
MULTILAYER BACKGROUND MODELING UNDER

OCCLUSIONS FOR SPATIO-TEMPORAL SCENE

ANALYSIS

A Dissertation
Presented to

The Academic Faculty

By

Shoaib Azmat

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

August 2014

Copyright© 2014 by Shoaib Azmat

MULTILAYER BACKGROUND MODELING UNDER

OCCLUSIONS FOR SPATIO-TEMPORAL SCENE

ANALYSIS

Approved by:

Dr. Linda Wills, Advisor
School of ECE
Georgia Institute of Technology

Dr. Scott Wills, Co-Advisor
(Posthumous)
School of ECE
Georgia Institute of Technology

Dr. James Hamblen
School of ECE
Georgia Institute of Technology

Dr. Bo Hong
School of ECE
Georgia Institute of Technology

Dr. Aaron Lanterman
School of ECE
Georgia Institute of Technology

Dr. Jeffrey Vetter
College of Computing
Georgia Institute of Technology

Date Approved: June 10, 2014

In memory of Dr. Scott Wills

ACKNOWLEDGMENTS

First, I want to express my gratitude to my advisor Dr. Linda Wills for all her support,

guidance, and patience during my doctoral research. Thank you Dr. Linda, without your

support and encouragement in difficult times, I wouldn’t have made it. I want to thank my

late advisor Dr. Scott Wills for the time I spent with him. Dr. Scott, you left us so soon, and

there were many things that I wanted to talk about with you. However, I am deeply grateful

to you as they were your initial ideas that shaped my research. I thank you for giving me a

great learning platform, which put me on track towards achieving my goal. You will be in

my memories for ever as an exceptional mentor and friend.

I am grateful to Dr. James Hamblen, Dr. Bo Hong, Dr Aaron Lanterman, and Dr.

Jeffrey Vetter for serving on my committee, and for providing valuable feedback and sug-

gestions. I want to thank the Higher Education Commission of Pakistan and the Fulbright

Program of USA for giving me scholarship, to pursue my graduate studies. I also want to

thank my colleagues of the MOVES Lab at Georgia Tech, Dr. Dana Forsthoefel and Qianao

Ju, for their support and company.

In the end, I want to thank my parents, R D Khan and M J Khan, and my siblings

R Azmat, B Azmat, S Azmat, N Azmat, A Khan, H Khan, and R Khan. Their support and

encouragement always acted as a catalyst for achieving my goals.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . xi

SUMMARY . xii

CHAPTER 1 INTRODUCTION . 1
1.1 Research statement and contributions . 4

1.1.1 Contribution 1 - Multi-layer background modeling: Temporal scene
analysis . 5

1.1.2 Contribution 2 - Multi-layer background modeling: Spatial scene
analysis . 6

1.1.3 Contribution 3 - Accelerating adaptive and multilayer background
modeling on low-power GPUs 7

1.2 Summary of results . 7
1.3 Overview of content . 9

CHAPTER 2 MULTI-LAYER BACKGROUND MODELING: TEMPORAL SCENE
ANALYSIS . 11

2.1 Introduction . 11
2.2 Related work . 13

2.2.1 Traditional background modeling 13
2.2.2 Two-layer background modeling 18
2.2.3 Multi-layer background modeling 22

2.3 Temporal multimodal mean (TM3) . 27
2.4 Results . 33

2.4.1 Experiments . 35
2.4.2 Performance metrics . 40

2.5 Conclusion . 45

CHAPTER 3 MULTI-LAYER BACKGROUND MODELING: SPATIO-TEMPORAL
SCENE ANALYSIS . 46

3.1 Introduction and related work . 46
3.2 Spatio-temporal multimodal mean (STM3) 47
3.3 Results . 49
3.4 Conclusion . 53

v

CHAPTER 4 ACCELERATING ADAPTIVE AND MULTILAYER BACKGROUND
MODELING ON LOW-POWER GPUS 54

4.1 Introduction and related work . 54
4.2 Methodology . 56

4.2.1 CUDA platform . 56
4.2.2 MMM implementation . 58
4.2.3 Multi-layer background modeling TM3 implementation 63

4.3 Experimental setup and results . 65
4.3.1 MMM performance results . 66
4.3.2 TM3 performance results . 69

4.4 Conclusion . 71

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 74

REFERENCES . 77

vi

LIST OF TABLES

Table 1 MMM Accuracy . 17

Table 2 Datasets Specifications . 35

Table 3 MMM and TM3 Speed Comparison in FPS 44

Table 4 Multimodal Background Modeling on GPUs 56

Table 5 MMM on ION-GPU and Atom-CPU 68

Table 6 MMM and GMM on NVIDIA ION . 68

vii

LIST OF FIGURES

Figure 1 Graphical abstract of the first contribution: Temporal multimodal mean . 8

Figure 2 Graphical abstract of the second contribution: Spatio-temporal multi-
modal mean . 8

Figure 3 Graphical abstract of the third contribution: Accelerating adaptive and
multilayer background modeling on low-power GPUs (640x480 frame
size) . 8

Figure 4 Unimodal vs multimodal background modeling 18

Figure 5 Traditional vs two-layer background modeling 21

Figure 6 Two-layer background modeling pixel-level 21

Figure 7 Need for multi-layer background modeling 23

Figure 8 Pixel data structure for a single mode in TM3 28

Figure 9 Data structure for an object layer . 29

Figure 10 Flowchart of the TM3 algorithm . 30

Figure 11 Ghost removal based on three histograms 32

Figure 12 Changing background scenario: (a) Original BG (b) Brown box added
(c) Red box added (use main background layer (a) to calculate H2 and H3) 32

Figure 13 TM3 algorithm . 34

Figure 14 Abandoned object detection in a crowded scene at different points in time 37

Figure 15 Blocks added and removed at different points in time, a red circle in-
dicates new entries while blue indicates the ones already there, a black
circle indicates the objects removed while white indicates the ones re-
moved from the initial background: (a) Initial background (b) Three
blocks added (c) Three more blocks added, three removed including one
from initial background (d) Three more blocks added 37

Figure 16 Object layer removal based on occlusion reasoning: (a) Brown box added
(b) Red box added occluding brown box (c) Brown box removed (d)
Brown box added occluding red box . 38

Figure 17 Occlusion reasoning effect: (a) Original image (b) Ground truth (c) Pixel-
based [1] (d) Pixel-based [2] (e) Object-based [TM3] 38

viii

Figure 18 Cars entering and leaving a parking lot: (a) Initial background (b) Yellow
truck leaves (c) White car and van arrive (d) White van and white car
from initial background leaves and black van arrives (e) Gray car arrives
(f) Silver and black cars arrive . 39

Figure 19 Pixel vs. object-based modeling: (a) Original image (b) Ground truth (c)
Pixel-based [1] (d) Pixel-based [2] (e) Object-based [TM3] 39

Figure 20 Outdoor cars, filtering at 50% observability threshold: (a) Original im-
age (b) Ground truth (c) Unfiltered (d) Filtered 41

Figure 21 Indoor boxes, filtering at 50% observability threshold: (a) Original im-
age (b) Ground truth (c) Unfiltered (d) Filtered 41

Figure 22 Outdoor cars: (a) Total number of pixel errors at 50% observability (b)
FP vs TP at 50% observability (c) % Observability vs. no. of layer errors 42

Figure 23 Indoor boxes: (a) Total number of pixel errors at 50% observability (b)
FP vs TP at 50% observability (c) % Observability vs. no. of layer errors 43

Figure 24 Mode comparison of MMM and TM3 44

Figure 25 Data structure for a removed object . 48

Figure 26 Spatial displacement scenarios: Scenario1, moved object from original
background; Scenario2, moved object; Scenario3, partially displaced ob-
ject; Scenario4, partially occluded object 51

Figure 27 A change in a bag position has been recognized 51

Figure 28 An object distance with itself dist(PP) and a different object dist(PQ)
in the four scenarios: (a) 64-bin histogram (b) 512-bin histogram (c)
4096-bin histogram . 52

Figure 29 CUDA based NVIDIA GPU architecture 57

Figure 30 The background subtraction kernel . 59

Figure 31 Un-coalesced array of structures (left), coalesced structure of arrays (right) 61

Figure 32 Asus AT3IONT-I NVIDIA ION GPU platform 65

Figure 33 Datasets used to run MMM on ION GPU 66

Figure 34 Speed ups over a single core of Atom CPU as a result of various perfor-
mance optimizations, cumulatively applied left to right 67

Figure 35 Speed ups for different number of pixels per thread implementations over
a single pixel per thread implementation 67

ix

Figure 36 Frame rate comparison between MMM and GMM/EGMM on ION GPU:
Speed up of 5-6x . 70

Figure 37 Speed ups over 640x480 frame size implementation as we decrease the
frame size by half at each step . 70

Figure 38 TM3-pixel and TM3 speed comparison vs. MMM on ION GPU and
Atom CPU . 72

Figure 39 TM3 speed bottlenecks temporarily removed for testing (column 2-4)
results in higher fraction of the MMM speed for TM3 on ION GPU, the
first & last column again show TM3 speed as a fraction of MMM on
ION and Atom respectively from the previous figure 72

Figure 40 Frame rate of TM3 algorithm on ION GPU and single core of Atom
CPU: Speed up of 5x . 73

x

LIST OF ABBREVIATIONS

BG Background

CUDA Compute Unified Device Architecture

EGMM Extended Gaussian Mixture Model

FG Foreground

FPS Frames Per Second

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

MG Midground

MMM Multi Modal Mean

RGB Red Green Blue

S IMT Single Instruction Multiple Threads

S M Streaming Multiprocessor

S P Streaming Processor

S T M3 Spatio Temporal Multi Modal Mean

T DP Thermal Design Power

T M3 Temporal Multi Modal Mean

xi

SUMMARY

This dissertation presents an efficient multi-layer background modeling approach to dis-

tinguish among midground objects, the objects whose existence occurs over varying time

scales between the extremes of short-term ephemeral appearances (foreground) and long-

term stationary persistences (background). The dissertation consists of three contributions.

In the first contribution, a multilayer object-based background modeling technique,

called temporal multimodal mean TM3, is presented for video surveillance. The tech-

nique temporally models a scene in which there are multiple interacting midground objects

occurring at different time scales. The approach correctly models scenes with long-term

occlusions and ghost objects as compared to the multilayer pixel-based background mod-

eling approaches. TM3 technique represents a scene, with multiple midground objects

entering, leaving, and occluding each other at different points in time. This leads to richer

information about temporal properties of a scene than traditional foreground/background

segmentation. The information includes when a particular object arrived or left the scene,

and the occlusion relationships among different objects while they are in the scene.

The multi-layer (and two-layer) background modeling techniques that model objects

that have become stationary will incorrectly detect a new object if an existing midground or

background object is displaced. The second contribution presents a novel spatio-temporal

reasoning mechanism, called spatio-temporal multimodal mean STM3, based on multi-

layer background modeling and objects appearances to conserve the state of moved objects

in a scene. The algorithm is an extension of our temporal multimodal mean TM3 algorithm

to spatial analysis. The STM3 algorithm, consistently models midground/background ob-

jects upon partial/full change of position, and maintains conservation of existing objects,

only removing them once they leave the scene. An important feature of this algorithm is

that it avoids false detections of new objects when existing objects are displaced in the

scene.

xii

Background modeling techniques for embedded computer vision applications must

balance accuracy, speed, and power. Due to its inherent parallelism, robust adaptive back-

ground modeling, such as the Gaussian mixture model (GMM), has been implemented on

graphical processing units (GPUs) with significant performance improvements over CPUs.

However, these implementations are infeasible in embedded applications due to the high

power ratings, in the range of 100 watts, of the targeted general-purpose NVIDIA GeForce

GPU platforms. The third contribution focuses on how data and thread-level parallelism

is exploited and memory access patterns are optimized to target a low-cost robust adaptive

background modeling algorithm multimodal mean (MMM) to a low-power GPU NVIDIA

ION with thermal design power (TDP) of only 12 watts. The algorithm has comparable ac-

curacy with the GMM algorithm, but less computational cost. Accelerating this technique

is also important because it is at the core of our spatio-temporal multi-layer background

modeling algorithms TM3/STM3. We have achieved a frame rate of 392fps with a full

VGA resolution (640x480) frame on the NVIDIA ION GPU. This is a 20X speed-up of

the MMM algorithm on the GPU compared to the embedded CPU platform Intel Atom

of comparable TDP. Moreover, our GPU implementation of MMM outperforms the GPU

implementation of GMM by achieving a speed up of 6x. Subsequently, we extended the

MMM GPU implementation to our multi-layer background modeling algorithm TM3, and

achieved 5x speed up over the Atom CPU implementation.

xiii

CHAPTER 1

INTRODUCTION

The demand for video surveillance systems in public places and industry has increased

dramatically. A recent survey shows that an estimated 1.85 million surveillance cameras

have been deployed in the United Kingdom alone [3]. Many modern cities now have a

network of surveillance cameras, deployed across metropolitan regions by multiple coor-

dinated public/private agencies. These cameras are used in places such as streets, airports,

subway stations, malls, and offices to detect abnormal activity. This enables many public

safety applications including intruder detection, abandoned object detection, people count-

ing, and traffic violation detection. Cameras are also extensively deployed in industry for

process monitoring and product inspection, and in health facilities for improved patient

care such as fall detection.

Requiring human operators to monitor video feeds is tedious, error prone, and simply

infeasible. Advances in video technology has made automated video surveillance systems

attractive in reducing the burden and tedium of manual monitoring. The desirability of

portable and low-cost automated video surveillance systems, for example in outdoor set-

tings, has led to the emergence of embedded smart surveillance cameras. These cameras

have limited available power and computational resources, demanding efficient low-cost

algorithms.

A core problem in automated visual surveillance is background modeling. This is

the problem of separating salient, moving foreground from uninteresting, stationary back-

ground. Traditional background modeling divides a given scene into foreground and back-

ground regions. However, the real world can be much more complex than this simple

classification, and object appearance events often occur over varying time scales. There

are situations in which objects appear on the scene at different points in time and become

stationary; these objects can get occluded by one another, and can change positions or be

1

removed from the scene. Inability to deal with such scenarios involving midground objects

results in errors, such as ghost objects (when newly revealed background, due to removal

of an object, is mistaken as a new midground object), miss-detection of overlapping ob-

jects, and aliasing caused by the objects that have left the scene but are not removed from

the model. Modeling temporal layers of multiple objects can overcome these errors, and

enables the surveillance of scenes containing multiple midground objects.

This dissertation is focused on modeling temporal layers of multiple objects and

it specifically targets embedded surveillance systems, requiring a real-time, energy effi-

cient and low-cost solution. One approach is to model these multiple midground objects

using a tracking algorithm, but the computational cost is prohibitively high for applica-

tions in a resource-constrained embedded environment. This dissertation pursues the goal

of efficiently modeling multiple midground objects using layers of low-cost background

modeling, and discusses the challenges that arise in achieving this goal.

A few existing pixel-based approaches attempt to address this challenge by main-

taining multiple layers [1], [4]. However, the problem with pixel-based modeling is that it

is unable to deal with 1) long-term occlusions, and 2) ghost objects created by movement

of objects in the original background. On a pixel level, one can delete object pixels not seen

for a long time, but doing so will result in a new object in the scene if that object reappears.

If an occluded pixel is not deleted, even if it has been occluded for a long period, then if the

occluded object moves out of the scene, the pixel will remain in the model which will take

extra space, and cause aliasing with overlapping objects. In addition, at the pixel level, it

is difficult to reason about the order of occlusion among objects, and to suppress ghost ob-

jects created by movement of objects in the original background. Moreover, if an original

background object is moved to a different location in a scene, then the existing multi-layer

background modeling techniques will detect a new object at the new location in addition to

a ghost object at the original location.

2

In this dissertation we present an object-based multilayer background model in

which each new object is modeled as a midground layer. This object layer modeling han-

dles long-term occlusions and ghost object removal, which enables the correct addition or

removal of an object on its arrival or departure. In addition, objects are correctly detected

and identified as existing objects when they change position. This conserves the number of

existing objects in a scene, avoiding false detections of existing objects as new objects in

a scene. In short, this dissertation provides a novel spatio-temporal reasoning mechanism

using multilayer background modeling, based on the ages and occlusion relationships of

the objects entering or leaving the scene.

In embedded applications, particularly in outdoor settings, wireless, portable, low-

power but efficient systems are needed for automated video surveillance system, such as

embedded smart cameras. These are in contrast to general-purpose computer-based sys-

tems in which the cameras send video over a dedicated link to the computer for image

processing. Smart cameras, on the other hand, contain embedded architectures for perform-

ing the vision processing. However, they have limited available power and computational

resources, demanding efficient low-cost algorithms and architectures. Therefore, for em-

bedded smart cameras, we need an efficient background modeling technique that balances

accuracy, speed, and power.

Basic background modeling techniques run fast, but their accuracy is not sufficient

for computer vision problems involving dynamic background. In contrast, adaptive back-

ground modeling techniques are more robust, but run more slowly. Due to its high par-

allel computational characteristics, robust adaptive background modeling has been imple-

mented on general-purpose graphics processing units (GPUs) with significant performance

improvements over general-purpose CPUs [5], [6], [7]. These works have implemented

many variants of the adaptive multimodal background techniques [8], [9], [10] on GPUs in

order to accelerate their runtime performance. However, these implementations are infeasi-

ble in embedded applications due to the high power ratings of the targeted general-purpose

3

NVIDIA GeForce GPU platforms that consume around 100 watts. In practice, embedded

applications must achieve real-time performance with the limited power of an embedded

smart camera. The high-end embedded CPU-based smart camera’s power consumption is

in the lower tens of watts e.g. Intel Atom based NI177x from National Instruments [11],

and Iris GT from Matrox [12], VIA-Eden-ULV based XCISX100C/XP from Sony [13],

Analog Devices Blackfin based ILC-BL from Intellio [14]. The question then is how best

to balance accuracy, speed, and power; so that we can achieve speed-up compared to a CPU

by parallelizing an adaptive multimodal algorithm, and while doing so maintain the power

of the system within limits of an embedded smart camera. This dissertation addresses these

challenges for background modeling in two ways: 1) by using a robust algorithm that has

low computational and memory costs, and 2) by exploiting the data and thread level paral-

lelism in this algorithm, and optimizing its memory access patterns to target a low-power

GPU platform NVIDIA ION.

1.1 Research statement and contributions

The goal of this dissertation is to develop an efficient object-based multi-layer background

modeling approach to distinguish among objects, whose existence occurs over varying time

scales between the extremes of short-term ephemeral appearances (foreground) and long-

term stationary persistences (background). To achieve our goal we make the following

three contributions.

The first contribution is a novel low-cost approach to multi-layer background model-

ing to temporally model a scene in which there are multiple interacting midground objects

occurring at different time scales. To correctly model the objects, this contribution deals

with long-term occlusions and ghost objects (Azmat et al.) [15], (Azmat et al.) [2].

The second contribution extends our temporal modeling algorithm to spatial analy-

sis, to maintain correct modeling of existing objects invariant to their change of position.

Our proposed algorithm maintains conservation of existing objects only removing them

4

once they leave the scene (Azmat et al.) [16].

The third contribution enhances the run-time performance of the adaptive back-

ground modeling and our multi-layer background modeling for resource constrained em-

bedded platforms. First, we target the low-cost adaptive background modeling technique

multimodal mean MMM to low-power parallel platforms. Accelerating this technique is

important because not only is it at the core of our spatio-temporal multi-layer modeling

algorithm, but it is a general adaptive background modeling technique for surveillance,

particularly for outdoor scenes where dynamic background is present. Secondly, we target

our multi-layer background modeling technique to low-power parallel platforms for further

performance improvement (Azmat et al.) [17].

1.1.1 Contribution 1 - Multi-layer background modeling: Temporal scene analysis

The first contribution is to develop a highly efficient object-based multilayer background

modeling technique for temporal scene analysis called temporal multimodal mean TM3.

Rather than simply classifying everything in a scene as either dynamically moving fore-

ground or long-lasting, stationary background, a temporal model is derived to place each

scene object in time relative to each other. Foreground objects that become stationary

(midground objects) are registered as layers on top of the background layer. In this process

of layer formation, the algorithm deals with ghost objects, and noise created by dynamic

background (such as fluttering leaves and rippling water) and moving foreground objects.

Objects that leave the scene are removed based on the occlusion reasoning among layers.

This technique allows us to represent a scene with multiple midground objects entering,

leaving, and occluding each other at different points in time. This leads to a richer repre-

sentation of temporal properties of scene objects than traditional foreground/background

segmentation. In particular, the information includes when a particular object arrived or

left, and the occlusion relationship among different objects while they are in the scene.

The technique builds on the adaptive multimodal low-cost background modeling technique

5

multimodal mean MMM that makes it suitable for embedded, real-time platforms. Applica-

tion scenarios of multiple midground objects occur frequently in the surveillance of homes,

offices, and public places where many objects enter, exit, stop, or start moving at different

points in time. Figure 1 shows the graphical summary of the first contribution. It shows

our object-based multi-layer background modeling result in comparison with pixel-based

approaches in a multiple midground objects scenario.

1.1.2 Contribution 2 - Multi-layer background modeling: Spatial scene analysis

Consider the following scenarios: a) the position of an object in the original background

changes, b) a midground object is fully or partially displaced from its location, c) a midground

object partially occluded initially, becomes unoccluded and is fully revealed. Multi-layer

temporal background modeling cannot deal with these spatial displacement scenarios. It

will incorrectly classify the objects in these cases as new objects.

Multiple object based tracking algorithms can deal with these spatial displacement

scenarios, but the computational cost associated with using a tracking algorithm is too high

especially for embedded platforms. For example, the cost for a popular appearance-based

multiple-object tracking algorithm [18] is 15-20 frames per second (320x240 frame size)

on a 3GHz P4 system. Our second contribution spatio-temporal multimodal mean STM3

extends our TM3 algorithm to spatial analysis. This contribution performs spatial reason-

ing based on multi-layer background modeling and color features of the moved object to

conserve the number of objects in a scene, when only object positions have changed. The

end result of this contribution is that we are able to correctly model the objects in the case

of spatial displacements. This is important in detecting that an object in the original scene

has only been moved to a different location and has not disappeared. Figure 2 shows the

graphical summary of the second contribution. It shows how our algorithm deals with

partial and full object displacements of midground/background objects.

6

1.1.3 Contribution 3 - Accelerating adaptive and multilayer background modeling
on low-power GPUs

Background modeling techniques for embedded computer vision applications must balance

accuracy, speed, and power. Basic background modeling techniques run fast, but their ac-

curacy is not sufficient for computer vision problems involving dynamic background. In

contrast, adaptive background modeling techniques are more robust, but run more slowly.

Due to its high parallel computational characteristics, robust adaptive background mod-

eling has been implemented on GPUs with significant performance improvements over

CPUs. However, these implementations are infeasible in embedded applications due to

the high power ratings of the targeted general-purpose GPU platforms. This contribution

focuses on exploiting data and thread-level parallelism and optimizing memory access pat-

terns to target a low-cost adaptive background modeling algorithm MMM to a low-power

GPU with thermal design power TDP of only 12 watts. The algorithm has comparable

accuracy with the GMM algorithm, but less computational and memory cost. We achieve

a frame rate of 392fps with a full VGA resolution (640x480) frame on the low-power in-

tegrated GPU NVIDIA ION. This is a 20X speed-up of the MMM algorithm compared

to the embedded CPU platform Intel Atom of comparable TDP. In addition our speed up

compared to a GMM GPU implementation is up to 6x. Moreover, our GPU implementa-

tion of TM3 outperforms the CPU implementation by achieving a speed up of 5x. Figure 3

shows the graphical summary of the third contribution of accelerating adaptive and multi-

layer background modeling on low-power integrated GPUs. The figure shows the speed up

achieved for both MMM and TM3 in different scenarios.

1.2 Summary of results

The results of this dissertation are summarized below:

• A novel multi-layer background modeling approach, temporal multimodal mean (TM3)

is presented, to temporally model a scene in which there are multiple interacting

7

NewerC

OlderC

PerformanceCofCourCobject-basedCmulti-layerCbackgroundCmodelingCapproachCTM3

InitialCscene
C

CarsCarriveCatC
differentCtimesC

GroundCtruth
C

Pixel-basedC
approachC1C

Pixel-basedC
approachC2

Object-basedC
approachCTM3

Figure 1: Graphical abstract of the first contribution: Temporal multimodal mean

Neweru

Olderu

STM3uapproach:uconservinguobjects'ustate

Positionu1u Positionu2u Groundutruth TM3 STM3

F
ul

ly
u

di
sp

la
ce

du
B

G
uo

bj
ec

t

P
ar

tia
lly

u
di

sp
la

ce
du

M
G

uo
bj

ec
t

Figure 2: Graphical abstract of the second contribution: Spatio-temporal multimodal mean

Normal6outdoor6scene666

2446fps6-6GPU
vs

186fps6-6CPU6

20x 14x 5x

3926fps6-6GPU
vs

206fps6-6CPU6

566fps6-6GPU
vs

116fps6-6CPU6

Highly6dynamic6scene666 Parking6lot6scene666

MMM6GPU6speed6up TM36GPU6speed6up6

Figure 3: Graphical abstract of the third contribution: Accelerating adaptive and multilayer
background modeling on low-power GPUs (640x480 frame size)

8

midground objects occurring at different time scales. The approach correctly models

the scenes with long-term occlusions and ghost objects as compared to the pixel-

based approaches.

• The TM3 technique represents a scene with multiple midground objects entering,

leaving, and occluding each other at different points in time. The information in-

cludes when a particular object arrived or left the scene, and the occlusion relation-

ships among different objects while they are in the scene.

• The spatial extension of TM3, called STM3 algorithm, consistently models objects

upon change of position, and maintains conservation of existing objects, only remov-

ing them once they leave the scene. The change of position is not correctly modeled

with previous multilayer background modeling approaches. An important new result

of STM3 is that it avoids modeling a moved existing object as a brand new object in

the scene.

• Parallelizing the low-cost multimodal mean MMM algorithm on the NVIDIA ION

integrated GPU achieves a speed up as high as 20x in comparison with the Intel Atom

CPU platform. The speed up of MMM compared to a GMM GPU implementation is

6x.

• Parallelizing our TM3 approach on NVIDIA ION integrated GPU achieving 5x speed

up in comparison with the Intel Atom CPU platform.

1.3 Overview of content

This dissertation is organized as follows. Chapter two gives the detailed methodology

of our first contribution of a novel multilayer background modeling approach temporal

multimodal mean (TM3). The chapter shows the comparison of our object-based method

with pixel-based multi-layer background modeling. It also analyzes the computational and

memory requirement of our algorithm. Chapter three describes our second contribution,

9

which is an extension of our TM3 approach to spatial analysis: spatio-temporal multi-

modal mean (STM3). In this chapter we show the comparison of our new algorithm with

TM3 in various object displacement scenarios. We also analyze the computational and

memory overhead of the STM3 algorithm. Chapter four details our third contribution of

accelerating background modeling on low-power integrated GPUs. In this chapter, we give

details of our CUDA implementation and optimizations for multimodal mean MMM algo-

rithm. We compare the performance of the multimodal mean MMM implementation with

the Gaussian mixture model GMM implementation. We further show the parallelization of

our TM3 approach on the integrated GPU. In the last chapter we conclude the dissertation

and give guidelines for future work.

10

CHAPTER 2

MULTI-LAYER BACKGROUND MODELING: TEMPORAL
SCENE ANALYSIS

2.1 Introduction

This chapter presents an efficient multi-layer background modeling approach, temporal

multimodal mean (TM3), to distinguish among objects, whose existence occurs over vary-

ing time scales between the extremes of short-term ephemeral appearances (foreground)

and long-term stationary persistences (background). We use the term midground [19] for

this class of objects. Traditional background modeling techniques divide a scene into back-

ground or foreground. This mimics the human visual system which is adept at detecting

rapidly moving objects. However, the human visual system is not well-suited for detecting

objects which gradually become stationary over a period of time. These midground objects

are the objects of interest, or salient objects, in applications such as abandoned luggage

detection.

In traditional adaptive background modeling techniques midground objects are quickly

assimilated into the background. Simple two-layer extensions of these techniques [19]

coarsely model objects in the foreground to background transition, but do not differentiate

among them based on their spatio-temporal properties. Object appearance events often oc-

cur over varying time scales, and there are situations in which many objects appear on the

scene at different points in time and become stationary.

To analyze and visualize such scenarios, we need a mechanism to model multiple

temporal layers of midground objects. This model would explicitly represent both the

temporal order of object appearance events, and the spatial order of occluded objects. This

would be helpful, for example, in analyzing a parking lot or a traffic intersection scene

to determine the order in which vehicles have arrived. The mechanism should be able

to deal with ghosts, created by objects leaving the scene from initial background, in this

11

multiple interacting objects scenario. In addition, it should remove the midground objects,

when they leave the scene, which becomes more challenging in occlusion scenarios. These

objects, if not removed, will remain in the background model and later cause aliasing with

new objects. In short, a mechanism is needed to differentiate multiple objects, and correctly

remove or add objects, even in occlusion situations. Application scenarios of multiple

midground objects occur frequently in the surveillance of homes, offices, and public places

where many objects enter, exit, stop, or start moving at different points in time.

We present an approach, called temporal multimodal mean (TM3), which treats

background modeling in a continuous way by explicitly modeling temporal information in

the scene. Rather than categorizing all scene elements as simply background or foreground,

it differentiates them by the amount of time each is present in the scene. The technique,

extends adaptive background modeling to model layers of midground objects based on

object ages in the scene while temporally filtering out dynamic background noise. When

an object leaves, occlusion reasoning is used to determine that the object’s layer should

be deleted. In addition, in this multi-layer representation, if an object leaves the original

background and creates a ghost, it is recognized quickly and removed. In this way, our

approach uses temporal reasoning based on object ages, and spatial reasoning based on

occlusion relationships among the objects to correctly model, add and remove multiple

midground objects entering or leaving the scene.

Our algorithm builds on the multimodal mean (MMM) background modeling tech-

nique [20]. The MMM technique is a low-cost adaptive background modeling algorithm

for dynamic indoor and outdoor scenes. It executes four times faster than the widely used

Gaussian mixture model (GMM) technique [8] on a general-purpose CPU platform, while

exhibiting comparable performance in accuracy [20]. This makes the MMM approach

amenable for use on embedded platforms, which have limited memory and execution

power.

12

This chapter is organized as follows. Related work is discussed in Section 2.2.

Section 2.3 presents our novel approach to multi-layer background modeling. Section 2.4

describes our detailed results with experiments based on multiple datasets and performance

metrics. We conclude the chapter in Section 2.5.

2.2 Related work

This section starts by summarizing the main techniques of traditional background model-

ing, followed by two-layer background modeling, and finally outlines multiple object track-

ing and multi-layer background modeling in the context of modeling multiple midground

objects.

2.2.1 Traditional background modeling

Background modeling to separate salient, moving foreground from uninteresting, station-

ary background is a key initial step in many video surveillance applications. Many tech-

niques exist ranging from simple frame differencing to complex statistical modeling. The

more complex techniques can handle difficult changing background scenarios, but it comes

at the cost of more computational and memory resources. There are many ways in which

we can categorize these techniques, one of which is their ability to handle dynamic, multi-

modal, backgrounds. Multimodal background means a background that can be different in

different points in time at a particular location, like swaying trees and rippling water sce-

narios. We describe the main background modeling techniques based on this multimodal

categorization. Throughout our discussion of the related work Ix,t refers to an image pixel

value x at time t.

2.2.1.1 Frame differencing

Frame differencing is the simplest background modeling technique, which detects the fore-

ground by subtracting the pixel values in each new frame from the previous frame. If the

13

absolute difference is above a certain threshold E, then the pixel is declared as foreground:

|Ix,t − Ix,t−1| ≤ E . (1)

This technique is very fast, but its capability to handle complex scenarios is limited. The

most notable disadvantage of this technique is a severe foreground aperture problem [21].

The technique also cannot deal with multimodal background.

2.2.1.2 Single parametric techniques

The single parametric technique presented in [22] is more robust than the simple frame dif-

ferencing because it maintains a Gaussian for every background pixel. A pixel at a particu-

lar location is declared background if it falls within a certain threshold T times the standard

deviation of the Gaussian. The mean and the variance are recursively updated. The tech-

nique is adaptive to noise due to gradual lighting changes, but as this technique maintains a

single parameter for each background pixel, it cannot deal with multimodal backgrounds.

Work related to this technique, with relatively low computational cost includes approxi-

mated median [23] and weighted mean [24], which maintain and update a median and a

mean for each background pixel, respectively. There are non-recursive versions of single

parameter background modeling techniques described in [25] with comparable accuracy.

2.2.1.3 Non-parametric

Elgammal et al. [26] present a non-parametric statistical technique for background model-

ing. This technique models the background based on a window of frames from the recent

past. The technique estimates the density based on the values of each pixel in the recent

past window, and the fate of a new pixel is decided based on the following kernel density

estimation formula.

Pr(Ix,t) =
1
n

N∑
k=1

K(Ix,t − Ix,k) , (2)

where K refers to the kernel density, Ix,t refers to the current pixel, and Ix,k refers to the

pixels in the recent past window. The technique is able to deal with multimodal dynamic

14

backgrounds, and its fast adaptation gives it sensitive detection. The disadvantage is that it

is very time-consuming to estimate density based on a window of past frames [27].

2.2.1.4 Gaussian mixture model (GMM)

Stauffer and Grimson address the problem of modeling multimodal background by main-

taining multiple Gaussians, instead of a single Gaussian, to model each background pixel

[8]. The first B Gaussians in the mixture whose weight is above a certain threshold T are

classified as background:

B = argminb

 b∑
k=1

wk,t > T

 . (3)

The weight wk,t of the Gaussian k at time t is recursively updated as follow:

wk,t = (1 − α)wk,t−1 + α(Mk,t) . (4)

Mk,t is one when there is a match and zero otherwise, and α is the learning rate, which

determines how quickly a recently appeared background pixel will be assimilated into the

background. A match is declared when a pixel value is within 2.5 standard deviations of

the Gaussian. A pixel that does not match, classified as foreground, is also added to the

background model by replacing the Gaussian of the lowest weight. This is done for newly

formed background portions that have recently started to appear.

The mean (µt) and the variance (σ2
t) of the Gaussian k at time t is recursively updated

as follows:

µt = (1 − ρ)µt−1 + ρIt , (5)

σ2
t = (1 − ρ)σ2

t−1 + ρ(It − µt)T (It − µt) , (6)

where

ρ = αη(It|µk, σk) . (7)

There are other high-end computationally-expensive machine learning techniques that can

model more complex background scenarios. However, GMM is the most widely used

15

technique due to the balance it provides between accuracy and computational/memory cost

[27].

2.2.1.5 Multimodal mean (MMM)

Even though GMM provides a good balance between accuracy and computational cost,

the computational cost of maintaining multiple Gaussians is still too high for embedded

platforms. Apewokin et al. [20] provided an alternative approach in the multimodal mean

(MMM) technique. This technique segments the background and foreground of a scene

by maintaining multiple means, instead of expensive Gaussians for each background pixel

value. Each mean represents a background mode for the pixel.

More specifically, the MMM technique maintains a mean (µx,t) representing a back-

ground mode for a pixel location x at time t, which is updated in the following way:

µx,t = S x,t/Cx,t , (8)

where S x,t represents the running sum for the mode, and Cx,t identifies the number of times

that particular background mode has been seen. If the new image pixel value (It) does not

fall within a certain threshold E, it is identified as foreground. Otherwise, the pixel intensity

value is added to the sum S x,t, and Cx,t is incremented by one (i.e. the mean is updated).

Count Cx,t is checked to see if it is above a certain threshold T in which case the pixel is

marked as background. The equation to declare a new image pixel value It as background

is: ∧
i

|µx,t−1.i − It.i| ≤ E ∧Cx,t−1 > T , (9)

Like GMM, if a pixel is marked as foreground, its information is also added to the back-

ground model (using a least-recently-seen mode replacement policy), which allows for the

case in which this pixel is part of the background that has recently appeared. Background

modes for each pixel location are decimated after a certain time interval Td, so that the

newer pixels have more effect. This is done by halving the sum and the count values. Fig-

ure 4 shows the qualitative comparison of different background modeling techniques we

16

discussed. It can be clearly seen that the unimodal techniques of frame differencing and

single parametric cannot effectively deal with multimodal dynamic background of swaying

trees.

In [20], MMM is compared with the Gaussian mixture model (GMM) technique

based on three datasets. Table 1 compares the accuracy of the MMM and GMM techniques.

The percentage background error (BGE) is the ratio of false positives (FP) to true negatives

(TN). A FP means a background pixel marked incorrectly as foreground, and a TN means

a pixel correctly marked as background. The percentage foreground error (FGE) is the

ratio of false negatives (FN) to true positives (TP). A FN means a foreground pixel marked

incorrectly as background, and a TP means a pixel correctly marked as foreground. The

overall percentage BGE (or FGE) error is the ratio of the sum of FPs (or FNs) to the sum

of TNs (or TPs) of all the three datasets. The overall percentage BGE/FGE comparison, in

the last column of the table, show that the accuracy of the MMM is very close to the GMM

method. At the same time, the MMM technique requires fewer computational resources

than GMM, and it executes four times faster on a general-purpose CPU platform. This

performance improvement is primarily a result of maintaining inexpensive means, rather

than Gaussians, requiring less computation and fewer memory accesses. Effectively, MMM

is a low-cost approximation of the GMM technique.

Table 1: MMM Accuracy

Algo %Error Datasets Overall

Bootstrap Outdoors Trees

MMM BGE <0.3 1 4 2

GMM BGE <0.3 1 1 1

MMM FGE 77 51 13 36

GMM FGE 77 62 22 42

17

(a) Original image (b) Ground Truth (c) Frame differencing

(d) Single parametric (e) GMM (f) MMM

Figure 4: Unimodal vs multimodal background modeling

2.2.2 Two-layer background modeling

Traditional background modeling techniques divide a scene into background and fore-

ground. This mimics the human visual system which is efficient in detecting rapidly mov-

ing objects. However, the human visual system is not well-suited for detecting objects that

gradually become stationary over a period of time. These objects, called midground ob-

jects [19], are the objects of interest in applications such as abandoned luggage detection.

Traditional background modeling techniques maintain a strict division of foreground and

background, which causes information to be lost in the event of midground object appear-

ance because this event does not fall into the strict foreground/background division. The

traditional background modeling techniques will assimilate these midground objects into

the background as shown in Figure 5. How quickly these objects get assimilated depends

upon the learning rate of the algorithm. The multiple modes, to handle dynamic back-

ground, in the GMM and the MMM technique are beneficial in that they can also be used

to detect midground objects as described below.

18

Mathew et al. [28] use Stauffer and Grimson’s GMM algorithm to detect midground

objects that may appear in a scene. The algorithm has three states (three Gaussians of the

background model), and they are called the foreground Gaussian, the background Gaussian,

and the dominant background Gaussian. The detection of a midground object is based on

the following events:

1. A change occurs in the dominant background Gaussian in a mixture;

2. A change occurs, from the foreground to the background to the dominant background

Gaussian, in a short span of time;

3. The state remains as the dominant background Gaussian for a certain time threshold;

4. The new dominant Gaussian has weight above 0.5.

These conditions ensure that the algorithm only detects new midground objects, while

filtering out dynamic background. Pixels of the dynamic background can also become the

dominant Gaussian, but this may not occur in a short span of time, may not stay there for

a while, and the weight of that Gaussian is most likely less than 0.5 with the total of three

Gaussians to model the background.

Valentine et al. [19] detect midground objects using the MMM algorithm with

low computational cost. They have two conditions for detecting the presence of a new

midground object:

1. The ”age” of the background pixel mode is above a certain threshold.

2. The observation frequency of the background pixel mode is above a certain threshold,

in order to filter dynamic background.

Here age of a background pixel mode refers to the difference between the current time and

the time when the pixel mode was first seen. Observation frequency is the number of times

a background pixel mode is seen divided by its age.

19

The above mentioned techniques [28],[19] are pixel-level. This means they consider

newly revealed background due to a removed object as a new midground object. For exam-

ple, in Figure 6, a box, which was part of the original background is removed, and a new

”ghost” object is incorrectly detected in its place by the pixel-level techniques.

As an alternative approach, region-level analysis can be used to differentiate between

an abandoned object (real midground object), and a ghost object (when newly revealed

background, due to removal of an object, is mistaken as a new midground object). One

common approach focuses on the edge intensities of the blob created by the midground

object [29] and [30]: a real midground object will have higher edge intensities around it,

while a ghost object will have relatively lower edge intensities. The accuracy of these edge-

intensity techniques is decreased in the presence of shadows around objects, which do not

yield strong edges. The edge-based techniques are also not robust in cases of cluttered

backgrounds because the basic edge intensity assumption is violated [31].

As an alternative, Ferrando et al. [32] compares the histograms of the midground

object, the underlying background, and the surrounding bounding box. If the bounding

box is more similar to the midground object than the background, it means an object has

been removed, creating a ghost. Otherwise, it is indeed a new midground object. Another

alternative is the technique given by Tian et al. [31], which is based on the region growing

method. After identifying a new midground blob, it applies the region growing technique

from inside of the blob towards the outer side. If the grown region is larger for the new

midground blob than the underlying background, it means that an object has been removed.

Otherwise, it is a new abandoned (midground) object. The region growing method is,

however, computationally very expensive.

There are also techniques that detect midground objects using standard tracking

algorithms instead of updating the background model. We will discuss them in the context

of multi-layer background modeling, which is the topic of the next section.

20

Figure 5: Traditional vs two-layer background modeling

Figure 6: Two-layer background modeling pixel-level

21

2.2.3 Multi-layer background modeling

The real world can be much more complex than the simple scenario modeled by the two-

layer background modeling. There are situations in which many objects appear on the scene

at different points in time and become stationary; such objects can get partially or fully oc-

cluded by one another, and then after some time leave the scene. In other words, existence

of the midground objects occur over varying time scales between the extremes of short-term

ephemeral appearances (foreground) and long-term stationary persistences (background).

To visualize such scenarios, we need a mechanism to model multiple temporal layers of

midground objects. This object layer modeling can represent the scene based on the age

of the midground objects in the scene, e.g. in a parking lot or traffic intersection scene it

can help us understand the order in which vehicles have arrived. Figure 7 shows a parking

lot scene, to demonstrate how two-layer adaptive background modeling with capability to

detect midground objects in addition to moving foreground will deal with it, along with the

expected output (ground truth) of the multilayer background modeling shown on a time-

line of sequence of events. Figure 7(a) shows the initial scene and its background model.

Figure 7(b) shows the same scene after the yellow truck, which was part of the background,

left. Figure 7(c) shows the scene after two vehicles arrive, and people walk in front of the

newly arrived van. The two-layer background model treats all objects same and one cannot

tell their order of arrivals. The situation is made worse when some objects occlude others,

such as people walking in front of the van. In this case, the newer objects (people) are not

differentiable from the objects they occlude (van), and thus the newer objects may not be

detected at all. Moreover, a ghost is created in Figure 7(c) where the yellow truck, which

was part of background, left the scene. The techniques discussed above can deal with the

ghost, but the ghost removal becomes more challenging in scenarios where multiple objects

interact because the background becomes cluttered with objects. Figure 7(d) shows another

vehicle arriving after some time, but everything in the two-layer background modeling is

classified simply as either moving or stationary foreground or background. In addition,

22

Figure 7: Need for multi-layer background modeling

in scenes with multiple objects, we need to remove the objects when they leave the scene

which becomes more challenging in occlusion scenarios. These objects, if not removed,

will remain in the background model and later cause aliasing with new objects. A mecha-

nism is needed to differentiate multiple objects, and correctly remove or add objects even

in occlusion scenarios.

2.2.3.1 Multiple layers using tracking

Tracking algorithms can offer an approach to modeling multiple object scenarios. Multiple

midground objects can be modeled by techniques that track multiple objects under occlu-

sions with non-uniform motion. A tracking algorithm based solely on motion estimation,

such as Kalman filtering, can fail in the case of non-uniform motion. This means a tracking

algorithm that uses a kernel of appearance and/or shape, and not only motion, is required.

The techniques in this focused area of tracking are discussed.

Khan and Shah [33] model layers of foreground objects based on the Gaussian mix-

ture model in addition to the background. A single multi-variate Gaussian in the mixture

contains the color and the position information for each similar section, called class, of a

23

foreground object. The technique based on a MAP estimation framework tracks the ob-

jects from frame to frame. The algorithm keeps the parameters for the objects that are not

visible due to occlusions, and uses these parameters to reassign when the objects reappear.

The algorithm can lose track if the occluded object significantly changes its position or

appearance during occlusion.

Yang et al. [18] model layers of foreground objects based on the color histogram

on top of a simple background modeling technique. Their technique uses the merge and

split approach, i.e., it stops updating the color histograms for the objects that merge, and

instead starts tracking the merged blob. When the split occurs, it re-assigns the objects to

their respective track. Unlike [33], this technique does not depend upon the position of the

occluded objects, but it does require that their appearances not significantly change during

occlusions.

Papadourakis and Argyros [34] also model both background and foreground color

features using a mixture of Gaussians, similar to [33]. Their technique uses a straight

through approach, which is to track and update individual object parameters even when the

object undergoes occlusion, unlike the merge and split approach. Therefore, this technique

does not have the re-assignment problem. To handle full occlusion, the technique uses

object permanence natural phenomenon, i.e., the occluded object is expected to reappear in

the vicinity of its occluder.

The above techniques are mainly based on the appearance of objects, and use de-

terministic motion scenarios. These techniques do not involve difficult motion scenarios

such as missing frames. Tao et al. [35] model foreground objects as layers in a comprehen-

sive manner in a MAP estimation framework using their appearance, shape and motion to

handle difficult tracking scenarios.

2.2.3.2 Multiple layers using background modeling

The multi-layer object modeling using tracking, discussed above, can solve the scenario of

multiple midground objects, but there are two problems. First these tracking algorithms

24

are computationally very expensive compared to the background modeling, and second

these techniques have their own limitations in case of crowded environments [36]. We now

discuss approaches that model multiple objects using background modeling.

Codebook by Kim et al. Kim et al. [1] model multiple layers of midground ob-

jects using a non-parametric multimodal background modeling technique which they call

codebook [37]. The codebook background modeling technique, like GMM [8] and MMM

[20], maintains multiple modes to handle dynamic backgrounds. They maintain a back-

ground model M that holds the original background and midground object layers, and they

maintain a cache H that holds foreground objects whose fate is undecided yet. The steps

involved in modeling multiple layers of background are as follows:

1. If a pixel not found in M, then search it in the cache H.

2. If a pixel also not found in H, then create a new codeword for this pixel of a fore-

ground object and add it to H.

3. If a pixel does not re-appear in a time threshold TH, then delete it from H as a pixel

of a foreground object.

4. If a pixel remains in H for a time threshold Tadd, mark it as a pixel of a midground

object by moving it from H to M.

5. If a pixel is not seen in M for a long time threshold Tdelete, then delete it from M, but

only if it doesn’t belong to the original background.

6. Show pixels using different colors based on their time of arrival which is recorded in

the background codewords, to differentiate multiple objects.

The problem with this technique is that it also depicts the dynamic background as

midground object layers.

25

Time scales by Jacobs and Pless. Jacobs and Pless [4] use causal filtering on pixel

intensities to model time spent by objects in a scene. They apply multiple averaging fil-

ters with different time constants, where each filter shows in output the pixels that fall

in a certain time scale based on the filter time constant. For example, a filter with small

time constant will only show moving objects, while as the time constant is increased the

midground objects will start showing up. The recursive equation for the low-pass filters

L1, ..., LN is:

Li(x, t) = αiLi(x, t − 1) + (1 − αi)Ix,t , (10)

where αi ∈ [0,1] specifies the filtering constants that determines how much of the original

image (Ix,t) to be included for a particular filter Li(x, t), which in turn depends on the time

scale of interest and the frame rate. The technique has good noise immunity. However, the

limitation this technique has is its computationally expensive signal reconstruction, which

is based on all the filtered output images L1, ..., LN , to show a final video summary with

objects of different time scales at a given point in time.

Layered detection of multiple overlapping objects. Fujiyoshi and Kanade [38] multi-

layer modeling detect multiple overlapping midground objects. They use a simple differ-

encing background modeling technique to detect whether a pixel is transient or stationary.

Subsequently, using region level analysis, a group of connected stationary pixels are reg-

istered as a new layer while subtracting the pixels of previously formed midground layers

that spatially overlap with this new layer. In this way, they detect multiple overlapping

midground objects.

The problem with pixel-based multi-layer background modeling is that it is unable

to deal with long-term occlusions, and ghost objects created by movement in the original

background. Both of these problems result in incorrect modeling of objects. Solving this is

the objective of this chapter. The technique in [38] works at the region level, but its purpose

is to detect overlapping midground objects in a unimodal background scenario, and it does

not deal with removed objects from the original background. The other techniques [4] and

26

[1] that model and visualize multiple midground objects are pixel-based. On a pixel level,

one can delete object pixels not seen for a long time as in [1], but doing so will result in

a new object in the scene if that object reappears. If occluded pixels of an object are not

deleted even if the object has been occluded for a long time, then if the occluded object

moves out of the scene the pixels will remain in the model which will take extra space,

and cause aliasing with overlapping objects. In addition, at the pixel level, it is difficult to

reason about the order of occlusion among objects and to avoid ghost objects created by

movement in the original background.

2.3 Temporal multimodal mean (TM3)

Our object-based multilayer background modeling technique, called temporal multimodal

mean TM3, builds on the existing multimodal mean (MMM) background modeling tech-

nique [20]. In our implementation, we do not fix the number of modes to four which is the

case in [20], but allow the number of modes to grow dynamically starting with one mode

per pixel. Therefore, instead of mode replacement policy, we have mode removal policy.

If the count of a mode reaches one as a result of several decimations, and that pixel mode

is not seen for some time constant Tr, then this pixel mode is deleted from the background

model. This step eliminates foreground pixels and background noise which is necessary to

conserve resources and avoid aliasing.

The temporal extension of the MMM algorithm, TM3, must model midground ob-

jects that appear in a scene at different points in time, while dealing with ghost objects

and long-term occlusions. The MMM multimodal nature because of dynamic background

(like swaying trees and rippling water), allows seamless incorporation of multiple layers of

midground objects since they too require multiple modes at all pixel locations. However,

for temporal multimodal mean TM3 we define several extra fields in the data structure

maintained for the modes of a pixel. Figure 8 shows the pixel data structure of a single

mode in TM3. The observation count OCx,t is the number of times a background pixel is

27

seen. The birthday BDx field records the time at which a pixel is first seen. The recency

RCNx,t field records the time when a pixel was last seen. LAYERy field is the pointer to the

midground object layer to which the pixel belongs.

S x,t.r S x,t.g S x,t.b Cx,t OCx,t BDx RCNx,t LAYERy

Figure 8: Pixel data structure for a single mode in TM3

To eliminate foreground pixels quickly, rather than wait for the relatively slow dec-

imation process to eliminate them, we deal with foreground pixel deletion separately as

done in [1]. These pixels use memory resources and cause aliasing if not removed. Two

things are true about foreground pixels: 1) they have a low observation time compared to

background or new midground objects, and 2) after initial observation they are not seen at

all. If a pixel is seen for an observation interval below the threshold T f , and after that it has

not been seen for a period longer than the threshold Tn f then it will be deleted.

To begin, our TM3 algorithm calculates the temporal attributes of age and observ-

ability (observation frequency) for pixel x at time t as follows:

Agex,t = t − BDx , (11)

OBx,t = OCx,t/Agex,t . (12)

Pixels whose observability is less than a certain percentage δ are filtered out as dynamic

background or noise. The rest of the pixels, depending upon their age, are depicted using

colors ranging from red (newest-foreground) to blue (background) based on the standard

visible color spectrum. This filtering step is important because, without it the algorithm

will render any dynamic background pixels as new midground pixels, which can make the

scene noisy and can lead to the formation of false object layers. The observability threshold

δ is kept at a certain optimum level so that the algorithm does not filter real objects, but

filters dynamic background noise maximally.

28

The pixels which have observability greater than δ, and are observed for the time-

period T f , indicate a new midground object. The pixels which satisfy this condition are

formed into a blob. When a blob is observed to stop growing, the blob is registered as a

new object layer. Moreover, each pixel in the blob is assigned that particular layer number.

Previously formed layers are subtracted from the formation of new layer based on their

pixels timestamps. The layer data structure is given below in Figure 9:

ID TS C Xmin Xmax Ymin Ymax Vt Ot Ut Dt

Figure 9: Data structure for an object layer

ID is the layer identification, TS is the timestamp at the layer formation, C is the total

number of pixels in the layer, and Xmin, Xmax, Ymin, and Ymax specify the area covered by the

layer. The rest of the fields is used for occlusion reasoning among different object layers.

Pixels with layer numbers belong to real midground objects, and so they are not

filtered based on observability threshold δ because their observability will ultimately fall

below δ if they get occluded long-term. In addition, these pixels are not decimated in an

interval in which they are occluded. This preserves layers of overlapping midground ob-

jects. Moreover, after the formation of new layers, midground pixels that are not classified

as part of any layers are also filtered out as background noise. This filtering along with

filtering based on observability deals with the noise caused by dynamic background, which

allows clearer visualization of objects as shown in the results.

To better visualize the scene, objects that become older than a certain age are pushed

to the background (marked blue). This background migration of older objects clears the

scene space and focuses on newer objects. It also increases the dynamic color range avail-

able to newer objects making them more differentiable. Figure 10 shows the complete

flowchart of our algorithm.

29

Figure 10: Flowchart of the TM3 algorithm

30

2.3.0.3 Ghost removal in multiple overlapping layers

At the time of formation of a layer, it is possible that an object already in the background

moves and creates a ghost, and it will be recognized as a new object layer. We differentiate

between the ghost and a real object by histogram comparison as done in [32]. We pre-

fer histogram comparison over edge detection [29], [30] for ghost removal because edge

detection is not robust in the presence of cluttered background [31] and shadows. In our

case, the background becomes cluttered with edges and shadows as new midground objects

keep on appearing. The histogram comparison, used to remove ghosts, is based on three

histograms. The first histogram is of the newly formed layer H1, the second is of the area

surrounding the new layer H2 in the main background layer. The third H3 is a histogram

of the main background layer under the new layer.

After calculating normalized histograms, Bhattacharyya distance is calculated be-

tween H1 and H2 dist(1,2), and H2 and H3 dist(3,2). If the difference of dist(3,2) and

dist(1,2) is greater than a threshold, then the layer object is classified as a ghost, i.e. if H1

is more similar to H2 as shown in Figure 11. Moreover, if an object layer is declared as

a ghost then the main background layer is updated for a correct reference for future ghost

detections. The update is done by assigning new layer mode values to the main background

layer, and then this superficial new layer is deleted.

It is important to note here, the main background layer is the first layer which is

formed at the time of background model initialization and contains the original background.

Because the background continuously changes as new layers are added or deleted, H3

and H2 is computed based on the main background layer. The change of the background

is shown in Figure 12, when the red box is added, the background underneath has been

changed. To perform correct ghost removal analysis for the red box we calculate H2 and

H3 based on the main background shown in part (a), and not on the changed background

shown in part (b).

31

H3

H2

(a)

H1

H2

(b)

Figure 11: Ghost removal based on three histograms

H3

H2

(a)

H3

H2

(b)

H1

(c)

Figure 12: Changing background scenario: (a) Original BG (b) Brown box added (c) Red
box added (use main background layer (a) to calculate H2 and H3)

32

2.3.0.4 Occlusion reasoning

In the layer data structure, three counts are used for occlusion reasoning. Vt tracks the num-

ber of pixels visible of an object layer at a particular instant of time, Ot counts the number

of pixels that are being occluded by pixels of other layers, and Ut represents the number of

pixels of the layer which have moved from their place, resulting in the appearance of pixels

belonging to underlying layers.

These three counts give important information about the current occlusion relation-

ship of an object layer with other object layers. The objects that have moved from the scene

are deleted based on the fact that their Ut approaches 100% (or their Vt reaches 0%) of the

the area that is not occluded, while Ot remains the same. Dt counts the number of times

this situation exists, after which the layer is deleted. On the other hand, if a new object

occludes the old ones the Vt decreases and Ot increases, while Ut remains the same. This

deletion of layers conserves the resources and avoids aliasing by an object that has left the

scene, but whose pixels remain in the background model. In this occlusion reasoning, the

main background layer is the first layer which is formed at the time of background model

initialization, with all other registered midground layers on top of it, and the moving fore-

ground is the unregistered last layer. Moreover, to make the decision to remove an object

layer, a portion of the object needs to be visible. This is due to the fact that if an object

is fully occluded you cannot detect the Ut even if the object moves. In this fully occluded

scenario, the moved object cannot be deleted, and will be dealt with only when the area

where it was present starts getting unoccluded. The main steps in our TM3 algorithm are

given in the form of pseudo-code in Figure 13.

2.4 Results

The algorithm is implemented on a single core of an AMD Phenom™ II system (processor

clock frequency of 2.7 GHz), with Windows 7 operating system. Visual studio C++ en-

vironment was used for development, performance analysis, and optimization of the code.

33

We compare our approach with Kim et al. [1], which is a representative pixel-based ap-

proach. A difference in the output is that they use a different color spectrum to show

midground objects, and they show moving foreground and background as they originally

appear.

for every input frame from the video sequence do

1. perform multimodal mean background modeling

2. if OCx,t < T f ∧ t − RCNx,t > Tn f ∧ Layer j = Null then delete foreground object’s pixel

3. if Agex,t > T f ∧ OBx,t > δ ∧ Agex,t < PrevLayerAge then mark pixel as midground

4. when a blob of midground pixels stops growing then register a new layer C = pixel-count, Vt =

C,Ot = Ut = Dt = 0

5. if dist(3, 2) − dist(1, 2) > threshold then assign this layer’s values to main background layer and

delete this ghost layer

6. if a pixel of Layer j is occluded by another layer then increment Ot of Layer j

7. if a pixel of a layer, occluded by Layer j, becomes visible then increment Ut of Layer j

8. if Ut/(C − Ot) ≈ 100% ∧ (C − Ot)/C > %threshold then increment Dt

9. if Dt > threshold then delete the layer

10. mark layers according to their age in the output frame

end for

Figure 13: TM3 algorithm
Four datasets were used to test different aspects of our algorithm. The details of

the datasets are shown in Table 2. The Outdoors dataset highlights our algorithm’s ability

to detect an abandoned midground object in a densely crowded outdoor setting. Blocks

dataset is used to demonstrate the basic working of our algorithm. In this dataset, multiple

blocks are added to a scene at different points in time in an indoor environment. The third

34

dataset, Boxes, shows the addition of multiple objects that occlude each other. This exper-

iment shows how our algorithm correctly removes an object based on occlusion reasoning.

The last dataset, Cars, is a more elaborate real world example occurring in a parking lot,

where different vehicles arrive and/or leave the scene. This dataset is used to show different

working aspects of our algorithm such as ghost removal, object removal based on occlusion

reasoning, and noise filtering in an outdoor scene.

Table 2: Datasets Specifications

Dataset Outdoors Blocks Boxes Cars

Resolution 640x480 640x480 640x480 352x232

No. of frames 2900 672 1770 12000

fps 10 5 15 15

2.4.1 Experiments

Abandoned object detection. The scenario shown in Figure 14 demonstrate an aban-

doned object detection application of our algorithm. It shows an object that has been

abandoned in a very crowded outdoor environment. Our algorithm correctly detects and

differentiates the abandoned midground object from the moving crowd of people forming

the foreground. This is a difficult task for the human visual system.

Basic operation based on Blocks dataset. This scenario shows the basic working

of our algorithm. To begin, there are multiple objects present in the scene Figure 15(a).

They are all part of the background. Then some objects are added to the image as depicted

in Figure 15(b). Next a few more objects are added and removed from the scene (Figure

15(c)). One object that was removed, marked by a white circle, is part of the background.

Our algorithm correctly identifies it as a ghost and not a new object. Moreover, the longer

an object stays in the scene the bluer it becomes, Figure 15(d), which means it is nearer to

35

the original background in terms of its age. The summary of the sequence of events in the

scene provided in a single frame Figure 15(d) is also a difficult task for the human visual

system.

Occlusion reasoning based on Boxes dataset. In this scenario, we show our algo-

rithm performing occlusion reasoning and the removal of the layers in an occlusion sce-

nario. Figure 16 shows the addition of two objects in different points in time, as indicated

by their assigned colors in Figure 16(b); the one closer to background in color is older than

the other. Next we remove the older brown box, Figure 16(c). We can see that the brown

box was partially occluded by the red box, but based on occlusion reasoning; our algorithm

correctly removes the brown box layer. This is verified by the fact that when we add a box

with similar color, the older layer does not show up, and the whole object is marked as

a new object, Figure 16(d). This is not the case in the pixel-based approaches [1],[2] as

shown in Figure 17.

Real-world example based on Cars dataset. The last example is a more elaborate

real world scenario in a parking lot, where different vehicles arrive and leave. Figure 18(a)

shows the original background scene where there are few cars. Later, one car which is part

of the background moves, and it is correctly identified as a ghost object and removed, as

shown in Figure 18(b). In the subsequent frames, Figure 18(c, d, e, f), more cars come

and leave with our algorithm correctly identifying their time of arrival and departure. The

summary of the sequence of events in the scene is provided in a single frame Figure 18(f),

which would also be a difficult task for the human visual system to do. Figure 19 shows

the resulting last frame 18(f), based on the pixel-based approaches [1],[2] (Figure 19(c,d))

and our current object-based approach (Figure 19(e)). It can be seen in Figure 19(c,d)

that the remnants of previous layers that match in color have corrupted the current layers.

This is because the pixel-based approach cannot remove object layers based on occlusion

reasoning and cannot identify the ghost objects. These problems are resolved by our object-

based approach as shown in Figure 19(e).

36

(a) Frame-1185 (b) Frame-1416

Newer

Older

(c) Frame-1867 (d) Frame-2432

Figure 14: Abandoned object detection in a crowded scene at different points in time

(a) Frame-197 (b) Frame-199

Newer

Older

(c) Frame-286 (d) Frame-346

Figure 15: Blocks added and removed at different points in time, a red circle indicates
new entries while blue indicates the ones already there, a black circle indicates the objects
removed while white indicates the ones removed from the initial background: (a) Initial
background (b) Three blocks added (c) Three more blocks added, three removed including
one from initial background (d) Three more blocks added

37

(a) Frame-1244 (b) Frame-1340

Newer

Older

(c) Frame-1670 (d) Frame-1754

Figure 16: Object layer removal based on occlusion reasoning: (a) Brown box added (b)
Red box added occluding brown box (c) Brown box removed (d) Brown box added occlud-
ing red box

(a) (b) (c) (d) (e)

Figure 17: Occlusion reasoning effect: (a) Original image (b) Ground truth (c) Pixel-based
[1] (d) Pixel-based [2] (e) Object-based [TM3]

38

(a) Frame-291 (b) Frame-1924

Newer

Older

(c) Frame-2441 (d) Frame-9792

(e) Frame-11139 (f) Frame-11700

Figure 18: Cars entering and leaving a parking lot: (a) Initial background (b) Yellow truck
leaves (c) White car and van arrive (d) White van and white car from initial background
leaves and black van arrives (e) Gray car arrives (f) Silver and black cars arrive

(a) (b) (c) (d) (e)

Figure 19: Pixel vs. object-based modeling: (a) Original image (b) Ground truth (c) Pixel-
based [1] (d) Pixel-based [2] (e) Object-based [TM3]

39

2.4.2 Performance metrics

We now present our algorithm performance metrics starting with accuracy, and then com-

putational speed and memory utilization.

Figures 20, 21 show our accuracy results at observability threshold of 50%, with all

layers shown as white foreground, in outdoor and indoor environment respectively. Part

(c) shows layers without any filtering, and part (d) shows the result after applying filtering

at the given observability threshold. Figure 22(a), 23(a) show that after filtering, the false

positives decrease, i.e., background noise is reduced. On the other hand, false negatives

increase due to the fact that some foreground pixels are wrongly classified as background

during filtering.

The main advantage of this filtering is that it eliminates background noise, Figure

20(c), 21(c), which can be considered as new object layers by the higher level module while

forming object layers. The natural question is what if we decrease or increase the observ-

ability threshold. If we reduce it, we will have less foreground error but more and more

background noise will start accumulating, which can result in false layers. On the other

hand, if we increase it too much, we will have less background noise but more foreground

error which can ultimately result in erroneous layer formation, i.e. multiple layers for a

single object. Figure 22(c) and 23(c) show the relationship between observability thresh-

old and number of layer errors for the outdoor and indoor scenes, with 11 and 3 respective

actual number of layers. The difference between the outdoor and the indoor scene is that

the outdoor scene has more persistent dynamic background noise (mostly due to reflections

from vehicles), Figure 22(b) vs. 23(b), which results in formation of false layers as shown

in Figure 22(c) but not in Figure 23(c). These false layers go away when we increase the

observability threshold. On the other hand, increasing the filtering constant too much re-

sults in erroneous layers (multiple layers for a single object) both in indoor and outdoor

environments with maximum error at 100% observability threshold. Based on both the

outdoor and indoor environment analysis, a observability threshold range between 50-75%

40

(a) (b) (c) (d)

Figure 20: Outdoor cars, filtering at 50% observability threshold: (a) Original image (b)
Ground truth (c) Unfiltered (d) Filtered

(a) (b) (c) (d)

Figure 21: Indoor boxes, filtering at 50% observability threshold: (a) Original image (b)
Ground truth (c) Unfiltered (d) Filtered

is optimum in giving the least pixel/layer errors.

Table 3 shows the speed comparison between the basic MMM algorithm and the

TM3 algorithm in frames per second. Variability in speed may be caused by different num-

ber of midground objects entering the scene in the case of TM3. The main factor in the

code optimization is to make the main memory accesses only when required. The algo-

rithm TM3 with all of its new capabilities requires approximately twice the latency of the

baseline MMM algorithm. Previous experiments [20] show that the MMM algorithm runs

4.23x faster than the widely used Gaussians mixture model (GMM) background model-

ing technique [8] on a general-purpose CPU platform. This high speed of TM3 is mainly

due to the fact that we model objects only on the basis of multi-layer background model-

ing. In other words, we don’t track each object continuously, instead we form a blob, and

subsequently the object layer, only when an object becomes stationary.

41

0 2000 4000 6000 8000

unfiltered

filtered

of incorrectly marked pixels

Total Number of Pixel Errors

Fpos

Fneg

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

unfiltered filtered

Fpos

Tpos

(b)

0

2

4

6

8

10

12

14

16

18

20

0 12.5 25 37.5 50 62.5 75 87.5 100

La
y

e
r

E
rr

o
rs

%Obs

%Obs vs No of Layer Errors

Noise as layers

Erroneous layers

(c)

Figure 22: Outdoor cars: (a) Total number of pixel errors at 50% observability (b) FP vs
TP at 50% observability (c) % Observability vs. no. of layer errors

42

0 500 1000 1500 2000 2500 3000

unfiltered

filtered

of incorrectly marked pixels

Total Number of Pixel Errors

Fpos

Fneg

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

unfiltered filtered

Fpos

Tpos

(b)

0

0.5

1

1.5

2

2.5

3

3.5

0 12.5 25 37.5 50 62.5 75 87.5 100

La
y

e
r

E
rr

o
rs

%Obs

%Obs vs No of Layer Errors

Noise as layers

Erroneous layers

(c)

Figure 23: Indoor boxes: (a) Total number of pixel errors at 50% observability (b) FP vs
TP at 50% observability (c) % Observability vs. no. of layer errors

43

Table 3: MMM and TM3 Speed Comparison in FPS

Algorithm/Dataset Outdoors Blocks Boxes Cars

MMM 54 59 60 173

TM3 25 31 40 92

In terms of memory, TM3 requires three extra integers for every pixel mode over

MMM which requires five integers as shown in Figure 24. Therefore, the memory overhead

is 8/5 per pixel mode. The average number of modes per pixel in the given datasets with

limited frames is approximately the same for both TM3 and MMM. The dynamic nature

of the background and overlapping midground objects both require multiple modes per

pixel, and so they balance the requirement of the modes per pixel in both MMM and TM3.

However, the number of modes is bound to be more for TM3 in longer datasets with less

dynamic background, as more and more overlapping midground objects are added to the

scene. Another place where we require extra memory in TM3 is for writing the color output

to show different object layers. This color output as an RGB value requires three bytes per

pixel. In addition, we require an integer per pixel in blob formation for the density map, and

a pointer per pixel to point to the current status of background model in the ghost removal

step. The memory required for layer and blob data structure is negligible. Therefore,

the total memory overhead for the TM3 algorithm is a minimum of 11 words per pixel

compared to 5 i.e. approximately 2x that of MMM.

S x,t.r S x,t.g S x,t.b Cx,t RCNx,t BDx OCx,t LAYER j

S x,t.r S x,t.g S x,t.b Cx,t RCNx,t

Figure 24: Mode comparison of MMM and TM3

44

The high speed and low memory requirement with good accuracy makes our algo-

rithm amenable to embedded platforms which have limited memory and execution power.

2.5 Conclusion

In this chapter, a multilayer background modeling technique, called TM3, is presented for

video surveillance. Rather than simply classifying everything in a scene as either dynami-

cally moving foreground or long-lasting, stationary background, a temporal model is used

to place each scene object in time relative to each other. Foreground objects that become

stationary are registered as layers on top of the background layer. In this process of layer

formation, the algorithm deals with ghost objects, and noise created by dynamic back-

ground and moving foreground objects. Objects that leave the scene are removed based on

the occlusion reasoning among layers. This technique allows us to represent a scene with

multiple midground objects entering, leaving, and occluding each other at different points

in time. This leads to richer representation of temporal properties of scene objects than

traditional foreground/background segmentation. In particular, the information includes

when a particular object arrived or left, and the occlusion relationship among different ob-

jects while they are in the scene.

The TM3 technique builds on a low-cost MMM background modeling technique

[20] which makes it suitable for embedded, real-time platforms. It adds approximately

twice the latency and storage requirements of MMM. However, these costs remain rela-

tively low given that the MMM algorithm runs 4.23x faster than the widely used Gaussian

mixture model (GMM) technique [8] on a general-purpose CPU platform, while exhibiting

comparable performance in accuracy.

45

CHAPTER 3

MULTI-LAYER BACKGROUND MODELING:
SPATIO-TEMPORAL SCENE ANALYSIS

3.1 Introduction and related work

In traditional background modeling techniques midground objects are quickly assimilated

into the background. Simple two-layer extensions of these techniques [19] coarsely model

objects in the foreground to background transition, but do not differentiate among them

based on their spatio-temporal properties. Object appearance events often occur over vary-

ing time scales, and there are situations in which many objects appear on the scene at

different points in time and become stationary. Modeling these scenarios is helpful, for

example, in analyzing a parking lot or a traffic intersection scene to determine the order in

which vehicles have arrived. To analyze and visualize such scenarios, our TM3 approach

models multiple temporal layers of midground objects. This mechanism differentiates mul-

tiple objects, and correctly removes or adds objects, even in occlusion situations.

The problem with multilayer and two-layer background modeling techniques is

that they are unable to deal with partial or full midground/background objects displace-

ments. Issues arise when the position of an object in the original background changes, or

a midground object is fully or partially displaced from its location. These objects will be

recognized as new objects upon change of position. Multiple-object tracking algorithms,

presented in section 2.2, can deal with these spatial displacement scenarios, but the compu-

tational cost associated with using a tracking algorithm is too high, especially for embedded

platforms. For example, the cost for a popular appearance-based multiple-object tracking

algorithm [18] is 15-20 frames per second (320x240 frame size) on a 3GHz P4 system.

46

This chapter proposes a novel mechanism, called spatio-temporal multimodal mean

(STM3), which performs spatio-temporal reasoning based on multi-layer background mod-

eling and color features of the displaced object to conserve the state of the moved ob-

jects in a scene. We extend our temporal multimodal mean (TM3) algorithm to spatial

analysis, in order to correctly model objects upon change of position. A set of removed

midground/background objects is maintained based on object removal information pro-

vided by the TM3 algorithm. The newly observed objects are compared with the set of

removed objects based on the object’s appearance model to decide whether the object is a

brand new entity, or if it is old and has only been displaced. The end result is that we are

able to correctly model the objects in the case of spatial displacements. Application sce-

narios of multiple midground objects occur frequently in the surveillance of homes, offices,

and public places where many objects enter, exit, stop, or start moving at different points in

time. An important application scenario of our algorithm is its ability to tell that an object

in the original scene has only been moved to a different location and has not disappeared.

This chapter is organized as follows. Section 3.2 presents our proposed method of

spatio-temporal multi-layer background modeling. Section 3.3 describes our experiments

and results. We conclude the chapter in Section 3.4.

3.2 Spatio-temporal multimodal mean (STM3)

The spatio-temporal multimodal mean (STM3) algorithm incorporates salient spatial in-

formation into the TM3 approach to produce a richer spatio-temporal scene understanding

mechanism. The spatial extension of the TM3 algorithm must model midground/background

objects upon their displacements. We will consider both full and partial displacement, start-

ing with the full object displacement.

The TM3 algorithm gives us information about background object removal based

on ghost object detection, and midground object removal based on occlusion reasoning.

Using this information, a set of removed objects is maintained along with their histogram

47

of objects color features. The removed object data structure is shown in Figure 25:

ID TS RTS Pn,1

Figure 25: Data structure for a removed object

ID is the object layer identification, TS and RTS are the object layer formation and the

removal timestamps respectively, and Pn,1 is an n-bin histogram column vector of object

color features. We quantize each of the three RGB color components (a color component

consists of 256 color intensity values) into m bins (each incorporating 256/m color intensity

values), which makes the number of our RGB color histogram bins n equal to m3.

When a new midground object is detected, it is compared with each object in the

removed object set based on the Bhattacharyya distance [39] as given below:

dist(PQ) =
√

1 − ρ(PQ) , (13)

ρ(PQ) is the Bhattacharyya coefficient given by:

ρ(PQ) =

n∑
k=1

√
P(ak)Q(bk) . (14)

where P(ak) and Q(bk) are the two normalized histograms with n number of bins specified

by ak and bk respectively. If the Bhattacharyya distance between the histograms, of the new

object and a removed object, is below a threshold then the new object is marked as an old

midground object or a background object, depending upon whether it was a real midground

object or a background object that created a ghost. Moreover, the layer identification ID

and the timestamp TS of the new object are assigned the values of the removed object. An

object is kept in the removed object set for a certain time, after which it is deleted from the

set, based on its removal timestamp RTS , assuming that the object has permanently left the

scene.

In the case of partial object displacement or a newly appeared part of a midground

object, the newly detected midground blob’s bounding box will intersect with the old

midground object. If intersection happens, the histogram comparison of the blob and the

48

midground object layer is performed as described above to determine whether the blob is

part of the old midground object or not. If the blob is marked as part of the old midground

object then the blob pixels are assigned to the old object layer. Furthermore, the bounding

box (Xmin, Xmax, Ymin, and Ymax) and the count C of the layer are re-calculated. In addition,

in the case of a partially displaced object, the layer pixels from where the object has been

displaced are deleted from the model.

3.3 Results

The algorithm is implemented on a single core of an AMD Phenom™ II system (processor

clock frequency of 2.7 GHz), with Windows 7 operating system. Visual Studio C++ envi-

ronment was used for development, performance analysis, and optimization of the code.

We use a dataset of boxes, with 640x480 resolution and 15 frames per second, to

demonstrate various scenarios of partial and full object displacement and how our STM3

algorithm deals with them. The objects, depending upon their age, are depicted using col-

ors ranging from red (newest) to blue (oldest, original background) based on the standard

visible color spectrum.

In the first scenario, an object in the original background has been moved to a dif-

ferent location. This scenario is shown in row 1 of Figure 26. The TM3 algorithm detects

a ghost at the original location of the object and marks it as background, but it will also

detect a new object at the location to which the object is moved part (d), whereas the reality

is that it is the same old object which is part of the background as shown by our STM3

algorithm in part (e). The second scenario, in which the moved object is not part of the

original background, but a midground object, is shown in row 2 of Figure 26. TM3 will

detect a new object at the location where the object is moved part (d), whereas the reality

is that it is an old midground object which has been displaced from its location in the scene

as shown by our STM3 algorithm in part (e). In the third scenario, a midground object is

partially displaced from its original location as shown in row 3 of Figure 26. In this case,

49

a portion of the object will be detected as a new object by the TM3 algorithm as shown in

part (d), whereas the actual situation is as shown by our STM3 algorithm in part (e). In the

final scenario, a midground object is partially occluded when it first appeared on the scene

as shown in row 4 of Figure 26. When this object is unoccluded, TM3 treats the recently

revealed portion as a new object part (d), whereas the actual situation is that it is a portion

of an old object and not a new object as shown by our STM3 algorithm in part (e).

We use a second dataset, also with 640x480 resolution and 15 frames per second,

to show our algorithm working for scenario-1 with another real-world example Figure 27.

The figure shows that the position of a bag present in a room has been changed. The two-

layer and multilayer background modeling algorithms like TM3 will signal an alarm of the

presence of a new object Figure 27 (d), whereas in reality it is an object which was already

there in the scene as shown by our STM3 algorithm Figure 27(e). This is an important

application scenario of our algorithm with its ability to tell that an object in the original

scene has only been moved to a different location and has not disappeared.

We have tested our algorithm on m equal to 4, 8, 16 (256/m equal to 64, 32, 16

intensity values per bin respectively), which makes the RGB color histogram 64, 512, and

4096 (m3) bins respectively. 512-bin histogram gives the best result since the gap between

an object distance with itself (dist(PP)) and a different object (dist(PQ)) is the greatest, as

shown in Figure 28(b). In 64-bin histogram the gap is reduced because dist(PQ) decreases,

Figure 28(a), as bin size (64) is too wide. In 4096-bin histogram the gap is reduced because

dist(PP) increases, Figure 28(c), as bin size (16) is too narrow.

The TM3 technique adds approximately twice the latency and storage requirements

to a low-cost adaptive background modeling technique MMM [20]. However, these costs

remain relatively low given that the MMM algorithm runs four times faster than the widely

used Gaussian mixture model (GMM) adaptive background modeling technique [8] on a

general-purpose CPU platform, while exhibiting comparable performance in accuracy, as

shown in [20]. The latency overhead of STM3 in comparison with TM3 is small. The

50

STM3 algorithm runs at 33 fps whereas the TM3 algorithm runs at 38 fps for the given

boxes dataset. In terms of memory storage, the STM3 algorithm requires additional 515

words (see Figure 25, considering n equal to 512) for each removed object, which is neg-

ligible compared to a minimum of 11 words per pixel in a 640x480 (307200 pixels) frame

scene, required for TM3.

Position I Position II Ground Truth TM3 output STM3 output

Scenario1
(a) F-0754 (b) F-1381 (c) F-1381 (d) F-1381 (e) F-1381

Newer

Older

Scenario2
(a) F-2250 (b) F-2411 (c) F-2411 (d) F-2411 (e) F-2411

Scenario3
(a) F-2411 (b) F-3131 (c) F-3131 (d) F-3131 (e) F-3131

Scenario4
(a) F-3550 (b) F-4556 (c) F-4556 (d) F-4556 (e) F-4556

Figure 26: Spatial displacement scenarios: Scenario1, moved object from original back-
ground; Scenario2, moved object; Scenario3, partially displaced object; Scenario4, par-
tially occluded object

Position I Position II Ground Truth TM3 output STM3 output

Scenario1
(a) F-1 (b) F-1156 (c) F-1156 (d) F-1156 (e) F-1156

Newer

Older

Figure 27: A change in a bag position has been recognized

51

0

0.2

0.4

0.6

0.8

1

1 2 3 4

B-
di

st
an

ce

Scenario

64-bin Histogram

dist(PQ)

dist(PP)

(a)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

B-
di

st
an

ce

Scenario

512-bin Histogram

dist(PQ)

dist(PP)

(b)

0

0.2

0.4

0.6

0.8

1

1 2 3 4

B-
di

st
an

ce

Scenario

4096-bin Histogram

dist(PQ)

dist(PP)

(c)

Figure 28: An object distance with itself dist(PP) and a different object dist(PQ) in the
four scenarios: (a) 64-bin histogram (b) 512-bin histogram (c) 4096-bin histogram

52

3.4 Conclusion

The background modeling techniques that model objects that have become stationary will

incorrectly detect a new object if an existing stationary object is displaced. A novel spatio-

temporal reasoning mechanism is presented based on multi-layer background modeling

to conserve the state of moved objects in a scene. The mechanism models layers of the

foreground objects that have become stationary, along with moving foreground and back-

ground. Objects that change their place, partially or fully, are recognized based on their

color histogram appearance model. The end result is the correct modeling of objects in the

case of spatial displacements. This provides us with a richer mechanism of analyzing and

visualizing spatio-temporal scene events than the traditional binary foreground/background

segmentation.

53

CHAPTER 4

ACCELERATING ADAPTIVE AND MULTILAYER
BACKGROUND MODELING ON LOW-POWER GPUS

4.1 Introduction and related work

Background modeling is a key initial step in many video surveillance applications. As

more and more smart cameras are deployed for surveillance tasks across the globe, an effi-

cient background modeling technique is required that balances accuracy, speed, and power.

Basic background modeling techniques, such as frame differencing and single parametric

[25] (see section 2.2), run fast, but their accuracy is not sufficient for computer vision prob-

lems involving dynamic background, such as waving tree branches and rippling waves. In

contrast, adaptive multimodal background modeling techniques, such as the state of the art

Gaussian mixture model (GMM) [8] are more robust to dynamic background, but run more

slowly.

The fine-grain parallelism inherent in many background modeling techniques mo-

tivates their implementation on GPUs, which are known for their ability to exploit mas-

sive parallelism. Since the advent of parallel computing architectures, such as CUDA,

that allow for easy development of general-purpose applications on GPUs, more and more

surveillance applications are being targeted to GPU platforms, and adaptive multimodal

background modeling is no exception. Many variants of the multimodal background mod-

eling techniques have been implemented on general purpose GPUs since then, as shown

in Table 4. Carr [40] and Fabian and Gaura [5] implement the popular GMM technique

[8] discussed in section 2.2, Pham et al. [6] implement an extended version of the GMM

technique, while Poremba et al. [7] implement a different adaptive background model-

ing technique also based on the Gaussian mixture model. The implementations in Table

4 are listed in the order of increasing cores and therefore increasing speed ups over sin-

gle core CPU, but the power required by each platform also increases accordingly. Apart

54

from Carr’s implementation, other implementations achieve significant speed-ups, but with

general-purpose NVIDIA GeForce GPUs that consume approximately 100 watts. This

high power consumption of the general purpose GPUs is not suited for embedded plat-

forms. In practice, embedded applications must achieve real-time performance with the

limited power of an embedded smart camera. A typical high-end embedded CPU-based

smart camera consumes power in the lower tens of watts (e.g. Intel Atom based NI177x

from National Instruments [11] (12 watts), and Iris GT from Matrox [12] (10 watts), VIA-

Eden-ULV based XCISX100C/XP from Sony [13] (18 watts), Analog Devices Blackfin

based ILC-BL from Intellio [14] (18 watts)). The question then is how best to balance

accuracy, speed, and power; so that we can achieve speed-up over an embedded CPU by

parallelizing adaptive multimodal algorithm, and while doing so maintain the power of the

system within limits of an embedded smart camera.

We address this for background modeling in two ways: 1) by using a robust al-

gorithm that has low computational and memory costs, and 2) by exploiting the data and

thread level parallelism in this algorithm and optimizing its memory access patterns to tar-

get a low-power GPU platform. In particular, we focus on the multimodal mean (MMM) al-

gorithm [20], which performs adaptive background modeling for indoor or outdoor scenes

that may include dynamic, multimodal background, such as fluttering leaves or rippling

waves. As discussed in section 2.2, MMM requires fewer computational and memory re-

sources, and it executes four times faster than the GMM technique on a general-purpose

CPU platform, while exhibiting comparable performance in accuracy [20]. For efficient

execution of this algorithm, we target a low-power integrated GPU: the NVIDIA ION. The

ION GPU has 16 CUDA cores and a maximum thermal design power (TDP) of only 12

watts. This contribution focuses on how data and thread-level parallelism is exploited and

memory access patterns are optimized to target adaptive background modeling algorithm

to this low-power GPU. The first task of this contribution is to accelerate the traditional

multimodal mean algorithm MMM and then extend it to our multi-layered TM3 version.

55

This chapter is organized as follows. Section 4.2 presents our implementation of

the MMM and the multi-layer TM3 algorithms. Section 4.3 describes our experiments and

results. We conclude the chapter in Section 4.4.

Table 4: Multimodal Background Modeling on GPUs

Algorithm GPU model Cores TDP in watts Speed-up Authors

GMM [8] GF 8600M GT 32 22 5x Carr [40]

Extended GMM [9] GF 9600 GT 64 96 10x Pham et al. [6]

GMM [10] GF 9800 GT 112 105 18x Poremba et al. [7]

GMM [8] GF 260 GTX OC 216 182 26x Fabian and Gaura [5]

4.2 Methodology

We describe here the design methodology for a CUDA implementation of the MMM al-

gorithm. We begin this section by giving an overview of the CUDA (Compute Unified

Device Architecture) architecture. We then present our implementation of the MMM algo-

rithm on the CUDA platform. Subsequently, we extend the MMM GPU implementation to

our multilayer TM3 implementation.

4.2.1 CUDA platform

CUDA is a hardware and software architecture by NVIDIA for general purpose computing

on its GPUs. Figure 29 shows an overview of an NVIDIA GPU based on the CUDA

architecture. The CUDA hardware architecture is based on a hierarchy of compute and

memory resources. An NVIDIA GPU based on CUDA has N streaming multiprocessors

(SMs), with each SM having M streaming processor (SP) cores based on a SIMT (Single

Instruction Multiple Threads) architecture. Each SP has its private register space, each SM

has fast on-chip cache shared by its SPs called shared memory, and the whole GPU has an

off-chip main memory called device memory or global memory shared by all of its SMs.

56

Device Memory

SM N. ..

Device

SM 2

SM 1

Shared Memory

Registers Registers Registers

Constant Cache

Texture Cache

….SP 1 SP 2 SP M

Instruction
Unit

Figure 29: CUDA based NVIDIA GPU architecture

(In our discussion, we use the terms device memory and global memory interchangeably.)

With respect to its software architecture, the CUDA programming model has a hi-

erarchy of threads [41]. At any given instance of time, a single thread runs on top of

an individual SP core, and the thread has access to the private register space of that core.

Blocks of threads run on top of an SM, and the threads from a block are executed in a group

of 32 (called a warp) onto M SPs (on our platform M = 8) of an SM. Threads in the same

block can use the shared memory of the SM for information sharing and synchronization.

Ultimately, these thread blocks form a grid which runs on the whole GPU. All the threads

in the grid have access to the global memory, and threads within different blocks can only

share information and synchronize through the global memory. CUDA’s programming lan-

guage is an extension of C with additional APIs to handle code execution on the GPU. The

main function runs on the CPU (host), which then invokes a parallel GPU (device) code

function referred to as a kernel. (In our discussion, we use the terms device and GPU, and

57

host and CPU interchangeably.)

The constraints on compute and memory resources of the CUDA platform are dic-

tated by its compute capability. These constraints on the resources include registers per

SM, warps per SM, shared memory per SM etc. They also include types of instructions

the device can execute. For details see [41]. Keeping these constraints in mind, one has to

efficiently and maximally utilize the available resources.

4.2.2 MMM implementation

Given this background on the CUDA platform architecture, we are now ready to describe

implementation details of the MMM algorithm on this platform. The basic implementation

approach is to find enough parallel work, while hiding the memory latency so that the GPU

compute resources are kept maximally busy.

4.2.2.1 Basic implementation

In our implementation of the background modeling algorithm, we use two GPU kernels.

At the start, the first image is copied from the CPU (host) memory to the GPU (device)

memory, and then a kernel is launched to create and initialize the background model in the

device memory. After this, for every new image, the program copies the image from the

host memory to the device memory, launches a kernel to perform background subtraction

for that image, and then writes the result back to the host memory. We will focus on the

implementation of only the background subtraction kernel since the background model

initialization kernel is used only once at the start.

In implementing the background subtraction GPU kernel, the key idea is to have

enough parallel work, while hiding the memory latency so that the GPU compute resources

are kept maximally busy. First, we need to find enough independent tasks that can be run

as parallel threads on the whole GPU. In the MMM algorithm, operations performed on an

individual pixel are independent of the others, and an image has enough pixels to occupy the

whole GPU. Second, there are two commonly known ways by which the memory latency

58

Figure 30: The background subtraction kernel

can be hidden. The first is data reuse, so that the data can be reused from fast memories

like the register space or shared memory. The second is by activating a massive number of

threads. We do not have the first option since threads have little data reuse (mostly in the

form of reading pixel RGB values and current mode to the private registers spaces), and

global memory is accessed for almost every instruction by individual threads (memory-

bound problem). However, we do have a massive number of threads equal to the number of

pixels in an image. This means, we can have more threads in a block and more blocks on an

SM, depending upon the available resources. In this way, the scheduler can put off a thread

warp waiting for a memory access, dispatch a new thread warp, and later on return to the

first warp. The scheduler can make a zero-overhead switch among the warps available on

an SM, which effectively hides the memory latency. This means that the more warps there

are per SM, the more we can hide the memory latency. Figure 30 shows the skeleton code

for our kernel for background subtraction, and its launch from the CPU.

In this basic implementation, we use the GPU texture cache to read images from

the device memory because image pixels have spatial locality, and are read-only. A one-

dimensional texture reference is used for texture fetch since images are stored in the device

memory as linear arrays of unsigned characters. This achieves a high cache hit rate (87%).

59

In addition, we use constant memory for fast access of the parameters used by the MMM

algorithm.

4.2.2.2 Performance optimizations

To improve upon the basic implementation and to maximize speed-up, we apply a variety

of architectural performance optimizations.

Coalesced global memory for accessing the background model. Perhaps the single

most important consideration in a CUDA implementation is to coalesce the global memory

accesses [42]. The bandwidth specified for a GPU can only be achieved if the accesses are

coalesced. When certain access requirements are met, global memory accesses by threads

of half warp (for devices of compute capabilities 1.x) are coalesced by device into the

fewest transactions possible [42]. The requirements relate to contiguity and alignment of

memory accesses, and depend upon the CUDA compute capability of the specific device in

use. To coalesce our accesses, we store our background model as a structure of arrays rather

than an array of structures as shown in Figure 31. In this Figure, the first subscript refers

to the thread number and the second refers to the mode number, where only the first mode

is completely shown since the rest follows the same pattern. In addition, here R, G, and

B identify the RGB running sums, and C identifies the count of a mode in the background

model. The figure shows that mode value (R, G, B, or C) accessed by the threads of a half

warp are adjacent in a structure of arrays storage pattern, rather than an array of structures

storage pattern. This allows memory accesses by the threads of a half warp to be coalesced.

Pinned memory for zero copy. Pinned memory in CUDA is used in certain situations

for performance improvements because this memory cannot be swapped to disk as virtual

memory on the CPU. Pinned memory is in mapped mode, when the GPU is required to

access the CPU memory instead of copying data over to its own memory. Using mapped

pinned memory in integrated GPUs is always a performance gain because the CPU and the

GPU are sharing the same memory [42]. Mapped pinned memory returns a device pointer

that is used by the GPU to access the CPU data from the memory, and so superfluous

60

(a) (b)

Figure 31: Un-coalesced array of structures (left), coalesced structure of arrays (right)

copying from the CPU to the GPU is avoided. We use mapped pinned memory both ways,

i.e. reading new images and writing back the binary background subtraction result.

Floating point operations and vector data-type. The RGB and C values of a mode

are stored as 32-bit integers by the MMM algorithm. The problem here is that the NVIDIA

CUDA GPU, of compute capability 1.x, takes multiple instructions to complete 32-bit in-

teger multiplications/divisions because of the lack of built in support which degrades the

performance. To overcome this performance bottleneck, we type-cast the RGB sums to

float while calculating the means. Moreover, since the RGB sums and C count are always

used together, we store them in a packed int4 vector data-type of CUDA for improved per-

formance. A performance improvement results because the 16 threads of a half warp, in

a coalesced memory framework, now access the data in two 128-byte transactions rather

than four 64-byte transactions.

Multiple pixels per thread. The final important optimization is specific to our algo-

rithm: we assign multiple pixels to a single thread. In addition to employing data reuse,

a common way to hide memory latency is to increase the occupancy of the device by

launching a massive number of threads. Moreover, a less common way to achieve the same

performance is to have multiple independent memory accesses in a single thread [43]. This

61

is possible in our algorithm since accesses for each pixel are independent of each other.

Therefore, when we have multiple pixels per thread we do have those independent memory

accesses.

The important question is where does this result in a performance improvement.

The answer lies in the dynamic nature of our MMM algorithm where a background pixel

can have many modes. A new image pixel can match any of those modes from 1 to the

maximum number of modes K, at which point the pixel thread is done with its share of work

in a single pixel per thread case. If multiple pixels are assigned per thread, the threads which

finish early can move on to their next pixel and so on. There will be typically multiple such

threads at each step depending on the nature of background at different points (dynamic or

non-dynamic) in the scene. The end result is that a thread with multiple pixels will take

less time than multiple threads each with a single pixel. This results in great performance

improvement.

One important question is how much can we increase the number of pixels per

thread. This is determined by the minimum device occupancy requirement in terms of

blocks per SM since an increase in the number of pixels per thread results in a decrease

in the number of threads and blocks. If we keep on increasing the number of pixels per

thread, a point will be reached where the device will not be fully occupied and at that point

performance will start to degrade. The number of pixels per thread should also be a power

of two to ensure memory alignment for coalesced accesses. Furthermore, there should be

block-level load-balancing on the device. For a highly dynamic background, as we increase

the number of pixels per thread, we should continue to achieve improvement in speed until

we reach the minimum occupancy limit, while speed saturation should reach earlier for less

dynamic backgrounds.

62

4.2.3 Multi-layer background modeling TM3 implementation

We now consider the parallelization of the multilayer background model TM3. As in the

case of MMM, the first step is to find the parallel work to be run as threads. Our object-

based multi-layer background modeling algorithm involves two major processing tasks: at

the pixel-level, which has a great deal of parallelism, and at the region level (which involves

area density estimation for object layer formation and is predominantly sequential). Of

the two, pixel level processing takes most of the time: 98%, and has the most inherent

parallelism in that pixels can be processed independently of each other in this task. Keeping

Amdahl’s law in mind we have taken a hybrid approach that runs the pixel-level analysis

on the GPU and the region-level analysis on the CPU, to achieve a high speed up overall.

We build our TM3 GPU kernel on top of the highly optimized MMM kernel dis-

cussed in the previous section. We have to make the number of modes fixed in the back-

ground model for TM3, rather than allowing to change dynamically for efficient memory

access. The major change in TM3 from the MMM implementation is managing and op-

timizing memory usage in this hybrid CPU/GPU setting. This is challenging because in

TM3 algorithm, both the GPU and the CPU access the background model. In the origi-

nal MMM implementation only the GPU accessed the background model, and it resided

in the GPU memory. However, in TM3, CPU also needs to access and update the back-

ground model while performing region-level analysis for the formation of object layers. In

a discrete GPU case, CPU (host) and GPU (device) memories are separate, and data has

to be copied back and forth over a PCI bus between CPU and GPU for information shar-

ing. Therefore, in the case of a discrete GPU, one has to perform a time-consuming copy

of the background model data from/to GPU to/from CPU while performing region-level

analysis. However, an integrated GPU platform, like ours, gives an important advantage

for the TM3 implementation as the CPU and the GPU share the memory. In an integrated

GPU, a portion of memory is allocated for the GPU using system BIOS setting, which is

called by the same name of device memory as in the discrete GPU case, but in reality it is

63

a portion of the same memory hardware used by the CPU. In addition, the GPU can also

use the CPU memory directly, without copying, using host-mapped pinned memory. In

the MMM implementation, we only use host-mapped pinned memory to our advantage by

avoiding time-consuming copying of an image frame from/to the CPU memory to/from the

GPU memory. In TM3, however, we allocate the background model using host-mapped

pinned memory as well, instead of the dedicated device memory of GPU, so that both the

CPU and GPU can access the model.

We allocate the memory as write-combined in addition to host-mapped, so that we

can avoid the delay caused by the CPU cache hierarchy. The host-mapped write-combined

pinned memory, on an integrated GPU, gives us as higher a performance on the GPU side

as if we are accessing the device memory allocated for the GPU [44]. On the other hand,

the CPU side reads becomes very slow (about 6x slower) because no caching is performed,

and because there are no SSE4 instructions on our CPU to efficiently read such I/O mapped

data[44]. However, the overall performance improves since the CPU accesses the back-

ground model only during region-level analysis, which is a small percentage (2%) of the

total run time.

The region-level analysis forms object layers in the TM3 algorithm. This layer in-

formation also needs to be accessed by the GPU pixel-level analysis kernel for updating

the occlusion reasoning counts. Therefore, the layer data structure is also allocated using

write-combined host-mapped pinned memory, so that the GPU pixel-level kernel can di-

rectly access this information from the CPU memory for updating the occlusion reasoning

counts. Since an object layer has many pixels, these counts are updated by multiple threads

of the GPU requiring that atomic operations are used here. This will inevitably affect the

performance, because atomic operation serializes the threads. In addition, to update these

occlusion counts, the TM3 algorithm needs to access main memory for every mode of a

pixel, unlike the MMM algorithm. This makes the multiple pixel per threads optimization

ineffective on the GPU, since threads cannot go any further as main (global) memory is

64

Figure 32: Asus AT3IONT-I NVIDIA ION GPU platform

accessed for every mode of a pixel. Despite these limitations which partly serializes our

algorithm, we achieve a high (five times) speed up for TM3 on ION GPU platform over

Atom CPU platform as described in the next section.

4.3 Experimental setup and results

Our integrated GPU platform is the Asus AT3IONT-I Deluxe, Figure 32. It has an NVIDIA

ION GPU with 16 cores (2 SMs) running at 1.1GHz (shader clock speed) with TDP of

12 watts. The CUDA device compute capability is 1.1. In addition, the platform has an

Intel Atom 330 Dual-Core CPU running at 1.6GHz with TDP of 8 watts. The memory

shared by both the GPU and the CPU is 4 GB DDR3, out of which 512MB is allocated

for the GPU device. The tested device memory bandwidth is 6.9GB/sec. We use three

datasets, summarized in Figure 33, to test the performance on both GPU and CPU. The

maximum gcc compiler optimizations option (O3) is used on the Atom CPU platform. The

CUDA compute visual profiler and the CUDA occupancy calculator are used for the GPU

performance analysis.

65

(a) Trees-HD[45]
287 frames-640x480 resolution

(b) Outdoors
400 frames-640x480 resolution

(c) Pets-S1L1V2[46]
221 frames-768x576 resolution

Figure 33: Datasets used to run MMM on ION GPU

4.3.1 MMM performance results

Figure 34 shows speed-ups compared to the implementation on a single core of the Atom

CPU, after applying each of the GPU optimizations discussed for the three datasets. These

optimizations are applied cumulatively, i.e. a later optimization is applied on top of all

the previous optimizations. We achieve great performance improvement reaching nearly

20x. The overall performance improvement is less for Trees dataset because of the highly

dynamic nature of the background, which causes more divergent branches reducing the

effectiveness of coalesced memory accesses. On the other hand, as shown in Figure 35, the

multiple pixels per thread PPT optimization performs best for the Trees dataset because of

prevalence of dynamic background. For highly dynamic backgrounds, as we increase the

number of pixels per thread, we continue to achieve improvement in speed until we reach

the minimum occupancy limit, while speed saturation is reached earlier for less dynamic

backgrounds. At 512, the performance goes down because the limit of minimum occupancy

is crossed. The performance decreases the most at this point for the Pets dataset because

there is also a block-level load imbalance on SMs. Table 5 gives a comparative summary

of our results in frames per second on a single core of Intel Atom CPU verses the 16-core

NVIDIA ION GPU. This result shows that we have achieved up to 392 fps for a full VGA

frame on a low-power integrated GPU platform compared to 20 fps on a CPU platform of

similar power specifications.

66

0

5

10

15

20

25

Basic Coalesced Pinned Float-Vector PPT

S
p

e
e

d
u

p
 o

v
e

r
A

to
m

 C
P

U

Optimization

Trees-HD

Outdoors

Pets

Figure 34: Speed ups over a single core of Atom CPU as a result of various performance
optimizations, cumulatively applied left to right

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1 2 4 8 16 32 64 128 256 512

S
p

e
e

d
u

p
 o

v
e

r
1

p
ix

e
l/

th
re

a
d

Pixels Per Thread

Trees-HD

Outdoors

Pets

Figure 35: Speed ups for different number of pixels per thread implementations over a
single pixel per thread implementation

67

Table 5: MMM on ION-GPU and Atom-CPU

Platform Cores Used TDP-watts Speed-fps

Trees-HD Outdoors Pets

Atom-330 Single 8 18 20 14

ION-1 16 12 245 392 242

Figure 36 shows the performance comparison of our MMM GPU implementa-

tion with the GPU implementation [6] of an extended version of Gaussian mixture model

EGMM [9] and the original Gaussian mixture model GMM [8]. We modified the EGMM

implementation to use host-mapped pinned memory for fair comparison on our integrated

GPU platform. Changing threads per block from 128 to 64 also significantly increased the

speed of EGMM/GMM algorithms on the ION GPU. Our implementation runs up to 6x

faster than these implementations. On the other hand, on a general-purpose CPU platform

MMM is shown to run 4.23x faster than the GMM algorithm [20]. Our major gain over

the EGMM/GMM implementation [6] is a result of the multiple pixel per thread optimiza-

tion. Table 6 compares the speed in terms of frame rate of our implementation with the

GMM GPU implementations. The table shows our gain in terms of speed while having

comparable accuracy to GMM as described in section 2.2.

Table 6: MMM and GMM on NVIDIA ION

Algorithm Speed-fps

Trees-HD Outdoors Pets

GMM 48 66 49

EGMM 51 73 52

MMM 245 392 242

68

Finally, we perform sensitivity and scaling analyses for our MMM implementation

with respect to video frame size. Figure 37 shows the effect of video frame size on our

algorithm performance by showing the actual and expected performance as we keep on

reducing the video frame size by half, with original frame size of 640x480. We see that the

gap between actual and expected performance becomes evident at/after 100x96, which is

the point where we do not have enough pixels to hide the 400-800 cycles memory latency.

In 100x96 case, we have 150 warps per SM considering 64 threads/block, and a single pixel

per thread, which means only 600 cycles of memory latency can be hidden as we have no

data reuse.

4.3.2 TM3 performance results

We now discuss the results for the multilayer background modeling TM3 algorithm. For

testing our TM3 algorithm implementation, we use the Cars dataset of over 10K frames

with 640x480 frame size and 15 frames per second. This is an outdoor parking lot scene in

which multiple vehicles arrive/leave over a long period of time. This allows multiple object

layers to be added and deleted throughout the course of time for more accurate performance

measurement. We have fixed the number of modes to four in both the CPU and the GPU

implementation. Increasing the number of modes results in more accuracy but less speed,

and vice versa.

We achieve a high speed up of 5x over the Atom CPU platform for the TM3 al-

gorithm. This is not as high as the MMM algorithm speed up, and in this section, we

analyze why this is the case. Figures 38 and 39 show the performance results of the TM3

in comparison with the traditional background modeling MMM, and TM3-pixel algorithm

[2] with no region-level analysis for object layer formation. Figure 38 shows that the TM3-

pixel algorithm speed is approximately 0.7x of MMM both on Atom CPU and ION GPU.

This is because it requires more memory accesses and processing mainly for the age and

observability calculation of the pixels. The case is not the same for the full TM3 algorithm.

The TM3 algorithm speed is 0.6x on CPU in comparison with the MMM, which is due to

69

0

50

100

150

200

250

300

350

400

450

Trees Outdoors Pets

F
r
a

m
e

s
 P

e
r
 S

e
c
o

n
d

Dataset

GMM

EGMM

MMM

Figure 36: Frame rate comparison between MMM and GMM/EGMM on ION GPU: Speed
up of 5-6x

0

10

20

30

40

50

60

70

S
p

e
e

d
u

p
 o

v
e

r
6

4
0

x
4

8
0

Frame Size

Expected

Actual

Figure 37: Speed ups over 640x480 frame size implementation as we decrease the frame
size by half at each step

70

extra layer-formation processing. On GPU, however, it is 0.23x, in comparison with the

MMM algorithm. The main reason for this degradation in performance is the access of

main memory by the TM3 algorithm for every pixel mode for occlusion reasoning, which

makes the prolific multiple pixels per thread optimization ineffective on the GPU. The

other important reason is the atomic operations of occlusion reasoning counts on the GPU

kernel which sequentializes the threads. The sequential region-level analysis code (2% of

the total runtime), which runs on the CPU degrades the performance a little in accordance

with Amdahl’s law. The effect of these performance bottlenecks is shown in Figrue 39.

The figure shows TM3 speed bottlenecks temporarily removed for testing (column 2-4),

which results in higher fraction of the MMM speed for TM3 on ION GPU. The first and

last column again shows TM3 speed in terms of a fraction of the MMM speed on ION

and Atom respectively. Figure 40 shows the final frame rate achieved for TM3 algorithm

on ION GPU in comparison with Atom CPU for the Cars dataset. Despite the limitations

caused by object layer formation analysis, which partly serializes our TM3 algorithm, we

still achieve a high frame rate of 56 fps for full VGA frame size (640x480) on ION GPU

platform compared to 11 fps on Atom CPU platform, which is a 5x speed up.

4.4 Conclusion

Background modeling is a key initial step in many video surveillance applications. As more

and more smart cameras are deployed for surveillance tasks across the globe, an efficient

background modeling technique is required that balances accuracy, speed, and power. Due

to its high parallel computational characteristics, robust adaptive background modeling

has been implemented on GPUs with significant performance improvements over CPUs.

However, these implementations are infeasible in embedded applications due to the high

power ratings of the targeted general-purpose GPU platforms. This chapter focuses on how

data and thread-level parallelism is exploited and memory access patterns are optimized to

target an adaptive background modeling algorithm MMM to a low-power GPU with TDP

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TM3-pixel TM3

F
ra

c
o

f
M

M
M

 S
p

e
e

d

Algorithm

Ion

Atom

Figure 38: TM3-pixel and TM3 speed comparison vs. MMM on ION GPU and Atom
CPU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TM3 Ion Serial-region Atomic-ops Mem-access TM3 Atom

F
ra

c
o

f
M

M
M

 S
p

e
e

d

Bottlenecks Effect

Figure 39: TM3 speed bottlenecks temporarily removed for testing (column 2-4) results
in higher fraction of the MMM speed for TM3 on ION GPU, the first & last column again
show TM3 speed as a fraction of MMM on ION and Atom respectively from the previous
figure

72

11

56

0

10

20

30

40

50

60

Atom Ion

F
r
a

m
e

s
 P

e
r
 S

e
c
o

n
d

Platform

Figure 40: Frame rate of TM3 algorithm on ION GPU and single core of Atom CPU: Speed
up of 5x

of only 12 watts. The algorithm has comparable accuracy with the GMM algorithm, but

less computational and memory cost. We have achieved a frame rate of 392fps with a

full VGA resolution (640x480) frame on a low-power integrated GPU NVIDIA ION. This

is a 20X speed-up of the MMM algorithm on the GPU compared to an embedded CPU

platform Intel Atom of comparable TDP. Moreover, our GPU implementation of MMM

outperforms the GPU implementation of GMM by achieving a speed up of 6x. In addition,

for the multi-layer background modeling algorithm TM3, the speed up achieved is 5x.

73

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The dissertation has developed an efficient object-based multi-layer background model-

ing approach to distinguish among midground objects, the objects whose existence occurs

over varying time scales between the extremes of short-term ephemeral appearances (fore-

ground) and long-term stationary persistences (background). The dissertation consists of

three contributions.

In the first contribution, a multilayer background modeling technique, temporal

multimodal mean TM3, is presented for video surveillance. The technique temporally

model a scene in which there are multiple interacting midground objects occurring at dif-

ferent time scales. The approach correctly models the scenes with long-term occlusions and

ghost objects as compared to the multilayer pixel-based background modeling approaches.

TM3 technique allows us to represent a scene, with multiple midground objects entering,

leaving, and occluding each other at different points in time. This leads to richer informa-

tion about temporal properties of a scene than traditional foreground/background segmen-

tation. The information includes when a particular object arrived or left the scene, and the

occlusion relationships among different objects while they are in the scene.

The TM3 technique builds on a low-cost MMM background modeling technique

[20] which makes it suitable for embedded, real-time platforms. It adds approximately

twice the latency and storage requirements of MMM. However, these costs remain rela-

tively low given that the MMM algorithm runs 4x faster than the widely used Gaussian

mixture model (GMM) technique [8] on a general-purpose CPU platform, while exhibiting

comparable performance in accuracy.

The multi-layer (and two-layer) background modeling techniques that model objects

that have become stationary will incorrectly detect a new object if an existing midground

74

or background object is displaced. The second contribution presents a novel spatio-

temporal reasoning mechanism, spatio-temporal multimodal mean STM3, based on multi-

layer background modeling and objects appearances to conserve the state of moved objects

in a scene. The algorithm is an extension of our temporal multimodal mean TM3 algo-

rithm to spatial analysis, adding only a little computational and memory overhead over

TM3. STM3 algorithm, consistently models midground/background objects upon par-

tial/full change of position, and maintains conservation of existing objects, only removing

them once they leave the scene. An important result of this algorithm is that it avoids false

alarms of new objects when existing objects are displaced in the scene.

Background modeling techniques for embedded computer vision applications must

balance accuracy, speed, and power. Due to its inherent parallelism, robust adaptive back-

ground modeling, such as GMM, has been implemented on GPUs with significant per-

formance improvements over CPUs. However, these implementations are infeasible in

embedded applications due to the high power ratings, in the range of 100 watts, of the

targeted general-purpose NVIDIA GeForce GPU platforms. The third contribution fo-

cuses on how data and thread-level parallelism is exploited and memory access patterns

are optimized to target a low-cost robust adaptive background modeling algorithm MMM

to a low-power GPU NVIDIA ION with TDP of only 12 watts. The algorithm has com-

parable accuracy with the GMM algorithm, but less computational cost. Accelerating this

technique is also important because it is at the core of our spatio-temporal multi-layer back-

ground modeling algorithms TM3/STM3. We have achieved a frame rate of 392fps with a

full VGA resolution (640x480) frame on the NVIDIA ION GPU. This is a 20X speed-up

of the MMM algorithm on the GPU compared to the embedded CPU platform Intel Atom

of comparable TDP. Moreover, our GPU implementation of MMM outperforms the GPU

implementation of GMM by achieving a speed up of 6x. Subsequently, we extended the

MMM GPU implementation to the multi-layer background modeling algorithm TM3, and

achieved 5x speed up over the single core Atom CPU implementation.

75

Currently in our multi-layer background modeling approach TM3, new objects,

whose layers are yet to be formed, are required to be non-overlapping at the time of their

object layer formation; otherwise, they will be grouped into a single layer. In addition,

overlapping objects are required to be dissimilar in color since our occlusion reasoning

mechanism uses color features to differentiate among the object layers. Future work can

focus on extending our algorithm to handle overlap among new objects at the time of object

layer formation, and to handle similar color overlapping objects using texture and shape in-

formation in addition to color appearance models.

In our spatio-temporal multimodal mean (STM3) approach, objects with similar

appearance models can cause false matches because of the simple nature of the color his-

togram object identification method. Future work can explore enhancing our technique

with richer object identification methods than the color histogram. In addition, paralleliz-

ing the STM3 algorithm, on the NVIDIA ION GPU platform, for further performance

improvement is another future work direction.

Being able to extract multiple temporal midground layers in a scene makes possible

many future applications in video surveillance. This would aid humans, particularly in the

task that is difficult for the human visual system of detecting the objects that gradually

become stationary. In a semi-autonomous setting, for example, our algorithms can provide

a human operator with a single frame summary of the ordered object occurrences that

happened in the past in a long video sequence. This would be a tedious and error-prone

task for a person who is continuously monitoring a scene. In addition, the spatio-temporal

scene analysis mechanism presented in this dissertation can provide a part of a low-cost

early vision engine, on top of which high-level computer vision applications, such as video

summarization and scene understanding, can efficiently run on future embedded platforms.

76

REFERENCES

[1] K. Kim, D. Harwood, and L. S. Davis, “Background updating for visual surveillance,”

in International Symposium on Visual Computing (ISVC), pp. 337–346, 2005.

[2] S. Azmat, L. Wills, and S. Wills, “Temporal multimodal mean,” in 2012 IEEE South-

west Symposium on Image Analysis and Interpretation (SSIAI), pp. 73–76, 2012.

[3] “4.2 million cameras? that’s what we’ve been told but new research paints a different

picture.” CCTV Image, official publication of the CCTV user group, Winter 2011.

[4] N. Jacobs and R. Pless, “Time scales in video surveillance,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1106–1113, 2008.

[5] T. Fabián and J. Gaura, “Parallel implementation of recursive background modeling

technique in CUDA for tracking moving objects in video traffic surveillance.” http:

//www.fi.muni.cz/memics07/2008/pres/fabian_cuda.pdf, 2008.

[6] V. Pham, P. Vo, V. T. Hung, et al., “GPU implementation of extended gaussian mixture

model for background subtraction,” in 2010 IEEE RIVF International Conference on

Computing and Communication Technologies, Research, Innovation, and Vision for

the Future, pp. 1–4, 2010.

[7] M. Poremba, Y. Xie, and M. Wolf, “Accelerating adaptive background subtraction

with GPU and CBEA architecture,” in 2010 IEEE Workshop on Signal Processing

Systems (SIPS), pp. 305–310, 2010.

[8] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time

tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

vol. 22, pp. 747–757, 2000.

77

http://www.fi.muni.cz/memics07/2008/pres/fabian_cuda.pdf
http://www.fi.muni.cz/memics07/2008/pres/fabian_cuda.pdf

[9] Z. Zivkovic and F. van der Heijden, “Efficient adaptive density estimation per image

pixel for the task of background subtraction,” Pattern Recognition Letters, vol. 27,

no. 7, pp. 773–780, 2006.

[10] T. Horprasert, D. Harwood, and L. S. Davis, “A statistical approach for real-time

robust background subtraction and shadow detection,” in IEEE International Confer-

ecne on Computer Vision (ICCV), pp. 1–19, 1999.

[11] “NI 177X series smart cameras.” http://sine.ni.com/ds/app/doc/p/id/

ds-370/lang/en, last accessed, June 2014.

[12] “Matrox IRIS GT smart camera.” http://www.matrox.com/imaging/en/

products/smart_cameras/iris_gt, last accessed, June 2014.

[13] “Sony XCISX100C-XP smart camera.” http://pro.sony.com/bbsc/ssr/

cat-camerasindustrial/cat-cismartcameras/product-XCISX100C%2FXP/,

last accessed, June 2014.

[14] “Intellio ILC-BL series smart cameras.” http://www.videoline-tvcc.com/

upload/pdf/ILC-BL_series_datasheet_ENG.pdf, last accessed, June 2014.

[15] S. Azmat, L. Wills, and S. Wills, “Multilayer background modeling under occlu-

sions,” Machine Vision and Applications (MVA), Apr 2014.

[16] S. Azmat, L. Wills, and S. Wills, “Spatio-temporal multimodal mean,” in 2014 IEEE

Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 81–84, 2014.

[17] S. Azmat, L. Wills, and S. Wills, “Accelerating adaptive background modeling on

low-power integrated GPUs,” in International Workshop on Embedded Multicore Sys-

tems (ICPP-EMS 2012), held in conjunction with the 41st IEEE International Con-

ference on Parallel Processing, pp. 568–573, 2012.

78

http://sine.ni.com/ds/app/doc/p/id/ds-370/lang/en
http://sine.ni.com/ds/app/doc/p/id/ds-370/lang/en
http://www.matrox.com/imaging/en/products/smart_cameras/iris_gt
http://www.matrox.com/imaging/en/products/smart_cameras/iris_gt
http://pro.sony.com/bbsc/ssr/cat-camerasindustrial/cat-cismartcameras/product-XCISX100C%2FXP/
http://pro.sony.com/bbsc/ssr/cat-camerasindustrial/cat-cismartcameras/product-XCISX100C%2FXP/
http://www.videoline-tvcc.com/upload/pdf/ILC-BL_series_datasheet_ENG.pdf
http://www.videoline-tvcc.com/upload/pdf/ILC-BL_series_datasheet_ENG.pdf

[18] T. Yang, Q. Pan, J. Li, and S. Li, “Real-time multiple objects tracking with occlusion

handling in dynamic scenes,” in IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 970–975, 2005.

[19] B. Valentine, S. Apewokin, L. Wills, S. Wills, and A. Gentile, “Midground object

detection in real world video scenes,” in IEEE Conference on Advanced Video and

Signal Based Surveillance (AVSS), pp. 517–522, 2007.

[20] S. Apewokin, B. Valentine, D. Forsthoefel, L. Wills, S. Wills, and A. Gentile, “Em-

bedded real-time surveillance using multimodal mean background modeling,” in Em-

bedded Computer Vision, (B. Kisacanin, S. Bhattacharyya and S. Chai, eds.), pp. 163–

175, Springer, 2010.

[21] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: Principles and prac-

tice of background maintenance,” in The Proceedings of the Seventh IEEE Interna-

tional Conference on Computer Vision (ICCV), pp. 255–261, 1999.

[22] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time

tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), vol. 19, no. 7, pp. 780–785, 1997.

[23] N. J. McFarlane and C. P. Schofield, “Segmentation and tracking of piglets in images,”

Machine Vision and Applications (MVA), vol. 8, no. 3, pp. 187–193, 1995.

[24] S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld, “Detection and location of peo-

ple in video images using adaptive fusion of color and edge information,” in 15th

International Conference on Pattern Recognition, pp. 627–630, 2000.

[25] S. C. Sen-Ching and C. Kamath, “Robust techniques for background subtraction in

urban traffic video,” in Electronic Imaging 2004, pp. 881–892, International Society

for Optics and Photonics, 2004.

79

[26] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background

subtraction,” in European Conference on Computer Vision (ECCV), pp. 751–767,

2000.

[27] T. Bouwmans, F. El Baf, B. Vachon, et al., “Statistical background modeling for

foreground detection: A survey,” Handbook of Pattern Recognition and Computer

Vision, pp. 181–199, 2010.

[28] R. Mathew, Z. Yu, and J. Zhang, “Detecting new stable objects in surveillance video,”

in IEEE 7th Workshop on Multimedia Signal Processing, pp. 1–4, 2005.

[29] J. Connell, A. W. Senior, A. Hampapur, Y.-L. Tian, L. Brown, and S. Pankanti, “De-

tection and tracking in the IBM peoplevision system,” in 2004 IEEE International

Conference on Multimedia and Expo (ICME), pp. 1403–1406, 2004.

[30] P. Spagnolo, A. Caroppo, M. Leo, T. Martiriggiano, and T. D’Orazio, “An aban-

doned/removed object detection algorithm and its evaluation on PETS datasets,” in

IEEE International Conference on Video and Signal Based Surveillance (AVSS), 2006.

[31] Y.-l. Tian, R. Feris, A. Hampapur, et al., “Real-time detection of abandoned and re-

moved objects in complex environments,” in The Eighth International Workshop on

Visual Surveillance (VS2008), 2008.

[32] S. Ferrando, G. Gera, and C. Regazzoni, “Classification of unattended and stolen

objects in video surveillance system,” in IEEE International Conference on Video

and Signal Based Surveillance (AVSS), 2006.

[33] S. Khan and M. Shah, “Tracking people in presence of occlusion,” in Asian Confer-

ence on Computer Vision (ACCV), pp. 1132–1137, 2000.

80

[34] V. Papadourakis and A. Argyros, “Multiple objects tracking in the presence of

long-term occlusions,” Computer Vision and Image Understanding, vol. 114, no. 7,

pp. 835–846, 2010.

[35] H. Tao, H. S. Sawhney, and R. Kumar, “Object tracking with bayesian estimation of

dynamic layer representations,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), vol. 24, no. 1, pp. 75–89, 2002.

[36] F. Porikli, “Detection of temporarily static regions by processing video at different

frame rates,” in IEEE Conference on Advanced Video and Signal Based Surveillance

(AVSS), pp. 236–241, 2007.

[37] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-

background segmentation using codebook model,” Real-time Imaging, vol. 11, no. 3,

pp. 172–185, 2005.

[38] H. Fujiyoshi and T. Kanade, “Layered detection for multiple overlapping objects,”

IEICE Transactions on Information and Systems, vol. 87, no. 12, pp. 2821–2827,

2004.

[39] A. Bhattacharyya, “On a measure of divergence between two statistical populations

defined by their probability distributions,” Bulletin of Calcutta Mathematical Society,

vol. 35, no. 1, pp. 99–109, 1943.

[40] P. Carr, “GPU accelerated multimodal background subtraction,” in Digital Image

Computing: Techniques and Applications (DICTA), pp. 279–286, 2008.

[41] NVIDIA Corporation, “NVIDIA compute unified device architecture C programming

guide v6.0.” http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_

Guide.pdf, last accessed, June 2014.

81

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[42] NVIDIA Corporation, “NVIDIA compute unified device architecture C best practices

guide v6.0.” http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_

Guide.pdf, last accessed, June 2014.

[43] V. Volkov, “Better performance at lower occupancy.” http://www.cs.berkeley.

edu/˜volkov/volkov10-GTC.pdf, Presentation in GPU Technology Conference,

2010.

[44] N. Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming. Pear-

son Education, 2013.

[45] “Test images for wallflower paper.” Available online: http://research.

microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm,

1999.

[46] “PETS 2009 benchmark data.” Available online: http://www.cvg.rdg.ac.uk/

PETS2009/a.html#s1l1, 2009.

82

http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
http://www.cvg.rdg.ac.uk/PETS2009/a.html#s1l1
http://www.cvg.rdg.ac.uk/PETS2009/a.html#s1l1

	Titlepage
	Signatures
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Summary
	Chapter 1 — Introduction
	Research statement and contributions
	Contribution 1 - Multi-layer background modeling: Temporal scene analysis
	Contribution 2 - Multi-layer background modeling: Spatial scene analysis
	Contribution 3 - Accelerating adaptive and multilayer background modeling on low-power GPUs

	Summary of results
	Overview of content

	Chapter 2 — Multi-layer background modeling: Temporal scene analysis
	Introduction
	Related work
	Traditional background modeling
	Frame differencing
	Single parametric techniques
	Non-parametric
	Gaussian mixture model (GMM)
	Multimodal mean (MMM)

	Two-layer background modeling
	Multi-layer background modeling
	Multiple layers using tracking
	Multiple layers using background modeling

	Temporal multimodal mean (TM3)
	Ghost removal in multiple overlapping layers
	Occlusion reasoning

	Results
	Experiments
	Performance metrics

	Conclusion

	Chapter 3 — Multi-layer background modeling: Spatio-temporal scene analysis
	Introduction and related work
	Spatio-temporal multimodal mean (STM3)
	Results
	Conclusion

	Chapter 4 — Accelerating adaptive and multilayer background modeling on low-power GPUs
	Introduction and related work
	Methodology
	CUDA platform
	MMM implementation
	Basic implementation
	Performance optimizations

	Multi-layer background modeling TM3 implementation

	Experimental setup and results
	MMM performance results
	TM3 performance results

	Conclusion

	Chapter 5 — Conclusions and Future Work
	REFERENCES

