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SUMMARY 

 

 

In this thesis, we study three supply chain planning problems. The first two 

problems fall in the tactical planning level, while the third one falls in the 

strategic/tactical level. We present a direct application for the first two planning problems 

in the wind turbines industry. For the third problem, we show how it can be applied to 

supply chains in the food industry. 

Many countries and localities have the explicitly stated goal of increasing the 

fraction of their electrical power that is generated by wind turbines. This has led to a 

rapid growth in the manufacturing and installation of wind turbines. The globally 

installed capacity for the manufacturing of different components of the wind turbine is 

nearly fully utilized. Because of the large penalties for missing delivery deadlines for 

wind turbines, the effective planning of its supply chain has a significant impact on the 

profitability of the turbine manufacturers. Motivated by the planning challenges faced by 

one of the world’s largest manufacturers of wind turbines, we present a comprehensive 

tactical supply chain planning model for manufacturing of wind turbines in the first part 

of this thesis. The model is multi-period, multi-echelon, and multi-commodity. 

Furthermore, the model explicitly incorporates backorder penalties with a general cost 

structure, i.e., the cost structure does not have to be linear in function of the backorder 

delay. To the best of our knowledge, modeling-based supply chain planning has not been 

applied to wind turbines, nor has a model with all the above mentioned features been 

described in the literature. Based on real-world data, we present numerical results that 
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show the significant impact of the capability to model backorder penalties with general 

cost structures on the overall cost of supply chains for wind turbines.  

With today’s rapidly changing global market place, it is essential to model 

uncertainty in supply chain planning. In the second part of this thesis, we develop a two-

stage stochastic programming model for the comprehensive tactical planning of supply 

chains under supply uncertainty. In the first stage, procurement decisions are made while 

in the second stage, production, inventory, and delivery decisions are made.  The 

considered supply uncertainty combines supplier random yields and stochastic lead times, 

and is thus the most general form of such uncertainty to date. We apply our model to the 

same wind turbines supply chain. We illustrate theoretical and numerical results that 

show the impact of supplier uncertainty/unreliability on the optimal procurement 

decisions. We also quantify the value of modeling uncertainty versus deterministic 

planning. 

Supplier selection with quantity discounts has been an active research problem in 

the operations research community. In this the last part of this thesis, we focus on a new 

quantity discounts scheme offered by suppliers in some industries. Suppliers are selected 

for a strategic planning period (e.g., 5 years). Fixed costs associated with suppliers’ 

selection are paid.  Orders are placed monthly from any of the chosen suppliers, but the 

quantity discounts are based on the aggregated annual order quantities. We incorporate 

all this in a multi-period multi-product multi-echelon supply chain planning problem and 

develop a mixed integer programming (MIP) model for it. Leading commercial MIP 

solvers take 40 minutes on average to get any feasible solution for realistic instances of 

our model. With the aim of getting high-quality feasible solutions quickly, we develop an 
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algorithm that constructs a good initial solution and three other iterative algorithms that 

improve this initial solution and are capable of getting very fast high quality primal 

solutions. Two of the latter three algorithms are based on MIP-based local search and the 

third algorithm incorporates a variable neighborhood Descent (VND) combining the first 

two. We present numerical results for a set of instances based on a real-world supply 

chain in the food industry and show the efficiency of our customized algorithms. The 

leading commercial solver CPLEX finds only a very few feasible solutions that have 

lower total costs than our initial solution within a three hours run time limit. All our 

iterative algorithms well outperform CPLEX. The VND algorithm has the best average 

performance.  Its average relative gap to the best known feasible solution is within 1% in 

less than 40 minutes of computing time.  
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Chapter I 
 
 
 

INTRODUCTION 
 
 
 

A supply chain network is an integrated system that links a series of inter-

connected business practices/processes that aid in getting a supply of raw materials, 

transforming them to end products, and distributing these end products to customers [1]. 

A supply chain is meant to facilitate the exchange of information along its different 

echelons (e.g., suppliers, transformation facilities, distribution centers, and customers). Its 

main objective is to increase profitability and enhance different operational activities.   

With the increased complexity of structure and scale of today’s supply chains, it 

becomes vital to develop analytical tools that help decision makers perform supply chain 

planning effectively. Depending on the time horizon, there are three levels of supply 

chain planning: strategic, tactical, and operational. Among others, Vidal and 

Goetschalckx [2], and Simchi-Levi et al. [3] mentioned the different planning decisions 

in each level. The strategic level deals with time horizons that are more than a year and 

have long-lasting impacts on the company. It entitles decisions like facility locations, 

numbers, and capacities, supplier selection, mode of transportation choice, and pricing. 

For the tactical level, the time ranges from a month/quarter to a year. Decisions here 

include demand allocation, inventory management, production/distribution coordination, 

production planning, and procurement. The operational level considers short-term 
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decisions over hours, days, or at most weeks. Such decisions include production 

scheduling, truck loading, dispatching, and routing. 

In this thesis, we study three supply chain planning problems. The first two 

problems fall in the tactical level category, while the third one considers a 

strategic/tactical problem. For all three problems, we consider a multi-periods, multi-

products, multi-echelons supply chain with a multi-leveled bill of materials (BOM), 

inventory, manufacturing, and distribution considerations. We also include capacity 

restrictions at the manufacturing facilities, capacities at suppliers, and customer demand 

per period for each product. The first and third problems consider different aspects of 

deterministic supply chain planning, while the second problem deals with supply chain 

planning under uncertainty. 

The rest of this chapter is outlined as follows: In Section 1.1, we give a brief 

problem definition for each of the three problems considered in this thesis and illustrate 

the research questions related to each. Then, we introduce some background for the 

technical methodologies used to solve each of our problems in Section 1.2. In Section 

1.3, we state the thesis scientific contributions. Note that the detailed problem description 

and methodological development for each problem will be explained in its respective 

separate following chapters. 

1.1 Problems Definition and Research Questions  

 Wind turbines have grown in the previous few years as an alternative source of 

green energy. The supply chain associated with the manufacturing and assembly of wind 

turbines is typically global and complex, and thus its effective supply chain management 
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is necessary [4]. It is characterized with very expensive backorder penalties paid to 

customers whenever a delivery of a wind turbine is late. That penalty is a function of how 

long the delay is. However, it is not always a linear function. We present the first 

analytical model for the tactical planning of wind turbines supply chain and apply it to 

the supply chain of one of the world’s biggest wind turbines manufacturers. Our model 

handles the aforesaid backorder penalties for the first time. Given this supply chain, we 

are faced with the following research questions: 

• How can we determine the optimal procurement quantities, product flows, 

inventory levels, and manufacturing quantities across this supply chain? 

• How do backorder penalties impact the optimal decisions? 

• How can we include backorder penalties that are nonlinear functions of the 

backorder delay? 

• How useful is it to be able to model such general backorder cost structure rather 

than just approximating it with a linear cost structure? 

 Uncertainty is one of the realistic and important features in today’s supply chains, 

but it is very challenging to include in analytical models. In our second problem, we 

extend the first problem to include uncertainty. We focus on a new form of supplier 

uncertainty, which is not uncommon in practice. This supplier uncertainty is a 

combination of stochastic supplier lead times and random supply yield. The research 

questions one faces for this problem are: 

• How can we model this problem and include that general case of supplier 

uncertainty? 
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• Do optimal procurement decisions and chosen suppliers differ when supplier 

uncertainty is modeled? 

• What is the quantifiable improvement when uncertainty is modeled versus just 

using deterministic planning? 

 Supplier selection is another commonly studied issue in the literature of supply 

chain planning. In the third problem, we study a similar problem to the first one except 

that we include supplier selection with a new realistic quantity discount scheme, where 

the discount is based on the total aggregated annual order quantities. Suppliers are 

selected for a strategic period of time (typically 3 to 5 years). There is a fixed cost for 

each selected supplier. However, orders are placed in each time period (typically a 

month).  We show an application of this scheme in a supply chains in the food industry. 

Given this definition, the research questions for this part are as follows: 

• How can this problem be modeled?  

• How time-efficient is it to get good feasible solutions quickly using leading 

commercial optimization solvers? 

• Can we construct customized algorithms that generate high quality solutions 

quickly? 

• How does using such algorithms compare to solving the model using the 

commercial solvers? 



5 
 

1.2 Technical Preliminaries 

 We introduce the basic concepts for the different technical methodologies used in 

this thesis; mixed integer programming (and linear programming), stochastic 

programming, local search, and variable neighborhood descent. 

1.2.1 Mixed Integer Programming 

 A mixed integer linear programming (MIP) problem is given by: 

min ���   1.1 
s.t. �� ≥ �   1.2 
 �� ∈ ℤ
 ∀� ∈ 
  1.3 
 �� ≥ 0 ∀� ∈ �  1.4 

 Where � is a � −dimensional vector of decision variables, ℤ
 is the set of non-

negative integers, and 
 ⊆ {1, … , �} is the set of integer variables. These variables might 

be further restricted to be either zero or 1, in which case they are called binary variables. 

� is the set of continuous variables. The sets 
 and � partition the set of variables 

{1, … , �}. Let ℚ be the set of rational numbers, � ∈ �� is the cost vector, � ∈ ���� is 

the constraint matrix, and � ∈ �� is the right hand side vector for the constraints. Let � 

be the feasible region of the above problem, and ����(�) denote the convex hull of �. In 

this case, any point � ∈ � is an integer feasible solution of the MIP. If set 
 = ∅, then the 

above problem becomes a linear programming (LP) problem, which is much easier to 

solve than a MIP. Also, if we relax the integrality constraints (1.4), then the resulting 

problem is called the LP relaxation of the MIP. Most algorithms that are used to solve 

MIPs start with solving the LP relaxation.  

 MIPs are NP-hard optimization problems. Leading commercial solvers (e.g., 

CPLEX [5] and Gurobi [6]) provide multiple techniques to solve MIPs. Typically, they 

use a “branch-and-cut” procedure, which combines the methods of “branch-and-bound” 



6 
 

and “cutting-planes”. In branch-and-bound, some kind of smart enumeration of the 

complete solution space is done via pruning nodes that will not lead to any of the optimal 

solution(s). Branch-and-cut introduces valid inequalities that strengthen the LP relaxation 

by excluding parts of the solution space that do not contain any of the integer feasible 

solutions. For a review of the latter two methods and a comprehensive treatment of MIPs, 

we refer the reader to [7] and [8]. As for linear programming, we refer the reader to [9]  

and [10]. 

1.2.2 Stochastic Programming 

 Optimization under uncertainty has been an active research area for many years. 

There are multiple classifications for different stochastic optimization 

techniques/methods. We only use two-stage stochastic programming with recourse, and 

thus solely focus on this class of problems here. The dynamics of this problem is as 

follows: We make a decision � before observing the realization of a random event $. 

Then, we take a recourse action, say %(�, $). Hence, � and % are the vectors of the first 

and second stage decision variables, respectively. Following [11], a two-stage stochastic 

linear program can then be expressed as follows: 

min ��� + ()�(�, $(*))+ 1.5 
s.t. �� = � 1.6 
 � ≥ � 1.7 

Where �(�, $) is the optimal value of the following second stage problem: 

min ,-% 1.8 
s.t. .� + /% = ℎ 1.9 
 % ≥ 0 1.10 

 The second stage problem depends on the data $ = (,, ℎ, .,/), where some or 

all of the aforesaid parameters may have random values. The distribution of $(*) is 
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assumed to be known. Matrix . is called the technology matrix, and matrix / is called 

the recourse matrix. If the W matrix is not random, our problem is said to have a fixed 

recourse. If, for any decisions we take in the first stage, one can always construct a 

feasible solution for the second stage problem, the whole problem is said to have a 

complete recourse. The rest of the notation follows that of the MIP presented before. 

 In some cases, $ might have a discrete (finite) distribution of 1 possible 

realizations, i.e., $2 = (,2, ℎ2, .2), 3 = 1,… , 1, with corresponding probabilities 42.	We 

can then include all the possible realizations (sometimes called scenarios), and calculate 

()�(�, $)+ = ∑ 42�(�, $2),7289  where �(�, $2) = min	{,2�%2: .2� + /%2 = ℎ2 , %2 ≥ 0}. 
Hence, the problem (1.5-1.10) can be formulated as one large-scale linear program as 

follows: 

min ��� + > 42,2�%27
289  1.11 

s.t. �� = � 1.12 
 .2� + /2%2 = ℎ2 , 3 = 1,… , 1 1.13 
 � ≥ 0 1.14 
 %2 ≥ 0, 3 = 1,… , 1 1.15 

 Linear program (1.11-1.15) has a special block structure that makes it possible to 

be solved efficiently using different decomposition techniques. The most popular among 

such techniques is the so-called L-shaped method (see [12]). 

 First stage and/or second stage variables can be integers, by extending the above 

formulation to include integrality restrictions. In this case, the stochastic program is 

harder to solve (in particular when the second stage variables are integers). For a more in-

depth analysis of the theory of stochastic programming, its solution algorithms, and 

extensions, we refer the reader to the texts of [13], [11], and [14].  
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1.2.3 Local Search 

 Because realistically-sized instances of MIPs are often very difficult to solve, 

development of fast heuristics has become a common research practice [15]. Local search 

algorithms are among the most popular examples of such heuristics. Beginning with an 

initial feasible solution �(?), a local search algorithm is an iterative procedure that 

searches the “neighborhood” of any given solution for an improved one. The procedure 

stops when there is no improved solution to the current solution. In this latter case, the 

algorithm is said to have reached a local optimum solution. Ghiani et al. [15] outlines a 

general local search algorithm as follows: 

“Step 0. Initialization. Let �(?) be the initial feasible solution and let @(�(A)) be its 

neighborhood. Set ℎ = 0. 
 Step 1. Enumerate the feasible solutions belonging to @(�(A)). Select the best solution 

�(A
9) ∈ @(�(A)). 

Step 2. If the cost of �(A
9) is less than that of �(A), set ℎ = ℎ + 1 and go back to Step 1; 

Otherwise, STOP, �(A) is the best solution found.” 

1.2.4 Variable Neighborhood Descent 

 Variable neighborhood descent (VND) is a meta-heuristic that has been used 

successfully to solve hard optimization problems efficiently. Changing the neighborhood 

in a systematic way within a randomized local search algorithm is the main idea behind 

VND. See [16] and [17] for a detailed treatment of this method and an illustration of how 

it can be applied to different optimization problems. Algorithm 1 below is adopted from 

[16] and [17] that present the basic steps of VND. 
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Algorithm 1 Algorithmic Steps of the Basic VND Adopted from [16] and [17] 

    Initialization: 
      Select the set of neighborhood structures @2; 3 = 1,… , 3�B�. 
      Find an initial solution �. 
    Repeat the following until no improvement is obtained: 

      3 ← 1 
      while 3 ≤ 3�B� 	do 
         Find the best neighbor �′ of  �F�G ∈ @2(�)H. 
         if �GIJ	�KLLKM	LℎN�	� then 
            � ← �G  
         else 

            3 ← 3 + 1 
         end if 
      end while 

1.3 Thesis Contributions 

 This thesis presents various contributions. We state the contributions for each of 

our three studied problems as follows: 

• For the first problem: 

– Developing a comprehensive tactical supply chain planning model for the 

wind turbines industry for the first time. 

– Modeling delay-dependent backorder costs of any functional form, and 

coming up with sufficient conditions or additional constraints to avoid the so 

called multi-hop backorders. 

• For the second problem: 

– Developing a stochastic model for comprehensive tactical supply chain 

planning with a general form of supplier uncertainty. 

– Studying the effect of supply uncertainty on procurement decisions, both 

theoretically and empirically. 

– Applying our modeling approach to a real-world wind turbines supply chain. 

• For the third problem: 
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– Defining and developing a modeling approach for a time-aggregated 

quantity discounts scheme. 

– Developing different customized solution algorithms for the problem based 

on MIP-based local search and VND using novel neighborhoods. 

– Applying our model to a realistic food supply chain. 

– Illustrating the efficiency of using our customized algorithms in getting high 

quality solutions quickly compared to a leading commercial solver. 

 The rest of this thesis is outlined as follows: In chapters II, III, and IV, we present 

the three studied problems, review the literature related to each problem, illustrate a 

detailed problem definition and the used methodology to solve it, and show numerical 

results. In chapter V, we end with our conclusions and directions for future research. 
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Chapter II 
 
 
 

TACTICAL PLANNING FOR A WIND TURBINES SUPPLY 

CHAIN CONSIDERING DELAY DEPENDENT 

BACKORDER PENALTIES WITH A GENERAL COST 

STRUCTURE 

 
 
 

2.1 Introduction 

 Effective supply chain management is vital in the wind turbines industry [4]. 

Conversion of wind energy to electricity is the most rapidly growing renewable energy 

source in the world [18]. There has been a constant global growth in the installed capacity 

of wind turbines [19], with an average annual growth rate in the U.S. over the past five 

years of 33% [20]. In 2012, wind energy constituted 43% of all newly installed electricity 

generating capacities in the US [21]. Nevertheless, to the best of our knowledge, there 

has not been any application reported in the literature for supply chain models in that 

industry. This chapter presents a comprehensive supply chain planning model and case 

study for world’s second biggest manufacturer of wind turbines [22].   

 Backorder penalties paid to customers for late deliveries can be critical for the 

economic success of a project in the wind turbines industry, especially with the ever 

growing demand and tight manufacturing capacities in this industry (see e.g. [19]).  With 

these challenges in mind, it is no longer feasible to solely rely on ad hoc planning using 
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spreadsheets as is the common practice. Merely devising a feasible supply chain plan 

became in itself very challenging and time consuming. A model-based supply chain 

planning tool combined with optimization thus represents a critical need. 

 Backorder penalties in our case study depend on the fulfillment delay, which is 

defined as the time lapse from the period the demand is backordered to the later period 

when the demand is fulfilled. Hsu and Lowe [23] used the term “period-pair-dependent” 

for this type of backorder cost function. We will refer to it as the “delay dependent” 

backorder. This backorder penalty function is not necessarily linear with respect to the 

backorder delay. To the best of our knowledge, prior results published in the literature 

only treat the case of linear cost structures (see e.g. [24]). More general cost structures 

were presented in [23], but for the economic lot sizing problem. We will discuss cost 

structures for delay dependent penalties in more details in Section 2.2 of this chapter. 

 Our supply chain model can handle backorder costs that have any cost structure in 

function of the backorder delay. Note that a piecewise convex or an exponential cost 

structure may be stipulated by the customers in order to penalize long fulfillment delays. 

These cost structures were observed in the case study that we present.   

 Therefore, the contributions of this chapter are twofold: First, we present a model 

and case study in a new tactical supply chain planning application (wind turbines). 

Second, we develop a modeling framework for general backorder delay dependent cost 

structures. We also show the impact of approximating, for instance, piecewise linear 

convex cost structures by linear functions on the costs incurred. In addition, we illustrate 

that adding backorder costs in general can have significant effects on the overall supply 

chain costs and on the supply chain planning decisions. 
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 The remainder of this chapter is structured as follows: in Section 2.2, we review 

the literature on tactical supply chain planning and backorder costs. We then explain the 

real world supply chain case study that inspired this work, and develop our model in 

Section 2.3. In Section 2.4, we highlight and discuss some numerical results.  

2.2 Literature Review 

 Depending on the scope of the planning decisions, the levels of planning for 

supply chains are typically divided into three classes: strategic, tactical and operational 

[2]. Numerous articles exist that focus on the strategic decisions such as facility locations 

and capacities [25]. Many of these articles include some tactical decisions as well. 

However, fewer articles focus solely on the tactical planning.  

 In their reviews, Vidal and Goetschalckx [2], Beamon [26], and Melo et al. [25] 

provided a summary of the different considerations that are usually included in supply 

chain planning models (sometimes referred to as production-distribution models). 

According to the authors, the main tactical considerations are: multi-period planning, 

multi-commodity, transportation/distribution, inventory, manufacturing issues (such as 

the bill of materials (BOM), production capacity at plants, and storage limitations), 

capacity of transportation channels, supplier selection, capacity at suppliers, distribution 

center capacities, and number of echelons in the supply chain. Costs typically included 

are the transportation cost, production cost, inventory holding cost, and 

backorder/backlog penalties. 

 Comprehensive supply chain planning models that do not include backorder costs 

have been proposed in [27-30], among others. Each of these papers includes production, 
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inventory, transportation, and distribution for strategic/tactical design of multi-echelon 

multi-period multi-commodity supply chains. Comprehensive supply chain planning 

models in the literature that include backorder costs can be found in [24, 31, 32]. All of 

these latter models consider only linear backorder penalties.  The recent model of Stadtler 

[24] is the only one that includes backorder cost structures that are a function of the 

backorder delay, but it treats only linear penalties.  

 The only models we could find in the literature that include nonlinear backorder 

costs are lot sizing/production related models (i.e., models that do not include 

distribution). We differentiate between two different categories here. One category 

includes backorder costs that do not depend on the delay. For those, the nonlinearity of 

the costs is a function of the backorder quantity. Thus, it is a different type of nonlinearity 

than the one we consider. Examples include the papers of Blackburn and Kunreuther [33] 

and Swoveland [34]. In the first paper, the authors developed a dynamic economic lot 

size model with a concave backlogging cost function. In the second one, the backorder 

cost function was piecewise concave. 

 The second category can be observed in the works of Hsu and Lowe [23], Hsu 

[35], and Bai et al. [36]. In Hsu and Lowe [23], the authors introduced what they called 

the pp-dependent inventory and backorder costs to the classical economic lot size models.  

Then, Hsu [35] extended one of his earlier works to include age-dependent inventory and 

backorder costs to a finite-horizon dynamic economic lot size model for perishable 

products. Note that age-dependent costs are different from pp-dependent ones (see [35] 

for a detailed explanation of the difference). The backorder cost structures for the studied 

problems in both papers have some restrictions with respect to the delay (see Table 1 in 
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[35] for a summary of all the assumptions/restrictions). In Bai et al. [36], the authors 

presented an economic lot-sizing problem with perishable inventory, where delay 

dependent backlogging was allowed. They had multiple restrictions on the backlogging 

cost. With respect to the delay, the marginal cost of having more unfulfilled demand of 

period i, when reaching period t, has to be no bigger than having a similar additional 

unfulfilled demand of period j, when reaching the same period t, where i<j<t. Also, the 

function has to be the so called economies of scale function (see their paper and its 

references for a detailed definition of that function). 

 There are some recent models that concentrated exclusively on tactical planning 

in the literature. Examples of the ones that presented applications in the energy sector are 

[37-40]. Gunnarsson and Rönnqvist [37] considered the integrated production and 

distribution planning for a pulp company, and included some tactical planning decisions 

such as transportation, inventory, and distribution. Ren and Gao [38] developed a mixed-

integer programming model for the integrated plan and evaluation of distributed energy 

systems, and applied it for a test year. Waldemarsson et al. [39] considered the integrated 

planning of the supply chain at a multi-facility pulp company. Their model included 

purchasing, production, transportation, and inventory issues. Their planning horizon was 

one year, with monthly time periods. Zhang et al. [40] proposed a mixed integer 

programming model for the tactical planning of switchgrass-based bioethanol supply 

chains, and applied it to a case study in the state of North Dakota in the US. 

 Other recent tactical supply chain planning applications, which are not in the 

energy sector, can be found in [41-44]. Ahumada and Villalobos [41] developed an 

integrated tactical planning model for the production and distribution of fresh produce. 
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They reported that the model is used for making decisions for a large fresh produce 

grower in Northwestern Mexico. Beaudoin et al. [42] presented a model that aimed at 

supporting the tactical wood procurement decisions with multiple facilities. Ouhimmou 

[43] focused on the tactical planning of a section of a furniture supply chain.  

 All of the previous three tactical planning models did not include backorder cost 

considerations. Taşkin and Ünal [44] included backorder/backlog costs in their tactical 

model for float glass manufacturing. However, the costs were linear and independent of 

any backorder delay. As we mentioned earlier, to the best of our knowledge, none of the 

articles in the literature presented a tactical supply chain planning model in the wind 

turbines industry. Also, none included backorder cost functions that are delay dependent 

and that may have any functional form. Note that we restricted our review here to 

deterministic models and to supply chain planning (production-distribution) or lot sizing 

(production) models. 

 We present a new real world supply chain planning problem in the wind turbines 

industry, and develop a useful comprehensive tactical planning model for that problem. 

The model is multi-echelon, multi-period, multi-commodity, and handles transportation, 

inventory, distribution, production, BOM, resource capacity restrictions, and backorder 

aspects. Backorder delay penalties may have any functional form. We will begin with 

discussing the problem under study then present our model.  

2.3 Problem Definition and Model Development 

 Each wind turbine consists of different main components. These components 

are the tower, nacelle, bearings, blades (a set of 3 blades), gearbox, generator, and rotor. 
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The European Wind Energy Association [4], and He and Chen [19] reported similar main 

parts. Figure 1 shows an illustration of these parts, among other components.  

 The company provides multiple wind turbine models. Our case study includes 

seven different models. Customers can order different quantities from any of these 

models. Each model has identical component structure but different brands/models for 

each component. The BOM for each turbine model is known. Some components are 

shipped directly from suppliers to customer sites. Others are assembled in the company’s 

manufacturing facilities and shipped as subassemblies to customer sites where the final 

wind turbine is assembled. Note that in order to assemble any wind turbine, all of its 

components must be already on-site. Otherwise, parts that arrived early are stocked at 

specific inventory costs until the remaining components arrive.  

 If a turbine is assembled later than the period of its scheduled installation, delay 

dependent backorder penalties have to be paid to the customer. Shortages are not 

allowed. Backorder penalties are very strict and are stated in the contracts with the 

customers. Note that backorder costs in our case study only refer to the aforementioned 

penalties. Liberopoulos et al. [45] defined a variety of different stock-out cost 

quantifications, including one which they called the variable contractual penalties and 

which is exactly the one in our case study. In addition, we ignore any future indirect cost, 

such as the loss of customer goodwill, as indicated in [45]. 
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Figure 1 Components of a Wind Turbine, Reprinted with Permission from Parejo [46] 

 
 Potential suppliers are located all over the globe; therefore procurement decisions 

are significant with expensive transportation costs. In addition, supply capacities are 

usually tight (He and Chen [19] reported a similar result to this). Effective supply chain 

planning guarantees the production and timely delivery of goods for the company, while 

minimizing the total costs that include transportation, inventory, backorder, and other 

resource utilizations. 

 In our cast study, there are 42 different project sites dispersed over North 

America. The schedule to assemble and install a site-dependent number of wind turbines 

at each of the sites has been contractually agreed on. The tactical planning horizon is one 

year, composed of 52 periods (weeks). The planning can be directly incorporated in a 
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rolling planning horizon framework (see Stadler [47] for an example and Sahin et al. [48] 

for a review).   

 There exist 25 different suppliers, some of which are facilities owned by the 

company itself. Note that suppliers are assumed to have been selected a priori.  Supplier 

selection is typically a strategic decision and is not considered in our case study. The case 

study focusses on the tactical planning of procurement decisions. Thus, our formulation 

does not include any supplier fixed costs nor does it deal with any of the methods of 

supplier selection (see e.g. Ho et al. [49] for a review of such methods). There is a 

maximum capacity for assembling final products at each project site during any specific 

period. All the data is assumed to be known in advance. There is a holding cost per 

period per product for keeping one unit of each component or end product at each site. 

The company wants to determine the optimal flow quantities from suppliers to customer 

sites for each component at each period, the optimal assembled quantities, and the 

optimal stored components and end products, and backordered quantities. Because of the 

size of the problem instance and the various cost components, an optimization-based tool 

is required to determine these optimal quantities. Using spreadsheet-based manual 

planning, the company believed that they were off-schedule too frequently, and that they 

were incurring a lot of the expensive backorder penalties. They did not have any way to 

assess these impressions, and were not even able to check the feasibility of spreadsheet 

solutions for this large scale planning problem.  

 The supply chain considered in our model consists of three types of facilities: 

suppliers, transformation facilities, and customers. Suppliers provide products (either raw 

materials or semi-finished products) to transformation facilities where these products are 
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processed (assembled or manufactured). Next, the processed materials are transported to 

either other transformation facilities for further processing or to customers to fulfill their 

demand. There is a multileveled recursive BOM for each product. The flow of products 

can only occur through predefined channels from suppliers to transformation facilities, 

between transformation facilities, or from transformation facilities to customers. The 

echelon structure of the supply chain can differ by product. Transformation facilities can 

be present at different stages of the supply chain for different products.  Products can be 

kept in inventory at any transformation facility either before being processed, as raw 

material or semi-finished products, or after processing, as semi-finished or end products. 

Processing, inventory and throughput capacities are also considered in the model. In 

order to accommodate inventory of components and assembly capacity restrictions at the 

customer sites, a dummy transformation facility is collocated with each customer. Flow is 

only allowed from each dummy transformation facility to the customer at its site with a 

zero delivery cost.  

 The model is multi-product and dynamic, i.e., it has multiple periods. We next 

present the sets, parameters, variables, and formulation of our model. 

2.3.1 Sets 

S Set of suppliers 

P Set of products 

C Set of customers 

T Set of periods 

TF Set of transformation facilities 

R Set of resources 
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FR, AR, 

IR, CR, SR 

Sets of resources required for product flow (FR), assembly (AR) and 

product inventory (IR) in transformation facilities, those required for 

product transportation in the transportation channels (CR), and those 

required for production at suppliers (SR). These are the subsets of the 

set of resources R 

O= S TF∪  Set of Origin facilities, i.e., suppliers and transformation facilities 

D TF C= ∪  Set of destination facilities, i.e., transformation facilities and customers 

OD Transportation channels, indexed by the combination of their origin and 

destination facilities  

2.3.2 Parameters 

irtfcap  Aggregate capacity of throughput resource r at supplier i during 

period t for all products combined 

jrt

jrtjrt

icap

acapfcap ,,
 

Aggregate capacity of resource r at transformation facility j during 

period t for all products combined. The capacities are throughput, 

assembly and inventory capacities respectively 

iptfcap  Capacity of throughput product p at supplier i during period t. 

jpt

jptjpt

icap

acapfcap ,,
 

Capacity of product p at transformation facility j during period t. The 

capacities are throughput, assembly and inventory capacities 

respectively 

ijrtccap  Aggregate capacity of transportation resource r in the transportation 

channel between facilities i and j during period t for all products 

combined transported 

ijptccap  Capacity of transporting product p in the transportation channel 
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between facilities i and j during period t  

jpt

jptjpt

ic

acfc ,,
 

Cost of flow (throughput), assembly, and holding (inventory) 

respectively, for a unit of product p at transportation facility j during 

period t (in case of inventory, the cost is for holding a unit from 

period t to the next period t+1 

jrt

jrtjrt

irc

arcfrc ,,
 

unit resource cost of  resource r for flow, assembly (production), and 

inventory respectively, at transformation facility of type j during 

period t 

jprt

jprtjprt

ires

aresfres ,,
 

Units of resource r consumed by one unit of product p shipped, 

assembled, and stored, respectively, at transformation facility j during 

period t.   

iprtfres  Units of resource r consumed by one unit of product p at supplier i 

during period t.  

ijprtcres  Units of resource r consumed by one unit of product p transported in 

the transportation channel between facilities i and j during period t. 

This and the previous resource parameters allow the model to 

incorporate resource consumption rates that vary by period, e.g., to 

approximate learning curves. 

ijrtcrc  Cost of one unit of resource r in the transportation channel between 

facilities i and j during period t 

ijptcc  Unit cost through the transportation channel from facility i to facility j 

for a unit of product p during period t 

kptdem  Demand for product p at customer k during period t 
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iptpc  Purchase cost for a unit of product p from supplier i during period t 

kptubc  Delay cost, i.e., delay penalty or backorder cost, for delivering one 

unit of product p during period t to satisfy demand during period u at 

customer k 

1 jpvtbom  Number of units of component p required to assemble one unit of 

assembly v during period t in transformation facility j where 

component p is an element of the single level bill of material of 

product v 

_ jpinit inv  Initial inventory of product p at transformation facility j 

2.3.3 Decision Variables 

iptpq  Amount purchased from supplier i of product p during period t 

ijptx  Amount of product p transported from i to j during time period t, where 

ODji ∈),(  

jptjpt ofqifq ,  Amount of product p respectively transported into and out of 

transformation facility of type j during time period t 

jptiq  Amount of product p stored (carried as inventory to the next period) at 

transformation facility of type j from time period t to time period t+1 

kptubq  Backorder quantity of product p delivered to customer k during period t 

that is used to satisfy the demand of this customer for this product during 

time period u, where u is smaller than t 

jptaq  Amount of product p assembled, i.e., manufactured or produced, at 

transformation facility j during time period t 
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jpvtcq  Amount of component product p used in assembly/manufacturing of 

product v at transformation facility j during time period t 

kptdq  Amount of product p delivered to customer k during period t to satisfy 

the demand during this period and possible backordered quantities of 

prior periods.  

2.3.4 Model Formulation 

 The complete tactical supply chain model is given next.  The model can be further 

condensed by directly substituting variables, but it is given below in its more expanded 

form to clearer show its structure.  Modern linear programming solvers will make the 

substitutions in their pre-solve phase, so this more expansive version does not increase 

solution time significantly. 

Min 
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s.t. 
irtipt

Pp

iprt fcappqfres ≤∑
∈

.  SRrTtSi ∈∀∈∀∈∀ ,,    2.2 

 
iptipt fcappq ≤  TtPpSi ∈∀∈∀∈∀ ,,     2.3 

 ∑
∈

=
TFj

ijptipt xpq  TtPpSi ∈∀∈∀∈∀ ,,    2.4 
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ijrtijpt

Pp

ijprt ccapxcres ≤∑
∈

.  CRrTtODji ∈∀∈∀∈∀ ,,),(    2.8 

 
ijptijpt ccapx ≤  TtPpODji ∈∀∈∀∈∀ ,,),(    2.9 

 
ipt

Dj

ijpt ofqx =∑
∈

 TtPpTFi ∈∈∀∈∀ ,,  2.10 

 =jpvtcq 1 jvtjpvt aqbom .  TtPvPpTFj ∈∀∈∀∈∀∈∀ ,,,

 
2.11 

 
jrtjpt

Pp

jprt acapaqares ≤∑
∈

.  TtARrTFj ∈∀∈∀∈∀ ,,  2.12 

 
jptjpt acapaq ≤  TtPpTFj ∈∀∈∀∈∀ ,,  2.13 

 ∑
∈

≤
Pp

jrtjptjprt fcapofqfres .  TtFRrTFj ∈∀∈∀∈∀ ,,  2.14 

 
jptjpt fcapofq ≤  TtPpTFj ∈∀∈∀∈∀ ,,  2.15 

 
jrt

Pp

jptjprt icapiqires ≤∑
∈

.  TtIRrTFj ∈∀∈∀∈∀ ,,  2.16 

 
jptjpt icapiq ≤  TtPpTFj ∈∀∈∀∈∀ ,,  2.17 

 
kpt

TFj

jkpt dqx =∑
∈

 TtPpCk ∈∀∈∀∈∀ ,,  2.18 

 ∑∑
<∈<∈

+=+
tuTu

kptkptu

utTt

kputkpt dembqbqdq
::

 TtPpCk ∈∀∈∀∈∀ ,,  2.19 
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 0≥iptpq  TtPpSi ∈∀∈∀∈∀ ,,  2.20 

 0≥ijptx  TtPpODji ∈∀∈∀∈∀ ,,),(  2.21 

 0,,, ≥jptiptjptjpt aqiqofqifq  TtPpTFj ∈∀∈∀∈∀ ,,  2.22 

 0≥kptubq  TuTtPpCk ∈∀∈∀∈∀∈∀ ,,,  2.23 

 
0≥jpvtcq  

TtPvPpTFj ∈∀∈∀∈∀∈∀ ,,,

 
2.24 

 0≥kptdq  TtPpCk ∈∀∈∀∈∀ ,,  2.25 

 
kpt

tuTu

kptu dqbq ≤∑
<∈ :

 }1{\,, TtPpCk ∈∀∈∀∈∀  2.26 

 The objective function 2.1 computes the total cost as the sum of the products of 

the individual unit cost rates multiplied by the corresponding quantities. Costs included 

are purchasing, transportation, inventory holding, assembly, backorder, and different 

resource utilization costs.  

 The model contains four types of constraints: supply capacity, production or 

assembly capacity, conservation of flow at the transformation facilities, and demand 

satisfaction. Typically capacity limitations at suppliers are either for individual products 

or for all products combined.  The former case is modeled in constraint 2.3, while the 

latter one is modeled in constraint 2.2. The model allows both simultaneously but usually 

only one of them is relevant in a particular instance. The equivalent is true for assembly 

capacities at transformation facilities modeled by constraint 2.12, which models the joint 

capacity, and/or constraint 2.13, which models the capacity for an individual product. The 

same applies to the transformation facilities throughput capacity through constraints 2.14 

and 2.15, and inventory capacity at these facilities in constraints 2.16 and 2.17. Similarly, 
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it applies to flow capacities at different transportation channels through constraints 2.8 

and 2.9. 

 The conservation of flow constraint at any transformation facility for a product in 

a certain period has six flows.  The three input flows are transportation receipts, inventory 

held from the previous period, and production during the period.  The three output flows 

are transportation shipments, inventory held to the next period, and consumption of the 

product during the period when it is used as a component in the production process of 

another product. This general form, which covers transformation-space-time at the 

transformation facilities, is used in our model in constraints 2.6 and 2.7.  Figure 2 shows 

these conservations. 

 Two variants of the conservation flow constraint (constraints 2.6 and 2.7 

respectively) need to be created since the equation is different for the first period 

compared to all other periods of the planning horizon.  During the first period there is 

only the initial inventory which is a parameter, while during all other periods, the 

inventory held from the previous period is a decision variable. 

 Constraints 2.4 and 2.18 ensure that all purchased products get transported from 

the suppliers and all produced finished goods get delivered to the customers, respectively. 

Constraints 2.5 and 2.10 relate the product flow to the input and output quantities at 

transformation facilities, respectively. Constraint 2.11 is the BOM constraint. It 

guarantees that the correct amounts of components are consumed in order to assemble 

finished/semi-finished goods. Constraint 2.19 ensures that the goods delivered to a 

customer and backorders from future periods are allocated to satisfy either the demand of 

that period or backorders in previous periods. 
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Figure 2 Transformation-Space-Time Conservation of flow 

 
 The conservation of flow for the customer backorders for a single product at a 

single customer is illustrated in Figure 3.  The “deliveries” are goods delivered by the 

supply chain to this customer. Backorders satisfy demand from a later period to an earlier 

one in the planning horizon. 

Note that in model (2.1-2.25), the backorder cost is defined in a way that is 

explicitly dependent on the backorder delay. The above model may yield infeasible 

solutions because of what we call the multi-hop phenomenon.  Multi-hop is said to occur 

when backorder flows at a certain period satisfying the demand at an earlier period get 

transferred through one or more intermediate periods. See Figure 4 for an example, in 

which we assume that an optimal solution is generated in which quantities delivered at 

period t would be backordered for period u. Therefore, a backorder cost from t to u will 

be the true cost. However, the model might choose to do three backorders (from t to f1,  



29 
 

f1 to f2, and f2 to u) even though no deliveries are made in these intermediate periods; 

because the sum of the three corresponding backorder costs is cheaper than the single 

backorder cost from t to u. Thus, the model will be calculating infeasible flows and a 

corresponding incorrect cost. 

 
Figure 3 Conservation of Flow for Customer Backorders 

 
  To avoid this infeasible solution, we use constraint 2.26. This constraint 

guarantees that any backorder quantity from a period to an earlier period has to be part of 

the delivered quantities to the later period.  There may be a large number of constraints of 

this constraint type, which may make the solution of the model more computationally 

demanding.  We now present the following theorem: 

Theorem 1:  

 If the backorder cost as a function in the backorder delay, say O(∆Q), is strictly 
subadditive, then constraint 2.26 need not be included in the model. 
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Proof:  

From the definition of subadditivity, it will always be cheaper to avoid multi-hops 

and have a direct backorder from a later to an earlier period. Thus, no multi-hop solution 

will ever be part of an optimal solution. This holds if the unit cost is strictly decreasing, 

i.e., O(R. ∆Q) > R. O(∆Q), 0 < R < 1.               ■ 

 Note that concavity here is not required, but concavity implies subadditivity, and 

is thus sufficient to not include constraint 2.26. Another way to indicate this, using the 

same notation of the model, is equation 2.27. 

tfuTfTuTtPpCkbcbcbc kpfukptfkptu <<∈∈∈∈∈∀+< :,,,,                      2.27 

 Condition 2.27 needs to be checked before the instance model is generated. This 

check can be executed in O(|C| X |P| X |T|3) time, where |C|, |P|, and |T| are the 

cardinalities of sets C, P, and T, respectively.  This check is not computationally 

demanding for real world instances. If the condition is satisfied, then constraint 2.26 

should not be included in the model. Therefore, the following theorem has been proved: 

Theorem 2:  

 Any delay dependent backorder cost structure can be included in our modeling 

framework. Strictly subadditive structures do not require the additional constraint 2.26 to 

be included in the model, while other structures do. 

The following corollaries identify some backorder cost structures that satisfy the 

aforementioned condition 2.27.  The proofs are provided in appendices A and B. Other 

delay dependent backorder cost structures may or may not satisfy the condition. 
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Figure 4 Illustration of the Multi-Hop Problem 

 
Corollary 1:  

 A linear backorder cost structure with a positive intercept always satisfies 

condition 2.27. 

Corollary 2:  

 A piecewise linear concave backorder cost structure, with a positive intercept of 

the first interval, always satisfies condition 2.27. 

 Lastly, constraints 2.20 through 2.25 are the non-negativity constraints. In the 

next Section, we present our numerical results and case study.  

2.4 Numerical Results, Discussion, and Case Study 

 We apply our model to the real-world industrial case study described above. We 

also investigate the impact of different backorder cost structures on its performance, as 

well as the effect of backorder costs. Then, we show that being able to model a nonlinear 

delay dependent backorder cost structure can be significant. For each of these results, we 

illustrate how they can be useful for the real-world applications. 

 The model is coded in GLPK® [50], which is an open source optimization 

language and solved with glpsol® [50], under Windows XP®. We developed a database 
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schema in Microsoft Access® that contains data fields for all the model parameters and 

variables in different tables, and read the data from it. The model is generated and solved, 

and the results are stored in the database. The machine used in the experiment has an 

Intel® core 2 duo T7200 with 2.00 GHZ for each processor and 3 G.B. of RAM. The 

instance of our case study takes 10 minutes for model generation including data retrieval 

and gets solved to optimality in 2 minutes. The model generated optimal solutions in a 

fraction of the time previously required to generate a solution using manual or 

spreadsheet-based planning.   

 Note that the supply chain analysts were never able to generate the optimal 

solutions manually. They could not even check the feasibility of any instance of the 

model. This is all treated when our model is used, which demonstrates its value for real-

world applications. In addition, our model can be easily used by users that might not have 

a formal knowledge or training in operations research. Furthermore, using our model, 

they can quickly experiment changing the value of some of the model parameters and 

solving the resulting instances. This was very time-inefficient using manual or 

spreadsheet planning. 

 The case study is characterized by strongly binding supplier capacities and 

significant backorder penalties. The cost of our optimal solution is significantly lower 

than the cost of previous solutions. The model computes all the intricate tradeoffs 

between purchasing, transportation, and backorder decisions in a capacitated supply 

chain. The resulting flows may be counterintuitive at first.  
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2.4.1 Importance of Including Backorder Costs 

 In order to illustrate the importance of adding the backorder cost explicitly in our 

model, we solve two variants of the model for every set of input parameters.  The first 

variant includes the backorder costs in the objective function as described above.  The 

second variant does not include backorder cost in the optimization objective, but 

computes the optimal solution and then adds the backorder costs corresponding to the 

resulting optimal backorder flows.  This calculated total cost is then compared with the 

objective function value of the first variant.  We solved both variants for different 

backorder cost structures but restrict the comparison to linear cost structures. 

 Results show that there is a decrease in the total cost of 15% and up to 85% when 

the backorder cost is explicitly included in the objective function. The reduction is larger 

for steeper slopes of the backorder penalty function, most of which are realistic in the 

case study. Table 1 illustrates some of these reductions.  This demonstrates the value of 

including the backorder penalties explicitly in the model for this particular case study. 

Table 1 Effect of Adding Backorder Penalties to the Objective Function of Our Model 

Slope 

(X1,000) 

% difference between overall cost without backorder penalty 

included and overall cost with backorder penalty included 

1 15% 

10 32% 

25 50% 

50 66% 

100 79% 

150 85% 

 
 There are two applications of these results in the real-world application of the 

wind turbines. First, one can easily experiment the effect of different backorder costs on 
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the overall supply chain cost using our model. Second, knowing how impactful the 

backorder penalties are on the overall cost, the company could focus on negotiating the 

contracts with customers. That is, they can try to include backorder cost structures and 

values that would decrease the overall supply chain cost. During the negotiation stage, 

they can always use our model to economically evaluate any negotiated values before 

signing the contracts. 

2.4.2 Impact of Different Backorder Cost Structures 

 We next study the effect of different linear backorder cost structures on the 

overall cost and flows of our case study.  Figure 5 shows the total objective function 

value in function of the slope of the backorder cost. The total objective function increases 

until the slope reaches a limit of 175,000, after which it remains constant. Figures 6 and 7 

show the changes in the transportation cost, and the backorder and inventory costs in 

function of the cost slopes, respectively. The backorder cost first increases until a slope of 

10,000, then strongly decreases until it reaches zero at a slope of 175,000 and finally 

remains zero for steeper slopes. The total cost behaves nearly identical to the 

transportation cost since the transportation costs makes up about 90% of the total cost.  

 The changes in the total cost are caused by the interaction of the backorder costs 

and the supplier capacities.  For this particular case, the supplier capacity is strongly 

binding on the optimal solution.  The optimal solution tends to use the closer and cheaper 

suppliers as much as possible by using backorders and inventories. When the backorder 

cost slope increases, the model makes a tradeoff between increasing backorder costs and 

sourcing from more distanced and/or more expensive suppliers. When the slope of 

backorder costs reaches 175,000, it is no longer cost effective to use any backordering 
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and the model uses more expensive suppliers for all the unmet demand after consuming 

the capacity of nearby suppliers.  Suppliers are in general nearly fully utilized in earlier 

periods of the planning horizon and as a consequence it is nearly impossible to build up 

inventory in the early periods. This makes the inventory cost almost constant in function 

of the slope of the backorder penalties.  
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Figure 5 Objective Function Values for Different Slopes of the Linear Backorder Cost 
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Figure 6 Transportation Cost for Different Slopes of the Linear Backorder Cost 



36 
 

 

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

C
o

st
s 

(X
 1

,0
0

0
,0

0
0

 $
)

Slope (X 1,000)

Backorder Cost Inventory Holding Cost

 

Figure 7 Inventory and Backorder Costs for Different Slopes of the Linear Backorder Cost 

  

 In order to verify the above explanation of the cost behavior, two additional sets 

of experiments were performed with additional supplier capacities.  In the first 

experiment, we added 20% capacity to the original capacity of each supplier, while in the 

second one, we eliminated the supplier capacity constraints altogether. The results of 

each of these two cases are consistent with the results of the original case, but the overall 

objective function values are lower. For the case where there was no supplier capacity 

constraint, no backorder or inventory is needed. The cheapest suppliers are always 

selected. This results in a significant decrease of the overall cost. Figure 8 shows a 

comparison between the objective function values for the three cases.  

 These results illustrate the tight supply capacity in our wind turbine supply chain 

case study, as indicated earlier in this chapter as well as by other researchers. It also 

shows that it is very difficult to predict which combination of inventory, transportation, 

and backorder flows will constitute the optimal solution, especially for instances of real 
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world size. Only a comprehensive planning model can find a feasible solution that also 

achieves the best tradeoffs. Manual solutions or sub optimization may lead to 

unnecessary delivery delays with their corresponding increasing backorder penalties.   

 
Figure 8 Total Costs for the 20% Added Supplier Capacity Case, and the No Supplier Capacity Case, 

as Percentages of the Original Case 

 
 This result entitles that the company should try to find more potential suppliers or 

see if the currently selected suppliers can increase their capacities. Whenever new 

suppliers are selected, they can be straightforwardly included in our model and the model 

can then be solved again to evaluate the new situation. This, again, is another illustration 

of how our model can be used in the real-world applications. 

2.4.3 Significance of Modeling Some General Backorder Cost Structures 

 We illustrate how it can be significant to model general delay dependent 

backorder cost structure such as a three pieces convex cost structure. This cost structure 

is not uncommon for a real world case study.  

 We solve three variants of the model. The first one includes the piecewise linear 

convex cost structure with three line segments, where the first slope is four times the 
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second slope, and the third slope is nine times the second one. The cutoffs between the 

first and second pieces is at a period difference of four, while that between the second 

and third pieces is at a period difference of 16. Note that constraint (2.26) needs to be 

included for this variant. The second variant is solving the model with a linear 

approximation of that cost structure, where the slope of the first piece is assumed to be 

the only slope. Then, we subtract the total optimal resulting backorder costs and add the 

backorder costs corresponding to the actual three piecewise convex cost function 

multiplied by the corresponding optimal backorder quantities of this variant. The last 

variant is similar to the second one except that we use a linear regression line, that passes 

through the origin, as an approximation of the three piecewise convex structure. We 

chose these two penalty approximations since they could be used within any of the 

models in the literature that handle only linear cost structures. We vary the cost slope of 

the first line segment and report the percentage differences in the increase of costs for 

each of the two approximations compared to the first variant. Note that the total cost 

(objective function value) of the first variant cannot be more than that of the second or 

the third variants; since the real backorder cost structure is included explicitly only in that 

first variant.  

 Table 2 summarizes the results. One can see that the percentage differences can 

reach up to over 6% of the total supply chain costs at realistic cost slopes. These 

percentage differences correspond to millions of dollars. 

 The previous results emphasize that our model should be used instead of previous 

models in the literature for supply chain planning with backorder cost structures that are 
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not linear in the backorder delay. This is another useful application of our model in the 

real-world applications. 

Table 2 Effect of Approximating a Three Piecewise Linear Convex delay dependent Backorder Cost 

Function 

Slope 

(X1,000) 

% increase in cost 

for the 

approximation in the 

second variant 

% increase in cost for 

the approximation in 

the third variant 

2 6.40 152.21 

4 5.83 105.16 

8 4.35 125.30 

10 3.64 141.12 

32 0.95 0.00 

64 0.44 0.00 

128 0.16 0.00 
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Chapter III 
 
 
 

TACTICAL SUPPLY CHAIN PLANNING UNDER 

UNCERTAINTY WITH AN APPLICATION IN THE WIND 

TURBINES INDUSTRY 

 
 
 

3.1 Introduction 

The problem of supply chain planning became even more vital to the business 

practices of most manufacturing and service organizations because of the increasing 

competitive pressures and rapid advances in information technology in today’s global 

marketplace [51]. With the changing market conditions and increasing customer 

expectations in the highly volatile business environment, the impact of uncertainties on 

planning in supply chains needs to be considered [52]. The treatment of uncertainty is 

one of the most challenging but important problems in supply chain management [53]. 

Multiple sources of uncertainty arise in supply chains, such as demand and supply 

uncertainties [54]. According to [55], stochastic programming is the most popular 

methodology for supply chain optimization under uncertainty. Stochastic programming 

(see [13], [11], and [14]), also referred to as optimization under uncertainty or planning 

under uncertainty, has witnessed significant progress in its methodology and practice in 

the past couple of decades [56]. 
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In the previous chapter of this thesis, we introduced a deterministic approach for 

the planning of the supply chains of wind turbines. However, uncertainty and especially 

supply uncertainty is an important factor in this industry since it is strongly capacity 

constrained. Thus, an approach for solving this planning problem that explicitly 

incorporates such uncertainty is needed.  

In this chapter, we present a two-stage stochastic programming model for 

comprehensive tactical supply chain planning under the most general form of suppliers’ 

uncertainty to date. This uncertainty is a combination of supplier random yield and 

stochastic lead times. We present a model for the comprehensive planning of this general 

supplier uncertainty in Section 3.3 below. The problem definition and developed model 

were inspired by a real-world application in the wind turbines industry. We give an 

overview of this application, and show how our model can be used for the tactical supply 

chain planning problem of the world’s second biggest manufacturer of wind turbines 

[22]. This work is an extension to the previous deterministic model in the previous 

chapter. We investigate the effect of the aforementioned uncertainty on optimal 

procurement decisions and show how the optimal choice of suppliers depends on the 

unreliability/uncertainty of these suppliers. Finally, we establish the value of using a 

stochastic model versus deterministic planning. 

The contributions of this chapter are therefore threefold: First, a novel quantitative 

model for comprehensive tactical supply chain planning under the most general form of 

supplier uncertainty is developed. Second, the model is applied to the real-world 

application of the wind turbines manufacturing. Third, we present a theoretical and 

computational analysis to answer the research questions stated above. 
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The remainder of the chapter is structured as follows: in Section 3.2, we review 

the relevant literature, and then explain the problem under study along with the 

development of the two-stage stochastic programming model in Section 3.3. In Section 

3.4, we describe the real world application of our model in the wind turbines industry and 

present numerical and theoretical.  

3.2 Literature Review 

Supply chain planning under uncertainty has recently been a very active research 

area. Peidro et al. [54] classified the literature on this topic according to three 

taxonomies: source of uncertainty, problem type, and modeling approach. Their sources 

of uncertainty included demand, process/manufacturing, and supply.  

As for the modeling approach, they included four modeling approaches: analytical 

models, models based on artificial intelligence, simulation models, and some hybrid 

modeling. Our work uses stochastic programming and thus fits in the category of 

analytical models. Other comprehensive review articles on supply chains under 

uncertainty are the works [57], [58], [59], [55], [60], and [61]. 

We now focus our review on quantitative supply chain planning under 

uncertainty. Demand uncertainty is the most extensively studied source of uncertainty in 

supply chain planning [51]. Zhang and Saboonchi [62] mentioned that two-stage 

stochastic programming is widely used in the literature of supply chain planning under 

demand uncertainty. They developed a two-stage stochastic programming model that acts 

as a decision support tool for some logistical decisions in global supply chains under 

demand uncertainty.   
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In their successive papers, Tomasgard and Høeg [63], Schütz et al. [64], and 

Schütz et al. [65] presented a supply chain design problem for a Norwegian company in 

the meat industry. They formulated the problem as a two-stage stochastic program that 

incorporated the uncertainty in the demand. Kanyalkar and Adil [66] developed a robust 

optimization model for integrated aggregate planning of a multi-site procurement-

production-distribution system, motivated by a real-world case study of a consumer 

goods company in India. Saboonchi and Zhang [67] considered the design of multi-stage 

global supply chains with stochastic demand. They used a two-stage stochastic 

programming model to aid with the tactical decisions of the selection of international 

outsourcing partners, transportation modes, and the capacity of facilities. Other examples 

for modeling supply chain planning problems under demand uncertainty using stochastic 

programming  include [68], [69], [70], [52], and [51]. 

In this work we focus on supply uncertainty, since it is the main source of 

uncertainty in the application that inspired it. However, our model can easily address 

many other sources of uncertainty such as demand and capacity as we will show in 

Section 3.3. In our review of the literature, we observed that some authors consider the 

uncertainty in supply costs and capacities as “supply uncertainty”, while others consider 

random supply yields or random supply lead times to be the “supply uncertainty”. 

Examples of articles that adopt the first convention (either explicitly or implicitly) in a 

stochastic programming framework are [71], [72], [73], [74], [75], [76], [77], and [78]. 

Escudero et al. [71] developed a stochastic programming modeling framework for 

the optimization of a multi-period multi-product multi-level supply chain planning 

problem under demand and supply uncertainties. The supply uncertainties that they 
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included are in the unit cost of providing raw material, supply capacity, and raw material 

shipment capacity. They applied their model to a problem in the automotive sector. 

Alonso-Ayuso et al. [72-74] presented a two-stage stochastic 0-1 modeling 

approach and solution algorithms for multi-period supply chain management problems 

under uncertainty. The supply uncertainty is for the cost of raw materials. Santoso et al. 

[75] proposed a two-stage stochastic programming model and solution algorithm for 

solving supply chain network design problems. The supplier uncertainties in their model 

are the uncertainties in processing, transportation from suppliers, and supply capacity.  

Li and Zabinsky [76] developed a two-stage stochastic programming model and a 

chance-constrained programming model that selects suppliers and determines optimal 

order quantities with consideration of business volume discounts. The supplier capacity 

was among their uncertain parameters, along with the demand, and some quality and 

delivery tolerances.  

Bidhandi and Yusuff [77]  considered a two-stage stochastic programming model 

for solving strategic and tactical supply chain network design problems under 

uncertainty. Their supply uncertainties were concerned with supply costs and capacities.  

Al-E-Hashem et al. [78] used a robust multi-objective model to deal with a multi-

product multi-period supply chain planning problem with multiple suppliers, multiple 

manufacturers, and multiple customers. Beside other sources of uncertainty, their model 

incorporated the cost of raw materials and transportation cost from suppliers. 

The second treatment of supply uncertainty deals with random yield and/or 

random lead times. Random yield results in received quantities being random fractions of 

ordered ones [79]. The undelivered portions of ordered quantities are lost and not 
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expected to be shipped. Some authors have recently referred to supplier random yields as 

stochastic supplier reliability, or supplier unreliability (see, for example, [80]). Random 

yield has been an active research area for multiple years. For review articles on random 

yield, we refer the reader to [81] and [82]. Beside the simplest form where the number of 

good units in a batch has a binomial distribution, Yano and Lee [81] identified two 

modeling approaches. In the first approach, the yield uncertainty is stochastically 

proportional to the quantity ordered, i.e. the quantity delivered is a random fraction of the 

quantity ordered. In the second one, the fraction of good units is a function of the batch 

size. We use the former approach in our model below. Note that random yields are not 

only present in the quantities ordered from suppliers, but might also in production 

quantities (see for example [83]). That case is out of the scope of our work here. 

The lead time refers to the time elapsed from order release to order delivery [84]. 

Multiple authors incorporated stochastic lead times in their supply chain planning 

models. For example, Dolgui and Ould-Louli [84] studied a single level multi-item multi-

periods supply planning problem within the materials requirement planning (MRP) 

framework under lead time uncertainty. Their solution approach is based on the use of an 

auxiliary Markov chain. Another example is the work of Abginehchi and Farahani [85]. 

They developed a mathematical model for multiple supplier single item inventory 

systems under supplier lead time uncertainty. A review of stochastic supplier lead time 

can be found in [86]. 

Gupta and Brennan [87] adopted a modeling approach that combines quantity and 

timing variability (i.e. random yield and lead time uncertainty) in which half of the 

ordered material arrives on-time, U% of the other half arrives early, and the remaining 
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(1 − U)% arrives late, where 0 ≤ U ≤ 1. A more general approach that combines both 

the random yield and stochastic supply lead times can be found in Bollapragada and Rao 

[88]. We will explain it in detail in Section 3 below and illustrate how we generalize it. 

3.3 Problem Definition and Model Description 

In this Section, we start with describing the structure of the supply chain 

considered in our work. Next, we discuss the problem definition, model assumptions, and 

formulate our two-stage stochastic programming model.  

The supply chain network structure considered in our model is similar to the one 

in the previous chapter. It is a multi-period, multi-product supply chain, consisting of 

suppliers, transformation facilities, and customers. Set W is the set of products, including 

raw material, semi-finished, or finished products. Set  . is the set of time periods. 

Suppliers are denoted by the set	X.  Transformation facilities (denoted by the set .Y) are 

facilities/factories where processing (manufacturing/assembly) and/or storage of products 

occur. Set 1 is the set of customers. Suppliers supply products (either raw materials or 

semi-finished products) to transformation facilities. Products are then transported from 

the transformation facilities to other transformation facilities if further processing or 

storage is needed, or to customers to fulfill their demand.  

There is a bill of material (BOM) for each product. The flow of products can only 

occur through predefined channels from suppliers to transformation facilities, between 

transformation facilities, or from transformation facilities to customers. The echelon 

structure of the supply chain can differ by product and transformation facilities can be 

present at different stages of the supply chain for different products.  Products can be kept 
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in inventory at any transformation facility either before being processed or after 

processing. Processing, inventory, and throughput capacities are also considered in the 

model. All capacities can be on a product by product basis or jointly for a set of products. 

All transportation costs for all of the predefined transportation channels are assumed to 

be known. Additionally, fulfilling the demand at a later period (backordering) is allowed.  

The customer’s demand has to be fully satisfied by the end of the planning horizon to 

avoid an expensive lost sales penalty. Inventory “flows” can only occur at transformation 

facilities and backorder “flows” can only occur at customers’ sites. Backorder penalties 

are functions of the backorder delay which is the difference between the actual period of 

the demand and the fulfillment period.  

As for the uncertainty, we assume that both supply and demand are random with 

known probability distributions. Let Ω denote the vector of the uncertain supply and 

demand, where Ω = (Δ,\), Δ  corresponds to supply uncertainty, \ refers to demand 

uncertainty, and * is a given realization of the uncertain parameters. Before the 

realizations of these random parameters, the decisions of how much and when to order 

from each supplier need to be made. Thus, we define the first stage variable 4,]�^- as the 

purchase quantity of product 4 ∈ W from supplier I ∈ X  to transformation facility � ∈ .Y 

in period L ∈ ., and 4�]^ as the unit cost of product 4 ∈ W ordered from supplier I ∈ X in 

time period L ∈ .. 

We assume that each selected supplier I ∈ X is required to provide this 

purchased/ordered quantity. However, due to supplier unreliability/uncertainty, each of 

these selected suppliers delivers only a percentage of the ordered quantities on time, and 

delays the rest, according to some random reliability index. For each supplier I ∈ X and 
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product 4 ∈ W in scenario * ∈ Ω, we define the supplier uncertainty index ∆]^--_(*) as 

the percentage that the supplier will deliver in period L ∈ {LG, … , .} of what he should 

have delivered in period L′ ∈ ., where ∑ ∆]^--_(*)-∈{-_,…,�} ≤ 1. Each supplier I ∈ X pays 

a penalty 4J]^--_  for each unit of product 4 ∈ W delivered in period L ∈ {LG + 1,… , .}, 
when it should have been delivered in period L′ ∈ .. We assume that suppliers never 

deliver orders earlier than scheduled. Notice that this can be trivially relaxed and included 

in the above convention. Since we are modeling the problem from the buyer’s 

perspective, the penalty 4J]^--_  is subtracted from all the other costs in the second stage 

problem objective function. This way of modeling supplier uncertainty generalizes the 

work of Bollapragada and Rao [88] in two distinct aspects. First, in their paper, they 

limited their approach to receiving quantities in just three periods (one period earlier than 

the order period, period of the order, and one period later than the order period). In our 

model, we model any number of periods starting from the period of the order. Adding 

earlier periods is also straight forward. However, in the application that inspired this 

work, orders never arrive earlier than planned, so we focus only on on-time and late 

arrivals. Second, in our model, we generalize their approach to multi-item, multi-supplier, 

and multi-facility supply chains as seen above.  

We also note that the lead time can include another deterministic period in 

addition to the stochastic one mentioned above. This former period corresponds to the 

time elapsed from the order placement until the scheduled order delivery. Then, our 

stochastic portion models the random time spent between the scheduled order delivery 

until the actual delivery date. We do not include the deterministic portion of the lead time 

in our model. In practice, users of our model can simply subtract that portion from the 
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resulting order procurement period of our model in order to get the periods at which they 

should place the orders.  

We define the stochastic demand of customer 3 ∈ 1 in period L ∈ . for product 

4 ∈ W in scenario * ∈ Ω as QK`2^-(*), where the demand is random with known 

probability distributions. In the second stage, after the uncertainty is realized, the 

recourse actions are as follows: if suppliers supply a raw material in a quantity that is less 

than the needed quantity to assemble the end products that rely on that raw material, then 

customer backorders are created which are fulfilled from later periods or the customer 

demand is to be lost. However, if supply is more than needed, then it will be stored for 

use during later periods in either its raw material state, its semi-finished, or its finished 

state; depending on inventory capacities and other cost tradeoffs in the model. 

Outsourcing extra inventory, manufacturing, inventory, and/or transportation resources 

and capacities at an additional cost is another potential recourse action for that latter case. 

We will refer to this as outsourcing or capacity expansion interchangeably.  Note that 

these recourse actions guarantee that our model has a complete recourse. Meanwhile, the 

flow of materials, inventory, and manufactured/assembled quantities across the whole 

supply chain are optimized through the use of second stage decision variables. Note also 

that other sources of uncertainty, such as uncertainty in capacities and costs, can be 

directly added to the model. 

Our model can be used in a rolling horizon heuristic scheme in a straightforward 

manner (see for example [47] and [89]). Also, expanding capacities to deal with 

uncertainty is not uncommon in the literature. Examples of the papers focusing on this 

topic can be found in [90],  [91], and [92]. In addition, note that the whole described 
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problem can be directly modeled as a multi-stage programming model, and thus we are 

implicitly doing an approximation and simplification to two stages. 

A summary of notation of all sets, parameters, and variables are given in appendix 

C. Given the previous problem definition, model dynamics, and notation, the resulting 

formulation is as follows: 

min  

> > >>4�]^-. 4,]�^--∈�^∈a�∈�b]∈c + (d)�(4,, *)+ 3.1 

s.t.  

> 4,]�^-�∈�b ≤ eN�]^-			∀IfX, ∀4 ∈ W, ∀Lf. 3.2 

4,]�^- ≥ 0			∀IfX, ∀� ∈ .Y, ∀4 ∈ W, ∀Lf. 3.3 

Where �(4,, *) is the optimal value of the following second stage problem: 

Min 

> >>>O�]^-. %]�^-(*)-∈�^∈a�∈g]∈�b  

+ > >>I��^-. I,�^-(*)-∈�^∈a�∈�b + > >>N��^-. N,�^-(*)-∈�^∈a�∈�b  

+> >>4�2^-. hJ2^-(*)-∈�^∈a2∈7 + > >>>��2^-i. �,2^-i(*)i∈�-∈�^∈a2∈7  

+> > >>��N4K�4]�^-. ��j�4]�^-(*)-∈�^∈a�∈�b]∈c
+ > >>>��N4K�4]�^-. ��j�4]�^-(*)-∈�^∈a�∈g]∈�b  
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+ > >>�O�N4K�4�^-. O�N4j�4�^-(*)-∈�^∈a�∈�b  

+ > >>�I�N4K�4�^-. I�N4j�4�^-(*)-∈�^∈a�∈�b
+ > >>�N�N4K�4�^-. N�N4j�4�^-(*)-∈�^∈a�∈�b  

+> > >>>�M�]�k-. �MKJ]�^k-. �]�^-(*)-∈�k∈l^∈a�∈�b]∈c
+ > >>>>�M�]�k-. �MKJ]�^k-. %]�^-(*)-∈�k∈l^∈a�∈g]∈�b  

+ > >>>OM�]k-. OMKJ]^k-. %]�^-(*)-∈�^∈a�∈g]∈�b + 

> >>>IM��k-. IMKJ�^k-. I,�^-(*)-∈�k∈l^∈a�∈�b
+ > >>>NM��k-. NMKJ�^k-. N,�^-(*)-∈�k∈l^∈a�∈�b  

+> > >>M��N4K�4]�k-. m��N4j�4]�k--∈�k∈l�∈�b]∈c (*)
+ > >>>M��N4K�4]�k-. m��N4j�4]�k--∈�k∈l�∈g]∈�b (*) 

+ > >>M�O�N4K�4�k-. mO�N4j�4�k--∈� (*)k∈l�n�b  

+ > >>M�I�N4K�4�k-. mI�N4j�4�k--∈� (*)k∈l�n�b  

+ > >>M�N�N4K�4�k-. mN�N4j�4�k--∈� (*)k∈l�n�b  

 3.4 
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−>> > > 4J]^--_.�∈�b-G∈�^∈a]∈c o > ∆]^--_(*). 4,]�^-G-∈{-_
9,…,|�|} q 

s.t.  

�]�^-(*) = > ∆]^--_(*)-_n{9,⋯,-} . 4,]�^-G		∀IfX, ∀�f.Y, ∀4fW, ∀Lf.  3.5 

>%]�^-(*)�ng ≤ O�N4]^- + O�N4j�4]^-(*)				∀If.Y, ∀� ∈ \, ∀4fW, ∀Lf.  3.6 

>OMKJ]^k-^∈a . o>%]�^-(*)�ng q ≤ O�N4]k- + mO�N4j�4]k-(*)			∀I ∈ .Y, ∀M
∈ m, ∀L ∈ . 

 3.7 

�]�^-(*) ≤ ��N4]�^- + ��j�4]�^-(*)			∀I ∈ X, ∀� ∈ .Y, ∀4 ∈ W, ∀L ∈ .  3.8 

>�MKJ]�^k-. �]�^-(*)
^∈a ≤ ��N4]�k- + m��N4j�4]�k-(*)			∀I ∈ X, ∀� ∈ .Y, ∀M

∈ m, ∀L ∈ . 

 3.9 

%]�^-(*) ≤ ��N4]�^- + ��j�4]�^-(*)			∀I ∈ .Y, ∀� ∈ \, ∀4 ∈ W, ∀L ∈ . 3.10 

>�MKJ]�^k-. %]�^-(*)
^∈a ≤ ��N4]�k- + m��N4j�4]�k-(*)			∀I ∈ .Y, ∀� ∈ \, ∀M

∈ m, ∀L ∈ . 

3.11 

I,�^-(*) ≤ I�N4�^- + I�N4j�4�^-(*)			∀�f.Y, ∀4fW, ∀Lf. 3.12 

>IMKJ�^k-. I,�^-(*)^∈a ≤ I�N4�k- + mI�N4j�4�k-(*)			∀� ∈ .Y, ∀M ∈ m, ∀L ∈ . 3.13 

N,�^-(*) ≤ N�N4�^- + N�N4j�4�^-(*)		∀� ∈ .Y, ∀4 ∈ W, ∀L ∈ . 3.14 

>NMKJ�^k-. N,�^-(*)^∈a ≤ N�N4�k- + mN�N4j�4�k-(*)			∀� ∈ .Y, ∀M ∈ m, ∀L ∈ . 3.15 
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�,�^s-(*) = 1��`^s. N,�s-(*)					∀�f.Y, ∀4fW, ∀� ∈ W, ∀Lf. 3.16 

>�]�^-(*)]nc + > %]�^-(*) +]n�b MK�^- + N,�^-(*) + I,�^-t9(*) − I,�^-(*)
− >�,�^s-(*)

sna − > %�]^-(*)
]n�b = 0				∀�f.Y, ∀4fW, ∀Lf{2, … , .} 3.17 

>�]�^-(*)]nc + > %]�^-(*) +]n�b MK�^- + N,�^-(*) + I�IL_I���^ − I,�^-(*)
− >�,�^s-(*)

sna − > %�]^-(*)
]n�b = 0				∀�f.Y, ∀4fW, L = 1 

3.18 

> %�2^-(*)�n�b + >�,2^i-(*)in� + hJ2^-(*)
= QK`2^-(*) + >�,2^-i(*)in� 				∀3f1, ∀4fW, ∀Lf. 

3.19 

> �,2^-ii∈�:iw-
(*) ≤ > %�2^-(*)

�n�b 				∀3f1, ∀4fW, ∀Lf. 3.20 

�]�^-(*) ≥ 0			∀IfX, ∀�f.Y, ∀4fW, ∀Lf. 3.21 

%]�^-(*) ≥ 0			∀If.Y, ∀�f\, ∀4fW, ∀Lf. 3.22 

hJ2^-(*) ≥ 0			∀3f1, ∀4fW, ∀Lf. 3.23 

�,2^-i(*) ≥ 0			∀3f1, ∀4fW, ∀Lf., ∀xf. 3.24 

I,�^-(*) ≥ 0			∀�f.Y ∪ .YG, ∀4fW, ∀Lf. 3.25 

N,�^-(*) ≥ 0			∀�f.Y, ∀4fW, ∀Lf. 3.26 

�,�^s-(*) ≥ 0			∀�f.Y, ∀4fW, ∀� ∈ W, ∀Lf. 3.27 

The objective function of the first stage (equation 3.1) minimizes the total cost of 

purchasing from all suppliers, and the expected value of the second stage problem. 

Constraint 3.2 puts an upper bound/capacity on the total possible purchasing quantities 
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from suppliers, while constraint 3.3 is the non-negativity restrictions on the first stage 

variables.  

In the second stage, after the uncertainty has been resolved, the objective function 

3.4 minimizes the total costs of purchasing from all suppliers, the total costs of 

transportation, inventory, manufacturing/assembly, throughput, backorder penalties, lost 

sales penalties, capacities for all these issues (either for products or joint resource 

capacities among products), and capacity expansions for all these issues, again either for 

products or joint among them. The last term in this objective function is the penalties paid 

by suppliers for delayed order quantities as explained above.  

Constraint 3.5 links the ordered quantity with supplier reliability to calculate the 

actual delivered quantities from each supplier in each period. The rest of the model 

contains four types of constraints: supply capacity, transformation (production or 

assembly) capacity, demand satisfaction, and conservation of flow at the transformation 

facilities. Both regular and extended capacities are modeled in each of those capacity 

types. Throughput capacities at transformation facilities are modeled by constraint 3.6, 

which models the capacity for an individual product, and constraint 3.7 that models the 

joint capacity. Capacities of flow/transportation from suppliers on a product by product 

basis are modeled in constraint 3.8 and for joint capacities are modeled in constraint 3.9. 

Similar capacities for the flow from transformation facilities are modeled in constraints 

3.10 and 3.11, respectively. The same applies to the transformation facilities inventory 

capacity in constraints 3.12 and 3.13, respectively. Also, it applies to 

assembly/manufacturing capacities at different transformation facilities through 

constraints 3.14 and 3.15. Constraint 3.16 is the BOM constraint. It ensures that the 
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correct amounts of components are consumed in the transformation facilities in order to 

be assembled into finished/semi-finished goods. 

Constraints 3.17 and 3.18 are the conservation flow constraints that work the 

same way as the corresponding ones in the previous chapter (see figure 2).  

Constraint 3.19 ensures that the goods delivered to a customer, lost sales, and 

backorders from future periods are allocated to satisfy either the demand of that period or 

backorders in previous periods. The conservation of flow for the customer backorders for 

a single product at a single customer is illustrated in figure 9. The deliveries are goods 

delivered by the supply chain to this customer. Backorders satisfy demand from a period 

later in the planning horizon to a period earlier in the planning horizon. Note that we 

assume that the lost sales penalty is higher than any backorder cost penalty.  

Constraint 3.20 treats the so called multi-hop problem (see chapter II for a 

detailed explanation of this). Lastly, constraints 3.21 through 3.27 are the non-negativity 

constraints. 

3.4 Results and Discussion 

In Subsection 3.4.1, we describe the real world industrial problem that inspired 

our model and explain how our model can be directly applied to it. Then, we present 

some numerical and theoretical results in Subsection 3.4.2. 

3.4.1 Wind Turbines Application 

Our application is an extension to the case study in chapter II for the wind 

turbines subsidiary of one of the leading power generating equipment manufacturers. In 

our specific case, the company has 42 different projects (customers) in North America. 
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Our planning horizon is one year. There is a known weekly demand schedule for any of 

seven different models of wind turbines. Each of these models is composed of seven 

different components; the tower, nacelle, bearings, blades (a set of 3 blades), gearbox, 

generator, and rotor. These components are supplied from one of 24 different suppliers, 

that are located all over the globe and some of which are facilities that are owned by the 

company itself. 

  

 

 Since suppliers are located over the globe; procurement decisions become vital 

with expensive transportation costs. In addition, supply capacities are usually tight, which 

was also reported by He and Chen [19]. Transportation costs from each supplier to each 

project site are known. Note that the strategic decisions of which suppliers to select has 

already been made. We consider the procurement decisions on the tactical level, i.e. how 

much and when to order from a known set of suppliers. Hence we do not include any 

supplier fixed costs in our model, nor deal with any of the methods or issues that 
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Figure 9 Conservation of Flow for Customer Backorders 
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determine supplier selection (see, for example, Ho et al. [49] for a review of these 

methods).  

The single level BOM for each end product is known. There is a known backorder 

cost/penalty for the delay in meeting the demand at each specific site for each specific 

product. That penalty depends on the number of periods during which the product was 

backordered. Transportation costs along the whole supply chain are known. There is a 

maximum capacity for assembling each final product (wind turbine) at each project site 

during any specific period. There is also an upper limit on the maximum order that can be 

placed at any supplier for any specific product (supply capacity). 

Supplier delivery is highly uncertain. Suppliers sometimes deliver parts of an 

order in later periods than the order period. A turbine cannot be assembled unless all its 

main components are present at the customer site where it will be assembled and located. 

Ideally, all parts for each turbine arrive on-time (i.e., at the same period of the demand) 

and the turbine gets assembled. However, due to supplier uncertainty, some parts might 

arrive late, and so arrangements for storing the parts that arrived on time need to be made. 

However, most of the parts, such as the blades, cannot be stored on the site. Thus, in such 

case, rental of an appropriate storage site near the customer sites takes place, with proper 

arrangement for transportation to and from that site. This corresponds directly to the 

storage and transportation capacity expansion in our model. In addition, when the delayed 

parts get delivered at later periods, assembly resource capacity might not be sufficient to 

assemble all turbines that are ready to be assembled in those later periods. There are two 

remedies/recourse actions for this case: either using additional outsourced assembly 

resource expansions, or storing the components of some of these turbines and assemble 
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them at later periods. In the latter recourse action, extra outsourced inventory resources 

might be used as well.   

In order to accommodate assembly capacity restrictions at the customer, inventory 

and assembly expansions, a dummy transformation facility is collocated with each 

customer when our model is used for this application. Flow is only allowed from each 

dummy transformation facility to the customer at its site with the cost of the delivery to 

that customer being zero.. The terms in the objective function of our model are consistent 

with the costs considered by the company. 

The company was using spreadsheet-assisted manual planning. Management 

believed too many project completions, i.e. finished assemblies, were delayed and they 

were not satisfied with their capability to deal with supplier uncertainty. But they did not 

have any systematic calculation procedure to assess these beliefs. Our model can directly 

overcome these planning deficiencies. Next, we discuss our 

implementation/computational experience of our model dealing with this application, in 

addition to illustrating some numerical and theoretical results. 

3.4.2 Numerical and Theoretical Results 

The model is coded in GLPK [50], which is an open source optimization language 

and solved with CPLEX 12.5 [5], under Windows XP. GLPK allows reading data from 

different databases. We developed a database schema in Microsoft Access that contains 

data fields for all the model parameters and variables in different tables, and read the data 

from it. The machine used in the experiments has an Intel core 2 duo T7200 with 2.00 

GHZ for each processor and 6 G.B. of RAM. Different instances of our case study (with 

50 scenarios for the supplier uncertainty) take an average of 25 minutes for model 
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generation including data retrieval with a standard deviation of less than a minute. The 

instances get solved in just 8 seconds using default CPLEX options, with a standard 

deviation of less than two seconds.  

Our model is linear in both the first and second stages, i.e., we do not have any 

integrality in any of the two stages. We solve the deterministic equivalent of the 

stochastic model (see [13] and [14]). We do not use any decompositions or special 

stochastic programming solution algorithms since the solution times are small. 

Next we design and report on some numerical experiments with the following 

aims. First, we show how instances with real data from our application can be 

implemented and solved successfully. Second, we empirically answer the research 

questions stated in the introduction of this chapter. 

To study the impact of supplier reliability, we cluster the 24 suppliers into three 

groups: suppliers that are more reliable, suppliers that have average reliability, and 

suppliers that are less reliable. The most reliable suppliers deliver quantities either on-

time, one period late, or two periods late. The percentage of quantities delivered in each 

period follows a binomial distribution with a probability that ranges linearly from 0.01 to 

0.99 (with a step of 0.02) for the 50 scenarios. The same applies for moderately reliable 

suppliers and least reliable (most unreliable) ones, except that their quantities are 

delivered up to 5 and 8 periods late, respectively. Note that some orders might arrive after 

the last period of the considered planning horizon (52 periods). This is treated by 

imbedding our modeling framework in a rolling horizon heuristic. However, for the sake 

of comparison, we neutralize this end horizon effect by adding a number of periods with 
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zero demand at the end of the planning horizon. We will explain this more formally in 

our theoretical analysis. 

We use 4 different levels for the purchasing costs and two levels for the backorder 

costs. The levels of the purchasing costs are as follows: equal low costs for all suppliers, 

equal high costs for all suppliers, low costs for all suppliers but with the more reliable 

suppliers being more expensive, and high costs for all suppliers but with the less reliable 

suppliers being less expensive. The proportion of costs for the three supplier clusters in 

the latter two levels is 1:0.7:0.4. We use a linear delay-dependent backorder cost 

structure. We carried out a factorial experiment with the levels of the two factors 

(purchasing costs and backorder costs) as describe above. All other parameters have 

values that derived from the real data for our wind turbines application.  

We solve three variants of the problem: the deterministic case of completely 

reliable suppliers, the expected/mean value problem, and the stochastic problem. By a 

completely reliable supplier, we mean a supplier I ∈ X that delivers the whole amount of 

its orders on time, i.e. it has ∆]^--G= 1	∀4 ∈ W, ∀LG ∈ ., ∀L ∈ {LG, … , .}:	L = L′ and 

∆]^--G= 0	∀4 ∈ W, ∀LG ∈ ., ∀L ∈ {LG, … , .}:	L ≠ L′. Thus, the completely reliable supplier 

problem is the deterministic version of the problem discussed in the previous chapter of 

this thesis. The expected/mean value problem is the problem obtained by replacing all 

random variables by their expected values (see [14]). 

We use the three clusters of the suppliers for the two latter variants, and the 50 

scenarios for the single latter one. Tables 3 and 4 show the results of the second and third 

variants, respectively. In Table 3, the percentage increase of the optimal solution of the 

expected/mean value problem over the corresponding cases of completely reliable 
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suppliers are presented for each experiment. In Table 4, we show the value of using the 

stochastic program versus the deterministic one by reporting the following percentage: 

(the value of the stochastic program/solution of the stochastic model) X 100%. We again 

refer the reader to [13] and [14] for a detailed definition of the value of the stochastic 

program (VSS). These percentages reach values of up to almost 20% (see column H in 

table 4). In addition, procurement percentages from each of the three previously 

described clusters are indicated for each experiment of the two variants. 

Analyzing the results of the two tables, we can state the following results. First, 

the model always chooses the cheapest suppliers (so long as the supply capacity permits), 

regardless of whether these suppliers are more or less reliable, and does the rest of the 

planning around this choice. This can be seen from the percentages of procurement from 

each cluster of suppliers for the cases where purchasing costs differ from one cluster to 

another, either for the expected value problem or the stochastic problem. Our model 

allows the decision makers to select the cheapest suppliers and to adapt their other 

decisions to incorporate the unreliability of the selected suppliers while minimizing the 

overall costs.  

To illustrate this with a simple example, consider the case of a supplier that is 

cheaper than all other suppliers and a single scenario problem where this supplier always 

delivers 0.3 of the ordered quantity on-time and the remaining 0.7 one period late. The 

optimal solution might then be one of three options. First, we could schedule an earlier 

delivery and keep the quantities that would arrive earlier than needed inventory. Second, 

we might order on-time more than the needed demand, keep in inventory the additional 

items that will eventually be received and use them in later periods. Third, we could order 
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just the needed quantities on-time and do a backorder for the portion that we will receive 

late. This illustrates how the model could plan around the choice of the cheapest 

supplier(s). The stated potential solutions are illustrated below in our results and analyses 

as well. 

Second, we can see that the optimal solution of the expected/mean value problem 

is always higher than or equal to that of the corresponding problem with completely 

reliable suppliers. This is attributed to the fact that the model has to account for the 

unreliability of suppliers, e.g., by using more backorders and/or inventory.  

Third, in our results, whenever the backorder costs increase, the percentage 

increase of the solution value of the expected/mean value problem over the solution value 

of the corresponding problem with completely reliable suppliers gets higher because 

either more inventory is used, more expensive backorder is used, or a combination of 

both is used.  

Fourth, based on our numerical results we report the following effect of supplier 

uncertainty on the optimal procurement decisions. When supplier uncertainty is 

considered (for either of the two cases), the optimal total purchased quantities might be 

more than what is needed to cover the demand. In our experiment, this happens only for 

the cases of large backorder costs and small purchasing costs. This result might be 

counterintuitive at first, so we formalize a theoretical analysis that explains it. 

We first deal with the case of our problem with perfect information, i.e., just one 

scenario and start with some notation: let j�Q]^- be the last period in which a positive 

part of an order placed for product 4 ∈ W from supplier I ∈ X in period L will arrive. This 

leads to that ∆]^{-= 0		∀h > j�Q]^-. In our below analysis, we will compare total 
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procurement in the whole planning horizon for different cases, just as we did in the 

numerical results. However, since t might be outside the current planning horizon, we add 

more periods with zero demand in . in order to neutralize this end horizon effect. Thus, 

|.�|}|=`N�~|.|,max]∈c,^∈a,-∈� j�Q]^-�, where |.| is the cardinality of the set of periods 

., and |.�|}| is the cardinality of the new set of periods after adding the described 

periods.  

We now present a simple example to show that the total ordering quantity can 

exceed the ordering quantity in the case of completely reliable suppliers, given that 

everything else in the problem remains unchanged. Suppose that there is only 1 supplier, 

1 product, and a single demand for that product of ` units in period 1, for a horizon of 12 

periods. If the supplier is completely reliable, the optimal solution will be to order ` 

units in period 1, if no other constraints make this an infeasible solution. Further, suppose 

that ∆]^99= �, ∆]^�9= 1 − �, where 0 < � < 1 if we are to solve the same problem with 

the supplier being uncertain with just one possible scenario. We do not need to add any 

periods here; since max]∈c,^∈a,-∈� j�Q]^- = 2 < |.| = 12.  

One possible solution of this latter problem might be to order ` units in period 1, 

receive �` units in period 1, use them to fulfill part of the demand, and then receive the 

remaining ` − �` units in period 2 and use those units to fulfill the remaining part of 

the demand of period 1 while paying a backorder penalty for delaying those units for one 

period. Another possible solution is to order `/� units in period 1, and therefore receive 

` units in this period to satisfy the whole demand on time, and receive the rest of the 
��  

units (i.e., 
(9t�)� ` units) in period 2. That latter amount will then be kept in inventory 

until the last period in the horizon. Therefore, the total ordering quantity would be greater 
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than the case of the completely reliable suppliers. For the second solution to be feasible, a 

recourse action of using some capacity expansions and paying its extra costs might be 

required. If both solutions are feasible, the second one will be optimal if the backorder 

cost for backordering ` − �` units for 1 period is more expensive than the cost of 

purchasing, transporting, and storing those extra 
�� − ` units, in addition to any potential 

capacity expansion costs. 

We give sufficient conditions that prevent this behavior for the simple case of 

having no BOM, i.e., the purchased raw materials are the same as the end products in 

Appendix D. 
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Table 3 Results for the Expected/Mean Value Problem 

A B C D E F G 

Low Low and Equal for All Suppliers 1.51 62.34 11.08 26.58 0.00 

High Low and Equal for All Suppliers 3.12 69.71 13.13 17.16 0.09 

Low High and Equal for All Suppliers 0.09 44.67 18.48 36.85 0.00 

High High and Equal for All Suppliers 0.27 50.99 20.03 28.98 0.00 

Low High with More Reliable Suppliers Being More Expensive 0.62 0.00 0.00 100.00 0.00 

High High with More Reliable Suppliers Being More Expensive 4.15 0.00 1.94 98.06 0.45 

Low Low with More Reliable Suppliers Being More Expensive 9.72 0.00 2.01 97.99 0.00 

High Low with More Reliable Suppliers Being More Expensive 20.79 2.10 1.83 96.06 3.71 

 
Table 4 Results for the Stochastic Problem 

A B D E F G H  

Low Low and Equal for All Suppliers 51.38 9.99 38.63 0.00 1.44  

High Low and Equal for All Suppliers 52.87 10.54 36.59 0.26 2.57  

Low High and Equal for All Suppliers 41.83 16.85 41.32 0.00 0.09  

High High and Equal for All Suppliers 41.38 17.17 41.44 0.00 0.19  

Low High with More Reliable Suppliers Being More Expensive 0.00 0.00 100.00 0.00 0.60  

High High with More Reliable Suppliers Being More Expensive 0.00 0.00 100.00 0.04 3.92  

Low Low with More Reliable Suppliers Being More Expensive 0.00 0.00 100.00 0.00 9.50  

High Low with More Reliable Suppliers Being More Expensive 0.00 0.03 99.97 0.69 19.55  

 
Headings: 

A: Backorder Cost Level. B: Purchasing Cost Level. C: Percentage Increase over Corresponding Case of Completely Reliable 

Suppliers. D: Percentage of Procurement from the Cluster of Most Reliable Suppliers. E: Percentage of Procurement from the Cluster 

of Moderately Reliable Suppliers. F: Percentage of Procurement from the Cluster of Least Reliable Suppliers. G: Percentage of 

Additional Procurement over Demand. H: VSS/Stochastic Solution. 
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Chapter IV 
 
 
 

A MODELING FRAMEWORK AND SOLUTION 

METHODOLOGY FOR A PRODUCTION-DISTRIBUTION 

PROBLEM WITH TIME-AGGREGATED QUANTITY 

DISCOUNTS 

 
 
 

4.1 Introduction 

 One of the most important strategic decisions in supply chain planning is supplier 

selection [93]. It is very common in many industries that suppliers offer quantity 

discounts, i.e., they offer price-volume break intervals with a unit sales price if the 

purchased amount falls in that interval. Unit sales prices are, of course, strictly decreasing 

for each higher interval. If the discount is for the whole sales volume, it is called all-units 

discount. If it is only for the amounts in the larger interval, it is called incremental 

discount. See [94] and [95] for recent definitions and a review of these two quantity 

discounts schemes. The latter discount scheme is a much more practical situation [96], 

much more common in the literature, and is the one that we consider in this work.  

 Even though we consider an all-units quantity discounts problem, there are two 

major differences between the case we study and the ones being considered extensively 

in the literature. First, in the literature pertaining to multi-period lot sizing with all-units 

quantity discounts, the quantity discounts scheme is for each period. That is, the 
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discounts are for the total order placed in that period only. Such periods are weeks or 

months, for a planning horizon of several days, weeks, or months. In addition, a fixed 

cost is paid for each chosen supplier in each period. In any later period, the buyer can 

choose different suppliers and pay their fixed costs for that later period. Depending on the 

purchased quantity in that later period, the per-unit price is again recalculated. The case 

studies found in the majority of the literature follow this scheme (see, for example, [94]). 

 However, suppliers in practice are often selected for a strategic planning period 

ranging from one to five years.  A fixed cost is associated with selecting a supplier and a 

contract is signed at the beginning of that strategic planning period.  The quantity 

discounts established in the contract are based on the aggregate annual purchasing 

quantities.  Afterwards, individual orders are placed during each tactical planning period 

which can be a week or a month.  The buyer pays an estimated purchasing price based on 

the anticipated annual purchased quantity. At the end of the year, the actual annual 

purchasing quantity is known, the corresponding unit purchasing price is calculated using 

the quantity discount scheme, and the accounts are settled through an additional payment 

or refund.  Usually, for the latter case, the seller may credit the refund towards future 

purchases by the buyer. Thus, three main characteristics differentiate this research from 

the relevant literature: 

i. We select suppliers in the beginning of the strategic planning horizon of multiple years. 

Selected suppliers cannot be changed in that horizon.  

ii. Fixed costs are paid only once for each chosen supplier for the entire strategic planning 

horizon. 
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iii. Per-unit costs (variable costs) depend on the annual quantity purchased, i.e. the total 

aggregated quantity purchased throughout the whole year, while orders can be placed 

in every tactical time period, which is typically weeks or months. 

 This supplier selection and purchasing agreements exist in practical applications 

such as some supply chains in the food industry. In this chapter, we will consider a real-

world example in this industry. To the best of our knowledge, this case has not been 

considered in the literature. Very few papers discuss the aggregate aspect of it such as 

Bassok and Anupindi [97] and Hammami et al. [98], but none considers the exact 

aforementioned contractual details.  

Second, we consider a comprehensive multi-period, multi-product, multi-echelon 

supply chain planning model with production, transportation, inventory, and a recursive 

multi-level bill of material (BOM) considerations. To the best of our knowledge, none of 

the models in the literature considers such comprehensive supply chain structure with the 

described quantity discounts.  

 We formulate our problem as a mixed integer linear programming (MIP) model. 

Contemporary commercial MIP solvers require many hours of computation time to find 

even a feasible solution for realistic problem instances. We develop an algorithm that 

constructs an initial solution and three iterative algorithms that improve that initial 

solution. We compare the performance of these algorithms and show their computational 

efficiency. 

 The contributions of this chapter are therefore twofold. First, we define and 

formulate a comprehensive supply chain planning model with a novel realistic time-

aggregated quantity discounts scheme for suppliers. Second, we develop customized 
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solution algorithms to solve our highly intractable model and show the computational 

efficiency of using these algorithms within a food supply chain real-world application. 

 The rest of this chapter is organized as follows: In Section 4.2, we review the 

related literature. The detailed problem definition and model development is presented in 

Section 4.3. In Section 4.4, the solution methodology is explained, while the design of 

experiments and numerical results are shown in Section 4.5.  

4.2 Literature Review 

In our problem, we assume that a set of potential suppliers has already been 

identified. Thus, the decision of selecting which suppliers to sign contracts with/purchase 

products from is now based solely on costs (procurement, transportation costs from the 

suppliers, and other related costs in other parts of the supply chain). Therefore, our 

intention is not to review general supplier selection methods and criteria. For that, we 

refer the reader to the review articles [49, 93, 96, 99, 100].  

We focus on the literature of supplier selection with quantity discounts. Although 

researchers have been studying this problem for a few decades, most papers in the 

literature focus on supplier selection within the lot sizing (production planning) problem 

rather than supply chain (production-distribution) planning [96, 98].  

In their review, Benton and Park [101] classify lot sizing problems under quantity 

discounts into non time-phased demand (single period models) and time-phased demand 

(multi-period models). They further classified each scheme into all-units discounts and 

incremental discounts. Finally, they classified the quantity discount planning problems 
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based on the buyer-only or the buyer-supplier perspectives. Our work falls in the time-

phased demand, all-units, buyer’s perspective branch. 

For multi-item and multi-period models, two other variants are considered in the 

literature: business volume discounts and bundle discounts [96]. In business volume 

discounts, multiple products can be purchased from each supplier and the discount is 

based on the total dollar amount of each specific order rather than the quantity of the 

individual products or the number of products purchased. Some researchers refer to this 

problem as the total quantity discount (see, e.g., [102]). Examples of recent papers 

dealing with it are those of Goossens et al. [103], Manerba and Mansini [102], Mansini et 

al. [104], and Manerba and Mansini [105]. Goossens et al. [103] studied multiple variants 

of this problem. They used three exact algorithms based on branch-and-bound and 

branch-and-cut techniques to solve their problems and their variants. They reported 

results for instances involving 50 suppliers and 100 products. Note that in this variant, the 

discount is aggregated across the products. For our problem, the aggregation for the 

discount is across the annual periods. 

The bundle discounts is a scheme in which the price of a product depends on the 

quantities ordered from a set of related products so that everything is sold as a bundle 

[96]. Examples of works modeling this scheme can be found in [106-108]. 

Very few papers consider a scheme close to the one we consider in this chapter. 

Bassok and Anupindi [97] formulated a stochastic dynamic programming model for the 

analysis of supply contracts under demand uncertainty. In these contracts, suppliers offer 

quantity discounts for the aggregate order quantity over the planning horizon. The 
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authors called these quantities the “committed” quantities. Their problem structure and 

numerical examples had a single product and a single supplier.  

Hammami et al. [98] formulated a two-stage stochastic programming model for a 

supplier selection global supply chain problem with uncertain fluctuations of currency 

exchange rates and time-aggregated quantity discounts. They mentioned that this type of 

quantity discounts is common in the automotive industry. In the case study they 

presented, they used 4 periods (4 quarters of a one year planning horizon). Moreover, 

they considered 4 suppliers with 4 quantity discount intervals each. For this small 

instance, they were able to solve the deterministic equivalent of their problem to 

optimality in reasonable time using a commercial solver. They indicated that when the 

instance size increases, their model becomes more difficult to solve. They also reported 

that for larger instances, one would need to develop customized solution algorithms. Our 

research develops a family of such customized algorithms. The size of the instances we 

solve using our customized algorithms are more than 10 times larger than the largest 

instances they have solved. We solve instances with an average of 350 suppliers each 

having 6 quantity discount intervals.  

To solve our large-scale MIP model, we develop customized solution algorithms 

that use a MIP-based local search technique. In this local search (LS), successive reduced 

MIP problems are solved iteratively. Some authors refer to it as integer programming 

(ILP)-based LS (see, e.g., [109, 110]). The reduced problems are typically formed by 

fixing some variables at their values in the previously found feasible solution and letting 

the solver determine the remaining variables. This methodology has been successfully 

used in recent years, especially for logistics problems. Hewitt et al. [111] solved the fixed 
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charge network flow problem using what they called a mix of mathematical programming 

techniques and heuristic search techniques. To construct good feasible solutions, they 

used an integer programming LS algorithm on the arc-based formulation of the problem. 

They showed the efficacy of the proposed method in their numerical results.  

Erera et al. [112] also used an integer programming-based iterative approach that 

searches a large neighborhood for the service network design problem faced by less-than-

truckload freight transportation carriers. They used real-world data from a large U.S. 

carrier and showed how their method can generate significant cost savings. Along with an 

approximate dynamic programming approach, Papageorgiou et al. [113] used a MIP-

based LS for a deterministic long-horizon maritime inventory routing problem. They 

showed that the latter approach significantly outperformed a leading commercial solver. 

Other papers that use MIP-based LS for logistics planning problems can be found in 

[109, 110, 114-117].  

In the context of quantity discounts, Manerba and Mansini [102] studied a 

capacitated total quantity discounts problem and developed an exact algorithm to solve it. 

Although they do not refer to it as such, embedded in the algorithm is a MIP-based LS 

that uses a neighborhood @(J, ℎ). This neighborhood consists of all solutions that differ 

from solution J by at most ℎ selected intervals. In [105], they enhanced that LS algorithm 

and introduced an ILP refinement procedure. They used the same idea of the 

neighborhoods of their previous work. Mansini et al. [104] extended the same problem to 

include truckload shipping, and used a LS algorithm that depends on rounding fractional 

variables after solving the linear programming relaxation.  
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Two main points distinguish our problem from that body of research. First, our 

quantity discounts scheme is very different from theirs. Second, the neighborhoods we 

adopt for our LS algorithms are different as well; since our neighborhoods are derived 

from turning suppliers and/or raw materials on and off. This will be illustrated in detail in 

Section 4.4 below. We discuss the detailed problem definition and develop our model in 

the next Section. 

4.3 Problem Definition and Model Description 

The supply chain considered in this work is similar in structure to the one in 

chapter II, except that backorders are not allowed. It consists of suppliers, transformation 

facilities, and customers. Each supplier, if selected, supplies one of the raw materials that 

are shipped to the transformation facilities for processing. A contract is signed for each 

selected supplier and a fixed cost is paid just once in the beginning of the planning 

horizon to cover this strategic horizon (e.g., 5 years).  Then, there is a unit cost for each 

purchased unit that follows the scheme discussed above for each year among the years of 

the contract. There are also bounds on the minimum and maximum monthly order 

quantities from each chosen supplier.  

Purchased raw materials are processed in processing facilities to produce 

intermediate and end products that are ordered by customers, according to a multi-

product general form BOM. That demand is either fulfilled on time or is partially or 

completely lost. There is a penalty for each unfulfilled unit (penalty for lost sales). We 

assume that this lost sales cost is higher than any other cost in the whole supply chain. 

Products can be stored in inventory at any of the facilities, either in raw material, semi-
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finished, or end-product form. That might be needed due to manufacturing, inventory, 

throughput, and/or inventory resource capacity restrictions preventing the manufacturing 

and delivery of end products at the same period of the demand. All the aforementioned 

restrictions are included in our model. Each of these capacity restrictions is either for 

each product separately or joint among products. There is a cost associated with the 

utilization of each of these resources, a cost for transportation along the whole supply 

chain, a cost for holding inventory, another for manufacturing any semi-finished or end-

product, and one associated with the throughput of products out of the transformation 

facilities. We minimize all these costs in the objective function of our mode below along 

with the fixed supplier selection cost, purchasing costs, and the total penalty of 

unfulfilled demand.  

Given this structure, capacities, and dynamics, our problem can be defined as 

selecting the supplier(s) to buy each raw material from for the whole strategic planning 

horizon, and then determining the production plan. That plan consists of the quantities to 

be ordered from each supplier (which will determine which quantity discount interval is 

chosen each year), quantities assembled/manufactured quantities, inventory quantities for 

each product at each transformation facilities, and flow quantities between each two 

nodes in the supply chain, in addition to lost sales.  

We formulate the problem as a MIP model. We assume that demand and 

capacities are known in detail (per month) only for the first year. This is not uncommon 

in practical situations where detailed demand and other parameters are not known for 

later years. Thus, we model the 12 months of the first year of the contract (high fidelity) 

while the remaining years will each be modeled as an aggregate period (low fidelity). In 
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practice, the decisions of the first year will be implemented, after which the model can be 

solved again before the second year begins, fixing the selected suppliers in the first year, 

and so on. This makes it similar to a rolling horizon heuristic scheme for related problems 

(see for example [47, 89]) and justifies this form of modeling. It also treats the issue of 

ending inventory, especially in earlier years (year 1) as information of later years is 

included. That is because the ending inventory of the first year is optimized and held to 

the second year, and so on. The ending inventory in the last year does not matter because 

it is far in the future and the solution will not be implemented now with this initial rolling 

horizon result. Also, the modeling of the last year was in the coarse tuning part explained 

above since no detailed information for later years is available at the time being anyway. 

We refer the reader to [118] for a more detailed explanation of the latter ending inventory 

part. We next define the notation for our model then present the mathematical 

formulation. 

4.3.1 Sets X Set of suppliers. 

me Set of raw materials 

�e Set of intermediate products 

YW Set of final products 

W Set of products. W = me ∪ �e ∪ YW 

.Y Set of transformation facilities. 

. Set of all time periods. . = {1,2,⋯ , 12, 13,⋯ , |.′|}. 

.′ Set of annual time periods. .G = {1, 13, 14,⋯ , |.G|}. 

.� Set of monthly time periods in the first year. .� = {1,⋯ ,12}. 
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1 Set of customers. 

�]^ Set of intervals for supplier I ∈ X supplying product 4 ∈ W. 
\ Set of destinations, \ = .Y ∪ 1. 

m Set of resources. 

4.3.2 Parameters 

J�]^ 
Fixed cost paid if supplier I ∈ X is chosen to provide product 

4 ∈ me. 
4�]^� 

Purchasing cost of product 4 ∈ me from supplier I ∈ X on interval 

� ∈ �]^. 

L�]�^- 
Transportation cost from origin I ∈ X ∪ .Y to destination � ∈ \ 

for each unit of product 4 ∈ W in period L ∈ .. 
O��^-, N��^-,
I��^- 

Throughput, assembly/manufacturing, and inventory costs, 

respectively, per unit of product 4 ∈ W at transformation facility 

� ∈ .Y in period L ∈ .. 

OM��k-, NM��k-,
IM��k- 

Unit resource cost of resource M ∈ m for flow, 

assembly/manufacturing, and inventory, respectively, at 

transformation facility � ∈ .Y in period L ∈ .. 

OMKJ�^k-, NMKJ�^k-,
IMKJ�^k- 

Units of resource M ∈ m consumed by one unit of product 4 ∈ W 
shipped, assembled/manufactured, and stored, respectively, at 

transformation facility � ∈ .Y in period L ∈ .. 

WK�NhL% Penalty for each unfulfilled unit of customer demand.  

��]^� Minimum annual purchasing quantity of product 4 ∈ me from 



77 
 

supplier I ∈ X to get the unit price of interval � ∈ �]^.  

��]^� 

Maximum annual purchasing quantity of product 4 ∈ me from 

supplier I ∈ X to get the unit price of interval � ∈ �]^, where 

��]^� > ��]^�			∀� ∈ �]^, and  ��]^� = ��]^�
9				∀� ∈
�]^\{��]^�}. ��]^� is the cardinality of set �]^. 

eI�]^- 
Minimum monthly purchasing quantity of product 4 ∈ me from 

supplier I ∈ X in period L ∈ .�. 

eN�]^- 
Maximum monthly purchasing quantity of product 4 ∈ me from 

supplier I ∈ X in period L ∈ .�. Typically,
���������9� ≤ eN�]^- ≪

��]^�����. 

I�IL_I���^ 
Initial inventory of product 4 ∈ W at transformation facility 

� ∈ .Y. 
1��`^s 

Amount of product 4 ∈ me ∪ YW needed to 

manufacture/assemble one unit of product � ∈ YW  

QK`2^- Demand of product 4 ∈ YW for customer 3 ∈ 1 in period L ∈ .. 

I�N4�^- 
Inventory capacity for product 4 ∈ W at transformation facility 

� ∈ .Y in period L ∈ .. 

I�N4�k- 
Capacity of inventory resource M ∈ m at transformation facility 

� ∈ .Y in period L ∈ .. 

O�N4�^-, N�N4�^- 
Throughput, and assembly/manufacturing capacities, respectively, 

for product 4 ∈ W at transformation facility � ∈ .Y in period 

L ∈ .. 
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O�N4�k-	 Capacity of throughput resource M ∈ m at transformation facility 

� ∈ .Y in period L ∈ .. 

N�N4�k- 
Capacity of assembly/manufacturing resource M ∈ m at 

transformation facility � ∈ .Y in period L ∈ .. 
4.3.3 Decision Variables J]^ �1	if	supplier	I ∈ X	is	chosen	to	supply	product	4 ∈ me.0	otherwise.  

¤]�^- ¥1	if	interval	� ∈ �]^	for	supplier	I ∈ X	and	product	me ∈ W	is	chosen	in	period	L ∈ .G.0	otherwise.  

4,]�^-� Quantity of raw material 4 ∈ me purchased from supplier I ∈ X on interval 

� ∈ �]^ and transported to facility � ∈ .Y in period L ∈ .. 
%]�^- Quantity of product 4 ∈ W transported from transformation facility I ∈ .Y to 

another transformation facility or customer � ∈ \\{I} in period L ∈ .. Note that 

4 ∈ �e ∪ YW if � ∈ .Y, while 4 ∈ YW if � ∈ 1. 

hJ2^- Lost sales quantity out of demand of product 4 ∈ YW at customer 3 ∈ 1 in 

period L ∈ .. 

I,�^- Inventory quantity of product 4 ∈ W held in transformation facility � ∈ .Y at the 

end of period L ∈ .. 
N,�^- Assembled/Manufactured quantity of product 4 ∈ �e ∪ YW at transformation 

facility � ∈ .Y in period L ∈ .. 
�,�^s- Quantity of product 4 ∈ W used to assemble/manufacture product � ∈ me ∪ �e 

at transformation facility � ∈ .Y in period L ∈ .. 
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4.3.4 Model Formulation 

 Given the previous problem definition, model dynamics, and notation, the 

resulting formulation is as follows: 

min 

> > > J�]^. J]^�∈���^∈l§]∈c + > > > > > 4�]^�. 4,]�^-��∈���-∈�^∈l§�∈�b]∈c  

+> > > > > L�]�^-. 4,]�^-��∈���-∈�^∈l§�∈�b]∈c + > > > >L�]�^-. %]�^--∈�^∈¨§∪ba�∈g\{]}]∈�b  

+ > > >N��^-. N,�^--∈�^∈¨§∪ba�∈�b + > > >>NM��k-. NMKJ�^k-. N,�^--∈�k∈l^∈¨§∪ba�∈�b  

+ > >>I��^-. I,�^--∈�^∈a�∈�b + > >>>IM��k-. IMKJ�^k-. I,�^--∈�k∈l^∈a�∈�b  

+ > > >>O��^-. %]�^--∈�^∈a�∈g\{]}]∈�b + > > >>OM�]k-. OMKJ]^k-. %]�^--∈�^∈a�∈g\{]}]∈�b  

+> > >WK�NhL%. hJ2^--∈�^∈ba2∈7  

4.1 

s.t. 

> ¤]�^-�∈���
= J]^ 

∀I ∈ X, ∀4 ∈ me, ∀L
∈ .′  4.2 

��]^�. ¤]^�9 ≤ > >4,]�^-�-∈���∈�b ≤ ��]^�. ¤]^�9 
∀I ∈ X, ∀4 ∈ me, ∀�

∈ �]^ 
 4.3 

eI�]^-. J]^ ≤ > > 4,]�^-��∈����∈�b ≤ eN�]^-. J]^ ∀I ∈ X, ∀4 ∈ me, ∀L ∈ .�  4.4 
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��]^�. ¤]^�- ≤ > 4,]�^-��∈�b ≤ ��]^�. ¤]^�- ∀I ∈ X, ∀4 ∈ me,	 
∀� ∈ �]^, ∀L ∈ .G\{1}  4.5 

> > 4,]�^-��∈���]∈c + > %]�^-]∈�b + N,�^- + I�IL_I���^

− I,�^- − >�,�^s-sna − > %�]^-]ng\{�} = 0 

∀�f.Y, ∀4fW, L = 1	  4.6 

> > 4,]�^-��∈���]∈c + > %]�^-]∈�b + N,�^- + I,�^-t9

− I,�^- − >�,�^s-sna − > %�]^-]ng\{�} = 0 

∀�f.Y, ∀4fW, ∀Lf.\{1}  4.7 

�,�^s- = 1��`^s. N,�s- 
∀�f.Y, ∀4fme ∪ �e,	 
∀� ∈ (�e ∪ YW)

\{4}, ∀Lf. 

 4.8 

> %]2^-]n�b + hJ2^- = QK`2^- ∀3f1, ∀4fYW, ∀Lf.  4.9 

I,�^- ≤ I�N4�^- ∀� ∈ .Y, ∀4 ∈ W, ∀L ∈ . 4.10 

>IMKJ�^k-. I,�^-^∈a ≤ I�N4�k- ∀� ∈ .Y, ∀M ∈ m, ∀L ∈ . 4.11 

N,�^- ≤ N�N4�^- 
∀� ∈ .Y, ∀4 ∈ �e

∪ YW, ∀L
∈ .� 

4.12 

> NMKJ�^k-. N,�^-^∈¨§∪ba ≤ N�N4�k- ∀� ∈ .Y, ∀M ∈ m, ∀L ∈ .� 4.13 

>%]�^-�∈g ≤ O�N4�^- ∀I ∈ .Y, ∀4 ∈ W, ∀L ∈ .� 4.14 
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>>OMKJ�^k-. %�]^-]∈g^∈a ≤ O�N4�k- ∀� ∈ .Y\{I}, ∀M ∈ m, ∀L
∈ .� 

4.15 

J]^ ∈ {0,1} ∀I ∈ X, ∀4 ∈ me 4.16 

¤]�^- ∈ {0,1} ∀IfX, ∀4fme, ∀� ∈ �]^,	 
∀L ∈ .G 4.17 

4,]�^-� ≥ 0 

∀I ∈ X, ∀� ∈ .Y,	 
∀4 ∈ me, ∀L ∈ ., ∀�

∈ �]^ 

4.18 

%]�^- ≥ 0 
∀If.Y, ∀�f\\{I},	 
∀4fW, ∀Lf. 

4.19 

hJ2^- ≥ 0 ∀3f1, ∀4fYW, ∀Lf. 4.20 

I,�^- ≥ 0 ∀�f.Y, ∀4fW, ∀Lf. 4.21 

N,�^- ≥ 0 
∀�f.Y, ∀4f�e
∪ YW, ∀Lf. 

4.22 

�,�^s- ≥ 0 
∀�f.Y, , ∀4fme ∪ YW,	 
∀� ∈ W, ∀Lf. 

4.23 

Objective function 4.1 minimizes the total supply chain costs described before. 

Constraint 4.2 ensures that if a supplier is chosen to provide a certain product, only one 

interval would be chosen each year. Constraint 4.3 defines the bounds on the annual 

purchased quantities shipped to all facilities, for each interval, for the first year. 

Constraint 4.5 does the same, but for all other years. Constraint 4.4 defines the monthly 

lower and upper bounds on purchasing quantities from selected suppliers in the first year. 

We remind the reader that we model the monthly details only in the first year.  



82 
 

Constraints 4.6 and 4.7 model the same transformation-space-time conservation 

of flow that we explained in the previous two chapters.  

Constraint 4.8 is the BOM constraint. It necessitates that the correct amounts of 

components are consumed in the transformation facilities in order to be assembled into 

finished/semi-finished goods. Constraint 4.9 ensures that customer demand is either 

fulfilled on time or it is considered as lost sales.  

There are three types of capacity restrictions at transformation facilities: 

inventory, assembly/manufacturing, and throughput capacities. For each of these, the 

restriction can be for each separate product, or it could be a joint one among different 

products competing for the available resources. Constraints 4.10, 4.12, and 4.14 represent 

the former case for inventory, assembly/manufacturing, and throughput, respectively, 

while constraints 4.11, 4.13, and 4.15 represent the latter case for the three capacities, 

respectively as well. Inventory capacity restrictions apply for the ending inventory in the 

first year and onwards. However, assembly/manufacturing and throughput restrictions are 

per month, and are therefore modeled for the first year only.  

Constraints 4.16 and 4.17 put the integrality restrictions on the binary variables, 

while constraints (4.18-4.23) are the non-negativity constraints for the rest of the 

variables. Note that the supplier-product selection binary variables J]^ are auxiliary 

variables, that would be substituted in the pre-solve of any commercial MIP solver. 

However, these variables will be helpful in our solution methodology described in the 

next Section. 
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4.4 Solution Methodology 

We first note that different users that might not have any formal knowledge in 

operations research usually want to quickly experiment solving multiple instances of 

planning models like ours with different scenario/parameter testing [113]. Hence, the 

focus of our algorithms below is to generate high quality solutions quickly rather than 

focusing on proving optimality. This could also be beneficial when extending our 

problem to include uncertainty; as in this case our model could be a sub-problem within a 

decomposition framework of a stochastic model with recourse (See [13, 14] for an 

overview of stochastic programming with recourse). 

Our model is very challenging to solve. Leading MIP commercial solvers, such as 

CPLEX [5] and Gurobi [6], take an average of 40 minutes to get feasible solutions that 

are within a 90% relative gap from the best known objective function values for 

realistically-sized instances like the ones discussed in Section 4.5 below. They also take 

more than 60 minutes on average to get solutions that are within a 40% for such gap. 

Note that we are relating the gaps to the best known feasible solutions since our main 

objective is to find good feasible solutions quickly (see [113] for another similar example 

to this). That is also why we focus here on primal heuristics and a meta-heuristic that 

achieve this goal. This relative gap is defined as: mKhNLI�K	
N4 = ©ª	«¬­®¯°tª±¬²­ª«¬­®¯° ³ ∗
100%, where µ	�|¶- is the objective function value of the best known feasible solution, 

while µ	�|-A·¸ is the best objective function value obtained by a certain method that can 

either be a commercial solver or one of our algorithms that we discuss below.  

We first present an algorithm that constructs an initial feasible solution for our 

model. Then, we develop two different MIP-based LS algorithms that iteratively improve 
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this initial solution. We show and justify the idea behind choosing the neighborhood to 

explore in each algorithm. Lastly, we combine the two neighborhoods in a VND 

framework (see [16, 17] for a detailed illustration of VND).  

4.4.1 Initial Solution Construction 

For this initial solution, we first aggregate the quantity discount intervals for each 

supplier into a single interval. The lower and upper bounds of this interval are the lower 

bound of the original lowest interval and the upper bound of the original highest interval 

of the supplier, respectively. The unit cost on that single interval is the average unit cost 

over all intervals of the supplier. Consequently, the only integer variables remaining in 

this aggregated model are the supplier variables (J]^). However, the problem might still 

be hard to solve to provable optimality. Given that we want our initial solution to be 

constructed quickly, we relax these variables and solve the linear programming relaxation 

of this described problem. Then, we use this solution to construct a feasible solution to 

the original MIP as follows: Any J]^ variable that has a value greater than zero in this 

solution gets its corresponding supplier set to open. The chosen interval each year for 

these suppliers is the one that contains the corresponding purchased annual quantity. The 

resulting feasible solution can be used as a warm start for the commercial solvers or for 

the algorithms we will develop next.  

4.4.2 Supplier Selection MIP-Based Local Search Algorithm 

The underlying idea behind this algorithm is the following: If we turn a potential 

supplier off, i.e., set its corresponding binary variable to zero, then all of the integer 

variables corresponding to its intervals in all years will be forced to zero as well. If we do 

so for many of the potential suppliers, the feasibility space can then be significantly 
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reduced. Furthermore, we can still turn some of their intervals to zero and let the solver 

choose among the remaining intervals for the suppliers that we will not turn off. This 

reduces the search space even more. The solver can get good feasible solutions, or even 

the optimal solution, for the resulting reduced sub-problem quickly. Note that these 

solutions are feasible for the overall problem by construction.  

We also observed that, for each raw material, only a few of the potential suppliers 

are set to one in the good solutions. Therefore, if we begin with closing all suppliers 

except just one and open other suppliers when needed in later iterations of the LS, we can 

get to these good solutions quickly. By “closing” a supplier, we mean that its 

corresponding binary variable J]^ is set to zero. By “making a supplier available” below, 

we mean setting the lower and upper bounds of its corresponding binary variable to zero 

and one, respectively, and letting the solver choose whether to open it or not. Whenever 

we first “make a supplier available”, we only make its first three intervals available. 

Then, in next iterations, we close the interval lower than the chosen interval in the 

previous solution and make the two higher ones available. The solver would choose 

higher intervals of the chosen supplier(s) if the demand is too high to be covered only by 

that supplier(s). So, we make a new supplier available for any raw material when the 

previously chosen supplier gets one of its two highest intervals chosen for any of the 

years. Note that we implicitly assume that each supplier provides at least 4 intervals, 

which is the case for the realistic instances we describe in Section 4.5. 

We pre-define the sequence for making the suppliers available. Multiple sorting 

criteria can be used. For instance, we can sort suppliers simply by the descending order of 

their fixed costs, by the average unit cost among all intervals, or just in a random order. 
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In the numerical results Section below, we present a more detailed sorting criterion that 

we found to be empirically useful. The pseudo code of this LS is detailed in Algorithm 2. 

The stopping rule that we adopt here, and in the following algorithms, is either some time 

limit or not getting an improvement for n successive iterations of the algorithm. 

Algorithm 2 Supplier Selection MIP-Based Local Search Algorithm 

   Initialize: 
   Choose a sorting criteria for suppliers of each raw material. 
   for each raw material do 

      Define set X^ = {I: I ∈ X	N�Q	Jx44hIKM	I	4M��IQKJ	MN¹	`NLKMINh	4 ∈ me} 
      Sort the elements of each set X^ according to described criteria. 
      Set J]^ 	L�	1	∀4 ∈ me: I	IJ	LℎK	OIMJL	KhK`K�L	I�	X^. 
      Set all intervals of supplier I to zero, except the first three intervals. Do this for each of the 5 

years. 
      Define �xMMK�L^ ← I. 
      X^ ← X^\{I}. 
 
   end for 

   Solve the MIP with a time limit of � seconds or ` feasible solutions. 
   if a solution is found then 

      �KJLX�hxLI��ºNhxKXx44hIKM�X ← LℎK	���K�LI�K	Ox��LI��	�O	LℎNL	J�hxLI��. 
      �KJLX�hxLI��Xx44hIKM�X ← LℎK	�NMIN�hK	�NhxKJ	�O	LℎNL	J�hxLI��. 
   end if 
 
   while Stopping condition not met do 
     Fix all variables to their values in the current solution. 
     for each raw material do 

        if �xMMK�L^ has any of its 2 highest intervals set to 1 for any of the 5 years then 
          if X^ ≠ ¼ then 
             Set the bounds on supplier I	, ¹ℎKMK	I ∈ X^: 
                 I	IJ	MI½ℎL	NOLKM	�xMMK�L^	I�	X^ L�	�K	�KL¹KK�	0	N�Q	1. 
             Set all intervals of supplier I to zero, except the first three intervals. Do this for each of 

the 5 years. 
             �xMMK�L^ ← I. 
             X^ ← X^\{I}. 
          end if 
        else 

          Suppose chosen interval is 3-A interval, set 3-A − 1 interval to zero if 3 > 1, and each of 3-A + 1	N�Q	3-A + 2 intervals to be between 0 and 1. Do this for each of the 5 years. 
        end if 
     end for                                                                                                                                                                 

     Solve the MIP with a time limit of � seconds or ` solutions. 
     if a solution is found then 

        �KJLX�hxLI��ºNhxKXx44hIKM�X ← LℎK	���K�LI�K	Ox��LI��	�O	LℎNL	J�hxLI��. 
        �KJLX�hxLI��Xx44hIKM�X ← LℎK	�NMIN�hK	�NhxKJ	�O	LℎNL	J�hxLI��. 
     end if 
   end while 

   Return: �KJLX�hxLI��ºNhxKXx44hIKM�X and �KJLX�hxLI��Xx44hIKM�X. 
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Another interesting observation we found is that even if multiple suppliers can be 

individually used to fulfill the need of a specific raw material, the optimal solution (or the 

good feasible solutions) might involve selecting more than one of these suppliers. That is 

because it might be more economical to use some intervals of one supplier in some years 

and other intervals of another supplier in the other years. Doing so might still be more 

economical even after putting in consideration that we will have to pay the fixed cost for 

all these suppliers. That is another reason why the underlying idea behind this LS works 

well in practice.  

Note that the way we construct this algorithm (and the two coming ones) ensures 

that the feasible solution obtained from any iteration is feasible for the next iteration. 

Thus, we do not need any additional steps to verify or restore feasibility nor would we 

ever run into infeasibility issues. That is also why we never get worsening solutions. 

4.4.3 Raw Material Separation MIP-Based Local Search Algorithm 

In the previous neighborhood, we make at most two suppliers available 

simultaneously for each raw material. Because if we make most of the suppliers 

available, then the reduced search space would still be too big to explore quickly. 

However, because only a limited number of the potential suppliers are made available 

each time, the above algorithm might get trapped in local optima quickly. Therefore, we 

next introduce another neighborhood that explores all potential suppliers simultaneously 

but for a subset of the raw materials. Note that we cannot explore too many raw materials 

at once in order to still have a reduced searchable solution space. Consequently, this can 

be considered as a complementary neighborhood to the previous one, where in the first 
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one we explore a subset of the suppliers for all raw materials while in this one we explore 

all suppliers but for a subset of the raw materials. 

Hence, at each iteration, we only solve for all suppliers of the subset of raw 

materials of this iteration and fix all suppliers and intervals for all other raw materials. 

The questions that arise here are: How do we choose the size of the clusters? And how do 

we cluster the raw materials in each non-intersecting subset?  

Since the larger the cluster size, the more the chance that one might get improving 

solutions, clusters better be as large as possible. However, if the clusters are too large, the 

sub-problem in each iteration might still be too hard to solve. Thus, we use the largest 

possible equal cluster size that makes the sub-problems still solvable to optimality or sub-

optimality within the chosen iteration time limit. 

As for how to cluster the raw materials, we suggest three ideas. First, we can 

cluster the raw materials that are required to produce each semi-finished or finished 

products together as much as possible, and then put the remaining ones at random in the 

remaining clusters.  Second, we could sort the raw materials according to decreasing 

demand of the products that these raw materials are used in manufacturing. We then fill 

the clusters with the raw materials in that sorted order. In the first pass of our algorithm, 

we can explore the clusters in that sequence instead of choosing which ones to pursue at 

random in each iteration. In later passes, we can then return to the random choice of 

which clusters to solve for. The idea behind this sorting is that a higher demand 

corresponds to higher purchased quantities and thus higher total purchasing costs as a 

percentage of the overall objective function. Therefore, one can hope for higher 

improvements early on if this idea is adopted. Third, we can just cluster the raw materials 
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at random into the equal clusters. The pseudo code of this second LS is given in 

Algorithm 3. 

Algorithm 3 Raw Material Separation MIP-Based Local Search Algorithm 

  Initialize: 
  Choose a clustering criteria for raw materials in set me. 
  Construct the initial solution using the idea in subsection 4.4.1. 
  Let �KJLX�hxLI��ºNhxKeNLKMINh�Xbe the objective function value of this initial solution. 
  Let �KJLX�hxLI��eNLKMINh�X be the variable values of this initial solution. 
  Divide the raw materials in set me into @ non-intersecting clusters , each with e raw materials, 

except the last one in case that |me|%e > 0, where |me| is the cardinality of the set me. Thus, @ = ¾l§§ ¿. 
  Define set ��� = ⋃ �]Á]89 . 
 
  while Stopping condition not met do 

     Select cluster �] at random from set ���. 
     Fix all supplier and interval binary variables not in that cluster to their values in the current 

solution. 
     if ���\�] = ¼ then 
       ��� = ⋃ �]Á]89 . 
      else 

       ��� ← ���\�]. 
      end if 

      Solve the MIP with a time limit of � seconds or ` solutions. 
      if a new improved solution is found then 

         �KJLX�hxLI��ºNhxKeNLKMINh�X ← LℎK	���K�LI�K	Ox��LI��	�NhxK	�O	LℎNL	J�hxLI��. 
         �KJLX�hxLI��eNLKMINh�X ← LℎK	�NMIN�hK	�NhxKJ	�O	LℎNL	J�hxLI��. 
      endif 
  end while 

  Return: �KJLX�hxLI��ºNhxKeNLKMINh�Xand �KJLX�hxLI��eNLKMINh�X. 
 

4.4.4 Variable Neighborhood Descent Algorithm 

The previous two algorithms are heuristics that can get trapped in local optima. In 

an attempt to escape local optima, and since the two neighborhoods we described are 

different and complementary, we combine them into a VND meta-heuristic scheme.  

We use the same initial solution as our first algorithm. We then start with the first 

neighborhood, keep solving until a specific stopping rule, and then use the resulting 

solution as an initial solution to be explored using the second neighborhood. We follow 

the VND as structured in [16] and in Algorithm 1 (see chapter I), except that we just 

move from the first neighborhood to the second one and solve until the stopping criteria 
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of the second one. That is, we do not return back to the first one since we did not find any 

computational improvement in doing so and since the output of the second neighborhood 

is not feasible as an input to the first one. Note that for our algorithm, 3�B� = 2 since we 

only use our two complimentary neighborhoods.   

We next discuss our experimental instances and show how our algorithms can be 

efficiently used to solve them. 

4.5 Numerical Results 

We apply our model to a food supply chain application. We start with describing 

the application. Then, we describe how we generated our realistic instances, and finally, 

show our numerical results. 

The food supply chain that we consider is for one of the world's largest companies 

in the field of food processing and supplies. The company supplies numerous fast food 

restaurants world-wide with most of their goods. This includes liquid products, such as 

ketchup and mayonnaise, meat products, bakery, and others. The fast food restaurants 

(the customers), have a monthly demand for the different food products. The company 

manufactures a few of these products in its plants and outsources the rest. Even for the 

end products manufactured by the company, their raw materials are still purchased from 

outsider suppliers. All end products get stored in one of the multiple warehouses owned 

by the company before they get distributed to the restaurants to fulfill the demand. 

External suppliers for the company provide quantity discounts using the scheme earlier 

described in our model; the discount intervals are for the total annual orders, but the 

orders are placed each month.  
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Inspired by real data, we generated 30 numerical instances for our model. 

Locations for suppliers, facilities, and customer zones were generated on a grid of the US 

map, uniformly distributed among the main populous areas. Euclidean distances between 

these locations were calculated. All parameters were generated from uniform 

distributions between lower and upper bound values that are realistic with accordance to 

the data of the company. Table 5 shows the lower and upper bounds on the number of 

suppliers, facilities, customer zones, and raw materials that we used. All capacities, costs, 

and customer demand were generated in a similar way, with summer seasonal demand 

peaks put in consideration as well as an annual demand increases. Some of the raw 

materials are end products themselves. Other end products are processed by combining 

one or more raw materials at the company’s facilities.  

We assumed that suppliers offer six quantity discount intervals. The time horizon 

is exactly as described above in our model, i.e., there are five annual periods with the first 

one being further divided into twelve months.  

We compare the performance of the commercial MIP solver CPLEX 12.6 with 

each of our three algorithms. Setting the MIP Emphasis parameter of CPLEX to 1 is 

supposed to make the solver focus on finding good feasible solutions quickly. However, 

we did not find any significant difference in the results of CPLEX whether we set that 

parameter to 1 or to its default value of 3 (which balances feasibility and optimality).  We 

also tried tuning other parameters of CPLEX, but none of them had any significant 

difference on the results. Consequently, we report the results of using CPLEX with its 

default parameter values.  
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We warm-start all of our algorithms and CPLEX with our initial solution 

described above. Our experimentation showed that doing so yields the best results. Our 

initial solution turned out to be fairly good by itself; resulting in an average relative gap 

of approximately 18% among all instances. Without this warm-start, CPLEX does not get 

a solution with that quality gap within a three-hour time limit for the vast majority of our 

instances, and it does not even find any feasible solution for most of them. We computed 

µ	�|¶- by warm-starting CPLEX with the best solution found using all of our three 

algorithms and solving for 10 hours.  

Table 5 Ranges of the Number of Suppliers, Facilities, Customer Zones, and Raw Materials for Our 

Numerical Instances 

Parameter Minimum Maximum 

Number of Suppliers 250 450 

Number of Facilities 12 25 

Number of Customer Zones 40 75 

Number of Raw Materials 50 100 

For the supplier selection LS, the sorting criterion that consistently worked the 

best was sorting the suppliers according to what we call the approximate total supplier 

purchasing cost. This cost is the sum of the fixed cost of selecting that supplier and the 

total purchasing cost if that supplier is the only selected one. This is calculated as 

follows: For supplier I ∈ X that provides raw material 4 ∈ m/,	we first calculate the total 

annual required quantity of product 4 by relating it through the BOM to all intermediate 

and final products that it is used in and multiplying that by the annual demand of these 

end products. We call this the j,xI�NhK�L\K`N�Q^- for 4 in year L ∈ .′. Then, we 
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multiply the result by the purchasing cost of the interval of that supplier that contains the 

j,xI�NhK�L\K`N�Q^-. If the j,xI�NhK�L\K`N�Q^- is higher than the upper bound of 

the highest interval of the supplier, we calculate the equivalence of purchasing the 

maximum capacity of that supplier and add it to the penalty of not fulfilling the 

remaining j,xI�NhK�L\K`N�Q^-. We do this for all years and add up the total resulting 

cost. In mathematical form, this is: 

�44M��I`NLK	L�LNh	WxM�ℎNJI�½	��JL	O�M	Xx44hIKM	I ∈ X	.ℎNL	WM��IQKJ	WM�Qx�L	4
∈ me
= J�]^ + > > j,xI�NhK�L\K`N�Q^-. 4�]^�. ��∈���-∈�_

+ > Â��]^�����. 4�]^����� + (j,xI�NhK�L\K`N�Q]^-∈�G
− ��]^�����). WK�NhL%Ã . �′ 

Where, � = 1	IO	��]^� ≤ j,xI�NhK�Q\K`N�Q]^ ≤ ��]^�	N�Q	0	�LℎKM¹IJK,	and 

�G = 1	IO	j,xI�NhK�Q\K`N�Q]^ > ��]^�����	N�Q	0	�LℎKM¹IJK. 
For the raw material separation LS, we found that having equal random clusters 

works best compared to all the other clustering mechanisms that we described in 

subsection 4.4.3 above. We also found that fixing the continuous variables related to all 

raw materials not executed in any specific iteration speeds up the solution time 

significantly for that iteration without having a big effect on solution quality. We adopted 

this in our implementation. We used the following stopping criteria in each of the 

reduced MIPs of our algorithms: either getting a solution that is within 4% of the lower 

bound of that reduced MIP or reaching a 180 seconds limit.  
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Note that for our large realistic instances, we have no way to get the optimal 

solution and compare the solutions of our algorithms to it. For small instances, CPLEX 

can get the optimal solutions. We verified that by relaxing the aforementioned stopping 

criteria for the sub-problems of our second algorithm and let CPLEX solve each sub-

problem to optimality since each sub-problem is a small instance of our model. CPLEX 

was able to get the optimal solution of each of these problems within 60 minutes. Since 

our algorithms are based on MIP-based LS, the underlying idea is that we use the solver 

to solve these sub-problems anyway. Thus, we note that for these smaller instances, our 

algorithms get a relative gap of 0.01% to the optimal solution (which is the default gap 

from optimal solution for CPLEX).  

The instance generator, model generation, and the three algorithms were all coded 

in C++ where CPLEX 12.6 was called through Concert Technology [5]. All experiments 

were done on a Linux machine with Kernel 2.6.18 running a 64-bit x86 processor with 

two 2.27 GHz Intel Xeon E5520 chips and 32GB of RAM. 

Figure 10 compares the average performance of CPLEX to each of our algorithms 

for a running time of one hour. CPLEX finds very few feasible solutions with minor 

improvements over our initial solution within the 1 hour limit. All three of our algorithms 

outperform CPLEX. The supplier selection LS is better than the raw material separation 

one until almost the 2000th second, after which the latter gives better results. VND 

outperforms all other methods. It gets solutions within a 1% average relative gap in 33.18 

minutes. This shows the benefit of combining both neighborhoods in the VND scheme. 

We also ran all methods for two more hours to see if there is any difference in 

performance. Figure 11 plots the results of the four methods over a three-hour running 



95 
 

time. There is a very slight improvement in CPLEX’s results, but almost no improvement 

in any of our algorithms. However, all of our methods still well outperform CPLEX, and 

the comparison between them remains the same as the case of the one hour limit. It is 

worth noting that running CPLEX for even four more hours did not yield any significant 

improvement. 

Table 6 shows the time at which the VND algorithm finds its best solution and the 

time each of the other 3 methods find that solution for all instances. A value of “>10800” 

for any method means that the method did not find a solution of similar or higher quality 

within the 3 hours/10800 seconds limit. None of the methods gets the best solution of the 

VND within the three hours limit for 21 out of the 30 instances. The supplier selection LS 

outperforms the VND in six instances, while the raw material separation LS outperforms 

it in three instances. CPLEX gets that solution faster than the VND algorithm in only one 

instance, gets it slower than the VND algorithm in one other instance, and never gets the 

solution within the three hours limit for the remaining 28 instances. These results 

emphasize how the leading commercial solver suffers in getting high quality feasible 

solutions quickly and also show the efficiency of our algorithms.  
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Figure 10 Comparisons between the Performance of Each of Our 3 Algorithms and CPLEX for an 

Hour 
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Figure 11 Comparisons between the Performance of Each of Our 3 Algorithms and CPLEX for 3 

Hours of Computing Time 
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Table 6 Instance-by-Instance Comparison: Time of Best Solution for VND and Time Until Each of 

The Other Algorithms and CPLEX Reaches That Solution For Each Instance 

Instance 

Number 

 Time of 

best 

solution 

of VND 

(Seconds) 

 Time until 

CPLEX gets 

best solution 

of VND 

(Seconds) 

 Time until supplier 

selection LS gets 

best solution of VND 

(Seconds) 

 Time until raw 

material separation 

LS gets best solution 

of VND (Seconds) 

1 3004  > 10800 151  > 10800 

2 5407  > 10800 152 1974 

3 2518  > 10800  > 10800  > 10800 

4 2433  > 10800  > 10800  > 10800 

5 2983  > 10800  > 10800  > 10800 

6 2550 7751 333  > 10800 

7 2894  > 10800  > 10800  > 10800 

8 2611  > 10800  > 10800  > 10800 

9 2728  > 10800  > 10800  > 10800 

10 5373  > 10800 152  > 10800 

11 2564  > 10800 957  > 10800 

12 2272  > 10800  > 10800  > 10800 

13 3236  > 10800  > 10800  > 10800 

14 2466  > 10800 611  > 10800 

15 3091  > 10800  > 10800 2121 

16 2354  > 10800  > 10800  > 10800 

17 2703  > 10800  > 10800  > 10800 

18 3174 4530  > 10800  > 10800 

19 2632  > 10800  > 10800  > 10800 

20 2950  > 10800  > 10800  > 10800 

21 2605  > 10800  > 10800 2305 

22 2338  > 10800  > 10800  > 10800 

23 2992  > 10800  > 10800  > 10800 

24 2697  > 10800  > 10800  > 10800 

25 4598  > 10800  > 10800  > 10800 

26 2614  > 10800  > 10800  > 10800 

27 2551  > 10800  > 10800  > 10800 

28 2366  > 10800  > 10800  > 10800 

29 2357  > 10800  > 10800  > 10800 

30 2348 >10800 >10800 >10800 
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Chapter V 
 
 
 

CONCLUSIONS AND DIRECTIONS FOR FUTURE 

RESEARCH 

 
 
 

In this thesis, we presented modeling frameworks for three supply chain planning 

problems. We applied each of them to a real-world application. We present our 

conclusions and directions for future research in this last chapter. 

5.1 Conclusions 

In chapter II, we presented a real world supply chain planning application in the 

wind turbines industry, that has not been investigated before in the literature. We 

developed a comprehensive tactical mathematical model that is multi-commodity, multi-

echelon, and dynamic. We applied it to our real-world case study. The model handles for 

the first time delay dependent backorder costs that can have any functional form.  

 We showed that the model enables efficient planning of tactical supply chain 

decisions in the wind turbines case study and similarly structured supply chains. For our 

case study the impact is a cost reduction from 15% to 85% if the backorder costs are 

considered explicitly in the model. In addition, we showed how being able to model 

backorder penalties with a piecewise convex cost structure resulted in a total cost 

reduction of up to 6% compared to using a linear cost approximation of the backorder 

penalties. 
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In chapter III, we developed a two-stage stochastic programming model for 

comprehensive tactical supply chain planning under uncertainty, inspired by a real-world 

application in the wind turbines industry. The model deals with multi-period, multi-

product, and multi-echelon supply chains. Uncertainty/unreliability of suppliers in its 

most general form, which is a combination of random yield and stochastic lead times, is 

considered. We described a case study of our model in the wind turbines industry for one 

of the world’s biggest manufacturers of this industry. In our experimental computational 

results that used realistic data from the wind turbines application, the model chooses the 

cheapest suppliers, regardless of their reliability, if feasible solutions using these cheap 

suppliers can be generated. They also showed that optimal solutions for the 

expected/mean value problem are higher than that of the corresponding case of 

completely reliable suppliers. In addition, the cost ratio of the MVP over the 

deterministic case increases with increasing backorder costs. The value of using a 

stochastic program over a deterministic one as a percentage of the optimal stochastic 

solution reached values of up to 20% for the experiments we carried out. We also showed 

and analyzed that the optimal procurement quantities might be higher than the demand in 

some cases. 

In chapter IV, we presented a mixed integer programming model for a 

production-distribution planning problem that incorporates a novel time-aggregated 

quantity discounts scheme. The model is very hard to solve using leading commercial 

solvers. With the aim of getting good feasible solutions quickly, we developed an 

algorithm that constructs a good initial solution and three other iterative algorithms that 

are capable of very quickly getting high quality primal solutions. Two of the latter three 
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algorithms are based on MIP-based local search and one is a VND combination the two. 

We presented numerical results from a realistic food supply chain and showed the 

efficiency of our customized algorithms. The leading commercial solver CPLEX finds 

very few if any feasible solutions with minor improvements over our initial solution 

within a three hours solution time limit. All our algorithms well outperform CPLEX. The 

VND algorithm has the best average performance.  Its average relative gap to the best 

known feasible solution is within 1% in less than 35 minutes of computing time. 

5.2 Directions for Future Research 

 A number of interesting directions for future research exist. For the first problem, 

adding more global supply chain considerations is one direction for future research; since 

the wind turbine supply chain under study is a global one. Examples of these 

considerations include taxes, tariffs, transfer prices regulations, and currency exchange 

rates. In addition, adding supplier selection issues to the same problem is another 

extension. Note that our model in chapter IV includes supplier selection but it does not 

include the possibility of backordering. Furthermore, some countries enforce a minimum 

percentage of local content of the raw materials used to manufacture end products sold in 

these countries. That adds an extra restriction on the chosen suppliers and procurement 

plans. One can add this restriction and study its effect on the overall supply chain costs. 

 Our model in chapter III deals with tactical planning, and so suppliers were 

assumed to have been selected. One extension would be adding the issue of supplier 

selection with their fixed contractual costs. The resulting model would have integral 

variables, and might be challenging to solve. The use of a primal decomposition method 
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such as Benders decomposition may be warranted. Also, adding more global supply chain 

issues, e.g., customs, tariffs, local content, taxes, etc., is another extension of this work. A 

third extension of this work is to apply it to other relevant real-world applications 

 For our work in chapter IV, one direction for extending this work is to include 

uncertainty and use a stochastic programming approach to model the problem. In this 

case, one can use our algorithms to efficiently solve the one-scenario problem of the 

stochastic models; as these sub-problems would be nothing but the deterministic model 

discussed in chapter IV. Note that the stochastic model in chapter III did not include 

supplier selection or quantity discounts. Another direction for future research, as 

indicated for the previous two problems, would be including the international aspects of 

supply chain planning. Then, one can study the impact of these international 

considerations on the overall supply chain costs.  
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APPENDIX A 
 

 

 

PROOF OF COROLLARY 1 
 

 

 
Corollary 1:  

A linear backorder cost structure with a positive intercept always satisfies condition 2.27. 

Proof:  

Let 0>a  be the intercept of that linear cost structure function, and s be its slope. 

|T| is the cardinality of the set of periods T (so the biggest period difference is |T|-1). 

Figure 12 shows this cost structure.  

Now, for any three period differences 1∆ , ,2∆  and 3∆ , where T≤∆<∆≤∆< 3210  

and 321 ∆=∆+∆ . Since ,0>a  then 33 2 ∆+<∆+ sasa . Also, since 321 ∆=∆+∆ , then we 

get that 213 ∆++∆+<∆+ sasasa . This last identity implies that it will always be 

cheaper to have a backorder for a difference in periods equal to 3∆  in one step/jump, 

rather than doing it in two jumps (by having a backorder flow for a difference in periods 

of 1∆  and another one of 2∆ ). This prevents the two-hop solution from becoming the 

optimal solution.  Recursively, this also holds for any number of possible jumps, and thus 

satisfies condition 2.27.    ■ 
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Figure 12 A Linear Backorder Cost Structure 
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APPENDIX B 

 
 

 
PROOF OF COROLLARY 2 

 
 
 

Corollary 2:  

A piecewise linear concave backorder cost structure, with a positive intercept of the first 

interval, always satisfies condition 2.27. 

Proof: 

We first prove it for the case of a curve with two intervals and then extend it to 

the case of more than two intervals. For the case of two intervals, let 01 >a  and  02 >a  

be the intercepts and let 1s  and 2s  be the slopes of the first and second linear segments, 

respectively, 2,1∆ be the period difference at which the slope changes from 1s to 2s , and |T| 

be the cardinality of the set of periods T. Figure 13 illustrates this cost structure function. 

Since the cost curve is piecewise linear concave, then 21 aa < , and 021 >> ss .  

For any three period differences 1∆ , 2∆ , and 3∆ , where T≤∆<∆≤∆< 3210  

(assuming without loss of generality that 21 ∆≤∆ ), and 321 ∆=∆+∆ , there are only four 

possible cases: 

Case 1: 2,13 ∆≤∆ , that is all period differences belong to the first linear segment 

of the backorder cost structure. In this case, according to proposition 1, condition 2.27 is 

satisfied. 
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Case 2: 2,11 ∆≥∆ . Here all period differences belong to the second linear 

segment. Similarly, using proposition 1, the condition is satisfied. 

Case 3: 2,11 ∆<∆  and 2,12 ∆>∆  (i.e., 1∆  belongs to the first segment and both 2∆  

and 3∆  belong to the second segment). 0)( 12121 <−∆⇒> ssss as 01 >∆ . Since 01 >a , 

then 11121221121 )( ∆++<∆+⇒<−∆ saasaass .  

Using 321 ∆=∆+∆ , we get that 222111322 ∆++∆+<∆+ sasasa , which satisfies 

the condition preventing backordered flows that make two hops from being the optimal 

solution. Recursively, the same applies to the prevention of having more than two jumps 

in the optimal solution. 

Case 4:  2,12 ∆≤∆  and 2,13 ∆>∆  (i.e., both 1∆  and 2∆  belong to the first 

segment, and 3∆  belongs to the second segment). Using these inequalities, that

021 >> ss , and that 02,1 >∆ , we get that .0))(( 2,1321 >∆−∆− ss   

Since 01 >a , then ))(( 2,13211 ∆−∆−<− ssa  ⇒  )()( 212,12131 ssssa −∆−−∆<−  ⇒

31322,122,111 ∆<∆+∆−∆+− ssssa . Noticing that 2,1∆  lies on both lines, we get that 

2,1222,111 ∆+=∆+ sasa  (i.e., 122,122,11 aass −=∆−∆ ). Also, 213 ∆+∆=∆ . Substituting 

those last two equalities, we get that 211111322 ∆++∆+<∆+ sasasa , which, again, 

satisfies the condition for the case of two hops. Recursively, the same applies to the 

prevention of having more than two hops. So, we conclude that the condition is satisfied 

in all cases. 

We now prove the above proposition for the case of a linear cost structure with 

more than two segments. We here define ia  and is  as the intercept and slope of line 
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segment i , respectively. We also define each ii ,1−∆  as the period difference at which the 

slope increases from 1−is  for piece 1−i  to is  for the successive segment i . Note that 

ii ,1−∆  is the intersection of the line with intercept 1−ia  and slope 1−is , and the line with 

intercept ia  and slope is . More generally, ij ,∆  is the intersection of the line with intercept 

ja  and slope js , and the line with intercept ia  and slope is , where ji aa > , ji ss < , and 

both segments belong to the piecewise linear concave cost structure, but they are not 

successive. From concavity, for any 11 −≤≤ ij , ijii ,,1 ∆≥∆ − (see figure 14). We have 

four cases here: 

Case 1: ,, 21 ∆∆  and 3∆ belong to the same segment. In this case, from proposition 

1, condition 2.27 is satisfied. 

Case 2: 21,∆∆ belong to the same segment j, and 3∆  belongs to the segment ji ≥ . 

Since, ≥∆3 ii ,1−∆  and ≥∆ − ii ,1 ij ,∆ , then ≥∆3 ij ,∆ . Then similarly to the proof of case 4 in 

the linear piecewise concave cost structure with 2 linear segments this case satisfies 

condition 2.27. 

Case 3: 1∆ belongs to the linear segment ,j and both 2∆  and 3∆  belong to the 

segment ji > . Here, since, ≥∆3 ii ,1−∆  and ≥∆ − ii ,1 ij ,∆ (from concavity), then ≥∆3 ij ,∆ . 

From the previous two proofs, this case also satisfies the condition 2.27. 

Case 4: 1∆  belongs to the linear piece j, 2∆  belongs to the linear piece jk > , and 

3∆  belongs to the piece ki > . Since 321 ∆=∆+∆ , 
ik

ki

ik
ss

aa

−

−
=∆ . (because 
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ikiiikkk sasa ,, ∆+=∆+  as ik ,∆  belongs to both lines k  and i ), and ik ,3 ∆≥∆  (as proved 

in case 1), we get: 

ik

ki

ss

aa

−

−
≥∆+∆ 21 ⇒ iikikk assssa ≥∆−+∆−+ 21 )()( . Now, since )()( ikij ssss −>−  

(from concavity), and 0>ja  (since 1aa j ≥ , where 1a  is the positive intercept of the first 

linear piece as given, then iikkijj assassa >∆−++∆−+ 21 )()( . Using 321 ∆=∆+∆ , 

we get 321 ∆+≥∆++∆+ iikkjj sasasa . Then, for all three cases, using the same 

argument we used at the end of our proof of proposition 1, condition 2.27 is satisfied.  ■ 

 
Figure 13 Piecewise Linear Concave Backorder Cost Structure with Two Pieces 
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Figure 14 Piecewise Linear Concave Backorder Cost Structure with More Than Two Segments 

 

 

  



110 
 

APPENDIX C 
 
 
 

SUMMARY OF THE NOTATION USED IN SECTION 3.3 
 
 
 

Below is a summary of the notation used in our models in Section 3.3 and 

appendix D. 

Sets: X Set of suppliers 

.Y Set of transformation facilities 

W Set of products 

. Set of periods 

m Set of resources 

1 Set of customers 

Ym, �m, 
	�m, .m 

Sets of resources required for product flow (Ym), assembly (�m) and product 

inventory (�m) in transformation facilities, and those required for product 

transportation between origins and destinations (.m), and those required for 

production at suppliers (Xm). These are the subsets of the set of resources R 

\ Set of destinations, \ = .Y ∪ 1 

Ω Set of scenarios 

Parameters: 4�]^- Purchasing cost per unit of product 4 ∈ W from supplier I ∈ X, when 

ordered in period L ∈ . 
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eN�]^- Maximum possible order quantity of product 4 ∈ W from supplier I ∈ X 

in period L ∈ . 

L�]�^- Transportation cost per unit of product 4 ∈ W shipped from supplier 

I ∈ X and transformation facility � ∈ .Y, or from transformation facility 

I ∈ .Y and destination � ∈ \ in period L ∈ . 

O��^-,	N��^-, 
I��^- 

Throughput cost, assembly cost, and inventory cost, respectively, per 

unit of product 4 ∈ W at transformation facility I ∈ .Y in period L ∈ . 

4�2^- Penalty per unit of lost sales of product 4 ∈ W for customer 3 ∈ 1 in 

period L ∈ . 

��2^-i Backorder cost per unit of product 4 ∈ W when it is delivered to 

customer 3 ∈ 1 in period L ∈ . to satisfy part of or the whole demand 

of that product at that customer for the earlier period x ∈ {1,⋯ , |.|}, 
where |.| is the cardinality of the set of periods . 

��N4K�4]�^- Cost of expanding the transportation capacity per unit of product 4 ∈ W 

shipped from supplier I ∈ X to transformation facility � ∈ .Y, or from 

transformation facility I ∈ .Y to destination � ∈ \ in period L ∈ . 

�O�N4K�4�^-, 
�N�N4K�4�^-,	 
�I�N4K�4�^- 

Cost of expanding the throughput, assembly/manufacturing, and 

inventory capacity, respectively, per unit of product 4 ∈ W at 

transformation facility � ∈ .Y in period L ∈ . 

�M�]�k- Resource cost per unit of transportation resource M ∈ .m shipped from 

supplier I ∈ X to transformation facility � ∈ .Y, or from transformation 

facility I ∈ .Y to destination � ∈ \ in period L ∈ . 
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OM��k-, 
NM��k-,	 
IM��k- 

Unit resource cost of  resource M ∈ .m for flow, M ∈ �m for assembly 

(production), and M ∈ �m for inventory, respectively, at transformation 

facility � ∈ .Y in period L ∈ . 

�MKJ]�^k- Quantity of transportation resource M ∈ .m required to ship one unit of 

product 4 ∈ W from supplier I ∈ X to transformation facility � ∈ .Y, or 

from transformation facility I ∈ .Y to destination � ∈ \ in period L ∈ . 
OMKJ�^k-,	 
NMKJ�^k- 
IMKJ�^k-, 

Quantity of flow resource M ∈ Ym, assembly/manufacturing resource 

M ∈ �m, and inventory resource M ∈ �m,	respectively, required per unit 

of product 4 ∈ W at transformation facility � ∈ .Y in period L ∈ . 
M��N4K�4]�k- Cost of expansion of one unit of transportation resource M ∈ .m used 

for shipment from supplier I ∈ X to transformation facility � ∈ .Y, or 

from transformation facility I ∈ .Y to destination � ∈ \ in period L ∈ . 

M�O�N4K�4�k-,
M�N�N4K�4�k-,
M�I�N4K�4�k- 

Cost of expansion of one unit of flow resource M ∈ Ym, 

assembly/manufacturing resource M ∈ �m, and inventory resource 

M ∈ �m,	respectively, at transformation facility � ∈ .Y in period L ∈ . 

4J]^--_  Penalty per unit of product 4 ∈ P paid by supplier I ∈ S for supplying 

orders placed for period L′ ∈ T, at period L ∈ {LG, ⋯ , |.|}, where |.| is 

the cardinality of the set of periods .  

��N4]�^- Capacity of transporting product 4 ∈ W from supplier I ∈ X to 

transformation facility � ∈ .Y, or between transformation facility 

I ∈ .Y to destination � ∈ \ in period L ∈ . 
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O�N4�^-, 
N�N4�^-, 
I�N4�^- 

Flow, assembly/manufacturing, and inventory capacity, respectively, 

for product 4 ∈ W in period L ∈ . 

��N4]�k- Capacity of transportation resource M ∈ .m used for shipment from 

supplier I ∈ X to transformation facility � ∈ .Y, or from transformation 

facility I ∈ .Y to destination � ∈ \ in period L ∈ . 

O�N4�k-, 
N�N4�k-, 
I�N4�k- 

Capacity of flow resource M ∈ Ym, assembly/manufacturing resource 

M ∈ �m, and inventory resource M ∈ �m, respectively, at transformation 

facility � ∈ .Y in period L ∈ . 

1��`^s Number of units of component 4 ∈ W required to assemble one unit of 

assembly (semi-finished or finished product) � ∈ W in period L ∈ . at 

transformation facility � ∈ .Y where component 4 is an element of the 

single level bill of material of product � 

MK�^- Received quantity of product 4 ∈ P at transformation facility � ∈ TF in 

period L ∈ T, that was ordered in the previous planning horizon, but will 

arrive in period L ∈ T of the current planning horizon 

	I�IL_I���^ Initial inventory or product 4 ∈ P at transformation facility � ∈ TF 

∆]^--_ Percentage of order quantity of product 4 ∈ P ordered from supplier 

I ∈ S in period L′ ∈ T that will be delivered in period L ∈ {LG, ⋯ , |.|}, 
where |.| is the cardinality of the set of periods . (only in deterministic 

model) 

QK`2^- Demand of product 4 ∈ W at customer 3 ∈ 1 in period L ∈ . (only in 
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the deterministic model) 

∆]^--_(*) Percentage of order quantity of product 4 ∈ P ordered from supplier 

I ∈ S in period L′ ∈ T that will be delivered in period L ∈ {LG, ⋯ , |.|}, 
where |.| is the cardinality of the set of periods . for scenario * ∈ Ω 

(only in the stochastic model) 

QK`2^-(*) Demand of product 4 ∈ W at customer 3 ∈ 1 in period L ∈ . for 

scenario * ∈ Ω (only in the stochastic model) 

 Decision Variables: 4,]�^- Purchased quantity of product 4 ∈ P from supplier I ∈ S to 

transformation facility � ∈ TF, that is supposed to arrive in period 

L ∈ T (part or the whole of it might be delayed and delivered in 

later periods; due to supplier random unreliability. 

�]�^-(*) Delivered quantity of product 4 ∈ P from supplier I ∈ S to 

transformation facility � ∈ TF in period L ∈ T for scenario * ∈ Ω 

%]�^-(*) Delivered quantity of product 4 ∈ P from transformation facility 

I ∈ TF to destination � ∈ TF ∪ 1 in period L ∈ T for scenario 

* ∈ Ω 

I,�^-(*) Inventory quantity of product 4 ∈ P held at the end of period L ∈ T 

at transformation facility � ∈ TF for scenario * ∈ Ω 

�,�^s-(*) Quantity of product 4 ∈ P used to assemble/manufacture product 

� ∈ P at transformation facility � ∈ TF in period L ∈ T for scenario 

* ∈ Ω 

N,�^-(*) Quantity of product 4 ∈ P assembled/manufactured at 
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transformation facility � ∈ TF in period L ∈ T for scenario * ∈ Ω 

hJ2^-(*) Lost sales quantity of product 4 ∈ W at customer 3 ∈ 1 in period 

L ∈ . for scenario * ∈ Ω 

�,2^-i(*) Backorder quantity of product 4 ∈ P shipped to customer 3 ∈ K in 

period L ∈ T to fulfill part of the whole demand of that product at 

that customer for period x ∈ {1,⋯ , t − 1}, for scenario * ∈ Ω 

��j�4]�^-(*) Quantity of transportation capacity expansion for product 4 ∈ P, 

transported from origin I ∈ S ∪ TF to destination � ∈ TF ∪ K in 

period L ∈ T for scenario * ∈ Ω 

O�N4j�4�^-(*) Quantity of throughput capacity expansion for product 4 ∈ P at 

transformation facility � ∈ TF in period L ∈ T for scenario * ∈ Ω 

I�N4j�4�^-(*) Quantity of inventory capacity expansion for product 4 ∈ P at 

transformation facility � ∈ TF in period L ∈ T for scenario * ∈ Ω 

N�N4j�4�^-(*) Quantity of assembly/manufacturing capacity expansion for 

product 4 ∈ P at transformation facility � ∈ TF in period L ∈ T for 

scenario * ∈ Ω 

m��N4j�4]�k-(*) Quantity of transportation resource capacity expansion for resource 

M ∈ TR, transported from origin I ∈ S ∪ TF to destination � ∈ TF ∪
K in period L ∈ T for scenario * ∈ Ω 

mO�N4j�4�k-(*) Quantity of throughput resource capacity expansion for resource 

M ∈ FR at transformation facility � ∈ TF in period L ∈ T for 

scenario * ∈ Ω 
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mI�N4j�4�k-(*) Quantity of inventory resource capacity expansion for resource 

M ∈ IR at transformation facility � ∈ TF in period L ∈ T for scenario 

* ∈ Ω 

mN�N4j�4�k-(*) Quantity of assembly/manufacturing resource capacity expansion 

for resource M ∈ AR at transformation facility � ∈ TF in period 

L ∈ T for scenario * ∈ Ω 
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APPENDIX D 
 
 
 

SUFFICIENT CONDITION THAT PREVENTS THE ISSUE 
DISCUSSED IN SECTION 2.4.2 FROM HAPPENING 

 
 
 

We give a sufficient condition that prevents the behavior/issue described in 

Section 2.4.2 from happening for the simple case of having no BOM. We assume that it 

is cheaper to store any unit of any product in any specific transformation facility at any 

specific time period than to both transport it and store it in another facility. Thus, 

I��^- + ∑ IM��k-. IMKJ�^k-k∈l ≤ L��]^- + I�]^- + ∑ IM�]k-. IMKJ]^k-k∈l  	∀� ∈ .Y, ∀I ∈
.Y\{�}, ∀4 ∈ W, ∀L ∈ .. In addition, we assume that the backorder cost of any product 

� ∈ j�Q is a non-decreasing function of the backorder delay. We also assume that the 

total ordering quantity is equal to the total demand of end products, if all suppliers were 

completely reliable. Note that for that last assumption to hold, only the lost sales cost has 

to be sufficiently high, i.e., higher than the costs of ordering, transforming, and handling 

products.  

We will present our results for the expected/mean value problem, and then we 

show how to generalize it to the stochastic problem. Note also that, for this former 

problem, suppliers are still unreliable; as they still have a reliability index of ∆]^--G=
(dÌ∆]^--G(*)Í ∀I ∈ X, ∀4 ∈ W, ∀LG ∈ ., ∀L ∈ {LG, … , .}, but with just one possible 

scenario for that unreliability. We use the convention that ∑ .{],…,�} = 0 for I > �, and 

define |. | of a set . as the cardinality of the set. 
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We next present the aforementioned sufficient condition for the described case in 

theorem 3. The intuition is the following: since the issue of ordering extra quantities 

happens to avoid potential extra capacity, resource utilization, and backordering costs, if 

we guarantee that these costs are cheaper than purchasing those extra quantities and 

eventually storing them, this issue will never happen.  

Theorem 3:  

Under the aforementioned assumptions, the following condition is sufficient to guarantee 

that the total ordering quantity for each raw material in the case of the expected/mean 

value problem does not exceed that of the case of completely reliable suppliers by more 

than Î. |X|. |.|�. |.Y|. |�| units (Î ≥ 0) for the case of no BOM: 
∀I ∈ X, ∀4 ∈ W, ∀L ∈ ., ∀LG ∈ ., ∀h ∈ ., ∀� ∈ .Y, ∀3 ∈ �: 

> Ï��2^-{ + O��^- + �O�N4K�4�^- − minÐ∈�-_,…,Ñ�¸��­_ÒO��^Ð-∈~{
9,…,Ñ�¸��­_�
+ >OMKJ�^k-. FOM��k- + M�O�N4K�4�k-Hk∈l
− > minÐ∈~-_,…Ñ�¸��­_� OMKJ�^kÐ . OM��kÐk∈l + L��2^- + ��N4K�4�2^-

− minÐ∈~-_,…,Ñ�¸��­_� L��2^Ð +>�MKJ�2^k-. F�M��2k- + M��N4K�4�2k-Hk∈l
− > minÐ∈~-_,…Ñ�¸��­_� �MKJ�2^kÐ . �M��2kÐk∈l Ó . ∆]^--G. QK`2^{ 
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< 4�]^-G. Î + > ÏL�]�^- + >�M�]�k-. �MKJ]�^k-k∈l Ó . ∆]^--G. Î-∈~-_,…,Ñ�¸��­_�

+ > ÏI��^- + >IM��k-. IMKJ�^k-k∈l Ó . o > ∆]^Ð-GÐ∈{-_,…,-} q . Î-∈{-_,…,{t9}

+ > ÏI��^- + >IM��k-. IMKJ�^k-k∈l Ó . Î
-∈~Ñ�¸��­_
9,…,|�Ô¬Õ|�

+ > `I� ¥ÏI��^- + >IM��k-. IMKJ�^k-k∈l Ó , ��2^-{Ö . ∆]^--G. Î-∈~{,…,Ñ�¸��­_�
− > 4J]^--G. ∆]^--G. Î-∈~-_
9,…,Ñ�¸��­_�

 

Proof:  

We argue by contradiction. Suppose that the optimal solution has a total ordering 

quantity of a specific product larger than the total demand for that product, which is equal 

to the total ordering quantity for the case of completely reliable suppliers by more than 

Î. |X|. |.|�. |.Y|. |�|, while the above condition holds. This implies that ordering, from 

one supplier I ∈ X (or more) in one of the periods L ∈ . (or more) shipped to one of the 

transformation facilities � ∈ .Y, is Î units higher than what it should be if the total 

ordering had been similar to the case of completely reliable suppliers. We now construct 

the following solution: order Î units less from each of these suppliers. Since the only 

benefit of ordering more is to try to fulfill the demand earlier, the solution that we are 

constructing might incur some additional costs as follows: 

• An additional cost of backordering part of the demand from some of the periods 

succeeding the period of that demand. 
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• The costs of the potential need to expand the throughput and the throughput 

resource capacity of the facility in the periods that succeed that period of the 

demand; in order to assure the feasibility of the solution we are constructing. That 

is because in the optimal solution we assumed, there might be less (or no) 

throughput in the periods succeeding the demand period. Hence, we do not 

guarantee that there is enough throughput capacity for these periods.  

• Similar costs to the two previous ones, but for the transportation capacity and 

transportation resource capacity 

• Those backordered quantities are transported in later periods than the case of 

ordering extra quantities. Since the throughput and transportation costs, in 

addition to throughput and transportation resource usage, might be more 

expensive in those later periods; this potential increase in costs needs to be 

included here. We add an upper bound for these costs, which is adding them at 

those later periods, and subtracting the corresponding cheapest costs among all 

periods. 

Everything else would remain feasible in the solution we are constructing; since it is 

the exact same as the optimal solution, but in lesser quantities. Therefore, all capacity and 

resource utilizations will be no larger than those of that optimal solution. An upper bound 

on these total additional costs can be constructed by calculating these costs for the highest 

case of ordering the total demand of that product, and needing to expand the throughput 

capacity and resources for the total amount of delivered quantities in each period higher 

than the demand period. The L.H.S. of the above condition is exactly this upper bound.  
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On the other hand, the optimal solution has at least the following additional costs 

compared to the solution we are constructing: 

• The cost of purchasing the extra Î units. 

• The cost of transporting the extra units.  

• The cost of transportation resource utilization for the extra units. 

Note that each of the last three costs is not paid at once as the first cost of purchasing 

the extra units, but rather in batches during the periods starting from when the order is 

placed until the last period in which part of the order will be received (depending on the 

reliability index of the supplier). 

• The cost of holding extra Î units in inventory for all periods starting from the 

period when the demand is placed until right before the period of the demand. 

• The cost of holding the extra Î units in inventory for all periods starting from the 

period right after the last period in which part of the order will arrive (j�Q]^-G) 
until the last period of the planning horizon (after the potential addition of some 

periods as described above). There are only two other alternatives to storing those 

extra units in these periods. One is to ship them to another transformation facility 

and store them there. However, we assumed that such alternative is more 

expensive than just storing them in the transformation facility they were shipped 

to from the suppliers. The other alternative is backordering part of the demand in 

these periods instead of fulfilling it earlier (either on time or by backordering 

from an earlier period). Nevertheless, that would still not happen; because of our 

assumption on the non-decreasing backorder cost as a function of the backorder 

delay. 
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• The cost of storage resource utilization for the extra units, for the same periods as 

the previous two storage costs. These periods do not include the periods between 

the actual period of the demand until the period j�Q]^-G; since during these 

periods, extra units that are received might get backordered. That adds the next 

extra cost: 

• The minimum of either backordering or storing the extra received Î units during 

the periods between the actual demand period and the period j�Q]^-G. 
 In addition, there is an additional negative cost corresponding to the extra penalty 

paid by the supplier for delaying the extra Î units, according to its reliability index. 

The R.H.S. of the above condition captures these costs giving a lower bound on the 

additional cost incurred by extra ordering.  

Note that in the above condition, L′ is the period in which the order is placed, and 

h is the demand period. Also, note that the above condition captures every L′ ∈ . and 

h ∈ .. It is also for every transformation facility, each supplier, product, and customer. 

Finally, note that the costs of the upper bound R.H.S. are separable among all the 

aforementioned indices. 

Now, since the L.H.S. in the above condition is strictly less than its R.H.S., then 

the total cost of the solution we constructed is strictly less than that of the optimal 

solution, which is a contraction. ∎ 

If the condition holds for each scenario * ∈ Ω of the stochastic version of the 

problem, then clearly, its optimal solution will not have any extra purchased quantities 

ordering.  
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