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SUMMARY 

 Osteoarthritis (OA) is the leading cause of disability in the US and is 

characterized by cartilage degradation, subchondral bone changes and synovial 

inflammation. OA presents a unique challenge as there are no approved disease 

modifying OA drugs (DMOADs) and the current mode of treatment is palliative therapy 

and eventual total joint replacement. Thus, there is a pressing, unmet clinical need to test 

and develop novel DMOADs to improve outcomes. This includes development and 

characterization of suitable animal models to provide a test-bed for screening 

therapeutics.  

 Cartilage is an avascular tissue containing water which makes imaging cartilage 

difficult. In order to study pre-clinical models of OA and test therapeutics, an efficient 

technique with quantitative outcome measures is required. Accordingly, the goal of this 

thesis was to investigate contrast based CT imaging (EPIC-µCT – Equilibrium 

partitioning of an ionic contrast agent)as a tool to test therapeutic strategies in a pre-

clinical rat OA model. First, we characterized two different models of joint degeneration, 

one induced by injection of monosodium iodoacetate (MIA) and a second, created 

surgically via medial meniscal transection (MMT). Our results indicated that the MIA 

model leads to global cartilage and bone degeneration whereas the MMT model produces 

focal defects, similar to human OA. Second, we tested the sensitivity of EPIC-µCT to 

detect effects of a broad spectrum matrix metalloproteinase inhibitor (MMPi) in the rat 

MMT model. Our results demonstrated that quantitative measures established by EPIC-

µCT were able to detect damage in cartilage and subchondral bone in response to MMPi 

treatment with greater sensitivity than the gold standard of histopathology. Finally, we 



 xx 

investigated the effects of micronized dehydrated human amnion/chorion membrane (µ-

dHACM) in the rat MMT model. Our results indicated a protective effect of a single 

intra-articular injection of µ-dHACM at 3 weeks. Treatment of an arthritic joint with a 

delayed injection also demonstrated a chondro-protective effect of µ-dHACM at a longer 

time point of 6 weeks. Denaturation of µ-dHACM led to loss of chondroprotective effect 

at 3 weeks.  

 Taken together, this thesis presents pioneering work on the use of EPIC-µCT as a 

quantitative technique to assess cartilage and also presents µ-dHACM as a novel 

DMOAD to be tested further. This work has provided new insights on the development 

of OA in the rat MMT model. It is also the first instance of using µ-dHACMas a 

therapeutic for OA which shows potential to be translated to large animal models and 

human clinical use. Going forward, EPIC-µCT can be used to screen other therapeutics 

efficiently and can be adapted to other diseasessuch as juvenile OA, rheumatoid arthritis 

and osteochondritis dissecans. Ultimately, this technique may enhance the drug testing 

phase for OA by enabling quicker screening, making the bench to clinic translation a 

faster process.   
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CHAPTER 1 

SPECIFIC AIMS 

Introduction 

Osteoarthritis (OA) affects nearly 27 million people in the US and represents the 

leading cause of chronic disability (Cutler and Ghosh 2012). It primarily manifests as 

joint degeneration, characterized in part by a decrease in proteoglycan (PG) content, 

fibrillation of the cartilage surface, reduction of articular cartilage thickness and 

subchondral bone sclerosis. Current treatment methods target pain relief for OA via non-

steroidal anti-inflammatory drugs (NSAIDs) since there are currently no clinically 

approved disease modifying OA drugs (DMOADs) demonstrating efficacy(Clouet, 

Vinatier et al. 2009). Despite multiple small animal model DMOAD experiments being 

conducted, the screening rate for drugs is severely limited by the lack of sensitivity of 

outcome measures and the time consuming process to achieve them. Equilibrium 

Partitioning of an Ionic Contrast agent via µCT (EPIC-µCT) is a recently developed 

technique that allows for evaluating articular cartilage changes with µCT(Palmer, 

Guldberg et al. 2006). It has been validated and was used to study joint degeneration 

induced by injecting a high dose of monosodium iodoacetate (MIA) into rat joints 

(Grogan, Miyaki et al. 2009). This MIA model, though commonly used, is not 

physiologically relevant to human OA. An alternative more relevant small animal model 

involves induction of OA via medial meniscal transection (MMT). However, the ability 

of EPIC-µCT imaging to analyze disease progression in the MMT model and detect the 

therapeutic efficacy of candidate DMOADs has not been previously evaluated.  
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DMOADs exist in various forms including broad spectrum agents that target 

inflammation and small molecule based therapeutics. Matrix metalloproteinase inhibitors 

(MMPis) are a class of small molecule based drugs which have previously shown 

efficacy when delivered systemically/orally in small animal models but have not yet been 

tested using EPIC-µCT (Clouet, Vinatier et al. 2009). Testing a drug that has previously 

been shown to have a therapeutic benefit will allow for assessing the sensitivity and 

applicability of EPIC-µCT as a tool to screen for DMOADs. Extracellular matrix (ECM) 

based materials are another class of therapeutics that are being tested for a variety of 

applications. Amniotic membrane, by virtue of its anti-inflammatory and anti-fibrotic 

qualities, may prove useful as an extracellular matrix based intervention for OA (Jin, 

Park et al. 2007, Diaz-Prado, Rendal-Vazquez et al. 2010). The objective of this proposal 

was to examine two distinct treatment strategies for OA in a rat joint degeneration model 

using EPIC-µCT. The central hypothesis of this work was that EPIC-µCT could be used 

to establish quantitative outcome measures which would be sensitive to detect effects of 

therapeutics in the rat OA model. We approached this objective through the following 

specific aims: 

 

Specific Aim I 

Utilize EPIC-µCT for localized 3D analysis of cartilage composition & morphology 

in rat joint degeneration models 

There is a need to develop faster, less destructive yet quantitative metrics to 

examine articular cartilage changes in preclinical OA models other than the current 

histological techniques. Our hypothesis was that EPIC-µCT could quantitatively detect 
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degenerative cartilage changes in the MIA and MMT model. To test this hypothesis, we 

utilized a low dose of MIA (0.3mg) injected intra-articularly or induced joint 

degeneration surgically in the MMT model. We defined localized regions of interest to 

facilitate detection of cartilage changes and compared the results to contralateral joints.  

We characterized the models by evaluating quantitative parameters such as cartilage 

thickness, volume, attenuation as well as measurement of focal defects via EPIC-µCT. 

Histology was performed to compare results with EPIC-µCT analyses. The outcomes of 

this aim are discussed in Chapter 3. 

Specific Aim II 

Examine sensitivity of EPIC-µCT analysis and quantify effects of broad spectrum 

MMP inhibitor in selected rat OA model 

Testing new therapeutics for OA in pre-clinical animal models requires a sensitive 

diagnostic tool to assess the effects of the selected therapeutic on the articular cartilage. 

Based on Aim 1, our hypothesis was that EPIC-µCT would be a more sensitive metric to 

characterize the rat MMT model compared to histopathology and could be used 

successfully to analyze effects of a MMPi in the rat MMT model at 3 weeks. Initially, 

EPIC-µCT was used to analyze the MMT model at 1, 2 and 3 weeks and the results 

compared with histopathology data. Next, an MMPi was orally delivered and tested in the 

rat OA model at 3 weeks. The joints were analyzed via both EPIC-µCT and 

histopathology. Additional analyses such as osteophyte characterization and subchondral 

bone analysis were also performed. The outcomes of this aim are discussed in Chapter 4. 
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Specific Aim III 

Quantify effects of micronized dehydrated human amnion/chorion membrane       

(µ-dHACM) on the progression of joint degradation in an established rat OA model  

A variety of DMOADs are currently being researched and tested. ECM based 

therapeutics have been shown to have improved wound healing outcomes. µ-dHACM is 

an ECM derived material which has been used for regenerative therapy applications such 

as corneal defects and tendon repair. However, its effects on articular cartilage 

degeneration have not been determined. Our hypothesis was that intra-articular delivery 

of micronized dHACM (EpiFix Injectable™) will ameliorate the progression and extent 

of joint degeneration in the rat MMT model and based on our results from Aim II, EPIC-

µCT would be able to assess changes in the articular cartilage in response to µ-dHACM. 

First, we tested the effects of dHACM in naïve rats followed by delivering it intra-

articularly in the OA model. Short-term effects were analyzed using EPIC-µCT at 3 

weeks. Longer term effects including treatment of a pre-arthritic joint via a delayed 

injection, were examined at 6 weeks. Denatured µ-dHACM was also tested both in vitro 

and in vivo. Outcome measures included EPIC-µCT analysis and histology.  The results 

of this aim are discussed in Chapter 5. 

Significance 

 The burden of joint diseases is enormous and is continually increasing, with only 

limited intervention options available. The incidence of OA is expected to rise with a 

growing ageing population as well as with an increase in the rate of obesity. The lack of 

effective DMOADs leads to only temporary pain relief options available to OA patients. 



 5 

This leads to a loss of patient’s quality of life while creating an economic burden on the 

healthcare sector as well.  

 Development and testing of new therapies requires suitable animal models for OA 

combined with efficient diagnostic tools. There is considerable ongoing research 

exploring DMOADs and testing them in vitro and in pre-clinical animal models; 

however, the testing process in animal models remains inefficient and subjective. This 

makes the therapeutic testing process challenging, as extensive resources are required to 

screen potential DMOADs. Developing effective DMOADs and translating these to the 

clinic would require a suitable, well characterized pre-clinical model of OA with 

quantitative, objective outcome measures to use as a test-bed for evaluating potential 

DMOAD candidates. Accordingly, there exists a need to quantitatively characterize a rat 

OA model and assess the efficacy of this model using a suitable diagnostic tool to test 

therapeutics.   In this project, we used EPIC-µCT as a high throughput screening 

technique to test DMOADs in the widely accepted rat MMT model for OA. 

 

The work described in this thesis is significant because it presents innovative 

research on characterizing a well-accepted rat OA model using a quantitative contrast 

based imaging technique, followed by assessing the sensitivity of the technique and then 

utilizing it to test a novel tissue engineering based therapeutic strategy. No previous 

studies have demonstrated the use of EPIC-µCT as a tool to study disease modifying 

drugs for joint diseases. 3D quantitative analysis using EPIC-µCT provides a more 

complete picture of disease progression in the tissue as a whole with higher sensitivity of 

therapeutic efficacy than current 2D histopathology. EPIC-µCT is non-destructive 
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allowing for additional histology analysis on the same samples, which could additionally 

be beneficial as some outcomes, such as cellularity, cannot be observed with CT.  Overall 

this technique can provide a powerful tool moving forward for enabling higher 

throughput, fewer samples, and more sensitivity when screening new therapies for joint 

diseases.We have successfully established EPIC-µCT as a high throughput screening 

technique to test DMOADs in small animal models and evaluated the efficacy of two 

different therapeutics to slow the progression of joint degeneration. Additionally, this 

research has advanced our understanding of the progression of OA in the rat MMT model 

and presents results of an ECM based therapeutic as a potential DMOAD candidate. 

Ultimately, testing novel therapeutics in an efficient, quantitative manner will result in 

faster screening and improve the process of translating a new therapy through the pre-

clinical development stage to clinical trials. 
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CHAPTER 2 

LITERATURE REVIEW
a
 

Articular Cartilage 

 Articular cartilage is a smooth, white tissue which covers the ends of bones in 

various joints.    The joints themselves contain various components such as ligaments, 

supporting muscles and synovial membrane (Clouet, Vinatier et al. 2009). Hyaline 

articular cartilage is found on the ends of the bones in a joint where it provides a low 

friction surface allowing for joint movement (Athanasiou, Shah et al. 2001). 

Structure and Composition  

 Cartilage possesses a unique structure and composition that allows articulating 

surfaces to glide over each other with minimal friction (Forster and Fisher 1996). 

Additionally, cartilage assists in biomechanical activity of the joint by distributing forces 

and absorbing energy in combination with other tissues such as the meniscus in the knee 

joint (Ahmed and Burke 1983).  

 Cartilage is unique because it is avascular and has minimal innervation. This leads 

to minimal regenerative capacity of the tissue. A major component of cartilage tissue 

volume is composed of the ECM as opposed to chondrocytes. The ECM is mainly 

constituted of proteoglycans (PGs) and collagen (Huber, Trattnig et al. 2000, Hunziker 

2002). 

                                                 

 

 
a
 Parts of this chapter have been adapted from Thote T, Moran S, Lin ASP, Willett NJ, Neu C, Guldberg 

RE. “Methods for Detection of Joint Degradation” in Morris P. (Editor), Biomedical Imaging: Applications 

and Advances. 2014 (In press). 
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 PGs are macromolecules with a basic PG unit consisting of a core protein with 

glycosaminoglycan (GAG) chains covalently bound to this core. The GAG chains are 

negatively charged which causes them to repel each other. This creates an osmotic 

imbalance that is partially balanced by influx of water into the tissue as well as due to 

cations in the surrounding area (Huber, Trattnig et al. 2000).  

 The major protein in cartilage is collagen. Collagen type II is most predominant 

though other types of collagen such as Type III, IX,X and XI have been identified in 

small amounts(Eyre, Weis et al. 2006). These different collagen types play different roles 

while creating the fibrillar structure of cartilage (Eyre 2004). Tightly packed collagen 

fibers allow for high tensile strength and dynamic compressive modulus of cartilage with 

collagen type II being predominant in its composition (Bader and Kempson 1994). 

 Articular cartilage is divided into three layers – superficial zone, transitional zone 

and deep zone (Fig 1). Collagen fibers are tightly packed in the superficial zone. These 

fibers display transition in their alignment in the transitional zone. In the deep zone, the 

collagen fibers are aligned perpendicular to the surface. The tidemark is the interface 

between the deep cartilage and the calcified cartilage. Below the calcified cartilage, lies 

the subchondral bone which eventually transforms into trabecular bone.  
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Figure 1.Articular cartilage structure a) Zonal architecture of cartilage b) Safranin O 

micrograph of chondrocytes in the superficial zone. (Adapted from Grogan, Miyaki et 

al. 2009Creative Commons License doi:10.1186/ar2719 ) 

 

 During loading of the joint, the internal pressure on cartilage increases. The 

collagen fibrils prevent the cartilage from deforming under load. In the presence of 

persistent loading, an increase in pressure causes an outflux of water from the cartilage 

until equilibrium is reached. PG control the balance during static loading and loss of PGs 

leads to decreasing the compressive modulus of the tissue(Herzog and Federico 2006) . 

This same effect is observed when the collagen network is disrupted. Changes in 

mechanical properties of the cartilage affect the functional capacity of cartilage to 

withstand normal loading. Thus, alteration of biomechanical properties makes the 

cartilage susceptible to further injuries.  

Osteoarthritis 

 OA is a debilitating joint disease that causes damage to the cartilage and 

underlying subchondral bone in synovial joints.  
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Pathophysiology & Etiology 

 OA is the leading cause of disability in the US and affects nearly 27 million 

people. The most prevalent joints affected are knee, hip, hand, foot and the spine with 

knee OA being the most common(Martel-Pelletier, Wildi et al. 2012).  

 The pathophysiology of OA is complex and involves changes at the molecular, 

cellular, and tissue levels. At the initial stage, OA is characterized by subchondral bone 

alterations, loss of cartilage thickness, and fibrillation of the surface layers, which leads 

to a loss of cartilage integrity (Clouet, Vinatier et al. 2009). During this stage, there is an 

upregulation of chondrocyte metabolism followed by eventual apoptosis of chondrocytes 

and a decrease in osteoblast activity that causes thinning of adjacent trabecular bone. PG 

and collagen synthesis is also increased at the initial stage of the disease. As the disease 

advances, there is a progressive loss of chondrocytes at all levels of cartilage with 

pronounced thinning of the cartilage matrix possibly leading to lesions and excessive 

bone remodeling where cartilage has degraded (Kim and Blanco 2007, Clouet, Vinatier et 

al. 2009). Greater stress on the collagen network may occur at this stage which exposes 

the cartilage to further damage, first in the transitional zone which may progress into the 

radial zone. As collagen and PG are integral for maintaining articular cartilage function, 

the mechanical properties of cartilage are also typically impaired at this stage(Aigner and 

Stove 2003).  

 Various enzymes that degrade articular cartilage and the surrounding ECM have 

been characterized. The levels of anabolic factors such as fibroblast growth factors 

(FGFs) and bone morphogenetic proteins (BMPs) have been shown to decline as OA 

progresses. Cytokines such as tumor necrosis factor (TNF) and interleukin-1(IL-1) have 
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been implicated in the increase in catabolic enzymes (Goldring and Goldring 2007). 

Matrix metalloproteinases (MMPs) are an important group of enzymes implicated in OA 

and often observed to be upregulated during OA progression. Other degrading enzymes, 

such as aggrecanases, have also been detected and their role in the development of OA is 

being studied (Burrage and Brinckerhoff 2007). 

 Advanced OA is associated with inflammation of the synovium, which leads to 

release of pro-inflammatory cytokines that cycle back and play a role in further cartilage 

degradation. Advanced OA is typically characterized by progressive erosion of the 

articular cartilage in combination with degradation of the subchondral bone(Loeser 

2004). There is some evidence suggesting that cartilage and bone changes are inter-

related in OA. Subchondral bone sclerosis and formation of osteophytes are typical 

features of OA. These factors affect cellular changes such as chondrocyte clustering in 

the earlier stages and increased chondrocyte apoptosis due to caspases in advanced 

OA(Loeser 2004). OA is therefore a multi-faceted disease affecting cartilage, synovium, 

and bone and involving interplay of multiple factors that create a negative cycle of 

progressive joint degeneration.  

 Secondary OA also exists in humans where cartilage changes occur as a 

consequence of a trauma or trigger which hampers the mechanical integrity of the tissue, 

usually by causing damage to the collagen network(Buckwalter and Brown 2004). 

Different causes of secondary OA have been identified such as high intensity impact joint 

loading, intra-articular fractures, ligament injuries and several metabolic disorders 

(Buckwalter and Martin 2006). 
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 Etiology of OA remains unclear to this day. Primary OA is correlated with 

increasing age but it is not necessarily considered as a normal ageing process(Crepaldi 

and Punzi 2003). Large scale follow-up studies in human populations have helped 

identify risk factors for primary OA(Buckwalter, Saltzman et al. 2004, Felson 2004, 

Cimmino and Parodi 2005). One, is the effect of gender with OA being more prevalent in 

women than men(Buckwalter and Lappin 2000). Another risk factor is high BMI or body 

weight(Schouten 1992). This factor combined with malalignment of joint puts the patient 

at high risk for OA(Sharma, Lou et al. 2000). Trauma to the knee not limited to accidents 

or sports injury(Gelber, Hochberg et al. 2000) particularly in the form of a 

meniscectomy(Roos, Lauren et al. 1998) also creates a high risk.  

OA is often observed to be clustered in families leading to a hypothesis that 

genetics may play a role as a risk factor as well(Cicuttini and Spector 1996). In a twin 

study, heritability of OA was estimated to range from 39-65%(Spector, Cicuttini et al. 

1996). However, OA is not caused by a single gene mutation. Multiple genetic loci for 

susceptible OA genes have been identified but these factors are not comprehensive 

(Aigner and Dudhia 2003, Peach, Carr et al. 2005). OA is a multifactorial complex 

disease that researchers continue to try and understand better. 

Prevalence 

 OA prevalence increases as people age. In the US, 27 million people suffer from 

clinical OA. OA is the most common form of arthritis. For population > 60 yrs., the 

prevalence rate of symptomatic knee OA is 10% in men and 13% in women. This number 

is expected to increase as the ageing population rises as well as the obesity epidemic 

(Zhang and Jordan 2010). 
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 Various studies have been performed to estimate the prevalence of OA. The age 

standardized prevalence of radiographic knee OA in adults age ≥ 45 was 19.2% among 

the participants in the Framingham Study and 27.8% in the Johnston County OA Project 

(Lawrence, Felson et al. 2008). In the third National Health and Nutrition Examination 

Survey (NHANES III), approximately 37% of participants age >60 years or older had 

radiographic knee OA (Lawrence, Felson et al. 2008). 

The table below shows the prevalence of OA for various joints as described by different 

studies.  

Table 1. Prevalence of OA  

 

 In addition to significantly affecting patients’ quality of life, OA also presents a 

large economic burden (Bitton 2009). In a study done in 1997, total medical expenditures 

for arthritis and other rheumatic conditions was $233.5 billion. By 2003, these costs 

Anatomic 

site 

Age Source Male 

patients (%) 

Female 

patients (%) 

Total 

Hip ≥45 Johnston County 

OA project (Jordan, 

Helmick et al. 2009) 

25.7 26.9 27.0 

Hand ≥26 Framingham OA 

study (Zhang, Niu et 

al. 2002) 

25.9 28.2 27.2 

Knee ≥26 Framingham OA 

study (Felson, 

Naimark et al. 1987) 

14.1 13.7 13.8 

All 

joints 

≥45 Framingham OA 

study (Felson, 

Naimark et al. 1987) 

18.6 19.3 19.2 

All 

joints 

≥60 NHANES III 

(Dillon, Rasch et al. 

2006) 

31.2 42.1 37.4 
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increased to #321.8billion (factoring in inflation) (Yelin, Murphy et al. 2007). A 

significant portion of these costs is attributed to OA and an estimate by Leigh et al, 

calculated the total annual costs of OA at 89.1 billion (Leigh, Seavey et al. 2001). While 

these are the direct costs of OA, there is also an indirect cost which includes lost wages, 

lost productivity and expenses from home care. A study based on claims database 

analysis calculated the indirect costs of OA at $4603 per person per year(White, 

Birnbaum et al. 2008).  

Treatment Strategies 

 Currently, there are no clinically approved disease modifying OA drugs 

(DMOADs) that have shown efficacy for OA. Current treatment methods are targeted 

towards reducing pain (symptomatic treatment) rather than trying to treat the underlying 

cause of the disease. Another issue with current symptomatic OA drugs are the side-

effect profiles which cause concerns particularly in chronic applications (Wieland, 

Michaelis et al. 2005). Researchers have suggested that treatment of OA should be 

tailored individually as there is a substantial discordance between radiographically 

diagnosed OA and knee pain. Depending on the patient, non-pharmacological treatments 

including exercises and weight reduction should also be discussed by the physician 

(Dieppe and Lohmander 2005) 

Pharmacological 

 The first line oral analgesic for knee OA is acetaminophen. It is widely 

recommended due to its favorable safety profile. In cases where patients do not respond 

to acetaminophen, the next line of treatment is non-steroidal anti-inflammatory drugs 

(NSAIDs).  The principal targets for NSAIDs are the isoforms of cyclooxygenase, COX1 
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and COX2. COX1 is constitutively expressed in many cell types, whereas COX2 is 

induced at the site of inflammation (Vane, Bakhle et al. 1998) . However, NSAIDs 

exhibit a risk of gastrointestinal side effects as the principle targets are also expressed in 

the kidney and other organs. Selective COX2 inhibitors were introduced in 1999, which 

provide equivalent efficacy while reducing the risk of GI complications(Warner, Giuliano 

et al. 1999). Recently, the cardiovascular safety of COX-2 selective and other NSAIDs is 

under scrutiny (Petit-Zeman 2004, Topol 2004).  Currently, COX-2 selective medications 

are contraindicated for people with ischemic heart disease and hypertension (Wieland, 

Michaelis et al. 2005). 

 Opioid analgesics are also useful alternatives in patients who cannot tolerate 

NSAIDs. Glucosamine and chondroitin products are also widely used for pain 

management in OA though their efficacy remains controversial (Wieland, Michaelis et al. 

2005).  

 Intra-articular injection of corticosteroids are also used to treat pain in OA. 

However, injections can only be given up to 4x/year as they are invasive and it is difficult 

to retain the drug in the joint space for a long time to achieve sustained efficacy (Gerwin, 

Hops et al. 2006). These therapies seem to provide temporary relief of pain in certain 

patients, but no convincing evidence for disease-modifying effects has been demonstrated 

(Ayral 2001). 

Disease Modifying OA Drugs 

 While no DMOADs have been currently approved, there are a few DMOADs in 

various phases of development. There a variety of compounds each with its own 

mechanism of action. Researchers suggest that initial degenerative changes are easier to 
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reverse and hence, early detection of OA is crucial. Using the knowledge about signaling 

pathways in chondrocytes and identifying various molecules that play a role in catabolic 

and anabolic processes, researchers are trying to develop DMOADs.  

 MMP-inhibitors have been tested which inhibit MMP gene expression for genes 

that have been implicated in OA (Burrage et al. 2007, Cawston et al. 2006, Murphy et al. 

2005). However, these MMPi's have had musculoskeletal side effects leading to failure in 

early clinical phase trials. Researchers are now trying to focus on selective MMPi's vs. 

broad spectrum inhibitors (Fingleton 2007). MMP-13 is one of the important MMPs 

expressed in OA cartilage and a MMP-13 inhibitor might be a viable target to pursue. In 

addition to MMPs, researchers have also tested IL-1b inhibitors. IL-1b is a pro-

inflammatory cytokine expressed in OA and an IL-1 inhibitor showed promise in small 

animal studies (Hunter 2011). However, this did not translate to humans as IL-1 receptor 

antagonist in various forms failed to meet its pain and structure endpoints (NIH 2008).  

 In addition to articular cartilage, subchondral bone turnover has also been 

implicated in OA. Hence, drugs originally targeted for osteoporosis are being proposed as 

candidates for OA treatment. Calcitonin, promotes inhibition of bone resorption.  A 

human clinical trial of salmon calcitonin (sCT) led to reduced levels of type II collagen 

and a pilot study exhibited decrease in pain scores (Karsdal, Byrjalsen et al. 2010). sCT is 

currently being tested in ongoing clinical trials to examine its effect on OA (NIH 2012) 

 Bone morphogenetic protein (BMP) has been used clinically in patients. BMP-7 is 

a member of the TGFβ superfamily and is known to have reparative effects on cartilage. 

Individuals with OA have decreased levels of BMP-7 and increased levels of 
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extracellular BMP antagonists (Hunter 2011). There is an ongoing clinical trial testing the 

efficacy of BMP-7 in knee OA (NIH 2010). 

 Growth factor changes have been implicated in OA as well. FGF-18 has been 

reported to have anabolic effects on the cartilage. It activates FGF receptor 2 and 

increases matrix formation while it inhibits cell proliferation. Preclinical studies showed 

potential of FGF-18 in a rat OA model (Moore, Bendele et al. 2005). Based on these 

studies, FGF-18 is currently the focus of an ongoing clinical trial (NIH 2010).  

 Apart from these, there are other agents in early stages of development (not in 

phase II trials). These include cathepsin K, proteoglycan 4 (lubricin), receptor activator of 

nuclear factor κB ligand (RANKL) and aggrecanase inhibitors (Hunter 2011). 

 One major obstacle is the difficulty in developing diagnostic methods for early 

cartilage degeneration, and subsequently for monitoring the effect of these novel 

pharmaceuticals (Goldring 2006, Qvist et al. 2008). In order to determine the efficacy of 

these novel medications, it is important to develop efficient methods that are capable of 

detecting the effects of each treatment in both pre-clinical and clinical stages.  

Surgical Treatments 

 Advanced OA might require surgical intervention if medical treatment does not 

sufficiently alleviate pain (Jordan et al. 2003). While knee replacement is the most 

common technique, other options are also available. 

 Arthroscopic procedures such as arthroscopic lavage and debridement have been 

used in patients who do not respond to pharmaceuticals (Frizziero et al. 2005, Segal et al. 

2006). High tibial osteotomy which involves surgical realignment of the loading axis of 

the limb has been used to treat medical compartment OA of the knee (Brouwer et al. 
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2005). In these procedures it is difficult to determine which patients will benefit the most 

and hence the results are still somewhat contradictory.  

 Joint replacement, while expensive, has been evaluated as being cost effective. It 

can alleviate pain and improve joint functionality as well. Timing of surgery is important 

to consider during joint replacement so that the patient gets the most benefit out of this 

procedure (Fortin, Penrod et al. 2002). The annual rate of total joint replacement is 

increasing with OA being the most common indication for total knee replacement (Katz 

2006).  

Cartilage repair techniques 

 Currently several cartilage repair techniques are in clinical use. These include 

osteochondral transplants, microfracture technique and autologous chondrocyte 

implantation (Chiang and Jiang 2009). These are targeted towards repairing articular 

cartilage lesions. These are limited in use for localized cartilage lesions, often of 

traumatic origin rather than treating primary OA (Chiang and Jiang 2009). 

 Development of efficient techniques and materials for cartilage repair is an 

important area of research. Biologic solutions based on tissue engineering techniques are 

also being explored as options (Nesic et al. 2006, Schurman et al. 2004).  

 

Small Animal models for OA 

 OA is a multi-factorial disease influenced by a variety of genetic and 

environmental factors. The need to understand the molecular events that occur in the joint 

in addition to having a platform for preclinical testing, has required researchers to 

develop suitable small animal OA models.  
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 Most models involve surgical insults in order to cause mechanical stress in the 

joint considering that injury is a common predisposing factor towards OA. Models have 

been developed in sheep (Cake et al., 2004), dogs (Mastberger et al., 2006), rabbits 

(Inouye et al., 1973), guinea pigs (Bendele et al., 1991), rats (Hayami et al., 2006; 

Laurent et al., 2006; Moore et al., 2005), and mice (Bendele, 2001).  Small animals in the 

form of rats and mice allow for relatively quick onset of the disease and are less 

expensive. 

Rat Models 

 Surgically induced destabilization of joints is the most widely used OA induction 

method. Most induction methods duplicate known injuries in humans such as anterior 

cruciate ligament transection (ACLT) and meniscal injury. ACLT or ACLT in 

combination with a partial medial meniscectomy has been used to induce OA in rats. It 

leads to PG loss, cartilage surface damage as well as subchondral bone sclerosis and 

osteophyte progression (Bendele 2002). The medial meniscal tear (MMT) model, is the 

most widely used model for inducing OA in rats(Gerwin, Bendele et al. 2010). It involves 

transection of the medial meniscus which leads to rapidly progressive cartilage 

degeneration indicated by chondrocyte & PG loss, fibrillation and osteophyte formation. 

Progressive changes occur and are detectable at 3 weeks and by 6 weeks tibial cartilage 

degeneration is focally severe with degeneration of surrounding matrix and prominent 

osteophytes (Moore, Bendele et al. 2005).  

 Apart from surgical destabilization, chemically induced joint degeneration has 

also been used to study effects of pain in rats. A common model for this is injection of 

monosodium iodoacetate. MIA is an inhibitor of glycolysis and induces chondrocyte 
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apoptosis and joint inflammation. Its utility as an OA injury model is debatable though it 

is validated as a suitable model for pain (Bendele 2002). Other agents that are used to 

induce cartilage degeneration include papain, collagenase and chondroitinase which 

degrade ECM components but may not be relevant to modeling human OA as the 

processes that precede and induce proteolysis in human OA do not occur (Little and 

Smith 2008). Additionally, the reagents may be quite different from the compounds that 

exist in human disease as well as in causing much higher degree of inflammation as 

compared to human OA.  

Murine Models 

 Murine models have been gaining popularity due to the homogeneity of genetics, 

ability to inbreed and option to create genetically modified strains. However, surgical 

induction in mice is difficult due to the small size of joints.  

 Microsurgical tools have been used to create mouse meniscectomy model that 

involved medial collateral ligament (MCL) transection coupled with medial 

meniscectomy. This leads to mild cartilage lesions on the medial plateau by 3-4 weeks 

(Clements et al., 2003).  

Spontaneous OA Models 

 Age-onset development of OA occurs in STR, DBA/1, and C57 Black mouse 

strains. These spontaneous models may help us understand the mechanisms beneath some 

human forms of OA (Yamamoto et al., 2005). The highest incidence of this type of OA 

occurs in the STR/1N strain (Jay, 1951) and the related STR/ort strain (Sokoloff and Jay, 

1956). In this model, cartilage lesions are detected histologically as early as 8 weeks of 

age and appear at the insertion of the medial collateral ligament and the medial tibial 
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plateau (Mason et al., 2001). Males have a higher incidence than females, and cartilage 

loss is most prevalent in the medial compartments of the knee joint. Interestingly, 

spontaneous obesity develops at three months of age in these mice, even when kept on a 

standard diet. Histological evaluation of knee joints from STR/ort strain using TUNEL 

assays showed an increasing number of apoptotic cells in cartilage covering medial 

tibialand femoral bone with advanced histological lesions (Mistry et al., 2004). This 

finding may be consistent with preceding biomechanical or metabolic stress on the 

cartilage (Mason et al., 2001). C57 Black mice are also susceptible to developing OA 

lesions in knee joints as a result of a genetic mutation with recessive Mendelian 

inheritance (Silberberg and Silberberg, 1960). Incidence and severity of OA based on 

histopathological cartilage damage increases with age in both males and females from 

20% at 2 months to 80% at 16 months (Yamamoto et al., 2005).One limitation with these 

models is the cost of experimentation as the animals need to be housed and maintained 

for up to a year for testing.  

Limitations 

 The pharmaceutical industry uses surgical models for pre-clinical studies 

extensively due to rapid, reproducible results. However, there are a few limitations to be 

considered. One, OA is not always caused by joint trauma and a lot of patients do not 

have a history of injury limiting our ability to translate data. Two, surgically induced OA 

models cause rapid damage whereas in humans OA takes several years to develop. Third, 

the surgery itself may be a confounding factor as it can damage other structures and start 

a wound healing cascade different from OA. Another important factor is that surgical 
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models lead to continued joint damage post-surgery which can limit the evaluation for 

therapies since the damage may be too aggressive (Little and Smith 2008).  

 With genetic models, the mice can be difficult to breed and maintain. It still isn’t 

clear what predisposes an individual animal to OA – is it the direct involvement of the 

gene or the developmental changes that occur downstream due to gene deletion. Another 

limitation with genetic models is that treatment interventions are difficult to test unless 

the gene abnormality occurs during adulthood/or upon induction of the disease.  

Imaging Techniques for Cartilage 

 Non-destructive imaging of cartilage to assess the composition and structure of 

articular cartilage remains an important need and there are a variety of techniques for this 

task. The spatial resolution necessary for assessing cartilage is usually the deciding factor 

in choosing what technique to use.  

 Traditional radiography and computed tomography (CT) techniques allow for 

evaluating changes in the bony matrix such as presence of osteophytes and joint space 

narrowing. Magnetic resonance imaging (MRI) allows for visualization of the cartilage. 

Within MRI, there are a variety of techniques to assess the cartilage such as 2D FSE, 3D 

FSE, 3D driven equilibrium Fourier transform etc. Each have their own strengths and 

limitations(Roemer, Crema et al. 2011).  3D MRI data can also be used for quantitative 

measurement of the cartilage. Trained users segment the bone and cartilage interface to 

isolate the cartilage area for evaluation. Contrast agents based MRI such as delayed 

gadolinium-enhanced MRI of cartilage (dGEMRIC) allows for accurate measurement of 

sGAG concentration in healthy and degrading joints (Winalski and Rajiah 2011).   
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 Recent research has also been exploring ultrasound as a method to analyze 

collagen structure in the cartilage. Sonography has demonstrated changes in the hyaline 

cartilage from early to late disease stages and in OA patients with synovitis, joint effusion 

with synovial thickening and proliferation can be observed by gray-scale ultrasound 

(Iagnocco 2010). Fourier transform infrared imaging spectroscopy (FT-IRIS) has also 

been shown to detect changes in sGAG content based on frequency absorbance spectrums 

(Rieppo, Hyttinen et al. 2009).  

Contrast based CT imaging  

 CT imaging was introduced in the early 1970’s and has since proven to be a 

valuable diagnostic tool (Holdsworth, 2002). Clinical CT imaging was targeted towards 

humans to generate two-dimensional images of internal structures; however, the 

resolution did not enable visualization for small animal models. With advances in 

technology, higher resolution images can be obtained, and today µCT systems are 

defined as systems which can perform volumetric CT analysis with an isotropic voxel 

spacing of < 100 µm. Clinical CT imaging does not have the resolution to verify OA 

progression. However, µCT is used to examine OA progression in small animal models 

by assessing cartilage using contrast agents and subchondral bone based on X-ray 

attenuation (Holdsworth, 2002).  

 The working principle for µCT imaging is based on generating contrast by X-ray 

attenuation.  As the X-ray beam penetrates a sample, it is attenuated based on the material 

properties of the object such as acquiring X-rays of fractured bone. An X-ray projection 

of the sample represents an image of the sum of local attenuations along the X-ray beam. 

To generate a 3D image, cameras capture X-ray attenuation data from many different 
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viewing angles. The collected data is run through image reconstruction algorithms, which 

produce 2D grayscale pixel matrices as slices of the object. After this step, the slices are 

processed and stacked to produce 3D images (Bartling S. H. , 2007). 

EPIC-μCT 

 Articular cartilage degradation is a primary characteristic of OA. Even though 

µCT provides an excellent option to visualize bone morphology, cartilage imaging and 

quantification is a challenge due to its low radiodensity. Traditionally, changes in 

cartilage have been evaluated by histology, which is time-consuming and destructive. 

Recent research has shown that specific contrast agents have the ability to increase 

contrast of cartilage to allow for measurements of morphology and composition of the 

tissue (Xie et al., 2009, Palmer et al., 2006, Silvast et al., 2009a). Within the cartilage 

extracellular matrix, negatively charged sulfated glycosaminoglycans (sGAGs) are 

attached to the PG backbone, and these allow for electrostatic interactions with contrast 

agents. sGAGs are of importance to researchers as a loss of sGAGs is an indicator of 

early OA cartilage destruction (Wakitani et al., 2007).  

 Hexabrix
TM

 320 (Covidien, Mansfield MA), a clinically available CT contrast 

agent containing ioxaglate (a negatively charged hexaiodinated dimer), was the first ionic 

agent used to increase cartilage radiopacity through EPIC-µCT. Specimens to be imaged 

using EPIC-µCT are first equilibrated in a solution containing an ionic contrast agent like 

Hexabrix
TM

 and then scanned with a µCT machine (Palmer et al., 2006).  Because of the 

Hexabrix
TM

 molecule’s negative charge, incubation of cartilage samples with Hexabrix
TM

 

yielded an equilibrium distribution of the agent that was inversely related to the density 

of the negatively charged sGAGs. The EPIC-µCT technique was shown to be effective in 
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visualizing cartilage in an in vitro degradation model whereas, for ex vivo proof of 

concept on an intact joint, a rabbit femur was imaged (Palmer et al., 2006). 

 EPIC-µCT has been validated with histological measurements of thickness and 

needle probe testing. A strong correlation between measurement of articular cartilage 

thickness with results from EPIC-µCT compared to both histology and needle probe 

testing was observed. The EPIC-µCT technique was also shown to be precise with a low 

coefficient of variation in measurement of cartilage volume, surface, and thickness. A 

follow up study in an ex vivo rat model determined 30 minutes as a suitable incubation 

time and 40% Hexabrix
TM

 as a suitable concentration to achieve desired contrast (Xie et 

al., 2009). In this study, sGAG optical density was compared to cartilage attenuation 

values and both were directly correlated. sGAG optical density decreased as cartilage 

attenuation increased with age. These studies establish EPIC-µCT as a viable technique 

to measure morphologic changes in cartilage over time (Xie et al., 2010, Xie et al., 2009). 

 Cartilage has recently been visualized in vivo using EPIC-µCT as well. The in 

vivo environment presents various challenges for examining cartilage. Some of the 

challenges include diffusion of contrast agent in vivo, injection of agent, retention of 

agent in the joint cavity as well as the ability to differentiate between cartilage and 

surrounding soft tissue and synovial fluid (Palmer et al., 2006). Piscaer et al. recently 

conducted a study that assessed cartilage degradation in an in vivo rat model (Piscaer et 

al., 2008). MIA, a chemical that causes chondrocyte death leading to cartilage 

degradation, was injected into rat knees. An equilibrium partition, though, was not 

reached in vivo due to diffusion from the joint cavity. However, a decrease in osmolarity 

and a higher concentration of Hexabrix
TM

usedin vivo enabled visualization of degraded 
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cartilage as early as 4 days in the MIA model (Piscaer et al., 2008).  At the end of 44 

days, there was a significant decrease in cartilage volume and increase in cartilage 

attenuation compared to the controls, indicating a loss of sGAGs and degradation of 

cartilage in the MIA models. Measuring contrast dye kinetics, Hexabrix
TM

 was shown to 

absorb more readily in the degraded MIA animal cartilage than normal cartilage.  

 Current imaging standards for EPIC-µCT of cartilage employ anionic contrast 

agents such as Hexabrix
TM

 and Cysto-Conray
TM

 II (Covidien Mansfield MA), a clinically 

available CT contrast agent containing iothalamate (a tri-iodinated monomer). While 

using these contrast agents is the current standard of practice, one limitation is their low 

sensitivity to changes in sGAGs, a major component of cartilaginous tissue. Negatively 

charged sGAGs repel anionic molecules, which results in limited diffusion of the imaging 

agents into cartilage. To address this issue, high concentrations of anionic contrast agents 

must be used to achieve linear correlations between X-ray attenuation and sGAGs 

(Bansal et al., 2010).  

 Recent research has also explored the use of cationic contrast agents for CT 

imaging. Cationic agents distribute into articular cartilage and generate a positive 

relationship with GAG content. Instead of an inverse distribution, cationic agents rely on 

electrostatic attraction to achieve a high concentration within the tissue. These agents 

have been tested using osteochondral plugs and future applications involve testing these 

agents in small animal OA models ex-vivo (Bansal, Joshi et al. 2011).  

 



 27 

CHAPTER 3 

EPIC-µCT AS A TOOL FOR LOCALIZED 3D ANALYSIS OF 

CARTILAGE COMPOSITION & MORPHOLOGY IN RAT JOINT 

DEGENERATION MODELS
b
 

Abstract 

 Current histological scoring methods to evaluate efficacy of potential therapeutics 

for slowing or preventing joint degeneration are time-consuming and semi-quantitative in 

nature.  Hence, there is a need to develop and standardize quantitative outcome measures 

to define sensitive metrics for studying potential therapeutics. EPIC-µCT allows for 

quantitative analysis of articular cartilage in small animal models. We evaluated the 

hypothesis that EPIC-µCT can be used to quantitatively characterize morphological and 

compositional changes in the tibial articular cartilage in two distinct models of joint 

degeneration and define localized regions of interest to detect degenerative cartilage 

changes. First, we induced joint degeneration by injecting monosodium iodoacetate 

(MIA) or by performing medial meniscal transection (MMT) in rat. Three weeks post-

surgery, tibiae were analyzed using EPIC-μCT and histology. EPIC-µCT allowed for 

measurement of 3D morphological changes in cartilage thickness, volume and 

composition. Extensive cartilage degeneration was observed throughout the joint in the 

MIA model after 3 weeks. In contrast, the MMT model showed more localized 

                                                 

 

 
b
 Portions of this chapter were adapted from Thote T, Lin AS, Moran SM, Guldberg RE, Willett NJ. 

Localized 3D analysis of cartilage composition and morphology in small animal models of joint 

degeneration. Osteoarthritis Cartilage 21(8): 1132-1141. License Number: 3370890841966 
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degeneration with regional thickening of the medial tibial plateau and a decrease in 

attenuation consistent with PG depletion.  Focal lesions were also observed and 3D 

volume calculated as an additional outcome metric. The MMT model showed similar 

features to human OA, including localized lesion formation and PG loss, while the MIA 

model displayed extensive cartilage degeneration throughout the joint. EPIC-µCT 

imaging provides a rapid and quantitative screening tool for preclinical evaluation of OA 

therapeutics.  

Introduction 

 OA affects 27 million people in the US (Lawrence, Felson et al. 2008). Current 

treatment methods are targeted towards pain relief for OA often in the form of non-

steroidal anti-inflammatory drugs (NSAIDs) (Felson, Lawrence et al. 2000). However, 

there are currently no clinically approved therapeutics that can halt the progression of OA 

by controlling cartilage erosion and chondrocyte loss (Abadie, Ethgen et al. 2004).  

 Developing disease modifying OA drugs (DMOADs) remains an unmet need for 

OA patients. Development of new imaging technologies is one of the requirements to 

better test potential therapeutics. Microcomputed tomography (µCT) has traditionally 

provided 3D, quantitative analysis of hard tissues. This imaging methodology has 

recently been modified to facilitate application to soft tissues, such as cartilage, using 

contrast agents. EPIC-µCT, allows for non-destructive evaluation of cartilage 

morphology and composition (Palmer, Guldberg et al. 2006). Previous studies have used 

different variations of µCT, such as EPIC-µCT and in vivo µCT arthrography to image 

cartilage in multiple joint degeneration models (Piscaer, van Osch et al. 2008; Piscaer, 
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Waarsing et al. 2008; Xie, Lin et al. 2009; Xie, Lin et al. 2010; Siebelt, Waarsing et al. 

2011; Kotwal, Li et al. 2012; Xie, Lin et al. 2012).  

 Several surgically and chemically induced models of OA have been developed in 

different species as platforms to evaluate disease pathology as well as to screen 

therapeutics (Oegema 1999; Bendele 2001). In this aim, two joint degeneration rat 

models commonly used to screen OA therapies were characterized—chemical induction 

of joint degeneration using monosodium iodoacetate (MIA) and surgical induction of 

joint degeneration via medial meniscus transection (MMT) (Bendele 2001; Bove, Flatters 

et al. 2009). Each method presents advantages for use in small animal models of joint 

degeneration. The MIA model is quick, easy, reproducible, and animals exhibit signs of 

OA related pain (Smith, Little et al. 1997). The MMT model is characterized by 

progressive cartilage degeneration involving chondrocyte and PG loss, osteophyte and 

lesion formation, collagen degradation and cartilage fibrillation (An and Friedman 1999; 

Janusz, Bendele et al. 2002; Little and Smith 2008; Gerwin, Bendele et al. 2010). A 

major difference in the two models is that the MIA model leads to global degenerative 

changes whereas the MMT model leads to more localized damage. The MIA model is 

also typically more aggressive and associated with increased joint pain. While a high 

dose MIA model—where PGs are nearly completely depleted—has previously been 

characterized using EPIC-µCT (Xie, Lin et al. 2012), EPIC-μCT has not been used to 

characterize a less aggressive low dose MIA model or the MMT model.  

 EPIC-µCT allows for high resolution 3D quantification of cartilage morphology 

and composition. It is a relatively high throughput technique, provides 3D volumetric 

data, and enables increased sensitivity and 3D visualization. The objectives of this study 
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were to use EPIC-µCT to quantitatively characterize morphological and compositional 

changes in the tibial articular cartilage in two distinct models of joint degeneration and 

define localized regions of interest to detect degenerative cartilage changes. We 

hypothesized that EPIC-µCT would be successful in detecting localized changes in 

articular cartilage and that the MIA model would show extensive cartilage degradation 

whereas the MMT model would have focal areas of damage.  

 

Materials and Methods 

Induction of Joint Degeneration 

 Georgia Institute of Technology Institutional Animal Care and Use Committee 

approved all experimental animal procedures (IACUC protocol #A09007). Two groups 

of rats were used in this study – 8-week old Wistar rats injected with MIA and weight 

matched Lewis rats (300-325g) that underwent MMT surgery (Janusz, Bendele et al. 

2002, Moore, Bendele et al. 2005, Xie, Lin et al. 2012).  

 Eight 8-week old male Wistar rats (Charles River, Wilmington, MA) were 

acclimated for one week. After anesthetizing with isoflurane, 0.3mg MIA (Sigma-

Aldrich, St. Louis, MO) in 50µl saline was injected into the joint space through the 

infrapatellar ligament of the left knee. Right knees were injected with 50µl saline as a 

contralateral control.  

 Seven weight matched adult male Lewis rats (Charles River, Wilmington, MA; 

300-325g) were acclimated for one week. The animals were anesthetized with isoflurane, 

and a small incision through the skin was made on the medial aspect of the left femoro-

tibial joint. The medial collateral ligament (MCL) was exposed by blunt dissection and 
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transected to visualize the joint space and medial meniscus.  The meniscus was transected 

completely at its narrowest point. The skin was closed with 4.0 silk sutures and then 

stapled using wound clips.  All surgical sites were observed daily for signs of abnormal 

healing. 

Assessment of Cartilage  

 Rats were euthanized via CO2 inhalation at 3 weeks after MIA injection or MMT 

surgery.  Tibiae were harvested, dissected free of surrounding tissues, and fixed in 10% 

neutral buffered formalin (NBF, EMD Chemicals, Gibbstown, NJ) for 3-4 days and then 

transferred to 70% ethanol (Palmer, Guldberg et al. 2006).  

 For EPIC-µCT, the proximal end of each tibia was immersed in 2ml of 30% 

Hexabrix 320 contrast agent (Covidien, Hazelwood, MO) and 70% ion-free PBS at 37ºC 

for 30 minutes, an incubation period known to result in equilibration of the agent 

(Palmer, Guldberg et al. 2006, Xie, Lin et al. 2009). Proximal tibiae were scanned using a 

µCT 40 (Scanco Medical, Brüttisellen, Switzerland) at 45kVp, 177µA, 200ms integration 

time, and a voxel size of 16µm(Xie, Lin et al. 2009).  

 Following scanning, tibiae were decalcified in Cal-Ex II (Fisher Scientific, 

Waltham, MA) for 14 days. Samples were routinely paraffin embedded. For comparison 

with EPIC-µCT images, sagittal sections were cut at 5µm thickness. Sections were 

stained for sGAGs with 0.5% Safranin-O and 0.2% Fast Green counterstain or 

hematoxylin& eosin. For each sample, three sagittal sections were used for thickness 

histomorphometry analysis and digital images of each section were captured. The 

cartilage thickness of each section was defined as the average value of 5 manual 
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thickness measurements at regular intervals perpendicular to the cartilage surface and the 

values for the three sections were then averaged. 

µCT regional analysis 

 Scanco evaluation software was used to assess 3D morphology and composition. 

Raw scan data were automatically reconstructed to 2D grayscale tomograms. These were 

rotated to sagittal sections, and the cartilage was contoured to separate it from trabecular 

bone and surrounding air (Palmer, Guldberg et al. 2006, Xie, Lin et al. 2012). The 

cartilage was segmented using a bandpass filter with a minimum threshold value of 175 

to eliminate air and 225 to eliminate bone from the raw image following which 3D 

images were generated. The threshold values were globally applied for both the left and 

right tibiae of all animals. 

 The MMT surgery produces localized cartilage degeneration on the medial 

plateau of the tibia. To observe localized effects of joint degeneration, we evaluated the 

medial tibial plateau in the MMT group. The regional analyses were replicated for the 

MIA tibiae for comparison. Four regional analyses were performed using different 

volumes of interest (VOI). For the MMT model, images were evaluated for: (1) Full 

articular cartilage in the proximal tibia including medial and lateral aspects (2) Medial 

plateau only (3) Medial 1/3 of the medial tibial plateau (4) Focal lesions on the medial 

plateau only (Fig 2). For the MIA model, only analyses (1) and (2) were performed for 

overall tibial articular cartilage and tibial medial articular cartilage respectively. Two 

outcome measures were defined for evaluation of focal defects: erosion (defect extended 

to less than 50% of cartilage thickness) and lesion (defect extended to more than 50% of 

cartilage thickness) (Pritzker and Aigner 2010).  To define VOIs of focal lesions, manual 
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contouring was performed in the isolated lesion area (typically ~8 slices). Within this 

VOI, segmented cartilage volume was subtracted from the total volume evaluated to 

compute lesion volume.  

 

 

Statistical analysis 

 All data are presented as mean ± standard error of the mean (SEM). All data were 

expressed as mean ± standard deviation of the mean. The means of cartilage morphology 

variables—cartilage thickness, volume, and attenuation—fit a Gaussian distribution 

(Kolmogorov-Smirnov test) and were evaluated using paired t-tests to compare 

Figure 2.Representative image illustrating EPIC-µCT image analysis (tibial cartilage 

overlaid on bone) and volume of interest (VOI) designations. Pseudocolor coding 

(indicated at bottom) displays larger thicknesses in red and smaller thicknesses in blue B: 

Representative grayscale EPIC-µCT images of cartilage showing erosions (B) and lesion 

(C) (Inset shows zoomed in view). Lesion locations were identified by manually 

examining sagittal grayscale images slice by slice. 

 



 34 

experimental and control tibiae for MMT and MIA groups separately. Each individual 

region (Overall cartilage, medial tibial plateau and medial 1/3 of medial tibial plateau) 

was evaluated independently with separate paired t-tests for each of the cartilage 

morphology variables listed above. All analysis was done using GraphPad Prism 

(GraphPad Software Inc. 5.01, La Jolla, CA). Statistical significance was set at a 95% 

confidence interval (p < 0.05). 

Results 

MIA Model Characterization 

MIA articular cartilage analysis 

 Representative images of tibial articular cartilage sections stained with Safranin-O 

in comparison with EPIC-µCT images are shown (Fig3). At three weeks post injection, 

the MIA cartilage displayed extensive PG loss which was not observed in the saline 

injected contralateral control (Fig 3). Images of sagittal sections from the medial tibial 

plateau of the tibia generated by EPIC-µCT for MIA samples are also shown (Fig 3). 
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Figure 3.Histology and EPIC-µCT images of tibial articular cartilage in the MIA model. 

A-C:   Representative saline contralateral control section, safranin-O  stained, 4X (A), 

corresponding EPIC-µCT thickness map from the same sample (B) and 10X safranin-O 

section (C). D-F:  Representative MIA injected sections, safranin-O stained, 4X (D), 

corresponding EPIC-µCT thickness map from the same sample (E) and 10X safranin-O 

section (F). 

 

Using the EPIC-µCT technique, the overall tibial cartilage was quantitatively 

evaluated for thickness, volume, and attenuation. At three weeks post injection, cartilage 

thickness in MIA tibiae decreased by 30%  compared to saline contralateral controls (Fig 
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4). Cartilage attenuation in MIA tibiae increased by 18% compared to saline contralateral 

controls (Fig4). 

 Following overall cartilage analysis, the medial tibial articular cartilage was 

evaluated separately. Average cartilage thickness and volume were 31% and 18% lower, 

respectively, compared to saline contralateral controls (Fig 4). Average attenuation was 

22% higher than saline contralateral controls (Fig 4). The decrease in cartilage volume 

was not observed when assessing the overall tibial plateau. 

 

Figure 4.Tibial articular cartilage variables quantified for MIA and saline contralateral 

control knees (paired comparisons). A-C: Overall tibial articular cartilage variables -  

Cartilage thickness (A); cartilage volume (B); cartilage attenuation (C). D-F: Medial 

tibial articular cartilage variables - Cartilage attenuation (D); cartilage thickness (E); 

cartilage volume (F). At 3 weeks post injection, overall and medial tibial cartilage 

thickness from MIA-injected joints was significantly lower than saline contralateral 

control cartilage. Overall and medial tibial cartilage attenuation from MIA-injected joints 

were significantly higher than saline contralateral controls. Medial tibial cartilage volume 

from MIA-injected joints was significantly lower than saline contralateral controls.  * = p 

< .05, n=8 
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MMT MODEL CHARACTERIZATION 

MMT tibial articular cartilage analysis 

 Representative images of tibial articular cartilage sections stained with Safranin-O 

in comparison with EPIC-µCT images are shown (Fig 5). The MMT cartilage displayed 

erosion on the histology image which was not observed on the contralateral control. The 

EPIC-µCT image of the MMT tibia also displayed both an erosion and a lesion on the 

sagittal section of the medial tibial plateau (Fig 5).  
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Figure 5.Histology and EPIC-µCT images of tibial articular cartilage in the MMT model 

3 weeks post injection. A-C:   Representative safranin-O stained control section, 4X (A), 

corresponding grayscale EPIC-μCT section (B) and 10X safranin-O section (C). D-F:  

Representative safranin-O stained MMT section, 4X (D), corresponding grayscale EPIC-

μCT section (E) and 10X safranin-O section (F). Green arrow in D & E indicate 

fibrillation site and red arrow in D & E indicate lesion site. 
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Cartilage histomorphometry measurements similarly showed a significant increase in the 

thickness of the medial tibial plateau in the MMT tibiae compared to the contralateral 

controls (Fig 6). 

 

  

Figure 6.Histology thickness measurements for medial tibial plateau. A-B: H&E stained 

sagittal sections of medial tibial plateau from contralateral control knee (A) and MMT knee 

(B). Insets show zoomed in region at 4x indicated by black box C: Histomorphometry 

measurements showing a significant increase in medial tibial cartilage thickness in MMT 

knees compared to contralateral control. Red lines on Fig A& B indicate thickness 

measurements. 5 measurements were taken per slice and each sample had 3 sagittal slices. 

Individual measurements from each slice were averaged and then measurements for all 3 

slices were averaged together to calculate medial tibial cartilage thickness (n = 4, *** = p < 

.001) 
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 Using the EPIC-µCT technique, the overall tibial cartilage was quantitatively 

evaluated for thickness, volume, and attenuation for the medial and lateral plateaus 

combined. The MMT joints did not show any difference in thickness (Fig 7).Average 

volume was significantly higher in the MMT tibiae (26.6%) compared to the contralateral 

controls (Fig 7). No significant difference in cartilage attenuation was observed when 

analyzing the overall tibial cartilage (Fig 7). 

The MMT medial tibial cartilage had significantly higher thickness and volume 

by 31% and 70% compared to contralateral controls (Fig 7).  In the analyses of cartilage 

in the full tibial plateau, cartilage attenuation was 25% higher in the MMT medial tibiae 

than contralateral controls (Fig 7). Though no change in average attenuation was 

observed for cartilage in the full tibial plateau, isolating the medial plateau resulted in 

detection of a significant difference in articular cartilage attenuation for MMT tibiae 

compared to controls. 
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Figure 7.Tibial articular cartilage variables quantified for MMT and contralateral control 

knees (paired comparisons). A-C: Overall tibial articular cartilage variables -  Cartilage 

thickness (A); cartilage volume (B); cartilage attenuation (C). D-F: Medial tibial articular 

cartilage variables - Cartilage attenuation (D); cartilage thickness (E); cartilage volume 

(F). At 3 weeks post-surgery, overall and medial cartilage volume from MMT joints was 

significantly higher than contralateral control cartilage. Medial tibial cartilage thickness 

and attenuation from MMT joints were significantly higher than contralateral controls. * 

= p < .05, n=7  

 

MMT Medial 1/3 of medial tibial articular cartilage analysis 

 Following analysis of the medial tibial plateau, further localized analysis was 

performed for the medial 1/3 of the medial tibial plateau. Evaluating this region, similar 

results were observed as with the whole medial plateau. Average cartilage thickness and 

volume in the MMT tibiae were 50%  and 90% higher, respectively, compared to 

contralateral controls; average cartilage attenuation was 35% higher compared to controls 

(Fig 8).  
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 The grayscale 2D images from the medial plateau of the MMT animals were 

viewed slice by slice to locate, visualize, and quantify focal defects. Pseudo-color 

attenuation maps were generated based on these images. Sagittal sections from the 

attenuation maps showed higher attenuation on the MMT tibiae near the lesion sites (Fig 

9). In addition to differences in attenuation, surface defects on the cartilage were also 

observed. Two MMT samples had three lesions and six MMT samples had one lesion 

each on the medial tibial articular cartilage. Six MMT samples had one erosion and one 

MMT sample had two erosions on the medial tibial articular cartilage. The average 

number of lesions was 1.57 ± .37 and average number of erosions was 1.14 ± .14 for the 

MMT tibiae, and no defects were observed on the controls. The average lesion volume 

was 0.00393 ± .003 mm3 for MMT tibiae, and no lesions were found on any of the 

contralateral controls (Fig 9).   

Figure 8.Medial 1/3 tibial articular cartilage variables quantified for MMT and 

contralateral control knees (paired comparisons).  A: Cartilage thickness; B: cartilage 

volume; C: cartilage attenuation. Cartilage thickness and volume from MMT surgery 

tibiae were significantly higher than contralateral control cartilage. Average cartilage 

attenuation in MMT surgery tibiae was significantly higher than the respective 

contralateral control tibiae. * = p <.05, n=7 
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The average focal lesion volume was only 7.2% of the average medial 1/3 medial 

cartilage volume and 2.1% of the average medial plateau cartilage volume. The average 

focal lesion volume accounted for only .13% of the full cartilage volume when medial 

and lateral plateaus were combined. Because lesion volumes represented such a small 

region in proportion to the full cartilage volume, localized assessment clearly enhanced 

detection of morphometric differences between MMT and controls. 

Figure 9.Representative sagittal attenuation maps of medial tibial plateau for control (A) 

and MMT (B) (Inset shows zoomed in view). Red displays higher attenuation levels and 

green indicates lower attenuation. Red arrow indicates lesion site in MMT. Higher levels 

of attenuation were seen surrounding the lesion site for MMT tibiae. C: Focal lesion 

volume quantification for MMT tibiae. 
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Discussion 

 The study of animal models of joint degeneration is essential for evaluating 

potential therapeutics and understanding the pathogenesis of cartilage loss. Studying the 

progression of OA in humans is challenging because of poor evaluative tools and limited 

access to diseased tissue during early development and through disease progression. 

Suitable animal models for research are consistent, reproducible, have an appropriate 

time frame of progression for high-throughput screening and recapitulate human 

pathology (Little and Smith 2008). Cartilage degeneration has been previously 

demonstrated in the two most widely used methods of joint degeneration in small 

animals—the  MMT model (Bendele 2001, Janusz, Bendele et al. 2002, Moore, Bendele 

et al. 2005, Wancket, Baragi et al. 2005, Bove, Laemont et al. 2006) and the MIA model 

(Kalbhen 1987, Guingamp, Gegout-Pottie et al. 1997, Fernihough, Gentry et al. 2004, 

Wancket, Baragi et al. 2005). Histopathology was the primary analytical method for these 

previous studies. EPIC-µCT allows for efficient, non-destructive 3D imaging and 

localized analysis, providing quantitative methods to assess cartilage thickness, 

attenuation and volume among other variables. For this study, the MIA and MMT models 

were quantitatively characterized via EPIC-CT to measure localized variables of 

attenuation, thickness and volume.  

 The results from the current low dose MIA study indicated an overall thinning of 

the cartilage layer. These are consistent with a previous dose response study for MIA 

which showed that 0.3mg was the lowest dose that caused articular cartilage damage 

covering the entire articular surface (Guingamp, Gegout-Pottie et al. 1997). In another 

study, Safranin-O staining indicated hypertrophied and disorganized chondrocytes as well 
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as degeneration of the cartilage surface at 3 weeks at the 0.3mg dose and more extensive 

damage at a 3mg dose (Kobayashi, Imaizumi et al. 2003). It is to be noted that these 

previous studies did not assess global and regional degeneration of the cartilage nor did 

they use quantitative techniques. In the current study, attenuation was significantly 

increased in the MIA joints, which was indicative of decreased PG content. Similarly, the 

Safranin-O staining showed severely depleted sGAGs. In regional analyses and the 

overall tibial plateau, the low-dose MIA model showed reduced cartilage thickness, 

volume as well as increased attenuation.  

 The MIA model remains the current standard to assess pain therapeutics asit is 

easy to use and is reproducible. Hence, some studies have tested DMOADs and NSAIDs 

in this model due to its widespread prevalence (Smith, Little et al. 1997, Bove, Calcaterra 

et al. 2003, Combe, Bramwell et al. 2004, Bar-Yehuda, Rath-Wolfson et al. 2009, 

Fitzpatrick, Green et al. 2011).  Our results showed uniform thinning and PG loss even in 

this low dose MIA model. This is not a typical presentation of human OA and does not 

correspond with many of the OARSI recommended OA histopathology grading 

features(Gerwin, Bendele et al. 2010). The MIA model represents biochemically induced 

OA and disease progression is expedited in the low dose model. This can be an issue 

regarding the suitability of this model to test disease modifying therapeutics for knee OA. 

Additionally, transcriptional profiling of gene expression has shown little overlap with 

this model and human OA and the disease process induced by MIA causes rapid cartilage 

and subchondral bone damage (at < 3 weeks). This extensive damage suggests that the 

time-frame of disease progression is much faster in the MIA model than OA progression 

in humans (Guingamp, Gegout-Pottie et al. 1997, Combe, Bramwell et al. 2004, Barve, 
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Minnerly et al. 2007). Thus, the MIA model shows different genetic, compositional and 

morphological changes than normally observed in human OA. Despite this, the MIA 

model does have an advantage in detecting joint pain-related behaviors due to the rapid 

damage caused to the articular cartilage (Little and Smith 2008). It remains the more 

popular model for testing therapeutics targeted towards OA symptoms but has limited 

utility for testing DMOADs. 

 In the MMT model, overall and regional changes in cartilage parameters were 

detected. While changes were detectable at the overall level, most were in the medial 1/3 

region. This observation that cartilage damage was most extensive in the outer 1/3 was 

similar to previous reports in the rat MMT model and attributed to the fact that this is the 

load bearing region that is destabilized (Bendele, McComb et al. 1999, Janusz, Bendele et 

al. 2002, Moore, Bendele et al. 2005). Though the medial 1/3 of the medial tibial plateau 

displayed cartilage thickening in the MMT model, focal lesions were also observed. A 

previous study supported the identification of localized lesions in the MMT model 

through immunostaining for type II collagen neoepitope antigen (TIINE) antibody 

(Wancket, Baragi et al. 2005). These lesions had not been previously quantified. Results 

from the present study showed that the lesion volume accounted for a small percentage 

(2.1%) of the medial plateau cartilage volume. The lesions compared to the full tibial 

articular cartilage layer occupied an even smaller fraction of the total volume, making 

cartilage changes challenging to detect when performing an overall cartilage analysis. 

 The increase in thickness for the medial plateau contradicts studies that have 

shown cartilage thickness to be reduced in MMT rats at 3 weeks (Janusz, Bendele et al. 

2002, Moore, Bendele et al. 2005).  To confirm this thickness increase that was measured 
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via EPIC-µCT, histomorphometric measurements were made and similarly showed a 

significant increase in cartilage thickness in the medial tibial plateau of the MMT animals 

compared to contralateral controls. Other studies have also reported thickening of OA 

cartilage in humans, beagles and rabbits (Muir H 1987, Arokoski, Jurvelin et al. 2000, 

Calvo, Palacios et al. 2001, Oeppen, Connolly et al. 2004, Cotofana, Buck et al. 2012). 

Another study in dogs, reported a transient episode of chondrocyte proliferation and 

increased matrix production within the lesion site and superficial zone of the adjacent 

articular cartilage in response to destabilization of joints (Pinals 1996).  

 In addition to thickening of cartilage, another factor contributing to the increase in 

thickness/volume could be cartilage-like structures called chondrophytes. Thickening of 

marginal zone cartilage and generation of chondrophytes and osteophytes has also been 

reported as a result of destabilization of the joint or injury in many animal models 

including the MMT model at 3 weeks (Pinals 1996, Bendele 2001, Bove, Laemont et al. 

2006, Blaney Davidson, Vitters et al. 2007, Wei, Kulkarni et al. 2010). A previous study 

hypothesized that the observed peripheral thickening could be an adaptive or 

compensatory mechanism to increase articular cartilage surface though no data was 

presented on PG content (Arokoski, Jurvelin et al. 2000). The cartilage volume from the 

MMT tibiae in the medial 1/3 region increased by 90% compared to the control tibiae. 

Formation of these chondrophyte/osteophyte structures could augment measured cartilage 

volume and thickness because diffusion of contrast agent into the chondrophyte would be 

expected to be similar to that of articular cartilage. Even though we observed higher 

volume and thickness, the average attenuation remained higher for the MMT tibiae 

indicating lower cartilage quality and depleted PG content.  
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OA is a multifactorial disease and there are several contributing factors to disease 

progression. Focal lesions on the articular cartilage have been observed in humans with 

early stage OA, and are considered to be among factors involved in OA progression 

(Clouet, Vinatier et al. 2009). The MMT model displayed focal lesions when regional 

analysis was performed using EPIC-CT. While histology can identify lesions, the 2D 

nature of the technique means that lesion incidence and overall volumes cannot be 

quantified.  EPIC-µCT allowed for both slice-by-slice visualization and volumetric 

quantification of these lesions. Our ability to further discern the sensitivity of the  EPIC-

µCT  technique to measure more subtle PG changes was limited by the fact that sham 

surgery was not performed. Contralateral control limbs were used as negative controls as 

sham surgeries do not develop lesions (Allen, Mata et al. 2012), and this additionally 

allowed us to minimize animal numbers. The MMT model displayed several 

characteristics similar to OA characteristics in humans such as peripheral thickening, loss 

of PGs, erosion of cartilage and localized lesions.  

 Though the objectives of this study were not to directly compare MIA and MMT 

models, some interesting overall observations exist.  The data show widespread cartilage 

degeneration in the low dose MIA model and localized degradation in the MMT model. 

The MIA model appears to cause greater damage in full tibial plateau cartilage compared 

to controls; whereas, this difference at the full tibial plateau level was not detected in the 

MMT model at 3 weeks. It should be noted that two different strains of rats were used in 

this study. Based on previous studies, the standard rat strain for the MIA model is Wistar 

and for the MMT model is Lewis (Gerwin, Bendele et al. 2010). Direct comparison of 

absolute quantitative values are not appropriate and thus, not performed. Although there 
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may be variations in the response of different strains to the two methods used to induce 

joint degeneration, this limitation does not alter the conclusions of the study. Another 

limitation of our analysis was that all measurements were performed in the sagittal plane 

as established previously in the EPIC-μCT protocol, and this limited our ability to 

perform comparisons to the OARSI histomorphometric standards(Grogan, Miyaki et al. 

2009).  
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CHAPTER 4 

SENSITIVITY OF EPIC-μCT ANALYSIS TO QUANTIFY EFFECTS 

OF BROAD SPECTRUM MMP INHIBITOR IN RAT MEDIAL 

MENISCAL TEAR MODEL 

Abstract 

 Cartilage degeneration is the signature pathology feature of degenerative joint 

diseases, which are the most common cause of pain and disability in the United States. 

The development of effective therapies for cartilage protection has been limited by a lack 

of efficient quantitative cartilage imaging modalities in preclinical in vivo models. EPIC-

μCT can quantitatively analyze articular cartilage and has been used to characterize the 

rat MMT model. The application of this technique to test therapeutic efficacy of a disease 

modifying OA drug (DMOAD) has not yet been tested. Also, the technique while used to 

characterize the MMT model has not been validated via a direct comparison to histology. 

The objective of this study was two-fold: first, to validate EPIC-μCT in the rat MMT 

model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the 

effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. 

EPIC-µCT was shown to provide simultaneous 3D quantification of multiple parameters 

of joint health, including cartilage degeneration and osteophyte formation. In MMT 

animals treated with MMPi, OA progression was diminished, as measured by 3D 

parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed 

that EPIC-μCT was significantly more sensitive than histopathology requiring 

approximately 50% fewer animals to detect a therapeutic effect of MMPi. This is the first 
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study to demonstrate that EPIC-μCT has higher sensitivity than composite histopathology 

scoring and that 3D imaging provides more information to distinguish the specific effects 

of a therapy on cartilage. EPIC-μCT is a powerful tool that will provide robust, 

reproducible and quick methodology to identify new cartilage protective drugs in the pre-

clinical development stage. 

Introduction 

 OA is characterized by the progressive loss of normal structure and function of 

articular cartilage(Loeser, Goldring et al. 2012). OA affects the entire joint including the 

subchondral bone, the synovium andperiarticular tissues (Loeser, Goldring et al. 2012). 

People with OA and cartilage injury can experience severe pain and limited motion. 

Currently there are no FDA approved drugs that can modify cartilage degeneration, 

resulting in the need for improved therapeutics. 

Development of new therapeutics requires multiple steps starting with in vitro 

screening, small animal testing, large animal testing and eventually clinical trials. 

Substantial progress has been made in recent years to improve throughput, decrease costs, 

and provide better data with predictive indicators of the potential efficacy of a drug in 

humans. Much of this progress has been at the in vitro screening stage with techniques 

that include microarrays, microfluidics, and multiplex systems; however, the in vivo 

stages for screening of joint therapeutics remain slow, expensive, and with few 

quantitative outcomes. 

In order to screen prospective therapeutics, the MMT model in the rat is becoming 

the accepted standard as the primary in vivo screening model. The model displays 

similarities with pathologies observed in human OA such as PG loss, erosion/lesion 
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formation, osteophytes and subchondral bone sclerosis (Gerwin, Bendele et al. 2010). A 

number of pharmaceutical companies have recently used this model to screen potential 

therapeutics including Pfizer, Lilly Research Corp, Wyeth and Abbott Laboratories 

(Bove, Laemont et al. 2006, Baragi, Becher et al. 2009, Flannery, Zollner et al. 2009, 

Mapp, Walsh et al. 2010, Wei, Kulkarni et al. 2010). Most of these studies use 

histological analysis with semi-quantitative pathological scoring for assessing therapeutic 

efficacy as it is the current gold standard. A major limitation of this technique couple 

with the rat MMT model is that it requires at least three weeks of treatment to 

demonstrate efficacy of potential therapeutics with a minimum of 20 animals per group 

(Gerwin, Bendele et al. 2010). The testing of drugs in an efficient and less expensive 

manner is limited by the high animal number requirement and long dosing period. 

The development of 3D high resolution imaging techniques that provide 

quantitative structural and compositional analyses in addition to traditional histological 

assessment has become a milestone that has expedited the development of novel 

therapeutics in some fields. In the musculoskeletal field, this approach is true for μCT 

analysis of hard tissues, such as analyzing the efficacy of osteoporosis therapies for bone 

(Borah, Dufresne et al. 2004, Kleerekoper 2006, O'Neal, Diab et al. 2010, Kawai, 

Modder et al. 2011). The ability to quantify 3D changes in bone microarchitecture 

provided substantial new insight into the mechanism of disease progression and 

accelerated the development of effective therapies for osteoporosis which are now 

clinically available (Borah, Dufresne et al. 2004, Kleerekoper 2006, O'Neal, Diab et al. 

2010, Kawai, Modder et al. 2011). Similar 3D analysis of soft tissues has been limited; 

however, in recent years, there has been progress using contrast enhanced imaging 



 53 

techniques for soft tissues. These are often based on equilibration of an ionic contrast 

agent into the soft tissue and then correlating the attenuation of the contrast agent to 

structural and biological parameters. As described earlier, EPIC-µCT allows for 

quantitative imaging of cartilage (Palmer, Guldberg et al. 2006). Using this technique we 

have shown that we can measure structural and compositional parameters of cartilage 

including PG loss, incidence of lesions and erosions, and volume of lesions; our next 

objective was to use this technique to evaluate the efficacy of a disease modifying 

therapy in a preclinical model of OA (Thote, Lin et al. 2013).  

The aim of this study were two-fold: first, to perform a direct comparison of 

EPIC-μCT analysis to histopathological scoring looking at the development of OA in the 

rat MMT model; and then, to use EPIC-μCT to quantitatively assess the efficacy of a 

therapy for OA, in this case an MMPi, and similarly perform a direct comparison to the 

gold standard of histopathology. Our hypothesis was that EPIC-μCT would provide a 

more sensitive analytical method than histopathology requiring fewer samples and 

allowing for the quantitative analysis of more parameters.  

Materials and Methods 

Induction of Joint Degeneration 

 All animal studies were conducted at Abbvie Laboratories in accordance with 

Institutional Animal Care and Use Committee (IACUC) guidelines and the National 

Institutes of Health Guide for Care and Use of Laboratory Animals. Abbvie Laboratories 

facilities are accredited by the Association for the Assessment and Accreditation of 

Laboratory Animal Care (AAALAC). 
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Weight matched Lewis rats (300-325g) were subjected to MMT surgery based on 

previously established studies (Janusz, Bendele et al. 2002, Moore, Bendele et al. 2005, 

Xie, Lin et al. 2012). Two separate studies were performed. In the first study animals 

were separated into two groups: sham surgery or MMT surgery.  The sham surgery was 

performed by exposing the joint and transecting the medial collateral ligament. In MMT 

animals the exposed meniscus was then transected at its narrowest point. The joint and 

skin were then closed with sutures.  Animals were euthanized at 7, 14, or 21 days (at each 

of the time points, n=5-6 for MMT and n=3 for sham animals). In the second study 

animals were separated into three groups: Sham surgery (n=15), MMT +MMPi (n = 19) 

and MMT+vehicle (n=21). The MMPi used in this study (biaryl ether retro-hydroxamate) 

is a broad-spectrum, matrix metalloproteinase (MMP) inhibitor (Upadhyay, Baker et al. 

2013). Rats were administered the MMPi drug (30mg/kg) orally 2x/day for 21 days post- 

surgery.    

Histopathology Scoring 

The scoring of the joints was done using parameters from the scoring scheme 

described by Gerwin et al. (Gerwin, Bendele et al. 2010). Sections were analyzed 

microscopically and scored by a trained pathologist. For each knee, three sections were 

scored and then the average of the scores was used. Parameters that were scored include: 

cartilage degeneration for each zone (3 zones), a 3 zone sum of cartilage degeneration, 

subchondral bone, and osteophytes. Osteophyte width, width of the marginal zone, and 

cartilage degeneration width (performed in the MMPi study only) were measured 

separately by ocular micrometers. Detailed descriptions of the different scoring 

parameters were previously published (Gerwin, Bendele et al. 2010). 
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µCT regional analysis 

The MMT surgery involved an injury to the medial side of the knee joint through 

transection of the medial meniscus. As a result, the medial plateau of the tibia was more 

susceptible to injury. To observe localized effects of joint degeneration, we evaluated the 

medial tibial plateau in all groups. (Gerwin, Bendele et al. 2010). 

Scanco evaluation software was used to assess 3D morphology and composition. 

Raw data were automatically reconstructed to 2D grayscale tomograms. These were 

rotated to sagittal sections, and the cartilage was contoured to separate it from trabecular 

bone and surrounding air (Palmer, Guldberg et al. 2006, Xie, Lin et al. 2012). The 

cartilage was segmented using a threshold value of 175-225 and then 3D images were 

generated. Four regional analyses were performed using different volumes of interest 

(VOI). For the MMT model, images were evaluated for:  (1) Medial plateau only (2) 

Medial 1/3 of the medial tibial plateau (3) Focal lesions on the medial plateau only (Fig 

10). Two outcome measures were defined for evaluation of focal defects: erosion (defect 

extended to less than 50% of cartilage thickness) and lesion (defect extended to more 

than 50% of cartilage thickness) (Pritzker and Aigner 2010).  To define VOIs of focal 

lesions, manual contouring was performed in the isolated lesion area (typically ≈ 8 slices) 

to simulate the curvature of the surrounding cartilage surface excluding the subchondral 

bone and surrounding air. Within this VOI, segmented cartilage volume was subtracted 

from the total volume evaluated to compute lesion volume.  
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Analysis of the osteophytes was performed after the 2D grayscale tomograms 

were rotated to coronal sections (Fig 11). The medial marginal area was contoured for 

osteophyte growth. The marginal osteophyte was segmented using two different 

threshold values: 1) 130-1000 to include both mineralized matrix and cartilage, 2) 265-

1000 to include only the mineralized matrix. Outcome measures defined for marginal 

osteophytes included total osteophyte volume, total osteophyte thickness, mineralized 

osteophyte volume and cartilaginous osteophyte volume.  

 

Figure 11.Representative images illustrating osteophytes in coronal tibial section      

No osteophyte (OP) in sham joint (A), outline of osteophyte in MMT joint (B), total 

osteophyte (indicated in white) in MMT joint (C) and mineralized matrix (indicated in 

white) in MMT joint (D) 

 

Figure 10.Representative CT images indicating articular cartilage volume of 

interest and cartilage degeneration. A: Rat tibial articular cartilage overlay on bone 

indicating volumes of interest. B: Representative image illustrating erosions 

(cartilage defect < 50% of thickness) and lesion (cartilage defect > 50% of 

thickness) 
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Statistical analysis   

All data were expressed as mean ± standard error. Cartilage morphology 

parameters were evaluated using ANOVA with a Tukey test to compare between selected 

groups using GraphPad Prism Software (GraphPad Prism Software Inc. 5.01, La Jolla, 

CA). Statistical significance was set at a 95% confidence interval (p < 0.05). 

Power analysis was performed by selecting a desired power of 0.8. Effect size 

was calculated for unequal sample sizes based on t-test data between the MMPi treated 

and vehicle treated group. These data were used to calculate the total sample size using 

G*Power (G*Power Version 3.1.3, Universitat Kiel, Germany). 

 

Results 

MMT Time-point Study 

The rat MMT model was analyzed using both EPIC-μCT and histopathology. 

These results were directly compared for the same set of samples. Representative coronal 

sections from histology and EPIC-μCT display qualitatively similar results in disease 

progression over three weeks (Fig 12). Osteophytes, erosions and PG loss can be 

observed in the comparable EPIC-μCT and histology sections.  



 58 

 

 Histology sections were scored by a histopathologist based on the scheme 

described by Gerwin et al (Table 2). The results include tibial 3-zone sum score, total 

cartilage degeneration score, the osteophyte width, and the total joint score (Gerwin, 

Bendele et al. 2010).  

 

 

 

Figure 12.Representative histology and EPIC-μCT images depicting OA progression 

over 3 weeks. A – D: Toluidine blue stained MMT joints showing no damage in 

sham (A), cartilage surface erosion at week 1 in MMT joint (B), increased cartilage 

surface erosion at week 2 in MMT joint (C) and development of osteophyte (red 

arrow) and severe cartilage erosion at week 3 in MMT joint (D). E-H: Corresponding 

EPIC-μCT images for the samples as sectioned via histology indicating progression 

of cartilage degradation. No damage observed in sham (E) or week 1 MMT joint (B). 

Increased areas of attenuation observed in MMT joints at week 2 (G) and 3 (H) as 

indicated by black arrow. Red arrow indicates area of mineralization within marginal 

osteophyte at week 2 and week 3 in MMT joints. Red indicates higher attenuation 

corresponding to lower proteoglycan content. 
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 Progression of the MMT model from week 1 to week 3 was analyzed. At week 1, 

the 3 zone sum score was significantly higher in the MMT animals compared to sham. 

This increase was consistent up to week 3 though no significant difference between these 

values at week 1 and week 3 were observed (Fig 13). EPIC-μCT data showed a 

significant increase in cartilage attenuation at week 2 in MMT animals, but no difference 

was observed at week 1. Lesion volume significantly increased between 2 and 3 weeks 

post-surgery in MMT treated animals (Fig 13). 

Table 2.Histology data for joint parameters for sham and MMT animals at weeks 1, 2 

& 3. Data presented are with SD. 
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Additional parameters, including cartilage thickness, volume and lesion and erosion 

incidence, were measured by EPIC-μCT. Lesion incidence was significant at week 3 and 

erosions were significant as early as week 2 (Table 3). 

Figure 13.Quantification of cartilage degeneration in MMT joints over 3 weeks. A. 

Histo-pathological 3 zone sum score is significantly increased in MMT joints at 

weeks 1, 2 and 3 compared to shams B. Cartilage attenuation is significantly 

increased in MMT joints at weeks 2 & 3 compared to shams. C. Cartilage lesion 

volume is significantly increased in MMT joints at week 3 compared to shams, and 

MMT joints at week 1 & 2. n = 5-6/group for CT data; n= 3 for sham and n = 5-6 

for MMT for histology data. 

* = p < 0.05, sham significantly different from MMT (One way ANOVA with 

post-hoc Tukey’s test) 
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Osteophytes were observed in the MMT animals on the medial tibial plateau via 

both EPIC-μCT and histopathology. The marginal tissue thickness was significantly 

higher in the MMT animals compared to sham animals at week 2 (above the 200 μm cut 

off for classification of an osteophyte, Fig. 14). Similarly, EPIC-μCT measurements 

showed a significantly higher 3D average marginal thickness in MMT animals compared 

to shams at week 2. EPIC-μCT also allowed for measurements of additional osteophyte 

parameters - total volume and mineral volume. Marginal total volume and mineral 

volume were all increased in MMT animals by 2 weeks post-surgery (Fig 14). 

Table 3.Average incidence of lesions and erosions in sham and MMT groups 

for 1, 2 and 3 weeks  
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Figure 14.Osteophyte progression in MMT animals over 3 weeks. A. Osteophyte 

widths as calculated via histo-pathology scoring show an increase in MMT joints 

compared to shams at week 2 and week 3. B-D:  Marginal average 3D thickness (B), 

marginal total volume (C) and marginal mineral volume (D) as calculated via EPIC-

μCT show an increase in MMT joints compared to shams at week 2 and 3. n = 5-

6/group for CT data; n= 3 for sham and n = 5-6 for MMT for histology data. 

* = p < 0.05, sham significantly different from MMT at week 2; $ = p < 0.05, sham 

significantly different from MMT at week 3  
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A correlation analysis (Fig 15) was performed comparing EPIC-μCT 3D 

thickness and 2D histopathology tissue widths and a significant correlation was observed 

between measurements from the two techniques (r
2
=0.8268, p<0.05). 

 

MMPi Study 

EPIC-μCT and histopathology analyses were performed on the sham, vehicle 

treated, and MMPi treated samples at 3 weeks post-surgery. Representative coronal 

sections from histology and EPIC-μCT coronal sections are presented from each group 

(Fig. 16). Similar degeneration, lesion formation and osteophyte appearance are observed 

between the EPIC-μCT and histology images.  

 

 

 

 

Figure 15. Correlation analysis between CT OP width and histology OP width 
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Figure 16.Representative histology and EPIC-μCT images depicting effect of 

MMPi on MMT joints. A – B: Toluidine blue stained MMT joints showing reduced 

osteophyte formation in MMPi treated joint (B) compared to vehicle treated joint 

(A). C-D: Corresponding EPIC-μCT images for the samples as sectioned via 

histology indicating reduced osteophyte formation in MMPi treated joint (D) 

compared to vehicle treated joint (C). Red indicates higher attenuation 

corresponding to lower proteoglycan content 
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A significant decrease in the tibial 3 zone sum score, the osteophyte width, and 

the subchondral bone score was observed via histopathology scoring. Other parameters—

total cartilage degeneration, cartilage matrix loss at 0% depth, and total joint score—did 

not show a significant effect of MMPi treatment (Table 4) 

 

 

Cartilage attenuation as calculated via EPIC-μCT, increased at 3 weeks in the 

MMT+vehicle and MMT+MMPi animals compared to the sham controls (Fig. 17), 

though no difference was observed between the two MMT groups.  

 

Table 4. Histopathology data from MMPi study 
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Figure 17.Tibial articular cartilage variables quantified for MMT joints treated with 

MMPi A. MMPi treatment significantly reduces 3 zone sum score compared to vehicle 

treated group B. Cartilage attenuation is significantly lower in sham group compared to 

both vehicle treated and MMPi treated groups C. Lesion volume is significantly reduced 

in MMPi treated group compared to vehicle treated group. n = 15-21/group 

* = p < 0.05, sham significantly different from vehicle &MMPi; $ = p < 0.05, vehicle 

significantly different from MMPi; # = p < 0.05, vehicle significantly different from 

sham  

 

EPIC-μCT was also used to measure lesion and erosion incidence, lesion volume, 

and subchondral bone volume (Table 5). Occurrence of lesions and erosions were not 

affected by MMPi treatment. However, lesion volume was significantly reduced in the 

MMT+MMPi group compared to the MMT+vehicle group. The shams showed no lesions 

on the cartilage.  

 

Table 5.Incidence of Lesions & Erosions in MMPi Study 
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Subchondral bone volume was also significantly lower in the MMT+MMPi group 

compared to the MMT+vehicle group (Fig 18).  

 

A significant decrease in 2D histology OP width was observed in MMPi treated 

animals compared to vehicle treated animals (Fig. 19). Sham animals did not have width 

measurements above the 0.2 mm cut off and were scored as zeroes as per the current 

standard. Quantitative EPIC-µCT similarly showed significantly reduced average 3D 

thickness, marginal total volume and marginal mineralized volume compared to the 

vehicle group (Fig. 19). Osteophytes were not detected in shams via histology or 

EPIC-µCT. 

Figure 18.Effect of MMPi on subchondral bone volume. MMPi treatment reduces 

subchondral bone volume compared to vehicle treated joints. * = p < 0.05 
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Power analysis  

A power analysis was performed to measure the minimum number of samples 

required to detect differences in cartilage degeneration and osteophyte development 

between the MMPi treated and untreated MMT groups (Table 6). Post-hoc power 

analysis based on total peripheral volume indicated that a minimum of 7 animals would 

be needed per group to detect a significant difference at a power > 0.8 and α = .05; while 

histology would require a minimum of 13 samples per group for osteophyte width 

Figure 19.Effect of MMPi on osteophyte development in MMT joints. A: 

Osteophyte widths as calculated via histo-pathology scoring are significantly 

lower in MMPi treated group compared to vehicle treated group B-D:  Marginal 

average 3D thickness (B), marginal total volume (C) and marginal mineral 

volume (D) as calculated via EPIC-μCT are significantly lower in MMPi treated 

group compared to vehicle treated group. n = 15-21/group 

* = p < 0.05, sham significantly different from vehicle &MMPi; $ = p < 0.05, 

vehicle significantly different from MMPi 

 



 69 

(assuming experimental design would be equal between the groups). Other parameters 

were less sensitive and would require larger sample sizes. 

 

 

 

Table 6.Post hoc power analysis 
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Discussion 

 Development of new and improved therapeutics for OA has been limited by 

techniques which are high in cost and low in throughput. Previously, we have developed 

EPIC-μCT as an imaging technique that can analyze cartilage quantitatively, efficiently 

and without destroying the sample (Thote, Lin et al. 2013). In this study we compared 

quantitative 3D EPIC-μCT results to the gold standard of 2D histopathology in the rat 

MMT model. We also showed that EPIC-μCT has the sensitivity to evaluate the efficacy 

of DMOADs in the rat MMT model and is more sensitive than the current gold standard 

of histopathology.  

In this study we showed that EPIC-μCT provides a fully quantitative analytical 

technique that is non-destructive, quantitative, and has highly sensitive parameters which 

can be evaluated over the entire region or can be focused on specific regions of interest. 

Histopathology scoring is semi-quantitative as it subjectively scores 2D sections. 

Sectioning, imaging and scoring samples is time consuming and the semi-quantitative 

nature of the technique results in requiring large sample sizes to detect significant 

differences. Using EPIC-μCT we were able to quantify cartilage attenuation, cartilage 

volume and thickness, occurrence of lesions and erosions, volume of lesions, osteophyte 

formation, and subchondral bone thickening.  

The 3 zone sum score measurement from histopathology showed a large discrete 

step increase between shams and the week 1 time point which did not significantly alter 

over the 3 weeks. In the case of EPIC-μCT a more continuous increase in cartilage 

attenuation was observed indicating that this parameter is more sensitive to PG changes. 

The 3 zone sum score is based on the PG loss at a singular location whereas attenuation 
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data is an average measurement for the entire cartilage within the selected region of 

interest(Gerwin, Bendele et al. 2010). This data may suggest that the lesion volume 

measurement may be more similar to the 3 zone sum score than attenuation though 

lesions are not detected in this model via CT until week 2.  

The results of the MMPi treatment showed that MMPi significantly decreased the 

3 zone sum score and lesion volume whereas cartilage attenuation was not affected. 

Though similarities exist between histopathology and EPIC-μCT, this finding calls 

attention to the fact that the parameters from the two different techniques are measuring 

different incidences. Additionally, histopathology also scores features such as 

chondrocyte proliferation, synovial hyperplasia and vascular infiltration which cannot be 

analyzed via CT(Gerwin, Bendele et al. 2010). However, since EPIC-μCT is non-

destructive of the samples, these features can still be analyzed via histology after the 

samples are scanned.  

Osteophytes occur on the joint margins, they are thickening of the marginal tissue 

observed in human OA as well as in the MMT model. Histopathology scoring of 

osteophytes involves scoring maximum thickness from three different regions . In this 

study, we presented a novel method of analyzing both the size and composition of 

osteophytes using EPIC-μCT. Histopathology findings showed an increasing osteophyte 

thickness which was also observed in EPIC-μCT data via an increase of 3D thickness and 

volume. EPIC-μCT also showed mineralization of the osteophyte by two weeks. This 

mineralization is difficult to view in histology sections as the sections usually need to be 

decalcified prior to sectioning. Mineralization of the osteophyte is another feature of 

human OA that similarly develops in the MMT model, though at a highly accelerated 
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pace. Osteophytes originate from activated periosteum which leads to new cartilaginous 

outgrowths that eventually mineralizes via endochondral bone formation. A possible 

mechanism for MMPi effect on OP progression could involve the role that MMP-9 and 

MMP-13 play in OA. MMP-9 and MMP-13 are highly expressed in osteoclasts and 

chondrocytes in arthritic cartilage and their inhibition via the MMPi could lead to 

reduced OP formation as the production of cartilage and bone is limited(Hayami, 

Pickarski et al. 2004).  Osteophyte progression could also be a sensitive parameter in 

evaluating therapeutic efficacy. In the MMPi treated rats, the most acute effect was 

observed in the reduction of the mineral volume of osteophyte. This result suggests that 

the MMPi might be more beneficial towards the later stage of OA progression, at least 

with regards to the osteophyte.  

One of the major limiting factors for screening DMOADs in pre-clinical animal 

models is the limited sensitivity of outcome techniques. Our post-hoc power analysis 

results showed that EPIC-μCT could reduce the number of animals required for drug 

screening. The most sensitive parameter in EPIC-μCT (Total OP volume) showed that 

only 7 samples per group would be needed whereas the most sensitive histopathology 

parameter (OP width) showed that at least 13 samples per group would be required. A 

lower number of animals would have a downstream effect resulting in faster data 

generation and lower amount of pharmaceutical compound synthesis at the initial stage. 

Moreover, EPIC-μCT is much faster as analyzing a single sample requires approximately 

2.5 hours whereas a full-scale histopathology study can take months to complete, with the 

decalcification procedure itself taking between 10-14 days. EPIC-μCT parameters could 

allow for in vivo screening in a rapid, efficient and quantitative manner while allowing 
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for smaller sample numbers leading to reduction in time needed to identify potential 

DMOADs which could go through the next testing phase.  
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CHAPTER 5 

THERAPEUTIC EFFECT OF MICRONIZED DEHYDRATED 

HUMAN AMNION/CHORION MEMBRANE (µ-dHACM) TESTED 

IN RAT MEDIAL MENISCAL TEAR MODEL USING EPIC-µCT
c
 

 

Abstract 

Micronized dehydrated human amnion/chorion membrane (µ-dHACM) is derived 

from donated human placentae and has anti-inflammatory, low immunogenic and anti-

fibrotic properties. This material has been previously used in the clinic in applications 

such as tendon repair and corneal epithelial defect but has not yet been tested in an OA 

model. The objective of this study was to quantitatively assess the efficacy of µ-dHACM 

as a disease modifying intervention in a rat model of OA. It was hypothesized that intra-

articular injection of µ-dHACM would attenuate OA progression.Lewis rats underwent 

medial meniscal transection (MMT) surgery to induce OA. µ-dHACM or saline was 

injected intra-articularly into both naïve and MMT joints.  To simulate clinical OA, rats 

were injected with µ-dHACM  3 weeks post-surgery as well and analyzed at 6 weeks. 

Denatured µ-dHACM was tested at the 3 week time point to examine effects of bioactive 

components. Microstructural changes in the tibial articular cartilage were assessed using 

EPIC-µCT and the joint was also evaluated histologically. There was no measured 

                                                 

 

 
c
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Stevens HY and Guldberg RE. Intra-articular injection of micronized dehydrated human amnion/chorion 

membrane attenuates osteoarthritis development. Arthritis Research &Therapy16(47). February 2014. 
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baseline effect of µ-dHACM on cartilage in naïve animals. µ-dHACM was sequestered in 

the synovial membrane following intra-articular injection and attenuated cartilage 

degradation in a rat OA model at 3 weeks and via a delayed injection at 6 weeks. 

Denaturation of µ-dHACM did not have a chondro-protective effect on the articular 

cartilage. These data suggest that intra-articular delivery of µ-dHACM may have a 

therapeutic effect on OA development.  

Introduction 

Multiple clinical trials have tested a number of potential disease modifying OA 

drugs (DMOADs), including matrix-metalloproteinase inhibitors (MMPis), cytokine 

blockers, inhibitors of inducible nitric oxide synthase (iNOS), and doxycycline; however, 

none have shown a clear therapeutic benefit to date (Martel-Pelletier, Wildi et al. 2012). 

There are various DMOADs in clinical trials such as rhFGF-18 (Sprimerfin by Merck), a 

growth factor based therapy, in Phase II which has shown a decrease in cartilage 

thickness and volume in patients with OA(Hellot, Wirth et al. 2013).  Strontium ranelate, 

in a recently completed a Phase 3 clinical trial showed a significant improvement in joint 

structure of OA patients (Reginster 2013). Though heavy investment in research 

continues, OA remains a pervasive and burdensome condition with limited effective 

clinical options, and there is still a critical need to investigate novel OA therapies.  

  Testing therapeutics for OA requires selection of a suitable animal model and an 

efficient and quantitative analysis method. The medial meniscal transection (MMT) rat 

model is a well-accepted small animal model for evaluating new pharmacologic agents 

(Gerwin, Bendele et al. 2010). Micro-computed tomography (µCT) imaging can rapidly 
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and quantitatively evaluate 3D morphologic and degenerative changes in articular 

cartilage by EPIC-µCT(Palmer, Guldberg et al. 2006).  

 Locally delivered extracellular matrix proteins are a promising treatment strategy 

being developed for a wide range of regenerative applications (Niknejad, Peirovi et al. 

2008). Dehydrated human amnion/chorion membrane (dHACM) is a tissue derived from 

donated placentae which possesses anti-inflammatory properties, displays low 

immunogenicity, and promotes wound healing while inhibiting scar formation (Faulk, 

Matthews et al. 1980, Akle, Adinolfi et al. 1981, Hao, Ma et al. 2000). There is an 

established precedence of using this tissue for regenerative applications clinically, 

ranging from corneal defects to tendon repair (Gruss and Jirsch 1978, He, Li et al. 2002, 

Mligiliche, Endo et al. 2002, Gajiwala and Gajiwala 2004, Chandra, Maurya et al. 2005, 

Thatte 2011). 

The potential for dHACM to modulate the development of OA has not been 

previously investigated; however indirect evidence suggests that it may have beneficial 

effects on cartilage. In vitro, dHACM has been shown to maintain chondrocyte 

phenotype when seeded with chondrocytes (Diaz-Prado, Rendal-Vazquez et al. 2010, 

I.H.Hussin, Pingquan-Murphy et al. 2011). In vivo, chondrocyte seeded dHACM 

enhanced regeneration of hyaline cartilage in rabbit osteochondral defects after 8 weeks 

(Jin, Park et al. 2007). One of the limitations of these previous studies has been the use of 

dHACM in the form of sheets which can only treat large defects and would require an 

invasive surgery. Micronized dHACM (µ-dHACM) offers a minimally invasive, 

injectable therapy with a longer shelf life than cellularized constructs. µ-dHACM can be 
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devitalized while preserving its basement membrane structure and a variety of growth 

factors including PDGF, FGF and TGF-β (Ji, Xiao et al. 2011).  

An injectable formulation of µ-dHACM (EpiFix® Injectable, MiMedx Group, 

Inc. Marietta, GA) has recently been developed that retains the active factors of the 

original tissue and allows for minimally invasive local delivery targeted to the disease 

site. µ-dHACM is developed after the native amnion undergoes the PURION process 

which maintains bioactive components despite the tissue being devitalized and 

dehydrated (US Patent 8,357,403– Placenta Tissue Grafts. US Patent 8,372,437-Placenta 

Tissue Grafts.14. US Patent 8,409,626-Placenta Tissue Grafts). The tissue retains the 

epithelial and chorion layer after the process.  A recent study examined the biological 

properties of µ-dHACM and in vitro experiments show quantifiable levels of various 

growth factors, interleukins and TIMPS(Koob, Rennert et al. 2013, Koob, Lim et al. 

2014). A subcutaneous in vivo experiment in the same study demonstrated recruitment of 

mesenchymal progenitor cells to site of implantation as well(Koob, Rennert et al. 2013).  

The applicability of this material as a therapeutic for OA has not yet been studied. 

The objective of this study was to quantitatively assess the efficacy of µ-dHACM as a 

disease modifying intervention in the rat MMT model and examine the effect of 

denaturation on the therapeutic effect of µ-dHACM. It was hypothesized that a single 

intra-articular injection of µ-dHACM would attenuate OA disease progression in the rat 

MMT model with denaturation of µ-dHACM eliminating any therapeutic benefit 

observed.  
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Materials and Methods 

Surgical Methods 

  Weight matched adult male Lewis rats (Charles River, Wilmington, MA) 

weighing 300-325g, were acclimated for 1 week. For the MMT surgery, the animals were 

anesthetized with isoflurane, and the skin over the medial aspect of the left femoro-tibial 

joint was shaved and aseptically prepared. The medial collateral ligament (MCL) was 

exposed by blunt dissection and transected to reflect the meniscus toward the femur. The 

joint space was visualized, and a full thickness cut was made through the meniscus at its 

narrowest point (Janusz, Bendele et al. 2002).The skin was closed with 4.0 Vicryl sutures 

and then stapled using wound clips. For the 3 week study, 24 hours post MMT surgery, 

either µ-dHACM (AmnioFix® Injectable, MiMedx Group Inc. Marietta GA) or saline 

was injected intra-articularly into the stifle joint of the left leg (n=5 per group, per time 

point). µ-dHACM was sourced from two different donors processed in two different 

batches. µ-dHACM was resuspended according to the product insert and injected into the 

articular joint space using a 25 gauge needle. Animals were euthanized at 3 days or 3 

weeks post-surgery. Naïve animals did not undergo any surgical procedure and were 

injected with µ-dHACM or saline. For the six week study,µ-dHACM was injected either 

24 hours post-surgery (single injection), 3 weeks post-surgery (delayed injection) or at 

both 24 hours and 3 weeks post-surgery (multiple injection) into the left leg.  Sham 

surgery was performed in rats as well where the MCL was transected but the joint was 

sutured without transecting the meniscus (n = 6-8 per group). MMT surgery with saline 

injection served as a control group.  Animals were euthanized 6 weeks post-surgery. For 

the denatured dHACM study,either µ-dHACM, denatured µ-dHACM or saline was 
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injected intra-articularly in the left knee 24 hours post-surgery. Sham surgeries were also 

performed as controls (n = 8 per group). Animals were euthanized 3 weeks post-surgery. 

The Georgia Institute of Technology Institutional Animal Care and Use Committee 

approved experimental procedures for these in vivo studies (IACUC protocol #A09007 

and IACUC protocol #A10218). The experimental design is listed in the table below 

(Table 7): 

Table 7. Experimental Design 

Study 1 – 3 week µ-dHACM study 

 

Groups (n = 5) 
Naïve + 

Saline 

Naïve +        

µ-dHACM 

MMT + Saline MMT + µ-dHACM 

Study 2 – 6 week µ-dHACM study 

 

Groups (n = 6-8) 

Sham MMT + 

Saline 

 

 

(Saline) 

MMT +  

µ-dHACM 

@ 24 hrs 

 

(Single) 

MMT +  

µ-dHACM 

@ 3 weeks 

 

(Delayed) 

MMT +  

µ-dHACM 

@ 24hrs + 3 

weeks 

(Multiple) 

Study 3 – 3 week denatured µ-dHACM study 

 

Groups (n = 7-8) 
Sham MMT + Saline MMT +  

µ-dHACM 

MMT + Denatured 

µ-dHACM 

 

 µ-dHACM was manufactured using the proprietary Purion® process and is compliant 

with the American Association of Tissue Banks regulations for donor tissues (MiMedx 

Group, Inc. Marietta, GA). The process produces a dehydrated, devitalized amnion and 

chorion tissue graft which is then micronized, sterilized and can be suspended in saline 

(US Patent 8,357,403– Placenta Tissue Grafts; US Patent 8,372,437-Placenta Tissue 

Grafts; US Patent 8,409,626-Placenta Tissue Grafts).µ-dHACM was denatured by boiling 

the saline suspended µ-dHACM for 60 minutes. 
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Synovial Fluid Analysis 

 Rats were euthanized via CO2 inhalation at 3 days or 21 days post-surgery for both 

the naïve group and MMT surgery group for the 3 week study. Synovial fluid was 

collected by first injecting 100µl of saline intra-articularly using a 30 gauge insulin 

syringe, followed by aspirating approximately 50-100µl of the synovial fluid and saline 

using the same syringe. Synovial fluid was analyzed using the Quantibody® Rat 

Inflammation Array 1, a multiplex ELISA kit that quantitatively measured 10 rat 

inflammatory factors - IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-13, MCP-1, TNFα 

(RayBiotech, Norcross, GA).  

 

EPIC-µCT Analysis of Articular Cartilage 

  Articular cartilage structure and composition were quantitatively evaluated in the 

tibial plateau as described in our previous study (Thote, Lin et al. 2013). Scanco 

evaluation software was used to assess 3D morphological parameters and local 

attenuation. Dissected tibia were immersion fixed in 10% neutral buffered formalin for 

48 hours then stored in 70% ethanol until ready for scanning. Immediately prior to 

scanning, tibiae were immersed in 2ml of 30% Hexabrix™ 320 contrast agent (Covidien, 

Hazelwood, MO) and 70% PBS at 37°C for 30 minutes (Palmer, Guldberg et al. 2006, 

Xie, Lin et al. 2009). Samples were then scanned using a µCT 40 (Scanco Medical, 

Brüttisellen, Switzerland) at 45 kVp, 177 µA, 200 ms integration time, and a voxel size 

of 16 µm (Xie, Lin et al. 2009). Raw data were automatically reconstructed to 2D 

grayscale tomograms. These were rotated to sagittal sections, and the cartilage was 
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contoured and thresholded with global segmentation parameters (Gauss sigma - 1.2, 

support - 2, threshold - 175-225). Direct distance transformation algorithms were used to 

quantify 3D morphology (Hildebrand and Ruegsegger 1997, Laib, Barou et al. 2000, Xie, 

Lin et al. 2009). The subsequently generated 3D images were delineated into three 

volumes of interest (VOIs). For the MMT model, images were evaluated for: (1) Full 

articular cartilage in the proximal tibia including medial and lateral aspects, (2) Medial 

1/3 of the medial tibial plateau and (3) Focal lesions on the medial plateau only. Outcome 

measures included average articular cartilage thickness, volume and attenuation. 

Cartilage attenuation is a quantitative parameter that is inversely proportional to sulfated 

glycosaminoglycan (sGAG) content (Palmer, Guldberg et al. 2006). Degraded cartilage 

contains lower sGAG content and therefore higher contrast agent content and higher 

attenuation values (Xie, Lin et al. 2009). Two outcome measures were defined for 

evaluation of focal defects: erosion (defect depth extending to less than 50% of cartilage 

thickness) and lesion (defect depth extending to more than 50% of cartilage thickness) 

(Pritzker and Aigner 2010).  To define VOIs of focal lesions, manual contouring was 

performed in the isolated lesion area to account for the curvature of the surrounding 

cartilage tissue and exclude the subchondral bone and surrounding air. Within this VOI, 

segmented cartilage volume was subtracted from the total volume evaluated to compute 

lesion volume. For the 6 week study, osteophytes were also evaluated. Surface roughness 

and exposed bone area were calculated using a custom MATLAB script using images 

rendered by the CT software.  
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Histology 

For the 3 day time point, the entire limb was harvested with knee joint intact, fixed 

in 10% neutral buffered formalin for 3-4 days, transferred to 70% ethanol, and stored at 

4°C. For the 21 day and 6 week time point, the tibiae and femora were harvested 

separately, dissected free of surrounding tissues, fixed in 10% neutral buffer formalin for 

3-4 days, transferred to 70% ethanol, and stored at 4°C.  For femoral dissections, care 

was taken to preserve the synovium, meniscus, and femoro-meniscal connective tissue. 

Following EPIC-µCT scanning, tibiae and femora were decalcified in Cal-Ex II (Fisher 

Scientific, Waltham, MA) for 14 days. Dehydrated samples were routinely processed into 

paraffin embedded blocks. For comparison with EPIC-µCT images, sagittal sections were 

Figure 20.EPIC-μCT images indicating focal defects in MMT ratsA. Representative 

image isolating erosion in MMT joint B. Attenuation map indicating erosion on the MMT 

joint (Inset shows zoomed in view of erosion) C. Representative image isolating lesion in 

MMT joint D. Attenuation map indicating erosion on the MMT joint (Inset shows 

zoomed in view of erosion) 
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cut at 5µm thickness. Sections were stained for sGAGs with a 0.5% Safranin-O (Saf-O) 

solution and a 0.2% aqueous solution of FastGreen as a counter-stain or with hematoxylin 

and eosin (H&E). 

Histological assessment of µ-dHACM and denatured µ-dHACM was performed via 

embedding the samples in histogel (Wong, Vosburgh et al. 2012). Briefly, µ-dHACM 

was mixed with histogel in an approximate 1:3 V/V ratio. This mixture was pipetted into 

a standard cryo cassette and flash frozen. The resulting block was routinely cryo-

sectioned and stained with H&E.  

 

In vitro study 

 Extracts for cell culture were acquired by incubatingµ-dHACM or denatured µ-

dHACM in DMEM without 10%calf serum at a concentration of 20mg of tissue per ml of 

medium for 24 hours. The tissuewas removed by centrifugation and the extract was 

sterilefiltered. 

 Adult human dermal fibroblasts (HDFa, Life Technologies Corp., Grand Island, NY) 

were plated on 96-wellplates for 24 hours in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 10% calf serum (GIBCO, Life Technologies Corp.).After 24 hours, 

the medium was aspirated from the wells and replaced with one of the following: basal 

media (DMEM lacking serum - control), complete media (DMEM plus 10% calf serum 

positive control) or DMEM containing extracts of dHACM at 10, 5 and 1mg/ml. After 72 

hours, the plate was washed to remove unattached cells and a CyQuant assay 

(MolecularProbes CyQuant, Life Technologies C7026) was performed to quantify the 

number of cells as per manufacturer’s instructions (Koob, Rennert et al. 2013). 
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Statistical analysis 

All quantitative data were expressed as mean ± standard error. Joint parameters 

between groups were evaluated using a one factor (left vs. right) ANOVA with Tukey’s 

test for post-hoc analysis. Joint parameters within the same group were compared 

between experimental and control knees using paired t-tests. Statistical significance was 

set at p< 0.05. All data were analyzed using GraphPad Prism software version 5.0 

(GraphPad Software, Inc., La Jolla, CA). 

Results 

Short Term 3 Week Study 

µ-dHACM Injected into Naïve Joints 

µ-dHACM was injected into naïve joints to assess the inflammatory response at 3 

and 21 days. Histology three days post-injection showed µ-dHACM particles 

incorporated into the adjacent synovial tissue (Figure 21). The material appeared as 

variably-sized fragments of multi-layered eosinophilic, fibrillar material. µ-dHACM 

fragments were surrounded by moderate inflammatory infiltrate consisting of 

macrophages, lymphocytes, and plasma cells indicating an inflammatory response to the 

xenogeneic material. No fragments were observed in control samples injected with saline, 

and these samples exhibited minimal hemorrhage or inflammatory cell presence in the 

synovial membrane.  
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At 21 days post-surgery, histological staining of µ-dHACM treated stifle joints 

showed the continued presence of µ-dHACM in the synovium along with inflammatory 

cells. At 21 days, a distribution of smaller sized dHACM particles appeared compared to 

the 3 day time point and a similar foreign body response was observed surrounding the µ-

dHACM fragments at both time points (Figure 22).  

 

 

 

 

Figure 21.Histological assessment of µ-dHACM injected in naïve rats at Day 3. A-D: 

Representative histology images of µ-dHACM treated naïve joints and saline treated. C-

D are zoomed in versions of regions of interest (black box) defined in A-B respectively. 

µ-dHACM visible at 3 days as fibrillar/eosinophilic material, indicated by black arrows 

(C). 
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Figure 11.Histological assessment of µ-dHACM injected in naïve rats at Week 3. 

A-D: Representative images of µ-dHACM treated MMT joints and saline treated 

naïve. C-D are zoomed in versions of regions of interest (black box) defined in A-B 

respectively. µ-dHACM fragments visible at day week 3 as indicated by black 

arrows (C). 

 

Synovial fluid showed a significant increase in Monocyte Chemoattractant 

Protein-1 (MCP-1) concentration in µ-dHACM treated joints compared to control joints 

at 3 days but no difference was observed at 21 days. MCP-1 levels significantly 

decreased from day 3 to day 21 in both treated and untreated groups (Figure 23).  
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The othercytokines tested did not show any significant differences or were below 

the limit of detection (Table 8). Numerical values for all cytokines are presented in the 

following table. 

  

Figure 23.MCP-1 levels in µ-dHACM treated and saline injected naïve rats. MCP-1 

levels were significantly higher at 3 days in both saline and µ-dHACM injected groups 

compared to 21 days. MCP-1 level at 3 days was significantly higher in the µ-dHACM 

injected joints compared to saline treated joints. ** p <0.05 for MCP-1 levels at 3 and 21 

days for both groups.*  p<0.05 for MCP-1 levels at day 3 in saline injected and µ-

dHACM injected. n = 5. 
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Table 8.Cytokine ELISA data for naïve joints. Data represented as Mean ± std. dev. - 

indicates cytokine content lower than limit of detection 

 

Cartilage structure and composition were assessed at 21 days using EPIC-µCT. 

Representative 3D reconstructions of the cartilage with thickness heat maps appeared 

normal in structure in naïve animals treated with µ-dHACM or saline (Figure 24). 

Quantitative assessments of cartilage volume and thickness indicated no differences 

between saline and µ-dHACM treated joints (Figure 24). Similarly, cartilage attenuation 

showed no significant difference between saline and µ-dHACM treated joints, indicating 

no differences in PG content (Figure 24). No lesions or erosions were observed in saline 

or µ-dHACM injected naïve joints. 

 

 

Cytokines 

Naïve joints (pg/ml) 

Day 3 Day 21 

Saline µdHACM Saline µdHACM 

IFNγ - - - - 

IL-1a - - - - 

IL-1b 46.26 

± 20.42 

58.35 

± 27.10 

- - 

IL-2 - - - 153.85 

± 113.00 

IL-4 - - - - 

IL-6 60.91 

± 38.54 

195.87 

± 214.80 

503.21 

± 178.94 

253.12 

± 181.61 

IL-10 - - - - 

IL-13 - - 61.94 

± 58.28 

- 

MCP-1 239.06 

± 125.48 

638.16 

± 156.80 

24.34 

± 16.19 

79.84 

± 46.35 

TNFα - - - - 
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Figure 24.Tibial articular cartilage variables quantified for µ-dHACM in naïve joints. A. 

Representative EPIC-µCT tibial articular cartilage thickness maps for µ-dHACM and 

saline injected samples in naïve joints. B. Average cartilage attenuation C. Average 

cartilage thickness D. Average cartilage volume measure at 21 days. No differences in 

cartilage parameters were observed between µ-dHACM and saline injected groups. n = 5. 

 

µ-dHACM Injected into MMT Joints 

MMT joints were injected with µ-dHACM or saline, and the effects on the joint 

and synovium were assessed at 3 and 21 days. Histological analysis showed µ-dHACM 

incorporated into the synovium at both time points. As observed in naïve joints, the 

amnion fragments were surrounded by moderate inflammatory infiltrate and appeared 

reduced in size at 21 days. No fragments were visible in saline treated MMT animals at 

either 3 or 21 days (Figure 25). 
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 In the saline treated MMT animals at 21 days, lesions and areas of erosion were 

evident along with diminished Saf-O staining of the tibial surface suggesting loss of PG 

content. In contrast, histological analysis of dHACM-treated joints showed a smooth 

cartilage surface with no lesions and strong Saf-O staining (Figure 26). Histological 

observations did not indicate any differences in cartilage morphology between the two 

groups at 3 days. 

Figure 25.Histological assessment of µ-dHACM  injected in MMT rats. A-D: 

Representative H&E stained histology images of µ-dHACM treated MMT joints 

and saline treated MMT joints. µ-dHACM visible at 3 days and 3 weeks as 

fibrillar/eosinophilic material as indicated by black arrows (A & 

C).Hypercellularity observed in area around µ-dHACM fragments. 
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Figure 26.Histological assessment of tibial articular cartilage in µ-dHACM  

injectedMMT rats. A-D: Representative Saf-O stained histology images of µ-

dHACM treated MMT joints and saline treated MMT joints. µ-dHACM treatment 

protected tibial articular cartilage from damage. Saline injected joints show 

decrease in PG content at Week 3 and surface damage (indicated by black arrows) 

Synovial fluid analysis did not show significant differences between cytokine 

levels and most cytokines were below the limit of detection (Table 9). Values are 

presented in the following table.  
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Table 9.Cytokine ELISA data for MMT joints. Data represented as Mean ± std. dev. - 

indicates cytokine content lower than limit of detection 

 

 

Cytokines 

MMT joints(pg/ml) 

Day 3 Day 21 

Saline µdHACM Saline µdHACM 

IFNγ - - - - 

IL-1a - - - - 

IL-1b - - - - 

IL-2 - - - - 

IL-4 - - - - 

IL-6 - - - - 

IL-10 76.19 

± 27.66 

69.13 

± 81.83 

- - 

IL-13 - - - - 

MCP-1 331.31 

± 260.01 

444.86 

± 200.23 

102.46 

± 42.10 

132.09 

± 113.40 

TNFα 137.44 

± 113.30 

25.83 

± 44.74 

117.11 

± 108.90 

95.65 

± 76.00 

 

EPIC-µCT was used to characterize cartilage and focal defects at 21 days. 

Representative planes and 2D EPIC-µCT attenuation heat maps of the tibial section from 

µ-dHACM treated MMT joints and saline injected MMT joints are presented (Figure 27). 

Qualitatively, MMT animals with saline injections displayed noticeable cartilage focal 

lesions and erosion sites.  In contrast, cartilage surfaces in µ-dHACM treated joints 

appeared more consistently uniform, and no lesions were observed.   
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Figure 27.EPIC-µCT pseudocolor attenuation map. Sagittal tibial section for a 

saline injected (A) and µ-dHACM injected (B) MMT joint. Red = higher 

attenuation values (lower PG content), green = lower attenuation values 

(higher PG content). Black arrows indicate focal defects. The µ-dHACM 

treated joints did not display lesions on the tibial articular cartilage surface. 

 

Quantitative EPIC-µCT at 21 days post-surgery showed that µ-dHACM treated 

joints had lower cartilage attenuation, indicating higher PG content, in the medial 1/3 of 

the tibial plateau compared to saline injected MMT joints. There was no significant 

difference between average attenuation values between naïve joints and µ-dHACM-

treated MMT joints, suggesting the treatment maintained PG content comparable to intact 

joints (Figure 28). MMT joints injected with saline had an average incidence of 2.8 ± 0.2 

erosion and 2.4 ± 0.4 lesion sites per medial tibial plateau with an average lesion volume 

of .00725 ± .005 mm
3
. µ-dHACM treated MMT joints displayed significantly fewer 

erosion sites (1.2 ± .374) and no lesions (Figure 28).  
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Medial 1/3 cartilage volume was also analyzed. A significant increase in cartilage 

thickness was observed in both saline treated and µ-dHACM treated samples compared 

to contralateral controls (Fig 29). There was also a significant increase in thickness 

between the µ-dHACM treated and saline treated samples.  

Figure 28.Tibial articular cartilage variables quantified for µ-dHACM in MMT joints. 

A. Average cartilage attenuation was significantly decreased in µ-dHACM treated 

MMT joints compared to saline injected MMT joints for the medial 1/3 tibial plateau. B. 

Average number of erosions was significantly decreased in µ-dHACMtreated MMT 

joints compared to saline injected MMT joints. No lesions were observed in the µ-

dHACM treated MMT joints. C. Average focal lesion volume in saline injected MMT 

joints.* p <0.05 & n =5. 
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Longer Term 6 Week Study 

EPIC-µCT was used to generate 2D EPIC-µCT attenuation heat maps of the tibial 

section from the experimental groups (Figure 30). Qualitatively, MMT animals with 

saline injections and single injections displayed higher attenuation (in red) compared to 

the sham, delayed and multiple injection group.  

 

Figure 29.Effect of µ-dHACM on cartilage thickness. Cartilage thickness significantly 

increased in µ-dHACM treated MMT joints and  saline injected MMT joints compared 

to contralateral control. Cartilage thickness for  µ-dHACM treated MMT joints was also 

significantly higher than saline injected MMT joints. $ = p < 0.05 compared to saline 

and µ-dHACM treated MMT joints. * p <0.05 & n =5. 
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The medial 1/3 region of the medial tibial plateau was evaluated for cartilage 

attenuation, subchondral bone volume and cartilage volume (Fig 31). Cartilage 

attenuation was significantly higher in the saline and single injection group compared to 

sham, delayed and multiple injection group. Subchondral bone volume was significantly 

higher in the saline and single injection group compared to the delayed injection group. 

The sham group showed a lower subchondral bone volume compared to saline, single and 

multiple injection groups. No significant differences in cartilage volume were observed.  

Figure 30.Qualitative EPICµCT pseudocolor attenuation maps. µ-dHACM on 

cartilage thickness.MMT (B) and Single Injection (C) samples showed higher 

attenuation compared to sham(A), delayed (D) and multiple injections (E). Red = 

higher attenuation values (lower PG content), green = lower attenuation values 

(higher PG content).  

Saline 
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The entire medial tibial plateau was evaluated for osteophytes. Three parameters 

were measured – marginal total volume, marginal mineral volume and marginal 

cartilaginous volume (Fig 32). Saline and single injection groups had significantly higher 

marginal total & cartilaginous volume compared to sham and delayed injection groups. 

Figure 31.Medial 1/3 tibial articular cartilage variables quantified for µ-dHACM 6 

week study. A. Cartilage attenuation significantly increased saline and single injection 

group compared to sham, delayed and multiple injection group. B. Subchondral bone 

volume was significantly higher in the saline and single injection group compared to the 

delayed injection group and lower in sham compared to saline, single and multiple 

injection group. C. No differences were observed in cartilage volume 
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Marginal mineral volume was also higher in saline and single injection groups compared 

to sham.  

 

Surface roughness and exposed bone area was analyzed for the medial and medial 

1/3 tibial plateau (Fig 33). No significant differences were observed in medial surface 

roughness. Medial 1/3 surface roughness was significantly lower in sham and delayed 

injection groups compared to saline, single and multiple injection group.   

Figure 32.Osteophyte progression quantified for µ-dHACM 6 week study. A. Marginal 

total volume significantly increased in saline and single injection group compared to 

sham and delayed injection group. B. Marginal mineral volume significantly increased 

in saline and single injection group compared to shams. C. Marginal cartilaginous 

volume significantly increased in saline and single injection group compared to sham 

and delayed injection group. (* = p < 0.05) 
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Medial exposed bone was significantly higher in saline and multiple injection 

group compared to sham and delayed groups (Fig 34). Medial 1/3 exposed bone was also 

significantly higher in saline and multiple injection group compared to sham and delayed 

groups. Average exposed bone value for contralateral controls for medial exposed bone 

was .044 ± 0.023 and for medial 1/3 exposed bone was 0.025 ± 0.021. 

 

 

Figure 33.Quantification of surface roughness. A. No differences observed in medial 

surface roughness. B. Medial 1/3 surface roughness was significantly lower in sham and 

delayed injection groups compared to saline, single and multiple injection group 
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Histology images of coronal sections display cartilage damage in saline, single 

and multiple injection groups (Fig 35). Smooth cartilage surface is observed in the sham 

surgery group indicated by red staining of PGs on the cartilage surface. Chondrocytes 

appear in a loop structure in the delayed injection group.  

 

Figure 34.Quantification of exposed bone. A. No differences observed in medial 

surface roughness. B. Medial 1/3 surface roughness was significantly lower in sham and 

delayed injection groups compared to saline, single and multiple injection group 
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Figure 35.Histological assessment of tibia in µ-dHACM 6 week study. Representative 

H&E stained coronal tibial sections for sham (A), saline (B), single (C), delayed (D) and 

multiple (E) injections. A. Sham joints show no cartilage damage. B – C: Cartilage 

damage observed on surface, zoomed in image shows fibrillation of cartilage 

degradation. Zoomed in image shows fibrillation of surface group. D: Delayed injection 

shows protective effect and no surface damage is observed. Inset shows chondrocytes in 

a looped structure. E. Multiple injections shows moderate inhibition of cartilage damage 

but not as extensive as D.  

A 

B 

C 

D 

E 
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Denatured µ-dHACM Study 

 µ-dHACM was denatured via heat treatment and histology was performed on 

histogel embedded µ-dHACM samples (Fig 36). µ-dHACM showed linear, fibrillar 

structure whereas denatured µ-dHACM appeared to be smaller. Webbing like structure 

was also observed in denatured µ-dHACM. 

 

Figure 36.H&E stained µ-dHACM. Top panel shows µ-dHACM in linear, fibrillar 

structure. Bottom panel shows denatured µ-dHACM that appears to be in smaller 

fragments. Webbing like structure also observed in denatured µ-dHACM.  
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 In-vitro cell culture human fibroblasts did not show a change in cell number via a 

CyQuant assay in response to denatured µ-dHACM (Fig 37). Cell number was 

significantly lower in both µ-dHACM and denatured µ-dHACM treated cultures 

compared to complete media.  

 

 

The medial 1/3 region of the medial tibial plateau was evaluated for cartilage 

volume, thickness and attenuation subchondral bone volume and cartilage volume (Fig 

38). Cartilage volume was significantly lower in sham compared to other three groups. 

Cartilage thickness was significantly lower in sham compared to other three groups as 

well but a significant increase in cartilage thickness was observed in the denatured µ-

dHACM group compared to µ-dHACM. Cartilage attenuation significantly increased in 

saline and denatured µ-dHACM compared to sham.  

Figure 37.In vitro cell culture data. Denaturation of µ-dHACM did not have an effect 

on cell number compared to normal µ-dHACM. Complete media treated cells were 

significantly higher in cell number compared to all other groups.   
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 Lesion volume calculations showed no lesions in the sham group. Lesion volume 

was also significantly lower in the µ-dHACM group compared to saline and denatured µ-

dHACM group (Fig 39).  

 

Figure 38.Medial 1/3 tibial articular cartilage variables quantified for µ-dHACM 6 

week study. A. Cartilage volume was significantly lower in sham compared to other 

three groups. B. Cartilage thickness was significantly lower in sham compared to other 

three groups. A significant increase in cartilage thickness was observed in the 

denaturedµ-dHACM group compared to µ-dHACM. C.  Cartilage attenuation 

significantly increased in saline and denatured µ-dHACM compared to sham compared 

to saline, single and multiple injection group. 
 



 105 

 

 Histology images of the synovium surrounding the femur show retention of both 

µ-dHACM and denatured µ-dHACM in the synovium (Fig 40). The materialis 

fragmented and surrounding by infiltrating cells.  

Figure 39.Quantification of lesion volume. Lesion volume was significantly lower in 

sham compared to the other groups. Lesion volume was significantly reduced in  µ-

dHACM  injected group compared to saline and denatured µ-dHACM groups.  
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Discussion 

There is an unmet medical need for OA therapeutics as no DMOADs have been 

approved for clinical use. Extracellular matrices such as dHACM are a promising 

therapeutic strategy due to their mix of extracellular matrix proteins, growth factors, and 

anti-inflammatory factors (Ahmed and Burke 1983). Human dHACM allografts also have 

an established precedence in clinical applications ranging from corneal defects to tendon 

repair (He, Li et al. 2002, Chandra, Maurya et al. 2005). The objective of this study was 

to quantitatively assess the efficacy of µ-dHACM (EpiFix® Injectable) as a disease 

modifying intervention in a rat model of OA. 

Figure 40.Histological assessment of µ-dHACM and denatured µ-dHACM injected in 

MMT rats. Fragments of material are visible in both groups as indicated by black 

arrows. 
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 EPIC-CT image analysis provided 3D, non-destructive and quantitative 

evaluation of changes in articular cartilage composition and morphology. The EPIC-CT 

data showed a significant reduction in cartilage damage in the form of higher PG levels 

(lower average attenuation), fewer incidences of erosions and no lesions in the MMT 

joints treated with µ-dHACM. We also performed histology in this study to compare to 

our EPIC-CT results by embedding and processing samples in the sagittal plane. This is 

the first study to demonstrate the protective effect of a single intra-articular injection of 

µ-dHACM in the rat MMT OA model. 

µ-dHACM had not previously been injected into the joint space; therefore 

biocompatibility and inflammatory responses were evaluated. Histological analysis 

indicated moderate local hypercellularity at 3 days and which persisted at 21 days. This 

response was localized to regions surrounding the µ-dHACM particles and was not 

present throughout the synovial membrane. This agreed with synovial fluid analyses, 

which demonstrated an increase in MCP-1 for animals treated with µ-dHACM at 3 days 

which was then reduced by 21 days. This increase in MCP-1 in response to µ-dHACM 

was not observed in the MMT/saline animals. This could be due to the fact that the MMT 

surgery itself caused inflammation and masked the upregulation of MCP-1 caused by µ-

dHACM treatment. While MCP-1 can activate and recruit monocytes during 

inflammation, this pro-inflammatory state may even support a healing response 

depending on the types of monocytes/macrophages recruited (Mosser and Edwards 2008, 

Ding, Sun et al. 2009). We did not observe an upregulation in other pro-inflammatory 

cytokines. The initial analysis of the inflammatory response has some limitations as 

levels of most cytokines were below the limit of detection by the ELISA multiplex array.  



 108 

This is likely a technical limitation due to the challenge of harvesting rat synovial fluid, 

sensitivity of the synovial fluid assay and the limited volume of fluid present in the joint 

cavity. Alternative methods to explore in the future for synovial fluid analysis include 

using filter paper absorbent to extract synovial fluid from the joint space and using a 

more sensitive ELISA such as magnetic beads based multiplex assays. Another reason for 

these aberrations could be due to fact that µ-dHACM is a xenograft that is being injected 

in the rat joint. Although we observed a mild to moderate mononuclear inflammation, we 

did not identify granulocytes, which would indicate a chronic inflammatory response.  

Our 6 week study showed some interesting results. This was the first study 

treating a pre-arthritic joint with µ-dHACM. Interestingly, multiple injections did not 

seem to have any added benefit compared to a single delayed injection (3 weeks post-

surgery). This could be due to animal variability or due to the fact that the animals had to 

be anesthetized and injected twice, with the injection itself causing some trauma to the 

joint. A single injection 24 hours post-surgery did not have a lasting benefit up to 6 

weeks. This could attributed to the clearance of particles from the joint space as histology 

at 6 weeks did not show the presence of µ-dHACM in the synovium (Data not shown). 

Based on previous data and other studies, it is known that lesions are formed on the 

cartilage surface by 3 weeks in the MMT model. However, no lesions were observed at 6 

weeks in the delayed injection group. Histological analysis does depict a more densely 

packed columnar structure with a bluish tinge in the delayed injection group compared to 

the sham. The structure of the chondrocytes with its slightly elongated and flattened 

nuclei indicates towards a mix of fibrocartilage with normal hyaline cartilage(Ross and 

Pawlina 2011). Studies are ongoing currently to take down animals 1, 3 and 7 days post 
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delayed injection to examine where the µ-dHACM particles are located and if the lesions 

are getting filled with a mix of fibrocartilage. 

Denaturation of µ-dHACM eliminated its therapeutic effect in vivo. However, in 

vitro denaturation did not affect cell number. For a more complete picture, additional 

assays to measure cell activity would be needed. A functional assay, such as a cell 

migration assay can help understand if there are bioactive factors still present or not after 

denaturation that influence cell behavior. Denaturation did change the gross morphology 

of µ-dHACM as observed via histology. The tissue was smaller and appeared to create 

web like structures. Despite the fragments being smaller, the denatured µ-dHACM was 

still retained in the synovium up to 21 days. Since a therapeutic effect was not observed 

but µ-dHACM was retained in the synovium, it indicates that there are components 

which were deactivated by denaturation and normally do contribute towards a chondro-

protective effect. Further studies are needed to characterize and compare the bioactive 

components in normal and denatured µ-dHACM.  

There are several possible mechanisms by which dHACM may modulate the 

progression of OA. A recent study used ELISA assays to analyze growth factor levels 

present in µ-dHACM and showed quantifiable levels of PDGF-AA, PDGF-BB, TGFα, 

TGFβ, basic fibroblast growth factor (bFGF), epidermal growth factor (eGF), placental 

growth factor (PLGF),  granulocyte colony stimulating growth factor, IL-4, IL-6,IL-8, IL-

10 and TIMP 1,2 & 4. The PURION process allowed µ-dHACM to retain its biological 

activity which may play a role in its effect on attenuation of OA in the rat MMT model.  

dHACM has  been shown to suppress the expression of potent pro-inflammatory 

cytokines, such as IL-1α and IL-1β, and also to decrease MMP levels through expression 
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of natural MMP inhibitors present in the membrane (Kim, Kim et al. 2000, Solomon, 

Rosenblatt et al. 2001). dHACM also contains IL-1Ra, a receptor antagonist for IL-1, a 

pro-inflammatory cytokine that has been shown to be upregulated in OA (Hao, Ma et al. 

2000). Two low molecular mass elastase inhibitors – secretory leukocyte proteinase 

inhibitor (SLPI) and elafin – are present in the dHACM, both of which exhibit anti-

inflammatory properties (Niknejad, Peirovi et al. 2008). Hyaluronic acid is also present 

and acts as a ligand for the CD44 receptor which is expressed on inflammatory cells and 

plays a role in adhesion capabilities of immune cells  (Niknejad, Peirovi et al. 2008).  In 

addition to anti-inflammatory molecules, devitalized µ-dHACM particles have been 

shown to retain a variety of bioactive substances including multiple growth factors such 

as PDGF and FGF (Ji, Xiao et al. 2011). PDGF and FGF-18 have previously been 

implicated in chondrocyte growth (Liu, Lavine et al. 2007). All of these potential 

mechanisms, including maintenance of cartilage homeostasis and reduction of 

inflammation and MMP expression, may be active contributing factors to the observed 

protective effect of µ-dHACM. dHACM also retains natural structural components such 

as collagens (types I, III, IV, V, VI), fibrinogen, laminin, nidogen and PGs. While these 

components clearly are important for the regulation and maintenance of normal 

chondrocyte metabolism, whether the extracellular matrix composition of dHACM 

directly affects OA is unclear (Jin, Park et al. 2007). However, retention of the active 

regulatory components may be influenced by the size and composition of the dHACM 

particles. 

While the mode of action of a disease modifying therapy is a key component to 

the efficacy, local retention of the factor is also thought to be critical. Retention is 
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particularly challenging when considering small molecule DMOADs. The particle size of 

the drug or carrier is critical since particles less than 6 microns are quickly filtered 

through intercellular gaps or phagocytosed by macrophages (Edwards 2011). Clinical 

studies measuring residence time of various NSAIDs delivered intra-articularly found the 

half-life to range from 1.1 to 5.2 hours (Owen, Francis et al. 1994). Alternatively, larger 

particles likely illicit an immune response or may cause physical damage to the articular 

surface (Martel-Pelletier, Wildi et al. 2012). In this study, the µ-dHACM particles 

sequestered in the synovial membrane at three days were large enough to prevent rapid 

clearance. Recent research has focused on extending the residence time of drugs in the 

joint cavity via the use of biomaterials including PLGA, albumin and bio-polymer based 

carriers. In pre-clinical models, drug release from PLGA particles has been reported to 

last up to 14 days, but once released, the drugs were rapidly cleared (Butoescu, Jordan et 

al. 2009). Although further studies are needed to elucidate release kinetics and assess 

whether extended residence time translates to increased duration of therapeutic activity, 

µ-dHACM presents a potential advantage over other intra-articular therapeutics due to its 

retention through 21 days in the synovium, though release kinetics of any active factors 

would also play a role. µ-dHACM thus has the potential to require less-frequent 

injections to treat OA.  

In conclusion, this is the first study demonstrating reduction in cartilage 

degeneration in a small animal OA model via a single intra-articular injection of an ECM 

based treatment derived from amniotic membrane. EPIC-µCT, used as an analytical tool, 

showed, by way of several quantitative metrics, a cartilage-protective role for µ-dHACM. 

µ-dHACM is a minimally manipulated and marketed allograft material which has been 
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shown to be clinically effective in a variety of applications (Sharma, Maria et al. 2011, 

Forbes and Fetterolf 2012)and now through this study, µ-dHACM is presented as a 

potential disease modifying OA therapy. 



 113 

CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

Overall Summary 

 Developing and testing new DMOADs remains a pressing clinical need. This 

research would require improved diagnostic techniques and suitable outcome measures in 

pre-clinical animal models to enhance the drug development process. A variety of new 

therapeutics are being tested in pre-clinical models; however, this testing is time 

consuming, semi-quantitative and expensive. The lack of an objective, quantitative 

technique to analyze articular cartilage has limited the utility of testing different 

therapeutics in an efficient, standard manner.  EPIC-µCT is a unique and powerful tool 

with the ability to rapidly and quantitatively analyze articular cartilage in OA models.  

 Articular cartilage cannot be visualized via normal imaging methods due to its 

composition and analyzing the effects of a therapeutic on cartilage in a pre-clinical rat 

OA model via traditional imaging techniques is a challenge. Accordingly, the overall 

objective of this proposal was to examine two distinct treatment strategies for OA in a rat 

joint degeneration model using EPIC-µCT. The central hypothesis of this work was that 

EPIC-µCT could be used to establish quantitative outcome measures which would be 

sensitive to detect effects of therapeutics in the rat OA model.  

 To test our hypothesis, OA was induced surgically in the rat and two different 

therapies were tested in the model. First, we characterized two models of joint 

degeneration using EPIC-µCT in the rat – the MIA model and the MMT model (Aim I, 

Chapter 3). Our results indicated that the MIA model, even a low dose, causes global 

articular cartilage damage whereas the MMT model leads to focal areas of damage which 
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can be quantified via EPIC-µCT. We were able to define ROIs for the MMT model and 

establish outcome measures such as lesion volume and attenuation. Our results coupled 

with the fact that the MMT model is the most commonly used model for testing 

DMOADs, led us to selecting the MMT model for future experiments. Following this, we 

analyzed the sensitivity of the EPIC-µCT technique by testing a small molecule drug, an 

MMPi, in the MMT model (Aim II, Chapter 4). In this study, we analyzed earlier time 

points and were successfully able to detect changes in the articular cartilage as early as 

two weeks. Results of a power analysis showed that EPIC-µCT was more sensitive than 

histopathology based on certain parameters. We established multiple quantitative 

outcome measures using EPIC-µCT- cartilage thickness/volume/attenuation, subchondral 

bone volume, osteophyte thickness/volume and lesion/erosion incidence and lesion 

volume. Finally, building on these two studies we finally tested a novel ECM based 

therapeutic (µ-dHACM) in the rat OA model with EPIC-µCT as our diagnostic tool (Aim 

III; Chapter 5). The results demonstrated reduction in joint degeneration in response to a 

single intra-articular injection of µ-dHACM. More interestingly, µ-dHACM also slowed 

down the progression of OA in a pre-arthritic joint when examined at a longer time point. 

Denaturation of µ-dHACM led to loss of a chondro-protective effect. Overall, this thesis 

presents original research on using EPIC-µCT as a diagnostic tool for analyzing articular 

cartilage in combination with presenting a novel ECM based therapeutic that can slow 

down OA progression.  
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Articular Cartilage Analysis in the MMT Model  

Aim I focused on characterizing the MMT model using EPIC-µCT. To our 

knowledge, this is the first instance of using contrast based imaging to evaluate this 

model and determine quantitative parameters. Our working hypothesis was that EPIC-

µCT could quantitatively detect degenerative cartilage changes in the MMT model. To 

test this hypothesis, we induced joint degeneration surgically in the MMT model and 

defined localized regions of interest to facilitate detection of cartilage changes and 

compared the results to contralateral joints.  We followed this study with Aim II, where 

we analyzed the effects of a small molecule based MMPi on the articular cartilage to 

determine the sensitivity of the EPIC-µCT technique and compared it to traditional 

histopathology results.  

 Our results from Aim I for the MMT model contradicted some of the previously 

published results in literature. An increase in cartilage volume and thickness was 

observed in the MMT joints compared to contralateral controls. This was interesting as 

the expected and most commonly observed result observed via histology is thinning of 

the articular cartilage, a hallmark of OA. This “thickening” effect of the cartilage in an 

arthritic joint was detected by EPIC-µCT. There are a couple of reasons why it has not 

been observed commonly in the past. First, histology processing involves dehydrating 

samples. Since cartilage is mostly water, this thickening effect would be difficult to 

detect. Second, histology measurements are 2D and are based on only a few slices per 

sample to get representative values. EPIC-µCT, however, provides a complete 3D 

analysis and the sample is not dehydrated. We believe that the cartilage thickening effect 

observed was in response to the MMT surgery, where the PG network is loosening and 
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will eventually lead to cartilage degeneration. Our 6 week data in Aim III, did show large 

areas of surface damage and a lower degree of cartilage thickening compared to our 3 

week study. Another factor that could be contributing the increase in cartilage thickness 

is marginal osteophyte growth. 

 Osteophytes are another characteristic of OA, which we evaluated in Aim II. The 

EPIC-µCT analysis was performed on sagittal sections as our volume of interest was the 

medial tibial and medial 1/3 of the medial tibial plateau. Osteophytes grow on the 

periphery of the cartilage and can be observed on coronal slices. Delineating the cartilage 

in the sagittal sections could have included portions of the osteophyte on the margins 

which could also lead to an increase in the value of cartilage thickness/volume 

measurements. One of the most interesting results with regards to OP was the visible 

progression of mineralization. Mineralization in OP, particularly at early time points such 

as 2 weeks is difficult to detect via histology due to decalcification of samples. In human 

OA, as the disease progresses, the OP gets mineralized eventually showing up on x-rays 

as bone spurs. The MMT model, while does show OP progression does not show bone 

spurs at least at a 6 week time point.  

 The MMT model though widely used does also have certain limitations. One, the 

model presents a continued destabilization of the joint which is challenging for a 

therapeutic to overcome. Longer term studies in this model, even the 6 week time point 

(Aim III) showed extensive cartilage damage. Since the meniscus can never be repaired, 

the continuous loading of the joint would lead to cartilage damage which even an 

effective therapy cannot reverse. In humans, in case of a meniscus tear or similar injury, 

the joint is usually stabilized externally and less weight is put on the joint. In rats, the 
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continuous movement can make it difficult to necessarily observe a significant 

therapeutic benefit. A recent study showed that the transection of the meniscus also does 

not lead to a functional deficit as measured by gait analysis until 8 weeks(Allen, Mata et 

al. 2012). With OA, there isn’t a strongly coupled structural-function relationship as often 

there are patients whose x-rays show no anomalies but suffer from pain and there are 

cases with patients with bone spurs only having mild pain. The lack of an earlier 

functional response in this model renders it unsuitable for analyzing pain. Using both the 

MIA and MMT model to evaluate a therapeutic could be useful to examine a pain 

response and disease modifying response, respectively. EPIC-µCT can still be used as a 

diagnostic tool for articular cartilage analysis with additional measures such as histology 

for cellular behavior and gait analysis for functional assays.  

 EPIC-µCT provides various parameters that can be evaluated in response to a 

therapeutic though certain limitations exist. EPIC-µCT scans are at a 16μm voxel size 

which is not high enough to examine cellular morphology or microscopic changes. 

Histology can provide additional parameters including cellularity. There may be surface 

damage lower than 16um which cannot be analyzed by EPIC-µCT. Real-time 

longitudinal analysis via contrast based imaging is an area that is being explored by 

various groups but the resolution and segmentation remains a challenge. Piscaer et al. 

performed in vivo EPIC-µCT arthrography in a high dose MIA model and were able to 

show changes in cartilage volume and attenuation(Piscaer, Waarsing et al. 2008). 

However, equilibrium of the contrast agent was not achieved and it was not possible to 

have a standard threshold measure to discriminate between the cartilage and underlying 

calcified cartilage bone layer (Piscaer, Waarsing et al. 2008). Being able to analyze the 



 118 

cartilage longitudinally will significantly reduce number of animals required and help 

understand real time effects of various therapeutics.  

 This work has advanced our knowledge about the MMT model and the suitability 

of EPIC-µCT as an imaging technique. Ongoing work in the lab includes shorter time 

points for the MMT surgery and utilizing MATLAB to write custom programs to perform 

surface analysis in addition to EPIC-µCT outcomes. Future work involves translating the 

MMT model to a larger animal (sheep) and developing suitable EPIC-µCT imaging 

methods to analyze the cartilage. We are also trying to optimize the technique using a 

uCT50 scanner of 8μm resolution to analyze murine cartilage. This will open up the area 

to test therapeutics in transgenic mice as well as use knock-out OA models for analysis.  

 The use of EPIC-µCT in this thesis has been limited to articular cartilage analysis 

in the MMT model. The technique can be extrapolated to other applications as well 

including but not limited to osteochondritis dissecans(OCD), intervertebral disc 

disorders, micro-fractures and cartilage explant models. This would require optimizing 

the technique for the particular application in terms of equilibration times, concentration 

of contrast agent, selecting suitable VOIs but it is a possibility. Current work in the lab 

includes developing an OCD model in the rats and using EPIC-µCT to analyze it. With 

suitable outcome measures, EPIC-µCT provides a new platform for cartilage analysis in a 

rapid, quantitative and efficient manner.  

Mode of Delivery 

 In this study we used two modes of drug delivery - oral delivery of MMPi and 

intra-articular delivery of µ-dHACM. Oral delivery allows for controlling the dose and 
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having a formulation that can be ingested. Intra-articular delivery allows for localized 

injection but is limited by half-life and retention rates in the joint space. 

 The current line of treatment, NSAIDs and COX-2 inhibitors are mostly delivered 

orally. However, this has led to side effects including GI ulcers and bleeding (Janssen, 

Mihov et al. 2014). Several MMPi's have been tested in clinical trials but none have been 

successful yet due to lack of efficacy and unfavorable risk-benefit profile (Fingleton 

2007). There is also the challenge of bio-availability via oral or systemic delivery 

(Janssen, Mihov et al. 2014). Assessment of therapeutic index for MMPi's which is the 

ratio of dose required for efficacy vs. toxicology is challenging and systemic delivery 

necessitates the use of a larger dose (Peterson 2006). This has led to research for alternate 

methods to deliver therapeutics. Intra-articular (IA) drug delivery is clinically used for 

compounds such as hyaluronan. This mode is limited due to its invasiveness and a 

maximum of four injections/year are allowed (Hinton, Moody et al. 2002). Half-life of 

compounds in the knee joint and rapid clearance rates are limiting factors for this.  

 In our study, 30mg/kg of MMPi was delivered orally every day which showed a 

therapeutic benefit in-vivo.  In the case of µ-dHACM, a single IA injection at 80mg/ml 

suspended in 50μl saline, showed a therapeutic benefit as well. Though the same drug 

was not used in both the experiments and a direct comparison is not possible, the fact that 

a lower amount of therapeutic was needed intra-articularly is not surprising.  

 Oral/systemic delivery requires a greater dose leading to higher risk of side-

effects. IA delivery allows for localized injection where the effects of the drug are mostly 

restricted to the joint space. A key factor for suitable IA delivery is size which affects 
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retention rate. The presence of synovial fluid in the joint leads to clearance of particles 

from the joint space if they are too small. If the particles are too large, that can cause 

irritation in the joint and lead to inflammation (Gerwin, Hops et al. 2006). µ-dHACM 

was retained in the synovium and this could be due the fact that it possesses fragments of 

natural ECM in its matrix.  

 Choosing a mode of delivery is dependent on the structure and mechanism of 

action of the therapeutic. The MMPi treatment is a small molecule which could not be 

retained in the joint without a suitable delivery vehicle whereas µ-dHACM is an ECM 

based therapeutic that could not be ingested orally. Longer term effects and toxicology 

studies for both the MMPi and µ-dHACM can help understand if the selected mode is 

optimal and what parameters might need to be modulated for effective delivery.  

Therapeutic Effect of µ-dHACM 

The search for effective DMOADs is a very active area of research. There are at 

least 12 DMOADs that are in human clinical trials currently, most of them delivered 

orally (Hunter 2011). Fibroblast growth factor 18 (FGF-18) demonstrated cartilage repair 

in the rat MMT model and is currently in clinical trials as well (Beenken and 

Mohammadi 2009). We took an ECM based therapeutic approach in the form of u-

dHACM to test its effect on the articular cartilage as listed in Aim III. Our working 

hypothesis was that intra-articular delivery of µ-dHACM (EpiFix™ Injectable) will 

ameliorate the progression and extent of joint degeneration in the rat MMT model and 

based on our results from Aim II, EPIC-µCT would be able to assess changes in the 

articular cartilage in response to µ-dHACM. We tested this hypothesis by injectingµ-
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dHACM in MMT rats 24 hours post-surgery and analyzing cartilage at 3 weeks. We also 

examined longer term effects at 6 weeks, delivering µ-dHACM 24 hours and/or 3 weeks 

post-surgery. Finally, we denatured µ-dHACM to see if denaturation of the matrix leads 

to a loss of therapeutic benefit.  

Our data showed some very promising results of µ-dHACM as a DMOAD in this 

pre-clinical study. In the 3 week study, a single intra-articular injection of µ-dHACM led 

to inhibition of lesion formation in the treatment group. In the MMT model, if the surgery 

is performed correctly, all joints develop lesions by 3 weeks which has been observed in 

multiple studies(Bendele 2002, Moore, Bendele et al. 2005, Gerwin, Hops et al. 2006, 

Gerwin, Bendele et al. 2010). The inhibition of these lesions was a very potent effect of 

µ-dHACM, that too with just a single injection. Histology showed retention of µ-

dHACM fragments in the synovium up to 3 weeks post injection suggesting that this 

presence might be important for a therapeutic response. Injecting µ-dHACM 24 hours 

post-surgery can help delay the onset of OA as indicated in the 3 week study. This could 

be useful in situations of post-traumatic OA. Individuals with joint injuries such as ACL 

transection, meniscal tear are more prone to OA. Post-traumatic OA is prevalent in the 

military population with joints suffering from war injuries leading to 60% rate of OA and 

with a 100% rate of OA following knee injury (Rivera, Wenke et al. 2012). Exploring the 

applicability of pre-treatment withµ-dHACM to delay the onset of post-traumatic OA is 

another area of interest.  

Based on our 3 week study results, we wanted to test what would happen at a later 

time point of 6 weeks in case of a single injection (24 hours post-surgery), delayed 

injection (3 weeks post-surgery) and multiple injection (24 hours and 3 weeks post-



 122 

surgery). Our 6 week results were surprising, as the delayed injection group showed the 

greatest therapeutic benefit whereas the multiple injection did not perform any better than 

the delayed. The single injection did not have any therapeutic benefit at 6 weeks. It is 

important to note that the MMT model is an aggressive model, and the ability of µ-

dHACM to show a chondro-protective effect at 6 weeks was very promising. The lack of 

a benefit of multiple injections was unexpected though. One reason could be animal 

variability or the invasiveness of the injection since the animals had to be anesthetized 

twice and injected into joint space. Histology at 6 weeks did not show retention of µ-

dHACM in the joint space. This could be due to the aggressive nature of the MMT model 

and increased clearance rates through the joint as the disease progresses. As the disease 

caused more degradation at 6 weeks, we had to include new parameters for EPIC-µCT 

analysis. Lesion volume calculations were not possible as extensive degradation was 

observed in the saline injected MMT joints making it difficult to delineate suitable 

contours. Hence, exposed bone area was calculated using a custom MATLAB program. 

The reasoning behind conducting a 6 week study, though the standard is 3 weeks in the 

field, was to simulate human OA. In the clinic, patients start taking therapeutics after pain 

and damage has already started(Hunter, Guermazi et al. 2013). The delayed injection 

simulates treatment of a pre-arthritic joint as by 3 weeks cartilage damage is already 

observed in the MMT model.  

µ-dHACM presents itself as a potential DMOAD candidate but the mechanism 

behind its working is still unclear. In this thesis, the focus was to test EPIC-µCT as a 

diagnostic tool for articular cartilage analysis. We used it to examine the effects of µ-

dHACM and saw promising results. Denaturing µ-dHACM was the first step to examine 



 123 

the role that growth factors and cytokines might play. Denaturation of µ-dHACM was 

performed via heat treatment and histology results indicate changes in the µ-dHACM 

structure. Though the results did show that denatured µ-dHACM did not have a 

therapeutic benefit similar to µ-dHACM, it is difficult to conclude if this was due to 

change in structure or depletion of GFs. In vitro results were inconclusive as well since 

cell proliferation was not affected by the denaturation process. In this study, only one in 

vitro assay was performed which does have limitations. For a more complete picture on 

the role of GFs and cytokines, additional assays to measure GFs in extract and cell 

culture would be needed. A functional assay, such as a cell migration assay can help 

understand if there are bioactive factors still present or not after denaturation. Further 

work is needed to tease out the role that GFs might play.  

There are multiple lines of future work involved with µ-dHACM. One includes 

performing a time course experiment to determine how long µ-dHACM is retained in the 

synovium and examining if there is a correlation between retention period and therapeutic 

benefit. We are currently performing additional histology on the delayed injection study, 

by taking down animals 1, 3 or 7 days post injection (where the injection is 3 weeks post-

surgery). This would help understand if µ-dHACM is being retained in the joint space 

and if it is filling up the pre-existing lesions that develop at 6 weeks. Our lab has also 

performed experiments with different formulations of µ-dHACM, where one formulation 

removes the epithelial layer during the production process (Unpublished data). This can 

shed light on the role of the epithelial layer with its different constituents on the chondro-

protective effect. We have also looked at different size formulations including super-

micronized µ-dHACM to see if the size of the original particles affects the articular 



 124 

cartilage (Unpublished data). To understand the mechanism of µ-dHACM, in vitro assays 

would be essential. Contrary to our expectations, denaturation did not provide concrete 

conclusions towards the role of GFs. Inhibition of GFs implicated in OA and present in 

µ-dHACM  (ex: PDGF, FGF, EGF) via small molecules with appropriate controls in vitro 

could be a first step. This could be translated in vivo by injecting µ-dHACM pre-

incubated with these inhibitors. Another step could be decellularizing µ-dHACM 

followed by testing it in vitro and in vivo. The PURION® process devitalizes the amnion 

matrix but does not actively decellularize the material. A study by Bhatia et al. 

demonstrated elimination of growth factors and cytokines after decellularization of 

human amniotic membrane(Bhatia, Pereira et al. 2007). Another study showed a 

significant decrease in collagen, GAG, elastin, DNA and matrix hydroxyproline upon 

decellularization as well (Wilshaw, Kearney et al. 2006). Comparing and characterizing 

denatured, decellularized µ-dHACM and normal µ-dHACM and its responses in vivo 

could help understand the therapeutic effect observed. Additionally, the outcome 

measures so far have focused on articular cartilage. Analyzing the inflammatory and 

immune response would also be important in the future. One limitation is that µ-dHACM 

is human derived material which would always elicit some form of 

inflammatory/immune response in the rat model. Also, the MMT model causes 

inflammation as well and sham surgeries would be required as a control to compare 

responses in various groups. Another avenue to explore would be testing µ-dHACM in 

the MIA model to evaluate effects on pain. There are plans to translate this work to a 

larger animal model, in the sheep, in collaboration with San Antonia Military Medical 

Center (SAMMC). 
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There is no published work from other groups on the utility of µ-dHACM as a 

DMOAD. This is a clear area for future investigation in light of the results observed in 

the rat MMT model. As with in vivo models, it is important to understand the limitations 

of the selected model. OA in rats translates to a functional deficit much later than large 

animal models. Additional outcome measures other than EPIC-µCT need to be 

considered now that µ-dHACM has passed the initial screening process of having a 

positive effect on the articular cartilage. By designing suitable experiments with 

appropriate controls, we can advance our understanding of µ-dHACM and the role it 

plays on articular cartilage. This can open the area towards exploring ECM based 

therapies for OA, stepping away from the traditional small molecule inhibitor drugs.  
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CONCLUSIONS 

In conclusion, the results demonstrate the utility of EPIC-µCT as an innovative 

tool to quantitatively analyze articular cartilage in a pre-clinical OA model. Multiple 3D 

parameters were established that can quantify localized damage in the MMT model and 

used as outcome measures to test therapeutic efficacy. The ability of this technique to 

screen DMOADs was demonstrated by testing an MMPi and discerning its therapeutic 

effects on articular cartilage. A novel ECM based material - µ-dHACM is also presented 

as a potential DMOAD in this thesis. This is the first instance that shows an ECM based 

therapeutic ameliorating OA progression via a single intra-articular injection. Moreover, 

a delayed injection slowed the rate of disease progression in a pre-arthritic joint which 

has not been observed previously. Taken together, the results suggest that EPIC-µCT can 

be successfully used to screen for DMOADs and µ-dHACM is one such screened 

therapeutic that can potentially be translated to larger animal models. 
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APPENDIX A 

EFFECT OF PREGNANCY ON PROGRESSION OF JOINT 

DEGENERATION IN A RAT MODEL
d
 

Introduction 

 

OA is a progressive joint disease characterized by loss of cartilage, sclerosis of 

subchondral bone, formation of osteophyte and inflammation of synovial membrane due 

to imbalance in production and degradation of the cartilage extracellular matrix (Goldring 

and Goldring 2007).  

Multiple factors have been proposed to be involved in the initiation and 

progression of OA, such as injury, age, gene, sex and obesity (Goldring and Goldring 

2007). Local factors, such as the curvature and lubrication of articular cartilage, load 

bearing, alignment of low limb, have been well studied, while systemic factors have yet to 

be well investigated due to their complexity. Systemic factors such as age, gene and 

gender have been proposed to regulate ageing and rejuvenate blood and other 

tissues(Mayack, Shadrach et al. 2010). These factors have been proposed to be implicated 

in OA. Genetic factors are influenced by gene. The candidate genes associated to OA are 

variant between men and women (Valdes, Loughlin et al. 2007). The incidence of OA 

disease peaks with the age being > 30 in men and > 50 in women (Claassen, Schicht et al. 

2011).Menopause in women has also been co-related with a higher incidence of OA 

prevalence (Claassen, Schicht et al. 2011). It is associated with significant systemic 
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 Portions of this chapter were adapted from Zhang K*, Thote T*, Leng H, Guldberg RE, Ge Z. Effects of 

Pregnancy on Progression of Osteoarthritis Induced by Monosodium Iodoacetate in Rats.  

JMBE33(5): 449-454. 2013. (* Co-first authors) 
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physiologic changes, such as regulation of immune response and changes in hormones 

(estrogens, progesterone, prolactin, and androgens). 

Pregnancy is involved in significant change of hormones, metabolism, and gene 

expression. Pregnancy has also been reported to suppress expression of both synthetic 

and degradative genes, including type II collagen, biglycan, TGF-β, collagenase, TIMP-1, 

IL-1β, TNF-α, iNOS and COX-2 (Hellio Le Graverand, Reno et al. 1998, Hellio Le 

Graverand, Reno et al. 2000). Based from these studies, it is reasonable to hypothesize 

that pregnancy, as well as subsequent physiological changes may affect the progression 

of OA.  

 OA can be induced through various methods such as via surgery, chemical 

injection, mechanical overuse or through spontaneous genetic OA models. Injection of 

monosodium iodoacetate presents a method of chemical induction of OA that is well 

characterized and has been extensively used in relation to examining joint pain in 

rats(Guzman, Evans et al. 2003).  In the current study, OA was induced in Wistar rats 

using a low dose of MIA based on previous studies (Janusz 2001). EPIC-μCT was used 

as a quantitative method to analyze cartilage morphology and structure (Xie, Lin et al. 

2012).  

 

Methods 

 

Animal Experiment 

All animal experiments were operated in Animal Center of Peking University, 

which has been approved by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AALAC). Twenty female Wistar rats aged 12 weeks weighting 

280-300g were divided into four groups, and five adult male rats were used to mate with 
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female rats. All the animals were housed in sterile animal rooms with controlled 

temperature and humidity. The animals were divided into four groups: A – Pregnancy + 

MIA, B – Only MIA in naïve rats, C – Only pregnancy and D – Saline injections in naïve 

rats. MIA (I2512, Sigma-Aldrich, St. Louis, MO) injection was injected into the intra-

articular joint space of the female rats on the day of detection of vaginal plug. The rat 

knee joint was injected with 0.3 mg MIA in 50µL saline with a 27 gauge needle after 

pregnancy was confirmed. Group B received the same dose of MIA. Group C (only 

pregnancy) and group D (sham group) received saline injections. All the rats were 

euthanized on day 18 via CO2 inhalation. 

 

Macroscopic score 

Rat limbs were harvested after sacrificing the rats and the left legs were fixed in 

10% neutral buffered formalin for 48 h. The rat joint was dissected and surrounding 

tissue was excised. Images were taken using a digital camera (DSC-H10，Sony) and 

these macroscopic images were evaluated by two people in a blinded evaluation. The 

cartilage was assessed using a scoring system with a range of 0–4. Increasing score 

represented increasing severity of OA (0 represented normal appearance; 1 represented 

slight yellowish discoloration in the surface; 2 represented little erosions in load-bearing 

zone; 3 represented large erosions extending to the subchondral bone; and 4 represented 

large erosions with subchondral bone exposure (Janusz 2001). The scores were added and 

the mean was calculated for different groups. 

 

μCT 
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EPIC-µCT was performed as listed in Aim I. Briefly, the proximal end of each 

tibia was immersed in 2ml of 30% Hexabrix 320 contrast agent (Covidien, Hazelwood, 

MO) and 70% ion-free PBS at 37ºC for 30 minutes, an incubation period known to result 

in equilibration of the agent (Palmer, Guldberg et al. 2006, Xie, Lin et al. 2009). 

Proximal tibiae were blotted dry and scanned using a µCT 40 (Scanco Medical, 

Brüttisellen, Switzerland)at 45 kVp, 177 µA, 200 ms integration time, and a voxel size of 

16 µm (Xie, Lin et al. 2009). Scanco evaluation software was used to assess 3D 

morphology and composition. Raw scan data were automatically reconstructed to 2D 

grayscale tomograms.  

 

GAG Quantification 

For quantification of the GAG content, fresh tibial cartilage from the right knees 

of the rat joints was harvested using a scalpel, weighed and flash freezed using liquid 

nitrogen. The lyophilized sample was digested with 0.5 mg/mL proteinase K (P2308, 

Sigma) in 100 mM K2HPO4 at pH 8.0 in 56°C overnight. The digested sample was added 

to 1, 9-dimethylmethylene blue solution (DMMB, 341088, Sigma-Aldrich, St. Louis, 

MO), shaken for 30 min, and then centrifuged at 10,000g to separate the precipitate. The 

precipitate was dissolved with a dissociation reagent and the absorbance was measured at 

a wavelength of 656 nm in a microplate reader (680, Bio-rad, Japan). The standard of 

GAG content was constructed using chondroitin sulfate (C4384, Sigma-Aldrich 

(Shanghai) Trading Co.,Ltd). The GAG content of each group was normalized by its 

weight. 
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Statistical analysis  

All the data are presented as mean ± SD. SPSS V13.0 (SPSS Inc., IL, USA) was 

used to analyze the data, and one-way analysis of variance (ANOVA, LSD) was utilized 

to compare the pregnancy + MIA, MIA, pregnancy and sham groups. The statistical 

significance was set at a 95% confidence interval ( p<0.05). 

 

Results 

 

Macroscopic score 

There were no signs of infection in all experimental animals during the entire  

experiment. The tibial plateaus were smooth without any observable damage in the rats 

from group A (Figure 1A), group B (Figure 1B), group C (Figure 1C) and group D 

(Figure 1D). No chondral erosions were observed and neither did erosions appear in the 

load-bearing areas. No statistical significance could be detected in group A, B, C and D 

based on macroscopic scoring.  

 

 

Figure A.1. Macroscopic image of tibial cartilage in (A) Pregnancy+MIA; (B) MIA; 

(C) Pregnancy; (D) Sham groups. 
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μCT 

EPIC-µCT was used to measure cartilage attenuation and volume. No significant 

difference was observed in cartilage volume between groups. Cartilage attenuation was 

significantly higher in Pregnancy + MIA and MIA groups compared to Pregnancy and 

Sham groups(Figure A.2).  

 

GAG Quantification 

MIA induced low GAG content of cartilagein rat OA model.GAG amount was 

significantly higher in Pregnancy and Sham groups compared to Pregnancy + MIA and 

MIA groups( Figure A.3.).  

Figure A.2. EPIC-μCT measurements of articular cartilage. A. Cartilage volume was 

not significantly different between groups. B. Cartilage attenuation was significantly 

higher in Pregnancy + MIA and MIA groups compared to Pregnancy and Sham 

groups 

* = p < 0.05, n = 5 
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Discussion 

 

Pregnancy is a complex physiological process accompanied with changes in the 

hormonal level. It has been implicated in playing a role in the regenerative capacity of 

certain tissues and cells. In this study, the focus was to examine the effect of pregnancy 

on the progression of OA.  

Multiple  factors are involved in the initiation and progression of OA, and 

estrogen is one of these. Estrogen receptors have been found in cartilage, immortalized 

chondrocyte cell lines and in primary chondrocytes (Claassen, Schicht et al. 2011). This 

suggests that cartilage is a potential target for estrogen. However, the relationship 

between estrogen and OA remains inconsistent. Some studies found that there was no 

direct relationship between estrogen and OA. Estrogen treatment did not have an effect 

on the severity of OA in ovariectomized animals and deletion of estrogen receptors did 

not cause overt cartilage damage (Ham, Oegema et al. 2004, Ma, Blanchet et al. 2007, 

Figure A.3. GAG quantification of articular cartilage. GAG content was 

significantly lower in Pregnancy + MIA and MIA groups compared to Pregnancy 

and Sham groups 

* = p < 0.05, n = 5 
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Sniekers, van Osch et al. 2009). On the other hand, some results indicated that estrogen 

had protective effects on OA. OA was elevated with estrogen deficiency and estrogen 

therapy preserved cartilage(Tanko, Sondergaard et al. 2008, Roman-Blas, Castaneda et 

al. 2009).Contrarily, some results suggest that estrogen has negative effects on OA. 

Estrogen treatment caused synovial estrogen and estradiol receptor bindings to be 

increased, which induced cartilage degeneration and cell death, leading to the 

development of knee OA (Silberbe.R 1971, Tsai, Liu et al. 1992). As the relationship 

between estrogen and OA is still unclear, a definitive conclusion to this subject remains 

to be stated. 

As estrogen is a pregnancy associated hormone and elevated during the process in 

mammals, pregnancy may be related with metabolism of cartilage and OA. The gene 

expression of normal articular cartilage can be influenced by pregnancy. Gene expression 

of type II collagen, biglycan, collagenase, TIMP-1, IL-1β, TNF-α, TGF-β, iNOS and 

COX-2 has been reported to be suppressed in pregnant rabbits Although pregnancy could 

improve the regenerative capacity of some tissues, the relationship between pregnancy 

and OA cartilage has not been explored in vivo.  

Various animal models have been established to mimic human OA and study the 

pathology of the disease, including surgical/physical, chemical and spontaneous models.   

Considering the gestation period of rats of around 20 days, MIA was chosen as the 

method to induce OA due to its rapid effect(Janusz 2001). MIA induces OA through 

restraining glycolysis of the chondrocytes by inhibiting of glyceraldehyde-3-phosphate 

dehydrogenase. It is different from the natural OA process, as inflammatory mediators 

such as interleukin-1β(IL-1β) and tumor necrosis factor (TNF)-α are increasing. It is 
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important to be noted that the animal model cannot represent all aspects of human 

OA(Goldring 2012). As we focused on the morphology of arthritic cartilage, MIA 

induced OA model was chosen as it is efficient and reproducible. We used a low dose 

MIA model to be able to elucidate the changes in the pregnant rat. Using a low dose, 

prevented severe articular damage from taking place but did result in lower PG content. 

In our results, the attenuation of cartilage as detected by EPIC-μCT was higher in 

MIA groups compared to non-MIA groups. This indicated lower PG levels in MIA 

groups, which is a characteristic of OA. However, there was no significant effect of 

pregnancy on attenuation, volume, thickness and GAG content between the pregnant and 

non-pregnant groups.   

In this study, as no significant effects were found, it is difficult to speculate on 

long term effects of pregnancy and OA. One of the reasons for no changes could be due 

to the short gestation period of rats compared to other mammals. It was possible that if an 

animal with longer gestation was analyzed, significant changes could be observed. 

However, with our data we were unable to prove that pregnancy had any effect on OA 

cartilage. Though no changes were observed, EPIC-µCT provided a successful method to 

analyze articular cartilage in the MIA model.  In order to study the comprehensive effect 

of pregnancy on the cartilage, more parameters such as gene expression, protein levels 

and analysis of synovial fluid are needed. 
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APPENDIX B 

PROTOCOLS 

B.1 Medial Meniscal Tear Surgery 

Procedure  

1. All personnel should wear scrubs, masks, head caps, and booties to ensure sterile 

environment. 

2. Surgeons and sterile assistants should scrub in. 

3. After scrubbing in, sterile personnel should assemble surgery tables making care to 

ensure a sterile surgical field.  Non-sterile personnel assist in opening packaging.   

4. Position glass bead sterilizer and turn on. 

5. Position the circulating water bed and turn on to pre-warm for surgery.  Cover with a 

sterile drape. 

6. Animal prep can begin when surgeons are adequately close to operating.  Care should 

be taken to minimize the time that animals are anesthetized.   

7. Transfer a properly prepared rat to the surgery table. Insert the rat’s nose into the nose 

cone, and straighten the tail so that it is not in contact with the feet of the animal. 

8. Non-sterile personnel should hold each foot/toes with forceps to allow sterile 

personnel to wrap the feet with ioban.  

9. Cut a hole in a sterile drape and position over the rat such that only the leg and 

surgical site are exposed. 

10. Have sterile assist orient the leg to have the medial joint space facing the surgeon 
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11. Feel for the joint space using either hemostat or fingers. This can be done by flexing 

the knee 

12. Make a skin incision using the scalpel with the joint space as the mid-point 

13. Perform blunt dissection to reach the MCL 

14. Slide the micro-dissections forceps under the MCL to grip the MCL in the forceps 

teeth (make sure to not cause any trauma with forceps) 

15. Transect the MCL with microdissection scissors (long tip) above the joint space 

16. Peel and cut away tissue attaching MCL to the underlying bone to reveal the 

meniscus 

17. Use cotton swabs to stem the bleeding to observe clearly 

18. Have sterile assist “pop” the knee by bending the knee lightly so as to cause the 

meniscus to separate from the joint 

19. Once, the connection point of meniscus to bone is observed, carefully cut the 

attaching tissue to create space.  

20. Grip the meniscus using the forceps, switch the forceps to the left hand and then use 

the microdissection scissors (short-tip) to transect the meniscus at its narrowest 

21. Check if the meniscus is completely transected using the forceps to hold one of the 

cut ends 

22. Once transected, suture the muscle. Staple the incision using wound clips and follow 

post-op procedure 
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B.2 Intra-articular Injections 

Procedure  

1. Anesthetize the rat and prepare for injection by preparing the rat knee with aseptic 

technique 

2. Prepare solution for injection (26.5 gauge needle on 1ml luer lock syringe) 

3. Use tape cut at .7mm width to stick to the bottom of the needle to ensure that the 

needle is not inserted too deep into the joint space 

4. Have assistant bend the knee with one finger beneath the knee pushing up, so as 

to open the joint space 

5. Feel for the joint space by flexing the knee  

6. Gently insert needle in the selected location through the patella, feeling for any 

barriers 

7. If it hits bone, remove immediately and reposition 

8. If needle is inserted correctly, there will be a little resistance at the beginning 

which will give way indicating needle insertion in the joint space 

9. Once needle is in the joint space, have the assist release the tension in the joint by 

just loosely bending the knee 

10. Gently inject solution and remove the needle slowly. Palpitate the joint to make 

sure the fluid is distributed in the joint space 
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