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SUMMARY 

 

Integrated assessment models are powerful tools for providing insight into the 

interaction between the economy and climate change over a long time horizon. However, 

knowledge of climate parameters and their behavior under extreme circumstances of 

global warming is still an active area of research. In this thesis we incorporated the 

uncertainty in one of the key parameters of climate change, climate sensitivity, into an 

integrated assessment model and showed how this affects the choice of optimal policies 

and actions. We constructed a new, multi-step-ahead approximate dynamic programing 

(ADP) algorithm to study the effects of the stochastic nature of climate parameters. We 

considered the effect of stochastic extreme events in climate change (tipping points) with 

large economic loss. The risk of an extreme event drives tougher GHG reduction actions 

in the near term. On the other hand, the optimal policies in post-tipping point stages are 

similar to or below the deterministic optimal policies. Once the tipping point occurs, the 

ensuing optimal actions tend toward more moderate policies. Previous studies have 

shown the impacts of economic and climate shocks on the optimal abatement policies but 

did not address the correlation among uncertain parameters. With uncertain climate 

sensitivity, the risk of extreme events is linked to the variations in climate sensitivity 

distribution. We developed a novel Bayesian framework to endogenously interrelate the 

two stochastic parameters. The results in this case are clustered around the pre-tipping 

point optimal policies of the deterministic climate sensitivity model. Tougher actions are 

more frequent as there is more uncertainty in likelihood of extreme events in the near 

future. This affects the optimal policies in post-tipping point states as well, as they tend to 
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utilize more conservative actions. As we proceed in time toward the future, the (binary) 

status of the climate will be observed and the prior distribution of the climate sensitivity 

parameter will be updated. The cost and climate tradeoffs of new technologies are key to 

decisions in climate policy. Here we focus on electricity generation industry and contrast 

the extremes in electricity generation choices: making choices on new generation 

facilities based on cost only and in the absence of any climate policy, versus making 

choices based on climate impacts only regardless of the generation costs. Taking the 

expected drop in cost as experience grows into account when selecting the portfolio of 

generation, on a pure cost-minimization basis, renewable technologies displace coal and 

natural gas within two decades even when climate damage is not considered in the choice 

of technologies. This is the natural gas as a bridge fuel scenario, and technology 

advancement to bring down the cost of renewables requires some commitment to 

renewables generation in the near term. Adopting the objective of minimizing climate 

damage, essentially moving immediately to low greenhouse gas generation technologies, 

results in faster cost reduction of new technologies and may result in different 

technologies becoming dominant in global electricity generation. Thus today’s choices 

for new electricity generation by individual countries and utilities have implications not 

only for their direct costs and the global climate, but also for the future costs and 

availability of emerging electricity generation options. 
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CHAPTER 1 

INTRODUCTION 

 

 Our understanding of natural systems, especially those with dynamics, is evolving 

over time. This is in addition to the fact that many of such systems possess inherited 

uncertainty in their behavior. Therefore, we often face at least two types of uncertainty: 

(1) parametric uncertainty which can be resolved over time via more observations and 

active learning, and (2) stochasticity that is an inherent characteristic of the system under 

study. In designing a mathematical model of a natural system, various types of 

uncertainties need to be taken into account [1], [2]. The process of acquiring knowledge   

and information about uncertainties is called “learning”. In general, two types of learning 

are considered in different contexts of engineering modeling: passive and active. While in 

passive learning the decision making agent is simply the recipient of information and his 

decisions will not change the environment, in active learning the learner agent has the 

ability to act, to gather data, and to influence the world [3]. 

 One of the natural systems that has received significant attention in recent years is 

the global climate system. Climate change dynamics combined with its socio-economic 

aspects present a complex challenge for policy making under uncertainty from 

environment and economy [4]. Integrated assessment models (IAMs) provide insight into 

the interaction between the economy and the climate. In general, these models are trying 

either to evaluate a specific policy and its long term effects on greenhouse gas (GHG) 

emissions and economic growth or to find the best policy among several options, that will 

provide the most social benefit (welfare maximization models) or the least cost of 

achieving particular goals (cost minimizing models). Stanton et al. have studied and 

classified over thirty IAMs in four key areas [5], [6]: 

 Choice of model structure and the type of results produced 
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 Uncertainty in climate outcomes and the projection of future damages 

 Equity across time and space 

 Abatement costs and the endogeneity of technological change 

Some IAMs are designed to solve the optimal path problem and give the best climate 

policy over a long but finite time horizon. However, there is uncertainty around 

estimation of some key parameters in any climate model, which makes the process of 

finding optimal policies stochastic.  

Dynamic Integrated Model of Climate and Economy (DICE) 

 In this study we use the Dynamic Integrated Model of Climate and Economy 

(DICE 2007) as a reference framework for studying the impacts of uncertainty in some 

climate parameters [7]. It follows the standard Ramsey-Cass-Koopmans model structure 

to include GHG dynamics [8]. It models the world in a fairly transparent way by 

integrating economic inputs (capital, labor), climate change associated costs (abatement 

cost and damage costs), and policy options (carbon tax rate, saving rate) into a general 

macroeconomic model. It indicates the economic impact from global warming as a 

percentage of annual gross domestic product (GDP). It also assumes this percentage to be 

an exponential function of the global mean temperature. Due to its simple structure and 

interesting results, DICE 2007 has been widely considered to be a standard framework 

for modeling the climate economy. The model consists of two main modules: (1) the 

Standard Economic Growth Module, and (2) the Climate Change Module. The two main 

modules are developed separately and linked through the transient module, which 

includes the functions for climate damage and abatement cost. Appendix A provides a 

complete list of equations used in the original DICE 2007 model and shows the 

relationship between different modules.  

 At each time step  , an abatement action  ( ) defines what percentage of GHG 

emissions are being removed from the atmosphere. Taking any nonzero action is 
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nevertheless costly and will affect the total economic output (i.e. GDP) for the next 

decision epoch    . On the other hand, doing nothing (taking the action zero) will let 

the GHG emissions rise and consequently increase the global atmospheric temperature. In 

the DICE 2007 model an increase in global atmospheric temperature is translated to a 

monetary loss through a damage function. The objective is to maximize social welfare 

over time, which is a function of total economic output in each time step. Therefore, the 

DICE 2007 model seeks an optimal policy that balances the total economic damage due 

to climate change and the costs of taking abatement measures.  

 As many researchers have pointed out, there are several assumptions in the model 

which may restrict its application and undermine its ability to prescribe the optimal 

climate policy in the long run. Therefore, there are a growing number of studies on how 

to modify different modules of the DICE model. We review these modifications in three 

categories: the climate module, the economic module, and the modeling assumptions.  
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Modification of the Economic Module 

 Some studies have proposed modifications of the economic module in DICE. 

Introducing endogenous technological change into the DICE model has been the focus of 

several studies. Popp developed a model called ENTICE, which is a version of DICE 

with endogenous technological change [9]. He reported that induced innovation improves 

the objective function under optimal policy. Islam et al. modeled endogenous technical 

change in DICE to study the effect on abatement cost. Their ADICE model showed the 

need for policy intervention even with endogenous technical progress [10]. Kosugi et al. 

merged the DICE model with a life-cycle impact assessment (LCIA) model to find the 

share of global warming external costs in the 21st century [11]. De Burin et al. developed 

AD-DICE by introducing an adaptation module to the original DICE model. They 

concluded that adaptation reduces the potential costs of climate change in earlier periods 

while mitigation plays a bigger role in later periods [12]. Cai et al. have suggested a 

different form of the utility function in place of the standard constant relative risk 

aversion (CRRA) in the DICE model [13]. 

Modification of the Climate Module 

 The DICE model, like many other IAMs, uses best estimates for economic and 

climate parameters. A study showed that social welfare parameters are more important 

than some climate parameters in assessing sustainable development [14]. However, one 

of the key parameters in the DICE model, which has received a great deal of attention in 

the literature, is climate sensitivity (the equilibrium increase in mean global surface 

temperature due to doubling of atmospheric CO2 compared to the pre-industrial era). 

Some economists and climate scientists have argued that the best estimates fail to capture 

the small probability of climate catastrophes that could have a high irreversible impact on 

the economy [15]. However, some other studies showed that imposing an upper bound on 

future temperature change is justified and will not affect the optimal policy [16]. There 
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are several fat-tailed distribution functions introduced in the literature for the climate 

sensitivity parameter. Newbold and Daigneault used a Bayesian framework to summarize 

a large number of climate models to find the posterior distribution for climate sensitivity. 

They suggested that the posterior distribution function of the climate sensitivity 

parameter and the shape of the damage function play a crucial role in finding the best 

control policies [17]. Roe and Baker derived a simple analytical form for the distribution 

of the climate sensitivity parameter, which fits many published distribution estimates 

very well [18].  Other well-known fat-tailed distributions such as lognormal [19] and 

Cauchy [16] have also been considered in the literature. In studies of the impact of a fat-

tailed distribution of climate sensitivity on the results of the DICE model, some 

researchers have reported that the uncertainty in the climate sensitivity parameter alone 

does not drastically change the optimal policy [19]. Other studies have found that under a 

given climate policy, using a fat-tailed distribution for the uncertainty in the damage 

function and climate sensitivity will result in substantially larger economic losses 

compared to the deterministic case [20]. 

 However, most of the studies on applications of fat-tailed distribution in the DICE 

model are based on Monte Carlo analysis with sampling from a known distribution, 

rather than solving the stochastic dynamic problem and finding the optimal control. The 

result from simulation provides a range of possible outcomes of the model but fails to 

instruct on best policies to be implemented once a new observation of an unknown 

parameter is realized. One approach to solve the stochastic problem is to use different 

damage functions for different levels of the climate sensitivity parameter. In this case, at 

any given time in future, the climate status can switch from the current status to a 

catastrophic one with a low probability that positively depends on the surface temperature 

at that time period [13], [21]. Some studies, including the approach presented in this 

study, are based on approximate dynamic programming using value function 

approximation. However, the application of these studies have been limited either by 
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their choice of the time scale [22] or by their approximation complexity [23]. We 

introduce a novel but simple approximation technique based on the post-decision state 

framework presented in [24], [25]. 

Modeling Assumptions 

 Beside modifications to different modules of the DICE model, there are some 

critics who believe that it suffers from inherent deficiencies in its assumptions. Some 

researchers have argued that the damage function in DICE unrealistically understates the 

loss due to high atmospheric temperature increases and also have argued that that the 

mitigation is undervalued in DICE and therefore the combination of soft damage and 

cheap mitigation is generating a moderate optimal path, famous as the “policy ramp” [8]. 

Other researchers have questioned the use of large time steps in the model and suggested 

the use of continuous time instead of the original decadal steps [26]. 
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CHAPTER 2 

UNCERTAINTY IN INTEGRATED ASSESSMENT MODELING 

 

 As discussed in the previous chapter, integrated assessment models (IAMs) 

provide insight into the interaction between the economy and the climate [27]. IAM 

analysis should take into account the uncertainties in the climate system, as well as in the 

future of the economy. The nature of some of the uncertainties in the climate system 

suggests that consideration of uncertainties could substantially affect optimal climate 

policies [28]. Climate model uncertainties have been included in a number of integrated 

assessment models [29]. However, most previous attempts to include climate sensitivity 

uncertainty have used Monte Carlo analysis [30]; these studies provide a range of 

possible outcomes but fail to instruct on the best policies to be implemented once a new 

observation of an unknown parameter is realized [19], [20]. There have also been a few 

studies that have taken a dynamic programming approach to fully integrate uncertainties 

[22], [23]. In all of these models the uncertain parameters are assumed exogenous and 

independent. However, as in the case of climate and economic systems, uncertain 

parameters are often correlated and therefore demonstrate an inherent dependency. Here 

we develop an elegant approximation technique that allows for full integration of 

uncertainty within integrated assessment models in addition to a unique capability to 

update correlated uncertainties. 

 In the next section we introduce the baseline optimization model, its state 

variables, and the decision variable. Uncertainty in climate parameters of any integrated 

assessment model will propagate through the modeling time horizon, affecting both 

economic and climate modules and therefore, have an impact on the objective function. 
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Baseline Model 

 We develop and illustrate this technique through application to a well-known 

integrated assessment model, the Dynamic Integrated Model of Climate and Economy 

(DICE 2007) [7]. The model consists of two main modules: (1) the Standard Economic 

Growth Module, and (2) the Climate Change Module. The two main modules are 

separate and are linked through the transient module, which includes the functions for 

climate damage and abatement cost [31]. In this model, the state of the world at each time 

step  , denoted by    can be captured by six continuous variables:     is atmospheric 

temperature (degrees Celsius above preindustrial),     is lower ocean temperature 

(degrees Celsius above preindustrial),     is atmospheric concentration of carbon 

(Gigatons of Carbon, GTC),     is concentration in biosphere and upper oceans (GTC), 

    is concentration in deep oceans (GTC), and   is capital (trillion USD). 

 At each time step, an abatement action (control rate)    is taken which indicates 

the percentage reduction of GHG emissions in the next 10 years, compared to the 

uncontrolled level from the baseline economic emissions without consideration of climate 

impacts.  The atmospheric temperature in the next state is defined by the temperature in 

the current state as well as the level of abatement taken in the current state. The 

atmospheric temperature, on the other hand, determines the economic impacts of climate 

change through an explicit damage function. The goal of the optimization model is to 

find the best level of abatement action    to maximize social welfare, taking into account 

both the costs and benefits of abatement. The utility    at each time step is defined as a 

constant-elasticity-of-substitution function of the flow of consumption per capita   and 

the level of population    in each state: 

   
  

   

   
    (1) 

where   denotes the elasticity of marginal utility of consumption. The consumption per 

capita    is the total production net of savings, climate mitigation, and climate damage. A 
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social planner decides on the level of carbon reduction at each stage and their decision 

will have both economic and climate impacts on future stages consequently. The 

objective function is the discounted accumulation of the social utility over a finite time 

horizon. 

   
      

∑    

 

   

 (2) 

where   is the social time preference discount factor and   indicates the terminal time 

horizon. 

Introducing Uncertainty in the Integrated Assessment Modeling Framework 

Uncertainty in Climate Sensitivity 

 One of the key parameters in integrated assessment modeling which has received 

a great deal of attention in the literature is climate sensitivity, the equilibrium increase in 

mean global surface temperature due to doubling of atmospheric     compared to the 

pre-industrial era [32]–[34]. Climate sensitivity (  ) has been looked upon as the main 

source of uncertainty in many integrated assessment studies.  

 In its fifth assessment report, the Intergovernmental Panel on Climate Change has 

specified the range of the estimated values for climate sensitivity as the following [35]:  

“Estimates of the Equilibrium Climate Sensitivity (ECS) based on multiple and partly 

independent lines of evidence from observed climate change indicate that there is high 

confidence that ECS is extremely unlikely to be less than    and medium confidence that 

the ECS is likely to be between      and     and very unlikely greater than   .”  

  In IPCC terminology “likely” observations have a probability of more than 66\%, 

“very unlikely” events are those with a probability less than 10%, and “extremely 

unlikely” have a probability less than 5%. This has led many researchers to assume a so-

called fat-tailed probability distribution for climate sensitivity [16]–[20]. By definition, a 
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fat-tailed distribution is one whose upper tail declines to zero more slowly than 

exponentially [36]. 

 The uncertainty in climate sensitivity is due to the lack of understanding of the 

physical processes, complexity of the relationships between the components of the 

climate system, and the chaotic nature of the system [18]. We use a truncated lognormal 

distribution for capturing uncertainty in the model which assigns zero probability for the 

values of climate sensitivity larger than     or less than   . We assume that knowledge 

of climate sensitivity is represented by a probabilistic lognormal distribution with mean 

and standard deviation equal to 1.1 and 0.5 respectively. The confidence levels for 

different regions are shown and compared with IPCC recommended values in Figure 2. 

 

Figure 2: Comparison of truncated lognormal distribution and IPCC characterization [35]. 

 

 Using climate sensitivity as an uncertain parameter and considering other 

recursive relationships in the model strongly supports the case for viewing the DICE 

2007 model as a Markov Decision Process (MDP) as shown in . 
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Figure 3: Markov Decision Process for DICE model with uncertain climate sensitivity. 

 

Uncertainty in Extreme Events 

 Many researchers have discussed the possibility of irreversible outcomes from 

abrupt climate events in the near future; for a comprehensive review see [37]. The term 

tipping point has been defined as a state of the climate with strong feedback which 

triggers a sequence of irreversible catastrophic events, such as thermohaline circulation 

interruption, massive methane releases, or very rapid sea-level rise. Weitzman argues that 

the economic consequences of fat-tailed structural uncertainty in climate sensitivity 
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coupled with uncertain damages from high temperatures dominate the effects of 

discounting in climate change policy analysis [15]. In other words, such uncertainties call 

for more aggressive contingency plans for bad outcomes [38]. Since the nature of a 

tipping point is uncertain, we can only speculate about the probability of a tipping point 

happening in future. There is, however, agreement among climate scientists that the 

probability of having a tipping point is related to the mean global temperature [39]. The 

irreversibility of catastrophic outcomes from a tipping point indicates that the economic 

damage is asymmetric before and after a tipping point occurs. 

 The dynamic structure of the DICE 2007 model and interdependencies between 

its variables make it suitable for applying the Markov Decision Process (MDP) 

framework. An infinite horizon version of such model has been studied in the literature 

where the uncertainty is represented by a controlled jump process between two climate 

modes with different switching probabilities [21]. This model is shown in Figure 4 where 

   ( ) and    ( ) are transition probabilities between mode 0 (current situation) and 

mode 1 (climate threshold event), and     and      are non-negative parameters. Modes 

in this model are influenced by temperature   and therefore the underlying assumption 

for this model is that global mean temperature increase will accelerate the transition from 

the current (normal) situation to a threshold event, i.e. Climate Extreme [40].  

 
Figure 4: A two state jump process [21] 

 A more recent work used a Markov process with an absorbing state to represent 

the irreversibility of tipping point events [13]. We apply a similar idea for our finite 

horizon model. Climate change damage is explicitly modeled in DICE using a quadratic 

function of atmospheric temperature as a proxy for all climate related impacts: 
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  (3) 

Here,    and    are constant parameters and   is the consumable portion of economic 

output after observing the temperature. As temperature     increases, it will cause more 

damage to the economy and   falls subsequently. To model the outcome of tipping points 

we use the following damage function with a stochastic factor as represented by Cai et al. 

[13]: 

  
   

             
  (4) 

where   is a discrete Markov chain with non-decreasing values over time. For our 

analysis we take the benchmark case from Cai et al. and implant a new uncertain 

parameter to our stochastic model. In the benchmark case the two stage probability 

transition matrix for   is given by (
    

  
) where   is the probability of transforming 

from non-catastrophic to a catastrophic status and depends on the atmospheric 

temperature through this equation: 

           {          } (5) 

where   is the hazard rate parameter with the initial value          We estimate this as 

an approximate fit to results of expert surveys [39], [41], [42]. The damage level   

      has been used for the DICE model with annual time steps. To modify for our 

model which uses a decadal time step we note that the probability of not having a tipping 

point in a decade is equal to the probability of not having a tipping point in a sequence of 

ten annual time steps:            (         )  . If we denote by    the decadal 

hazard rate parameter, we have       . Finding the appropriate damage level for a 

decadal time step is more challenging. However, following the same logic we can 

approximate   to be about twenty-five percent. Once the extreme event happens even 

with a moderate annual        , it stays in the new state for the rest of the modeling 

horizon and therefore the decadal damage would be the aggregate annual damage. 
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Stochastic Model 

 The first step toward incorporating uncertainty into the model is to try to model 

the transition from current state of the economy and climate to the next state using a 

Markov Decision Process (MDP). Fortunately, the finite horizon DICE 2007 can easily 

be modeled as a deterministic dynamic programming problem where one can find the 

optimal dynamic programming “policy” in each stage     by stepping backward through 

the time and finding the best action    by solving the Bellman equation in the 

deterministic case: 

  (  )     
  

{  (     )       (    |     )} (6) 

where   is the social time preference discount factor and      shows the value of future 

state     . By solving Equation (6) recursively, we can in theory obtain the optimal 

climate policy for any given time horizon. Therefore, we can define a dynamic 

programming policy as a function, or more precisely a set of tunable parameters of a 

function, which maps the information in each state of the model to an abatement decision. 

In other words, the MDP policy   can be defined as: 

  {  |    (     )} (7) 

where        is a mapping from the state space   to the action space   and    is a 

tunable parameter in  , the mapping function. Given a state    and dynamic 

programming policy   , the decision is determined by  (     ). 

 The solution to this dynamic programming problem cannot be found exactly, due 

to the continuity of the state space. The DICE 2007 model was originally solved as a 

nonlinear optimization problem with 60 unknown actions with a ten-year time interval. 

The approximation problem becomes harder once we introduce uncertainty to the model. 

There have been several attempts to address the issue of uncertainty in DICE 2007 and 

the closest to our work is the DSICE model where two stochastic shocks (economic and 
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climate) were introduced to the continuous time version of the original DICE 2007 model 

[23]. To have a meaningful comparison with the DICE 2007 model, we keep the original 

60 time steps of the model and limit our study to climate shock only [7]. In the next 

chapter we introduce an approximation technique that can be applied to this problem. 

 As mentioned earlier, DICE 2007 has a continuous state space with six 

dimensions. Under uncertainty from the climate parameters, the general Bellman 

equation of Equation (6) can be rewritten as: 

  (  )     
  

{  (     )    (    (    |     ))} (8) 

where  ( ) denotes the expectation that can be simplified if we use a discrete estimate of 

our continuous probability function: 

 (    (    |     ))  ∑  (  |     )    ( 
 )

    

 (9) 

where  ( ) is the discrete probability function. Using approximate dynamic programming 

(ADP), we estimate the values of     ( 
 ) by some parametric function  ̅   ( 

 ). We can 

broaden the use of the value function approximation by generating random paths and 

estimating the expected value of the next state as described thoroughly in [25]. In the core 

of this method lies the concept of a post-decision state variable   
  that is a transient state 

between the current state    and the next state     . This state is generated by 

implementing the chosen action    on the current state    but before realization of the 

random parameter    . Figure shows the concept of the post-decision state in relation to 

other modeling variables.  
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Figure 5: Calculating the optimal value and updating the post-decision state value function: the agent in 

state    takes action    without observing the realization of the random process       and ends up in the 

post-decision state   
 . With the immediate reward     

 , the agent then takes the predetermined null action 

0 to end up in state     
  and from there taking the same null action again, observes the immediate reward 

    
 , which through Equation (18) provides  ̅ (  

 ), the approximate value of being in the post decision 

state   
 . The value of being in state    is shown as  ̂ (  

 ) and can be calculated from the Equation (16) 

using the approximation  ̅ (  
 ). This value is used to update the coefficients of  ̅   (    

 ), the 

approximate value of the post-decision state at time $t-1$, for the next iteration through Equation (19). 

 

 Estimating the value function in the post-decision state   
 
 provides a significant 

computational advantage over the strategy adopted in Equation (9) by eliminating the 

need to calculate the expected value of the next state     . The new equation for 

calculating the approximate value of state    can be expressed as: 

 ̂ (  
 )     

  

{  (     )    ̅ (  
 )} (10) 

where  ̅ (  
 ) is the optimal value of state    based on the value approximation of the 

post-decision state   
 
. The general ADP algorithm for value iteration is presented in the 

next chapter. 

 There are several well-known methods for approximating the value function; for 

an exhaustive survey see [43]. One widely used method uses a parametric function (basis 

function) of the state variables to construct the approximate value function. Here we 

introduce an elegant method to approximate the value function. We draw on the idea 

behind the deterministic rolling horizon or receding heuristics, to look a finite number of 
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steps into the future and solve a smaller problem than the original one [44]. We use a 

linear combination of utility functions from two steps ahead under the deterministic 

assumption to approximate the value of the current state and solve the stochastic problem 

iteratively. The detailed discussion of this method is presented in the next chapter. Here 

we discuss its application in the context of our stochastic problem. In each state    and 

under a candidate action    and the predetermined level of climate sensitivity, we first 

construct the post-decision state   
 
. To approximate the value function of this transient 

state we apply a null action     to obtain     
 

, the next-post-decision state. If we take 

a one-step-ahead approximation we can use the immediate reward from taking the null 

action     at post-decision state   
 
 and find the approximate value function as 

 ̅ (  
 )      (  

   ). A more elaborate method is to use a tunable coefficient    for the 

approximation and to update it after each iteration: 

 ̅ (  
 )        (  

   ) (11) 

 However, taking only one step forward in this strategy might not give an accurate 

approximation for the future states. Looking forward into the future and taking into 

account the utilities of the two next states ahead will capture the tradeoff between a 

myopic policy to maximize the value of the current state only and a lookahead policy 

which maximizes the value of current and future states as a single function. 

 ̅ (  
 )        (    

   ) (12) 

 This technique provides a fast and robust solution for both deterministic and 

stochastic cases. The rate of learning (convergence) in this method depends on the 

updating scheme. We can employ a simple stochastic gradient algorithm [45] to update 

this coefficient similar to the one shown in Equation (13). 

  
    

        ( ̅
 
  ̂

 
) (13) 
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Application to stochastic modeling of climate tipping points 

 We incorporate the tipping point event as a new stochastic parameter in the 

approximate dynamic programming model, using the tipping point formulation and the 

two-step-ahead algorithm developed in the previous section. To explore the implications 

of a stochastic tipping point, in this section we assume a deterministic value for climate 

sensitivity (     ). Figure 6 shows the resulting tipping point probability over time. 

The histogram shows the distribution of first occurrence of tipping points after 1000 runs 

of simulation. 

 

Figure 6: The experimental results from 1000 runs of simulation demonstrate that the number of runs with 

the first extreme event increases as temperature increases and falls after a peak around year 2125. 

 

 As shown in the figure, the earlier states have the most likelihood of having a 

tipping point while in the later states this possibility decreases dramatically. There are 

two reasons for this fast convergence; first, the tipping point uncertainty, as defined by its 

transition matrix, has a binary characteristic. It switches from pre-tipping point state to 

post-tipping point state and therefore there are limited fluctuations around the optimal 
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policy (the coefficient of the basis function). Second,    is an absorbing Markov chain: as 

the iterations grow larger, more incidents of hitting the absorbing state (tipping event) 

happen. Every time the simulation hits the absorbing state it continues to remain in the 

state of post-tipping for the rest of the modeling time horizon. 

 Figure 7 and Figure 8 show the integrated assessment model results with a tipping 

point at      (100 years). Compared to the deterministic model with no tipping points, 

the risk of tipping point events stimulates a higher reduction in carbon emission. 

However, after a tipping point happens, the optimal reduction drops dramatically even 

below the level of optimal reduction rate in the deterministic model. The reason is that 

once the tipping point hits the climate system, the global economy shrinks with an 

unprecedented scale (twenty five percent of global economic output) and stays in that 

state afterward; also the pre-tipping point reductions took into account the risk of both 

direct climate change and the tipping point.  

 

Figure 7: Taking steep reduction in GHG emissions will induce a small probability of having extreme 

events and controls the global mean temperature increase below    (lower graph). The optimal abatement 

in the deterministic case keeps the temperature around      (middle line). In the case that the extreme 

event happens at      (upper graph), the temperature first follows the “no-tipping” path (lower graph) 

and after the extreme event happens follows a trajectory similar to the one in optimal deterministic case 

with a shift due to lower post-extreme abatement actions. 
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 Therefore the amount of emissions and the consequent abatement level drops 

down, lower than the deterministic case. In a model with more than one tipping point, the 

result could be different; for example if the occurrence of one tipping point increases the 

probability of another tipping point, the optimal reductions might continue to increase. 

Further detailed research on extended tipping point models could explore this issue. As 

shown in Figure 8, in the case of a tipping point event at time step     , the action falls 

from a pre-tipping point level of 47% in the previous time epoch to 37% in the post-

tipping point epoch and continues to stay below the level in the deterministic model until 

the emission reduction reaches 100%. The impact of different abatement strategies on the 

global mean temperature is demonstrated in Figure 7 where pre-tipping strategies with 

higher abatement rates result in lower increase in atmosphere temperature, even lower 

than the optimal level under deterministic conditions. However, the temperature rises 

more after the occurrence of the tipping point event due to the sharp decline in abatement. 

 

Figure 8: To avoid the risk of tipping point events, higher abatement rate is induced (upper graph) which is 

significantly above the optimal level of abatement in the deterministic case (middle line). In the case where 

the extreme event happens at $t=10$ (lower graph), the abatement falls below the level of the deterministic 

case and follows a trajectory parallel to it. 
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 Figure 9 shows the optimal greenhouse gas reduction results for the first 30 

decades. The shaded area demonstrates the possible pathways from pre-tipping point 

optimal policies to post-tipping point optimal policies (lower graph). In this 1000-run 

simulation, note that the first tipping point events occur about 30 years into the 

simulation (   ).  

 

Figure 9: Optimal policies in pre and post tipping point states. The optimal actions form a trajectory (upper 

envelope) above the level of abatement in the deterministic case (middle graph). If a tipping point happens 

the abatement rate falls to a level (lower envelope) below the deterministic case. 
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CHAPTER 3 

A MULTISTEP LOOKAHEAD ALGORITHM FOR APPROXIMATE 

DYNAMIC PROGRAMING 

 

 In this chapter we study the problem of decision making under uncertainty in 

finite horizon and with continuous state space. We develop a method for value function 

approximation in approximate dynamic programming that combines offline calculation 

with online rolling horizon methods. This method consists of using an H-step-ahead 

approximation for estimating the value function and finding the optimal action online, 

and a value iteration algorithm to update the parameters of the approximated value 

function offline. Conditions on the step size that guarantee the convergence of the value 

function approximation are derived. We apply the approach to an integrated model of 

climate and the world economy. We analyze the impact of discount factor on the choice 

of approximation and provide insight into the robustness of approximation.  

Introduction 

 Reinforcement learning (RL) is one of the main branches of artificial intelligence, 

concerned with learning the optimal decision in a dynamic environment [46]. This can be 

done by finding the optimal expected value of each state and recursively finding the best 

action that maximizes (minimizes) the sum of the immediate reward (cost) of taking that 

action and the expected value of the future states. In the stochastic domain the value 

function of a given state is the expected value of that state under a certain policy (i.e. the 

cost-to-go function, which evaluates the expected future cost to be incurred, as a function 

of the current state). When facing a large state and action space, using traditional 

dynamic programming techniques is impractical and inefficient [47]. In this case, the 

most common approach is to estimate the value function with a direct approximator [48]. 
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In offline methods, the policy (or parameters of the value function) is pre-calculated and 

stored to find the optimal action at any specific state [49]. On the other hand, in online 

methods the optimal action is calculated at the decision time [50]. Value iteration and 

policy iteration are two of the most common offline methods for finding optimal value 

function or optimal policy in finite state and action problems while rolling horizon is 

commonly used as an online strategy [51]. By optimal policy, here we mean a mapping 

from the state space to the action space [52]. Therefore a policy in approximate dynamic 

programing setting can be looked upon as the set of tunable parameters of the value 

function approximation.  

 The problem of finding the optimal policy or value function is more challenging 

in the continuous state and action spaces [53]. In this case, approximations should be 

made not only for calculating the value function but also for stage-state representations in 

the case of finite models. In this paper we focus our attention to finite-horizon discrete-

time problems. We combine an online rolling horizon technique and an offline value 

iteration method and develop a new algorithm for approximating the value function in 

finite horizon problems. This method consists of using an  -step-ahead approximation 

for estimating the value function and finding the optimal action online and a value 

iteration algorithm to update the parameters of the approximated value function offline.  

Approximate Dynamic Programing Framework 

 Consider a finite-horizon dynamic programing problem with continuous state 

space  , continuous action space  , and discount factor   (   ). To study the behavior 

and properties of this problem a Markov decision process framework can be developed. 

Given the state of the system    at time  , taking an action    under realization of the 

uncertain parameter    will transform the system to a new state     , and an immediate 

reward    will be utilized. The objective is to maximize the cumulative discounted 

rewards over the modeling horizon   as shown in Equation (14): 
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where   represents the policy for choosing optimal actions. The value of each state is 

calculated using the Bellman equation: 

 (  )     
  

 (  (     )      
{    (    )|     }) (15) 

 Deploying the Value Iteration (VI) algorithm, the value of each state  (  ) is 

calculated recursively as the maximum sum of the immediate reward and the expectation 

of the discounted optimal value of the next state as shown in Equation (16). In the 

idealized case of countable state space with finite actions, the value of each state 

converges to its optimal value (Banach Fixed-Point Theorem) [54]. Equation (16) shows 

the so-called Bellman operator for calculating the optimal value at the  th iteration.  

  (  )     
  

 (  (     )      
{    

   (    )|     }) (16) 

where   (  ) represents the optimal value of the state    after   iterations. The problem 

occurs when the state space is continuous or is large with multiple dimensions as is the 

case in climate change modeling. Discretizing the space state and probability 

distributions of uncertain parameters is computationally expensive if not impossible. 

Therefore, we adopt a class of techniques known as approximate (adaptive) dynamic 

programming (ADP) to deal with problems with continuous (or large) state, action, and 

probability distributions [24]. The main idea here is to move forward in time and 

calculate the value of the current state by estimating the value of future states. 

 ̂ (  )     
  

 (  (     )    ̅   (    )) (17) 

where  ̂ (  ) is the optimal value of state    based on the value approximation of the next 

state     . The general ADP algorithm for value iteration is presented in Table 1. After 

initialization it has three main steps: generating random paths, stepping forward in time 

and looping over the modeling time horizon by approximating the value function, and 

finally updating the approximation parameters. The main issue of the value iteration 
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algorithm is its updating scheme. On the one hand we would like to have a fast 

converging algorithm (exploitation) to save time and computational resources, and on the 

other hand a pure exploiting strategy may not be stable or optimal. A residual approach is 

one of the most common approaches developed to estimate the value of  ̅    which can 

be applied to either Value or Policy iteration algorithms [43]. This technique is based on 

calculating the difference between the true value of the state  ̂ (  ) and its estimation 

 ̅ (  ) at each iteration and trying to minimize this difference (temporal difference or TD 

[55]) by improving the optimal policy. Since  ̅ (  ) is the estimate of the true value of 

the state, TD is an approximation of the Bellman error. If the estimated value  ̅ (  ) is an 

explicit parametric function with parameter   , we can use a direct gradient descent 

algorithm to update its value in each iteration [56]. Let   be a functional representation of 

the TD, for example 

 ( ̅   ̂ )   
 

 
( ̅ (  )   ̂ (  ))

 

 (18) 

We can update parameter   of the estimated value function  ̅  after   iterations using a 

stepsize    

  
       

       ( ̅   ̂ )    
    ( ̅ 

    ̂ 
   )

  ̅ 
 

   
  (19) 

 There are two challenges associated with this technique. First, we need to find a 

good approximation of the value function  ̅ 
 . Second, the stepsize    should be defined 

so to provide a balance between exploration and exploitation in the state space. If    is 

chosen close to zero ( ̅ 
     ̅ 

 ), no learning is happening and the algorithm will return 

the current policy as the optimal one. We address these two challenges in the next two 

sections, respectively.  
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Table 1: ADP Value Iteration Algorithm 

Step 0: Initialize parameters for value function approximation 

Step 1: Generate sample paths from the distribution function of the stochastic parameter  

Step 2: Stepping forward through time, for each time epoch   calculate 

  ̂ 
 (  )     

  

 (  (     )    ̅   
   (    )) 

  
 (  )        

  

 (  (     )    ̅   
   (    )) 

Step 3: Update the value function approximation parameters 

  ̅ 
 (  )   ̅   

   (  )        ( ̅   
   (  )   ̂ 

 (  )) 

Step 4: Repeat Step 1 through Step 3 for   (large number of runs) times 

 -step-ahead Value Function Approximation 

 Rolling horizon algorithms are powerful techniques for approximating optimal 

policies in deterministic problems with low dimensional state and action space. The idea 

is that a greedy agent solves a dynamic programming problem by maximizing the sum of 

the immediate reward and the estimated value of the next state   (     )    ̅   (    ), 

where  ̅( ) is an estimation function [50]. Such a greedy algorithm can be thought of as a 

one-step Lookahead local search technique. A more extensive technique will perform a 

search of depth   and will return the optimal policies for   steps ahead [44]. As a result, 

instead of solving the whole optimization problem which spans a large time interval (or 

infinity), from starting at     to the terminal period  , we can solve a smaller problem 

for   time periods (   ) starting from     and then iteratively stepping forward in 

time, and solving another optimization problem for the next   time periods (from      

to       ). The general form of the rolling horizon (receding) procedure at any time 

epoch   is presented below  

 ̂ (  )     
            

 ∑         (       )

     

    

    ̅   (    ) (20) 

where  ̂ (  ) is the value of being in state    as before. We can limit the domain of search 

for the optimal policies through what are known as constrained local search (CLS) 
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algorithms [50]. For instance, we may consider only a subset of all feasible policies with 

certain structure such as increasing or decreasing actions or, it may be sufficient to 

sample only a small set of neighboring states in each time step and calculate the optimal 

policy using this small set. Although this technique reduces the complexity of the original 

problems especially in models with a long time horizon, the value of terminal states 

( ̅   ̅         ̅ ) in each iteration of the algorithm still need to be estimated using value 

function approximation techniques. One way to overcome this problem is by assuming a 

null value for the terminal states and calculating the average value of intermediate states 

through simulation. This technique has been applied in a sparse sampling algorithm for 

finding near-optimal solutions for stochastic optimization problems [57]. In this method 

for each available action, a set of future states for  -step ahead are generated using   

random drawings from the (uniform) transition probability distribution. At each time 

step, the optimal value is found by taking the maximum value of the immediate reward 

plus the discounted average value of the next state 

 ̂ (  )     
  

 (  (     )   
 

 
∑  ̂   ( 

 
   )

  
   

)  (21) 

 Although the size of each  -step mini-optimization problem is shown to be 

independent of the size of the original problem [57], there are some shortcomings to this 

method. First, the computational complexity grows exponentially with  , the depth of 

lookahead algorithm. In fact, the running time for finding the best action at any given 

state is  (( | |) ), where | | is the size of the action space. Second, uniform sampling 

might not be suitable for all models. In the case of an integrated assessment model for 

climate change, for example, the uncertainty comes from a parameter with a heavy-tailed 

distribution [58]. Averaging the random samples from a heavy-tailed distribution has 

been shown to be misleading in certain applications [15].  

 As an alternative we can adopt a lookahead technique to approximate the value 

function and use this approximation in a greedy search algorithm. There are several well-
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known methods for approximating the value function; for an exhaustive survey see [43]. 

One widely used method uses a parametric function (basis function) of the state variables 

to construct the approximate value function [59]. However by using this method one 

faces a very fast growth of the number of basis functions in the approximation scheme 

[19]. Here we introduce a novel way of combining both offline and online techniques. 

Online methods such as conventional rolling horizon (as discussed above) are widely 

used in countable state-action spaces [60]. However, when facing continuous state-action 

spaces, we have to use different approximation techniques to estimate the value of a 

particular state. The on-line methods lack the updating capabilities of off-line techniques, 

and therefore fall short of closing the gap between the true and estimated values of a 

particular state [61]. To address this problem, we combine these two methods in a 

framework that we call “ -step-ahead value iteration”. Another advantage of this method 

over conventional methods is that since it is based on the functions in the model it does 

not introduce new functional forms to the model. The idea behind the deterministic 

rolling horizon or receding heuristics is to look a finite number of steps into the future 

and solve a smaller problem than the original one [44]. In this case, the approximated 

value function is obtained by moving forward in time with depth   and finding the value 

of the next state by adopting a subset of predefined actions. The approximation of the 

value function will be the linear combination of  -step discounted reward similar to the 

basis function extraction [62] used in value function approximation: 

 ̅   (       )   (           |        )  ∑       ((   |     )    )

   

      

  (22) 

where  ( ) is the general approximation function,     is the linear coefficient of the value 

function approximation and     is from a subset of the available actions. Note that the 

approximation of the value  ̅    depends on the action    and therefore, we can define 

and approximate the   function as in the              technique [63]: 
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  (     )    (     )   ̅   (       ) (23) 

 ̂ (  )     
  

 (  (     )) (24) 

 However unlike our case,              is mainly applied to finite state space and 

uses lookup tables for a limited number of state-action pairs. Combining Equations (22)-

(24) we obtain a new equation for calculating the value function 

 ̂ 
 (  )     

  

 (  (     )   ∑    
      ((   |     

 )    
 )

   

      

) (25) 

 The exogenous information   
  is drawn at  -th iteration from the probability 

distribution of the uncertain parameter and the process iterates for   runs. There are two 

important differences between this new equation and Equation (20): first, instead of 

finding the optimal actions for all     states in this setup, we only need to find the 

optimal action for the first state   ; other actions are predefined in a way that will be 

discussed later.  Second, the estimation of the value of terminal state  ̅   (    ) is not 

present in this new equation and instead, it uses the immediate reward in the terminal 

state from taking the predefined action    . The running time for finding the best action at 

each iteration at any given state is  ( | |). Since the focus of this paper is on finite 

horizon (episodic) problems with large or continuous state spaces, it is important to note 

that the value function approximation  ̅ (  ) is estimating the value of state   . We define 

an ‘episodic state’ to be a representation of all states at the time epoch   and therefore  ̅  

can be considered as the mapping from episodic state space to value space. The overall 

running time of the algorithm in the finite setting is  ( | | ) for the entire time horizon. 

The only challenge in this new algorithm is to find    
 , the predefined action. If the 

reward function   (     ) is concave in   , we can pick    
         

  
   (       ) 

which is the greedy action maximizing the immediate reward for all   steps ahead. The 

corresponding states are defined by the current exogenous information process   
  and 



 31 

  , the one-step optimal action. In the absence of any uncertainty, the value function 

approximation can be represented as a linear combination of immediate rewards from 

taking the action    at the present time and    in any subsequent step.  

 Table 2 shows the value iteration algorithm for approximate dynamic programing 

with lookahead value estimation. In each state    the exogenous information is fixed at 

  
  level and a candidate action    is taken once and then the predefined action    is 

taken   times to produce the next   states with corresponding rewards   at each state. 

Looking forward into the future and taking into account the utilities of the   next states 

ahead will capture the tradeoff between a myopic policy to maximize the value of the 

current state only and a lookahead policy which maximizes the value of current and 

future states as a single function. This technique provides a fast and robust solution for 

both deterministic and stochastic cases. The rate of learning (convergence) in this method 

depends on the updating scheme and we can employ a simple stochastic gradient 

algorithm to update this coefficient similar to the one shown in Equation (19).  

 

Table 2: Value Iteration algorithm for ADP with  -step-ahead value function approximation 

Step 0: Initialize parameters for value function approximation 

Step 1: Do for      to     

Step 2: Generate a sample path from the distribution function of the stochastic parameter 

Step 3: Do for each time epoch from     to      

Step 4: Do for each time epoch from        to         

 
 ̅   

   (    )  ∑     (   )   
      ((   |     

 )   )

   

      

 

 ̂ 
 (  )     

  

 (  (     )    ̅   
   (    )) 

  
 (  )        

  

 (  (     )    ̅   
   (    )) 

Step 5: Update the value function approximation parameters 

 
 ̅ 
   ̅ 

          ( ̅ 
   (  )   ̂ 

 (  ))
  ̅ 

   

   
    

Step 6: Return  ̅ 
  for all   
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Optimal step size and convergence 

 The conventional rolling horizon algorithms always perform suboptimally since 

they ignore the rest of the steps after  . The bounds on the performance of a rolling 

horizon algorithm in the infinite case (Equation (20)) is defined by equation below [64]: 

    ( )   ̅( )  
    

   
   (26) 

where    is the true value and      is the maximum possible reward. In the finite case, 

however, the upper bound will be adjusted and the equation can be rewritten as: 

    (  )   ̅(  )      (
        

   
)                        (27) 

 In problems with large scale or infinite state space where approximation is 

devised, the upper bound needs to be adjusted again to reflect the approximation [53]. As 

the number of lookahead steps ( ) increases the value function approximation defined in 

Equation (22) gain more flexibility in adaptation to changes in the underlying value 

  (  ) and therefore the approximation error shrinks consequently. In the  -step-ahead 

algorithm, we first estimate the sum of all future values using the   step ahead rewards 

and then update those estimates iteratively. We can show that this approximation 

mapping is nonexpansion and therefore the value iteration algorithm is converging to the 

true values of each episodic state.  

Theorem 1: Let   be the value iteration operator defined by Equation (16), and let   be 

the  -step-ahead value function approximation. The value iteration algorithm defined in 

Table 2 converges to   (  ), the true value of the episodic state    for every         

with step size   
  

 

   
  where   (   ) and   (       ). 

 The proof is presented in Appendix B. Once the algorithm converges, the optimal 

policy (optimal values of parameter  ̅ ) can be determined for each episodic state   .  
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Numerical Example 

 In this section we apply the  -step-ahead value function approximation to the 

problem of finding the optimal greenhouse gas (GHG) emissions abatement level. The 

deterministic version of this problem has been discussed in [31] and the model 

parameters and equations are represented in Appendix A.  The global climate-economy 

system can be defined as a state with six continuous variables:     is atmospheric 

temperature (degrees Celsius above preindustrial),     is lower ocean temperature 

(degrees Celsius above preindustrial),     is atmospheric concentration of carbon (Giga 

Tons of Carbon, GTC),     is concentration in biosphere and upper oceans (GTC),     

is concentration in deep oceans (GTC), and   is capital ($trill).  At each time step, an 

abatement action (control rate)    is taken which indicates the percentage reduction of 

GHG emissions. It imposes a cost to the economy but prevents the future damage costs of 

having high temperature due to the increase in the emissions. Taking action    at any 

given state will determine the next state deterministically. We can introduce uncertainty 

into this system by modeling the atmospheric temperature dynamic as a random process. 

We define a probability distribution for    the climate sensitivity parameter (i.e. the 

equilibrium increase in mean global surface temperature due to doubling of atmospheric 

    compared to the pre-industrial era [32]). The objective is to maximize the social 

utility which is a function of economic output and costs.  

 To calibrate the model and find the appropriate number of steps for lookahead 

algorithm we run this model under deterministic assumptions and compare the results for 

different values of  . Figure 1a shows that larger values of   give more flexibility to 

value function approximation and improve the optimal path calibration. In Figure 1b we 

show a boundary case of    , where the parameter    is kept at zero. This case is 

comparable with    , since only the value of one of the future states is used for 

estimating the current value function. For this boundary case (2-step-ahead 
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approximation with     ) the value function is approximated by projecting the values 

of states in the next two time periods. The values are calculated under a deterministic 

forecast and brought back to the present time using an artificial and tunable discount rate 

(parameter   ). 

  
Figure 10: Optimal greenhouse gas emission reduction rates under different approximation schemes, (a) 

comparison of different values of   for the  -step-ahead algorithm, (b) comparison of 1-step-ahead and 

boundary case (    ) of 2-step-ahead algorithms 

 

 We can also investigate the effect of discounting on the approximation of the 

optimal solution. In the original DICE model the default value of the decadal discount 

factor is         and the optimal path reaches its peak at year 2215 (Figure 10a). 

Figure 10 shows the optimal path and approximation with different values of the 

lookahead depth  . As shown here, although the optimal rates vary significantly under 

different discount factors (i.e. higher discount factor induces faster convergence of the 

optimal path to its maximum rate of 1.0), the 3-step-ahead approximation follows the 

optimal path very closely. In general, comparing  -step-ahead approximations with 

different values of  , one can see that higher values of   provide more flexibility and 

better approximation of the value function. 
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Figure 11: Optimal greenhouse gas emission reduction rates under different discount factors, (a)   

    , (b)        

 

 To demonstrate the algorithm, consider a simple model with four states    to    

as shown in Figure 12. The initial values of   ’s state variables as well as the initial 

realization of climate sensitivity (      ) are provided. As an example taking the 

initial action         at state    will take us to the state    with the state variables 

shown in the figure. To find the next optimal action   
  we deploy our two-step-ahead 

algorithm. First, under deterministic assumption from the previous state, the value of the 

current state    will be calculated by taking any candidate action    and two consecutive 

null actions to obtain two post-decision states   
  and   

  and with immediate rewards of 

  (     ),   (  
   ), and   (  

   ) at node    and two post-decision nodes after that. 

The optimal action is the one that maximizes the value of the current sate: 

  
 (  )        

  

 (  (     )   ̅ (  
 )) 

 As discussed earlier,  ̅ 
    is the value approximation of the post-decision state 

  
 . We consider a very simple function approximation with only one parameter 

 ̅ (  
 )       (  

   ), where    is the tunable parameter of the value function 

approximation and defines the “policy”. The initial value of this parameter is assumed to 

be one and it is updated at the end of each iteration. Table 3 demonstrates the value of 

this approximation for selected actions. The value of state is calculated from  ̂ (  )  
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 (  (     )   ̅ (  

 )). Once the optimal action is found (  
     ), a 

realization of the uncertain parameter is drawn from the sample path and the values of 

state variables of the next state    is calculated accordingly. For this simple example, we 

assume that the climate sensitivity stays at        level for the next time period. In 

this case, the optimal action is found to be around 12% and the optimal value is  ̂ (  )  

        , this value is used to update the approximation function that was used to 

estimate the value of the post-decision state   
  using the following stochastic gradient 

algorithm:   
      

      ( ̅   ̂ )    (  
   ) 

 The step size   is chosen as [ (  
   )]   to simplify the updating equation and 

guarantees the convergence. Therefore the new coefficient for the next iteration is 

calculated as 

  
      

( ̅   ̂ )

  (  
   )

 
 ̂ 

  (  
   )

       

 

 
Figure 12: An example of the two-step-ahead algorithm for DICE model 
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 The new value function generates new optimal actions and this process continues 

until the policy (the coefficients of the value function approximation) converges to its 

optimal value. 

Table 3: value function approximation for different actions and the optimal value of the first two states. 

action 
 ̅ (  

 )   

     (  
   ) 

  (     )  ̂ (  ) 

(  
     ) 

 ̅ (  
 )   

     (  
   ) 

  (     )  ̂ (  ) 

(  
     ) 

     (No abatement) 70928.1 61924.8  73918.1 67020.9  

       70927.3 61855.4  73919.2 66962.5  

       (Full abatement) 70895.3 61418.8  73894.8 66597.4  

  (Optimal abatement) 70929.1 61924.1 132853.2* 73919.5 67019.8 140939.3* 

 

 Figure 13 shows how fast the two-step-algorithm converges in this case. The error 

in the early stages of approximation vanishes as the model learns the optimal policy (   ) 

and consolidates around its optimal value. 

  
Figure 13: Optimal Policy (   ) and Bellman error ( ̅   ̂) at time period      using a two-step-ahead 

algorithm 

 

 In summary, our model uses an on-line estimate of the value function by 

forecasting the two-step ahead states and it also stores and updates the tunable parameters 

of the value function approximation in an off-line fashion through the value iteration 

algorithm.  
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CHAPTER 4 

BAYESIAN APPROXIMATE DYNAMIC PROGRAMMING 

 

 Climate sensitivity is a single-valued variable whose value can be expected to 

become better known through time and observations. In the case of tipping points on the 

other hand, we assume that there is always a chance (however very small) of hitting the 

tipping point at any atmospheric surface temperature increase greater than    (    

  ) and therefore, it can be considered as a random variable. These two random 

parameters (climate sensitivity and tipping point event) are not independent. As can be 

traced through equations A11 and A17 provided in Appendix A, the climate sensitivity 

parameter is used in calculating the     doubling coefficient which defines the mean 

global temperature in the next time step (Equation A17) and therefore affects the 

probability of having an extreme event in the next time period. To put it in statistical 

language, we expect to have a different probability distribution for climate sensitivity 

after each observation of climate status. This leads us to introducing a novel approach for 

integrating a Bayesian modification into our ADP algorithm, as a mechanism for 

updating the probability distribution of climate sensitivity after each observation of 

climate status.  

 The shape of the probability distribution is initially estimated to be a fat-tailed 

distribution as discussed in Chapter 2. In the future, new information on the behavior of 

the climate, based on mean global temperature data, estimates of climate damage, and 

other types of observations, can be used to update the climate sensitivity probability 

distribution. For the purpose of this illustration, we limit our attention to the set of 

realizations of extreme events as an integrated representation of all other climate system 

observations in each period. Obviously such a proxy is oversimplifying and does not take 

into account many vital components of the climate system. However, the observation of 
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extreme events can be modeled within the simulation and therefore is a practical proxy 

for illustrative purposes. The purpose of this approach is not to show numerically to what 

extent an observation about a climate extreme event can update our knowledge of climate 

sensitivity, but rather to demonstrate its capability to do so and a statistical approach for 

implementation.  

 The status of the climate after any pre-tipping point state ( ) can be modeled as a 

binomial distribution with   being the probability of having an extreme event (tipping 

point) in next time step. As discussed in the previous section, this probability itself is a 

function of mean global temperature     which directly depends on the estimate of 

climate sensitivity   . These relationships can be expressed in a standard Bayesian 

format as: 

  (    |     )         (    )  
    (    )

       (28) 

  (  )                                  (29) 

where    is the status of the climate at time epoch   and    is the probability of having a 

tipping point event at time epoch    , as defined in Equation (5). We consider the 

binary values of      for non-extreme (pre-tipping point) states and      for extreme 

(post-tipping point) states. The posterior distribution of climate sensitivity can be 

obtained from prior and conditional distributions. 

  (  |       )  
  (    |     )   (  )

  (    |  )
 (30) 

where   (    |  ) represents the probability of the climate status in next time step given 

the current status of the climate. This probability can be expressed as the integral of the 

conditional probability in Equation (28) over different values of climate sensitivity. To 

calculate   (    |  ) the climate sensitivity interval [    ] is split into one hundred 

equally spaced segments and the integral is computed numerically as the following 

summation. 
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  (    |  )  ∑  (    |      )   (   )

   

   

 (31) 

 The value iteration algorithm discussed in Table 2 can be revised to reflect the 

Bayesian update of the uncertain parameter. 

Table 4: Value Iteration algorithm for BADP with  -step-ahead value function approximation 

Step 0: Initialize parameters for value function approximation 

Step 1: Do for      to     

Step 2: Generate a sample path from the distribution function of the stochastic parameter 

Step 3: Do for each time epoch from     to      

Step 4: Do for each time epoch from        to         

 
 ̅   

   (    )  ∑     (   )   
      ((   |     

 )   )

   

      

 

 ̂ 
 (  )     

  

 (  (     )    ̅   
   (    )) 

  
 (  )        

  

 (  (     )    ̅   
   (    )) 

Step 5: Update the value function approximation parameters 

 
 ̅ 
   ̅ 

          ( ̅ 
   (  )   ̂ 

 (  ))
  ̅ 

   

   
    

Step 6: Update the probability density of the uncertain parameter 

 
  (  |       )  

  (    |     )   (  )

  (    |  )
 

Step 7: Return  ̅ 
  for all   

 

Table 4 shows a general value iteration algorithm for Bayesian approximate dynamic 

programing (BADP). In each run and at any time step  , the status of the climate is 

observed and the status of climate for the next time step     is calculated according to 

Equation (28). For the next time step, a random value for climate sensitivity is drawn 

from the posterior distribution given in Equation (30). As discussed in chapter 2, the prior 

distribution is a lognormal distribution truncated from the left and right sides. The 

posterior distribution shows a profound shift from higher values of climate sensitivity 

(associated with higher risk of tipping point events) to lower values with higher 
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probability. Utilizing Bayesian update provides a learning mechanism to reduce 

uncertainty in the climate sensitivity parameter. As we proceed in time and more 

observations of climate behavior are collected, the variability of this parameter shrinks 

and if no tipping point occurs, the density concentrates around the lower bound of the 

distribution.  

 

Figure 14: The 5% and 95% percentiles of the global mean temperature under optimal Bayesian stochastic 

actions with two uncertainties from the climate sensitivity parameter and the probability of tipping point 

events. The left graph shows the temperature range when the tipping point happens at      and the right 

panel shows the temperature range when no extreme event is observed throughout the modeling horizon. 

The red line in both graphs shows the global mean temperature under the optimal deterministic policy. 

 

Figure 14 shows the model results for global mean temperature for two cases, of having 

an extreme event at time      (year 2095) and observing no extreme event over the 

entire modeling time horizon. The left graph shows a pattern indicating the slow rate of 

learning in the Bayesian model when the tipping point happens at time     . However, 

in the case of no extreme event (right panel), the temperature peak and most of its range 

are below the deterministic case as a result of the increase in probability of observing 

lower climate sensitivity values. Another interesting observation is that the number of 

cases with no extreme event is about 20% in the Bayesian ADP model compared to only 

7% without Bayesian learning. This shows the power of adaptation in this case: with the 

observation of ``no tipping point" made in a time step  , as modeled there will be less 

chance of having a higher climate sensitivity, which diminishes the probability of 

observing an extreme event in the next period.   
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Figure 15: A posterior distribution (dotted) of climate sensitivity when no extreme event is observed 

throughout the modeling horizon. The solid lined graph shows the prior distribution which is a truncated 

lognormal distribution between    and    . 

 

 Figure 15 shows that in the case where no extreme event is observed, the 

probability distribution of climate sensitivity is updated and brings a new posterior 

distribution with a thinner tail compared to the prior distribution. It should be noted that 

the climate sensitivity will be updated after observing an extreme event as well.  

 The BADP algorithm was deployed in both cases in this paper: in the stochastic 

case and in the Bayesian stochastic with tipping point case. We perform a numerical 

comparison between these two models with a focus on time epoch      (i.e. 100 years 

into the future). The results of the optimal policy and optimal action from the value 

iteration algorithm in different cases are presented in Figure 16.  

 Deterministic case: In the deterministic case, the optimal “policy” (parameter in 

the value function approximation) is           and the optimal action is    
      . 

In other words, the final value function approximation for t = 10 has the form  ̅  (   
 )  

        (  
   ), where   

  is the second state constructed by deploying action   and 

action zero accordingly having the climate sensitivity parameter level fixed at its 

      level. The optimal action    
       from solving    

        
 (   (       )  
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        (  
   )). These values are shown by the dotted red line in Figure 16 and compared 

with the distribution of optimal values under uncertainty. 

 Stochastic case: In this case, the value of   , the climate sensitivity, is drawn 

from a truncated lognormal distribution. The distribution of optimal policies forms a 

narrow distribution with the mean around the optimal policy under the deterministic case. 

Although the optimal values seem to have minor variations, the distribution is skewed to 

the right. Since the climate change parameter has a heavy-tailed distribution with low 

probabilities of high impact values, the policy response distribution skewedness to the 

right reflects a precautious approach that favors future gains to present utility. The 

optimal action is found from solving    
        

 (   (       )        (  
   )). As shown 

in the top right panel, the mean of the optimal action distribution falls on the left side of 

the deterministic value. This may seem to suggest a lower required level of abatement in 

the stochastic case compared to the deterministic case. However, it is worth noting that 

the deterministic values were obtained using       as in the DICE 2007 model. 

However for the stochastic case, we use the updated distribution built on the IPCC 2013 

assumptions with the mode less than   . Therefore, the difference between the mean 

value of the optimal action in the stochastic model and the deterministic action is due to 

the fact that the updated climate sensitivity distribution is used in the stochastic model.  

 Bayesian stochastic tipping point case: In this case, the prior distribution of 

   is modified after each observation of an extreme event. There is a risk of hitting an 

extreme event that is modeled in the climate damage function; in each decade with a 

small probability that directly depends on the observed global mean temperature, an 

extreme climate event is expected to affect the natural and economic system of the earth 

in an irreversible manner. To demonstrate the effect of such uncertainty on the optimal 

solution, we consider an exaggerated case of economic loss of 25% in the case of such 

extreme event. As shown in Figure B2, the mode of the optimal policy (        ) is 

greater than the deterministic policy (         ). The higher value of the optimal 
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policy (    the coefficient of the approximation function) indicates the higher weight of 

future states in the optimal decisions for the current state. The optimal action as before, 

can be calculated from solving    
        

 (   (       )        (  
   )). In the case of 

having two optimal values for    , depending on the realization of the climate sensitivity 

parameter, the optimal action may switch between higher values (   
  0.54) in pre-

extreme cases and lower values which are scattered around (   
  0.33) in post-extreme 

cases. Due to the small probability of extreme events, the higher actions comprise about 

80% of the cases.  
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Figure 16: The results from 1000 runs of the stochastic case (upper charts) and the Bayesian stochastic 

with tipping point (lower charts); the vertical dotted lines show the results of the deterministic model. In the 

stochastic case the optimal policy remains relatively close to its optimal deterministic value although the 

corresponding optimal GHG reduction action ranges from about 35% to 42%. In the Bayesian stochastic 

tipping point case, the optimal policy’s variation is larger due to the impact of tipping points and it clusters 

around a higher value compared to the deterministic case. The optimal action in this case however, forms 

two distinct peaks corresponding to higher abatement actions before a tipping point happens and lower 

abatement action after a tipping point happens.  
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CHAPTER 5 

ACTIVE LEARNING IN POWER GENERATION EXPANSION 

PLANNING PROBLEM 

 

Background 

Limiting long-term climate change would require substantial energy system 

transformation including the fast decarbonization of the electricity sector [65], [66]. 

Current short term international pledges to reduce greenhouse gas emissions are 

significantly insufficient for closing the gap to reach emission levels consistent with the 

often stated    climate target [67]–[69]. This gap could be closed if the greenhouse gas 

emission reduction potentials in different sectors are fulfilled in the short term [70]. 

Several studies have looked at overall energy system transformation to attain long term 

climate goals and have highlighted the role of availability and deployment of certain 

lower-GHG-emission (LGE) technologies such as bioenergy and carbon capture and 

storage (CCS) after 2030 to compensate the likely delayed emission mitigation [71]. For 

the power sector, it is estimated that there will be 2.2 to 3.9 Gt CO2 emission reduction 

potential per year in 2020 and 2.4-4.7 GtCO2 in 2030 [72], [73]. This potential reduction 

is likely to include the complete phase-out of conventional coal-based power plants 

(without CCS) as well as lower or negative emission technologies [74], [75]. 

 In this study, we investigate the optimal transition path from the current mix of 

power generation resources to a state with minimum overall cost of generation and 

climate change impact. We develop an integrated assessment model for electricity 

generation and use it to explore the impact of two sets of strategies (i.e. generation cost 

minimizing versus damage cost minimizing) for power expansion in the near-term. In 

particular, the paper is focused on the role of learning-by-doing technology improvement 



 46 

that reduces not only the capital cost of power generation with a certain type of 

technology, but also the emissions related to the build-out phase of such technologies.  

The objective of this study is to better understand the relationship between power 

generation strategies and climate change objectives in the near-term assuming different 

rates of learning for generation technologies. We recognize that the plant operators have a 

myopic objective of minimizing the generation cost that is not aligned with long-term 

climate goals and therefore it is important to investigate the difference in generation 

technology mix and associated costs between achieving the cost minimizing objective 

(without any stringent climate policy) and achieving the climate damage minimizing 

objective. The rest of this chapter is structured as follows: In the next section we 

introduce baseline projections of fuel costs, generation technology costs, total electricity 

generation growth, and generation technology choices. Then, we introduce our 

optimization model, its state variables, and the decision variables. After that, the results 

of the optimization models with different objective functions are compared. We end this 

chapter with the discussion and applications of this method in integrated power 

generation expansion planning and assessment (IPGEPA). 

Introducing Climate Change into Energy System Models 

 Power generation expansion planning (PGEP) models are used by utilities and 

government agencies to find the optimal mix of renewable and fossil fuel power plants in 

order to meet the expected demand under a range of generation and environmental 

regulation and policies [17]. The structure of these models varies greatly by their 

objectives, constraints, and decision variables. The PGEP objectives may include 

minimizing the total generation and transmission cost, maximizing the total net profit 

including sale of electricity, maximizing the reliability of the power network, and 

minimizing the pollution emitted from the electricity generation. Integrating 

environmental considerations into traditional PGEP models is done either by introducing 



 47 

emission control measures as new constraints to the model, or alternatively assigning a 

secondary objective function for minimizing the generation costs and emissions 

iteratively.  

 One of the shortcomings of current PGEP models is that even when a multi 

objective function is adopted to take the environmental impacts into account, it is 

generally restricted to calculating the     emissions from different power plants while 

the link between the emissions and climate change is missing. Most of these models treat 

the environmental cost as the emission trading costs under certain GHG reduction 

policies [76]. The results of these studies suggest that carbon pricing is an important 

signal for achieving appropriate generation in the long term [77], [78]. However and in 

the absence of a global market for carbon trade, the emissions remain unaccounted for in 

the economic analysis of power generation. Therefore, there is a need for introducing a 

physical measure of climate change for policy making in the global scale. The change in 

global mean temperature that each alternative technology would produce under various 

schedules of deployment can provide a measurable metric for energy policy making and 

climate change modeling [79]. This metric has been used in studying the transition from 

fossil fuel power generation to an LGE power system [80]. We use the global mean 

surface temperature as a proxy for climate impact to calculate the damage costs and to 

compare different scenarios. The calculation is presented in Appendix C.  

 While transferring to LGE technologies seems inevitable under the long-term 

climate goal, the pace and quality of this transition is less certain. Since these 

technologies are emission intensive during the building period, their rapid deployment 

could in the short term substantially increase emissions and, consequently, raise the 

global mean surface temperature [80]. We take into account both the costs of building 

and operating the power plants, as well as the contingent environmental damages from 

the increase in the global mean temperature.  
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Baseline Electricity Generation Projections 

Power plant costs and emissions 

 We design a model to find and allocate the generation for each type of power 

plant in every year. The model assumes a uniform decommissioning and construction rate 

for old and new power plants. We limit our study to eight major types of power 

generation: coal, natural gas, nuclear, solar PV, wind, solar thermal, coal with carbon 

capture and sequestration (CCS), and hydroelectric. The analysis will take into account 

the two stages of construction and operation for each power plant. The construction costs 

and associated emissions in LGE power plants are typically higher than the fossil fuel 

type power generation technologies, while the latter plants have higher fuel cost and 

emissions during their operation life. We quantify the cost of emissions through a climate 

change damage function. The emissions contribute to the GHG concentration in the 

atmosphere and the increase in the global radiative forcing. The change in the global 

mean surface temperature is linked to the radiative forcing through a simple energy-

balance model. Information about the cost and emissions for each power plant type is 

given in tables C1 and C2 in Appendix C.  

Technology Learning 

 New technology market penetration depends on several factors including the 

research, development and demonstration (RD&D) investment and the relative price of 

technologies in the electricity supply market. Technological learning is a process of 

gaining knowledge in manufacturing and production of certain type of technologies 

combined with the impact of the economies of scale, resulting in lower capital investment 

cost [81]. Learning in the early stages of technology development in renewable and LGE 

energy technologies has been faster than learning in mature and conventional 

technologies such as coal and natural gas [82]. However, the limitations of learning 
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curves such as large uncertainties in future cost development, should be taken into 

account when these curves are used for energy policy purposes [83]. One remedy is to 

determine the learning at a component level so that the overall learning of a technology 

can be explained as the sum of its components [84]. Using this concept, the National 

Energy Modeling System (NEMS) has incorporated endogenous learning into its cost 

calculations for power plants [85]. We use the learning mechanism devised in NEMS to 

calculate the cost and emission reduction in each technology over time. The current 

power generation technologies are classified into one of the three stages of learning: 

Radical Technologies that are new and untested are assigned high rates of learning, 

Incremental Technologies are considered to have potential for significant learning and 

commercialization and are assigned moderate learning rates, and Mature Technologies 

are well-known with an established market and are assigned low learning rates. Cost 

reduction per doubling of capacity is based on maturity of the technology or vintage. 

Demand Projection 

 The International Energy Outlook 2013 (IEO 2013) is an assessment by the U.S. 

Energy Information Administration (EIA) of the current and future state of international 

energy markets through 2040 [86]. In the IEO 2013 Reference Case, future legislation or 

policies that might affect energy markets are not considered. We use the Reference Case 

projections to build our baseline projection. According to these projections, total net 

power generation will increase by 93% from 20.2 trillion kWh in 2010 to 39.0 trillion 

kWh in 2040. The increase is not uniform across different power generation technologies. 

While the share of natural gas and wind power plants in total generation experience a 

dramatic increase, coal’s share continues to decline. The share of other renewables and 

nuclear power will have a steady but slow growth. Figure 17a shows the IEO 2013 

Reference Case projections for different technologies. In Figure 17b we show eight 

selected technologies and their new installed capacity to meet the projected demand in 
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Figure 17a. The generation deficit for each type of power plant is calculated as the 

difference between the projected generation in the next time step and the carried-over 

generation after adding new power plants and subtracting the decommissioned plants. 

  
Figure 17: IEO2013 projections for different technologies from 2010 to 2040 (a) Net generation, (b) New 

installed capacity for selected technologies. 

 

Discount Rate 

 Achieving sensible and applicable results from any PGEP model depends on the 

choice of proper discount rate for the future costs. The International Energy Agency 

(IEA) uses two discount rates, 5% and 10%, to account for the investing risks in 

electricity generation market around the world [87]. On the other hand, the EIA uses 7% 

as the real discount rate for evaluating energy efficiency investments [88]. Other 

approaches have been introduced, including declining discount rates for long-term 

projects [89], [90]. Following the IEA’s methodology, we apply two discount rates, 5% 

and 10% to our analysis of the optimal allocation of generation technologies.  

Optimization Model 

 Modeling power generation expansion planning is often a large scale mixed 

integer programming optimization problem. The decision variables are the type of power 

plant (binary) and the amount of power needed to be generated or purchased from each 
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type of power plant. The objective is to find the minimum cost of generation expansion 

through a finite time horizon. The optimization problem is subject to some operational 

and physical constraints that may include, but are not limited to, power demand 

constraints (demand at any given time must be met with enough power 

generation/purchase), generation constraints (total generation of any power plant at any 

given time cannot exceed the available generation of that power plant), thermal energy 

availability constraints (power generation at any type of power plant is bound to an 

operational limit defined by its capacity factor), and environmental constraints (e.g. a cap 

on GHG emissions from power generation).  

Generation Modeling 

 We design an optimization model to find the best mix of new power generation 

technologies to 2040 to generate electricity sufficient to meet demand in the IEO 2013 

Reference Case projection. The generation at each time step   can be modeled as a state 

variable with four dimensions: new under-construction generation   
 , carried-over under-

construction generation   
 , new operation generation   

 , and carried-over operation 

generation   
 . We assume uniform initiation and retirement for each type of power plant. 

The relationships among the state variables are shown in the Appendix C. The decision 

variable   in each time step   is the percentage of the new generation that should be 

designated to type   power plant. The objective function to minimize the overall cost of 

electricity generation over the finite time horizon       is shown in Equation (32) 

below,  

   
  

 
∑    {∑(

  

  
(  

   
    

   )  
  

  
(  

      
   )        (  
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 (32) 

 

where   ,   , and    are construction cost, fixed operation cost, and variable operation 

cost.    is the capacity factor.   
   

,   
   

, and   
   

 denote the carried-over under-
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construction, new operation, and carried-over operation capacities of type   power plant 

at time  . The discount factor   is chosen to reflect the time preference throughout the 

modeling horizon. 

 An alternative objective function is designed to minimize the cost associated with 

the increase in the mean global surface temperature due to emissions from power 

generation. In this case, we adopt an energy balance model to calculate    , the mean 

surface temperature increase at each time period  . Although the choice of damage 

function is open, many integrated assessment models of climate change use either an 

exponential or power function of     to estimate the economic damage of the increase in 

global mean surface temperature [91]. Here we take an exponential as our damage 

function and therefore the damage minimizing objective function can be expressed as 

   
  

 
 ∑(            )

 

   

 (33) 

where   is the scaling coefficient of the damage cost function. The emissions are 

calculated from the construction of the new power plants and operation of old power 

plants. 

Constraints 

 The generation constraints define the feasibility of optimal solution to the above 

minimization problem. The optimization model of the global power system is constrained 

by physical and technological constraints. By definition, the decision variable   at every 

time step and for each power plant type is a non-negative real number between zero and 

one. Furthermore, the total new generation at any given time should be equal to the 

demand deficit from adding new generation and retiring old power plants. This will be 

guaranteed by constraining the sum of   
  at each time step   to one: ∑   

  
     . We 

also keep the hydropower generation below 10% of the total new generation at every time 

step. 
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Results 

 The optimization model was solved for two different objective functions. To 

capture the long-term impacts of newly planned power plants, the models were 

constructed and solved for 50 years but the results are reported for the first 30 years for 

comparison with the baseline projection. Each objective function was run in two cases, 

with and without learning functions. Scenarios are identified by a combination of their 

learning assumption and discount rate (e.g., NL-10), as summarized in Table 5. 

 
Table 5: Summary of scenario abbreviations 

Scenario Learning Discount rate 

NL-10 No 10% 

L-10 Yes 10% 

NL-5 No 5% 

L-5 Yes 5% 

 

 The optimization model results from each scenario are compared with the 

baseline projection (IEO 2013 Reference Case). The results show significant difference 

among the optimal mix of technologies under different objective functions. 

   
Figure 18: Comparison of costs (a) Generation costs (b) Damage costs. 

 

 As expected, generation cost minimization models show a significantly lower net 

generation cost compare to their counterpart damage cost minimization models (Figure 

18a). However, the generation costs of the damage minimizing models are higher than 
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those in the baseline projection. While higher discount rate sharply reduces the net 

present value in all models, the impact of learning is not homogenous across different 

models. 

 Figure 19 and Figure 20 show the optimal portfolio and the new installed capacity 

in different scenarios. Since the renewable technologies have relatively lower capacity 

factors (i.e. the ratio of the actual output to the potential output), the optimal portfolios 

with renewables require larger new installed capacity than those with fossil fuel 

technologies (e.g. compare Figure 20b with Figure 20a). In the generation cost 

minimization scenarios, learning helps lower the costs but does not change the optimal 

portfolio in the scenarios with the higher interest rate (Figure 19a-d and Figure 20a-d). In 

damage cost minimization scenarios (Figure 19e-h and Figure 20e-h) learning changes 

the costs very early on by introducing wind (in L-5) or solar thermal (L-10) to the optimal 

portfolio. Natural gas is the overall cheapest available technology and as expected 

dominates the portfolio in all generation cost minimization scenarios. Solar thermal is the 

only new technology that enters the generating cost minimizing portfolio in the learning 

case with lower discount rate (Figure 19b and Figure 20b), however this happens only 

later in the future and therefore its cost impact is curbed through discounting. On the 

other hand, learning changes the optimal portfolio early on in the damage cost 

minimization scenarios (Figure 19f, Figure 19h, Figure 20f, and Figure 20h). Although 

solar PV is the dominant technology in this set of scenarios, in L-5 wind power enters the 

portfolio at the beginning but later on is replaced by solar thermal. Similarly in L-10, 

solar thermal starts to grow fast and will replace solar PV towards the end of the 

modeling horizon. In both cases the cost structure changes in the early years and 

therefore the overall generation cost is significantly different from those cases without 

learning. 
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Figure 19: Optimal portfolios: scenarios without learning are on the right and those with learning are on 

the left. (a)-(d) show generation cost minimization scenarios and (e)-(h) show damage cost minimization 

scenarios. (a), (b), (e), and (f) are scenarios with 5% discount rate while (c), (d), (g), and (h) are scenarios 

with 10% discount rate. 
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Figure 20: New installed capacity: scenarios without learning are on the right and those with learning are 

on the left. (a)-(d) show generation cost minimization scenarios and (e)-(h) show damage cost minimization 

scenarios. (a), (b), (e), and (f) are scenarios with 5% discount rate while (c), (d), (g), and (h) are scenarios 

with 10% discount rate. 
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 In the climate damage minimizing scenarios, the cost difference between 

scenarios with and without learning is not as profound (Figure 18b). While generation 

cost minimization scenarios in general demonstrate a comparable damage cost as the 

baseline projection, the damage cost in damage cost minimization models is almost half 

of that in baseline projection. Although such difference reflects the structural changes in 

generation portfolios (damage cost minimizing models are dominated by renewable 

technologies), the quantitative results relate to how we defined the damage function and 

its relationship to the global mean surface temperature in Equation (33). 

  
Figure 21: The results from the baseline and the optimization models with learning only. (a) Global mean 

surface temperature change compared to the 2010 level (b) CO2 emissions. Damage cost minimization 

models (DAM) demonstrate lower emissions and temperature increase than generation cost minimization 

models (GEN). 

 

 The change in the global mean surface temperature is tied to the choice of the 

generation mix. Low greenhouse gas (LGE) technologies such as solar PV, wind, and 

solar thermal are more favored in the damage cost minimization problem despite the high 

initial emissions during their construction. Figure 21 shows the different trajectories for 

the     emissions and the global mean surface temperature change under the optimal 

power generation expansion planning. Switching from natural gas to solar thermal in the 

last decade in the generation cost minimization model GEN-L-5 model (Figure 19b and 
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Figure 20b) will sharply reduce the     concentration to a level close to the one from 

damage cost minimization portfolios (Figure 21b). However, it fails to fully compensate 

for early emissions made by the choice of natural gas that set the tone for the upward 

trend in temperature change (Figure 21a).  

 The analysis of cost structure in different models is presented in Figures C3 and 

C4 in Appendix C. In cost minimizing scenarios (Figure C3) natural gas dominates the 

portfolio and therefore fuel cost is the major component of the total cost. In damage cost 

minimization models (Figure C4) however, renewable technologies such as solar and 

wind are dominant and therefore construction cost makes up the majority of the total cost. 

In the learning case, the construction costs fall as the total cumulative investment in a 

certain technology increases. As shown in Figure 18a, while damage minimizing models 

have a different portfolio than the baseline projection, the total cost of achieving the 

minimum temperature increase is not largely different from the baseline costs. This has a 

significant implications for climate policy since it shows that the overall cost under 

stringent policies cannot be considered as a major obstacle in devising such policies. 

Discussion and Conclusion 

 In this chapter we introduced a novel approach to the global power generation 

expansion planning problem, by incorporating an endogenous learning mechanism to 

update the construction cost and emissions as a function of cumulative built capacity for 

each technology. We also included an energy balance system to translate the emissions 

from construction and operation phases into the change in the global mean surface 

temperature. The optimization was performed with two objective functions – minimizing 

generation cost or minimizing climate damage – with or without considering the learning 

effect of investment in each technology. To investigate the sensitivity of our analysis to 

the time value of investments, we also applied two different discount rates for calculating 

the net present value of investment in each scenario. In total, eight scenarios were 
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developed, optimized, and analyzed based on these model variations. Comparing the 

results of optimal mix shows that the optimal solutions differ under learning assumptions 

particularly for the damage cost minimizing objective.  

 The analysis shows the impact of discounting on the optimal mix of technologies. 

In the case of generation cost minimization, with a lower discount rate, the costs can be 

felt more in today’s investment calculations and therefore more attempts are made to 

have lower cost technologies in the future by early investment in radical technologies 

such as solar thermal. While natural gas dominates the optimal generation portfolio 

without learning in the generation cost minimization problem, renewable power plants 

will gradually replace the conventional coal-fired power plants in the optimal portfolio 

under the learning assumption. On the other hand, the damage cost minimization 

portfolio demonstrates different behavior under the learning assumption. While solar PV 

is the main contributor to the optimal portfolio without the learning assumption, solar 

thermal adds to it when learning is taken into account in the model. These results were 

compared against the IEO 2013 Reference Case as the baseline.  

 Achieving the minimum temperature increase is insensitive to the choice of the 

discount rate; that is, the damage minimizing scenarios DAM-L-5 and DAM-L-10 in 

Figure 21a have almost the same temperature increase trajectory, although they have 

different optimal mixes of power generation technologies. ). This establishes a lower 

bound for a near-term climate policy target for electricity generation that meets the 

projected demand, and in the absence of pre-mature retirement of existing power plants. 

The corresponding lower bound on the     emissions is also established the same way in 

Figure 21b. It also shows that although lower emissions are achieved even under 

generation cost minimization alone, this requires sufficient investment in early stages and 

even then the temperature increases substantially. In other words, the temperature path is 

“stickier” than the emission path. 
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APPENDIX A 

DICE OPTIMIZATION PROBLEM 
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APPENDIX B 

PROOF OF THE MAIN THEOREM 

 

 This appendix outlines the proof of the main theorem from chapter 3: 

 

Theorem 1: Let   be the value iteration operator defined by Equation (16), and let   be 

the  -step-ahead value function approximation. The value iteration algorithm defined in 

Table 2 converges to   (  ), the true value of the episodic state    for every         

with step size   
  

 

   
  where   (   ) and   (       ). 

Proof: To prove this theorem, we first need to show that the  -step-ahead value function 

approximation  ̅ 
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To show that  ̅ 
 (  ) is an average we need to show that the sum of the coefficients on 

the right hand side is one: 

(   )   ∑(   ) 
   

   

 (   )   
  (   ) 

  (   )
 (   )    (   )    

Since we can assume any initial constant value for  ̅ 
 , we showed that the approximation 

function  ̅ 
 (  ) is the average of target values  ̂ 

 (  ) for         . Using Theorem 3.2 

from [92] we can prove that   is a nonexpansion in max norm: 
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That means the approximation  ̅ 
  is nonexpansion in max norm and since Equation (16) 

is a contracting mapping, the value iteration algorithm defined in Table 2 is converging. 
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APPENDIX C 

INTEGRATED POWER GENERATION EXPANSION PLANNING 

MODEL 

 

 The dynamics of the integrated global power generation expansion planning 

(PGEP) problem can be better understood by defining the generation state and its 

components. For each technology   we define the generation state as 

  
  (  

      
      

      
      

   ), where   
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 is the cumulative built capacity of type   

power plant until time  . The PGEP optimization problem tries to find the optimal values 

of   
   

 over the planning horizon in order to minimize costs associated with power 

generation including construction, operation, and environmental costs. The relationships 

among these components are demonstrated in the equations below. 
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for the next time period. Let    and    be the lead time (construction time) and operation 
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            ∑    
 

 

   

 

where     
 is the new operation generation from construction of the power plants before 

time  .     
  is the gross operation generation (not including time  ’s generation).        

is the generation deficit that needs to be fulfilled by new generation. The decision 

variable   
  is the portion of this deficit which will be assigned to the type   power plant. 

Therefore, the current new construction generation capacity will be calculated as: 

  
      

            

Since only  
  ⁄  of this capacity will be available for operation at time    , the 

reminder will be carried over as the under-construction capacity: 
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Cumulative built capacity is updated for the next time step as 

    
      

      
   

 

Generation Cost 

 The cost analysis for different power plants is based on estimations from the U.S. 

Energy Information Administration (EIA) Annual Energy Outlook. These costs are used 

as an idealization of global cost parameters; variations in access to fuels increases costs in 

some locations; adoption of US cost parameters represents an idealization of global fuel 

access. Table S1 shows the cost parameters for different technologies. Generation 

expenses are divided into four main categories of Capital Cost, Fixed O&M Cost, 

Variable O&M Cost, and Fuel Cost. The Capital Cost includes civil, structural, 

mechanical, and electrical material and installation in addition to indirect and owner’s 

cost. Fixed O&M expenses including staffing and administrative expenses are those costs 
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that do not vary significantly with the output of the power plant. Variable Costs on the 

other hand are directly related to the generation level and availability of the plant. To 

calculate the Fuel Costs for the coal-fired and natural gas-fired power plants, we use the 

EIA’s fuel prices projection to 2040 [88]. For nuclear power plants a constant value for 

the uranium oxide price including a nuclear waste fee is added to the variable O&M cost 

[93]. 

Table C1: Power plants cost characteristics [94] 
Generation 

Type 

Lead Time 

(years) 

Life Time 

(years) 

Heat Rate 

(Btu/kWh) 

Capital Cost 

(USD/kW) 

Fixed O&M 

Cost 

(USD/kw year) 

Variable O&M 

Cost 

(USD/MWh) 

Fuel Cost 

2011 

(USD/mil Btu) 

Coal 4 40 8800 3246 37.8 4.47 2.38 

Natural Gas 3 30 7050 917 13.17 3.60 4.80 

Nuclear 5 35 0 5530 93.28 2.14+5.60 0 

Solar PV 2 20 0 3873 24.69 0 0 

Wind 4 30 0 2213 39.55 0 0 

Solar Thermal 2 20 0 5067 67.26 0 0 

CCS 4 40 12000 5227 80.53 9.51 2.38 

Hydro 4 100 0 2936 14.13 0 0 

 

 
Figure C1: Coal and natural gas prices projection [88] 

 

Learning curves 

We implant an endogenous learning mechanism into the model to update the construction 

cost and emissions of each type of power plant based on its total generation. Therefore, 

the construction of any power plant type   will contribute to reduction in its construction 

cost and emissions in future. We define the nonlinear learning function as: 
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   (  

   )
  

 

where   is the baseline normalization (     
 (  

   )
 
) and   is the learning parameter 

equal to – [  (    )   ( )] and      
  is the capital cost of type   power plants at time 

   . For each power plant type  , the reduction in capital cost for every doubling of 

operating generation (  ) is an exogenous parameter. The construction emissions possess 

similar learning behavior. As a technology is being installed and operated more, the 

capital cost and emissions of that technology will decline. Three learning rates (   ,    , 

and    ) are considered to distinguish between different learning stages as a new 

technology is introduced into the market. While new untested technologies see high rates 

of learning initially, more conventional designs have very limited learning potential. The 

status of each technology along with the corresponding learning rates are presented in 

table C2. Radical technologies have a fast learning at the first stage but after 3 doublings 

(eight times the initial installed capacity) their learning rates fall in the second stage. In 

the last stage when the technologies are mature, a flat rate of 1% applies to all 

technologies. 

Table S2: Power plant learning characteristics (from table 8.3 Electricity Module [88]) 
Generation 

Type 

Technological 

Status 

Learning 

rate LR1 

Learning 

rate LR2 

Learning 

rate LR3 

Period 1 

doublings 

Period 2 

doublings 

Coal Mature - - 1% - - 
Natural Gas Mature - - 1% - - 
Nuclear Incremental 5% 3% 1% 3 5 
Solar PV Incremental - - 1% - - 
Wind Mature - - 1% - - 
Solar Thermal Radical 20% 10% 1% 3 5 
CCS Radical 20% 10% 1% 3 5 
Hydro Mature - - 1% - - 

 

 Figure C2 shows how the price of each technology is projected to drop at different 

stages after a total of 9-fold increase in installed capacity. Mature technologies show a 

steady rate of decline while the revolutionary technologies including Solar Thermal and 

CCS demonstrate a sharp decline in the early stages of deployment. 
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Figure C2: Learning curves for different technologies [88] 

 

GHG emissions and concentration 

 We consider three types of GHG emissions for this model. The emissions from 

each type of power plant are calculated using the values provided in Table C3.  

Table C3: Power plants emission characteristics  
Generation 

Type 

Construction Period Total Operation Period 
CO2 

(kg/MWe) 

CH4 

 (kg/MWe) 

N2O 

(kg/MWe) 

CO2 

(kg/MWe/yr) 

CH4 

 (kg/MWe/yr) 

N2O 

(kg/MWe/yr) 

Coal 2.02E+05 6.17 9.34 6.59E+06 1.21E+03 5.82E+02 
Natural Gas 7.62E+05 0 0 5.30E+06 0 0 
Nuclear 3.67E+07 0 0 6.66E+05 0 0 
Solar PV 1.74E+07 5.33E+02 4.78E+02 0 0 0 
Wind 3.25E+07 0 0 0 0 0 
Solar 

Thermal 

3.73E+07 0 0 0 0 0 

CCS 4.63E+06 0 0 1.75E+06 1.32E+04 7.36E+03 
Hydro 7.88E+05 5.78E+01 4.51E+01 0 0 0 

 

 The concentration from unit emission of each greenhouse gas is calculated using 

the concentration equations below (from Table 2.14 of [95]) : 

  
                                                       

  
           

  
            

 To calculate the concentration of GHG emissions in the atmosphere we need to 

account for the methane breakdown in the atmosphere that ultimately forms     and will 
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add to the concentration of it. Let    be the GHG emission at time   and    be the 

concentration. We can write the relationships between emissions and concentration as: 

  
    ∑(  

   {      
    (    

   )       
   })

 

   

 

  
    ∑(  

         
   )

 

   

 

  
    ∑(  

         
   )

 

   

 

Radiative Forcing 

 The concentration of GHG emissions further will be translated into changes in 

radiative forcing. Using the Intergovernmental Panel on Climate Change’s (IPCC) 

assessments we can derive the radiative forcing from each GHG concentration using the 

equations below [95]: 

  
        (  (    

)    (   )) 

where   ( )    (                         ) and     
       

       ⁄  

  
        (√    

 √    )    (    
    )    (        ) 

  
        (√     √   )    (         )    (        ) 

where   (   )         (           (  )                (  )    ), 

    
        

        ⁄  and     
       

        ⁄  

 Total change in radiative forcing can be obtained from adding radiative forcing 

changes corresponding to each GHG emission. 

     
      

      
    

Temperature change 

 In order to estimate the change in the global mean surface temperature (  ) from 

power generation emissions, we adopt a one-dimensional “slab ocean” model: 
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The boundary conditions will guarantee the existence of a numerical solution for above 

equation. These conditions include: 

   

  
|
   

 
(     )

    
|
   

 

  |      

   

  
|
      

   

Choosing           meters as the maximum depth of the ocean to be modeled, 

             the density of seawater,          (     ) the heat capacity of 

seawater,                 the ocean vertical thermal diffusivity, and         as 

the fraction of the earth covered by ocean, we will be able to calculate the temperature 

change due to the change in the radiative forcing. The results depend also on the choice 

of the climate sensitivity related parameter  . This parameter is the ratio of the radiate 

forcing change to the change in    from doubling of the     concentration in the 

atmosphere. 

Results 

Each optimization model is coded and solved in MATLAB R2013b. The total generation 

cost at each time period comprises four components namely Construction cost, Fixed 

O&M Cost, Variable O&M Cost, and Fuel Cost. Figures C3 and C4 show the changes in 

the total generation cost over time for different models. 
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Figure C3: The generation cost components in the generation cost minimization (GEN) models. The top 

row (a and b) shows the model with 10% discount rate and the bottom row (c and d) shows the model with 

5% discount rate. The right panels (b and d) are the cases with learning while the left panels (a and c) are 

without learning. 
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Figure C4: The generation cost components in the damage cost minimization (DAM) models. The top row 

(a and b) shows the model with 10% discount rate and the bottom row (c and d) shows the model with 5% 

discount rate. The right panels (b and d) are the cases with learning while the left panels (a and c) are 

without learning. 
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