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SUMMARY

The study of dolphin cognition involves intensive research of animal vocal-

izations recorded in the field. In this thesis I address the automated analysis of

audible dolphin communication. I propose a system called the signal imager that

automatically discovers patterns in dolphin signals. These patterns are invariant to

frequency shifts and time warping transformations. The discovery algorithm is based

on feature learning and unsupervised time series segmentation using hidden Markov

models. Researchers can inspect the patterns visually and interactively run com-

parative statistics between the distribution of dolphin signals in different behavioral

contexts. The required statistics for the comparison describe dolphin communication

as a combination of the following models: a bag-of-words model, an n-gram model

and an algorithm to learn a set of regular expressions. Furthermore, the system can

use the patterns to tag dolphin signals automatically with behavior annotations. My

results indicate that the signal imager provides meaningful patterns to the marine

biologist and that the comparative statistics are aligned with the biologists’ domain

knowledge.

xii



CHAPTER I

INTRODUCTION

Dolphin cognition and communication research is a significant sub-field of marine

mammalogy. Communication signals of animal groups can give valuable insight into

their social structure. One of the goals in dolphin cognition research is the association

of social cues during group behavior with audible signaling by correlating video with

audio recordings. Therefore, researchers collect large multimedia databases in the

field containing long-term behavioral observations.

However, animal communication research suffers from the slow speed of manual

data analysis. Often researchers search and annotate audio and video material using

manual measurements. These measurements are subjective and not formally defined.

Finding patterns of communication that relate to observable behavior without metrics

for comparison is a tedious process. The process, from data collection to publication,

can take several years or even decades. In the following dissertation, I propose an

interactive data mining system that supports marine mammalogists as they search

multimedia databases more efficiently and inspect their data using statistical testing.

I will give a short overview of current behavior research in dolphin communication,

describe the key challenges for automatic dolphin communication mining and finally

provide my thesis statement and my contributions.

1.1 Behavior Analysis of Atlantic Spotted Dolphins

Marine biologists can now collect large multimedia databases of wild dolphin be-

havior in their natural habitat using cameras and microphones. The Wild Dolphin

Project [16], has collected over 29 years of data of wild Atlantic spotted dolphins

(Stenella frontalis) in the Bahamas for 100 field days every summer. As the biologist
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team observes the dolphins, they use multiple underwater cameras and hydrophones

to capture visual and audio data. Each encounter with dolphins is about 10 minutes

to an hour long. As the researchers observe dolphins underwater, their video data

captures a wide variety of specific behaviors and social contexts such as nursing and

aggression.

This database is a rich resource for animal behavior analysis. The collected data

can give insight into the social structure and communication patterns of a species.

An example use of such a database is a study of the dolphins’ signature whistles that

shows how dolphins can use whistles as names for themselves and others to maintain

social bonds [21]. To establish this evidence, over 200 hours of acoustic recordings

of temporarily caught-and-released, wild bottlenose dolphins had to be annotated by

one observer and segmented manually. Often the whistles must be traced manually

as an intermediate step in order to allow researchers to establish a high intra-rater

reliability [20]. This form of analysis is tedious and a time-consuming undertaking.

Conversations with behavior researchers reveals that every hour of animal behavior

requires 10 hours of manual analysis. Due to this large delay, most datasets are

partially explored, and inspecting the complete picture of animal behavior across

multiple contexts is not possible.

1.2 Search in Audible Dolphin Communication

My goal was to design a system that can automatically find patterns in audible dol-

phin communication and correlate these patterns with different dolphin behaviors

and contexts. One of the biggest challenges is to define conditions under which two

recordings of audible dolphin signals are similar. Biologists studying animal behavior

determine similarity of audible communication by manual frequency measurements

and visually inspecting spectrographic displays. Signals in these categories have com-

mon acoustic characteristics. However, computer-aided approaches to communication
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mining are widely unexplored, and the fundamental units of communication remain

unknown. Without tools that support the analysis of dolphin communication, every

hour of audio recordings requires 10 hours of manual analysis. Researchers collect

large amounts of field recordings every year. The slow analysis techniques lead to

large subsets of the data remaining unexplored. For example, in a study analyzing

the communication patterns of Gunnison’s prairie dogs (Cynomys gunnisoni), re-

searchers found that the animals code information about the type of threat in their

alarm calls. However, the analysis process from collection to publication took several

decades [46].

Figure 1: Different audible dolphin communication signals.

Using visual inspection and manual measurements, biologists have created various

categorizations for audible dolphin signals. For example, two common categories are

dolphin whistles and dolphin burst pulses. A dolphin whistle is thought of as a single

oscillator changing frequency over time. In a spectrogram a whistle appears as a

single line, where each point on the line represents the frequency of the oscillator at a

specific time. A burst-pulse signal is a dense series of loud clicks. In the spectrogram,

a burst-pulse series shows as multiple parallel lines. The spacing between the lines
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represents the repetition rate of the clicks.

As one can see in Figure 1, the dolphin whistle (bottom left) is visually dissimi-

lar from a burst-pulse sound (top left, labeled “Squawk”). It is interesting that the

sounds in these categories are not only dissimilar in their appearance but also differ

in their usage. Behavior researchers found that specific dolphin whistles called “sig-

nature whistles” are used by dolphins to identify each other, while a specific type

of burst pulse called a “synchronized squawk” is used by dolphins during aggressive

behavior. Finding patterns and subcategories in these defined categorizations might

give a more detailed view supporting research on dolphin communication and its

relation to behavior.

The pattern discovery algorithms are invariant under two transformations that can

be found in dolphin communication “frequency shift” and “time warping.” In other

words, two dolphin signals should be similar given a distance function even when

shifted in frequency or warped in time. A signal shifted in frequency will appear

with the same shape, but all points are translated by the same amount upwards or

downwards in frequency. An example of a frequency shift in human communication

is speaking in a lower register. All the words are the same, but they are uttered in

a lower frequency space. A time warped signal is stretched or shrunk in time. The

example in human speech is to utter a word faster or slower.

In both cases, the words maintain the same meaning- their spectral shape will

remain uniquely distinguishable- allowing other humans the ability to recognize the

word under these transformations 1. An example of these transformations for a dol-

phin whistle is shown in Figure 2, left.

In Chapter III will describe my approach to finding subcategories or patterns using

1Of course words become unrecognizable if the speed of the word is artificially high or the word
is artificially produced outside the range of human hearing. However, in day-to-day use, humans are
capable of dealing with these transformations. In our datasets I am not expecting drastic transfor-
mations since the signals are generated by a biological system. In other words, the communication
between animals relies on the signals to be recognizable and distinguishable.

4



Figure 2: Left: An example where three patterns similar in shape vary in time and
frequency. Right: A segmentation result from my algorithms.

similarity scores invariant to frequency shift and time warp. Computing statistical

communication models of sequences of patterns as they occur in the continuous un-

derwater recordings can then help to analyze the audible communication in different

contexts as described in Chapter IV.

1.3 Annotation of Dolphin Communication

My system is designed to analyze audible communication in different contexts. The

system uses discovered patterns to predict which annotations are appropriate. In this

section, I describe the annotations currently made by biologists. The goal is to use

these annotations later to train a machine learning algorithm.

After collecting audio and video data of wild dolphin behavior in the field, the biol-

ogists perform a quick retrospective analysis. By watching the video feed the experts

search for typical dolphin behavior such as a dolphin slapping another dolphin with

it’s tail or multiple dolphins swimming head to head (see Figure 19). These actions are

often associated in the marine biology community with higher level behavior contexts

such as play behavior or aggressive behavior. Furthermore, the dolphin researchers

try to identify dolphins by visual features on their bodies. Examples of visual clues

identifying a dolphin include spots on the dolphin or scars. Other observations from

the video include objects or relations. For example, the presence of a dolphin toy

such as sargassum (a seaweed) or the presence of a calf are possible observations that
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are not a visually identified behavior or a dolphin ID. These annotations are recorded

with a time stamp on the video. The researchers also annotate some of the audio’s

spectrogram. Common annotations include the type of a dolphin signal. Example an-

notations include whistles, signature whistles and echolocation. All the annotations

from a dataset collected in 2012 are shown in Table 1. Each label represents a short

form for an annotation such as a dolphin ID or a behavior. If a label is described

as a “Visual ID”, it refers to a dolphin identified from video. Labels described as

“Spectrogram Inspection” refer to signal types as identified by manual inspection in

the audio’s spectrogram. If a label is referred to as “Visual Behavior”, it describes

a behavior as observed in the video and if it is described as “Visual Observation” it

represents other observations made from the video.

An interesting task is to try to predict these annotations based on the patterns

found in the acoustic dataset. Predicting annotations that are made from observations

of the spectrogram seems straightforward. However, if a system could use acoustic

features to predict annotations made based on visual cues, it would suggest a mean-

ingful association of the acoustic and visual contexts. For example, imagine a video

of a dolphin. The researchers are able to identify this dolphin as “Bishu.” Suppose

the system discovers patterns in the audio feed and predicts correctly that “Bishu”

is in the frame. Now the researchers can inspect the patterns in the spectrogram and

might conclude that a whistle in the audio stream is in fact “Bishu’s” signature whis-

tle as used by the dolphins as a call sign. Such successfull predictions could also be

indicative of the performance of the pattern discovery. That is, meaningful patterns

could be predictive of at least some of the annotations.

1.4 Thesis Statement

The need to automate the search for patterns in audible dolphin communication

under various transformations and to find statistical models of communication in
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different behavioral contexts leads to my following thesis statement: “I hypothesize

that feature learning and automatic segmentation of audible dolphin communication

along with statistical communication models can provide valuable insight into dolphin

behavior that allows marine biologists to perform retrospective analysis as well as sci-

entific hypothesis generation and testing.” Modern feature learning and segmentation

approaches provide a framework in which I can achieve pattern discovery invariant to

frequency shift and time warping transformations. Automatically finding these pat-

terns in dolphin communication will reduce the amount of time needed for analysis

and will lead to less subjective measurements when comparing signals. Furthermore,

finding statistical models for the occurrence of these patterns in different behavioral

contexts can provide a framework that can be used to generate, test and evaluate

novel hypotheses about dolphin communication. In order to implement and test such

a system, I provide the following contributions:

1. A feature learning algorithm for dolphin signals that results in frequency invari-

ant features. The features allow the algorithm to distinguish between dolphin

signals and other underwater noise sources and allow it to distinguish between

dolphin patterns using hidden Markov models.

2. A warp-invariant pattern discovery algorithm that discovers subcategories in

dolphin communication sequences.

3. A statistical model for dolphin communication based on n-grams and regular

expressions that can be used to perform comparative statistics about different

behavioral contexts and to tag unannotated communication sequences.

4. A user interface to the system, providing biologists with a tool called the signal

imager that allows to run discovery experiments in dolphin communication.
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Table 1: A list of all the annotations found in the 2012 dataset.
Label Description Num.
Whistle Spectrogram Inspection 41
Littleprawn Visual ID 9
Bamboo Visual ID 9
Nuzzle Visual ID 9
Littlegash Visual ID 8
Bishu Visual ID 8
Nautilus Visual Behavior 6
Play Visual Behavior 6
Head2Head Visual Behavior 6
Ginger Visual ID 5
Gelato Visual ID 5
Signature Whistle Spectrogram Inspection 4
OpenMouth Visual Behavior 4
Echolocation Spectrogram Inspection 4
Malachite Visual ID 4
Mugsy Visual ID 3
Cobalt Visual ID 3
Sync Spectrogram Inspection 3
TailSlap Visual Behavior 3
Naia Visual ID 2
Nematocyst Visual ID 2
Val Visual ID 2
Sargassum Visual Observation 2
Chase Visual Behavior 1
Calve Visual Observation 1
Fecal Visual Observation 1
Fish Visual Observation 1
Nautilus Visual ID 1
Flexion Visual Behavior 1
Venus Visual ID 1
Fused Visual ID 1
Discipline Visual Behavior 1
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CHAPTER II

RELATED WORK

In the following chapter, I will describe previous work related to my research. First

I will introduce current research in animal communication. This section will discuss

how manual analysis is performed and describe research in automated analysis in

dolphin communication. I will then describe previous research in feature learning.

The results will inform the design of features tuned for dolphin signals. The third

section will describe previous research in motif discovery that is the main inspiration

for my system. Lastly, I will describe multiple natural language processing approaches

and their relation to the statistical analysis of dolphin communication.

2.1 Animal Communication Analysis

A common solution to the manual analysis of animal communication is to use inter-

active computer programs such as Cornell Lab of Ornithology’s Raven and Noldus

Information Technology’s Observer. Cornell’s Raven [10] is an audio processing pro-

gram. Researchers can visually inspect their audio recordings and annotate animal

signals in the spectrogram interactively. Raven includes signal detectors that can seg-

ment an audio file into regions of noise and regions where animal signals are present.

However, the included signal detectors are basic algorithms such as band-limited en-

ergy detection. In my opinion, the disadvantage is that noise in the same frequency

band as animal communication can lead to false positives during detection. For this

reason, analyzing noisy samples can be difficult. Furthermore, the program includes

simple techniques to compare signals such as correlation between spectrograms. How-

ever, the correlation coefficient does not account for transformations such as frequency

shifts and time warping effects. While Raven requires excessive manual effort from the
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user, the signal imager automates most of the work by discovering patterns automat-

ically. Instead of searching for patterns manually in the spectrogram and annotating

patterns by visual inspection, my program automates most of the work.

Noldus Observer enables researchers to code behavior with annotations in video

and audio. Annotations or behavior codings of audio and video files can be extracted

from Observer and used in my program to train automatic annotation algorithms

and to perform statistical analysis. While the program offers easy behavior coding,

it does not support any audio analysis capabilities.

In a survey on underwater acoustics processing methods, Lampert and O’Keefe

[25] identify three main algorithm categories: image processing, neural networks, and

statistical models. They evaluate several methods on a dolphin whistle detection

task. Their experimental parameters include signal-to-noise ratios, noise variation,

whistle shape variability, multiple whistles, between-whistle proximity/crossing, ini-

tial/endpoints of whistles, and computational resources used. They conclude that

hidden Markov models (HMMs) are currently the most prevalent, promising method

in the research literature for use in cetacean vocalization spectrum analysis.

Kershenbaum et al. [20] measure the similarity between whistles using the dy-

namic time warping distance. Whistle extractions are performed manually using a

custom user interface. Users manually follow the contour of the whistle in a spectro-

gram. However, this task can be performed automatically as shown by recent efforts

of Baggenstoss and Kurth [2] who compare methods for detecting burst pulses in

impulsive noise and Kohlsdorf et al. [22] who trace a dolphin whistle using a proba-

bilistic pitch tracker. Other approaches to whistle extraction include a frame-based

Bayesian approach [15] and a Kalman filtering approach [24]. Shapiro and Wang

apply pitch detection designed for human telephone speech to whale vocalizations

[42].

Dolphin signal clustering and classification often uses neural networks [11, 14]
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or clustering based on hidden Markov models [1]. Both approaches filter the data

first and use Mel-cepstral coefficients or other measurements from the spectrogram

as features. My goal is to improve the efficiency and efficacy of analysis of clicks,

whistles, and bursts [17]. We adopt an approach similar to the work done by Zakaria

et al. on mining archives of mouse sound using symbolic representations [52]. In

this work, known units of mouse vocalizations are retrieved under the generalized

Histogram of Oriented Gradients (HOG) transform, and strings of these units are

compared using hierarchical clustering under the Levenshtein distance.

My system combines several methods from the above categories. Image processing

methods similar to convolutional neural networks are used as the basis for feature

extraction [9].

I use feature learning on a dataset of several patches found around traced whistles

and other dolphin signals. I use hierarchical clustering to identify units. Similar to

Zakaria, I proceed to process the units as discrete strings. However, instead of using

an alignment score (Levenshtein distance) I use the alignment to extract a set of

regular expressions. In contrast to most dolphin communication research, our system

is able to process a wide range of dolphin signals, not just whistles. In the following

I will describe the related work leading to my system; in particular I describe the

process of learning a better feature space for dolphin communication, discovering

patterns under time warping transformations and statistical dolphin communication

models.

2.2 Signal Processing

The spectrogram is the most prevalent means of analyzing dolphin communication.

For this system, my goal is to learn a feature space that is tuned to dolphin com-

munication only. Recently, a novel paradigm of signal processing called “self-taught

learning” [39] has emerged in the machine learning community. The goal is to learn
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a set of features from unlabeled data. The most prominent models for self-taught

learning are probabilistic neural networks such as the restricted Boltzmann machine

[18] and the convolutional restricted Boltzmann machine [28]. These models show

promising results on visual object recognition and speech processing tasks. A similar

method to learn a set of features is called sparse coding. In sparse coding, the goal

is to learn a codebook of basis functions [27]. An unseen example is described as a

weighted linear combination of these bases. The weight for each basis can be used as

a feature.

A 2011 experiment with several computer vision tasks found that a k-means code-

book can outperform single layer neural networks for feature learning [9]. Since neural

networks have a large parameter space, my intuition is that the performance of neural

network approaches is dependent on the amount of data ready for training. I will use

k-means to learn a set of feature extractors tuned to dolphin communication. Since

dolphin signals’ appearances vary in the spectrogram, this method will help to convert

audible communication into a feature space in which signals are easily comparable.

2.3 Motif Discovery

In order to find patterns in dolphin communication, I use a technique called motif

discovery. First I learn a feature space in which dolphin communication is easy to

compare. Then I discover common patterns in dolphin communication in this new

feature space.

The bioinformatics community is very interested in discovering meaningful pat-

terns and has developed algorithms to find patterns in symbolic sequences represent-

ing bases in a genome. Often, data mining approaches based on discretization are

inspired by earlier work in biology. One prominent solution to finding patterns in

multiple sequences is the multiple sequence alignment. An alignment arranges two

sequences such that similar regions are identified. A multiple sequence alignment
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arranges multiple sequences to find similarities across all files. This alignment can

be achieved using Gibbs sampling [26] or a profile hidden Markov model [13]. Dis-

covering so-called time series motifs can be achieved using distance comparisons [36]

between sliding windows. The algorithm can find the two closest windows efficiently.

However, there are several drawbacks to the approach. One is that the patterns have

to be of equal length. Furthermore, in large datasets it might take too many distance

comparisons to find all patterns.

A more efficient approach to pattern discovery is to discretize the time series first.

A prominent algorithm for time series discretization is called symbolic aggregate

approximation (SAX) [29]. SAX converts all time series into a symbolic string over

a finite alphabet. The string resembles the shape of the time series. Increasing

the size of the alphabet will result in a higher resolution of the discretization. The

indexable symbolic aggregate approximation (iSAX) [43] allows the efficient search

for time series in multiple resolutions. One efficient way of finding patterns is based

on the iSAX representation. The idea is that similar time series will have the same

symbolic representation. All sequences are converted into the symbolic representation

and then inserted into a hash table. All sequences that end in the same bin are

considered a pattern. By performing the process with iSAX, it is possible to find

patterns at multiple resolutions [7]. The problem with iSAX is that the symbolic

space is very large for high-dimensional time series, such as a spectrograms. Since

dolphin communication is often analyzed in the spectrogram, the iSAX representation

is not well suited for my use in this case.

Another efficient approach to pattern discovery in a symbolic space is based on

random projections [6, 8, 32]. Minnen et al. [32] extract sliding windows from all

time series in a dataset and convert each window into the SAX representation. Then

the algorithm selects random positions and deletes these positions from all strings.

This process is called a random projection. All similar strings are hashed again. The
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strings that match most often under several random projections are considered to be

a pattern. The advantages are that the sequences do not have to be compared at all

positions and that the approach is very robust with respect to noise.

Park and Glass proposed to find patterns by developing a local alignment version

of the dynamic time warping distance called segmental dynamic time warping [37]. It

is used for automatic speaker segmentation. Aligned cluster analysis uses the dynamic

time alignment kernel to cluster segments of a time series in a kernel k-means fashion

[53]. Saria et al. [41] use a more general probabilistic graphical model to learn a

deformable pattern model based on splines. Both approaches have the advantage

that the patterns do not have to be equally long.

Smyth proposes using the Baum-Welch algorithm to train a mixture of hidden

Markov models [47] to cluster time series. Gaussian mixture models combine multiple

normal distributions into a joint probability distribution. In the same way, a mixture

of hidden Markov models combines multiple hidden Markov models into a larger one.

Each of the hidden Markov models represents a cluster. A time series belongs to

the cluster with the hidden Markov model that returns the highest likelihood for

that sequence. Minnen et al. estimate such a mixture by greedily adding the hidden

Markov model that most increases the likelihood for the complete dataset [34, 33].

Several related works in the biology community already use dynamic time warping

and hidden Markov models as models for dolphin signals; I decided to base my algo-

rithms on the same models. Both algorithms account for the previously mentioned

time warping effect. I use dynamic time warping to cluster patterns and use these

clusters as an initialization for a mixture of hidden Markov models. The algorithm

is inspired by Minnen et al.’s work [33] that shows that mixtures of hidden Markov

models can discover patterns in complex domains such as human speech and activity

recognition.
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2.4 Communication Modeling

After I discover patterns, I want to model a dolphin communication sequence in terms

of the pattern composition. I chose to use statistical models commonly used in sys-

tems that analyze human language. There are several approaches to modeling natural

language, such as text. These models will later help me to annotate unseen dolphin

communication sequences and to perform comparative statistics between communi-

cation in different behavioral contexts.

A common model is called a bag-of-words model [40]. In a bag-of-words approach,

a document is described as a loose collection of words. In other words, the model does

not consider the sentence structure. The only feature is the frequency of the words.

For example, a document about biology might have a high frequency of words like

“cell” or “DNA,” while in a physics document words like “force” or “gravity” might

be more frequent. When comparing documents under that model, one assumes that

documents that are semantically similar will show similar words. The latent Dirichlet

allocation (LDA) [4] is an extended model that represents documents as mixtures

of topics. Similar to the bag-of-words model, a topic is a probability distribution of

words. However, the document is described as a collection of topics.

Another model is called an n-gram model [40]. A n-gram model does not consider

single words but local sequences of words. All the sequences are n words long. For

example, all bi-grams for the sequence, “The fox jumps over the fence” are “The

fox,” “fox jumps,” “jumps over,” “over the,” “the fence.” In comparison to the bag-

of-words model, n-grams model the local interaction of words. In our example, the

n-gram model captures that the fox jumps. In a bag-of-words model that information

is lost.

The final model I discuss is based on formal grammars. A formal grammar is a set

of rules that is capable of generating and detecting sequences from a formal language.

The complete description and theory behind these models is beyond the scope of this
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thesis. The interested reader is referred to the standard literature [45].

Since the structure of dolphin communication, or lack thereof, is unknown, I use

grammar induction to automatically generate hypotheses of the potential structure of

dolphin communication. Learning grammatical rules can be achieved using Bayesian

model merging to learn a probabilistic context-free grammar as proposed by Stolcke

and Omohundro [48] or using a greedy algorithm to induce a context-free grammar

such as SEQUITUR [35]. Bayesian model merging starts with a grammar in which

each sentence in a data set is represented as a rule. Then new rules are introduced

that replace multiple existing rules so the grammar is compressed. The algorithm

finds these rules by maximizing the probability with a minimum description length

prior probability. In comparison, SEQUITUR starts with a complete text as one

rule and introduces new rules that replace multiple substrings. I use alignment-based

learning [49] to structure sequences and search for structural rules in the form of

regular expressions. Alignment-based learning is based on the idea that parts in a

sentence with interchangeable functions will be apparent when aligning sentences.

A recent approach called augmented bag-of-words (ABOW) [3] uses statistics from

all three models for activity recognition. ABOW describes a sequence of activities

as a histogram including the frequency of each activity (bag-of-words), the frequency

of subsequences of activities (n-grams) and regular expressions matching an activity

sequence. I adopt this approach for dolphin communication since it gives the flexibility

to choose the amount of structural information required in the model. Since it is

unclear if dolphin communication is structured, the n-grams or grammar models can

be excluded.
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CHAPTER III

DISCOVERING PATTERNS IN DOLPHIN

COMMUNICATION

In this chapter I describe my approach to frequency shift- and time warp-invariant

pattern discovery. First I will formally introduce the problem of finding sequential

patterns in dolphin communication. Afterwards, I will describe an algorithm capable

of transforming dolphin signal recordings into a novel feature space. The novel feature

space will enable easy detection of dolphin signals and comparison of dolphin signals

under frequency shifts. The following section will describe why dynamic time warping,

piecewise aggregate approximation and hidden Markov models are appropriate models

for warp-invariant sequence analysis. In the last section I describe my algorithm for

pattern discovery using the definitions and insights described in this chapter.

3.1 Sequential Patterns in Dolphin Communication

Biology researchers capture audible dolphin communication in digital field recordings.

An audio file is a digital representation of the recorded sound wave. Since several

environmental sounds contribute to the recordings, a common analysis technique is a

spectrographic display or spectrogram. A spectrogram for an audio recording can be

regarded as a multivariate continuous time series:

S = {s1, ...sT}, st ∈ RF (1)

Each point in the spectrogram stf represents the magnitude of frequency f at

time t of the original audio wave. Since dolphin signals are inspected traditionally

in a spectrogram, and modern speech recognition systems use this representation
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as a starting point for further feature extraction, I also search for patterns in the

spectrogram. I define a signal pattern as a set of subsequences from several spectro-

grams that appear similar to each other given a distance function. I define a dolphin

communication sequence as a discrete string of signal patterns:

P = {p1, ...pT}, pi ∈ P (2)

Each pattern is an element of a global pattern codebook P shared across all se-

quences.

In the following I describe an algorithm that can convert a set of spectrograms

into a set of dolphin communication sequences using feature learning and pattern

discovery.

3.2 Learning Frequency-Invariant Features

In order to enable frequency-invariant comparison of dolphin signals, I learn a set

of k feature extractors spanning a k-dimensional feature space. Two dolphin signals

that are similar in shape but in different frequency bands should appear close in the

novel feature space under Euclidean distance. Furthermore, the feature space should

make a distinction between dolphin signals and other underwater noise sources easy.

Using these feature extractors I can convert a spectrogram S = {s1, ...sT} with F

dimensions and length T into a time series in the novel feature space S ′ = {s′1, ...s′T}

with k dimensions and length T .

The algorithm for feature learning clusters small, local regions from the spectro-

gram using k-means [9] and transforms a novel spectrogram into the feature space

using a soft k-means assignment. The soft k-means assignment computes a distance

of cluster regions from the spectrogram and then converts these distances into an in-

fluence score for each cluster. The final feature space is constructed by max pooling.

I learn the feature extractors from a dataset of dolphin signals with the following
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properties:

1. All audio files in the catalog can be categorized into dolphin whistles, burst

pulses or noise.

2. All audio files in the catalog include only samples from the categorization.

These properties will help to learn feature extractors that respond solely to dolphin

communication. Each example is stored as a short audio snippet. To construct such a

dataset, the biologists cut out these examples manually in a way that we can assume

that each file only includes dolphin signal. I transform each audio example in the

catalog into its spectrogram representation. The main idea is to represent a feature

extractor as a square region learned from a spectrogram containing a dolphin signal.

Such a region is a local estimate of the spectrogram around its center. For example,

a patch centered at a point on a dolphin whistle might capture a small part of an

up sweep in frequency. A patch centered around a different location might capture a

down sweep. Such a patch can be regarded as a local estimate in the spectrogram.

In my experiments a patch represents approximately half a millisecond in time and

one kHz in frequency.

Figure 3: Three patches extracted around a dolphin signal. Two are around different
down sweeps and one around a plateau.
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Given the spectrograms extracted from my catalog, I extract all patches that

fall around dolphin communication. There will be multiple regions that contain up

sweeps and down sweeps as well as several regions containing multiple lines as found

in burst pulses. I use unsupervised feature learning [9] to form a codebook of regions.

I z-normalize each region before proceeding [9]. This process means that from all

values in the region, I subtract their mean and divide by their standard deviation.

I then build a codebook of these patches using k-means clustering. The centers of

30 clusters learned from dolphin signal patches are shown in Figure 4.

Figure 4: A set of 30 feature extractors learned using k-means.
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The resulting codebook represents my feature extractors. A cluster is a square

region c with length 2d. In order to transform a spectrogram into the new feature

space spanned by the codebook, I perform the following steps. I place one of the

clusters at a point stf in the spectrogram and compute the distance of the region to

the spectrogram area it covers. If I shift the region over the spectrogram and replace

each spectrogram point with the distance, I get a new time series Sc = {sc1...sct}.

Each point sctf in the new sequence represents the distance of the region c to the

spectrogram around the point stf :

sctf =

√√√√ 2d∑
i=0

2d∑
j=0

(st−i,f−j − ci+d,j+d)2 (3)

I convert the spectrogram S into the new space Sc for each of the k clusters in the

codebook. The result is a set of k new sequences {Sc1...Sck}. Each entry in the new

sequence Sci
tf represents the distance of the spectrogram area centered at time t and

frequency f to the cluster center ci. Next I transform the distance representation in

a representation capturing the response or influence of each cluster. First I compute

the mean of all k distances at every point in the spectrogram:

µtf =
1

k

k∑
i=1

scitf (4)

The influence of a cluster at a point in time t and frequency is

sctf = max(0, µtf − sctf ) (5)

If the distance of a cluster is larger than the mean distance at that point, the point

is set to zero, so there is no influence. All other cluster influences are proportional

to their distances to the cluster. Now each point sctf represents the local influence of

cluster c to the spectrogram at a point in time t and frequency f . Such an assignment

is also called a soft k-means assignment [9]. Finally, we can transform the influence
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scores into the new feature space by max pooling. The final feature space is of the

same duration as the original spectrogram. The dimension changes to the number of

clusters. In order to compute how the influence of each cluster changes over time, I

search for the maximum value of each of the k influence sequences at every point in

time:

s′t1 = maxFf=1s
c1
tf (6)

s′t2 = maxFf=1s
c2
tf (7)

... (8)

s′tk = maxFf=1s
ck
tf (9)

The complete process is shown in Figure 5. As one can see on the top, I visualized

the k influence transformations for a whistle. Each point in time and frequency shows

the response of a cluster to the underlying whistle. The bottom graphic shows the

max pooling process. At every time step the maximum response across all frequencies

for each cluster influence is taken as the value in the novel feature space. The result is

a k-dimensional time series. Each dimension represents how each cluster’s influence

changes over time.

The new feature space is frequency-invariant. For example, a cluster center repre-

senting a down sweep is shifted over the spectrogram, and the influence is computed

at every point. If we pool the responses at every point in time, the frequency at which

the maximum response occurred is not represented in the novel feature space. The

only information coded in this space is that there was a down sweep at time t with

influence s′ti.

I explained how to learn a feature space from a data catalog of local regions ex-

tracted from categorized examples. However, I omitted one detail. Earlier I noted

that the regions are centered around dolphin signal only, but I did not explain how
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Figure 5: Mapping sequence into feature space.

I ensure they do. In the following I will explain how to center local regions so the

region contains dolphin communication rather than other underwater noise. The cen-

tering process requires the categorization into whistles and burst pulses. Audio files

containing whistles are processed differently than audio files containing echolocation.

3.2.1 Frequency-Invariant Features For Whistles

My goal is to extract regions that contain local spectrogram measurements of dolphin

whistles. The categorized catalog contains audio snippets that contain only dolphin

communication. The biologists create this catalog by cutting whistles from longer
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recordings. In that way, the audio file starts at the start of a dolphin whistle and

stops at the end of a dolphin whistle. However, there will still be other noise sources

in the spectrogram that happen simultaneously with the whistle. In order to avoid

extracting regions that contain local noise estimates, I only extract regions that are

centered around the whistle.

I propose to trace the whistle first and then extract regions along the whistle.

A dolphin whistle can be thought of as a single oscillator changing frequency over

time. In the spectrogram, a whistle will show as a single connected contour. Our

regions capturing dolphin communication will be extracted around that contour. A

whistle can be extracted by tracing its contour in the spectrogram. In other words, I

use the physical properties of a whistle to build a probabilistic model that allows the

extraction of clean patches around dolphin whistles.

In noisy environments, tracing is performed using pitch tracking. In the following,

I explain a probabilistic pitch tracker for dolphin whistles [22] for the convenience of

the reader.

I represent the unknown contour as a path through the spectrogram. At each time

step, the path gives the frequency for the trace: F = f1...fT . The first intuition is that

the probability of belonging to the contour of a spectrogram entry stf is dependent

on its magnitude. I write this probability as P (stf ). I compute the measurement

probabilities by normalizing each sample from the spectrogram:

P (stf ) =
stf∑D
i=0 sti

(10)

This probability model assigns higher probabilities to frequencies with higher mag-

nitude in the spectrogram. I smooth the transition from the last frequency on the

trace stf to the next frequency on the trace st+1f using a linear predictor.

ftpredict = vf̂ (t− 1)ft−1 (11)
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Figure 6: Top: A dolphin whistle showing the extracted contour highlighted in red
and a patch around the contour is shown in orange. Bottom: The tracer represented
as a probabilistic graphical model.

In order to account for a noisy estimate of the predicted frequency, I model it

using a linear Gaussian model centered at the predicted frequency. In other words, I

assume Gaussian noise with some chosen variance σ2 on the current position estimate

in the spectrogram.

N(ft|vt−1ft−1, σ2) (12)

I can compute this trace recursively using our model. The solution can be found

using an algorithm similar to the Viterbi algorithm for hidden Markov model decoding

[38]. I solve the following dynamic programming problem to find the frequency trace

as the likelihood of frequency f at time t belonging to the trace as defined by
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δf (t) = P (xt|ft)
N

max
f̂=1

δf̂ (t− 1)N(ft|vt−1f̂t−1, σ2) (13)

Furthermore, I store the maximum frequency up to time t in a variable for back-

tracking purposes. I also compute the velocity estimate from the backtracking vari-

able.

ptrf (t) = argmaxN
f̂=1

δf̂ (t− 1)N(ft|vt−1f̂t−1, σ2) (14)

vf (t) = f − ptrf (t) (15)

Now I can compute a maximum a posteriori trace of the whistle. Then I back-

track from the most likely frequency at time T and follow the backtracking pointer

backwards in order to extract the trace. An example of a traced whistle is shown in

Figure 6.

3.2.2 Frequency-Invariant Features For Burst Pulses and Echolocation

Signal types besides whistles include multiple lines on top of each other, so it is

harder to build a model for them. For example, burst pulse communication shows

in the spectrogram as multiple parallel lines with equal spacing between them. The

spacing between these lines codes the repetition rate of the clicks. In order to extract

clean regions for learning, as in the whistle example, I extract patches around local

interest points in the spectrogram.

An interest point in the spectrogram is a point in time and frequency of high

magnitude. Formally, an interest point ltf is detected if the spectrogram at time t

and frequency f with magnitude stf is the maximum point in a small neighborhood

and greater than a predefined threshold [51]. I also include a local noise estimate in

the interest point detection [12]. Assuming stationary noise, the noise ηtf is estimated

locally as the mean in a plus shaped region with length 2r around a potential point:
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ηtf =
1

2r
min{

t+r∑
i=t−r

sif ,

f+r∑
j=f−r

sjf} (16)

An interest point is detected if it is maximal in the plus shaped region or greater

than the noise estimate. I extract the patches around these interest points which

tend to fall on the harmonic components of a dolphin signal. An example of interest

points on multiple burst pulse signals is shown in Figure 7.

Figure 7: Interest points on a burst pulse signal. The interest points are marked in
red.

3.3 Mining Warp-Invariant Patterns

In this section I will describe a general approach to time series analysis with respect

to time warping. The goal is to find models and distance functions for time series

that account for stretching and shrinking effects.

The first approach introduces the general idea of achieving time warping invariance

by dynamic programming. I will explain the concept using the dynamic time warping

distance (DTW) [44]. The second section introduces a probabilistic model for time
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series called a hidden Markov model (HMM) [38]. I will also point to differences and

similarities between hidden Markov models and the dynamic time warping distance.

The last section introduces an approximative approach to warp-invariant time series

comparisons. I will describe the piecewise aggregate approximation and how it can

be used as the basis for further discretization.

3.3.1 Dynamic Time Warping

First I will describe the benefits of comparing dolphin signals using the dynamic

time warping distance. Audible dolphin signals with the same shape can undergo

time warping transformations when the signals or parts of them are produced at

varying speeds. When comparing dolphin signals it is essential to compare signals

with respect to deformations based on stretching and shrinking. When computing

the distance between two dolphin signals similar in shape but transformed by time

warping effects, the distance should still be low.

Figure 8: A Dynamic time warping example for two hypothetical time series X (Top)
and Y (Bottom). The dashed lines indicate which sample from X aligns to which
sample in Y .

For example, if we compute the distance between the two signalsX = {1, 10, 30, 3, 5, 10}

and a shrunk sequence Y = {1, 30, 10}, a naive comparison approach might be to ex-

tend the second sequence to Y = {1, 1, 30, 30, 10, 10} and then compute the Euclidean
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distance between the two. The resulting distance value is 27. However, the two se-

quences are similar in shape so we might desire a distance function that takes the

warping effect into account. One solution is to compute an alignment between the

two sequences first. An alignment assigns each sample in X to a close sample in Y

(see Figure 8). If we compute the alignment first and then take the summed distance

from sample to sample, we get a distance of 12 for our example. The dynamic time

warping distance uses dynamic programming to find an alignment between sequence

X and Y such that the summed distance along the alignment is minimal using the

following recursion:

dtw(X, Y )0,0 = 0.0 (17)

dtw(X, Y )i,0 = ∞ (18)

dtw(X, Y )0,j = ∞ (19)

dtw(X, Y )i,j = |Xi − Yj|2 +min


dtw(X, Y )i−1,j

dtw(X, Y )i−1,j−1

dtw(X, Y )i,j−1

(20)

Dynamic time warping is successfully applied to gesture recognition, activity

recognition and speech recognition. Furthermore, the dynamic time warping dis-

tance is often used for time series clustering and pattern discovery. In my system, I

use the dynamic time warping distance to compare dolphin signals represented in my

novel feature space in order to account for time warping effects.

3.3.2 Hidden Markov Models

A hidden Markov model (HMM) has been a probabilistic process that is successfully

applied to various domains such as speech and gesture recognition in the past. In the

following, I will give a general description of hidden Markov models followed by an

explanation of how these models can be used to model a set of dolphin signals and
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then how these models account for time warping effects.

I use the standard terminology of an observation and an observation sequence. An

observation sequence is a time series, and an observation is one sample at a specific

point in time from the time series. For example, our feature space S ′ = {s′1...s′T} is an

observation sequence, and each sample s′t is an observation. A hidden Markov model

is an unobserved first order Markov chain with k states. In the following, I write

the Markov chain’s current state as yt. The Markov chain is defined by a transition

probability between states P (yt = i|yt−1 = j), also written as aji. Furthermore, a

hidden Markov model is defined by a second function modeling the probability of

a sample s′t belonging to a specific state yt. This probability function is called the

observation distribution: P (s′t|yt = i).

Consider the hidden Markov model in Figure 9 as a running example throughout

this section. At the top I show the transition function of my hidden Markov model as

a sparsely connected graph. Each node in the graph represents a state in the hidden

Markov model. Each directed edge in the graph represents a non-zero transition

probability between states. Often pattern recognition experts model the temporal

dynamics of a hidden Markov model by defining the connectivity between states. In

other words, the experts decide which transitions can have a non-zero probability.

Below the transition function I visualize the observation function. For continuous

multivariate observations, a common observation distribution is a multivariate normal

distribution. I visualize the mean vectors of the observation distribution, one for each

state. In my novel feature space, each dimension represents the influence of a feature

extractor. The influence is indicated by the height of the bar. In this example, the

first state represents a down sweep and a plateau of the whistle, the second state

defines a steep up sweep, and the third state represents a down sweep as modeled by

the observation function. The transition function automatically codes an order. In

our example, we have to transition through the first state before we can transition to
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Figure 9: A hidden Markov model with three states. Top: The Markov chain defining
the transition function. Middle: The observation function for a feature space with
four dimensions. Each of the histograms represents a mean vector of a multivariate
Gaussian. Each dimension in the mean vector represents the influence of a cluster.
Bottom: A hypothetical alignment of a whistle to the model’s states. The visualiza-
tion shows the spectrogram of the whistle. The colors represent the assignment of
each sample to a state.

the second state, and we have to transition to the second state before we can transition

to the third. Together with the observation function, the HMM models the sequence,

“down/slow, up/steep, down/steep.” The expected duration we stay in each state is

coded in the self transitions. The expected duration spent in a state is equal to the

expected value of the geometric distribution: 1
1−aji . At the bottom of Figure 9, we

see the spectrogram of a whistle. Converting the spectrogram into the novel feature

space enables an alignment of the observation sequence into the HMM’s state space.

Such an alignment can be constructed using the Viterbi algorithm. While dynamic
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time warping aligns all samples of a time series to a sample of another time series,

the Viterbi algorithm aligns each sample to a state in the HMM using the following

dynamic programming recursion:

v(0, i) = πi ∗N(s′0|µi, σ
2
i ) (21)

v(t, i) = N(s′t|µi, σ
2
i ) ∗maxjajiv(t− 1, j) (22)

The normal distribution representing the observation function is written asN(s′t|µi, σ
2
i ).

Furthermore, πi represents the probability of starting the alignment in state i. While

the dynamic time warping distance finds the alignment that minimizes the Euclidean

distance between the samples of two sequences, the Viterbi algorithm creates the

alignment from a sequence to states of the hidden Markov model that maximizes the

probability along the alignment path. The transition probability and the observation

probability are both taken into account when constructing the path. Deviations from

the expected path given by the transition probabilities happen when the observation

probability for another path gets higher.

The parameters of a hidden Markov model can be estimated from a set of obser-

vation sequences using an algorithm called Baum-Welch. Describing Baum-Welch is

beyond the scope of this description, and the interested reader is referred to Rabiner’s

work [38].

One advantage of using hidden Markov models is that they can be combined into

larger ones (see Figure 10). For example, if we have two hidden Markov models each

modeling a different dolphin signal pattern, we can construct a new hidden Markov

model combining them. By connecting each end state of the two models to each start

state, we can model observation sequences containing both patterns in sequence. For

example, a common solution in speech recognition is to construct a hidden Markov

model for each word. In order to recognize whole sentences, all the word models are
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Figure 10: Multiple hidden Markov models combined into a joined model by con-
necting the end states to each start state.

combined. The parameters for each word model are trained from multiple audio files

for each word.

Later in this chapter, I will use these combined models called mixtures of hidden

Markov models to jointly explain all dolphin signal patterns.

3.3.3 Piecewise Aggregate Approximation

The last approach to warp-invariant pattern comparison is based on an approxi-

mation. While the hidden Markov models and the dynamic time warping distance

approach the time warping effects using alignments, this approach is based on com-

pressing all sequences to the same length, discretizing the compressed representation

and using string equality for comparison.

I compress a sequence using the piecewise aggregate approximation (PAA) [19].
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The PAA compresses a time series by splitting the sequence into k equally sized

bins. The bin size to compress a sequence of length T is w = T
k

. The compressed

sequence C = {c1...ck} for a dolphin signal in the novel feature space S ′ = {s′1...s′T}

is calculated as

ci =
1

w

(i+1)∗w∑
t=i∗w

s′t (23)

The new feature space represents the influence of a patch in the codebook over

time. The compressed representation aggregates the influence in each of the w bins.

My discretization uses the index of the codebook entry with the maximum influence

in each bin as a symbol, resulting in a string X of length w:

X = {argmaxDi=1(c1d)...argmax
D
i=1(cwd)} (24)

The comparison of sequences in the discrete space is based on string comparisons.

Two sequences are considered similar if their discrete representations are equal. The

complete representation is shown in Figure 11.

3.4 Warp- and Frequency-Invariant Pattern Discovery in
Dolphin Communication

In the last section I will describe the complete algorithm to pattern discovery. Lever-

aging feature invariance and warp invariance, I will present an algorithm that takes

a spectrogram S = {s1...sT} of dolphin communication as the input and outputs a

discrete dolphin communication sequence P = {p1, ...pT}.

My goal is to learn a representation in which all patterns as well as the underwater

noise sources are modeled in a probabilistic model. I learn this model in three steps

(see Figure 12).

1. Learn the initial segmentation in the novel feature space
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Figure 11: A time series is split into three equal regions. The compressed represen-
tation is shown in the novel feature space. I calculate a discrete representation from
the compressed representation using maximum influence.

2. Cluster dolphin signals into patterns

3. Learn a probabilistic joint model of all patterns and noise

In the first step, I convert the spectrogram S = {s1...sT} into the novel feature

space S ′ = {s′1..s′T}. The novel feature space represents the influence of local dolphin

signal movement patterns. Furthermore, I classify each sample in the sequences as

dolphin signal or noise using a random forest [5]. Using the classification results I

extract regions of consecutive samples classified as dolphin signal. I extract sliding

windows from these regions and cluster the windows into patterns. After the cluster-

ing is done, I learn a hidden Markov model for each cluster. Furthermore, I learn a
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Figure 12: Overview of the data mining system. After identifying signal and noise
regions using a binary classifier, the resulting regions are clustered. For the final
estimate I train a left-to-right hidden Markov model for each cluster. Together the
models form a mixture of hidden Markov models. Decoding each sequence with that
mixture gives a smooth segmentation, fixing boundary errors and noise assignments.

mixture of Gaussian from the samples classified as noise. I then combine the resulting

models and the mixture into a joint hidden Markov model. In the following, I will

give the details for two clustering algorithms and how to combine their results into

the final hidden Markov model.

The resulting hidden Markov model can be regarded as the pattern codebook.

The model contains every pattern that can occur in each spectrogram. A final shared

pattern codebook is responsible for the conversion of a piece of dolphin communication

in the feature space S ′ = {s′1..s′T} into a dolphin communication sequence P =

{p1..pN}.
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Figure 13: Hierarchical clustering of regions in dolphin communication.

3.4.1 An Exact Pattern Model

The first clustering algorithm clusters the sliding windows using agglomerative clus-

tering under the dynamic time warping distance (see Figure 13). In agglomerative

clustering, all windows initially represent their own cluster. In each clustering step,

the algorithm merges the two closest clusters. I use the average linkage as the close-

ness between clusters. Since I am using dynamic time warping, the average linkage

between two clusters c1 and c2 is the average dynamic time warping distance between

windows in cluster c1 and cluster c2. I stop merging at a user-defined maximum

number of clusters. I proceed by learning one left-to-right hidden Markov model

from each cluster using the Baum-Welch algorithm. Since the maximum number of

patterns will lead to over-segmentation, I apply greedy mixture learning [34].

Greedy mixture learning starts with a one-state hidden Markov model representing

the noise. The observation distribution is the mixture of Gaussians estimated from the

noise samples. We then greedily add the pattern model to the mixture that maximizes

the likelihood for all data. If the increase in likelihood is not sufficiently large, the

algorithm returns the mixture. Now I can decode all communication sequences in

my sequence database using the Viterbi algorithm. By assigning each sample to

the pattern indicated by the Viterbi path, I achieve a segmentation into patterns:
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Algorithm 1: Segmented Clustering algorithm.

Data: A set of clusters C from a set of dolphin communication sequences S. A
threshold to define when to stop.

Result: A mixture of hidden Markov models M
A mixture containing only the silence model M ;
lastLL = −∞;
while |C| > 0 do

maxCluster = NULL;
maxModel = NULL;
maxLL =∞;
for each cluster c in C do

train a hidden Markov model m from data in c;
compute log likelihood LL(S|{m} ∪M) all models using the mixture
and the new model;
if LL(S|{m} ∪M) > maxLL then

maxModel = m;
maxCluster = c;
maxLL = LL;

end

end
M = M ∪maxModel;
C = C \ {maxCluster};
if maxLL < lastLL then

break;
end
lastLL = maxLL;

end
return mixture M ;

P = {p1, ...pT}, pi ∈ {1...N}.

If my feature codebook has D components, the first sequence is N samples long

and the second sequence is M samples long, dynamic time warping has to compute the

Euclidean distance in D dimensions at every step, resulting in a worst-case complexity

of O(N ∗M ∗D) for each comparison. If my dataset contains T sliding windows, the

worst-case complexity to compare all sequences to all other sequences is O(T 2 ∗N ∗

M ∗D). Since the algorithm is very slow, I propose a faster, approximate clustering

algorithm, based on discretizing the regions first and then hashing similar sequences

together.
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3.4.2 An Approximate Pattern Model

The approximate model is quite simple. I convert all sliding windows into a discrete

representation using the compression approach. I continue to insert all sequences into

a hash table. All collisions in a particular entry in the hash table represent a different

cluster. I use a user-defined threshold on the cluster size and train a hidden Markov

model from all sequences of clusters that are large enough. I proceed by combining

all these models into a mixture.

Converting the dolphin sequences into pattern strings is equal to the exact pro-

cedure. I decode all communication sequences in my sequence database using the

Viterbi algorithm. Each sample is assigned to the pattern indicated by the Viterbi

path, and I achieve a segmentation into patterns: P = {p1, ...pT}, pi ∈ {1...N}.

Figure 14: The approximate discovery process: First a signal in the new feature
space is compressed and discretized. In the resulting string each symbol represents
one of the feature extractors. The discrete strings are inserted into a hash table.
All sequences hashed to the same table’s entry are considered to belong to the same
cluster.

The approximate algorithm has the advantage of finding patterns in a very fast

manner. While the algorithms for the exact approach run in polynomial time, the

system can be very slow. The exact algorithm finds the clusters in linear time.

Furthermore, since the cluster size determines how many models we have in the final

mixture, we do not have to use the more expensive greedy mixture learning procedure.
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At this point the system is able to convert a spectrogram of dolphin signals into a

novel feature space and search for patterns in it. The discovered patterns are invariant

to frequency shifts and time warping transformations. Effectively, the algorithms

convert a spectrogram into the desired dolphin communication sequence. In the next

chapter, I will explain how to compute statistics from a set of dolphin communication

sequences.
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CHAPTER IV

A DATA MINING SYSTEM FOR DOLPHIN

COMMUNICATION ANALYSIS

In the last chapter, I described how to find patterns in a set of spectrograms containing

dolphin communication. Formally, I convert each spectrogram S = {s1...sT} into

a string of patterns P = {p1...pN} called a dolphin communication sequence. In

this chapter, I describe my approach to building statistical models from dolphin

communication sequences. Furthermore, I show how the resulting statistics can be

used to label unseen data with behavior annotations and how to run comparative

statistics between different behavioral contexts.

My approach to statistical modeling uses discrete distribution estimated as counts

of patterns, n-grams of patterns and sequential rules of patterns in the form of regular

expressions.

4.1 Models of Dolphin Communication

My communication model is based on distribution of pattern counts. It is inspired by

successful models from information retrieval. In information retrieval, a document is

described by word frequencies or the frequencies of features extracted by sentences.

In the following, I will describe the statistics I can calculate from a set of dolphin

communication sequences. Formally, a dolphin communication sequence is a string

of patterns P = {p1...pN}. Each pattern in the string is an element of all possible

patterns in the database P of size k. A dataset is a set of patterns D = {P1...PM}.

For example, if the biologists collect a set of audio files containing 10 different pieces

of dolphin communication and I run the pattern discovery algorithm, I get a set of
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10 pattern strings. The statistical methods I use here have been successfully applied

activity recognition in a method called “augmented bag-of-words”[3].

Augmented bag-of-words captures long-term interactions between symbols in a

sequence by using a set of regular expressions from the strings in the data set. The

short-term interactions are captured using a set of n-grams. For each sequence, I

count the number of times each symbol occurs (unigrams), the number of time each

n-gram occurs and the number of times each rule matches the sequence (see Figure

15).

Figure 15: Communication model constructed as a combination of single units, n-
grams and rules.

I describe these models in detail below.

4.1.1 Counting Patterns

The simplest approach to building the statistics is to build a histogram of pattern

occurrences for every dolphin communication sequence.

p(x|P1) =
count(x, P1)∑
y∈D count(y, P1)

(25)

The probability is simply the normalized count of each pattern in the sequence.

The probabilities of each pattern are used as a descriptor for the sequence. In other
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words, in this approach I disregard temporal information. The order in which the

patterns occur has no effect in this representation. In other words, the global sentence

structure is lost in this representation. For example, the histogram of the sequence

“aabaabaa” is {a : 0.75, b : 0.25}. The two following distributions help to overcome

this problem.

4.1.2 Pattern N-Grams

The second approach calculates a probability distribution of subsequences with length

N called an n-gram. Extracting all sequences of length N with a sliding window and

building a histogram of all the windows in a sequence results in a n-gram probability

distribution:

p(xt, xt−1...xt−n|P1) =
count(xt, xt−1...xt−n, P1)∑

y1...yN
count(y1...yN , P1)

(26)

In this statistic, the probability is defined as the normalized count of an n-gram.

An n-gram distribution can be regarded as a Markov chain of n − th order. It

represents sequential information in a local context. A communication sequence is

now represented as a histogram of n-grams. For example, extracting all the sliding

windows of size two from the sequence “aabaabaa” results in the following histogram:

{aa : 0.42, ab : 0.29, ba : 0.29}. While the simple pattern count does not account for

temporal structure, the n-grams capture local information.

4.1.3 Pattern Rules

The previous statistics model the frequency of patterns or the frequency of local

pattern sequences. The last statistic aims to model the global structure of patterns.

I model the global structure of a communication sequence as regular expressions.

A regular expression is a sequence of symbols defining a search pattern. For

example the string ab[a−Z] ∗ (b|cd) defines a search pattern in which the string “ab”
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is followed by a string of any characters “[a-Z]*” with any length. Then the string

ends with either “b” or “cd.” Example strings that match this search patterns are

1. abaaaaaab

2. abcccbbbbcd

3. abaabababacdb

All strings start with the required “ab” sequence. In the first string, the middle se-

quence “aaaaaa” is mapped to the string of any character “[a-Z]*” and the string ends

with a “b.” In the second sequence, the any character sequence is “cccbbbb” and the

string end with “bc.” In the last string, the middle part is “aabababacd” and it ends

with a “b.” My goal is to extract regular expressions automatically from a database

of dolphin communication patterns. For every dolphin communication sequence, I

find all regular expressions that match the sequence. The matching expressions are

used as my representation for the sequence.

In the following, I will describe how to learn a set of regular expressions from a

database of dolphin communication patterns using an algorithm called “alignment-

based learning” [49]. The resulting regular expressions support regions where no

character matches and regions with an OR.

Alignment-based learning is used to learn context-free grammars from a text cor-

pus. Alignment-based learning assumes that parts of a sentence with the same func-

tion can be replaced by each other. As the name suggests, these replacements are

found using an alignment. Instead, I do not aim to learn a context-free grammar

from alignments but regular expressions.

In the last chapter, I introduced the idea of using alignments of continuous se-

quences to account for the time warp. Here I construct alignments between pairs of

symbolic sequences.
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A pairwise alignment between two sequencesX = x1...xi...xN and Y = y1....yj...yM

can be achieved by a series of insertion, deletion, substitution and match errors. An

insertion error at position xi means the symbol is not present in yi. A deletion error

means the symbol is present in yi but not xi. A substitution error means the symbol

at xi is different from the symbol at yi. A match is no error, meaning the symbol xi

and yi are the same.

I use the Needlemann-Wunsh algorithm to construct the alignments [13]. The

algorithm is very similar to the dynamic time warping algorithm.

nw(i, j) = max


nw(i− 1, j) + δ

nw(i− 1, j − 1) + s(xi, yi)

nw(i, j − 1) + δ

(27)

In the above example, δ is a penalty for insertion or deletion errors. Furthermore,

the function s() returns a penalty for each pair of characters.

The recursion is initialized as nw(i, 0) = −i ∗ δ and nw(0, j) = −j ∗ δ. Back-

tracking through the dynamic programming solution allows it to find the alignment.

From the alignment, I can retrieve the insertions, deletions and match operations.

In bioinformatics, the substitution between symbols is estimated from substitution

statistics collected from existing manually created alignments. Since I do not have

access to manual alignments, I set the substitution cost to “1” if the two symbols

match and to “-1” if the two symbols do not match. Furthermore, I set the insertion

and deletion penalty to “-1.” In other words, all errors are penalized with “-1” and

all matches get a positive score of “1”.

I use the above procedure between two sequences to extract regular expressions. I

construct a regular expression from a pairwise alignment and use regions of matches

and substitutions as evidence for parts of the signal that occur across multiple se-

quences. I construct the regular expression in the following manner. All regions of

45



matches are unchanged. I replace all regions of insertions and deletions with a se-

quence of filler symbols of undefined length. In regular expression notation such a

sequence is written as [a − Z]∗. All substitutions are replaced by an OR operator.

For example, if one substitution region is “abc” in one sequence and “def” in the

other, we define that the regular expression can match either. The regular expression

notation is (abc|def). A sample alignment and its regular expression are shown in

Figure 16.

Figure 16: Top: A hypothetical alignment example. Matches are highlighted in blue,
substitutions in red, deletions and insertions in green. Bottom: The resulting regular
expression.

Now I build a set of all regular expressions from the dataset. Then, I align

each sequence to each other sequence and extract the regular expression. I add a

regular expression to the set of regular expressions if it matches more sequences than

a predefined threshold.

In order to represent a sequence using the new rule set, I calculate if a regular

expression matches a sequence in the data set. The result is a binary vector with all

fields set to one that represent a matching regular expression.

In Figure 17 I visualize some of the regular expressions extracted for our experi-

ments.

46



Figure 17: Two rules extracted from our data set. (x|y) represents OR and ∗ repre-
sents a repetition of the previous symbol as often as needed to match the rule.

4.2 Annotation of Dolphin Communication

As discussed Section 1.3, dolphin researchers often annotate their video databases

with tags describing typical animal behavior, dolphin identifiers and sound categories.

The sound category annotations are the same as I use to learn the codebook. The goal

is to annotate the audio files with tags from visual behavior and dolphin identifiers

(see Table 1 in Chapter I). Researchers create the dolphin identifiers using visual

features in the video. Often the spots on a dolphin or scars can identify a dolphin.

An example of a typical dolphin behavior might be a dolphin slapping another with

its tail. Another example is two dolphins swimming head-to-head. These examples

are shown in Figure 18. The annotation performance using the patterns is interesting

in itself. Performing annotation experiments with ground truth data can hint towards

the quality of the discovered patterns. High performance for observations from the

video using patterns found in the audio stream indicates that the patterns have actual

meaning. For example, if whistle patterns from the audio stream predict dolphin IDs

from the video, the system might have discovered a dolphin’s signature whistle.

In the previous section, I showed how to extract several statistics that describe

different aspects of dolphin communication. A dolphin communication pattern P =

{p1...pN} can be described as a discrete probability distribution p(x|P ). Each entry

in the probability distribution for that pattern can be a pattern count, an n-gram
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Figure 18: Two examples of annotated behavior. Top: Two dolphins swimming
head-to-head. Bottom: A dolphin slapping another with its tail. Reproduced with
permission from Miles [31].

count or a regular expression count. In the following, I will describe two methods to

annotate dolphin communication sequences automatically using their pattern prob-

abilities. The datasets I use are regions in the audio files with a dense coverage

of dolphin signals annotated with such annotations. Formally, I define a label set

Y = {t1...tm} associated with a dolphin communication sequence. In the following, I

assume I extracted some statistics from these sequences resulting in vectors of statis-

tics X = {x1...xN}. Each entry might be the frequency of an n-gram, a pattern or a

rule.

For example, a data set might be:

1. X1 = {x11...x1N}, Y1 = {t1, t2}

2. X2 = {x21...x2N}, Y2 = {t3}

3. X3 = {x31...x3N}, Y3 = {t4, t2, t1}
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4. X4 = {x41...x4N}, Y4 = {t3, t1}

5. X5 = {x51...x5N}, Y5 = {t1, t4, t2}

The goal is to convert dense regions into communication sequences and extract

statistics. In the following, I will describe how to annotate unlabeled dolphin se-

quences. The use of these annotations can be to auto-annotate new field recordings

and also to evaluate the statistical models. If one statistical model is more accurate

than another, the researchers can infer that the one model is a better representation

based on their labeling. For example, if a model of n-grams results in 80% annotation

performance and another model using combined n-grams and pattern counts yields

90% annotation performance, one inference might be that the second model is better.

Furthermore, computing which tags a model can predict more accurately might give

an insight into the structure of a specific context. For example, if the rule statistics are

very accurate with tags such as “head-to-head” or “tail slap,” the researchers might

infer that aggressive behavior or play behavior have sequential components. The two

tags annotate behavior associated with playful and aggressive social context, and the

rules capture long-term sequential patterns. Last but not least, such an annotation

system can be used to search for specific annotations in a database of audible dolphin

communication. For example, if a biologist wants to find several audio files containing

the dolphin “Bishu,” such a search system could help. The goal is to achieve high

precision with the annotation algorithm in order to reduce the number of documents

falsely returned.

4.2.1 K-Nearest Neighbor in Semantic Spaces

The first algorithm I use to annotate dolphin communication sequences is adopted

from image annotation [50]. Image annotation and dolphin sequence annotation are

similar since there can be multiple tags per sequence or image, so an out-of-the-

box classifier can not be applied directly. I annotate each unseen sequence using a
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modified version of the k-nearest neighbor algorithm (KNN).

For an unseen dolphin communication sequence, I compute the probability of

each tag as described in Verma and Jawahar [50]. In the first step, I group all of our

training examples by tags. For m tags t1...tm, I will have m sets I1...Im of examples.

Since each example can have multiple tags, these sets will overlap. The resulting sets

in our example are:

1. t1 : I1 = {X1, X3, X4, X5}

2. t2 : I2 = {X1, X3, X5}

3. t3 : I3 = {X2, X4}

4. t4 : I4 = {X5}

For an unannotated sequence Q, I extract the statistics first. Then I compute the

k-nearest neighbors in each set Ii, resulting in a set of k ∗m neighbors. An example

is given in Figure 19.

For each of the m tags, I compute the probability of the query showing a tag as

exponentially decreasing with the distance to instances showing that tag.

P (Q|tj) ∝
k∗m∑
i=1

e−|Xi,Q|2∗I(tj∈Yi) (28)

Now I annotate a region by computing the above probabilities for each tag and

annotate a region with all tags showing a probability greater than a predefined thresh-

old.

P (Q|tj) > θ (29)

This approach generates a probability distribution over all possible tags for each

new instance individually. The tags are assigned by applying a user-defined threshold.

One problem is that the number of neighbors and the threshold have to be chosen
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Figure 19: An example evaluation of the semantic two-NN algorithm. The query
instance is shown as a black circle. The dataset is segmented into three subsets for
the tags {Bamboo,Bishu,Head2Head}

by the user. Assigning the threshold can be an especially challenging task. In the

following I present another method for automatic annotation free of this weakness.

4.2.2 Multiple Binary Decisions for Communication Annotation

Another simple method to annotate an unseen sequence is to train a classifier for each

annotation individually instead of using a probability distribution. This method has

the advantage that the threshold will not have to be chosen. For a data set with m

tags, first I extract the statistics for each dolphin communication sequence. Then I

create m relabelings of the data set. Specifically for every tag, I relabel all dolphin

communication sequences annotated with it a positive label and all others with a

negative label. The relabeling in our example is:

1. t1: positive = {X1, X3, X4, X5}, negative = {X2}

2. t2: positive = {X1, X3, X5}, negative = {X2, X4}
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3. t3: positive = {X2, X4}, negative = {X1, X3, X5}

4. t4: positive = {X5}, negative = {X1, X2X3, X4}

Now I can train a single, binary classifier for each annotation. Each classifier

returns a positive label if the tag associated with it should be present and a negative

label when it should not. The results of the training are m classifiers, one for each

annotation.

Figure 20: Annotation process: Each example is classified by binary classifiers, each
associated with an annotation: bamboo, bishu, wh, sargassum. All the classifiers that
evaluate positively contribute to the annotation.

I classify each unannotated dolphin communication sequence using all classifiers.

The sequence is annotated with all tags for which classifiers returned a positive label.

The complete process is shown in Figure 20.

4.3 Comparative Statistics of Dolphin Communication in
Context

In the last part of this chapter I will describe how to perform comparative statistics

between dolphin communication in different contexts. The statistical models over
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pattern occurrences in dolphin communication sequence enable behavior researchers

to compare subsets of their data with each other using statistical testing. Today

dolphin researchers have no means of statistical testing for audible dolphin communi-

cation. Through my discovery algorithms and statistical modeling methods, I enable

this novel approach to hypothesis testing in the field of dolphin communication. One

example hypothesis is that audible dolphin communication is statistically different

during aggressive behavior than during play behavior. In other words the pattern

distribution is statistically different in the two behavioral contexts. The biologists

can now collect audio files with examples from both contexts and compute the statis-

tics for each of the dolphin communication sequences. Then the algorithm aggregates

the statistics for each context individually. The results are two histograms represent-

ing the pattern counts, the n-grams, the rules, or a combination of these units. Using

the two histograms I perform statistical testing. I run a Pearson’s χ2 test between the

two distributions. A χ2 test evaluates if a set of observations is significantly different

from a given distribution. In other words, the null hypothesis is that the observed

counts conform to the frequency distribution described by the expected counts. I

compute two p-values. The first p-value uses a χ2 test using the first context’s data

as the given distribution and the second context’s data as the observations. The

second test uses the first context’s data as the observations and the second context’s

data as the distribution. The two p-values can then be used by biologists to report

numeric evidence for the statistical difference between the two contexts.
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CHAPTER V

A USER INTERFACE FOR DATA MINING IN DOLPHIN

COMMUNICATION DATABASES

The goal of the thesis is to provide behavior researchers with a tool to discover patterns

in dolphin communication and to perform statistical testing. However, such a system

has to be able to communicate with the researcher through visualizations, and it has

to enable the researchers to run experiments on their own. Running the experiments

involves several steps including feature learning, pattern discovery and statistical

analysis. In the following, I will describe the signal imager, my user interface for the

dolphin communication analysis system. First I will describe my design goals and

sketches for my system and then describe the implementation in detail using several

use cases.

5.1 Design of the Signal Imager

The signal imager should help researchers to extract features interactively, discover

patterns and run statistical analysis. I organize experiments into projects. A project

is a folder on disk containing statistical models and audio files needed for the ex-

periments. A project includes a set of feature extractors and a mixture of hidden

Markov models. Each audio file in the project is converted to a spectrogram and

then converted into the novel feature space. Furthermore, each sequence is decoded

using the hidden Markov model resulting in the desired pattern sequences.

I have designed the signal imager to provide easy access to dolphin communication

sequences (see Figure 21). The main screen focuses on displaying the patterns found

in dolphin communication on top of its spectrogram. The patterns are color coded.

54



The sidebar on the left enables navigation through dolphin communication sequences,

and the visualizations change accordingly. Researchers can use the main interface to

browse their data collection and see where the patterns appear in the spectrogram.

Figure 21: A design sketch for the signal imager.

The system provides basic project management functionality. Users can create a

new project, load a project and add sequences to a project. Creating a project involves

learning the feature space. The users decide on the sliding window used to compute

all spectrograms and the number of codebook entries. Furthermore, the users provide

the categorized examples to the feature learning algorithm. The complete process is

guided by a project setup wizard. After the creation of a project, users can start

adding sequences to it. Adding a sequence to the project will convert a selected

audio file into its spectrogram and into the feature space. Both versions are saved

in the project folder. Each sequence added to the project will show instantly on the
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left side, and users can inspect the spectrogram. The data mining options allow the

researchers to build the hidden Markov model and to compute the desired statistics.

Once a user creates a hidden Markov model, then all spectrograms show the colored

highlights.

5.2 Visualizing Patterns and Statistics

Figure 22: The pattern view of the signal imager. Each row represents one pattern.
Each column represents an example of that pattern. All examples are color coded
indicating the pattern.

After the user creates the hidden Markov model, the signal imager tool offers

several visualizations. The first visualization is the pattern view. The pattern view

visualizes all examples of each pattern. The pattern view is a matrix containing all

patterns and all examples. A user can inspect all pattern examples in the database
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using this view. Each row in the pattern view represents a pattern. Each column

in that row represents an example of that pattern. In this way, users can easily

examine the goodness of the clusters. If the examples in one row are very similar

to the examples in another, then the discovered patterns are not that good. These

similar patterns could have been merged during discovery. These errors might occur

for feature spaces with too many feature extractors or for hidden Markov model

mixtures with too many components. On the other hand, users might discover that

the pattern examples are not very similar to each other. In that case, a larger feature

space or a larger hidden Markov model might help. The pattern view is shown in

Figure 22.

Figure 23: Two histograms. On the bottom histogram, the user interface shows a
regular expression revealed by using the interactive interface.

The other important visualization is the statistics view. As mentioned earlier,

a dolphin communication sequence can be described as a histogram combining uni-

grams, n-grams and regular expression matches. The visualizer shows the histogram
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of the frequencies for each component. If a user hovers the mouse over one of the

bars, the signal imager displays the underlying pattern, n-gram or rule. The visu-

alization allows a quick inspection of the most prominent components in a dolphin

communication sequence. An example of an interactive histogram is shown in Figure

23.

5.3 Use Case 1: Finding Patterns in a Database

The first use case explains the process of creating a project and discovering patterns

for inspection. Imagine a marine biologist, who acts as the domain expert. She col-

lects video and audio of wild Atlantic spotted dolphins using underwater cameras and

hydrophones. After several years of collection, she has access to a large multimedia

database containing several hours of footage of the animals’ social interactions. Over

the years, she has also collected enough insight into dolphin communication to iden-

tify several signal categories such as the dolphins’ whistles, echolocation and burst

pulses. Furthermore, she identified visual patterns in dolphin group behavior such

as synchronized swimming during aggression. However, one of her future goals is to

identify typical patterns in the dolphin signals and compare the usage of these pat-

terns across several different social contexts. Her problem is that the manual analysis

of her audio database is too slow and too subjective to get enough insight into the

distribution of patterns to collect evidence for her analysis. My data mining system

mostly works on its own. The domain expert’s task is to curate data suitable for her

experiment and feed it into the tool. Crafting these datasets from her large database

is her way of putting domain knowledge into the system.

In order to run her experiment, the domain expert collects a catalog with exam-

ples of known signal types. She suspects that mother-calf reunions will show more

whistle usage. Furthermore, from her previous research she suspects that dolphins

synchronize their burst pulses during aggressive behavior. Her first task is to collect
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a small catalog of audio snippets containing several whistles and several burst pulses.

She starts by creating a new project, and in the process, tells the program which

audio snippets are whistles and which are burst pulses. Using that knowledge, the

signal imager starts to learn a feature space that captures the dynamics of whistles

and burst pulses by analyzing small patches extracted from the spectrograms of the

given examples. For example, for whistles, the program will learn several patches

showing characteristic up and down sweeps (see Figure 24). The program uses these

patches to build a new feature space in which dolphin signals become easy to detect

and compare. The feature space captures the presence in the spectrogram of each of

the patches over time.

Figure 24: Left: A small excerpt of the curated examples collected by the domain
expert. Right: The resulting patches learned by the program.

After the domain expert estimates the feature space, she has a method to capture

the dynamics of dolphin communication as provided by her examples. Next she

collects several examples of dolphin communication during aggressive behavior and

mother-calf reunions. From her video annotations, she can access her database in

a timely manner and extract the audio from the associated video files in regions

where she observed the desired behavior. She adds all the examples to the newly
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created project. The signal imager converts her audio files into two representations:

a spectrogram representation for visualization purposes and the feature space using

the features capturing the dolphin signal dynamics for pattern discovery. The user

interface for such a project is shown in Figure 25. On the left side, the domain expert

can choose one of the files she added, and it will be displayed in the center.

Figure 25: The user interface with dolphin communication examples added. It shows
all the files on the left and displays the spectrogram for selected files on the right.

The next task is to segment each of the files, or in other words, find common

patterns in the files. The segmentation is performed automatically on a button press.

The program extracts regions of dolphin communication in the new feature space and

clusters these regions. The number of cluster components is learned automatically.

After the tool finishes the discovery work, it displays the patterns by coloring regions

in the spectrogram. Furthermore, the tool displays strings at the bottom of the screen

indicating which patterns are found (see Figure 26). The domain expert then inspects

the files and the discovered patterns.

Now that all of the dolphin signaling examples are in a discrete representation,

the domain expert can start modeling statistical patterns in the program. The user

interface provides an option to compute statistics from the discrete representation.
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Figure 26: The user interface with color highlighted segments.

5.4 Use Case 2: Comparative Context Analysis

Using the newly created project with the added sequences and discovered patterns,

the domain expert proceeds to calculate statistics and to run a comparative analysis.

The signal imager offers a new window to compute statistics (see Figure 27).

In the statistics view, the domain expert can choose from several statistics includ-

ing the bag-of-words model, the n-gram model and the regular expression (Figure 27,

top left). Checking each box will enable the model. The parameters can be input next

to the model name. Afterwards, the domain expert is ready to run a comparative

statistic. The statistics screen is located at the bottom of the window. The goal is to

select two subsets of files from the project and run a χ2 test between the aggregated

histograms of each subset. The user interface shows two columns. Both columns list

all files. The user selects the first subset in the left column and the second subset in

the right column. In our case, the researcher selects all data including play behavior

in the left column and all data containing mother-calf reunions in the right column.

Pressing the run button will trigger the signal imager to run the test. The program

will calculate all selected statistics for all selected files. Afterwards, all histograms
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Figure 27: The statistics view includes the feature selection on the top left, the
annotation experiments on the top right and the statistical testing at the bottom.

on the left column are aggregated by summing all counts in each bin. The same

aggregation is applied to the right column. Then the signal imager calculates the

χ2 test between the two histograms and writes the result in the p− value text field.

The behavior researcher can now evaluate if there is a statistical difference between

audible communication during play behavior and communication during aggressive

behavior. The visualize button above each column opens the interactive histogram

view for further inspection.
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5.5 Use Case 3: Annotation of Novel Dolphin Communi-
cation

In the last experiment, the dolphin researcher wants to compare the performance of

several parameters. One example case might be that the researcher chose the fast

algorithm to discover patterns in the audio files, and in another project with the same

data she used the exact algorithm. Now she wants to compare the performance of both

algorithms numerically. The signal imager provides the option to run an annotation

experiment. Provided with an annotation file for the sequences in the project, the

signal imager can train a classifier and compute the confusion matrix and accuracy

over several folds of the dataset. If she performs the annotation experiment in both

projects, she can compare the accuracy, precision and recall of several classifiers for

the project with the exact discovery and the project with the fast discovery. The

same experiments can help her to decide which statistics work best. An example

comparison is to compare bag-of-words only with bag-of-words combined with the

rule model.

If the domain expert is not happy with the default options of the tool, her pattern

recognition colleagues can easily help her with the classifier selection using the well-

known Weka interface, whose toolkit is included in my program (see Figure 28).

After the cross-validation experiments, the program shows the confusion matrix with

precision and recall as well as the annotation accuracy. The program also visualizes

the true positives for each annotation. For example, if the complete system can

only annotate dolphins’ names, the domain expert might conclude that the system

only works for whistles. However, if higher level annotations such as “head-to-head

swimming” are predicted well, she can form hypotheses about the audio patterns

during aggression. Figure 29 shows the result view for the annotation experiment.

The confusion matrix and the precision, recall and accuracy of the annotatoin are

shown at the bottom of the left window. The top of the left window shows the status
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Figure 28: The standard classifier selection from the Weka interface.

of a cross-validation experiment. The right window shows a histogram. Each bar

represents the number of true positives for each annotation.

Figure 29: The annotation results view.

Using the signal imager, the domain expert can discover patterns in her field

data. Furthermore, the signal imager allows her to run statistics and annotation

experiments on her own and visualize the results. In the following chapter, I will

present my experimental evaluation of the program including a user study with a
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biologist.
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CHAPTER VI

EVALUATION

In the previous chapters, I presented how the signal imager processes a collection of

audio files. The program learns a feature space and transforms the spectrogram of

each audio file into a new feature space. Then the discovery algorithm finds pat-

terns in this novel feature space. In the end the signal imager builds communication

models that allow statistical testing of communication in different contexts and the

annotation of dolphin communication. In this chapter, I present my evaluation of the

signal imager program and its algorithm. In the first two experiments, I evaluate the

annotation performance and the statistical testing performance using ground truth

datasets. In the last experiment I evaluate the quality of the pattern discovery with

a domain expert. In the last section I will highlight common errors that I observed

during my experiments. The experiments will show that my proposed system is capa-

ble of hypothesis testing and generation. Furthermore, the last experiment will show

that the discovery results are indeed useful and interpretable by domain experts.

6.1 Signal Imager Experiments

The following three experiments evaluate the signal imager’s performance in several

conditions. In previous chapters, I proposed several different algorithm and modeling

options for pattern discovery and statistical modeling.

In the first experiment, I show how the annotation performance of the signal im-

ager changes for several communication models and for different discovery algorithms.

For example, one question is how a bag-of-words model compares to a bag-of-words

model augmented with an n-gram model. Another question is how the approximate

discovery algorithm compares to the exact discovery algorithm. The hypothesis is
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that an appropriate communication model and better patterns will increase the an-

notation accuracy.

In the second experiment, I evaluate the statistical testing performance. The hy-

pothesis is that there is a statistical difference between communication in different

behavioral contexts, such as play and aggression. In the experiment, I use a dataset

with five different behavior contexts and show that the system discovers the appro-

priate statistical differences. Furthermore, I show that the discovered patterns have

a direct effect on the testing performance and how better patterns can be discovered

by adding unlabeled data.

In the last experiment, I evaluate the quality of the pattern discovery with a

domain expert. The biologist inspects the patterns in several conditions and gives an

expert opinion. During the study, the domain expert will rate the pattern discovery

results for the approximate algorithm and the exact algorithm. The experiment shows

the perceived performance of the system.

6.1.1 Automated Behavior Tagging

In this experiment, I will evaluate how the annotation accuracy changes for different

communication models and the two pattern discovery algorithms.

The annotation experiment is designed to answer multiple questions:

1. Can the signal imager annotate unseen dolphin communication sequences?

2. What are the best statistics to annotate dolphin communication sequences?

3. Is there a difference between the exact and approximate algorithm?

I use two datasets: the categories dataset and the annotated dataset. The cat-

egories dataset consists of short audio snippets. Each snippet is approximately one

second or less and is categorized as a whistle, a burst pulse, echolocation or simply

noise. There are 3 noise files, 78 whistles and 15 burst pulse examples. The noise
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and burst pulse files are a second in length or shorter. The noise files combined are

about two minutes in length.

The annotated dataset contains 67 audio files representing annotated dolphin

communication. I extracted the audio files from audiovisual recordings made in 2012.

I use video annotations to extract the 67 audio files and use the behavior tags as

annotations. All audio files in both datasets show a sampling rate of 44.1kHz. I

calculate all spectrograms using a sliding window of 512 samples with a 102-sample

overlap. Furthermore, I apply a Hanning window to each of the sliding windows.

The feature transformations are learned from 20x20 patches and contain 60 feature

extractors. I learn the feature extractors from the category data set. I use the 67

annotated audio files from 2012 for this experiment.

After I convert all 67 audio files into a 60-dimensional feature space, I use the

resulting time series to compute two sets of dolphin communication sequences. The

first set is constructed by discovering patterns in the dataset using the exact algo-

rithm. The second set is constructed by discovering patterns in the dataset using the

approximate algorithm. For the initial segmentation into signal and noise, I use a

random forest with 10 trees. I use a three-state, left-to-right hidden Markov model for

each pattern in both cases. Furthermore, the Gaussian mixture model for the noise

state in the final hidden Markov model mixture has three components. During the

exact algorithm, the final hidden Markov model mixture is initialized with 20 clus-

ters found using hierarchical clustering under dynamic time warping distance. The

approximate algorithm initializes the hidden Markov model mixture from the data of

all hash bins with more than 10 sequences.

My evaluation is based on several different classifiers and statistics combinations.

The classifiers I use are a support vector machine, the semantic k-nearest neighbor

with a probability threshold of 0.005, a naive Bayes classifier and a random forest. The

support vector machine (SVM) uses a radial basis function kernel with the standard
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Weka parameters. The semantic k-nearest neighbor (KNN) algorithm extracts three

neighbors for each tag. The naive Bayes classifier (NB) has no parameters to choose.

Finally, the random forest (RF) contains 10 trees. Each tree is restricted to a depth

of seven and selects from a set of five random features for each decision. All classifiers

except the semantic k-nearest neighbor algorithm perform a binary decision for each

behavior tag.

In the first experiment, I use several sets of statistics as features for the annotation

and observe the accuracy for all classifiers. The statistics are bag-of-words (BOW),

n-grams (BOG), regular expressions (BOR), bag-of-words combined with regular ex-

pressions, bag-of-words combined with n-grams, regular expressions combined with

n-grams and all three models combined. I extract all regular expressions and use the

ones that are used more than eight times for the statistics. I choose to use bi-grams

for the statistics. For this experiment, I use the dataset resulting from the exact

algorithm. I split the dataset into 80% training data and 20% test data using 10

folds of Monte Carlo cross-validation. I measure the number of correct annotations

(true positive), in each condition, the correctly omitted annotations (true negative)

as well as the falsely omitted annotations (false negative) and false annotations (false

positive). I calculate the accuracy for each condition from these counts:

accuracy =
true positive + true negative

true positive + true negative + false positive + false negative
(30)

The results of the experiment are shown in Table 2.

I observe the lowest accuracy of 78% for the bag-of-words condition with the se-

mantic k-nearest neighbor algorithm. The highest accuracy is 91% and is achieved

using a random forest and using the combined statistics of bag-of-words and the reg-

ular expressions. The same condition also shows the highest average accuracy across

classifiers. Performing a t-test between all conditions is inconclusive. There are only

minor statistical differences before Bonferroni corrections and none after. One reason
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Table 2: The results of the annotation experiments for several statistics.
BOW BOG BOR BOW,

BOG
BOW,
BOR

BOG,
BOR

BOW,
BOG,
BOR

SVM 79% 89% 87% 89% 88% 87% 87%
KNN 78% 80% 80% 79% 80% 80% 80%
NB 80% 80% 88% 80% 88% 88% 87%
RF 88% 90% 90% 89% 91% 90% 89%
AVG 81% 84% 86% 84% 87% 85% 85%

might be that there is not enough data for cross-validation to show these differences.

In order to establish a baseline, I build a classifier that rejects all annotations. In

other words, there are no true positives and the accuracy of the baseline classifier is

based on true negatives alone. Some of the accuracies are equivalent to the baseline

accuracy which is 79%. In these cases, it is not clear if the classifier predicts any an-

notations correctly or not. To get a better idea about the breakdown of the accuracy

into true positives and true negatives, I repeat the experiment for the bag-of-words

combined with the rules condition. I use the same classifiers and compute the pre-

cision and recall for each. Precision can be regarded as the percentage of correctly

annotated data from all annotations made. Recall is the percentage of correct an-

notations from all possible correct annotations. Precision and recall are defined as

follows:

precision =
true positive

true positive + false positive
(31)

recall =
true positive

true positive + false negative
(32)

The precision and recall for the four classifiers are shown in Table 4. According

to the results, it seems that the discovered patterns provide enough discriminative

power to distinguish between the biologist’s annotations, and the annotation algo-

rithm predicts several annotations correctly. I also calculate the precision and recall

for each annotation individually.
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Table 3 shows how often each annotation is used in the dataset. Furthermore, the

table shows the precision and recall for each label individually computed using all four

classifiers. It is not surprising that often-used annotations are the highest percentage

correct. As one can see, the algorithm is able to annotate visual identifiers well and

even shows some predictive power towards visual behavior. These results indicate that

the patterns found in the dataset might represent semantically meaningful signals

such as signature whistles or other signals that are predictive of visual behavior.

A detailed inspection of the precisions and recalls indicates that the algorithm is

capable of predicting a dolphin’s visual identifier. One possibility is that the algorithm

uses patterns that represent signature whistles. The algorithm is also capable of

predicting the head-to-head annotation that is observed during aggressive behavior.

One possibility is that the algorithm uses patterns that represent a specific burst pulse

sound called a synchronized squawk. That sound is often associated with aggressive

behavior, too.

In the second experiment, I compare the approximate algorithm with the exact

algorithm. Since the bag-of-words statistics combined with the regular expressions

worked best in the first experiment, I use these statistics for the second experiment.

I extract the statistics for the dolphin communication sequences generated from the

approximate and exact discovery algorithms and compare the two conditions with

each classifier. The results of the second annotation experiment are shown in Table 5.

In the second experiment, the exact algorithm performs better than the approximate

algorithm. Calculating the t-statistic reveals that the exact algorithm is in fact weakly

significantly better than the approximate algorithm, with a p − value of 0.03. The

results in these experiments indicate that the patterns found in the audio stream

provide enough discriminative ability to annotate audio data with annotations created

from visual observations. The precision in the experiments is high enough to enable

efficient search in a database of audible dolphin signals in the future work. In the next
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experiment, I show that the patterns’ discriminative power is sufficient to distinguish

between higher behavioral contexts using statistical testing.

6.1.2 Comparing Communication Among Different Dolphin Behavioral
Contexts

The second series of experiments evaluates the statistical testing function of the signal

imager. I use another dataset to run comparative statistics among different behav-

ioral contexts. The audio files provided by the domain experts are annotated with the

behavior contexts: play behavior, foraging behavior, aggressive behavior and mother-

calf reunions. In total, the dataset contains 25 audio files: 7 files showing aggressive

behavior, 5 files with foraging behavior, 6 files with play behavior and 7 files with data

from mother-calf reunions. The domain expert picked these contexts since the expert

community has agreed that communication in these contexts is different. For example,

foraging behavior includes mainly echolocation; aggressive behavior includes mainly

burst pulses; play behavior includes whistles; and mother-calf reunions include sig-

nature whistles. When comparing these contexts to each other, they should all show

a significant difference in the pattern distribution. Furthermore, when comparing a

context to itself, it should not show a significant difference.

In particular I want to investigate the following questions:

1. Is the signal imager able to confirm the differences between the four contexts?

2. Does adding more, unlabeled data lead to a better pattern estimate?

For the following experiments I use two datasets. The first dataset contains the

four-context dataset. The second dataset contains the four-context dataset combined

with the patterns from the 2012 field season. For both datasets, I convert all audio

files into the 60-dimensional feature space using the feature extractors learned from

the category dataset. For both datasets I apply the exact algorithm with the same

parameters as in the annotation experiment, resulting in the following two conditions:
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1. Exact discovery in four contexts only.

2. Exact discovery in four contexts combined with the patterns from the 2012 field

season.

I run comparative statistics in each condition and perform comparisons between

two contexts using a χ2 test on the histogram statistics extracted from each dolphin

communication sequence. From the annotation experiment, it seems the regular ex-

pressions combined with the bag-of-words model show the best performance during

annotation. Therefore, I decide to use these statistics in these experiments, too. I

proceed with the following testing procedure. When comparing data from context c1

and context c2:

1. Estimate a distribution c1, and test if c2 is from that distribution.

2. Estimate a distribution c2, and test if c1 is from that distribution.

The method returns two p− values, one for each case. These p− values are used

to indicate the significant difference between the communication in each context. At

this point in the data mining pipeline, the audible communication is described by a

distribution estimated from the discovered patterns. In other words, the p − values

indicate significant differences in communication among different contexts indirectly

through the estimated pattern distributions. In my experiments, I use a 0.95 confi-

dence interval. That means I reject a hypothesis if the p− value is greater than 0.05.

For example, if the p − value between the contexts play behavior and mother-calf

reunion is smaller than 0.05, then the difference in the communication is significant.

When the p − value is larger than 0.05, then the difference is not significant. Fur-

thermore, when testing multiple contexts, I apply the Bonferroni correction. The

Bonferroni correction accounts for the familywise error rate, which means that the

correction accounts for a type I testing error (i.e., false positive) when performing
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multiple comparisons. The Bonferroni correction is the most conservative of correc-

tion methods. Other options include resampling or permutation testing. However,

these methods require more testing data than are available in my experiment.

When comparing data from a context to itself, I split the data into two equal

subsets and run the tests between the two. I repeat the testing process 10 times

and average the resulting p − values. The results of the multiple tests for the first

condition are shown in Table 6. Each rule has to be used more than eight times to

contribute to the statistic.

The values on the diagonal of the table show the p − values for the comparison

of each context to itself. As assumed, the values show no significant difference. All

the other entries in the table show the p− value for the comparison of two different

contexts. These values should show a significant difference between the contexts.

However, I observe one error in the results. It seems that foraging behavior and play

behavior are not significantly different. In other words, the discovered patterns indi-

cate that the communication in both contexts is not significantly different. However,

from the domain experts, we know that the communication during foraging behavior

is characterized by echolocation and that the communication during play is often

characterized by whistles.

In the second experiment, I combine data from the 2012 dataset with the four-

context dataset. My hypothesis is that a larger set of data will stabilize the pattern

discovery and in turn provide cleaner statistics. In this experiment, I run the pattern

discovery and the rule discovery on the combined dataset. I then perform the same

statistical testing as in the first experiment. The results of the second experiment are

shown in Table 7.

As one can see, the combined dataset shows higher p − values for the diagonal

and lower p − values in every other cell. Furthermore, the errors in the combined

condition only occur after correction for multiple tests. The first experiment shows
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an average p− value of 0.45 on the diagonal and an average p− value of 0.1 in every

other cell. The exact algorithm shows an average p − value of 0.78 on the diagonal

and a p−value of 2.88e−3 in every other field. In other words the combined condition

follows our expectation more strongly. Comparing the context to itself should result

in a highly non-significant estimate. The expectation is that communication in playful

behavior is similar across instances. Furthermore, I expect every comparison between

contexts to be very different, since the biologist picked the context examples to be

different in behavior and communication. In other words, using the larger dataset

follows our expectation, while the context dataset alone results in an error.

6.1.3 Qualitative Analysis of Pattern Discovery

In this section, I evaluate the pattern discovery results with the domain expert. As

indicated by the previous experiments, there is a difference between the fast and the

exact algorithm and between the small and large dataset. For the evaluation, I use

the pattern visualization of the signal imager. I discover patterns in the following

four conditions:

1. Small dataset with the exact discovery.

2. Small dataset with the approximate discovery.

3. Large dataset with the exact discovery.

4. Large dataset with the approximate discovery.

In the experiment, the domain expert does not know how the patterns are found

and which dataset is used. For the purpose of the experiment, the conditions are

labeled A, B, C and D. The domain expert opens the precomputed patterns in the

signal imager and evaluates them in a think-aloud protocol. She inspects every pattern

and its examples visually. Then, the discussion with the domain expert is guided by

the following questions:
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1. Does using method A result in clean patterns?

2. Does using method A result in distinct patterns?

Both questions are answered on a Likert scale from one to seven using the ques-

tionnaire shown in Appendix A. A result of one indicates a strong disagreement, and

a result of seven indicates a strong agreement. The first question aims to find the

perceived intra-cluster distance. In other words, how similar to each other are the

examples assigned to a pattern? The second question aims to find the perceived

inter-cluster distance. That is, how distinct from each other are patterns? A high

intra-cluster distance would indicate that a lot of examples are assigned to the wrong

pattern. A low inter-cluster distance indicates that two patterns that the domain

expert would rate the same are split into multiples by the discovery algorithm.

In the first two sessions, the domain expert is presented with the small dataset.

The first dataset inspected with the domain expert is the result of the approximate

discovery algorithm run on the four-context dataset only. An excerpt of the pattern

view is shown in Figure 30. The domain expert notes that the first and the fourth

rows seem to gather many different patterns. Furthermore, from the eleven patterns

presented, the domain expert would use six or seven. The patterns seem to capture

different frequency-modulated burst pulses.

In the second session, the expert inspects the patterns from the exact algorithm

run on the small dataset. In the expert’s opinion, the exact algorithm on the small

dataset seems to perform the worst. There are not enough patterns, and the patterns

displayed seem to be quite unclean. The signal imager view for the patterns is shown

in Figure 31. The algorithm finds five patterns. In both versions, the domain expert

notes that some patterns are very clean while others are either unclean or redundant.

However, she notes that it seems easier to relabel patterns when there are too many

instead of analyzing unclean patterns.
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Figure 30: The pattern view in the signal imager for the approximate discovery in
the small dataset.

Figure 31: The pattern view in the signal imager for the exact discovery in the small
dataset.

The third session inspects the discovery results of the approximate algorithm on

the large dataset (see Figure 32). On visual inspection, the domain expert’s opinion

is that the patterns are very clean. However, she notes that the algorithm seems to be

“picking up on whistles,” and she thinks that the patterns found in this version are

not very distinct from each other. She also notes that she likes this version more than

the two previous ones. She also commented that this version seems more promising

since the patterns start to look like units of dolphin communication. This result is

not surprising since the dataset is larger, and in turn, discovering patterns is easier

since there are more examples available to the algorithm.

In the last session, the domain expert inspects the patterns from the exact algo-

rithm on the large dataset (see Figure 33). The expert notes that the patterns are

the best so far, since they are distinct from each other and the patterns are clean
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Figure 32: The pattern view in the signal imager for the approximate discovery in
the large dataset.

enough.

The results of the Likert scale are shown in Table 8. The first observation is that

the domain expert rates the patterns in the larger datasets higher with respect to

the inter-cluster distance. The best rating is achieved for the large dataset with the

exact algorithm. The Likert scale ratings reflect the results of the discussion.

6.2 Common Errors in Dolphin Communication Mining

In the following, I will describe common error sources that occur during my experi-

ments. First, I will describe errors during whistle tracing. If a whistle is not traced

correctly, it might lead to undesired non-dolphin signals in the feature extraction.

Second, I will point to common signal detection errors. I use the signal detection

results to initialize the patterns. Errors in signal detection will affect the pattern dis-

covery process. The last section describes clustering errors found during discussions

with the domain expert.

78



Figure 33: The pattern view in the signal imager for the exact discovery in the large
dataset.

6.2.1 Whistle Tracer Errors

In a small set of experiments, I found multiple examples of noise leading to failures

during tracing. Often these errors happen when the whistle becomes nearly indis-

tinguishable in the spectrogram, and the signal’s dynamic probability is much lower

than the magnitude of another frequency. The obvious example is that low-frequency

boat noise is louder than the dolphin whistle over a longer period of time. Another

example is when a harmonic is much louder than the actual whistle. Some example

traces with errors are shown in Figure 34.

6.2.2 Segmentation Errors

In another experiment, I evaluate how effective the feature space and the signal

detector are. I use the whistle catalog and the noise examples as training examples.

I transform each example into the novel feature space. I then build a random forest

with 10 trees, each pruned at a depth of seven. I continue by classifying each example

using the trained trees. Using a 10-fold cross-validation with a random split into 90%

training data and 10% testing data I observe that 95% of instances are classified
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Figure 34: Some failures observed during tracing. Circles indicate error regions. The
dashed lines follow the hypothesized actual trace.

correctly. Inspecting the segmentation algorithm for the communication sequences,

I observe common errors such as framing, false positives and false negatives. Some

examples can be seen in Figure 35.
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Figure 35: A selection of common tracing errors.
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Table 3: A list of all the annotations found in the 2012 dataset with for four classi-
fiers.Each field includes precision / recall.
Label Count SVM KNN NB RF
WH 41 0.50 / 0.67 0.60 / 1.00 0.43 / 0.50 0.40 / 1.00
Littleprawn 9 0.00 / 0.00 0.83 / 0.56 1.00 / 0.22 0.00 / 0.00
Bamboo 9 0.40 / 0.29 0.22 / 0.67 0.33 / 0.75 0.29 / 0.50
Nuzzle 9 0.78 / 0.88 0.22 / 0.67 0.33 / 0.75 0.67 / 0.57
Littlegash 8 0.00 / 0.00 0.83 / 0.56 1.00 / 0.22 0.00 / 0.00
Bishu 8 0.40 / 0.29 0.22 / 0.67 0.33 / 0.75 0.50 / 0.50
Nautilus 6 0.00 / 0.00 0.33 / 0.75 0.00 / 0.00 0.00 / 0.00
Play 6 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Head2Head 6 0.67 / 0.22 0.43 / 0.75 0.00 / 0.00 1.00 / 0.17
Ginger 5 0.33 / 0.20 0.43 / 0.75 1.00 / 0.60 0.25 / 0.50
Gelato 5 0.33 / 0.20 0.43 / 0.75 1.00 / 0.60 0.25 / 0.50
SW 4 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
OpenMouth 4 0.00 / 0.00 0.00 / 0.00 0.20 / 0.20 0.00 / 0.00
ECH 4 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Malachite 4 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Mugsy 3 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Cobalt 3 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Sync 3 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
TailSlap 3 0.00 / 0.00 0.20 / 0.33 0.00 / 0.00 0.00 / 0.00
Naia 2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Nematocyst 2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Val 2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Bottom 2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Sargassum 2 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Chase 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Calve 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Fecal 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Fish 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Littlegash and Littleprawn 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Nautilis 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Flexion 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Venus 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Fused 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
Discipline 1 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00
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Table 4: Precision and recall in the bag-of-words combined with rules condition for
the four classifiers.

Classifier Precision Recall
SVM 0.66 0.31
KNN 0.26 0.44
NB 0.35 0.43
RF 0.63 0.26

Table 5: The results of the annotation experiments using statistics from the approx-
imate algorithm and the exact algorithm.

Approximate Exact
SVM 87% 88%
KNN 78% 80%
NB 84% 88%
RF 90% 91%
AVG 85% 87%

Table 6: The p-values for the statistical testing experiment using the small dataset
and the exact algorithm. Significant p-values after correction are shown in green.
Non-significant values are shown in blue.

aggression play foraging reunion
aggression 0.26 4.8e−11 < e−14 3.2e−8

play < e−14 0.23 0.99 8.8e−13

foraging < e−14 0.27 0.91 < e−14

reunion 3.0e−5 < e−14 < e−14 0.26

.

Table 7: The p-values for the statistical testing experiment using the combined
dataset and the exact algorithm. Significant p-values after correction are shown in
green. Non-significant values are shown in blue. Values that are non-significant after
correction are shown in yellow.

aggression play foraging reunion
aggression 0.51 7.48e−11 0.02 1.45e−13

play < e−14 0.79 1.46e−7 0.01
foraging < e−14 < e−14 0.98 1.63e−7

reunion 3.00e−9 2.58e−4 < e−14 0.84

.

Table 8: The Likert scale results for every condition.
Intra-Cluster Inter-Cluster

Small Approx 4 4
Small Exact 3 3
Large Approx 6 3
Large Exact 5 6
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CHAPTER VII

DISCUSSION

In the previous chapter, I presented several experiments evaluating the signal imager

system. The system evaluates the exact and approximate algorithms. The annotation

experiment showed that it is possible to annotate dolphin communication sequences

with high accuracy using several algorithms and multiple statistics. In a more detailed

analysis, I showed that the algorithm returns annotations that match visual behavior.

In a breakdown of the percentage of true positives, I showed that the algorithms are

able to annotate correctly when there is enough data. Furthermore, the support

vector machine and the random forest show high precision. These results are the first

indicator that the patterns found in the audio data are meaningful. The interesting

result is that the system finds patterns in the audio data that are predictive of visual

observations. For example, the system predicts multiple visual identifiers correctly.

From the domain experts, we know that dolphins use signature whistles, which can

be thought of as names, to call for each other. The system might use audio patterns

that capture signature whistles to annotate a dolphin’s identifier. Another possibility

is that the system might use audio patterns associated with aggression to annotate

visual behavior such as head-to-head.

Later experiments reveal that the best-performing statistics are the bag-of-words

approach combined with the regular expressions. In a discussion with the domain

expert, we agreed that the regular expressions can capture the sequential structure

of dolphin communication, even under noisy conditions. In particular, the rules can

deal with the insertion or deletion of patterns into a sequence, while n-grams cannot.
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There are several possibilities why the rules perform well. First, the rules might cap-

ture actual sequential structure in the rules. Another possibility is that the rules can

capture overlapping dolphin communication. If two dolphin groups communicate sep-

arately, both communications will show in the audio files, and the rules can separate

the communications with the logic or between patterns and the gaps. The annotation

experiment reveals that the exact algorithm performs better than the approximate

algorithm. However, the results are only weakly significant.

Furthermore, the experiments show that the system is able to perform comparative

statistics between the audible communications in several contexts. I use a ground

truth dataset to evaluate if the system is able to find significant differences between

different contexts. As shown in the results, comparing the contexts to each other,

results in highly significant differences. Furthermore, comparing a context to itself

results in highly non-significant differences. In other words, the system is able to

determine the differences in the audible communication in different contexts. The

results of the experiments indicate that the discovered patterns and their distributions

are a good model for dolphin communication. There is another interesting discovery

in these experiments: adding more data to the pattern discovery process results

in better statistics. My intuition is that a large dataset is desirable for pattern

discovery. The patterns have more data support since each pattern occurs more

often in the dataset. The parameters of hidden Markov models become more stable

when estimated from more data. A more stable estimate of the hidden Markov

models’ parameters also results in a better decoding of sequences and, in turn, a

better estimate of the statistics. As seen in the experiment, adding data to the

system removes the single error from the statistics. Furthermore, the differences

between each context become more significant with more data, and the differences

between the contexts to themselves become less significant. In other words, the results

become more stable and agree more with the domain expert’s opinion.
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In the qualitative experiments, the domain expert seems to agree with the ob-

servations from the numeric experiments. First, the Likert scale indicates that the

domain expert rates the patterns discovered in the big datasets higher. From her

comments, it seems that she also rates the importance higher since she notes the dif-

ference between the datasets going towards communication units. Interestingly, the

domain expert rates the exact algorithm for the slow dataset lower than the approx-

imate counterpart. One explanation is that the exact algorithm needs more data to

establish a good initialization for the hidden Markov models. Since the exact algo-

rithm is based on clustering, fewer data points might lead to unstable clusters. Since

the approximate algorithm is based on hashing coarsely quantized sequences, hav-

ing fewer data points will not matter as much. Furthermore, during the qualitative

exploration session the domain expert noticed some previous undiscovered patterns.

For example, in the experiment she noticed two equal patterns next to each other and

noted that she did not notice something like it before. The two patterns happened

during play behavior with sargassum. The patterns for the small data set and the

large data set are shown in Figure 36.

The domain expert notes that it seems like the patterns in the small dataset group

burst pulse sounds, while the patterns in the larger dataset model the frequency mod-

ulation, resulting in a more detailed view of the data. Again, the expert’s observations

seem to confirm that a larger set of data stabilizes the pattern discovery. Another

interesting comment from the domain expert is that it is easier for her to analyze

a pattern set that is too inclusive than a pattern set in which the examples of each

pattern are fully distinct. In her opinion, she prefers clean or crisp patterns. Her

solution to multiple similar patterns is that she labels these patterns the same in her

analysis. Splitting patterns is harder for her.

In the last experiments, I showed some common errors during the low-level pro-

cessing of the data. It seems that some whistles are not traceable, especially when the
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Figure 36: The patterns found in an audio file recorded during play behavior. Top:
The patterns found using the small dataset. Bottom: The patterns found using the
large dataset.

target whistle has parts indistinguishable from a noisy background. In another case,

whistles were not traceable if there was a very strong noise source in the recording

pulling the whistle trace towards it. The first problem can be solved by not adding

the whistle to the categorized dataset or by splitting the whistle into pieces that are

easily traceable. In the second case, pre-filtering the signal using a high-pass filter

can lead to a better trace. Often the strong noise sources include boat noise, which

is lower in frequency.

In an experiment with the signal detector, I found high accuracies when classifying
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frames in the new feature space into signal or noise. However, when evaluating the

segmentation results, I observed errors such as framing, false positives and false nega-

tives. A framing error occurs when a pattern is split in the middle. Missing a pattern

is called a false negative and inserting a pattern is called a false positive. However,

the evaluation of the system’s high level functions such as discovery, annotation and

statistical testing reveals stability with respect to these errors. My hypothesis is that

the hidden Markov models compensate for the errors in the segmentation. A mixture

of hidden Markov models is decoding the sequences in total instead of the frame-

by-frame signal detection. Framed patterns might match a complete pattern in the

hidden Markov model, and false positives as well as false negatives will be reassigned

to new hidden Markov model components.

During the experiments, the exact algorithm is slower than the approximate al-

gorithm. On a standard laptop with an Intel Core i5 processor with 2.8GHz clock

speed, a three MB L3 cache and four GB of RAM, the exact algorithm needs several

hours to complete while the approximate algorithm needs about one hour. However,

during the evaluation with the domain expert, both algorithms increased the discov-

ery speed significantly compared to the previously manual analysis. Furthermore,

the algorithm can discover patterns from data distributed over several years. Such an

analysis is very hard without the algorithm. As described in the prairie dog example

in Chapter I, such an analysis can take several decades. With the statistical testing

capabilities, the signal imager provides numeric evidence that can be used in future

biology scientific publications. The pattern discovery algorithm can also provide a less

biased estimate of the patterns in dolphin communication than the visual comparison

and manual measurements in the spectrogram.

The domain expert’s comments during the signal imager session for the quali-

tative experiment, as well as the testing and annotation results, suggest that the
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program is useful to the marine biology community. The experiments show the hy-

pothesis testing and annotation capabilities using the results of the pattern discovery,

the feature learning and communication models. Inspecting the patterns found in

the datasets showed the capability to generate new research ideas regarding the pat-

terns and helped the expert to gain insight into some interesting artifacts of dolphin

communication.

As shown in the experiments, the signal imager performs very well in situations

where the patterns of communication and the structure of the communication are

unknown. From a set of audio files with contextual behavior annotations, the signal

imager helps to uncover some of the communication patterns and helps biologists

to interactively explore their data to gain insight into the unknown communication.

However, one might ask how useful the signal imager is in domains with known

structure and patterns such as human speech. In human speech, all the patterns

are known in the form of words. Furthermore, the grammatical structure of human

communication is known. Even if a formal grammar for human language is not

found, the grammatical rules can be explained by humans. Furthermore, for specific

domains such as telephone numbers or meeting scheduling [30], the definition of a

formal grammar is not just possible but common. In other words, in domains with

extensive domain knowledge and a high degree of confidence in such knowledge, the

signal imager will perform worse than a fine-tuned system.

Take a speech recognizer for a specific domain as an example. All the words

will be known as well as the syntactic structure. Furthermore, the words used and

the structure do not have to model natural human speech but can be artificially

engineered to increase recognition performance. Furthermore, collecting data for that

recognizer can be performed in a highly directed manner since all the words needed

for it are known. In fact, the resulting speech recognizer will be very similar to the

mixture of hidden Markov models that I use to describe each pattern. However,
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there is no need for the discovery algorithm since we already know which words

to expect. Furthermore, the knowledge of human speech goes so far that even the

features are engineered to match the human vocal tract (linear predictive coding)

and auditory system (Mel-frequency cepstral coefficients). In conclusion, the signal

imager performs best when the communication structure is unknown and a non-verbal

analysis is the goal. Furthermore, the system provides a faster and richer analysis

than possible with the state-of-the-art tools such as Cornell Lab of Ornithology’s

Raven.
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CHAPTER VIII

FUTURE WORK

During the discussions with the domain expert, I identified several extensions to the

signal imager as well as extensions to the experiments. On the biology side, one in-

teresting possibility to extend this work is to repeat these experiments with different

animal species. Other-well studied research fields that could benefit from the signal

imager include zebra finch birds, prairie dogs and whales. The dolphin researchers

themselves want to use the signal imager to analyze communication in several un-

explored contexts such as inter-species aggression or communication across different

ages. For example, the researchers plan to evaluate communication patterns dur-

ing aggressive behavior between bottlenose dolphins and Atlantic spotted dolphins.

Furthermore, the researchers want to correlate the audible communication patterns

with body postures. One interesting extension to the signal imager is to include the

visual dolphin features into the analysis. In that way, the correlation analysis can

be performed in the same tool. Another interesting functionality is to use the signal

imager to annotate communication and context identification in environments with

restricted visibility. The system could help to study dolphin behavior even when

visual inspection is not possible.

In order to use the results from the signal imager in the field the pattern model,

statistics, and annotation classifiers as well as the contextual analyzers have to be

exported and integrated into portable equipment. One promising target platform to

deploy the model to is the CHAT platform. The Cetacean Hearing and Telemetry

(CHAT) platform is an underwater wearable computer that supports dolphin com-

munication field experiments [23].
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Another system could use the annotation algorithms to find specific annotations

in large collections of audio files. Searching through continuous audio streams such

as a large database or an online recognizer requires a low false positive rate and high

precision. Encouragingly, from the experiments I learned that the support vector

machine and the random forest show high precision which indicates a low false positive

rate. These search tools might enrich the biologist’s field work and speed the search

for specific audio files showing an annotation.

Another idea from the behavior researcher is to explore patterns at multiple levels.

I can image changing the signal imager to support multiple resolutions of patterns. For

example, saving the results along the hierarchical clustering dendogram could allow

the building of several models, one at each dendogram level. Researchers can then

interactively change the granularity of the system and inspect the patterns at multiple

resolutions. Another experiment I propose is to compare the results of a discriminative

approach to the unsupervised approach proposed in this thesis. A discriminative

approach might be harder to analyze, and the generative approach in this thesis

offers easy visual inspection of the patterns by domain experts. However, it would

be interesting to compare the annotation performance using a purely discriminative

approach to the annotation performance by my classifiers.

Figure 37: Two rules that match often. One matches often during aggression (Top);
the other matches often during mother-calf reunion(Bottom).

Another interesting experiment for future work is to find out why certain rules
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help to distinguish between different contexts. For example, aggressive behavior is

often characterized by a certain burst pulse called a synchronized squawk. Often

these sounds appear as short packages with a fairly regular rhythm. During mother-

calf reunions, the prominent sounds are signature-whistles. In Figure 37 I show two

example rules, one for aggression and one for reunions. The top one looks regular

and is composed mostly of burst pulse patterns, while the reunion rule shows more

whistle pieces. One experiment I propose is to search for meaning in the found rules

together with a domain expert.
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CHAPTER IX

CONCLUSION

This dissertation presented the signal imager. The signal imager is a program that can

automatically detect patterns in audible dolphin communication. Furthermore, the

program can use statistics including bag-of-words, n-grams and regular expressions

to perform comparative statistics between different behavior contexts. Furthermore,

the program can automatically annotate dolphin communication sequences. The sig-

nal imager uses feature learning to construct a novel feature space in which dolphin

communication becomes comparable under frequency shift transformations. Further-

more, the system uses mixtures of hidden Markov models to discover time warped

patterns. In a series of experiments I showed that the discovered patterns enable

statistical testing and annotation. Furthermore, I presented results of a qualitative

analysis with a domain expert that indicates that the discovered patterns are also

meaningful to biologists. The results indicate that the algorithm pipeline produces

patterns and statistics that provide insight into dolphin communication, can be used

for retrospective analysis and can be used for statistical testing and scientific hypoth-

esis generation.
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APPENDIX A

QUESTIONNAIRE FOR PATTERN EVALUATION
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