the new frame, compute the offset distance as-

suming that the flat surface bends into S1(u, v).

The design of the decomposition in the spine-surface deformation is similar to that

presented by Section 5.2. However, the unbending, transferring and bending steps

are different from the solutions in spine-curve deformation. First, there is only one

78

degree of freedom for offsetting the point in the normal direction. This is a important

difference from the deformation driven by a spine curve where a family of solutions

exists. Second in the transferring step, we need to consider the stretching in two

directions on the spine surface instead of one on the spine curve.

Here we include the formulae for all three steps of deformation driven by a spine

surface. We provide below its decomposition into unbending, transferring and bend-

ing, which may be combined with more accurate projection introduced in Chapter 7.

To solve h1, we break Equation 40 into the following three steps:

Unbending : Assume that S0(u, v) is first locally flattened and we solve for a tempo-

rary value h∗,

h∗ = h0(1−m0h0 +
g0

3
h2

0). (41)

As h∗
h0
≥ 0, the condition for a valid solution of h∗ to exist is

m0h0 −
g0

3
h2

0 ≤ 1.

Transferring : Given h∗, we solve for a transferred value ht based on the local stretch

parameter,

ht = h∗/σ (42)

The offset distance is inversely proportional to the local stretch paramter.

Bending : We then bend the flat spine surface into S1(u, v) and solve for h1 using ht:

h1 −m1h
2
1 +

g1

3
h3

1 = ht. (43)

In order to solve h1 in Equation 43, we use a change of variables. Let x = h1
ht

,

m∗ = m1ht, g∗ = g1h
2
t and we have

x−m∗x2 +
g∗
3
x3 = 1.

Take derivatives on both sides,

1

g∗
− 2m∗

g∗
x+ x2 = 0.

79

Figure 33: Identify the valid root in a cubic equation.

It is not difficult to see that the two inflection points of the cubic polynomial

on the left hand side of the cubic equation are

xi1 =
1

k1ht
, xi2 =

1

k2ht
,

where k1 and k2 are the principle curvatures. In order for the valid solution of

h1 or x to exist, Figure 33 highlights the valid root in blue in various curvature

conditions. To summarize, if 2
√
m2
∗ − g∗−m∗ > 3(m∗−

√
m2
∗ − g∗), then there

is a valid, unique real root in [0, 1√
m2
∗−g∗−m∗

]. Otherwise, no valid real root

exists and the solver should return the maximum offset distance that is free

from a local self intersection.

6.3 Results and Analysis

Figure 34 shows the steps of deforming a bunny driven by a spine surface. The surface

is modeled by a bi-variate polynomial surface patch using Neville algorithm [33] that

interpolates 4 × 4 control points. The user can drag any control point to bend or

stretch the surface. The bunny is first registered to the initial surface as shown

by Figure 34(c), and reconstructed from the deformed spine surface as shown by

Figure 34(d).

The top image in Figure 35 shows dragging the control points of the spine surface.

The points are within the same plane. We move all the control points at the boundary

and interior to create stretching and compression at different parts of the spine surface.

80

(a) initial spine surface (b) deformed spine surface.

(c) original bunny registered to the initial spine sur-
face

(d) deformed bunny driven by the spine surface

Figure 34: Overview of the deformation driven by a spine surface.

81

Figure 35: Stretching and compression of a bunny driven by a spine surface with
volume preservation.

82

As a result, the bunny deforms while being stretched or compressed with its volume

preserved locally and globally.

Figure 36 shows the deformation of a set of spheres. The top image in Figure 36

shows the original spheres and the spine surface. The spine surface is initially flat,

evenly spaced, with the 3×3 spheres placed and registered onto it. As the user deforms

the spine surface, the spheres are deformed accordingly, as shown at the center and

the bottom of Figure 36. In addition to moving all the control points at the boundary

and the interior to create stretching and compression at different parts of the spine

surface, we also move control points in or out of the viewing plane to create bending.

As a result, the set of spheres deform while being stretched, compressed and bent

with their volumes preserved for individual spheres.

To better show the volumetric error for each sphere in the example shown by

Figure 36, Figure 37 uses color mapping to map volume loss to blue and volume gain

to red in a color ramp. The top of Figure 37 is without offset distance correction,

and shows significant volume change in the set of spheres. At the bottom, the volume

of each sphere is preserved with the offset distance corrected according to the local

curvatures and the stretch parameter in Equation 40.

Figure 38 shows the deformation of a bunny driven by a spine surface which is not

flat at the beginning. Different from the example in Figure 34, two control points of

the spine surface are initially dragged out of the plane. The bunny is first registered to

this curved surface as shown by Figure 38(c). Then the spine surface deforms as the

two control points are pushed inside. The bunny is reconstructed from the deformed

spine surface as shown by Figure 38(d). This creates an effect that the bunny sinks

into the spine surface.

83

Figure 36: Deformation of spheres driven by a spine surface.

84

-100%!! ! ! +100%

Figure 37: Using color mapping, we see how the volume of each sphere changes.

85

(a) initial spine surface (b) deformed spine surface.

(c) original bunny registered to the initial spine sur-
face

(d) deformed bunny driven by the spine surface

Figure 38: Deformation by a spine surface which is initially curved.

86

CHAPTER VII

ACCURACY AND SAMPLING

Chapter 5 and Chapter 6 present methods for correcting specific local parameters to

prevent the local volume change. So far, we have not discussed much about issues

related to the sampling of the input mesh and spine. Usually, sampling is the factor

directly determine the accuracy of registration and reconstructed results, while using

the same deformation algorithm. However, using unbounded number of samples could

result into computational issues such as prolonged running time, exhausted memory,

and insufficient digits to represent the change between consecutive samples. There-

fore, it is considered worthwhile to design a interpolation method that improves the

accuracy with limited number of samples available. Two related problems, the sam-

pling of the spine and the sampling of the input object, are discussed in this chapter.

The computation of projection in registration is also discussed with spine sampling.

7.1 Problem description

On one hand, we already know that the parameter s in the closest project C(s) can

denote the arc-length parameter in a non-stretchable spine, or any one-to-one param-

eter in a stretchable spine (For 3D spine surface, we need two parameters, u, v). A

simple method to compute s is to search for a closest vertex on the discrete spine

representation, and use the index of this vertex as the discretized parameter for re-

construction after deformation. However, this introduces a problem when different

points in space that should have different closest projections registered to one vertex:

In this case, the computed projection is not correct, hence reconstruction, even with-

out bending produces a different model. This problem can cause serious errors and

artifacts in the reconstructed result. Therefore, we propose a method to compute the

87

more accurate projection in Section 7.2.

On the other hand, our mathematical formulation to spine-based deformation is

essentially a space transformation independent from the shape’s topology. Note that

this transformation is not an affine mapping as a triangle does not map into a triangle

by this formulation. Therefore, insufficient sampling of the input object (e.g. a model

represented by a coarse triangle mesh) can introduces much error. We address this

problem by using a subdivision that produces a fine mesh, so that the error between

the mapping of a triangle (by deformation) and the triangle spanning the mappings

of its 3 vertices is small. To study the impact of sampling of the input shape on this

error, Section 7.2 and Section 7.3 also present experimental methods and results with

different level of subdivisions.

7.2 Proposed approaches

Recall that in the registration and reconstruction explained in Chapter 1: For each

point P0 on the original shape S0, we compute its closest projection, C0(s), on the

spine curve C0, and the offset vector to this closest projection. Given s and h, we

reconstruct the deformed point P1 as an updated offset from C1(s).

Previously, we mentioned a method to sample the spine curve into a oriented set

of n vertices {Cj
i ; j = 0, 1, · · · , n; i = 0, 1} so as to search for the closest vertex among

them. Let Ck
0 be the closest vertex to P0. The simple method uses Ck

0 to approximate

C0(s) in registration and Ck
1 to approximate C1(s) in reconstruction.

This section introduces a more accurate projection method in which the closest

vertex on the polygonal approximation of C0 is used to approximate C0(s). Assume

that Q0 is the closest projection on the kth edge Ck
0C

k+1
0 of the polygonal approxima-

tion of C0:

Q0 = Ck
0 + aCk

0C
k+1
0 , 0 < a < 1.

Then the curve parameter is expressed in both k and a. We use linear interpolation

88

as it captures the accurate projection of a point onto the polygonal approximation of

the spine. We use the same index and interpolation parameter to compute Q1 for C1:

Q1 = Ck
1 + aCk

1C
k+1
1 ,

which is used as the anchor point for computing P1 in 3D spine-driven deformation.

Similarly for deformation driven by a spine surface S, we assume that Q0 is the

closest projection on the triangle mesh approximation of S0. Let Si0, Sj0, Sk0 denote

vertices of the triangle containing Q0 including the case that the projection is on the

edge or vertex of the triangle. The true closest projection S(u, v) is approximated by

Q0 as follows,

Q0 = λ1Si0 + λ2Sj0 + λ3Sk0 ,

where

0 < λ1 < 1, 0 < λ2 < 1, 0 < λ2 < 1, λ1 + λ2 + λ3 = 1

are the barycentric coordinates of Q0 with respect to the triangle Si0S
j
0S

k
0 . Therefore

the surface parameter is stored as {i, j, k, λ1, λ2, λ3}, which are used to compute the

anchor point Q1 for the spine surface S1 after deformation in constant time,

Q1 = λ1Si1 + λ2Sj1 + λ3Sk1 .

7.2.1 More accurate curvature, normal estimators

Section 7.2 computes the closest projection on the polygonal approximation, instead of

the closest vertex among vertices of the polygonal approximation. Since we compute

the more accurate projection, the normal and curvature at Q is interpolated as the

normal and curvature at neighboring vertices of Q, after computing different normals

at different vertices of the spine.

For the normal interpolation on 3D spine curve represented by point sequence, we

compute the angle θ between Nk and Nk+1. Then, the interpolated normal should

89

have the angle aθ from Nk to itself. Details for normal interpolation are as follows:

sin θ = ‖Nk ×Nk+1‖

cos θ = Nk ·Nk+1

θ = arctan(sin θ, cos θ)

NQ = Nk cos(aθ) + (Nk ×Nk+1)×Nk sin(aθ)

sin θ

The curvature at Q is linearly interpolated from the curvatures at Ck and Ck+1:

κQ = (1− a)κk + aκk+1

Though the spline may not have linearly varying curvature, it is possible to locally

approximate any smooth curve with clothoid or Euler spirals [6].

For the normal interpolation on 3D spine surface represented by triangle mesh, we

use the barycentric coordinates {λ1, λ2, λ3} to interpolate the normal and curvature

at Q as follows:

NQ = λ1N i + λ2N j + λ3Nk,

NQ = NQ/‖NQ‖.

κQ = λ1κi + λ2κj + λ3κk.

Note that we need to interpolate normals in order to reconstruct the point after

deformation. P1 is reconstructed by offsetting a point at Q in the direction of NQ

with distance h1 computed by Equation 3.

7.3 Results and analysis

We implement both the simple and the more accurate projection with corresponding

estimators to demonstrate the benefit of using the more accurate projection. Overall

experimental results show that the volume is more precisely preserved with the accu-

rate projection, which also produces better visual results in the reconstructed meshes.

90

Figure 39: Results of using simple and more accurate projections in deformation
with a finely sampled spine curve.

91

Figure 39 shows the results of deforming a bunny with a finely sampled spine curve.

The top of Figure 39 shows the original bunny which is a smooth triangle mesh and

the initial spine. The center of Figure 39 shows the deformation result by the simple

projection implementation, for which the reconstructed mesh has visible artifacts,

roughness. The relative volumetric error is around 2% in this simple implementation

compare to 0.2% in the implementation with more accurate projection, shown at the

bottom of Figure 39. The reconstructed mesh with the more accurate projection

appears smooth as the original and has few visible artifacts.

To better show the difference between the two implementations, Figure 40 shows

the results of deforming a bunny with a coarsely sampled spine curve. The top of

Figure 40 shows the original bunny and the initial spine which has only 10 sample

points. The center of Figure 40 shows the deformation result by the simple projection

implementation, for which the reconstructed mesh has been ‘sliced’ into sections. The

relative volumetric error is very large. In the figure shown at the bottom of Figure 40,

the reconstructed mesh with the more accurate projection has some banding artifacts,

but the overall result is much better compared to the above.

Figure 41 shows the results of different projection implementations with the spine

surface. The top of Figure 41 shows the result of the simple implementation in

which the closest projections are approximated by sample vertices of the surface.

The bottom figure shows the result of the accurate implementation in which the

closest projections are closest projections on the approximating triangle mesh. The

corresponding reconstructed mesh has a higher quality.

Figure 42 shows bending a subdivision mesh at different resolutions. From left to

right we show the deformation results of uncorrected solution, the radial, normal and

binormal solutions on different levels of a subdivision mesh. From top to bottom, the

number of vertices are 32, 482, 1922. The increase of the subdivision depth greatly

decreases the relative volume errors of the three solutions (from 2.5% to 0.001%),

92

Figure 40: Results of using simple and more accurate projections in deformation
with a coarsely sampled spine curve.

93

Figure 41: Results of using simple and more accurate projections in deformation
with a spine surface.

94

Figure 42: Deformations of a subdivision mesh at different levels of subdivisions.

Figure 43: Bending a cloud of cubes at different, initial uniform sizes.

normal, binormal and radial. On the contrary for bending without correction, the

relative volume error increases slightly (from 12% to 15%). This shows that the

volume preserving solutions give accurate total volume-preserving results for high

resolution meshes.

In fact, our objective is not only to preserve the total volume, but to preserve the

local volume for each small chunk of the solid. Hence, the proper measure of volume

error that should be used to demonstrate the benefit of the corrections is to report the

average of the absolute volume errors of the small chunks. Figure 43 shows bending

a cloud of cubes at different sizes. From left to right, the original cube sizes are 15,

95

stepSize No Fleshing Radial Normal Binormal
10 0.16391568 0.007769 0.011344 0.009709 0.013254 0.009709
11 0.16104268 0.008581 0.012521 0.01173 0.013789 0.01173
12 0.17180553 0.009269 0.013509 0.012525 0.013903 0.012525
13 0.17711286 0.010072 0.014677 0.013833 0.014766 0.013833
14 0.16543297 0.011069 0.016139 0.015461 0.016021 0.015461
15 0.19188228 0.011709 0.01707 0.016867 0.016867 0.016867
16 0.16689068 0.013717 0.020188 0.018401 0.01779 0.018401
17 0.14844811 0.014907 0.021929 0.020136 0.018613 0.020136
18 0.17323078 0.014418 0.020985 0.022426 0.021089 0.022426
19 0.16631687 0.015433 0.022484 0.025246 0.02262 0.025246
20 0.16045277 0.018381 0.027189 0.026654 0.024247 0.026654
21 0.15982863 0.017441 0.025434 0.029595 0.025779 0.029595
2211155155 0.151618705 0.027274 0.03146 0.031484
23 0.190617 0.018776 0.027375 0.033684 0.028338 0.033684
24 0.14453015 0.020549 0.029919 0.03663 0.03095 0.03663
25 0.14037292 0.021397 0.031165 0.042434 0.036155 0.042434
26 0.16142121 0.022312 0.032543 0.044136 0.037946 0.044136
27 0.1255257 0.023638 0.034373 0.048513 0.041172 0.048513
28 0.1354426 0.023531 0.034035 0.049913 0.042749 0.051913
29 0.12094624 0.026242 0.038299 0.050291 0.043679 0.055291

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Radial
Normal
Binormal

Figure 44: Plot of the percentage mean absolute error versus the cube size.

22, 30. We compute the volume of each cube deformed by the spine. The relative

error for each cube is computed as

ε = (v − v0)/v0,

where v is the volume after bending, v0 is the initial volume.

We report the percentage mean absolute value, εmean, of the relative errors for all

cubes. Figure 44 shows the plot of εmean versus the cube size. In general, the relative

error scales with the cube size in all three solutions for local volume preservation. The

volume error reported for large cubes comes from approximating the curved shape of

the deformed cube by a polyhedron that interpolates the mappings of the vertices of

the initial cube.

96

CHAPTER VIII

RELATION TO PHYSICAL REALISM

In Chapter 4, we present three solutions for deformation driven by a 3D spine curve

with local volume preservation. In 3D, we use the curve parameter s and the updated

offset vector within the cross section to reconstruct the point after deformation. In

order to preserve the local volume of any chunk in space, we want to adjust the

offset vector by adding a displacement. Assume that this displacement should be

orthogonal to the tangent. There are two degrees of freedom to move the vertex.

We have introduced the closed-form solutions for the corresponding two degrees of

freedom, normal and binormal. We also introduce another affine-like solution, radial,

which can be regarded as a compromise between the normal and binormal solutions.

There remains a important question that which one of the solutions simulates

the real-world deformation behavior. For example, when the bending is gentle, the

‘meat’ on the concave side may slightly bulge in the normal direction. In this case,

the normal solution captures the deformation result. However, when the bending is

sharp, the ‘meat’ may move sideways in the binormal direction in order to compensate

the volume change. In this case, the binormal solution captures a more accurate

deformation result. Moreover, material with isotropic property may not stretch along

a specific direction within the cross-sectional plane. And the radial solution may

better capture the deformation result.

Therefore, the answer to this question depends on several factors including the

deformation magnitude (or the strain of the deformation) and the stuffed material’s

physical structure, properties. Though a comprehensive discussion on these factors is

outside of the scope of this thesis, this chapter summarizes the family of spine-driven,

97

local-volume-preserving solutions by revisiting the formulation previously proposed.

Specifically, Section 8.1 provides the insights on the two basis bending modes and

suggests a scheme to combine the two solutions. Section 8.2 presents the combined

results in a chart for future research work on comparing with various types of defor-

mation with real-world material.

8.1 Basis bending modes: Normal and Binormal

Recall that in the normal and binormal solutions, a point on the initial solid S0 is

expressed as

P0(s, x, y) = C0(s) + x0N0(s) + y0B0(s),

where N0(s) and B0(s) are the unit normal and binormal at C0(s). For the normal

solution, we allow the parameter x to change from x0 to x1, so that the point on the

deformed solid S1 is expressed as

P1(s, x, y) = C1(s) + x1N1(s) + y0B1(s),

for which the closed form solution for x1 is the root of the following quadratic equation,

x1 − κ1x
2
1/2 = x0 − κ0x

2
0/2.

For the binormal solution, we allow the parameter y to change from y0 to y1, so

that the point on the deformed solid S1 is expressed as

P1(s, x, y) = C1(s) + x0N1(s) + y1B1(s).

for which the closed form solution for y1 is the root of the following linear equation,

(1− κ1x)y1 = (1− κ0x)y0.

It is possible that the offset point moves in a direction which is a combination of nor-

mal and binormal. In this case, both x and y should be updated. The corresponding

deformed point is

P1(s, x, y) = C1(s) + x1N1(s) + y1B1(s).

98

Let det(∂P1

∂P0
) = 1 (the local volume preserving constraint) we have,

(1− κ1x1)∂x1∂y1 = (1− κ0x0)∂x0∂y0.

Assuming that ∂x and ∂y are independent, integrate on both sides to obtain,

(x1 −
1

2
κ1x

2
1)y1 = (x0 −

1

2
κ0x

2
0)y0. (44)

Adding the constraint for local volume preservation det(∂P1

∂P0
) = 1 is not enough to

solve both x1 and y1. Therefore, we need to introduce a another parameter, φ, to

denote the direction in which to move the point to compensate the volume change.

8.2 Problem with combining two basis bending modes

This section introduces the combination of two basis bending mode towards a family

of solutions for deformation with local volume preservation. As shown by Equation 44

in Section 8.1, it is not enough to solve both x1 and y1 when introducing the local

volume preserving constraint. Therefore, we predetermine a parameter, denoted by

φ, to specify the direction in which to move the point:

x1 = x0 + l cosφ

y1 = y0 + l sinφ

Equation 44 becomes,

(−1

2
κ1l

2 cos2 φ+ (1− κ1x0)l cosφ+ x0 −
1

2
κ1x

2
0)(y0 + l sinφ) = (x0 −

1

2
κ0x

2
0)y0

In unbending, setting κ1 = 0 gives

l2 sinφ cosφ+ l(y0 cosφ+ x0 sinφ) +
1

2
κ0y0x

2
0 = 0 (45)

In bending, setting κ0 = 0 gives the following equation,

−1

2
κ1 cos2 φ sinφl3 + (−1

2
κ1y0 cos2 φ+ (1− κ1x0) sinφ cosφ)l2

+((1− κ1x0)y0 cosφ+ (1− 1

2
κ1x0)x0 sinφ)l − 1

2
κ1x

2
0y0 = 0. (46)

99

Notice that when φ = 0o, Equation 46 becomes

−1

2
κ1l

2 + (1− κ1x0)l − 1

2
κ1x

2
0 = 0,

which is the same as the normal bending case shown by Equation 11. However, when

φ = 90o, Equation 46 becomes

(1− 1

2
κ1x0)l − 1

2
κ1x0y0 = 0, (47)

which is not exactly the same as the binormal bending case shown by Equation 12:

Replacing y1 by y0 + l would arrive

(1− κ1x0)l − κ1x0y0 = 0. (48)

The difference between Equation 48 and Equation 47 indicate that the assumption

from which Equation 44 is derived may be incorrect. In another words, ∂x and ∂y are

not independent in combining two basis bending modes together. If this assumption

does not hold, then it is unsure wether a closed form solution for l exists to compensate

the local volume change by offsetting in an arbitrary direction specified by φ.

8.3 Solution for a compromise between two bending modes

Section 8.2 has introduces a formulation for combining two basis bending modes

by introducing a parameter φ, which denotes the offset direction for local volume

compensation. However, the closed form solution for the offset distance l proved to

be incorrect: For example when φ = 90o. So how can we combining the two basis

bending modes? Is there a closed-form solution for a compromise between them?

Answering the first question is relatively easy. We can always cascade the normal

and binormal solutions to produce a mapping that is also local volume preserving.

The Jacobian determinant of the concatenated solution is the product of the Jacobian

determinants of the decomposed solutions. For example, one may first solve for an

offset distance, ∆x, in the normal direction by deforming the spine from C0 to C 1
2
,

100

which is defined as a intermediate spine between C0 and C1. We assume that C0 is

able to smoothly evolve into C1. Then, one can solve for an offset distance in the

binormal direction, ∆y, by deforming the spine from C 1
2

to C1. However, the ratio

of ∆y to ∆x is initially unknown and may require a iterative process if we want the

constraint ∆y
∆x

= tanφ to hold in the final solution.

Though we are not able to provide a closed-form solution for the offset distance

l in a arbitrary direction, the answer to the second question, ”Is there a closed-form

solution for a compromise between them?”, is ”Yes”. Previously in Section 4.1.3 we

have shown the radial solution, which is exactly a compromise between the normal

and binormal solutions. In the radial solution, the offset distance is l = r1 − r0; the

offset direction is tanφ = y0
x0

. The ratio, y1
x1

, after deformation remains the same

as tanφ by definition. Therefore, we can have a closed-form solution in which the

offset direction φ is spatially varying, depending on the relative position of the point

with respect to the intersection of the spine with the crossection. In conclusion, the

radial solution is not a combination of the normal and the binormal solutions, but a

compromise between the two with an additional assumption of the spatially varying

offset direction.

To help characterizing different deformation behaviors driven by a 3D spine curve,

the chart in Figure 47 provides the cross-sectional plots of the deformation result

computed by the normal, radial and binormal methods with two different curvatures.

The original example is illustrated by Figure 29. Here we provide more crossectional

plots with the curvature increasing from left to right. This shows different trends of

the deformation which may be used to compare with real, spine-driven deformation

behaviors.

101

Normal

Binormal

Figure 45: The crossectional plots of the deformation results computed by the nor-
mal, radial and binormal methods with the curvature increasing from left to right.

102

(a) The original tube

(b) The twisted tube with checker texture mapping

(c) The twisted tube with tone mapping

Figure 46: Using checker texture and tone mapping, we see a decreased local volume
variation after applying radial offset distance correction (right).

103

8.4 Relationship between curvature and local volume vari-
ations

In this section we discuss the relationship between the local curvature and the local

volume variation. Usually, the effect of local volume variations caused by curvature

changes are not intuitive to see from the appearance of the object’s surface after

deformation. Here we provide a example showing how the curvature contributes to

the variance of local volume distribution.

Consider the uniformly spaced tube shown in Figure 46(a). It has 64 edges of

equal length on its axis and its cross-section is a equilateral 16-gon. So there are 1024

quads on the tube surface. Each quad and the corresponding edge on the axis form

a wedge. The volume of every wedge of the tube is initially the same.

Figure 46(b) shows two versions after bending and twisting the tube while the

length of each edge on the axis remain the same. The left one is without offset

distance correction. The right one is the result computed by radial offset distance

correction. Though some of the quads appear larger on the left, it is not easy to

see the difference between the two results. In Figure 46(c), we map the local volume

change to a color in the blue-red color ramp, and paint the quad with the color. Con-

sequently, the difference between the two results becomes clear: the volume of each

wedge varies much in the version without correcting the offset distance. The chart in

Figure 47 shows the volumes of the one-ring wedges (in the uncorrected version) and

the curvature at each vertex of the tube’s axis: The local volume variation is strongly

correlated with the local curvature.

8.5 Realtime performance

We now briefly provide an overview of the realtime performance in our locally volume

preserving spine-driven deformation framework implemented in Java SE 7. Each demo

or experiment is wrapped by a JVM process that runs on a 2.7GHz Intel Core i7. For

104

Figure 47: Compare the local curvatures (bottom) with the local volumes of the
wedges of the twisted tube in Figure 46

a spine curve with 100 sampling points and a 3D mesh model with 6082 vertices, the

registration takes 36 milliseconds. When the user manipulates the spine curve, the

deformation (by the radial solution) takes 10 milliseconds on average for all vertices

of the object. For a spine surface with 40 × 40 sampling points and a object model

with 6082 vertices, the registration takes 432 milliseconds. When the user changes the

spine surface, the transformation takes 8 milliseconds for all vertices of the objects.

105

CHAPTER IX

CONCLUSION

This dissertation makes several unique contributions. First, we study the problem

of spine-driven deformation and the challenge of applying the constraint of local

volume preservation everywhere during the deformation. We develop a framework

for deforming an object driven by a spine (Chapter 1) to let the designer bend or

stretch an object with a lower dimensional proxy. In this framework, the object is

registered to the lower dimensional proxy, or the spine. As the spine changes, points

of the deformed object are reconstructed as offsets from the spine. However, due to

that the spine is curved, stretched or compressed in different places, there are global

and local volume losses or gains in the reconstructed image or object. The key to

preserve the local area or volume in the reconstructed image or object is to adjust

the offset distance from the spine.

One of the most important ideas proposed by this dissertation is to use closed-form

solutions of the offset distances based on the local curvature and stretch of the spine.

We have considered different representation of the spine. To deform a planar shape or

an image, the spine is a planar curve modeled by an arc or a parametric curve (Chap-

ter 3). The offset distance is the solution of a quadratic equation with coefficients

specified by the local curvatures and the original offset distance. The offset direction

is along the normal of the planar curve. To deform a 3D object modeled by a triangle

mesh or quad mesh, the spine curve is either planar or non-planar (Chapter 4). To

reconstruct a 3D object from the spine curve, there is an additional degree of freedom

in the crossectional plane: the offset direction can be along the binormal, normal of,

106

or radially outward from, the spine curve. The corresponding offset distances are solu-

tions to linear, quadratic and cubic equations. In addition to using a curve, the spine

can also be a surface (Chapter 6). In this case, the offset distance is the solution of a

cubic equation with coefficients specified by the local mean and Gaussian curvatures.

The offset direction is along the surface normal. To sum, we have derived a suite of

closed-form solutions, by exploiting the requirement of constant unit Jacobian of the

locally volume-preserving transformation.

Second, to support not just planar bending or stretching but also extend to more

complex deformations, we devise a technique that decompose the deformation into

three steps: unbending, transfer and bending. This decomposition is necessary to

allow registration and reconstruction with normal-propagated frames while deform-

ing the object registered to the spine curve with local volume preservation. Using

the normal propagated frame rather than the Frenet frame reduces the twist along a

3D curve and prevents sudden changes of the normal direction. It approximated the

twist-minimized frame and is widely used for computing the frame along a curve. In

the unbending step, we assume that the spine curve or surface is locally straightened

or flattened, and compute a intermediate offset solution. The transfer step performs a

change of basis and scaling with respect to the local stretch parameter. The final solu-

tion is computed by the bending step where the spine curve or surface is deformed into

its target position. Overall, the decomposition makes it easier to combine modules of

implementations towards more complex defromations where the spine can undergoes

non-planar bending and stretching.

Third, we also study the accuracy (Chapter 7) and issues related to physical

realism (Chapter 8) of our solutions. It is very important to compute the precise

projection on the spine as the anchor point for the purpose of accurate registration

and reconstruction in spine-driven deformation. The choice of projection eventually

107

affects the precision in the deformation result, as well as the visual quality of the re-

constructed 3D object. Therefore, instead of selecting the closest vertex of the spine,

we propose to compute the closest point on the polyline or mesh approximation of

the spine. This closest point may be interpolated from nearby vertices. We develop

interpolation methods to evaluate the curvature and the normal at this closest point

for solving the offset distance. At the end of this dissertation, we discuss issues related

to physical realism, though a comprehensive discussion on the subject is outside the

scope of this work. Specifically, we look at how to combine the two basis bending

modes by revisiting the derivations. To facilitate comparison with real-world defor-

mations with local volume preservation, we provide a chart showing the change of

crossection points in different bending modes with increased curvatures, and an ad-

ditional example revealing the relationship between the local curvature and the local

volume variation.

The closed-form solutions could apply easily to many other problem spaces. Here

are three general examples.

• Tool path planning and generation ([63, 36, 16], etc.) General milling tools

have sufficient degrees of freedom which allow them to follow arbitrary planar

paths. One of the challenges is to define a tool path that lead to constant

material removal rate in milling for a target shape. Since we want to keep the

translational speed of the milling tool as a constant, the removed area per unit

length should be constant in order to achieve stable power consumption. Our

quadratic equation in 2D provides the solution to the offset distance that defines

the tool path with removed area per unit length equal to a constant.

• Curvature-based volume correction or compensation ([63, 37, 56, 17], etc.) The

deformation of a 2D or 3D shape may be the result of subdivision or smoothing

operations, which often cause an area or volume loss. We want to obtain an

offset shape that is similar to the original shape, but with a different area or

108

volume enclosed. It has been proved that the solution, which minimizes the

Hausdorff distance between the two shapes, is the constant distance offset from

one to the other, assuming that the two shapes are ball compatible [15]. The

quadratic or cubic equation presented in this dissertation provides the exact

solution to the offset distance (in 2D or 3D) to recover the original area or

volume.

• Spine-driven deformation and animation ([64, 46, 11, 7, 27, 55], etc.) The spine

is a lower dimensional proxy used to control the deformation of a shape which

is roughly aligned along the spine. Note that the spine does not need to be the

medial axis or surface of the shape. Given a deformed version of the spine, we

want to compute the deformation of the shape that preserves the original area

or volume locally. The approaches advocated in this dissertation defines the

deformed shape as the normal offset from the spine with the offset distances

computed by different solutions presented.

Implementation techniques introduced in this dissertation focus on the second and

third examples. Specifically, the unbending-transfer-bending technique can be applied

to all types of spine-driven deformations (Chapter 4 and Chapter 5). A solver for

the cubic equation in the the deformation driven by a spine surface contributes to

the implementation for curvature-based volume compensation as well, however, coef-

ficients of the equation represent the global, not local, mean and Gaussian curvature

measures on the base surface in the constant distance offsetting (Chapter 6).

There are several interesting research directions that we intend to pursue. First,

our current work focuses on simple object representations in terms of the limited mesh

data available. So, we have subdivided a mesh at different levels, or created multiples

of one model at different locations, for more experimental results with large number

of points in space. It would be interesting to parallel the deformation computation

109

for an object represented by a large set of points. Second, in our problem formula-

tion the control proxy does not have any bifurcation. Our local-volume preserving

deformation algorithms are valid for a point with unique closest projection on the

spine. This assumption might not hold in the presence of a spine bifurcation. Hence,

it is worthwhile to explore a new mathematical framework or algorithms that can

generalize to different spine requirements including bifurcations. It would also be an

interesting topic to study the opportunity in developing professional animation tools

that integrate these offsetting solutions we advocate.

110

REFERENCES

[1] Amdahl, G. M., “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, pp. 483–485, ACM, 1967.

[2] Angelidis, A., Cani, M.-P., Wyvill, G., and King, S., “Swirling-sweepers:
Constant-volume modeling,” Graphical Models, vol. 68, no. 4, pp. 324–332, 2006.

[3] Angelidis, A. and Singh, K., “Kinodynamic skinning using volume-preserving
deformations,” in Proceedings of the 2007 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, pp. 129–140, Eurographics Association, 2007.

[4] Antiga, L., Ene-Iordache, B., and Remuzzi, A., “Computational geometry
for patient-specific reconstruction and meshing of blood vessels from mr and ct
angiography,” Medical Imaging, IEEE Transactions on, vol. 22, no. 5, pp. 674–
684, 2003.

[5] Aubert, F. and Bechmann, D., “Volume-preserving space deformation,”
Computers & Graphics, vol. 21, no. 5, pp. 625–639, 1997.

[6] Baran, I., Lehtinen, J., and Popović, J., “Sketching clothoid splines using
shortest paths,” in Computer Graphics Forum, vol. 29, pp. 655–664, Wiley Online
Library, 2010.

[7] Barr, A. H., “Global and local deformations of solid primitives,” in ACM
Siggraph Computer Graphics, vol. 18, pp. 21–30, ACM, 1984.

[8] Bathe, K.-J., Finite element procedures, vol. 2. Prentice hall Englewood Cliffs,
1996.

[9] Bauer, U. and Polthier, K., “Parametric reconstruction of bent tube
surfaces,” in Proceedings of International Conference on Cyberworlds 2007
(Wolter, F.-E. and Sourin, A., eds.), pp. 465–474, IEEE, 2007.

[10] Botsch, M. and Kobbelt, L., “Multiresolution surface representation based
on displacement volumes,” in Computer Graphics Forum, vol. 22, pp. 483–491,
Wiley Online Library, 2003.

[11] Botsch, M. and Sorkine, O., “On linear variational surface deformation
methods,” Visualization and Computer Graphics, IEEE Transactions on, vol. 14,
no. 1, pp. 213–230, 2008.

111

[12] Burtnyk, N. and Wein, M., “Interactive skeleton techniques for enhancing
motion dynamics in key frame animation,” Communications of the ACM, vol. 19,
no. 10, pp. 564–569, 1976.

[13] Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z.,
“Physically based rigging for deformable characters,” in Proceedings of the 2005
ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 301–
310, ACM, 2005.

[14] Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z.,
“Interactive skeleton-driven dynamic deformations,” in ACM Transactions on
Graphics (TOG), vol. 21, pp. 586–593, ACM, 2002.

[15] Chazal, F., Lieutier, A., Rossignac, J., and Whited, B., “Ball-map:
Homeomorphism between compatible surfaces,” International Journal of Com-
putational Geometry & Applications, vol. 20, no. 03, pp. 285–306, 2010.

[16] Chirikjian, G. S., “Closed-form primitives for generating locally volume pre-
serving deformations,” Journal of Mechanical Design, vol. 117, p. 347, 1995.

[17] Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H., “Implicit
fairing of irregular meshes using diffusion and curvature flow,” in Proceedings
of the 26th annual conference on Computer graphics and interactive techniques,
pp. 317–324, ACM Press/Addison-Wesley Publishing Co., 1999.

[18] Do Carmo, M. P., Riemannian geometry. Springer, 1992.

[19] Farouki, R. T. and Han, C. Y., “Rational approximation schemes for
rotation-minimizing frames on pythagorean-hodograph curves,” Computer Aided
Geometric Design, vol. 20, no. 7, pp. 435–454, 2003.

[20] Flynn, M., “Very high-speed computing systems,” Proceedings of the IEEE,
vol. 54, no. 12, pp. 1901–1909, 1966.

[21] Foley, J. D., Computer graphics: Principles and practice, in C, vol. 12110.
Addison-Wesley Professional, 1996.

[22] Foote, R. L., “The volume swept out by a moving planar region,” Mathematics
Magazine, pp. 289–297, 2006.

[23] Hahmann, S., Sauvage, B., and Bonneau, G.-P., “Area preserving defor-
mation of multiresolution curves,” Computer aided geometric design, vol. 22,
no. 4, pp. 349–367, 2005.

[24] Hanson, A. J. and Ma, H., “Parallel transport approach to curve framing,”
Indiana University, Techreports-TR425, vol. 11, pp. 3–7, 1995.

[25] Hirota, G., Maheshwari, R., and Lin, M. C., “Fast volume-preserving
free-form deformation using multi-level optimization,” Computer-Aided Design,
vol. 32, no. 8, pp. 499–512, 2000.

112

[26] Hsu, S. C. and Lee, I. H., “Drawing and animation using skeletal strokes,” in
Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, pp. 109–118, ACM, 1994.

[27] Hsu, S. C., Lee, I. H., and Wiseman, N. E., “Skeletal strokes,” in Proceedings
of the 6th annual ACM symposium on User interface software and technology,
pp. 197–206, ACM, 1993.

[28] Irving, G., Schroeder, C., and Fedkiw, R., “Volume conserving finite
element simulations of deformable models,” ACM Transactions on Graphics
(TOG), vol. 26, no. 3, p. 13, 2007.

[29] Kälberer, F., Nieser, M., and Polthier, K., “Stripe parameterization of
tubular surfaces,” in Topological Methods in Data Analysis and Visualization,
pp. 13–26, Springer, 2011.

[30] Kass, M. and Anderson, J., “Animating oscillatory motion with overlap:
wiggly splines,” in ACM Transactions on Graphics (TOG), vol. 27, p. 28, ACM,
2008.

[31] Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J., “Simulation
of bubbles in foam with the volume control method,” in ACM Transactions on
Graphics (TOG), vol. 26, p. 98, ACM, 2007.

[32] Kim, M.-S., Park, E.-J., and Lim, S.-B., “Approximation of variable-radius
offset curves and its application to bezier brush-stroke design,” Computer-Aided
Design, vol. 25, no. 11, pp. 684–698, 1993.

[33] Krogh, F. T., “Efficient algorithms for polynomial interpolation and numerical
differentiation,” Mathematics of Computation, vol. 24, no. 109, pp. 185–190,
1970.

[34] Lewis, J. P., Cordner, M., and Fong, N., “Pose space deformation: a
unified approach to shape interpolation and skeleton-driven deformation,” in
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 165–172, ACM Press/Addison-Wesley Publishing Co., 2000.

[35] Llamas, I., Powell, A., Rossignac, J., and Shaw, C. D., “Bender: a
virtual ribbon for deforming 3d shapes in biomedical and styling applications,”
in Proceedings of the 2005 ACM symposium on Solid and physical modeling,
pp. 89–99, ACM, 2005.

[36] Moon, H. P., “Equivolumetric offsets for 2d machining with constant material
removal rate,” Computer Aided Geometric Design, vol. 25, no. 6, pp. 397–410,
2008.

[37] Moon, H. P., “Equivolumetric offset surfaces,” Computer Aided Geometric
Design, vol. 26, no. 1, pp. 17–36, 2009.

113

[38] Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler,
B., “Stable real-time deformations,” in Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pp. 49–54, ACM,
2002.

[39] O’Donnell, T., Boult, T. E., Fang, X.-S., and Gupta, A., “The ex-
truded generalized cylinder: A deformable model for object recovery,” in Com-
puter Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on, pp. 174–181, IEEE, 1994.

[40] Pieper, S. D., More than skin deep: Physical modeling of facial tissue. PhD
thesis, Massachusetts Institute of Technology, 1989.

[41] Raveendran, K., Thuerey, N., Wojtan, C., and Turk, G., “Controlling
liquids using meshes,” in Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 255–264, Eurographics Association,
2012.

[42] Raveendran, K., Wojtan, C., Thuerey, N., and Turk, G., “Blending
liquids,” in Proceedings of the annual conference on Computer graphics and in-
teractive techniques, ACM Press/Addison-Wesley Publishing Co., 2014.

[43] Reddy, J. N., Theory and analysis of elastic plates and shells. CRC press,
2007.

[44] Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., and Spagnuolo, M.,
“Discrete laplace–beltrami operators for shape analysis and segmentation,” Com-
puters & Graphics, vol. 33, no. 3, pp. 381–390, 2009.

[45] Rohmer, D., Hahmann, S., and Cani, M.-P., “Local volume preservation
for skinned characters,” in Computer Graphics Forum, vol. 27, pp. 1919–1927,
Wiley Online Library, 2008.

[46] Rohmer, D., Hahmann, S., and Cani, M.-P., “Exact volume preserv-
ing skinning with shape control,” in Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp. 83–92, ACM,
2009.

[47] Rossignac, J. and Schaefer, S., “J-splines,” Computer-Aided Design, vol. 40,
no. 10, pp. 1024–1032, 2008.

[48] Rossignac, J. R. and Requicha, A. A., “Piecewise-circular curves for ge-
ometric modeling,” IBM Journal of Research and Development, vol. 31, no. 3,
pp. 296–313, 1987.

[49] Salomon, D., Computer graphics and geometric modeling. Springer, 1999.

[50] Sauvage, B., Hahmann, S., and Bonneau, G.-P., “Length preserving mul-
tiresolution editing of curves,” Computing, vol. 72, no. 1-2, pp. 161–170, 2004.

114

[51] Schaefer, S., McPhail, T., and Warren, J., “Image deformation us-
ing moving least squares,” in ACM Transactions on Graphics (TOG), vol. 25,
pp. 533–540, ACM, 2006.

[52] Sederberg, T. W. and Parry, S. R., “Free-form deformation of solid ge-
ometric models,” in ACM Siggraph Computer Graphics, vol. 20, pp. 151–160,
ACM, 1986.

[53] Stam, J., “Stable fluids,” in Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pp. 121–128, ACM Press/Addison-
Wesley Publishing Co., 1999.

[54] Steiner, J., “über parallele flächen,” Monatsberichte der Akademie der Wis-
senschaft zu Berlin (Monthly Report of the Academy of Sciences, Berlin),
pp. 114–118, 1840.

[55] Storti, D. W., Turkiyyah, G. M., Ganter, M. A., Lim, C. T., and
Stal, D. M., “Skeleton-based modeling operations on solids,” in Proceedings
of the fourth ACM symposium on Solid modeling and applications, pp. 141–154,
ACM, 1997.

[56] Taubin, G., “A signal processing approach to fair surface design,” in Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques,
pp. 351–358, ACM, 1995.

[57] von Funck, W., Theisel, H., and Seidel, H.-P., “Vector field based shape
deformations,” ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 1118–
1125, 2006.

[58] Wang, W., Jüttler, B., Zheng, D., and Liu, Y., “Computation of rotation
minimizing frames,” ACM Transactions on Graphics (TOG), vol. 27, no. 1, p. 2,
2008.

[59] Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C., “Context-aware
skeletal shape deformation,” in Computer Graphics Forum, vol. 26, pp. 265–274,
Wiley Online Library, 2007.

[60] Yan, H.-B., Hu, S.-M., Martin, R. R., and Yang, Y.-L., “Shape defor-
mation using a skeleton to drive simplex transformations,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 14, no. 3, pp. 693–706, 2008.

[61] Yoshizawa, S., Belyaev, A. G., and Seidel, H.-P., “Free-form skeleton-
driven mesh deformations,” in Proceedings of the eighth ACM symposium on
Solid modeling and applications, pp. 247–253, ACM, 2003.

[62] Zhuo, W., Prabhat, P., Paciorek, C., Kaufman, C., and Bethel, W.,
“Parallel kriging analysis for large spatial datasets,” in Data Mining Workshops
(ICDMW), 2011 IEEE 11th International Conference on Climate Knowledge
Discovery, pp. 38–44, IEEE, 2011.

115

[63] Zhuo, W. and Rossignac, J., “Curvature-based offset distance: Implemen-
tations and applications,” Computers & Graphics, vol. 36, no. 5, pp. 445–454,
2012.

[64] Zhuo, W. and Rossignac, J., “Fleshing: Spine-driven bending with local
volume preservation,” in Computer Graphics Forum, vol. 32, pp. 295–304, Wiley
Online Library, 2013.

116

VITA

Wei Zhuo was born and raised in Changsha, a big city in south-central China. She

received a Bachelor of Engineering degree from Hong Kong University of Science and

Technology in 2009. Subsequently, she moved to Atlanta, United States to pursue

a Ph.D. in Computer Science at the College of Computing at Georgia Institute of

Technology. As a member of the geometry research group and GVU Center at the

College of Computing, she conducted research on various aspects of shape modeling,

deformation and visualization under the guidance of Prof. Jarek Rossignac. Her re-

search has resulted in publications that have appeared in international conferences

and journals on computer graphics and geometric modeling. She has also been a

collaborator with the IBM T.J. Waston Research Center and Lawrence Berkeley Na-

tional Lab. She received Raytheon Research Award in 2013. Her work at IBM has

been filed for patent, dealing with geometric design in visual analysis.

117

	Titlepage
	Signatures
	Dedication
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	What is spine-based deformation?
	Assumptions
	Key contributions
	Applications
	Applications for deformation driven by a spine curve
	Applications for deformation driven by a spine surface

	Challenges with local volume preservation
	Local volume preservation through thickness correction
	Local volume preservation through offset distance correction
	Theoretical framework

	Precise problem formulation

	Chapter 2 — Literature Survey
	Deformation driven by spine curve
	Planar shape and image deformation
	Bender tool

	Existing techniques in global volume compensation
	Volume compensation in freeform deformation
	Machining with equivolumetric offset

	Approaches to local volume preservation
	Divergence-free displacement field
	Iterative normal displacement
	Local volume preservation in fluid simulations

	Variations of Spine-based modeling
	Medical modeling
	Twist compensated frame

	Chapter 3 — Deformation with 2D Spine Curve
	Planar Non-stretchable Spine Curve
	Formulation and derivation
	Existence Condition

	Planar Stretchable Spine Curve
	Formulation and derivation
	Existence Condition

	Discretization and Implementation
	A family of curvature-based offsets
	A series of successive curvature-based offsets
	Selective smoothing

	Projection, normal, curvature and stretch parameters for parametric and polygonal curve
	Results and analysis

	Chapter 4 — Deformation with Non-stretchable 3D Spine Curve
	Formulation and derivation
	Normal solution
	Binormal solution
	Radial solution

	Implementation and Existence Condition
	Unbending-transfer-bending technique
	Normal propagation
	Summary

	Results and Analysis

	Chapter 5 — Deformation with Stretchable 3D Spine Curve
	Formulation and derivation
	Normal solution
	Binormal solution
	Radial solution

	Implementation and Existence condition
	Unbending-transfer-bending technique for stretchable spine
	Discretization of stretchable spine curve

	Results and Analysis

	Chapter 6 — Formulation for deformation with Spine Surface
	Spine Surface Deformation
	Implementation and Existence condition
	Results and Analysis

	Chapter 7 — Accuracy and Sampling
	Problem description
	Proposed approaches
	More accurate curvature, normal estimators

	Results and analysis

	Chapter 8 — Relation to physical realism
	Basis bending modes: Normal and Binormal
	Problem with combining two basis bending modes
	Solution for a compromise between two bending modes
	Relationship between curvature and local volume variations
	Realtime performance

	Chapter 9 — Conclusion
	References
	Vita

