
The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

DATA-TO-MUSIC API: REAL-TIME DATA-AGNOSTIC SONIFICATION WITH MUSICAL
STRUCTURE MODELS

Takahiko Tsuchiya and Jason Freeman

Georgia Institute of Technology
Center For Music Technology

840 McMillan St., Atlanta, GA 30318
takahiko@gatech.edu

jason.freeman@gatech.edu

Lee W. Lerner

Georgia Tech Research Institute
Configurable Computing &

Embedded Systems Laboratory
250 14th Street NW, Atlanta, GA 30318

lee.lerner@gatech.edu

ABSTRACT

In sonification methodologies that aim to represent the underly-
ing data accurately, musical or artistic approaches are often dis-
missed as being not transparent, likely to distort the data, not
generalizable, or not reusable for different data types. Scientific
applications for sonification have been, therefore, hesitant to use
approaches guided by artistic aesthetics and musical expressivity.
All sonifications, however, may have musical effects on listeners,
as our trained ears with daily exposure to music tend to naturally
distinguish musical and non-musical sound relationships, such as
harmony, rhythmic stability, or timbral balance. This study pro-
poses to take advantage of the musical effects of sonification in
a systematic manner. Data may be mapped to high-level musi-
cal parameters rather than to one-to-one low-level audio parame-
ters. An approach to create models that encapsulate modulatable
musical structures is proposed in the context of the new DataTo-
Music JavaScript API. The API provides an environment for rapid
development of data-agnostic sonification applications in a web
browser, with a model-based modular musical structure system.
The proposed model system is compared to existing sonification
frameworks as well as music theory and composition models.
Also, issues regarding the distortion of original data, transparency,
and reusability of musical models are discussed.

1. INTRODUCTION

Sonification is a unique research field where many applications
for scientific as well as artistic purposes coexist. Attempts to de-
fine the boundaries and terminologies have been made [1, 2, 3],
with widely varying conclusions. Hermann argues that, for in-
stance, for accurate and scientific display of data, sonification is to
be separated from a musical approach and expressions, as an artis-
tic painting cannot be regarded as a scientific visualization of data
[2].

While this may be true from the perspective of a scientific ap-
proach, the creator of a sonification has to contend with the reali-
ties of musical cognition and perception [4] and the tendencies of
postmodern listening [5].

This work is licensed under Creative Commons Attribution Non
Commercial 4.0 International License. The full terms of the License are
available at http://creativecommons.org/licenses/by-nc/4.0

For example, the use of a continuous or “chromatic” scale of
pitch to represent the data points may sometimes accidentally pro-
duce harmonically consonant sequences, with small integer mul-
tiple relationships, or dissonant harmonies with more distant re-
lationships. Similar concepts may apply to rhythmic alignment,
symmetries in phrases, or timbral balance. With daily exposure to
music, it is difficult to assume that the listeners’ ears are free from
such musical perceptions.

This study of a generalized musical sonification framework,
and the development of an API1, explores if it is possible, instead,
to utilize these musical effects, theories, techniques, and multi-
dimensional structures in data sonification. Musical structures, as
long-established forms of “organized sound” [6], have an ability
to convey a multitude of information to listeners in a quick and
intuitive manner with their hierarchical layers. On the other hand,
their complex multi-dimensional nature also raises issues of trans-
parency of data, as well as difficulty of generalizing sonification
systems for multiple contexts. We hope to address these issues in
the following discussions.

In this article, a new JavaScript web-browser-based API called
DataToMusic (DTM) is presented. The API has been in develop-
ment since the Fall 2014 at the Georgia Tech Center for Music
Technology2. Our main research interest in this API is to en-
able simultaneous experimentation, development and application
of reusable musical structure models for data sonification.

2. RELATED WORK

2.1. Models and Frameworks

There are several existing frameworks for data sonification. Pa-
rameter Mapping Sonification (PMSon) [7] proposes general-
purpose methodologies for data analysis, preprocessing, and sys-
tematic ways of mapping data to audio synthesis parameters.
Model-Based Sonification (MBS) [8, 9, 10] offers a data-agnostic
and highly interactive framework, where virtual acoustic objects
generated from a data set are manually excited by the user. This
method enables users to create models that are “design-once-use-
many”, unlike PMSon that requires a new mapping specification
for each application [8].

In the field of music theory and music technology, various
models and generalized frameworks for converting non-musical

1Application Program Interface
2http://www.gtcmt.gatech.edu/

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 244



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

input to musical outputs have been presented. The late 19th
and 20th century composers, such as Schoenberg, Stockhausen,
Boulez, and others, investigated methods of numerical and prob-
abilistic manipulations of musical structure in serialism [11, 12].
Contemporary music theorists and scientists, including Toussaint
[13, 14] and Tymoczko [15, 16, 17] have also proposed mathemat-
ical models to represent and transform musical elements such as
rhythm and harmony.

With the introduction of modern technologies, composers ex-
plored the possibilities in algorithmic compositions and musical
AI systems [18], with rule-based, knowledge-based, and machine-
learning-based model structures. An example in this area is David
Cope, who proposed models to capture stylistic elements of classi-
cal composers in a comprehensive manner [19]. In a recent sonifi-
cation application, Nikolaidis et al.[20] employed a musical model
which maps the visual data of an aquarium to a high-level “ten-
sion” parameter of music, where hierarchical rhythm, melody and
harmony components were modulated inter-dependently in real-
time.

Approaches to the musical structure models are, therefore, di-
verse and complex. With DTM API, we attempt to implement a
generic and abstract structure for variable data input, which may
potentially integrate the above-mentioned different musical mod-
els for low-level to high-level representation and transformation.
The details of the model implementation are discussed in section
3.3.

2.2. Tool Sets and APIs

There have been a number of attempts in the field to provide
general-purpose libraries and tool-sets for data sonification. Re-
cent examples of such tool sets include Sonification Sandbox [21],
a Java-based cross-platform GUI environment, Interactive Sonifi-
cation Toolkit developed by Pauletto and Hunt [22] in PureData,
and SonART for MacOS [23]. An example of an API is SonData3

[24], a tool set built for Max/MSP. This API employs both of the
previously mentioned sonification frameworks, PMSon and MBS,
as modules.

Many sonification applications are also directly built within
multipurpose environments such as Max/MSP4 and Pure Data5,
and real-time sound synthesis environments such as SuperCol-
lider6 and Csound7. These software environments offer immediate
or real-time feedback during the development of an application.
However, the standalone applications built in such environments
may suffer in portability with limited accessibility for various de-
vices, operating systems, and deployability with installation re-
quirements on the user’s end. It can also be more difficult to reuse
the code, written for specific data sets, in another application with-
out utilizing middle-ware APIs.

It is also worth mentioning data visualization frameworks,
particularly browser-based libraries. Protovis [25] is a high-level
graph building library which provides a set of building blocks and
a system for automatic feature inheritance, scaling and layout in
a graph-like data structure. D3.JS [26], the successor to Protovis,
has become a popular library for web-based visualization develop-
ment. It focuses on dynamic mapping of data to low-level HTML

3http://joaomenezes.net/sondata
4https://cycling74.com/
5http://puredata.info/
6http://supercollider.sourceforge.net/
7http://csound.github.io/

elements, enabling development of a wider range of visualization
models than its predecessor. RAW8 is an application and an API
built on top of D3.JS. It offers a variety of visualization models
that allow the user to quickly map to different data dimensions and
configure model parameters.

These visualization libraries have inspired DTM API to offer
building blocks in the form of array transformation functions, as
well as pre-built instruments that are ready to be used, while offer-
ing modularity and reconfigurability.

3. DATA-TO-MUSIC API

DataToMusic (DTM) API is a library for developing data-agnostic
sonification programs, and also a real-time environment for exper-
imenting with musical structure models. It was chosen to be a
non-GUI-based JavaScript web-browser API for several reasons:

• It may increase the reusability of code, where a GUI-based
development tends to limit the integration of the code into
different applications, due to, for instance, their inflexibility
of code abstraction. (Many objects need to be “visible” or in-
stantiated in order to function.) For a model to be generalized,
it needs to be reusable in different contexts.

• It offers a near-zero-cost deployment for the end user, as long
as modern web-browsers such as Google Chrome or FireFox
are installed. It also makes the application cross-platform in-
cluding mobile devices.

• Developing a browser-based application makes it easier to in-
tegrate to a server application, which may provide streaming
data from another web service or host a central database col-
lecting multiple data inputs. It also makes it possible to eas-
ily integrate with highly-developed visualization libraries for
web browsers, such as D3.JS.

• JavaScript is a dynamic and highly-extensible language which
enables on-the-fly extension of model implementations.

On the other hand, graphical programming languages, such as
Max/MSP, offer the capability of real-time configuration and in-
teractive development with immediate feedback from the system.
This is highly beneficial for developing a real-time audio-based ap-
plication. Although, for JavaScript, Chrome and Firefox offer a de-
veloper console with interactive REPL9 environment, this may not
be sufficient for testing a large-scale application. With text-based
audio synthesis languages, such as SuperCollider, an interactive
coding paradigm often known as livecoding [27] and JustInTime
coding [28] is becoming popular, where part of the code can be
selectively re-evaluated without resetting the whole system. DTM
API also implements an interface for such use scenarios, which is
discussed in a later section.

For its focus on real-time processing of data, along with cur-
rent browsers’ constraints of memory and CPU / thread resources,
DTM API focuses more on symbolic processing of information
than low-level analysis and audio rendering. It enables the de-
veloper to employ high-level musical theories, abstract repre-
sentations and algorithmic sound composition techniques instead
of more prevalent one-to-one and low-level parameter mapping
schemes. This allows the playback of high-density and multi-

8http://raw.densitydesign.org/
9https://developer.chrome.com/devtools/docs/console

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 245



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

dimensional data in musically expressive ways, using WebAudio10

API as the primary audio rendering engine, with relatively low
CPU cost.

In terms of the interface and syntax design, much focus was
put on user accessibility and flexibility. Following the successful
examples of JQuery11 and D3.JS, method chaining, often called the
“fluent interface”12, was chosen as the general style of operations.
A chained method returns the modified object itself and can be
cascaded in sequence, increasing the conciseness and readability
of code, and allowing in-line modification of objects.

DTM API aims to provide a low-floor and simple coding inter-
face for casual users and non-expert developers in the audio or mu-
sic domain. It allows rapid prototyping of applications using the
provided general-purpose musical models. With just a few lines of
code, the user can load data, instantiate a musical instrument, and
map a part of data set to modulate the sound or musical output.

// Asynchronously load or query data from local
or remote location.

dtm.data(’sample.csv’, sonify);

function sonify(data) {
var firstCol = data.get(’col’, 0);
dtm.instr().pitch(firstCol).play();

}

Example 1: DTM Hello World

The mapping of data to the parameters of a musical object
is made particularly simple but flexible. With the default adap-
tive mapping mode, the user can feed an arbitrary data format to
a musical model, with unknown data size, range, and type, then
the model analyzes, rescales and maps the input data to the full
range for effective musical expressions. This system is somewhat
similar to UrMus, a mobile audio programming environment de-
veloped by Essl [29], which enables a simple ad hoc connection
between different function “blocks” without a concern of manual
scaling.

A simple example of adaptive mapping operation in DTM for
a per-note volume modulation model is:

1. If the data type is nominal, convert to a numerical type by
taking a histogram.

2. Perform regression analysis of the curvature of the vector.

3. Apply a logarithmic or exponential curve for linear percep-
tion of dynamics.

4. Rescale the range from 0.1 to 1 for amplitude multiplica-
tion.

These transformation schemes may be modified any time as
the models of musical structure can be recreated on the fly. The
details of model expansion are discussed in a later section.

The automatic scaling to the full input range can be, however,
undesirable when a selected part of data needs to be compared
with another, or there is uncertainty for the incoming data stream,
as suggested by Pauletto [22]. For this, one may pre-normalize the
data according to the known domain value ranges before mapping
(pre-normalized or range-preserved mapping), or choose to do a
literal mapping by manually transforming the array.

10http://webaudio.github.io/web-audio-api/
11http://jquery.com/
12http://martinfowler.com/bliki/FluentInterface.html

TYPE METHODS
Generation fill, clone, reset

Scaling normalize, rescale, fit, stretch, morph,
exp/logCurve, pitchQuantize

Arithmetic abs, hwr, round, add, mult, powerof, etc.
List
Operation

limit, concat, repeat, shift, truncate, block, sort,
mirror, invert, shuffle, queue

Nominal histo, unique, classId, stringify
Unit
Conversion

notesToBeats, intervalsToBeats,
beatsToIndices, etc.

Table 1: Array Transformation

TYPE PARAMETERS

List values, normalized, sorted, uniques, diff,
original

Nominal classes, numClasses, classID, histogram,
uniformity

Stats min, max, mean, mode, median, midrange, std,
pstd, var, pvar, sum

Iterator next, prev, cur, palindrome, random, urn, step,
block, blockNext

Table 2: Value Query and Analysis

3.1. Core Modules

The API currently consists of 15 different modules. Among them,
the core modules are the dtm.data and dtm.array for handling
data, dtm.model and dtm.instr for creating modulatable musical
objects, dtm.clock and dtm.master for navigating and reading the
data content in a synchronized manner, and dtm.synth, dtm.guido
and dtm.osc for audio rendering or other forms of output. The
following sections explain each module in detail.

3.2. Data Handling, Analysis and Transformation

The dtm.data object is the starting point for sonifying data with
this API. It asynchronously loads local files in CSV or JSON for-
mat, binary data such as audio or image files, or requests data from
web services using REST APIs13. It converts the loaded data into
JSON key-value format, flattening the nested structure into two
dimensional matrix as needed, and stores them in the forms of col-
lections (rows) and arrays (columns).

The dtm.array object is the fundamental unit for data han-
dling, which extracts a single dimension, or column, from the
JSON collection in the dtm.data object. It is loaded with a large set
of analysis and self-transformation functions. The data transfor-
mation functions adapt one-dimensional raw data or a potentially
unknown data stream to the musical structure models so that they
may have meaningful input to generate musical outputs, while re-
taining the original characteristics of the raw data such as contour,
density and value distribution.

Below is a simple example of array transformations. For sim-
plicity, an arbitrary number sequence is used as the source for the

13The REST calls services such as Weather Underground
(http://www.wunderground.com/weather/api/) and Shodan
(http://www.shodanhq.com/), where the response from each service
is parsed using the rule dictionaries.

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 246



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

array object.

var arrObj = dtm.array([0, 2, -4, 3, 5, -10]);
arrObj.rescale(0, 6);
-> [4, 4.8, 2.4, 5.2, 6, 0]
arrObj.stretch(1.5, ’linear’);
-> [4, 4.5, 4.2, 2.7, 3.8, 5.3, 5.8, 3.75, 0]
arrObj.invert(1.0); // With a center point.
-> [-2, -2.5, -2.2, -0.7, -1.8, -3.3, -3.8,

-1.75, 2]

Example 2: Array Transformation

Querying the whole list of values, a single value at certain in-
dex, or statistical data is all done through the get(param) method.
This is mainly for protecting the data content by cloning the val-
ues before returning, as the objects in JavaScript are all mutable.
The below example also shows the usage of the array object with
streaming data, where the array content is updated with a queue
routine.

arrObj.getBlock(idx, size).get();
-> [2, 3, 9, 3]
arrObj.get(’mean’);
-> 4.25
newVal = 7
arrObj.queue(newVal).get();
-> [3, 9, 3, 7]
arrObj.get(’mean’);
-> 5.5

Example 3: Array Value Query

3.3. Musical Structure Models

As described previously, creating a model for describing musical
structures is a complex task. Any musical structure is inherently
multi-dimensional. For example, a melody played by the violin
may have notes with pitch, rhythm and timbre. The pitch may be
informed by the tuning, the chosen key and scale, and may imply
the current harmony or cadence. The rhythm may consist of the
onset time, level, duration, envelope shape, and may be affected
by the tempo. The timbre may be informed by the instrument’s
build, bowing, vibrato, and so on. The melody itself may be a part
of a phrase structure which modulates over time. The number of
elements in such hierarchical relationships is often much larger,
and each of them is to defined or modulated dynamically.

With the development of DTM API, the question of how to
generalize such musical structures, in the context of data sonifi-
cation, is explored. It should ideally take any number and type
of data input and return coherent musical results. The approaches
taken by the authors are to support automatic or adaptive map-
pings, and modular and extendable data structures which allows
hierarchical and networked information sharing as well as time
alignment among the elements. We try to subdivide bigger struc-
tures into smaller ones, such as tuning, scale, onsets + duration,
and so on. Different musical models share the same data structure,
or abstract interface. Models with a similar role may be dynami-
cally swapped, modifying the data mapping scheme and behavior
of combined musical output, which is named here as “instrument.”

The dtm.model is an abstract structure for implementing a
unit of dynamic musical structure, such as rhythmicization, note
dynamics, articulation, pitch modulation, pitch scale, chord voic-
ing, timbre modulation, and so on. Commonly known musical

patterns can also be implemented, such as the Clave rhythm[30],
or the II-V-I cadence. With the cadence model, for instance, the
first order differential of the array may be used, with which the
positive rise triggers the tense dominant chord, and the negative
motion triggers the release chord of I.

Models of musical structure can be expanded on the fly with
new parameter fields and method names as needed. This is done
in a similar way to the JQuery library with its plug-in development
system14.

(function (){
// This stores the new model to the list of

available models, which can be instantiated
elsewhere by the name string.

var m = dtm.model(’name’, ’categ’).register();

m.mod.pitch = function (arr, mode) {
if (mode === ’adaptive’) {

m.params.pitch = arr.rescale(60, 100).round
().pitchQuantize(’major’);

}
// Return the caller itself. (The parent,

often an instrument loads this model.)
return m.parent;

};
})();

Example 4: Model Expansion Example

Each model is loaded as a module into a bigger structure,
which can be another model or a dtm.instr. Models loaded in
a parent model or a dtm.instr share information between each
other by referring to the parent (caller) and sibling models. The
dtm.instr object, a collection of smaller musical structure models,
outputs the final result as audio or score messages. Each model in
the instrument exposes one or more parameters that can be selec-
tively modulated. The instrument object is intended to be a ready-
to-play musical device, where the user can load a preset instru-
ment from the instrument collection, connect it to a data source,
and immediately hear the musical results. The user may choose
to modulate specific parameters of the instrument with data, or the
the target parameter can be accessed blindly with a parameter in-
dex number. When no parameter is modulated, or mapped to a
data source, the musical output is expected as very minimum and
static, such as a periodic pulse with a fixed pitch.

// Load and start the sound output.
var i = dtm.instr(’tumbao’).play();

// Modulate a known parameter.
i.intensity(0.3);

// Modulate a parameter by index.
i.modulate(0, arrObj);

Example 5: Loading and Modulating a Preset Instrument

Upon encoding non-musical information into a musical struc-
ture, there is also a concern of information loss by processes such
as quantization, down-sampling, and distortion of data by rescal-
ing or up-sampling. For these problems, a two-layered approach is
proposed for manipulating the dynamic musical model, where one
may be called static “preparation” and the other dynamic “modu-
lation.” In a “preparation” process, one or a series of values are

14http://learn.jquery.com/plugins/

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 247



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

mapped instantaneously to shape a characteristic musical motif.
For instance, with a specified mapping and transformation routine,
a rhythmic pattern may be created from a given sequence of data
to signify the characteristic of a particular data column. Further-
more, this may be created from the name of the data column as
a character array. A name string “latitude” may be, for example,
converted to a sorted class ID list15, which may look like: [4, 0, 5,
3, 5, 6, 1, 2], then a beat index list: [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0]16, then fitted to the length of 16
by up-sampling and down-sampling with a step interpolation: [1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1].

This whole sequence of operations may look like:

var arrObj = dtm.array(data.get(0).get(’key’));
arrObj.classId().intervalsToBeats()

.fit(16, ’step’);

Example 6: Shaping / Instantaneous Mapping

Although the content of the pattern shaper can be updated in
real-time to gradually shift the shape, this musical motif is not
suited for representing the entire characteristics of a particular data
sequence by itself. Instead, it may make sense to be used as a
signature pattern as part of the ensemble of organized sound.

In contrast to “preparation”, with a “modulation” approach, a
single value or a small block of an array starting at a certain index
can transform the musical material in a continuous manner. For
example, a melodic pattern generated from the above-mentioned
technique may be enharmonically transposed up and down with
a single value or the mean / variance / etc. of a small moving
window.

var idx = 0; // Index for block-wise reading
dtm.instr().melody(arr)

.scale(arr.get(’block’, idx))

.transpose(arr.get(idx));
idx++;

Example 7: Instrument Modulation

The sequential modulation approach is also suitable for mul-
tiple dimensions of data to sonify at the aligned read indices. Re-
gardless of the mapping modality, however, both methods of value
input accept either a single value or an array.

3.4. Audio Rendering and Other Outputs

Besides loading certain combinations of modules of musical struc-
tures, an instrument model may be created with a specific mode of
output in mind. Typically, this would be a real-time audio ren-
dering with the dtm.synth object, using WebAudio API, or the
dtm.csound object for Google Chrome-based Csound17 pNaCl18

synthesis engine. In the instrument models that are provided in
the API, many of the modules harness the unique capabilities that
these audio rendering engines offer. For instance, a note-by-note
modulation of timbre is possible by generating a new wavetable
with a mixture of natural harmonics, utilizing WebAudio’s create-
PeriodicWave() function.

15This treats each list item, in this case each character, as a nominal
class, and returns numerical IDs.

16The interval or note length is converted to the position of index.
17http://csound.github.io/
18http://vlazzarini.github.io/

arrObj.fit(10, ’zeros’).normalize().get();
-> [[0.6587, 0.2082, 0.8949, 0.9791, 0.3686,

0.8929, 0.6555, 0.1797, 0.2698, 0.444]]

dtm.instr().wavetable(arrObj).play();

Example 8: Wavetable Synthesis

Other WebAudio-based parameters include note duration, am-
plitude envelope, 3D binaural panning, comb filter, parametrized
convolution reverb and FM synthesis. The classic subtractive syn-
thesis approach may also be used:

dtm.instr().voice(’noise’).lpf(0.3)
.res(0.5).play();

Example 9: Modulating Subtractive Synthesis with Single Values

In this example, the normalized input for the low pass filter
is internally scaled logarithmically to set the cutoff frequency in
a linearly perceivable manner. These one-to-one parameter map-
pings are still effective in many situations, and the “default” in-
strument object exposes them to for quick experimentation.

As alternatives to audio rendering, other forms of output such
as Guido musical notation19 or MIDI messages can be sent through
an OSC20, utilizing the dtm.guido and dtm.osc objects.

3.5. Real-time Events and Synchronization

The dtm.clock object is crucial in the system for real-time data
processing, navigation and rendering of audio events. In order to
achieve sub-millisecond resolution and adaptation to different en-
vironments, such as a server or different browsers, different im-
plementations have been done using a buffer in WebAudio API21,
HTML5 AnimationFrame22, JavaScript Date object, and NodeJS
process.hrtime23. In the default state, the clock object uses the An-
imationFrame method.

Each clock instance may be either independent or synchro-
nized to the dtm.master singleton object. In order to synchronize
the clocks with different subdivisions (beats), the master clock
counts 480 ticks per beat with a specified tempo, such as 120
BPM, that are referred to by the sub-clocks with different sub-
divisions. This enables tempo synchronization between different
instances of instrument objects. Models within an instrument may
also hold synchronized or independent clock instances, which can
be accessed to add new callback functions on specified beats.

var beats = 8, idx = 0, numVoices = 4;

myModel.on(’every’, beats, function () {
// Generate a new chord to be applied to the

voices
chord = chordArr.getBlock(idx, numVoices)

.rescale(0, 11).round().unique().sort();

idx += beats;
});

Example 10: Varied Timing Event Call

19http://guidolib.sourceforge.net/
20http://opensoundcontrol.org/
21https://developer.mozilla.org/en-US/docs/Web/API/AudioBuffer
22developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
23http://nodejs.org/api/process.html

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 248



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

4. INTERACTIVE AND REAL-TIME DEVELOPMENT

The process of creating an audio-based application poses a par-
ticular challenge to software developers. Unlike near-instant log-
ical operations or static visual elements, the real-time-bound and
dynamic audio outputs almost always require in-real-time exami-
nation. Adding multi-dimensional musical structures, data naviga-
tion or streams, as well as potential inputs from the user introduces
further difficulties where the application designer may not be able
to predict many possible audio results, simply by not being able
to encounter certain combinations of inputs to the system while
implementing the audio parameter mapping. In such scenarios,
immediate and constant feedback from the system is valuable in
the development cycle.

DTM API enables iterative modification of the system such as
the expansion of musical structure models on the fly. However, in
order to tune the models as the data streams in, or without resetting
the data playback to the beginning, there was a need for updating
certain parts of the application, such as model, instrument, and
data mapping, while retaining the playback of the clocks, value
read indices, and already-instantiated objects. The API offers the
interface of live-updating the system, with a dtm.clock used for
selective evaluations of the system in a beat-synced manner. This
run-time reconfiguration is found effective for interactive and iter-
ative development of applications and musical models, where find-
ing effective transformation methods, static parameters, and data
source mapping for dynamic models are made easier.

// Instantiate objects only once
setup(function () {

dtm.load(’someData’, function (data) {
// Assaign data to a variable
d = data;
a = d.get(’array’, ’someKey’);

});

// Create an empty model object
m = dtm.model();

// Create a default instrument object
i = dtm.instr();

});

// Set (swap) the model in the rhythm category
with the new object

i.model(m, ’rhythm’).play();

m.mod.sparseness = function (val, mode) {
// Redefine behaviors on the fly...

};

// Map an array to the model parameter
i.sparseness(a);

m.mod.articulation = function (val) { ... };

Example 11: Livecoding in DTM

5. EXAMPLE APPLICATION: SONIFICATION OF
ENVIRONMENTAL DATA

An application of DTM API was presented at the Atlanta Science
Festival24 in March, 2015. The Decatur Civic Sonification and

24http://atlantasciencefestival.org/

Dashboard Project25 is a collaboration with Georgia Tech Research
Institute’s Configurable Computing Laboratory26, where the envi-
ronmental and traffic data of the city were collected and converted
into MIDI and musical scores in real-time. During the event, two
custom sensor boxes, each streaming 18 channels of data, were
used in combination with DTM API for dynamic remapping, a
real-time score system in Max/MSP (Figure 1) and a MIDI rendi-
tion in Ableton Live. The score was played by the flutist, cellist
and pianist from Sonic Generator27. An instrument model for this
system was developed, which integrates all the above-mentioned
functional requirements.

setup(function () {
fl = dtm.i(’decatur’).name(’Flute’);
vc = dtm.i(’decatur’).name(’Cello’);
pf = dtm.i(’decatur’).name(’Piano’);

d = dtm.data().init(18, 32);
dtm.osc.on(’/rtdata/raw’, function(vals){

d.queue(vals);
});

function updateData(c) {
lux = d.get(0).normalize(2, 12165).limit();
blue = d.get(1).normalize(10, 21550).limit();
red = d.get(2).normalize(10, 21550).limit();
...

}

// ’p’ is the ‘‘prescaled’’ mapping mode.
// The mapper also offers ‘‘adapt’’ and ‘‘

literal’’ modes.
fl.pitch(lux, ’p’).rep(blue, ’p’).ac(red, ’p’)

.play();
});

Example 12: Data Streaming and Update

The real-time dynamic mapping of the streamed data was done
applying techniques such as range, scaling, block-wise summa-
rization, first order and second order differences, interpolation and
extrapolation. The instrument model uses pre-normalized rather
than the adaptive mapping system, where the values are not auto-
matically scaled to the full range, but instead preserves the input
dynamic range assuming the data is pre-scaled in 0-1 range.

Given the nature of traditional musical scores, with the rela-
tive difficulty of sight reading unanticipated instructions, this in-
strument model focuses on the use of the most common param-
eters such as pitch, rhythm and volume. These melodic param-
eters are presented to the audience with high-level descriptions,
such as “variety”, “cycle”, “articulation”, and internally modulate
multiple aspects of the instrument (one-to-many mapping). The
“variety” parameter, for instance, maps the sequence data values
to each available note, changing the duration of individual notes
while retaining the combined length of the melodic phrase (Figure
2). When the data moves less actively, the rhythm remains static
and constant. When the range of movement increases, the rhyth-
mic pattern becomes more irregular and unique, reflecting the dy-
namics of the input data.

The combined duration of the melodic phrase is also modified
by the “cycle” parameter, which creates a repeated pattern from

25http://atlantasciencefestival.org/events/event/1095
26http://configlab.gatech.edu/
27http://www.sonicgenerator.gatech.edu/

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 249



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

Figure 1: Notation Output in Max/MSP

Figure 2: Example of Variety Parameter Modulation

1 to 7 times, according to a summarized value, such as mean or
variance, of the data buffer. This also affects the total length of
the melodic phrase. The “articulation” and “dynamics” parame-
ters modify each note’s attributes, such as sub-note duration, slurs,
accents and rests. Finally, the “pitch” parameter simply modulates
each note’s pitch. During the development, rather than using the
absolute pitch positions, fixed motivic melody being transposed by
the data was considered. However, as the composition became rel-
atively minimalistic with lots of phrase repetitions, using a motivic
shape was not suitable. Also, introducing the “preserved” range
mapping added the natural transposition effect which conflicted
with the melodic transposition parameter. As a result, the “de-
catur” instrument focused on the change of dynamics from static
to active, generating new melodic shapes every moment, rather
than using pre-generated motives. The composition was presented
twice in the form of a semi-fixed piece, where the musical form
and data mapping were pre-composed, as well as a livecoding
piece where the composition was developed as a real-time reac-
tion to the incoming data. The minimalistic style and arrangement
chosen for the pieces, inspired by composers such as Steve Re-
ich and Terry Riley, were effective for the form-less and gradually
changing musical representation of the data. The phrase modula-
tions also worked effectively when the change of the data frames
was moderate, but were sometimes too sudden in change or too
static according to the data movement.

This project showed that, using the API, real-time reconfigu-
ration of mapping and data-driven composition were possible even
involving human musicians and score generation.

6. FUTURE WORK

Currently, DTM API is in the beta state. A demo application with
an interactive web editor and the API documentation has been de-
ployed online28. A formal user study and evaluation are being con-
ducted before the public release. The evaluations include the HCI
aspect of the programming interface, a computational scalability
test, and cognitive and perceptual listening tests, with and with-
out the proposed musical structure models, as well as the adaptive
mapping methodologies.

In terms of the technical limitations, firstly, loading of data is
capped at around 500 MB with the current web-browsers. In order
to handle bigger data sets, the API may need to be integrated to
server applications as well. For this, the usage of WebAudio is
turned off by default, so that the API may be loaded and used in a
server application.

dtm.data currently can perform a minimal range of statistical
data analysis and preprocessing. It is planned to add such func-
tions, including dimensionality reduction using PCA, as proposed
in PMSon data analysis framework [7].

Lastly, the high-resolution dtm.clock successfully enables a
large number of event calls, including data handling and audio
event triggering, in dynamic tempo at a reliable stability. The cur-
rent implementations, however, fluctuate with between 1 ms to 10
ms of jitter, due to, for example, a large process buffer size in We-
bAudio or the limitation of the processing thread in Animation-
Frame. This may limit the use of clock for low-level control of
audio parameters. A more stable clock implementation combining
real-time and scheduling methods will be explored.

7. CONCLUSIONS

Our study of generalizable musical structure models in DTM API,
therefore, explores the use of aesthetics and hierarchical layers of
sound to represent data in a systematic manner. The API provides
an easy prototyping system and an interactive environment for fur-
ther investigating the models for different musical structures suited
for data sonification.

8. REFERENCES

[1] B. N. Walker and M. A. Nees, “Theory of Sonification,”
2011. [Online]. Available: http://sonify.psych.gatech.edu/
⇠ben/references/nees theory of sonification.pdf

[2] T. Hermann, “Taxonomy and Definitions for Sonification and
Auditory Display,” in Proceedings of the 14th International
Conference on Auditory Display (ICAD 2008), 2008.
[Online]. Available: http://pub.uni-bielefeld.de/publication/
2017235

[3] B. Hogg and P. Vickers, “Sonification abstraite/sonification
concrete: An ’aesthetic persepctive space’ for classifying
auditory displays in the ars musica domain,” June 2006.
[Online]. Available: https://smartech.gatech.edu/handle/
1853/50641

[4] D. Deutsch, Psychology of music. Elsevier, 2013.

[5] J. D. Kramer, “The nature and origins of musi-
cal postmodernism,” Postmodern music/postmodern
thought, vol. 66, pp. 7–20, 2002. [Online].

28https://dtmdemo.herokuapp.com/

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 250



The 21th International Conference on Auditory Display (ICAD–2015) July 8-10, 2015, Graz, Austria

Available: https://books.google.com/books?hl=en&lr=
&id=dtxEAQAAQBAJ&oi=fnd&pg=PA13&dq=The+
Nature+and+Origins+of+Musical+Postmodernism&ots=
lCRiP0pEN0&sig=p4qhMFnlZGNB0WScalTIhbYyb6U

[6] G. Pape, “Varse the visionary,” Contemporary Mu-
sic Review, vol. 23, no. 2, pp. 19–25, 2004. [On-
line]. Available: http://www.ingentaconnect.com/content/
routledg/gcmr/2004/00000023/00000002/art00003

[7] F. Grond and J. Berger, “Parameter mapping sonification,”
The sonification handbook, pp. 363–397, 2011.

[8] T. Hermann, “Model-based sonification,” The Sonification
Handbook, pp. 399–427, 2011.

[9] T. Hermann and H. Ritter, “Listen to your Data: Model-
Based Sonification for Data Analysis,” in 189194, Int. Inst.
for Advanced Studies in System research and cybernetics,
1999, pp. 189–194.

[10] ——, “Model-based sonification revisited: authors’ com-
ments on Hermann and Ritter, ICAD 2002,” ACM
Transactions on Applied Perception (TAP), vol. 2,
no. 4, pp. 559–563, 2005. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1101557

[11] R. S. Brindle, Serial composition. Oxford University Press,
1969.

[12] R. P. Morgan, Twentieth-century music: a history of musical
style in modern Europe and America. Norton, 1991.

[13] G. Toussaint, “Computational geometric aspects of rhythm,
melody, and voice-leading,” Computational Geometry,
vol. 43, no. 1, pp. 2–22, Jan. 2010. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S092577210900042X

[14] ——, “The Euclidean Algorithm Generates Traditional
Musical Rhythms.” Bridges Conference, 2005, pp. 47–56.
[Online]. Available: http://archive.bridgesmathart.org/2005/
bridges2005-47.html

[15] D. Tymoczko, “The Geometry of Musical Chords,” Science,
vol. 313, no. 5783, pp. 72–74, July 2006. [Online].
Available: http://www.sciencemag.org/content/313/5783/72

[16] ——, “Generalizing Musical Intervals,” Journal of Music
Theory, vol. 53, no. 2, pp. 227–254, Sept. 2009. [Online].
Available: http://jmt.dukejournals.org/content/53/2/227

[17] ——, “Scale Theory, Serial Theory and Voice Leading,”
Music Analysis, vol. 27, no. 1, pp. 1–49, Mar. 2008.
[Online]. Available: http://onlinelibrary.wiley.com/doi/10.
1111/j.1468-2249.2008.00257.x/abstract

[18] G. Papadopoulos and G. Wiggins, “AI methods for algo-
rithmic composition: A survey, a critical view and future
prospects,” in AISB Symposium on Musical Creativity. Ed-
inburgh, UK, 1999, pp. 110–117.

[19] D. Cope, Computer Models of Musical Creativity. Cam-
bridge, Mass: The MIT Press, Dec. 2005.

[20] R. Nikolaidis, B. Walker, and G. Weinberg, “Gener-
ative musical tension modeling and its application to
dynamic sonification,” Computer Music Journal, vol. 36,
no. 1, pp. 55–64, 2012. [Online]. Available: http://www.
mitpressjournals.org/doi/pdf/10.1162/COMJ a 00105

[21] B. N. Walker and J. T. Cothran, “Sonification Sandbox:
A graphical toolkit for auditory graphs,” 2003. [Online].
Available: https://smartech.gatech.edu/handle/1853/50490

[22] S. Pauletto and A. Hunt, “A Toolkit for In-
teractive Sonification.” in ICAD, 2004. [Online].
Available: http://www.icad.org/websiteV2.0/Conferences/
ICAD2004/papers/pauletto hunt.pdf

[23] O. Ben-Tal, J. Berger, B. Cook, M. Daniels, and G. Scavone,
“Sonart: The sonification application research toolbox,”
July 2002. [Online]. Available: https://smartech.gatech.edu/
handle/1853/51376

[24] J. Menezes, “SonData - Um toolkit para Sonorizao
de Dados Interactiva,” 2012. [Online]. Available: http:
//repositorio-aberto.up.pt/handle/10216/65260

[25] M. Bostock and J. Heer, “Protovis: A graphical toolkit for
visualization,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 15, no. 6, pp. 1121–1128, 2009.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=5290720

[26] M. Bostock, V. Ogievetsky, and J. Heer, “D$ˆ3$ data-driven
documents,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 12, pp. 2301–2309, 2011.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=6064996

[27] N. Collins, A. McLean, J. Rohrhuber, and A. Ward,
“Live coding in laptop performance,” Organised Sound,
vol. 8, no. 03, pp. 321–330, 2003. [Online]. Available:
http://journals.cambridge.org/abstract S135577180300030X

[28] J. Rohrhuber, A. de Campo, and R. Wieser, “Algorithms
today - Notes on language design for just in time
programming,” context, vol. 1, p. 291, 2005. [Online].
Available: http://web.cecs.pdx.edu/⇠dreeder/site/nysc/doc/
rohrhuber,etal--jit.pdf

[29] G. Essl and A. Mller, “Designing mobile musical instru-
ments and environments with urmus,” in New Interfaces
for Musical Expression, 2010, pp. 76–81. [Online].
Available: http://web.eecs.umich.edu/⇠gessl/georg papers/
NIME10-UrMus.pdf

[30] C. Gerard and M. Sheller, Salsa!: the rhythm of Latin music.
White Cliffs Media Co, 1989.

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 251


