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SUMMARY 

Designers usually start their design process by exploring and evolving their ideas rapidly 

through sketching since this helps them to make numerous attempts at creating, practicing, 

simulating, and representing ideas. Creativity inherent in solving the ill-defined problems 

(Eastman, 1969) often emerges when designers explore potential solutions while sketching in 

the design process (Schön, 1992). When using computer programs such as CAD or Building 

Information Modeling (BIM) tools, designers often preplan the tasks prior to executing 

commands instead of engaging in the process of designing. Researchers argue that these 

programs force designers to focus on how to use a tool (i.e. how to execute series of 

commands) rather than how to explore a design, and thus hinder creativity in the early stages of 

the design process (Goel, 1995; Dorta, 2007). Since recent design and documentation works 

have been computer-generated using BIM software, transitions between ideas in sketches and 

those in digital CAD systems have become necessary. By employing sketch interactions, we 

argue that a computer system can provide a rapid, flexible, and iterative method to create 3D 

models with sufficient data for facilitating smooth transitions between designers’ early sketches 

and BIM programs. 

This dissertation begins by describing the modern design workflows and discussing the 

necessary data to be exchanged in the early stage of design. It then briefly introduces the 

modern cognitive theories, including embodiment (Varela, Rosch, & Thompson, 1992), situated 

action (Suchman, 1986), and distributed cognition (Hutchins, 1995). It continues by identifying 

problems in current CAD programs used in the early stage of the design process, using these 

theories as lenses. After reviewing modern attempts, including sketch tools and design 

automation tools, we describe the design and implementation of a sketch and multi-touch 

program, SolidSketch, to facilitate and augment our abilities to work on ill-defined problems in 
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the early stage of design. SolidSketch is a parametric modeling program that enables users to 

construct 3D parametric models rapidly through sketch and multi-touch interactions. It 

combines the benefits of traditional design tools, such as physical models and pencil sketches 

(i.e. rapid, low-cost, and flexible methods), with the computational power offered by digital 

modeling tools, such as CAD. To close the gap between modern BIM and traditional sketch tools, 

the models created with SolidSketch can be read by other BIM programs. We then evaluate the 

programs with comparisons to the commercial CAD programs and other sketch programs. We 

also report a case study in which participants used the system for their design explorations. 

Finally, we conclude with the potential impacts of this new technology and the next steps for 

ultimately bringing greater computational power to the early stages of design. 



 

1 

Chapter I. Introduction 

Design is a challenging cognitive activity, involving planning, remembering, experiencing, 

creating, defining, and solving “wicked problems” (Rittel & Webber, 1973).  Design problems are 

considered “wicked” because they are usually ill-defined (Eastman, 1969; Shneiderman, 2007). The 

design process often includes numerous attempts at creating, practicing, simulating, and 

representing ideas using a variety of media and tools. The creativity inherent in solving these ill-

defined problems often emerges when designers explore potential solutions while interacting with 

the media engaged in the design process (Schön, 1992; Sawyer, 2011). However, when creating 

computer programs, interface designers and developers often assume that users already have 

preconceived ideas of the tasks they will execute. Many creativity researchers, however, argue that 

designers employ sketching as a tool for design exploration since it can represent different semantics 

and thus afford designers the expression of ambiguous intentions (Goel, 1995; Gross & Do, 1996). In 

addition, designers can gradually refine and form clear ideas through sketching. Since recent design 

and documentation work has been computer-generated using Computer Aided Design (CAD) or 

Building Information Modeling (BIM) software, transitions between ideas in sketches and those in 

digital CAD systems become necessary. These computational tools often require complicated 

commands for expressing the rules, constraints, and parametric and topological information of 

geometries. Thus, when designers must focus on exploring the design possibilities and solving design 

problems, they often find it difficult to utilize these tools. Researchers in the design community argue 

that commercial computational tools, such as AutoCAD, force designers to focus on how to use a tool 

(how to execute series of commands) rather than how to explore a design, and thus hinder creativity 

in the early stages of the design process (Dorta, 2007).  
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1.1 Solving Ill-Defined Problems 

How can creativity support tools (CSTs) help users to address ill-defined problems in the early 

stages of design? Researchers in the design and creative technology community have begun 

exploring cognitive theories to explain design activities and gain insights through observations of 

these theories, such as embodiment (Varela et al., 1992; Hornecker, 2005), situated action (Le 

Dantec, 2009; Schön, 1992; William J, n.d.), and distributed cognition (Hsiao, Davis, & Do, 2012; 

Hutchins, 1995). By emphasizing how users interact with their environment to continually construct 

meaning, these theories provide a foundation for designing creativity support tools for ill-defined 

problems. In particular, instead of explicitly planned goals and tasks, embodiment describes how 

cognition emerges through active interaction, coordination, and negotiation between a person and 

the surroundings for exploring alternatives (Hollan, Hutchins, & Kirsh, 2000).  Sense-making is a 

gradual process whereby a person works to understand how to coordinate actions with his or her 

surroundings to produce outcomes that make sense. It thrives on creativity in the moment to enable 

humans to form “good enough” models and hypotheses for how things in the world work. Such 

hypotheses are evaluated and refined through real-time interactions between a human and his or her 

surroundings, which is described as “perception-action loops” in enaction theory (Hanne De Jaegher, 

2010). During the design process, sense making is the process in which a designer tries to gradually fit 

his creations into predefined and emerging constraints. Design researchers argue that designers 

typically engage in these perception-action loops during the design process, called “conversations” 

with the materials of a design situation (Schön, 1992), since they need to “negotiate, discuss, and 

even exchange” ideas with the physical world without other cognitive burdens. We posit that if we 

wish to design interactions that provide the same experiences for solving ill-defined problems as 

traditional design tools, such as sketching, we should account for the embodied thinking process that 
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enables users to rapidly express and explore their ideas through interactions with the media. This 

objective raises the first question of this research:  

How can we combine the direct input and real-time feedback in sketch interaction with the 

computational power of CAD/BIM in a single tool?  

1.2 Goals of the Dissertation 

Some may argue that computer programs mainly assist designers with generating complicated 

forms, simulating reality, and managing large projects that cannot be accomplished without them. By 

using computer programs, designers can also store expert knowledge they have developed over time 

and then reuse it when needed through generative design systems, case-based reasoning, expert 

systems, shape grammars, and other aspects of the process.  From this perspective, computer 

programs accomplish what traditional media and tools cannot. In other words, some may assert that 

computational and traditional tools serve different purposes in the design process.  Instead of 

introducing a novel method of facilitating computational powers for various design possibilities, the 

goal of this work, therefore, is to advance the user experience of employing computational power in 

the early stages of design. 

In addition, this dissertation advocates for a new approach that both enables designers to 

directly interact with digital geometry and determines the relationships among the geometries. It 

aims to ameliorate the gaps in technologies intended to transition designers between design 

activities in digital and physical environments. In other words, it aims to resolve the issues existing in 

the current process in the early stages of design: designers often need to switch between physical 

and digital tools to verify whether their deisgn intents violate any constraints established in different 

work environments. Despite the many attempts to employ sketch interactions for supporting early 

design explorations on computers (Bae, Balakrishnan, & Singh, 2008; Schmidt, Khan, Singh, & 
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Kurtenbach, 2009), these tools lack the ability to create parametric and semantic descriptions that 

define geometries and relationships between them used in CAD programs, such as SolidWorks, 

CATIA, Rhino 3D, etc. Thus, we argue that one important piece to bridge this gap is to include ways of 

recognizing and assigning constraints to geometries so that early design intentions can be created 

and passed on to subsequent stages of the design process. One of the goals of this dissertation is to 

translate human interactions to computer-understandable format that can then be utilized in 

subsequent tasks of the design process. This goal raises the second research question: 

How does the combination of sketch and CAD/BIM tools affect the early stages of design? Can 

immediate feedback and continuous geometry generation by using sketch and multi-touch 

interactions support rapid, flexible, and iterative design ideations similar to using traditoinal 

sketching? 

1.3 Focus on Sketch and Multi-Touch Interactions 

Drawing from images in their minds, designers often represent designs with lines and circles that 

form bubble diagrams that help them to structure spatial relationships. The lines could represent 

walls, regions, and spaces to which certain properties are either explicitly or implicitly assigned.  

Properties could be the qualities and quantities of materials for a space or materials for a wall. To 

translate this information into a computer program, a designer may need to execute a “create wall” 

command by clicking a button and then using the mouse to draw walls on the canvas of the program.  

After drawing the walls, the designer may execute a “create space” command, and after drawing 

these basic elements, she may refer to the equations or values1 in a table to define the properties of 

the elements. If walls are curved, designers may add control points and adjust the handles for desired 

                                                           

1 The equations and values for properties are part of “constraints” in a design (Gross, 1986). 
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curvatures.  This scenario, a common one in the daily routine of designers when they use a computer 

program, demonstrates that computer programs are tools that require many steps to create an 

object with details. However, after a number of computations, designers in the later stages of the 

process may discover errors that must be fixed.  Such changes often require a return to the initial 

stage of the design process and further efforts to build models. 

The previous paragraph presents an example of designers who often use their hands to sketch 

and manipulate their designs. We argue that sketch and multi-touch interactions can become signals 

for a system to create parametric information and geometry with relationships. Thus, in this 

dissertation, we narrow the investigations to sketch and multi-touch interactions. To maintain 

perception-action loops and reduce cognitive burden in the early stages of design, we propose that 

interactions should take place directly on geometries, including manipulating shapes and setting 

geometric relationships. Such an approach raises several technical questions, the most obvious being 

what techniques could be used to disambiguate sketch and multi-touch input in 3D environment when 

users are creating geometrical and topological information. Another is determining how a computer 

program should react when designers draw lines and execute commands; that is, what specific 

feedback should a computer program provide a designer? In addition, we prefer that the system take 

over some jobs and automate certain recognition processes to simplify particular tasks, but not 

others. The human should have some degree of control because the system will sometimes 

misunderstand a human’s intention. Thus, it should be asked: What are the strategies for conveying 

the interpretations from a computer?  This issue raises a final question of this dissertation:  To what 

extent can a system record parametric and semantic information from such sketch interaction 

techniques? 
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1.4 Structure of the Dissertation 

This chapter defines the scope and motivations of the dissertation by briefly discussing the 

drawbacks of current computational tools in the early design stage, and then introduces the 

theoretical background that raises the several questions that need to be answered in this 

dissertation. The next chapter, Chapter 2, reveals more details of the theoretical background, 

including a review of modern cognitive theories and their implications, with discussions of the 

workflows used in the current design environments. Chapter 3 mainly discusses the previous works 

that employed sketch interactions for enhancing our design capability and automating complicated 

tasks, but still failed to support design workflows. Through a use scenario with a hypothetical user, 

Chapter 4 introduces the interaction designs of a sketch and multi-touch prototype system and 

examines how constraints should be set using sketch gestures, and what feedback the system should 

provide. Chapter 5 provides the overall architecture, detailing algorithms that facilitate sketch and 

multi-touch interactions. Chapter 6 continues the presentation of technical details, with the emphasis 

on data structures and how the interactions are translated into building objects that can be exported 

to BIM tools. Chapter 7 discusses the means and results of evaluating the proposed prototype system 

based on the main objective of the system: providing a way for designers to explore ideas of designs 

rapidly without the burden of translating the data into the BIM-enabled formats. More importantly, 

this chapter will discuss the findings from a case study with expert users. Chapter 8 concludes the 

dissertation with potential benefits to architectural designers who use the tool, SolidSketch, in their 

design process and the near-term future work required to make this happen. 
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Chapter II. CAD Tools and Design Cognition 

2.1 CAD Programs 

CAD programs have been used to create models of designs for more than 50 years. One of the 

first CAD programs, SketchPad (Sutherland, 1963), has many useful features that provide 

computational power to assist with drawing, including storing design templates, instantiating 

predefined drawing objects, setting various constraints among geometries, and solving constraints 

from input parameters. These features influence the fundamental concepts inherent in modern CAD 

programs, such as parametric modeling, generative design, case-based design, and expert systems.  

These fundamental concepts enable developers to build computer-aided architectural design (CAAD) 

systems with embedded design knowledge. For example, CAAD tools help designers to apply their 

design expertise and record design intents that assist those in the AEC field to increase their 

productivity, avoid errors, and accomplish projects that could not be done without them.  

Furthermore, designers use generative systems and parametric modeling to automate complex 

design creations governed by rules and parameters that describe their design intents. 

In architectural design, generative design systems are among the most popular methods of 

representing design expertise in practice. The best-known generative design system is Grasshopper 

for Rhinoceros. When using this system, architects can specify simple parametric rules to create 

forms that fulfill specific needs. At the architectural firm, NBBJ, Nathan Miller adopted Grasshopper 

to study design alternatives quickly by adjusting parameters (Miller, 2009). He built a set of 

Grasshopper rules for preventing columns in a stadium from blocking the views of individuals in the 

audience. If members of a design team wish to adjust the number of seats in a stadium or change the 

form of the building, they can modify the design and regenerate new models automatically to fulfill 

such requests while still adhering to Miller’s set of rules about columns. Another example of 
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Grasshopper is developing a set of rules for automatically generating a parking structure. Many such 

rules are currently available to download online,2 providing design templates to designers so that 

they can adjust the rules and parameters to fulfill their needs. 

These parametric rules with topologies that define the relationships between geometries are the 

building blocks of Building Information Modeling (BIM) tools. BIM programs, such as Revit, have 

predefined relationships among geometric objects so that the system can automatically propagate 

modifications when a designer changes his designs. These geometric relationships are critical aspects 

of BIM model specifications that determine what kinds of rules can be applied between parts 

(Eastman et al., 2008). For instance, if a user moves a wall connecting to another wall, BIM programs 

know how to programmatically create the connections. When users add a window to a wall, BIM 

programs know where and how to create the frames of the window. 

2.2 The Right Tools at the Right Time 

Interoperability between BIM programs is crucial in architecture, engineering, and construction 

(AEC) fields. Since different AEC professionals use diverse programs and tools for a range of purposes 

in various stages of design, the interoperability between these programs becomes crucial. For 

instance, Figure 2.1 outlines a workflow depicting how architects might utilize different programs in 

the various stages of designing a building. In Figure 2.1, at the beginning of the design process, 

designers may collect data to create a building program with Excel spreadsheets that contain building 

specifications, including qualitative information and quantitative information. They would use these 

spreadsheets for communicating with clients to ensure that the design fulfills their needs. Designers 

may also use the spreadsheet to document specific building codes to determine whether the building 

                                                           

2 http://www.grasshopper3d.com/ 
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adheres to government standards and regulations. The data become the initial constraints of the 

design. 

Once the designers have established the initial design constraints of the building, they start to 

sketch out designs and play with different ideas that can roughly fulfill these constraints. While 

exploring, they develop additional constraints that shape the design of the building. Then, designers 

start to sketch the forms in perspective drawings or build low-fidelity 3D models using programs such 

as SketchUp. This type of early 3D digital model gives designers a realistic rendering and serves as a 

tool to help facilitate more detailed communication with clients. During this process, designers also 

specify materials and other information, such as views of the particular room and lighting, related to 

the quality of a design in a digital model. This information would then be entered into the initial 

building information model, called the Design BIM (shown in the middle of Figure 2.1). 

 
Figure 2.1: The workflow of the current design process.  Architectural designers need to use different tools along the 

different process. In the middle of design process, they would start to use BIM tool for documenting their designs 
comprehensively.  But they are still use drawing in the early stages of design. 

Once designers begin to use Design BIM tools, interoperability is provided by the software 

programs to exchange design information between a variety of programs for different purposes, e.g. 

construction drafting, detail simulations, construction management, etc. This new generation of CAD 

tools helps professionals in the AEC field to optimize their workflows and facilitates communications 

with other professionals. Thus, it dramatically reduces costs at later stages in the design process 

(Eastman, Teicholz, Sacks, & Liston, 2008). 
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2.3 Interoperability in Design 

Since designers need to use various tools and software programs to complete a building project, 

they rely on exchanging information between these tools. If developers of different software 

programs can define object structures rigorously in their systems, they can prevent numerous 

problems and frustrations when users import and export data between programs. Therefore, a 

neutral building information format such as Industry Foundation Class (IFC) plays a significant role in 

this domain. However, because IFC includes a large number of entities related to the life cycle of a 

building, those software developers in the AEC field would find it difficult to select information for 

the exchanges. The Model View Definitions (MVDs) aim to define specific schemas and create object 

structures with their necessary properties for different use cases (Eastman, Jeong, Sacks, & Kaner, 

2009). These MVD structures are publicly available on the MVD website.3 

In this dissertation, we focus on creating a tool to support the early stages of design roughly in 

the range of creating the “Low-Fidelity Prototype” in Figure 2.1. Currently, the closest MVD for the 

stage is “Concept Design BIM 2010 (CDB10)” (See, 2009). Figure 2.2 shows the overall information 

required for an IFCWall in CDB10. The light orange boxes in Figure 2.2 represent concepts for 

particular categories of semantics in an IFCWall. A concept can be constructed by multiple concepts 

to complete the required semantics. Some concepts are inherited from their parent IFC objects, and 

can also pass attributes to their children IFC objects. For instance, IFCWall is inherited from IFCRoot 

and thus has the attributes originating from IFCRoot, which are called Root Attributes. These 

attributes contain all of the basic information required for all of the objects in a building information 

model, including “GUID”, “BIM Object Owner History”, “Name”, and “Description”. The purpose of 

                                                           

3 http://www.blis-project.org/IAI-MVD/ and http://www.buildingsmart-tech.org/specifications/ifc-view-
definition 

http://www.blis-project.org/IAI-MVD/
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the BIM Object Owner History is to record the editing history for the particular IFC object. In other 

words, editing history in IFC is designed at the object level instead of at the file level to enable 

systems to track design intents in every single IFC object. 

 
Figure 2.2: The Model View Definition for IFCWall in Concept Design BIM 2010.  There are five categories of concepts 

for an IFCWall in Concept Design BIM 2010.  The boxes in this diagram represent concepts.  The boxes with solid outlines 
represent required concepts, while those with dashed outlines represent optional concepts. 
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In addition to the root attributes introduced previously, there are four other categories of 

concepts in building elements in CDB10: (1) object type and dimensions, (2) materials, (3) geometry, 

and (4) object relationship. In the object type and dimensions category, CDB10 aims to specify 

information for the type of analysis used in early stages of design. For instance, it stores the type, e.g. 

concrete wall, and the gross volume of an IFC object so that a simple plugin can read it for calculating 

whether the costs of the building roughly meet the building program mentioned in Section 2.2. 

Materials are another important layer of semantics for the purposes of energy simulations and 

quantity take-off. The materials can be specified in each layer of a building element using this 

concept. However, at this stage of design, the designers would only have rough ideas of the materials 

they will use in particular building elements. Thus, the related concepts are not required in the data 

exchange and are marked as optional in CDB10. 

The concepts in the geometry category are crucial in CDB10 since various information can be 

derived from them. The concept “Generic Geometric Representation” contains the different options 

for representing geometrical information that can be used for exchange in early stages of design.  

Developers can choose one of the following concepts when exporting the geometrical information: 

(1) “B-rep”, (2) “SweptSolid”, and (3) “Clipped Solid”. For geometrical relationships, the concept 

“Local Relative Placement” suggests hierarchical placements between geometries. 

Finally, the concepts in the “object relationship” category describe various relations in a building 

model. For instance, in IFCWall, the concept “Building Element in Spatial Containments” describes in 

which story a particular wall is situated within a building. The concept “Building Element Voiding” 

defines the openings that make the “holes” in a wall. Also, the concepts “Connected Walls” and 

“Connected Slabs” specify which walls/slabs this IFCWall connects to, and what type of connections 

exist between the two objects. 
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This MVD addresses interoperability, specifically at the moment that users finish a concept 

design, and then supports data exchange for the purpose of simulations or simple analyses. Other 

professions in the AEC field involved in this stage can utilize this MVD to ensure that the data they 

need are available from architects. In sum, this MVD represents a framework that allows us to place 

more emphasis on a particular data exchange in the early stages of design. 

2.4 The Early Stages of Design 

2.4.1 Sketch in the Early Stages of Design 

 

Figure 2.3: The iterative procedures of the design process 

At the very beginning of the design process, designers define problems, requirements, and design 

principles that conform to the building programs that clients provide as well as the contextual 

information supplied by the environment on a proposed site. Based on this information and previous 

experience, designers draw various ideas and images from their minds. In this process, designers 

typically produce a rough sketch as an external representation of a general layout that might solve or 

redefine those ill-defined problems (Eastman, 1969). As they fill in the sketches with more details 

(representing design), they may discover, upon scrutiny, that some parts of the design could be 

improved, or that recent additions to the design have created problems. As a result, the designers 

may have to revise the drawings. During this iterative process, shown in Figure 2.3, designers must 
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not only adhere to the requirements, design principles, and physical representations, but they must 

also respond to emergent ideas while re-evaluating their previous representations. 

The process of understanding abstract concepts of the design is not a straightforward input and 

output activity as suggested by information processing theories (Card et al., 1986).  Rather, it is 

associated with long- and short-term memory as well as internal representations that convey images 

and concepts in our minds (Medyckyj-Scott & Hearnshaw, 1993), and external representations such 

as sketches or models. As designers attempt to interpret external representations, they receive 

various types of sensory inputs, such as tactile, auditory, and visual sensations. Upon receiving the 

information, they store it in working memory (short-term memory), which is meant for active 

processing. However, since working memory is limited, designers must represent the mental images 

for each input repeatedly (Gül, 2009) for concept reconstruction (Nersessian, 2008), and store them 

as physical artifacts, each of which should have unique purposes.  Thus, Noë argues that it is often 

easier for someone to act on the environment and experiment with how different interactions affect 

the media (Noë, 2004). For instance, a 2D floor plan sketch should help designers to organize and 

represent the layouts of spaces, the intended circulation paths among them, and patterns of the 

architectural elements. A drawing in perspective represents views similar to the object being 

conveyed and thus accomplishes what a floor plan cannot. Designers switch between different views 

and examine their emerging ideas on demand. In this view, intentions emerge but are also 

transformed in and through interaction with the materials. 

According to their experiments with architects and advanced students (Suwa & Tversky, 1997), 

Suwa and Tversky found that architects usually employ sketch for the following purposes: (1) finding 

emergent properties of spaces, objects, shapes, and sizes; (2) defining local and global spatial 

relations; (3) defining functional relations including views, lights, and circulations of people; and (4) 

developing conceptual knowledge. They found that expert architects focus more on complex visual 
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relations and functional relations at the same time, such as shapes, sizes, angles, and circulations, 

than architectural students do. In other words, experts are able to explore visual and functional 

relations simultaneously when employing sketches to study their designs. 

Recent design research suggests that freehand work might not be the only way for designers to 

explore, develop, and form initial ideas in the early stages of design (Bilda, Gero, & Purcell, 2006).  

Johnson suggested that verbalizations are another major conceptual tool for initiating the design 

process (Johnson, 2005). This seems to conform to Schön’s famous phrase, “Designing as reflective 

conversation with the materials of a design situation”, which beautifully describes how designers 

form their ideas in the early stages of the design process by utilizing the media they are comfortable 

with (Schön, 1992). 

2.4.2 Design Cognition 

Based on empirical work investigating design meetings, Le Dantec argues that these 

“conversation” processes are influenced by three facets of inseparable cognitive processes: 

embodied, distributed, and situated cognitions (Le Dantec, 2009). Embodiment shows the 

importance of environmental affordances (Gibson, 1979; Varela, Thompson, & Rosch, 1999), which 

have been championed by HCI researchers as an effective interaction design principle for years 

(McGrenere & Ho, 2000; D. Norman, 1990). Affordances have recently taken on a more prominent 

role as novel input technologies, such as tangible and natural user interfaces, emphasizing direct 

manipulation and continuous feedback with actions (Dourish, 2004; Ullmer & Ishii, 2000). In fact, 

such embodied interactions commonly occur in architectural design processes when designers use 

sketches and gestures to express the quality of designs externally (Le Dantec, 2009), implying that 

embodied cognition involves the coordination of actions and thoughts without the designer’s 

attention (Bloch, 1998). 
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Distributed cognition showed the importance of offloading tasks onto environments and other 

people working on the same tasks (Hutchins, 1995). In his book, Cognition in the Wild, Hutchins 

reported his findings of how the crew members on a battleship plan their navigation through drawing 

symbols and routes on a map as well as communicating the orders throughout different levels of 

crew members (Hutchins, 1995). In HCI, this perspective changed the primary unit of analysis from 

one of human processes information to socio-technical systems with distributed cognitive properties 

(Hollan, Hutchins, & Kirsh, 2000; Liu, Nersessian, & Stasko, 2008). In the architectural design 

environment, architects often utilize bubble diagrams, symbols, and other professional drawings to 

represent, explore, and communicate ideas (Do, 1998). Distributed cognitive analysis considers how 

these representations are propagated and processed by people, computers, artifacts, and 

environments through time. In the scenario of architectural design, generating an entire plan with its 

details directly from one’s mind is virtually impossible. Instead, the design process requires many 

iterations and refinements beginning from one designer and eventually including multiple designers. 

In addition, since many creative discoveries involve emergent spatial and functional relationships in a 

sketch, the cognitive process of design is not linear (Suwa & Tversky, 1997). Even though the process 

may appear to take place inside the minds of architects, it is often distributed among their mental 

processes and the continuous feedback provided by the “materials of a design situation” (Schön, 

1992). 

Finally, situated action showed that the information processing view of fixed goals guiding 

actions was not entirely accurate. Suchman found that humans do not execute fully formed plans in 

their interaction with technology, but rather perceive affordances that guide actions that are 

adjusted based on real-time and continuous feedback (Suchman, 1986). When systems are designed 

with an information processing model of cognition, there are often breakdowns between the 

situated actions that users take and the linear model determining interaction design. For this reason, 
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Suchman has advocated using ethnographic methods to explore the micro-details of everyday actions 

and their explorative processes. These ethnographic methods are often used in qualitative studies 

with inductive reasoning during observations in the recorded video or audio data in situ. These 

analyses can reveal how actions are non-linear and largely dependent on feedback from the 

environment as well as sociocultural contexts in which the actions are embedded. These methods are 

widely used in studying design processes introduced previously, e.g. (Lakoff & Johnson, 2003; Le 

Dantec, 2009; Tversky, 2002). 

2.4.3 Vague Goals 

The previous section discussed the way designers think. Instead of describing design as a linear 

process that occurs in a step-by-step manner, researchers argue that design cognition is an iterative 

thinking procedure in which designers have vague goals that can be revised during interactions 

(Sawyer, 2000; Tversky, 2002). In addition, a vague goal acts as a set of constraints that directly 

influences what appears to be interesting or salient, as well as how specific types of interactions 

might provide more information about emerging hypotheses (Andreas, 2010). A vague goal is similar 

to an objective in that it can be reflected on, elaborated on, and specified in more detail. However, it 

significantly differs from the current notion of “goal” in planning-based information processing 

because it does not constitute an action in any way. Instead, it constrains and suggests potential 

actions that could yield productive changes in an emergent process of cognition (Hanne De Jaegher, 

2010). In the design process, while trying to achieve goals, individuals are aware of several steps that 

may need to be executed. Ideally, after completing one step, a designer will take the changes from 

that step and apply additional steps to accomplish the ultimate goal. However, in reality, designers 

always need to adjust the past changes according to the current changes. Such changes may even 

alter the original goals since they may not be able to fit the new goals. Instead of considering the 

design process as a series of executed behaviors such as scripts or plans, they can be seen as 
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continuous and emergent improvisation with the environment. Attention and the conscious 

experience of an agent become the common threads that stitches the flow of each action together 

(Csikszentmihalyi, 1991) 

Once a designer is fully engaged in her design process, she is “in the flow” (Csikszentmihalyi, 

1991), and the “rules of the game,” or the “features of the design world” (Schön 1992) have been 

established. Each design process would presumably feature many sets of constraint satisfaction 

processes that are operating concurrently, and sometimes competitively, to drive the design process 

forward (Suwa & Tversky, 1997). In this procedure, we require a lens that filters perception and 

highlights various signifiers (Norman, 2008) for interaction, which can help to identify problems, 

reveal insights, and further refine the overall (vague) goals. Therefore, establishing deep engagement 

in the design process involves helping designers to solve ill-defined problems with different 

constraints. Switching between these constraints and modes of reasoning is therefore critical to 

sense-making in the early stage of design. The flexibility and low cost of sketching are naturally well-

suited to these tasks. Using freehand sketch tools (i.e., tools that quickly become ready-to-hand), 

designers can quickly become fully immersed in their creative tasks (Dourish, 2004; Ihde, 1979). 

Conversely, conventional CAD tools have a high barrier to entry and require constantly switching 

between modes for achieving tasks. Thus, designers must have clear goals before executing 

commands. 

2.5 CAD Programs for the Early Stage of Design 

Even though CAD tools help designers to create complex geometries from generative modeling or 

derive benefits from computer simulations, researchers argue that current CAD systems hinder 

creativity in the early stages of design (Lawson, 1999; Gül, 2009). Even though generative systems 

such as Grasshopper (depicted on the right side of Figure 2.4) provide a way of visualizing the “mind-
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map” of how parametric rules are constructed and related, current implementations usually require 

users to switch between two workspaces, creating views for defining rules and representing 

geometries. 

 

Figure 2.4: The interfaces of Rhinoceros (left) and Grasshopper (right) are very different. The users need to switch 
between two different interfaces to accomplish design tasks 

Since users are forced to think through the steps they need to employ when using CAD tools, 

these tools do not support improvised and rapid explorations during the early design stage. They 

often require users to specify many parameters and to manipulate control points on shapes when 

designers modify their designs. Typically, the mouse is employed as a tool to indicate where the key 

points are located on a digital canvas after users execute commands. Conversely, during sketching, 

the interaction is embodied since hand movements directly create lines and shapes on paper. While 

modifying shapes, designers usually sketch on top of the existing lines to shape the desired form. 

Before using CAD applications to create a complex design, users must understand the concepts of 

the complex geometry modeling that underlies these commands, such as different types of curves, 

solid modeling, and surface modeling. For instance, as most users cannot distinguish between a 



20 

regular arc and a Bezier curve, they would have to use trial and error to create the curves they wish 

to instantiate. If they are unfamiliar with the concepts, this action may require additional cognitive 

load to understand how to create the geometries. Thus, by not enabling continuous interactions and 

feedback, CAD tools do not promote rapid exploration and iterative design process. As a result, they 

fail to support improvisation and exploration in the early stage of design. 

Current CAD tools also do not infer semantic information from users’ continuous input. The tools 

receive discrete input events from the mouse and the keyboard, and then translate them into 

semantic information, such as the data in Figure 2.2, with UI components. Lacking the capability of 

recognizing user’s intent, the system requires further actions from users. With the addition of more 

features, new user interface (UI) buttons, boxes, and other elements have emerged in modern CAD 

programs, especially in BIM programs. However, with sketch and multi-touch inputs, the system 

should be able to take the continuous stream of input data to infer user intentions. 

In reality, instead of generating and exploring creative ideas, traditional CAD tools mainly support 

incremental refinement, documenting the details of a design, facilitating communication among 

disciplines, simulating buildings, and validating designs (Tversky, 2002). These claims have been 

supported by researchers who have argued that CAD tools force designers to focus on how to use the 

tool rather than to design. As a result, these tools hinder creativity in the design process (Dorta, 

2007). Even though architectural firms have widely adopted CAD and BIM tools, they still utilize 

traditional media for design exploration (Gül, 2009) because designers can engage in “conversation” 

with these media (Schön, 1992). In his study, Gül found that architectural designers were not able to 

combine their conceptual explorations (e.g. setting design constraints) and physical realizations (e.g. 

creating geometries) together while designing in digital environments (Gül, 2009). To ameliorate this 

problem and better support this conversation (e.g., the dynamic nature in the design process), HCI 
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researchers have attempted to build prototypes in various media, especially in the domain of sketch 

interactions. 

2.6 Conclusion 

In this chapter, we started from the engineering perspectives to discuss the design process for 

later stages of design. We introduced the tools used by designers in architecture design workflows 

with their purposes in different stages. We also discussed the importance of interoperability since it 

serves as a bridge between various tools in the later stages of design. These modern CAD tools 

provide designers with features for automating their workflows, but users still need to input 

important parameters and commands in a step-by-step manner. 

In the later part of the chapter, we discussed the fundamentally different cognitive processes 

engaged when designers employ traditional tools in the early stage of design (i.e. sketching) versus 

CAD tools in the later stages of design. As summarized in Table 2.1, these traditional tools support 

designers to (1) easily offload cognitive tasks onto the media, (2) enable the iterative nature of the 

design process so that designers can continually explore different emerging hypotheses, (3) augment 

embodied movements through continuous feedback from the media, and (4) help designers to 

document constraints through quick and simple drawings, such as symbols. However, the traditional 

sketch tools often fail to support (1) generative rule creation, (2) 3D geometry creation, (3) design 

automation, (4) interoperability, and (5) simulations. In the next chapter, we will review the previous 

sketch prototypes that enhance our capabilities of creating computer graphics rapidly and iteratively. 

We will also discuss what we can contribute in supporting the designers to make the workflows 

smoother in the early stage of design. 
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Table 2.1: The comparisons between traditional sketch tools and CAD/BIM tools in different aspects discussed in this 
chapter 

Criteria Traditional Sketch Tools CAD/BIM Tools 

1. Low Cost and Rapid Cognitive Offloading Easy: lower cognitive loads 
Difficult: higher cognitive loads due to the 

need to think through the steps 

2. Iterative Design Process 

Easy: designers can continually switch 

between different types of explorations 

without clearly defined goals 

Difficult: designers need to define tasks 

prior to executing actions 

3. Embodied Thinking Process 

Supported: physical media provide 

continuous feedback while designers move 

their hands 

Limited: designers often need to specify 

the key points or execute discrete 

commands 

4. Constraint Assignment 
Supported: through symbols, bubble 

diagrams, etc. 

Supported: through equations, parameters, 

etc. 

5. Generative Rules Not supported 

Difficult: without training, designers would 

not be able to create and document 

complicated forms 

6. Design Automation Not Supported 
Supported: through generative design 

systems, expert systems, etc. 

7. Interoperability 

Not Supported: designers need to re-

document their designs in different 

platforms 

Supported: the system can automatically 

convert the data for other use cases 

8. 3D Geometry Creation 
Difficult: often requires proper training for 

sketching out perspective views 

Easy: designers can create 3D geometry 

while they are creating 2D drawings 

9. Simulation 

Difficult: often requires heavy cognitive 

loads or complicated calculation for 

simulations 

Easy: often requires only one click for 

getting different types of simulations 
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Chapter III. Related Work 

The previous chapter discussed design cognition related to the early stage of the design process. 

It also described what the current CAD programs provide for designers and what should be improved 

for supporting the early stage of design. In this chapter, we discuss how the prior sketch prototypes 

support different aspects of the criteria specified in Table 2.1. In particular, we will reveal how these 

programs retain similar characteristics as traditional sketching, such as low cost and rapid ideation, 

and iterative and embodied thinking processes, while adding computational capabilities for achieving 

tasks that were previously difficult to accomplish, such as sketching in 3D, automatically generating 

geometries, etc. 

3.1 Sketch-Based Interfaces for CAD 

As mentioned, one of the first CAD programs, SketchPad (Sutherland, 1963), is arguably a 

program that employs “sketch”-style input. However, because SketchPad requires users to specify 

key points with buttons for executing commands, researchers argued that this “sketch” input is 

fundamentally different from natural sketching used in the physical world (Tversky, 2002). The 

interaction methods employed in SketchPad are broadly used in modern CAD programs with 

variations of UI elements and intelligent contextual menus. Nevertheless, many CAD users refer to 

drawing on a canvas in CAD programs with mouse and keyboard as “sketching”. In the “sketch” 

interactions in a CAD program, users need to constantly change modes on UI panels, specify key 

points on the main canvas, adjust curvatures by dragging handles, input various parameters in 

separate tables, and type in additional information throughout the creation of CAD drawings. Instead 

of discussing this type of “sketch” interaction, this section reviews the early solutions that analyze 

continuous sketch inputs for simplifying the tasks commonly seen when using CAD tools, including 

the following two types of prototypes: 
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(1)  Prototypes for recognizing drawing intents: This form of prototype usually aims to understand 

a group of freehand sketch strokes that form meaning of drawing objects in different scenarios, 

e.g. for architecture design and interface design. 

(2)  Prototypes for 3D geometry creation: Instead of recognizing a group of sketch strokes, this 

form of prototype usually generates continuous feedback while the user is sketching. 

3.1.1 Sketch Recognition for Recognizing Drawing Intents 

 

Figure 3.1: Electronic Cocktail Napkin analyzes the group of sketch lines in contexts for extracting the meaning of 
user sketches 

 

Figure 3.2: SILK converts the user sketch into actual UI components (Landay 1995) 

Early sketch prototypes, such as the Electronic Cocktail Napkin (ECN) in Figure 3.1 (Gross, 1996) 

and Silk in Figure 3.2 (Landay & Myers, 1995), recognize a group of sketch strokes that represent the 

users’ drawing intents, which reduces the need to execute commands manually. Most of these early 

prototypes analyzed the sketch strokes from simple corner detection, 2D primitive shape 
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recognitions, and then the composition of these strokes in a group. Through checking the 

composition of the shapes with preset rules, these systems can infer users’ intents from these sketch 

lines for various purposes, such as making sketch drawings interactive for interface design in Silk, and 

inferring drawing intents in ECN. These prototypes show the enormous potential of employing 

computational systems to help users during the early stage of design since they enable freehand 

sketches instead of forcing designers to specify key points. For instance, VR SketchPad employs a 

similar approach to recognizing the designer’s sketch drawings and automatically converting them to 

3D geometries in its database (Do, 2001). However, since this type of recognition method relies on 

predefined rules, these systems may not be able to comprehensively recognize drawings and symbols 

that were not defined previously. This is the main reason why these systems offer training sessions so 

that users can create their own symbols and drawings. 

In their studies, Do et al. found that professional architecture designers use a small set of 

conventional symbols to express design intents in different use cases (Do & Gross, 1997). For 

instance, architects sketch certain symbols, marks, and hatches with similar configurations that form 

“primitives” of a drawing object. With the contexts of the surrounding drawings, the system can 

recognize the design intents and the semantics (e.g. furniture, walls, or windows) of the sketch (Do, 

1997). According to the design intents, ECN can offer different tool sets for assisting designers on 

demand or further affecting sketch recognitions (Do, 1998). Without well-defined contexts, such as 

specifying use cases or knowing the user’s purposes of employing the tool, understanding user 

drawings accurately in general use cases was still an extremely difficult task. 

3.1.2 Simplifying Tasks in 3D Geometry Creation 

Other sketch research focuses on supporting users to rapidly create 3D geometry by inferring 

their interaction intents. Instead of recognizing the drawing intents, these prototypes usually take the 

contextual information into account for deciding the users’ intents of the current actions.  SKETCH, 
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one of the first prototypes in this category, infers some user interactions for simplifying and 

automating difficult tasks in 3D modeling (Zeleznik et al., 1996). As shown in Table 3.1, the system 

initially recognizes a set of gestures composed by the combinations of various mouse movements, 

clicks, and drags to construct five classes of “strokes”. To create 3D gestures, users need to draw the 

“strokes” in Table 2.1 in specific sequences. For instance, a user can create a cube by drawing three 

non-collinear strokes that meet at one point. Similarly, the system also has another five sets of 

mouse “gestures” for users to navigate around the 3D canvas. 

Table 2.2: The mouse clicks and movement gestures for five stroke classes (Zelenik et al., 1996) 

Mouse Action Stroke 

click and release dot 

click and drag without delaying 

axis-aligned line: line follows axis 

whose screen projection is most nearly 

parallel to dragged-out segment 

click and drag, then “tearing” motion to 

“rip” line from axis 
non-axis-aligned line 

click, pause, draw freehand curve 

click with Shift key pressed, draw 
freehand curve drawn on surface of objects 

in scene 

 

These 3D geometries then become the source information to narrow the possibilities of 

recognition results for automation. For instance, in the scenario of creating a table, the system 

extends the extruding geometry to the bottom of the tabletop automatically while the user is 

creating table legs. It can also infer the third dimension when the user draws the shadow on the 

ground of the target geometry. However, there is a substantial learning curve for users when 

remembering specific sequences of mouse movements, including clicks and drags, before being able 

to use the system smoothly. For this reason, Igarashi et al. created Chateau, which suggests possible 

inference geometries after the user highlights lines in the system through twenty different suggestion 

engines (Igarashi & Hughes, 2001). The suggestion engines use a rule-based approach to examine the 

highlighted lines with their contexts to filter out impossible suggestions and generate the geometries.   
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In the domain of architectural design, Piccolotto developed a system called SketchPad+, which 

constructs surface meshes through freehand sketch polygons for assisting architectural designers in 

the early stage of design (Piccolotto, 1998). Unlike SKETCH, which employs gestures for users to 

execute various commands to create geometries, SketchPad+ utilizes contextual pie menus for 

executing discrete commands to reduce the need for remembering gestures. However, users draw 

carefully to create closed shapes on 3D spaces for creating triangle meshes. In this case, users will still 

need to switch between UI buttons and working canvas to accomplish tasks and create solid shapes, 

similar to the processes in traditional CAD programs.  

In the field of mechanical engineering, Eggli et al. developed a system that allows users to create 

3D solid geometries through sketch interactions with the help of the commands from UI buttons 

(Eggli, Hsu, Brüderlin, & Elber, 1997). This system provides a comprehensive support for creating solid 

geometries with the help of sketch inputs. Unlike treating each segment of a stroke as a line segment 

in SKETCH, users can create composite polylines with straight lines and arcs by sketching each 

segment explicitly. The system can fit these segments separately and combine them together to form 

a polygon as the profile of a solid shape. Then, users can execute extrusion commands by clicking on 

UI buttons similar to conventional CAD programs. 

These early prototypes were not able to fully account for the flexible nature of sketching for two 

different reasons: (1) designers sometimes shape an idea through over-sketching; and (2) they 

sometimes use a stroke for drawing a polyline or polygon. Even though some prototypes, e.g. ECN, 

support over-sketching features, they often fail to support the accurate segmentation of lines and 

curves in a polyline. These systems usually require users to draw multiple strokes for constructing a 

polyline since the sketch segmentation and curve fitting algorithms were not precisely able to 

recognize what users intended to draw. In SKETCH, the segments of a polyline are created with the 

sampled raw points of a sketch line. In Eggli’s work, instead of segmenting a sketch line into a 
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polyline with curve and line segments, the users need to explicitly specify these multiple segments 

separately so that the system can confidently fit them into lines or curves. In other words, to account 

for the rapid offloading of tasks and the iterative design process, we will require accurate line 

segmentation and fitting algorithms with the capabilities of over-sketching for modification. These 

prior works also instruct us not to employ too many gestures, e.g. SKETCH, unless the system can 

provide suggestions, e.g. Chateau, or users have already trained in a particular domain, e.g. ECN. 

Even though using UI components may be a choice, e.g. SketchPad+ or Eggli’s work, we still need 

careful interaction designs to keep users engaged in their tasks on the drawing canvas. 

3.2 Support of Rapid Creation for 3D Geometries 

3.2.1 From Simple Sketch Lines to Complicated 3D Geometries 

To reduce the probability of recognition errors, another group of researchers created systems to 

simplify complicated geometry creation through a minimal number of sketch strokes with well-

defined purposes of the tools. These systems usually employ the sketch stroke as a guideline or 

skeleton path for populating complicated geometries. For instance, Igarashi et al. implemented the 

system Teddy (Igarashi, Matsuoka, & Tanaka, 1999) that helps users to create free-form 3D 

geometries, e.g. stuffed animals, by simply sketching a few strokes. With this system, unskilled users 

can easily and quickly portray 3D free-form geometries. Teddy inflates 2D blobs into 3D free-form 

polygonal models through the following steps: (1) finds the skeleton spline of the 2D blobs (Figure 

3.3), (2) elevates the spline from the drawing plane (Figure 3.4-b), and (3) constructs the triangle 

meshes between the spline and the blob (Figure 3.4-c, -d). Based on these geometry generation 

methods, Gingold et al. generalized the tool by adding structured annotations on the geometry for 

more comprehensive 3D geometry generations and manipulations as shown in Figure 3.5 (Gingold, 

Igarashi, & Zorin, 2009). 



29 

 
Figure 3.3: The process of finding skeleton spline in Teddy (Igarashi et al., 1999). 

 
Figure 3.4: The process of elevating spine and construct polygonal meshes in Teddy (Igarashi et al., 1999). 

 

Figure 3.5: Left: after sketching a simple blob, the system will automatically generate the structured annotations to 
provide the opportunities for interactions on the geometries. Right: the results of interactions from on the right (Gingold 

et al., 2009). 

This category of sketch prototypes is also used in applying guidelines with generative algorithms 

for generating complicated geometries. For instance, in Figure 3.6, TreeSketch generates complicated 

tree branches and foliage from several simple sketch lines with predefined generative algorithms 

(Longay, Runions, Boudon, & Prusinkiewicz, 2012). The users can adjust the types of the trees, the 
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amount of foliage, and other parameters through interactions with the UI components, such as 

sliders and radio buttons. When modifying the existing trees, the system predefines some key areas 

that users may start sketching and categorizes the tree generation methods according to these key 

areas, such as controlling the direction of the trunk or branch in different types of trees. 

 
Figure 3.6: Users can select the types of the trees they are creating, and sketch out the direction of the branches.  

The system will automatically generate branches and foliage according to the sketch directions. (Longay et al. 2012) 

Since the purposes of the tools are well-defined, user intentions are narrowed to only several 

possibilities during the sketching interactions for creating 3D geometries. Thus, these types of 

systems usually support only specific tasks, which is difficult for our use cases that require flexibility 

for the iterative process in the early stage of designs. 

3.2.2 Supporting Idea Explorations in 3D 

To address this problem, as shown in Figure 3.7, Yang et al. created a system that attempts to fit 

the analyzed sketch strokes onto preset templates in the system (Yang, Sharon, & van de Panne, 

2005). Before the system can recognize any sketches, it needs to have 3D models and corresponding 

2D template sketch lines. Similar to ECN, it analyzes sketch lines through basic sketch segmentation, 

grouping of intersections, and relationships between lines as metrics for a template. When the 

system receives a set of sketch strokes, it will try to identify the best possible template, calculate the 

transformation between the sketch strokes and the template strokes, and then apply these 

transformations to the corresponding 3D model. Even though it extends the possibilities of 3D 
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geometries, it still requires collecting these templates and models for 3D geometry transformation 

prior to using it. 

 

Figure 3.7: Yang et al. proposed a method to fit the sketch lines into predefined template, and then create 3D 
models from transformations of the templates (Yang et al. 2005). 

To remove the requirement of creating templates and increase the flexibility of 3D object 

creation, another category of research prototypes focuses on projecting the 2D sketch strokes in 3D 

spaces directly. The goal of these tools is to create an environment in which the designers can sketch 

their design ideas quickly without the burden of having to consider how to create 3D geometries. As 

shown in Figure 3.8, Tolba et al. created one of the first systems in this category that takes the user’s 

2D perspective freehand sketches, and projects onto a unit sphere through manual adjustment and 

automatic recognitions of vanishing points for calculating the 3D camera location (Tolba, Dorsey, & 

McMillan, 1999). Once users adjust the sketch lines with automatic feedback from the system, they 

can rotate to different perspective views. However, when sketching, users were not able to receive 

feedback about how the system recognizes the lines. Further, the system only places lines into 3D 

space instead of 3D meshes or solid geometries, and thus it is difficult to be re-utilized in other stages 

of design. 
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Figure 3.8: The process of using the perspective sketch tools Tolba proposed. (a) Person start from a freehand 

sketch. (b) Import the sketch lines into the tool, (c) Translate and rotate the drawing to fit the vanishing points, (d) 
Manual or automatic tools provided by the system will fit the sketch lines and relocate these lines into the proper 

location in 3D so that the user can change the views 

 
Figure 3.9: Dorsey’s “The Mental Canvas” prototype helps designers to fuse their perspective drawings into a 3D 

drawing 

Having recognizing this problem, Schweikardt and Gross created a program that directly 

translates the 2D perspective drawings into 3D solid geometries automatically by using the Huffman-

Clowes lableing scheme (Schweikardt & Gross, 2000). By identifying a corner that projects toward 

and recedes away from the viewer as “+++”, and “---” respectively, it is possible to provide sufficient 

information for constructing a 3D solid geometry. Dorsey et al. then created an interactive prototype, 

“The Mental Canvas” (TMC),  that enables designers to specify drawing planes for design sketches. As 

shown in Figure 3.9, the system then organizes and fuses the intersections of these sketched lines 

together in a 3D sketch environment (Dorsey, Xu, Smedresman, Rushmeier, & McMillan, 2007). By 

using two optimization-based algorithms for 3D reconstruction and finite element analysis, in Figure 

3.10, Masry et al. developed an algorithm that can reconstruct 2D sketch lines directly into 3D 
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geometries (Masry & Lipson, 2007). However, these tools only aim to support the creation of 3D lines 

and geometries when users need it, instead of trying to infer 3D geometries interactively from the 

sketch in real time. Thus, users often need to carefully sketch their perspective lines for accurate 

recognition. The systems are also limited to recognizing simple sketch lines without any over-

sketching on the existing lines. 

 
Figure 3.10: The system analyzes the positions and connections of the sketched lines, and then it optimizes the 3D 

projections of sketch lines for finite element analysis to determine the mesh geometries (Masry & Lipson, 2007). 

In recent years, sketch interaction researchers have turned their attention to determining how to 

utilize traditional perspective sketch techniques for converting sketch lines to 3D geometries. These 

systems usually provide assistive representations that serve the purposes of communicating the 

system’s interpretations of the user’s behaviors as well as adding constraints for recognizing the 

user’s inputs in real time. For instance, designers normally draw scaffold lines, construction lines, or 

planes as guidance when sketching in a perspective view. Sketch systems, such as ILoveSketch (Bae, 

Balakrishnan, & Singh, 2008, 2009) and Analytic Drawing Tool (Schmidt, Khan, Singh, & Kurtenbach, 

2009) in Figure 3.11, enable users to sketch these assistant lines (Figure 3.11-a) or provide these lines 

interactively to facilitate computing 3D sketch lines in a natural way. With these scaffold lines, users 
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can draw curves naturally (Figure 3.11-b) with over-sketching techniques to construct meaningful 3D 

geometries (Figure 3.11-c). 

 

Figure 3.11: Analytic drawing tool enables users to draw 3D scaffold lines (a) that help the system locate the user’s 
sketch lines (b) in 3D space accurately (c) (Schmidt et al., 2009). 

These types of prototypes usually provide many convenient methods for rapid idea creation. For 

instance, EveryBodyLovesSketch provides the “mirroring feature” so that users do not need to draw 

both sides of the mirrored object redundantly (Bae, Balakrishnan, & Singh, 2009). Analytic Drawing 

Tool infers constraints for setting 3D curve locations similar to what SKETCH offers, but with more 

subtle recognitions that can resolve ambiguous conditions, such as curve line intersections in 3D 

spaces and constrained parts of the sketch strokes on a plane instead of entire strokes (Schmidt, 

Khan, Singh, & Kurtenbach, 2009). These tools also provide similar features for designers to form 

desired sketch lines by combining multiple sketch lines into one when designers draw repeatedly 

within a short time window. However, they do not decompose a sketch stroke into multiple lines and 

curve segments for inferring users’ drawing intentions. 

Chen et al. created a system that analyzes the intersections of sketch lines to infer 3D positions 

(Chen, Kang, Xu, Dorsey, & Shum, 2008). They categorized the types of the intersections (Figure 3.12-

left) and observed the possible 3D positions of the lines connecting with the intersections for the 

methods of 3D position inferences (Figure 3.12-right). However, the types of 3D shapes that this 

prototype can detect are limited. 
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Figure 3.12: Left: the type of intersections Chen’s prototype is using. Right: the user needs to sketch the perspective 

views carefully for the system to reconstruct the 3D positions (Chen et al. 2008). 

In addition to analyzing the types of interactions, the most recent prototype, True2Form, infers 

3D curved lines from 2D sketch strokes automatically by leveraging insights from human perception 

through surveys using crowdsourcing techniques (Xu et al., 2014). They determined that humans 

tend to perceive perspective sketches with the following four regularities: (1) Orthogonality, (2) 

Parallelism, (3) Symmetry, and (4) Applicability, based on preset rules from observations. As shown in 

Figure 3.13, True2Form intelligently selects the intersections for evaluating 3D locations by using 

these four regularities as passes to optimize the results and then computes the curvatures in 3D 

space. These prototypes not only provide an intuitive way of creating 3D drawings from 2D sketches, 

but also help designers to draw perspective views that require much more effort using traditional 

media, such as pen and paper. However, since the geometries produced by using these prototypes 

are still only line or surface models, meaning that they only contain meshes with limited topological 

information, the designers would still need to reconstruct the geometries and their relationships in 

the design process. 

 
Figure 3.13: True2Form uses four regularities for picking the intersections and optimizing the curve fitting in 3D 

space (Xu et al. 2014). 



36 

3.3 Automation in 3D Computer Graphics 

   
Figure 3.14: Li’s system automatically analyzes the topology of different parts of a model (left), and generates an 

interactive exploded diagram for users (Li et al. 2008). 

Geometry analysis is useful for revealing interaction opportunities, assigning constraints 

automatically, creating topologies, and generating new geometries without manual specifications. In 

the examples mentioned in the previous sections, the prototypes included some automation 

methods for improving usability while creating the geometries. Since interacting with 3D geometries 

is usually complicated and requires higher cognitive loads than 2D geometries, computer graphic 

researchers have focused on developing algorithms and optimization methods for assisting these 

interactions in the past decade. One interesting application of automation in 3D interactions, shown 

in Figure 3.14, is to create 3D exploded view diagrams automatically to support interactive 

explorations in complicated 3D mechanical models after decomposing the geometries with 

hierarchical topologies (Li, Agrawala, Curless, & Salesin, 2008). 

  
Figure 3.15: After analyzing topological structure of the building façade (left), the system knows which parts that can 

be scratched and squeezed while the user change the height of the building (right) (Lin et al. 2011).  
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Figure 3.16: After analyzing the pattern on the façade, users can stretch the model in different directions. 

Instead of decomposing the existing geometries for illustration purposes, researchers use similar 

methods for analyzing the topological relationships of geometries, and then preserve them for 

simplifying geometry generation while stretching and squeezing the façade on an architectural model 

(shown in Figure 3.15) (Lin et al., 2011) and furniture models (Zheng, Fu, Cohen-Or, Au, & Tai, 2011).  

In addition, Bokeloh et al. used a similar shape analysis approach to automate pattern generations by 

building an algebraic model in which the shapes in the pattern conform to a set of automatically 

generated linear constraints for more flexible manipulation of building models (Bokeloh, Wand, 

Seidel, & Koltun, 2012). In Figure 3.16, while the users interact with the building façade by dragging 

the handles, the system generates windows to fit the existing pattern and fill up the empty spaces.  

These systems typically require users to initially create geometries or patterns so that they can 

“analyze” them. 

Recently, researchers have argued that a system should be able to analyze the topological 

relationships intelligently without users manually specifying them in 3D free-form models. Thus, Fish 

et al. created a meta-representation of topologies from analyzing 3D triangle mesh models to enable 

geometry manipulations (Fish et al., 2014). Mitra et al. used a slightly different approach to achieve 

direct manipulations on geometries (Mitra et al., 2014). These two systems automatically analyze 

meshes and categorize different groups of meshes into different parts of a model.  For instance, 

Mitra’s system calculates the probability density from geometrical relations represented as 



38 

histograms in Figure 3.17 that show possible ways in which shapes can be changed. These histograms 

serve as “meta-representations” for users to manipulate and produce alternatives of a 3D model. 

 
Figure 3.17: Through analyze the geometry, the system gets the topology and compute the probability density of the 

shapes.  The users can change the density to manipulate the geometry (Fish et al. 2014) 

These prototypes usually take existing geometries and models as a starting point. Through shape 

analysis, the systems generate internal representations of the analyzed results. The users can then 

interact with these outcomes directly or through meta-representations, such as in the lower part of 

Figure 3.17. However, these prototypes usually do not address the issues of how users create 

geometries. Interactions during the design process are also not the focus of these systems.  

Nevertheless, we should be able to apply some of the automation approaches from these studies to 

support the interactions in our use cases. 

3.4 Creating Constraints and Rules through Sketch Interactions 

The previous section introduced prototypes that employ ways of inferring topologies and 

constraints so that the systems can automate complicated tasks, such as pattern generation, 

geometry illustration, and free-form manipulations. Prior to using these programs, users typically 

need to first create geometries for the system to analyze. In this dissertation, we focus on how to 

create designs in the early stage of design.  Some prior works have focused on helping designers to 
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explore constraints in this design process. In his SketchPad system, Ivan Sutherland recognized the 

importance of establishing constraints between geometries, and he employed these constraint 

settings in the prototype, such as same length and parallel segment constraints (Sutherland, 1963). 

These constraints allow the drawing to maintain the designer's expressed intent, such as maintaining 

perpendicular or parallel relationships between two line segments. In his dissertation, Gross 

developed a constraint management system to help architects to explore various constraints during 

the design process (Gross, 1990).  Later, Anderl et al. provided a framework that described the 

relationships among geometric constraints, engineering constraints, parameters, and the history of 

parameters in a product model (Anderl & Mendgen, 1995). According to this framework, Anderl et al. 

designed and built an example application that used a rule-based approach with UI buttons and 

widgets to help mechanical designers to create geometries with topologies and constraints. This is 

one of the early example applications that supported designers to create not only geometries, but 

also comprehensive topologies that describe the relationships between shapes for automating design 

tasks in a single 3D environment. 

 

  
Figure 3.18: In ParSketch, users can sketch a polygon and use the simple symbols (top) as the gestures to define 

parallel constraints between line segments (bottom). In the bottom figure, users draw parallel gesture in the left and 
middle figure, the system resolves the constraint automatically in the right figure (Naya et al., 2007). 
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Instead of using UI buttons, researchers realized that they can use sketch gestures for executing 

commands and setting constraints to allow users to engage in their sketch tasks. The earliest example 

we found is SKETCH, built in 1996 (Zeleznik, 1996). Since then, the gestures employed in these early 

prototypes have been broadly used for executing commands directly to create and modify 

geometries, such as erasing and copying geometries. In 2007, Naya et al. created ParSketch, which 

employs the sketch gestures as symbols for only establishing 2D geometric constraints (Naya, 

Contero, Aleixos, & Company, 2007). As shown in Figure 3.18-top, users can employ conventional 

mathematical symbols to set up constraints between geometries, such as perpendicular, parallel, 

vertical, horizontal, concentric, and other annotations utilized in the design processes. Through these 

gestures, users can create precise engineering drawings while sketching on a canvas; they would not 

need to jump back to UI buttons to execute commands to accomplish the tasks. 

  
Figure 3.19: In Lineogrammer, users can quickly sketch out simple shapes and drag the vertex around (left). The 

system responds continuously to users while dragging.  Users can also set constraints between arrows and shapes (right). 
The system can maintain the constraints between lines/shapes after users modify the locations of the shape. 

Several researchers have further elaborated this type of interaction by adding animations during 

the execution of commands when sketching quick diagrams in Figure 3.19 (Zeleznik, Bragdon, Liu, & 

Forsberg, 2008), and creating accurate 2D drawings (Johnson, Gross, Do, & Hong, 2012). For instance, 

in Lineogrammer (Zeleznik et al., 2008), users can set the constraints between arrows and shapes. 

The system maintains the relationships while users are moving one of the shapes around 

continuously. In SIMI (Johnson et al. 2012), users can employ gestures to explicitly assign constraints 

similar to ParSketch. The system will propagate continuous transitions when it solves the constraints 

while users are modifying the locations at one part of the shape. These recent prototypes reduce the 
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need for switching between different modes when executing commands and setting constraints in 

one working environment. 

In the domain of sketch for illustrations and animations, some researchers have created sketch 

prototypes for simplifying pattern generations, such as 2D texture design in Figure 3.20 (Kazi, 

Igarashi, Zhao, & Davis, 2012) and dynamic and interactive illustrations in Figure 3.21 (Kazi, Chevalier, 

Grossman, & Fitzmaurice, 2014). Unlike the works mentioned previously such as TreeSketch, users 

can specify their generative patterns and reuse the patterns from simple sketch lines with the help of 

UI widgets when setting up predefined constraints and rules. However, to the best of our knowledge, 

the area of capturing users’ natural and continuous interactions, such as sketch inputs, to create 3D 

geometries with constraints, and topological and semantic information, for design automation in the 

early stage of design, remains unexplored. 

 
Figure 3.20: In Vignette (a) Users can draw a pattern and a simple sketch line. (b) The system generates the entire 

seaweed after users lift up the pen. (c) Users can repeat the same interaction to generate multiple seaweeds (Kazi et al. 
2012). 

 
Figure 3.21: In Kitty, users can specify the ways how illustration object move with the assistant of UI buttons (Kazi et 

al. 2014). 

3.5 The Right Interactions 

In this chapter, we examined previous research works related to sketch interactions and 3D 

geometry creation. More importantly, as discussed in Chapter 2, the real challenge of using current 
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CAD tools in the early stage of design is due to the complicated interactions required to create 

geometrical and topological information. It is difficult for designers to quickly offload their tasks 

through embodied interactions using current CAD tools. 

   
Figure 3.22: The combination of multi-touch and pen interactions create a rich interaction environment.  The users 

can communicate complicated commands through the sets of pen and multi-touch gestures. (Hinckley et al., 2010) 

HCI researchers have tried to solve this problem by employing continuous interactions that 

facilitate direct and rapid manipulations of virtual objects on computer screens. For instance, in 

Figure 3.22, Hinckley et al. employed the combination of pen and multi-touch gestures for users to 

communicate their intents and accomplish different commands rapidly (Hinckley et al., 2010). In their 

design of interactions, the same combination of interaction signals, such as single touch and stylus 

movements, will be interpreted differently by the system in different contexts with different virtual 

objects. For instance, users can hold and cut a photo into two pieces by placing one finger on the 

photo and performing a stroke on it with the stylus, similar to what we would do when cutting a 

paper. However, using one finger to hold onto a polyline while drawing with the stylus would 

straighten the line. The combinations of pen and multi-touch interactions also create a rich range of 

gestures that users can remember without a substantial learning curve since different interaction 

modalities can be stored in separate chunks of short-term memory. 

In the domain of geometry creation, the most related prototype we have seen employs different 

multi-touch gestures for rapid shape manipulations in a 3D animation environment in Eden (Kin et al., 

2011) and simple solid modeling applications (Kang, Kim, Suzuki, & Han, 2015). As shown in Figure 

3.23-left, Eden employs many different multi-touch gestures for 3D shape manipulations from 
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predefined objects, e.g. scaling, translations, and rotations. However, users cannot create and design 

comprehensive objects in their prototypes. As shown in Figure 3.23-right, even though Kang’s 

prototype enables the capability of creating geometries, users will not be able to edit the shapes as 

flexibly as the sketch prototypes mentioned before. Users still need to engage other tools for 

specifying topological or semantic information. 

    
Figure 3.23: The multi-touch gestures employed by Eden (left) (Kin et al., 2011) and Kang’s prototype (right) (Kang et 

al. 2015). 

3.6 Conclusion 

In the field of architectural design, a gap still exists in these novel interaction prototypes 

concerning what current CAD (BIM) tools can offer. As mentioned in Chapter 2, these modern BIM 

tools not only help us to build geometries but also topologies, properties, and parameters of 

geometries, which offer huge advantages for design automation when we modify and edit designs 

over time. As shown in Table 3.1 and mentioned previously, because of the variety of benefits 

provided by sketch interactions, researchers have developed prototypes that utilize the power of 

sketch inputs for designers during their various design activities. These prototypes shed new light on 

how researchers can improve interactions between internal (mind) and external (world) 

representations during the early design process, especially for improving low-cost cognitive offload, 

supporting an iterative design process, and enhancing embodied thinking. Applying these new 
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interface modalities enables designers to utilize more intuitive ways of translating user behaviors into 

computational geometries, e.g. over-sketching, line editing, sketching 2D to 3D geometries, indicating 

gestures in situ, and performing multi-touch manipulations. 

However, the tools mentioned in this chapter did not fully support the features that a CAD 

program provides, such as design automation, interoperability, generative geometries, and 

simulations. On the other hand, modern CAD tools usually help designers with these aspects in the 

design process. However, they often employ complicated commands through different sets of UI 

components. Thus, we need to carefully research and design the interactions that can assist 

designers to engage in their tasks in the design process. 

In this chapter, as summarized in Table 3.1, we reviewed tools that enhance users' capability, 

help to accomplish difficult tasks such as sketching in 3D, and also simplify complicated processes.  

However, to the best of our knowledge, we have not seen studies or prototypes that account for all 

of the criteria that we established in Chapter 2. In the next chapter, we will describe the interaction 

design of our proposed prototype using a persona and a scenario to describe one method of fulfilling 

the criteria identified in Chapter 2 and 3. 

Table 3.1: The summary of different sketch prototypes. 

Criteria ECN/SILK 
SKETCH 

/Chateau 

Teddy 

/TreeSketch 

The Mental 

Canvas 

Marsy’s 3D 

prototype 

ILoveSketch 

/True2Form 

Low Cost and 

Rapid 

Cognitive 

Offloading 

Supported Supported 
Only for specific 

tasks 

Only for 

perspective line 

drawings 

Only for simple 

3D models 
Supported 

Iterative 

Design Process 
Editing at 2D 

object level 

Editing at 3D 

object level 

Editing at 3D 

object level 
Unknown 

Editing at 3D 

line level 

Editing at 2D line 

level 

Embodied 

Thinking 

Process 

Results are 

generated 

after sketching 

an object 

Partially 

supported. Some 

results are 

generated after 

performing  

gestures 

Results are 

generated after 

sketching a line 

Results are 

generated after 

sketching a line 

Results are 

generated after 

sketching an 

object 

Supported. Some 

results generated 

during sketch, other 

results generated 

after sketching 

several lines 

Constraint 

Assignment 

Through 

sketching 

symbols 

Through gestures 

or automatically 

inferred 

Very limited, 

preset by system 

logic 

Not supported Not supported 

Limited, 

Automatically 

inferred 
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Construct 

Generative 

Rules 

Not supported Not supported Not supported  Not supported Not supported Not supported 

Design 

Automation 

Through 

automatically 

recognizing 

drawing 

intents 

Not supported 

Supported, but 

very specific type 

of geometries  

Not supported Not supported Not supported 

Interoperability 

in Design 

Process 
Limited Meshes Meshes Only lines Meshes Meshes 

3D Geometry 

Creation 
Not supported 

Supported, 

through sketch 

gestures 

Supported, 

through 

automatic 

inference 

Supported, but 

only 3D lines 

Supported, 

inferred from 

careful 

freehand sketch 

Supported, through 

the assistant lines 

from system such as 

construction lines 

Simulation 

Supported, 

design related 

simulations 

Not supported Not supported Not supported 

Supported, 

structure 

analysis 

Not supported 

 

  

Table 3.1 continued 
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Chapter IV. Use Scenario of SolidSketch 

This chapter introduces a new interaction paradigm for creating 3D solid and parametric models 

by describing a persona, an architect Peter, and explaining how he uses sketch and multi-touch 

interactions to accomplish early design tasks. As shown in Figure 4.1, SolidSketch provides only a few 

buttons, which enables Peter to focus on his design tasks while using this program. In SolidSketch, 

Peter usually employs multi-touch and sketch interactions to create geometries and execute 

commands right on the canvas where he explores his designs. Figure 4.2 shows the main commands 

and functions provided by multi-touch and sketch interactions in SolidSketch. This chapter will 

describe how Peter smoothly generates early design concepts and converts them into meaningful 3D 

models with parametric, topological, and basic semantic information in a short time using these 

interactions. 

 

Figure 4.1: Peter uses SolidSketch to sketch out his initial design ideas and build rough models that contains building 
information. He mainly interacts with the 3D canvas with few clicks on left side of the UI for changing the prototyping 

mode in Prototyping Buttons, undo/redo, and turn off the sketch recognition for freehand sketch mode in utility buttons. 
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Figure 4.2: Stylus gestures (left) and multi-touch interactions (right) that are employed in SolidSketch. The dots in 
the stylus gestures and multi-touch interactions represent the starting points of the gestures, while the arrows represent 

the ending locations. 

4.1 Preliminary Design 

Peter is an architect in an architectural firm who begins designing a house located in a residential 

area using SolidSketch. After clicking on the “Freehand Sketch” button in the UI, he first studies the 

rough plans in the freehand sketch mode by sketching out his ideas similar to what he would do with 

a regular pen and paper, as shown in Figure 4.4-left. He can also use conventional multi-touch 

gestures as shown in the right side of Figure 4.2 to navigate around in the three-dimensional spaces, 

e.g. 1) a pinching gesture zooms the view in and out; 2) two-finger dragging pans the 3D camera; and 

3) one-finger movements orbit the 3D camera. 

 He then uses the stylus to perform a lasso gesture (Figure 4.2) to create an axis widget (Figure 

4.3) at the location where he wants to study the sections. He hovers on the XZ surface of the widget 

to highlight the surface and taps on it to switch the drawing plane to align with that surface. With this 

generic way of selecting different surfaces in 3D space, he can study the sections and perspective 
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views efficiently, as shown in Figure 4.4. He quickly sketches out the initial concepts and is now ready 

to design the building with 3D geometries. 

       
Figure 4.3: The axis widget. Different colors represent different axes: 1) red: X axis; 2) green: Y axis; and 3) blue: Z 

axis. Peter can click on the white highlighted area between the axes to switch the drawing grid planes. In this case, he 
clicks on XZ plane, the highlighted plane in the left figure, to switch to the vertical drawing plane. 

       
Figure 4.4: Peter can sketch out his initial ideas of the design quickly in freehand sketch mode. He can jump between 

sketch planes and create section and perspective views quickly by using gesture and the axis widget.  

4.2 Building Templates with Rules and Parameters 

Once he has a rough picture of how he wants the building to be laid out (Figure 4.4-right), he 

realizes that he needs a certain type of wall with particular width and height in the majority of the 

building. He then starts to define a wall with customized thickness and height. He enters the 

‘template composition mode’ by hitting the Plus button on the left panel of the UI. Once in this 

mode, he starts to use sketch and multi-touch interactions to specify a custom wall template. This 

template consists of the dimensions and constraints of the geometries created by Peter during the 

template creation process. 

After he clicks the Plus button to enter the template composition mode, the system will display 

an orange guideline (Figure 4.5-1). Then, he draws a line segment that defines the width of the 

desired wall, as shown in Figure 4.5-2. Next, in Figure 4.5-3,  after clicking on the “extending 
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dimension” tool shown in the upper left corner of Figure 4.1, he traces the orange line to signify to 

the system that he wants to use it as the directional path for extending the width segment. The 

system offsets the sketch line and creates a stripe shape in real time while Peter is sketching. Then, 

he extrudes the parametrically defined profile created in steps 1-3 to yield the wall geometry in 

Figure 4.5-4. 

 
Figure 4.5: The steps to creating a simple wall template with two operations 

After he clicks the Plus button again, the system shows a window in which Peter can sketch an 

icon and specify a wall type for the template shown in Figure 4.6. Finally, the icon appears as a new 

option on the UI panel on the left side of the SolidSketch interface. Once these steps are completed, 

he can select that recorded template by clicking on the newly created icon. After clicking on his 

custom wall button, he can draw a line on the canvas, and the system will automatically populate a 

custom wall in real time with the width and height dimensions defined in the template composition 

process. 

Once Peter has created this wall template, he can sketch it quickly without the burden of thinking 

about how to execute a series of commands for specifying starting and ending points, or curvatures 

of a wall. The system continually generates geometries from Peter’s stylus tip based on the 
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constraints and parameters captured during the template composition procedure. Figure 4.7 shows 

how he can trace his concept sketch to implement some of his design intents in three-dimensional 

spaces.  When Peter uses the stylus to draw the wall, the system continuously generates the 

geometry in real time so that he can adjust his sketch lines to adapt to the emerging nuances of the 

design. 

 
Figure 4.6: Left: After hitting the plus button again, Peter can draw the icon and assign the type of template object 

they are creating. Right: The system will store the rules and parameters and create an icon on the left panel of the UI. 

        

Figure 4.7: The system generates a wall from template in real-time while Peter is moving his stylus on the canvas 

4.3 Extending Dimension Tool 

When he finds a wall that is not ideal for the surrounding spaces, he can either erase it by using 

the scratch gesture, as shown in Figure 4.2, and redraw it, or extend the existing sketch lines attached 

to the wall to modify it quickly. For instance, after a wall is drawn using the wall template, Peter can 

simply sketch a line near the end points of the existing line that control the wall geometry to modify 
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this existing wall. While sketching this modification line, the system automatically detects the 

surrounding contexts and uses the raw sketch points to visualize the geometries in real time, 

illustrated in Figure 4.8. 

 

Figure 4.8: Peter sketches a new line at the end of the profile of a wall. The system automatically generates the 
extended profile and the wall geometry that depends on the profile 

     

Figure 4.9: Peter extends a one-dimensional line to a 2D surface through a sketch interaction. Left: Peter draws a line 
segment and selects it. Right: He extends the segment into a 2D profile while holding the stylus button to draw a line in 

the “extending dimension” tool. 

Based on his recent wall creation, he discovers that the staircase and the adjacent walls in 

between the living room and dining room may cause some circulation problems. He rapidly adjusts 

his design by redrawing the adjacent walls a few times to find the perfect location and curvature of 

the wall that can fulfill his design intent. To create a custom wall in between the dining room and 

kitchen, he draws a short segment to represent the width of the wall, and uses the “extending 

dimension” tool to create the wall profile, illustrated in Figure 4.9. During the interaction, he can 

observe the wall profile shape generated by the system in real time while moving the stylus to 

understand whether this custom wall will affect the surrounding designs. Then, he extrudes the 
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profile to the desired height to create the wall geometry using the same extending dimension tool. As 

depicted in Figure 4.10, Peter can also use this tool to create columns in the house after he draws the 

profile shape of the column. Similar to the previous example, the system also takes real-time input 

points to generate the solid shapes while Peter is moving the stylus. 

      

Figure 4.10: Extending a 2D shape to a 3D solid model. Left: Peter draws a 2D profile and selects it.  Right: Peter extrudes 
the 2D profile into a solid shape while holding the stylus button to draw a line in the “extending dimension” tool. 

       

Figure 4.11: Basic multi-touch gesture in SolidSketch. Left:  Peter employs multi-touch to rotate a selected object. 
Right:  Peter moves and copies the existing shapes with two fingers. 

4.4 Manipulating Existing Geometry with Multi-Touch Interactions 

Peter can use multi-touch interactions to adjust the location and orientation of existing walls. By 

touching a shape, he “selects” it, activating the assistant axis widget, shown in Figure 4.11-left. Then, 

he can either drag the geometry to move it, or manipulate the axis widget to rotate the geometry. In 

Figure 4.11-left, Peter uses his left index finger to hold the Z axis and right index finger to drag and 

rotate around the Z axis. The user can also rotate around the X or Y axis in the same way while 

holding the X or Y axis, respectively. To move the shape only in the X, Y, or Z direction, Peter can 
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touch on one of the axes and drag it in the desired direction. While holding the target shape with one 

finger, Peter can drag with another to instantly copy the geometry and move it to a desired location 

in one action, as depicted in Figure 4.11-right. 

4.5 Array Creation Tool 

After laying out the locations of the walls, Peter then tries to create a staircase. He starts from 

creating the first step of the staircase. To create a precise rectangle, he uses the right angle gestures 

(as shown in Figure 4.2) on the corners of the profile shape he just drew. The system responds with 

animation to adjust the corners to 90 degrees. Similarly, he can also use a tick gesture to set two 

sketch edges to the same length. When he wishes to connect two edges to create a corner, he can 

perform a lasso gesture. After finishing the profile of the step, he extrudes it upwards to create the 

solid geometry for the step. Once the geometry of the first step is created, he then sketches a path 

on the wall while the array prototype is selected. The system generates a series of shapes along with 

the specified path. Figure 4.12 shows a similar case in which Peter draws a curved path for the 

system to create a series of shapes in real time while he is moving the stylus. 

     

Figure 4.12: Creating an array from a shape.  Left: Peter creates a shape and selects it (either 3D or 2D).  Right: Peter 
selects the shape and draws a path to create an array when the array creation tool is selected. 

Since the system knows that the objects are cloned from the selected shape, Peter can easily 

update the shapes in the array after he modifies the first shape. Because the default distances 

between the steps are too large, he decides to adjust the interval and number of the steps in the 

array. To adjust the interval, he touches and moves one of the elements in the array; the elements in 
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the array will move along with the drawn path.  To adjust the number of shapes in the array, he holds 

the first shape in the array with one finger, and moves another shape with another finger closer to 

the first shape, as shown in Figure 4.13. The system then adds new shapes when there is sufficient 

room at the end of the path. 

 

Figure 4.13: Peter adjusts the number of elements on an existing array. 

4.6 Editing Through Stylus 

After finishing the first floor, Peter uses the “lasso gesture” on top of a wall to move the drawing 

plane to the second floor, similar to what he was doing during freehand sketch. Creating a free-form 

polygonal slab is easy: he simply sketches out the free-form polygonal profile for the slab of the 

second floor. With a few over-sketch lines on the profile, he can adjust it to meet his specific design 

needs. The system tries to automatically merge the existing shape with the newly sketched lines. 

Figure 4.14 shows that he can add a curved balcony easily with one simple sketch.  Similarly, creating 

a hole in the slab for the staircase is simple. In Figure 4.15, Peter draws a closed polygon directly 

inside the slab polygon to create a hole in it. While he is drawing within an existing shape, the system 

will make the existing shape transparent so that Peter is able to adjust the locations of the creation 



55 

lines to correspond to the objects behind it.  After he finishes the profile of the slab, he can use the 

Extending Profile tool to extend the profile into a 3D solid shape. 

 
Figure 4.14: By drawing a curved line near to the slab profile, Peter can quickly create a balcony and experiment with its 

size and shape.  

 
Figure 4.15: By drawing a closed polygon inside of the slab profile, Peter can create a hole for stair access. 

4.7 Making Holes and Boolean Subtraction on Solid Shapes 

Once the slab is finished, Peter uses another wall template with a different height to draw the 

walls directly on the slab of the second floor. After finishing the walls, he starts to decorate his design 

with columns and creates some windows to enhance the view in the main bedroom. Peter can apply 

two types of subtraction commands in SolidSketch to achieve these goals: (1) subtraction between 

two 3D shapes, and (2) subtraction between a 2D and a 3D shape. Figure 4.16 A and B show how he 

can create stylish columns for his design by positioning a solid object inside another and then 

performing a scratch gesture to delete the inside object, thereby creating a subtraction in the target 

shape. To create windows, he uses the second method. He first draws the shape directly where he 

wants it, then selects the wall where he is making the opening for the window, and finally performs a 

A B

 

C 
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scratch gesture on the newly created shape to make a hole for the window. Figure 4.16 C and D 

illustrate 2D and 3D shape subtraction where he draws a 2D shape on a wall and performs a scratch 

gesture on the 2D shape to create a circular opening in the wall. 

4.8 Transit to Next Stage of Design 

Figure 4.17 shows the building that Peter created in 30 minutes. He then exports the model into 

the IFC format that describes the geometrical information as well as the relationships between 

geometries and their basic semantics. Later, he uses this exported file in Revit, a famous building 

information modeling program, to add detailed information, such as materials and detailed 

properties of the building elements. Since the exported IFC file retains the relationships between the 

geometries, he can modify the parameters and adjust the design’s details quickly in Revit.  

SolidSketch closes the gap in his workflow during the early stage of his design process. He no longer 

needs to explore his design ideas and rebuild the entire model on different platforms. Thus, he is able 

to keep his original design intents throughout the entire design lifecycle. 

 
Figure 4.16: Peter can employ a scratch gesture to accomplish Boolean subtraction while selecting a base geometry. 

(A) The user selects a bigger cube and scratches the smaller cylinder to create the geometry in (B).  (C) Similarly, Peter can 
perform a scratch gesture on a 2D shape attached to a solid object to create a hole in the object (D). 

A B

 

C D 
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Figure 4.17: The simple house building Peter would create in 30 minutes 

4.9 Summary 

As shown in the previous example, SolidSketch observes Peter’s sketch and multi-touch inputs 

and reacts in real time based on an interpreted context constructed from the user’s intention 

recognized through continuous interactions. He can use these interactions to create not only 

parametrical geometries but also the information describing the topology used in the digital design 

tool. The system takes the continuous finger and stylus inputs, and subsequently transforms those 

data into meaningful information that is continuously represented to Peter for the next continuous 

interactions. Through these interactions on a tablet, the system minimizes the burden of executing a 

series of commands during the design process. 

Figure 4.1 illustrates the system, which consists of a side panel with several buttons on the left 

side of the screen and a main canvas on which Peter uses his fingers and a stylus pen to interact and 

create geometries with parametric information. When using the system to create the model, he 

rarely had to click on the buttons in the side panel. The stylus enables detailed controls within the 

sketch-based interactions. Additionally, multi-touch interactions facilitate rapid, hands-on 

manipulation of system commands such as those related to basic navigation (e.g., pan, orbit, and 
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zoom) and those related to object manipulations (e.g., move and rotate shapes). By analyzing the 

source of the input data (i.e., pen vs. fingers) and the surrounding context (e.g., nearby geometrical 

relations), the system recognizes diverse intentions from the sketch and multi-touch interactions.  

Peter was able to sketch lines naturally for the design drawing and shape creations with stylus 

gestures and multi-touch gestures to assign and modify geometries and their relationships directly, 

without having to think about which buttons or commands to execute at the time. To maintain the 

flow of interactions, Peter can sketch on top of existing lines or shapes to modify the original 

geometry. As sketch-based refinements are created, the system propagates changes throughout the 

model in real time based on the sketched revisions. In the next chapter, we will explain the details of 

how these interactions are implemented in SolidSketch. 
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Chapter V. System Details 

In the previous chapter, we described a scenario in which Peter used SolidSketch as a tool for the 

early stage in his design process. By using the system, he was able to smoothly create a house and 

export it as a building information model for the next stages of the design. To achieve this, the 

system needs to recognize and respond to interactions in real time while he is moving his fingers or 

stylus on the SolidSketch canvas of the tablet. The system also needs to map these interaction inputs 

into the internal data structure so that it can export the data into a format that can be read by other 

programs. In this chapter, we will introduce the system architecture and examine the 

implementation of SolidSketch that fulfills both online (real-time) and offline recognitions and 

responses. In the next chapter, we will focus on the data mapping processes. This chapter comprises 

four main topics: (1) system architecture, (2) online recognition and response, (3) offline sketch 

disambiguation, and (4) mapping recognition results to a semantic model. 

5.1 System Architecture 

The SolidSketch system is built on top of Windows Presentation Foundation (WPF) and is mostly 

written in C# and C++. Figure 5.1 shows the overall system architecture that consists of five layers: (1) 

Interface (light blue boxes), (2) View (yellow boxes), (3) General Controller (blue box), (4) Parametric 

Model (deep blue box), and (5) Geometry Engine (brown box). The arrows between the boxes 

represent the information flow. For instance, the Interface layer sends input information to the 

General Controller to analyze the user’s intentions. The General Controller converts the input 

information to temporary geometries during the user’s interactions and visualizes it on the View 

layer directly. It also stores this information into the Parametric Model layer after the interaction 

session is over. The 2D and 3D representations, e.g. triangle meshes, in the view layer are bound to 

the Parametric Model to enable real-time responses when the user is changing the parameters in the 
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Parametric Model. Except in the Geometry Engine, we implemented the entire system to achieve 

online/offline recognitions, real-time geometry generations, and then to create a parametric model 

according to the user’s interactions. When a user requests to export IFC models for other programs 

to use, the system will map the data stored in the Parametric Model layer and create an IFC model, 

which will be descried in detail in the next chapter. 

As shown in the light blue boxes on the top left portion of Figure 5.1, we have three different 

forms of input in the Interface layer: (1) UI button clicks, (2) multi-touch inputs, and (3) stylus inputs. 

To reduce the burden of switching between modes, such as the actions required in traditional CAD 

tools through clicking on UI buttons, we only implemented a minimal number of UI elements in the 

system, including two preset prototype buttons (extending dimension and creating array) for creating 

3D geometries, and a few utility buttons for undo/redo purposes. Indicated by the arrows pointing 

down from the boxes in the Interface layer, most commands are continuously analyzed by the 

General Controller layer. To produce the most immediate responses, the movements of the stylus on 

the canvas will directly generate real-time inking on the canvas. In addition, these stylus points will 

be analyzed in the General Controller and Parametric Model for generating more complicated 

responses in real time. After the stylus is lifted up from the drawing canvas, the system will remove 

the temporary ink and replace it by off-line recognition results on the canvas.  

 

Figure 5.1: The overall system architecture for SolidSketch 
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The General Controller contains the main interaction logic for recognizing the user’s intentions in 

real time (online) as well as immediately after they finish an action (off-line). Figure 5.2 shows the 

overall pipeline for detecting a user’s intentions in the General Controller. The first step in this 

pipeline is real-time processing. When the user’s fingers or stylus touch the canvas, the system starts 

to process that input information and produce responses continuously based on the surrounding 

information, e.g. parametric models and geometries. If users select a prototype template for 

drawing, such as the wall template that Peter used in the previous chapter, the system will use those 

parameters and constraints for generating solid models from the Solid Modeling Engine on the 

locations and orientations recognized based on this surrounding information.  

The second step in this process is to disambiguate the user’s intention. After the stylus or finger 

lift-up events are detected, the system starts to analyze the data of this interaction session in order 

to understand their intentions, which will be used for determining whether it needs to execute 

commands, or create or edit geometries in post-processing. In the following sections, we will discuss 

how the system distinguishes commands and creates geometries based on different contexts. 

 
Figure 5.2: The overall sketch/multi-touch analysis pipeline for detecting intentions to execute commands or related 

actions 



62 

5.2 The General Controller Layer 

 

Figure 5.3: The detail sketch recognition process for SolidSketch 

As shown in Figure 5.2, the General Controller has three main parts: (1) real-time processing, (2) 

intention disambiguation, and (3) post-processing. Figure 5.3 shows a detailed process in each part of 

the sketch input. Finger touch inputs share a similar pipeline as Figure 5.3. However, the pipeline of 

touch inputs is much simpler, as the system ignores the first three blocks in the intention 

disambiguation section for finding the corners, primitive fitting, and recognizing the stylus gestures. 

Nevertheless, the system does need help from a 3D contextual check in order to identify the three-

dimensional context of the objects the user is touching. In this checking procedure, the system 

checks all possible touched objects and the relationships among other objects. In this chapter, we will 

first describe the real-time processing and intention disambiguation, and then explain what 
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commands to execute from the analysis of intention disambiguation. The geometry generation 

process will be discussed in the next chapter relating to parametric objects. 

5.3 Real-time Processing 

The first part of Figure 5.3 illustrates the real-time processing that occurs after users place the 

stylus on the canvas in the program. This process includes: (1) real-time ink rendering; (2) context 

identification; (3) dynamic recognition; and (4) temporary geometry generation. The purpose of real-

time processing is to generate continuous and embodied feedback during interactions. Ink rendering 

only requires minimal computational resources to reflect the user’s actions in real time. Thus, as 

mentioned, the system directly renders the temporary ink while the user is moving the stylus without 

any recognitions. While the user is moving his stylus, the system is rapidly generating too many 2D 

raw points that would slow down the responsiveness. To avoid the problem, this process reduces the 

sampling rate and stores it in a queue to be dispatched to a different thread when generating 

geometries in real time. 

In this real-time processing thread, indicated in the red box of the part 1 in Figure 5.3, the system 

first identifies the contexts and collects the related parameters for dynamic recognition and 

geometry generation. In real-time processing, the contextual information includes the following 

three types of information: (1) location, (2) lines around stylus points, and (3) the template that is 

selected. As mentioned in the previous chapter, the system provides two possible drawing locations: 

(1) on a drawing grid plane, and (2) on a surface of a solid shape. In this real-time processing, the 

system simply gets the surface, S = min (Distance(Pt, Si)), where Pt is the point dequeuing from the 

stored 2D raw points projected on the view camera in the 3D space, and Si indicates the candidate 

drawing surfaces in the view. Next, the system checks whether there are any existing lines near the 

starting point of the current sketch stroke on the drawing surface. Finally, if the user selects a 
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template, e.g. wall template, in the UI, it will also be taken into consideration for the next step in 

real-time processing – dynamic recognition. The pseudocode in Figure 5.4 shows the logic of the 

dynamic recognition. 

 

 

Figure 5.4: The logic flow (top) and the pseudo code (bottom) for dynamic recognition 

In Figure 5.4, the process of “dynamic recognition” determines that the user’s input is either: (1) 

scratching gestures, (2) extending from an existing line, or (3) tracing an existing line. Instead of 

recognizing all of the stylus gestures mentioned in Figure 4.2 in the real-time processing step, the 
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system only tries to recognize whether the user is performing the scratch gesture or not. This enables 

the system to decide whether it should highlight the geometry that is about to be deleted in real 

time. To speed up the real-time gesture recognition process, we employed $1 Recognizer (Wobbrock, 

Wilson, & Li, 2007) and trained it with preset scratching gesture samples collected from two 

researchers, shown in Figure 5.5, in the scratch gesture recognizer. 

 

Figure 5.5. Preset scratch gesture samples 

If the system assesses that the current sketch stroke is not a scratch gesture, it starts to identify 

the surrounding lines that are on the same surface on which the user is currently drawing. Since the 

system maintains the parametric relationships in the Parametric Modeling layer, it is able to 

determine the possible candidate lines through the surface identified in the “context identification” 

box described previously. In the top Figure 5.4, the “find the extending line” box shows how the 
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system finds that the starting point of the current sketching line is close to an ending point of an 

existing line. In that case, the system will extend that existing line and populate the dependent 

geometries based on the stored parameters and constraints, such as the example shown in Figure 

4.8. When the system detects that the user is trying to trace an existing line, it will walk through the 

same process as “find the extending line” procedure. To populate these dependent geometries, the 

system first needs to run a weighted topological sort on all of the dependent tasks and determine the 

order for computing the triangle meshes of different geometries in these tasks. The details of 

weighted topological sorting will be explained in Chapter 6.5.2. Once a task is completed, the system 

will send the meshes to 3D space, render them, and provide the geometrical information as an input 

to the next task for further geometry generation. However, it is possible that not every geometry can 

be rendered in real time with complicated tasks. Since the geometry generation is done in a separate 

thread, users can at least see some geometries generated on their pen tips while moving them, 

which helps to adjust their design decisions on the fly. We will discuss the algorithm and the process 

of how the system schedules the tasks in detail in the next chapter. 

5.4 Sketch Segmentations and Primitive Fitting 

As shown in the second part of Figure 5.3, the intention disambiguation consists of four 

processes: (1) identifying candidate corners, (2) primitive fitting, (3) sketch gesture recognizer, and 

(4) 3D contextual check. Since finding candidate corners and primitive fitting are the fundamental 

steps for understanding the users’ sketch intentions, we will start the discussion here. 

An accurate sketch segmentation algorithm can enable the system to recognize the precise 

sketch lines from freehand sketches. Sketch segmentation and primitive fitting remain topics of 

active research. Considerable progress has recently led to the development of reliable methods 

(Baran, Lehtinen, & Popović, 2010; Pu & Gur, 2009). Pu and Gur proposed a greedy algorithm for 
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precisely identifying a minimum set of segmentations with the help of radial basis functions (Pu & 

Gur, 2009). After comparing the performances and the flexibility of adjusting different parameters for 

granularities of curve fitting, we adopt and modify the line segmentation and primitive fitting 

algorithms developed by Baran et al. (2010). In our adaptation of this algorithm, it first identifies the 

candidate corners from a sketched input stroke. Since there are usually too many raw points 

captured by the device, we carefully down sample the number of points to accelerate the processing 

speed. To find the candidate corners, every five points are selected in these sample points from the 

previous step to check if they can be fitted into one or two line segments. If there is a high 

confidence of fitting these five points into two line segments, the system selects one of the points as 

a candidate corner. For instance, Figure 5.6-left shows that the set of five points is not able to be 

fitted into one line segment, while another set of five points can be fitted into one line segment 

shown in Figure 5.6-right. Thus, in the example of Figure 5.6-left, the system selects the third point as 

a candidate corner. 

 

Figure 5.6: Green lines are the original stroke. Red lines are the pre-fit segments.  Black dots are the sampled raw 
points. The line fitting algorithm is not able to fit the stroke into one line segment on the left while it has high confidence 

of fitting the stroke into one line segment on the right. 

Then, it fits the target stroke to multiple segments by using the points in between any possible 

combination of the candidate corners. Each segment will be treated as a node and assigned a weight 

using the distance between the original raw points and the segment. In this process, the segments 

with weights that exceed the preset tolerance are discarded. Connecting all of the remaining nodes 
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together will form a graph used to identify the shortest path from the starting node to the ending 

node for the primitive fitting results.   

 

Figure 5.7: The results of sketch segmentation and primitive fitting. Blue segments are straight line segments. 
Orange segments are arc segments. 

As shown in Figure 5.7, in our use case, the system only has to fit the target stroke into arcs and 

straight lines. There is a well-known procedure to fit raw points into a straight line in between two 

candidate points, as shown below: 

X̅ =  
∑ Xk

j
k=i

j−i
   and   Y̅ =  

∑ Yk
j
k=i

j−i
 

m =  
∑ (Xk −  X̅)(Yk −  Y̅)

j
k=i

∑ (Xk −  X̅)2j
k=i

 

where i is the index of the current starting candidate point, and j is the index of the current ending 

candidate point. X̅ and Y̅ are the average values of all of the X and Y values in this segment, 

respectively, and m is the average direction of this segment, which will be the slope of the current 

fitted line. The value  m is calculated by summing the products of the delta of the current X and Y 

(5.1) 

(5.2) 
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values and their average values, and then dividing by the sum of the squares of the delta between 

the X value and its average value. To get this line segment, the system selects the candidate starting 

point and ending point, and then projects them to this fitted line. For arcs, the method provided by 

Baran et al. is applied (Baran, Lehtinen, & Popović, 2010) by lifting the points to a paraboloid in 3D 

space, and finding the ellipse that determines the circle in 2D space that can fit to those points. 

Figure 5.8 describes the logic of how the system identifies candidate corners and fits the raw points 

into primitives. 

 

Figure 5.8: The pseudo code for finding candidate corners and primitive fitting 
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5.5 Symbolic Gesture Recognition 

The system does not rely on a specialized gesture recognition engine or machine-learning 

approach for the final decision of whether the drawing stroke is a gesture. Instead, the system takes 

the results from line segmentations and determines the sketch gestures by checking the 

compositions of these segmented lines to help constrain the gestures in the recognition procedure.  

This algorithm recognizes the gesture with the highest confidence first and the gestures with lower 

confidences later. To the best of our knowledge, we have not previously seen a sketch gesture 

recognition method using this approach, which has yielded sufficient results in terms of accuracy and 

efficiency. 

 

Figure 5.9: The pseudo code for recognizing sketch gestures 

As shown in Figure 5.9, the procedure for categorizing the segmented stroke into sketch gestures 

is as follows: (1) dot gesture, (2) tick gesture, (3) right angle gesture, (4) lasso gesture, and (5) scratch 

gesture.  If the system is not able to categorize the stroke into the above gestures, it will then create 

a sketch stroke for it. For instance, if the stroke captured by the canvas only contains a few raw 

points (n < 3) within a small range, the system will classify this stroke as a dot gesture. When the line 

segmentation routine returns just one small line segment, the system can safely assume with a high 

probability that the user was attempting to perform a tick gesture. If two small line segments have at 
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least one straight line, the system will categorize the sketch stroke as a right angle gesture. In 

addition, when there are at least two small arc segments with a short distance between the starting 

and ending points, the stroke will be recognized as a lasso gesture. For the scratch gesture, even if 

the system has marked the current strokes as a scratch gesture in the real-time processing step, it 

still inputs the raw points into this sketch recognition engine to verify the result. In other words, the 

system requires more information to verify whether the user has performed a gesture. In this case, if 

a stroke with more than four segments is drawn with the stylus moving faster than a certain 

threshold, it will be recognized as a scratch gesture. Figure 5.10 illustrates the example strokes for 

the five sketch gestures, the segmentation results from the algorithms we described previously, and 

the corresponding recognition rules for each gesture. 

 

Figure 5.10: The example sketch strokes, the segmentation results, and the rules for each gesture. In the 
segmentation result column, the blue segments represent the straight line while the orange line segments represent the 

arcs. 
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5.6 Checking the Contexts 

In SolidSketch, the system takes different contextual information into consideration to 

disambiguate the user’s intention. This information includes: (1) three-dimensional spatial 

relationships, (2) parametrical relationships, and (3) what prototype template the user has selected. 

This information is used in online recognition, offline gesture recognition, and sketch plane decision. 

In the real-time processing section, we described how the contextual information can assist in 

determining whether the user is tracing an existing line, extending an existing line, or simply creating 

a new sketch line. In real-time processing, the system takes the plane the user is drawing on and 

searches for possible existing lines as the main resource for contextual information. In this section, 

we will discuss how the system further filters the sketch information in 3D to decide whether the 

user is performing a gesture on a surface of an object or the grid plane, or simply creating new 

geometries with a new sketching line. 

The algorithm that infers the user’s intent is a preset decision tree. Figure 5.11 shows the specific 

information the system needs for deciding what commands it should execute. At this point in the 

sketch disambiguation process, the system already has the results of sketch gesture recognition, e.g. 

whether the user is likely performing one of the five possible sketch gestures. However, the system 

does not know the exact location at which the user is drawing in 3D space and what constraints from 

the objects it needs to take into consideration. Thus, the system uses the results of sketch 

recognitions (green boxes in Figure 5.11), object types (gray boxes in Figure 5.11), and additional 

contextual information, including pre-selection, parametric relationships, and constraints (blue boxes 

in Figure 5.10) to decide the user’s intentions for executing commands (orange boxes in Figure 5.11).  

Similar to the real-time processing method, the system tries to gather all the possible objects 

involved in this interaction at the beginning of checking the context. The potential objects and 

locations are shown as gray boxes in Figure 5.11. Since the system enables the potential of 
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interacting with the objects behind solid shapes through visualizing them transparently, the system 

needs to consider all of the objects and locations that are hit by the ray shooting from the 2D raw 

points on the screen in the 3D space. 

    

Figure 5.11: The interaction and contextual information used in the procedure of checking the contexts. Green 
Boxes: the recognition results from the previous steps, including the potential gestures and segmented primitives. Gray 

Boxes: the possible objects that are hit by the ray shooting from the raw points of the new stroke on the screen 
coordinate system into the 3D space.  Blue Boxes: additional information that needs to be taken into account, including 
geometrical dependencies, preselected objects, and previous objects that are performed in the same gesture. Orange 

Boxes: commands executed by the system. 

For instance, when performing the right angle gesture, the system will first search for probable 

locations intersected by the orange dashed line in Figure 5.12-right, including (1) 2D polygon shapes 
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on the solid geometry, (2) surface of the solid geometry, and (3) the base profile for the solid 

geometry. According to Figure 5.11, we know that the right angle gesture can only be performed on 

existing lines, which filters out the case (2). The system then checks the distances between the 

location of the gesture and the potential target in the 2D coordinates on the hit surfaces and selects 

the one with the minimum distance. Finally, it checks whether the constraints on the targeted corner 

allow the new right angle constraint to be set. These constraints are considered as additional 

contexts as shown in blue boxes in Figure 5.11. If the condition is true, then the system will add the 

right angle constraint and animate the shape with related geometries to fit the new constraint. 

If the system is not able to classify the sketch gestures into commands with the contextual 

information, it will create a regular line, instead. This entire process will check not only gestures but 

also the new sketch lines to determine if any modifications need to be made to the existing sketch 

lines. If modifications must be made, it will use the algorithm described in the following chapter to 

modify the existing lines and populate the changes to the dependent geometries. 

 

Figure 5.12: Performing a right-angle gesture on an edge of the base shape behind a solid shape. The system needs 
to go through each possible object to determine whether the sketched gesture applies to this particular screen location.  
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Chapter VI. Data Mapping and Internal Data Structure 

In Chapter 2, we introduced Concept Design BIM 2010 (CDB10) that is used for exchanging design 

data among different programs in the early stage of the design process. As mentioned, to generate 

these data, users need to work with complicated UI settings and command execution procedures in 

traditional CAD programs. Instead of using the conventional method of generating this type of data, 

we described a scenario in Chapter 4 in which Peter fluidly used the stylus and multi-touch to create 

and explore designs. In Chapter 5, we explained the system architecture and how it infers the user’s 

intentions for executing commands in SolidSketch. In this chapter, we will discuss how these 

commands can be translated to a machine-readable data structure that can then be exported for the 

next stages in the design process described at the end of Chapter 4. In other words, this chapter will 

explain the last piece of the General Controller layer – geometry creation – and the data structure we 

are using in the Parametric Model layer with the data mapping for IFC export. 

6.1 The Parametric Objects 

In the post-processing component of the General Controller layer, the system takes the results 

generated from the intention disambiguation process and decides whether it should execute 

commands or generate geometry. In SolidSketch, there are three types of parametric objects: 1D 

nodes, 2D lines, and 3D solid shapes. All types of parametric objects are a subclass of a general 

parametric object. As shown in Figure 6.1, this general parametric object contains the properties that 

a parametric object needs to have, e.g. basic semantic properties, and constraint relations to other 

parametric objects. The detail relationships between different parametric objects will be described in 

the following sections. In general, 3D solid shapes are directly or indirectly controlled by 2D lines. 

Users can employ the stylus or multi-touch interactions to change the 2D lines. When changes are 
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made to these lines, the dependent parametric objects will be updated based on the constraint and 

parametric relations. 

We will discuss how parametric 2D lines are structured from sketch strokes and tied to the 

meshes that are visualized in the viewport. Then, we expand the discussion to the 3D geometries and 

their relationships in the next sections. 

 

Figure 6.1: The general parametric object and the major parametric object types used in SolidSketch 

6.2 Two-Dimensional Geometries 

6.2.1 Polyline and Polygon Shape 

As discussed in the previous chapter, after sketch recognition is complete, the sketch stroke will 

contain the 2D segmentation primitives, including lines and arcs, along with the transformation 

information describing the plane on which the stroke is situated. As shown in Figure 6.2, the system 

maintains links between this set of straight lines and arcs to the sketch raw points in the Primitive 

object. This set of primitives is linked with nodes for describing the relationships between 

themselves. The system will decide whether the end points of sketched polylines are close enough to 

form a polygon shape. To decide whether it should be a closed polygon, it simply calculates whether 

the Euclidean distance, D = Distance(Ptstart, Ptend) where Ptstart and Ptend from the start and end 

points of the raw stroke points respectively, is smaller than 15 pixels or not. If it is a closed polygon, 

the system will create a Polygon object in addition to the Polyline object as shown at the far left of 
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Figure 6.2. This Polygon object takes the responsibilities of generating meshes filling the polygon 

area, as shown in Figure 6.3-ritght. As described in Peter’s scenario, he drew a closed polygon inside 

of a polygon shape to directly create a hole for stair access. This closed polygon is also stored in the 

Polygon object so that it can be taken into consideration for generating meshes with a hole. 

 

Figure 6.2: The UML diagram for major 2D objects used in SolidSketch 

    

Figure 6.3: Polyline versus Polygon. The system creates meshes to fill up the polygon. 

These parametric polyline and polygon objects are bound to the meshes of the actual lines 

(called wires in the system) and shape geometries (meshes) represented in the view canvas. When 

any changes are made to these parametric objects, such as changing the dimensions and line editing, 

the system will notify the parametric object to update the geometries immediately. Also, the system 

always associates polyline objects to their closed polygon objects, if there are any, to maintain this 
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connection for future modifications. Every update from the new sketch strokes will cascade changes 

in the related polyline and polygon objects immediately. 

6.2.2 Handling Sketch Editing 

 

Figure 6.4: The sketch editing algorithm taking the larger shape of the two candidate shapes 
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Many over-sketch algorithms have been developed for various purposes. The algorithm used by 

ILoveSketch helps users to form curves (Bae, Balakrishnan, & Singh, 2008). In our case, we wish to 

increase the capability of editing existing shapes to support design explorations, including polylines 

and polygons, and maintain as many of the relationships among the existing lines as possible.  

The algorithms described in the previous chapter have already suggested the potential surfaces 

in 3D space for merging new strokes. The system searches the existing lines on these surfaces to test 

whether the new stroke can be merged into the existing lines or not. In this procedure, the system 

selects the target polyline individually from these existing lines to test it. The algorithm for merging 

the new stroke to the target polyline consists of four parts depicted in Figure 6.4: (1) identify 

potential points on the target polyline for merging (Figure 6.4-2); (2) reverse the order of points in 

the new line, if necessary (Figure 6.4-3); (3) remove the selected points in the target polyline and 

insert the new points (Figure 6.4-4); and (4) compare the two candidate point sets and select the one 

with a larger area, and then use the algorithm described in the previous chapter to fit it into 

primitives. 

Before the system can run the merging process, it needs to transform the raw points from the 

new stroke on the screen coordinate system into the same space of the merging target. To do this, 

the algorithm applies the related transformation Tr to the raw points on the new stroke.  

Tr = Tg ×  Tc 

Tg is the 4x4 transformation matrix describing the location and orientation relationships between the 

target polyline coordinate system and the global coordinate system, and Tc is the transformation 

matrix between the global coordinate system and the 2D screen space of the view camera on which 

the user draws the new strokes. After the system transforms the new stroke into the same space as 

the target polyline, it starts to identify potential points for merging. In this step, the system runs 

through all of the line and arc segments on the target polyline to identify the nearest points to the 

(6.1) 
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starting and ending points of the new stroke. To acquire the nearest point on the target line, we use 

the following equations: 

Ptnearest =  Min(Distnace(Ptproj1, Ptstart), … , Distnace(Ptprojn, Ptstart)) 

Ptprojn = {
PtA + Vproj,  if PtA + Vproj is between PtA and PtB

Null, Otherwise
 

Vproj = Normalize(VAB) Length(VAStart) cos(Angle(VAB, VAStart)) 

VAB ∈  Vsegments 

where Vsegments is the vector from each segment in the target line, PtA and PtB are the two end 

points in each Vsegments, Ptstart is the starting point of the new stroke, and VAStart is the vector from 

PtA to Ptstart.  The two nearest points are shown as the red dots in Figure 6.4-2. We apply the same 

equations to the end point of the new stroke to get the nearest point on the line segments. As shown 

in the pseudocode of Figure 6.5, “nearStart” and “nearEnd” are the products of the equations shown 

above. If the target shape is a closed polygon, it requires both ends of the new line to touch the 

target shape; if the target shape is a regular polyline, however, the new line only needs to touch at 

least one end of the existing line. 

After the system identifies the two nearest points from the starting and ending points on the 

target line, it removes the points in the target line in between PtA and PtB, and inserts the points 

from the new stroke into it. As shown in Figure 6.4-4, there are two possible candidate sets of points 

when using a different order of the target points. The system compares the area enclosed by the two 

candidate points and selects the one with a larger area than the merged point set. Finally, the system 

tries to use the algorithms introduced in the previous chapter with the merged point set for 

determining the new corners and primitives. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Figure 6.5: The pseudo code for merging new stroke into existing lines 

6.2.3 The Stripe Shape 

The stripe shape is the product of applying the “extending dimension” tool on a 2D line segment. 

It is a subtype of the closed polygon and thus shares the same properties. In Chapter 4, we described 

that Peter used the “extend dimension” tool to create a custom wall profile when the preset 

prototype templates did not fit his needs. When using the “extend dimension” tool on a selected line 

segment, the system will generate offset lines in real time. As shown in Figure 6.6-2, the system first 
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offsets each segment from raw sketch points with the distance Do =  
Ls

2⁄  , where Ls is the length of 

the selected segment. In Figure 6.6-3, the system finds the intersection points between the offset 

lines. Then, the system uses the polygon clipping algorithm proposed by Vatti (Vatti, 1992) to merge 

(union operation) the two sets of the offset lines, which results in a closed polygon. This polygon is 

similar to the polygon object drawn manually by the users, except that the system will mark the 

polygon as having been generated by the “extend dimension” tool. Once the user’s pen is up, the 

system performs the same primitive fitting process to determine all of the primitives first, and then 

uses these primitives in this line offsetting procedure to determine the final stripe shape. 

 

Figure 6.6: The offset algorithm consists of four steps. It runs in real-time when the user is moving their stylus to 
provide embodied feedback as well as after the user’s pen is up to finish the current drawing 

6.3 Three-Dimensional Geometries 

Solid modeling programs, such as SolidWorks or building information modeling programs, usually 

create 3D geometries through a set of input parameters. The system creates meshes based on these 



83 

parameters for visualizing shapes on a 3D canvas. The most basic type of solid modeling program 

includes a set of primitives, such as boxes, cylinders, cones, and spheres. These systems also include 

more advanced object types that can describe more generic shapes used in many cases. For instance, 

the “swept solid”, a typical solid geometry used in many of these solid modeling programs, describes 

a 3D solid geometry that is composed of a profile shape and a path. This swept solid is generated as 

the profile shape sweeping along with the path. These programs also include basic Boolean 

operations for users to create more complicated shapes, including union, intersection, and 

subtraction. In our system, we have implemented several important solid and parametric modeling 

objects for creating 3D shapes, such as swept solid and Boolean subtraction objects. Each object has 

different input parameters for generating meshes of the solid shapes. However, most of them are 

based on the polylines and polygons introduced earlier in this chapter. 

 

Figure 6.7: The UML diagram describing Boolean Subtraction and Swept Solid parametric objects used in the system. 
The profile of the SweptSolid here is linked to the Polygon parametric objects described in the previous section 

For instance, the system takes the list of line and arc segments constructing a polygon, which is 

used as the profile shape in a swept solid as shown in Figure 6.7. Without any specification, the 

system extrudes the profile similar to SketchUp while the user moves his stylus in real time. The 

system uses the distance, DprojZ = Distance(PtprojLast, Plprofile), as the extrusion height for 

determining the direction path from the centroid point of the selected profile. PtprojLast is the 

projected point from the last 2D stylus raw point on the screen to the virtual plane Pln. This plane is 

made from the normal direction of the current selected polygon shape and the upward direction of 
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the current view camera. Plprofile  is the plane on which the profile is situated. The system continues 

to update this solid shape while the user is moving his stylus by updating the PtprojLast in real time to 

determine the meshes. If the user clicks on the XZ or YZ surfaces on the axis widget on the selected 

profile before drawing a path, the system will use the projected points onto the XZ or YZ plane as the 

directional path in real time. It uses the fitted sketch polyline as the directional path after the user’s 

pen has been lifted up. The example product of this type of swept solid is shown in Figure 6.8-right. 

    

Figure 6.8: Two types of swept solid in SolidSketch. Left: without any specification, the user extrudes the swept solid 
in one direction without any specification of the drawing plane.  Right: when the user specifies the drawing plane on the 

XZ or YZ planes of the extruding profile, the system tries to use the sketch polyline as the path for sweeping to a solid 
shape. 

The Boolean subtraction object is another important solid modeling operation used in the 

system. In the scenario described in Chapter 4, Peter drew a closed profile shape on a surface of a 

wall and performed a scratch gesture to create an opening. He also used two solid shapes to perform 

a subtraction operation using two objects. The mechanisms behind these two different interactions 

are essentially the same. The major difference is that the system creates an invisible swept solid from 

the drawn profile shape in the first interaction example, whereas it uses the actual solid shape on the 

canvas for Boolean subtraction in the second interaction example. 
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Figure 6.9: Simplified relationships created through the interactions between various parametric objects for a solid 
shape. Changes in the sketch raw points will populate changes in the parametric objects in the solid box in the figure. 

As shown in Figure 6.9, similar to 2D geometries described previously, the system maintains 

relationships between different related 2D and 3D parametric objects. For instance, if the user 

changes the profile of a swept solid, it will propagate the changes and recalculate the meshes for the 

dependent Boolean object immediately. 

6.4 Constraints 

In addition to creating the parametric relationships mentioned previously, users can also create 

constraint relationships by explicitly or implicitly assigning rules between objects during the 

interactions described in the previous chapters. The system implements three types of constraints: 

(1) node-edge relation constraints (e.g., right-angle constraints); (2) edge-object relation constraints 

(e.g., an array of objects on a path); and (3) object-object relation constraints (e.g., transformation 

constraints). 

Each type of constraint contains unique parameters responsible for populating changes on the 

constraining objects from the interactions. The system uses a graph search algorithm, such as BFS, to 

populate changes from an object in all of the connected objects through parametric and constraint 

relations. For example, Figure 5.12 shows the setup of a right-angle constraint on a corner of the 

bottom profile of a solid. This action will create a constraint on the vertex (node) of that corner and 

drive changes in the connected edge primitives to satisfy the constraint. Since these primitives are 
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the fundamental components of the Polygon, Face2D, and SweptSolid objects, it will also drive 

changes in these objects. As the system changes these objects, it also searches for additional 

constraints that may be attached to the objects. If the system detects these additional constraints, it 

will add the existing constraints to the queue for a subsequent graph search. The example in Figure 

5.12 shows constraint setting cases in which the surface of a solid shape has a 2D polygon shape 

attached to it. In this scenario, the right-angle constraint on the corner of the base polygon causes 

the 2D polygon shape to rotate on the solid to ensure that its attachment to the surface of the solid is 

properly maintained. Figure 6.10 shows the structure of the relationships among all of the parametric 

objects in the chair example illustrated in Figure 6.10-right. 

 

Figure 6.10: The actual parametric structure of the chair shown on the right. Gray boxes: directly created by sketch 
strokes; white boxes: created by a combination of strokes and interactions; green box: constraint that connects two sets 

of parametric objects. 

6.5 Operations 

6.5.1 List of Operations 

For our purposes, an operation is defined as one or more actions recorded when the user is in 

the template composition mode. The system creates operations for describing the composition of a 
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template for geometry generation when the user is employing a template to create models in real 

time. In Chapter 4, when Peter used his stylus to trace the orange line by using the “extending 

dimension” tool with the line segment selected, the system created the first operation 

“OffsetToFace2D” as shown in Figure 6.11. This operation takes the selected line segment as the 

“width” parameter and the orange line as the “path” parameter for generating the stripe shape.  

Since a stripe shape is a type of polygon, as mentioned previously, the system takes it with another 

polyline as the direction path for the second operation, “extrude”, to create the swept solid.  These 

two operations are stored in the system and ready to be used as a wall while designing a house. 

   

Figure 6.11: The operations (left) that composes the wall template (right).  On the left, the orange box represents 
the sketch points from real-time sketch stroke. The gray boxes are the geometries recorded and transformed from user’s 

sketching line during the template composition mode. The red box is the product from the two operations showing on 
the right figure. 

The system also takes the following operations. When a user interacts with an object, either a 2D 

or 3D shape, and traces a line by using the array command, the system will take the object and the 

line as input sources for the “MakeArray” operation. The system can also execute the “CloneLine” 

operation when the user employs a multi-touch gesture to clone an orange line into two lines. These 

non-closed lines can be used for tracing when the user is attempting to create stripe shapes or make 

arrays. If the user performs the subtraction command with solid shapes, the system will also create a 

“Subtraction” operation. Figure 6.12 shows a template with many operations (Figure 6.12-left) and 

the graph that describes how these operations are stored in the system (Figure 6.12-right). 
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Figure 6.12: The operations (left) for a complicated template that consists of openings and columns on a wall.  Gray 
boxes are those recorded in the template composition procedure.  The orange box is the sketch points that are converted 

into polyline in real-time.  The two red boxes represent the final geometries generated in real-time. 

6.5.2 Generate Feedback in Real Time 

When generating geometries in real time for embodied feedback, the system replaces the orange 

line that appears during the template composition process with the real-time sketch points captured 

by the tablet. When regenerating the meshes from each operation, the system needs to properly 
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schedule and optimize the order of executing operations to avoid any blocking issues when the 

required inputs are not yet computed from the dependent operations. 

 

Figure 6.13: The execution order for the operations shown in 6.12-left by using a naïve topological sorting approach. 

In general, since operations are a directed acyclic graph (DAG), a naive topological order would 

solve the scheduling problem. For instance, Figure 6.13 shows the order of executing a series of 

operations in Figure 6.12-left. However, since the system renders geometries in real time, it also has 

to carefully choose which geometries need to be generated first in the template. The order in Figure 

6.13 is generated using a naïve topological sorting algorithm in which the user would see the columns 

generated first (operation 7), then the geometries for creating openings are generated (operation 5), 

and finally the walls with openings (operation 6). Since geometry generation is computationally 

expensive, it is impractical for the system to generate all of these geometries in real time. In practice, 

the visual experience, from the user’s perspective, would be a series of columns generated along 

with the real-time stroke inks while moving the stroke. Thus, this real-time feedback would not 

provide the users a smooth experience of what they are creating while using the system. 

Table 6.1: The inputs, outputs, and weights for the operations used in the system. 

Operation Input(s) Output(s) Weight 

CloneLine 
1. Polyline (Path) 
2. Vector3D (Direction) 

1. Original Polyline 
2. Cloned Polyline 5 

OffsetToFace2D 
1. Polyline (Path) 
2. Polyline (Width) 

1. Polygon 4 

Extrude 
1. Polygon (Profile Outer) 
2. Polyline (Direction) 

1. Solid 3 

MakeArray 
1. ParametricObject (subject) 
2. Polyline (Path) 
3. Double (Interval) 

1. ParametricObjects 2 

Subtraction 
1. Solid (FirstElement) 
2. Polygon(s)/Solid(s) 
(SubtractionElement(s)) 

1. Solid 1 



90 

 
Figure 6.14: The DAG from the operations in Figure 6.12 left and its ideal execution order 

Instead of naïvely using the topological order, we give each operation a different weight, as 

shown in Table 6.1, which influences how the system runs. To compute this execution order, the 

system first uses graph search to compute the accumulated weights for each operation, which is 

depicted as the blue numbers in Figure 6.14-top. The system then stores all of the operations into a 

max heap according to their weights. Next, it pops the operation with the largest weight into this 

heap to run first. For example, according to Figure 6.14, when the system runs to the operation 1 in 

Figure 6.12-left, it will choose the node with larger weight to run first, which is the operation 2 in this 

case. The pseudocode in Figure 6.15 shows the detailed algorithms the system uses to build the 

operation execution order. This procedure only runs once when the user finishes the template 

building procedure. Whenever the user employs the template, the system will run through the 

execution order to generate the geometries progressively. If the system is not able to generate any 

geometries in real time, it will choose the geometries with larger weights and abort the geometry 

generations for those with lower weights in order to maintain real-time continuous feedback. 
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Figure 6.15: The pseudo-code for computing the order of executing the operations 

6.6 Mapping to Semantic Data 

In Chapter 4, once Peter finished his design, he could quickly export the model he created in 

SolidSketch to other Building Information Modeling programs. In Chapter 2, we mentioned the Model 

View Definitions (MVDs) that define various use cases for designing. We adopted and slightly 

modified the MVD, “Concept Design BIM 2010” (CDB10), which fits the use case we are aiming to 

support. As mentioned, this use case is even earlier than CDB10 in the design process. As a result, 

some of the data needed originally in CDB10 were removed. Figure 6-16 shows the example data 

structure used for a wall object. Other geometries created in the system have similar structures as 

the wall element. In the following sections, we will describe the mapping between our internal data 

structure to the following concepts by using the concepts in IFCWall as an example: “Shape 

Representations”, “Root Attributes”, “Generic Definition”, “Generic Object Placement”, “Generic 

Voiding”, “Generic Connectivity”, and “Generic Containment”.   

6.6.1 Shape Representation Concepts 
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When the user creates a wall template, SolidSketch records the parametric relationships for the 

geometries that compose a wall. Once the user draws a wall using the template, the system uses the 

sketch line to generate a wall parametrically as discussed earlier in this chapter. These parametrically 

generated geometries and their relationship information will be stored in the concepts in the 

category of “Shape Representation” in Figure 6-16. For instance, the Polyline object from a sketch 

stroke will be described parametrically in the concept “FootPrint”, which consists of two pieces of 

critical information: (1) the composition of the polyline in the type of “IFCCompositionCurve” that 

represents the central path of the wall; and (2) the position of this polyline related to the generated 

wall profile polygon, which is always at the center of the stripe profile polygon. The actual geometries 

of the wall are described parametrically in the concept “Body” in “Shape Representation”. In 

SolidSketch, the swept solid is used for constructing a major part of the 3D solid model, which means 

that the system can easily map related information in the internal data structure to the concept 

“Swept Solid”. 

6.6.2 Root Attributes 

In Root Attributes, SolidSketch stores information related to the concepts “GUID”, “BIM Object 

Owner History”, and “Name”. This information is generated immediately when the user is employing 

a wall template to create a new wall. For instance, “GUID” and “Name” are directly mapped from the 

attributes with the same name from the “ParametricObject” in the system as shown in Figure 6.1. In 

the system, the “GUID” attributes of “ParametricObject” is a set to automatically and randomly 

generate a 22-character string. During interactions, the system will maintain this same string during 

the modification and editing process. Similar to “guid”, the “name” attribute in the parametric object 

is also automatically generated. However, the system uses a naming convention, such as “Wall-01”, 

to make the documentation more human-readable. For “BIM Object Owner History”, an 

“IfcOwnerHistory” that consists of author and the timestamps of the editing histories is automatically 
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generated when the system is started. This IFC object will be linked to each IFC object when 

exporting. These attributes are important for individual users, as well as design teams, to keep track 

of design documents between different programs. Since SolidSketch enables data generation in the 

early stage of design, the designer can look back at how his design intents were evolved in the early 

stage of the design process. 

6.6.3 Generic Voiding 

In the scenario mentioned in Chapter 4, when Peter created a hole in a wall for adding windows, 

the system created a Boolean subtraction object between the hole and the wall geometry. This 

Boolean subtraction object is mapped to the concept “Generic Voiding” in CDB 2010. As shown in 

Figure 6.17, the “RelatingBuildingElement” attribute in “IfcRelVoidsElement” points to the 

“IfcElement”, which is the wall object in this case. The “RelatedOpeningElement” points to 

“IfcFeatureElementSubtraction” that is mapped to the opening geometries. 

6.6.4 Other Concepts 

The information in “Generic Definition” and “Generic Connectivity” are mostly derived and 

computed from the geometric information stored in a parametric object. Since the system is not 

dealing with material information for the parametric object, it does not create and store the 

information of the concepts such as “Wall Composite Thermal Transmittance” or “Generic Material 

Association”. 
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Figure 6.16: The Model View Definition Diagram for wall created by SolidSketch 
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Figure 6.17: The Generic Voiding concept from CDB 20104 

 

Figure 6.18: The Generic Containment concept from CDB 20105 

                                                           

4 http://www.blis-project.org/IAI-MVD/reporting/showConcept.php?CREF=MVC-800 
5 http://www.blis-project.org/IAI-MVD/reporting/showConcept.php?CREF=MVC-834 
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 “Generic Connectivity” and “Generic Containment” are also generated automatically from the 

stored parametric objects, their relationships, and their contexts. For instance, when Peter used the 

wall template to create walls, the system created an “IfcBuildingStorey” object and an 

“IfcRelContainedInSpatialStructure” object that linked the building story and wall object together as 

shown in Figure 6.18. When he drew a profile on top of the wall on the first floor, the system 

automatically assumed that it was a slab for the second floor and thus created another 

“IfcBuildingStorey” for the second floor. It also created the same structure as the first floor for 

containing walls and slabs in the building story. 

6.6.5 Interoperability between SolidSketch and BIM Programs 

Figure 6.19 shows a building model exported from SolidSketch to two major BIM programs: Revit 

and Solibri Model Checker. Revit is the most popular BIM tool with approximately 70% of the current 

market share. It provides a platform on which various professionals in the AEC field can create design 

and construction drawings, collaborate, and perform simple energy or structural simulations. Solibri 

Model Checker is another platform for checking the integrity of the model as well as building codes. 

The bottom left of Figure 6.19 shows that Revit can render and create the building data exported 

from SolidSketch, including walls, slabs, and openings. In Figure 6.19, we demonstrate that users can 

adjust and edit this building data and input specifications with parameters or mouse manipulations. 

For instance, in Revit, the user can manipulate the handles of an object (blue arrows in Figure 6.20-

left), or type in numbers to adjust the length of a wall created in SolidSketch, as shown on the left of 

Figure 6.20. With the building information provided by SolidSketch, Revit knows where and how to 

add the details of the windows and doors on the wall created in SolidSketch, as shown on the right 

side of Figure 6.20. By using SolidSketch and Revit, designers can flexibly create and explore designs 

using SolidSketch in the early stage of design, and add more details and increase precision in Revit in 

the next stages. However, those drawings that do not represent objects in SolidSketch will not be 
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exported for other BIM programs at this point, since we do not have proper methods of exchanging 

this data. 

 
Figure 6.19: The data produced in SolidSketch can be imported into other BIM programs, such as Revit and Solibri 

Model Checker.  The user can add more details or perform simulations in these programs. 

The top right of Figure 6.19 presents the topological hierarchy between building objects created 

by Solibri Model Checker from the data exported by SolidSketch. It shows that SolidSketch creates 

two building stories with several building elements in them, such as walls and slabs. The building 

stories are also contained in the building within the site. The bottom right of Figure 6.19 shows that 

when a user selects a wall in Solibri Model Checker, s/he can see the quantitative information 

created by SolidSketch, such as height, length, width, bottom area, and gross area of the wall. This 
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information can be used for model checking against different building codes to verify the design 

specifications. 

    

Figure 6.20: The building model created in SolidSketch can be edited in Revit for adjusting precisions and adding 
more details.  Left: the user can adjust the lengths of the walls through grabbing the handles (blue arrows). Right: the 

users can add windows with more details since the system knows what to do with the specific building elements. 

6.7 Conclusions 

Chapter 5 and Chapter 6 have described the general architectures and recognition processes, as 

well as detailed algorithms and data structure, of SolidSketch. Chapter 5 starts by describing how the 

system discerns the users’ intentions by analyzing their interactions through sketch segmentations 

and primitive fittings. The system then takes the segmentation results to decide whether the user is 

performing a special gesture or not. By checking with the contexts in the 3D scene and its parametric 

relationships, the system has higher confidence of whether it should create new geometries or 

execute commands in the current action. In this chapter, we discussed how the system maps 

geometries and commands into the internal data structure, and then translates the data structure to 

a neutral data format – the Industrial Foundation Class (IFC). We also discussed how the system 

schedules the operation tasks in order to optimize real-time geometry generation. Since many of 

these processes are automatically generated using on-line or off-line recognition and computation, 

users can smoothly create and focus on their design tasks, instead of focusing on how to execute 
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commands and manually entering detailed information. In the next chapter, we will describe a 

technical and human evaluation of SolidSketch.  
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Chapter VII. Case Study and Discussions 

One of the goals of this dissertation is to translate human interactions to computer-

understandable format that can then be utilized in subsequent tasks of the modern design process 

using different software. In Chapter 2, we discussed the issues of modern CAD programs that were 

not able to facilitate the rapid, iterative, and embodied thinking processes in the early stage of 

design. On the other hand, Chapter 3 provides a review of the prior sketch prototypes in which we 

reveal that there remain gaps for the early stage of design – they are not able to fully support what 

CAD programs are capable of producing, including sufficient geometrical information and geometrical 

relationships as shown in Table 3.1. In this chapter, we examine SolidSketch against the criteria in 

Table 2.1 and summarize the evaluations in Table 7.6 through the following three approaches: 

(1) We compare SolidSketch and typical CAD or BIM programs to ascertain which areas 

SolidSketch supports and which areas we can still improve in the early stage of design. 

(2) We investigate how the combination of sketch interactions with BIM capabilities affects the 

early stage of design, especially for the first three criteria in Table 2.1. To do this, we employ a 

case study with experts designing a building by using sketch and multi-touch inputs. 

7.1 Comparison of Existing Programs 

Table 7.1: The interaction to achieve fundamental operations in SolidSketch, sketch prototypes (e.g. SKETCH (Zelenik, 
1996), ILoveSketch (Bae, Balakrishnan, & Singh, 2008), and SIMI (Johnson, 2012)), and typical CAD/BIM tools. In this 

table, we use (T) to represent touch actions, (P) to represent stylus actions, (M) to represent mouse actions, and (K) to 
represent keyboard actions. 

Comparison SolidSketch SKETCH / IloveSketch/SIMI Typical CAD Tools 

Input Device Touch (T) + Stylus (P) Mouse/Stylus (P) Mouse (M) + Keyboard (K) 

Create a straight line Draw a stroke (P) Draw a stroke (P) 
(1)  Click the “Line” button (M) or type in 
the command (K) 
(2)  Click two points on canvas (M) 

Create a curve line Draw a stroke (P) Draw a stroke (P) 
(1)  Click the “Curve” button (M) or type in 
the command (K) 
(2)  Click three points on canvas (M) 

Create a composite 
polygon with line and 

curve segments 
Draw a stroke (P) Draw multiple strokes (P) 

(1)  Click the “Polyline” button (M) or type 
in the command (K) 
(2)  Click multiple points on canvas (M) 
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(3)  The user may click on UI buttons (M) or 
hot keys (K) again to change the modes for 
straight or curved line segments 
(4)  Click the control points on canvas to 
adjust the curvature (optional) (M) 

Replace several 
segments on a 2D 
polyline with line 

and/or curve 
segments 

(1) Tap on the shape (optional) 
(T) 
(2) Draw stroke(s) close to the 
modifying lines/shapes (P) 

(1) Perform a lasso gesture 
on the shape (P) 
(2) Draw stroke(s) close to 
the modifying lines/shapes 
(P) 

(1) Click on a shape (M) 
(2) Click UI buttons (e.g. trim button) (M) or 
type in commands (K) 
(3) Delete the modifying segments by using 
keyboard (K) 
(4) Click the UI button (e.g. polyline button) 
(M) or type in commands (K) 
(5) Click multiple points to create a new 
shape that connects to the existing shape 
on canvas (M). 
(6) The user may click on UI Button (M) or 
type in hot keys (K) again to change the 
mode for straight line segments or curved 
line segments 

Offset a 
polyline/polygon  

(1) touch the line with one finger 
(T) 
(2) drag the line with another 
finger to the desired location (T) 

Not Supported 

(1) Select the line on canvas (M) 
(2) Click the “Offset” button (M) 
(3) Specify the distance with multiple 
mouse clicks on canvas (M) 

Move a shape (1) Touch and drag the shape (T) 
(1) Use pen to drag the 
shape (T) 

(1) Click on “Move” button (M) 
(2) Move the shape by dragging the mouse 
(M) 

Extrude a profile 
shape 

(1) Tap on the shape to extrude 
(optional) (T) 
(2) Hold the button on the stylus 
to draw a stroke (P) 

Supported in SKETCH: 
(1) Draw the profile shape 
(P) 
(2) Immediately after closing 
the profile shape, draw a 
straight line for extrusion (P) 

(1) Click the “Extrude” button (M) 
(2) Click on the shape and extrude it (M) 

Sweep a profile 
shape 

(1) Tap on a shape (T) 
(2) Select the desired plane for 
sweeping (P) 
(3) Hold the button on the stylus 
while drawing a stroke (P) 

Supported in SKETCH: 
(1) Draw the profile shape 
(P) 
(2) Immediately after closing 
the shape, draw a stroke for 
sweeping (P) 

(1) Click “Line” button for drawing the 
polyline (M) 
(2) Draw the polyline on canvas as 
described above (M) 
(3) Click the “Sweep” button (M) 
(4) Select the profile shape (M) and the new 
polyline (M) as two parameters for creating 
the sweep 

Create an array of 
objects on a 

(poly)line 

(1) Click on “Array” button (T) 
(2) Tap on a profile shape (T) 
(2) Hold the button on the stylus 
to draw a stroke (P) 

Not Supported 

(1) Click “Polyline” button (M) 
(2) Draw a polyline on canvas as described 
before (M) 
(3) Click “ArrayPath” button (M) 
(4) Select the shape (M) and the new 
(poly)line (M) for two parameters to create 
the array of objects 

Create a hole 

(1) Draw a 2D shape on a 3D 
shape (P) 
(2) Perform scratch gesture (P) 
to delete the 2D shape while the 
3D shape is selected (T) 

Supported in SKETCH: 
(1) Draw a 2D shape on a 3D 
shape (M) 
(2) Extrude the 2D shape to 
3D shape as described 
previously (M) 
(3) Delete the 3D shape to 
create a hole (M) 

(1) Draw a 2D shape on a 3D shape as 
described previously (M) 
(2) Click “Extrude” button (M) and extrude 
the 2D shape on canvas (M)  
(3) Click “Boolean” button (M) for Boolean 
operation 
(4) Select the two 3D shapes as the 
parameters to create a hole (M) 

Assign constraints 
(e.g. right angle) 

(1) Perform gesture at the 
desired location (P) 

Supported in SIMI: 
(1) Perform gesture at the 
desired location (P) 

(1) Click on “Constraint” button (M) 
(2) Click on multiple line segments that will 
constitute the constraints on canvas (M) 

Record 
parameterized 

constraints and rules 

(1) Tap “+” button (T) 
(2) Use the above operations 
(e.g. assign constraints and 
offset polyline) in an order to 
create the simple rule sets (P+T) 

Not Supported 

(1) Use the above operations (M) 
(2) Different UI environment (e.g. 
Grasshopper) typically required with many 
UI buttons for comprehensive constraints 
and rule sets (many Ms) 

Semantics 
Simple semantics from 
automatic inference based on 

Not Supported 
Select the desired objects’ assembly with 
specific semantics prior to creation 

Table 7.1 continued 
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topological relationships 
between shapes 

BIM Workflows Supported Not Supported Natively supported or through plug-ins 

 

Table 7.1 presents the comparisons of different fundamental CAD operations between (1) 

SolidSketch; (2) sketch prototypes such as SKETCH (Zelznik et al., 1996), ILoveSketch (Bae et al. 2008), 

and SIMI (Johnson et al., 2012); and (3) typical CAD programs, including BIM programs. In the column 

of the sketch prototypes, we choose the simplest possible steps that users need to perform to 

accomplish the tasks from the listed tools. In general, we wish to create a program that enables users 

to offload their tasks quickly. The column of typical CAD programs shows how these CAD programs 

adopt GUI interactions to accomplish various tasks, such as supporting comprehensive parametric 

and generative modeling, e.g. Grasshopper with Rhinoceros; detailed engineer drafting, e.g. Revit 

Structure; and generalizing for different professions, e.g. AutoCAD.  In these CAD programs, the 

fundamental operations of creating and editing shapes typically start from clicking on UI buttons, 

then clicking on the main canvas for pointing locations, and sometimes clicking additional UI buttons 

for further specifications.   

For complicated operations, such as creating a composite polyline, users need to click on UI 

buttons and then the shape they are working on multiple times to assign the input parameters.  For 

instance, if designers wish to draw a composite polyline with straight line and curve segments, they 

will need to (1) click the polyline tool first, (2) click on the canvas, (3) change the drawing mode from 

straight line to curve line through the UI buttons again, (4) click on the canvas to create control points 

multiple times, and (5) finally click the UI button to finish the creation. Since these systems require 

users to specify precise geometry and geometrical relationship information along with other details, 

they usually provide interoperability between different BIM programs and thus support BIM 

workflows easily. 

Table 7.1 continued 
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On the other hand, as shown in Table 7.1, even though the programs that adopt sketch 

interactions simplify the ways in which we interact with the lines and geometries by using stylus or 

mouse gestures, they only provide limited capability of parametric modeling (if any), and produce 

mostly mesh models with no integration to BIM workflows. Designers who use these sketch 

programs later have to recreate geometries using BIM tools, which could result in losing track of their 

design intents, such as relationships between geometries. Finally, SolidSketch enables the possibility 

of 2D and 3D sketch interactions with stylus and multi-touch gestures for supporting constraint 

assignments on parametric models. The system can infer simple semantics, such as slabs, walls, 

openings, and other basic building elements, when exporting the design data for other BIM programs 

to use. 

Table 7.2: Comparison of features supported in different 3D sketch tools. 

 
SKETCH 

(ZELEZNIK et al., 
1996) 

Teddy (Igarashi 
et al., 1999) 

Masry’s 3D 
Sketch prototype 

(Masry et al., 
2007) 

ILoveSketch (Bae 
et al. 2008) 

True2Form (Xu 
et al., 2014) 

SolidSketch 

Direct 2D Line 
Editing 

Not Supported Not Supported Not Supported Over-Sketching 
Through control 

points 
Over-Sketching 

2D Shape Editing Not Supported Not Supported Not Supported Not Supported 
Through control 

points 
Over-Sketching 

Mirror Sketching Not Supported Not Supported Not Supported Supported Not Supported Not Supported 

3D Solid Shape 
Editing 

Through stylus 
gestures (hole, 

scale, etc.) 

Through stylus 
gestures (cut 

(one stroke), bite 
(two strokes), 

etc.) 

Not Supported Not Supported Not Supported 
Through stylus 
gestures (hole, 

cut, etc.) 

Shape 
Manipulations 
(Rotate, Move) 

Through stylus 
with gestures 

Not Supported unknown Not Supported Not Supported 
Through multi-
touch gestures 

Sketch to 3D 

Gestures with 
different mouse 

buttons to 
create 3D 

Blob shapes to 
create 3D 

Rigorous 
perspective 

sketch to create 
limited 3D 
geometries 

Natural sketch 
with gestures on 

scaffolding 
assistant lines 

Natural sketch 
with GUI buttons 

and automatic 
inference 

Natural sketch 
with buttons on 

stylus 

Multi-touch Not Supported Not Supported Not Supported Not Supported Not Supported Supported 

Multi-touch 
Gesture 

Not Supported Not Supported Not Supported Not Supported Not Supported Supported 

Navigation 
Through mouse 

gestures 

Through 
different 

combinations of 
stylus gestures 

unknown 

Through stylus 
with physical 
buttons and 

gestures 

Through GUI 
button and 

stylus 

Through 
conventional  
multi-touch 

gestures 

NURBS Surface Not Supported Not Supported Not Supported 
Use gestures in 
enclosed curves 

Automatically 
inferred from 
sketch lines 

Not Supported 

Stylus Gesture 
For creating 
various 3D 
geometries 

For editing 3D 
geometries and 

navigations 
Not Supported 

For navigation, 
constraints, 

Not Supported 
Mainly for 
assigning 
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delete, and 
other purposes 

constraints and 
deleting 

2D Constraints 
(right angle, 
same length, 

etc…) 

Not Supported Not Supported Not Supported Not Supported Not Supported 
Through stylus 

gestures 

3D Constraints 
(on surface, 
touch, align, 

etc.…) 

Constraints 
through auto 
inferencing or 
gestures when 

sketching 

Basic constraints 
(e.g. on surface) 

through auto 
inferencing 

when sketching 

Not Supported 

Through 
gestures for 

surface 
constraints 

Not Supported 

Constraints 
through auto 
inferencing 

when sketching 

Operation 
Behind Objects 

Not Supported Not Supported Not Supported 
Operating on 

surfaces 

Not Supported 
after the 3D 

shape is inferred 

Automatically 
inferred through 

contexts  

Parametric Lines Not Supported Not Supported Not Supported Supported Supported Supported 

Parametric 3D 
Shapes 

Basic primitives Not Supported Not Supported Not Supported Not Supported 

Solid geometries 
in common solid 

modeling 
programs 

Relationships 
between 2D/3D 

Shapes 
Not Supported Not Supported Not Supported Not Supported Not Supported 

Contain, 
connect, and 

other topological 
relationships 

between shapes 

 

Table 7.2 shows the major features supported by different sketch programs. The recent sketch to 

3D research prototypes focus on creating 3D geometries automatically from 2D sketching lines, e.g. 

ILoveSketch (Bae et al. 2007) and True2Form (Xu et al. 2014). While these prototypes enable users to 

rapidly create new geometries and easily edit exsiting geometries through over-sketching, they miss 

the functionalities of inferring the geometrical relationships, which are important for interoperability 

in the early stages of design. The earlier prototypes, such as SKETCH (Zelznik 1996), infer many 3D 

constraints through many different sketch gestures, which requires some learning curves. They do 

not employ natural sketch techniques, such as over-sketching, to avoid disrupting designers’ 

workflows. More importantly, they only adopt simple constraints for interaction purposes, instead of 

inferring the relationships between geometries for the parts that users are specifying. SolidSketch 

incorporates the important features of both sketch prototypes and CAD programs. It enables the 

creations of geometries and topologies from sketches, stylus gestures, multi-touch gestures, and 

automatic inferences. This information can be used for basic building information exchange and 

generative design purposes for subsequent stages of design. However, at this moment, SolidSketch 

Table 7.2 continued 
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does not support the NURBs surfaces that are supported by ILoveSketch and True2Form. In the next 

section, we will examine the interoperability between SolidSketch and the most popular BIM 

programs. 

7.2 Design of the Case Study 

Table 7.3: The participants of the case study and their brief information 

ID Name Age Gender Education Sketch Skill CAD Skill 

P1 Tommy 39 Male College Medium High 

P2 Linda 39 Female Master Medium High 

P3 John 32 Male Master High Medium 

P4 Robert 23 Male Master Medium High 

 

We invited four architecture designers and students with advanced architecture degrees to test 

SolidSketch. The age range of the subjects was between 23 to 39 years old, with one female and 

three males. As shown in Table 7.3, the three male participants were P1 - Tommy (39), P3 - John (32), 

and P4 - Robert (23), while the female participant was P2 - Linda (39). Because we placed the UI 

panels on the left side of the system for the non-dominant hand to use, we only selected right-

handed subjects when we recruited the participants. We conducted the experiments in an office 

space where there was no interference during the session. This experiment consisted of three parts:  

a preliminary questionnaire, a test with SolidSketch on a prescribed design task, and a follow-up 

questionnaire with a semi-structured interview session. After background information had been 

collected, we provided the participants with a list of features as shown in Appendix A-1. The 

experimenter reviewed the features one at a time and demonstrated the interactions to the 

participants before they tried the same feature by themselves. After the training, the subjects read 

the instructions of the experimental tasks. During the study, each participant was asked to design and 

build a model of a house within 50 minutes according to the program of a simple house. During the 

training and experiment session, the subjects were free to ask any questions about the function of 
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SolidSketch. Figure 7.1 shows the proposed site of the house.  A description of the program is 

provided as follows: 

Professor C is a new Georgia Tech professor in the School of Architecture. He just bought a piece 

of land located in the Midtown neighborhood and would like to hire an architect to design and 

build a house for starting a new life in Atlanta. The site is roughly 55 feet by 145 feet with the 

longer side facing north and south as shown in Figure 7.1. The east side of the site has a few 

beautiful trees and a pond that he would like to retain as a garden. He will need a living room 

area, a dining space, a kitchen, an office, and four bedrooms including a guest room.  

 

Figure 7.1: The selected site for the task 

The goal is to answer the second research question: “How does the combination of direct input 

and real-time feedback of sketch interactions with the power of BIM affect the early stage of design? 

Does it facilitate a rapid, flexible, and iterative design process?” In particular, we would like to 

understand how designers are using the tool, whether they have similar or different behaviors as 

compared with traditional tools, and why these differences exist. Also, we would like to know what 

we can improve in terms of software performance and interaction design. 
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To answer these questions, we created an add-on program to SolidSketch that can log all of the 

interaction data while the participants are interacting with it. There are four types of logged data: (1) 

timestamp, (2) interaction event name, (3) location, and (4) other information. We have the following 

three categories regarding the interaction event name category: (1) touch input events, e.g. “touch 

down”, “touch up”, and “touch move”; (2) stylus events, e.g. “stylus in range”, “stylus in air move”, 

“stylus down”, “stylus move”, and “stylus up”; and (3) gesture events, e.g. “tap gesture”, “scratch 

gesture”, “right angle gesture”, and “lasso gesture”. According to these logged events, we can derive 

different useful information to analyze the participants’ behaviors. For instance, we can compute the 

speed of movements when they use the stylus to sketch a shape or perform a gesture. We also know 

the count of the individual gestures they are using while completing a given task. 

 

Figure 7.2: The view from the camera that records the participant’s actions during the experiment 

To understand the participant’s interactions with the tool in real time, we set up a camera that 

recorded the entire sessions while the participants were performing the tasks. Figure 7.2 shows the 

view in which we targeted the camera at the participant’s hands and their workspace, including the 

tablet and papers with information about the architectural program. To collect interaction details, we 

also performed screen recording during the sessions. Using an inductive qualitative data analysis 
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method called Grounded Theory (Adams, Lunt, & Cairns, 2008), we are able to conceptualize the 

behavior patterns and understand the reason behind these behaviors using a coding scheme, which 

includes the basic commands that participants used to finish the tasks, and other actions we 

observed during the experiment sessions. This initial coding scheme included three categories: (A) 

stylus actions, (B) multi-touch actions, and (C) UI button presses. According to these basic codes, the 

experimenter iteratively added and edited codes while observing the videos when new or different 

actions were found. When the experimenter reviewed the videos, we marked the starting and ending 

time of specific actions to yield the timestamp and duration of the action. The experimenter 

reviewed these two types of videos several times to ensure that all of the codes were applied 

integrally among the participants. 

Table 7.4 shows the final version of the coding scheme used in this case study of design tasks 

using SolidSketch. In addition to the first three categories mentioned in the previous section, we 

added the category D, “On Paper”, with the codes “QuickSketching” (D.a) and “Reading” (D.b). The 

code (D.a) represents freehand sketching activities on the provided piece of paper, while (D.b) 

represents actions when participants checked the given program on the paper during the design task. 

We also added “FaseStylusCommand” (A.g-1) and “FalseMultiTouchCommand” (B.c-1) that record 

the interaction errors when participants performed wrong actions during the tasks. For instance, 

during the task, Linda tried to pinch to zoom the view with two fingers on each hand instead of only 

one hand and confused the system. We coded this event with two codes: (B.c-1) and (B.a-3). In 

addition, we found that users moved their hands in the air to simulate the actions and locations of 

drawing before they actually drew the object. We coded these two events as (A.f-1) “InAirMoving.” 

Finally, we also observed that participants would physically rotate the tablet to make it easier for 

drawing. These actions are coded as “AdjustTablet” (B.a-5) as shown in Table 7.4. 
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Table 7.4: The final code scheme used to record the participants’ actions 
Action Category Sub-Category Code 

A. Stylus 

a. Freehand Sketch 1. Sketch On Tablet 

b. 2D Shape Creation 

1. CreateShape 

2. AddHole 

3. OffsetProfile 

c. Shape Modification 1. ModifyShape 

d. 3D Shape Creation  

1. ExtrudeShape 

2. CreateWall 

3. CreateHole 

e. Gesture 

1. Delete 

2. Lasso 

3. Click 

4. RightAngle 

5. SameLength 

f. In Air Actions 
1. InAirMoving 

2. Deciding 

g. Others 
1. FalseStylusCommand 

2. CreateArray 

B. Multi-Touch 

a. Navigation 

1. Orbit 

2. Pan 

3. Zoom 

4. TouchWidget 

5. AdjustTablet 

b. Shape Manipulation 

1. MoveShape 

2. CopyShape 

3. RotateShape 

4. TouchShape 

5. AdjustArray 

c. Others 1. FalseMultitouchCommand 

C. UI Button 
a. Undo/Redo 

b. SwitchMode 

D. On Paper 

a. 2DSketching 

b. 3DSketching 

c. Reading 

d. InAirMoving 

 
After the participants had finished the design task, we gave them a set of questions including 

NASA TLX (Hart & Staveland, 1988), Creativity Support Index (Cherry & Latulipe, 2014), and our own 

specific questions with Likert scales to understand their experience using the tool. We also conducted 

a semi-structured interview to acquire more qualitative data. Please refer to Appendix A-2 for details 

about the materials we used during the post-experiment sessions. We will report the analysis of this 

quantitative and qualitative information in the following sections. 

7.3 Data Analysis from Recorded Videos 

In Chapters 1 and 2, we argued that the conventional CAD tools do not adequately support the 

early stage of design according to many previous studies. We also posited that by providing direct 
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and continuous feedback during interactions, users would be able to employ the tool for tasks in the 

early stage of design. Through coding the actions in the recorded videos, we collected 835 excerpts 

from the four participants. Each excerpt lasts approximately 4.1 seconds on average. As shown in 

Table 7.5, based on the purpose of the actions, we group the codes into six categories: “Content 

Creation”, “Modification”, Navigation”, “In Air Action”, “Freehand Sketch”, and “False Command”. 

Figure 7.3 shows the bar charts of stacking the sum and average durations of different codes 

according to their categories during the experiment sessions. In general, the participants spent most 

time on “Content Creation”, “Modification”, and “Navigations” during the experiment sessions.  The 

first three participants also spent time on freehand sketching, while the last participants only used 

4.7% of his activity duration in freehand sketching. The following sections describe the analysis of the 

interaction behaviors observed in the video. 

Table 7.5: Six categories of activities used to categorize participants’ actions 

Activity Categories Codes 
Content Creation 2D Shape Creation (A.b-*), 3D Shape Creation (A.d-*), Create Array(A.g.2) 

Modification ModifyShape (A.c-1), StylusGestures(A.e-*), ShapeManipulation (B.b-*), 
Undo/Redo (C.a) 

Navigation Navigation (B.a-*) 

In Air Action InAirActions (A.f-*), InAirMoving(D.d) 

Freehand Sketch Sketch on Tablet (A.a-1), 2D Sketch on Paper (D.a), 3D Sketch on Paper (D.b) 

False Command FalseStylusCommand (A.g-1), FalseMultiTouchCommand (B.c-1) 
 

 

 
Total activity duration: 891.7 second 
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Figure 7.3: The total and average duration of the selected actions observed in the video recordings. This graph is 

sorted by the total duration of observed behavior category. 

 
Total activity duration: 891.7 second 

 

 
Total activity duration: 757.5 second 

 
Total activity duration: 757.5 second 
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7.3.1 The Interaction Sequences Observed from Recorded Videos 

As shown in Figure 7.3, all four participants spent large portions of time (Tommy: 17.6%, Linda: 

19.8%, John: 36.2%, Robert: 39.1%) navigating around the 3D environment. Through observing the 

videos, we found that a typical interaction sequence starts and ends with navigation. Navigation 

through multi-touch interactions served a critical role throughout all of the experiment sessions. At 

the beginning of an interaction sequence, the participants used navigation (e.g. Pan, Zoom, Orbit, 

Touch Widget) to find a suitable view and opportunities for adding or modifying geometries on the 

desired locations. At the end of a sequence, they used navigation to inspect whether the new 

creations met their desired design intents. All four participants used their fingers to navigate the view 

to make the environment easier for content creation. During navigation, all four participants were 

able to use a combination of two fingers to pinch to zoom and pan the view simultaneously.  

However, the participants sometimes accidently touched on the existing geometry when performing 

the multi-touch gestures, labeled as “False Command” in red bars in Figure 7.3, which resulted in 

incorrect interpretations from the system. For instance, while Linda paid attention to the right side of 

the canvas, she tried to use her left hand to zoom the view and accidently touched the existing 

shapes on the other side. This caused the system to copy the shape instead of zooming the view. We 

also found that subjects sometimes rotated the tablet physically to orient the view similar to what 

the designers would do to a piece of paper. 

After they found the perfect view for sketching, they may have started to move their hands while 

holding the stylus to simulate the desired sketching line or the spatial configurations in their mind.  

These events were coded as “In Air Moving”. These actions were observed in the first three 

participants (especially Tommy and Linda) but not Robert. In air movements were performed before 

actions, such as the “Freehand Sketch”, “Create Shape”, “Create Wall”, or “Extrude” actions. These 
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actions demonstrate that the sketch interactions may encourage embodied motions to simulate the 

lines they are going to draw in the air during design thinking. 

 

Figure 7.4: An interaction sequence starts and ends with navigation activities with different activities between 
navigations. Boxes with dashed outlines represent the activities that are not observed in every sequence.  

Immediately after these motion simulations, as shown in Figure 7.4, we observed two main 

categories of activities in video coding: “Freehand Sketch”, either on paper or on the tablet, and 

“Content Creation”, e.g. “Create Shape” (A.2-1) and “Create Wall” (A.d-2). As shown in Figure 7.3, the 

“Content Creation” (Tommy: 39%, Linda: 26.0%, John: 20.2%, and Robert: 30.4%) and “Modification” 

(Tommy: 23.2%, Linda: 18.6%, John: 19.8%, and Robert: 22.6%) events formed approximately 40% to 

50% of action durations during the experiment sessions. Linda sometimes stopped her stylus for a 

few seconds in the air (purple bar in Figure 7.3), coded as “Deciding” (A.f-2), before she put down the 

pen to create the shapes.  

Robert had a different interaction pattern than the rest of the participants. He never used 

freehand sketching to study the design nor performed “In Air Moving” (A.f-*) to facilitate design 

thinking. Instead, he used navigations, e.g. zoom (B.a-3) or orbit (B.a-1), between different view 

angles to examine his designs while using “Create Wall” (A.d-2) for studying spatial configurations.  

As shown in Figure 7.5, he found that he could use the existing wall for other interior walls in a 

different view angle (Figure 7.5-2). Thus, he zoomed in to copy the existing wall and move to the 

desired location (Figure 7.5-4), and then finished the interior configuration with the wall (Figure 7.5-

6). Similar behaviors were also observed in the rest of the participants after they had stopped using 
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freehand sketching and employed the “Create Wall” (A.d-2) or “Create Shape” (A.b-1) features to 

study their designs. 

 

Figure 7.5: (1) Robert created an interior wall in the middle of the canvas. (2) He found out that he can use an existing 
wall for the wall he just created. (3) He deleted the wall he just drew. (4) He zoomed in and copied the wall. (5) He moved 

to the desired location and drew another interior wall. (6) He used the wall for other three rooms. 

After they had created the geometry, the participants would try to delete (e.g. 7.5-2), modify, or 

undo the creation. The videos showed that the participants tended to use the scratch gesture to 

delete creations much more often if they wanted to modify the design (e.g. 7.5-2), while users 

tended to click on the Undo button when the system produced bad recognitions (e.g. error 

recognitions on scratch gestures). When the participants found that the created geometries could 

not satisfy their design intents, they would use “Modification” commands to change the shape. These 

“Modification” and “Content Creation” commands were sometimes iterative without the changes of 

viewpoints. Figure 7.4 illustrates these sequences in chronological order. 

By analyzing the recorded videos, we found that these interaction sequences mainly served the 

following three purposes during the experiment: (1) studying and exploring spatial configurations, (2) 

studying 3D forms, and (3) constructing and editing for precise design drawings.  While the first three 

participants started from the first purpose and then gradually learned to integrate it with “studying 

3D forms”, participant 4 mixed the first two purposes together while using SolidSketch during the 
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experiment. From the video observations, we found different behavior patterns for each purpose 

during the experiments. The following sections describe the behavior patterns for each purpose. 

7.3.2 Exploring Spatial Configurations 

 
Figure 7.6: Participants 1 to 3 start the design task by quickly sketching out the floor plans for study. 

Exploring spatial configurations, such as studying the locations of different rooms, is a typical task 

in the early stage of design. Designers gradually define design constraints through sketch. All four 

participants were able to use the tool for sketching 2D lines when studying their design. As shown in 

Figure 7.6, the first three participants would sketch floor plans to study the spatial configurations.  

They sometimes used “Create Shapes” (A.b-1) and “Create Wall” (A.d-2) to study the floor plans after 

they had stopped using freehand sketch. Since the participants could employ these tools to sketch 

the geometries quickly, they were able to use these geometries to study layout and circulations. 

Shown in Figure 7.5, Robert, in particular, used the “Create Wall” (A.d-2) tool while studying floor 

plans from beginning without freehand sketch. Thus, the results of the video coding are significantly 

different when comparing with the first three participants. 

The solid red lines in Figure 7.7 represent the running totals of the activity category “Freehand 

Sketch”. The solid red lines from the first three participants show that “Freehand Sketch” activities 

were gradually diminished as they learned to use other tools from the system during the study 

session, while the line from the fourth participant shows approximately the same rate of using 
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freehand sketch. It is common for designers to start with sketches to explore design constraints and 

generate new design ideas. While they gradually reduced the actions of freehand sketching, they 

used the actions in the “Content Creation” category to study the design further, including 

“CreateShape” (A.b-1), “CreateWall” (A.d-2), and “ExtrudeShape” (A.d-1). As we found in the video, 

in addition to exploring spatial configurations (e.g. Figure 7.5), participants also used these tools for 

studying the 3D forms of the building, which will be described in the following section. 

 

Figure 7.7: The unit of X axis is second. The unit of Y axis is minute. The solid red lines represent the actual running 
total of duration (in seconds) while the participants use freehand sketch to study spatial configurations during the 

experiment sessions.  The dashed lines represent the fitted curve to the solid red lines.  The equations of the dashed 
curve lines are on the top of each chart. 

7.3.3 Studying the Forms of the Building   
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With the exception of participant 4, the first three participants started to study the forms of the 

building toward the end of their freehand sketch session, typically no later than the midpoint of the 

experiment sessions. While studying forms, the first three participants dramatically increased the 

uses of the 2D/3D shape creation tools that SolidSketch provides. For instance, as shown in Figure 

7.9, the blue line and light green line of Tommy’s chart indicate the increasing uses of “CreateShape” 

(A.b-1) and “CreateWall” (A.d-2) at around 12 minutes and 22 minutes, respectively, of his 48-minute 

study session.  The blue line and light green line of Linda’s chart indicate her increasing uses of 

“CreateShape” (A.b-1) and “CreateWall” (A.d-2) at around 16 minutes and 8 minutes of her 30-

minute study session.  The blue line and light green line of John’s chart indicate the increasing uses of 

“CreateShape” (A.b-1) and “CreateWall” (A.d-2) at around 6 minutes and 10 minutes of his 29-minute 

study session. 

 

Figure 7.8: Participant 1 (Tommy) studied the floor plan again after he has done some freehand sketch at 25 minute 
of his study session. The red scribble line shows he tried to delete one of the wall and redraw it. 

These frequent uses of geometry creation through sketch also boost the usage of employing 

scratching gestures for deletion or over-sketching for modifications of the geometries. For instance, 

as shown in the orange line of Figure 7.9, since Tommy needs to ensure that the walls are drawn at 

the right location and will not cause any additional design issues, he either used scratch gestures to 



118 

delete (A.e-1) and then redraw the wall (A.d-2), or used the shape modification (A.c-1) to modify the 

existing shapes at around 22 minutes into his study session. Figure 7.8 shows that Tommy created 

several walls and used the scratch gesture to delete one of the walls that was not fit into his design 

intents at 25 minutes into his study session. 

 
Figure 7.9: The running sum of the duration throughout the entire study. The gray dashed lines in Participant 1~3 

indicate the time when they stopped using freehand sketch. 

Similarly, as mentioned previously, Figure 7.9 shows that the usages of “CreateShape” (A.b-1) 

and “CreateWall” (A.d-2) are increased in Linda’s and John’s activities when they are reducing the 
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uses of “Freehand Sketch”. We found that the participants used these “Content Creation” tools 

instead of “Freehand Sketch” (both on paper and in SolidSketch) to study the spatial configurations 

once they became familiar with the tools according to the recorded video. As shown in Figure 7.10, 

even though we provided the undo and clean buttons for the participants to conveniently reverse 

their designs, they tended to use scratch gestures much more often (blue bars in Figure 7.10) than 

these two UI buttons (orange bars in Figure 7.10) when trying to reverse their designs.  The 

participants may use the undo button to reverse the state and redraw it typically in the case of wrong 

recognition results from the system (~77% of the time6). If they were in the flow of designing and 

exploring the geometries, they typically just used scratch gestures. 

 

Figure 7.10: The count of using scratching gesture to delete the geometries and undo/redo to reverse the recent 
creation of geometries. 

Participant 4, Robert, had a different behavior pattern in this case study. He was the youngest 

participant in the study and had good skills of using CAD according to the prequestionnaire survey. In 

                                                           

6 We considered the events when the participants had encountered wrong recognition commands within 5 

seconds prior to hitting the undo button. 
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the 25 minutes of his training session, he ensured that he knew how to use every facet of the 

system’s features through trial and error. He was the only participant who constantly used two hands 

to interact with the system. He was also the only participant who created holes as openings in the 

experiment session. He directly used “Content Creation” features provided by the system much more 

often than the other participants during his exploration of the designs without using “Freehand 

Sketch”. During design exploration, he constantly orbited and zoomed the canvas in different 

viewpoints to create shapes and made sure that his designs fulfilled the needs of both spatial layouts 

and 3D forms. Thus, there was no significant time period when he used particular features of the 

system. As shown in Figure 7.9, the running total of the durations for each category are increased 

equally throughout the experiment session. 

7.3.4 Creating Precise Designs 

While the system was not built for supporting designs with high precision, we still found that all 

four subjects tried to use the tool to create accurate designs. These attempts caused some 

frustration from the participants. According to the modification bars in Figure 7.3, the participants 

spent some time modifying their designs (Tommy: 23.2%, Linda: 18.6%, John: 19.8%, and Robert: 

22.6%). There are two explanations for these modification attempts:  

(1) The participants tried to explore different design possibilities through modifications. 

(2) The system was not able to fully support what they were trying to create. 

Through video observations, we found that participants often used over-sketching to modify 

shapes when studying the spatial configurations and forms of the building. During over-sketching, 

participants sometimes felt frustrated when trying to convey a shape with precise dimensions to the 

system. Another source of frustration came from attempting to draw a perfectly straight line 

between two points as observed in the video, since they tried to start and end right at the grid plane.  

These actions usually happened at the beginning or at the end of using the system. When they 
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started to use SolidSketch, it is likely that participants applied their previous experiences of using 

conventional CAD systems to the study sessions. As shown in Figure 7.11, Tommy, in particular, 

began to draw the first few shapes with very slow movements to trace the gridlines on the canvas to 

produce an orthogonal polygon. When the recognition results did not match what he had expected, 

he modified the shapes with very slow movements once again. At the end of the experiment session, 

we found that all four participants tried to crystalize their ideas by creating more precise models. 

While creating a precise model, they sometimes used the scratch gesture to delete existing shapes 

and redraw them, or they might over-sketch to correct original shapes. 

 
Figure 7.11: The orthogonal shape Tommy created at the beginning of the study session. 

7.4 Semi-Structured Interviews 

Here, we report the findings from the semi-structured interviews following every regular 

experiment session. In general, the participants intuitively grasped the technological bridge between 

physical sketching and digital 3D modeling in SolidSketch. Initially, the participants tended to use 

their prior experiences of using conventional CAD tools when using SolidSketch. P2 stated, “I started 

adding stuff, and then I started realizing, I can be more creative, because earlier I just think of steps”. 

As they used SolidSketch, the participants gradually became aware of the increased freedom and 

flexibility it offered and thus gradually reduced their extent of freehand sketching. Two participants 

(Tommy and Linda) explicitly noted the lack of flexibility in popular modern CAD programs, such as 
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SolidWorks and SketchUp, compared with SolidSketch. Tommy stated, “I’m not a big fan of 

SolidWorks….it’s a great tool, but I don’t have much freedom...I feel exhausted after working in 

Solidworks both physically and mentally.” Linda noted that “… even if I do SketchUp, that will harm 

me in the long run, double lines... But in this case [SolidSketch], if it’s only just a sketch, it doesn’t 

really matter.” When Tommy compared his experience with SolidSketch interactions with that of 

traditional CAD interactions, he noted that he found it easier to accomplish certain common 

exploratory actions with SolidSketch. In particular, Tommy reported that shape-editing tasks, such as 

joining and modifying shapes, were much more complex in a traditional CAD interface than in 

SolidSketch, saying “Sometimes [shape editing] really requires a lot of tools and a lot of moving of 

vertices and points to make sure things are straight.”  With SolidSketch, conversely, the participant 

“wasn’t stressing about making a straight line, or whether I’m going to be this way or that way, in 

SolidSketch you just select these two and you make relatively quickly ‘right angle’ and ‘same sides’ 

[gestures].”   

John noted that he felt more engaged because “it [SolidSketch] respected your unique line style” 

that he worked hard to craft throughout his years of training as a designer. He explained his view of 

personal sketching line style by saying “It’s kind of like a fingerprint...everyone has their line….that’s 

what I find most interesting from the program [SolidSketch]...that’s what keeps you engaged.” The 

“organic feel” of the lines offered by sketch-based shape editing was exciting to John and increased 

his engagement with the tool. Overall, designers were excited about the possibility of integrating 

their physical sketching practices into the digital realm by using SolidSketch and provided many 

interesting ideas for extending SolidSketch in the future. 

As described in the previous sections, we found behavioral differences between the first three 

participants and the fourth participant. The first three participants thought in 2D when exploring the 

design possibilities instead of 3D, while Robert rarely used “Freehand Sketch” prior to the uses of 3D 
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geometry creation features. In the version we used for the study sessions, we did not include 

freehand sketch mode in the system. Thus, Tommy reported that “I think it would be easier if you 

think in a 2D way, and then be able to make it 3D, otherwise I have to think about how will I make 

this, rather than ...oh I have a sketch, let me make it 3D”. Linda also suggested that we could add a 

sketch mode without any recognition from SolidSketch. Based on these comments, we have added a 

freehand sketch mode in SolidSketch as shown in Figure 4.4 that enables users to quickly sketch out 

their ideas without any interpretation in the system. On the other hand, Robert sketched naturally to 

create geometries in 3D spaces. He said “I thought it was very nice for sort of quick sketch that is 

something in 3D and just making a shape for the sake of that. That was really nice. I felt good 

response to it.” 

7.5 Results and Discussion 

Figure 7.12 shows that the subjects were able to design a building within the 50-minute time 

frame. During the experimental task, the four subjects used the tools of SolidSketch differently.  

Some participants, especially Tommy and Linda, initially treated it as a conventional CAD program but 

later became aware of the flexibilities that the sketch interactions provided. For instance, they tried 

to maintain good practices to the extent possible in the model since they had previously created 

high-quality models using conventional CAD programs. In addition to the precision mentioned in the 

previous sections, Linda also described that she tried to avoid multiple lines stacking together. 

However, all of the subjects were eventually able to use this program as an exploration tool. Tommy, 

John, and Robert even tried to experiment with the layout of the floor plans directly on the canvas 

using the “Create Wall” tool (A.d-2). As shown in the drawing in the upper right corner of Figure 7.12, 

Linda draws 2D sketches lines first, and then uses the “Create Wall” tool to trace those lines and 

draw walls on top of it. The follow-up interview provided more details about how participants 
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designed the house with SolidSketch and corroborated the findings, e.g. interaction sequences, 

usages of freehand sketch, and embodied thinking, developed through the logged data and video 

coding. As shown in Figure 7.12, the participants were able to create meaningful 3D models within 50 

minutes (Tommy: 48 minutes, Linda: 30 minutes, John: 29 minutes, and Robert: 50 minutes). While 

creating the models, they were not aware that they were embedding parametric or basic semantic 

information simultaneously. 

 

Figure 7.12: Designs of simple houses using SolidSketch from the four professional participants 

7.6 Summary of the Dissertation 

We started this dissertation by asking the following three questions:  

(1) How can we combine the direct input and real-time feedback in sketch interaction with the 

computational power of BIM in one tool?  
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(2) How does this combination affect the early stage of design? Does it facilitate a rapid, flexible, 

and iterative design process? 

(3) What techniques could be used to disambiguate sketch input in the 3D environment? How can 

we create parametric geometries and relationships between geometries through sketch/multi-

touch interactions? 

To answer the first question, we started our investigations by asking the following two questions: 

(1) how can we create a design tool that can fit into the modern design workflow that adopts BIM 

tools in the later stage of design? And (2) what are the most important aspects in the traditional 

design tools, such as pen and paper? To answer the first question, we discussed the importance of 

interoperability in the first part of Chapter 2, and used Concept Design BIM 2010 (CDB10) as a 

starting point for our use case. To answer the second question, we first reviewed the modern 

cognitive theories, including distributed cognition, situated actions, and embodiment. These modern 

cognitive theories suggest that direct and continuous interactions are critical to the early stage of 

design when designers need to take the design constraints and emerging ideas into account for 

solving ill-defined problems. We then created sketch and multi-touch interactions that provide 

continuous feedback, including generating geometries from a “prototype template”, while the user is 

moving his stylus. 

How does this combination affect the early stages of design? The results of the study and 

comparisons earlier in this chapter show evidence that the experiences of using SolidSketch were 

close to experiences with traditional design tools. In other words, SolidSketch offers rapid design 

creation, provides a flexible environment for manipulating geometries, and supports iterative design 

processes as shown in the first three rows of Table 7.6. Table 7.1 shows that SolidSketch requires 

fewer steps for modifying the 2D and 3D geometries than conventional CAD systems, and about the 

same steps comparing to other sketch prototypes. The case study further shows that the participants 



126 

can rapidly complete design tasks within an hour. Sections 7.3.2 and 7.3.3 reveal further details of 

how users are able to quickly change the drawings based on their emerging ideas, including the 

example shown in Figure 7.5. The interaction sequences discussed in Section 7.3.1 show that users 

can iteratively change their designs and geometries. The duration of using freehand sketches are 

generally reduced over time during the study sessions, while the durations of using features provided 

from SolidSketch in the category “Content Creation” increase. The participants used the system tools 

that continuously generate the geometries and change the viewpoints to validate layouts of the floor 

plans as well as studying 3D forms. Based on the suggestions from the participants, we have included 

the freehand sketch mode in the system to help designers sketch out their ideas freely in 3D spaces 

in a way similar to traditional sketching. 

Table 7.6: SolidSketch in the criteria from Table 2.1 

Criteria SolidSketch 

1. Low-Cost and Rapid Design 

Process 

1. Users draw lines without thinking what commands they need to execute 

2. SolidSketch recognizes segments automatically 

3. Users employ their fingers to directly control the viewpoints and manipulate the shapes 

4. Freehand sketch mode for quick idea explorations 

2. Flexible and Iterative 

Design Process 

1. SolidSketch enables over-sketch to modify both polylines and polygons 

2. Users can stay in the flow while using sketch and multi-touch interactions; they do not need to 

use GUI buttons to achieve certain tasks 

3. From video observations, users can switch between different modes, e.g. explore functions of 

design while studying the forms of design 

3. Direct and Continuous 

Interactions 

1. Users employ continuous movement to create designs similar to traditional tools instead of 

specifying key points like CAD tools 

2. Users are free to use their hand movements in the air to simulate their emerging ideas 

3. The system tries to continuously generate geometries while users are moving their hands 

4. Constraint Assignment 
1. Users can manually assign constraints by drawing gestures, e.g. right angle, ticks, or lasso. 

2. The system automatically infer some constraints such as on surface and connect to. 

5. Construction of Generative 

Rules 

1. Template composition mode that enables the users to create generative rules 

6. Design Automation 1. Drawing a stroke with a “prototype template” will lead to automatic generation of geometries 

7. Interoperability 1. The system saves the data as IFC format with MVD similar to CDB 2010. 

8. 3D Geometry Creation 

1. Users can create extrusion and swept solid through sketch 

2. Users can specify 3D drawing planes by manipulating axis widget 

3. Users can sketch freely on any surface of the geometries 
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Chapters 5 and 6 introduced ways of inferring users’ intents from the sketch and multi-touch 

interaction signals, and then translating them to 3D geometries and their relationships in machine-

readable data structures. The parameters of the geometries and the relationships among them were 

parsed in the background while users design and create their models. These data can be easily 

mapped to a neutral format, IFC, for other BIM programs, e.g. Revit, to read. The system takes the 

sketch and multi-touch inputs and constructs the data by building up meanings from segmenting 

sketch strokes. Through segmenting a sketch stroke into line and curve segments, the system is able 

to construct precise parametric lines as building blocks of a building model. As shown in Table 7.6-4, 

the system employs the user’s stylus gestures, such as right angle, ticks, and lasso, with automatic 

inferences for creating constraints and geometrical relationships.  

As shown in Table 7.6-5, these constraints and relationships can be used in template composition 

mode for constructing generative rules with operations, which compose the rules similar to those 

used by a generative design system. When using a wall template with windows, such as the one 

shown in Figure 6.12, users can quickly draw a stroke and let the system automatically generate the 

rest of the geometries according to the operations, as pointed out in Table 7.6-6. These walls 

generated from this wall template with object relations, such as “a solid shape on top of another 

solid shape”, can then be used for inferring basic semantic information, such as slabs and openings, 

when creating IFC files that conform to the MVD we simplified from CDB10, as mentioned in Table 

7.6-7. 

However, some issues remain that need to be addressed in the near future. For instance, the 

participants reported that they felt frustrated when they wanted to specify precise drawings. 

Selecting objects behind objects is sometimes frustrating if there are no preset rules such as those 

shown in Figure 5.11. In addition, we only implemented the recognitions of basic building elements in 

the current version of SolidSketch, e.g. slab, wall, roof, and building stories. The current prototype 
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also does not support simulations, such as energy analysis and building circulation analysis. 

Furthermore, the current operations for prototype templates are limited to simple rules. In the next 

chapter, we will present the most important improvements that need to be addressed in the near 

future. 
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Chapter VIII. Future Work 

In the previous chapters, we described the SolidSketch prototype and discussed its strengths and 

weaknesses. We provided evidence that SolidSketch can support design thinking and ensure smooth 

transitions between tools in the early stages of design. The data generated in SolidSketch are 

structured in a way that can be utilized in Building Information Modeling (BIM) software. However, 

the expert users who were selected as study participants have also suggested several directions that 

this research could take in the near future. Also, we can employ more automatic procedures in 

SolidSketch to generate comprehensive semantic data for a variety of purposes. These data 

structures also enable data exchange for further utilization of other software. In this chapter, we 

discuss suggested future work in two main parts: (1) Improving interactions; and (2) Incorporating 

more computational power. 

8.1 Improving Interactions 

Certain frustrations were observed in the case study sessions. By removing these frustrations, we 

can improve the users’ experiences, and thus provide a better system for designers to use in early 

stages of design. For instance, one frustration comes from the wrong recognition of users’ intents. 

While the system takes every facet of a user’s interaction signals into account when making 

decisions, it sometimes also includes a user’s unintended actions. One issue observed during the 

experiments is that the participants sometimes intended to navigate the view, but accidently touch 

the existing geometries, and thus caused other actions, e.g. moving or copying those shapes. We 

think that we can add a vibration feedback for users to be aware that they are touching an existing 

object. There were additional interaction issues observed during the experiments and further 

possibilities of the system by engaging the interactions employed by the system. We will discuss 

them and provide potential solutions in the following paragraphs. 
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8.1.1 Improving Precision in Sketch When Necessary 

One complaint from participants is that they were not able to create precise drawings with exact 

dimensions. For instance, participants sometimes tried to draw a straight line. However, the system 

sometimes recognized the raw stroke as a combination of two line segments. In addition, as 

mentioned in the previous chapter, there are two explanations for participants frequently modifying 

shapes using over-sketching: (1) to explore and iterate designs, and (2) to achieve more precise 

drawings. While participants felt comfortable using over-sketching for exploration, they often felt 

frustrated when trying to make precise drawings similar to what they would achieve in a CAD system. 

As discussed in the previous chapter, we found that participants used SolidSketch to accomplish 

three tasks: (1) exploring spatial configurations, (2) studying 3D forms, and (3) creating precise 

designs. Even though it is not necessary to create precise drawings in the first two tasks, we found 

that participants still required precision for the third task. In the process of developing SolidSketch, 

we recognized this problem and tried to infer the sketch precision settings solely using the speed of 

the stroke. However, findings from an informal study suggest that users may not employ a particular 

speed for different degrees of precision. 

Since these tasks are roughly in the chronological order during the 50 minutes of the testing 

period, the system may be able to predict what tasks they are working on at the moment while using 

SolidSketch to design. According to other contextual information, such as in what region they are 

sketching on the canvas, what other elements are near the current drawing area, and the speed of 

the stroke, the system may be able to find clues and adjust the parameters automatically through 

machine learning classifiers to decide whether users are creating rough and sketchy drawings, or 

precise drawings during recognition. 

We may also be able to use a combination of multi-touch and sketch gestures to solve the 

problem. As proposed by Robert, “It would be just as easy as laying fingers on something (like using 
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combination of touch and stylus)”. In fact, a similar idea has been implemented by the Pen + Touch 

prototype (Hinckley et al., 2010) that enables users to create straight lines. However, since the device 

and software environment we are using for building SolidSketch does not allow simultaneous pen 

and touch inputs, we are not able to create this type of interaction without hacking the device’s 

drivers. 

There were other suggestions from the participants regarding recognizing users’ intentions while 

they were trying to draw precise drawings. For instance, Tommy would have liked to draw round 

corners on certain shapes. It is possible that users can sketch a small arc segment at the corner of the 

shape for the system to recognize it as a round corner. However, we have to carefully design this 

type of interaction and avoid adding too much burden on remembering gesture commands for more 

features. Some participants also requested precise dimensions. We think that we can also employ 

text recognition to achieve this, similar to what other sketch programs do, e.g. SIMI (Johnson et al. 

2012). 

8.1.2 3D Object Selection 

We also found that the participants navigated the views very often during the interactions. We 

have explained the interaction sequences in the previous chapter, which usually start and end with 

touch-based navigations. While we found that navigation is important for exploring other 

opportunities and inspecting designs, we still recognize that users would like to stay in the same view 

while operating on objects situated in the background in the same task, i.e. behind and occluded by 

objects in the foreground. Even though the system enables intelligent filtering through the process of 

checking contexts when users perform a gesture, participants were still frustrated when they were 

trying to perform a simple action, such as selecting an object situated behind another object.  Thus, 

users would need to orbit the view prior to choosing the target object. John suggested, “maybe if 

there was a way to cycle...if I have a geometry here, here...to cycle to pick the geometry...because 
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once it gets more complicated...I have a plane here, a plane here, so I’m not rotating so much to try to 

grab it.” We believe that we should be able to resolve this issue by using multi-touch or sketch 

gestures, such as double-tapping or applying harder pressure on a stacking of objects for enabling the 

selection cycles that John mentioned.  

8.1.3 Embedding More Semantics 

Since SolidSketch knows the topology of the geometries on the canvas, it should be able to infer 

and embed a basic level of semantics on the geometries. At the moment, SolidSketch can infer simple 

building elements from the topologies, such as walls, slabs, and openings. However, more semantic 

recognition should be possible by further leveraging context with topologies. For instance, if users 

define a final product of the geometry as a chair, the system will be able to automatically assign a 

chair body, a backrest, a seat rest, and legs through rule-based algorithms. More complicated 

algorithms could even identify complicated building elements in a model highly accurately (Cantzler, 

2003). The sketched lines from the freehand sketch mode can be used to cross-check uncertain 

semantics of the geometry or add further details to the recognized building elements. For instance, if 

the system has high confidence in recognizing brick-like patterns on a geometry with uncertain 

semantics, the system can set this geometry as a wall. With the size and the shape of the pattern, the 

system could even associate various types of brick wall information with it. In other words, freehand 

sketches and 3D geometries with topological information can provide evidence that help the system 

to recognize the semantics of the model accurately. Once the model contains this type of semantic 

information, we should be able to increase the effectiveness with which the computational powers of 

CAD can be fully integrated into naturalistic sketching interactions. 

8.1.4 Additional Ways to Build Template Modules 
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Figure 8.1: After selecting a two-dimensional template, the user can quickly sketch a closed polygon (left) to 
generate the template floor plan and building (right). 

Currently, we enable a one-dimensional template-building procedure. Once users enter the 

building template mode, they employ multi-touch and sketch actions to interact with the pre-existing 

line on the canvas to create the template with rules and constraints as described in Chapter 4.2. The 

system records these interactions and gradually builds a template that designers can subsequently 

reuse. However, the same design rationale and interaction methods could be applied to two-

dimensional template-building procedures that would enable designers to build their templates to 

create a myriad of floor plans. For instance, as shown in Figure 8.1, a user could create a floor plan 

with a perimeter and core zones. Designers often use this type of building plan to evaluate energy 

consumption at specific locations. Users could quickly create and modify shapes and feed the 

information into a simulation engine to collect data about energy consumption and to study design 

alternatives that address any issues. 

8.2 Incorporating More Computational Powers 

8.2.1 Interoperability 

SolidSketch produces data that include basic building elements such as walls, slabs, and openings. 

It also includes abstract entities such as sites, buildings, and building stories. The semantic properties 
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of these objects are also beneficial for data exchange. As mentioned in Chapter 2, without sufficient 

information in a proper data structure, a CAD or BIM program would not be able to further augment 

an architect’s intellect. For instance, to avoid the sun reflection from a façade, a program must have 

the material information of the façade. To compute the interior physical environment, a program 

must know the materials of the windows and the properties of the walls. This semantic information 

must be rigorously exported according to corresponding MVDs, e.g. CDB10.  

In addition, there are two types of data that are not supported by IFC. The first one is 

comprehensive design constraints that describe the relationships among geometric objects. The 

current IFC schema supports the constraints for later stages of design, such as rebar and reinforced 

concrete to facilitate the communications between different engineering software. Unfortunately, 

the latest version of IFC, IFC4, does not contain a definition of parametric constraints for 2D and 3D 

geometries for exchanging generative rules. 

The second type of data not supported by IFC is the data related to users’ freehand sketches. It is 

possible that we could implement a data exchange for these sketch drawings by attaching bitmap 

files. However, bitmaps only capture a snapshot of the current design drawings. In this way, it is not 

possible to recover the sketch data when users want to exchange the design back and forth between 

SolidSketch and other programs. Since increasingly many designers start their rough sketches on their 

tablets, it is necessary to add new classes of entities in IFC to include these types of data throughout 

the design workflow. To solve these issues, we will need to define our property sets at the moment. 

However, a better approach is to solicit agreements from software vendors and developers so that 

this information can be exchanged properly and seamlessly. 

8.2.2 Simulations 

Accessing the results of simple simulations quickly is critical in the early stages of the design 

process. A designer would be able to modify a design in the early stages before incurring the high 
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costs of design errors discovered in the later stages of the design process. Typically, the results of 

simulation remain unknown until comprehensive geometries and information are constructed in the 

later stages of the design process. This dissertation has presented a promising system that could 

provide such computational power in the early stages of design. SolidSketch provides designers with 

a possibility of seamlessly evaluating their designs with simulations. For example, since the system 

understands relationships between geometries, it could compute emergency plans for a building in 

the near future. If a designer wishes to add rooms or modify floor plans, the system could 

continuously report whether the newly added sketched lines will create problems or violate 

regulations. In addition, the system could incorporate information from the designer’s initial building 

program, such as a business process model or spreadsheets listing building specifications. The system 

could heuristically display contextual hints about whether the designer is following the pre-specified 

information. 

8.3 Conclusion 

The early stages of design dramatically influence the end products of a building. Design errors 

during the early stages of design often incur large costs if they are discovered in the later stages of 

design. If designers can identify a problem as early as possible, they will be able to avoid many 

different issues and lower the costs of these design errors. During the early stages of design, a line 

from the designer’s pen would result in a building object, such as a wall, a slab, or a space, or a design 

intent, such as circulations or views. In this dissertation, we started from the goal of making the 

workflows smoother in the early stages of design and reducing the needs of switching between 

different tools by recognizing the designer’s intents and generating geometries continuously with 

their finger movements to enable a rapid, iterative, and embodied design environment. The design 

data generated in SolidSketch can then be used in other BIM programs, such as Revit. Thus, 
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SolidSketch creates opportunities for designers to trace how the building was designed during the 

early stages. In other words, when designers used SolidSketch for their design explorations, they had 

much more access to how this line would affect the quality of space when it is built.  While many 

researchers have developed tools and standards to extend the building information models in the 

later stages of design to improve the efficiency of building construction, this dissertation addresses a 

gap in the early stages of the design process and enables the possibility of extending building 

information models for design explorations. 
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APPENDIX A Case Study Materials 

1. Training and Tutorial Session 

In this session, the experimenter will conduct a series of tutorials that cover the basic interactions of 

SolidSketch. These tutorials include the following: 

1. Navigation 
Use conventional multi-touch gestures to pan, zoom, and orbit the view  

2. Sketching a 2D shape on a 2D plane 
Sketch a line and a closed polygon 

3. Editing the existing 2D shapes 

Over-sketch on 2D shapes to edit the shape 

4. Defining 2D constraints 

a. Create the same lengths between two line segments 

b. Make right angle constraints on a corner 

c. Trace the existing lines 

5. Extending 1D line segment to 2D shapes 
a. Select short line segments 

b. Hold the button on the stylus while drawing a stroke 

6. Extruding the 2D shape to 3D shapes 

a. Select a closed 2D polygon 

b. Hold the button on the stylus while drawing a stroke 

7. Erasing an existing shape 

Perform a scratch gesture on a shape 

8. Making a hole on a 3D shape 

a. Draw a closed polygon on the surface of a 3D shape 

b. Select the 3D shape 

c. Use scratching gesture to create a hole 

9. Moving and rotating the shape 
a. Drag the shape to move 

b. Hold the axis on one finger and drag on the other to rotate 

10. Creating Booleans between two 3D shapes 

a. Move and rotate a 3D shape to intersect with another 3D shape 

b. Select a 3D shape 

c. Perform scratch gesture on another shape 

11. Defining a new drawing plane through lasso gesture 
a. Perform a lasso gesture on a shape 

b. Tap on the widget 

12. Create an array of shapes 
a. Tap on the array button to change the mode 

b. Select a shape 

c. Hold the stylus button while drawing a stroke 

2. Post-Participation Questionnaire 

1. How mentally demanding was the task? 
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1 

Very Low 

2 3 4 

Neutral 

5 6 7 

Very High 

2. How physically demanding was the task? 

1 

Very Low 

2 3 4 

Neutral 

5 6 7 

Very High 

3. How hurried or rushed was the pace of the task? 

1 

Very Low 

2 3 4 

Neutral 

5 6 7 

Very High 

4. How successful were you in accomplishing what you were asked to do? 

1 

Perfect 

2 3 4 5 6 7 

Failure 

5. How hard did you have to work to accomplish your level of performance? 

1 

Very Low 

2 3 4 

Neutral 

5 6 7 

Very High 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? 

1 

Very Low 

2 3 4 

Neutral 

5 6 7 

Very High 

7. I was satisfied with what I got out of the system or tool 

1 

Highly Disagree 

2 3 4 

Neutral 

5 6 7 

Highly Agree 

8. It was easy for me to explore many different ideas, options, designs or outcomes, 

using this system or tool. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

9. I would be happy to use this system or tool on a regular basis 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

10. I was able to be very creative while doing the activity inside this system 
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1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

11. My attention was fully tuned to the activity, and I forgot about the system or tool 

that I was using. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

12. I enjoyed using this system or tool. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

13. The system or tool was helpful in allowing me to track different ideas, outcomes, 

or possibilities. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

14. What I was able to produce was worth the effort I had to exert to produce it. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

15. The system or tool allowed me to be very expressive. 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

16. I became so absorbed in the activity that I forgot about the system or tool that I was 

using 

1 

Highly Disagree 

2 3 4 5 

Neutral 

6 7 8 9 

Highly Agree 

3. Semi-Structured Interview Questions 

1. What would you change about the sketch-based interface to make your experience better? 

2. What task was most difficult and confusing for you to accomplish? 

3. What task was most enjoyable? 
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4. Did you have any problems remembering how to execute commands in either of the interfaces? 

5. If you have any other comments, please leave them here. Thanks for participating in this 

experiment. 
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APPENDIX B Case Study Results 

1. Trending Models for Selected Data from Video Coding 

1.1 Trending Model for "Sketch" Codes from Participant 1 

P-value: 0.017732 

Equation: Running Sum of Duration = 42.2097*log(Minute) + -24.1265 

 

 

Coefficients  

Term Value StdErr t-value p-value 

log(Minute) 42.2097 5.69675 7.40943 0.017732 

intercept -24.1265 15.3189 -1.57495 0.255944 

 

1.2 Trending Model for "Sketch" Codes from Participant 2 

P-value: 0.027999 

Equation: Running Sum of Duration = 47.4971*log(Minute of End) + -52.4006 

 

Coefficients  

Term Value StdErr t-value p-value 

log(Minute) 47.4971 11.8727 4.00052 0.027999 

intercept -52.4006 26.8224 -1.95361 0.145759 

 

1.3 Trending Model for "Sketch" Codes from Participant 3 

P-value: 0.100352 

Equation: Running Sum of Duration = 51.1686*log(Minute of End) + 145.173 

 

Coefficients  

Term Value StdErr t-value p-value 

log(Minute) 51.1686 17.5597 2.91398 0.100352 

intercept 145.173 22.4104 6.47793 0.0230109 

 

1.4 Trending Model for "Sketch" Codes from Participant 4 

P-value: < 0.0001 

Equation: Running Sum of Duration = 0.764772*Second - 1.76568 

 

 

Coefficients  

Term Value StdErr t-value p-value 

Second 0.764772 0.0370222 20.6571 < 0.0001 

intercept -1.76568 1.2338 -1.43109 0.180194 



142 

2. Semi-Structured Interview Transcripts 

In this section, we report the transcription of the semi-structured interviews. R represents the 

investigator, and P indicates the participants. 

2.1 Session 1 

R: Could you describe what you would change about the sketch-based interactions to 
make the experience better? 

 
P: I think it would be easier if you think in a 2D ways, and then be able to make it 3D; 

otherwise I have to think about how will I make this, rather than.. oh I have a sketch, let 
me make it 3D. 

 
R: So for SolidSketch tool, do you think it’s more 3D-oriented?  
 
P: I think it’s more 3D. 
 
R: There are lots of other sketch to 3D programs problem, I would say that our human 
brain has some 2D elements. 
 
P: Yeah, I think...Let me draw….  
 
R: Ok, so currently SolidSketch assumes those things are holes, but sometimes you don’t 
want them to be holes?  
 
P: Right. Maybe that would be good. 
 
R: Maybe the same interaction? Maybe like you select the shape and scratch that section, 
like you do on 2D.  
 
P: Yeah, that would thinking in a 2D, because this way I think, I have to make 3D first, then 
I have to extrude it, then here I have to draw another one too….You have to kind of pre-
plan in 3D, versus just I have a floor plan like this, and I want to add here, instead of 
maybe building walls, I want to be able to draw this here, and then say, this here is a hole, 
then I scratch that, then I extrude it.  
 
P: Maybe you are able to do it right now...but I had a hard time with it because it was 
maybe, I wasn’t precise enough or something like that.  
 
P: Maybe I’m preplanning too much in 3D. 
 
R: Well...we are trained as architects, we will always preplan something...but we want to 
know what the tool helps to offload that process...What were you saying?  
 
P: I was trying to think more about it.....when I train my students to use 3D max, I train 
them in a way where they have to preplan their actions when they are thinking in 3D, I’m 
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thinking of sketching ideas and all this, I have a preplan, so maybe I approach with that 
here, or...I’m just trying to filter out what was my thought process…. 
 
P: I think I had in mind sketch up...the way that sketch up works….something like this...but 
I thought it was more of a 3D sketching, than from there…. 
 
P: Now SolidWorks….I’m not a big fan of SolidWorks….It’s a great tool, but I don’t have 
much freedom, I feel exhausted after working in SolidWorks both physically and mentally. 
P: I think it (SolidSketch) is a great tool...maybe add a couple interactions like you can 
choose where you can choose ‘inner’ it would be great. I think that is exactly what I had in 
mind.  
 
R: What task was the most difficult?  
 
P: I think it was drawing inner shapes before extrusion… 
 
R: What else?  
 
P: I didn’t think it was hard to use. I think one that is a little harder, I think I would replace 
this [corner], with that [arc]. 
 
R: Ok, yeah, I was originally planning that for another gesture. 
 
P: Ok, I thought that was a little bit tricky, I had to do that several times. I think others were 
pretty easily. 
 
P: The concept looked very fluent and very easy, of course, after tutorial, it doesn’t follow 
exactly. 
 
R: What task was the most enjoyable?  
 
P: I think the one where you have uneven shape, then you are able to join those and it 
gives you….modifier, because sometimes that really requires a lot of tools and a lot of 
moving of vertices and points to make sure things are straight. 
 
R: For the traditional tool?  
 
P: In different tools, in order to make them straight. 
 
R: Like different curvature?  
 
P: To me, it was mostly straightening these lines….I wasn’t stressing about making a 
straight line, or whether I’m going to be this way or that way, but in sketch you just select 
these two and you make relatively quickly ‘right angle’ and ‘same sides’ (relationship 
commands). 

 
2.2 Session 2 

R: What to change?  
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P: Change? I think you showed me 2 or 3 different ways to copy or delete, one or the 

other, and then I was like...oh why is it? Is it copy? That would be kind of confusing… 
 
R: Why?  
 
P: Yeah...because one is lines, and one is actually using two…. 
 
R: Which one is better, in your mind?  
 
P: The line is not really intuitive, but with the two fingers…  I’m not sure...some of it is 

trying to get used to it...Like I know the pen and the rotating and the pens, and zooming, 
all those three, it’s probably going to be used a lot during sketching, but then trying to 
get used to: Is it two hand? Is it pen? Getting my pen out….which you never know until 
you start using it...what takes me longer is what makes me comfortable...I don’t know 
yet...I think it’s what’s the purpose of the sketching, because before you gave me this 
program, I was thinking of this….[pointing to sketching on paper]....Then you gave me 
the program, then I had to switch to thinking about this…. 

 
R: Yeah, because the design is about the form as well as the function…. 
 
P: Yeah, I think if I’m more….because you showed me with the walls...and I could see 

that...I sketched it first then retraced it, that’s the nice thing in my head, because in 
autocad, you can’t retrace….because you have the lines and you retrace it with the 
walls, and we don’t really care… 

 
R: Why don’t we care?  
 
P: In my head, if I create this line, then I need to use that line for the wall. Like it’s an 

AutoCAD thing, you don’t want a double line, like in AutoCAD. I have to be all crash… 
 
R: That is why you didn’t realize this tool could do that?  
 
P: Yeah, because even if I do sketch up, that will harm me in the long run, double lines... 
But in this case, if it’s only just a sketch, it doesn’t really matter… 
 
R: Here is the proposal: if you think there are two models:  

Current program 
Sketch on paper 
 
Would that be more helpful? Or would you still want to sketch on paper then sketch in 
the program?  
 
One combines paper sketching with non-paper, and then there is a switch in the tool.  
Later you could switch to do tracing and model building, is that helpful?  

 
P: Yeah. If it could do this over there. I could see that works. Yeah. Because my problem 

sketching by hands is trying to figure out the autographic things, I keep on going back to 
what actually it would look like if I actually Boolean this with this, but again that is a 
different type of design. I like to work with basic shapes, and have that basic shape 
Boolean and that create new shapes. Other people just create a flow, like a Frank 
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Gehry type of shape, which is also good, because it is going to always intersect with 
other shapes [ambiguity]. If you don’t need to think about that intersection there, then 
that’s good.  

 
R: What is the most difficult task?  

 
P: I mean...if I draw this there, because I was trying to show you, because I am having a 

problem with the tweak….I start with the square, I have a free form, and then oh I am 
going to earlier that house, let’s see if my house is actually on the….I’m going to put 
columns like this, so it’s actually kind of raise, then I start thinking oh...how am I going 
to go down? The z plane? I’m not used to the x/y plane.  

 
….That’s probably it…. 

 
[She is used to sketching in perspective] 

 
...with sketch up….there is an x/y plane…. 

 
P: Oh...and then probably the problem... if it has to be closed or not closed, like those lines 

and those lines, and how, what’s the different, I suppose, if it’s only lines, or if it’s 
already extruded….I mean that’s just I need to learn more because you showed 
me...Oh ok if you already have it extruded, you can still manipulated, but I think you can 
manipulate as long as it’s a closed like…. 

 
Because I think you can add...or...you could change the shapes. You could do that if it’s 
closed.  

 
R: What is the most enjoyable tasks?  
 
P: I think when I did the last one… I started adding stuff, and then I started realizing, I can 

be more creative, because earlier I just think of steps...like how I am going to make this 
tool work...then when we just started doing it, I just added stuff. 

 

2.3 Session 3 

P: I was thinking...if seeing how XML assigned names to geometry...I wish there was a 
setting with just the 3 ones, if it would project on the side, that numerical number it gave 
the geometry.  

 
P: If I draw a wall here and another wall here, then it would project 29 here on the face, 

and tell you the name the XML file. The object name.  
 
R: The object name?  
 
P: Yeah! I find it interesting.  
 
R: Why?  
 
P: I’m attracted to unfinished building. To a construction building 70 percent done. I think 

as a purist. It kind of reminds me of how some starts are named.  
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R: You have an interest in knowing those names?  
 
P: I find it interesting, it’s kind of like a shipping container. 
 
R: Ok...like a barcode?  
 
P: Yeah. A barcode, like a systematic, it’s like AI, like it’s naming it for you.  
 
R: Currently the name for each object looks like this… 
 
P: If there was a name to abbreviate that… 
 
R: Like Wall 1, Wall 2… 
 
P: Yeah...if there was a way to write that… 
 
R: What would you change when you design the sketch interaction?  
 
P: Maybe if there was a way to cycle...if I have a geometry here, here...to cycle to pick the 

geometry...because once it gets more complicated...I have a plane here, a plane here, 
so I’m not rotating so much to try to grab it.. 

 
R: Oh you mean because currently you have to do rotation, but you want a button to go 

around?  
 
P: No just a cycle, like here, here, here, a list to selected items which one you want...it 

would go through all the possible options….sometimes I could see the back of the 
object without rotating… 

 
P: Kind of like in Catea, you just go to the tree...that type of mentality. 

 
P: What else would I change? I should have been taking notes as I was modeling, as 

ideas were coming… 
 
R: As you were doing these models what kind of ideas?  
 
P: Learning how organic my line is….You draw a different line it might look like that...it is 

kind of an amplification of my line style…. 
 
R: For example, you are trying to create a wall; using that prototype wall creation tool, 

would it retain your style of line?  
 
P: I think I would have to make the wall in the first place... What I like about the program is 

that it is a very organic feel because everything is based on your handwriting…it 
respected your unique line styles. I guess... the only person who I think who say no to 
that is someone who doesn’t like their handwriting...your line is going to define how you 
draw….so you can practice your lines…. 

 
R: I remember drawing lines as an architect, trying to draw them beautifully… 
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P: Like an old professor, that has arthritis….that’s his line! It’s kind of like a 
fingerprint...everyone has their line….that’s what I find most interesting from the 
program...that’s what keeps you engaged… 

 
R: What part disengaged you?  
 
P: Being unable to select the geometry quickly...having to rotate...sometimes I have a view 

I like, but it gets the wrong thing...it’s….yeah….and….I think...was there any command 
driven by double tap?  

 
R: I could use those commands…for what?  
 
P: Like, let’s say, once you find your geometry, I have that geometry there, you double tap, 

and it kind of locks in, and it gives emphasis. It isolates…. it will isolate that block. It will 
gray out the rest, but it will...give modeling on...your detailing this block now….double 
tap to get out….back into the main model….and now actually, I want to detail this line. 
So it kind of focuses on the axis and the line, and I guess it’s more of a visualization 
thing…. 

 
2.4 Session 4 

R: Okay, what would you change for that sketch interaction and maybe touch interactions? 
 
P: Hmm...  I'll... 
 
R: If it were you...  You know, how would you design it? 
 
P: Ugh… I think if I were doing more fluid sketches I definitely want an opportunity to be 

able to do something with just a line instead of a closed shape so you can manipulate 
different things with it. And probably for something that's more free like this I would want 
to see a loft and sweep function… 

 
P: …instead of just extrude. Because if you are moving fluidly, I think it would be a little 

more conduce to that. 
 
R: Like that sweep when you are playing generate some varied shapes. 
 
P: Instead of just one lines, you can do each sides. 
 
R: So that's one problem with the geometry generation libraries I'm using; so what if 

there's library right now I'm using so that you are able to control the sweep with two 
lines. You would like to see that happens, right? 

 
P: That would be nice. And maybe some easier control when you draw fabulously versus 

when you get some jaggedness. 
 
R: Sometimes you want... like on and off, basically. I want to draw just a straight line right 

now and I don't want jaggy line. 
 
P: It would be just as easy as laying fingers on something (like using combination of touch 

and stylus)… that would be fine. 
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P: I think it’s pretty easy to change your work plane, but it would be nice to ... sort of 

quicker function. Okay so you want to work back and forwards between two.  
 
R: Oh!! Like switch between. 
 
P: …because that's one of the benefits when you sketch. Because you can draw on your 
plane quickly and move to elevation and go back to plane and maybe some sort of overlay 
so you don't have to change something to see where it is coming from.  
 
R: Okay, what do you mean by overlay? 
 
P: Oh like using trace paper. So you can actually have...   
 
R: So what do you think the most difficult when you are trying to do it? 
 
R: Let's see.... Probably when use sort of editing the existing geometries when you have 

to... say when you are closing and there is a section left over and you have to try to 
delete that. 

 
R: That's the recognition problem actually so that should be solved by a better algorithm. 
 
R: What else... in terms of interaction? 
 
P: Defining a plane is a little bit more difficult. It wasn't accessibly sealed but enough sort 

of messed with the fluidity of sketching. And ugh... it's pretty much it. 
 
R: What was the most enjoyable and most engaging tasks? 
 
P: I really like its and maybe this would be without as much defined tasks for somebody's 

who is doing more formal studies I thought it was very nice for sort of quick sketch that 
is something in 3D and just making a shape for the sage of that. That was really nice.  I 
felt good and good response to it. 

 
R: Did you have any problems remembering the commands? Different commands during 

interactions? 
 
P: Ugh...  I think specifically remembering...  maybe not remembering to select but trying 

to keep track of what was selected and if something I didn't, de-select an object that 
was hard to remember. 

 
R: So do you think if I improve the way visualizing the selection item, it will improve this 

issue?  
 
P: Yeah, I think so. 
 
R: Alright, do you have any more comments?  
 
P: Ugh... I think of that was pretty thorough. As far as what I think about the experience. 
 
P: The hand controls as far as moving around it. It was really good. 
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R: So it was like a part of which is the most enjoyable. 
 
P: Yeah!! 

 
R: Alright!! 
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