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ABSTRACT
Feature extraction from an audio stream is usually used for
visual analysis and measurement of sound. This paper seeks
to describe a set of methods for using feature extraction to
manipulate concatenative synthesis, and develops experi-
ments with reconfigurations of the feature-based concatena-
tive synthesis systems within a live, interactive context. The
aim is to explore sound creation and manipulation within an
interactive, creative, feedback loop.

Index Terms— Interactive Sonification, Concatenative
Synthesis

1. INTRODUCTION

In this paper, we seek to discuss and explore approaches to
live interaction with sonifications of sound. Sonification of
the characteristics of sound have been undertaken in the past
using various methods [1, 2, 3], but most of these have dealt
with offline, static, processing of recorded sound. In this
study, we investigate ways to explore and interact with sound
as it is produced, or as it is played. This provides methods
for:

1. exploring the characteristics of recorded sound rapidly
and interactively;

2. responding to characteristics of instrumental sound in
a feedback loop;

3. manipulating and mutating sampled sound in an inter-
active manner;

4. creating new responsive sounds.
Sonifications of sound, while seemingly a tortology, are

in fact an incredibly sensible application of sonification, and
one that should be expected to hold strong potential. When
one wishes to understand a sound recording it is common to
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Figure 1: Brief Overview of Sonification System

listen to it carefully, replaying sections of interest and making
comparisons with other sections. Thinking generically, this
process could be compared to accessing a dataset, reading
one particular number and then comparing that with another
number within the dataset. However, despite data analysis
commonly involving much more sophisticated techniques
than simple comparisons or readings of datasets, techniques
for listening to an entire recording or listening to specific
algorithmically chosen parts of a recording are limited or
non-existent. Sonification techniques, partnered with granu-
lar or concatenative synthesis, provide a solution to fill this
gap, and this has been explored by Ferguson et al. [4]. Sum-
mative numerical results of feature extraction from audio
signals can obscure the divergent nature of different audio
signals, as feature extraction algorithms are naturally reduc-
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tionist, but the process of representing sound data in the
auditory modality can help to place audio characteristics in
their proper context and balance the precision of abstract nu-
merical quantities with the ground truth of auditory sensory
perception. Using the the sound material, reorganised or
transformed in some way using methods that mimic typical
visualisation techniques, to re-represent the extracted sound
data mean that typical analysis approaches can happen in
the auditory domain rather than visual domain or happening
completely analytically [5, 4].

This paper extends this concept by investigating ap-
proaches to live interaction with sonifications of sound. Mod-
ern digital signal processing have facilitated the creation of
real-time versions of audio feature extraction algorithms that
previously required offline processing. The real-time nature
of this processing significantly increases the set of uses that
the results of feature extraction can be applied to, most no-
tably feature extraction can be used to act as a control for
real-time sound manipulation.

2. BACKGROUND

Sonification has been used for many years to represent generic
numerical data in an analagous way to visual graphing, and
there is some evidence that it is more effective than visuali-
sation in particular contexts, especially for monitoring real-
time data (eg. [6]). Statistical representations has been soni-
fied in the past for various purposes - sonfications have been
used for representing probability densities [7, 8], statistical
representations [9, 10] and for listening for abnormal sounds
or statistical anomalies in a stream of data [11, 12, 13].

The concept of Adaptive digital audio effects (A-DAFX)
was introduced by Verfaille et al. [14] and extends an au-
dio effect using static control values by employing features
extracted from the input audio signal as control inputs for
the audio effects being applied to the signal. As Verfaille
et al. point out [15], a compressor or limiter incorporates a
feedback loop to use the level of the input audio (a feature) to
control gain change in a systematic way. Similarly, process-
ing by ‘auto-tune’ algorithms corrects pitch inaccuracy by
assessing the extracted pitch against the closest correct pitch,
and applying a varying pitch shift. How A-DAFX differ
from these examples is that the input feature is not specific
to a particular audio effect, but is arbitrary and modular. In
a similar fashion but with a slightly different purpose, Park
et al. have also theorised this idea as Feature Modulation
Synthesis [16, 17].

These approaches are strongly associated to the work on
concatenative synthesis [18, 19, 20, 21], but reapplied to an
exploration and representation purpose. Further, Schwarz
has recently investigated interaction with ‘sound spaces’ as
a method of playing concatenative synthesis systems [22].

Performing with a traditional musical instrument often

involves practising the instrument, whether for a scored work
or for improvisation, and repeating tones and practical ma-
noeuvres in performance that have been precisely learnt
during practise. For instance Carey’s derivations system
[23] is an improvisational computer system that responds to
musical sound, while Johnston et al. [24] have discussed the
process of designing conversational interaction with digital
systems. Of course before these more recent systems, many
computer systems have been designed that are responsive
and improvisational, or at least give that impression, includ-
ing Lewis’ Voyager [25], and Rokeby’s Very Nervous System
[26].

3. METHOD

There are several processes that make up this framework,
namely, a) feature detection, b) manipulation description, c)
manipulation application, and d) interaction.

Altering sounds in adaptive ways that differ from tra-
ditional input-output sound processing requires a second
pathway to be introduced to the pipeline. This is developed
by adding a feature detection stage to create a secondary data
stream running parallel to the audio stream. This requires
rapid real-time calculation of features to generate feature
data for manipulation purposes, as well as a memory buffer
to store recent audio data in a convenient format alongside
the feature data. The two datasets are indexed by their time
tags, so they can be related directly to each other. The second
component of the system is the manipulation of the digital
audio based on a transformation of the feature data into some
type of function or re-organisation scheme that can be ap-
plied to audio data. Thirdly, there is the process of applying
this manipulation to the audio stream in an efficient manner.
Finally, the process of interacting with each of these stages
is a basic issue that limits the applicability of methods of this
nature. Obviously, interaction with an audio stream brings
the crucial issues of causality and latency.

3.1. Feature Extraction

When considered abstractly, although feature detection algo-
rithms describe sound characteristics in many distinct and
different ways, they fall into a small number of particular
formats. The simplest format is for a feature detector to take
a frame of sound (often approximately 20-50 ms), analyse
it, and then return a single numeric value as a response (see
Figure 2). For each frame (of for instance 2048 samples)
of contiguous sound, a numeric value is produced by the
feature detector algorithm, and a time-series data trace is
built from these new changing values. This type of feature
detector is very common and easily used for building sonifi-
cations of sound [4], as the feature data output is completely
predictable (for every frame of sound a single numeric value
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Figure 2: Feature detection algorithms that produce a single
real number for a frame of sound can easily be treated as a
black box.

is returned). This data format allows many different features
(harmonicity, brightness, pitch, loudness, etc.) to be treated
by algorithms in an identical manner, although the charac-
teristics investigated are likely to be very different. Once a
set of audio frames and time-tagged numeric feature data are
collated, the various statistical algorithms can be applied to
the numeric data and audio frames at the same time.

Many audio features that do not conform to this simple
format, and do not output a single value per frame. Some
analysis algorithms result in a set of numbers being produced
from one frame, as for instance, the Fourier transform, the
mel frequency cepstral transform, or octave band analysis
do. Furthermore, some other feature detectors may be un-
predictable, in that they may create an unknown number of
values (including 0) from an audio frame, depending on the
content of the sound. In this paper we will focus mainly on
the implications for datasets made up of single timeseries fea-
tures, however other types of feature could be incorporated
in further study.

3.2. Time-series Statistics

After the feature detection algorithm has been applied to the
audio, a new time-series is created that consists of the feature
time-series data. This numeric data is then mapped to a
sonification algorithm that uses audio frame data, and various
processes exist by which this may be done. Using statistical
methods the feature time-series can be summarised as a value
using typical descriptive statistics methods, for instance the
median or maximum value. Running the statistical analysis
at each addition to the time-series during real-time analysis
means that the statistical analysis is also a parallel time-
series, but one which represents the characteristics of the

rapidly varying feature data in a summative or indicative
manner. A statistical indicator of this nature can then be
used as an input to the frame selection method that follows
this stage. It is likely it would play a role as, for instance,
determining the centre of a range from which to select frames
of the same pitch.

A further approach is to use the statistical time-series
of the feature time-series to find a second order statistical
time-series. A difference between the current value and
an extreme (e.g. the minimum or maximum value), would
search for sounds close to the upper reaches of the feature -
in the case of pitch, when differencing against the maximum
pitch value, the difference would be smallest when the pitch
was closest to that maximum value.

3.3. Frame Selection Method

The statistical analysis of the feature detector time-series
essentially creates another time-series. The method used to
apply this to the audio stream can be one of many alterna-
tives, based somewhat on the purpose of the sonification.
Playing frames of sound rapidly has the effect of physically
representing the statistics of the sound [27], and so links
well with the statistical analysis examples described in the
previous section. An example of this could be the playing
of frames of the sound produced when a flute plays the note
A. If the frames were drawn from recordings of a performer
with precise tuning, then the average sound created when
they are rapidly presented together will be a precisely tuned
A. However, if the performer plays an A with various tun-
ings, or perhaps with a vibrato, then the average sound will
represent this information by blurring the tuning across a
pitch range, but also giving a general impression of the mean
pitch.

In statistical terms, the concatenated sound, when tem-
porally blurred, represents the dispersion of the feature data
extracted from the sound. Similarly, if the performer has
excellent precision but has low accuracy tuning (plays the
same, inaccurate tone repeatedly), then this will also be rep-
resented. Statistically, this would be have a comparatively
low dispersion, but a high deviation of the central tendency
of the distribution from the correct tone. The simplest way of
looking at a feature time-series is by using descriptive statis-
tics (Figure 3), each of which can be turned from a numerical
value into a simple sound by selecting the appropriate frames
of audio from the sample (see Figure 4).

A more significant application of the manipulation time-
series is to drive the selection of frames to be blurred with
the current frame. Where the value of the feature time-
series is close to the values of recent frames, those frames
can be ‘blurred’ with the current frame to create a textural
sound composed of audio that is similar within one feature
dimension. This will create a ‘simple’ sound, where the
frames are highly similar, and a ‘complex, muddy’ sound
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Figure 3: A time-series may be summarised with descriptive
statistics, and visualised with a box plot.
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Figure 4: Median feature frames being drawn from a sample.
Again the feature detector is arbitrary, and in this case is
Harmonics to Noise Ratio.

tending towards noise, where there is a significant difference
between the characteristics of the frames. This effect can
be seen easily where one blurs multiple frames of a piano
playing a single tone, compared with multiple frames of
a singer singing a tone with vibrato, the change in pitch
caused by the vibrato is shown clearly in the resulting blurred
tone - which deviates across the pitch range traversed by the
vibrato.

In this work the term concatenative synthesis will be used
to describe the process of re-synthesizing sound from the
recording, in order to link this research with previous work
that has been based on feature extraction and then audio
frame concatenation. In fact, this technique also has a lot in
common with typical granular synthesis methods (see Roads’
Microsound [28] for a review). Granular synthesis, however,
in most instances does not make use of feature data in the
selection and playback of grains of sound – it is usually
based on random frame choice guided by parameters such as
grain duration, grain window function, grain transposition
and grain density (how many grains are selected at one time).
By contrast, concatenative synthesis tends to use set methods
for most of these parameters, uses randomisation sparingly,
and is more concerned with the selection of optimal frames
of sound in order to match a target, or to match the path
closest to a target sound.

3.4. Interaction

Given that the system is not time-invariant, the sound that
is an input to the system also acts as an interaction input, as
the features produced by the musician are transformed into

control data. This means that by playing their instrument
into the system the musician has a stronger form of control
over the way that the system is controlled than if they were
using a linear time-invariant system (such as a reverberation
or a delay effect).

A simple example is to create a system that lowers the
gain for notes that are not precisely consonant with a speci-
fied temperament system. That is, the instrument is altered
so that notes that are ‘out of tune’ are softer than notes that
are ‘in tune’. As pointed out by authors in the past [2], this
means that the visual modality need not be used to experi-
ence auditory material (i.e. a musician doesn’t have to look
at a meter or dial to receive information about whether they
are in tune).

A similar feedback loop exists where the audio feedback
is not controlled by using gain only, but by replacing (or aug-
menting) the natural audio feedback with sound produced
with concatenative synthesis. This technique is different
to natural audio feedback because it allows the use of the
sound’s recent history to be compared with the current sound.
That is to say that the sound produced by concatenative syn-
thesis can be composed of frames of sound recorded in the
very recent history, reorganised systematically to represent
an ‘average’ or mean sound. The selection of which frames
of sound to use is crucial, and will determine what type of
sound is received as feedback.

4. EXAMPLES

Examples of this framework will help demonstrate it in use
in various contexts. The following examples are different
configurations of the same basic concepts.

4.1. Listening to a descriptive statistic of a feature

In this example the system - 1) calculates the feature ex-
traction, 2) calculates the running statistic (the median in
Figure 5) of the feature time-series, 3) which is then used as
the basis for the criterion for the selection of output audio
frames. These frames are selected randomly within a range
around the statistic and then concatenated for output.

Figure 5: The feature data (upper pane) is filtered by a
running median filter (lower pane).
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The median is an interesting statistic to follow, but is
calculated in the same way that the percentiles, quartiles and
maximum and minimum are (the median is also the 50th
percentile), so in effect the statistic itself is also a parameter
that can be interacted with. One may choose to control the
statistic using any of many interaction methods, that could
be obtained in real-time to form part of the performance
practice of the musician, thereby creating a new musical
interface.

4.2. Listen to peaks from a feature histogram

This configuration takes the previous example, and replaces
the median extraction with a histogram, the crucial difference
between the two being that a histogram is a multidimensional
method of describing a distribution of a times-series, whereas
the median is one dimension only. The advantage of a his-
togram is that multiple areas of activity can be located, rather
than only one. These multiple peaks can then be used as
inputs to the frame selection criterion. This means that, for
instance, when using pitch as a feature input, if one wished
to play two notes simultaneously, one would play each note
for a long duration, and the histogram would show two peaks
at each pitch, which could then be used to select frames
from the audio containing those two pitches. To change
the notes that are selected one would simply play another
note for a longer duration, and the histogram would change
accordingly (see Figure 6 for an example).

Figure 6: In this example, a feature time-series is recorded
(eg. pitch, left pane), and the feature is statistically analysed
to build a histogram (right pane) that shows which values
(notes) continued for the longest.

A configuration of this nature allows the creation of
polyphonic chordal sound, that is closely related to the input
sound. This means the input musical melody can be reframed
as a method of playing notes for chordal outcomes rather than
melodic, requiring a rethinking of the way that improvisation
is envisaged.

4.3. Using sound level to control pitch range

Although the previous examples use only one feature as an
input to their configuration, it is also of course possible to
use two feature inputs and map them to different parameters
of the same frame selection criteria. In this case we use the

pitch of the sound to choose the pitch of the frames that are
selected, but also use sound level to control the size of the
pitch range from which frames are selected.

This opens the possibility to different levels of control -
a basic type of control may exist where the feature is used
in a mapping that follows the same contour directly (eg. the
pitch of the input audio being used to direct the pitch of
frames selected). Alternatively, a mapping may non-linearly
respond to a feature - in this example the feature range used
in the frame selection can be constant for values of sound
level that fall below a threshold, but rapidly expand when the
threshold is exceeded, providing both predictability when
appropriate and rapid change when necessary.

4.4. Implementation

The implementation of this system was completed using the
Max/MSP platform1, alongside FTM and Gabor extensions
[29, 30] as the basis for the feature extraction (using the
Yin pitch algorithm [31]), as well as the MNM extensions
performing the statistical processing of the feature time-
series [32].

5. DISCUSSION

This paper addressed methods of exploring the characteris-
tics of sound and performing with sound through sonification
of feature data extracted from the sound. It identified meth-
ods by which the statistics of sound could be explored in
realtime, and as the sounds were being produced.

The basis of this framework is to
• apply feature detection to an audio signal, to create a

feature time series;
• apply statistical analysis to the feature time-series to

create a value or set of values that can be used;
• create a criterion for frame selection that is based on

the feature time-series statistical analysis
• use the selected frames in the application of concate-

native or granular synthesis.
Using the features of a created sound as an interaction

method is not a common approach to musical interaction.
Interaction inputs tend to be thought of as ‘controls’, imply-
ing that the user of the system has complete knowledge of
what action they wish the system to undertake, and that the
system is purely deterministic following the user’s command.
Many musical contexts, however, rely on communication and
reflection between musical participants for the musician’s
purpose to be fully realised, with the concept of ‘jamming’ a
common one.

Nevertheless, while the framework is designed to be re-
flective rather than one-way, the fact that the system is based

1http://www.cycling74.com
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on simple statistical methods, rather than opaque neural net-
works or machine learning techniques, means that there is
the likelihood of a musician learning the system – and with
enough knowledge of the configuration of a method they
even be able to subvert the intentions of a system and achieve
novel outcomes. For instance, consider a musician repeti-
tively playing two notes an octave apart into a configuration
that is seeking and replaying the median pitch. A system that
responds to musical output in a predictable, but still complex
fashion allows for new types of creative opportunities.

Clearly, the re-representation of feature data by re-playing
the sound that was analysed to create it means that the fea-
ture under investigation is linked inextricably to the sound
produced. There are hundreds of defined feature extraction
algorithms that can be used in the feature detection stage
of the system (see [33] for software that implements a wide
array of them). As they often have exactly the same data
format (frame of sound in, single numeric value out), many
of them are completely interchangeable in this framework
(except that real-time implementations in the target platform
may not be easily obtained). However, such a reconfigura-
tion of the feature detection may offer creative possibilities
that are unpredictable or unexpected, as they can have quite
idiosyncratic characteristics.

Statistical methods are often used in data analysis for
their ability to find patterns and draw out the ‘nature of
things’. Despite being applied to musical feature data in
real-time they still have this ability, and thus they act as an
immediate reflection of the characteristics of the sound over
a period in recent time. Used in an appropriate manner they
have the ability to allow listeners to examine the nature of
steady sound compared with changing sound, and to listen to
the way that sounds change over time. They can also be used
to make comparisons and to assess the range of variation
within a feature rapidly.

6. CONCLUSION & FUTURE RESEARCH

This paper has described an approach towards the use of
feature extraction and feature data analysis for creative and
exploratory musical possibilities. We have defined a simple
framework for the sonification of sound played into a com-
puter system, based on the statistical characteristics of the
feature time-series data extracted from the audio in real-time.
Examples of the configuration of the system are presented
to demonstrate the variety of ways the system can be config-
ured.

There are many opportunities for future work aligned
with this research direction. The modularity of the frame-
work, and the way in which the stages may influence each
other is an important element to be investigated. Also, charac-
terising the statistics of different feature detectors, in terms of
their noise, precision and reliability may help when choosing

appropriate methods of input signal analysis. The element
of time and rhythm is essentially ignored in the statistical
processes described above, but is likely to be able to make
an important contribution of the musicality of this system.
Finally, a user study with practising musicians is likely to
lead to important findings about the system being used in
practice.
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