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SUMMARY 

Our sensory experiences are encoded in the patterns of activity of the neurons in 

our brain.  While we know we are capable of sensing and responding to a constantly 

changing sensory environment, we often study neural activity by repeatedly presenting 

the same stimulus and analyzing the average neural response. It is not understood how 

the average neural response represents the dynamic neural activity that produces our 

perceptions.  In this work, we use functional imaging of the rodent primary 

somatosensory cortex, specifically the whisker representations, and apply classic signal-

detection methods to test the predictive power of the average neural response. Stimulus 

features such as intensity are thought to be perceptually separable from the average 

representation; however, we show that stimulus intensity cannot be reliably decoded from 

neural activity from only a single experience.  Instead, stimulus intensity was encoded 

only across many experiences. We observed this probabilistic neural code in multiple 

classic sensory paradigms including complex temporal stimuli (pairs of whisker 

deflections) and multi-whisker stimuli. These data suggest a novel framework for the 

encoding of stimulus features in the presence of high-neural variability.  Specifically we 

suggest that our brains can compensate for unreliability by encoding information 

redundantly across cortical space.  This thesis predicts that a somatosensory stimulus is 

not encoded identically each time it is experienced; instead, our brains use 

multiple redundant pathways to create a reliable sensory percept. 

 

xv 
 



CHAPTER 1  Introduction 

 

1.1 Sensory Neural Processing 

A central tenet of neuroscience is that all our sensory experiences are encoded directly in 

the activity of our neurons.  Neurons communicate with each other through spikes of 

electrical activity known as action potentials.  We study the patterns of action potentials 

in response to different sensory input (or stimuli) to try to understand how the neurons 

encode this essential sensory information. 

The patterns of action potentials form the basis of what is called the neural code (Stanley, 

2013).   Understanding how neurons communicate will allow us not only to interpret 

signals that we observe in the brain – to read the neural code; but could also allow us to 

engineer devices to communicate with neurons, inputting information directly into the 

brain or writing the neural code. 

However, neurons are noisy. When we record from a neuron or populations of neurons, 

even in response to identical stimuli, the patterns of neural activity are not always the 

same. The same sensory input may be encoded differently based on the arousal level 

(Ferezou et al., 2006; Petersen, 2007; Carandini et al., 2012), a behavioral goal (Wang et 

al., 2010; Ollerenshaw et al., 2014), or simply just due to random and unexplained 

biological variability. Differentiating randomness from meaningful differences in the 
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neural response is essential to understanding which type of neural activity is sufficient for 

information processing.  

The context dependency and unexplained variability of neural activity makes interpreting 

neural code a difficult task. However, there are mathematical or experimental ways to 

tease apart which aspects of neural activity are necessary, which are sufficient, and which 

are not contributing to the creation of a stable perceptual representation of the external 

environment.  In this work, signal-detection theory will be used to quantify information 

in the neural code. The central goal of this dissertation will be to measure and quantify 

the contribution of variability in specific experimental frameworks and to hypothesize 

how variability may contribute to context-dependent processing in our sensory systems.  

1.1.1  Feature Selective Neurons: Evidence for Receptive Fields 

The best working model for how the information could be encoded by patterns of action 

potentials was formulated following a seminal discovery made by Hubel and Wiesel in 

1959 (Hubel and Wiesel, 1959).  At the time, neuroscientists had already observed that 

different regions of the brain responded primarily to certain types of sensory stimuli.   

Specific areas of the cortex were known to respond to information from the eyes and 

others to pressure stimuli on the skin. Additionally, cells in the retina had been observed 

to be sensitive to dots specifically in a center-surround arrangement: light surrounded by 

the absence of light, or the reverse (Kuffler, 1953). Cortical neurons, however, had not 

been observed to respond to dots of light and responded minimally to diffuse light. Hubel 

and Wiesel were mapping which region of visual space activated neurons when they 
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observed that the cell they were recording from often fired an action potential (spiked) 

when they switched between slides.  The cell was sensitive to something about the 

movement of the slide.  This observation eventually developed into the broader concept 

of a feature-selective receptive field. 

 

 

 

Figure 1-1 Hubel and Wiesel Model of Increased Complexity A) A hierarchical 
arrangement of neural structures in the visual pathway allows increased feature-
selectivity to arise with each structure. B) A simple cortical cell feature-selective 
receptive field can be created from center-surround selective cells in the thalamus as 
shown in (C)  
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The feature of the stimulus that activated Hubel and Wiesel’s neuron was the movement 

of lines at specific orientations, now widely known as ‘orientation tuning’.  Hubel and 

Wiesel also proposed that the feature-selective receptive cells in the visual cortex could 

be approximated as combinations of the type of receptive fields observed in the input to 

the cortex, the lateral geniculate nucleus of the thalamus (Figure 1-1) (Hubel and Wiesel, 

1962).  The result is a hierarchical model in which the specificity and selectivity of cells 

become progressively more complex and stimulus specific when processed through 

higher and higher order neural areas. With the discovery of feature-selective receptive 

fields and the model that more complex receptive fields could be formed as combinations 

of simpler receptive fields from input from previous neural areas, the field of sensory 

processing started to thrive.  

1.2 Neural Processing in Somatosensation 

1.2.1 Human Somatosensation 

The somatosensation (touch) pathway shares many characteristics with human vision. 

Similar to vision, touch information travels through multiple hierarchical structures 

starting from the peripheral mechanoreceptors through the spinal cord, into the 

corresponding nuclei in the brainstem and thalamus before reaching the primary 

somatosensory cortex.  

Somatosensory neurons respond selectively to one region of stimulus space (a specific 

region of the skin) known as the receptive field.  Groups of neurons responding to similar 

or neighboring skin are arranged accordingly in cortical space, resulting in a topographic 
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map on the surface of the brain (Merzenich et al., 1978, 1983). Despite this one to one 

mapping of skin area to cortical area, size of the cortical space that is devoted to a 

specific body region is not correlated with the size of the area of skin but the number of 

nerves that innervate that area.  As such, human body parts that we consider most 

sensitive to touch such as fingertips and lips represent a much higher percentage of 

cortical space than their small physical size would predict (Penfield and Boldrey, 1937). 

In general, skin regions that occupy a greater percentage of neural space (usually cortical 

area) than could be predicted from their physical size alone are also the most behaviorally 

relevant to the species. 

Unlike vision however, there is not strong evidence for the existence of feature-selective 

receptive field properties in somatosensation, beyond the physical region of space to 

which a neuron is sensitive. There is no orientation-tuning equivalent, at least not in size 

or scale that is observed in the visual system (Hyvärinen and Poranen, 1978; Hsiao et al., 

2002). The physical area of a skin that a neuron is responsive to increases with the 

hierarchical arrangement (Hyvärinen and Poranen, 1978). Neurons in the periphery 

respond to pressure stimuli in a small region of skin. Higher up in the processing 

pathway, the receptive field of cortical neurons can cover multiple fingers or regions of 

the hand (Sripati and Yoshioka, 2006).  In this way, one could consider the receptive field 

complexity to be increasing; however, this is not related to specific properties of the 

stimulus such as orientation tuning in the visual cortex. 
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Despite lacking direct evidence for feature-selectively in the somatosensory system, the 

Hubel and Wiesel model of hierarchical complexity remains the best working model. A 

significant percentage of the research in the field of somatosensation, including in this 

dissertation, is centered on identifying and characterizing possible examples of feature-

selectivity. 

1.2.2 Rodent Vibrissa System as a Model System of Somatosensation 

In this work, we study the neural code in the context of somatosensation. As with almost 

any biological experiment, it is not possible, or at least not ethical, to perform invasive 

experiments directly on the human system we seek to understand. Instead, we use animal 

models to approximate human somatosensation. A commonly studied and powerful 

animal model of somatosensation processing is the rodent vibrissa (whisker) system.    

Neural processing of information from whiskers has many similarities to the neural 

processing of the human somatosensory system. While whiskers themselves are hairs, the 

follicle of the whisker is innervated with hundreds of mechanoreceptors (Rice et al., 

1986; Ebara et al., 2002) that are similar to those observed in the human skin. These 

mechanoreceptors are sensitive to movement of the base of the whisker and transduce the 

energy from physical deformations into electrical neural activity. Whisker sensations are 

also processed through a similar hierarchy of neural structures from the peripheral 

whisker follicle to the brain stem, to the corresponding thalamic nucleus (ventral 

posteromedial nucleus, VPM), then to the primary somatosensory cortex and higher 

sensory areas (see Figure 1-2).   
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The cortical whisker representations are vastly overrepresented in the primary 

somatosensory cortex of rodents compared to their physical size (Land and Simons, 

1985).  This over-representation of cortical space is taken as evidence that the whiskers 

are exceptionally important to the sensory experience of the rodents on the same scale as 

lips and fingertips in humans.  This is a reasonable assertion as rats and mice are 

nocturnal and therefore much less likely to depend on visual input than humans.  

Additionally, rodents are observed to use the whiskers to probe the environment (Carvell 

and Simons, 1990; Bermejo et al., 2002). 

 

 

Figure 1-2 Barrel Cortex Introduction A) A schematic of the hierarchical pathway of 
the rodent vibrissae system. Whisker-related activity travels from the whisker pad to the 
brainstem to the thalamus and then to the cortical barrels. Figure adapted from Diamond 
et al., 2008) and reproduced here with permission. B) A cytochrome oxidase stain of 
tangential section through layer 4 of the cortex reveals the columnar and discrete 
arrangement of whisker barrels. Scale bar is 500um. 
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The physical size of the whisker representation makes the vibrissa system an appealing 

model system, but it has an additional experimentally helpful characteristic: it is discrete. 

Each whisker on the face maps directly to a specific region of the neural space. A single 

whisker representation is known as a barrelette in the brain stem, a barreloid in the VPM 

and most famously a barrel in the primary somatosensory cortex.  These discrete 

columnar representations can be visualized in the cortex using a cytochrome oxidase stain 

as seen in Figure 1-2B. As whiskers are discrete physical structures, it is possible to 

activate one column unambiguously by the deflection of a specific whisker, without 

stimulation of peripheral receptors in the neighboring whisker follicle.   Interestingly, the 

rest of the somatosensory cortex in both rodents and humans is also arranged into 

columnar structures like barrels, but these columns are much smaller and less prominent 

than the whisker representations and the input is not as easily separable (Mountcastle, 

1997; Tommerdahl et al., 2010). 

1.3 Sensory Processing in the Vibrissa System 

1.3.1 Absence of Feature-Selectivity in the Rodent Barrel Cortex 

In contrast to Hubel and Wiesel’s groundbreaking discovery of orientation tuning for 

neurons in the primary visual cortex (but similar to the current understanding of human 

somatosensation), there are not feature-selective properties of neurons in the barrel 

pathway (although this is disputed). As mentioned above, a neuron is often sensitive 

primarily to a specific whisker (the primary whisker) and much less responsive to 

neighboring whiskers (Simons and Carvell, 1989; Higley and Contreras, 2005).  This is 
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similar to a visual neuron being sensitive to a specific region in visual space.  It is not 

equivalent to a neuron being specifically activated by something about the stimulus that 

occurs within that space, such as the direction of motion or orientation of a line. 

Previously, some electrophysiologists have presented evidence for direction-tuning or 

angular-tuning in neurons in the barrel cortex (Simons and Carvell, 1989; Lee and 

Simons, 2004; Kerr et al., 2007); but this evidence is controversial and inconclusive. 

Importantly, recordings from pairs of neurons in the thalamus to the cortex show that 

connected neurons are not sensitive to the same direction, making it unclear how this 

information could be propagated along the pathway (Bruno et al., 2003). Others have 

postulated that a subset of neurons may be position-selective, acceleration (but not 

velocity) selective (Petersen et al., 2008), sensitive to more complex patterns of 

stimulation (Estebanez et al., 2012), or show frequency-specific activation (Ritt et al., 

2008).  However, even in these studies the percent of the neural population thought to be 

sensitive to any one feature is small (often 20% or less). 
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Figure 1-3 Feature-Selectivity versus Feature-Sensitivity Left: Feature selectivity 
requires a local maximum when some feature parameter is plotted along the x-axis and a 
neural response on the y-axis.  Right: Feature-Sensitivity exists when no local maximum 
is observed however the neural response is modulated in some fashion by the feature 
parameter. 

 

There is a subtle, but important, semantic distinction between feature-sensitive neurons 

and feature-selective neurons (Figure 1-3). Barrel cortex neurons are velocity-sensitive, as 

base measure of stimulus strength. If a whisker deflection is stronger (faster) then 

neurons fire more spikes on average (Simons, 1978; Wang et al., 2010). Importantly, this 

curve is monotonic.  The neurons are not velocity-selective or velocity-tuned, responding 

maximally to a specific intermediate velocity and not to stronger velocities.  This is in 

opposition to way that V1 neurons are specific to a particular orientation. 

1.3.2 Behavioral Evidence for Whisker Information Processing  

A large part of the confusion and controversy surrounding the lack of obvious feature-

selectivity in the whisker pathway stems from a very practical problem.  As human 

scientists, we do not have whiskers and consequently do not experience whisker 

sensations. We cannot immediately know which aspects of stimuli are meaningful or 
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even discriminable using whiskers alone. One of the central tenets of the study of sensory 

neural processing is that relevant perceptual information must be represented in some 

way in the activity of sensory neurons. With whiskers, we must first experimentally 

determine which features are perceptually relevant before searching the neural 

representations.  The debate surrounding what type of information is available from 

whiskers has strong implications for development of theories about the corresponding 

neural code.  As such, a careful consideration of recent behavioral paradigms is required. 

Testing the perceptual capabilities of rodents is not a simple task. It was only recently 

that the experimental paradigms that allowed for careful and controlled analysis of 

whisker sensations were developed (Carandini and Churchland, 2013).  Rodents, and 

most often rats, are clearly capable of performing complex behaviors using only whisker-

related sensory information. Behavioral paradigms have shown that rodents are capable 

of responding more to deflections of increasing velocity (Stüttgen and Schwarz, 2008; 

Schwarz et al., 2010; Ollerenshaw et al., 2012, 2014). Additional studies show that rats 

are capable of basic object localization (O’Connor et al., 2010a, 2010b), texture 

discrimination (Wolfe et al., 2008; Jadhav et al., 2009; Diamond, 2010) and aperture 

discrimination (Krupa et al., 2001) all using information collected through the whiskers.  

Intriguingly, while each of these experimental tasks demonstrates complex behavioral 

capabilities using information from whiskers, each paradigm can in fact be reduced to a 

simple detection task.  For instance, in the experimental paradigm requiring object 

localization, rats were observed to move their whiskers only in the specific location of the 
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rewarded target, ignoring the other non-rewarded target positions (O’Connor et al., 

2010a).  While this did result in correct object localization behavioral performance, as the 

rats were able to report correctly whether the object was in the preferred location, the 

only behavioral strategy required was to detect or fail to detect an object in a specific 

searched location. 

A rodent’s ability to discriminate between different stimuli by adopting a strategy in 

which conditions are differentially detectable is particularly intriguing in the 

consideration of a recent texture discrimination task (Morita et al., 2011).  Rats were 

trained to report whether a stimulus was textured (sandpaper) or smooth. The coarseness 

of the sandpaper determined the likelihood that the rodent correctly discriminated 

between the two stimuli, with the rodent responding correctly on more trials with coarser 

sandpaper (Wolfe et al., 2008; Jadhav et al., 2009; Morita et al., 2011). Interestingly, the 

ability to perform this type of discrimination was correlated with the presence of short 

high-velocity events, called ‘slip-stick’ events in which a whisker gets temporarily caught 

on the sandpaper, called a ‘stick’, followed by the release of that whisker, called a ‘slip’.  

The discriminability between smooth and textured surfaces was also reduced to a 

detection task (Waiblinger et al., n.d.; Wolfe et al., 2008; Diamond, 2010). 

The observation that all complex whisker-tasks reduce to a simple detection task greatly 

informed the work in this thesis. The key variable thought to determine the detectability 

of a whisker stimulus is the deflection velocity (Stüttgen and Schwarz, 2008; 

Ollerenshaw et al., 2014). I hypothesize that by understanding velocity encoding in the 
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whisker barrel pathway, we can understand what type of information is processed by 

whiskers and how it is encoded. 

1.4 Experimental Approach 

1.4.1 Application of Signal Detection Theory 

Again, the central assertion of sensory neuroscience (and this work) is that features that 

are relevant to perception must be able to be reliably encoded (and thus decoded) from 

the patterns of neural activity. However, what does it mean to decode neural signals? We 

must define which feature of the signal is relevant, be capable of measuring that relevant 

feature, and consider the variability in this measurement due to noise. 

The relevant neural feature is usually firing rate. Firing rate is assessed using a peri-

stimulus time histogram (PSTH) collapsed from recording multiple trials of spiking 

activity from single or multiple neurons in the brain. These PSTHs are then used to 

estimate both the expected mean and variability in the neural representations of different 

stimuli.  A common metric, known as d’ (d-prime) is defined by the following equation: 

𝑑′ =  
𝜇1 − 𝜇2

�1 2(𝜎12 + 𝜎22)⁄
 

where µ1,u2 and σ1,σ2 are the mean and standard deviations of the two distributions.  
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Figure 1-4 Signal Detection Theory d’    Distributions with a large d’ are expected to be 
easily separable as there is minimal overlap. A small d’ represents increased ambiguity 
and overlap of the distributions. The two signals are less discriminable. 

 

 

An example of distributions with a large d’ and small d’ are shown in Figure 1-4.  In the 

study of neural coding, distributions that are separable (a high d’) would be interpreted to 

be reliably encoded and assumed to be perceptually different.  Meanwhile distributions 

with a small d’ would not be expected to be perceptually different. 

We can also test a proposed encoding framework by classifying observed neural 

responses into stimulus categories and recording the performance.  This type of approach 

is known as ideal observer analysis. The ideal observer analysis can be more widely 

applicable than the d’ analysis as the classifier does not necessarily need to be Gaussian. 

An ideal observer classifies trials based a specific rule; often this rule is maximizing the 

Bayesian estimation of likelihood.  The likelihood of an observed neural response, r, 

having resulted from any one of a possible set of stimuli (Si) is calculated as:  
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𝑃(𝑆𝑖|𝑟) =
𝑝(𝑟|𝑆𝑖)𝑝(𝑆𝑖)

𝑝(𝑟)
 

The observer then classifies the observed response by maximizing the likelihood 

function, or for a discrete set of stimuli, choosing the stimulus that had the maximum 

likelihood of creating the observed response. 

Using these signal-detection and classification frameworks, we develop and test the 

predictive power of different possible encoding schemes in neural networks. 

1.4.2 Discrimination Using Single Trials as Opposed to Trial-Averages 

In classic neural decoding frameworks, a central assumption is that the same stimulus 

will be encoded similarly each time it is presented. The neural representation varies based 

on context or state, but these differences would be predictable if the right variables are 

known. In this thesis, I used the same basic signal detection framework without this 

central assumption. I do not assume that distributions created from trial-average 

assessment of activity adequately represent single trials. Instead, I explicitly test this 

assumption using a maximum likelihood ideal observer analysis.  Using an optical 

imaging technique known as voltage sensitive dye imaging (introduced in Chapter 2), I 

can record membrane potentials across a population in space with only one presentation 

of the stimulus. I can then test the discriminability of stimuli without making assumptions 

about the nature of single trial distributions. 
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1.5 Motivation and Thesis Organization 

1.5.1 Thought Experiment: whiskers are not eyes 

One unique characteristic of the whisker system as opposed to other sensory systems: 

whiskers fall out.  

Eyes and retinas do not fall out. Ears and cochlea do not fall out. Whiskers are hairs. 

Similar to the hairs on our heads and bodies, whiskers go through recurring growth cycles 

that eventually result in an old whisker being replaced by a new whisker. While in many 

cases, the new whisker grows alongside the old whisker, it is common to see a rat missing 

a whisker, sometimes more than one (Young and Oliver, 1976). 

While this may appear obvious, the neurobiological implications of this process should 

not be underestimated. First, if whiskers regularly fall out, regrow or change lengths on a 

day-to-day basis, one would also predict that the sensation from these changing whisker 

properties would alter the sensory percept. If each whisker were responsible for encoding 

of one specific property, say specific frequency information, then when that whisker falls 

out the animal would instantaneously lose all stimulus specific information associated 

with that frequency. As no human has directly experienced whisker sensations, it is 

possible that the sensory perception changes day-to-day; however, the sensory percepts 

we experience in other modalities do not seem so mutable. 

Second, a missing whisker is a type of temporary sensory deprivation. We know from 

studies of sensory systems, including the barrel cortex, that sensory deprivation can cause 
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dramatic changes to the neural response (Wiesel and Hubel, 1963; Fox, 2002; Feldman 

and Brecht, 2005).  Specifically, feature-selectivity is thought to develop as a direct result 

of constant, repeatable pairing of certain groups of stimuli.  As the classic Hebbian saying 

goes: neurons that fire together, wire together. If the barrel cortex is going through 

random and recurring temporary sensory deprivation, it is logical to predict that 

meaningful neuron specific feature-selectivity could not be maintained within a whisker 

column. 

With this thought experiment in mind, I developed the probability of activation 

hypothesis as a testable model for information coding when the sensors themselves are 

unreliable. If I were to engineer a system in which no individual input device could be 

expected to function identically (or even exist) on a given trial, the engineered system 

would need to be robust to this design specification.  Redundancy would be a central 

feature of this system.  I hypothesize that relevant stimulus information must be 

redundantly encoded, but still be sufficiently adaptable to allow for perceptual differences 

between stimuli.  This will become a theme in the interpretation and proposed model of 

sensory coding in this work. 

1.5.2 Organization of the Chapters 

Despite the prominent role of the barrel cortex in the study of somatosensory processing 

for decades, there is still no conclusive evidence for feature-selectivity in receptive fields 

in the rodent vibrissa system. Hubel and Wiesel’s pivotal discovery of orientation tuning 

in vision may in fact have led the whisker and somatosensory community astray. If the 
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absence of evidence of feature-selective neurons in the barrel cortex is interpreted as 

evidence of absence, it opens up the possibility for novel information processing schemes 

consistent with the unique properties of somatosensation.  In this work, I propose a novel 

hypothesis to explain how stimulus information can be encoded such that complex 

behaviors can be performed without feature-specificity of individual neurons.  I suggest 

that information can be encoded probabilistically across cortical space using multiple 

independent, but unreliable, whisker sensors.  Initial evidence for the probability of 

activation hypothesis is presented in Chapter 2. The functional implications of the 

probability of activation hypothesis are then considered across time (Chapter 3) and space 

(Chapter 4). In Chapter 5, I present a framework where stimulus features including 

intensity and direction of motion could be encoded spatiotemporally as an array of 

unreliable detectors. In Chapter 6, I propose an accumulation of errors model and argue 

that probabilistic representations of stimulus strength not only possible, but also likely to 

occur as the result of a series of highly stochastic events.    
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CHAPTER 2  The Probability of Activation Hypothesis 

 

2.1 Introduction 

We use information derived from our sensory systems to interact dynamically with the 

external sensory world. Our senses help us avoid being hit by a car in a crosswalk or 

instantly recognize a face in a sea of strangers. Much of what we understand about neural 

processing of sensory stimuli has been derived from recordings of single or small 

populations of neurons averaged across repeated presentations of a sensory input. Trial-

averaged neural activity, however, is not ethologically relevant; we do not often have the 

flexibility to replay an event or stimulus before reacting. Even when the average neural 

responses to different stimuli are significantly different, trial-to-trial variability can limit 

which stimulus parameters are effectively decoded (Abbott and Dayan, 1999; Averbeck 

et al., 2006; Beck et al., 2012). From a theoretical perspective the role of variability has 

been explored, particularly in the context of single neurons or the joint activity of pairs of 

neurons (Butts and Goldman, 2006; Churchland et al., 2010; Cohen and Kohn, 2011), but 

population-level variability remains poorly understood. 

The rodent vibrissa (whisker) system is a powerful model system for detailed 

investigation of neural circuitry in early sensory pathways (Petersen, 2007), and is 

emerging as an important model system for behavior. Rodents are capable of choosing 

between different textures and patterns of whisker stimulation (Carvell and Simons, 
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1990; Wolfe et al., 2008; Morita et al., 2011)  and of performing object detection and 

localization (O’Connor et al., 2010a, 2010b). Nevertheless, the specific stimulus features 

that are encoded in these tasks are not known. One hypothesis is that sporadic high-

velocity ‘slip-stick’ events observed during texture discrimination as a whisker is moved 

across a surface are relevant stimulus features (Wolfe et al., 2008; Jadhav et al., 2009). 

Experiments in our laboratory and others have shown that both the behavioral 

detectability of whisker deflections (Stüttgen et al., 2006; Stüttgen and Schwarz, 2008; 

Ollerenshaw et al., 2012; Waiblinger et al., 2013) and the spike frequency in the thalamus 

and cortex (Simons, 1978; Pinto et al., 2000; Shoykhet et al., 2000a; Boloori et al., 2010; 

Wang et al., 2010) are modulated by short high-velocity whisker movements. However, 

single unit studies do not give direct information about population variability across-

trials, which are critical for assessing the detectability of slip-stick events or the 

discriminability of different slip-stick events in different ethological contexts.    

Here, we consider the encoding of whisker deflection velocity using in vivo voltage 

sensitive dye (VSD) imaging of the rat barrel cortex in an anesthetized preparation. VSD 

imaging measures population activity on a single trial with sufficient fidelity as to 

differentiate stimulus-evoked activity on a single stimulus presentation (Ollerenshaw et 

al., 2014).  Consistent with previous VSD studies (Petersen et al., 2003a; Ollerenshaw et 

al., 2012), we show that the average amplitude of cortical activation increased with 

whisker deflection velocity. However, taking the perspective of an ideal observer of 

cortical activation, the single-trial cortical activity within a cortical column was not 

predictive of the velocity of the input. By examining the variability of the population 
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response, we find that the stimulus velocity instead modulated response reliability. We 

propose a new model for the encoding of stimulus strength in the presence of high trial-

to-trial variability based on a probabilistic framework. 

2.2 Methods 

2.2.1 Animals 

All procedures were approved by the Animal Care and Use Committee at the Georgia 

Institute of Technology. Data from six adult female Sprague-Dawley rats were using in 

this study (250g-330g). Data from four additional animals were excluded based on a 

predetermined criterion due to inadequate signal quality as reflected in the signal to noise 

ratio, predominantly caused by inadequate dye penetration. 

2.2.2 Surgical Preparation 

Animals were sedated with isoflurane (5%) and injected with sodium pentobarbital 

(50mg/kg, IP) for long-term anesthesia.  A tail vein catheter was inserted and sodium 

pentobarbital (4.5mg/ml) was delivered continuously and adjusted to maintain an 

anesthetic depth at which no toe or tail pinch reflex was observed.  Heart rate, oxygen 

saturation, respiratory rate, and temperature (37°C) were monitored continuously to 

ensure a constant level of anesthetic depth throughout the experiment. Once anesthetized, 

the animal was stabilized in a stereotaxic frame. A craniotomy was performed over the 

barrel cortex (stereotaxic coordinates: 0.5-4.0 mm caudal to the bregma, and 3.0-7.0 mm 

lateral to the midline), and the dura was removed.  A dental-cement well was created 
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around the craniotomy to hold dye and saline. The surface was kept moist with sterile dye 

or saline throughout the entire experiment. 

2.2.3 VSD imaging 

Voltage-sensitive dye (VSD) imaging measures subthreshold activity from a population 

of neurons in layer 2/3 of the barrel cortex (Kleinfeld and Delaney, 1996).  Voltage-

sensitive dye (RH1691, 2mg/ml, Optical Imaging) was placed on the surface of the brain 

and mixed regularly with a micropipette every 5-10 minutes for 1.5 - 2 hours in order to 

allow sufficient time for diffusion into the cortex. Next, the unbound dye was removed by 

multiple washes with sterile saline. The cortex was illuminated with a 150W Halogen 

lamp passed through an excitation filter (621-643 nm). The camera was focused 

approximately 300µm from the surface of the brain. Images were recorded with a high-

speed CCD camera (MiCOM2, SciMedia) as depicted in Figure 2-1. A 1x objective lens 

was combined with a 0.63X condenser lens, resulting in a total magnification of 1.6X. 

Forty to sixty trials for each stimulus condition were recorded for analysis.  Image 

resolution was approximately 20µm/pixel. 

2.2.4 Whisker Deflections 

Controlled whisker deflections were delivered with a piezoelectric bending actuator 

(range of motion: 1 mm; band- width: 200 Hz; Polytec PI) attached to a glass pipette. The 

whiskers were trimmed to 15mm and the whisker tip was placed inside the pipette, which 

was positioned 10mm from the whisker base. The saw-tooth deflection consisted of an 

eight millisecond exponential rise phase, and an eight millisecond exponential decay 
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phase.  The velocity of the whisker deflection was varied by changing the rostral-caudal 

distance the whisker was moved by the piezoelectric actuator. The duration of the 

deflection remained constant.  The angle of deflection at the whisker base was calculated 

from the measured distances (distance from whisker pad, deflection distance) assuming 

triangular geometry. The six velocities (V1 to V6) were calibrated to be 75, 150, 300, 600, 

900 and 1200˚/s, respectively, in the rostral-caudal plane.  In most animals, noise trials in 

which no stimulus was delivered were also recorded. In data sets in which noise trials 

were not recorded, forty pre-stimulus frames were used to approximate noise trials.  Dual 

whisker deflections were delivered using two individually calibrated piezoelectric 

actuators at equal velocity. 

2.2.5 Image Analysis 

All data analysis was done in custom written software in MATLAB (MathWorks, Natick, 

MA).   For each trial, a background image (𝐹0) was created by averaging forty pre-

stimulus frames (a 200ms interval). The stimulus evoked VSD signal was calculated as 

the percent change from this background image: %∆𝐹/𝐹 = (𝐹 − 𝐹0)/𝐹0  ∗ 100. 

Associated time series were calculated by averaging over a circular region of interest 

with a ten pixel radius (~200µm) from the center of activation in the onset frame 

(determined manually, usually 10ms or 15ms after stimulus delivery) from an average of 

all trials. The onset frame has previously been shown to be restricted to a single cortical 

column (Petersen et al., 2003a). The use of a spatially restricted ROI resulted in an 

increased signal to noise ratio and allowed the detection of even small activations that 

were stimulus-evoked. For calculation of the center of mass and image presentation only, 
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images were filtered with a spatial averaging filter (400µm X 400µm, approximately 1 

barrel). In order to display response amplitude for all data sets on the same scale, single 

trial response amplitudes were normalized by the max single trial response amplitude 

observed in each data set.  Average response amplitudes were normalized by the 

maximum average response. 

2.2.6 Ideal Observer Classification by Stimulus Velocity 

An ideal observer was tasked with classification of trials by response amplitudes (𝑟) into 

six stimulus velocity categories V1, V2…V6  (Wang et al., 2010). For each velocity, a 

probability distribution, 𝑃(𝑟|𝑉𝑖), was estimated using bootstrapped estimates of the 

mean. The set of six velocity distributions formed the trial-average classifier.   A given 

observed response amplitude, r, was sorted into the velocity class with the maximal 

likelihood estimator: 

𝑉�𝑀𝐿𝐸 = arg𝑚𝑎𝑥  𝑉𝑖  𝑃(𝑟|𝑉𝑖) 

The result was a 6x6 performance matrix in which the [j,k] element was the frequency of 

assigning a single trial to 𝑉𝑘 when the actual stimulus was 𝑉𝑗.  The actual classification 

performance was defined as the frequency that a given trial was correctly classified, 

summed across stimuli, or simply the average of the diagonal of the performance matrix.  

The optimal classification performance for a given classifier was limited only by the 

overlap between the velocity distributions.  Conceptually, it was the frequency of 
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correctly classified trials if the response amplitudes were sampled directly from the 

classifier distributions: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 100 ∗� � 𝑃(𝑟|𝑉𝑖)
𝑟∈𝑅𝑖

𝑃(𝑉𝑖)𝑑𝑟
𝑉𝑖

 

where 𝑅𝑖 is the range of response amplitudes over which velocity, 𝑉𝑖, had the maximum 

probability and 𝑃(𝑉𝑖) = 1/6, the relative frequency at which a given velocity stimulus 

was presented. Extreme errors were trials in which the assigned velocity class 𝑉𝑘 differed 

from the actual stimulus class, 𝑉𝑗, such that |𝑘 − 𝑗| ≥ 2. For simulations of multiple 

stimulus presentations, the maximum likelihood estimation was calculated from the 

effective response amplitude 𝑟̂, which was the mean of n (1,3 or 10) randomly selected 

trials.  

2.2.7 Response Reliability Analysis 

Single trial time series were calculated by averaging over the same barrel-sized ROI used 

to create average time series described previously.  Each trial was determined to be either 

a ‘response’ or ‘no-response’ trial based on the presence or absence of a measurable 

stimulus-locked change in amplitude using a template-matching algorithm. As the 

temporal response was extremely stereotyped across velocities, an average time series 

from 0ms to 250ms after stimulus delivery was used as a filter (or template). The filter 

included frames in which the activity had not yet reached the cortex, to ensure that 

changes in fluorescence were stimulus-locked.  Individual trials were matched to the 
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template by point-wise multiplication (dot product).  The sum was a single number, a 

match score, which quantified how well each single trial matched the template. Match 

score distributions from both noise frames and stimulus trials were calculated. A 

classification threshold was set at three standard deviations above mean match scores of 

noise trials. Trials with match scores above this threshold were considered response trials. 

Note that the use of a high threshold (a match score above the 99.7 percentile of the noise 

distribution) resulted in a greater number of false negatives (a misclassification of a true 

response as a no-response trial) while limiting the probability of false-positive 

misclassifications. The high threshold level was chosen to highlight the existence of large 

response amplitudes to small velocity stimuli; however, the results presented in this paper 

were consistent for all threshold levels. 

2.2.8 Probability of Activation Simulations 

We discussed two possible models that could generate the observed average VSD 

responses, the continuum model and the probability of activation model. As a 

demonstration of the unique characteristics of each model, we simulated data from the 

mean and standard deviation of the combined normalized distribution from all data sets. 

These simulations are meant to demonstrate the qualitative differences between the 

models, not to be quantitatively representative of any specific parameter of actual data. 

For the continuum model, distributions were assumed to be normally distributed about 

the observed mean with a standard deviation equal to the standard deviation of the noise 

distribution. For the probability of activation model, response trials were defined as any 

trial with response amplitude greater than three standard deviations above the noise 
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distribution mean. The response and no response means and standard deviations were 

estimated accordingly. The simulated distributions were randomly chosen from these 

distributions. 

2.2.9 Multi-Whisker Spatial Classification 

A spatial template-matching algorithm was used to classify single trials from 

simultaneous whisker deflection. This algorithm was adapted from a previously 

published method (Millard and Stanley, 2013).  In each data set (n=2 animals), trials 

(data set 1, 100 trials; data set 2, 50 trials) were collected for individual whisker 

deflections and for both whiskers deflected simultaneously. Trial-average and time 

average (15-20ms) images from individual whisker deflections and simultaneous whisker 

deflections were used to create spatial templates (T1, T2 and T3 respectively). A 

representative barrel map of thirty-two barrel columns was registered to the image based 

on known whisker locations (Wang et al., 2012). The average activation in each barrel 

was calculated, creating a one-dimensional representation of the image (1XN array). N is 

the number of barrel columns (32 maximum) that fall entirely within the VSD image in 

each dataset. No response trials were modeled as zero mean noise (template T4) with a 

covariance (Σ) estimated from pre-stimulus noise frames. Single trials (y) were time-

averaged and mapped to one dimension in the same manner as for the templates, then 

sorted by choosing the least-squares template, 𝑇𝐿𝑆, that minimized the weighted mean 

squared error:  

𝑇𝐿𝑆 = arg min
𝑇𝑖

𝑇1,… 𝑇4

 (𝑦 − 𝑇𝑖)′ Σ−1 (𝑦 − 𝑇𝑖) 
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Evidence for independence was assessed using a chi-squared test with one degree of 

freedom. 

 

Figure 2-1 VSD System Schematic   A) A schematic of the voltage-sensitive dye 
imaging system. A piezoelectric actuator delivered controlled mechanical deflections of a 
whisker with variable velocity. The surface of the cortex was stained with voltage 
sensitive dye and images were recorded on a high-speed CCD camera (5ms resolution).  

 

 

2.3 Results 

Population responses to whisker deflections were studied using voltage sensitive dye 

imaging (VSD) as illustrated in Figure 2-1. Single punctate whisker deflections of 
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different velocities were delivered by a computer-controlled piezoelectric actuator in the 

rostral-caudal plane (see Methods). Images were recorded every five milliseconds and the 

fluorescence was quantified as percent change from background. Figure 2-2A shows 

trial-average images for six different velocity whisker deflections (V1-V6): 75°/s, 150°/s, 

300°/s, 600°/s, 900°/s, 1200°/s which span the expected behavioral threshold for 

detection(Stüttgen and Schwarz, 2008; Ollerenshaw et al., 2012). The neural activity 

started locally over the primary barrel approximately 10ms after stimulus presentation 

and then spread into neighboring barrels (Figure 2-2B).  Time series shown in Figure 

2-2C were created by averaging over a circular region of interest approximately the size 

of one cortical barrel (400µm diameter) corresponding to the deflected whisker. 

Increasing the velocity of the stimulus increased the trial-average peak amplitude (or 

simply response amplitude) of the VSD response (Figure 2-2D) across all experiments 

(n=6 whiskers, 4 animals).  These data are consistent with previous experimental findings 

(Petersen et al., 2003a; Ollerenshaw et al., 2012; Wang et al., 2012). 
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Figure 2-2 Representative Trial-Average VSD Data    A) Representative cortical 
responses to whisker deflections of variable velocity (V1, lowest). Images were averaged 
over 60 trials. 1 mm scale bar applies to all images. B) Corresponding time series to the 
images seen in (A). Time series were calculated by averaging over a circular region of 
interest the size of one cortical column (~400µm diameter) centered over the barrel 
corresponding to the deflected whisker. The peak response frame determines the response 
amplitude. C) The trial-average response amplitude for each data set (dotted lines, n=6 
whiskers, 4 animals) and the resulting mean (black line with error bars ± s.e.m.) . Trial-
average response amplitude increased with velocity in all data sets.  
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2.3.1 Trial-average differences were not sufficient to allow for single trial velocity 

discrimination 

We tested whether the relationship between peak cortical response amplitude and 

deflection velocity was sufficient to classify single trial responses. For each data set, we 

define a trial-average classifier based on a set of response distributions created from 

bootstrapped estimates of the mean responses at each of six velocities (V1 through V6). 

A representative example of a set of trial-average distributions is shown in Figure 2-3A. 

We used maximum likelihood estimation to assign an observed response to a particular 

velocity class (see Methods). If the single trials were perfectly modeled by the trial-

average classifier, and thus drawn from these distributions, the theoretical performance 

would be limited only by the area of overlap of each of the distributions (referred to here 

as the optimal classifier performance). Optimal classification performance is visualized in 

matrices showing the frequency of trials predicted to be in each class (columns) for each 

actual input velocity (rows). A representative performance matrix is shown in Figure 

2-3B. In all our data sets, the optimal performance matrix has a strong diagonal 

representing a high number of correctly classified trials (72.9% ± 10.4%, mean ± 1 SD) 

31 

 



 

Figure 2-3 Ideal Observer Performance of Velocity Classification   A) Representative 
example of a trial-average classifier. B) The optimal performance of the classifier shown 
in (A) is limited only by the overlap of the velocity response distributions. Here, the 
probability of classifying an observation from velocity 𝑉𝑗 as coming from 𝑉𝑘 is 
represented graphically as element [𝑗,𝑘] in the performance matrix. The presence of a 
strong diagonal represents a high number of correctly sorted trials. C) The actual 
performance matrix of the ideal observer given true single trial response amplitudes. D) 
Distribution of the errors associated with classification. Using the notation described 
above, the = 𝑗 − 𝑘 . E) The percent of trials correctly classified under both the optimal 
and actual conditions across all data sets. Optimal and actual performance from 
individual data sets are connected with a line. F) The percent of error trials that are 
extreme |j-k|≥2 in both the optimal and actual performance conditions. 

 

 

Again taking the perspective of an ideal observer, we used the same decoding framework 

to classify observed single trials response amplitudes.  The decoding performance was 

significantly less than optimal (paired t-test, n=6, p<0.001) and on average correctly 

classified 27.7% ± 3.7% of trials, which is only about 11% more than if the classification 

were purely random. The performance of each individual data set is shown in Figure 

2-3E.  It is not surprising that the classification was less than optimal, as bootstrapped 
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estimates necessarily underestimate the true variability of the response; however, the 

actual performance of an ideal observer using this framework approached random 

classification, particularly when we considered the scale of the errors. In the example 

shown in Figure 2-3C, a trial from even lowest velocity (V1) was classified as one of the 

highest velocities (V5); similarly, a trial from the highest velocity was mistaken classified 

as the lowest (V1).  To quantify this across data sets, we considered any trial that was 

misclassified by two velocity classes or more as an extreme error (Figure 2-3D).   In the 

optimal case, the percent of errors predicted to be extreme was 7.8% with a standard 

deviation of 10.3%. The actual observed percentage of extreme errors was five times 

greater on average, 38.9% ± 7.4%. The difference is highly significant (paired t-test, n=6 

whiskers from 4 animals, p<0.0001). The percent of misclassified trials that are expected 

to be extreme errors using a random classifier is 56.2%. 

The poor performance of the ideal observer using a trial-average classifier suggests that 

the single trials are not well modeled by the trial-average response. In order to understand 

why, we considered single trial distributions directly. Figure 2-4A shows the time series 

associated with single trials from a representative data set. There is large variability in the 

response amplitude across all velocities. Consistent with the high number of extreme 

errors made when decoding with a trial-average classifier, the response amplitude from a 

single trial in response to a low velocity can equal the magnitude of the response from a 

trial observed in response to a high velocity.  A jittered scatterplot shows the same data 

with a single data point representing the peak response amplitude frame (open circle) for 

each single trial at each velocity (Figure 2-4B). The mean response is indicated with a 
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solid black line.  As previously observed, the mean increased with velocity; but a given 

response amplitude can be the result of any velocity. The corresponding plot with all 

single trials from all data sets (n=6 whiskers, 4 animals) is shown in Figure 2-4C.  From 

this representation of the data, it is clear that knowledge of the peak response amplitude is 

not sufficient to classify individual trials into velocity categories. 

 

Figure 2-4 Single Trial Response Variability   A) All single trial VSD time series from 
a representative data set.  V1 is the lowest velocity while V6 is the highest. B) The peak 
response amplitude from each single trial shown in (A) is represented as an open circle in 
the jittered scatter plot.  C) All single trial response amplitudes from all six data sets are 
shown in a jittered scatterplot. Data sets are normalized such that the peak single trial 
from any data set has response amplitude of one. 
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2.3.2 Single-trial responses were well-described by a probability of activation 

model 

It must be determined how, given such variability in the response amplitude, there are 

reliable differences in the trial-average amplitude between velocities across all animals. 

In all data sets, for a given velocity, we observed a subset of trials in which the stimulus-

evoked response was not measurably increased from the pre-stimulus activity. These 

trials were distinctly different from the trials in which there was clearly an evoked 

response (Figure 2-5A). We sorted trials based on the presence or absence of a stimulus-

evoked response on individual trials using a matched-filter algorithm (see Methods). We 

defined two categories: 1) ‘response’ trials in which post-stimulus fluorescence was 

distinguishable from noise and 2) ‘no-response’ trials in which it was not different from 

noise. An example set of sorted time series, as well as example corresponding single trial 

images, can be seen in Figure 2-5A. The magnitude of both response and no-response 

trials was variable (and not necessarily distinguishable by an absolute threshold), but the 

response trials all exhibited a clear, spatially specific activation over the primary barrel as 

well a stimulus-locked increase in fluorescence in the corresponding time series. No-

response trials exhibited either non-specific background activity or no stimulus specific 

changes at all. In a small number of trials sorted as no-response trials, there was actually 

a very small spatially localized signal. We consider these trials to be response trials 

misclassified as no-response trials, but the change in activity was so small as to not be 

reliably distinguished from noise fluctuations (Figure 2-5B).  
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Figure 2-5 Response and No Response Dynamics of Single Trials    A) Single trials 
were qualitatively and quantitatively separable into two groups: trials with stimulus 
evoked activity (response trials, black) and those without (no-response, gray) B) 
Example single trial images from trials shown in (A) demonstrate variability within the 
groups. Shown are three response trials with variable response amplitude (top). Three no-
response trials (bottom) chosen to represent the types of trials that comprise this category, 
including a misclassified trial. C) When all trials were included in the average time series 
of a single data set, there were large differences between the velocities (left), but when 
considering the average of only response trials (middle) or only no-response trials (right) 
the differences were dramatically reduced. D) Results were consistent across all data sets 
(n=6 whiskers, 4 animals, dotted lines) for both the response (black) and no-response 
(gray) average responses. The mean ± s.e.m. for both groups is depicted with a solid line 
and error bars. Note that higher variability is associated with conditions with the fewest 
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number of trials (low velocities for response trials, high velocities for no response trials) 
E) The frequency of response trials increased with stimulus velocity for all data sets 
(dotted lines), as well on average (solid line, mean ± s.e.m.). 

 

When considering response or no-response trials alone, the differences between the 

velocities were dramatically reduced.  The ordered nature of the velocities was 

sometimes even lost: low velocities had larger mean response amplitudes than higher 

velocities, as seen in Figure 2-5C.  The means of response and no-response groups for 

individual data sets are shown as dotted lines in Figure 2-5D.  Once sorted, the absolute 

amplitude of response and no-response trials was no longer strongly modulated by the 

stimulus velocity. However, the number of trials sorted into the response category, which 

we call the response reliability, increased with stimulus strength (Figure 2-5E).  This was 

true for every dataset collected. Note that the response reliability was considered relative 

to the velocity (not always the highest velocity) with the highest number of response 

trials for each data set.  Importantly, no velocity in any dataset showed a perfect response 

rate. While the frequency of response trials always increased with velocity, the absolute 

response frequency was highly variable between data sets. 

The presence of two distinct types of responses suggests a model for the encoding of the 

whisker deflection velocity that is distinctly different from what we had assumed in the 

original trial-average classifier. Without knowledge of the single trial variability, we had 

implicitly assumed a model in which the stimulus strength was encoded by the strength of 

the population response on a single trial (the trial-average classifier). We refer to this as 
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the continuum model as it proposes graded response with increasing deflection velocity 

(Figure 2-6, top).  However, the same mean response profile can also be created from a 

discrete probability of activation model formed from two possible response categories, a 

response and no-response class (Figure 2-6, bottom). The differences in the mean 

response occur by changes in the number of observations sampled from each distribution.  

 

Figure 2-6 Two Possible Encoding Schemes    The continuum model (top) has graded 
response amplitude with increasing stimulus strength (low, med, and high velocities). For 
the probability of activation model, (bottom) the frequency of response trials increases 
with increasing stimulus strength; however, the response and no response distributions 
were conserved across stimulus strength. 

 

 

It is not possible to distinguish between the probability of activation model and the 

continuum model with only the trial-average response. For example, Figure 2-7 shows 
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two possible single trial distributions simulated from hypothetical realizations of both the 

continuum (Figure 2-7, top row) and probability of activation (Figure 2-7, bottom row) 

models. Both models result in the same trial average measurements (Figure 2-7, left 

column), making the source of the responses ambiguous. The primary differences 

between the two models are revealed in a more thorough examination of trial-to-trial 

variability.  For the continuum model, in addition to increased mean response with 

velocity, three additional observations are evident. First, the minimum and maximum 

observed responses increased with the mean and with velocity (Figure 2-7B). Second, 

when pooled across velocities, the aggregate distribution of the responses is unimodal, 

reflecting the graduated increase in amplitudes with velocity (Figure 2-7C). Third, 

knowledge of the amplitude of a single trial response reduces the uncertainty about which 

of the stimuli could have produced that response.  In contrast, the range of achievable 

responses does not change with increasing velocity in the probability of activation model 

(Figure 2-7H). When pooled, this distribution is bi-modal (Figure 2-7G). Although bi-

modality is supporting evidence of a probability of activation model, it is not necessary, 

as it is also dependent on the overall difference between signal and noise distributions in 

a given dataset. Importantly, in the probability of activation model the single trial 

amplitude does not convey information, or reduce the uncertainty, about strength of the 

stimulus.  Observed single trial distributions in Figure 2-7E and Figure 2-7F (same data 

as in Figure 2-4C) are more consistent with the probability of activation model. 
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Figure 2-7 Simulations of Single Trial Distributions   A-C) Simulated continuum 
model distributions. A) Mean response amplitude versus velocity. B) A jittered scatter 
plot of the underlying single trials. C) A combined histogram of response amplitude of 
single trials from all velocities. The same analysis was done on the observed VSD single 
trials (D-F) and for simulated probability of activation model distributions (G-I).  Notice 
that the range of achievable response amplitudes for each velocity is constrained in the 
continuum model, but not in the probability of activation model. The observed data is 
consistent with the probability of activation model. 

 

2.3.3 Encoding stimulus strength within the probability of activation model 

required multiple independent sensors or events   

The probability of activation model suggests that deflection is not encoded by the 

response amplitude within a single barrel. This is potentially troubling since velocity is 

likely an important parameter for sensory perception (Jadhav et al., 2009). Outside of 

controlled laboratory experiments, however, a rat would rarely perceive a stimulus, 

whether it is an object or wind stimulus, using only a single whisker. Additionally, 
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rodents are known to actively sense by repeatedly moving whiskers across objects, a 

behavior known as whisking (Carvell and Simons, 1990; Bermejo et al., 2002).  Multiple 

observations of the same stimulus, whether on the same whisker over time or over an 

array of multiple whiskers, could provide an estimate of the strength of stimulus. For 

instance, a weak stimulus may activate two barrels out of ten barrels, or result in an 

observable activation in two out of ten whisks across an object. Similarly, a strong 

stimulus may activate all ten barrels or respond on every single whisk across an object. 

This qualitative hypothesis can easily be simulated by adapting the same maximum 

likelihood decoding framework used in Figure 2-3 to include multiple observations.  We 

simulated having access to multiple observations by averaging one, three or ten single 

trials into a single response variable prior to classification.  Overall accuracy of the 

classification increased with increasing number of observations of the stimulus. In Figure 

2-8A, there are increasingly prominent diagonals in the performance matrices as the 

number of trials increased from one to three to ten observations. This was true across all 

data sets (Figure 2-8B).  
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Figure 2-8 Multi-Whisker Classification   A) Example performance matrices for the 
optimal discrimination performance (top) and the performance matrix for an increasing 
number of observations (one, three, and ten observations). The same labels and scale bar 
apply to all performance matrices. B) Quantification of increased performance across all 
data sets (n=6 data sets, 4 animals). Bar graphs show mean ± s.e.m.  

 

The key assumption in this simulation was that individual observations, whether across 

cortical space (multiple whiskers) or time (multiple whisks), are functionally 

independent. Temporal independence of stimuli is likely contingent on the inter-

deflection interval and has been previously studied (Simons, 1985; Boloori et al., 2010). 

In the cortical space dimension, independence requires that it must be possible for one 

cortical column to responds while another does not at the same time. The functional 

independence of the response amplitude of neighboring cortical barrels within a single 

trial has not been previously considered.  If the response/no response dynamics reported 

here were determined by a shared variable, potentially a non-specific global state 
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variable, both barrels would either respond or not respond on a given trial. In contrast, if 

the barrels were able to respond or not respond independent of the response of the 

neighboring barrel, the multiple observation frame work would be supported. To test this, 

we recorded trials in separate experiments in which two adjacent whiskers were deflected 

simultaneously. The trial-average VSD image from simultaneous deflection was spatially 

similar to summed responses of the two individual whiskers (Figure 2-9A). On some 

trials, even though both whiskers were physically deflected, the cortical response 

qualitatively resembled trials where only one whisker was deflected (Figure 2-9B).  This 

suggests that two neighboring barrels can respond independently. Of course, it is difficult 

to prove that the two barrels are truly quantitatively independent. Independence depends 

on the exact frequencies with which we observe each type of trial, or more specifically on 

how well the observed frequencies match the probabilistic definition of independence: 

P(A&B)=P(A)P(B) .   To quantify frequency, we sorted the single trials in response to 

dual whisker deflection based on a spatial matched filter algorithm (see Methods) and 

recorded the number of trials that most resembled the spatial profile of four categories: 

each whisker individually (barrel 1 alone, barrel 2 alone), both barrels respond, and 

neither respond. The observed frequencies for two data sets (from two animals) are 

shown in  

Table 1. The observed frequencies for both data sets were each consistent with a null 

hypothesis of independence assessed with a chi-squared test, as shown in the table. Taken 

together, this evidence suggests a probability of activation framework in which the 

strength of the sensory input is encoded not in a graded cortical response amplitude, but 
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instead in the probability of observing a response on a trial-by-trial basis; additionally, it 

appears that the individual cortical columns are independent enough to probabilistically 

encode strength or velocity information across the whisker array. 

 

Figure 2-9 Barrels Can Respond Independently   A) Schematic of the dual whisker 
experimental paradigm.  Trial-average image from dual whisker deflections resembled a 
linear sum of two responding whisker barrels.  Single trial responses exhibit variable 
response spatial profiles. Trials were sorted into four response categories: barrel 1 
responds, barrel 2 responds, both barrels respond and no response. B) Example single 
trial images (15-20ms after stimulus presentation) from each of the three response 
categories. Scale bar (1mm) applies to all images. 

 

2.4 Discussion 

By examining the variability of the single trial VSD responses to whisker deflections of 

increasing velocity, we showed that the correlation between deflection velocity and mean 

VSD response amplitude results primarily from stimulus-dependent modulation of 
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response reliability, not the absolute response amplitude of individual trials. An ideal 

observer analysis showed that single trial response amplitudes were not sufficient to 

classify trials into velocity categories, but instead the observer often made large 

classification errors. While single trial response amplitudes were highly variable, there 

was structure in the single trial distributions. We observed that single trials from all 

velocities could be divided into two groups we refer to as response and no-response trials. 

Once sorted, differences between velocities were dramatically reduced. From these 

observations, we predict that a behaving animal would not be able to reliably discriminate 

stimulus velocities from the deflection of a single whisker. However, the spatial profile of 

single trial responses to the simultaneous stimulation of two adjacent whiskers resembled 

what would be expected if individual barrels acted as independent sensors of stimulus 

strength.  This suggests that velocity discrimination would be possible with multiple 

independent samples of stimuli across multiple whiskers or repeated whisks of the 

stimulus. 

Table 1 Evidence for Independence  Frequencies are presented as probability estimates: 
the number of observed trials in each category divided by the total number of recorded 
trials.  

 Observed Single Trial Spatial Profiles Statistics 
 

P(B1 not B2) P(B2 not B1) P(B1 and 
B2) P(NR) χ2 (df=1) p-value 

Data Set 1 0.23 0.28 0.39 0.1 1.2385 0.265 
Data Set 2 0.1 0.2 0.68 0.02 0.113 0.730 
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It is important to note that our data do not suggest an all-or-none type of bimodality, in 

which all response trials are identical. In contrast, the absolute response amplitude for all 

velocities was extremely variable, taking on any possible value: an anything-or-nothing 

response distribution. While some cortical responses from the lowest velocity were equal 

in magnitude to those from the highest, some responses from the highest velocities were 

just barely distinguishable from the noise distribution. This is an important distinction, 

suggesting that absolute amplitude of the stimulus is not reliably propagated through this 

sensory pathway. This variability is not an artifact from the VSD imaging technique itself 

or a result of changes in background activity as the level of variability observed with 

whisker driven input is in direct contrast to the highly repeatable and low-variability VSD 

responses observed in the same pathway in response to electrical microstimuluation of 

the thalamus (Millard et al., 2013). 

It is important to note that VSD imaging is limited to activity in supragranular layers of 

cortex, primarily layer 2/3, due to physical limits of light scattering. We cannot rule out 

the possibility that this is a layer 2/3 specific response characteristic.  This may even be 

likely as layer 2/3 is specifically characterized by minimal firing and high trial-to-trial 

variability (Petersen et al., 2003a; Kerr et al., 2007; Sato et al., 2007; Crochet et al., 

2011).  In these same studies, whisker deflections that do not cause spikes have been 

observed (Petersen et al., 2003b; Kerr et al., 2007; Sato et al., 2007). To our knowledge, 

the frequency of such trials has not been previously linked to stimulus strength.  
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Consistent with this interpretation, it is interesting to consider that in the primary input 

layer of the cortex, layer 4, neurons often respond to transient high-velocity events, such 

as the set of stimuli used in this study, with a single spike or no spike at all (Lee and 

Simons, 2004; Wang et al., 2010). Consequently, a trial-average firing rate is similar to 

an estimate of the reliability of an individual neuron across trials.  Given that each 

individual neuron is operating close to the point of detection failure on a single trial, it is 

possible that a population of neurons within a single barrel may fail to sufficiently 

activate downstream processing, particularly at threshold velocities. 

One of the biggest limitations of this study is the use of an anesthetized preparation.  

While it is impossible to know for certain how anesthesia may influence the observed 

effect, an attractive hypothesis is that the bimodality we observe might be related to 

different processing of stimuli in both the ‘up’ and ‘down’ states characteristic of an 

anesthetized cortex (Petersen et al., 2003b; Civillico and Contreras, 2012). It is possible 

that state fluctuations contribute to the overall variability of the VSD signal.  Since we 

did not record any indicator of cortical state, we cannot specifically exclude this 

hypothesis. However, several observations suggest that a causal role for ‘up’ and ‘down’ 

states for the observed response reliability is unlikely. First, the frequency of no-response 

trials is stimulus specific.  We are not controlling state and the stimuli are delivered in 

pseudo-random order.  Each stimulus condition would be sampled from relatively equal 

occurrences of the ‘up’ and ‘down’ states and therefore state should affect all stimuli 

equally. Without a more complex non-linear relationship between state and response 

reliability, simple state fluctuations are not sufficient to explain the stimulus-dependent 

47 

 



differences.  Second, the dual whisker deflection data suggest that one part of the cortex 

can respond while a neighboring region of cortex does not.  If ‘up’ and ‘down’ states 

were determining this response/no-response characteristic, then one would have to 

conclude that neighboring whisker barrels could be in opposing states at the same time. 

While possible, this is inconsistent with existing literature (Petersen et al., 2003b).  

Finally, these results have been repeated with a fentanyl cocktail (fentanyl 5ug/kg, 

dexmedotodomine, 150ug/kg, midazolam 2mg/kg). Fentanyl, as an anesthetic, is thought 

to better represent a desynchronized cortical state similar to the awake brain (Simons and 

Carvell, 1989; Constantinople and Bruno, 2011).   All velocity trends presented in this 

data are identical in this additional data set (Figure 2-10).   
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Figure 2-10 Ideal Observer Analysis under Fentanyl Anesthesia    A) A replicated 
experiment using alternate anesthesia showed trial-average increases with velocity a (B) 
prominent response no response distributions. C) Trial-average classifier for this data set 
D) the optimal performance matrix and E) actual performance matrix for this data set. F) 
This data set also showed near chance levels of discriminability. 
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The results presented here allow an intriguingly simple interpretation of the canonical 

stimulus detection behavior results. Just as head-fixed awake behavioral experiments 

have shown that increased stimulus velocity increases the probability of detection 

(Stüttgen and Schwarz, 2008; Ollerenshaw et al., 2012), we observed a higher probability 

of response in layer 2/3 of the barrel cortex. In fact, the predicted detection threshold 

based on the probability of activation model presented in this study is between 200-

300°/sec, consistent with existing behavior data from our lab and others (Stüttgen and 

Schwarz, 2008; Ollerenshaw et al., 2012). It is possible to interpret these behavioral 

results in the context of both the continuum and probability of activation models. 

However, to our knowledge there is no evidence that rodents can be trained to 

discriminate velocities on a single whisker. Additionally, the simplest interpretation of 

the continuum model, where detection occurs when the activity crosses an absolute 

threshold, cannot entirely account for the observed behavioral results and instead requires 

more complex frameworks such as an accumulation of evidence model (Ollerenshaw et 

al., 2012).   

While an assertion of simplicity alone is not an argument for validity, the probability of 

activation model is also generally consistent with existing discrimination behavioral data 

when considered in conjunction with the ‘slip-stick’ hypothesis (Wolfe et al., 2008). This 

hypothesis asserts that texture discrimination can result from the animal perceiving 

differences in the number of high-velocity slip-stick events across the whisker array when 

whisking against a texture. Interestingly, the average slip-stick event velocity in this 

texture discrimination paradigm was 1,100°/sec (Wolfe et al., 2008), which is near the 
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maximum range of velocities tested here. The same stimulus would be predicted to be a 

threshold stimulus (determined behaviorally) in an adapted state (Ollerenshaw et al., 

2014).  Given this, we hypothesize that the discriminability of different textures could be 

regulated by altering the detectability of slip-stick events. The greatest texture 

discriminability would occur when the mean slip-stick event velocity occurs near a 

perceptual threshold. 

It is tempting to speculate in which way these results may inform or support the study of 

sensory processing in other modalities. The instantaneous velocity of whisker deflection 

may be analogous to simplistic characterizations of the strength of inputs in other 

pathways, such as sound intensity in the auditory pathway or luminance/contrast in the 

visual pathway, both of which are primarily represented by an increased amplitude of 

neural response. Here, we observed that the absolute amplitude is not efficiently 

propagated from the sensory receptor into higher levels of cortical processing on a single 

presentation within a single cortical column. The analogous measures of stimulus 

strength in vision and audition are often not well perceived as an absolute. Instead 

perception is highly dependent on the stimulus context (Marks, 1994; Polley et al., 2006; 

Dixon et al., 2014).  The results of this study predict that perception of stimulus strength 

in the barrel cortex requires context, specifically coordination across cortical columns. 

Whether cortical columns in vision or audition also function as independent, but possibly 

unreliable, sensors of a threshold stimuli remains to be investigated. 
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After examining both single trial amplitudes in response to the deflection of one whisker 

and single trial spatial profiles in response to the deflection of two whiskers, we propose 

a framework in which the strength of the sensory input is encoded not in a graded cortical 

response continuum, but instead probabilistically across the whisker array. Much of what 

we currently understand about the neural code has been derived from differences in trial-

average responses; however, neither of the observations here could have been predicted 

from the trial-average response alone.  Specific consideration of the variability of single 

trials allowed us to make additional predictions about how (or if) our brain is able to 

encode stimulus parameters in the presence of high variability. 
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CHAPTER 3  Probabilistic Encoding of Non-Linear 

Dynamics  

 

3.1 Introduction 

Natural whisker stimuli, even within the simplifying framework of the slip-stick 

hypothesis, are not just single whisker deflections.  Whiskers are used actively by rats to 

probe stimuli over time in a process known as whisking (Carvell and Simons, 1990; 

Bermejo et al., 2002; Ollerenshaw et al., 2012).  Extensive existing literature has shown 

that there are complex interactions between whisker deflections delivered separately in 

time.  

Specifically, single-unit electrophysiology in the thalamus and cortex has shown that 

cortical neurons exhibit velocity-dependent suppression in response to paired whisker 

deflections (Simons, 1985; Simons and Carvell, 1989; Brumberg et al., 1996; Webber 

and Stanley, 2004; Boloori et al., 2010). This paired-pulse experimental paradigm 

consists of two whisker deflections given in series. The first pulse is known as the 

condition pulse, the second as the test pulse. In classic applications of this paradigm, the 

test pulse is suppressed by the presence of a condition pulse and the amount of 

suppression is determined by the intensity of the condition pulse (Boloori et al., 2010). In 

the whisker system, previously proposed mechanisms have assumed the continuum 

model where small velocity deflections result in lower response amplitudes and thereby 
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engage a smaller amount of inhibition(Boloori et al., 2010). Faster whisker deflections 

would result in more activation of the barrel cortex and therefore engage a greater 

inhibitory response.  In context of the probability of activation hypothesis, in which 

single trial response amplitudes are not reflective of the stimulus velocity, it is not clear 

how condition pulses could modulate test pulse suppression. 

We explicitly considered the non-linear temporal suppression dynamics in response to 

pairs of deflections in the context of the probability of activation hypothesis.  We again 

used voltage sensitive dye imaging to study trial-to-trial variability of temporal dynamics. 

Trial-averaged VSD responses show velocity-dependent suppression consistent with 

previously reported dynamic trends. However, single trial responses are distinctly 

separable into three groups: 1) a response occurs on the condition pulse but not the test, 

2) a response occurs on the test pulse but not on the condition, 3) no response to either 

pulse occurs.  Importantly, there are no trials with responses to both pulses. Using a 

phenomenological model, we show that the probability of activation hypothesis can 

explain both the average observed trends and the structure of the single trial distributions. 

3.2 Methods 

3.2.1 Animals 

All procedures were approved by the Institutional Animal Care and Use Committee at the 

Georgia Institute of Technology.  Data from 13 animals are presented in this study. Seven 

animals were newly tested for this study while data from the additional six animals were 

collected in the same experiment as data for previous studies. 
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3.2.2 Surgical Preparation and Voltage Sensitive Dye Imaging 

All surgical preparations and imaging methods are identical to those described in Chapter 

2. Briefly, a craniotomy, and in some cases a duratomy, was performed over the barrel 

cortex in animals anesthetized with sodium pentobarbital. Voltage sensitive dye RH1691 

was applied to the surface of the cortex and allowed to diffuse into the brain for 1.5-2 

hours.  After saline washes, the activity in response to whisker deflections was recorded 

on a high-speed CCD camera with 5ms temporal resolution.  

3.2.3 Whisker Stimuli 

Controlled whisker deflections were delivered using a glass pipette attached to a 

piezoelectric actuator identically to previous studies. The stimuli in this study were a 

pairs of saw-tooth deflections of a specific velocity separated by a defined interval (ISI, 

inter-stimulus interval).    The velocities tested were calibrated to be 75, 150, 300, 600, 

900 and 1200˚/sec. 10-60 trials were collected at each velocity, depending on available 

experimental time.  For single trial analysis, trials were binned into low, med and high 

groups.  For the equal condition-test paradigm the low, middle and high bins were 

75,150˚/sec; 300,600˚/sec; 1200˚/sec respectively.  For the fixed test, the test pulse was 

900˚/sec.  The condition velocities were also binned: 75,150˚/sec (low); 300, 600˚/sec 

(middle); 900, 1200˚/sec.  For five of the animals, we also collected data at 3 inter-

stimulus intervals (ISIs): 100ms, 250ms and 500ms.  For the two-whisker paired pulse 

studies, equivalent velocities of either 600 or 900 ˚/sec were delivered by separate piezo-

electric control to both whiskers. 
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3.2.4 Image Analysis 

Voltage sensitive dye images were processed as described in Chapter 2.  Each image 

represents the percent change in fluorescence relative to a background image (an average 

of forty pre-stimulus frames).  The analysis was done directly on single trial time series 

created by averaging the fluorescence signal in a region of interest with a radius of 10 

pixels (200µm, approximately the size of one barrel) around the center of mass observed 

in the onset frame (15ms after stimulus delivery).    

3.2.5 Trial-Average Analysis 

Time series from each single trial (10-60 trials per data set) were averaged together, 

resulting in a single time series per stimulus condition.  The temporal response to a 

whisker deflection was extremely stereotyped within each data set, but varied slightly 

between sets. As there is sometimes residual increased fluorescence (and presumably 

neural activity) from the first pulse at short inter-stimulus intervals, we defined the 

stimulus-evoked response amplitude using a differenced time series, not the absolute 

observed value. The response amplitude for each data set was defined as the 

measurement with the maximum change in fluorescence between 0 and 50ms on the time 

series from the highest velocity.  This ensured that all changes in response amplitude 

represented evoked activity to the test pulse and not residual activity from the condition 

pulse. We defined a suppression index (SI) to measure suppression as in previous studies 

(Simons, 1985; Simons and Carvell, 1989; Boloori et al., 2010). Conceptually, the SI was 

the observed magnitude of a test-pulse relative to the expected size for that velocity 

deflection if delivered in isolation. Therefore, in the equal condition-test paradigm, the 
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suppression index is the ratio of the response amplitude of the test pulse over the 

condition pulse. In the fixed-test, the suppression index is the response to the test pulse 

divided by the response amplitude of a pulse of the same velocity (900˚/sec) delivered 

without a first pulse.   

3.2.6 Single Trial Analysis 

Single trial analysis was performed on time series from single presentations of a stimulus.  

Similar to the trial average, response amplitudes were calculated based on the differenced 

time series. In differenced time series, the two frames with the greatest change in 

fluorescence identify the onset frame (ΔFmax=F1-F0) where F1 is the first frame with 

stimulus evoked activity and F0 is the prior frame. Once identified, the same onset frame 

was used for all trials from a given animal. The average of the differenced time series for 

the onset frame and the two subsequent frames was considered the response amplitude.  

This reduces to the change in fluorescence from the absolute peak frame (F4) to the pre-

onset frame (F0), in other words only the stimulus evoked change in fluorescence. This 

also ensured that even small amplitude response trials were different from noise. We then 

plotted the amplitude of the first pulse (condition pulse) versus the second pulse (test 

pulse) to observe differences in response probability across single trials. 

3.2.7 Paired Pulse Probability of Activation Model 

We built a phenomenological model of temporal dynamics to paired whisker deflections. 

Whisker deflection velocity defined the probability of a response on a given trial 

according to a sigmoidal function according to the following equation 
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where V is the deflection velocity, P is the probability of observing a response and α 

(354.17) and β (0.78) are free parameters governing the shape of the curve. We used the 

sigmoidal curve fits from an actual behavioral psychometric curve published previously 

(Ollerenshaw et al., 2014) where rats were trained to respond by licking to whisker 

deflections of variable velocity. Parameter α is the perceptual threshold and parameter β 

is the slope of the sigmoid.  Our model is built directly from behavioral results, without 

any fitting to neural data. We assume that if a response occurs to the condition pulse, 

inhibitory circuitry is engaged such that there is no probability of response for the test 

pulse. If a response is not observed, the same probability of response curve is used to 

determine the probability of response to the test pulse.  We assumed a binary model of 

response amplitudes, one for a response or zero for no-response. The probability of 

response to a test pulse of velocity, 𝑣𝑡𝑒𝑠𝑡 , given a condition pulse of velocity, 𝑣𝑐𝑜𝑛𝑑  is: 

𝑝(𝑣𝑡𝑒𝑠𝑡|𝑣𝑐𝑜𝑛𝑑) = 𝑃(𝑣𝑡𝑒𝑠𝑡)(1 − 𝑃(𝑣𝑐𝑜𝑛𝑑)) 

In the fixed test condition, 𝑃(𝑣𝑡𝑒𝑠𝑡) is a constant as the test pulse velocity is fixed.  In the 

equal condition-test paradigm, 𝑣𝑡𝑒𝑠𝑡 = 𝑣𝑐𝑜𝑛𝑑. In both cases, the predicted suppression 

index (SI) reduces to: 

𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 (𝑆𝐼) =
𝑝(𝑣𝑡𝑒𝑠𝑡|𝑣𝑐𝑜𝑛𝑑)

𝑃(𝑣𝑡𝑒𝑠𝑡)
= 1 − 𝑃(𝑣𝑐𝑜𝑛𝑑) 
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for all condition pulse velocities. 

3.3 Results 

In this study, we extended the probability of activation hypothesis to pulses delivered 

sequentially in time. We tested multiple variations of the traditional paired-pulse 

paradigms. First, we used a paired-pulse paradigm in which the condition and test pulses 

are of equal velocity and the inter-stimulus interval is fixed. Next, we kept the velocity of 

the test pulse constant, while varying the velocity of the condition pulse. We also varied 

the inter-stimulus interval between pulses. We propose a probabilistic model for these 

temporal dynamics that is consistent with both the trial-average observed responses and 

the single trial distributions. 
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Figure 3-1 Equal Condition-Test Paired Pulse Paradigm A) Stimuli for the equal 
condition-test paired pulse paradigm consisted of two saw tooth whisker deflections of 
equal velocity separated by 150ms in time; B) Paired-pulses of five different velocities 
were delivered (at times denoted by arrows) and representative trial-averaged time series 
for one animal are shown. Notice that at lower velocities two clear equal sized pulses are 
visible while suppression to the second pulse is prominent at high velocities. C) 
Suppression index curves from six animals are shown. D) Mean and s.e.m. from the 
individual curves shown in C. 
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3.3.1 Temporal Dynamics are Velocity-Dependent 

Trial-averaged paired-pulse dynamics observed using optical imaging in layer 2/3 were 

consistent with previously published single unit electrophysiological data collected in 

layer 4 of the cortex. We averaged the fluorescence over a region of interest centered on 

the primary barrel to create time series (see Methods). First, we considered the response 

to two paired whisker deflections of equal velocity, separated by a fixed inter-stimulus 

interval of 150ms (a schematic is shown in Figure 3-1A).  The average response 

amplitude of the condition pulse increases with the deflection velocity (Figure 3-1B).  

The response amplitude of the second pulse, the test pulse, was inversely correlated with 

the condition pulse velocity indicating velocity-dependent suppression.  Data from six 

individual animals is shown in Figure 3-1C with the mean and standard error shown in 

Figure 3-1D. In one data set, velocity dependent suppression was not observed. Instead, 

in this data set responses to all test pulses were approximately twice the condition pulse 

amplitude. 

In a related but distinct stimulus protocol in an entirely different set of animals, we again 

varied the condition pulse velocity, but kept the test pulse at a fixed velocity (900°/sec).  

Similar to the equal condition-test paradigm, the fixed-test paradigm also showed 

velocity-dependent suppression (Figure 3-2). Since the test pulse velocity was constant, 

the response amplitudes to the test pulse shown in the representative trial-average time 

series can be compared directly (Figure 3-2B). Suppression was observed in 4 out of 5  
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Figure 3-2 Fixed-Test Paired Pulse Paradigm A) Stimuli to the fixed test paradigm 
consistent of two saw tooth whisker deflections given at 100ms inter-stimulus interval 
(ISI). The condition pulse velocity is varied; the test pulse velocity is fixed at 900°/sec. 
B) Representative trial-average time series show that as the condition pulse grows, the 
response to the test pulse (although an identical stimulus) shrinks. C) Suppression 
indexes for both all animals. D) Mean and error bars (± s.e.m.) of data shown in C. 
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data sets (Figure 3-2C). In the fifth data set, no responses were observed to the second 

pulse with any condition pulse velocity. The average is summarized in Figure 3-2D.  

In both of these classic paired pulse paradigms, the trial-average results recorded in layer 

2/3 using VSD imaging matched the trends previously observed from single unit data in 

layer 4 of the cortex.  This is the first time these trends have been repeated using a 

technique thought to primarily report sub-threshold activity.   

3.3.2 Single Trial Distributions 

As the trial-average responses are consistent with previous literature, we then considered 

the probability of activation dynamics of the single trials.  A set of single trial time series 

in response to a pair of whisker deflections is shown in Figure 3-3.  
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Figure 3-3 Single Trial Paired-Pulse Time series   Time series from VSD single trials 
are shown. Whiskers deflections are denoted by arrows. Single trial responses can easily 
be separated into trials that respond to the condition pulse but not the test pulse, or the 
test pulse but not the condition pulse. 

 

We observed a dramatic bimodality. If a response occurs on the condition pulse, then a 

response was not observed on the test pulse. At times, test pulse responses equaled the 

magnitude of responses on other trials to the condition pulse, even if the velocity was 

different between the two conditions (consistent with the single pulse probability of 

activation hypothesis). This effect was true in all animals tested in both the fixed-test and 

equal condition-test paradigms.  A summary (all single trials, all animals) is shown in 
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Figure 3-4. In the top row, we show all the single trial responses from the six animals in 

which we delivered the equal condition-test stimuli. The response amplitude (averaged 

over multiple frames as described the Methods) to the condition pulse is plotted on the x-

axis and the response to the test pulse on the y-axis.  The single-trials form an L-shaped 

distribution (Figure 3-4A). The absence of trials in the upper right quadrant indicated that 

trials with responses to both the condition and the test pulse were never observed.  We 

also separated these trials by condition-test pulse velocity (low, mid and high).  When the 

velocity of the condition pulse was low (Figure 3-4B), a group of no-response trials  

(points centered near the origin) was prominent. The response trials were sparse, and 

occurred at approximately equal number of trials to both the condition and the test pulse. 

This resulted in a suppression index of around one.  As the velocity increased, we 

observed more responses to the condition pulse but fewer responses to the test pulse.  
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Figure 3-4 Single Trial Paired Pulse Distributions  A) All single trials, all velocities, 
all animals from the equal condition-test paradigm are plotted as black dots. The response 
to the condition pulse is on the x-axis and the response to the test pulse is on the y-axis. 
No trials responded maximally to both the condition and test pulse resulting in an L-
shaped distribution B) The same data from (A) separated by velocity. Low velocity 
responses were rare, but when they occurred, they did not occur on the same trial. C) 
Intermediate velocity stimuli had more responses to the condition pulse, and fewer 
responses to the test pulse D) High velocity pulses resulted in primarily responses to the 
conditional pulse with few responses to the test pulse. Responses to the test pulse only 
occurred on trials with no response on the first pulse.  E) Similar to (A) but for the fixed-
test paradigm F) A low velocity condition pulse resulted in responses primarily to the test 
pulse. However, if a response occurred in response to the small condition pulse, a 
response to the test pulse was not observed; G) Intermediate condition pulse velocities 
show approximately equal distributions of response to the test pulse and condition pulse. 
H) The high velocity condition pulse is capable of eliminating responses to the test pulse. 
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Similar plots are shown for five animals in the fixed-test paradigm in the bottom row of 

Figure 3-4.   In this case, as the condition pulse velocity increased in strength from low to 

high, the structure of the single trial distributions shifted from primarily a vertical line 

(Figure 3-4F, responses to the second pulse only) to a horizontal line (responding to the 

first pulse only Figure 3-4H).  All response amplitudes appeared achievable to all 

velocities; however, in this case there was a slight trend in the maximum single trial 

response from the low to the high condition velocities (Figure 3-4F to Figure 3-4H). This 

effect was not as dramatic as the changes to observed distribution bimodality. 

3.3.3 Phenomenological Model of Velocity-Dependent Suppression 

These dynamics could be explained by two assumptions: 1) response probability was 

modulated by stimulus intensity as predicted by the probability of activation hypothesis; 

2) response trials, but not no-response trials, engaged a subsequent inhibitory response.  

We assumed that the probability of response curve as observed in layer 2/3 was the same 

as the probability of response curve in an awake behaving animal. To test this hypothesis, 

we used curve fits directly from behavioral detection data collected previously to model 

our neural data (Ollerenshaw et al., 2014). The probability of response curve, 𝑃(𝑉), is 

shown in Figure 3-5A. The exact same mapping from velocity to probability of response 

was used for the test pulse (the pulses are independent if no response is observed); 

however, trials that had previously responded to the condition pulse had a zero 

probability of response.  Therefore, the probability of observing a response to a test pulse 

of velocity 𝑣𝑡𝑒𝑠𝑡, given a pre-pulse of velocity 𝑣𝑐𝑜𝑛𝑑 , is 𝑃(𝑣𝑡𝑒𝑠𝑡)(1− 𝑃(𝑣𝑐𝑜𝑛𝑑)) . In the 

fixed test condition, the probability of response for the test pulse is a constant. In the 
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equal condition-test paradigm, (𝑣𝑡𝑒𝑠𝑡) = 𝑃(𝑣𝑐𝑜𝑛𝑑) .  Without performing any curve 

fitting, we mapped directly from behavior to neural data (see Methods). This model 

predicts the probability of response curves shown in Figure 3-5.  Both the fixed test and 

equal condition-test paradigms started with identical condition pulses.  The probability of 

response for the fixed test (900˚/sec test velocity was used in this study, Figure 3-5B) and 

equal condition-velocity (Figure 3-5C) are shown in blue.  As we assume the amplitude 

of all response trials is one and no-response trials is zero, the probability of response 

curve is also the expected trial average amplitude. In the fixed-test condition, our model 

predicts the trial-average response amplitude to decrease dramatically from a maximal 

response to zero, which was observed (Figure 3-2).  For the equal condition-test 

paradigm, the model predicted that the absolute response to the test pulse would start near 

zero, increase slightly before beginning to decay again. This is consistent with the 

observed trend in the equal condition-test paradigm shown in Figure 3-1.  Interestingly, 

despite the differences in these paradigms, the expected suppression index is not 

predicted to be different in these two conditions.  This is a strong testable prediction. 
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Figure 3-5 Deterministic Probabilistic Paired-Pulse Results A) A curve from an 
awake behaving detection paradigm published elsewhere (Ollerenshaw et al., 2014) was 
used to map from the a whisker deflection velocity to probability of a response trial.  The 
condition pulse was identical for both paradigms. B) The predicted probability of 
response to a test pulse of 900°/sec is plotted for variable condition pulse velocities. C) 
The predicted probability of response for a test pulse in the equal condition-test paradigm 
given the behavior data. D) The expected suppression index for both paradigms is 
equivalent. 

3.3.4 Model Derived From Behavioral Data Fits Observed Neural Results 

We tested the suppression model, built from behavioral data directly, by plotting the 

model on top of the observed neural suppression curves. For reference, we plot again the 

trial-average responses from both paired-pulse paradigms in Figure 3-6 (shown in black). 

This time we also plot our phenomenological model predictions for the observed 

suppression index in blue.  For the fixed-test paradigm (Figure 3-6A, B) there is a  
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Figure 3-6 Probabilistic Model Fit to Data  A) Individual animal SI curves from the 
fixed test (dotted black lines) are shown with the predicted SI curve built directly from 
behavior data (blue).  B) Mean of data shown in (A).  (C) and (D) are the same as (A) and 
(B) but for the equal condition-test paradigm. The predicted curve underestimates the 
observed response on average, but actually does a match 3 out of 6 curves that were 
observed fairly well. E) From (C), gray box zoomed in to show the three better fit curves.  
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reasonable agreement between the observed experimental curve and the predicted curve.   

In Figure 3-6A, we show that the model falls on top of 4 out the 5 data sets, except the 

data set with no observed test pulse responses.   

We also show the model fit with the equal condition-test paradigm in Figure 3-6.  The 

model captured the general trend of the data, but systematically underestimated the 

suppression index. By examining the single animal curves (Figure 3-6C) we saw that this 

curve actually fit about half the data extremely well (a zoomed in version of the gray box 

is shown in Figure 3-6E).  The remaining three data sets were less suppressed than our 

model predicted, including the one data set that did not show suppression.  For the other 

two data sets, the greatest error from our predicted fit occurred in the region of the graph 

with the lowest expected number of responses. In some animals, there were only 10-15 

trials of data. For low-velocity stimuli, we expected to see at most 1-2 responses, but 

having no response trials was common.  In this case, the act of dividing by near-zero 

response amplitude increased the variability of the suppression index. Some animals had 

suppression index values that moved from one to two simply because of one extra 

response trial.  

3.3.5 Varying Inter-stimulus Interval 

The results presented so far have only included analysis at one inter-stimulus interval. 

These suppression dynamics are known to be dependent on inter-stimulus interval as the 

circuitry returns to a baseline state (Simons and Carvell, 1989; Boloori and Stanley, 

2006; Boloori et al., 2010). We tested the response dynamics in five animals (the same 
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five animals used for the fixed-test paradigm) at three different inter-stimulus intervals 

while keeping both the condition pulse and the test pulse at equal velocity. On average, 

allowing additional time in between whisker deflections resulted in less suppression of 

the test pulse.  Representative time series can be seen in Figure 3-7B. The recoveries 

occurred at dramatically different rates in different animals (Figure 3-7C), with no 

animals reaching complete recovery by the longest ISI of 500ms. This recovery time is 

longer than reported in layer 4 of the cortex or thalamus (Simons, 1985; Simons and 

Carvell, 1989; Boloori et al., 2010).   
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Figure 3-7 Variable ISI Paired Pulse   A) Schematic of two whisker deflections of 
equal velocity given at a specified inter stimulus interval (ISI). B) The suppression 
indexes of 5 separate animals at increasing ISIs show great variability between animals 
C) representative trial-averaged time series from one animal show an incomplete 
recovery from suppression at 500ms ISI. D) The mean and s.e.m. of the data shown in 
(B). Single trial first pulse vs second pulse distributions at 100ms (E), 250ms (F) and 
500ms (G) show some trials begin to response on both pulses  
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The single trial distributions show the bimodality at the 100ms interval (as shown 

previously). Beginning at 250ms ISI (Figure 3-7F) and then more dramatically at 500ms 

ISI (Figure 3-7G) we observed trials that responded to both the condition and test pulse. 

The bimodality in the data diminished with time.  On trials with responses to both pulses, 

the response amplitude of the condition pulse was not obviously correlated with the 

response magnitude to the test pulse. This suggests that the inhibitory circuitry was not 

engaged relative to the absolute amplitude of the condition pulse.  Again, we conclude 

that the absolute amplitude was not predictive of the subsequent dynamics; knowledge of 

only whether or not a response occurred was sufficient. 

3.3.6 Two-Whisker Paired Pulse Paradigm 

We have shown that a response to a condition pulse can prevent a response to a 

subsequent test pulse of the same whisker.  However, we do not know if this suppressive 

effect is specific to a single whisker barrel. In Chapter 2, we showed cortical barrels 

appeared to be able to respond independently when deflections were delivered 

simultaneously, existing literature suggests that deflections of adjacent whiskers are 

suppressive if delivered preceding a deflection on a primary whisker (Simons and 

Carvell, 1989; Higley and Contreras, 2003, 2005; Civillico and Contreras, 2006).  We 

tested this hypothesis using VSD. An adjacent whisker was defined as any whisker that 

was one row or arc removed from the primary whisker (Figure 3-8A). The test pulse in 

this paradigm was always a whisker deflection of constant high velocity.  Response 

amplitude was averaged within a region of interest centered over the primary whisker 
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barrel.  The condition pulse is delivered either on the same whisker (similar to previous 

paradigms) or on an adjacent whisker (Figure 3-8B). 

 

Figure 3-8 Two-Whisker Paired Pulse   A) An adjacent whisker to the test whisker 
(green) is any whisker that shares a row or arc (blue). B) Three types of stimuli were 
collected, response to the whisker alone and the response with a condition pulse on either 
the same whisker or an adjacent whisker. C) A condition pulse on either the same 
whisker or neighboring whisker was sufficient to suppress the test pulse relative to the 
solo pulse. Equal response magnitudes would be an SI of one, shown in a dotted line. 

 

We observed that a condition pulse on either the primary whisker or an adjacent whisker 

was capable of suppressing the test pulse. The test pulse was slightly more suppressed 

when the condition pulse was on the same whisker, however this effect was not 

significant (n=6 whiskers from 3 animals, paired t-test, p=0.19). This suggests that when 

a response occurs, the inhibitory response is not unique to the primary whisker. 

3.4 Discussion 

In summary, we have shown that the complex non-linear temporal suppression dynamics 

previously reported using single and multi-unit electrophysiology in layer 4 are also 
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observed in the trial-average VSD time series of layer 2/3. The suppressive effect of a 

condition pulse was determined by its intensity, with stronger whisker deflections 

suppressing subsequent deflections more. This suppression effect was strongest at short 

intervals and then recovered with time.  The suppressive effect was not limited to the 

specific whisker barrel and was capable of suppressing neighboring whiskers. 

The fact that the trial-average temporal dynamics were similar to previously reported 

studies was both a novel finding and a validation of previous work. VSD is an optical 

technique, and therefore like all optical techniques, is limited to the surface layer 1-3 of 

the cortex (Petersen et al., 2003b; Mateo et al., 2011). Additionally, it is thought that 

VSD primarily reflects sub-threshold activity. Previous studies on this topic were done in 

layer 4, the input layer from the thalamus (and some thalamic studies directly). Here, we 

show that these dynamics observed in layer 4 were also observed in its output layer.  

Although the trial-average trends are identical to existing evidence, the previously 

proposed mechanisms to explain these temporal dynamics are insufficient to explain the 

single trial response distribution.  Single trial population neural responses are not the 

same each time a stimulus is presented. Specifically, we observed that suppression of the 

test pulse required stimulus-evoked activity to the condition pulse on a trial-by-trial basis.  

We proposed a model where probabilistic trial-to-trial variability contributed to the trial –

average suppressive dynamics.   Trials that respond to the condition pulse cannot then 

respond to the test pulse; if no response occurs to the condition pulse, the test-pulse 
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response probability is unchanged.  This model was sufficient to predict the observed 

neural responses. 

Interestingly, we were able to predict the size and scale of neural response using 

detection data directly from an awake behaving rodent. The uniqueness and robustness of 

an effect that requires no fitting in order to map from behavior directly to an anesthetized 

recording cannot be overstated.  This is strong evidence that the probabilistic effects we 

observe in layer 2/3 do in fact directly reflect the probabilistic performance and the 

perception of the animal. 

We also saw differences in variability between different measurements that are 

predictable from a probabilistic framework only. In the continuum model there is no 

reason to expect that measurements from small velocities (when assessed with the same 

number of trials) should have a larger standard deviation (or standard error) than 

measurements at large velocities. If probabilistic, however, the observed variability 

depends on the expected number of true response trials which itself depends on the 

number of trials collected. In the case of the equal condition-test animals presented in this 

study, we used a small number of trials (10-15 per condition). The expected response 

probability is less than one.  Because the true measurements are discrete, we could 

reasonably expect to observe zero, one, or two responses.  Given a discrete event and 

small number of observed response trials, we predict higher variability (including shifts 

in magnitude from 0% to 200% of the true value) on small measurements more often than 

on measurements with a large number of expected response trials.  This level of 
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variability and associated trends with stimulus strength was exactly what we observed in 

the data. 

We further interpret the data and model presented in this chapter as evidence that the 

suppressive neural response to a whisker deflection can be considered stereotyped.  Each 

time a whisker response occurs, it is variable in size, but functionally identical to all other 

responses.  This assertion is still consistent with the complex non-linear dynamics of 

sequences of pulses. Non-linear dynamics can be created simply by modulating the 

reliability of the response alone.  There were no robust and reliable differences on single 

trial responses to a condition or test pulse of equal velocity. Trends observed in the trial 

average are not necessarily represented on individual single trials. 

There were some observations in the data that could not be accounted for within the 

probability of activation hypothesis. Specifically, very short inter-stimulus intervals (less 

than or equal to 100ms) were more suppressed than can be accounted for from 

observation of the layer 2/3 activity alone (data not shown).  As highlighted in this 

chapter, there was one animal preparation that did not respond to any test pulse even 

when a fast whisker deflection follows a small condition pulse. This was inconsistent 

with the probability of activation hypothesis. However, if we were to examine this 

animal’s data at longer inter-stimulus intervals, the probabilistic responses to the test 

pulse return (although the bimodality does not disappear at any length of tested ISI).  This 

observation, the short-ISI problem, will come up again in the discussion of the proposed 

mechanism in Chapter 6. 
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In summary, we have shown that the non-linear temporal suppression dynamics are 

consistent with the probability of activation hypothesis.  The neural representations of 

temporally complex stimuli are not identical each time a stimulus is presented.  Even if 

on average the second pulse is smaller than the first, one cannot assume or predict if that 

relationship will hold true on any specific instance of the stimulus.  This creates an 

interesting problem for the decoding of neural information in real time.  This problem is 

addressed in a proposed framework for encoding and decoding of stimulus information 

the context of the probability of activation hypothesis in Chapter 5. 
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CHAPTER 4  Spatial Evidence for Probability of Activation 

Hypothesis 

 

4.1 Introduction 

The probability of activation hypothesis stems first from the observation that response 

amplitudes to whisker deflections were not predictive of stimulus intensity (Chapter 2).  

However, response amplitude was not the only measureable quality of the neural 

response. Velocity could also be encoded (and decoded) by other characteristics of the 

neural response. In this chapter, we specifically consider the discriminability of velocity 

stimulus by their representations in space.  

If velocity information could be reliably decoded from single trials of whisker deflections 

based on the spatial extent of the cortical activation, then this would directly contradict 

the probability of activation hypothesis. Velocity-specific differences in spatial extent 

have been reported in literature in the barrel cortex (Wang et al., 2012).  Stimulus 

intensity differences in the spatial spread have also been reported in other sensory 

modalities (Polley et al., 2006).  As a result, it was of critical importance that the spatial 

dimension was considered within the context of this hypothesis. 

As the response amplitude was not predictive of whisker deflection velocity, it was 

important that the method used to assess the differences in area of activation was not 

sensitive to covariance of response amplitude.  Most common metrics of spatial 
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activation did not meet this criterion.  There is a complete analysis of the ways in which 

covariance of amplitude can confound spatial data included as an appendix (see 

APPENDIX A).  The methodology is not immediately relevant to the probability of 

activation hypothesis so only the relevant spatial analysis is presented in this chapter.   

Here we show that the spatial spread of VSD response reflects known asymmetries in the 

anatomy, spreading more along whisker rows than arcs. Next, we analyze both the trial-

average data and single trials separately in order to evaluate the reliability of changes in 

spatial spread. We found that using traditional spatial metrics on trial-average data, we 

could observe an increase in area with velocity; however, after controlling for the 

covariance of amplitude, we find no changes in spatial activation across velocities. 

Results in this chapter show that the spatial extent of the cortical circuitry engaged in 

response to whisker deflections is remarkably consistent and repeatable. This spatial 

analysis supports the primary assertion of the probability of activation hypothesis that 

whiskers can be viewed as stereotyped, but unreliable, detectors of stimulus intensity.   

4.2 Methods 

4.2.1 Surgical Preparation and Voltage Sensitive Dye Imaging 

Data presented in this Chapter come from six animals including three of the same animals 

from the data in Chapter 2.  The surgical procedures and imaging methods were identical 

to those described previously. For simplicity, we analyzed only four velocities (V1-V4; 

150°/sec, 300°/sec, 600°/sec and 1200°/sec respectively), but the trends are also identical 

in all other velocities. 
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4.2.2 Image Analysis 

Image analysis was performed identically to the previous chapters (2.2.5). Briefly, 

images represent fluorescent values as the percent change from background (pre-stimulus 

frames).  Amplitudes were calculated as an average fluorescent value in a circular region 

of interest of approximately the size of a barrel (200um radius) centered on the center of 

mass of the onset frame.  In this study, response amplitude is measured at the peak frame. 

 

Figure 4-1 Area Schematic   A) A representative VSD image shows localized signal B) 
Pixels values extracted along the black line shown in (A) show that the response is 
approximately Gaussian. Spatial spread can be quantified using the full width at half max 
(FWHM). 

 

4.2.3 Defining Row and Arc Axis 

All data analysis was done in custom software written in Matlab (MathWorks, Natick, 

MA). In order to register the anatomy of the whisker representation on a voltage sensitive 

dye image, we used the functional representation of two whiskers in the same row.  

Specifically, we calculated the center of activation of the onset frame (determined 
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manually) for each whisker. The two whisker centers defined the row axis. The arc axis 

then passed perpendicularly to the row axis and crossed through the center of activation 

of the whisker being analyzed. If a whisker in the same row was not available, we used a 

whisker in the same arc and defined the row axis perpendicular to the arc axis.  Images 

were filtered with a spatial averaging filter (200µm x 200µm) prior to extracting the 

pixels that fall along the row or arc axis.  These pixels formed a 1D representation of the 

spatial spread in this dimension.  We fit a Gaussian to these image profiles and recorded 

the full width at half height (FWHM) as the metric of spatial spread. 

 

Figure 4-2 Row Arc Asymmetry   A) Whisker rows are defined along the rostral-caudal 
axis of the whisker pad on the face and the arc is in the dorsal-ventral direction. B) A row 
axis was defined using the center of mass of two whiskers in the same row. The arc axis 
is perpendicular to the row axis. C) Spatial spread along the row axis is consistently 
larger than along the arc (6 out of 7 whiskers (from 7 animals), p=0.019; paired t-test, 
n=7). 
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4.3 Results 

In Figure 4-1, we show a representative example of the neural response to a whisker 

deflection measured with voltage sensitive dye (VSD) imaging. The pixel intensities 

represent the magnitude of the fluorescent signal, previously shown to change linearly 

with the membrane potential of a neuron (Petersen et al., 2003a).  Figure 4-1B shows the 

amplitudes measured in a cross section of the image, shown as a line in Figure 4-1B.  The 

response to a whisker deflection is approximately Gaussian (as expected for light imaged 

scattered through tissue (Stallinga and Rieger, 2010).  Given this shape, we used the full-

width at half max (FWHM) of this Gaussian to quantify the spatial spread.  

4.3.1 Responses to Whiskers Deflections Are Asymmetric 

It has been observed in multiple studies that the spread of activity after a whisker 

deflection is asymmetric.  Activation spreads farther along whisker rows than arcs 

(Petersen et al., 2003a; Lustig et al., 2013). We tested to see if the VSD data collected in 

this study is consistent with these previous observations.  A schematic of the spatial 

arrangement of cortical barrels oriented to match the whisker map as seen from the side 

of the face is shown in Figure 4-2A. Whiskers in the same rostral-caudal direction are 

considered in the same row and whiskers in the dorsal-ventral axis are considered in the 

same arc.   We defined each axis functionally in VSD images by using the center of 

activation from two whiskers in the same row. The row axis was the line connecting these 

two points. The arc axis was perpendicular to this line through the center of mass of the 

whisker representation being evaluated.  We then fit a one-dimensional Gaussian to the 

84 

 



pixel values along each of the two axes (similar what is shown in Figure 4-1B) and 

compared the full width at half max (FWHM) of these two Gaussians. This data is 

summarized in Figure 4-2C. In 6 out of 7 whiskers (from 6 animals), the FWHM was 

larger in the row axis than in the arc axis and this result was statistically significant 

(p=0.019; paired t-test, n=7).   

 

Figure 4-3 Single Trial Row-Arc Asymmetry   A) Full with at half max (FWHM) of 
Gaussian fits to the row axis from all single trials from one animal. Trials from different 
velocities are shown in different colors.  Gaussian fits can fail for low amplitude 
responses, assumed to represent primarily no-response trials (gray box).  As the 
amplitudes increase the variability decreases and single trials cluster around a single 
consistent point. The average arc response is shown (from B) is shown as a dotted line. 
The data is depicted similarly for the arc axis in B, showing the conserved asymmetry. 
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4.3.2 Spatial asymmetry is conserved across single trials 

This asymmetry is also remarkably conserved on single trial representations. We 

performed the same analysis described above on images from single trial VSD.  In Figure 

4-3, we plot the peak response amplitude observed for each single trials versus the 

FWHM of a Gaussian fit along both the row (Figure 4-3A) and the arc (Figure 4-3B) 

axis. Trials are collected from four different velocities as indicated by color. There is a 

great deal of variability in the Gaussian fits to single trials, particularly at low response 

amplitudes.  Low amplitude trials likely represent no-response trials. However, as the 

observed response amplitude increases, this variability dramatically decreases and a 

consistent spread is observed.  The differences in the row and arc spreads are conserved 

across all single trials.  The mean of the FWHM (spread) row and arc analysis is plotted 

as a dotted line in both Figure 4-3A and B. This asymmetry was not scaled or dependent 

on the absolute response amplitude.  This was true across all data sets. In the one whisker 

in which arc spread was greater than the row spread, this same reversed trend was also 

reflected in the single trials.   
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Figure 4-4 Normalized Color map   A) Trial-average images are shown on an absolute 
color map for five frames and from four velocities. It appears in this representation that 
area increases with velocity. B) When each image is plotted such that it takes up the 
entire range of the color map (normalized) the differences between velocities disappear. 
However, differences that occur with time remain. 
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4.3.3 Trial-Average Response Amplitude Differences Interpreted as Different 

Spatial Activation 

Previous correlations between spatial spread and velocity input were performed on trial-

average images (Wang et al., 2012).  We show trial average images to the four velocities 

in this study in Figure 4-4A. Qualitatively, it did appear as if the area of activation 

increased with velocity (down a column) and in time (across a row).  If one were to 

count, for example, the number of red colored pixels in these images it would be simple 

to conclude that the area of activation increases with velocity. It is this qualitative 

assessment that led to the original spatial quantification methods that showed correlation 

between velocity and spatial spread.  However, in the same data viewed on a color map in 

which each image is allowed to span the entire range, Figure 4-4B, it was easier to 

observe that increasing velocities are in fact scaled representations of other velocities.    

Unfortunately, the Gaussian method used to fit the single trial is not robust to the 

dramatic changes in amplitude observed in trial-average data.  As seen in the single trial 

data sets, Gaussian fits to very small responses often fail to represent the true spatial 

spread (see the assumed no response box in Figure 4-3) and report impossible FWHM 

values.  Although this method is reliable with adequate signal to noise ratio, it can 

confound measurements at small velocities with low signal to noise ratios. 

We developed a threshold metric for the quantification of spatial spread independent of 

response amplitude and it is described in detail in Appendix A. In Figure 4-5 we 

summarize these data across seven whiskers from six animals.  We use two metrics of 
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spatial activation. One is a simple threshold at two standard deviations above pre-

stimulus noise. This metric is equivalent to the metrics used in previous studies (Polley et 

al., 1999a, 2006; Wang et al., 2012). Using this method, there is an increase in spatial 

spread with velocity. However, this effect would be observed in all cases in which the 

amplitude also increases between experimental conditions even if the responses were just 

scaled versions (see Appendix A). We developed a relative metric to normalize the data 

and assess spatial spread independent of amplitude. Briefly, this metric normalized each 

image relative to both the peak and noise measurements in the image. Using this metric, 

we observed no amplitude-independent correlation between velocity and spatial spread, 

consistent with the trends observed in the single trial data. 

4.4 Discussion 

Here we demonstrated that area activated in response to a whisker deflection is 

asymmetric, spreading more along the rows than arcs. This asymmetry has been reported 

previously in literature and is thought to represent differences in the length of axonal 

projections that can be observed through axon tracing methodologies (Petersen et al., 

2003a).    

This asymmetry was also strikingly conserved for all single trials, independent of the 

response amplitude. Each single trial is a scaled version of every other single trial. Since 

VSD is thought primarily to reflect sub-threshold activity (Petersen et al., 2003b), it has 

been argued that an absolute threshold should be applied to the data to estimate area of 

spiking activity. This has actually been used to support some theories that directly 
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contradict this probability of activation hypothesis (Ollerenshaw et al., 2014). The single 

trial data, however, does not support this interpretation.  

 

Figure 4-5 Amplitude-Dependent and Amplitude Independent Analysis   A) 
Response amplitude increases with frame number. B) Analysis with a noise-derived 
threshold shows that the area that is activated over time increases. C) Using a relative 
threshold, the area also increases over time.  D) The response amplitude increases with 
velocity. E) Using a noise-derived threshold, the area appears to increase F) Using a 
relative threshold, the area does not increase with velocity. 

 

First, a given VSD pixel likely does not include only cell somas. Because the physical 

membrane surface area of a neuron is primarily determined by the size of its dendritic 

and axonal arbor (Petersen et al., 2003a), it is likely that many pixels primarily represent 

membrane potentials axons or dendrites that do not directly relate to spiking activity. If 
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the same neuron were to fire two spikes instead of one, the amplitude of the signal would 

increase across multiple pixels (the exposure of these frames is 5ms) and we would 

observe a greater area of activation. One neuron firing twice should not be interpreted as 

a change in area.  Second, with the observation that single trial response amplitude is not 

reliably modulated by intensity, it seems troublesome to conclude that the area that is 

activated in every trial can double, triple or quadruple in size from one trial to the next.  

The use of a normalized color map to represent spatial neural data will be important in 

other fields of neuroscience, specifically cortical plasticity and the study of 

reorganization of cortical maps.   Most spatial data is analyzed using trial-average data. 

Absolute thresholds from trial average data may result in flawed conclusions if mapped 

to the single trial.  The consequences of this observation are explored more fully in 

Appendix A.   

We conclude that there is no change in spatial spread sufficient to separate or decode 

single trials into velocity categories using VSD images. Instead, individual responses to 

all whisker deflections can be considered scaled representations of every other response 

maintaining the distinct asymmetric spread along rows and arcs. This is consistent with 

the probability of activation hypothesis that considers all whisker responses to be 

stereotyped, but unreliable, activation of identical cortical circuitry.  
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CHAPTER 5  Emergence of feature-selectivity in a 

spatiotemporal neural code 

 

5.1 Introduction 

A central tenet of sensory neuroscience is that all our sensory experiences and 

perceptions are encoded directly in the activity of our neurons. At first glance, the data 

presented in this dissertation seem to either make this assertion untenable, or suggest that 

whiskers are not particularly useful as a sensory organ.   

First, we have shown that from the perspective of an ideal observer of activity of a single 

whisker in layer 2/3, a response may or may not be detected following a whisker 

deflection. If a response is detected, the observer will have no predictive power about the 

intensity of the stimulus from either the response amplitude or the spatial extent of the 

response.  Additionally, upon observation of a response, an observer will then have a 

reduced probability of detecting subsequent stimuli.  This does not seem like an optimal 

starting point for reliable sensory encoding. 

However, this is true only if an observer has access to information from a single whisker 

or region in space. Returning to the thought experiment that motivated this work, a 

powerful antidote to unreliability is redundancy.  The whisker system is redundant. Most 

noticeably, there are many whiskers. Thirty-three whiskers exist in the primary barrel 

field alone (Land and Simons, 1985).  Each whisker maps to a different cortical column. 
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If the whiskers are used as a unit, then an ideal observer with information from all barrels 

representing all whiskers could reduce uncertainty associated with the features of the 

stimulus. The unreliability of one whisker as a detector, instead of a detriment, becomes a 

central feature of a spatiotemporal neural code. 

Many behavioral discrimination tasks require multiple whiskers. Performance of aperture 

discrimination degrades linearly as whiskers are trimmed (Krupa et al., 2001).  A similar 

effect has been observed in texture discrimination (Carvell and Simons, 1995). However, 

one whisker is sufficient for a simple detection paradigm (although performance never 

reaches 100%) (Stüttgen et al., 2006; O’Connor et al., 2010a; Waiblinger et al., 2013; 

Ollerenshaw et al., 2014).  Taken together, it appears that multiple whiskers are necessary 

for discrimination, but that one whisker is sufficient for detection. 

In this chapter, I demonstrate using Monte Carlo simulations that stimulus features, 

specifically stimulus intensity and direction of motion, can be encoded using multiple 

whiskers within the probability of activation hypothesis.  I model an array of detectors 

both in space and in time. First, I consider the encoding of stimulus intensity using 

whiskers deflected simultaneously, as model for wind stimuli. Wind stimuli (an air puff) 

have been observed to move all whiskers nearly instantaneously (even if they have 

directionality) (Ollerenshaw et al., 2012).  Wind is a particularly relevant stimulus for 

rodents that are use olfaction as a primary sense. Probabilistic representation of stimulus 

intensity across space is shown to be sufficient to infer intensity information. 

Additionally, I show that this neural representation of intensity is not sensitive to the loss 
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of a whisker. Second, I simulate the response to a moving object interacting with the 

array such that arcs of whiskers are deflected in series. The predicted neural activity on 

average is identical to what has been reported in literature; however, this trial-average 

does not suggest that direction of motion could be reliably encoded. In contrast, there is 

sufficient patterned activity on a subset of single trials within the probability of activation 

framework that would allow for decoding of direction of motion. 

5.2 Methods 

5.2.1 Spatiotemporal Model 

This spatiotemporal model was built in Matlab (MathWorks, Natick, MA). Whiskers are 

modeled as single pixels with probabilistic responses: zero for no response, one for 

response. Nine whiskers are simulated (a 3x3 array). The same mapping from whisker 

deflection velocity to probability of response is used as was used in Section 3.2.7. This 

curve fit was collected in awake behaving animals and was previously published 

(Ollerenshaw et al., 2014). 

To add a temporal component to this model, we added a history component that lowers 

the probability response to subsequent pulses on a given trial only once a response is 

observed. The history function h(t) was a sigmoid of the form:  

ℎ(𝑡) =
1

1 + 𝑒
−(𝑡−𝛽)

𝛼
− 1 
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Where β was the midpoint of the sigmoid and α was the slope of the sigmoid, t was the 

frame number following an observed response. One frame represented 10ms separation in 

time.  Responses recovered to 50% of the original response probability at 10 frames 

(β=10, α=10).  Whiskers in each arc were deflected every 2 frames. Distance between 

whiskers was equal to the maximum number of rows or columns crossed in order to reach 

the measured barrel, such that the distance between a whisker in position [𝑥,𝑦] and 

whisker in position [𝑖, 𝑗] was 𝑚𝑎𝑥(|𝑥 − 𝑖|, |𝑦 − 𝑗|).  Suppression at a distance of [0 1 2] 

of the responding whisker of were scaled by 100%, 50%, and 40% respectively.  

5.2.2 Detection and Discrimination Performance 

Using the spatial temporal model described above, the expected number of responding 

whiskers and the associated distributions were estimated using 100 simulations of the 

spatial profile. The number of responding whiskers defined the response variable (r).  A 

single responding whisker was sufficient for detection on a single trial. Discrimination 

performance was calculated identically to the optimal classifier performance described 

previously (2.2.6).  For direction of motion, two responding whiskers in two different 

frames (separate points in time) resulted in the correct detection of motion.  The percent-

successfully decoded trials was determined by Monte Carlo simulations. 
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5.3 Results 

5.3.1 Simultaneous Deflections of Multiple Whiskers 

First we show that an array of whiskers responding independently can encode stimulus 

strength. In Figure 5-1, we show examples of possible spatial responses. The probability 

of response for each whisker was determined by the deflection velocity as shown in 

Figure 5-1B. Each column in Figure 5-1C shows five representative single  
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Figure 5-1 Distinct Spatial Representations of Identical Stimuli A) This model 
assumes nine whiskers are deflected simultaneously. Each barrel is represented by a 
pixel. B) The probability of response for each whisker (pixel) is determined by the 
probability of response curve. The simulated velocities are highlighted on the axis and 
with dotted lines. C) Five example spatial representations to each of the six velocities. 
Red pixels represent responding barrels, blue pixels represent no response. 
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trials for each of the six velocities.  The same stimulus, in this case, nine whiskers 

deflected at identical velocities at the same time, was encoded with a different spatial 

profile on each trial.   

The spatial response profiles are not unique to a given velocity; for example consider the 

example single trials from V4 and V5. However there is little chance of the minimum 

velocity (V1) causing the same spatial profile as the maximum (V6). We assume that 

stimulus intensity in this framework was encoded by the number of responding barrel 

columns.  The expected distributions of responses to all nine whiskers are shown in 

Figure 5-2A. These distributions were similar to what was observed as trial-average 

classifiers in Chapter 2.  The expected discrimination performance matrix is shown in 

Figure 5-2B.  Given nine whiskers and the six velocities, the optimal classification 

performance of single trials was 48.5%. One whisker response was considered sufficient 

for detection of a stimulus on a trial (Ollerenshaw et al., 2014). The presence of a 

stimulus was detected on 93.7% of trials. 

 Returning to the thought experiment that motivated this work (1.5.1), we tested to see 

how robust this spatiotemporal neural code was to the loss of a whisker. This data is 

shown in Figure 5-2D. With 8 whiskers instead of 9, the discrimination performance 

decreased by less than 1% to 47.8% correct. Meanwhile, 91.9% of trials were detectable 

(2% less). We conclude that this coding framework provided reliable sensory information 

even if a whisker is lost. 

98 

 



 

Figure 5-2 Robust Performance with the loss of whisker A) The expected distributions 
for the number of responding whiskers out of nine for six velocities. These distributions 
are calculated from the single trials shown in Figure 5-1. B) The expected classification 
performance given these distributions. Classification occurs based on the number of 
responding whiskers (r). C) Expected response distributions and D) discrimination 
performance are not affected by the loss of a whisker (8 whiskers). 

 

 

5.3.2 Direction of Motion 

A stimulus feature that is thought to be important to sensation with whiskers is the 

direction of motion of an object. Specifically, this is thought to be important in distance 

based tasks such as aperture discrimination (Krupa et al., 2001).  Previously, it has been 
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shown that if whisker arcs are deflected in series, there is only a response to first arc and 

all other responses are greatly suppressed (Drew and Feldman, 2007). This makes it 

unclear how directional information could be encoded across an array.  We consider this 

observation in the context of probability of activation hypothesis. 

We used a 3x3 array of whiskers that respond probabilistically as in the previous 

simulation. When a response occurs, a non-specific suppression of all adjacent whiskers 

follows for a period of time (see Methods). Using this model, we simulated deflections of 

whiskers one arc at a time. Assuming the whisker arrangement depicted in Figure 5-1A, 

this is equivalent to deflection all whiskers in the A column, then B, then C. This same 

protocol was previously tested in an anesthetized rodent preparation (Drew and Feldman, 

2007). Like this paper, the probability of activation model predicts a strong response to 

the first arc on average, with a much smaller average response to all other arcs.  From the 

trial-average response alone, it is unclear if direction information was encoded.  A 

deflection of either direction could have caused just one arc to respond.  However, more 

information could be observed in our probabilistic representations of single trials.   
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Figure 5-3 Probabilistic Encoding of Direction of Motion   A) Whiskers arcs are 
deflected in series (simulated responses) B) Trial average responses show a significant 
response only to the first arc. The second and third arc are greatly suppressed. C) 
Direction of motion is encoded on a subset of single trials within the probability of 
activation framework  
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Frames from single trials of this spatial temporal neural code are shown in Figure 5-3. 

Our model predicts high variability across both time and space in response to sequential 

deflections of whiskers in arcs; however, directionality can in fact be decoded, at least in 

some trials, in this framework.  We observed that while most trials had at least one 

responding whisker in the first arc, not all trials responded to the first arc only.  Often, at 

least one other response occurs somewhere in the whisker array such that the direction of 

motion of the deflections could be decoded. In this simulation, we had sufficient 

information to decode the direction of motion of the stimulus in 41% of the simulated 

trials.    

5.4 Discussion 

Here we have used simulations to show how a probabilistic and spatiotemporal neural 

code could encode stimulus features including intensity and direction of motion using 

multiple whiskers.  We have shown that the number of responding whiskers was 

sufficient information for decoding of stimulus intensity correctly approximately half the 

time (chance is 16.6%). Additionally, we have shown that while the trial-average 

response to whisker arcs deflected in series did not appear to allow for the encoding of 

the direction of motion of an object, an array of probabilistic encoders provided this 

information more reliably than could be predicted from the trial-average alone. 

Our simulations are consistent with evidence collected from electrophysiological 

recordings using multiple whiskers in literature. Specifically, we consider a paper 

published by Drew et al. in 2007. In this paper, the authors recorded the activity in a 
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single barrel while 9 whiskers were deflected simultaneously. They observed that the 

average response when all nine whiskers were deflected simultaneously was not different 

from when the primary whisker corresponding to the recorded barrel was deflected alone.  

This is in agreement with our instantaneous whisker deflection model. 

This paper also tested the direction paradigm used in this simulation. Our model 

predictions are also consistent with the experimental observation presented in this paper. 

The trial-average response to arcs deflected in series showed that the first deflected arc 

responded while responses to all other arcs were suppressed. In the experimental paper, 

this was taken as evidence that a temporal code could not be used to encode direction; 

however, these authors did not have access to the single trials. In our simulations, we 

showed that a single second whisker response, sufficient to decode direction, occurred on 

a large subset of trials. We could not predict, however, which barrel would respond on a 

given trial. We predict that had the authors in the experimental paper had access to 

separable activity from multiple barrels, more reliable activity (although sparse) would 

have been observed to subsequent arc deflections.   

The behavior of rodents is generally reported as response probabilities. If the animals 

perform above chance, then we conclude that animals are capable of performing tasks. 

Returning once again to our central tenet, all available perceptual information must be 

encoded in the neural representation. Performing reliably above chance is not evidence of 

a stable and reliable percept, only that sufficient information is available on a subset of 
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trials.  When an animal can only perform a task 20% better than chance, then the 

necessary information may only be encoded 20% of the time.     

Importantly, the simulations in this chapter have suggested that within the probability of 

activation framework different spatial neural representations can equivalently represent 

the same stimulus.  This allows multiple solutions or pathways to encode the same 

stimulus information.  This spatial type of redundancy increased the reliability of the 

neural code.  
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CHAPTER 6  Accumulation of Errors and Mechanistic 

Redundancy 

 

6.1 Stochasticity, Independence, and Redundancy 

Creating a stable sensory percept in the presence of variability and uncertainty is our 

brain’s greatest challenge. Large-scale variability can be created from accumulation of 

small stochastic errors. At the lowest level, the biological hardware that performs neural 

computation is highly stochastic. It is impossible to predict with certainty whether a given 

ligand will bind with a given receptor as each of the basic processes have elements of 

randomness – the proximity of the molecules may be determined by a diffusive random 

walk, the binding kinetics by the instantaneous arrangement of the molecules. The 

success of even one neuron firing is dependent not on one stochastic event, but on the 

compounding effect of millions.   

When individual events are stochastic, redundancy creates reliability.  At the level of the 

hardware, we see that a cell does not rely on any single ligand binding to a single 

receptor, but on the collective activity of hundreds or thousands of such interactions.  At 

a higher level, information is not encoded by the stochastic spiking activity of a single 

neuron, but by a population of neurons, such that the failure of any one single neuron 

provides a negligible impact on the actual information content available for perception 

(Averbeck et al., 2006). This assumption works well if neurons are independent; 
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however, if the input to these neurons is shared, even independent neurons cannot 

compensate for failures of the common input.  A serial pathway operates such that 

success at one level depends on success in the previous.  As such, errors due to stochastic 

variability are permanent. Errors can only accumulate with time.  

In this final chapter, I propose an accumulation of errors model to explain the 

probabilistic dynamics observed in layer 2/3 of the barrel cortex. Like Hubel and 

Wiesel’s vision model, the model features a series of hierarchical structures; unlike Hubel 

and Wiesel’s model there is no increased in complexity or feature-selectivity of 

individual neurons at higher levels. Instead, response reliability is modulated by 

accumulation of random, unpredictable and corrosive encoding errors. Although I have 

no direct evidence of this model beyond the observation of supra-granular VSD dynamics 

presented in this thesis, it is intriguingly simple and remarkable as a predictor of neural 

dynamics. Importantly, it allows for a new type of redundancy in this pathway: 

mechanistic redundancy.  

6.2 Fundamental Observations 

Three observations were fundamental to the formulation of this conceptual model. The 

first was from a significant body of existing literature, the next two were observations 

from Chapters 2 and 3 of this dissertation. 

First, the magnitude of the neural response decays as it progresses from lower levels of 

the pathway to the highest level of the cortex. Near the periphery, trigeminal afferents 
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and brainstem neurons spike robustly on each trial (Gottschaldt and Young, 1977; 

Minnery and Simons, 2003).  This suggests that intensity-dependent differences in 

amplitude exist early in the pathway.  At the next level, the VPM, single trial responses 

are less robust but still often result in multiple spikes (bursts) (Simons and Carvell, 1989). 

The maximum reliability of individual neurons across trials is approximately 80%, 

although neurons with 100% response reliability occur occasionally (Wang et al., 2010).   

At higher levels, layer 4 of cortex and then again to layer 2/3, the signal drops off 

dramatically. Layer 4 neurons respond to a stimulus with only a single spike (Simons and 

Carvell, 1989; Wang et al., 2010).  Even the single spikes are less reliable, capping out at 

around only 60% of trials on average at a high intensity. At the top level, there is some 

disagreement if layer 2/3 neurons even spike at all (Sato et al., 2007; Sachidhanandam et 

al., 2013). At best, the spiking reliability of layer 2/3 neurons has been described as 

sparse (Jadhav et al., 2009). Importantly, all of these are assessments of the average 

neuron, not any given neuron. 

Second, at some point in this sensory pathway the absolute amplitude is decoupled from 

the stimulus intensity. Interestingly, the single trial amplitudes are not systematically 

decreasing in strength like the average responses.  Some single trial responses to the 

smallest stimuli equal the magnitude of the responses to the largest. Small responses, 

barely distinguishable from noise, were also observed in response to the fastest velocity.  

This modulation and decoupling of response amplitude was independent of stimulus 

intensity and appeared to allow either suppression or facilitation of single trials to occur. 
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Finally, the limitations and failures of the probability of activation hypothesis were 

informative. The probability of activation hypothesis is not capable of predicting or 

explaining the low response probability to short (less than 100ms) inter-stimulus 

intervals.  A model in which the probability of observing a response to one whisker 

deflection depends only on its immediate history on a trial to trial basis (from Chapter 3) 

works well at inter-stimulus intervals (ISIs) of 100ms-200ms. However, if whisker 

deflections are given at shorter ISIs, the observed suppression is much greater than 

predicted by the number of observed responses in the final level of the pathway.  

 

Figure 6-1 Short ISI Problem in One Animal  A) One animal from the fixed-test 
condition showed no responses to the test pulse at 100ms ISI for any condition pulse 
velocity (data from all condition pulse velocities are shown) B) Responses to test pulses 
were observed at longer ISIs C) Complete recovery from the bimodality was not 
observed at the longest ISI recorded for this animal 

 

In Chapter 3, I made a specific point of highlighting the variability of the temporal 

recovery between animals. I showed one animal that had no test pulse responses to any 

condition-pulse velocity at a 100ms ISI.  At longer ISIs, the test-pulse responses returned 
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(Figure 6-1). In this animal, the responses at 100ms ISI were similar to the 50ms ISI 

responses in all other animals. There is a near zero probability of response to the test 

pulse at any condition pulse velocity if the ISI is short. The observation that short-ISIs 

were not well approximated by the probability of activation model suggests that a neural 

response to the first pulse and corresponding suppressive effects did exist at some point 

in the pathway, but were not observed at the last structure. 

In summary, three key observations underpinned this model: 

1) The spikes per stimulus and reliability decay with each successive level in the 

pathway 

2) The decoupling of response amplitude and stimulus intensity can result in either 

suppression or facilitation of single trials 

3) Short ISIs dynamics are not predicted by the number of response and no-response 

trials observed in layer 2/3 of the cortex 

6.3 Accumulation of Errors Model  

The accumulation of error model takes an agnostic but realistic approach to sensory 

encoding. Like Hubel and Wiesel’s model, there is a series of hierarchical structures. At 

each structure, there is some potential for error as the signal is influenced by a random 

component. The influence of this random variable is unpredictable and irreversible.  The 

majority of these random contributions are small and do not dramatically influence the 

propagation or integrity of the signal. However, occasionally a random contribution 

results in a substantial change to the signal. Whether the random element is small or 

large, the signal has been permanently changed as it propagates along the pathway.   
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Figure 6-2 Accumulation of Errors Schematic  A schematic of the accumulation of 
errors model is shown above. Initial states are determined linearly with respect to 
stimulus intensity and then propagate through a series of three structures in a history-less 
manner. A random component is added at each structure and influences the strength state 
(Sn) prior to input into the next structure. 

 

A schematic of the accumulation of errors model is shown in Figure 6-2. There is a linear 

relationship between stimulus intensity and an initial strength variable S0. S0 is then 

propagated through three neural structures in series (S1, S2, S3).  Each structure is 

identical. At each structure, there is an additive random component to the signal strength 
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and a non-linear threshold.  If a signal on a given trial is affected by the random 

component such that it does not surpass the threshold level, it fails to propagate (Figure 

6-3).  

 

Figure 6-3 Probabilistic Strength State Propagations Within each structure, the initial 
strength is influenced by a random component (depicted as a series of random numbers). 
The new strengths are bounded such that if Sn<Sth then Sn=0. Once a trial reaches a 
strength state of zero, there is no probability of recovery. 

 

This system is defined by five variables: 1) the standard deviation (σnoise) of the random 

component (sampled from a normal distribution); 2) the mean of the random component 

(µnoise); 3) the strength threshold, Sth at which a signal propagates; 4) number of structures 

(n); 5) a strength upper bound (Smax). 

If Sn< Sth at any point in the simulation, that trial has failed and has zero probability of 

recovery from this state. If Sn>Smax, then the signal is reset to Smax, to represent the 

maximum capacity of a biological system (all neurons active). Reliability of response 
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was considered as observer of activity in the final structure. Formally, this model can be 

considered a continuous-state Markov chain where the random component is: 

{𝜉𝑡}~ 𝑁(𝜇𝑛𝑜𝑖𝑠𝑒,𝜎𝑛𝑜𝑖𝑠𝑒2) 

The signal strength manipulation at each structure (n) is 

𝑆𝑛+1 = ℎ(𝑆𝑛 + 𝜉𝑛+1)𝟏{𝑆𝑛 > 0} 

where h(s) defines the absolute bounds on stimulus strength and the non-linearity: 

 ℎ(𝑠) ≔ 𝑠𝟏{𝑆𝑡ℎ ≤ 𝑠 ≤ 𝑆𝑚𝑎𝑥} + 𝑆𝑚𝑎𝑥𝟏{𝑠 > 𝑆𝑚𝑎𝑥} 

The indicator function 1{A} evaluates to 1 for all 𝑠 that exist in set A and zero otherwise. 
The model was solved using Monte Carlo simulations in Matlab (MathWorks, Natick, 
MA). At least 1000 simulations were included in each average observation. 

6.4 Consistency with Fundamental Observations 

The accumulation of error model is a conceptual model; the numerical values, including 

the units of Sn and associated constants have no units and no direct biophysical meaning. 

However, it was built to be broadly analogous to the whisker pathway. The three 

structures could be thought of as the brain stem, the thalamus and the cortex. Structure 3 

represents the top level of this hierarchy (or the observation point), analogous to the  
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Figure 6-4 Markov Process Replicates Average and Single Trials Trends  A) The 
probability of observing non-zero responses at the final structure for each original 
stimulus intensity B) The average stimulus strength state Sn for each stimulus intensity 
observed at the final structure increases with stimulus intensity C) The single trial 
distributions show decoupling of individual responses from the original stimulus intensity 

 

 

cortical VSD imaging presented in this thesis. If any non-zero trial at Structure 3 is 

considered a response, a response reliability curve can be generated from the perspective 

of an observer of this final structure. An example of a response reliability curve from the 

accumulation of errors model is shown in Figure 6-4A.  This curve is sigmoidal, 

consistent with both behavioral predictions and the probability of response data (Stüttgen 

and Schwarz, 2008; Ollerenshaw et al., 2012). The average strength state increases with 

stimulus intensity (until it plateaus) as seen in Figure 6-4B; however, there is no structure 

to the single trial distributions representing a decoupling of the observed neural strength 

and the stimulus intensity (Figure 6-4C) consistent with the observed single trial VSD 
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distributions.  There are a large number of trials at the imposed minimum and the 

imposed maximum, but again this is meant to be conceptual. 

In the accumulation of errors model, the average signal intensity Sn, decreases with 

increasing structure number. Figure 6-5 shows the average strength state, Sn, after each 

structure.  This is consistent with the first fundamental observation, the signal decays at 

each level of the pathway. This is also true to some extent at all other stimulus intensities, 

but is best observed in the plateau region.  

 

Figure 6-5 Average signal decays with each structure.  The average Sn as observed at 
each structure in the pathway. The signal decays on average as it is processed 
sequentially. 

 

There is no temporal component to the model (it is a future goal). However, the essential 

element to account for short ISI suppression exists. Conceptually, even though no 
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response was observed for most trials at a sub-threshold velocity at the last structure, 

these responses did exist in the pathway up until some point. Consider the sample path of 

a trial that successfully propagated to Structure 2 but did not propagate to Structure 3. An 

observer of level 3 would not be able to predict suppression to the subsequent pulse. 

However, the signal did reach Structure 1 at a sufficient strength to engage an inhibitory 

response, so suppression to subsequent inputs on this simulation would still be observed. 

A necessary assumption to account for short ISIs is that the inhibitory response at lower 

level structures is shorter than at higher structures. This assumption is consistent with 

thalamic versus cortical data in the whisker pathway (Simons and Carvell, 1989). 

6.5 Regulation of Detection in a Hierarchical Markov Process 

The most powerful aspect of the accumulation of errors model is the observation that a 

single modification, at any point in the pathway, does not affect the response probability 

of all stimulus intensities equally. Consider the three curves shown in Figure 6-6A where 

the expected probability of response given different propagation thresholds Sth (lowest, 

black) and then increasing (green and blue).  The larger threshold makes it slightly more 

difficult to propagate between structures without failure.  Even though the same bias 

exists on all trials, it specifically affects the probability of response of intermediate 

stimulus intensities. Figure 6-6B shows the difference in response probabilities from the 

low threshold to a higher threshold. The greatest change in response probability occurs at 

intermediate (threshold) stimuli, with minimal or no change extreme intensities. 
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Figure 6-6 Parameter Sweep of Accumulation of Errors Model A) Increasing the 
propagation threshold (Sth) increases the threshold B) This change differentially affects 
threshold velocities (gray box) C) Increasing the variability of the random component 
decreases the slope of the sigmoid D) Threshold stimuli are preferentially affected, either 
increasing or decreasing the probability of response; E-F) Adding additional structures 
changes the probability of response curve similarly to changing the propagation threshold  
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In fact, manipulation of any parameter of the model preferentially affects threshold 

stimuli (Figure 6-6).  Every parameter except for the variability of the random component 

(σnoise) modulates the curve such that the detection threshold shifts left or right on the 

graph. σnoise does not affect the threshold, but the slope of the sigmoid (Figure 6-6C). 

This non-linearity predicted by the accumulation of errors model exists in behaving 

animals and has been documented both in rats and humans in somatosensation (Stüttgen 

and Schwarz, 2008; Bari et al., 2013; Waiblinger et al., 2013; Ollerenshaw et al., 2014). I 

will consider the rodent example here specifically. In Figure 6-7, there are two curve fits 

from a behavioral experiment performed and published by Douglas Ollerenshaw in the 

Stanley Lab (Ollerenshaw et al., 2014). The raw data has been removed for clarity, but 

can be seen in the original paper. In this detection paradigm, a whisker was deflected at a 

given velocity as an animal responded by licking a waterspout. The probability of an 

animal correctly detecting the stimulus is determined by the whisker deflection velocity 

(Figure 6-7, green curve). In a subset of trials, an adapting stimulus (analogous to the 

condition pulse in Chapter 3) was delivered on the same whisker prior to the delivery of a 

probe. This data is shown in red in Figure 6-7A. The difference between the green curve 

and the red curve is plotted in Figure 6-7B. Given an equivalent perturbation across all 

stimulus intensities (an adapting stimulus), the response probabilities are not equally 

affected. The most dramatic effect is observed on threshold intensities (near a 50% 

detection probability).  
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Figure 6-7 Non-linear changes in detectability in awake animals A) Psychometric 
curves show the probability of a rat responding to a whisker deflection in a non-adapted 
state (green) and an adapted state (red). The gray boxes highlight stimulus intensities near 
the perceptual threshold B) The differences between the non-adapted curve and the 
adapted curve show that adaptive perturbation of the system preferentially affects 
threshold stimuli. 

 

Consider this thought experiment in the context of the accumulation of errors model.  A 

rat, given the same stimulus on two whiskers, responds 65% of the time to one whisker 

(S-) and 90% of the time on another whisker (S+) in some arbitrary initial state. In other 

words, the whiskers are not equally detectable. If a subtle handicap then perturbs the 

system such that it is marginally harder to propagate signals, we would predict that the 

animal would then respond less to all stimuli on average, but the change would be larger 

on the S- whisker as it was originally closer to threshold than to the S+ whisker. The ratio 

(S+/S-) would be predicted to increase.  This is exactly what was observed in the 

adaption behavior task. Note that the author’s interpretation of the effect was different as 
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they started with the assumption that all whiskers are equally detectable.  However, the 

expected non-linear change in detectability from a whisker operating near threshold and 

one operating above threshold was sufficient to explain the increase in specificity in 

responses. A single perturbation differentially affecting the response probability of 

different stimuli would allow the creation of specificity in the neural code. This same 

logic could also apply to single neurons – a perturbation would be expected to affect less 

reliable neurons before more reliable neurons, at least until a neuron is so unreliable as to 

be on the other side of the effect.  This effect would be increasingly true at each higher 

level in the pathway structures. More structures allow for more specificity in the 

response. 

Previously, I have argued that the whisker system primarily functions as an array of 

unreliable detectors. Here, I argue that the detectability of stimuli can be selectively 

decreased or enhanced by regulating how easily a signal can propagate through the 

system. In all cases, threshold stimuli are more sensitive to perturbations than strong 

stimuli, allowing for the active modulation of the dynamic range without significant loss 

of function or feature-selectivity across the entire array of detectors. 

6.6 Always Sufficient, Never Necessary: the power of mechanistic 

redundancy 

Although the idea that our sensory systems may be inherently unreliable is existentially 

troubling, intellectual solace can be found in the robustness of the system as a whole.  I 

have resisted providing any specific biophysical explanations for the source of the 
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random component of the accumulation of errors model.  This is because it does not 

matter why or how the random process is random, only that it exists.  Similarly, when the 

system is perturbed such that the probability of response is modulated, it does not matter 

what causes this perturbation.  Any perturbation could be expected to influence the 

system as a whole in a predictable way. 

The detectability in the behavior experiment introduced earlier was attributed to changes 

in thalamic synchrony (Wang et al., 2010; Ollerenshaw et al., 2014).  In the accumulation 

of errors model, decreases in thalamic synchrony would make it more difficult for a 

signal to propagate on average and predict a decrease in the detectability. As such, 

changes to thalamic synchrony are consistent with the accumulation of errors model. The 

competing hypothesis, however, that adaptation simply results in a depression of 

synapses (Castro-Alamancos, 2004), would be equally supported by the accumulation of 

errors model.   

Specific suppression of smaller stimuli has also been reported by the application of 

GABA agonists on the cortex (Kyriazi et al., 1996). An increase in inhibition would also 

be sufficient, given the accumulation of errors model, to predict non-linear decrease in 

detectability relative to original intensity. Additionally, trimming of adjacent whiskers 

has been shown to increase the trial-average response amplitude in a primary barrel 

(potentially an increase in response reliability) (Diamond et al., 1993, 1994; Rema et al., 

1998). This can be blocked by the application of NMDA antagonists, which reduces 

firing rates and makes propagation more difficult (Rema et al., 1998).  Although many 
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possible perturbations could have accounted for the original increase in response 

amplitude (or response probability) in this plasticity protocol, a systematic and non-

biological level of inhibition resulting from blocking NMDA would be sufficient to 

reverse it. It would be sufficient, but not necessary to prevent the original effect. 

Importantly, my model predicts that all of these effects could be observed in average 

firing rates, but not reliably from single trials.  A given perturbation may reduce the 

response reliability on average, but that allows no predictive power for the sample path of 

any given trial. 

One may interpret the flexibility of the accumulation of errors model as a weakness of the 

model. In fact, the opposite is true. The assertion that any one of a number of regulatory 

events occurring is sufficient to result in the desired functional output, but no one event is 

necessary is exactly like having multiple neurons act as a together as population: 

redundancy creates reliability. Mechanistic redundancy allows for increased functional 

(and presumably perceptual) reliability. 

The idea that multiple possible underlying parameters could create the same functional 

output was first suggested and supported both computationally and experimentally in 

studies on the crustacean stomatogastric ganglion (Prinz et al., 2004; Gutierrez et al., 

2013). In this system, it is clear that the functional output, not the tight regulation of a 

specific set of conduction parameters, is the key control variable.  The accumulation of 

errors model is consistent, in fact, derived in part, from ideas presented and developed in 

this previous work. From this work, I hypothesize that many mechanistic solutions or 
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initial parameters can potentially explain a given observation.  Tight regulation of 

individual parameters would not be necessary to achieve perceptual stability. 

6.7 Conclusions 

Redundancy is a common theme to all of neuroscience. Stochastic events are the key unit 

in essentially all neurological hardware from the level of diffusion in receptor-ligand 

interactions to the stochastic nature of a neuron spiking.  Even with many neurons 

encoding the same stimulus, it is hard to imagine our neural code is uniquely immune to 

stochastic error. When stochastic processes are arranged in a hierarchical series of 

structures, accumulation of errors is inevitable. In fact, the most reliable aspect of the 

system is that information encoded in absolute values (the absolute response or firing 

rate) could never be reliable.    

A system built of modulating the reliability of the signal would be mechanistically robust, 

as it does not require success necessarily on any particular regulatory mechanism in order 

to create a sufficiently regulated change in detectability of the signal.  If our sensory 

systems do turn out to be mechanistically redundant, then we would be forced to 

reconsider what type of experimental design is evidence of what type of causality. It 

would become important not to mistake evidence of sufficiency as evidence of necessity 

or original cause.   
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CHAPTER 7  Discussion 

 

7.1 A Summary 

A central tenet of sensory neuroscience is that all our perceptual experiences are 

encoded directly in the activity of our neurons. 

The tenet, however, does not compel the assumption that identical perceptual experiences 

are encoded by identical neural activity.  It is also possible that equivalent percepts are 

the result of divergent neural representations. 

In evidence of this hypothesis, I have shown, using the rodent vibrissa pathway as a 

model, that identical stimuli are not encoded identically on single trials in any of three 

tested dimensions: amplitude, time, or space.  Given this fundamental unreliability, I 

hypothesize that using multiple whiskers (multiple columns) to redundantly encode 

stimulus information will result in a reliable spatiotemporal neural code. I propose an 

accumulation of errors model for creation of these probabilistic representations, which 

was characterized by small but numerous stochastic errors. Within this framework, I 

observed that modulation of detectability was a powerful method for control and 

regulation of neural output as any perturbation to the system did not affect all stimuli 

equally. 
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7.2 Limitations of the Trial-Average 

When we compute trial-average measures in order to summarize, analyze or infer 

patterns of activity from a data set there is an implicit assumption: we assume that the 

average response is meaningful or capable of summarizing the underlying data in a useful 

way.  This assumption, like all assumptions, should be tested whenever possible.  

There are many examples in which the trial-average has been a valuable tool. For 

example, understanding the encoding of stimulus intensity in the whisker pathway has 

benefitted greatly from analysis of the trial-average. The trial-average model was 

sufficient to find that single units were sensitive to velocity (Simons and Carvell, 1989; 

Shoykhet et al., 2000b; Lee and Simons, 2004). Additionally, the non-linear temporal 

dynamics replicated in this thesis were all observed initially on the trial-average activity 

of single neurons (Simons and Carvell, 1989; Higley and Contreras, 2005; Boloori et al., 

2010). It would be difficult, potentially impossible, to make these initial observations 

(and nearly every other summary of neural spiking patterns) without this simplifying 

assumption. 

When we consider perception in the context of behavior, however, we do not assume that 

the brain computes trial-averages. We are capable of interacting in a dynamic sensory 

environment. Often, this means we only have one opportunity or experience with each 

stimulus. Once stimulus parameters that modulate the trial-average are identified, we 

must consider how this average response maps to perception. When analyzing single-unit 

electrophysiological data, it is common to assume that many similar neurons respond 
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independently to an input, thus motivating the trial-average as a model of a population 

code. This logic, however, does not account for the effects of variability of shared input. 

Although this has been considered in other contexts (Abbott and Dayan, 1999; Stocks, 

2000; Wilke and Eurich, 2002; Moss, 2004; Harrison et al., 2005; McDonnell and 

Abbott, 2009). In this work, I proposed an accumulation of errors model for the 

development of probabilistic representations of stimulus intensity. The key inference 

from this model is not that individual populations of independent neurons are unreliable; 

in fact, each structure in the model introduces minimal error. However, when 

computations are performed in series, even very small inaccuracies can dramatically 

influence the propagation of the signal. Therefore, I predict that the validity of the trial-

average neural activity as a model of the single trial experience will depend less on the 

independence of individual neurons within a structure or population and more on the 

potential for error within a hierarchical series of such structures. As a result, when we 

observe neural activity many steps removed from the initial encoding, we should attribute 

correspondingly less emphasis, and assert with less confidence, that the trial-average is 

representative of the single trial. 

7.3 Cortical Columns and Relevance to Human Somatosensation 

There many ways in which the rodent whisker system is not directly applicable to human 

somatosensation.  Most of these I have considered in the original thought experiment in 

the introduction (1.5.1). However, I have not yet considered the most important way the 

barrel cortex is like the human primary somatosensory cortex: the prominence of cortical 

columns (Mountcastle, 1997; Tommerdahl et al., 2010).   
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Cortical columns exist in the human primary somatosensory cortex. These columns are 

characterized by local circuits that are highly connected vertically (between cortical 

layers) but with minimal horizontal connections (Tommerdahl et al., 1993; Mountcastle, 

1997). Regions of skin that are highly relevant to behavior are over-represented in 

cortical space in all animals (Penfield and Boldrey, 1937; Mountcastle, 1997). These 

regions are also more densely innervated with peripheral receptors; but this increased 

cortical space may not just a trivial consequence of increased peripheral innervation.  

Given the organization of the barrel cortex and the work presented in this thesis, I 

hypothesize that the base unit of computation in somatosensation is the cortical column. 

As the size of cortical columns is largely conserved across sensory areas (Mountcastle, 

1997), more cortical space directly implies more columns. 

When more cortical columns redundantly encode sensory information, the probability of 

activation hypothesis predicts that the stimulus will be more detectable (have a lower 

perceptual threshold). Additionally, one would expect that sensory regions with more 

cortical columns would be capable of better fine scaled discrimination. Columns could 

respond in more unique combinations and provide a finer representation of stimulus 

features. Importantly, if many cortical columns perform the same computation, no one 

stochastic event can affect the entire representation of the stimulus. The stochastic events 

average out not over time (like in a trial-average) but over space (many separate 

columns). 
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The idea that cortical columns are the central unit of cortical organization is not new. 

This hypothesis was first proposed by Vernon Mountcastle around the same time of 

Hubel and Wiesel’s discovery of feature-selectivity in vision (Mountcastle, 1957, 1997), 

and now championed by other researchers in human and primate somatosensation 

(Tommerdahl et al., 2010).  The work in this thesis adds to this existing framework.  

Mountcastle showed extensive evidence for columns across all multiple areas of the 

neocortex, including both motor and sensory areas. This framework lacks, however, a 

coherent reason for the columnar structure. I propose that columns are necessary because 

of the inherent unreliability of biological hardware, but could also key features of the 

neural code. For example, pressure stimuli on skin have been shown to activate a wide 

region of cortical space, but have a prominent focal point or center of mass (Mountcastle, 

1957). If this signal is modulated such that it is harder to propagate, the accumulation of 

errors model predicts that the center of mass (columns that respond most reliably to a 

given stimulus) would not be greatly affected. However, the efficiency of columns that 

respond with intermediate probabilities could be dramatically reduced, creating spatial 

specificity.   The same dynamic could contribute to classic examples of neuroplasticity 

(Merzenich et al., 1983).  Since evidence for plasticity rests primarily on modulating the 

relative response amplitude across different columns, sensory deprivation may actually 

affect all columns equally. Given different initial conditions, however, the result is a non-

linear change in the average cortical activated area. 
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The data in this dissertation strongly suggest that the cortical column that represents a 

whisker acts only as detector and does not encode specific stimulus features.  Given this, 

I hypothesize that any one column in the human and primate somatosensory cortex can 

only function as a simple detector and does not encode additional stimulus-feature 

information. Instead, feature-selectivity arises by controlling the reliability of the column 

detectors such that specificity can be created across cortical space.  

7.4 Interfacing with the Brain 

One important reason for understanding the neural code is to develop technologies that 

can interact and communicate with the brain such as sensory prosthetics. In this context, 

the probability of activation hypothesis (if found to be more generally true) would change 

the design specifications for technologies that interface with the brain. 

For one, the information recorded at a single point in space (with a single electrode) 

would always be more reliable if the interface is more peripheral or lower on the neural 

hierarchy.  This has already been observed, in fact, as peripheral interfaces such as 

targeted reinnervation (Kuiken, 2006) are having more initial clinical success.  

A common current approach is to use a single electrode (Kennedy et al., 2000), or multi-

electrode arrays (Hochberg et al., 2006), either invasively (Kennedy et al., 2000; 

Hochberg et al., 2006) or non-invasively (Millán et al., 2004). Each of these technologies 

are designed to specifically record from single neurons or units and infer specific 

stimulus features.  Given the probability of activation hypothesis, I predict that the 
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information available from a single electrode recording would be unreliable, potentially 

even unhelpful for the decoding of features of sensory stimuli.  An interface design can 

be simplified if a spatially averaged stimulus is sufficient for decoding stimulus features. 

For the reverse problem, engineering solutions for writing the neural code may also be 

simplified by the probability of activation hypothesis. Multiple redundant pathways, each 

of which is sufficient, allow flexibility in how information is delivered.  Electrical 

stimulation of the brain is more reliable and repeatable than activity from peripheral 

receptors (Millard et al., 2013); therefore, it is possible to have greater control the 

reliability of this signal.  The probability of activation hypothesis suggests that although 

the control of the spatial extent or spatial specificity of the input would be essential, it 

would not be necessary to have the ability to activate individual neurons.  

As an overall assessment, the probability of activation hypothesis allows for simpler 

design specifications for brain-machine interface. If we do not assume that single neurons 

encode specific features, then we do not need to record activity of neurons individually or 

stimulate specifically. Instead, it would be more important to be able to control average 

activity across cortical space. 

7.5 Future Directions 

Many additional experiments could continue to validate, expand, or potentially falsify, 

the probability of activation hypothesis and the accumulation of error model presented in 

this thesis.   

129 

 



First, it is the unique characteristic of all scientific hypotheses that they are directly 

falsifiable.  If it can be shown that rodents can discriminate between deflection velocity 

on single trials and on single whiskers, I will consider this hypothesis to be falsified. 

Specifically, this requires that rodents report the intensity of the stimulus with unique 

behaviors (multiple-alternative forced choice). 

Short of direct falsification, some aspects of the experiments presented here weaken the 

strength of the evidence. The experiments in this work were all done in an anesthetized 

preparation.  Despite the correspondence between the anesthetized data and the awake 

behaving data, I must concede that an anesthetized brain is not an awake brain. 

Specifically, most experiments in this work were performed under sodium pentobarbital, 

thought to act on the inhibitory neurotransmitter, GABA (Steinbach and Akk, 2001). 

With new technologies, it is becoming more and more feasible to study the brain in 

awake animals. The challenge is that many functional measures require averaging over 

many trials in order to create sufficient single to noise. Even multiunit recordings in 

response to the same stimulus exhibit extensive variability across single trials.   

Some technologies, such as local field potential, do record amplitude information on 

single trials. However, it is unclear how to interpret absolute amplitude when the distance 

from the electrode and the electrode resistance dramatically affect a single neuron’s 

contribution to the signal. As a result, I consider local field potential a spatially weighted 

average of activity and therefore not a valid technique for testing the proability of 

activation hypothesis. The most straightforward approach to testing the probability of 
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activation hypothesis in awake animals is to develop a recording technology that is 

similar to voltage sensitive dye imaging. There is promise for chronic awake recordings 

using genetically encoded voltage sensitive fluorescent protein (Akemann et al., 2010). If 

this methodology allows sufficient signal to noise such that estimates of response 

amplitudes on single trials are meaningful, the probability of activation hypothesis could 

be tested in awake animals similarly to the data in this dissertation.   

Within an anesthetized preparation, it is also necessary to explicitly test the 

spatiotemporal coding framework I have proposed in Chapter 5.  While studies done in 

anesthetized animals may or may not map directly to the awake brain, one can still 

discern some information about the nature of the neural circuitry. The spatial decoding 

problem becomes increasing complex as one is forced to differentiate between more 

whiskers.  However, using the matched-filter algorithm developed in Chapter 2, it should 

be possible to deflect an array of whiskers and observe probabilistic dynamics. Sub-

threshold velocities will allow for better observation of the probabilistic dynamics. 

Finally, it would be interesting to test the probability of activation hypothesis in the 

encoding of skin pressure stimuli in other animals. Once this paradigm is moved outside 

the whisker system, however, some technical hurdles develop.  The problem is two-fold: 

1) a projections from a single column can spread into slightly into neighboring columns; 

2) it is not possible to activate only a single column at the periphery. Unlike the 

peripheral whisker input, skin representations are known to be highly overlapping 

(Mountcastle, 1957).  Even a single pin prick would activate both skin surface receptors 
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and deep tissue columns.  Additionally, there is some amount of spatial spread even in 

the head of a pin and so we expect multiple columns to respond. In order to test this 

hypothesis, we would need to solve at least one of two difficult technical problems: 1) 

how to stimulate only a single column (as we did in the whisker system);  or 2) how to 

record from only a single cortical column. 

 One approach could be to use targeted genetic tools to specifically record from a single 

column. For instance, one may be able to use the voltage sensitive fluorescent protein 

technology to target a single column (or label columns in different colors). Even if the 

columns could not be differentiated at the periphery, the response dynamics of an 

individual column could be recorded uniquely. 

7.6 Concluding Remarks 

Human brains are as different from each other as the human personalities and experiences 

that they encode.  As neuroscientists, we should embrace the idea that we do not need to 

be wired identically or perceive stimuli identically in order to co-exist.  If we were to take 

the average of every definable characteristic to create a representative human, we would 

fail to model every individual human. No one person, no one experience is adequately 

modeled by the average. The neural code is likely not an exception to this general rule. 
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APPENDIX A Covariance of Amplitude Confounds Metrics of 

Spatial Activation 

 

A.1  Introduction 

Spatially organized cortical representations of stimulus space (i.e. topographic maps) or 

stimulus parameters (i.e. orientation tuning maps) are ubiquitous features across our 

sensory systems.   Anatomical evidence for topographic maps can be seen with 

histological stains (Land and Simons, 1985). Neurons that encode similar stimulus 

information tend to be close to each other in cortical space (Merzenich et al., 1983). The 

synaptic connections between these neurons reorganize when presented with patterned or 

coincident sensory inputs, particularly early in development (Wiesel and Hubel, 1963; 

Simons and Land, 1987).   These maps are also studied as functional entities.  The 

functional representation of topographic maps can be context-dependently modulated, by 

changes to brain state (Ferezou et al., 2006), the presence of an adapting stimulus 

(Ollerenshaw et al., 2014) or even stimulus-specific parameters (Sheth et al., 1998).  

Counter-intuitively, the methodology used to assess functional modification of 

topographic maps and the methodology used to assess structural plasticity of topographic 

maps is often the same (i.e. multi-electrode recordings, optical imaging etc) In this study, 

we consider some inferential problems in the interpretation of spatial data. We suggest 

that data collected as evidence for cortical plasticity and data collected as evidence for 

brain-state modulation of topographic maps may be more similar that previously thought.  

133 

 



Functional measures of cortical maps rely on the ability to distinguish between active and 

inactive cortical regions. The distinction between a cortical region that is active and one 

that is inactive (or comparably inactive) is question-dependent.  A range of questions 

might arise. Is activation in a region different from spontaneous activity (Polley et al., 

1999a)? Is the activation in one cortical region smaller than that observed prior to 

experimental manipulation (Wiesel and Hubel, 1963; Polley et al., 2004)?  Is the amount 

of activation in the surround significantly less than the peak response with different 

stimulus conditions (Sheth et al., 1998; Ollerenshaw et al., 2014)? These questions are 

each distinctly different from each other, yet methodologically similar in a key respect: in 

each case, a direct comparison of response amplitudes, measured functionally, is used to 

infer that a change in the cortical area of activation has occurred. In fact, inference of 

changes of functional spatial activation requires corresponding changes in response 

amplitude. The two metrics are intrinsically linked.   

The interdependence of response amplitude and area of activation creates a challenge if 

we seek to measure changes in area of activation separately from changes corresponding 

to response amplitude.  Changes in the cortical area both functionally and anatomically 

occur almost exclusively with a covariance of the spatial spread of the signal. For 

example, using the examples above, absolute response amplitude decreases with sensory 

deprivation (Glazewski and Fox, 1996; Fox, 2002), increases with increased frequency of 

stimulation (Sheth et al., 1998) and can increase or decrease with different brain states 

(Ferezou et al., 2006).  
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Here, we test metrics used to quantify the topographic representations of whiskers in the 

barrel cortex of anesthetized rats. Using this knowledge, we develop a framework for the 

quantification of changes in functional maps across experimental conditions. We consider 

the sensitivity of metrics of spatial activation to the covariance response amplitude. We 

show that identical data analyzed with respect to different points of reference can report 

opposing spatial trends. We use voltage sensitive dye (VSD) imaging of neural responses 

to whisker deflections to demonstrate how the use of these metrics can confound 

interpretations of area of activation. Using a combination of absolute and relative metrics, 

we can differentiate between amplitude-independent and amplitude-dependent changes in 

spatial activation. Next, we consider the robustness of relative metrics in the presence of 

noise. We show that a relative threshold determined from a biased estimator of the point 

of reference is also sensitive to the covariance of amplitude. We conclude that covariance 

of response amplitude is systematically confounding spatial data across multiple fields of 

sensory neuroscience. 

A.2 Methods 

A.2.1 Threshold Analysis on Simulated Images 

All simulations were performed in MATLAB (MathWorks, Natick, MA).  Model images 

were two-dimensional radially symmetric Gaussians centered in a 50 x 50 pixel image.  

For Figure A.3, the amplitudes used for representation were 1, 2, and 3 for Image 1, 

Image 2 and Image 3, respectively. Each Gaussian had a standard deviation of σ=80 

pixels. The images were analyzed with absolute thresholds of 0.4 (noise-derived and 
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peak-derived) and a relative threshold of 50%.  For Figure A.4, we created five series 

with three images each. Image 1 was identical in all image series, with amplitude of one 

and standard deviation of σ=80. The standard deviation of the Gaussian in each image 

series covaried with the amplitude, as shown in Figure A.4A. Amplitudes were 1.1 for 

Image 2 and 1.2 in Image 3. As threshold severity increased, more and more pixels in an 

image are considered inactive.  A small absolute peak-derived threshold was therefore 

considered a ‘high severity’ threshold and a small absolute noise derived threshold was 

considered ‘low severity’. The threshold severity spanned the entire range of the image 

with the smallest amplitude.  For the noise simulations, noise was added to each pixel by 

randomly choosing a value from a normal distribution with mean of zero and variance of 

0.01. 

A.2.2 Animals 

All procedures were approved by the Animal Care and Use Committee at the Georgia 

Institute of Technology.  Data from six female adult Sprague-Dawley rats (250-350g) 

were used in this study. 

A.2.3 Surgical Preparation 

Experimental procedures were similar to those utilized in our previous studies 

(Ollerenshaw et al., 2012, 2014; Wang et al., 2012; Millard et al., 2013). Briefly, animals 

were initially sedated with 5% isoflurane such that sodium pentobarbital (IP, 50mg/kg) 

could be injected for long-term anesthesia.  A catheter was inserted into the tail vein and 

used to deliver additional sodium pentobarbital (I.V.) as needed during the duration of the 
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experiment.  The anesthetic depth was kept such that the animals exhibited no pain reflex 

(toe pinch, or eye blink) but was light enough that neural activity could be observed.  

Heart rate, oxygen saturation, respiratory rate, and temperature (37°C) were monitored 

continuously to ensure a constant level of anesthetic depth.  Animals were stabilized in a 

stereotaxic frame and a craniotomy and duratomy were performed over the barrel cortex 

in the left hemisphere (0.5-4 mm caudal to bregma, 3-7 mm lateral from the midline).  A 

well was created using dental cement surrounding the craniotomy to hold the dye solution 

and keep sterile saline on the cortical surface throughout the experiment. 

A.2.4 Voltage Sensitive Dye Imaging 

Voltage-sensitive dye imaging measures neural activity, primarily sub-threshold changes 

in membrane voltage, from supra-granular layers of the cortex (Petersen et al., 2003a). A 

schematic of the imaging set-up is shown in Figure A.1A.   The cortex was stained with 

the voltage sensitive dye (RH1691, 2mg/ml, Optical Imaging) from 1.5-2hours, until the 

cortex was visibly blue. Unbound dye was then rinsed off by multiple washes with sterile 

saline. The cortex was illuminated with a 150W Halogen lamp passed through an 

excitation filter (621-643 nm). Images were recorded with a high-speed CCD camera 

(MiCOM2, SciMedia). A 1x objective lens was combined with a 0.63X condenser lens, 

resulting in a total magnification of 1.6X. Twenty to sixty trials for each stimulus 

condition were recorded for analysis.  The resultant image size was 183 x 124 pixels, at 

20µm/pixel. 
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A.2.5 Image Analysis 

All analysis was performed in custom written software in MATLAB (MathWorks, 

Natick, MA).  Florescence was quantified as the percent change from background, % 

∆F/F0 where background was defined as the average pre-stimulus activity (200ms, 40 

frames) at the beginning of each trial. Unless otherwise noted, analyses were performed 

on trial-averaged images with a minimum of 20 trials. The barrel location of the deflected 

whisker was calculated as the center of mass of the fluorescence in the onset frame 

(chosen manually, typically 20ms after stimulus delivery).  Time series and amplitude 

measurements were defined as the average fluorescence in a circular region of interest 

(10 pixel radius, ~200µm) centered over the center of mass. Images were filtered with a 

400µm x400µm spatial averaging filter for display purposes only.   

A.2.6 Area of Activation Analysis on Voltage Sensitive Dye Images 

Spatial analysis was performed on unfiltered trial-averaged images (from 20 to 60 trials). 

Analysis was performed for the highest velocity for the time-dimension analysis. A time-

averaged image (2 frames, 15-20ms) was used for velocity-dependent spatial analysis.  

The noise threshold was set at two standard deviations above the average noise 

fluorescence (a pre-stimulus VSD frame). The peak was the single maximum pixel in the 

image unless otherwise specified. The relative threshold was defined at half (50%) the 

peak metric minus the noise metric.  For the pseudo-experiment of Figure A.9, a set of 

six single trials from each data set was chosen to be part of the ‘high’ group and the ‘low’ 

group. The single-trial response amplitudes were sorted and the six trials with the highest 
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amplitude were used in the ‘high’ group and the next six trials (6th -11th) were used as 

the ‘low’ group. The results held regardless of how ‘high’ and ‘low’ were defined, as 

long as there was an absolute change in amplitude between the groups. 

A.3  Results 

The results presented here pertain to spatial measures of neural activation, and are thus 

relevant for different modes of imaging (optical, fMRI, etc), electrode array recordings, 

or other measurement modalities that are designed to capture activation of neural tissue 

across space. For simplicity, we focus on optical imaging, which has been widely utilized 

for these purposes. In imaging, the spatial representation takes the form of a pixelated 

image, with the level of neural activation at a particular location in the tissue represented 

by the intensity in the image at the corresponding pixel.  In Figure A.1, we have shown 

an example of an optical image that we collected in response to a whisker deflection 

using voltage sensitive dye (VSD) imaging. The response amplitude in voltage sensitive 

dye imaging is a measure of the relative fluorescence that linearly reflects the membrane 

potential of cells in the given cortical space represented by a pixel (Petersen et al., 

2003a).  A schematic of the optics of a voltage-sensitive dye imaging system is shown in 

Figure A.1A and a representative image recorded in response to a whisker deflection in 

Figure A.1B.  Figure A.1C shows the pixel intensities (or response amplitudes) measured 

across the profile line as drawn in Figure A.1B.  The image profile was approximately 

Gaussian. This is generally true in optical imaging experiments, as the point-spread 

function of light scattered through tissue has been shown to be well-approximated by a 

Gaussian function (Stallinga and Rieger, 2010). Although there is a clear qualitative 
139 

 



region of the image that has greater fluorescence representing stimulus-evoked activity, 

the individual pixel intensities taper off gradually and continuously. To quantify or 

compare the regions across of multiple images, boundaries must first be defined to 

identify active versus inactive pixels. While this is a common experimental problem, the 

solution is not unique. Multiple different widely used metrics have been developed and 

used in literature to quantify area of activation. 

 

Figure A.1 Quantifying Area requires comparing response amplitudes A) A 
schematic of the VSD optical imaging set-up.  Whiskers are deflected using a piezo-
electric actuator. B) Representative VSD image collected following a whisker deflection. 
Pixels that lie along the black line are shown as dots in (C). A Gaussian fit to this image 
profile is shown.    

 

A.2.7 Absolute versus Relative Metrics 

We classified metrics of spatial activation by the point of reference. The point of 

reference is the metric used to register or normalize across images or experimental 

conditions.  Most commonly, studies measure area of activation with respect to an 
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observed minimum or noise level. Some common examples of a noise-derived metric are 

‘statistically significant activation relative to pre-stimulus noise’ or ‘two standard 

deviations above noise’. Regions of the cortex that have response amplitudes higher than 

this point of reference are considered active, while regions that do not meet this level of 

activation are considered inactive.  A schematic of a noise-derived metric is shown in 

Figure A.2B. 

 

Figure A.2 Area Metrics Classified By Point of Reference    A) Area is defined by the 
number of pixels above a threshold. Thresholds can be placed relative to different points 
of reference in the image. B) A noise-derived metric is determined relative the minimum 
observed value; C) A peak-derived metric is relative to the observed maximum. D) A 
relative threshold defined relative to the absolute size of the image (peak and noise 
metrics). 

 

It is also possible to measure activation relative to the peak response (for example, series 

of concentric rings at specific distance from the peak).  These metrics capture the 

sharpness of a cortical response by quantifying how fast the signal drops off from its 
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peak.  This is a metric defined relative to the maximum observed response, or a peak-

derived metric depicted in Figure A.2C. 

Both of the examples of metrics described above are absolute metrics of spatial 

activation. Such metrics set the difference between active and inactive at an absolute and 

unchanging difference in response amplitudes between activity observed in some region 

and activity observed at the point of reference in every experimental condition. In some 

cases, this means specifically choosing a difference that is considered meaningful (i.e. a 

2% change in signal amplitude) or by using statistical significance to define the absolute 

change in amplitude. 

It is also possible to define a relative metric, where the distinction between active and 

inactive changes to reflect the size of the observed response in each experimental 

condition. For example, a 2% change would be required in an image with larger response 

amplitudes, but a 1% difference may be sufficient in images with smaller responses.  A 

common example of a relative metric is a 50% contour, or area at half max, which 

pertains to raw image contours, or contours derived from Gaussian fits.  In Figure A.2D 

we depict a type of relative threshold that is determined with respect to both the peak and 

noise measurements. 
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Figure A.3 Same Data Analyzed Three Ways   A) Three 2D Gaussian images that were 
scaled versions of each other are analyzed using one of each type of metric. B) Peak-
Derived metric showed sharpening, Relative metric showed no change and the noise-
derived metric showed an increase in area. 

 

A.2.8 Same Data, Analyzed Three Ways 

All of these methods seek to quantify the extent of cortical activation, but they are not 

equivalent.  To demonstrate this, we analyzed the same data with a representative method 

from each category: noise-derived, peak-derived and a relative metric. Note that there are 

multiple ways to implement each class of metric. We used the simplest implementation, a 

threshold. As model images, we created radially symmetric two-dimensional Gaussians 

(see Methods).  By using a Gaussian, we can independently control the response 
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amplitude and the spatial spread defined by the standard deviation σ.  We created three 

images in which we scaled the amplitude, while holding σ constant. Image 1 has the 

smallest amplitude and image 3 has the largest (Figure A.3A).  Each image is exactly a 

scaled version of the other two.  We then analyzed the images using a noise-derived 

threshold, a peak-derived threshold, and a relative threshold. The resulting trends are 

shown in Figure A.3B.  Despite analyzing the same three images each time, we could 

infer three markedly different trends in area of activation between the three images (or 

experimental conditions). In the case of a peak-derived metric, images with higher 

absolute magnitude show faster drop-off from the peak, indicating a sharpening of the 

cortical response (Figure A.3B, top).  In contrast, the same images analyzed with a noise-

derived metric showed cortical expansion with increased amplitude, with a greater 

number of  pixels surpassing the absolute difference in response amplitude necessary for 

activation (bottom).  The relative metric, however, shows no change in area of activation 

(middle). 

It is interesting, potentially troubling, that the three analyses of the same data result in 

three potentially contradicting interpretations.  It is unclear if we should conclude that 

these images show cortical expansion, sharpening, or activation of the same area.  This 

confound is caused by covariance of amplitude across the conditions or images. 
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Figure A.4  Point of reference matters more than threshold severity   A) Fives sets of 
three 2D Gaussian images were created with the specific amplitude and spatial spread 
(sigma) metrics defined by the points in the graph (B). Image sets +1 and +2, sigma 
increases with amplitude (amplitude independent expansion), the reverse is true for image 
sets -1 and -2.  C) Each of the five image sets analyzed with 8 peak-derived thresholds 
(C); 8 relative thresholds (D) and 8 noise-derived thresholds (E). The point of reference 
determined the direction of the trend, not the absolute threshold severity. 

 

A.2.9 Point of Reference Determines Observed Trend: Same Data, Analyzed 24 

Ways 

It is common practice to assess area of activation at multiple threshold levels (Polley et 

al., 2004; Drew and Feldman, 2009) and widely acknowledged that analysis at different 

threshold levels can influence the magnitude of observed trends. We considered whether 

the contradictory results shown in Figure A.3 were sensitive to the absolute threshold 

value.   
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For this analysis, we created a more complex model data set of 2D Gaussian images and 

analyzed them 24 different ways (8 variable thresholds levels in reference to each of the 3 

possible points of reference). The model data set included five image sets with three 

images in each.  In Figure A.4A, we plot response amplitude versus sigma for our 

simulated data set. Each black dot represents a 2D Gaussian image with the 

corresponding amplitude and sigma values as labeled on the axis. The amplitudes of the 

three images in each group are not changed, only the sigma values. The total change in 

amplitude from Image 1 to Image 3 is 20%. Each image set (the three images connected 

by dotted lines) represented a different relationship between amplitude and spatial spread. 

Image set 0 is analogous to the data set analyzed previously in Figure 3, each image has 

the same sigma value but every pixel is scaled by the amplitude value. Image sets +1 and 

+2 represent expansion of the sigma independent of amplitude.  Image sets -1 and -2 

represent sharpening independent of amplitude (see schematics in Figure A.4A).  

Figure A.4C-E show these five data sets analyzed across eight different threshold 

severities. Threshold severity conceptually represents the amount of the image that is 

considered active.  If most pixels in an image are above the threshold then the threshold 

is minimal. If most pixels are below the threshold, it is considered severe.  For example 

in a noise-derived metric, 0.5 standard deviations above noise is a minimal threshold. 

Five standard deviations above noise is a more severe threshold. There is no noise in 

these images, so the thresholds increase by equal absolute values from minimal to severe. 
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Figure A.5 Velocity and Temporal Images from Voltage Sensitive Dye Imaging   A) 
Representative VSD images from four velocities (V1, slowest to V4 fastest) at four 
frames (points in time). B) Time series created from each of the image series shown in A 
by averaging the fluorescence over the entire image. 

 

While threshold severity did influence the magnitude of the observed trend, we observed 

that the point of reference, not the threshold severity, determined the direction of the 

trend (sharpening versus expansion).  The relative method (Figure A.4D) in this case can 

be interpreted to report the amplitude-independent trend in the standard deviations, σ, of 

the images.  The relative method reports that in image sets -1 and -2 sharpening is 

occurring (orange) and in image set +1 and +2 expansion is occurring (blue).   As shown 

in Figure A.4C, we observed that a peak-derived metric reported spatial sharpening 

(orange) in nearly every case.  In this way, the peak-derived metric was biased, as it 

reported sharpening with an increase in amplitude even if the sigma was increasing with 

image number. Conversely, we observed that a noise-derived metric (Figure A.4E) 

reported an expansion (blue) in nearly every combination of image set and threshold 

level.  In this way, the noise-derived threshold was also biased, as it reported an 
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expansion in the activated area with image number even if the standard deviations of the 

images were decreasing.  We only observed trends against these biases if the threshold-

severity was minimal (bottom left, Figure A.4C; top left, Figure A.4E).   

A.2.10 Quantification of area of activation in response to whisker deflections using 

voltage sensitive dye imaging 

Our simulations demonstrate that response amplitude confounds metrics of spatial 

activation. Here, we demonstrate this problem with an experimental example. We 

recorded the layer 2/3 response to whisker deflections using voltage-sensitive dye images 

of increasing velocity (V1-V4, 150°/sec, 300°/sec, 600°/sec and 1200°/sec respectively). 

Example trial-average image series in response to whisker deflections are shown in 

Figure A.5A. Time series were created by averaging the pixels in the image (Figure 

A.5B).  Qualitatively, the area of activation appeared to increase both in the time 

dimension (across the rows from 15-25ms) and with increasing stimulus strength (down a 

column, V1 to V4).    
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Figure A.6  Different area trends observed with different metrics   A) Top row shows 
analysis with increasing frame number (in time). Amplitude increases with time from 
onset to peak. B) Noise-derived threshold shows an increase in area with time C) Relative 
threshold shows a less severe but clear increase in area with time D) Peak-derived 
threshold shows area decreasing with time. E) Similar to top row, but for one point in 
time for increasing velocity stimuli. F) Noise derived threshold shows an increase in area. 
G) Relative threshold shows no consistent change. H) Peak-derived threshold shows 
spatial sharpening. 

 

We quantified amplitude and spatial spread (n=7 whiskers from 6 animals) in both 

dimensions: time and strength. First, we confirmed that the amplitude increased from 

10ms to 25ms after stimulus delivery (Figure A.6A).  Similarly, at a single time point 

(average of two frames, 15-20ms after deflection) the VSD amplitude also increases with 

whisker deflection velocity (Figure A.6E).  Therefore, these VSD images represented an 

experimental example that paralleled our earlier simulations:  we sought to quantify area 
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of activation in the face of a covariance of response amplitude across experimental 

conditions. 

We quantified area of activation using a noise-derived threshold (two standard deviations 

above pre-stimulus noise) and a relative threshold (controlled for both noise and peak 

measurements) and a peak-derived threshold (5 noise standard deviations difference from 

the peak).  In the time dimension, the inferred area of activation increased using both 

noise-derived threshold and the relative threshold (Figure A.6B,C).  The peak-derived 

absolute metric showed a decrease in area (sharpening) as was predicted from our 

simulations (Figure A.6D).   The peak-derived threshold does not have an obvious 

scientific interpretation in this experiment, so we considered the results of only the noise-

derived and relative threshold. We conclude that the temporal increase in area of 

activation was amplitude-independent.   

This was not true in the stimulus strength dimension. With a noise-derived threshold, the 

area appeared to increase with stimulus strength. However, with a relative threshold there 

was no significant correlation between whisker deflection velocity (strength) and area of 

activity. As expected, the peak-derived metric still showed spatial sharpening. The 

contradictory results of these three methods suggested, based on the results of our 

simulations, that VSD images from whisker deflections of strong velocities were simply 

scaled versions of deflections of weak velocities. The apparent increase in area was the 

result of the same physical space being more or less activated. In other words, the 
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observed change in area of activation in the noise-derived threshold was entirely 

amplitude-dependent. 

Interestingly, if only a noise-derived threshold were employed to analyze these two cases, 

we would have concluded that both stimulus strength and time resulted in increased 

spatial spread. However, these two situations are distinctly different; using multiple 

metrics, we can definitively say that these two cases do not share a common mechanism. 

A.2.11 A biased estimator of a point of reference confounds even relative metrics 

Our simulations up until this point suggested that a relative threshold could differentiate 

between an amplitude-independent change in area of activation and an amplitude-

dependent change. There are multiple ways to define a relative metric.  In our previous 

example, we defined a relative threshold using two points of reference, the noise and the 

peak measurements.  

Another common relative metric is the area at half max with the peak pixel used as the 

peak point of reference.  A relative metric defined with respect to the peak pixel is in fact, 

also sensitive to the covariance of amplitude.  To demonstrate this effect, we used the 

same set of images from our original simulation in Figure 3, shown again in Figure A.7A. 

We calculated activated area by the area at half-max metric both in the absence and in the 

presence of noise.    When there is no noise, the result is identical to what was observed 

before (Figure A.7C in blue). There was no amplitude-independent change in area 

between the three images.  However, if the noise was added to the images (as shown in 

Figure A.7B), prior to calculating the relative threshold level, this was no longer true. The 
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black lines in Figure A.7C show 10 separate instances of noise. In each case, the area at 

half-max method underestimates the true area (as determined by the noise-free image). 

However, this underestimation is more dramatic on average in Image 1 than in Image 3.  

Even though the noise added to each of the three images was identical, the effect the 

noise caused on the observed area was not. 

 

Figure A.7 Noise Biases Area at Half-Max Relative Metric    Same images as in 
Figure A.3, without noise (A) and with noise (B).  C) Each image analyzed by choosing 
the peak pixel and then setting a threshold at half the observed peak value. Images 
without noise show no change in area between images. Area of noisy images were 
systematically underestimated, with a larger effect on images with lower initial amplitude 
(image 1). 

 

Noise in the images resulted in a systematic underestimation of the true area of activation 

because the peak pixel is a biased estimator of the true peak value. Choosing one max 

pixel from many possible pixels results in a selection bias for pixels that have 
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experienced a positive noise contribution. We demonstrated this effect using Monte Carlo 

simulations (Figure A.8).  When the estimator of the measurement is systematically high, 

the threshold based off this estimator will be placed higher than intended, resulting in 

fewer pixels counted as active.  This effect is grows as the signal to noise ratio decreases 

(Figure A.8).  

We conclude that a relative metric that uses only the peak pixel as a point of reference is 

biased, and more likely to report that images with smaller amplitudes have proportionally 

smaller area of activation. 

 

Figure A.8 Systematic Bias Created By Selecting the Peak Pixel   A) Noise added to a 
standard 2D Gaussian with a high amplitude and low amplitude B) The error distribution 
associated with the peak pixel (red) is systematically more positive than the noise 
distribution added to the image as a whole (black distribution).  If the minimum pixel 
were chosen instead, this bias would be negative (blue distribution).  C) The expected 
contribution of noise when the original amplitude of the image is low is larger (E2) than 
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when the original image is bigger (E1).  Thus the expected error also depends on the 
experimentally unknown pixel itself. 

 

A.2.12 Demonstration of Shortcomings of the Relative Threshold 

We created a pseudo-experiment in which we exploited the single trial variability of 

response amplitudes of voltage sensitive dye (VSD) imaging to create a situation 

analogous to the set of noise simulations presented above. A plot of the response 

amplitudes for 60 single trials of identical whisker deflections (the same velocity) within 

the same animal preparation is shown in Figure A.9A. The single trial response amplitude 

was variable, but it did not systematically vary across the experiment protocol. High 

amplitude responses occurred at trials early, middle and late in the protocol. This was true 

for all data sets used.  For each dataset, we selected a subset of trials such that one group 

had a higher response amplitude (‘high’, red dots) on average than another group (‘low’, 

green dots) as shown in Figure A.9A (n=7 whiskers, 6 animals). Representative trial-

averaged images from a ‘high’ group and a ‘low’ group are shown on an absolute scale in 

Figure A.9B. The enforced differences in amplitude are shown across animals in Figure 

A.9C. Qualitatively, in the absolute images, the ‘high’ group appears to have a greater 

area of activation than the ‘low’ group. However, we know that these images in fact 

represent responses from identical stimuli collected, interleaved in time.  
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Figure A.9 Pseudo-experiment demonstrates area-confounds due to noise   A) Single 
Trial response amplitude over time (trials) in a single data set. Trials included in the high 
group are denoted with a diamond, the low trials with a plus sign. B) Representative high 
and low images C) The pseudo-experiment required enforcing an amplitude covariance in 
all data sets, plotted here. Lines are individual data sets, the bar graph denotes the 
average. D) An uncorrected, peak-pixel derived relative metric shows a statistically 
significant decrease in area E) A corrected relative metric shows no statistically 
significant difference. F) This observed area differences (y-axis) are highly correlated 
with the enforced changed in amplitude (x axis) suggesting that the change in amplitude 
is sufficient to explain the change in area. 

 

We then quantified the area of activation in these images using both an uncorrected and 

noise-corrected relative threshold. The uncorrected-relative threshold reported a 53% 

reduction in area and was statistically significant (p=0.028; paired t-test, n=7 whiskers 

from 6 animals). The measured area of activation in the ‘high’ trials was 1.06 mm ±0.24 

(mean ± s.e.m.). The ‘low’ trials area of activation was 0.49 mm ±0.15 (mean ± s.e.m.). 
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This difference is larger than the average difference in peak amplitude (33%) we 

enforced in the artificial groups.  

 We then analyzed the area using a relative threshold determined with two points of 

reference (same as in Figure A.6).  We corrected for the use of the biased peak pixel as an 

estimator by subtracting an expected noise contribution from the observed peak prior to 

setting a threshold. Using this corrected metric, the difference between the high and low 

groups was only 13%, and not statistically significant (p=0.35, paired t-test). The means 

are shown as bar graphs and the paired data points as lines in Figure A.9F.   

No experimental variable can explain the statistically significant differences between the 

high and low groups in our pseudo-experiment; they were, to the best of our ability, 

representative of identical experimental conditions. It is possible that the observed 

variability in response amplitude reflected true differences in neural activity. Lower 

response amplitude trials may have a few less neurons firing and therefore decrease the 

area of activation. However, two pieces of evidence suggest that this is not a strong 

conclusion. First, use of the corrected 50% contour eliminated the statistical significance. 

Second, we plotted the change in amplitude from the high to low conditions against the 

observed change in area using the uncorrected area at half-max (Figure A.9E).  There is a 

strong linear relationship, suggesting that the change in response amplitude is able to 

explain a significant portion of the observed area differences. 
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A.4  Discussion 

We have shown that common metrics of spatial activation are confounded by changes in 

amplitude.  Absolute metrics cannot differentiate between changes in area that are caused 

an increase in amplitude and those that are not.  A relative metric must be used to infer 

amplitude independent changes in activated area. However, if a biased estimator such as 

the peak pixel is used to calculate the relative threshold, then even a relative metric is 

confounded by co-variance of amplitude between experimental conditions.   

It is scientifically important to distinguish between amplitude-dependent and amplitude-

independent changes in spatial activation.  For one, distinguishing between amplitude-

dependent and amplitude-independent changes allows insight into the mechanism of an 

effect.  Cortical circuits can easily be activated differently such that we observe a change 

in the response amplitude, for instance with different strength stimuli (Shoykhet et al., 

2000b; Lee and Simons, 2004; Boloori et al., 2010; Wang et al., 2010).  In the rodent 

barrel cortex, it is known (and replicated in this study) that deflecting whiskers with 

greater velocity increases the observed response amplitude (Shoykhet et al., 2000b; Lee 

and Simons, 2004; Boloori et al., 2010; Wang et al., 2010) and this can be experimentally 

modulated by a number of means (Brumberg et al., 1996; Boloori and Stanley, 2006; 

Wang et al., 2010).  Sensory deprivation by removal of whiskers (Glazewski and Fox, 

1996; Fox, 2002) also results in a change of response amplitude that could be a general 

homeostatic response that occurs at any point in the pathway (suppressing all areas 

equally) or may be evidence of actual reorganization of cortical synapses. In order to 

provide evidence that cortical reorganization has occurred beyond a change in response 
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amplitude, one must show that the changes in spatial spread are different from what 

would be expected due to a change in response amplitude – to distinguish between an 

amplitude-dependent and amplitude-independent change in activated area. 

To that point, the decrease in area we observed in low amplitude trials and high 

amplitude trials in our pseudo-experiment showed a change in spatial area comparable in 

both direction of effect and effect size to those observed in seminal barrel cortex 

plasticity studies (Polley et al., 1999a, 2004; Drew and Feldman, 2009). In these studies, 

the implementation of the area at half max relative to the peak pixel was interpreted as 

evidence that the effect was different from what would be expected if there were simply a 

decrease in response amplitude. It is important to reconsider whether these previous 

results are necessarily evidence of reorganization if they are also, given the bias described 

in this study, consistent with a change in response amplitude.   

The analysis in this study has focused primarily on functional imaging data. However, the 

conceptual conclusions are not unique to imaging.  Electrophysiological evidence also 

requires measured changes in response amplitude to infer changes in area of activation, 

and is much more likely to rely on the absolute metrics defined by statistical significance. 

An analogous design might be to measure response amplitude (average firing rate) at 

multiple points in space (one electrode is equivalent to a pixel).  If the observed response 

amplitude changes across all electrodes from one experimental condition to another, then 

an application of an absolute threshold (statistical significance) will appear as if there 

were fewer pixels/electrodes activated.  The failure to measure activation is not evidence 
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of its absence.  We have demonstrated in our pseudo-experiment that is possible for the 

same stimulus, in the same experimental preparation to activate the cortical circuitry with 

different response amplitudes.   We should be cautious with inferences that changes in 

response amplitudes are evidence of cortical reorganization.    

The use of different types of spatial metrics has been discussed previously (Chen-Bee et 

al., 2000).  Although the authors advocated for a different conclusion, the observation 

was the same:  relative metrics show less dramatic changes in spatial activation than 

absolute metrics.  In fact, in this previous consideration of analytical methods, the authors 

showed that representations of whiskers that had undergone classic plasticity paradigms 

did not appear different if quantified with relative thresholds. It is possible to identify 

additional pairs of studies with similar experimental protocols but with opposing 

conclusions consistent with the type of metric used For example, Polley et al., 1999b, 

used a noise-derived metric. Sheth et al, 1998 used a peak-derived metric. This confound 

is wide spread in the topographic map literature. 

In summary, we have presented simulations and experimental examples of the ways 

covariance of amplitude confounds and biases metrics of area of activation. We showed 

that using both absolute and relative metrics, we could differentiate between amplitude-

independent and amplitude-dependent effects on spatial spread. However, systematic 

contributions of noise can dramatically confound even relative metrics if a biased 

estimator is used. Finally, we showed that individual trials from the same animal and 

identical stimuli, collected interleaved in time, vary enough in response amplitude to 
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replicate changes in spatial spread previously interpreted to be evidence of reorganization 

of the barrel cortex topographic map.   Taken together, we propose that changes in 

response amplitude are confounding interpretation of spatial plasticity data. 
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