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SUMMARY 

 

Much of what is known about cell biology and physiology can be attributed to 

advances in optical microscopy. Fluorescence microscopy has been particularly 

transformative. There are, however, many advantages to using label-free imaging 

modalities, such as the ability to image living cells in their natural, unperturbed 

environment without phototoxicity or photobleaching. Quantitative phase imaging (QPI) 

has emerged as the leading label-free technology and is exploding with activity in both 

methods and applications. In taking a global view of QPI as a whole, however, one 

discovers that the conventional approach for QPI method design of optimizing both 

measurement (hardware) and interpretation (software) parameters simultaneously is not 

meeting the needs of QPI’s primary end users in biology and medicine, who benefit 

greatly from combining multiple microscopy modalities into a single integrated system. 

Furthermore, there are many QPI applications, in addition to biomedical, which also 

benefit from the integrable nature of microscopy. One example is optical fiber 

characterization in which residual stress (RS), in addition to refractive index (RI), is 

fundamental to device performance and also measurable via microscopic methods. 

In light of this growing need, the primary objective of the research presented in this 

thesis is to develop new QPI modalities which are compatible with standard microscope 

platforms utilizing Köhler illumination. This work derives novelty from the fact that, 

under Köhler illumination, the spatial coherence area of the detected wave field is 

typically much smaller than the field of view, leading many to the erroneous conclusion 

that QPI is impossible since phase is not well-defined. Specifically, the work presented 

herein aims to develop, verify, characterize, and apply three QPI modalities, including 

two interrelated two-dimensional methods, called multifilter phase imaging with partially 

coherent light (MFPI-PC) and phase optical transfer function (POTF) recovery, which 
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lead to a third three-dimensional method, called tomographic deconvolution phase 

microscopy (TDPM).  

A secondary objective of the present thesis research is to apply microscopic QPI 

modalities to the characterization of optical fibers and fiber-based devices. This work is 

motivated by a growing need to understand fundamental mechanisms responsible for 

device operation, which ultimately depend on physical properties measurable via QPI. 

Specifically, the effects of manufacturing, cleaving, and fusion splicing large-mode-area 

erbium- and ytterbium-doped fibers are characterized using a joint-technique capable of 

measuring RI and RS in parallel, enabling their direct comparison.  

In the concluding chapters of this thesis, the contributions associated with the 

aforementioned modalities are viewed in context of existing QPI methods, leading to the 

identification and discussion of future research areas. Similarly, future directions are 

provided for the application of QPI to the characterization and modeling of long-period 

fiber gratings. Since the modalities and applications are new and potentially 

transformative, multiple opportunities exist.  
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CHAPTER 1 

INTRODUCTION 

 

This introductory chapter provides a review of the background, motivation, and existing 

methods for quantitative phase imaging (QPI). Also reviewed are existing applications of 

QPI in the field of optical fiber and fiber-based device technology. By comparing 

methods directly, characteristics are identified which are essential to the growth of QPI 

and missing from existing implementations. Likewise, missing application areas of QPI-

based optical fiber characterization (OFC) are also identified. In light of these 

observations, the objectives of the present thesis research are defined. Lastly, an 

overview is provided outlining the content and organization of the thesis. 

1.1 Background 

In optical microscopy, contrast may be either endogenous (intrinsic) or exogenous 

(extrinsic). The most common modality utilizing exogenous contrast is fluorescence 

microscopy, in which a specimen is labelled with a fluorescent molecule to provide 

targeted morphological information [1]. The relative importance of fluorescence 

microscopy has recently been made evident by the 2014 Nobel Prize in chemistry for “the 

development of super-resolved fluorescence microscopy”. Although fluorescence 

microscopy is continuously applied across a broad range of studies, there are a growing 

number of applications in biology for which methods employing endogenous contrast are 

required. This is because label-free methods are not subject to phototoxicity and/or 

photobleaching and therefore permit the observation of living cells in their natural 

environment over indefinite time periods with little or no sample preparation.  

The primary challenge associated with endogenous contrast is that cells are 

transparent phase objects and produce very little contrast under normal illumination 

conditions. Historically, this problem has been solved optically using methods such as 
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phase contrast (PC) [2], differential interference contrast (DIC) [3], and Hoffmann 

modulation contrast (HMC) [4] microscopy. Although useful, these methods all suffer 

from one important drawback, which is that the measured intensity has a nonlinear, and 

thus non-invertible, relationship with the phase of the specimen. Without this 

information, extracting morphologically relevant quantities such as size, dry mass density 

[5], and refractive index (RI) is futile. This limitation, when combined with the advent of 

digital image sensors and advances in holography, has resulted in the burgeoning field of 

quantitative phase imaging (QPI), which combines innovations in optics, imaging theory, 

and computational methods to image phase variations quantitatively [6]. Two-

dimensional (2D) QPI resolves the phase of a specimen integrated along the optical axis 

and three-dimensional (3D) QPI resolves the RI of a specimen in real space. Figure 1.1 

illustrates the information which is typically available from 2- and 3D QPI experiments 

in the literature. 

 

Figure 1.1:  Representations of 2- and 3D QPI data. (a) 2D quantitative phase image of 
the total optical path delay through a breast cancer cell (MCF-7, Fig. 7 in [7], units-
radians), (b) 3D RI image of a HeLa (extracted from Henrietta Lacks [8]) cell (Fig. 2 in 
[9], units-absolute RI). 
 
1.2 Motivation and Impact 

QPI has been used in a wide variety of biological investigations [10-14]. For example, 

QPI has recently measured cell cycle-dependent growth patterns by exploiting the fact 
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that phase images are proportional to dry mass density [11] and brought insight to the 

age-old question of how single cells regulate their growth. QPI has also enabled the 

monitoring of cytoskeletal/organelle interactions on short timescales due to its ability to 

image cytoskeletal structures in parallel [10], whereas fluorescence microscopy requires 

multiple fluorescent labels to image the same information. Likewise, QPI has been used 

to quantify intracellular mass transport [14], monitor the effects of ATP on red blood cell 

membrane dynamics [12], and measure chromosomal mass in living cells [13].  

In addition to biology, QPI is making waves in the realm of clinical diagnostics [15-

18], where it has recently manifested itself as a powerful tool for low-cost, high-

throughput, and high-sensitivity red blood cell screening [17]. Another developing area 

for QPI is cancer diagnosis, where it has been used to differentiate cancerous cells in 

isolation [15], identify tissue self-affinity as a potential biomarker for precancer [16], 

detect calcium oxalate as a breast cancer screening tool [18], and correlate cancerous 

regions in prostate biopsies with high variance in the phase image [18].  

As the number of biomedical QPI applications continues to climb, it is tempting but 

unwise to ignore the impact QPI is having in areas outside of optical microscopy such as 

semiconductor research, development, and manufacturing using electron microscopy 

[19], adaptive optics [20], and x-ray radiology [21]. In some regions of the hard x-ray 

regime, there is approximately 1,000 times more contrast in the phase of the soft 

biological tissues than in the attenuation or absorption [21]. Quantitative knowledge of 

phase could therefore dramatically increase signal-to-noise ratio (SNR) in soft tissue 

tomography.  

Another critical application area of QPI is optical fiber characterization (OFC) [22]. 

As optical fibers and fiber-based device technologies continue to advance, the need to 

understand the fundamental mechanisms responsible for their operation increases. 

Previously, such mechanisms have been assumed based on empirical observations of 

transmission properties such as attenuation, dispersion, and spectral transmittance. One 
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example for which this approach has been insufficient is identifying the mechanisms 

responsible for RI modulation in long-period fiber gratings (LPFGs) [23, 24], which have 

been attributed, without direct experimental verification, to a multitude of causes 

including residual stress (RS) modification [25], relaxation of frozen-in viscoelasticity 

(FIV) [26], RI densification [27], dopant diffusion [28], and geometrical deformation [29, 

30], each of which results in differing device characteristics. Because these perturbations 

modify RI, which is measureable via QPI, and RS-induced birefringence, which is 

measurable via polarized light microscopy, the combination of QPI with quantitative 

retardation imaging (QRI) [31] enables the direct determination of mechanisms 

responsible for fiber-based device operation. The aforementioned combination has also 

proven useful in biological investigations [32] as local birefringence provides additional 

valuable information, which may even be a signature for the diagnosis and prognosis of 

cancer in tissues [33]. 

Overall, it is clear that QPI has developed and sustained enormous impact across a 

wide variety of disciplines. As a field of study, QPI is rapidly expanding, and with each 

new contribution it becomes increasingly difficult to maintain a global perspective, yet 

this is exactly what is necessary to propel QPI forward and realize its inherent potential. 

In the following section, an overview of QPI methods in the literature is provided and 

categorized according to inherent properties and performance characteristics. From this 

overview, research objectives are defined which address key issues facing QPI as a 

whole. Furthermore, recent contributions to QPI-based OFC are evaluated which 

motivate the applications detailed in this thesis. 

1.3 Literature Review 

1.3.1 Two-Dimensional Quantitative Phase Imaging Methods 

2D QPI methods image the optical path length of a phase object integrated along the 

optical or -axis. In the literature, there are numerous ways to do this [6]. In this thesis, 
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2D QPI is separated into three broad categories: phase-shifting interferometry (PSI), off-

axis interferometry (OAI), and phase retrieval (PR). There are methods which do not fall 

under the umbrella of these categories such as wavefront sensing [34] and quantitative 

DIC microscopy [35]. For the purposes of this thesis, however, the above-mentioned 

categorization will be sufficient to understand the relative advantages and disadvantages 

of various methods and indicate which directions will be the most beneficial.  

1.3.1.1 Phase-Shifting Interferometry 

In PSI, a coherent laser beam is incident on an imaging system/interferometer. The beam 

is split into sample and reference arms, which are then recombined collinearly at the 

image plane. By modulating the phase of the reference arm, the resulting interferograms 

are also modulated where the bias of each pixel is determined by the phase of the sample. 

Conventionally, four interferograms are measured as the reference phase is modulated in 

equal increments around the unit circle such that the phase image is easily obtained using 

trigonometric relationships [6]. A block diagram representation is given in Fig. 1.2. 

 

Figure 1.2:  Block diagram representation of phase-shifting interferometry (PSI). 
 

Because the interfering beams are collinear, PSI preserves the spatial resolution 

inherent in the sample arm’s imaging optics, which may be diffraction-limited [6]. Phase 

sensitivity is determined by the SNR which is easily maximized by controlling the 
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relative powers of each beam. Furthermore, the method is computationally simple and 

requires no assumptions about the scattering properties of the sample. Disadvantages in 

PSI stem from the fact that multiple interferograms are required per phase image thereby 

limiting acquisition speed. Also, phase and speckle noise tend to reduce temporal and 

spatial phase stability in systems utilizing non-common-path geometries and 

monochromatic light. In recent years, researchers have mitigated some of these issues by 

sacrificing alignment tolerance for speed [36] and adapting PSI to common-path 

geometries [37] and white light illumination [38].  

1.3.1.2   Off-Axis Interferometry 

OAI is similar to PSI, except that spatial, rather than temporal, modulation is used in 

which the reference beam propagates at a known off-axis angle. The resulting 

interferograms are spatially modulated with a periodicity determined by this angle. The 

transmission function of the sample can be reconstructed in many ways; for example 

Fourier domain demodulation [39] or Hilbert transform methods [40] may be used. A 

block diagram representation is given in Fig. 1.3. 

 

Figure 1.3:  Block diagram representation of off-axis interferometry (OAI). 
 

Because phase recovery is based on a single interferogram, temporal resolution is 

maximized and only limited by camera readout speed. Like PSI, OAI benefits from 
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controllable fringe visibility and doesn’t require scattering assumptions. Unlike PSI, 

however, spatial resolution in OAI is often limited by the off-axis angle and not the 

imaging optics. OAI also suffers from reduced sensitivity associated with phase and 

speckle noise and reconstruction methods are often complicated by the need to unravel a 

highly wrapped phase function in the presence of noise [41]. As with PSI, OAI 

researchers have increased phase stability by adopting common-path geometries [42] and 

using white light [43].  

1.3.1.3 Phase Retrieval 

PR is a relatively broad term and includes methods which estimate phase using intensity 

images as the only input data. The Gerchberg-Saxton or error reduction algorithm is a 

well-known PR algorithm which operates on intensity images measured in both the focal 

and pupil planes [44]. The hybrid input-output algorithm improves the probability of 

convergence and is the industry standard for PR in astronomy [44]. Similar algorithms 

have been adopted for use with defocused images recorded in the near field [45]. The 

common theme among each of these methods is the iterative alternation between planes 

combined with the application of various constraints imposed by measured intensities and 

a priori knowledge of the object to converge towards solutions of the phase problem. 

Iterative PR algorithms preserve spatial resolution, make no scattering assumptions, and 

aren’t plagued by the phase noise typical in interferometry because imaging is a 

common-path interference phenomenon. They also require multiple images, are sensitive 

to detector noise, and are more computationally expensive than their interferometric 

counterparts, thereby limiting application in situations where real-time processing is 

required.  

Another significant, yet underutilized, subset of PR algorithms is based on linearizing 

the relationship between sample phase and defocused intensity in the near field. This 

makes phase calculations computationally simple and is accomplished by making 
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assumptions about either the defocus distance or the object’s scattering properties. In the 

limit of small defocus, the transport-of-intensity equation (TIE) may be used to recover 

phase by measuring the axial derivative of intensity [46]. In practice, the intensity 

derivative must be approximated using finite difference methods resulting in a trade-off 

between sensitivity and spatial resolution [47]. It has been shown that multiple defocused 

images, as opposed to the conventional use of two images on either side of focus, can be 

used to circumvent this trade-off and obtain phase images with high resolution and 

sensitivity [48]. In the limit of slowly varying phase (SVP) modulation and weak 

absorption, a weak object transfer function (WOTF) method [49], which is also known as 

the contrast transfer function (CTF) in the field of propagation-based x-ray phase imaging 

[50], may be used to achieve high resolution and sensitivity using a smaller number of 

images [51]. Because deterministic PR algorithms are compatible with quasi-

monochromatic light, spatial, in addition to temporal, phase stability is easily achieved. 

They also lend themselves to simple experimental configurations in which defocus is 

achieved by either moving the sample, the objective, or the imager (CCD) as depicted in 

Fig. 1.4. 

 

Figure 1.4:  Block diagram depicting experimental configuration for deterministic phase 
retrieval (PR). 
 

1.3.1.4 Two-Dimensional Quantitative Phase Imaging Method Comparison 

The overall characteristics of selected 2D QPI methods reported in the literature are 

summarized in Table 1.1. The configurations cited in Table 1.1 are not exhaustive and are 

meant to be representative of progress within each category. The table compares 2D QPI 
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methods using the following metrics: single-shot (enables high acquisition speed), high 

spatial resolution, sensitive (high SNR), common-path (eliminates phase noise), white 

light (eliminates speckle noise), no object scattering assumptions (strongly scattering 2D 

phase objects with sharp edges can be imaged without artifacts), and computationally 

simple (enables real-time processing). 

Table 1.1: Characteristic summary for representative 2D QPI methods: (PS-DHM) 
phase-shifting digital holographic microscopy [52], (FPM) Fourier phase microscopy 
[37], (SLIM) spatial light interference microscopy [38], (OA-DHM) off-axis digital 
holographic microscopy [53], (DPM) diffraction phase microscopy [42], (wDPM) white 
light diffraction phase microscopy [43], (IWFR) iterative wave front reconstruction [45], 
(TIE) transport-of-intensity equation [54], (WOTF) weak object transfer function [49], 
(OFS) optimal frequency selection [48], and (CTF) contrast transfer function [50]. ’s 
indicate presence of a desired trait, ’s indicate absence of a desired trait, and ’s 
indicate a trade-off between desired traits. 

 
 
1.3.2 Three-Dimensional Quantitative Phase Imaging Methods 

3D QPI includes methods which resolve RI information in both lateral and axial 

dimensions. 3D QPI can be separated into three broad categories: projection tomography 

(PT), diffraction tomography (DT), and 3D deconvolution (3DD) methods. Although this 

is sufficient to motivate the present thesis research, there are 3D QPI methods which do 
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not fit within this categorization such as phase sensitive optical coherence tomography 

[55]. 

1.3.2.1 Projection Tomography 

By the Fourier slice theorem, PT relates the 2D Fourier transform of a phase projection 

(measured using 2D QPI) to the 3D Fourier transform of the difference between the 

object RI and the surrounding medium RI along a slice perpendicular to the incident 

wave vector [56]. Rotating the angle of incidence provides frequency domain coverage 

and the object can be recovered using filtered backprojection (FBPJ) [56], for example. A 

block diagram representation is given in Fig. 1.5. 

 

Figure 1.5:  Diagram representation of projection tomography (PT). 
 

The angle of incidence is usually altered by either rotating the specimen or the 

illuminating beam. Although rotating the specimen is prone to alignment error and limits 

acquisition speed, the reconstruction process is completely deterministic 

(computationally simple) and the resulting spatial resolution is isotropic (same in lateral 

and axial dimensions). If the illuminating beam is rotated then the reconstruction process 
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becomes complex if isotropic resolution is required. This is because there is a “missing 

cone” of unsampled frequencies in the 3D aperture of real systems due to the finite 

numerical apertures (NAs) of the illuminating and imaging optics [57]. It has been shown 

that these frequencies can be recovered, at the cost of increased computational 

complexity, using iterative methods and a priori knowledge of object domain constraints 

such as support and non-negativity [58]. Also, the projection approximation inherent in 

PT fails to consider diffractive effects, resulting in low spatial resolution and shallow 

depth of focus [56]. 

1.3.2.2 Diffraction Tomography 

DT is the physical optics analog of PT, which assumes geometrical optics. The Fourier 

diffraction theorem relates the 2D Fourier transform of a complex scattered wave (again 

measured using a 2D QPI method) to the 3D Fourier transform of the complex scattering 

potential along a semicircular arc in the frequency domain [56]. Once again, rotating the 

angle of incidence enables object recovery. Conventional reconstruction methods include 

either frequency domain interpolation or filtered backpropagation which is the DT analog 

to FBPJ and accounts for the diffraction of light over the object domain [56, 59, 60]. 

Figure 1.6 shows a block diagram representation of DT. 

The interpretation of the scattered wave depends on a linearizing object 

approximation, the most common of which are the first-order Born (weakly scattering) 

approximation and the first-order Rytov (small phase gradient) approximation [56]. It has 

been shown that the first Rytov approximation is well-suited for biological applications 

[61] in which RI contrast is weak but total phase delay may be large. Since PT is the 

short wavelength limit of DT in the first Rytov approximation [62], PT is also capable of 

imaging large phase objects. DT in the first Born approximation, however, limits object 

size since the total phase delay is required to less than around /2 radians [56]. 

Compared to PT, DT results in high spatial resolution over a large depth of focus. Lastly, 
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DT has a similar trade-off between acquisition speed and computational complexity in 

the choice of object versus beam rotation if isotropic resolution is needed.  

 

Figure 1.6:  Diagram representation of diffraction tomography (DT). 
 

1.3.2.1 Three-Dimensional Deconvolution 

Another class of 3D QPI methods relies on wide-field 3DD. The unifying characteristic is 

the 3DD of some quantity which is resolved axially via acquisition of a through-focal 

series of 2D images. These depth-resolved measurements are in contrast with the angle-

resolved measurements used in tomographic reconstructions. Figure 1.7 depicts the 

through-focal series acquisition used in 3DD methods. 

The deconvolution is usually based on a 3D point spread function which has inherent 

optical sectioning capability. One approach for enhancing the optical sectioning 

capability in 3DD methods is exploiting the coherence gating effect in white light 2D QPI 

methods such as SLIM [63], which has the additional benefit of enhanced spatial 

sensitivity compared to PT and DT methods which generally utilize monochromatic light. 

The optical sectioning effect is enhanced further if spatial coherence is decreased as in 
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tomographic incoherent phase imaging (TIPI) [64, 65] because Bragg diffraction 

effectively widens the system 3D aperture in this case [66]. Another key benefit of 3DD 

methods is temporal stability due to the lack of separate reference and sample arms. 

Similar to DT, 3DD methods benefit from high spatial resolution over a large depth of 

focus by incorporating diffractive effects. Like PT and DT under beam rotation, most 

3DD methods do not utilize object rotation. Although this results in increased speed and 

reduced mechanical error, it also implies that isotropic frequency domain coverage is not 

possible without using iterative constraint algorithms based on object assumptions known 

a priori [67].  

 

Figure 1.7:  Diagram representation of 3D deconvolution (3DD). 
 

1.3.2.1 Three-Dimensional Quantitative Phase Imaging Method Comparison 

The overall characteristics of selected 3D QPI methods reported in the literature are 

summarized in Table 1.2. The list is not exhaustive and is meant to be representative of 

progress within each category. The following metrics are used: fixed object (enables high 



 
  

14 
 

acquisition speed), isotropic/high spatial resolution, common-path, white light, large 

phase objects (allowing for large total phase delays), and computationally simplicity. 

Table 1.2: Characteristic summary for representative 3D QPI methods: (PT-OAI) 
projection tomography using off-axis interferometry [68], (TPM) tomographic phase 
microscopy [9], (DT-OAI) diffraction tomography using off-axis interferometry [69], 
(DT-PSI) diffraction tomography using phase-shifting interferometry [61], (WLDT) 
white light diffraction tomography [63], and (TIPI) tomographic incoherent phase 
imaging [64]. ’s indicate presence of a desired trait and ’s indicate absence of a 
desired trait. 

 
 
1.3.3 Optical Fiber Characterization 

As has already been mentioned, QPI, often in combination with QRI for the 

determination of RS in optical fibers, has the potential to be transformative in the field of 

fiber optics due to its ability to provide detailed information about the spatial distribution 

of fundamental physical properties of fibers, which ultimately determines device 

operation and performance. Since QPI and QRI are transverse fiber profiling techniques, 

meaning that they measure phase variation transversally though the fiber [70], such 

methods are capable of measuring axial variations along the fiber propagation axis. This 

is a key feature since many important devices have axial variation, such as fusion splices, 

gratings, tapers, lensed fibers, etc.  

The diversity of fibers and fiber-based devices which are being characterized via QPI 

and QRI continues to grow, with examples including single-mode (SMF) [31, 71], multi-

mode [71, 72], multi-core [73], photonic-crystal (PCF) [73-75], large-mode-area (LMA) 
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[76], rare-earth-doped [76, 77], and polarization-maintaining fibers [70, 78-80] as well as 

fiber Bragg gratings [81, 82], fiber-based lasers (FBL) and amplifiers (FBA) [70], 

femtosecond laser [76] and ion beam [81, 83] implanted waveguides, various fusion 

splices [84-87], and LPFGs [88-91]. In what follows, a brief review of the relevant 

literature in the specific areas of active LMA fiber, fusion splice, and LPFG 

characterization are provided which motivate both the present and future OFC research 

included in this thesis.  

1.3.3.1 Active Large-Mode-Area Fiber Characterization 

The development of high-power FBLs and FBAs over the past decade or so has provided 

motivation for new OFC technologies which are related to QPI and tomography [70]. 

This is at least partly because high-power FBLs often require single-mode guidance in 

extremely low NA fibers with correspondingly LMAs in order to avoid effects induced 

by fiber nonlinearity at high optical densities [92]. Because NA is determined primarily 

by the normalized index difference Δ between core and cladding, the effects of various RI 

and RS perturbations, including manufacturing induced effects like RS formation [93], 

dopant transport [94], and FIV strains [26, 95], are of primary importance since they 

represent a much larger relative deviation from the intended RI profile. The situation is 

complicated further by the need to optimize concurrently the spatial distribution of rare-

earth dopants (typically erbium or ytterbium) within the fiber to achieve high gain.  

For example, Schmidt et al. recently reported an ultra-LMA ytterbium-doped PCF 

with an active core diameter of 70 μm and a fundamental mode field area of 2,300 μm2 

requiring a normalized index difference of Δ = 7  10-5 [96]. As common perturbations,  

such as draw-induced RS and FIV [95], produce RI changes greater than or equal to this 

order of magnitude [95], it is clear that such fibers (for more examples see [97, 98]) 

require an extensive and precise knowledge of all potential perturbations which may take 

effect during the fiber lifetime. For these reasons, joint RI/RS characterization methods, 
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such as the 3D index-stress distribution (3DISD) method recently proposed by Hutsel et 

al. [31], have the potential to be transformative in the field of ultra-LMA active fiber 

design and characterization intended for use with high-power FBLs and FBAs. 

1.3.3.2 Fusion Splice Characterization 

In addition to understanding the effects of fiber manufacture, the use of arc fusion 

splicing is used ubiquitously in fiber optic technology and development and warrants a 

complete characterization. For an excellent review of optical fiber fusion splicing and its 

current status please see [99]. One important topic of fusion splice characterization 

involves the use of RI profiling to measure dopant diffusion between dissimilar fibers. It 

is known that such diffusion, both parallel and perpendicular to the fiber axis, plays an 

important role in determining splice loss [99]. This is because the diffused region acts as 

a mode transformer making the transition between fundamental modes more gradual 

[100, 101]. Another key area is measuring RS distributions in the vicinity of a fusion 

splice [87], which, although of less optical significance than dopant diffusion [101], is 

critical in determining the mechanical strength of splices and may even be critical in 

determining optical properties, for instance when splicing low NA fibers together.  

Lastly, another RI perturbation which may affect the operation of various fusion 

splices and is often overlooked is the relaxation of FIV [26, 95]. During fiber 

manufacture, FIV results in an isotropic decrease in cladding RI owing to the time 

dependent contraction induced in the viscoelastic silica as it cools rapidly from 

temperatures near or above its fictive temperature [26]. Such frozen-in changes are 

proportional to draw tension during manufacture and can be on the order of 1  10-3 RI 

units in SMF [26]. In the past, the cladding RI of silica optical fibers has been assumed to 

be a constant reference and independent of any fabrication parameter, which may explain 

why the effects of FIV have not been considered until the past decade. For fusion splices, 

relaxation of FIV theoretically results in a RI increase in the cladding near the splice, 
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however, their experimental confirmation, characterization, and modeling remain an area 

of active research.  

1.3.3.3 Long-Period Fiber Grating Characterization 

The last, and perhaps most interesting, application of QPI related methods to OFC lies in 

obtaining and using a more complete understanding of the physical mechanisms 

responsible for mode coupling in LPFGs fabricated via various methods including but not 

limited to CO2 laser induction [102] and electric arc discharge [28]. Although many 

suggested mechanisms have been proposed in the literature [23, 24], such as mechanical 

RS relaxation, glass densification, diffusion of core dopants, relaxation of FIV, and 

geometric deformation, the source of modulation depends on the specifics involved in 

fabrication and more research is needed providing quantitative measurements concerning 

the origin and effect of various mechanisms, as is consistent with conflicting reports.  

Recently, Hutsel et al. has provided a comprehensive characterization of both RI and 

RS effects in CO2-laser-induced LPFGs [91] using the aforementioned 3DISD method 

[31]. This data provides insight on the effects of core RS relaxation and azimuthally 

asymmetric RI variations in the cladding induced via glass densification [91]. In addition 

to CO2-laser-induced gratings, LPFGs fabricated via electric arc discharge represent a 

simple fabrication alternative as many configurations utilize commercially available 

fusion splicers [23] and will also benefit from quantitative measurements. In 2005, Durr 

et al. investigated the effects of arc discharge on the axial variation of RS, concluding 

that relaxation of mechanical RS are not likely to be primary source of RI modulation in 

arc-induced, as opposed to CO2-laser-induced, LPFGs since the axial extent of RS 

relaxation in much longer than typical LPFG periods resulting in a washed-out effect 

[89]. Likewise, Abrishamian et al. have investigated the effects of differing arc discharge 

conditions on the LPFG RI profile measured via quantitative phase microscopy based on 

solving the TIE [88]. Results show a core reduction and cladding increase in RI as is 
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expected from RS and FIV relaxation respectively [88, 95]. Understanding, and 

potentially controlling, these effects is key to the realization of device repeatability. This 

is because, with typical splicing parameters, arc-induced LPFGs are thought to be 

dominated by geometric deformation, such as tapering [28], or microbending [30], which 

are less controllable in nature and induce larger insertion loss. 

Lastly, an opportunity exists to use numerical optical modeling tools, such as a split-

step beam propagation method (BPM) [103] or eigenmode expansion [104], to gain 

further intuition concerning the effects of various RI perturbations, including those which 

are measured directly and induced photoelastically from RS measurements. To date such 

investigations do not exist, as the modeling, fabrication, and RI/RS measurement 

capabilities often exist in separate laboratories and such a contribution would require a 

relatively broad, collaborative effort. However, it is likely that if such a capability were 

developed it would be transformative in the field of LPFG development as many authors 

currently rely on empirical methods based on observed transmission characteristics [105]. 

1.4 What is needed? 

1.4.1 Quantitative Phase Imaging 

In an effort to view QPI technology as a whole, a few key observations have been made 

which suggest a new paradigm for QPI development. QPI method design can be 

decomposed into innovations in measurement and interpretation as depicted in Table 3. 

Measurement innovations include what type of images/data are to be collected and how 

or with what hardware/experimental configuration. Interpretation innovations include the 

underlying mathematical models describing the physics of image formation as well as 

how the measured images/data are processed. 
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Table 1.3: Decomposition of QPI method design.  

QPI Method Design 
Measurement (Hardware) Innovations 

 What is measured? 
- phase-shifting/off-axis/in-line interferograms/holograms, Hartmanngrams, PC/DIC/HMC 

images, bright-/dark-field images, etc. 

 How is it measured? 
- sources: lasers, light-emitting diodes, superluminescent diodes, lamps, etc. 
- optics: lenses, filters, beamsplitters, mirrors, gratings, light modulators, polarizers, etc. 
- detectors: charge-coupled devices, photodiodes, spectrometers, etc. 
- actuators: piezoelectric scanners, galvanometers, stepper motors, controllers, etc. 

Interpretation (Software) Innovations 
 What is the underlying model for image formation? 

- linear/nonlinear, scalar/vector, geometric/physical, spatial/temporal coherence, diffraction 
model, etc. 

 How are the measured images processed? 
- Fourier transformation, demodulation, phase unwrapping, deconvolution, regularization, 

iteration, constrained optimization, differentiation, interpolation, backprojection, 
backpropagation, etc. 

 
Until now, a majority QPI methods have been developed using an integrated 

approach, in which measurement and interpretation innovations are considered 

simultaneously to optimize performance. This approach is very reasonable as it provides 

the researcher with complete control over all aspects of method design and has resulted in 

a number of commercial 2D QPI products from companies such as Phase Holographic 

Imaging PHI AB, Lyncée Tec, Ovizio Imaging Systems, 4Deep, Phi Optics, Phasics, and 

Phase Focus Limited. These products are robust and have provided utility in a growing 

number of applications. 

In spite of this progress, however, the integrated approach is not tailored to the needs 

of QPI’s primary end users, namely microscopists in biology and biomedicine. One of the 

primary factors underlying the success of modern optical microscopy platforms is the 

ability to combine modalities into one universal product. Bright-field, dark-field, PC, 

DIC, HMC, and fluorescence imagery can all be recorded and automated in parallel using 

modern microscope systems and platforms which are highly developed for biological 

applications including live cell imaging. The integrated approach for QPI method design, 

however, commonly results in stand-alone systems which are expensive to acquire and 
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may be impractical additions to established laboratories. One of the primary reasons for 

this is the popular notion that coherent illumination is required for phase recovery [6], 

whereas microscopes are equipped with Köhler illumination from extended incoherent 

sources, which results in either partially coherent or incoherent imaging conditions [106]. 

Recent work, however, indicates that it is not only possible but in many ways desirable to 

recover sample phase information using partially spatially coherent illumination [107, 

108].  

Taken together, these observations suggest a new paradigm for QPI development in 

which a constrained approach is favored. In the constrained approach, measurement 

innovation parameters conform to hardware availability in commercial microscope 

platforms, such that resulting QPI methods are inherently compatible. Significant 

innovations in interpretation will be required to account for and exploit the favorable 

properties of partially coherent illumination. The resulting methods will be implemented 

as computer algorithms, which may at first be open-sourced and later bundled into 

commercial available microscopy software packages. It is believed that the constrained 

approach will lead to the wide-scale adoption of QPI among microscopists in biology and 

biomedicine, resulting in a dramatic increase of utility in these fields.  

1.4.2 Optical Fiber Characterization 

In Section 1.3.3, optical fiber application areas involving the use of QPI and relating 

imaging modalities, including QRI via polarimetric methods as well as polarized light 

microscopy, were reviewed. The thrust of this research is not necessarily in the 

development of new imaging methods so much as in the application of existing methods 

to develop a deeper understanding and advance fiber and fiber-based technology. A few 

key research areas, including FBL and FBA, fusion splice, and LPFG characterization 

were identified as ripe for application. In particular, as FBL and FBA applications 

involving the use of active LMA fibers is in growing demand, measurements detailing the 
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fundamental physical properties of these fibers as well as changes that occur during use, 

such as in fusion splicing, are needed especially. Likewise, conflicting reports in the 

literature outlining various grating formation mechanisms in LPFGs motivate the use of 

detailed measurements to clarify these issues. In order to push the field further, specific 

numerical methods adapted for use with measurable QPI data are needed, as predictions 

based on coupled-mode theory, although powerful, only provide meaningful 

interpretations in select cases which meet its theoretical assumptions [109, 110]. 

1.5   Research Objectives 

In light of what is needed and consistent with the aforementioned constrained approach 

for QPI development, the primary objective of the research presented in this thesis is to 

develop new QPI modalities which are compatible with standard microscope platforms 

utilizing Köhler illumination. Specifically, the work presented herein aims to develop, 

verify, characterize, and apply three QPI modalities, including two interrelated 2D 

methods which lead to a third 3D method. The aim of the described QPI methods is to 

provide end users with QPI capability without extensive hardware modification or 

reduced performance relative to the current state-of-the-art. 

A secondary objective of the present thesis research is to apply QPI and QRI to the 

characterization of RI and RS effects in LMA erbium- and ytterbium-doped fibers (EDFs 

and YDFs) in order to provide a basis for the future development of ultra-LMA devices 

requiring precise knowledge of and control over these perturbations, including the effects 

of fusion splicing. In addition to the OFC work detailed herein, future work concerning 

the optimization of parameters in arc-induced LPFGs based on commercial fusion 

splicers as well as the numerical modeling of measured LPFGs is suggested in the 

concluding chapter and mentioned here for relevance. 
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1.6   Thesis Overview 

The research objectives described in the previous section are examined in detail in the 

following chapters which define the organization of content within this thesis. A natural 

subdivision between the aforementioned primary and secondary research objectives 

occurs with Chapters 2-4 centered on QPI development and Chapters 5 and 6 outlining 

the characterization of RI and RS effects in LMA EDFs and YDFs respectively. 

In Chapter 2, a new 2D QPI method is developed for generalizing recently developed 

reconstruction techniques based on the TIE to the more relevant case of Köhler 

illuminated microscopy. The method is based on estimating the longitudinal intensity 

derivative in the TIE via convolution with multiple Savitzky–Golay differentiation filters. 

The resulting noise and resolution performance are evaluated via numerical simulation 

and demonstrated experimentally using a blazed transmission grating as well as a SMF as 

test phase objects. 

In Chapter 3, the foundational work in Chapter 2 is generalized further to provide an 

optimal phase recovery algorithm based on a direct inversion of the phase optical transfer 

function under the assumptions of weak absorption and SVP. The method uses a small 

number of efficiently sampled defocus planes and as such is better-suited for mid-high 

speed QPI applications than the method described in Chapter 2. Simulation results are 

provided which compare the performance of similar algorithms and demonstrate 

compatibility with strong phase objects encountered in live cell imaging. Upon 

experimental validation using a microlens array as a test phase object, the method is then 

applied to both high-speed and time-lapse QPI experiments on live adherent cells. 

Chapter 4 extends the theoretical foundations outlined for use with the novel 2D QPI 

methods of Chapters 2 and 3 to the more realistic and complex scenario of 3D QPI. This 

method is presented as an attractive alternative to ODT, which often requires the use of 

custom-built opto-mechanical configurations and laser illumination. Expressions 

analogous to the aforementioned weak absorption and SVP conditions are derived for 3D 



 
  

23 
 

imaging. By combining through-focal series acquisition with object rotation, 3D RI 

recovery with isotropic spatial resolution is made possible without requiring the use of a 

priori knowledge and iterative reconstruction. Lastly, simulated and experimental 

reconstructions are demonstrated using specialty optical fibers as well calibrated test 

phase objects. 

Chapter 5 addresses the need for RS and RI measurements in LMA EDFs using the 

3DISD method first described by Hutsel et al. [31]. The effects of fiber manufacturing, 

cleaving, and arc fusion splicing in a commercially available LMA EDF are all 

characterized, the primary results of which indicate the presence of strong perturbation 

strengths relative to the low normalized index differences required by current and future 

LMA and ultra-LMA EDFs. 

 Similar to the procedure used in Chapter 5, the effects of arc fusion splicing in LMA 

single-mode YDFs are characterized using the 3DISD method and described in Chapter 

6. The results again indicate significant RI changes within a transformed region in the 

vicinity of the splice which is on the order of mm. Unlike LMA EDFs, however, these 

measurements identify the diffusion of core dopants to be a much stronger effect, 

increasing the overall mode-field-diameter by 39.6% and resulting in an additional splice 

loss of 20.8% as measured by a radially symmetric finite-difference BPM, which will be 

critical for the design and optimization of current high-power YDF FBLs and FBAs. 

In Chapter 7, the results and accomplishments described in Chapters 2-6 are placed 

into context and briefly summarized. For the three QPI modalities presented in this thesis, 

a majority of the described research has centered on conceptual development and 

providing demonstrative “proof of concept” results. For this reason, future work is 

included in Chapter 8 which identifies fruitful research areas centered on the further 

development, verification, characterization, and application of these modalities. 

Likewise, due to the need to characterize LPFGs, future work directions concerning the 

measurement of RI/RS perturbations in arc-induced LPFGs as well as the application of a 
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BPM towards modeling LPFGs based on measured profiles are also outlined in Chapter 

8. Lastly, some concluding remarks are provided in Chapter 9.  
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CHAPTER 2 

MULTIFILTER PHASE IMAGING WITH PARTIALLY 
COHERENT LIGHT 

 
 

In Chapter 1, upon reviewing state-of-the-art quantitative phase imaging (QPI) methods, 

it was found that the current integrated approach of optimizing measurement and 

interpretation aspects simultaneously does not meet the needs of QPI’s primary end users, 

who would benefit greatly from methods which are directly compatible with microscopy 

systems without modification. This chapter presents a novel phase reconstruction method, 

called multifilter phase imaging with partially coherent light (MFPI-PC), which provides 

this capability and is based on the application of the transport-of-intensity equation (TIE) 

to Köhler illuminated microscopy. The resulting noise and resolution performance are 

evaluated via numerical simulation and validated experimentally using a blazed 

transmission grating as well as a single-mode fiber as test phase objects. This chapter is 

based on the manuscript entitled “Multifilter phase imaging with partially coherent light,” 

which was published in June of 2014 [111] and an associated provisional patent 

application [112]. 

2.1   Introduction 

Phase imaging is critically important for a variety of biomedical and metrological 

applications because many objects of interest are not strongly absorbing but do induce 

significant phase shifts. A number of methods exist for both qualitative and quantitative 

phase imaging (QPI) [2, 3, 6]. Quantitative methods are attractive because of their ability 

to reveal structural information directly. For example, QPI has been used to study cell 

growth, motility, and membrane dynamics [38]. Most quantitative methods are based on 

interferometry and require explicit control over reference and object beams in order to 
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derive phase information from measured interferograms [6]. By contrast, propagation-

based phase retrieval (PR) methods are experimentally simple since the only input data 

are images taken at varying propagation distances using traditional imaging hardware 

[46, 113]. More specifically, deterministic PR based on the transport of intensity equation 

(TIE) is especially useful due to its ability to recover the optical path length of an object 

when the illumination is partially (both temporally and spatially) coherent and the phase 

is not well-defined over the field of view [108]. This is to be contrasted with the strict 

spatial coherence requirements inherent in most phase imaging methods and is of 

significant practical importance for situations in which coherent sources are either 

unavailable or are not economically viable. Another important consequence of this 

compatibility is the potential for improved spatial resolution over coherent methods [1].  

Derived from the paraxial scalar wave equation, the TIE as given by Eq. (2.1) 

specifies the relationship between phase  and the derivative of intensity along the 

optical axis , where  is the wavelength and  is the gradient operator in the lateral 

dimensions ( , ) represented by the position vector  [46].  

 
,

2
∙ , , . (2.1)

The intensity derivative cannot be measured directly and must be approximated 

typically using finite difference methods. Conventionally, the  derivative is 

approximated by subtracting two symmetrically defocused images [54]. One of the major 

reasons for which TIE phase imaging, despite its many desirable attributes, has not yet 

been widely adopted is an inherent trade-off between noise and spatial resolution in the 

choice of the defocus distance [47]. Choosing a small defocus distance improves 

resolution at the expense of dramatically increased noise sensitivity, while choosing a 

large defocus distance reduces noise sensitivity at the expense of degraded resolution.  

In order to overcome this trade-off, there has recently been an increased effort to 

improve the intensity derivative estimate by utilizing information recorded in multiple 
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defocused planes [48, 114-116]. Among these, methods that decompose the problem in 

the lateral spatial frequency domain and estimate each Fourier component of the  

derivative with an appropriately chosen finite difference approximation are particularly 

effective because they balance the effects of noise and diffraction induced nonlinearity 

over a wide range of length scales [47, 48]. Methods such as these may appropriately be 

termed multifilter phase imaging (MFPI) methods due to their use of multiple spatial 

frequency filters in post-measurement processing to produce a composite phase image. 

The appropriate choice for the finite difference approximation is determined by the 

dynamics of wave propagation between defocused planes and is therefore highly 

sensitive to the level of spatial coherence of the incident illumination.  

Until now, MFPI methods have only been derived for the spatially coherent case, 

such the description given in [47] and the optimal frequency selection (OFS) algorithm 

described in [48] by Zuo et al.. These methods are not adapted to match the physics of 

partially coherent wave propagation, the regime for which the TIE method is particularly 

well-suited and is widely used. When the illumination is partially spatially coherent, two-

dimensional (2D) wave propagation may be described by propagation of the four-

dimensional mutual intensity function [107]. The additional mathematical complexity is 

simplified, however, if the source is assumed to be delta correlated, as in Köhler 

illuminated microscopy, for which the overall intensity upon propagation is the sum of 

intensities due to each off-axis point source [108]. Under this assumption, a new method 

is developed that enables the benefits of the multifilter approach for the important case of 

partially spatially coherent illumination for which conventional QPI methods are not 

applicable. This method was presented in [117], and a thorough treatment is now given 

here. 
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2.2  Principles of Multifiler Phase Imaging 

2.2.1 Optimal Frequency Selection  

The basic principles of MFPI were first introduced by Paganin et al. [47] and later 

adapted by Zuo et al. [48] to include derivatives estimated by higher-order finite 

difference methods. It was found that the previously developed finite difference methods 

[114-116] may be generalized in terms of a digital signal processing approach in which 

the  derivative is estimated via convolution with a Savitzky-Golay differentiation filter 

(SGDF) [48]. This convolution solution is equivalent to least squares polynomial fitting 

where the order of the polynomial fit corresponds to the order  of the SGDF [48]. Only 

odd orders  are considered because the SGDFs for each odd order are identical to the 

next highest even order, e.g., 1 and 2, 3 and 4, etc. [48]. 

Following the derivation of Pogany et al. [118], the three-dimensional (3D) image 

intensity distribution for a generic weakly scattering 2D object may be fully specified in 

terms of a combination of phase and amplitude optical transfer functions (POTF and 

AOTF), the combination of which has also been called the contrast transfer function 

(CTF) in the field of propagation-based x-ray phase imaging [50, 51, 119]. Since the 

AOTF is an even function of defocus and the POTF is an odd function of defocus, 

estimating the  derivative via convolution with a SGDF results in a decoupling of the 

phase and amplitude information because the SGDF is a Type III finite-impluse-response 

filter which is also odd-symmetric. Because of the fact that inversion of the TIE in the 

Fourier domain (for a pure phase object) amounts to the application of an inverse 

Laplacian filter, a simple change of variables then allows the TIE estimated phase to be 

described in terms of a low-pass filtered version of the actual phase as described in [48] 

and given by Eq. (25) in that reference. This phase transfer function (PTF) defines the 

relationship between the estimated phase and the actual object phase. Knowing the PTF 

associated with each SGDF allows the phase information to be combined in the spatial 

frequency domain, resulting in a composite phase which effectively increases signal-to-
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noise ratio across a broad range of frequencies. This is the essence of the OFS method 

which was given by Zuo et al. [48], which may also be called MFPI, and is summarized 

by the block diagram shown in Fig. 2.1 which is similar to Fig. 3 in [48]. When the 

illumination is partially spatially coherent, the PTFs derived in [48] are no longer valid 

and need to be re-derived; however, the MFPI method may still be applied if the partially 

coherent PTFs are known. 

 

Figure 2.1:  Block diagram representation of the multifilter phase imaging (MFPI) 
method. 
 
2.2.2 Partially Coherent Multifilter Phase Imaging 

In order to formulate the problem and adapt the PTFs, the model used in describing the 

3D image intensity distribution must account for partial spatial coherence. For an ideal 

Köhler illuminated system, the image intensity distribution can be expressed in terms of a 

2D [120] or 3D optical transfer function theory [66] which are related to each other via a 

one-dimensional Fourier transform along the optical axis (  direction) [120]. Both 

derivations rely on a weakly scattering or first-order Born approximation for which once-

scattered light interferes only with unscattered light [66, 120], which has resulted in the 

use of weak object transfer function (WOTF) when referring to such methods throughout 

the literature [49, 120, 121]. Alternatively, one may also use a coherent mode 

decomposition (CMD) [122] to express the resulting intensities as the summation of 

appropriately apertured intensities due to each off-axis point of the extended source. In 
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this chapter the 3D WOTF formalism of Streibl will be used to derive the PTFs 

corresponding to SGDFs of various orders. The numerical simulations in Section 2.3 are 

based on a CMD model and the equivalence of these two approaches will be 

demonstrated in that section. 

In [66], the image intensity spectrum for a telecentric imaging system is given by  

 , , , , , , , (2.2)

where  is the background intensity, ,  and ,  are 3D object phase and 

amplitude spectra corresponding to real and imaginary parts of the scattering potential 

, , and ,  and ,  are the 3D POTF and AOTF respectively, which 

together comprise the 3D WOTF. The variables  and  correspond to lateral and 

longitudinal spatial frequency coordinates, respectively, where  and  

and  are conjugate to spatial variables  and  and  is conjugate to . For 2D objects 

which are thinner than the Rayleigh depth of focus, the  dependence may be removed 

from ,  and	 ,  by inverse Fourier transformation. The WOTF for a 

paraxial system with a circular aperture is given by Eqs. (31) and (32) in [66] and depend 

on the sizes of the source and pupil. The resulting shape of the WOTF is primarily 

determined by the coherence parameter  of the incident illumination, Eq. (2.3), where 

 and  are the numerical apertures (NA) of the condenser and objective lenses 

respectively and 0  1: 

 . (2.3)

The quantities , , , , and ,  each possess Hermitian symmetry 

since , , , , and ,  are each real valued functions. It then follows that 

, ,  and , ,  so that phase information may 

be decoupled from amplitude information as in the coherent case. The in-focus intensity 

derivative is estimated by convolution with a SGDF with coefficients given by 
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Δ⁄ , as shown in Eq. (2.4), where  is the half-data length,  is the image number 

index, Δ  is the distance between defocused planes, and  = 0 corresponds to the in-focus 

plane: 

 
, 0 , ∆

∆
. (2.4)

It then follows from the convolution and Fourier central slice theorems that the lateral 

Fourier spectrum of the derivative estimate may be represented by integrating the POTF 

multiplied by the SGDF frequency response, , along the axial spatial 

frequency coordinate, Eq. (2.5):   

  , (2.5a)

where 

 
4

, . (2.5b)

 in Eq. (2.5a) corresponds to the 2D object phase spectrum and √ 1. Equation 

(2.5b) defines the 2D POTF corresponding to the intensity derivative estimate under 

finite amounts of defocus. If the SGDF bandwidth is larger than the WOTF support, the 

axial frequency response in Eq. (2.5b) may be replaced by an ideal differentiation filter 

and the weakly defocused (WD) POTF derived in [8] is then recovered as 

 
4

2 , . (2.6)

The POTF implied by the TIE (for a pure phase object) is easily identified by inspection 

of the TIE in the Fourier domain, [Eq. (2.7)], where ̅ is mean wavelength of the quasi-

monochromatic illumination and | |. The use of a quasi-monochromatic 

approximation is justified if an interference filter is used in combination with broad band 

source such as mercury arc or halogen lamp. The background intensity  is given by Eq. 

(25) in [66]: 
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  2 ̅ , (2.7a)

  2 ̅ . (2.7b)

Figure 2.2 shows the normalized POTFs under finite defocus for a few SGDF orders 

 and coherence parameters  of 0.1, 0.5, and 0.9, where  is 0.75 and ̅ is 546 nm. 

The half-data length  of the defocused image stack is 15 and the distance between 

symmetrically defocused planes Δ  is 0.6 μm. For consistency, these same parameters 

will be used throughout the chapter. The WD and TIE POTFs are also plotted in Fig. 2.2 

for reference.  

As can be seen clearly by Fig. 1 in [123], regardless of , the axial width of the 3D 

WOTF is greatest at the normalized frequency  = 1, even though this does not 

correspond to the maximum frequency transmitted. Consequently the spatial filters used 

in the decomposition phase of MFPI-PC take on a slightly different form. The form and 

cut-off frequencies of the spatial filters are defined by Eq. (2.8), where  is a lateral 

cut-off frequency for the spatial filter corresponding to a specific SGDF order  and  is 

a constant that defines the cut-off ratio. Our experiments thus far have yielded good 

results with  = 0.99; however, its exact value represents another noise-resolution trade-

off: 

  . (2.8)

For larger values of  there may be two cut-off frequencies, corresponding to a lower 

and upper cut-off, which define upper and lower bounds for the frequency range which 

can accurately be estimated with the corresponding SGDF. Each Fourier component of 

the resulting composite phase should be estimated using the lowest-order SGDF possible 

since noise is effectively suppressed by lower orders.  

There is no simple relationship for the cut-off frequencies as they depend, in general, 

on , , Δ , , , and ̅. Figure 2.3 depicts the normalized cut-off frequencies
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Figure 2.2:  Normalized phase optical transfer functions (POTFs) [ Δ ⁄ ,
̅ / ] for orders  = 1, 7, 13, and 19 and coherence parameters (a)  = 0.1, (b)  = 

0.5, and (c)  = 0.9. Weakly defocused (WD) and TIE POTFs are also plotted. 
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calculated using Eq. (2.8) for odd orders  = 1 through 25 and the same coherence 

parameters as in Fig. 2.2. As expected, the normalized lower and upper cut-offs converge 

to 1 as  is increased. The cut-off frequencies for the coherent case (  = 0) are also 

plotted in Fig. 2.3 for reference. 

 

Figure 2.3:  Normalized cut-off frequencies ( ̅ ⁄ ) for odd orders  = 1 
through 25 and coherence parameters  = 0, 0.1, 0.5, and 0.9. 
 

The partially coherent PTFs are given by dividing the estimated POTF by the implicit 

TIE POTF. 

  PTF . (2.9)

PTFs under finite defocus are plotted in Fig. 2.4 again for the same parameters as in Fig. 

2.2. The WD PTFs are also included for reference. It can be seen that the theoretical 

resolution using this method is improved as  is increased at the cost of reduced contrast 

over a broad range of spatial frequencies due to aperture cut-off effects. When the MFPI-
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Figure 2.4:  Phase transfer functions (PTFs) for orders  = 1, 7, 13, 19 and for 
coherence parameters (a)  = 0.1, (b)  = 0.5, and (c)  = 0.9 where ̅ ⁄ . 
Weakly defocused (WD) PTFs are also plotted.  
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PC method is used, the composite PTF approaches the WD PTF without increasing noise 

sensitivity, as will be verified numerically and experimentally in Sections 2.3 and 2.4. 

2.3  Simulation Results 

An alternative, and intuitive, description of a Köhler illuminated imaging system comes 

by way of a CMD. Using this method a partially coherent wave-field may be decomposed 

into statistically independent coherent modes with well-defined phases [122]. Because 

each mode is statistically independent, the resulting intensity pattern is the summation of 

intensities due to each mode [122]. For a delta-correlated source, the coherent modes 

correspond to individual plane waves propagating through the object with various 

inclination angles. Therefore, the intensity pattern resulting from an arbitrary object is 

easily modeled by summing together the intensities due to a large number of off-axis 

plane waves which have been apertured appropriately. The equivalence of the CMD 

formulation with the WOTF theory described in Section 2 can be demonstrated by a 

numerical example.  

Using the CMD method, the intensities due to a weakly scattering phase object 

consisting of the letters “GT” as shown in Fig. 2.5 are simulated. The units of simulated 

phase object are radians. The simulation parameters match those in Section 2 and the grid 

dimensions are 1030  1300 with a square pixel size of 0.245 µm  0.245 μm. In each 

simulation, the illuminating aperture was uniformly discretized into 40 intervals in each 

direction of the lateral spatial frequency domain resulting in around 1,256 individual 

plane waves. A Fresnel propagation kernel is used to mimic the paraxial approximation 

inherent in [66]. No noise was added in order to directly compare the simulated results to 

those predicted by WOTF theory. The PTFs are found by simply dividing the phase 

spectra estimated using a fixed order  by the simulated phase spectrum. In every case, 

the resulting radially averaged PTFs obtained from the simulation were indiscernible 
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from the PTFs obtained with WOTF theory as plotted in Fig. 2.4, indicating that the two 

formulations are equivalent. 

 

Figure 2.5:  Simulated phase object. 
 

Lifting the paraxial approximation and using a spherical propagator instead results in 

error upon inversion of the TIE since it is based on a paraxial approximation. These 

errors are, in general, non-negligible for high-NA imaging systems and large coherence 

parameters especially. A detailed treatment of the errors associated with applying the TIE 

to such scenarios is beyond the scope of the present work. However, for all the cases 

highlighted here, the non-paraxial results show reasonable agreement with the paraxial 

theory and successfully demonstrate the anticipated characteristics. That is to say that the 

desired characteristics hold even though the remainder of simulation and experimental 

results presented in this chapter are based on non-paraxial light propagation. 

Figure 2.6 displays the phases recovered after adding white Gaussian noise with 

normalized standard deviation  = 0.002 to each simulated intensity image, where  

defines the ratio of the noise standard deviation to the mean image intensity level, 

meaning that the amount of noise added was 0.2% of the background intensity. If a first-

order order SGDF is used, as in Fig. 2.6(a), 2.6(d), and 2.6(g), a blurry version of the 

original phase image is obtained along with the addition of a small amount of low spatial 
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frequency noise artifacts. Although the registered trademark symbol is not discernible in 

any case, the blurring is more severe as  is increased. This is because the longitudinal 

width of the 3D POTF dramatically increases with  for low to mid-range spatial 

frequencies [66].  

 

Figure 2.6:  Recovered phases (colorbar units–radians) for (a)  = 0.1 and fixed-order  
= 1, (b)  = 0.1 and fixed-order  = 27, (c)  = 0.1 and MFPI-PC including orders  = 1 
to 27, (d)  = 0.5 and fixed-order  = 1, (e)  = 0.5 and fixed-order  = 27, (f)  = 0.5 
and MFPI-PC including orders  = 1 to 27, (g)  = 0.9 and fixed-order  = 1, (h)  = 0.9 
and fixed-order  = 27, and (i)  = 0.9 and MFPI-PC including orders  = 1 to 27. In all 
figures the registered trademark symbol is expanded in the top right with its associated 
location given by the dashed square outlines. 
 

If a 27th-order SGDF is used, as in Fig. 2.6(b), 2.6(e), and 2.6(h), the resolution 

improves as the trademark symbol becomes discernible in each case. However, using a 

large-order  results in dramatically increased noise sensitivity due to overfitting. If the 

MFPI-PC method is applied, combining odd orders  = 1 through 27 and using the cut-

off frequencies shown in Fig. 2.3, the resulting composite phase spectrum should 
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approximate the simulated phase spectrum multiplied by the corresponding WD PTF 

without adding severe noise. Careful inspection of Fig. 2.6(c), 2.6(f), and 2.6(i) verifies 

that this is true. The noise artifacts are of the same level as the first-order estimates, and 

the resolution features demonstrate the anticipated characteristics. In each case the 

registered trademark symbol is discernible; however its magnitude is reduced as  is 

increased due to aperture effects. 

Figure 2.7 displays the phase recovered using the established OFS method [48] on 

partially coherent intensity data,  = 0.5, without taking partial spatial coherence into 

account. In this simulation the same level of Gaussian noise (  = 0.002) was added and 

the cut-offs for  = 0 and  = 1 through 27 (also shown in Fig. 2.3) were used. Although 

the noise reduction is satisfactory because the first-order SGDF is used for most of the 

low spatial frequencies, it is plain to see that the overall reconstruction has been severely 

impacted by the improper placement of filter cut-off frequencies, resulting in the 

unnecessary attenuation of certain spatial frequencies. 

 

Figure 2.7:  Recovered phase for  = 0.5 and optimal frequency selection (OFS) 
including orders  = 1 to 27. The registered trademark symbol is expanded in the top 
right with its associated location given by the dashed square outlines. 
 

To demonstrate the robustness of the MFPI-PC method in the presence of severe 

noise, the phase root mean squared errors (RMSEs) as a function of simulated normalized 
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noise standard deviations from  = 0 to 0.015 for the cases when  = 0.1,  = 0.5, and  = 

0.9 are plotted in Fig. 2.8, where  has the same meaning as before. The errors were 

calculated 10 times and averaged to reduce uncertainty. For all cases the same general 

behavior as given by Fig. 7 in [48] is observed in which the lower order estimates are 

more robust against noise but possess larger error with small noise levels due to lack of 

spatial resolution. In fact, for a given noise level, there is a fixed-order  which produces 

the lowest RMSE on average. However, with the MFPI-PC method, the full spatial 

resolution of the highest order is available and the RMSE is always lower because it 

judiciously stitches together the best portions from each phase estimate. The results also 

show that the MFPI-PC method is robust in the presence of high levels of noise as the 

slope of its RMSE with  is only slightly larger than that of the first-order estimate for all 

cases. For comparison, the resulting RMSE for the OFS method is also plotted. When  = 

0.1, the illumination is nearly coherent so that the MFPI-PC and OFS results are nearly 

indiscernible. This makes perfect sense because the MFPI-PC method is more general 

and converges to the OFS method with decreasing coherence parameters as can be seen 

by examining the cut-offs in Fig. 2.3 for  = 0.1 and  = 0. When  = 0.5, it can clearly 

be seen that the MFPI-PC results are better. This is because of the unnecessary 

attenuation of certain spatial frequency ranges due to improper placement of filter cut-off 

frequencies which produces the ringing artifacts evidenced by Fig. 2.7. Lastly, when  = 

0.9, the OFS results approach the  = 1 results because the lower cut-off frequencies for 

each filter order are much higher than they should be resulting in severe attenuation for 

most frequency ranges. The MFPI-PC method correctly accounts for these effects and 

removes much of the blur typically present when attempting TIE phase recovery using 

relatively incoherent illumination. 

It should be mentioned here that the optimal choice of distance between planes ∆  

was also investigated as a function of various parameters including , , and . The 

overall conclusion is that the result is ultimately object dependent, however, a general
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Figure 2.8:  Phase root mean squared error (RMSE) as a function of normalized noise 
standard deviation  (unitless) for (a)  = 0.1, (b)  = 0.5, and (c)  = 0.9 and fixed-
orders  = 1, 7, 13, and 17 compared with the MFPI-PC result. The result for optimal 
frequency selection (OFS) is also plotted in each case. 
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rule of thumb is to select Δ  such that the bandwidth of the highest-order SGDF used is 

equal to the longitudinal frequency support of the 3D WOTF. Choosing Δ  to be larger 

than this value results in a loss of spatial resolution and choosing Δ  to be smaller results 

in the unnecessary amplification of noise. 

2.4  Experimental Results 

To verify the theoretical predictions of this work, the phase shift induced by a visible 

blazed transmission grating (Thorlabs GT13-03, grating period Λ = 3.33 μm, blaze angle 

 = 17.5°, Schott B270 glass glass = 1.5251) is measured using the proposed method 

with the same parameters as in Section 2.3. The imaging system is realized with an 

Olympus BX60 microscope and a UPlanFl 40  / 0.75 objective. The grating is mounted 

face up on a glass slide with refractive index (RI) matching oil (Cargille Labs oil = 

1.4620) and a 0.17 mm coverslip. Applying the periodic boundary conditions inherent in 

the fast Fourier transform-based solution to the TIE to the periodic grating results in large 

low frequency phase shifts which are not related to image noise or background phase. To 

suppress this effect without rendering the result non-quantitative the composite phase 

images are high-pass filtered with a cut-off frequency defined by half of the first 

harmonic frequency of the grating, thereby also removing background effects and most of 

the noise. Because of this, the results presented here mostly demonstrate the resolution 

characteristics of MFPI-PC without much noise influence. The noise effects are 

demonstrated later using an optical fiber as a test object. It should be noted that although 

the periodic boundary conditions are an issue for this particular object it is not related to 

the MFPI processing and alternative solutions have been proposed in [124-126]. For a 

discussion on the effects of various boundary conditions on TIE solvers see [124]. 

The measured phase profiles for a 100  100 pixel square patch are represented in 

Fig. 2.9(a) and 2.9(b) as surface plots for  = 0.1 and 0.5. The results are interpolated for 

ease of viewing. Also plotted in Fig. 2.9(c) and 2.9(d) are a few periods of the associated 



 
  

43 
 

line profiles with no interpolation. Plotted for reference are the ideal profiles, assuming 

90° groove angles, as well as the predicted results determined by filtering the ideal 

profiles with the appropriate WD PTF. In both cases there is excellent agreement between 

the measured profile and the predicted profile. The hard aperture effects are clearly 

visible in the measured profile for  = 0.1 as evidenced by the rapid oscillations. The soft 

aperture/extended resolution effects are clearly visible for  = 0.5 as evidenced by the 

smooth profile and slightly reduced amplitude. Results for  = 0.9 did not match the 

theory well because the measured intensities exhibited a high degree of asymmetry about 

the focal plane due to primary spherical aberration associated with the non-corrected 

thickness of the RI matching oil between the grating and the coverslip. In order to 

increase accuracy for large , objective lenses with correction collars may be used to 

ensure symmetry in the microscope point spread function. 

 

Figure 2.9:  Visible transmission grating phase measurement results. Interpolated surface 
plots of the measured phase on a 24.5 μm  24.5 μm patch for (a)  = 0.1 and (b)  = 0.5. 
Measured line profiles for (c)  = 0.1 and (d)  = 0.5. Ideal (assuming 90° groove angles) 
and predicted [filtered using the associated weakly defocused phase transfer function 
(WD PTF)] line profiles are also plotted for reference. 
 

To demonstrate the joint noise/resolution capability of MFPI-PC, the RI distribution 

of a single-mode optical fiber (Corning SMF-28) is reconstructed tomographically using 

filtered backprojection (FBPJ) [56]. As part of this reconstruction, phase profiles are 
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measured every 2° using the same parameters as in Section 2.3 for  = 0.5, which is 

solidly in the partially coherent regime. The fiber experiment was conducted using the 

same equipment and procedures outlined in Section 2 of [31] with the exception that the 

defocusing was achieved using a piezoelectric microscope objective scanner (Physik 

Instrumente P-721.SL2) and the same defocus parameters as in Section 2.3 were used. 

For all measurements, the fiber is suspended in RI matching oil between two coated fiber 

pieces and rotated about its axis, and the overall experimental setup is as shown in Fig. 1 

in [31]. 

The resulting sinograms and tomograms are presented in Fig. 2.10. In this figure, four 

separate methods, including conventional TIE phase recovery using defocus distances 

( ) of 9 μm and 0.6 μm as well as OFS and MFPI-PC (organized by row from top to 

bottom), were used to estimate the fiber phase shift. Organized by column are three 

separate representations of the data, including (from left to right) the phase sinogram, the 

Fourier spectrum of the phase sinogram (represented as the logarithm of the squared 

magnitude of the data), and lastly the resulting cross-sectional RI distribution. In Fig. 

2.10(a) there is little variation in the recovered phase profiles versus projection angle 

because the fiber is radially symmetric and the noise performance is in direct proportion 

to the defocus distance, which is large. Likewise for Fig. 2.10(d) there are large variations 

(manifested as slowly varying features in the  direction) from angle to angle due to the 

small defocus distance used. However, in Fig. 2.10(b) we see that much of the high 

spatial frequency content (plotted along ) has been severely attenuated in the large 

defocus distance case when compared to the spectrum in Fig. 2.10(e). This results in a 

loss of radial spatial resolution which can be easily seen by comparing the cross-sectional 

tomograms in Fig. 2.10(c) and 2.10(f). The top-right insets in these figures display a 

zoomed-in version of the fiber core. Due to the fiber manufacturing process, it is well-

known that there is a dip in RI which results in the center of the core and the 

reconstruction in the Fig. 2.10(f) is sharp enough to resolve this feature whereas the
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Figure 2.10:  Various representations of optical fiber tomography experimental data 
processed using conventional TIE recovery with defocus distances of (a-c) 9 μm and (d-f) 
0.6 μm as well as the established (g-i) OFS method and the proposed (j-l) MFPI-PC 
method. The phase sinogram data is represented in the first column [(a), (d), (g), and (j)]. 
The logarithm of the phase spectral density is represented in sinogram format in the 
second column [(b), (e), (h), and (k)]. The resulting tomograms, after applying filtered 
backprojection (FBPJ) using the data in the first column, are represented in the third 
column [(c), (f), (i), and (l)] as the relative difference in RI from the background Δ

oil (RI units). Within the third column, the top-right insets are a zoomed-in 
image of the fiber core (region indicated by the dashed squares) and the bottom-left insets 
enhance contrast in the cladding using different colorbar limits. Partially coherent (  = 
0.5) illumination was used to produce the intensity data for the measurement. 
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reconstruction in Fig. 2.10(c) displays a profile which is similar to a Gaussian in shape. 

The effects of noise are clearly seen by examining the variations in the cladding, which 

are displayed in the bottom-left insets where the colorbar limits have been altered to 

enhance contrast. In Fig. 2.10(f) the presence of noise is manifested as cladding variation 

and is much less uniform than in Fig. 2.10(c). As a side note, however, it should be 

mentioned here that projection tomography works well with TIE phase recovery to 

reduce noise overall because the phase noise features are proportional to 1/  and these 

same features are later processed with a filter proportional to  as part of the FBPJ 

algorithm resulting in tomogram noise which is proportional to 1/  only. 

In Fig. 2.10(g)-2.10(i) the phase has been recovered using the established OFS 

method and in Fig. 2.10(j)-2.10(l) the phase has been recovered using the proposed 

MFPI-PC method. Although OFS appears to have resulted in excellent noise suppression 

and non-attenuated frequency content the cross-section in Fig. 2.10(i) has some artifacts 

which are not evident in the other tomograms. The core-cladding RI difference may be 

estimated by manual inspection of the tomogram data and is found to be ~4.4  10-3 for 

the OFS case and ~5.1  10-3 for the MFPI-PC case, a difference of ~14%. The latter of 

these two approximations is in agreement with previously published data based on 

microinterferometry [22]. In addition to an inaccurate core index estimate, there are 

ringing artifacts manifested in the cladding which also result from the unnecessary 

attenuation of certain spatial frequency ranges. Lastly, the powerful capability of the 

MFPI-PC method to simultaneously suppress noise and enhance resolution without 

introducing measurement inaccuracy is manifested in Fig. 2.10(j)-2.10(l). In Fig. 2.10(j), 

there is little to no variation in phase across projection angles. In Fig. 2.10(k), significant 

attenuation of high spatial frequencies is not observed. In Fig. 2.10(l), both of these 

effects are manifested in the highly uniform cladding and the presence of a sharp center 

dip in RI. No ringing artifacts are observed and the measured core-cladding index 
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difference matches previously published data quite well [22]. All in all, the anticipated 

characteristics of the various processing methods are verified experimentally. 

It should be mentioned here that MFPI-PC performs well in this scenario regardless 

of the fact that two assumptions inherent to its derivation are violated. The fiber is not a 

weak phase object as the maximum phase shift is approximately 3.6 radians [56]. 

Similarly, others have also found PR by means of direct inversion of the WOTF to be 

surprisingly robust with strong phase objects [49]. In principle, this is not surprising since 

the slowly varying phase approximation ̅ ≪ 1 used in coherent x-

ray CTF phase recovery [127] is a relative condition dependent on wavelength, defocus, 

and spatial frequency and MFPI naturally tends to pair large spatial frequencies with 

small defocus distances and vice versa. This concept, as well as the relationship between 

the aforementioned condition and partial spatial coherence, will be explored further in 

Chapter 3.  

Also, the fiber is clearly not a thin object as its diameter is much larger than the depth 

of focus. However, in [128] it was found that for simple geometries the WOTF theory 

produces accurate phase values if the object thickness along the optical axis is less than 

its lateral width. Providing a detailed error analysis is not the purpose of the present 

work, however, we note here the experimental observation of robustness with respect to 

these assumptions. 

2.6 Summary 

In this work, the basic principles of multi-filter phase imaging (MFPI) have been 

extended to the important practical case of partially spatially coherent illumination from 

an extended incoherent source (MFPI-PC). Results indicate that the MFPI-PC method 

can correctly account for a variety of coherence levels in the incident illumination. 

Results show that MFPI-PC is not only feasible but also desirable in the sense of 

enhanced lateral spatial resolution.  Although MFPI-PC phase image theoretically shares 
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the same spatial resolution as optical microscopy, i.e. 1.22 ̅⁄ , the 

resolution corresponding to frequencies which are non-attenuated and therefore 

quantitative is actually 1.22 ̅⁄  or 1.22 546 nm /(0.75-0.375)  1.78 µm 

for the parameters used here, an issue which will be addressed and overcome in the next 

chapter.  Using this method, highly sensitive QPI may be achieved in situations for which 

traditional interferometry is not practical and iterative methods are less effective. The 

sensitivity is dependent on a number of factors including image size, number of 

defocused images, defocus spacing, and level of coherence, however, for the parameters 

used here and  = 0.5, phase and optical path length resolutions approach ~0.02 radians 

or ~1.74 nm respectively. Although the method is based on assumptions of paraxial 

propagation through weakly scattering thin objects it is demonstrated here that 

considerable flexibility exists with regard to these assumptions. In summary, MFPI-PC 

appears to be a very powerful high-resolution/low-noise method for imaging a wide range 

of phase objects using readily available, realistic illumination sources.  
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CHAPTER 3 

QUANTITATIVE PHASE MICROSCOPY VIA OPTIMIZED 
INVERSION OF THE PHASE OPTICAL TRANSFER FUNCTION 

  
 

In Chapter 2, a novel phase reconstruction method, which is called multifilter phase 

imaging with partially coherent light (MFPI-PC) and enables quantitative phase imaging 

(QPI) using Köhler illuminated microscopy, was presented. In this chapter, another two-

dimensional (2D) QPI method, called phase optical transfer function (POTF) recovery, is 

presented which, in addition to enabling quantitative phase microscopy (QPM) with no 

hardware modification, also overcomes many non-optimal aspects of MFPI-PC, 

including inefficient defocus sampling based on equally spaced planes, limited spatial 

resolution due to a reliance on the paraxial approximation, reduction of quantitative phase 

contrast due to finite numerical aperture (NA), and non-optimal noise suppression. POTF 

recovery is based on optimized inversion of the weak object transfer function (WOTF), 

which is shown here to be capable of imaging strong phase objects with large overall 

phase delay. POTF recovery is evaluated using numerical simulations and validated using 

a microlens array (MLA) as a test phase object. Once validated, the method is applied 

directly to time-lapse QPI of live adherent cell cultures to demonstrate its potential 

capability for biomedical applications. This chapter is based on a paper entitled 

“Quantitative phase microscopy via optimized inversion of the phase optical transfer 

function,” which was recently accepted for publication [129] and an associated 

provisional patent application [130].  

3.1   Introduction 

Quantitative phase imaging (QPI) is an emerging field in biomedical optics in which the 

optical path length (OPL) of phase objects, including biological specimens, is indirectly 



 
  

50 
 

imaged through interferometric analysis. Because it is label-free, QPI of live cells is 

possible without photo-toxicity or photo-bleaching as in fluorescence microscopy. QPI is 

capable of measuring the intrinsic properties of cells and tissues, as opposed to phase and 

differential interference contrast (DIC) microscopy which only provide qualitative 

information. The quantitative nature of the data also lends itself towards image 

processing, thereby improving the extractability of various physical, chemical, biological, 

and mechanical properties [131].  

These quantitative measurements are likely to yield new understanding about the 

physiology/pathology of cells. For example, QPI was recently used to improve 

understanding of cell growth, a question which has long eluded biologists due to a lack of 

robust instrumentation for resolving the mass of individual adherent cells [11]. QPI data 

was used to measure exponential growth in Escherichia coli by relating integrated OPL to 

dry mass [11], implying the need for regulatory systems to maintain homeostasis. On the 

diagnostic front, machine learning algorithms based on QPI data have recently shown 

remarkable agreement with certified pathologists for the automated diagnosis of prostate 

cancer from tissue biopsies [132].  

Because light detectors only measure intensity, phase information must be measured 

indirectly. Conventional approaches include interferometry and holography in which 

phase images are extracted from either temporally or spatially modulated interferograms 

or holograms detected in either in-focus or out-of-focus planes [6]. Typically, these 

methods require illumination to be coherent, which is known to reduce temporal and 

spatial phase sensitivity due to the presence of phase jitter and speckle interference [133, 

134]. Mitigating coherent noise in QPI systems is expensive as it requires a high degree 

of mechanical isolation and parasitic reflection control.  

Another approach, which has been highly effective, is to circumvent coherent noise 

by designing QPI systems based on common-path interferometry [42, 135] to be 

compatible with partially coherent or even incoherent illumination [34, 38, 43, 55, 136-
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139], many of which such systems achieve nanoscale OPL sensitivity [34, 38, 43, 55, 

136, 138]. A key advantage of these modifications is that they often lead to modular 

compatibility with commercial microscopes [34, 38, 42, 43, 135-137, 140, 141], the 

results of which have been transformative for the biomedical application of QPI [6, 10-

12, 14, 18, 43, 132, 142-155]. Quantitative phase microscopy (QPM, or QPI via 

microscopy) has been enabling for many reasons, such as the ability to perform multi-

modal investigations correlating QPI data with images from other microscopy modalities; 

for example fluorescence [156]. Another important, and perhaps primary, reason for the 

growth of biomedical applications based on QPM is the ubiquity of modern biological 

microscopy systems which are highly developed for live cell imaging with minimal 

invasion. Thus QPM methods are attractively seen as an integrable modality in addition 

to long established methods which are applied routinely, such as fluorescence, phase, or 

DIC.  

Using the above observations, it may be argued that QPM methods based on phase 

retrieval (PR), which recover phase from light micrographs alone without explicit 

manipulation of reference or sample beams, are even more attractive to biomedical end 

users as they do not require any hardware modification. Within the context of PR from 

micrographs recorded under varying conditions, methods may be broadly categorized as 

iterative [44, 134, 157-162] or deterministic [7, 46, 49, 54, 108, 120, 121, 163, 164]. 

Iterative methods account for the inherent nonlinearity of the image formation process; 

however, since the problem is nonconvex [165], they cannot be proven to converge, thus 

adding additional complexity and constraints.  

Deterministic PR is based on assumptions, concerning either the imaging parameters 

or the object, which linearize the image formation process. The most prominent examples 

of deterministic PR methods which have been applied to optical microscopy are solutions 

based on the transport-of-intensity equation (TIE) [46, 54] as well as the weak object 

transfer function (WOTF) [49, 120]. The TIE linearizes the relationship between phase 
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and the derivative of intensity along the axis of propagation [46] and the WOTF describes 

the frequency domain transfer of phase and absorption by expanding image intensity and 

ignoring bilinear terms originating from the self-interference of scattered light [66, 120]. 

The WOTF has also been called the contrast transfer function (CTF) in the field of 

propagation-based x-ray phase imaging [50, 51, 119].  

Although methods based on the TIE assume weak defocus and paraxial imaging, the 

only object assumption in a widely used TIE solver [166] is that the gradients of phase 

and intensity are collinear [167], thus strong phase objects with sharp edges are 

theoretically recoverable. Another important feature in TIE recovery is that for quasi-

monochromatic light (such that the coherence length is longer than the defocus distances 

used) and circularly symmetric illumination pupils in the Köhler geometry, the recovered 

solution is independent of the size of the extended incoherent source, making methods 

based on the TIE compatible with partial spatial coherence [108]. Such compatibility is 

not inherent in interferometric QPM methods, which result in halo artifacts [168] unless 

special measures, either optical [169] or computational [170], are taken to prevent or 

remove them. Recently, practical reconstruction methods based on the TIE have 

advanced considerably [48, 111, 114-116, 171-173], with efforts centered on 

circumventing the inherent trade-off between noise and spatial resolution in the choice of 

defocus distance(s) [47]. The optimal frequency selection (OFS) algorithm first proposed 

in [48] using spatially coherent light and later extended to the partially coherent case in 

[111] under the name of multifilter phase imaging (MFPI-PC) has shown great promise 

for the recovery of slowly varying objects [7]. However, the original descriptions are 

given for equally spaced planes whereas a recent study has shown exponentially spaced 

planes to be a more efficient sampling scheme [171]. In any case, partially coherent TIE 

methods result in high spatial frequency attenuation as the condenser numerical aperture 

(NA) is increased [111]. This results in blurry phase reconstructions with lower spatial 

resolution. 
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By contrast, reconstructions based on inverting the WOTF are capable of higher 

spatial resolution since they do not require a paraxial approximation and they directly 

compensate for attenuation at higher spatial frequencies [120]. Since phase contrast may 

be realized via any complex pupil transfer function [120], or by an asymmetric 

illumination pupil [121], defocus is not the only option for generating contrast. If defocus 

is used, however, the distances need not be small or equally spaced [174], resulting in 

improved sensitivity and sampling efficiency compared to TIE methods. Although, in the 

spatially coherent limit, WOTF phase reconstruction methods have a long history within 

the field of electron microscopy [175-177], foundational studies relating the theory of 

first-order diffracted intensity variations in both two-dimensional (2D) and three-

dimensional (3D) optical microscopy have also been conducted by Streibl [66] and 

Sheppard [120, 178] which incorporate partial spatial coherence effects. More recently, 

microscopic WOTF phase reconstructions have been demonstrated using defocus under 

the paraxial approximation for both small [49] and large defocus [7]. In addition to 

defocus, WOTF phase recovery was achieved using differential phase contrast [121] 

realized via asymmetric illumination as well as Zernike phase contrast in the extreme 

ultraviolet [163]. One presumed drawback of methods based on the WOTF is reliance on 

the first-order Born approximation in which the magnitude of the scattered light is much 

smaller than the magnitude of the incident light [178], hence the use of “weak object” in 

WOTF. Interestingly, however, although each of the aforementioned authors 

acknowledge this approximation, the corresponding experimental results seem to indicate 

that recovery is possible even for objects in which the first Born approximation is not 

satisfied [7, 49, 121, 163]. 

In light of these findings, it is clear that further investigation concerning the range of 

applicability of the WOTF is warranted. In what follows, defocus-based WOTF phase 

recovery for spatially coherent light under the paraxial approximation is first reviewed 

and then generalized to incorporate partial coherence with arbitrary source/pupil 
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combinations. In the course of this development, it is recognized and shown that the 

WOTF may be linearized without assuming a weakly scattering object using conditions 

analogous to the weak absorption and slowly varying phase (SVP) conditions originally 

derived by Guigay [127]. Under these conditions, a new WOTF reconstruction method, 

which is based on an optimized inversion of the phase optical transfer function (POTF) 

portion of the WOTF and was briefly demonstrated in [179], is described which enables 

high spatial and phase resolution using defocused bright-field micrographs without any 

hardware modification. Due to experimental simplicity, this algorithm, referred to as 

POTF recovery, may appeal broadly to end users and practitioners, thus promoting a 

more widespread adoption of QPI in the biomedical community. 

3.2   Quantitative Phase Microscopy via Inversion of the Weak Object 
Transfer Function 

3.2.1 Coherent Phase Optical Transfer Function Recovery 

In the limit of complete spatial coherence the WOTF is equivalent to the CTF referred to 

in the field of propagation-based x-ray phase imaging [50, 118]. It incorporates 

diffraction due to wave-object interactions which can be described by a transmittance 

function, Eq. (3.1), where  denotes spatial coordinates transverse to the 

propagation direction and  and  are the absorption (absorption coefficient 

integrated along the optical path) and phase distributions respectively and √ 1:  

  exp . (3.1)

Guigay described the diffraction image spectrum due to paraxial wave propagation at 

distance  from the object plane as  

 
2

∗
2

exp 2 ∙ , (3.2)

where  denotes spatial frequency coordinates conjugate to ,  is the 

illuminating wavelength, and ∗ denotes the complex conjugation of  [127]. Equation 

(3.2) is an appropriate starting point for deriving both the TIE and WOTF [50]. Under the 
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assumptions of weak absorption, Eq. (3.3), and SVP, Eq. (3.4), we can reduce Eq. (3.2) to 

Eq. (3.5) by retaining only the first-order terms in the integral [50]. In Eq. (3.5), ∙

 and a unit intensity normalization has been assumed. 

 
2 2

≪ 1. (3.3)

 
2 2

≪ 1. (3.4)

  2 cos 2 sin . (3.5)

Under this approximation, subtracting two symmetrically defocused micrographs 

recorded at positions  results in a directly invertible relationship between phase and 

intensity, Eq. (3.6): 

 

∆

4 sin  (3.6)

In Eq. (3.6),  is the phase optical transfer function (POTF) for coherent 

illumination in the paraxial approximation corresponding to defocus distance . In the 

limit of small  the POTF reduces to the transfer function implied by the TIE in the case 

of a pure phase object [47]. The sinusoidal function accounts for larger defocus but also 

introduces zeros into the POTF which establish the need for several distances to cover the 

whole Fourier domain [174]. The optimal spectral combination of  defocused image 

pairs (2  total images) can be derived from the linear least squares formalism 

summarized by Eq. (3.7), where  is the index of defocused image pairs and  is a 

regularization parameter. Equation (3.7) can be solved to yield  as given by Eq. 

(3.8).  

  min Δ | | . (3.7)
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  . (3.8a)

 
∑

. (3.8b)

 
Δ

. (3.8c)

In Eq. (3.8),  can be viewed as radially varying weighting functions which 

define the level of confidence that can be placed in a given phase estimate spectrum, 

. The values of  range between 0 and 1 (when  = 0) and depend on the 

relative power of each POTF, so that more weight is given to phase estimates with higher 

relative POTF power and thus higher signal-to-noise ratio (SNR). Equation (3.8) also 

summarizes POTF recovery from multiple defocus-plane pairs. The processing steps 

involved in implementing Eq. (3.8) are summarized in Fig. 3.1, where  is the 

background intensity used for normalization to match the aforementioned expressions. 

 

Figure 3.1:  Block diagram representation of defocus-based phase optical transfer 
function (POTF) recovery. 
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3.2.2 Partially Coherent Phase Optical Transfer Function Recovery 

Partially coherent POTF recovery is based on incorporating Köhler illumination into the 

phase recovery process described in Section 3.2.1. The effect of Köhler illumination is to 

induce partial spatial coherence in the illuminating wave field, the degree of which may 

be described via the Fourier transform of the extended incoherent source as given by the 

Van Cittert-Zernike theorem [180]. Implicit in this description is a quasi-monochromatic 

approximation, for which the spectral bandwidth of the illumination is presumed to be 

much less than the central wavelength, Δ ≪ ̅ [180], which may readily be realized in 

microscopy through the insertion of narrow-band interference filters into the illumination 

path. In this case the spatial coherence effects become dominant, as will be verified later 

in this section by comparing POTFs calculated both with and without the use of 

spectrally broadened sources.  

Köhler illumination can also be described by a coherent mode decomposition in 

which the illuminating aperture contains a collection of point sources [122]. Each point 

source illuminates the sample with an off-axis plane wave and the resulting intensities are 

the incoherent summation of intensities due to each off-axis plane wave since the source 

is delta-correlated. Therefore, the overall WOTF can be formed by deriving the WOTF 

for each off-axis point source and integrating over the illumination aperture [66, 178]. 

The quantity  may be used to describe the spectrum of a complex 

object illuminated by an off-axis plane wave where  defines the angle of oblique 

incidence and the spatial frequency coordinates of the source and  is the pupil 

function. The circular illumination pupil may be described by circ ⁄ , 

where ̅⁄ ,  defines the NA of the illuminating condenser, and circ  is 

defined as 

  circ
1, | | 1
0, | | 1

. (3.9)
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Under the paraxial approximation, exp ̅ circ ⁄  at propagation   

distance  where ̅⁄  and  is the NA of the imaging objective.  

Under these conditions the resulting spectrum for the defocused bright-field 

micrograph can be written in an expression analogous to Eq. (3.2) as  

  circ , exp 2 ̅ ∙ , (3.10a)

 

, circ ∗
̅

2

circ ∗ ∗
̅

2
exp 2 ∙

. (3.10b)

where  denotes inverse Fourier transformation of  and ∗ denotes convolution. 

From Eq. (3.10), it is seen that if the object is band-limited, i.e.  = 0 for | |

, then ,  is equivalent to the on-axis (  = ) coherent intensity spectrum 

,  which does not vary with , resulting in Eq. (3.10a) reducing to 

  ,
2 ̅

̅ , (3.11)

where  is the first-order Bessel function of the first kind,  is the background intensity 

level, and | |. Equation (3.11) implies that the resulting bright-field micrograph can 

be written in the spatial domain as 

  , ∗
circ ̅

̅
, (3.12)

so that image formation can be viewed as a simple convolution with a magnified replica 

of the source [108]. Although this relationship can and has been used as a means to 

model quickly image formation for use with defocus-based PR algorithms under Köhler 

illumination [134, 160], it is a special case of band-limited phase recovery under the 

paraxial approximation.  
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For a general description of partially coherent imaging using arbitrary pupils and 

delta-correlated sources Eq. (3.10) may be rewritten as 

 
∗

∗ ∗ exp 2 ∙
. (3.13)

Normally, at this point, the first Born approximation is asserted such that 1

 [178], Eq. (3.13) is expanded, and the higher-order terms neglected so that 

Eq. (3.13) may be rewritten as   

  . (3.14)

in which | |  is the background intensity level and the partially 

coherent absorption optical transfer function (AOTF) and POTF are given by Eqs. (3.15) 

and (3.16) respectively: 

  , . (3.15)

  , . (3.16)

In Eqs. (3.15) and (3.16), ,  and ,  are elementary off-axis AOTFs and 

POTFs given by Eqs. (3.17) and (3.18) respectively: 

  , ∗ ∗ . (3.17)

  , ∗ ∗ . (3.18)

Although weak scattering is a sufficient condition for validating the preceding 

expression, it is in fact not necessary. If we instead use the first-order Rytov 

approximation to express the complex wave field in the image plane, then Eq. (3.13) is 

given by Eq. (3.19) (see Appendix A) in which ,  is the first Rytov 

approximation for the complex scattered phase at the image plane and 

 is the scattered phase at the object plane. 
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| |

exp 2Re , exp 2 ∙
, (3.19a)

  , ∗ . (3.19b)

From Eq. (3.19) it is clear that if the following conditions hold ∀ ∈ , 

  , ∗ ≪ | | , (3.20)

  , ∗ ≪ | | , (3.21)

then Eq. (3.19) reduces to Eq. (3.14) (see Appendix A) which was established in the Born 

approximation. Equations (3.20) and (3.21) represent generalized linearization conditions 

for partially coherent imaging in the Köhler geometry analogous to the aforementioned 

weak absorption and SVP conditions first derived by Guigay [127]. Interestingly the 

conditions represented by Eqs. (3.20) and (3.21) do not always imply that the object must 

be weakly scattering. Intuitively, Eqs. (3.20) and (3.21) imply that for every point source 

in the back focal plane of the condenser, the contrast resulting from the first-order term in 

the series expansion for intensity must be a small fraction of the background, which 

depends in general on both the object and the imaging configuration and represents a 

trade-off between SNR and linearization validity. Thus the first Rytov approximation and 

the conditions defined by Eqs. (3.20) and (3.21) are, when taken together, also sufficient 

conditions for linearizing partially coherent imagery. Since the Rytov approximation is 

known to be sensitive to the phase gradient and not its magnitude, the “weak object” 

terminology in WOTF is perhaps a misnomer and the aforementioned successful 

reconstruction results [7, 49, 121, 163] are made plausible. 

Since it is intensity contrast which matters, it follows that the magnitudes of 

,  and ,  as  approaches 0 are of critical importance in determining 

the validity of linearization since the amplitudes of most naturally occurring objects are 

strongest for lower spatial frequencies. In most cases, ,  takes on the form of a 
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low-pass filter implying the need to assume weak absorption. , , on the other 

hand, appears to be much more forgiving and often takes on the form of a high-pass filter, 

implying that phase does not necessarily need to be weak. This has positive and negative 

aspects because although it improves validity for linearization it also reduces phase 

contrast, making quantitative phase recovery either impossible or extremely noisy. For 

example, Fig. 3.2 plots off-axis POTF’s for both Nomarski DIC and for simple defocus. 

For DIC, we calculated the off-axis POTF using the development provided in [181]. 

From Fig. 3.2 it is seen that in both cases the resulting contrast is diminished near the 

origin of frequency space, implying that phase will not necessarily need to be weak for 

linearization. For DIC [Fig. 3.2(a)], contrast is nearly linear near the origin implying 

stronger contrast and thus better SNR. For defocus [Fig. 3.2(b)], however, contrast is 

nearly parabolic near the origin implying improved validity for linearization at the 

expense of SNR. Another benefit of using defocus is that contrast is isotropic allowing 

phase recovery without needing to sample two orthogonal directions as in QPI methods 

based on DIC [35, 182] or differential phase contrast [121, 183]. 

If  is axisymmetric, then  and  are symmetric and anti-symmetric 

with respect to defocus respectively. Thus subtracting two symmetrically defocused 

micrographs recorded at positions  results in a directly invertible relationship between 

phase and intensity [Eq. (3.22)] as in Eq. (3.6). 

 
∆

 (3.22)

An additional benefit is that, for a pure phase object in this geometry, the second-order 

terms in the expanded intensity are also symmetric with respect to defocus, thus 

improving linearization conditions further upon subtraction of symmetrically defocused 

images. 

 In Eq. (3.22), the partially coherent POTF is 2 ⁄  where  is 

calculated using Eq. (3.16) with a circular illumination pupil circ ⁄  as
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Figure 3.2:  Magnitude of off-axis phase optical transfer functions (POTFs) [as given by 
Eq. (3.18)] for (a) Nomarksi differential interference contrast (DIC) with a shear value of 
Δ 1 2⁄  in the  direction and a bias value of Φ 4⁄   and (b) defocus with a 
distance of  = 9 μm. In both cases  = 0.75 and the off-axis illumination is given by 

0.375/ ̅ . 
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before and a non-paraxial pupil exp 1 1 ̅
⁄

circ ⁄  

(for which 2 ̅⁄  is the free-space wave vector magnitude) as in the angular 

spectrum of plane waves method for field propagation [184]. Although not derived 

analytically,  is easy to calculate numerically and can be used to optimize PR in a 

manner analogous to Eqs. (3.7), (3.8), and Fig. 3.1. 

Thus POTF recovery based on defocus has been described for bright-field 

microscopy operating in transmission under linearization conditions of weak absorption 

and SVP. For imaging of live adherent cells, the authors have found that a good trade-off 

between total number of images, linearizabilty, and phase image quality is to set the total 

number of images to 2  = 4 in which a small defocus distance  is chosen to be close to 

the microscope depth of field and a larger defocus distance is chosen as 15 . For 

the microscope utilized in the present work (Olympus BX60 with a UPlanFl 40  / 0.75 

0.17 ∞ objective)  = 0.6 µm and  = 9 μm have been found to give favorable results. 

The illumination is provided by the green spectral line of a mercury arc lamp filtered 

using a green interference filter (GIF, ̅ = 546 nm, Δ  = 10 nm FWHM). The level of 

partial spatial coherence is determined by  = 0.375 which has been set using a 

condenser (Olympus U-POC-2) aperture diaphragm. Since we have not encountered any 

need for regularization,  is set to zero and the resulting radially varying partially 

coherent POTFs and optimized weighting functions are plotted in Fig. 3.3. 

To model spectral broadening, the POTFs were also integrated in steps of 1 nm over 

the passband of the GIF, which was assumed to be Gaussian in shape. It was found that 

the resulting POTFs calculated using the central wavelength ̅ alone were visually 

indiscernible from the plots shown in Fig. 3.3, therefore, the quasi-monochromatic 

approximation is appropriate and calculations throughout the remainder of this chapter 

are based on a single wavelength only.  
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Figure 3.3:  (a) Partially coherent phase optical transfer functions (POTFs) and (b) 
weighting functions used to define partially coherent POTF recovery for  = 0.75, 

 = 0.375, ̅ = 546 nm,  = 2,  = 0.6 µm, and  = 9 µm. For both figures, | |. 
 

3.3   Simulation Results 

In order to simulate and compare various forms of defocus-based deterministic PR we 

used the letters “GT” as shown in Fig. 3.4(a) as an example phase object. For simplicity, 

we used Abbe’s method for partially coherent image calculation [185, 186], which is 

similar to the coherent mode decomposition description provided in Chapter 2, in which 



 
  

65 
 

each defocused image was calculated as the sum of the intensities of the off-axis images 

corresponding to point sources in the back focal plane of the condenser. Propagation was 

modeled as the angular spectrum pupil function introduced earlier [184]. We simulated 

five images (four corresponding to  and  mentioned at the end of Section 3.2.2 

and one in-focus image) to compare both TIE [48, 111] and coherent POTF recovery [50, 

174] with the proposed partially coherent POTF recovery method. After all partially 

coherent images were calculated, additive white Gaussian noise with a realistic standard 

deviation of 1% of the background intensity (  = 0.01) was added to simulate the noise 

process for shot-noise-limited bright-field imagery. 

In Fig. 3.4(b), the OFS algorithm described in [48] was used and adapted to account 

for non-equally spaced planes. Previously, such algorithms have only been described for 

use with equally spaced planes [48, 111]. The development given in Chapter 2, however, 

is general enough to account for non-equally spaced planes if the Savitzky-Golay 

differentiation filter frequency response used in Eq. (2.5b) is replaced by a non-uniformly 

spaced equivalent. For a description of non-uniformly spaced data differentiation using 

Savitzky-Golay differentiation filters see [187]. From Fig. 3.4(b), we see that although 

noise suppression is quite good, as evidenced by the relatively low root mean squared 

error (RMSE) value of 0.028 radians, the reconstruction is also plagued with shadow-like 

or ringing artifacts resulting from modulation transfer function (MTF) attenuation of mid-

range spatial frequencies due to the misplaced cut-off frequency between filters 

corresponding to the first and third differentiation orders [111]. By contrast, the recovery 

in Fig. 3.4(c) uses MFPI-PC which explicitly accounts for MTF roll-off due to partial 

coherence. Although this removes the aforementioned artifacts it also results in poorer 

noise suppression (RMSE = 0.035 radians) than the OFS result because more weight is 

given to the images spaced at ± . 

Figure 3.4(d) utilizes coherent POTF recovery as described in Section 3.2.1 under 

assumptions of spatially coherent paraxial illumination. In this case, the errors resulting  
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Figure 3.4:  Partially coherent phase imaging simulation results based on the phase 
object shown in (a). (b-f) correspond to noisy phase recovery using various algorithms 
including (b) optimal frequency selection (OFS), (c) multifilter phase imaging with 
partially coherent light (MFPI-PC), (d) coherent phase optical transfer function (POTF) 
recovery, (e) partially coherent POTF recovery, and (f) partially coherent POTF recovery 
with post PR de-noising using non-local means (NLM) filtering. The corresponding root 
mean squared errors (RMSEs) are (b) 0.028, (c) 0.035, (d) 0.051, (e) 0.026, and (f) 0.014 
radians respectively. All images are 400  400 square pixels with a sampling rate of 
0.245 μm. 

 

from the assumption of coherence are more drastic when compared with the TIE-based 

methods. This results at least partially from the TIE being valid under partial spatial 

coherence [108] and because POTF methods are based on direct inversion and are thus 

more sensitive to model inaccuracies. By contrast, partially coherent POTF recovery [Fig. 

3.4(e)] exhibits satisfactory results as it accurately accounts for partial coherence and 
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minimizes noise (RMSE = 0.026 radians). For this result, much of the error is due to low 

contrast at high spatial frequencies [as shown by Fig. 3.3(a)] in addition to the 

conventional low spatial frequency noise [111]. Fortunately, sophisticated algorithms, 

including non-local means (NLM) filtering, exist for removing uncorrelated noise at high 

spatial frequencies without smoothing or perturbing the underlying structure of the image 

[188]. Shown in Fig. 3.4(f) is the result of Fig. 3.4(e) after undergoing NLM filtering 

using a search window of 8  8 pixels, similarity window of 4  4 pixels, and filtering 

degree set to the RMSE of Fig. 3.4(e). It is observed that almost all the high spatial 

frequency noise present in Fig. 3.4(e) is removed without perturbing the resolution or 

structure of the underlying “GT” phase image, resulting in a dramatic reduction of error 

(RMSE = 0.014 radians). 

Shown in Fig. 3.5 are the RMSEs of the PR algorithms highlighted in Fig. 3.4 as a 

function of the normalized standard deviation  of white Gaussian noise added to the 

simulated imagery.  To reduce uncertainty, each data point is represented by the average 

of ten measurements. At low noise levels, the MFPI-PC (red) curve is lower than the OFS 

(blue) curve because of the artifacts associated with uncompensated MTF attenuation in 

OFS. Although not quantitative, OFS does result in lower error than MFPI-PC at high 

noise levels due to greater emphasis on the first-order derivative. It is clear that coherent 

POTF recovery results in significant error due to model inaccuracy. For most levels, 

however, the RMSE of partially coherent POTF recovery both before and after NLM 

filtering are lower than the rest of the field, indicating that it is perhaps the best option 

currently available for enabling QPI of weakly absorbing objects from defocused bright-

field imagery. For objects with absorption that is strong, but slowly varying, it is possible 

to establish linearity for the OFS algorithm [7] and likely possible for the MFPI-PC 

algorithm as well (see Chapter 8). Therefore, simulation studies comparing the 

performance of these algorithms for absorbing samples is warranted and a subject of 

future research. 
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Figure 3.5:  Root mean squared error (RMSE) of simulations corresponding to Fig. 3.4 
under varying amounts of additive white Gaussian noise . In the legend, POTF-C 
indicates recovery based on the coherent POTF and likewise POTF-PC indicates 
recovery based on the partially coherent POTF.  
 

In order to emulate the reconstruction of live adherent cells and simulate the effects of 

violating the SVP linearization conditions outlined in Section 3.2.2, we modelled an 

adherent HeLa cell (cell line obtained from Henrietta Lacks [8]) using a phantom 

consisting of a combination of projected phase values from oblate ellipsoids of revolution 

of varying refractive index (RI). Estimating cell volume using data from [189] and 

assuming an adherent cell diameter of 25 μm [189], an ellipsoidal thickness of 8 µm is 

deduced. Using the data from [190] to estimate nuclear volume and assuming the same 

ellipticity, the nucleus is modeled by a diameter of 6.5 μm and a thickness of 2.1 µm. A 

spherical nucleolus is modeled inside the nucleus with a diameter of 2 μm. The RI values 

assigned to the cytoplasm, nucleoplasm, and nucleolus were  = 1.365,  = 1.355, and  

= 1.38 respectively, which are in reasonable accordance with RI values obtained in recent 

reports [9, 191].  

Assuming the cell is imaged in water (  = 1.33), the projected phase profiles are 

calculated and shown in Fig. 3.6(a).  Using these RI values, the object phase has a peak 

magnitude of about 3.5 radians and is in violation of the conventional first Born 
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approximation, which requires the total phase shift to be less than 2⁄  radians [56]. 

Shown in Fig. 3.6(b) is the partially coherent POTF reconstruction using the same 

parameters as in Figs. 3.4 and 3.5 with a high noise level of  = 0.03 and a reduced field 

of view (FOV) of 30.6 µm  30.6 µm. Figure 3.6(c) compares the simulated and 

recovered phase profiles along the blue and red lines indicated in Figs. 3.6(a) and 3.6(b) 

respectively. Excellent agreement is observed consistent with the linearization conditions 

outlined in Section 3.2.2 since the object is slowly varying. Because these dimensions 

and contrast levels are in rough agreement with adherent cell imaging we can expect that 

such specimens will be well approximated by the SVP approximation for the system 

parameters used here. 

 

Figure 3.6:  Simulation emulating reconstruction of adherent HeLa cell (a) Phase object 
consisting of integrated phase corresponding to three ellipsoids of revolution. (b) Partially 
coherent POTF reconstruction of (a). (c) Line profile comparison of (a) and (b). (d) Phase 
object with 5  larger contrast. (e) Partially coherent POTF reconstruction of (d). (f) Line 
profile comparison of (d) and (e). In (a), (1), (2), and (3) represents the cytoplasm, 
nucleus, and nucleolus respectively. All images are 125  125 square pixels with a 
sampling rate of 0.245 μm.  
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In order to demonstrate the effect of violating these conditions, we simulated the same 

object assuming 5  larger RI contrast. The results are summarized in Figs. 3.6(d)-3.6(f) 

in which a noticeable departure from the simulated profile is observed due to non-

linearity in the intensity formation process. 

3.4   Experimental Results 

In order to validate the accuracy of the proposed POTF recovery method a periodic 

microlens array (MLA, Thorlabs MLA150-7AR) was measured using the same 

parameters as in the simulation results shown in Section 3.3. The thickness of the 

unmounted array is specified as 1.19 mm, the radius of curvature of each lenslet as 3.063 

mm, and the array pitch as 150 µm. During the measurement, the array was placed 

lenslet-side-up on top of a thin No. 0 coverslip and imaged directly in air without 

immersion oil using the aforementioned microscope objective, condenser, and GIF. In 

this arrangement, the array acts as a strong but slowly varying thin phase object which is 

ideal for verification. Shown in Fig. 3.7(a) is the raw intensity image difference between 

micrographs recorded at ±  = 9 μm normalized by the average background intensity . 

The camera (QImaging Retiga 1300R) full FOV is 252  318.25 µm2 with   1030  1300 

square pixels and a sampling rate of 0.245 µm. 

Based on the recorded micrographs at ±  = 0.6 μm and , the recovered phase of 

the region defined by the square inset in Fig. 3.7(a) is shown in Fig. 3.7(b). The 

reconstructed horizontal line profile through the center of a single lenslet [see the line 

inset in Fig. 3.7(b)] is shown as the solid green line in Fig. 3.7(c). Shown for validation 

and comparison is a profile of the MLA measured via profilometer (KLA-Tencor P-15 

with lateral scan resolution set to 0.1 μm) which has been scaled by the index difference 

between the MLA (fused silica,  = 1.4601 at ̅ = 546 nm [192]) and air (  = 1.0) as well 

as the free-space wave vector magnitude  to convert the measured surface profile into 

phase values [see the dashed black line in Fig. 3.7(c)].  
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Figure 3.7:  Experimental results for microlens array (MLA) validating the accuracy 
of POTF recovery. (a) Full field intensity difference image normalized by the background 
intensity level ∆ / . (b) Single lenslet phase measured via partially coherent POTF 
recovery performed on the square inset region shown in (a). (c) Line profile comparison 
between POTF recovery [solid green line corresponding to inset in (b)], multifilter phase 
imaging with partially coherent light (MFPI-PC) (solid red line), and profilometry 
(dashed black line).  
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Of interest in these results is the excellent agreement between both the magnitude and 

shape of the compared lenslet profiles. Somewhat surprisingly, the shape is not 

completely circular, which is reflected in both POTF recovery and profilometry. Also 

shown for comparison is a profile reconstructed via MFPI-PC [see the solid red line in 

Fig. 3.7(c)] from the same defocused intensity data with the addition of an in-focus image 

for normalization. In addition to being slightly more noisy, the MFPI-PC result 

overestimates the profile magnitude by ~9.5%. This overestimation is attributed to the 

paraxial approximation inherent in the TIE, since, in calculating the POTF using the non-

paraxial pupil exp 1 1 ̅
⁄

circ ⁄ , contributions 

arising from off-axis point sources increase contrast slightly for low spatial frequencies 

beyond the parabolic transfer assumed in the TIE. This scale factor increase in TIE-based 

phase reconstructions was also observed in producing the results shown in Section 2.3. 

The effect becomes more prominent as  is increased and potential solutions are 

discussed in Chapter 8 on future work. 

In order to characterize the sensitivity of the proposed method, the OPL error 

produced by fifty control measurements with no sample in place was analyzed in the 

Fourier domain. OPL is a more appropriate quantity since phase is wavelength 

dependent. Although an overall RMSE is often used to characterize the OPL sensitivity 

of QPI systems, more information is needed since sensitivity often depends on object 

characteristics including dimension, i.e. spatial frequency. Shown as the red curve in Fig. 

3.8 is the square root of the average frequency resolved OPL error signal power (average 

power spectral density normalized by the pixel area) derived from the control 

measurements which provides a measure of the average RMSE corresponding to each 

radial spatial frequency. In these measurements, the system parameters were the same as 

in Section 3.3. 
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Figure 3.8:  Simulated and measured optical path length (OPL) RMSE’s resolved in the 
frequency domain. | |. 
 

In characterizing system sensitivity we also measured the normalized noise standard 

deviation for our setup as  = 0.011. Using this value, we simulated the frequency 

resolved OPL RMSE and the result shows excellent agreement with measurement and is 

shown as the blue curve in Fig. 3.8. Also for reference, a green line is plotted at 1 nm 

indicating that phase objects having diameters  within the range of ~650 nm    ~2 

µm are imaged with sub-nanometer OPL sensitivity, which is promising since sub-

nanometer OPL sensitivity is considered quite good for interferometric/holographic QPI 

methods [6]. For both low and high spatial frequencies, the OPL error is large due to 

reduced phase contrast. Also of note are the peaks near ̅ = 0.1 in both cases, which 

result from the fact that the POTF corresponding to  crosses zero before the POTF 

corresponding to  obtains appreciable value. To resolve this issue a third mid-range 

distance might be added as has been done in the time-lapse results presented later in this 

section. If spatial frequencies are cut-off above ̅ = 1, as has been done in the 

reconstructions shown in Figs. 3.4-3.6, then the overall OPL RMSE is measured as 1.85 

nm, which provides a measure of OPL resolution in the current implementation of POTF 

recovery and may be adequate for many applications including live adherent cell imaging 
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where OPL magnitudes are typically on the order of hundreds of nanometers. In order to 

improve sensitivity further, initial calculations show that annular illumination pupils, 

which are also readily available on most commercial microscopes, increase contrast for 

both low and high spatial frequencies and will be a subject of future work as outlined in 

Chapter 8. 

In order to test the present reconstruction method in its intended application, high-

speed QPI of live bovine mesenchymal stem cells using the aforementioned microscope 

and system parameters was performed. The defocusing was automated in NI LabVIEW 

using a piezo-electric objective scanner (Physik Instrumente P-721.SL2 with E-709.SR 

controller) to achieve a total phase frame rate of 1.6 frames per second over a duration of 

60 seconds. The cells were transported from the lab in which they were cultured in a 

phosphate buffered saline solution, which was also used to mount the cells onto a 

separate glass slide and coverslip. A snapshot of the results at  = 27.5 seconds are 

summarized in Fig. 3.9 with a full video accessible as Media 3.1. 

Shown in Fig. 3.9 are the recovered phase image after NLM filtering using the 

aforementioned parameters [Fig. 3.9(a)] as well as a simplified DIC image approximated 

numerically as the central difference of Fig. 3.9(a) [Fig. 3.9(b)]. The resulting images 

appear to show a cluster of cells as no single nucleus is identifiable. Multiple blebs are 

observed indicating that the cells were not healthy during imaging. This is not surprising 

since the cells were imaged in a simple manner without regard to environmental factors 

such as pH and osmolality. The phase images appear to be relatively noise-free and sharp 

with the theoretical system spatial resolution defined as ̅ 0.9⁄  = 546 

nm/[0.9(0.75+0.375)] = 539 nm, in which the factor of 0.9 is due a final low-pass filter 

applied to the phase images to prevent noise-amplification at spatial frequencies near the 

̅ = 1.125 limit where contrast reduces to zero (see Fig. 3.3). No evidence of halo, 

shade-off, or other artifacts typically associated with partially coherent interferometric 

modalities [168, 169] are observed. In Media 3.1, movement in the outer blebs as well as 
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intracellular activity can be observed demonstrating the applicability of the proposed 

reconstruction method towards studying intracellular dynamics [10]. 

 

Figure 3.9:  Snapshot of live bovine mesenchymal stem cell cluster taken from Media 
3.1. (a) Quantitative phase image. (b) Simulated DIC image estimated by central-
difference gradient approximation of (a). 
 

In order to demonstrate the present method’s potential for promoting the use of QPI 

within the biomedical community we performed time-lapse QPI of live endothelial cells 



 
  

76 
 

extracted from rat intestines using an off-the-shelf Zeiss AxioObserver.A1 coupled with 

commercially available AxioVision microscopy software for data acquisition. These 

ubiquitous system elements are to be contrasted with expensive holographic microscopes 

and other customized QPI systems detailed throughout the literature. The Zeiss Plan-

Apochromat objective had a NA of  = 0.3 and again we used a coherence parameter 

⁄  = 0.5 so that the condenser aperture was set to  = 0.15 using an 

adjustable diaphragm. The illumination was provided by a tungsten halogen lamp and the 

wavelength was again set to ̅ = 546 nm using a GIF (Δ  = 10 nm FWHM). For these 

optical parameters, the reconstruction parameters were selected to be  = 3 with  = 3 

μm,  = 15 µm, and  = 45 μm. AxioVision was programmed to image these distances 

every 10 minutes for 24 hours onto a Zeiss AxioCam MRm CCD with 1388  1040 

pixels. With the 1.5  Optovar lens in place, the FOV was 560 µm  419.25 μm with a 

sampling rate of 0.403 µm. In order to maintain cellular health over the entire 

experiment, the AxioObserver.A1 came with an incubator (Incubators XL) for warm air 

incubation and CO2-control. Likewise the AxioObserver.A1 comes with motorized 

defocus (step size 25 nm) and auto-focus capability which were utilized throughout the 

experiment to maintain a fixed focal reference to the petri dish on which the specimens 

were adhered.  

Using these images, partially coherent POTF processing was performed over a square 

region of interest of 1000  1000 pixels. During the time-lapse, many cells migrated in 

and out of the FOV, resulting in well-known artifacts associated with the artificial 

periodic boundary conditions imposed by the fast Fourier transform-based processing 

[124, 126]. Although these artifacts remain an issue, for this study we observed their 

greatest effect to be near the image boundaries. We therefore found cropping 100 pixels 

off the recovered phase image boundaries and subtracting the mean to be an effective 

means of subduing these artifacts. 



 
  

77 
 

Shown in Fig. 3.10 are snapshots of the recovered phase image after NLM filtering 

[Fig. 3.10(a)] as well as the approximated phase gradient image [Fig. 3.10(b)].  

 

Figure 3.10:  Snapshot of live endothelial cells taken from Media 3.2. (a) Quantitative 
phase image. (b) Simulated DIC image estimated by central-difference gradient 
approximation of (a). 
 

The results are qualitatively similar to Fig. 3.9 except that many individual cells are 

included in the FOV. The cell highlighted by the red circle is clearly undergoing 

anaphase. The video accessible as Media 3.2 demonstrates the present method’s 



 
  

78 
 

capability for time-lapse QPI studies with the processes of adherent cell migration, 

division, and differentiation all present and quantifiable. Throughout the video, various 

examples of mitosis are observed. In agreement with [131], the cells experience a 

significant reduction of surface area and increase in phase prior to dividing and then re-

adhering. The phase/phase gradient combination is seen to be useful in that the gradient 

information allows for easy visualization while absolute phase yields quantitative 

structural information. Thus in order to demonstrate its applicability, future studies are 

concerned with the use of data recovered by the proposed method for cell segmentation 

and morphological analysis. 

3.5   Conclusions 

3.5.1 Discussion 

In light of these results, it is appropriate to discuss the advantages and limitations 

associated with the proposed partially coherent POTF recovery method. Like all methods 

based on defocus, motorized scanners actuating either the stage plate, nosepiece, or 

objective are required in order for automation to be practical. Although this introduces 

significant costs and constraints in comparison to recently developed affordable QPM 

solutions such as the modular units proposed in [138] and [141], it should be noted that 

this limitation does not contradict the primary motivation for this work, which was to 

provide QPI capability using commercially available hardware without modification. As 

many potential users in biology and medicine already utilize modern live cell microscopy 

systems with motorized focus control, the work described herein represents an attractive 

approach for integrating QPI into their portfolio of imaging modalities. For this reason 

the proposed method should also have commercial appeal to manufactures of microscopy 

hardware and software, which could utilize such reconstruction algorithms to provided 

QPI capability via a software update only. 
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In addition to cost, the use of motorized focus control, including piezoelectric drivers, 

also limits the achievable acquisition speed of the present method. If objective scanners, 

as opposed to stage plate scanners, are used then the sample is not mechanically 

perturbed during imaging. In this case, rates in the range of 5-10 phase frames per second 

are achievable based on initial experimentation with custom software implementations 

using the objective scanner described herein. For high-speed investigations, for instance 

studying red blood cell membrane fluctuations [153], the proposed method is unsuitable 

and single-shot QPI methods should be used. The last point on defocus is that the 

proposed method may offer a cost effective solution in limited resource settings where 

low end microscopes are available and the lack of automated defocus is tolerable.  

It is also noted that the simulation and experimental results presented herein highlight 

the advantages of partially coherent POTF recovery when the linearization conditions 

[represented by Eq. (20-21) indicating weak absorption and SVP] are valid. This is not 

always so, as many applications, perhaps industrial ones such as the measurement of 

phase in photolithography masks [163, 167], require compatibility with strongly 

absorbing objects. In such cases it is likely that QPM methods based on the TIE, such as 

the OFS and MFPI-PC algorithms, will offer better reconstructions as they have also been 

shown to be compatible with strong, but slowly varying, absorption [7]. Another 

approach, however, to handle violations of the linearization conditions is to use iterative 

methods from nonlinear optimization to converge to the correct phase result [163]. 

The last point of discussion is centered on the applicability of 2D phase imaging of 

thick phase objects under partially spatially coherent illumination. In general, partially 

coherent image formation for objects thicker than the microscope depth of field is highly 

complex and inherently nonlinear as each off-axis illuminating plane wave travels a 

different optical path with multiple scattering events possible, thus 2D phase results 

should always be viewed with scrutiny. If, however, image formation is well-described 

by the 3D WOTF, then phase recovery based on the 2D WOTF will converge to the 
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desired projected phase image if the object spectrum is uniform along the axial spatial 

frequency coordinate within the 3D aperture of the imaging system [128]. This will 

generally be the case for object which are much wider than they are thick [128], however, 

a more careful investigation of these 3D effects is a subject of future research, as outlined 

in Chapter 8. 

3.5.2 Summary 

In summary, it has been observed that despite its obvious biomedical applicability, 

many QPI methods lack sufficient appeal due to reliance on coherent light and 

specialized hardware. Among methods suitable to microscopy, deterministic PR is 

attractive due to its direct nature and lack of hardware modification. In response to these 

needs, we have developed and described a new deterministic PR algorithm based on the 

WOTF, referred to as POTF recovery, which is linearized using conditions less restrictive 

than the first Born approximation.  

The results demonstrate the performance of the proposed method in comparison with 

other deterministic PR algorithms based on the TIE and WOTF. The capacity for 

reconstructing SVP phantoms with large overall phase delay such as might be 

encountered during adherent cell imaging has also been demonstrated. Experimentally, 

the POTF recovery has been validated using a MLA as a known test phase object. The 

capacity for both high-speed and time-lapse QPI of live adherent cells has also been 

demonstrated. The experimental images show no sign of halo or shade-off artifacts, and 

their theoretical spatial resolution is better than their coherent counterparts. The 

theoretical spatial resolution for the parameters used here is estimated as ~539 nm. The 

OPL resolution is also estimated as ~1.85 nm based on calibration measurements with no 

object in place. All in all, the proposed method is poised to promote the widespread 

adoption of QPI as it provides a simple processing platform by which one can obtain QPI 
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data of live adherent cells and other specimens which meet the linearization conditions 

using commercially available microscopy systems. 
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CHAPTER 4 

THREE-DIMENSIONAL QUANTITATIVE PHASE IMAGING VIA 
TOMOGRAPHIC DECONVOLUTION PHASE MICROSCOPY 

 
 

In Chapters 2 and 3, the problem of extending two-dimensional quantitative phase 

imaging (2D QPI) capability to commercial microscopy was addressed. In this chapter, 

another phase reconstruction method, called tomographic deconvolution phase 

microscopy (TDPM), is outlined which provides three-dimensional quantitative phase 

imaging (3D QPI) capability using commercial microscopes with only a slight 

modification for rotation of the sample. Like POTF recovery, TDPM is based on an 

optimized inversion of the weak object transfer function (WOTF), which is also shown 

here to be capable of reconstructing strong 3D phase objects. TDPM is analogous to 

similar methods utilized in 3D fluorescence microscopy which improve spatial resolution 

and location accuracy via deconvolution of multiple through-focal series obtained with 

varying angular orientations. In addition to its compatibility with microscopy, TDPM is 

unique in its ability to obtain isotropic spatial resolution without resorting to iterative 

reconstruction procedures for filling in the “missing cone” of spatial frequencies based on 

a priori knowledge of object characteristics, which commonly plagues 3D QPI methods 

based on optical diffraction tomography (ODT). The method is evaluated with numerical 

simulations and validated using optical fibers, including specialty fibers and azimuthally 

asymmetric long-period fiber gratings (LPFGs), as test 3D phase objects. This chapter is 

based on a manuscript entitled “Three-dimensional quantitative phase imaging via 

Tomographic Deconvolution Phase Microscopy (TDPM),” which is currently under 

review for publication [193] and an associated provisional patent application [194]. 
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4.1   Introduction 

Quantitative phase imaging (QPI) is an emerging field of biomedical optics in which 

the refractive index (RI) of phase objects is indirectly imaged through interferometric 

analysis [6]. QPI is preferred over alternative forms of biomedical imaging in that it is 

label-free, thus live cells can be imaged in their natural state without issues associated 

with photo-toxicity or photo-bleaching as in fluorescence microscopy. Another important 

benefit is that it is quantitative, enabling measurement of intrinsic properties, as opposed 

to modalities providing qualitative (non-linear) information such as phase and differential 

interference contrast microscopy. The data’s quantitative nature also lends itself towards 

image processing, thereby improving the extractability of various features and properties 

[131]. In addition to biomedical applications, QPI techniques have been useful for a 

variety of other applications including adaptive optics, semiconductor defect inspection 

[195], and optical fiber characterization [82]. 

QPI can refer either to two-dimensional QPI (2D QPI), in which the 2D phase image 

is interpreted as the integrated optical path length (OPL) through the sample, or three-

dimensional QPI (3D QPI), in which the real part of the object’s complex RI is imaged in 

all three spatial dimensions [196]. In spite of the fact that most objects, including 

biological specimens, are essentially 3D phase objects, 2D QPI has found wide-spread 

biomedical applicability [6, 11, 12, 132, 196, 197]. For example, it is known that cellular 

dry mass is linearly related to OPL [197], therefore, QPI can be used to monitor cell 

growth as a function of cell-cycle [11]. Another example would be the study of red blood 

cell membrane dynamics [12], for which 2D QPI is appropriate since RI is essentially 

homogeneous.  

In a general sense, however, single phase projections are insufficient for 

characterizing heterogeneous objects since, without approximation or special measures, it 

is impossible to differentiate OPL variations owing to changes in thickness versus RI. 

Thus for samples containing complex internal structure, such as eukaryotic cells, 3D QPI 
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is necessary for a complete morphological characterization. Current trends in QPI 

methods reflect this need as incorporating tomography and 3D microscopy is a major 

focus area for research [6]. Although most 3D QPI research has centered on 

methodology, applications areas, such as the biophysical characterization of malarial 

parasite exit from human erythrocytes [198] and the quantification of chromosomal dry 

mass values for human colon cancer cells [13], are being developed in parallel. 

Conventionally, 3D QPI is realized via either tomographic [56] or deconvolution 

methods [5, 63, 64, 199]. In tomography, the object is illuminated over a range of 

incident angles via either object rotation, in which the sample itself is rotated relative to 

the imaging system (usually along a principal Cartesian axis), or beam rotation, in which 

the angle of incidence of the illuminating beam is changed relative to the object and the 

optical axis of the imaging system [61]. If beam rotation within a non-moving optical 

system is used, only a limited range of incident angles is possible due to the finite 

numerical apertures (NAs) of the illuminating and imaging optics, resulting in a missing 

conical region of the frequency domain support in which data is only recoverable using 

algorithmic approaches requiring a priori knowledge of the sample [67]. Without such 

recovery spatial resolution will be degraded along the optical axis. Alternatively, 

although object rotation enables isotropic spatial resolution, it also introduces technical 

challenges associated with a moving object and limits acquisition speed [61]. 

In order to recover RI, phase is measured at each angle of incidence. Once the phase 

is measured, the choice of tomographic reconstruction algorithm depends on how the 

interaction with the object is modeled [56]. In projection tomography, for example, the 

measured phase is interpreted as in 2D QPI, in which the light propagates straight 

through the object in an undeviated manner so that phase is simply the RI of the object 

integrated along the optical axis multiplied by the incident wave vector magnitude. In this 

case the object can be reconstructed using conventional algorithms such as filtered 

backprojection (FBPJ) [56]. This model, however, is usually inappropriate at optical 
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wavelengths since characteristic dimensions of the object are often on the same order as 

the illuminating wavelength, meaning that diffraction, in addition to refraction at object 

boundaries, contribute to image formation and degrade the line integral approximation.  

For these reasons optical diffraction tomography (ODT) is usually employed in 3D 

QPI studies [61]. ODT accounts for diffraction of the incident light by the object and thus 

provides a more accurate model for image formation. In ODT, one of two 

approximations, namely the first-order Born or first-order Rytov approximations, are 

usually employed to linearize the relationship between the object’s complex scattering 

potential and the angularly resolved complex image data, for which amplitude absorption 

and phase of each pixel are measured [56]. The choice of approximation once again 

depends on the image formation model. The first Born approximation is known to be 

appropriate for “weakly scattering” objects in which the total phase delay through the 

object is less than around 2⁄  radians [56]. For biomedical applications, the first Rytov 

approximation is usually a better choice as it allows for a large total phase delay as long 

as the gradient of the complex scattered phase isn’t too large [200], as is usually the case 

for weak RI contrast [61]. In both cases, the complex image is related to the Fourier 

transform of the object along a semicircular arc in the spatial frequency domain and 

reconstruction algorithms using either spatial or frequency domain interpolation [60] can 

be utilized.  

Although a significant portion of current 3D QPI research is centered on developing 

and applying ODT methods such as tomographic phase microscopy [9], ODT has some 

negative features which encourage the development of alternatives in parallel. In general, 

ODT requires the illumination to be coherent, both temporally and spatially, resulting in 

difficulties associated with coherent noise sources such as phase jitter and speckle 

interference [134]. Another factor which may prohibit the wide scale commercialization 

and adoption of ODT among biomedical users is the cost associated with such laser/opto-

mechanical systems, as ODT must combine interferometric imaging with either object or 
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beam rotation. Most often, ODT employs beam rotation using either single [9] or dual 

axis [67] galvanometer-controller mirrors to change the angle of incidence. A recent 

approach combines two modular units to attach on to conventional microscopes 

providing beam rotation and single-shot 2D QPI respectively [140]. Object rotation has 

also been achieved on live cells via a hollow fiber capillary cell culture [191], patch-

clamping with a micropipette [201], and via holographic tweezers [202]. 

To address these issues, 3D QPI solutions involving the deconvolution of 3D images 

(3DD)  have been proposed [5, 63, 64, 199]. In such methods, a 3D image is constructed 

by collecting a through-focal series, after which RI is recovered via 3DD based on a 

linearized model. This approach is similar to fluorescence 3DD microscopy in which out-

of-focus blur is removed numerically [203]. Partially coherent illumination is often 

employed, enabling compatibility with commercial microscopy, greatly reducing the 

anticipated cost of such systems. The optical sectioning capability of various methods is 

derived from differing mechanisms including coherence and high-NA gating [63] as well 

as extended optical transfer function (OTF) support using partially spatially coherent 

illumination [66, 199]. Thus it is possible to obtain similar spatial frequency domain 

support (ultimately limited by illuminating NA) to ODT under beam rotation using 

commercial microscopy hardware [66], as has been exploited in fluorescence 3DD 

microscopy [203, 204]. In spite of these benefits, 3DD methods, like tomography under 

beam rotation, result in degraded resolution along the optical axis, which may be limiting 

for samples possessing complex internal structure with rapidly varying features 

inconsistent with constraints imposed by iterative limited-angle tomographic recovery 

algorithms, such as known object support or piecewise constancy [67]. 

In what follows, we present a new numerical reconstruction method and approach for 

3D QPI, called Tomographic Deconvolution Phase Microscopy (TDPM), which 

addresses the aforementioned issues by combining 3DD with object rotation to enable 

isotropic resolution using commercial microscopy hardware. TDPM is analogous to 
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similar methods used in 3D fluorescence microscopy [205-209], which are capable of 3D 

spatial resolution better than confocal microscopy. The extension to QPI was originally 

suggested by Cogswell et al. [206], although, to the authors’ knowledge, this concept was 

never realized. Although the recovery model will be based on a 3D weak object transfer 

function (WOTF) theory [66, 178], we show that TDPM recovery is possible for “non-

weak” phase objects with large total phase delay. Altogether, TDPM is an attractive 

alternative to ODT for both biomedical and industrial applications due to its compatibility 

with commercial microscopy, experimental simplicity, isotropic spatial resolution, and 

tolerance of large phase objects. 

4.2   Principles of Tomographic Deconvolution Phase Microscopy  

4.2.1 Relationship to First-Order Diffraction Tomography 

First-order diffraction tomography is a scalar theory based on the inhomogeneous 

Helmholtz equation [Eq. (4.1)]: 

  0. (4.1)

In Eq. (4.1),  where 2 ⁄  is the free-space wave vector magnitude 

for the wavelength  and Δ  in which  is the average RI and Δ  is 

the spatially varying component which defines the object,  is the total complex field 

amplitude (single polarization component for electromagnetic fields), and 

̂ denotes spatial coordinates. We may rewrite Eq. (4.1) as Eq. (4.2) to isolate the 

driving terms: 

  . (4.2)

In Eq. (4.2),  is the complex scattering potential which is 

evidently zero outside the support of the object (given as ). Using the method of 

Green’s functions, we may write the solution for  as [56] 

  



 
  

88 
 

  , (4.3a)

 
| |

∗

, (4.3b)

where exp ∙  is an incident plane wave field with wave number 

⁄  in which  is a unit vector describing direction,  is the field scattered by 

the object, exp 4⁄  is the Green’s function in three-space, | |, ∗ 

denotes convolution, and √ 1. If | | ≪  within  we may rewrite Eq. (4.3b) 

as Eq. (4.4), which is the first Born approximation for the scattered field [56]: 

  ∗ . (4.4)

It has been shown that we may also write the solution to Eq. (4.2) as 

  exp , (4.5a)

 
1

| | , (4.5b)

where  is the scattered component of the total field complex phase comprising both 

absorption and phase [56]. The first Rytov approximation for the complex scattered phase 

[Eq. (4.6)]:  

  , (4.6)

is recovered if we allow 

  ≅ , (4.7)

in the integrand of Eq. (4.5b), even though the limits of integration technically extend 

over all space. Although there has been some controversy concerning the relative validity 

domains of the first Born and Rytov approximations [200], it is generally accepted that 

the first Rytov approximation for the scattered phase [Eq. (4.6)] may still be valid when 

| | ≪  is invalid provided the change in scattered phase over one wavelength is 
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small [56]. Thus the Rytov approximation is usually employed in ODT since RI contrast 

is typically weak [61].  

Let us now consider bright-field microscopy operating in transmission for which only 

forward propagating waves which fall within the system aperture exist in image space. 

Initially, the illumination is modelled as a spatially coherent quasi-monochromatic plane 

wave defined by , exp 2 ∙  where  is the normalized 

(with respect to unit amplitude/intensity) amplitude emanating from the source . 

The quasi-monochromatic approximation, which implies that the illumination bandwidth 

is much smaller than the central wavelength, or Δ ≪ ̅, is easily obtained in microscopy 

through the use of interference filters and enables ignoring of partial temporal coherence 

from spectrally broadened sources [180].  Let us assume that the first Rytov 

approximation is valid, so that the scattered complex phase is well approximated by Eq. 

(4.6). Using Eq. (4.5a), we may write an expression for total normalized intensity, in 

which the  dependence has been made explicit: 

 
, , ∗ ,

exp 2Re ,
. (4.8)

Expanding the exponent of Eq. (4.8) in a Taylor series reveals that if  

  |2Re , | ≪ 1, (4.9)

Eq. (4.8) may be approximated as 

  , 1 2Re , . (4.10)

Expanding Eq. (4.10) using Eq. (4.6) and Eq. (4.4) results in 

 

, 1
,

2Re
,

, ∗

2Re
1
,

, ∗

, (4.11)
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where  has been expanded into real and imaginary parts [Eq. (4.12)] corresponding 

to phase  and absorption  as in [26]. 

  . (4.12)

The Fourier transform of Eq. (4.11) is given by Eq. (4.13), in which shifting property 

has been used. 

 

,
∗

∗
, (4.13)

In Eq. (4.13),  denotes frequency coordinates conjugate to  and 

 as well as  are the Fourier transforms of  and  respectively. Also 

used in Eq. (4.13),  is the Fourier transform of the Green’s function filtered to 

transmit forward propagating waves within the system pupil as defined by  in Eq. 

(4.14): 

  , (4.14)

where . In Eq. (4.14),  is usually given by circ ⁄  where 

̅⁄  in which  is the NA of the microscope objective lens, and circ  as 

well as the unit step function  in Eq. (4.14) are defined  as 

  circ
1, | | 1
0, | | 1

, (4.15)

  U
1, 0
0, 0. (4.16)

Assuming an extended incoherent source, we may incorporate partial spatial 

coherence by integrating over the illumination pupil  [66, 178], so that the final 

intensity spectrum may be written as  
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  : (4.17a)

  , (4.17b)

  ∗ , (4.17c)

  ∗ , (4.17d)

and the corresponding 3D intensity image is given by 

  ∗ ∗ , (4.18)

in which  and  are real-valued point spread functions (PSFs) corresponding to 

the absorption and phase OTFs (AOTF and POTF respectively) defined by  and 

 and  is the background intensity. In Eq. (4.17) and (4.18), the unit intensity 

normalization has been accounted for by the integral over . Equation (4.17) is the 3D 

WOTF first derived in [66] for circular illumination pupils under the paraxial 

approximation. Eq. (4.17) is usually derived by invoking the Born approximation [66, 

178] implying that ∀ ∈ , | , | ≪  within . Here we have shown 

that the 3D WOTF is valid under the first Rytov approximation with an additional 

constraint defined by Eq. (4.9) ∀ ∈  and ∀ ∈ Ω where Ω defines the 

measurement domain. The conditions imposed by Eq. (4.9) are similar to the weak 

absorption and slowly varying phase (SVP) conditions first derived by Guigay [127] for 

2D imaging. Splitting up contributions arising from absorption and phase, we write Eq. 

(4.9) as 

  | ∗ 2 Im , | ≪ 1, (4.19a)

  | ∗ 2Re , | ≪ 1, (4.19b)

where ,  is the effective coherent PSF and  denotes 

inverse Fourier transformation of . Eq. (4.19a) requires weak absorption and Eq. (4.19b) 

requires SVP, increasing the likelihood that the first Rytov approximation is valid. In 
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essence, Eq. (4.19) implies that the magnitude of intensity variations caused by scattering 

from a coherent plane wave must be small in comparison to the background intensity, 

defining a trade-off between signal-to-noise ratio (SNR) and linearization validity. The 

aforementioned statement regarding scattered intensity must be valid for all illuminating 

waves independently and not their incoherent sum, in which contrast is usually reduced 

further. Additional intuition is gained by considering Eq. (4.19) in the frequency domain. 

In Fig. 4.1, the absolute values of simulated AOTF and POTF corresponding to the PSFs 

in Eq. (4.19) for on-axis coherent illumination are shown. In generating the PSFs, the 

parameters  = 546 nm,  = 1.46, and  = 0.75 were used. 

From Fig. 4.1(a) we see that the AOTF has a strong low-pass characteristic since the 

Ewald sphere cap and its conjugate overlap additively due to the fact that the imaginary 

part of ,  is an even function of . This low-pass characteristic implies that the 

total absorption through the object must be small, as is consistent with our interpretation 

regarding scattered intensity. For the POTF, the opposite is true since the real part of 

,  is odd. Thus in Fig. 4.1(b) we observe the cancellation of contrast near the 

origin of frequency space. This implies that large but “slowly varying” phase objects with 

most of their energy residing in lower spatial frequencies are well approximated by the 

3D WOTF theory, which further cements the Rytov approximation used in its derivation. 

In Section 4.3, examples demonstrating the validity of this observation are provided using 

a split-step beam propagation method (SS-BPM) validated against rigorous 

electromagnetic solutions to scattering from a homogeneous cylinder.  

4.2.2 Tomographic Deconvolution Phase Microscopy Refractive Index Recovery 

Assuming that the validity conditions [Eq. (4.19) and first Rytov approximation] are met, 

the 3D WOTF [Eq. (4.17)] becomes the basis for TDPM. Shown in Fig. 4.2 are the 

AOTF and POTF (shown in the  plane with rotational symmetry implied) that are 

used through the remainder of this chapter which are calibrated to match the imaging 

properties of the microscope utilized (Olympus BX60).  
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Figure 4.1:  Magnitudes of the on-axis coherent 3D (a) absorption optical transfer 
function (AOTF) and (b) phase optical transfer function (POTF) derived from simulating 
the scattered complex field amplitude due to a point scatterer. All figures are plotted as a 
function of normalized frequency coordinates ⁄ , and have rotational symmetry 
about . 
 

The OTFs in Fig. 4.2(a) and 4.2(b) were calculated by simulating the scattering due to a 

line absorber, , and a line scatterer, , respectively at 

̅ = 546 nm with  = 1.46. 
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Figure 4.2:  Partially coherent 3D (a) absorption optical transfer function (AOTF) and 
(b) phase optical transfer function (POTF) plotted as a function of normalized frequency 
coordinates ̅⁄ . 
 

In calculating the OTFs, the scattered intensity due to each coherent plane wave in the 

illumination pupil was summed incoherently as in Abbe’s method for partially coherent 

image formation [210]. In order to increase accuracy, primary spherical aberration owing 

to focusing through uncompensated media was modeled by adding an extra term in the 

exponent of the defocusing pupil [180], for which the microscope was assumed to be 
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aberration free at  = 0. A circular illumination pupil with  (NA of the illuminating 

condenser lens) was used to balance the trade-off between optical sectioning and image 

contrast. A Gaussian distribution for  was assumed based on 2D curve fitting [Fig. 

4.3(b)] to an image [Fig. 4.3(a)] of the back-focal-plane of the objective lens (Olympus 

UPlanFl 40  / 0.75 0.17 ∞) obtained by inserting a Bertrand lens into the optical train 

with no sample in place. Thus each point source was weighted by the curve-fitted 

estimate [Fig. 4.3(b)]. 

 

Figure 4.3:  (a) Image of objective back-focal-plane with no sample in place. (b) 
Gaussian fit to (a) serving as the input source distribution in the calculation of optical 
transfer functions (OTFs) shown in Fig. 4.2. Both figures are plotted as a function of 
normalized frequency coordinates in the illumination pupil ̅⁄ . 
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Since the linearization conditions depend only on the relative intensity contrast due to 

each point source, they are independent of  and depend only on the choice of 

system pupil . In order to remain compatible with commercial microscopy, the 

choices for  are limited. Although it may seem advantageous to utilize Zernike 

phase contrast, in this case the real and imaginary parts of  effectively interchange 

roles in Eq. (4.19) thereby implying a weak phase condition. Differential interference 

contrast may be a much better option since contrast is related to lateral phase gradient 

rather than absolute value [181]. For bright-field microscopy, it may prove beneficial to 

optimize over the illumination pupil intensity distribution . Although no such 

optimization has been attempted, it has been observed that pupils with monotonically 

decreasing intensity with illumination angle provide more uniform contrast in the 

frequency domain and lead to increased stability. 

It can be seen from Fig. 4.2 that spatial frequency coverage under partial spatial 

coherence is similar to the coverage obtained in ODT under beam rotation [66] as well as 

widefield deconvolution microscopy [211]. This is because each plane wave in the 

illumination pupil samples the same Ewald sphere cap as in ODT plus its complex 

conjugate. Thus by measuring a through-focal series in a bright-field microscope one 

obtains similar information as in ODT with phase measurements over many angles. This 

is only true, however, in certain cases, such as imaging pure phase objects, in which a 

direct or regularized deconvolution between measured intensity and  can be 

achieved based on , as was first demonstrated by Noda et al. using annular 

illumination [199]. Another example would be when absorption is assumed to be 

proportional to phase, or , as in [212]. For a general object, with both 

weak absorption and phase, Streibl suggested that it should be possible to recover both 

components by measuring through-focal series under two different pupil functions [66].  

In TDPM, this is realized via object rotation. If the sample is rotated by 180°, for 

example, the symmetries of   and  allow  to be recovered uniquely by 
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subtraction of their respective 3D image stacks relative to a single reference coordinate 

system because the absorption contrast is an even function about each scatterer. This is 

analogous to phase recovery using 2D WOTF theory based on subtraction of images on 

either side of focus, as demonstrated in Chapter 3 [129]. Another benefit of subtracting 

through-focal series obtained from opposing perspectives is the ability to recover stronger 

pure phase objects because the second-order term, as well as all even-ordered terms, in 

the Taylor series expansion of Eq. (4.8) produce even contrast. In spite of the benefits 

360° coverage, for pure phase objects with weak RI contrast, complete object recovery is 

possible via object rotation over 180° and will be the basis of conventional TDPM RI 

recovery. 

Assuming the addition of an experimental configuration for object rotation, which in 

practice will likely be a glass fiber or capillary coupled to a rotation stage/device [205, 

208, 209], we are ready to devise a strategy for implementing TDPM. In order to sample 

the object spectrum in an isotropic fashion near the origin, the object must be rotated at 

least  times where 2⁄ ,  denotes rounding the decimal value  up to the 

nearest integer, and sin ⁄  is the marginal illumination angle in radians. In 

practice, however, it is often necessary to select ⁄  in order to enable reasonable 

contrast across the entire spectrum. Assuming equiangular rotation, choosing  results in 

the rotational increment Δ ⁄ . An optimal solution for the spectrum of the real part 

of the complex scattering potential, , is sought via the least squares formalism 

summarized by Eq. (4.20a), where  is an index associated with object rotation angle 

Δ , ⁄  are the 3D intensity spectra normalized by the background intensity , 

 are the normalized 3D POTFs given by Eq. (4.17d) assuming unit background 

intensity,  are the normalized 3D POTFs rotated at the angle , and  is a 

regularization parameter. Equation (4.20) can be solved directly to yield  as given 

by Eq. (4.20b): 
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  min | | , (4.20a)

 

∗

∑
. (4.20b)

The numerical implementation of Eq. (4.20) is non-trivial. Also, as can be seen in the 

upper-right inset of Fig. 4.2(b), contrast for low spatial frequencies near the origin is 

reduced resulting in ill-posed recovery, which is a well-known problem in 2D phase 

retrieval (PR) [47]. In fact, if Ω is selected to be a rectangular prism which barely 

encompasses the object then the frequency domain is likely to be undersampled resulting 

in spatial aliasing artifacts. In this case there are likely to be low spatial frequencies 

which are never sampled and are thus unrecoverable via 3D Fourier inversion. TDPM 

solves these issues by using a hybrid algorithm with different processing steps for low 

versus high spatial frequencies. The high-frequency algorithm is based on Eq. (4.20) and 

is summarized in Fig. 4.4. The low-frequency algorithm is the partially coherent analogue 

to filtered backpropagation (FBPP) [59] and is summarized in Fig. 4.5. Although it has 

proven difficult to optimize the low-frequency algorithm as in Eq. (4.20), preliminary 

results indicate that such an optimization would only yield marginal improvement. 

 The high-frequency algorithm shown in Fig. 4.4 is divided into four stages. In the 

image capture and pre-processing stage, through-focal series of an object are first 

acquired over the measurement domain Ω as the object is rotated in equal increments of 

Δ  about the -axis and then processed as inputs for RI recovery. The domain Ω should 

at least encompass the object, which is usually either known or easily estimated. If 

possible, Ω should also encompass the scattered intensity variations, thereby preventing 

errors associated with spatial aliasing and providing sufficient frequency domain 

resolution for a complete reconstruction via the optimized algorithm shown in Fig. 4.4. 

This will be difficult to achieve in practice, particularly for larger objects under increased 
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spatial coherence. Thus far, however, simulation and experimentation suggest that errors 

due to spatial aliasing do not inhibit quantitative interpretation of the data. 

 

Figure 4.4:  Block diagram representation of tomographic deconvolution phase 
microscopy (TDPM) refractive index (RI) recovery for high spatial frequencies. 
 

Once the through-focal images are collected over all rotation angles, pre-processing 

steps include background intensity normalization and subtraction, -slice registration, 

upsampling, and 3D image registration. Since background intensity  is a conserved 

quantity [66], each -slice image is first normalized by its average. Following 

normalization, background intensity variations which are characteristic of the system and 

not of the sample are removed via subtraction with a background through-focal series 

measured over the same domain Ω. The next pre-processing step entails the registration 

of each -slice to its nearest neighbors. This is only necessary in the event of object 

movement during 3D image measurement and has been successfully implemented via 

normalized cross-correlation between neighboring slices. Once the through-focal series is 

aligned internally, it is then usually upsampled along the -axis. This is because the 
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microscope depth of field is usually larger than the lateral resolution Δ Δ Δ . An 

efficient sampling strategy, therefore, is to sample at the largest integer multiple of Δ  

which is less than or equal to the depth of field, so that Δ Δ  after upsampling by the 

same integer. Note that care should be taken to ensure that defocus distances used in the 

measurement correspond to distances within object space, which may have a background 

RI  greater than one, implying that the microscope should be defocused by Δ ⁄  to 

realize a distance of Δ  within object space. 

The final pre-processing step is 3D image registration which is usually necessary due 

to radial runout of the rotating cylinder. Although phase correlation has previously been 

used for this step [208], herein another normalized cross-correlation between the 

measured through-focal series and pre-simulated sub images which are characteristic of 

scattering from the cylindrical reference boundaries on a column by column basis along 

the axis of rotation ( -axis) was found to be sufficient. Once positions of maximum 

correlation are identified, each column is circularly shifted to the center ensuring a single 

rotational reference.  

The next stage consists of filtering the spectrum of each through-focal series with the 

POTF conjugate, ∗ . Upon inverse Fourier transformation the images are ready for 

inverse rotation via bilinear interpolation to compensate for their physical rotation angle. 

In the final stage, the high spatial frequencies of RI are synthesized by summing over 

rotation angle, compensating for the frequency domain overlap between measurement 

angles via the denominator of Eq. (4.20b), filtering with a high-pass filter , 

offsetting the result so that the scattering potential  is zero outside the object (by 

subtracting , or the mean of  in the background region, and conversion from 

scattering potential to RI. The denominator of Eq. (4.20b) is constructed by Fourier 

transforming (indicated by ) the sum of rotated phase PSF autocorrelations [Eq. (4.21)]. 
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The rotations are made in real space via bilinear interpolation, which is found to yield 

less reconstruction error than frequency domain interpolation.  

  ∗ ∗ . (4.21)

Thus far a hard cut-off high-pass filter has been used [ , where 

| |] which retains all frequencies above a radial threshold 1 Ω sin⁄  (Ω  is 

the extent of Ω along to optical axis ), which defines the boundary between sampled 

frequencies and frequencies which are never sampled due to insufficient frequency 

resolution.  

Because frequencies below  are unrecoverable when Ω does not encompass the 

scattered intensity, the algorithm shown in Fig. 4.5 is necessary. The first stage of Fig. 

4.5 is the same as the first stage of Fig. 4.4. The first stage shown in Fig. 4.5, which is the 

second stage in the low-frequency algorithm, consists of applying 2D PR to solve for 

phase at each -slice through the object. Since it needs to operate on partially coherent 

intensity data, an algorithm is selected which can easily model partial coherence, such as 

TIE phase recovery [46] or methods based on inversion of the 2D WOTF [49]. In this 

work, a recent phase reconstruction method referred to as POTF recovery [129], and 

described in Chapter 3, was utilized. This method is the 2D analogue of TDPM and 

results in phase recovery from multiple defocused plane pairs which is optimal in the 

sense of minimizing noise in the final phase image. 

Actually, the general use of depth-resolved phase recovery is unjustified in the case of 

partially coherent illumination of a 3D phase object because phase has no meaning in the 

out-of-focus planes from each slice [108]. Below the previously defined threshold , 

however, the projection approximation is actually rather good, justifying the use of depth-

resolved PR for these frequencies since the phase contributed from each slice is roughly 

independent of the plane in which it is measured. Small phase variations do occur over 



 
  

102 
 

the same length scale as Ω , which is why the algorithm detailed in Fig. 4.5 is used, as 

opposed to conventional FBPJ [56]. 

 

Figure 4.5:  Block diagram representation of tomographic deconvolution phase 
microscopy (TDPM) RI recovery for low spatial frequencies. 
 

In implementing depth-resolved PR a selected number of defocused intensity images 

on either side of focus are used as inputs to the POTF recovery algorithm. This number 

should be chosen so that phase can be reconstructed over the entire extent of the object 

without needing to use defocused images estimated via circular padding. Another good 

reason to select Ω to be as large as possible is that the eventual phase SNR is roughly 

proportional to the defocus range used. Planes near the top and bottom edges which are 

unrecoverable in this manner are estimated by extension of their nearest recoverable 

neighbor. The remaining stages shown in Fig. 4.5 correspond to the conventional FBPP 

algorithm [59, 213]. In order to compensate for the increased sampling density near the 

spatial frequency origin, depth-resolved phases are filtered using normalized Ram-Lak 

filters with cylindrical symmetry about the - or rotation-axis (Δ ⁄ , 

), after which rotation is achieved via bilinear interpolation in the spatial 

domain [213]. In the synthesis stage, the filtered phases are summed over rotation angle, 
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low-pass filtered using 1 ,  and level shifted to compensate for the 

lack of absolute phase information. The final step in TDPM RI recovery is to add the 

results from Fig. 4.4 and Fig. 4.5 to obtain the overall 3D RI. 

4.3   Simulation Results 

4.3.1 Modified Split-Step Beam Propagation Method 

In order to model the imaging of 3D phase objects using bright-field microscopy, a 

modified wide-angle SS-BPM is used. In this method, contributions arising from each 

point source in the illumination pupil are added incoherently to form the final 3D bright-

field image. Each coherent simulation consists of implementing an off-axis wide-angle 

SS-BPM [103] which incorporates an obliquity factor (OF) given by Eq. (4.22) and 

which is associated with the local phase gradient magnitude [214], which compensates 

for additional phase delay associated with propagating through an effective thickness of 

Δ , where Δ  is the longitudinal resolution of the simulation. In Eq. (4.22),  is a 

gradient operating on lateral coordinates only and  is the phase of the total field 

. 

 

1

1
| |

. 
(4.22)

The SS-BPM is initialized with ,  as given in Section 4.2.1. At each 

-slice, the wave is first propagated by a half-step using the angular spectrum method in 

accordance with Eq. (4.23) [184], after which additional phase delay is added according 

to Eq. (4.24), and last of all Eq. (4.23) is applied once again, in which  and  

indicate 2D Fourier and inverse Fourier transformation of  in this instance. 

  exp 1
Δ
2

. (4.23)

  exp Δ . (4.24)
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For simplicity, the OFs are capped at √2 to avoid modeling the propagation between 

neighboring pixels in a given -slice. At each -slice, the phase gradient is estimated via 

a central difference approximation acting on the unwrapped phase values of the previous 

slice. Once the aforementioned algorithm has propagated through the entire structure, it is 

then filtered by  and backpropagated through the simulation space. The squared 

magnitude is the incoherent intensity contribution associated with the source point . 

Integrating over  completes the partially coherent 3D image simulation. 

In order to validate this model, its coherent outputs are compared with rigorous 

vectorial solutions to Maxwell’s equations for plane waves polarized along the axis of 

cylinders with real homogeneous RI, as found in [215]. Simulations were conducted to 

compare plane wave scattering at both normal and marginal incidence for a range of RI 

values. In order to enable a direct comparison with forward scattered waves detectable in 

transmission, the complex electric field amplitudes from rigorous solutions which 

incorporate multiple scattering due to both forward and backward propagating waves was 

calculated at positions coincident with the last -slice. Since the problem is now 

constrained to 2D, this 1D wave is then filtered by  and backpropagated through the 

same simulation space, resulting in a solution for forward propagating waves only. 

The SS-BPM simulation is then compared against this solution using normalized 

mean squared error of scattered intensity [NMSE, given by Eq. (4.25)] as a metric with 

results shown in Fig. 4.6. In Eq. (4.25),  is the simulated forward scattered intensity 

and  is the analytic solution with mean value . 

  NMSE
∑
∑

. (4.25)
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Figure 4.6:  (a) Normalized mean squared errors (NMSEs) of various split-step beam 
propagation method (SS-BPM) simulations with and without obliquity factor (OF) 
correction [Eq. (4.22)] for normal ( ⁄ ) and marginal [ ⁄

⁄ ⁄ ] incidence. (b) Simulated (with OF correction) and (c) analytic 
intensities with Δ  =  = 0.025 where  is the RI of the cylinder. Simulation 
parameters:  = 546 nm,  = 1, Δ  = Δ  = 0.245 µm,  = 0.75, and  = 0.375.  
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From Fig. 4.6(a) it is observed that correcting for the OF through each slice reduces 

error significantly, which is useful since SS-BPMs assume Δ ⁄ ≪ 1 [103], yet the RI 

contrast for dehydrated cells in water is about (1.55-1.33)/1.33  0.17, where  = 1.55 

for dehydrated cells [216] has been assumed. Also from Fig. 4.6, it is observed that 

NMSEs are less than 20% for Δ ⁄  0.15 with OF correction, validating the model 

and indicating its usefulness for simulating bright-field imagery from 3D phase objects. 

For the purposes of modeling TDPM reconstruction, this model is especially well-suited 

as the intensity contrast must satisfy Eq. (4.19), therefore Δ  must be weak as in ODT 

under the first Rytov approximation [56], resulting in improved model accuracy. This can 

be seen qualitatively in Fig. 4.6(b) and 4.6(c) for which Eq. (4.19) begins to break down. 

4.3.2 Simulated Tomographic Deconvolution Phase Microscopy Reconstructions 

Due to memory and time constraints imposed by modeling 3D intensity distributions 

under partial coherence, the tomographic reconstructions presented in this section are, 

without loss of generality in 3D, based on a 2D cylindrical phantom (shown in Fig. 4.7). 

Even though the object is 2D, off-axis waves emanating from the entire illumination 

aperture [Fig. 4.3(b) in both  and  directions] have been incorporated in the partially 

coherent image calculation, so that the modelled intensities coincide with cylindrical 

scattering under Köhler illumination. The parameters used in the simulation are the same 

as in Fig. 4.6 except that  = 1.46 as opposed to 1. 

Fig. 4.7 shows a modified version of the Shepp-Logan phantom in which the outer 

skull material has been replaced by the surrounding head material. For such a phantom 

the surrounding head material may represent cytoplasm with internal ellipses representing 

organelles.  
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Figure 4.7:  RI contrast Δ  of modified Shepp-Logan phantom.  
 

In Fig. 4.8, multiple tomographic reconstructions, including reconstructions obtained 

via ODT using FBPP under the first Born [Fig. 4.8(a), 4.8(d), and 4.8(g)] and Rytov [Fig. 

4.8(b), 4.8(e), and 4.8(h)] approximations as well as the TDPM method [Fig. 4.8(c), 

4.8(f), and 4.8(i)], are compared directly. The simulations are also differentiated by row 

according to maximum RI contrast Δ . In the results obtained via FBPP, the object 

was rotated 825 times about the -axis so that the rotational increment corresponded 

roughly with the angular resolution (along the -axis) used in the partially coherent 

image simulation. For each rotation angle, the aforementioned modified SS-BPM was 

used to calculate the total field, the scattered field was used in the first Born 

approximation, and the scattered phase was used in the first Rytov approximation. In 

calculating the scattered phase MATLAB’s unwrap function was utilized. The TDPM 

reconstructions utilized the 2D analogue of the methods outlined in Figs. 4.4 and 4.5 

using the POTF shown in Fig. 4.2. The TDPM reconstruction parameters were set to  = 

15 and  = 0. 
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Figure 4.8:  Reconstructions obtained using filtered backpropagation (FBPP) under the 
first Born (a), (d), and (g) and first Rytov (b), (e), and (h) approximations as well as 
tomographic denvolution phase microscopy (TDPM) (c), (f), and (i) for maximum RI 
contrast values of Δ  = 0.004 (a), (b), and (c), Δ  = 0.02 (d), (e), and (f), and 
Δ  = 0.1 (g), (h), and (i). The resulting RMSEs are (a) 0.00042, (b) 0.00015, (c) 
0.00017, (d) 0.00580, (e) 0.00088, (f) 0.00106, (g) 0.02681, (h) 0.01124, and (i) 0.01293. 
 

Immediately it is seen that TDPM is not as restrictive as ODT in the first Born 

approximation in the size of objects which may be reconstructed, verifying that the object 

need not be “weak” as in the conventional interpretation of the first Born approximation 

[56], but must be “slowly varying” as given by Eq. (4.19). This is evident by comparing 

the reconstructions made under the first Born approximation [Fig. 4.8(a), 4.8(d), and 

4.8(g)] with the TDPM reconstructions shown in Fig. 4.8(c), 4.8(f), and 4.8(i). Even 

when RI contrast is relatively weak, as in Fig. 4.8(a) in which the total phase delay 

through the object is approximately 1.1 radians propagating left to right, the first Born 



 
  

109 
 

approximation results in rotations in the complex plane which degrade the result [56].  

Likewise, similar behavior is observed and is more pronounced in Fig. 4.8(d) and 4.8(g), 

in which the total phase delays are 5.6 and 28.2 radians respectively. By contrast, TDPM 

reconstructions shown in Fig. 4.8(c) and 4.8(f) display no such rotation effect, and the 

associated reconstruction RMSEs are comparable to reconstructions in the first Rytov 

approximation [Fig. 4.8(b) and 4.8(e)] without any visible degradation of resolution or 

image quality.  

For the case of Δ  = 0.1 the scattered phase is highly wrapped, leading to phase 

unwrapping errors and associated artifacts in the Rytov reconstruction shown in Fig. 

4.8(h). In addition to errors due to phase unwrapping, deformation errors exist in Fig. 

4.8(h), such as enlargement of the phantom’s left eye ellipse, which are associated with 

the breakdown of the Rytov approximation. In TDPM, no phase unwrapping is necessary 

and thus the reconstruction shown in Fig. 4.8 (i) does not contain the same artifacts as in 

Fig. 4.8(h). The artifacts associated with TDPM appear to be predominant near object 

boundaries, resulting in a degradation of spatial resolution when RI contrast is too high. 

This results from an asymmetrical intensity distribution induced via multiple scattering 

events through the object which is especially pronounced near edges. It may be possible 

to counterbalance this asymmetry by illuminating from opposing angles over 360° as 

alluded to in Section 4.2.2. The application of this characteristic, however, will be the 

subject of future work. In spite of these errors, it is clear that TDPM, like ODT in the first 

Rytov approximation, will be useful over an appreciable range of RI contrast and will 

thus be relevant and applicable to biomedical studies. 

In order to quantify the reconstruction error associated with noise in the bright-field 

imagery, white Gaussian noise with a normalized standard deviation set to 1% of the 

background intensity level (  = 0.01) was added to the simulated intensity values. This 

value was selected to match the noise produced by the camera (QImaging Retiga 1300R, 

measured experimentally in Section 3.4) used in the experimental results shown in 
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Section 4.4 and is typical of many scientific imagers used for microscopy. The TDPM 

reconstruction results obtained with noise added are shown in Fig. 4.9 for (a) Δ  = 

0.004 and (b) Δ  = 0.04. 

 

Figure 4.9:  TDPM reconstructions obtained with additive noise with a normalized 
standard deviation of  = 0.01 and (a) Δ  = 0.004 and (b) Δ  = 0.04. The 
resulting RMSEs are (a) 0.00026 and (b) 0.00294. 
 

The reconstruction noise is visible primarily in Fig. 4.9(a) and dominated by the 

signal in the case of Fig. 4.9(b). In addition to demonstrating potential SNR, Fig. 4.9(b), 

for which the total phase delay through the object is approximately 11.3 radians, further 

supports the fact that TDPM does not require small total phase delay and can result in 
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good reconstruction quality for objects with wrapped phase. The RI contrast used in Fig. 

4.9(b) is comparable to recently verified values for live cell imaging in water [9, 191]. 

Theoretically, the RI error associated with image noise will, at least for the high-

frequency algorithm shown in Fig. 4.4, be spatial frequency dependent and inversely 

proportional to the square root of the denominator in Eq. (4.20b). Here the RI error 

associated with image noise is estimated by subtracting the reconstruction obtained 

without noise [Fig. 4.8(c)] from the reconstruction including noise [Fig. 4.9(a)] to yield a 

single-valued RI sensitivity of 2  10-4 RI units for these simulation parameters. 

4.4   Experimental Results 

In order to demonstrate TDPM experimentally, optical fibers are used as test 2D phase 

objects and a single exposure from a CO2-laser-induced azimuthally asymmetric long-

period fiber grating (LPFG) is used as a test 3D phase object. In order to implement 

TDPM, all that is required, in addition to a commercial microscope with automated 

defocus control, is an external stage for object rotation. The configuration utilized in the 

present work is designed to implement tomography on optical fibers using an upright 

microscope (Olympus BX60) and has been described elsewhere [31, 105]. In addition to 

this configuration, TDPM can immediately benefit from the groundwork laid for object 

rotation in similar fluorescent [205, 208, 209] and phase [191, 201, 202] methods. For the 

measurements presented here, the illuminating source was a mercury-arc lamp using a ̅ 

= 546 nm green interference filter with a full-width at half-maximum bandwidth of ∆  = 

10 nm. The imaging parameters and components are as outlined in Section 4.2.2 in order 

to match the calculated POTF. The microscope defocusing was automated using a 

piezoelectric microscope objective scanner (Physik Instrumente P-721.SL2 with E-

709.SR controller). 

Figure 4.10 shows the results of implementing 2D TDPM, using the same 

reconstruction parameters outlined in Section 4.3 (  = 15 and  = 0), with a (a) single-
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mode fiber (SMF, Corning SMF-28), (b) polarization-maintaining fiber (PMF, Thorlabs 

HB980T), and (c) photonic-crystal fiber (PCF, Blaze Photonics ESM-12-01) used as test 

phase objects. For all cases, the defocused imagery were sampled at Δ  = 4Δ  = 0.98 µm, 

with 147 images per rotation angle for a total of 2,205 images. Since the objects are 

cylindrical, averaging along the fiber axis is possible to improve SNR and for the 

tomograms shown in Fig. 4.10, 51 columns were averaged. 

In all cases, the fibers were surrounded by RI matching oil (  = 1.46 at  = 589 nm, 

Cargille Labs Series A) to match the RI of the fused silica cladding (  = 1.4601 at  = 

546 nm). Normal glass dispersion results in a slightly higher oil index  1.46, 

however, for the results presented here, RI values are offset to , which was the 

background index used in calculating the POTF. In Fig. 4.10(a), the expected step profile 

between fiber core and cladding is observed. Also seen is the well-known “center dip” in 

RI in the fiber’s core associated with dopant burnoff effect. This effect is also clearly 

seen in Fig. 4.10(b), in which the RI of the PMF’s stress applying members is also clearly 

visible and well-resolved. Lastly, the reconstructed hexagonal lattice structure of the PCF 

shown in Fig. 4.10(c) highlights TDPM’s capability and the results may be compared 

directly with a recent published state-of-the-art optical fiber tomographic algorithm 

which is based on ODT in the first Rytov approximation [73]. In addition to the lattice 

structure, RI features resulting from the modification of residual stresses (RS) in the 

fiber, such as the ring surrounding the air-hole lattice, are visible in Fig. 4.10(c).  

In order to demonstrate the 3D capability of TDPM, we have implemented the full 3D 

reconstruction procedure over a field of view of 293  651  293 cubic voxels, each with 

a volume of ∆  = 0.493 µm3, corresponding to physical dimensions of ~143 µm  318.5 

µm  143 µm. The resolution ∆  = 0.49 µm is a factor of two larger than previous cases 

to prevent excessive memory usage for 3D arrays. As in the 2D results,  = 15 angles 

were used with 147 images (∆  = 2∆  = 0.98 µm) taken at each angle. The reconstruction 
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Figure 4.10:  2D TDPM cross-sectional tomograms obtained on (a) single-mode fiber 
(SMF), (b) polarization-maintaining fiber (PMF), and (c) photonic-crystal fiber (PCF). 
All colorbars indicate RI units.  
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procedure utilized the full 3D POTF as opposed to a column-by-column implementation 

of the 2D procedure used before.  

The 3D sample consisted of a CO2-laser-induced azimuthally asymmetric LPFG 

period (Λ = 335 µm where Λ is the grating period) [91, 102]. In spite of the success of 

CO2-laser-induced LPFGs [24] since their introduction by Davis et al. [102], the 

mechanisms for grating formation in these [24], as well as arc-induced LPFGs [23], have 

not yet been fully characterized. Different investigations suggest differing mechanisms, 

such as RS modification [25], cladding densification [217], or geometric deformation 

[29]. A recent report by Hutsel et al. presents 3D QPI data on a SMF exposed to focused 

CO2-laser radiation of successive durations [91]. The LPFG period measured here was 

fabricated using the same experimental configuration with two pulses of 200 ms and 100 

ms in duration respectively, which may be directly compared with the results in [91] for 

one 300 ms pulse. The results of TDPM applied to this sample are summarized in Figs. 

4.11 and 4.12. 

In Fig. 4.11(a), a cross-sectional RI tomogram reconstructed ~150 µm away from the 

laser exposure is displayed and is similar to the result shown in Fig. 4.10(a) except that 

the RI difference between the matching oil and the fiber cladding is smaller. This most 

likely results from the temperature dependence of the oil (Δ  = -0.00038/°C) since the 

observed difference corresponds to a temperature difference of ~2°C and the 

measurements were performed on different days with different pre-stabilization periods 

(the microscope is normally turned on for ~3 hours prior to imaging in order to stabilize 

the oil temperature). In Fig. 4.11(b), another tomogram, reconstructed near the center of 

the CO2-laser exposure, is shown and clearly demonstrates the expected azimuthal 

asymmetry (see the lower-left inset in which the exposure is clearly incident from the 

upper-right).  
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Figure 4.11:  RI modification induced via CO2-laser exposure. (a) Unperturbed SMF 
reconstructed ~150 µm away from the center of the exposure. (b) Reconstruction near the 
center of the exposed region showing azimuthal variation. (c) Multiple slices showing the 
3D nature of TDPM data plotted with a reduced colorbar range to highlight both 
azimuthal and axial changes in the fiber cladding facing the exposure. All colorbars 
indicate RI units. 
 

The axial extent of this cladding index change can be easily visualized using Fig. 

4.11(c) and Fig. 4.12. In Fig. 4.11(c), multiple tomograms throughout the volume are 

represented simultaneously and clearly show the asymmetric cladding perturbation and 

its axial variation. Selected line profiles, corresponding to the index matching oil, 

cladding on the opposite side of exposure [lower-left quadrant of Fig. 4.11(b)], cladding 

facing the exposure [upper-right quadrant of Fig. 4.11(b)], and core are overlaid on Fig. 

4.11(c) and shown in Fig. 4.12. As expected, the RI of the oil remains constant 

throughout the extent of the sample. Similarly, the cladding side opposite the exposure 

appears to remain relatively unaffected. In contrast, the cladding side facing the exposure 

is clearly modulated and the magnitude and extent of RI change shown here (~5  10-4 
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RI units and ~100 µm respectively) is consistent with the results in [91], which adds 

validity to the proposed method since the results in [91] were based on a quantitative 

phase tomography technique [31], which has been used in a variety of fiber investigations 

[84]. The source of this cladding index modulation has been predicted to be glass 

densification caused by the relaxation of viscoelasticity frozen-in to the fiber during draw 

[26]. 

 

Figure 4.12:  Line profiles showing axial variation of RI in selected regions of CO2-
exposed SMF. 
 

Also shown in Fig. 4.12 is the core RI values which indicate a slight increase due to 

laser exposure, which is in contradiction to the lowering predicted by mechanical RS 

relaxation [25]. Such an increase may indicate that some form of densification occurs in 

the core as well, however, a complete characterization and study of grating formation 

mechanisms is a subject of future work.  

To assess the spatial and RI resolution of the aforementioned measurements, the 

cladding-oil step response of the SMF shown in Fig. 4.10(a) as well as the standard 

deviation of RI in the oil region of the LPFG period shown in Fig. 4.11(c) are examined. 

The 10 – 90% rise distance determined by the cladding-oil step response was ~735 nm 
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and provides a practical measure for spatial resolution in all three spatial dimensions. The 

standard deviation of RI in the oil region yielded a value of ~7.7  10-5 RI units, which 

provides an estimate of the RI resolution and sensitivity. Improved estimates of these 

specifications could be obtained by using polystyrene nanospheres to measure the system 

phase PSF and corresponding POTF, which is another subject of future work. Overall, the 

experiments presented here for both 2D and 3D reconstructions of optical fibers 

demonstrate the ability of TDPM to achieve 3D QPI in samples possessing RI variation 

in all three spatial dimensions. 

4.5   Summary 

In summary, a new method, called Tomographic Deconvolution Phase Microscopy 

(TDPM), is described which enables 3D QPI using commercial microscopy with minimal 

hardware modification. The linearization conditions for TDPM, comprising both weak 

absorption and SVP, have been elucidated and indicate applicability with large phase 

objects in which reconstructions based on a first Born approximation are known to fail. 

The spatial frequency domain support of TDPM is roughly isotropic and requires no a 

priori knowledge of the sample or phase unwrapping as in limited-angle ODT in the first 

Rytov approximation. The theoretical spatial resolution 1.22 ̅ ⁄  in the 

present implementation is estimated to be ~592 nm which agrees well with the ~735 nm 

10 – 90% rise distance estimated by the cladding-oil step response. The RI resolution 

depends on a number of factors including the measurement domain Ω, the grid resolution 

Δ , and the level of coherence and is estimated here to be ~7.7  10-5 RI units based on 

the standard deviation in the oil of the LPFG measurement. 

Due to its compatibility with commercial microscopy, TDPM is particularly well-

suited to wide-scale application among biomedical users. Techniques associated with 3D 

cell fixation and culture using glass capillaries and other cylindrical housings are still a 

matter of research [191, 201, 202, 209], however, it is anticipated that such techniques 



 
  

118 
 

will be enabling in the application of TDPM to both fixed and living cells. Another 

important application area is in optical fiber characterization, such as the study of grating 

mechanisms in LPFGs, which was only briefly mentioned here.  

For applications which preclude the use of object rotation, such as high-speed 3D QPI 

for imaging live cell dynamics [218], the modification of TDPM to incorporate 

algorithmic recovery of the “missing cone” of spatial frequencies from a single through-

focal series should be possible and will be the subject of future work. In such an approach 

no hardware modification would be necessary, permitting 3D QPI with similar frequency 

domain coverage as limited-angle ODT with only a fraction of the complexity and 

associated costs.  



 
  

119 
 

CHAPTER 5 

JOINT RESIDUAL STRESS/REFRACTIVE INDEX 
CHARACTERIZATION OF LARGE-MODE-AREA ERBIUM- 

DOPED FIBERS  
 

 

In Chapters 2 through 4, the primary objective of the present thesis research of provided 

quantitative phase imaging (QPI) capability using commercial microscopy systems was 

addressed. In Chapters 5 and 6, the secondary objective of the present thesis research of 

applying existing QPI and quantitative retardation imaging (QRI) methods to the 

characterization of optical fibers and fiber-based devices is addressed. Specifically, in 

this chapter, the three-dimensional index-stress distribution (3DISD) method described in 

[Hutsel_2012] is applied to the characterization of large-mode-area (LMA) erbium-doped 

fiber (EDF). The effects of fiber manufacturing, cleaving, and fusion splicing are 

characterized. The formation of residual stresses (RS) induced during manufacturing can 

results in changes of refractive index (RI) by as much as 1.2  10-4 RI units via the 

photoelastic effect. Likewise, fusion splicing can results in a RS-induced RI change of 

3.5  10-4 RI units over a fiber axial distance on the order of millimeters. The diffusion 

of core dopants during fusion splicing can reduce the core RI by as much as 21.7% over a 

transition length of ~400 µm. The measurements outlined herein indicate that RI/RS 

effects will play key roles in the design of future ultra-LMA EDFs in which the 

difference between core and cladding RI is reduced further. This chapter is based on the 

paper entitled “Joint residual stress/refractive index characterization of large-mode-area 

erbium-doped fibers,” which was published in July of 2013 [219]. 
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5.1   Introduction 

Using silica erbium-doped fiber (EDF) as the gain medium for erbium-doped fiber lasers 

(EDFLs) and erbium-doped fiber amplifiers (EDFAs) has been of considerable interest in 

the past few decades [220-231]. Many applications, such as extra-terrestrial free-space 

optical communications, laser surgery, and military weaponry require large optical 

powers (in the range of 100W–1kW), therefore large mode areas (LMAs) are needed to 

avoid non-linear effects, long-time-scale degradation of the fiber properties, such as 

photo-darkening, and in order to maintain good output beam quality [92]. LMA EDFs, 

like all optical fibers, are sensitive to unintended refractive index (RI) perturbations such 

as those induced via dopant transport during fiber manufacturing [94, 232, 233], residual 

stresses (RS) and inelastic strains formed during fiber manufacturing [95, 234-237], and 

stress relaxation near cleaved end-faces [238, 239]. Arc-fusion splicing also perturbs 

fiber RI distributions via dopant diffusion [101, 240] and RS relaxation [87]. 

Due to the plurality of perturbations, which may in general degrade or enhance the 

optical and mechanical properties of the fiber, it is a common goal to characterize these 

effects through measurement of their spatially resolved physical properties including their 

RS and RI distributions. From the inception of modern optical fiber technology in the 

early 1970’s, researchers have been developing techniques for RI profiling, which is a 

form of 3D QPI, such as the refracted near field [71] and reflection methods [241]. Later, 

Chu et al. began probing RS in fibers using principles from photoelasticity [242], and this 

has been extended by others [238, 243-245]. More recently, Shin et al. reported the 

variation of RS along a fusion splice between dissimilar fibers including EDF to single-

mode fiber (SMF) [87]. Dragomir et al. demonstrated the measurement of RI variation 

along a graded-index multi-mode fiber to SMF splice, highlighting the effects of potential 

imperfections in the arc-fusion process [84]. Although the fields of fiber RS and RI 

characterization have matured significantly, only recently were they combined into one 
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automated system for the joint residual stress/refractive index three-dimensional (3D) 

characterization of these properties [31].  

In order to maintain single-mode operation with large mode-field diameters (MFDs), 

the numerical aperture (NA) in LMA EDFs must be kept low requiring small normalized 

index differences (Δ). Because Δ values must necessarily be suppressed, single-mode 

LMA EDFs are inherently more sensitive to perturbations in their RI and RS distributions 

due to the photoelastic effect [93]. Perturbations which have been neglected in the past 

will dramatically alter the optical properties of fibers such as the ultra LMA ytterbium-

doped photonic-crystal fiber developed by Schmidt et al., which has an effective index 

difference of ~0.7  10-4 [96]. LMA ytterbium-doped fibers with NAs of ~0.06 are 

already commercially available. In order for ultra LMA EDFs to be developed in the 

future, all of the perturbations in such fibers must be understood thoroughly and included 

in the fiber design. Therefore, accurate and detailed characterizations of RS and RI 

distributions for LMA EDFs are needed to develop future fibers with improved 

performance. As a starting point, in this chapter, a commercial nLIGHT LIEKKITM Er80-

8/125 LMA EDF is fully characterized for its RS and RI distributions in an unperturbed 

section, a cleaved end-face, and a section fusion spliced to a telecommunications fiber 

(SMF-28).  

5.2   Experimental Methods 

The measurements presented in this chapter are based on the high-resolution 3D index-

stress distribution (3DISD) measurement method presented in [31]. Because both RS and 

RI measurements are performed within the same apparatus, there is no need to move the 

fiber between measurements and the stress and index can be compared directly. The RS 

is characterized tomographically by measuring the optical retardation due to stress-

induced birefringence at multiple projection angles using a Brace-Köhler compensator 

technique in a polarization microscope [238, 246]. The RI is also characterized 
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tomographically by measuring the phase shift induced by the fiber RI profile at multiple 

projection angles using quantitative phase microscopy (QPM) based on the transport-of-

intensity equation (TIE) [31]. For both measurements the fiber sample was surrounded by 

index matching oil (Cargille Labs  = 1.456) as light propagated transverse to the fiber 

axis. The accuracies associated with these techniques are 0.35 MPa and 2.34  10-5 RI 

units respectively [31]. Their lateral spatial resolutions depend on many factors including 

diffraction limits in microscopy, the number of projection angles used, the extent to 

which the straight ray assumptions are satisfied in projection tomography, and perhaps 

most importantly the effects of illuminating a 3D object with partial spatial coherence 

[128]. The resolutions have been shown to be sufficient for characterizing established RS 

and RI effects including hydroxyl impurities inducing large compressive stresses at the 

core-cladding interface and the center dip in RI induced during core preform fabrication 

[31]. 

5.3   Experimental Results 

The experiments are based on a LIEKKITM Er80-8/125 LMA EDF which has a core 

diameter of 8 µm and a cladding diameter of 125 µm. The erbium concentration is 4.7  

1019 ions/cm3 and the absorption coefficient is ~80 dB/m at 1530 nm. The nominal 

cladding RI, NA, and MFD are 1.4573, 0.13, and 9.5 µm at 1550 nm respectively. 

Conventional EDF MFDs are typically ~5-8 µm [247]. The fiber is designed to have a 

step index profile, and the RI difference between core and cladding (∆ ≅

2⁄ ) is approximately 6.0  10-3.  

The fiber is first characterized for its unperturbed RS and RI distributions to reveal 

effects of fiber manufacturing. Then, a cleaved end-face is characterized to investigate 

how RS and RI variations affect output coupling. Lastly, the fiber is fusion spliced to a 

Corning SMF-28 fiber and characterized to predict optical coupling. A radially-
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symmetric finite-difference beam-propagation method (FD-BPM) is employed to 

describe the propagation of the fundamental mode from the LMA EDF to the SMF.  

5.3.1 Unperturbed Fiber Characterization 

Fig. 5.1(a) and 5.1(b) shows the cross-sectional RS distribution and a RS profile 

(along the dashed line) of the unperturbed LIEKKITM Er80-8/125 LMA EDF respectively. 

The off-horizontal solid and dotted lines in Fig. 5.1(a) correspond to the direction of 

maximum asymmetry and the associated profiles will be displayed later in Fig. 5.4(b). 

For comparison, a Corning SMF-28 RS profile is also plotted using the dotted curve in 

Fig. 5.1(b). Generally, there is a thermal component and a mechanical component of the 

RS in optical fibers [95, 99, 238]. Thermal stresses result from the difference in thermal 

expansion coefficients (TECs) of doped and un-doped silica glasses. When a fiber cools 

after being heated beyond its fictive temperature, regions with large TECs seek to 

contract more than regions with low TECs and are met with resistance from the solidified 

glass. The result is tensile stress in regions with a high TEC, typically the core, and 

compressive stress in regions with a low TEC, typically the cladding. Mechanical stresses 

result from variations of viscosity during the fiber drawing processes. As the fiber cools, 

regions with higher viscosity, usually the cladding, bear the brunt of draw tension and 

modify RS in other areas after mechanical equilibrium is established, resulting in 

compressive stress in the core. Typically, these two components oppose each other due to 

large TECs and low viscosities in the doped core compared to the pure silica cladding. 

The influence of mechanical, or draw-induced, stress is usually greater than thermal 

stress when the draw tension is sufficiently high, and the resulting stresses are tensile in 

the cladding and compressive in the core as shown in Fig. 5.1.   
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Figure 5.1: (a) Cross-sectional residual stress (RS) distribution and (b) RS profile along 
the dashed center line in (a) of the unperturbed large-mode-area erbium-doped fiber 
(LMA EDF). 

 

This fiber was fabricated using a direct nanoparticle deposition (DND) method, which 

enables highly uniform and controllable layers in the soot deposition process [248]. In 

order to obtain the correct core-to-cladding ratio, the core preform must sometimes be 

sleeved more than once. Also, it is possible that the preform may need to be drawn prior 

to the second sleeving process [249]. In general, these processes will perturb the RS. For 

example, impurities, which lower the viscosity of silica glass and result in localized 

compressive stress, may form when sleeving a core preform [250]. Compared to SMF-28 

fiber, this LMA EDF contains more radial stress variation in the pure silica cladding, 

which may be due to additional sleeving and drawing steps.  

As seen in Fig. 5.1, the RS in the outer cladding is less than that of SMF-28 fiber. 

This is to be expected because the high volume production of SMF-28 requires a high 

draw tension/speed. Also as an indicator of draw speed, the mean axial stress, , as 

calculated using Eq. (8) in [238], over a cross-section of the LMA EDF, which should be 

zero in the absence of external forces, is approximately 2.50 MPa compared to 4.71 MPa 

for SMF-28 fiber [238]. This anomaly has been reported by many authors [236, 251] and 
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is due to the viscoelastic properties of silica [26].The mean axial stress is an indicator of 

inelastic strain birefringence in the fiber and is in proportion to draw tension.  

The RS distribution in and around the core region of the LMA EDF is highly 

compressive, indicating less thermal expansion and a reduced viscosity compared to the 

SMF-28 fiber core. The RS induced during fiber manufacturing perturbs the RI 

distribution according to the photoelastic effect, see Eq. (5.1), where  is the isotropic 

RI and  = -0.65  10-6 MPa-1 and  = -4.22  10-6 MPa-1 for fused silica [252]. For 

weakly-guiding fibers, the radial RI, , is the most significant principal index of 

refraction. 

  . (5.1)

The axial RS, , is the measured RS distribution minus the mean axial stress, , to 

ensure mechanical equilibrium is satisfied. The radial and circumferential components,  

and , can be calculated using Eq. (5.2a) and (5.2b) from the theory of linear elasticity 

assuming radial symmetry [253], in which : 

 
1

, (5.2a)

  . (5.2b)

Fig. 5.2 shows the change in radial RI, Δ , which results from the manufacturing 

induced RS distribution calculated using Eq. (5.1) and (5.2). This level of stress results in 

a positive RI change of ~1.2  10-4 RI units in the core, which represents a significant 

change for ultra LMA fibers. The magnitude of RS in this fiber is relatively moderate, as 

stresses can easily reach values of several hundred MPa in optical fibers [253]. Therefore, 

it is anticipated that even larger stress-induced RI changes may form in some LMA 

EDFs. Also, because the inelastic strain birefringence is not necessarily uniform and 

localized in regions of high viscosity [26], the cladding RI may also be lowered by values 

on the order of 10-5 RI units corresponding the observed mean axial stress. If not taken 
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into account beforehand, these index changes may dramatically affect waveguiding 

characteristics for ultra low NA fibers and may even result in multi-mode operation. 

Therefore, it is critical to understand the RS distributions in LMA EDFs currently being 

researched. These measurements represent an initial effort towards characterizing these 

effects. More measurements are needed to understand completely how various dopants 

affect the RS and to achieve the precise balance of RS and RI necessary in ultra LMA 

EDFs. 

 

Figure 5.2: Cross-sectional changes in radial refractive index (RI), ∆ , resulting from 
manufacturing induces RS. 
 

The cross-sectional RI distribution of the unperturbed LMA EDF and RI profile along 

the dashed line are shown in Fig. 5.3(a) and 5.3(b) respectively. As before, the off-

horizontal solid and dotted lines in Fig. 5.3(a) correspond to the direction of maximum 

RS asymmetry. This direction was chosen arbitrarily because no apparent asymmetry 

could be detected in the RI cross-sections, indicating a high level of radial symmetry as is 

evidenced by Fig. 5.4(d). A very uniform cladding is observed and a sharp step-index 

profile can easily be seen in Fig. 5.3(b). In the center of the core region, a RI dip, 

commonly known as the “center-dip” or “burnoff dip” [31], is seen. The RI difference 
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between the core and cladding, Δ , is approximately 6.34  10-3. According to the 

cladding RI of 1.4573, the NA of this fiber is calculated ( ≅ 2∆ ) as 0.1359, 

which is consistent with the nominal value supplied by the manufacturer of this fiber, NA 

= 0.13. Due to its relatively large core size, severe spreading due to dopant diffusion 

during fiber drawing [232] is not observed in spite of a large erbium concentration. 

 

Figure 5.3: (a) Cross-sectional RI distribution and (b) RI profile (along the dashed center 
line) of the unperturbed LMA EDF. ∆  denotes the relative RI compared to the RI of the 
index matching oil.  
 

Fig. 5.4(a) and 5.4(c) display radial RS and RI profiles averaged from 90,000 profiles 

(180 angular orientations  500 cross sections) taken from a single tomographic 

measurement. Each cross section was taken at an axial spacing of 0.49 µm and 

corresponds to 1 pixel column of a CCD image. The error bars represent radially resolved 

standard deviations. These deviations include actual non-uniformities in the fiber as well 

as measurement variations across one tomographic field of view. Fig. 5.4(b) and 5.4(d) 

display radial profiles, averaged over the same 500 axial cross-sections, taken along the 

directions of maximum RS asymmetry, or along the solid and dotted lines of Fig. 5.1(a) 

and Fig. 5.3(a) respectively. Fig. 5.4(b) reveals a true asymmetry at  28 µmi nduced 

via imperfections in fiber manufacturing, perhaps during a drawing stage. The asymmetry 

is most likely due to mechanical stresses because thermal stresses originate from radially 
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symmetric TEC profiles. Also, the error bars on Fig. 5.4(a) are larger in the 

corresponding location due to this asymmetry. Altogether, Fig. 5.4 demonstrates the 

capability of this characterization method to detect small RS and RI non-uniformities in 

the fiber sample.  

 

Figure 5.4: Average stress and index profiles, with associated non-uniformities, of 
unperturbed LMA EDF are shown in (a) and (c) respectively. Error bars indicate radially 
resolved standard deviations of the axial RS and RI. Maximum stress asymmetry is 
shown in (b) along the direction indicated by the off-horizontal lines in Fig. 5.1(a). The 
lack of index asymmetry is illustrated in (d) along the same direction. 
 
5.3.2 Cleaved end-face Characterization 

In order to characterize the effects of cleaving, a Fujikura GT-04B high precision fiber 

cleaver was used and variations along the fiber axis were measured. Fig. 5.5(a) and 5.5(b) 

show the cross-sectional RS distribution and profile at 5 μm from the fiber end-face. For 

comparison, Fig. 5.5(a) uses the same scale as Fig. 5.1(a) and the unperturbed fiber 

profile is plotted with a dotted line in Fig. 5.5(b). Diffraction and scattering from the end-
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face degrade the stress measurement and cross-sections closer than 5 μm from the end 

were heavily distorted. From Fig. 5.5(b), it is obvious that elastic stresses have relaxed 

when compared to the unperturbed RS profile, similar to the results obtained in [239]. 

The cladding stresses have become less tensile and the core stresses have become less 

compressive, indicating a gradual change towards zero elastic stresses at the cleaved end-

face. The transition region for these changes is on the order of tens of µm, and the 

resulting stress-induced index change will be on the same order as that induced via 

manufacturing. In spite of this, any LMA EDF with a NA low enough to be sensitive to 

these changes will also have a large MFD and will not experience significant mode 

transformation over this characteristic length. 

 

Figure 5.5: (a) Cross-sectional RS distribution and (b) profile along the dashed line in (a) 
5 μm from the end-face of the LMA EDF. For comparison, the unperturbed RS profile is 
also shown (dotted line). 
 

To investigate further the effects of cleaving, mean axial stresses were calculated near 

the cleaved end-face. The mean axial stress, , is shown in Fig. 5.6 over a length of 50 

µm. For comparison, the unperturbed fiber mean axial stress is also shown in the figure 

as a dotted line. An obvious trend from the fiber’s unperturbed value to 1.90 MPa at the 

end-face is observed. The characteristic length associated with this transition is 

approximately 30 µm. The mean axial stress in this LMA EDF decreases by 0.6 MPa, 



 
  

130 
 

which is much less than the corresponding value for SMF-28 fiber, 3.59 MPa [238]. Shin 

et al. also observed this decrease in inelastic strain birefringence near a cleaved end-face 

[239]. The physical reason for this observation is not well understood, because for most 

applications the associated index change is negligible. Similar to the relaxation of elastic 

RS, changes of this magnitude will also be insignificant over the observed length scales 

(~30 µm). Overall, RS perturbations induced by fiber cleaving will not significantly 

affect the optical characteristics of LMA EDFs. 

 

Figure 5.6: Mean axial stress inside the LMA EDF at various lengths from the cleaved 
end-face (solid curve). For comparison, the unperturbed mean axial stress is also shown 
(dotted line). 
 

The cross-sectional RI distribution and profile 5 µm from the end-face are shown in 

Fig. 5.7. Like the RS, measurements closer to the end-face are distorted by diffraction 

and scattering. For comparison, the RI profile of the unperturbed LMA EDF is plotted in 

Fig. 5.7(b) using a dotted curve. Although the relaxation of RS is detected as shown in 

Fig. 5.5, the associated RI changes are smaller than the RI accuracy and no additional 

perturbations are observed. This is to be expected because the fiber has not been altered 

in any way aside from the relaxation of RS. 
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Figure 5.7: (a) Cross-sectional RI distribution and (b) RI profile along the dashed center 
line in (a) 5 µm from the end-face of the LMA EDF. 
 
5.3.3 Fusion Splice Characterization 

In order to interconnect with existing fiber-based systems and networks, it is often 

necessary to perform an arc fusion splice between dissimilar fibers. The success of many 

fibers and fiber-based devices depends on optimizing fusion splices. In general, fusion 

splicing induces optical loss due to mode-field mismatch between dissimilar fibers [99]. 

The high temperatures associated with fusion splicing can cause diffusion of dopants 

such as erbium and flourine which affect RI distributions [247]. In addition, fusion 

splicing also perturbs RS distributions [254] which may also have significant 

consequences for LMA EDFs. In order to characterize all of these effects, the LIEKKITM 

Er80-8/125 was arc fusion spliced to an SMF-28 fiber using the normal SMF-SMF P.01 

program of an Ericsson FSU 975 fusion splicer. The fusion splicer estimated a splice loss 

of 0.01 dB indicating excellent lateral alignment between these two fibers. 

Fig. 5.8(a) shows the LMA EDF cross-sectional RS distribution at 100 µm from the 

splicing point. When compared to the unperturbed profile in Fig. 5.8(b), significant 

changes are seen in the RS profile, taken from the dashed line in Fig. 5.8(a). The core 

stresses become tensile and the cladding stresses become slightly compressive. During 
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the arc fusion splice process, the electrical discharge heats the fibers beyond their fictive 

temperatures, relaxing both thermal and mechanical stresses. Because the fibers are not 

held under tension, mechanical stresses do not form upon cooling and only thermal 

stresses remain. Also, the mean axial stress should be zero, as will later be verified in Fig. 

5.9, because inelastic strain birefringence is proportional to draw tension and the fibers 

are heated beyond their fictive temperature and cooled under no tension. The resulting 

thermal stresses, as well as the mean axial stress, can be subtracted from the unperturbed 

RS distribution to calculate the mechanical stresses. For this reason, fusion splicing 

provides an excellent method for isolating thermal and draw-induced stress components 

as well as inelastic strain birefringence in optical fibers. Also note that the stress 

asymmetry mentioned in Section 5.3.1 is not observed in the spliced profile, again 

suggesting that it is a draw-induced effect. 

 

Figure 5.8: (a) Cross-sectional RS distribution and (b) RS profile along the dashed center 
line in (a) of the LMA EDF 100 μm from the splicing point. 
 

Fig. 5.9 shows the RS profiles located within 1.6 mm of the splicing point on either 

side. The fiber axial resolution (horizontal axis in the figure) is 0.49 μm so there are 

6,530 profiles displayed in the figure. For this measurement, the RS distributions were 

assumed to be axisymmetric, and tomograms were reconstructed from only one 

retardation projection.  



 
  

133 
 

 

Figure 5.9: Arc fusion splicing induced RS distribution along the LMA EDF (left) and 
the SMF-28 fiber (right). Splicing point at  = 0; left fiber is LMA EDF and right fiber is 
SMF-28. The inserted figure (top) shows the mean axial stress near the splicing point. 
 

From this figure, it can be readily seen that the mechanical stresses near the splicing 

point for both the LMA EDF (left) and the SMF-28 fiber (right) have been relaxed. The 

inserted figure (top) also verifies the prediction of zero mean axial stress, confirming that 

inelastic strain birefringence is in proportion to draw tension. For each fiber, a different 

transition pattern is observed. The transition patterns are influenced by the functional 

forms of RS in the two fibers as well as the spatio-temporal distribution of heat within the 

fusion splicer and the fiber itself. There is an obvious stress discontinuity in the core 

region at the splicing point, owing primarily to different doping conditions between the 

two fibers. The thermal stresses in the LMA EDF core are less tensile than the SMF-28 

fiber core, which is consistent with the observation of larger compressive stresses in the 
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unperturbed LMA EDF core. Another reason for reduced thermal expansion in the core is 

the radial diffusion of dopants, which increases the effective core diameter. 

Using the data from Fig. 5.9, the change in radial RI, Δ , can be calculated from Eq. 

(5.1) and (5.2), and is shown in Fig. 5.10. These data are calculated using the change in 

axial, radial, and circumferential elastic stresses from their unperturbed values rather than 

the RS shown in Fig. 5.9. The mean axial stresses must be subtracted from the measured 

RS before calculating these changes. The RI changes near the splicing point are 

discontinuous because they are proportional to the unperturbed mechanical stresses 

within each fiber.  

 

Figure 5.10: Change of radial RI, Δ , induced by the RS change along the fusion splice 
between the LMA EDF (left) and the SMF-28 fiber (right). Splicing point at  = 0; left 
fiber is LMA EDF and right fiber is SMF-28. 
 

From Fig. 5.10, it is obvious that the magnitudes of stress-induced index changes due 

to fusion splicing are larger than those induced via manufacturing or cleaving for this 

LMA EDF. In the cores, the RI can be decreased by as much as 3.5  10-4. Although this 

may be insignificant for some fibers, these levels of stress-induced RI changes cannot be 

overlooked in ultra LMA EDFs. For some ultra-low NA fibers, changes of this magnitude 

will reduce the core RI below the cladding RI, eliminating any possibility of waveguiding 

over a long optical length of ~1 mm. Unlike the cleaved end-face, perturbations of this 
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magnitude and length scale are large enough for significant mode transformation and may 

degrade coupling efficiency. Because these changes are primarily due to relaxation of 

draw-induced stresses, they will be exacerbated as draw speeds increase for high volume 

fiber production. Also, the disappearance of inelastic strain birefringence near the 

splicing point corresponds to a cladding RI increase on the order of 10-5 RI units. 

Fig. 5.11 shows the RI distribution inside the LMA EDF and SMF-28 fiber near the 

splicing point. For this measurement, the RI distributions were assumed to be 

axisymmetric, and tomograms were reconstructed from only one phase projection.  

 

Figure 5.10: RI distribution along the LMA EDF (left) and the SMF-28 fiber (right). 
Splicing point at  = 0. 
 

Unlike the unperturbed fiber and cleaved end-face, significant changes in RI are 

observed directly in the RI measurement. These changes are attributed primarily to the 

heat-induced radial diffusion of core dopants and are usually much larger in magnitude 

than stress-induced RI changes. In some cases dopant diffusion can be exploited to 

improve splicing loss by forming a transition region of RI to act as a mode transformer 

between dissimilar fibers [100, 101, 240]. This is often true when splicing conventional 

EDF to SMF-28 fiber because erbium diffuses much more readily than germanium, 
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allowing the small EDF core to expand up to the size of an SMF-28 fiber core over a 

distance of hundreds of µm [99]. 

In Fig. 5.11, from around -0.43 to 0 mm, a transition from the LMA EDF’s 

unperturbed profile to a radially diffused profile is observed whereas no such transition 

region is found in the SMF-28 fiber. The transition region length is found to be around 

400 µm. This length is much shorter than the perturbed region in the RS distribution 

because stresses are relaxed above the fictive temperature whereas higher temperatures 

are required for significant diffusion to take place [99]. Also, though not easily seen in 

the figure, axial diffusion across the splicing point over a small region (a few µm) is 

observed and this effect is known to reduce splice reflectivity [99]. 

Fig. 5.12(a) displays the evolution of the core RI profile in the transition region 

marked in Fig. 5.11 and Fig. 5.12(b) shows the cross section at the dashed line.  

 

Figure 5.12: (a) RI profiles at various lengths along the transition region from the fusion 
splicing point. For comparison, RI profiles of the unperturbed LMA EDF and SMF-28 
are also shown. The cross-sectional RI distribution of the LMA EDF 10 µm from the 
splicing point is shown in (b). 
 

The RI profile near the splicing point is very different from the unperturbed profile. The 

center dip disappears near the splicing point and the transition between core and cladding 

becomes more gradual. The RI difference between core and cladding, ∆ , changes from 

~6.34  10-3 in the unperturbed profile to ~4.96  10-3 near the splicing point as 
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measured from the maximum core value to the cladding, representing a 21.7% change. 

Because the LMA EDF RI profile at the spicing point is similar to the SMF-28 fiber 

profile, coupling loss due to mode-field mismatch should be reduced below what it would 

have been in the absence of diffusion. Although there will be additional losses induced by 

the transition region, it is expected that the relatively long transition length (~400 μm) 

should subdue this effect [240]. 

To model the effects of diffusion and to highlight the usefulness of the measured RI 

data, a radially symmetric FD-BPM [255] was employed to simulate the propagation of 

the fundamental mode of the unperturbed LIEKKITM Er80-8/125 across the fusion splice 

from -0.8 mm to 0.8 mm. A radially symmetric BPM was selected over the split-step 

BPM used in Chapters 2 through 4 because the radial symmetry condenser a 3D problem 

to a 2D one, thereby reducing complexity and increasing speed. The data from Fig. 5.11 

was used directly and the SMF-28 fiber RI profiles (  0) were assumed to be invariant 

along the -axis and were therefore replaced by the mean profile to reduce the effects of 

noise. The radial node spacing, ∆ , was 0.2 μm and the axial node spacing, ∆ , was 1 μm. 

Fig. 5.13 shows the resulting normalized electric field amplitude squared, | , | , as it 

propagates through the fusion splice. As expected, the intensity profile expands 

monotonically in the thermally diffused transition region and a small discontinuity is 

observed at the splicing point (  = 0). 

The simulated fusion splice loss is calculated using an overlap integral technique 

[99]. Using this method, the splice loss is calculated to be 0.013 dB. In the limit of no 

diffusion, the splice loss is calculated to be 0.061 dB, demonstrating that the effect of 

dopant diffusion is to reduce the splice loss by 0.048 dB in this case. However, this result 

is not anticipated for LMA EDFs in general. Because diffusion tends to increase MFD, 

LMA EDFs with MFDs larger than in SMF-28 fiber will not experience a decrease in 

splice loss. It may be necessary to design tapered fibers or other mode transformers to 

improve coupling efficiency for such fibers. Generally, the time required for substantial 
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diffusion scales with the square of the characteristic length [99]. Therefore, LMA EDFs 

with larger cores may not diffuse as much as in this example. Even still, large inherent 

doping concentrations require the radial diffusion of dopants to be a key consideration 

when designing LMA EDFs and should not be overlooked. Also, LMA EDFs with fine 

annular structure in their doping profile [247] may be extremely susceptible to diffusion. 

 

Figure 5.13: Finite-difference beam propagation method (FD-BPM) simulation of the 
fusion splice between the LMA EDF and the SMF-28 fiber. A fundamental guided mode 
of the LMA EDF is used as the input at  = -0.8 mm. 
 
5.4  Summary 

In summary, the effects of fiber manufacturing, cleaving, and fusion splicing on the RS 

and RI distributions for a commercial LMA EDF (LIEKKITM Er80-8/125) were 

characterized using a novel high-resolution 3DISD measurement method. The results 

indicate that there are many potential perturbations to be considered when designing 

LMA EDFs with relatively low NAs. Fiber manufacturing can easily create stress-

induced index changes of RI units and therefore cannot be overlooked and must be 

accounted for in the design process as the core/cladding RI difference becomes 

comparable to these changes. The relaxation of RS and inelastic strain birefringence near 



 
  

139 
 

a cleaved end-face is not found to be significant due to the relatively short length scales 

of these effects and the large transverse mode dimensions of LMA EDFs. RS 

distributions are perturbed significantly in the vicinity of an arc fusion splice and can lead 

to index changes of RI units over an axial distance on the order of mm, which is large 

enough for significant mode transformation. These effects will be exacerbated as draw 

speeds increase for high-volume production. Also, it is found that the creation and 

alteration of inelastic strain birefringence via fiber drawing and splicing may be 

significant for some applications. Although isotropic RI perturbations associated with 

frozen-in viscoelasticity were not observed in this study, it has been shown that changes 

on the order of 10-3 RI units can occur in fibers drawn at high tension [26] and cannot be 

overlooked when designing LMA EDFs. 

The diffusion of core dopants can lead to dramatic changes in the RI profile of EDFs 

near a fusion splice. In order to measure this effect in an LMA EDF, we spliced the 

LIEKKITM Er80-8/125 to an SMF-28 fiber and found a diffused transition region in RI 

leading up to the splicing point. The maximum core RI changed by 21.7% over a distance 

of around 400 μm. A FD-BPM was used to simulate the effects of this transition region 

and highlights the usefulness of the measured RI data. Although this transition region is 

found to improve splice loss for this fiber, diffusion will in general degrade splice loss for 

fibers with MFDs larger than SMF-28 fibers. Although the diffusion time scales with the 

square of the characteristic length, the radial diffusion of dopants should still be a key 

consideration for LMA EDF fusion splice optimization due to the dopant concentrations 

necessary for high gain and the common use of fine annular structure in the doping 

profile [247]. Considering all of these factors, effective design of LMA EDFs requires the 

careful consideration of all of the perturbations which have been described in this 

chapter.  
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CHAPTER 6 

ARC FUSION SPLICING EFFECTS IN LARGE-MODE-AREA 
YTTERBIUM-DOPED FIBERS 

 
  

In Chapter 5 it was found that the effects of fiber manufacturing and fusion splicing could 

affect the operation of large-mode-area (LMA) erbium-doped fiber (EDF) and fiber-

based devices. In this chapter, the same approach, involving the application of the three-

dimensional index-stress distribution (3DISD) method, is taken in order to characterize 

the effects of fusion splicing in LMA ytterbium-doped fibers (YDFs). The results indicate 

that the effects of fusion splicing can be much stronger in LMA YDFs than in LMA 

EDFs and will accordingly affect the performance and operation of splices involving 

current LMA YDF technology. Specifically, it is shown that the diffusion of core dopants 

can reduce the core refractive index (RI) in LMA YDFs by as much as 1.74  10-3 RI 

units over a fiber axial length corresponding to many hundreds of wavelengths, which is 

shown herein to result in an additional splice loss of 20.8% via a simulation based on a 

finite-difference beam propagation method (FD-BPM). This chapter is based on the paper 

entitled “Arc fusion splicing effects in large-mode area single-mode ytterbium-doped 

fibers,” which was published in November of 2013 [256]. 

6.1   Introduction 

Silica ytterbium-doped fibers (YDFs) have been widely used in space optical 

communications, medicine, industrial processing, national defense, etc. as the gain 

medium for high power fiber lasers and amplifiers due to their simple energy level 

systems, broad gain-bandwidths, high light-to-light conversion coefficients, and good 

beam quality [257-260]. Additionally, because of the absence of excited state absorption 

and concentration quenching, compact high power ytterbium-doped fiber lasers (YDFLs) 



 
  

141 
 

and amplifiers (YDFAs) are enabled by using short fiber lengths [258]. To avoid non-

linear effects and long-time-scale degradation of the fiber properties, high power (in the 

range of 100W-1kW) YDFs need large-mode-areas (LMAs) in order to decrease the 

power density. To obtain optimal beam quality, LMA YDFs must operate in the single-

mode (SM) regime, which requires low numerical apertures (NAs) and small normalized 

index differences. Thus, LMA-SM-YDFs are sensitive to unintended refractive index 

(RI) perturbations such as the relaxation of residual stress (RS) and frozen-in 

viscoelasticity (FIV), dopant diffusion, etc. [26, 87, 94, 95, 101, 235, 239].  

Many researchers have characterized the RS and RI distributions in optical fibers 

using various techniques [84, 238, 243-245]. Recently, Feng et al. used a state-of-the-art 

three-dimensional index-stress distribution (3DISD) measurement method [31] to provide 

a detailed characterization of RS and RI perturbations in LMA erbium-doped fibers 

(EDFs) resulting from manufacturing, cleaving, and arc fusion splicing [219], which was 

the basis of Chapter 5. Results indicate that LMA EDFs are sensitive to the 

aforementioned perturbations, especially in the case of arc fusion splicing. During fusion 

splicing, high temperatures from the arc discharge can result in the relaxation of RS and 

FIV and induce dopant diffusion, which will perturb the RI distribution significantly. Due 

to higher power requirements for YDFLs and YDFAs, LMA-SM-YDFs have even lower 

NAs than LMA-EDFs and are therefore more sensitive to RS and RI perturbations. For 

example, LMA-SM-YDFs with NAs as low as ~0.08 are already commercially available. 

Arc fusion splicing is a preferred process for the interconnection of optical systems 

and the fabrication of fiber-based devices. Generally, there are several fusion splicing 

points in high power all-fiber YDFLs and YDFAs. Fusion splice quality can directly 

affect many properties in YDFLs and YDFAs, such as pump threshold, output power 

level, and beam quality. Researchers have recently investigated the effects of splice and 

return loss on power distribution in YDFL systems [261] as well as splice shift and tilt on 

beam quality in YDFLs [262]. None of these investigations have considered the effects of 
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the aforementioned perturbations on YDFL performance, even though there is 

considerable evidence suggesting that they may have a significant impact [219]. 

Therefore, it is important to understand the characteristics of RS and RI perturbations in 

fusion spliced LMA-SM-YDFs. Investigating such physical properties allows researchers 

to predict their effect on YDFL and YDFA system performance as well as improve 

LMA-SM-YDF design and fabrication. 

In this chapter we employed the same measurement 3DISD technique as in [219] to 

study the characteristics of RS and RI in fusion spliced LMA-SM-YDFs. The 

measurements are based on a commercial LMA-SM-YDF (LIEKKITM Yb1200- 10/125-

DC), generally used in medium to high power YDFLs and YDFAs, spliced to a Corning 

SMF-28 fiber. Using the experimental data, a finite-difference beam propagation method 

(FD-BPM) [255] is employed to describe the propagation of the fundamental mode from 

the LMA-SM-YDF to the SMF-28. The splice coupling coefficient and the mode 

transformation effect are predicted based on the simulated results. 

6.2   Experimental Methods 

The experiments performed in this chapter are based on the state-of-the-art 3DISD 

measurement method presented in [31]. In the RS measurement, the NA of the 

microscope condenser lens was  = 0.15. In the RI measurement, the condenser NA 

and defocus distance were 0.1 and 8 µm respectively. The fiber sample was surrounded 

by index matching oil (Cargille Labs,  = 1.460, temperature coefficient of −3.89  10-4 

/ °C). Using this technique, the associated RS and RI accuracies are 0.35 MPa and 2.34 

 10-5 RI units respectively [31]. In this chapter,  and Δ  denote the axial component 

of RS and the RI relative to the index matching oil as in [219].  

In this measurement, the SMF-SMF P.01 program of an Ericsson FSU 975 arc fusion 

splicer was used. The LIEKKITM Yb1200-10/125-DC has a core diameter of ~10 µm and a 

cladding diameter of ~125 µm. The nominal cladding RI, core NA, and mode-field 
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diameter (MFD) are 1.4573, 0.08, and 11.1 µm respectively. The ytterbium concentration 

is ~9  1019 ions/cm3. The fiber is designed to have a step-index profile, and the 

core/cladding RI difference, ∆ , is ~2.3  10-3. The outer edge of the cladding is 

octagonal as shown in Fig. 6.1. 

 

Figure 6.1: Cross-section of LIEKKITM Yb1200-10/125-DC as observed in a bright-field 
microscope. 
 

For the results presented in Fig. 6.2 and Fig. 6.5 and later simulated in Fig. 6.7, RS/RI 

cross-sections were reconstructed under an assumption of axial symmetry, in which one 

projection angle was assumed to be representative of all projection angles. This 

assumption was made due to the impracticality of gathering full tomographic data over an 

axial length of ~3 mm (due to a limited camera field-of-view) and also because the 

primary focus of our investigation is on the effects associated with the fundamental 

mode, which is located in the vicinity of the core region where the assumption is most 

valid. In addition, Fig. 6.3 and Fig. 6.6 were reconstructed using all projection angles and 

their lack of axial asymmetry indicate that this assumption is reasonable. 

6.3   Experimental Results 

Fig. 6.2(a) shows the RS profiles within 1.5 mm on the LIEKKITM Yb1200-10/125-DC 

side and within 0.3 mm on the SMF-28 side, where the splicing point is located at  = 0 

mm.   
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Figure 6.2: (a) The residual stress (RS) distribution along the LIEKKITM Yb1200-10/125-
DC (left) and the SMF-28 (right) after arc fusion splicing. The inserted figure (top) shows 
the mean axial stress  near the splicing point. (b) RI profiles at indicated positions 
along the transition region from the splicing point.  
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The fiber axial resolution is 0.49 µm and there are 3,674 profiles utilized in the figure. 

The RS contains both mechanical and thermal components [238]. During the splicing 

process, the arc discharge heats the LIEKKITM Yb1200-10/125-DC beyond its fictive 

temperature, relaxing both thermal and mechanical stress. Because the fiber is not held 

under tension, mechanical stress does not form upon cooling and only thermal stress 

remains. In Fig. 6.2(a), a stress transition region is observed in the LIEKKITM Yb1200-

10/125-DC over an axial length of ~1.3 mm, where the RS gradually changes from 

having thermal and mechanical components to thermal only. In this region, from left to 

right, the tensile stress in the outer cladding has become slightly compressive while the 

compressive stress in the core has become tensile. At approximately  = −0.8 mm the 

tensile stress in the core has reached a maximum, after which it gradually decreases to the 

splicing point. This is due to the diffusion of ytterbium ions which reduces the thermal 

expansion in the core. To visualize this effect more clearly, Fig. 6.2(b) displays RS 

profiles at indicated positions along the transition region. 

Fig. 6.3 shows the cross-sectional RS distribution (reconstructed using all projection 

angles) in the LIEKKITM Yb1200-10/125-DC 20 µm from the splicing point, and is 

consistent with the profiles given in Fig. 6.2. Also, after splicing, the outer edge of the 

cladding has become round instead of octagonal due to the effects of surface tension as 

the fiber cools down from its liquid state. In general, this rounding phenomenon may 

have some effect on the pump modes in the cladding. However, this is beyond the scope 

of the present work. 

The inserted figure on top of Fig. 6.2(a) shows the cross-sectional mean axial stress, 

, along the LIEKKITM Yb1200- 10/125-DC from the far-zone,   −1.3 mm, to the 

splicing point.  is calculated using Eq. (6.1) [239], 

  , (6.1)
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where  is the radius of the cladding. As described in [219],  is an indicator of 

inelastic strain birefringence and is in proportion to draw tension. The inelastic strain 

birefringence is induced by the anisotropic component of FIV formed via fiber 

manufacturing [26, 95]. From the figure, it is observed that the splicing process 

completely relaxes the anisotropic component of FIV, which induces a RI change of ~2  

10-5.  

 

Figure 6.3: Cross-sectional RS distribution (reconstructed using all projection angles) in 
LIEKKITM Yb1200-10/125-DC 20 µm from the splicing point. 
 

Employing the same method presented in [219], using the RS data from Fig. 6.2(a), 

the radial RI change, ∆ , is calculated and shown in Fig. 6.4. From this figure, it is seen 

that the core RI is decreased by as much as 4  10-4, which represents a 17.4% change 

compared to the unperturbed core/cladding index difference, ∆  2.3  10-3. 

Furthermore, the affected fiber length is on the order of mm, or many hundreds of 

wavelengths within the core. Changes of this magnitude cannot be ignored when 

considering fusion splice characteristics for current LMA-SM-YDFs and their effect on 

YDFL and YDFA system performance will be appreciable. Still further, in future LMA-

SM-YDFs with even lower NAs this effect will become more pronounced. Lastly, 
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because these RI changes are mainly induced via relaxation of draw-induced stress, they 

will be exacerbated as draw speeds increase for high volume production. 

 

Figure 6.4: Change of radial refractive index (RI), ∆ , induced by the RS change along 
the fusion splice between the LIEKKITM Yb1200-10/125-DC (left) and the SMF-28 
(right). 
 

Fig. 6.5(a) shows the RI profiles within 1.5 mm on the LIEKKITM Yb1200-10/125-DC 

side and within 0.3 mm on the SMF-28 side, where the splicing point is located at  = 0 

mm. The fiber axial resolution is the same as Fig. 6.2(a). In Fig. 6.5(a), a transition region 

with a length of ~0.8 mm is observed in the LIEKKITM Yb1200-10/125-DC. In the 

transition region, there are RI changes in both core and cladding regions. The cladding RI 

is uniformly increased due primarily to the relaxation of the isotropic component of FIV 

formed via fiber manufacturing, however, the outer cladding RI is also increased due to 

the relaxation of tensile mechanical stress as shown in Fig. 6.4. The core RI is decreased 

due primarily to the diffusion of ytterbium ions which results in a spreading out of RI, 

however, the core RI is also decreased due to the relaxation of compressive mechanical 

stress as shown in Fig. 6.4. Fig. 6.6 shows the cross-sectional RI distribution 

(reconstructed using all projection angles) in the LIEKKITM Yb1200-10/125-DC 20 μm 

from the splicing point, and is consistent with the profiles given in Fig. 6.5(a). 
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Figure 6.5: (a) The RI distribution along the LIEKKITM Yb1200-10/125-DC (left) and the 
SMF-28 (right) after arc fusion splicing. (b) RI profiles at indicated positions along the 
transition region from the splicing point. 
 

To visualize these effects more clearly, Fig. 6.5(b) displays RI profiles at indicated 

positions along the transition region. From this figure, we obtain the mean increase in 

cladding RI as 0.21  10-3 and the maximum decrease in core RI as 1.53  10-3. The core 

shape has become graded near the splicing point. Compared to the unperturbed value of 

~2.3  10-3, ∆  is decreased by as much as 1.74  10-3, representing a 75.8% change. 

Once again, such RI changes over axial distances on the order of hundreds of 
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wavelengths should not be ignored when analyzing the optical characteristics of fusion 

splices involving fibers of this type. In order to emphasize this point, the effects of the 

measured RI data will be investigated in the following simulation. 

 

Figure 6.6: Cross-sectional RI distribution (reconstructed using all projection angles) in 
LIEKKITM Yb1200-10/125-DC 20 µm from the splicing point. 
 

Using the measured RI data within 1.5 mm on the LIEKKITM Yb1200-10/125-DC side 

and within 1.4 mm on the SMF-28 side and employing a FD-BPM [255], the propagation 

of the LIEKKITM Yb1200-10/125-DC fundamental mode across the fusion splice is 

simulated at an operating wavelength of  = 1060 nm. The resulting electric field 

amplitude, | , |, is shown in Fig. 6.7(a). For comparison, we performed an identical 

simulation using ideal RI data taken from unperturbed measurements of the LIEKKITM 

Yb1200-10/125-DC and the SMF-28 and the result is presented in Fig. 6.7(b). In both 

simulations, the radial node spacing, Δ , is 0.2 µm and the axial node spacing, Δ , is 1 

µm. It is apparent that a larger percentage of fundamental mode energy is lost to radiation 

modes in Fig. 6.7(a) compared to Fig. 6.7(b). Also, in Fig. 6.7(a), significant mode 

transformation is observed in the RI transition region as marked in Fig. 6.5(a).  
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Figure 6.7: Finite-difference beam propagation method (FD-BPM) simulation of a fusion 
splice between the LIEKKITM Yb1200-10/125-DC (left) and the SMF-28 (right) (a) using 
the measured RI data and (b) using the ideal RI data without any perturbations. The 
splicing point is at  = 0 mm. A fundamental guided mode of the LIEKKITM Yb1200-
10/125-DC core is used as the input at  = −1.5 mm. (c) Electric field amplitudes from (a) 
at the indicated positions.  
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Based on these results, the splice loss for the cases in Fig. 6.7(a) and 6.7(b) are 

calculated to be 1.37 dB (72.9% transmission, 27.1% loss) and 0.28 dB (93.7% 

transmission, 6.3% loss) respectively using an overlap integral technique [99]. This 

indicates that an extra 20.8% of incident power is lost when RS/RI effects are considered 

for this example. Fig. 6.7(c) illustrates the mode transformation associated with the 

RS/RI transition regions created by the splice process. From this figure, and assuming 

that both fields are reasonably described by a Gaussian function, the MFDs can be 

obtained by locating the radial positions where the field is 1⁄  times its maximum value. 

The MFD before the transition region is ~10.6 µm, which matches well with the nominal 

value supplied by the manufacturer of 11.1 µm , and ~14.8 µm after the transition region. 

Therefore the RS/RI transition region results in a 39.6% change in MFD which in most 

cases cannot be ignored, especially for applications involving high power all-fiber 

YDFLs and YDFAs. Regardless of which fiber the LIEKKITM Yb1200-10/125- DC is 

spliced to, this RS/RI induced mode transformation effect will be present. 

6.4   Summary 

Recently, a state-of-the-art 3DISD measurement method was used to investigate RS and 

RI perturbations in LMA EDFs resulting from manufacturing, cleaving, and arc fusion 

splicing [219], as outlined in Chapter 5. The method was found to be especially well-

suited to investigations of this type and the results indicated that the effects of fusion 

splicing are significant for LMA EDFs [219]. The results of the current investigation 

indicate that the effects of fusion splicing are even more prominent in LMA-SM-YDFs. 

The experiments are based on a commercial LMA-SM-YDF (LIEKKITM Yb1200-

10/125-DC) spliced to Corning SMF-28. Arc fusion splicing can relax both the 

anisotropic and isotropic components of FIV as well as the mechanical component of RS. 

High splicing temperatures also result in heavy diffusion of core dopants. Together, these 

perturbations decrease the core/cladding RI difference by as much as 1.74  10-3, 
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representing a 75.8% change from the unperturbed fiber, over an axial distance of many 

hundreds of wavelengths. 

Using a FD-BPM as a numerical tool, the optical effects of the aforementioned 

perturbations were simulated. For the measured sample, an extra 20.8% of incident power 

is lost when RS/RI effects are considered compared to the ideal situation without any 

perturbations. The transition region created by the RS/RI perturbations results in an 

expansion of the MFD by 39.6%. If not considered beforehand, this expansion will result 

in significant error in terms of expected splice loss. Because the performance of high 

power all-fiber YDFLs and YDFAs depend heavily on this value, the results presented 

here are critically important for the design and optimization of such devices. 
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CHAPTER 7 

RESEARCH SUMMARY 

  

The primary objective of this research was to develop new quantitative phase imaging 

(QPI) modalities which are compatible with standard microscope platforms utilizing 

Köhler illumination. This was accomplished by (1) developing the recent concept of 

multifilter phase imaging (MFPI) based on the transport-of-intensity equation (TIE) to 

incorporate the effects of partially coherent light (MFPI-PC) from extended incoherent 

sources, (2) developing phase optical transfer function (POTF) recovery for two-

dimensional (2D) QPI based on commercial microscopy while deriving improved 

linearization conditions which confirm the extension of previously developed imaging 

theory to large, but slowly varying, phase objects and (3) developing tomographic 

deconvolution phase microscopy (TDPM) which enables, for the first time, microscopy-

based three-dimensional (3D) QPI based on a physical optics theory without making a 

projective approximation.  

A secondary objective of this research was to apply established QPI and quantitative 

retardation imaging (QRI) methods to the characterization of refractive index (RI) and 

residual stress (RS) effects in large-mode-area erbium- and ytterbium-doped fibers (LMA 

EDFs and YDFs). This was accomplished by utilizing the recently developed 3D index-

stress distribution (3DISD) method [31] to (4) characterize the effects of manufacturing, 

cleaving, and fusion splicing in commercially available LMA EDFs and (5) demonstrate 

the criticality of such effects when fusion splicing LMA YDFs. In this chapter, the main 

results and accomplishments associated with each of these works are summarized.  
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7.1  Summary of Results and Accomplishments 

7.1.1 New Two-Dimensional Quantitative Phase Imaging Methods 

In light of the literature review of state-of-the-art 2D QPI technologies conducted in 

Section 1.3.1, it was found that propagation-based phase retrieval algorithms possessed 

significant experimental advantages in comparison with more conventional 

interferometric approaches such as phase-shift and off-axis interferometry. Deterministic 

phase retrieval algorithms, such as those based on the TIE and the weak object transfer 

function (WOTF), have received relatively little attention in the literature in spite of their 

potential value associated with extending QPI capability to modern commercial 

microscopy systems without additional hardware modification or computational 

complexity. Such methods are attractive for biomedical applications and derive 

compatibility with microscopy by incorporating partial spatial coherence. They are also 

practical in the sense that they address the inherent noise/resolution trade-offs. It is within 

this context that the present research accomplishments associated with the development 

of two 2D QPI methods, namely MFPI-PC and POTF recovery, can be identified.  

Table 7.1: Characteristic review for representative PR methods: (IWFR) iterative wave 
front reconstruction, (TIE) transport-of-intensity equation, (OFS) optimal frequency 
selection, (MFPI-PC) multifilter phase imaging with partially coherent light, (WOTF) 
weak object transfer function, (CTF) contrast transfer function, and (POTF) phase optical 
transfer function. ’s indicate presence of a desired trait, ’s indicate absence of a 
desired trait, and ’s indicate a trade-off between desired traits. 
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Shown in Table 7.1 is a characteristic summary of existing PR methods in 

comparison to the two 2D QPI modalities outlined in this thesis using the same 

characteristics as Table 1.1 with the addition of “No Hardware Modification” indicating 

that standard microscope platforms may be used. Prior to the present thesis research, the 

only 2D QPI methods which did not require any hardware modification were the most 

basic implementations of the TIE and WOTF involving only two defocused planes [7, 49, 

54], which are impractical due to the inherent trade-offs between sensitivity and spatial 

resolution in each case. The solutions to these problems [48, 50, 51, 174] were only 

described for the spatially coherent case, which is incompatible with commercial 

microscopy. In addition, the specific accomplishments associated with these two methods 

are outlined below: 

1. The extension of both multi-plane TIE and multi-plane WOTF reconstruction 

methods to incorporate partially coherent imaging theory. 

2. The proof and derivation of less restrictive linearization conditions for the validity 

of said reconstruction methods enabling application to strong phase objects. 

3. The verification of said reconstruction methods for quantitative phase recovery of 

both simulated and well-known experimental test phase objects. 

4. The analysis of said reconstruction methods in terms of phase/optical path length 

sensitivity. 

5. The application of MFPI-PC to projection tomography. 

6. The application of POTF recovery to both high-speed and time-lapse QPI of live 

adherent cells. 

7.1.2 New Three-Dimensional Quantitative Phase Imaging Method 

Similar to 2D QPI, the literature review of 3D QPI conducted in Section 1.3.2 indicated 

that methods based on the deconvolution of some 3D-resolved quantity, usually complex 

wave field amplitude [63, 64], possess experimental advantages compared to methods 
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based on either projection of diffraction tomography because images are scanned in  

(defocus) as opposed to illumination angle. In addition to experimental simplicity, such 

methods derive inherent stability, both temporal and spatial, due to the use of partial 

coherence [5, 63, 64, 199], in contrast with diffraction tomography which relies on 

coherent light in general [263]. In spite of these benefits, the level of coverage in the 

literature concerning these topics is small in comparison to conventional tomographic 

approaches, perhaps owing to their conceptual simplicity. Furthermore, although the 

enhanced optical sectioning effect associated with increasing the illumination aperture in 

microscopy is well-known [66, 178], the application of this theory to 3D QPI is even less 

extensive [128, 199]. Such application is of great worth to the biomedical community as, 

similar to the aforementioned 2D QPI methods, it enables the addition of 3D QPI 

capability to ubiquitous microscopy systems with minimal hardware modification. It is 

within this context that the research accomplishments associated with the development of 

TDPM become clear. 

Table 7.2: Characteristic review for representative 3DD methods: (WLDT) white light 
diffraction tomography, (TIPI) tomographic incoherent phase imaging, and (TDPM) 
tomographic deconvolution phase microscopy. ’s indicate presence of a desired trait 
and ’s indicate absence of a desired trait. 

 

Shown in Table 7.2 is a characteristic summary of existing 3DD methods in 

comparison to TDPM using the same characteristics as Table 1.2 with the addition of 

“Microscopy Compatible” modular capability with standard microscope platforms. By 

their nature, 3DD methods are usually compatible with microscopy as they rely on 

various optical sectioning effects. A trade-off, however, is now observed between the 

ability to fix the object versus enabling computational simplicity and robust object 
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recovery. For example, in TIPI [65], the object may remain fixed enabling higher 

acquisition speed, however, doing so relies on iterative algorithms to improve resolution 

along the optical or -axis. TDPM, by contrast, measured the entire object spectrum 

directly thereby enabling robust object recovery with computational simplicity at the cost 

of reduced acquisition speed. In addition to this new option for microscopy-based 3D RI 

recovery, the specific accomplishments associated with TDPM are as follows: 

1. The extension of tomographic deconvolution methods, which have previously 

been developed for fluorescence microscopy, to QPI. 

2. The derivation of generalized linearization conditions for the validity of 

reconstructions based on the 3D WOTF which demonstrates compatibility with 

strong, but slowly varying, phase objects. 

3. The development of a modified split-step beam propagation method (BPM) for 

the accurate modeling of 3D partially coherent imagery. 

4. The verification of said BPM against rigorous solutions based on Maxwell’s 

equations for canonical objects. 

7. The verification of TDPM for quantitative phase recovery of both simulated and 

well-known experimental test phase objects. 

8. The demonstration of isotropic spatial resolution with high RI sensitivity in 

optical fibers over a large depth of focus. 

9. The preliminary application of TDPM to long-period fiber grating (LPFG) 

characterization. 

7.1.3 Large-Mode-Area Erbium- and Ytterbium-Doped Fiber Characterization 

In Section 1.3.3, three key areas of optical fiber characterization were identified, 

including: fiber-based lasers and amplifiers, fusion splicing, and long-period fiber 

gratings (LPFGs). In the course of this thesis the first two have, at least to some extent, 

been addressed through the measurement of RI/RS perturbations in LMA EDFs and 
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YDFs, though further characterizations are still possible. The overall results of the 

investigations indicate the presence of strong variations, relative to current and future 

normalized index differences in LMA and ultra-LMA fibers. These perturbations need to 

be addressed in order to enable more robust implementations of extremely weak 

guidance, such as has been demonstrated recently in [97] and [96]. A list of associated 

accomplishments of the work described herein is provided here: 

1. The first concurrent characterization of RI and RS in LMA EDFs. 

2. The first measurement of RI and RS changes in the vicinity of a fusion splice for 

LMA EDFs and YDFs. 

3. The application of a radially-symmetric BPM [255] for predicting the overall 

performance of LMA EDF and YDF splices using measured RI profile changes 

originating mostly from the diffusion of core dopants.  
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CHAPTER 8 

FUTURE WORK 

 

The research results presented in this thesis, especially those associated with the newly 

developed quantitative phase imaging (QPI) modalities, are novel and potentially 

transformative. Therefore, in this chapter, detail is provided on potential areas for future 

research. For future work related to QPI methods, suggested directions are categorized 

according to development, verification, characterization, and application. For future work 

centered on utilizing QPI data in long-period fiber grating (LPFG) research, suggested 

directions are provided for the measurement and modeling of LFPGs. 

8.1  Multifilter Phase Imaging with Partially Coherent Light 

8.1.1 Development 

Although phase optical transfer function (POTF) recovery is better than multifilter phase 

imaging with partially coherent light (MFPI-PC) for objects which satisfy the generalized 

linearization conditions [Eqs. (3.20) and (3.21)], there may be applications, particularly 

those involving objects with strong absorption, for which MFPI-PC is needed. For 

example, in [167] it is observed that if the intensity and phase gradients are collinear [i.e. 

if  in which ,  is the gradient operator acting in the 

lateral coordinates only,  is phase,  is intensity, and  is any scalar function], 

then the conventional solution to the transport-of-intensity equation (TIE) is exact 

provided the boundary conditions are satisfied. Implicit in this assumption is the absence 

of curl in the power flow vector .  

This is the case in Lambert-Beer’s law for homogeneous transmissive objects [264] 

where  and absorption is proportional to phase via a constant , i.e. 

 in which  is absorption [265]. However, POTF recovery would also 



 
  

160 
 

be applicable in this case since an effective POTF could be modelled as ′

 as in [266]. There may be applications, however, in which the 

absorption and phase of inhomogeneous objects are correlated, though not proportional, 

resulting in collinear intensity and phase gradients. In this case the conventional TIE 

solution can be quite good even though the object may be strongly scattering, as is shown 

in the simulated example shown below. 

 

Figure 8.1: Simulation showing the power of transport-of-intensity equation (TIE) phase 
recovery for strong objects with correlated phase and absorption. (a) Simulated 
absorption. (b) Simulated phase. (c) Non-uniform proportionality between absorption and 
phase. (d) In-focus intensity distribution. (e) Phase recovered via conventional TIE 
solver. (f) Phase recovered via inversion of the phase optical transfer function (POTF). 
 

Figure 8.1 illustrates the aforementioned characteristics using a synthetic complex 

object which is consists of the strong absorption shown in Fig. 8.1(a) and the large phase 

delay shown in Fig. 8.1(b). In this case the intensity and phase gradients are collinear 

although the proportionality between the two distributions, which is shown in Fig. 8.1(c), 
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is non-uniform. In the simulation, coherent illumination with  = 546 nm was assumed 

and the complex wave field was propagated via the angular plane wave spectrum method 

in the paraxial approximation [184]. Simulated intensities were generated at defocus 

distances of  = ±3 µm as well as in-focus as shown in Fig. 8.1(d). Fig. 8.1(d) 

demonstrates the extent of absorption with minimum values close to 0.02. The advantage 

of using a TIE-based solution in this case is clearly demonstrated by the recovered 

solutions shown in Fig. 8.1(e) for the conventional TIE solver and Fig. 8.1(f) for POTF 

recovery. If careful attention is given to the scale bars, it is observed that POTF recovery 

underestimates significantly the highly wrapped phase distribution which is recovered 

well by the TIE. For this class of objects, the TIE solution is in general required with a 

small defocus distance  for linearization, however, if the object can be assumed to be 

slowly varying, the optimal frequency selection (OFS) algorithm, and thereby MFPI-PC, 

should also be applicable [7], as will be shown in Section 8.1.2. 

In addition to objects with collinear phase and intensity gradients, however, there 

exist a range of applications for which the conventional TIE solution is insufficient as has 

recently been shown by Zuo et al. [265] and Shanker et al. [167]. For example, a simple 

and cost effective solution is sought for mask characterization in photolithography [167], 

in which masks have both strong absorption and phase features which are uncorrelated. 

Since the conventional TIE solver does not account for rotational power flow caused by 

perpendicular phase and absorption features, the recovered phase solution is corrupted by 

rotational artifacts [167, 265]. It has been shown that these artifacts may be eliminated 

using an iterative error reduction algorithm [167], however, such methods have not been 

demonstrated under partially coherent imaging conditions or in concert with the OFS or 

MFPI-PC algorithms in the presence of severe noise or in applications requiring high 

accuracy. Therefore, to develop MFPI-PC further, it is proposed to incorporate iterative 

error reduction algorithms for generic object recovery. 
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Another potential shortcoming of MFPI-PC and TIE methods in general is a reliance 

on the paraxial approximation [46], making the interpretation of high numerical aperture 

(NA) results questionable. For example, Fig. 8.2 elucidates the importance of correcting 

for these errors in high-NA phase imaging, in which a high resolution phase structure 

(sharp circles spaced 810 nm apart) is shown to produce as much as ~15% error due to 

the paraxial approximation. This overestimation of phase occurs because the parabolic 

shape of the POTF inherent in the TIE [111] underestimates contrast at high spatial 

frequencies, the effects of which were seen in Chapters 2 and 3. Although POTF recovery 

can model and invert the increased contrast at high spatial frequencies by utilizing non-

paraxial pupils in the POTF calculation [Eq. (3.16)], it also requires the use of a weak 

absorption approximation, which may be limiting for many applications.  

 

Figure 8.2: (a) Simulated phase object, (b) phase after filtration by  = 0.75 with  = 
546 nm, (c) transport-of-intensity equation (TIE) recovered phase based on ideal intensity 
derivative assuming spatially coherent light, and (d) profile comparison of (b) and (c) 
showing ~15% error in TIE reconstruction. 
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For strongly scattering samples with fine structural detail, however, it may be 

possible to utilize a non-paraxial variant of the TIE which is described herein. The 

spectrum of a defocused (at distance ) scalar wave field  diffracted from a thin 

transparency exp  located in the  = 0 plane may be described in 

the paraxial approximation by Eq. (8.1a). Modeling propagation as in the angular plane 

wave spectrum method [184], we may replace Eq. (8.1a) by Eq. (8.1b) in which the 

parabolic pupil function has been replaced by a spherical function as in Chapter 3. Eq. 

(8.1b) may then be expanded to the infinite series shown in Eq. (8.1c).  

  exp , (8.1a)

  exp
2

1 1 , (8.1b)

  exp
2 2 !

2 1 ! 4
. (8.1c)

Using the preceding expression and the shifting and complex conjugation properties 

of Fourier transforms we arrive at the following intensity spectrum for the diffracted 

field, which is in the same form as Guigay’s expression [127]. 

 

	
1 2 !

2 1 ! 4
, 0

∗ 1 2 !
2 1 ! 4

, 0

exp 2 ∙

. (8.2)

Expanding each term in the integrand to first order in , retaining only first-order terms in 

the product, transforming the frequency domain factors of ∙ and  into ∙ 2⁄  and 

4⁄  respectively, and expanding  as in [50] results in a non-paraxial TIE 

[Eq. (8.3)] which is valid for high spatial frequencies and compatible with spatially 

coherent quasi-monochromatic illumination. In Eq. (8.3b), Γ is an operator involving 

successive orders of , i.e. 1, , , etc. The first term of Γ equals 1 so that the first 
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term on the right hand side (RHS) of Eq. (8.3a) represents the paraxial TIE [Eq. (2.1)] 

and the remaining terms represent higher order corrections. 

 
2
̅ Γ ⋅ , (8.3a)

  Γ 2
1 2 !

2 1 ! 4

̅

2
. (8.3b)

Eq. (8.3) is a nice result because it is still linear in  and thus solvable using the 

popular Fourier method [166]. For example, Eq. (8.3) can be solved in the usual way by 

making Teague’s approximation, i.e.  [Teague_1983], and first 

solving for  in the Fourier domain using Eq. (8.4), in which the conventional 

parabolic term in the denominator has been replaced by the spherical function 

corresponding to the angular spectrum method. Once  is found, the process for 

obtaining  is the same as before [166], which is a Fourier domain solution to 

Poisson’s equation. 

 

4
̅ ∑ 2 !

2 1 ! 4
̅

4
̅ 1 1 ̅

. (8.4)

In deriving the non-paraxial TIE shown in Eq. (8.3), an assumption of spatial 

coherence is required, thus limiting the potential range of applicability. However, in 

many situations, spatially coherent, or close to spatially coherent, illumination can be 

used when compatibility with microscopy is not necessary. For example, applications in 

industrial metrology, photomask characterization [167], surface topography, or optical 

fiber characterization [73] may be categorized as such. It is therefore proposed to 

develop the non-paraxial TIE, Eq. (8.3), further for applications involving absorbing 
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samples which require both high spatial resolution and the simplicity afforded by 

propagation-based phase retrieval. 

8.1.2 Verification 

In Chapter 2, the development of MFPI-PC was based on the weak object transfer 

function (WOTF) theory originally described by Streibl [66]. Therefore the applicability 

of MFPI-PC depends on the applicability of the two-dimensional (2D) WOTF which was 

shown in Chapter 3 (see Appendix A) to be linearizable under conditions of weak 

absorption and slowly varying phase (SVP). In [7], however, it was shown that the OFS 

algorithm, whose partially coherent analogue is MFPI-PC, requires only an assumption of 

a slowly varying object in which absorption does not need to be weak [7]. Here we 

generalize this observation to MFPI-PC, after which it is proposed to be verified both 

experimentally and using simulation studies. 

In [50], it was shown that for on-axis coherent illumination under the paraxial 

approximation, the assumptions of SVP, i.e. ̅ ≪ 1, and slowly 

varying amplitude, i.e. ̅ ̅ ∙  where exp , 

imply that the Fourier spectrum of the diffracted intensity pattern recorded at a defocus 

distance  may be written as  

 

2 sin ̅ ̅ cos ̅
̅

2
cos ̅ ∙

, (8.5)

where  is the in-focus intensity distribution. In Section 3.2, it was also shown that if 

the object is band-limited [i.e. 0 for | | 1 , where ̅⁄  and 

⁄  is the coherence parameter defining the NA ratio between the condenser 

and the objective], then the corresponding intensity Fourier spectrum under partial 

coherence may be written as 

 
2 ̅ | |

̅ | |
, (8.6)
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where  is the non-diffracted background intensity level,  is the intensity spectra 

resulting from on-axis coherent light which in this case is given by Eq. (8.5),  is the 

first-order Bessel function of the first kind, and ̅⁄ . Given Eq. (8.5) and Eq. 

(8.6), we may write an expression for the lateral Fourier spectrum of the intensity 

derivative estimates utilized in MFPI-PC as  

	

	
2 ̅ | |

̅ | |

2 	
2 ̅ | |

̅ | |
sin ̅

2 	
2 ̅ | |

̅ | |
̅ cos	 ̅

̅

2
	

2 ̅ | |
̅ | |

cos ̅ ∙

(8.7)

where  are the Savitzky-Golay differentiation filter (SGDF) coefficients of a 

particular odd order  up through 2 1 in which 2 1 is the odd number of 

defocused images recorded which may be equally [111] or unequally [129] spaced at the 

symmetric defocus distances specified by . In Chapter 2, the SGDF coefficients were 

Δ⁄  at a uniform spacing of Δ , but in this treatment non-uniformly spaced 

data may also be used in which Δ  has no meaning and the coefficients  are 

calculated as in [187]. 

Since the SGDF coefficients are odd-symmetric with a central weight  = 0 then the 

first term on the right hand side of Eq. (8.7) vanishes. In order to show that the intensity 

derivatives estimated in MFPI-PC correspond to the intensity derivatives predicted by the 

TIE and thus demonstrate its validity for slowly varying objects we require the following 

condition, 
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2 ̅ | |

̅ | |
sin ̅ ̅ , (8.8)

to be valid since Eq. (8.7) would then reduce to the TIE given by 

 
̅

2
∙ , (8.9)

Since the primary concept of MFPI-PC is to, for each lateral Fourier component, 

select the lowest SGDF order which does not result in phase attenuation due to either 

nonlinearity of the intensity derivative or partial coherence effects, MFPI-PC inherently 

selects SGDF orders  for which Eq. (8.8) is valid within the passband defined by 

1 . Therefore, for a slowly varying band-limited object, MFPI-PC extends the 

TIE solution beyond the small-defocus limit enabling good noise suppression without 

sacrificing the benefits of using the TIE in cases of strong absorption and phase. In order 

to verify this claim, it is proposed to conduct both simulation and experimental studies 

to test the performance characteristics for a diversity of objects that fall into this 

category. A potential object to be used for verification in this regard is shown in Fig. 8.3. 

 

Figure 8.3: Commercial microlens array (Thorlabs, MLA150-5C) with chrome in the 
interstitial regions. 
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8.1.3 Characterization 

In the theoretical development for both MFPI-PC and POTF recovery presented in 

Chapters 2 and 3 respectively, the object was considered to be infinitely thin, i.e. thinner 

than the microscope depth of field ⁄ , such that it can be completely 

characterized as a transparency of the form exp  in which  

and  are the projected absorption and phase respectively. In practice, most objects 

are not infinitely thin, but also possess some finite thickness and variation along the 

optical or -axis, e.g. the thickness parameters used to emulate adherent cell imaging in 

Chapter 3 were ~8 µm when ⁄  = 546 / 0.752  971 nm.  

Bellair et al. studied the effects of applying 2D phase recovery to three-dimensional 

(3D) objects thicker than  under partial spatial coherence [128] by utilizing the 3D 

WOTF theory of Streibl [66]. This approach, however, requires the assumption of single-

scattering and thus fails to analyze the inherent non-linear nature of 3D image formation 

when multiple elastic scattering events are incorporated. For this reasons, it is proposed 

to utilized the modified split-step beam propagation method (SS-BPM) described in 

Chapter 4, which models the effects of multiple forward elastic scattering events through 

a transmissive 3D object and is shown there to produce excellent agreement with rigorous 

solutions over a wide range of normalized index contrast values (0 ∆ /  0.15) 

[193]. Utilizing this numerical tool, it is proposed to identify necessary conditions for 

the appropriateness of the projective approximation and also determine what is 

measured when such conditions are not met.  

Another important topic in the area of TIE-based phase recovery is the use and 

assumptions of various numerical boundary conditions employed in the solution. The TIE 

itself is an second-order elliptic partial differential equation for the phase  and as 

such its solution depends heavily on the specified boundary conditions [124]. In spite of 

its popularity, the numerical boundary conditions inherent in the most common solution 
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to the TIE, as given by Eq. (21) in [166], are often not satisfied in practice as the use of 

fast-Fourier transforms implies a periodic object. This implementation is known to work 

well for situations in which the phase object is isolated within the field of view (FOV) 

[126]. When objects are located on the image borders, however, severe artifacts appear 

which impair the accuracy of phase reconstruction [124]. 

 

Figure 8.4: (a) Intensity difference image (Δ ) used as input to TIE phase 
recovery. (b) Mirrored-extension of (a) in which the four quadrants have been padded 
symmetrically. (c) Phase reconstruction of (a) showing artifacts near the image 
boundaries associated with non-periodic field of view (FOV). (d) Phase reconstruction of 
(b) showing the reduction of edge artifacts evident by comparing (e) with (c), where (e) is 
a magnified view of the top-left corner.  
 

In the general case, the boundary conditions can be satisfied explicitly by the use of a 

hard rectangular aperture and a slight alteration of the numerical implementation as 

shown by Zuo et al. [126]. This approach, however, requires the use of an add-on module 

with a physical aperture placed in a plane conjugate to the object and therefore violates 

the approach taken in this thesis in which numerical solutions are sought without the 

addition of hardware. Another approach, which has been outlined by Volkov et al. [125], 
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is based on mirror padding schemes which can be viewed as special cases of either 

Dirichlet or Neumann boundary conditions [124]. Such an approach requires no 

additional hardware and has been shown to reduce edge artifacts [125]. It is proposed, 

therefore, to characterize the use of such a mirror padding scheme to reduce 

reconstruction error in both MFPI-PC and POTF recovery. An example demonstrating 

the potential improvement is shown in Fig. 8.4, in which the mirror padding scheme 

defined by Fig. 8.4(a) and 8.4(b) is shown to reduce errors associated with sampling the 

microlens array imaged in Chapter 3 in a non-periodic fashion. 

8.1.4 Application 

As mentioned in Section 8.1.1, one major strength of MFPI-PC lies in its ability to 

recover phase in objects also possessing strong absorption features [167]. We therefore 

propose to demonstrate the utility of MFPI-PC by applying it in cases with strong 

absorption which is not correlated with the phase, such as photomask characterization 

for photolithography [167] in which the aforementioned iterative error reduction 

algorithm will be necessary. Such an application could enable a cost-effective solution 

for phase defect inspection in extreme ultraviolet photomasks where the use of partial 

coherence improves both light throughput and spatial resolution [163]. 

Another important feature of TIE- and other propagation-based phase reconstruction 

methods are their compatibility with various forms of radiation. For example, the TIE has 

been used to recover phase in both optical [54] and electron [267] microscopy as well as 

using x-rays [268] and even matter waves [269]. It is therefore proposed to apply the 

MFPI-PC algorithm to phase recovery outside of the optical regime, e.g. in high-

resolution transmission electron microscopy in which the finite size of the electron source 

results in partial spatial coherence [45]. 
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8.2  Phase Optical Transfer Function Recovery 

8.2.1 Development 

Although sub-second temporal resolution has been achieved for POTF recovery as shown 

in Media 3.1, single-shot methods [42] are still much faster as they are only limited by 

camera frame rate and require no mechanical movement. Many dynamics, such as the 

influence of ATP on red blood cell membrane fluctuations [153], occur on millisecond 

timescales for which single-shot methods become critically important. For these reasons, 

it is proposed to develop a version of POTF recovery which uses only a single 

defocused image as input data. Although it is technically possible to recover the phase of 

a pure phase object with a single defocused image using POTF recovery, in practice the 

solution is much more stable if at least two images of opposite defocus are subtracted. 

This is evident in Fig. 8.5, in which significant error is induced from single image phase 

recovery [Fig. 8.5(b)] as opposed to two images of opposite defocus [Fig. 8.5(c)].  

 

Figure 8.5: (a) Simulated phase object, (b) phase recovered with one defocused image 
[found by filtering with one-half the inverse of . , Eq. (3.22)], (c) phase recovered 
using two images of opposite defocus [filtered with the inverse of . ].  = 0.6 µm 
in both (b) and (c). 
 

This error is likely due to image formation nonlinearities which are symmetric, as 

opposed to anti-symmetric, about  = 0. This effect becomes more pronounced as the 

overall phase magnitude, and its associated nonlinearity, increases. To address this issue, 

it is proposed to reduce these errors by utilizing iterative error reduction methods, such 
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as that which was recently proposed by Claus et al. [163], which is conceptually similar 

to the aforementioned TIE error reduction algorithm [167]. If successful, such 

computational reconstructions could enable the application of POTF recovery when 

single-shot acquisition times are required at the expense of increased computational 

complexity. Another approach for a single-shot QPI system based on POTF recovery in a 

provisional patent application [270] in which the defocused images are acquired in 

parallel on a single imager using diffraction gratings. 

If single-shot acquisition speeds are not required, however, it will still be beneficial to 

maximize the phase frame rate and provide real-time phase visualization. Real-time 

visualization of the phase will be useful in applications requiring feedback, e.g. in 

studying the effects of various treatments in live cell culture time-lapse imaging or in 

CO2-laser-induced LPFG fabrication. In order to enable higher frame rates and real-time 

visualization, it is proposed to implement a customized software package which can 

interface with system hardware components including the camera and piezoelectric 

objective scanner in an automated fashion. In addition to automating the steps of image 

capture and defocus, the proposed software should also perform POTF recovery 

processing in the background to display a live phase image in real-time. Figure 8.6 offers 

a block diagram representation of how this might be achieved. In Fig. 8.6, the hardware 

control and phase computation aspects are handled in separate threads so that the most 

recent phase image can be computed and displayed while the intensity images 

corresponding to the next iteration are recorded. Thus far, in preliminary 

implementations, the bottleneck appears to be in image transfer from the camera to the 

computer. Even with this limitation phase frame rates on the order of ~6 frames per 

second have been achieved in which 5 intensity images were used for POTF recovery 

over a 400  400 pixel region of interest. Real-time visualization of differential 

interference contrast (DIC) images corresponding to the phase images has also been 
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demonstrated in parallel without additional processing delay due to the threaded 

implementation. 

 

Figure 8.6: Block diagram representation of real-time high-speed phase optical transfer 
function (POTF) recovery software implementation.  
 
8.2.2 Verification 

The theory outlined in Chapter 3 for POTF recovery under partial spatial coherence is 

general enough to account for arbitrary source and pupil functions. It is therefore of 

interest to verify the ability to recover phase information using contrast mechanisms other 

than defocus. Recently, POTF recovery has been demonstrated using differential phase 

contrast in which the source function is created synthetically by subtracting two images 

recorded with equal and opposite hemispherical source functions generated via an LED 

array [121]. Similarly, POTF recovery has also been shown to converge to the same 

result using a through-focal series of both bright-field and phase contrast images in 

extreme ultraviolet microscopy [163]. In both cases, successful phase recovery was 

demonstrated when the first Born approximation appears to be violated, highlighting the 

importance of the generalized linearization conditions derived in Chapters 3 and 4.  
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In general, the primary benefit of using defocus is experimental simplicity. There 

may, however, be applications for which the use of alternative contrast modalities in 

microscopy is desirable. In any case, the pros and cons associated with POTF recovery 

based on various forms of contrast is not well-studied in the literature. Therefore, it is 

proposed to verify the applicability of POTF recovery to various contrast modalities in 

microscopy and characterize their strengths and weaknesses via both simulation 

studies and experimental measurements.  

An example simulating quantitative phase recovery from differential interference 

contrast (DIC) micrographs is shown in Fig. 8.7.  

 

Figure 8.7: Simulation demonstrating phase optical transfer function (POTF) recovery 
based on differential interference contrast (DIC) microscopy. (a) Simulated absorption. 
(b) Simulated phase. (c) Resulting DIC images for a shear value of 2Δ  = 0.49 µm and 
bias value of Φ 4⁄ , where shear was calculated in  (top-left),  (top-right),  
(bottom-left), and  (bottom-right) directions. (d,e) Normalized images designed to be 
roughly proportional to the phase gradient in the (d)  as well as (e)  directions. (f) 
POTF recovered phase image showing good agreement with (b). In all images,  = 
0.2,  = 0.75, and ̅ = 546 nm. A relatively large amount of image noise,  = 0.04, 
was added to (c) prior to phase recovery.  
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The complex object defined by the absorption shown in Fig. 8.7(a) and the phase 

defined in Fig. 8.7(b) produces the four intensity images shown for  and  shear 

(2Δ  = 0.49 μm, Δ  is the shear magnitude) and a DIC bias value of Φ 4⁄  in Fig. 

8.7(c). In the images shown in Fig. 8.7(c), partially coherent image calculations have 

been performed via the Abbe method as in Chapter 3 [185]. Following the approach 

given in [121], phase contrast can be isolated in each orthogonal direction by subtracting 

images recorded with opposite shear directions (in [121] opposing source hemispheres 

are used) and normalizing the result with the in-focus bright-field image estimated by 

their respective addition. The resulting images are shown in Figs. 8.7(d) and 8.7(e). In 

this case effective POTFs, which are approximately linear and imaginary near the spatial 

frequency origin, are formed corresponding to quantitative phase gradient measurements 

in both  and  directions. Estimating phase via optimized inversion of these POTFs 

results in the phase shown in Fig. 8.7(f).  

In the simulations, additive white Gaussian noise with a standard deviation of 4% of 

the background intensity (  = 0.04, as opposed to  = 0.01 used in Chapter 3) was added 

to emphasize the potential noise suppression in this form of phase recovery. In addition to 

enhanced noise suppression, the result of direct POTF recovery based on DIC appears to 

be more resilient to object absorption than defocus-based POTF recovery. Although the 

results indicate that POTF recovery based on DIC has desirable characteristics in 

comparison with defocus, it should also be recognized that the precise calibration and 

manipulation of DIC shear is non-trivial [271]. Also, this form of recovery would require 

the addition of specialized hardware for automated shear rotation such as the solutions 

offered by other quantitative DIC approaches in the literature [272]. 

8.2.3 Characterization 

Another potential area for improvement of defocus-based POTF recovery is in the 

method for selecting the defocus distances, which in Chapter 3 is simply done via trial 
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and error/inspection of the POTFs. Jingshan et al. showed in [171] an efficient 

exponentially spaced defocus sampling scheme based on the assumption of spatial 

coherence. Falaggis et al. demonstrated an optimum plane selection method in which the 

distances form a geometric series that maximizes the range of spatial frequencies using a 

minimum number of planes in POTF recovery also assuming spatial coherence [174]. 

What is missing is a defocus sampling scheme which is optimized in consideration of the 

level of partial spatial coherence used. The problem is to select the optimum defocus 

distances given a finite number of planes and extended source distribution which 

minimizes mean squared error in the recovered phase. It is therefore proposed to 

characterize the effects of various defocus sampling schemes in the literature and 

provide an optimization in consideration of Köhler illuminated microscopy. 

In x-ray phase contrast imaging [212], spatially coherent POTF recovery (referred to 

as CTF phase recovery in this field) is used in which only forward scattered defocus 

planes are available, as opposed to the symmetrically defocused planes utilized in 

Chapter 3. For this case, it is possible to show that the optimal phase spectrum is given by 

Eq. (15) in the development given by Zabler et al. [273]. Of interest here is the 

performance of this inversion when the POTFs and AOTFs in Eq. 15 of [273] are 

replaced by their partially coherent equivalents. Figure 8.8 shows an example of 

simulated phase recovery in such a scenario, where three forward defocused distances 

were used (  =  ±0.6, 3, and 9 μm) and Gaussian noise at 1% of the background intensity 

(  = 0.01) was added. Although slightly more sensitive to noise than recovery based on 

symmetric defocus planes, phase recovery from forward scattered planes only with 

partially coherent illumination appears to be viable. This is of great importance in x-ray 

phase contrast imaging, since spatial coherence is generally thought to be a required 

[118]. However, in the x-ray regime, spatially coherent sources are a great deal more 

expensive and bulky than partially coherent tabletop tube sources [274]. Using forward 

scattered planes only may also help to reduce the total number of defocused images 
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required, thereby increasing measurement speed. For these reasons, it is proposed to 

characterize the retrieval of phase from single-sided defocus under partially coherent 

illumination. 

 

Figure 8.8: (a) Simulated phase object, (b) POTF recovered phase from three forward 
defocus planes (  = ±0.6, 3, and 9 μm) with 1% additive noise (  = 0.01). ( ̅ = 546 nm, 

 = 0.375,  = 0.75). 
 
8.2.4 Application 

One of the most prominent application areas for 2D QPI is the automated extraction of 

quantitative metrics (i.e. dry mass content, area, thickness, volume etc.) from time-lapse 

phase imagery of live adherent cell cultures [131, 148]. It is well-known that cellular dry 

mass content can be obtained [197] via integration of the projected phase image 

according to 

  Dry Mass
̅

2
, (8.10)

in which ~0.2 ml/g to within 10% [197] and the distances ̅, , and  are given in 

cm. In order to extract these metrics it is necessary to perform cell segmentation in order 

to determine the projected area of each cell in the FOV. Since the quantitative phase 

image is roughly proportional to the actual cell thickness, it provides a better basis for 
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image segmentation algorithms than qualitative methods such as phase contrast or DIC 

[131]. It is therefore proposed to apply POTF recovered phase data to the automated 

extraction of quantitative metrics from live cell cultures by developing image 

segmentation procedures which are tailored specifically. This application/demonstration 

will be critical for establishing POTF recovery using commercial microscopy as a simple 

path towards automated morphological data from live cell cultures within the biomedical 

community without any additional hardware. 

8.3  Tomographic Deconvolution Phase Microscopy 

8.3.1 Development 

The development given in Chapter 4 describes tomographic deconvolution phase 

microscopy (TDPM) as the analogue to similar methods which have been developed for 

3D fluorescence microscopy which rely on the fusion of data extracted from multiple 

through-focal series acquired over equiangular object orientations [206]. In addition to 

TDPM with explicit object rotation, it should also be possible to recover the “missing 

cone” of spatial frequencies using iterative constraint algorithms developed for 

regularized solutions to the limited-angle tomography problem [61]. Within such, error is 

reduced by enforcing positivity and support constraints as well as congruency with 

measured data.  

In Fig. 8.9, preliminary simulation results of this algorithm are shown. Diffracted 

intensities due to eight spheres of varying refractive index [Fig. 8.9(a)] are generated 

using the angular spectrum method [184] and a coherent mode representation of partial 

coherence [122]. Deconvolution by the system point spread function, i.e. the inverse 

Fourier transfer of the 3D POTF, is followed by the aforementioned iterative constraint 

algorithm requiring positivity and known object support. Figures 8.9(b) through 8.9(e) 

show simulated and recovered indices along planes perpendicular, 8.9(b) and 8.9(c), and 

parallel, 8.9(d) and 8.9(e), to the optic or -axis.  



 
  

179 
 

As expected, recovery is much better perpendicular to the -axis where there is less 

missing frequency information. Currently, recovery is quite poor parallel to the -axis 

indicating the need for stronger constraints and a more sophisticated implementation, 

which may potentially include regularized edge preservation or total variation 

minimization [67]. Therefore, it is proposed to develop and improve the application of 

iterative recovery algorithms to TDPM for thick objects under a single illumination 

angle. Such an algorithm might appropriately be called deconvolution phase microscopy 

(DPM) since the meaning of “tomographic” in (TDPM) would no longer be applicable. 

Such improvements would enable high-speed 3D QPI using commercial microscopy 

without any additional hardware or modification and are thus of high interest for 

widespread biomedical application. 

 

Figure 8.9: The effect of iterative constraint algorithms [Sung_2009] on tomographic 
deconvolution phase microscopy (TDPM) refractive index (RI) data. (a) Eight spheres (5 
μm diameter) of indices 1.001:0.001:1.008 in vacuum, (b) Top-view slice of simulated 
RI, (c) Top-view slice recovered RI, (d) Side-view slice of simulated RI, (e) Side-view 
slice recovered RI.  
 

Another potential area of great interest in TDPM is the application of nonlinear error 

reduction algorithms similar to those proposed for both MFPI-PC and POTF recovery. 

The central idea is to estimate and remove the nonlinear portion of the measured 
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intensities based on a prior estimate of the object [265]. In the case of TDPM, 3D 

refractive index (RI) is first estimated using the approach provided in Chapter 4, and then 

the nonlinear portion of the measured intensities are estimated via the modified SS-BPM 

outlined in the same chapter [193]. Such an algorithm could enable 3D QPI for objects 

with RI contrast too high for satisfactory recovery in the direct solution alone. It is 

therefore proposed to develop a nonlinear error reduction algorithm for use with 

TDPM. 

8.3.2 Verification 

In Section 4.4, TDPM is demonstrated using a variety of optical fibers as control samples 

for the purpose of verification. In order to test TDPM for applications in biology, it is 

proposed to implement TDPM on cells fixed within a glass capillary as an initial 

demonstration. Such capillaries are commercially available with similar dimensions as 

optical fibers and thus the procedure outlined in Chapter 4 can be duplicated with little 

variation. Figure 8.10 shows the proposed sample configuration with the rotatable glass 

capillary used for sample fixation under Köhler illumination.  

 

Figure 8.10: Sample configuration for fixed cell tomographic deconvolution phase 
microscopy (TDPM) measurement. A biological sample is fixed inside a hollow glass 
capillary using a synthetic resin mounting media (DPX), which is then illuminated and 
rotated between microscope slide and coverslip separated by two coated optical fibers. 
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During cell fixation via dehydration in an organic solvent, the cells die and dehydrate, 

leaving only proteins and lipids behind. Such material should have a RI of ~1.55 [216] 

and thus it is suggested to utilize capillaries made soda-lime or borosilicate glass to 

minimize capillary-induced aberrations. To fix the cell inside the capillary, a synthetic 

resin mounting media, such as DPX (distyrene, plasticizer, and xylene), could be used to 

match the refractive index of the dehydrated cells. 

Another important area in which TDPM needs to be verified is its applicability to 

reconstructing phase in weakly absorbing objects as all of the results presented in Chapter 

4 assume a pure phase object. In the case of a general object with both phase and 

absorption components, Streibl predicted that both should be recoverable if 

measurements from two different pupil functions are combined [66]. In the case of 

TDPM, this could be realized by subtracting measurements from equal and opposite 

illumination directions since absorption and phase contrast are symmetric and anti-

symmetric respectively. Ultimately the performance of such an approach will depend on 

a variety of factors, many of which will only be verifiable via experiment. It is therefore 

proposed to investigate the reconstruction of complex objects via simulation and 

experimentation. Potential test objects may include doped fibers or red blood cells 

illuminated near their respective absorption bands. 

8.3.3 Characterization 

One undeveloped degree of freedom in all three QPI methods outlined in this thesis is the 

shape of the illumination pupil function . In particular, microscopes condensers are 

often outfitted with annular diaphragms designed for use with phase contrast objectives. 

If used in bright-field, however, annular illumination may be advantageous compared to 

circular diaphragms.  

Figure 8.11 highlights differences in imaging properties for 2D and 3D QPI using 

circular vs. annular illumination. In Fig. 8.11(a), it is seen that the 2D overall contrast 
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spectrum, given by the square root of the sum of the squares of the POTFs, differs 

between the two forms of illumination, with annular illumination having more contrast in 

both mid- and upper-range spatial frequencies. Likewise, Fig. 8.11(b) and 8.11(c) show 

the overall contrast available as a function of 3D spatial frequency and indicate that 

annular illumination may provide improved contrast for use with TDPM. In order to 

exploit these favorable properties, it is proposed to characterize the use of annular 

illumination in all three QPI methods using simulation and experiment. 

 

Figure 8.11: (a) Overall POTF recovery contrast spectrum for circular (  = 0.375) and 
annular (outer radius  = 0.375, inner radius  = 0.3375) illumination with two 
defocus distances (  = ±0.6 µm and 9 µm). The overall 3D TDPM contrast spectrum, 
i.e. the absolute value of the 3D POTF, for (b) circular and (c) annular illumination [same 
radii as in (a)] are also shown. In all figures,  = 0.75 and ̅ = 546 nm. In all figures, 

̅⁄ . 
 
8.3.4 Application 

Pending the successful verification of TDPM on fixed cells, the next logical step for 

biological application is time-lapse 3D QPI of live cells cultured in glass capillaries 

[191]. In [191], it was shown that object-rotation-based tomography on living cell 

cultures is possible via a fiber capillary which was also used for cell cultivation in 

addition to its primary mechanical function of uniaxial rotation. Utilizing the results of 

such groundbreaking studies, it is proposed to apply the improvements offered by 

TDPM, i.e. experimental simplicity and improved spatial resolution, to 3D QPI of live 
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cell cultures, in which TDPM measurements may be acquired every 30 minutes or so in 

a time-lapse series. 

Another biological application involves high-speed 3D QPI, which has remained 

challenging for even the most sophisticated approaches and has only recently been 

enabled [218]. In [218], for example, a 3D RI image update rate of 1.3 seconds was 

achieved over a 96  96  96 voxel FOV. Experimentally, deconvolution phase 

microscopy (DPM), which is the single-angled version of TDPM proposed in Section 

8.3.1, may possess speed advantages over optical diffraction tomography (ODT) since 

focus, rather than the illuminating beam angle, it the scanned quantity. It is therefore 

proposed to develop software, similar to the proposed improvements for real-time 

POTF recovery proposed in Section 8.2.1, for automating the acquisition of through-

focal series in parallel with the DPM reconstruction associated with the previous 

iteration for real-time display. Such a system would undoubtedly find application in 

biology and biomedicine, where real-time 3D QPI is still in its infancy at the forefront of 

research. 

8.4  Long-Period Fiber Grating Applications 

As alluded to in the introduction, the application of QPI and quantitative retardation 

imaging (QRI) to LPFG characterization and modeling are perhaps the most interesting 

and useful among the fiber characterization applications mentioned in this thesis. This is 

in part because: (1) the primary causes for grating formation in certain LPFGs are not 

well understood, and (2) LPFG research has been largely conducted in an empirical 

manner based on observed changes in the transmission spectra owing to the trial and error 

of various fabrication methods and parameters.  

The field would therefore benefit greatly from the development of numerical 

modeling tools which can predict LPFG transmission spectra based on arbitrary 3D RI 

variations within a single LPFG period. Such tools may be utilized for design or 
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modeling of real device performance based on measured RI and residual stress (RS) data. 

Therefore, it is proposed to characterize RI/RS effects in arc-induced LPFGs 

(predictions of which have been controversial in the literature [23]) and to develop 

modeling tools with the aforementioned capabilities. 

8.4.1 Characterization of Arc-Induced Long-Period Fiber Gratings 

Preliminary measurements of RI and RS in single-mode fibers which have been exposed 

to weak electric arc discharges (parameterized by arc current and discharge duration) in 

commercial fusion splicers indicate two potential sources for RI modulation in arc-

induced LPFGs, namely the relaxation of mechanical stresses in the core and frozen-in 

viscoelasticity (FIV) in the cladding. When the electric arc discharge parameters 

approach and exceed those used in conventional single-mode fiber splicing (~ 18 mA for 

~1 second), both of these effects approach saturation in which no additional modulation 

is obtained with higher currents/durations. The axial extent of these perturbations, which 

may e.g. be characterized by full width at half maximum, has been measured to be on the 

order of mm and is therefore thought to preclude the possibility of LPFG formation, 

whose periods are typically less than ~700 µm.  

These measurements, however, have been conducted on fusion splices and, to our 

knowledge, the magnitude and axial extent of these perturbations at less than saturation 

has not been published. Shown in Fig. 8.12 are preliminary measurements demonstrating 

the possibility of LPFG formation based on the relaxation of mechanical stresses within 

the core. The RS profile reconstructions are based on an assumption of axial symmetry.  

In Fig. 8.12(a) the progression of RS changes from unperturbed to an arc current of 

24 mA at an arc duration of 0.1 seconds is measured. Corresponding curves for 2-10 mA 

are not shown because there was no observable change. In Fig. 8.12(b), the axial 

variation of core stress between two adjacent arc discharges (15 mA, 0.1 seconds) which 

are separated by ~544 µm is shown. The results provide evidence that core RS 

modification could play a major role in weak arc-induced LPFGs as the axial stress 
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modulation magnitude of ∆  ~ 7.5 MPa corresponds approximately to a RI modulation 

magnitude of ∆  ~ 3.2  10-5 assuming a stress-optic constant of  = -4.22  10-6, 

which is only slightly less than the range normally used for modeling LPFG transmission 

spectra using coupled mode theory (CMT) [110].  

 

Figure 8.12: (a) Progression of axial residual stress (RS) modification in Corning SMF-
28 fiber exposed to electric arc currents ranging from 0 to 24 mA for 0.1 seconds. (b) 
Axial variation of mean core RS between two electric arc discharges written with a 
current of 15 mA for 0.1 seconds. 
 

Until now, measuring the RI index changes in the cladding due to the relaxation of 

FIV using quantitative phase microscopy (QPM) based on the TIE [31] has been difficult, 

although possible as evidenced by the results in Fig. 6.5, because the phase images 

measured via QPM are extremely sensitive to noise. While random image noise can be 

offset by using a larger defocus distance, non-random noise sources, such as non-

repeatability in the background phase subtraction from measurement to measurement, 

have been especially limiting in quantifying axial RI variations on the order of 1 10 . 

TDPM, on the other hand, is based on the 3D deconvolution of through-focal series and 

registration over many angular views. Although the RI resolution of ~7.7  10-5 specified 

in Chapter 4 is higher the value of 2.34  10-5 specified by Hutsel et al. [31], it has been 

observed that the measurements are much more repeatable, which has been the limiting 
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factor thus far. Therefore, it is proposed to use the joint combination of TDPM and the 

Brace-Köhler compensator technique to characterize RI/RS effects in weak arc-

induced LPFGs. It is also proposed to use CMT to model and optimize future LPFGs 

based on these mechanisms, assuming that the RI modulations measured in the core (due 

to RS changes) and cladding (due to FIV) can be approximated as uniform in cross 

section and sinusoidal along the fiber axis. 

8.4.2 Modeling of Measured Refractive Index/Residual Stress Data 

Once RI is measured over a single LPFG period, it would be invaluable to have an 

accurate numerical modeling tool which could estimate the transmission spectrum based 

on the measurements. One might naïvely assume that a SS-BPM [103] would be 

sufficient. While this may be true in some cases, in many others, e.g. when the RI 

difference between the cladding and the surrounding material is large, the discrepancies 

between the outputs of CMT and SS-BPM will be significant, as is shown in Fig. 8.13.  

 

Figure 8.13: Transmission spectra modeled using coupled mode theory (CMT) (blue) 
and a split-step beam propagation method (SS-BPM) (red). It is believed that the 
discrepancy, which manifests here as a red-shift and a reduction of transmission depth, is 
due to inaccuracy of the weak RI contrast assumption in the SS-BPM. 



 
  

187 
 

In Fig. 8.13, the spectrum plotted in Fig. 10(b) of [110] is reproduced in blue using 

CMT and the LPFG parameters outlined therein. Also plotted in Fig. 8.13 is a spectrum 

modelled using a wide-angle SS-BPM [103] (shown in red) and based on the same 

uniform LPFG structure outlined in [110]. In the case of the SS-BPM, the simulation was 

initialized with the fundamental core mode in the unperturbed fiber and allowed to 

propagate through entire LPFG structure, after which the overlap integral [99] was used 

to calculate the energy percentage remaining in the fundamental mode. It is believed that 

the discrepancies between the two curves owes primarily to assumption of weak RI 

contrast inherent in the SS-BPM [103], which is inaccurate for this particular device since 

the LPFG is surrounded by air.  

It is therefore proposed to develop the modified SS-BPM outlined in Chapter 4, 

which is there shown to produce better agreement with rigorous solutions due to its 

accounting for the obliquity factor in the refractive step, for this application. Although 

the use of a SS-BPM is more straightforward, it may be necessary to develop more 

rigorous modeling tools, such as those based on eigenmode expansion [104], for 

application with LPFGs as has been recently shown in [275].  
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CHAPTER 9 

CONCLUDING REMARKS 

 

The methods presented in this thesis directly enable quantitative phase imaging (QPI) 

using standard microscope platforms which are ubiquitous in biomedical laboratories. 

This brings QPI, as a technology, much closer to its primary end user and potentially 

allows QPI to be added as another modality in microscopy, like fluorescence or phase 

contrast, thereby diversifying the imaging portfolio of the biologist or practitioner, who 

are generally non-experts in optics.  

In addition to their enabling features, the methods described herein have desirable 

traits not possessed by their conventional interferometric/holographic counterparts, such 

as enhanced spatial resolution due to the use of partial spatial coherence and inherent 

stability due to the use of white light sources and common-path imaging inherent in 

microscopy. The use commercial microscopes also implies good imaging quality 

benefitting from centuries of optical engineering as opposed to stand-alone custom QPI 

configurations.  

In applying QPI and related methods to the characterization of refractive index and 

residual stress in large-mode-area erbium- and ytterbium-doped fibers (LMA EDFs and 

YDFs) it has been observed that the effects of manufacturing, cleaving, and splicing play 

significant roles in device operation, both mechanical and optical. In designing future 

LMA EDFs and YDFs for use with fiber-based lasers and amplifiers, consideration of the 

effects characterized in Chapters 5 and 6 will become critical to achieving LMAs larger 

than the current state-of-the-art. 

All in all, the results presented herein have the potential to be transformative in the 

fields of QPI and optical fiber characterization. The future directions outlined in Chapter 

8 will therefore be critical towards their eventual success and adoption. 
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APPENDIX A 

DERIVATION OF GENERALIZED LINEARIZATION 
CONDITIONS FOR PHASE OPTICAL TRANSFER FUNCTION 

RECOVERY 
 

 

In what follows the generalized linearization conditions [Eqs. (3.20) and (3.21)] for direct 

object recovery from the two-dimensional weak object transfer function (2D WOTF) [Eq. 

(3.14)] are derived.  

Let us write an expression for the total normalized complex wave field at the image 

plane as 

  , ∗ , exp , (A.1)

in which ,  is the wave field at the image plane normalized to unit 

amplitude/intensity,  is the coherent point spread function describing 

the transfer from object to image plane, , exp 2 ∙  is the 

normalized incident field at the object plane corresponding to the off-axis point source 

, and  is the complex scattered phase comprised of both absorption and phase as 

given in Section 3.2.2.  If the first-order Rytov approximation is assumed to be valid, Eq. 

(A.1) may be approximated as 

  , , exp , , (A.2)

in which ,  is the first-order Rytov approximation for the normalized wave field 

at the image plane, , ∗ ,  is the normalized incident field at the 

image plane, and , , ,⁄  is the first-order Rytov 

approximation for the complex scattered phase at the image plane for which ,

∗ ,  is the first-order Born approximation for the normalized scattered 

wave field at the image plane.  
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Under this approximation, the normalized intensity at the image plane can be 

expressed as 

  , , exp 2Re , , (A.3)

in which ,  is the normalized intensity at the image plane under the first-order 

Rytov approximation. By the sifting property of the delta function, the Fourier transform 

of ,  may be written as 

  , , (A.4)

so that in real space , , . Since the Fourier transform of 

,  is given by 

  , , (A.5)

then the Fourier transform of ,  is given by 

  , , (A.6)

so that Eq. (3.19) is derived.  

In Eq. (3.19a), exp 2Re ,  may be expanded in a Taylor series so that  

  exp 2Re , 1 2Re , , (A.7)

on the condition that 

  2Re , ≪ 1. (A.8)

Since , then the Fourier transform of 2Re ,  may be 

given as 

 

2Re ,
∗

∗

∗

∗

, (A.9)

in which ⁄  is divided into Hermitian and anti-Hermitian parts in order to 

evaluate the real component. Careful inspection reveals that the two terms in Eq. (A.9) 

produce the second and third terms in the 2D WOTF [Eq. (3.14)], corresponding to the 
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amplitude and phase optical transfer functions respectively, upon evaluating the integral 

in Eq. (3.19a). Multiplying Eq. (A.9) by | |  and taking the inverse Fourier 

transform demonstrates that Eqs. (3.20) and (3.21) in Section 3.2.2, in concert with the 

first-order Rytov approximation for the wave field at the image plane, are sufficient 

conditions for linearizing the WOTF. 
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