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SUMMARY

The dissertation presents the design and development of a systematic signal analy-

sis and representation framework beyond short-time Fourier power spectrum for sounds, in

particular environmental sounds. This framework is consistent with the underlying assump-

tions of the analysis method and its elements are correlated with human perception. The

sound signal has to conform to certain conditions for its power spectrum to have a physi-

cal and perceptual meaning. We contend that very few environmental sounds readily meet

these criteria and argue that the quantities that are traditionally used to describe sounds need

to be repurposed and, if necessary, redefined to represent sounds by non-Fourier means. We

propose a perceptuo-analytic organization of sounds so that any environmental sound can

be analyzed based on its signal characteristics and perception.

We present environmental sound acquisition in the context of collection and annotation

of a database for the footstep sounds, a common environmental sound, and show that it can

be represented by these unconventional means and further analyzed to produce descrip-

tions which are obscured with the traditional analysis. We present a novel application of

extracting gait characteristics from the footstep sounds which is enabled by the proposed

framework.

xi



CHAPTER 1

INTRODUCTION

1.1 Background and Motivations

Audible sounds provide a rich source of information about the ambient environment. For

humans, detecting and recognizing such sounds is the first step towards developing an

acoustic awareness of the environment which surrounds them followed by formulating a

response. It is no surprise, then, that humans, and other animals, have after a long evo-

lutionary process developed a particular sense of hearing; they devote considerable area

within the cortical regions of the brain to this task.

As the term suggests, audible sounds encompass the full hearing ability of the human

ear and range from rudimentary impact sounds and sophisticated animal calls to speech and

musical sounds. Speech and music have been widely studied within the signal processing

community, which is indicated in commercially available automatic speech recognition

(ASR) and music information retrieval systems. It is a reflection of the complex interplay

of preferences assigned by researchers, funders, and consumers to these type of sounds.

However, the importance that humans assign to each type is clearly not equal and can

vary with the technological frame of reference within which the human may be operating.

For example, historically, on the evolutionary time scale, music has not been as important

as the naturally occurring sounds in the environment since these sounds provide crucial

information which had survival value during our evolutionary development over hundreds

of millions of years.

Sounds which cannot be categorized as either music or speech have been widely termed

environmental sounds. These sounds are instrumental in generating an awareness of the sur-

rounding environment as the various active and passive sources that constitute the acoustic

environment generate, reflect, and modify the sound in ways which leaves their imprints

within the sound signal. This information becomes parts of our understanding in subtle

1



ways and we are consciously unaware of this process unless we acoustically isolate our-

selves from the environment, e.g., in anechoic chambers where people may feel disoriented

because the information derived from room reverberation cues is missing or when we try

to drive a car or cross a busy road while listening to music with our headphones. It is

at these times that we realize that these sounds generate a subconscious awareness of the

surroundings, e.g., indicates the presence of invisible objects, provides location, focuses

our attention if its important, orients us with respect to the surroundings—and all of this

in a timely manner. The awareness of the surroundings generated through this first-order

environmental sound analysis is an indispensable tool in the repertoire of an intelligent self-

aware being. If one wants to augment this awareness for disabled humans under sensory

deprived conditions or replicate it in autonomous systems, such as robots, an appreciation

of the role played by environmental sounds is necessary.

Despite the information embedded in the environmental sounds, the characterization of

environmental sounds as noise is quite prevalent. In fact, the term environmental sound

first appeared in an abstract on noise control [1]. This view reflects an attitude on part of

researchers in many fields who find these sounds uninteresting and thus worthy of little

independent attention. Part of that can be traced to an underlying bias in favor of the visual

modality; after all, we view ourselves as visual species, but that does not explain the extent

of the observed oversight for such sounds.

Arguably, this oversight can be due to the analysis framework used to study environ-

mental sounds in many disciplines. In particular, within the signal processing literature

the environmental sounds are generally studied under the same theoretical framework as

speech and music—the short-time Fourier analysis (STFA). This is surprising given that

these sounds differ from speech and music, and among themselves, in their production

mechanism, human perception, and signal structures. The choice of analysis framework

inevitably obscures the potential information that is available within these sounds. The

prevalence of environmental sounds combined with the ubiquity of devices able to capture

2



them in the environment only serves to highlight this gap in the analysis framework.

Almost by definition, environmental sounds also do not carry much lexical informa-

tion or a semantic organizing structure, which means that the basic sound characteristics

themselves take on a more prominent role in the information that the sound carries. In the

absence of the lexical information it becomes important to look at all dimensions of sig-

nal characteristics, in particular non-spectral characteristics. We can then incorporate this

information to improve its representation and analysis.

From the conventional standpoint, the spectral structure of many of these sounds seems

arbitrary and thus uninformative. This is a correct assessment but only if one believes that

the statistical construct of power spectrum—and its physical counterpart namely the fre-

quency—estimated through STFA is the only structure that a sound can utilize to embody

and convey information. It is not that power spectrum is a bad choice. The problem is that

it seems the only choice for sound analysis when it is just one of the many guiding struc-

tures that organize and convey the information within the sounds. The diversity of such

structures in environmental sounds serves to bring this anomaly into sharp focus.

This insight is motivated by the human auditory system. Beginning at the ear and ex-

tending up to and beyond the auditory cortex, this auditory system extracts, maintains, and

utilizes multiple representations for sounds and as a result, it has been argued, exhibits ca-

pabilities in perceiving and extracting relevant information from the environmental sounds.

The exact nature of the particular representations and the mechanisms employed by the

biological auditory system are perhaps not as important as the principle of maintaining

multiple representations relevant to the sound at hand.

1.2 Scientific Goals

The objective of the thesis is to design and develop a systematic sound analysis and repre-

sentation framework beyond STFA for sounds, in particular environmental sounds, which

is consistent with the underlying assumptions of the analysis method and whose elements

3



are correlated with human perception. We propose an organization of the signals for which

the conventional STFA information is neither suitable nor useful because of these discrep-

ancies. Once we understand the nature of the signal, we then propose analysis methods to

automatically bring out the significance of a particular representation, ready for perceptual

interpretations. We are guided by the following scientific goals:

a) An investigation of the discrepancies between the STFA model, with its mathematical

foundations, and the human auditory perception, and relationship of the two with the

temporal nature of the audio information.

b) A systematization of the analysis of environmental sounds by proposing a signal

profile for the sound which creates a foundation for their study as signals that carry

information. This provides an extensible and general structure to organize the sounds

for further analysis.

c) A multi-dimensional sound representation framework. Once we understand the na-

ture of the signal, we then propose analysis methods to automatically bring out the

significance of a particular representation, ready for perceptual interpretations. We

build a system which brings together the signal profile, the analysis methods, and the

resulting representation.

d) Compilation of database of environmental sounds. When compared to speech and

music, there are very few well-organized databases of diverse environmental sounds

which enable interesting scientific research. We record a database of footstep sounds

which allows for such research insights.

This has the potential to improve the acoustic event detection, classification, and recog-

nition tasks and, as we will describe it may point to new applications which may not be

apparent at present. It also has implications for speech and music analysis as it may lead to

a better understanding for designing novel features and improving the current ones.
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1.3 Dissertation Outline

We begin with an introduction to the environmental sounds and their treatment in scientific

and engineering disciplines, in particular signal processing, in Chapter 2. We argue that as

a distinct category environmental sounds are not well-understood or studied. We trace the

history of the analysis framework, the STFA, which dominates sound analysis. As a sound

category, environmental sounds inherit this legacy; however, very little attempts have been

made to justify this legacy beyond the obvious analogy with other sound types.

In Chapter 3, we review the STFA representation and point out the violations of its

basic assumptions which occur when this framework is used for environmental sounds.

Using these discrepancies as our branching point, we propose an analysis hierarchy for

these sounds. The first component of this hierarchy is the sound profile and the second

component is set of non-Fourier analysis methods. The sound profile is a multi-dimensional

characterization of a sound which provides an objective measure of the sound’s distance

from the conventional STFA framework and points towards a suitable analysis method. We

also develop and validate the sound profile for sounds from multiple databases.

We demonstrate the application of the framework outlined in the analysis hierarchy on

the regular sound of human footstep in Chapter 4. We estimate the sound profile for these

sounds, choose suitable methods for the analysis from the hierarchy, design features for a

conventional signal processing task of footstep sound detection, and show substantial im-

provement over published results. We record a database of footsteps sounds and attempt

a rather unconventional task of biometrics extraction from footstep sounds. The proposed

framework also allows us to design and develop a novel task of estimating clinical gait

parameters from footstep sounds. We also demonstrate the statistical consistency and reli-

ability of the acoustic gait analysis in Appendix A.

The muti-channel sound recordings of the new database are used to localize and track

the footstep sound source in Chapter 5. We use a statistical particle filtering approach

supported by a model of the sound source movement and evaluate the performance of this
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algorithm using the manual annotations of the location.

We conclude with a summary of our contributions in this dissertation and offer perspec-

tives on the limitations and interesting extensions of this work in Chapter 6.
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CHAPTER 2

ENVIRONMENTAL SOUNDS

2.1 Introduction

Vanderveer [2] defined the term environmental sound as an “audible acoustic event which

is caused by motions in the ordinary human environment . . . [these are] vibrational fields

which exist in the air, and are potential source of information for the auditory system . . . [are

usually] more complex than laboratory sinusoids . . . [and the sounds are] taken in their

literal rather than signal or symbolic interpretation”.

This definition results in an expansive category containing a diverse array of impact

sounds, water sounds, ambient sounds, wind sounds, fire crackling sounds, and body

sounds, to name a few. This is in contrast to an easily recognizable category of sounds—the

speech sound, which can be defined as a restricted subset of the sounds producible by the

human vocal tract and recognizable within the confines of the spoken language. As a

working definition, the concept of an environmental sound excludes sounds which contain

semantic linguistic structures, such as the sounds carrying speech or music [3, 4, 5].

Within the space of all audible sounds, calling sounds other than speech and music as

environmental can be inaccurate as both speech and musical sounds also occur in the same

environment as the environmental sounds. This categorization can also be ambiguous as

some sounds can be heard as part of a musical performance, and hence music, yet be

understood as environmental sounds when heard in isolation. The same can be said about

speech. Nevertheless, a symbolic linguistic structure is embedded in all sounds carrying

speech and a harmonic structure supported by a musical language is embedded in musical

sounds. The same cannot be said about environmental sounds, at least at this stage, though

they do carry meaning, in the sense of being informative.

As might be expected for a relatively nascent area of research spread across multiple

disciplines, the nomenclature for the environmental sound category is not settled. It has
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been variously referred to as natural sounds [6], ambient sounds [7], or even just a type of

noise [8, 3].

The issues with nomenclature reflect the disparate nature of disciplines under which

these sounds have been studied. However, a lack of an overarching framework have made

these sounds curiosities of individual researchers within the respective disciplines as op-

posed to the subject of a broad interdisciplinary scientific effort focused at understanding

them. As a result, environmental sounds as an independent category have not been studied

as systematically or as extensively as music and speech [4]. This deficiency is acutely felt

as these sounds already play an important role, and modern technological developments

are creating applications which place an increasing emphasis on them. The innovation in

this area will only increase, since the devices which collect audio have become inexpen-

sive and ubiquitous. For example, people using hearing aids face problems when using

them in noisy environments. It is suggested in [9] that this may be due to difficulties in

identifying sound sources. If the essential clues for sound identification were better under-

stood, hearing aids might be designed that could make those cues available. Furthermore,

understanding recognition of sources would also be useful in cases when paying attention

to multiple information-bearing channels is essential, such as in an airplane cockpit or a

battlefield. A cockpit can have as many as 100 different warning signals, but the maximum

number operators can respond to appropriately at one time is much smaller, about four to

six [10]. It would be useful to determine the acoustic features that enable identification of

a large number of sound sources, as a guide to the design of effective warning signals and

augmentation systems.

As we have mentioned, the environmental sounds have been studied under a broad

range of disciplines, e.g., psychologists have used them to study hearing, ecologists use

them to develop diversity maps of urban and wilderness landscapes [11], and Foley engi-

neers have used them to create convincing immersive acoustic environments within movies,

video games, and virtual reality applications [12]. Acoustic sensing uses them to detect

8



flaws in materials, mechanical diagnostics, fatigue, machine monitoring [13, 14, 15, 16]

and even predict electrical faults [17]. Researchers in the multimedia, biomedical, and sig-

nal processing community have been engaged in developing varied applications of these

sounds such as multi-modal activity tracking [18], scene identification [19], and sleep-

apnoea detection [20].

Psychoacoustic researchers form the most prominent cohort of researchers interested

in these sounds and they are interested in the hearing mechanism for these sounds. Their

initial studies on environmental sounds focused on certain qualitative aspects such as pleas-

antness [21] or subjective preference [22]. Broader studies [23] added as many as 50 dif-

ferent aspects such as loudness, heaviness, wetness, etc. A semantic differential method

was applied in [24] to 45 environmental sounds such as bird songs, waves crashing and

people shouting. The aim was to associate the semantic attributes of sounds with three

emotion-eliciting qualities: evaluation, activity and potency. In [25] 145 environmental

sounds were used to obtain ratings representing various categories of naturally occurring

environmental sounds on 20 binary scales. The researchers calculated values for 13 acous-

tic properties of the sounds, some based on statistics of the waveforms (centroid, skewness,

number of peaks) and some based on listener judgments (pitch, energy variation) but the

acoustic properties together accounted for no more than 60% of the variance for any factor.

While the above is a representative of the research effort in psychoacoustics on envi-

ronmental sounds, in general, psychoacousticians have not used environmental sounds in

their research, in part because of the difficulty of characterizing them acoustically, and in

part because it was thought that studying environmental sounds would not add anything to

the basic understanding of the auditory system. This assumption seems to be inaccurate.

Cognitive psychologists working with environmental sounds have shown that presenting a

label for a sound did not facilitate identification of the sounds, whereas prior exposure to

the sound did [26]. Other cognitive studies seem to indicate, in general, that environmen-

tal sounds are remembered differently and less well than speech [27]. Whereas speech,
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and to a lesser extent, music, can be abstracted away from the auditory stimulus, it seems

that memory for environmental sounds is more explicitly bound to the details of the wave-

form [4].

2.2 Conventional Representation of Environmental Sounds—the
Short-time Fourier Analysis

Short-time Fourier analysis (STFA) is the general framework that underlies modern mod-

eling and analysis of speech and musical sounds. Briefly, STFA uses the short-time power

spectral features from the Fourier transform. The mel-frequency cepstral coefficients

(MFCC) [28] and perceptual linear prediction features (PLP) [29], used in speech and a

multitude of short-time spectral, perceptual, and semantic features (summarized in [30])

used primarily with music, are based on STFA. Environmental sound analysis inherits this

framework.

STFA in audio can be traced to the work of Ohm [31] and Helmholtz [32] on musical

tones. They established the rough equivalence of the percept of pitch with the physical

quantity frequency that is grounded in the mathematical description provided by Fourier

analysis [33]. Further work by Nyquist [34] on the power spectral bandwidth of speech and

by Fletcher [35] on cochlea—the seat of the frequency analysis in the hearing system—and

the articulatory index [36], firmly established this framework for analysis of speech.

The institution of STFA as a framework for study of speech and music did provide an

impetus for their subsequent study but, even in those early years, they were many critiques

of a frequency-only characterization of hearing. It was pointed out that the percepts of

the various combination tones [37] and the residue [38] cannot be interpreted by a Fourier

power spectrum-only explanation. However, the sounds considered interesting at the time

seemed not to be effected by these phenomena and these studies were deemed to be of

limited interest.
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Later researchers showed the importance of temporal and other factors for general au-

dio [39, 40] and speech [41]. For example, the classical frequency response is not invariant

to sound pressure levels [42], periodic sounds give rise to static, rather than oscillating per-

ceptions and the sensation of impulsive sounds is that of sudden onset rather than white

noise, as they should if the ear were a power spectrum analyzer. Moreover, in many cases

amplitude modulations (AM), such as beats [43], are perceived as temporal fluctuations

rather than side bands of a tone.

More recently, brain imaging studies have not only confirmed that the tonotopic or

frequency-specific information is preserved in the highest regions of the auditory cortex,

but that these regions also employ temporal encoding [44] to store auditory information. In

addition to the spectro-temporal dichotomy, phase-locked response [45] and AM/frequency

modulations are also preserved [46]. All of these dimensions are sourced from the inner

ear structures.

2.3 Environmental Sounds and Signal Processing Applications

Researchers with engineering and computing backgrounds became interested in environ-

mental sounds in the late 80s and early 90s. Initial work was focused on sound synthesis

for creating immersive virtual environments and designing real world augmentation equip-

ment [47], which required building physical models of the sounds and their sources. Later

studies demonstrate physically motivated models of interaction between solid objects for

a 3D virtual environment [12]. These interactions can produce impact, rolling, or scrap-

ping sounds. The sounds are modeled as a combination of damped sinusoid oscillators.

The perceptually motivated models of sound textures in [48] for classification task and the

Sound Understanding Testbed grounded in the artificial intelligence framework [49] are

other examples where certain types of environmental sounds were treated as an indepen-

dent category.

Traditional signal processing researchers were influenced by computational models of
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music in recognition, detection, classification, and retrieval tasks when they began work

on environmental sounds. For example, a sound retrieval task was attempted in [50] us-

ing short-time Fourier features, an audio classification task using linear prediction features

along with hidden Markov models (HMM) was described in [8], and short-time Fourier

spectrum was used to model and detect sound transients in [51]. All of these systems,

and many others [52, 53, 54, 30, 55, 56], rely on short-time Fourier analysis to model

environmental sounds. The use of the then recently developed time-frequency (TF) distri-

butions [57] were initially limited to specific environmental sounds which were transient or

non-stationary. In [58] the Wigner-Ville distribution, a type of TF distribution, was used to

classify under water acoustic signals and in [15] multiple TF distributions were used in an

engine knock detection task using the pressure wave signals. A system for general sound

recognition was built using wavelets in [59]. In [60] non-negative matrix factorization

(NMF), a non-Cohen class time-frequency transform, was used to model non-stationary

audio signals. However, such scant attempts tend to validate the particular technique, rather

than the suitability of that technique for sound signal of interest.

Unlike speech or music, environmental sounds are not limited in their realization due

to limitations of the source. The constraints of language, as in speech, or considerations of

aesthetics, as in music, are also absent. As a result, the restrictions on the sound are only the

limitations of the listener. This has led to the realization that the listener must have a way to

learn some organization of these sounds. Many possible organizations or taxonomies have

been proposed based on the source of sound [52], the context of those sources [53], or the

similarity of the sound’s perception [61].

In the context of sound organization, computational auditory scene analysis (CASA)

framework has influenced how signal processing researchers view the problem of environ-

mental sounds analysis [62]. CASA is an implementation of theories of ecological acous-

tics [2] and auditory streaming. Briefly, ecological acoustics theory claims that the listener
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does not attend to sound per se but the event that produced it and this information is em-

bedded in the characteristics of the sound. The auditory scene analysis [63] contextualizes

multiple audio events (AEs) as part of an auditory scene. The audio events are differenti-

ated from each other on the basis of their onset-times, source, location, or similar time and

frequency dynamics. Audio events with similar characteristics constitute an audio stream.

CASA systems mostly rely on TF transforms for feature-extraction (e.g., the systems in

[19] or [64]). The audio stream theories are applicable to all sounds and not necessarily

limited to the environmental sounds.

The National Institute of Standards and Technology (NIST), as part of their Classifica-

tion of Events, Activities and Relationships (CLEAR) initiative, organized two evaluations

for the acoustic event detection and classification tasks within a typical room as the acous-

tic scene [55, 56]. The influence of CASA is clear in the task names. The majority of the

systems used MFCCs, even though speech was only one of the more than a dozen event-

classes. The results from these evaluations were not encouraging, with the best system

reporting an average detection accuracy at less than 40%. One of the major problems of

such a low recognition rate is the presence of signal overlaps [65]. Another source of mis-

takes comes from mismatch conditions in training and testing. We will elaborate on this

source of error in the next chapter. The CLEAR evaluations were also notable in that none

of the nine systems used a time-frequency front end.

2.4 Summary

Environmental sounds have garnered some interest from multiple, and often disparate, sci-

entific disciplines. As a result they have taken on the character of isolated curiosities of

individual researchers and have failed to develop enough interest to merit a comprehensive,

overarching framework for their study. From the initial beginnings, as a type of noise to be

ignored, the potential of applications that can be realized with their analysis have brought
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them into the spotlight, but only under the dominant paradigm of speech and music analy-

sis—the STFA.

Of course, the sound analysis framework has been updated since the time of Ohm

and Fletcher—specifically with the MFCCs, the non-linearities are incorporated with mel-

frequency scales, and the cepstrum incorporates the peculiarities of the speech production.

Moreover, a strict reliance on non-Fourier dimensions of analysis is just as narrow as any

other isolated approach to environmental sound analysis.

Nevertheless, the diversity of environmental sounds exposes the problems that are in-

herent within the STFA framework. We aim to organize and analyze the sounds based on

meaningful categories such as sounds with similar source, sounds which create a certain

ambience or sounds which constitute a particular soundscape. For such goals, the sounds

need to be properly analyzed. After proper analysis we can connect the analysis with sound

perception and use the information to extract meaning relevant to humans.

In the following chapter, we review the STFA and point out the discrepancies in its basic

assumptions with environmental sounds. We organize the analysis of these sounds into a

hierarchy composed of the sounds profile and the accompanying analysis methods. In the

absence of large, diverse, and appropriately labeled databases for environmental sounds, we

evaluate the sound profile and validate its utility with an ad-hoc collection of such sounds

and a limited number of sound source classes from the RWCP database.
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CHAPTER 3

ANALYSIS AND REPRESENTATION OF ENVIRONMENTAL
SOUNDS

We use the term representation to mean a description of the signal, in our case the sound,

in a particular domain of interest in terms of the elements from that domain. A representa-

tion emphasizes some aspects of the signal, which are important for a particular task. The

emphasis is typically the result of prior models and assumptions that are thought to be sat-

isfied by the sounds and the systems that generate and analyze those sounds. The elements

of the representation then provide the necessary information which broadly simplifies the

presentation and understanding by developing and honing intuition for further analysis.

Physically, sounds are compression waves propagating through the transmission media

in three dimensional space with time. The 2D amplitude-time plot, generally referred to as

the waveform, is the most basic representation of sound that we notice in signal processing

literature. Fourier transform provides another representation in the power spectral domain

in terms of energy and frequency. The Fourier representation completely specifies a sta-

tionary sound if the system, that generated the sound or will analyze it, is linear. Thus, for

further analysis, if the conditions of linearity and stationarity are satisfied, it does not mat-

ter which representation is relied upon. Some researchers also use the term representation

or parametric representation to indicate the features that are extracted from a sound, such

as the MFCCs, though we use the term representation in a much broader sense. Within

our terminology, the MFCCs are derived from both the short-time spectral and cepstral

representations of the sound and are more appropriately called parameters or features.

In the following, we will discuss the representations for environmental sounds. As we

have stated, the representation provided by STFA in terms of energy and frequency does

not completely model the full range of sounds that the human auditory system is capable

of perceiving. In addition, the environmental sound need not conform to the conditions
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for its power spectrum to be interpreted in physical and perceptual terms. To that end,

we revisit STFA to elaborate on these criteria in Section 3.1. In Sections 3.2 and 3.3, we

argue that very few environmental sounds readily meet these criteria and we show that the

quantities that are traditionally used to describe sounds—the elements of the power spectral

representation—need to be repurposed and, if necessary, redefined to represent sounds by

non-Fourier means; in broad terms by incorporating their temporal variation. We proceed

towards generalizing this process with the analysis hierarchy in Section 3.4 so that any

environmental sound can be analyzed based on its signal characteristics and perception.

Section 3.5 defines the sound profile. Finally, in Section 3.6 we evaluate the sound profile

on different environmental sounds.

3.1 Short-Time Fourier Analysis (STFA)

For a deterministic signal, it is well known that the existence of its Fourier transform is

governed by the Dirichlet conditions (see, for example, [66, p. 290]). The physical descrip-

tion of a deterministic signal is known completely. However, most signals encountered in

practice, including sounds, are not modeled as deterministic. Instead, sounds are modeled

as realizations of an underlying stochastic process, as it is not possible to specify the sound

in advance of its observations. The stochastic process associates the uncertainty and ran-

domness with the occurrence of a particular realization which, once realized, becomes an

observation from the stochastic process.

Strictly speaking, the Fourier transform does not exist for all stochastic processes [67,

p. 248]. In particular, the realizations of a wide-sense stationary (WSS) stochastic pro-

cesses [68] are not absolutely integrable, which is one of the Dirichlet conditions. This is

because a WSS process assumes, among other assumptions, that the value of its statistical

expectation is constant for all time which implies that the integral will not converge and

hence undefined.

This technical difficulty is resolved by the Wiener-Khinchin-Einstein (WKE) theorem
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[69, 70]. WKE proves the existence of the Fourier transform of the autocorrelation function

of WSS process—known as the power spectral density (PSD). Let x(t) be a WSS process

at time t. Then, by WKE, the PSD of x(t) exits and is defined as1

S (ω) =

∫ ∞

−∞

R(τ)e− jωτdτ, (1)

where R(τ) = E{x(t + τ)x(t)} is the autocorrelation. (1) is not generally used to calculate

the PSD of the process. For a continuous signal x(t), assumed to be a realization of a WSS

process x(t), its Fourier transform (FT) is defined as

X(ω) =

∫ ∞

−∞

x(t)e− jωtdt. (2)

|X(ω)|2 is equivalent to the S (ω) of the signal. For a signal, this equivalence hinges on

the WSS of the process, which is reflected in time invariance of first and second order

statistics of x(t). Intuitively, WSS ensures that the power indicated at particular frequency

is physically part of the signal. For a non-WSS signal, the ω = 2π f in |X(ω)|2 has no

physical correlate; in fact, the autocorrelation function is no longer a function of only the

time difference but the time itself and thus the notion of frequency does not correspond

to the power of a physical oscillation. We will elaborate on this point when we discuss

frequency (cf. Section 3.2.3).

Information in a sound is encoded in the temporal variation of the various attributes of

the sound signal. To estimate temporal variation in PSD, we modify (2) to introduce the

short-time Fourier transform (STFT)

XT (ω, t) =

∫ ∞

−∞

x(τ)h(τ − t)e− jωτdτ, (3)

where, h(t) is a time window with finite support, T , roughly given as

h(t) ≈


1, for t ∈ [0,T ],

0, otherwise.
(4)

1We will state most of the definitions and results in this and subsequent chapters in continuous time,
though some relations will be stated in continuous time and discrete time forms or discrete time forms only.
All the results are equally valid for either forms, where applicable.
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In general, window functions are not limited to the template in (4), though (4) does convey

the idea behind the use of a time window function—observe a part of signal in isolation

from the rest of signal. The resulting FT is a signal’s frequency behavior during the time

interval, T , covered by the data block within the window. We will subsequently drop the T

in XT (ω, t), when specifying the window interval is peripheral to our discussion.

|X(ω, t)|2 is frequently used as an estimate of the short-time PSD and its temporal vari-

ation, and has traditionally been the measurement of choice in extracting features used in

speech, music, and as explained before, for environmental sounds. We term the analysis of

sounds using |XT (ω, t)|2 and it various transformations as STFA. As we have mentioned be-

fore, these features include the MFCCs, PLPs, for speech and almost all short-time spectral

features for music which are used in sound analysis [30]. STFA derives its applicability

from the assumption that the signal is WSS within T . This is referred to as quasi-WSS.

Speech is commonly assumed to satisfy this assumption which justifies the uses of STFA

and its derivatives in speech. Music has comparatively larger time windows as the signal

is generally harmonic and, more often than not, changes more slowly than speech. We

use the term harmonic for a sound to indicate presence of tones, not necessarily in musical

harmony.

Broadly speaking, the discretization of the speech sound signal into perceptually and

physically meaningful temporal intervals represents the attempt to minimize the potential

discrepancies in the quasi-WSS assumption. The selection of the time window duration is

based on the temporal structure of the signal and its perception. It reflects a compromise

between capturing the temporal PSD variation and the interval of quasi-WSS. For speech,

the window duration is generally set between 20-40 ms. The time derivatives of the PSD

over multiple windows capture the temporal variation at the scale of 100 ms, which is

at the higher end of the duration of a phoneme in spoken English [71]. The existence of

perceptually detectable units of speech—a phoneme for standard ASRs—and higher lexical

structures such as the type of language, words, and grammar, also help in organizing the
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sound characteristics that occur in speech. The written musical language plays a similar

role for musical compositions. Furthermore, speech is solely generated by a biological

mechanism which imposes physiological limitations on the rates of movements that the

articulators can sustain. This constraints the characteristics of the resulting sound, e.g., its

limited spectral bandwidth.

With environmental sounds, the diversity of sounds and the sources that can produce

such sounds precludes a priori assumptions on the source, though it may be possible to

infer the nature of the source from certain sounds. Quasi-WSS is no longer uniformly

applicable. Moreover, the sounds may not possess any harmonic regularity which could

appear in the PSD estimates. This makes it dubious to apply the STFA framework on

environmental sounds, as it is done conventionally, e.g., in the CLEAR evaluations [55].

3.1.1 CLEAR experiments

In the following we further illustrate this anomaly with experiments inspired from the

CLEAR evaluations [55, 56] for sounds heard in a meeting room environment. We use

the controlled databases for these evaluations that were recorded in the meeting rooms at

the Universitat Politècnica de Catalunya (UPC) [72] in Spain and at Fondazione Bruno

Kessler (FBK) [73] in Italy. The recorded sounds are semantically similar but they are

recorded under different environmental conditions. The cross-environmental effect is in

the form of different room impulse responses, variation in the sound sources, and the back-

ground noise. The evaluations did not study the effect of the different environments in the

meeting room databases, which could have shown whether the systems are modeling the

sound or the peculiarities of the environment. The sound classes are tabulated in Table 1.

We run audio event detection experiments with the UPC and FBK databases. The event

detection task, as defined in CLEAR evaluations, includes the segmentation of the target

sound in addition to detection. Instead, we only detect the class label of the sound for pre-

segmented data under the two different conditions: matched and mismatched. The results

in Table 1 are in terms of the equal error rate (EER) performance measure corresponding
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Table 1: All numbers are percentage EERs. Adapted from [74].

Class Labels
Models trained using UPC train data Models trained using FBK train data
UPC test data FBK test data FBK test data UPC test data

Applause 0.0 11.1 0.0 13.3
Chair moving 2.6 68.6 3.0 42.1
Cough 1.5 13.9 0.0 23.1
Cup clink 0.0 69.4 0.0 4.7
Door close 1.6 61.5 0.0 13.1
Door knock 0.0 28.6 0.0 16.3
Door open 0.0 63.9 0.0 96.7
Footsteps 1.2 76.3 0.0 80.8
Key jingle 1.6 41.7 2.8 21.5
Keyboard typing 1.7 60.0 0.0 15.2
Laughter 4.7 19.4 0.0 48.4
Phone ringing 0.8 19.7 0.0 25.0
Paper wrapping 2.2 41.7 2.8 28.6
Average 1.37 44.3 0.66 33.0

to four different experimental scenarios, depending on the database (FBK or UPC) that

is used to train and test the models. For matched conditions, we use 2/3 of the database

to train and use the remaining part the same database to test. The results are averaged

from a 3-fold cross-validation procedure. For mismatched conditions, we use the entire

data from one database to train and use the entire data from the other database to test. We

used a conventional MFCC/HMM based system. The features consist of 12 Mel-Frequency

Cepstral Coefficients (MFCCs) including energy coefficient, extracted every 10 msec with a

Hamming window of 25 msec The resulting parameters together with their first and second

order time derivatives are arranged into a single observation vector of 39 components.

Cepstral mean normalization is applied. Each sound is modeled by a 2-state full-connected

HMM and each state is represented by a Gaussian mixture model (GMM) of 64 mixtures

with diagonal covariance matrix. The training was accomplished using the standard Baum-

Welch training procedure. For evaluation the sound events were cut from the continuous

audio according to the ground-truth labels. Then the isolated audio segments were fed to

each HMM corresponding to a set of acoustic classes to perform Viterbi decoding.

In Table 1 we notice that the EER is very low ( 1%) for matched conditions. However, in
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mismatched conditions the EER increases drastically, indicating that the standard system

with MFCCs based on STFA struggles to model the variations introduced by the cross-

environmental effect. Among the problematic classes are ‘footsteps’, ‘door open’, ‘paper

wrapping’, ‘keyboard typing’, and ‘door knock’. These sounds belong to the general group

of impact sounds that combine a sudden short burst of sound energy with long term tem-

poral structure. Others such as ‘phone ringing’, ‘cup clink’, and ‘key jingle’ have spectral

structure that can be estimated with PSD, but the use of uniform duration short-time win-

dows ignores the different intervals of quasi-WSS that the sound classes may have. We

will revisit these experiments in Section 4.4 where we analyze an impact sound, the foot-

step sound, and show that insights that follow from the proposed framework improve the

detection performance for that particular sound.

We believe that the nuances that characterize such signals are not captured by the STFA-

derived quantities as those quantities are bound by the mathematical constraints, which

necessarily limit their scope to well-structured stationary signals. In the following, we

discuss the effect of these bounds on sound analysis and perception as a first step towards

the proposed framework.

3.2 Physical Descriptors of Sound

In the following, we elaborate on the basic descriptions of sound that are suggested by the

STFT—frequency, energy, and phase—and point out the issues which arise when these are

used to represent an environmental sound signal, and discuss the changes that can be made

to the quantity in light of the non-Fourier perspective.

3.2.1 Energy

For a signal x(t), its square, |x(t)|2, is conventionally defined as the energy or intensity per

unit time at time t.2 This quantity is also known as energy density. The total energy, E is,

2Admittedly, energy as a function of time can always be described in terms of another quantity, power.
Thus it has also been called instantaneous power.
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the integration of density over all time, i.e.,

E =

∫ ∞

−∞

|x(t)|2dt < ∞. (5)

This square law estimate of the energy density is also used in the Fourier spectral represen-

tation of x(t), the PSD. The PSD is usually defined on a per Hz basis.

The reasons for using the square law as a measure of energy are not as rigorous as

its ubiquity might suggest. The basic result was derived for the energy of point sources

emitting electromagnetic (EM) waves using Maxwell’s equations in the early 20th century.

It was developed when the study of EM resonances led to the discovery of radiation, a form

of energy transfer in the space [75]. And since sound waves and EM waves are both waves,

hence, by analogy, it has been extended to sound waves. Since then, the mathematical

simplicity and utility of the estimate have made the squared law and energy identical with

each other in signal processing literature. The analogy has weakened considerably since

the days of classical physics and intensity of an EM radiation is no longer considered a

measure of its energy. This is a result of Planck’s energy-frequency relation [76]. In fact,

the energy of an EM radiation is now taken as proportional to the frequency of the EM

quanta as EM signals are no more modeled exclusively as waves.

Of course, we are not suggesting a purely frequency based measure for energy in sound

signal processing. The quantum effects only become significant at very small scales and

sound waves or the ear are certainly not operating at that scale. Rather, our motivations are

intuitive: the energy required to produce a high frequency compressive vibration in a given

time is more than that required to produce a comparatively low frequency vibration at the

same amplitude. This is not reflected in the squared law density estimate. This observation

motivates the Teager-Kaiser energy operator (TKEO) [77], discussed later, which estimates

the kinetic and potential energy of a signal in terms of its amplitude and frequency.

The square law estimate may also not be ideal for impulsive signals. Let us have two

sinusoids at frequencyω, where one, p(t), is a pure tone and the other, p′(t), is the same with

an additional time-varying phase factor, φ(t), i.e., p(t) = sin(ωt) and p′(t) = sin(ωt + φ(t)).

22



We fix φ(t) to be the following piecewise continuous function,

φ(t) =


0, t ∈ (2n, 2n + 1], n ∈ Z,

π, t ∈ (2n + 1, 2n + 2], n ∈ Z.
(6)

We note that |p(t)|2 = |p′(t)|2 at every time instant, t. This is inconsistent with the intuition

of square law being an energy density, i.e., it does not have a one to one correspondence

with the signal at every t. Any feature based on this measure will surely miss these transi-

tions. It is also inconsistent with auditory perception, i.e., listening to the two waveforms,

we can easily identify the instant in time where the phase transition occurs, as each transi-

tion in phase produces a sensation similar to that of an impact sound. Clearly, the ear is not

acting as a squared law detector, at least in the short term.

Energy estimates can also be derived from the instantaneous envelope of the signal

which can be calculated by, e.g., Hilbert transform (cf. Section 3.3.2). For signals that can

be modeled with AM (cf. Section 3.3.3), the message signal provides a smoothed envelope

or an envelope [78], for short.

3.2.2 Phase

Phase is an oft-ignored quantity in STFT. In (3), we can see that X(ω, t) ∈ C. This implies

that it can be written in the polar form, i.e.,

X(ω, t) = |X(ω, t)|e jθ f (ω,t). (7)

Thus, the Fourier phase, θ f (ω, t) , arg(X(ω, t)), constitutes the Fourier phase spectrum.

The physical meaning of θ f is clear for a class of deterministic signals which are a sum

of sinusoids, i.e., if x(t) =
∑N

k=1 ak cos(ωkt + φk), then θ f (ω)|ω=ωk = φk is the phase shift of

each sinusoid. For less structured signals, it is widely believed that θ f encodes temporal

evolution of the frequency components in terms of phase delay and group delay [79]. θ f

is also more sensitive to temporal variations than |X(ω)| and the problems associated with

unwrapping lead to limited utility in signal processing applications [80].
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The phase information is ignored in the traditional STFA for speech. Among other

things, this is reasonable because the short-time frame interval is chosen to be 20-40 ms.

Kazama et al. [81] have shown that sentence intelligibility is not affected by changing short-

time Fourier phase, if the frame interval is in the 10-70 ms range. If the frame interval is

less than 4 ms or greater than 128 ms, changing the short-time Fourier phase significantly

reduces sentence intelligibility. In our informal listening tests, we confirmed this percep-

tual effect with a number of audio events. The reconstructed signals and their perception

changed significantly once their short-time Fourier phase was changed for very short (<10

ms) and long (>100 ms) frame intervals. This seems to indicate that Fourier phase can be

ignored for the case of perceptually meaningful sounds only if the short-time interval is

chosen to be in the range of 20-60 ms. As we discuss later, this frame interval may not be

appropriate for the general acoustic event. Psychoacoustic studies also indicate that there

are at least two time scales on which perception seems to operate–around 30 ms and 250

ms [39]. The latter overlaps with the intervals for which the Fourier phase is significant.

Let ximag(t) be an imaginary part of x(t). Then, its complex extension is

z(t) = x(t) + jximag(t) = A(t)e jθi(t), (8)

where θi(t) , arg(z(t)) is the instantaneous phase and A(t) is the instantaneous amplitude

envelope of the signal. There are potentially infinite ways to calculate ximag(t) but two meth-

ods, the analytical signal method and the quadrature method, are mathematically tractable

and provide physically meaningful estimates [57].

3.2.3 Frequency

The frequency f of a vibratory signal is classically defined as the number of oscillations

per unit time, where vibratory signal is any signal that has temporal fluctuations and an

oscillation is a complete repetition of the temporal fluctuation [82]. Fourier transform in-

corporates this definition of frequency to estimate ω = 2π f in (2). Dirichlet conditions
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guarantee that all deterministic integrable functions can be written as a linear sum of sinu-

soids which allows separation of the classical frequency components.

To estimate the frequency of a signal, a sufficient amount of data is necessary in en-

suring a meaningful result. If the fluctuations are not complete or are irregular then the

estimates will be meaningless by definition. Clearly, this puts limits on the time resolution

of any analysis method using the classical frequency measurements. Additionally, the re-

strictions on time resolution due to the time-frequency uncertainty principle [83] apply to

the classical frequency. Moreover, the auditory system needs to be acting in a more-or-less

linear manner for frequency as estimated in the PSD to be an effective correlate of per-

ception. Nevertheless, when addressed in perceptual terms, the notion of frequency may

be rather illusive. The perceptual phenomena of beats [43] and missing fundamentals [42]

highlight this issue. We briefly discuss the former.

Beats are the slow and periodic fluctuations in peak amplitude which occur when two

sinusoids with slightly different frequencies, f1 and f2, are linearly superimposed with | f1−

f2| around 2-10 Hz as given in (9a)

b(t) = sin(2π f1t) + sin(2π f2t), | f1 − f2| < 10, (9a)

= 2 sin
(
2π( f1 + f2)t

2

)
cos

(
2π( f1 − f2)t

2

)
. (9b)

The signal shown in Figure 1, with f1 = 200 Hz and f2 = 205 Hz, audibly beats at 5 Hz

even though the beating frequency is far below the normal hearing frequency range. It

is clear from this description that the signal is WSS and thus it follows from (2) that the

PSD will have two peaks for b(t) at f1 and f2. This predicts that we should hear f1 or f2.

Instead, when the difference in the two frequencies is small (within a few tens of cycles

per second) we hear a tone around ( f1 + f2)/2 beating at | f1 − f2| Hz, not the two tones.

A mathematically equivalent product form in (9b) provides an interpretation closer to the

perception that frequencies ( f1± f2)
2 may also be present, though this is not clear from FT.

The ambiguity in the perception model between an additive and multiplicative frequency
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Figure 1: The signal which produces the auditory sensation of beats, in blue, and its Hilbert
envelope, described in Section 3.3.2, in red.

indicates that a non-linear process is involved.

When we take |X(ω)|2 to be a spectral density function in the statistical sense3, we can

define a mean frequency ω̄ as the expectation of the density

ω̄ ,

∫
ω|X(ω)|2dω. (10)

For a complex signal of the form of z(t) in (8), it can be shown that ω̄ is given by [57]

ω̄ =

∫
θ̇i(t)A2(t)dt. (11)

(11) is the expectation of energy density, A2(t), over the derivative of instantaneous phase,

θ̇i(t). Comparing (10) and (11), ωi(t) , θ̇i(t) is the instantaneous frequency (IF). ωi(t)

is a useful measure when the signal is not WSS—as signal characteristics need not be

maintained over a time interval. If the average frequency from STFA is given by

ω̄T (t) =

∫
ω|XT (ω, t)|2dω∫
|XT (ω, t)|2dω

, (12)

then it can be shown that limT→0 ω̄T (t) −→ θ̇i(t), where convergence is in the mean [57].

3This is valid since |X(ω)|2 is non-negative, piecewise continuous function with a finite integral.
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3.3 Estimation of Sound Descriptors

The previous section makes it clear that PSD, as estimated with STFA, is one of the many

ways of representing a sound. In the following, we describe the methods which estimate

the physical descriptors of sound without recourse to Fourier analysis.

3.3.1 Teager-Kaiser Energy Operator (TKEO)

TKEO [84] provides an unconventional perspective on the instantaneous energy of a signal.

Building on the physical notion that the energy of a signal is the sum of its potential and

kinetic energy. The TKEO is given as

ψ[x(t)] =

(
dx(t)

dt

)2

− x(t)
d2x(t)

dt2 , (13)

where the time derivatives incorporate the rate of change of the signal and provide a mea-

sure of the potential energy. It can be shown that the quantity estimated in (13) relates

signal energy to square of the signal amplitude and the square of its frequency [84]. We

notice from (13) that for the signals p(t) and p′(t) from Section 3.2.1, ψ[p(t)] , ψ[p′(t)].

Moreover, TKEO can provide better localization of the impulses because the decay that

follows an impulse is similar to an exponential decay and ψ(e−bt) = 0, ∀b ≥ 0.

The discrete instantaneous energy, ψd(x[n]) of a discrete signal x[n] given by TKEO is

ψd(x[n]) = x2[n] − x[n + 1]x[n − 1]. (14)

3.3.2 Hilbert Transform (HT)

HT provides the Hilbert envelope—a measure of signal energy, instantaneous phase, and

frequency by extending a signal into the complex domain. It is defined as

H{x(t)} ,
1
π

PV
∫ ∞

−∞

x(s)
s − t

ds, (15)

where PV indicates that the principal value of the integral is used. The complex signal

formed by xh(t) = x(t) + jH{x(t)} is the analytic representation of x(t). The instantaneous

Hilbert envelope is given by envh(t) = |xh(t)|2 and the derivative of the phase of xh(t) is the
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IF associated with x(t) i.e., ωi(t) , d
dt

(
arctan

(
H{x(t)}

x(t)

))
. The Hilbert envelope of the beating

signal in Figure 1 correctly depicts the perceptual sensation of that signal.

For the discrete signal x[n], its discrete HT is

H{x[n]} = x[n] ∗ h[n], (16)

where ∗ is the convolution operator and

h[n] ,


0, n ∈ even,

2
nπ , n ∈ odd.

(17)

After obtainingH{x[n]}, we construct a complex signal xa[n] as follows

xa[n] , x[n] + iH{x[n]}, (18)

where xa[n] is the discrete analytic signal obtained from x[n]. The absolute value, |xa[n]|2,

is the discrete Hilbert envelope of x[n].

3.3.3 Amplitude and Frequency Modulations (AM-FM)

The description in terms of IF and a slowly varying envelope can be generalized to a mul-

tiplicative AM-FM model of the signal. AM-FM model provides a distinctly non-Fourier

description of a sound signal. Mathematically, the model can be specified as the real part

of z(t) in (8), i.e.,

x(t) = R[z(t)] = A(t) cos
(
ωct + ωm

∫ t

0
q(τ) + φ

)
︸                        ︷︷                        ︸

θi(t)

, (19)

where A(t) is the AM component, ωc is the carrier/center frequency of the sinusoid, φ is the

initial phase shift while ωm is the maximum frequency deviation from ωc. |q(t)| ≤ 1 is the

normalized frequency modulating signal.

The Discrete Energy Separator Algorithm (DESA) estimates the discrete IF and am-

plitude envelope using the TKEO. In [85], we parameterize this discrete IF and amplitude
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envelope using an ARMA model and report results on classifying eight relatively simi-

lar environmental sounds from the RWCP database [86]. Compared to the MFCC based

baseline system, the proposed system showed improved performance on this task.

3.3.4 TF distributions

Equation (12) enables the interpretation of frequency as the mean of a TF distribution. The

ad-hoc manner with which STFT treats time dimension is in contrast to TF distributions,

where time is an integral part of the spectrum. A broad category of such distributions is

defined by the bilinear distributions of the Cohen class [87]. The WV distribution is one of

the earliest and most used TF distributions. For an analytic signal, xh(t), it is defined by the

following mathematical relation

P(ω, t) =
1

2π

∫
e− jτωx∗h(t −

1
2
τ)xh(t +

1
2
τ)dτ. (20)

From the definition it is clear that, unlike the analysis techniques we have discussed so far,

it is a bilinear. Moreover it is the Fourier transform of the central covariance function of

the signal. WV has an advantage over the STFT in that it does not require any windows

and produces superior representations in a time-frequency plot at the cost of linearity.

3.4 Environmental Sounds Analysis Hierarchy

As we have noted before, the diversity of environmental sounds does not allow a uniform

application of STFA, if one is interested in a perceptually relevant, signal-centric analysis.

While the non-STFA descriptors, with the help of respective estimators, bring out the non-

Fourier facets of the signals, they are not immune from a similar criticism as they also make

certain assumptions and bring their own models to bear upon the sounds.

Thus, in order to systematize the process of matching a signal to its analysis method

in a perceptually meaningful manner, we propose to organize the sounds into a perceptuo-

analytic hierarchy guided by two principles: a) The analysis method should be suited to

the physical properties of the signal; b) The analysis results should be correlated with the
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perceptual sensation of the sound. Our use of perception is rather imprecise at this point

but its meaning will become clear in due course. We hypothesize that when the properties

of the sound as inferred from its temporal and Fourier spectral analyses, in the sense that

these properties are discernible by the ear, are in conflict with each other or if the temporal

or Fourier spectral analysis is ambiguous due to non-linearities within the auditory system,

then the monopoly of either model becomes tenuous. Based on the hypothesis, we outline

the partly overlapping broad classes of signals for which this mismatch would occur:

Non-WSS Signals (NSS): We first identify a broad class of non-WSS signals, which range

from the transients to slowly-varying signals. As explained before, for signals of this type,

STFA does not provide physically meaningful estimates of the PSD and it becomes useful

to concentrate on non-Fourier attributes of the signal. In such signals, the unit of perception

is correlated with the interval of non-WSS. The quasi-WSS signals with non-WSS intervals

between 20-60 ms are not included in this category as STFA is applicable to them (cf. Sec-

tion 3.2.2). A notable subclass of NSS is the obviously oscillatory signal which may or may

not be strictly periodic, but nevertheless can be best viewed in terms of temporal variation

of their spectral attributes, e.g., linear chirp and almost periodic signals [88]. The spectrum

in such signals is better viewed as a temporal property rather than the orthogonality of time

and frequency as implied by FT.

Non-linear Sounds (NLS): The perception of sounds in this class is better explained if

the auditory systems is modeled as a non-linear system. These can be WSS sounds but the

PSD as estimated from STFA does not conform to the perceptual sensation. The Auditory

system exhibits various non-linearities for a range of sounds [42]. A few of them, such as

the logarithmic loudness response and masking, are already part of the traditional power

spectrum model but most are not. Sometimes the percepts due to non-linearities are mis-

characterized as illusions, e.g., the missing fundamental, beats, and many others [71]. To

fully characterize the signals which exploit the non-linear behavior, we need a sophisticated

model of the Ear. However, such a model does not exist. Hence, we adopt a time-domain
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approach for analysis because it allows a general modeling of non-linearities in the absence

of particular information about nature of the non-linearity.

Note that the classes that we define above are not mutually exclusive and there can be

considerable overlap, e.g., non-stationary signals may also evoke a non-linear response

from the auditory system. In fact, if a sound belongs to more than one class then that

brings out multiple facets of the signal. Collectively, these classes form the Non-Fourier

Group for sound analysis. We begin with the estimation of non-WSS and its duration, as

both are integral to the applicability of STFA to a sound signal.

3.4.1 Estimation of Non-WSS and its Duration

There are many ways to test for the WSS (or non-WSS) of a time-varying signal [89, 90,

91, 92]. In the following, we discuss the surrogate method by Borgnat et al. [93]. An

advantage of this method is that it allows the time interval of non-WSS to be inferred, in

addition to a measure of the non-WSS.

Let To be the global observation interval of a signal x(t). Its surrogate, xs(t), is de-

fined to have the same Fourier spectrum as the signal, but the Fourier phase is replaced

by a random variable uniformly distributed over [−π, π]. Fourier phase governs the tem-

poral non-WSS structure of the signal and replacing it with a random variable generates

a WSS version of x(t) [93]. {x j
s(t)}Jj=1, where J is the number of surrogates in the en-

semble generated by multiple realizations of the uniform random variable. Let S x(ω, t)

be TF distribution for x(t). For a WSS signal, the marginal or global spectrum over TO,

S x(ω) =
∫

TO
S x(ω, t)dt, should be close to S x(ω, t), the local spectrum, under some distance

measure. We can define the distance between two spectra as {c(x)
n = D(S x(ω, tn), S x(ω))}Nn=1,

where D(., .) is the distance function and c(x)
n is calculated at discrete time instances tn. We

define the effective test statistic as Θ1 = var(c(x)
n ) and the null hypothesis of WSS can be

stated with the statistic {Θ0( j) = var(cx j
s

n )}Jj=1, where the variance is estimated over n. The
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empirical distribution of Θ0( j) is best modeled as a gamma distribution, whose parame-

ters can be estimated by fitting Θ0( j). From that, it is straightforward to estimate α for a

particular statistical significance level for the following one-sided test
Θ1 > α, Non-WSS,

Θ1 < α, WSS.
(21)

In our implementation, we aim for a 95% confidence interval with J = 50 and estimate α ac-

cordingly for the above test. We use the Wigner-Ville (WV) distribution with Hermite func-

tions as short-time windows of duration, T , to estimate the local and global spectrum. We

chose D(, ., ) as a scaled product of Kullback-Leibler divergence and log-spectral distance,

as suggested in [93]. The degree of non-WSS, DOS, is then a ratio between the test statis-

tic Θ1 and the mean value of its surrogate counterparts, Θ0( j), i.e., DOS ,
√

Θ1
1
J
∑J

j=1 Θ0( j)
.

For a WSS signal, DOS is expected to take a value close to unity. Given TO, the DOS is

a function of T and repeating the test with different values for T , we introduce a typical

time-scale of non-WSS, SNS, defined as

SNS , arg max
0<T<TO

{DOS(T )}. (22)

We can also introduce an index of non-WSS (INS) as

INS , max
0<T<TO

{DOS(T )}. (23)

Figure 2 shows the DOS as a function of T for three different sounds. As expected, DOS

is close to 1 for the beats signal, which is WSS by construction, while the walking and

running sounds show a high INS with the former having a high SNS than the latter. The

high INS indicates a non-WSS sound which should be least amenable to STFA. The large

rate of repetition of the impulses in running than walking points towards an analytically

grounded perceptual unit of signal analysis for environmental sounds.

3.4.2 Regulartity of Envelope

If the signal exhibits a high degree of WSS, indicated with a high INS value, we calcu-

late the dissimilarity between smoothed envelope and compare its TKEO energy with the
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Figure 2: DOS curve for three sounds. ‘Human Walk’ and ‘Human Run’ are the sounds
of the footsteps as the person walks and runs, respectively. The ‘Beats’ signal is shown in
Figure 1

TKEO energy of the original signal as

∆E = DJS

({
ψ
[
Lc[envh(t)]

]}
P

∥∥∥{ψ[envh(t)]
}

P

)
, (24)

where envh(t) is instantaneous Hilbert envelope (cf. Section 3.3.2), {.}P indicates that a

histogram of the time series was normalized to generate a probability density function

(PDF), Lc is the low-pass filter at c Hz with c = 20 Hz. DJS (p1‖p2) is the Jensen-

Shannon divergence (JSD) [94] between the two PDFs, p1(x) and p2(x), and measures

the statistical similarity between them. DJS (p1‖p2) = 0 when p1 = p2. It is bounded,

i.e., DJS (p1‖p2) ≤ ln(2)∀p1, p2, where ln(.) is the natural logarithm, and symmetric, i.e.,

DJS (p1‖p2) = DJS (p2‖p1). It is not a metric as it does not satisfy the triangle inequality. If

we define a divergence D(.‖.) between two PDFs p1(x) and p2(x) as,

D(p1‖p2) =

∫
X

p1(x) ln
p1(x)

1
2 p1(x) + 1

2 p2(x)
dx, (25)

then JSD is defined as,

DJS (p1‖p2) =
1
2

D(p1‖p2) +
1
2

D(p2‖p1). (26)
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Figure 3: The perceptuo-analytic analysis hierarchy for environmental sounds.

For signals with below hearing-frequency beating, with missing fundamentals perceptions,

and similar so-called illusions, ∆E will have a high value. The presence of a strong energy

at low (<20 Hz) frequencies within the envelope indicates a sound that is not characterized

by the Fourier analysis and thus a temporal envelope analysis, using the Hilbert or DESA

envelope, is more suitable. Similarly, for quasi-WSS sounds with a dominant envelope, as

determined by ∆E, and intervals of non-WSS greater than 60-80 ms, an analysis with a TF

distribution (cf. Section 3.3.4) is appropriate as it does not rely on short-time frames to

calculate the signal spectrum.

3.4.3 Divergence between Fourier and Instantaneous Frequency

Linear chirp is an example of a non-WSS oscillatory signal that can be detected by ob-

serving the difference between IF and the Fourier frequency. ∆ωT is a measurement of this

divergence and calculated as the JSD

∆ωT = DJS

({
Lc′[ωi(t)]

}
P

∥∥∥∥{ω̄T (t)
}

P

)
(27)

where ω̄T (t) (cf. (12)), also known as the spectral centroid, is a measure of Fourier fre-

quency. ω̄T (t) is assumed to be constant within the short-time interval, T . ωi(t) is the IF

defined in Section 3.3.2 and Lc′ is the low-pass filter at c′ Hz that is necessary to smooth

out the abrupt changes in the phase function which are accentuated with the time-derivate

used in the definition of IF. We set c′ = 40 Hz.
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In case of presence of strong spectral signature the IF can be estimated from the DESA

algorithm or the HT to analyze the signal. A non-WSS and non-oscillatory signal can

only be analyzed with its temporal envelope. Our inclusion of perception should not be

taken to mean that we advocate a purely perceptual analysis of the environmental sounds.

Instead, we use physically meaningful time scales of perceptual significance—correlated

with environmental sound analogues of speech ‘phonemes’ and ‘syllables’—which can be

used to build higher order perceptual units to a first-order approximation.

3.4.4 Discussion

In Figure 3, we show a stylized preliminary organization of the sounds based on the above

classes. It consists of decision and analysis units. Figure 3 also outlines the analysis method

blocks that are used to analyze the sounds that exhibit the relevant characteristics along

with the prototypical signals for the specific block. However, these analysis methods are

not exhaustive and we have only compared the results of one with the other for the case of

footsteps in acoustic gaits in Chapter 4. The decision units do not make binary decisions;

rather they indicate the degree of presence of a particular characteristic in the sound signal.

3.5 The Sound Profile

We have outlined ways in which one can measure the amenability of a signal to STFA and

estimate the degree to which the sounds diverge from the STFA framework. Together, the

four dimensions—INS, SNS, ∆ωT , and ∆E— quantify this divergence and constitute the

sound profile. The sound profile provides a new structure for a systematic study of these

sounds in the absence of lexical structures. For example, the SNS can provide the unit of

analysis, much like the phonemes do for speech, or the ∆ωT can be helpful in determining

the type of sound analogous to the tonality of certain languages.

The dimensions of the sound profile, which is the first part of the hierarchy in Figure 3,

provides guidance towards a suitable analysis method, which is the second part of hierarchy

in Figure 3. The signal profile thus provides a pre-analysis of the sound, i.e., before we
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spectrally analyze the sound, the profile of the sound will tell us whether a spectral STFA

will even be useful for the given sound and further suggest an analysis method which will

be relevant and useful.

Essentially, the sound profile organizes the sounds with similar signal characteristics

into soft analysis categories. Then, the sounds grouped together in a particular analysis cat-

egory to be processed by similar and suitable analysis method, e.g., non-stationary sounds

with high values of INS and large durations of non-stationarity are better analyzed with the

HT, a non-STFA method.

The sound profile dimensions are global and as such are not equivalent to the features

such as MFCCs or PLPs. In the proposed framework, the features which enable the var-

ious experimental classification or detection tasks, are extracted from the representation

generated by the proper analysis method. This analysis forms the second component of the

hierarchy in Figure 3. We demonstrate the process of analysis of a particular type of regular

impact sounds and feature design in Chapter 4.

3.6 Experiments on Sound Profile

In this section, we build sound profile of the sounds from two sets of environmental sounds.

The first is a relatively diverse collection of single instances of environmental sounds avail-

able from a different data sources; the second are a set of impact sounds generated when

objects from different materials collide. The experimental results serve as a preliminary

validation of the concept of the sound profile as a general structure which should guide

further sound analysis. This forms the basis of our argument that the characteristics of the

sound, reflected in the sound profile, should govern the sound’s analysis.

3.6.1 Environmental Sounds, their Sound Profile, and the Analysis Hierarchy

We now show path of environmental sounds through the hierarchy of Figure 3. The de-

scription of the audio events which produce the environmental sounds, their labels, and

the results are shown in Table 2. The sounds are collected from the FBK [73], UPC [72],
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RWCP [86], TIMIT, and BBC sound effects [95] databases. In addition to the prototypi-

cal sounds, some of which we have already mentioned, we include more than 30 widely

understood environmental sounds with different sources such as animal and human vocal-

izations, different solid objects, etc. The sounds also vary in their temporal and spectral

characteristics such as transience and harmony.

From Table 2, we first describe the prototypical signals—artificial and natural—that

served as design primitives for the analysis hierarchy and now validate the initial hypothe-

ses. The ‘beats’ sound is WSS and has a high relative value for ∆E, which would suggest

a non-Fourier temporal envelope analysis. The ‘harmonic sound’, which is summation of

a 200 Hz sinusoid and its 4 even harmonics, is also WSS with a relatively low value for

∆E which indicates primarily FT mode of analysis. The ‘chirp’ is highly non-WSS but os-

cillatory, as indicated by the relatively low ∆ω value for a non-WSS sound, and thus more

suitable to be represented in terms of IF rather than the classical Fourier frequency, while

the ‘footstep’ is non-WSS but with a very low Fourier spectral content, as indicated by a

very high ∆ω value. The speech phonemes /sh/ and /ao/ are quasi-WSS, the former less so

than the latter, with low INS scores. The ∆E is much less for /ao/ than /sh/, indicating that

a non-Fourier spectral analysis is more suited for /sh/ than /ao/.

Figures 4 and 5 shows these basic and real-world environmental sounds along the sound

profile plane. In general, the sounds close to the origin are most amenable to STFA.

The regular harmonic sounds, ‘phone ringing’, ‘cars honking’, and ‘bird calling’ are such

sounds. In Figure 4, these have low values of ∆ω, as expected, with similar SNS but in-

creasing INS from ‘phone ringing’ to ‘bird calling’, indicating a regular harmonic structure

with different scales of repetition of that structure. The low value of ∆E for ‘phone ringing’

makes it ideal for STFA. ‘Door close’, ‘key jingle’, and ‘cymbals hitting’ have similar ∆ω

and INS but large SNS, which indicates an irregular harmonic structure of these sounds

which is consistent with their perceptual sensation.

The impact sounds such as ‘clock ticking’, ‘clapping’, ‘keyboard typing’, ‘drumming’,
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Table 2: The table of environmental sounds with the values of INS, SNS, ∆ωT , and ∆E.
T = 10, 20, 30, . . . , 450 ms.

Class Descriptions Class Label INS SNS(s) ∆ωT |T=[10:10:450]ms ∆E
Airplane Flying AIR 3553.6 0.30 0.62 0.02
Baby Crying BAB 1060.8 0.25 0.36 0.03
Beats BET 45.1 0.79 0.18 0.48
Bells chiming BLS 266.9 0.12 0.24 0.01
Bowling BOW 188.2 0.62 0.50 0.00
Bird calling BRD 973.5 0.27 0.23 0.04
Bubbling BUB 26.9 0.07 0.35 0.02
Cat meowing CAT 555.8 0.38 0.18 0.01
Chirp CHI 1467.4 0.33 0.42 0.00
Chair Moving CHM 117.5 0.40 0.52 0.02
Chimp calling CHP 154.6 0.38 0.40 0.02
Clock Ticking CLK 225.6 0.15 0.32 0.04
Clapping CLP 15.9 0.58 0.57 0.01
Cough COU 102.5 0.24 0.45 0.01
Cup clink CPC 75.7 0.03 0.37 0.01
Cars honking CRH 450.9 0.24 0.12 0.15
Car Starting CRS 393.8 0.54 0.43 0.01
Cymbals hitting CYM 199.5 0.24 0.42 0.00
Dog Barking DOG 59.9 0.15 0.35 0.22
Door close DRC 42.8 0.23 0.33 0.03
Door knock DRK 65.9 0.17 0.41 0.01
Drumming DRM 1566.5 0.48 0.14 0.41
Door open DRO 138.1 0.27 0.42 0.00
Electric saw cutting ESW 40.6 0.30 0.49 0.05
Footsteps FST 493.9 0.42 0.51 0.00
Glass breaking GLS 385.3 0.18 0.18 0.01
Gun Shot GUN 1029.7 0.22 0.34 0.03
Harmonic sound HAS 1.6 0.08 0.08 0.15
Keyboard typing KBT 91.4 0.04 0.50 0.01
Key jingle KYJ 77.9 0.29 0.23 0.03
Laugh LAU 130.3 0.50 0.41 0.00
Phone ringing PHR 63.3 0.06 0.15 0.03
Paper wrapping PPW 1152.1 0.13 0.11 0.02
Speech /ao/ SAO 16.2 0.02 0.33 0.02
Speech /sh/ SSH 68.4 0.14 0.44 0.21
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Figure 4: The environmental sounds from Table 2 in the non-Fourier dimensions. The axis
colors correspond to the similarly colored blocks in Figure 3. The diameter of the bubble
is proportional to ∆ωT .

‘cymbals hitting’, ‘bells chiming’ and ‘door knock’ show SNS which is consistent with

their repetition interval. Among them, ‘cymbals hitting’, ‘bells chiming’, and ‘drum-

ming’, being sounds from musical instruments, give rise to a harmonic sound after the

impact which is evident in their low values for ∆ω. ‘Drumming’ is notable as it has one

of the lowest value for ∆ω but highest value for ∆E which indicates the presence of a

longterm envelope in addition to the short-term spectrum. Irregular and non-harmonic im-

pact sounds—‘gun shot’, ‘bowling’, and ‘glass breaking’—give a high value for SNS,INS,

and ∆ω. The non-speech sounds from the human vocal tract: ‘laugh’, ‘cough’ and ‘baby

crying’, have pronounced non-STFA structure which is indicated with comparatively large

values of ∆ω (>0.35) and INS (>100). Sounds from non-human vocal tracts: ‘bat meow-

ing’, ‘dog barking’, ‘chimp calling’ have comparatively similar of ∆ω indicating largely

vowel-like vocalization from these animals. The large ∆E value for ‘dog barking’ indi-

cates a long-term temporal structure. ‘Bubbling’ and ‘airplane flying’ and large values of
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Figure 5: The environmental sounds from Table 2 in the non-Fourier dimensions. The axis
colors correspond to the similarly colored blocks in Figure 3. The diameter of the bubble
is proportional to ∆E.
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∆ω, indicating sounds with frequency content that is changing rapidly. In general, SNS is

correlated with the interval of repetition of a temporal or spectral structure, while a high

INS indicates rapid changes within that structure. However, the very low value of INS for

‘bubbling’ suggests a temporally stable spectral structure, which is not the case especially

when compared to ‘phone ringing’.

3.6.2 Sound Profile of the Sounds from the RWCP Database

At the most basic level, the profile helps organize the sounds with similar signal charac-

teristics. This is useful in providing an initial representation but that may not be the end

goal. We may wish to organize the sounds based on meaningful categories such as sounds

with similar source, sounds which create a certain ambience or sounds which constitute a

particular soundscape. For such goals, the profile points towards an analysis method which

is tailored to a particular signal characteristic of sounds. After proper analysis we can con-

nect the analysis with sound perception and use the information to extract meaning relevant

to humans.

We now introduce and describe our results from the RWCP database [86] which show

that the source characteristics embedded in sound signal can be understood in terms of the

new perceptuo-analytic hierarchy. Unlike the ad-hoc collection of sounds in the previous

section, this database provides a large number of instances of sounds from a sound category.

We use four sound source classes from this database: Wood, Ceramic, Metal, and Plastic.

The sound in each class from the database is generated by striking together two objects

constructed from the respective source material. Table 3 provides the number of sounds

from each class and the mean duration of the sound from each source class. These sounds

were recorded in an anechoic room. The table also provides the type of objects, such as

sticks, cups, bowls, etc., and the actual material of objects that were used to generate the

sound for each category, e.g., the category Ceramic has 800 sounds created by collision of

bottles, cups, and bowls made from glass and china ceramic (porcelain).

Figures 6 to 11 are the discrete unnormalized histograms for the parameters of the sound
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Table 3: An overview of the sounds from the four sound sources available in the RWCP
database.

Sound
Source

Number
of Sounds

Mean Du-
ration (s)

Type

Wood 1187 0.453 Wooden sticks and boards from Teak, Magnolia, Cherry.
Ceramic 800 0.690 Bottles, cups, and bowls made from glass and China.
Metal 1000 0.652 Metal cans, bowls, boards, and boxes.
Plastic 550 0.752 Plastic cases and dice.

profile—INS, SNS, ∆ω, and ∆E—for the four sound source classes. E.g., Figure 6(a) is

the histogram of the 1187 values of INS for the sounds in the Wood sound source class or

Figure 8(c) is the histogram of the 1000 values of ∆E for the sounds in the Metal sound

source class.

All the sounds are impact sounds from the four materials and as a result we expect

them to have a high value of non-stationarity, which is borne out by Figure 6. The INS

values place all the sounds from these classes in the highly non-stationary category. The

average is approximately 2000 for sounds from all the classes, except for Wood which, at

3000, is higher than the others. The distribution of the values indicates the variation of

the sounds within and across the database source classes. For Wood and Metal in Figures

6(a) and 6(c), the values are clustered around the mean while Ceramic and Plastic can be

seen to have at least two clusters. For Plastic in Figure 6(d), the higher values clustered

around 3000 are from the sounds of collision of the plastic dice while the lower clustered

around 1500 are for the sounds from various plastic cases. For Ceramic in Figure 6(b), the

lower clustering around 500-700 is porcelain cup clinks while a somewhat higher cluster

around 1500-2000 is for glass bottles. Thus, as indicated by INS, the sounds are highly

non-stationary while inter-class differences in the value of INS reflect inter-class variation

in the database sounds.

In Figure 7, the scale of non-stationarity is shown. It is clustered at approximately 0.25 s

for Wood and Plastic in Figure 7(a) and Figure 7(b), respectively. Ceramic again shows a

bimodal behavior for SNS similar to INS in Figure 7(b), with the Ceramic porcelain cup

42



0 2000 4000
0

20

40

(a) wood
0 2000 4000

0

10

20

(b) ceramic

0 2000 4000
0

10

20

30

(c) metal
0 2000 4000

0

10

20

(d) plastic

INS

Figure 6: Histogram of Index of Nonstationarity

sound more similar to Wood and plastic at 0.2 s, while the Ceramic glass bottle sound more

closer to the metal sound at 0.4 s. The high value of SNS is expected for a metallic sound as

its harmonics tends to resonate longer instead of quickly dying down like the Wood sound.

The variance of Metal class is also larger for SNS, reflecting the inter-class variation in the

database for the sounds in this class, though it is still less than the magnitude variation for

Ceramic, where it is quite large and obvious. When compared with INS, the variation in

SNS is much less. In particular, the bi-modality of Plastic due to presence of sounds from

two distinct subclasses is absent for SNS in Figure 7(d).

Figure 8 provides the histograms for ∆E for the four sound source classes. The values

are more tightly clustered and bi-modality which we observed for SNS and INS in some

classes is absent in the histograms for ∆E. Being impulsive sounds, the values are generally

limited to small values as there are no slow, long term variations. The ∆E for Metal has the

smallest mean which indicates it has mostly quick variations. Wood has the highest value

of ∆E, which would indicate a relatively strong envelope.

In Figures 9 to 11, we plot the histograms of ∆ωT for three different window durations T
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for calculating the spectral centroid: 20 ms, 150 ms, and 400 ms, respectively. These three

values give us three different time scales to observe the behavior of Fourier frequency;

with 20 ms much smaller than the SNS, 150 ms slightly smaller than the SNS, and 400 ms

somewhat larger than the average SNS for the sounds. For T = 20 ms in Figure 9, the

impulsive character of the sounds means that the stationary spectral content is limited and

thus we observe that the difference between the Fourier frequency and instantaneous fre-

quency is large. As expected, the class for which the difference is relatively least is Metal

in Figure 9(c). Wood shows the least variation in Figure 9(a), while we can again see the

bi-modality for Plastic and Ceramic in Figure 9(d) and Figure 9(b), respectively.

With relatively larger values of T in Figures 10 and 11, we notice that all classes are

affected and move close to the upper bound for JSD. The least effect seems to be Metal; it

retains considerable number of values less than the upper bound. This behavior is reason-

able as this is the only sound class which, while being impulsive, has relatively substantial

spectral content at these time-scales. Thus, in addition to the absolute value, the variation

with window duration also forms an element of the sound profile.
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Figure 10: ∆ωT for T=150 ms
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Table 4: The parameters are defined in Section 3.4. The values in column SNS are in
seconds.

Source ∆E ∆ωT |T=20 ms ∆ωT |T=150 ms ∆ωT |T=400 ms SNS INS
Wood 0.076 0.586 0.636 0.674 0.181 3.62e+03
Ceramic 0.027 0.613 0.625 0.656 0.387 2.07e+03
Metal 0.018 0.544 0.571 0.625 0.460 2.00e+03
Plastic 0.045 0.583 0.616 0.643 0.205 2.06e+03

Table 4 summarizes the results from Figures 6 to 11 and provides the sound profile for

each source class. The results in this table are averaged over the number of sounds from

each class. Metal and Ceramic have similar values of ∆E but ∆ωT is larger for Ceramic,

indicating that Metal has more Fourier specific harmonic content. Ceramic and Plastic have

similar values for ∆ωT but ∆E is much higher for Plastic, which indicates that the sound

produced by the plastic objects has a more prominent envelope. The SNS is longest for

metal as the sound from metal objects lingers the most due to metallic resonances while the

wooden sound dies out relatively quickly. This makes SNS consistent with the perceived

duration of these sounds.

3.6.3 Discussion of Results

We report the results on the four dimensions of the sound profile in Sections 3.6.1 and 3.6.2.

The results support our basic assumptions—the sounds are diverse and need a rich enough

representation which matches their diversity in terms of signal structures and information

content. We observed this when different types of sounds correspond to different points

on the sound profile plane, i.e., in Figures 4 and 5. We also note that interesting sounds

need not be quasi-WSS, e.g., the INS of the various impact sounds that we discussed or the

ambient sounds which contain information about their sources and environments. Further-

more, the sounds that are quasi-WSS do not necessarily have the stationarity spans of less

than a 100 ms, as evidenced by the wide-range of SNS for different sounds in Table 2.

The results from ∆ωT and ∆E in Tables 2 and 4 meet our design motivations; the former

a measure of WSS spectral content, while the latter a measure of presence of a dominant
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slowly varying envelope—which indirectly indicates the non-linearity as the human audi-

tory perceptual system tends to switch to non-linear modulation mechanisms to process

such signals.

The sound profile dimensions are not meant to be exhaustive. Rather, they are descrip-

tive of the sounds characteristics along certain dimensions that we identified. At the very

least, they provide a much richer interpretation suited to the diversity of environmental

sounds, as opposed to relying on just STFA. Some are specific enough, e.g., the INS is

sensitive to the differences in the sounds from glass and porcelain, yet others are broad

enough, e.g., the impact sounds in Table 4 are broadly seen to have high INS, high ∆ωT

and low ∆E.

3.7 Summary

At the beginning of the chapter, we presented the arguments that form the basis of the thesis;

environmental sounds are important, diverse, and, by implication embody myriad of signal

characteristics which cannot possibly be covered by an STFA-only representation. We

explored the elements of this representation, the sound descriptors, and pointed out issues

which arise when these elements are viewed as arising out of an STFA-only representation.

We also suggested non-STFA methods for generating these elements.

To organize the sounds for proper analysis, we proposed a sound profile which groups

together sounds with certain similar characteristics and, by hypothesis, the sounds with

similar sound profile are expected to be most amenable to similar and more appropriate

analysis methods for proper representation. Thus, the sound profile guided towards proper

analysis methods, some of which we discussed. This abstract process was summarized

with the analysis hierarchy in Figure 3, which outlines the process of generation of a sound

profile and lists proposed methods for further analysis. We experimentally validated the

first component of the analysis hierarchy, the sound profile, on sounds from our own ad-

hoc collection and the RWCP database.
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In the next chapter, we will use the information form the sound profile and proceed to-

wards the next part of the analysis hierarchy—the use of sound-appropriate analysis meth-

ods. We will use a particular set of environmental sounds, the sounds generated by human

footsteps. The use of the proper analysis methods guided by the sound profile will pro-

vide a more meaningful sound representation in a non-Fourier domain. The non-STFA

representation will be used to generate the features suitable for a detection task and further

extended to infer information and attempt tasks related to the source of these sounds—the

humans and their gait.
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CHAPTER 4

ACOUSTIC GAITS

4.1 Introduction

From the CLEAR evaluations [56] and our own investigations in Table 1, it is clear that

‘footsteps’ is one of the challenging environmental sounds that is difficult to detect and is

frequently confused with other sounds, such as ‘applause’ and ‘door close’. We now use

the elements from the newly formulated framework to acquire and analyze the ‘footstep’

sounds as a first systematic test of the framework’s effectiveness. As we will show, the

application of this framework allows us to improve the traditional detection of footstep

sound and uncovers this signal as a source of information which can potentially characterize

the gait of a person—not unlike the speech sound which embodies the lexical structures.

This chapter draws on our previously published work [96, 74, 97].

4.2 The generation of the footsteps sound

We show the major anatomical components of a human foot—the heel, the metatarsals-

phalanges (MTP), and the toes—and part of a typical human gait cycle in Figure 12. A

normal gait cycle begins when the heel of one foot makes contact with the ground and

ends when that same foot touches the ground again. Each cycle consists of two phases: a

stance phase (60% of a gait cycle) in which a foot is in contact with the ground as shown in

the lower part of Figure 12, and a swing phase (40% of a gait cycle) in which the same

foot swings forward until the next contact with the ground. We only show the stance

phase and omit the swing phase in Figure 12 as the foot generates no sound during the

swing phase, though the interaction of clothes with the moving body parts may produce

sounds which we ignore as noise, as in our current recording setup the noise level due to

frictions from clothing or others is insignificantly low relative to footsteps. This is normally

true unless in inordinary situations which are beyond the present scope of investigation.
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Figure 12: The schematic of a foot identifying the parts of the acoustically relevant foot
structure (Top) and their interaction with the surface as the stance phase proceeds (Bottom).
The downwards arrows highlight the parts of the foot structure that are most acoustically
relevant at various instances of the stance phase. Adapted from [97].

Figure 13 displays the sound waveform recorded from a series of footsteps. As the foot

makes initial contact with the ground, in Figure 12 made with the heel, the audio waveform

in Figure 13 shows a significant increase in amplitude. We notice another increase, though

not as prominent, when the hump at MTP joint makes contact with the floor. There may

also be a third notable burst of acoustic activity, depending on the walking style and the

footwear of the person, when the MTP joint structure lifts off from the surface. The rest of

the cycle ensues when the next foot makes contact.

In general, each footstep creates a burst of acoustic activity, which consists of multiple

sub-bursts followed by a gradual decay. In this interaction, the anatomical structure of the

foot as well as the person’s walking behavior (habitual under normal conditions or adap-

tive when the person’s body conditions are temporarily different from normal) affects the

characteristics of these bursts. External factors such as footwear, noise level, and floor type

may also effect the burst characteristics but their effect can be controlled for in a practical

situation. This series of seemingly rough bursts, irregularly separated and interspersed with
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Figure 13: A time waveform of the ‘footsteps’ sound.

background sounds, needs to be processed for gait analysis as the key characteristics of the

gait may not be readily observed in the raw waveform.

4.3 Footsteps sound in the light of the signal profile

Audio has also been used to study footstep sounds in the laboratory [98]. Barring very

few exceptions [99], the general emphasis has been on using spectral features derived from

STFA to characterize the footstep sound [100, 54]. However, as we have argued earlier,

these conventional STFA features are designed to characterize human speech or music

and are inadequate in characterizing footstep sounds [74]. Therefore, the tasks that have

been investigated with footstep sounds, such as their detection among other sounds and

biometrics extraction, have had limited success [74, 96].

A sound from the ‘footsteps’ class sound is shown in Figure 13. From Table 2, we

note that this sound has a high INS when compared to the speech phonemes or the har-

monic ‘phone ringing’, which indicates a high degree of non-WSS. We also note the SNS

at 350 ms; much higher than other regular impact sounds such as ‘keyboard typing’ and

‘door knock’. Further traversing through the analysis hierarchy in Figure 3 for a non-WSS

sound, we note that this sound lacks spectral content as it has a very high value for ∆ωT ,

when compared to the prototypical oscillatory signal, ‘chirp’. Thus, we conclude that a

combination of impulsive signal structure, long time scales of non-WSS, and a non-spectral
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structure would render the conventional STFA-based features ineffective for this sound.

Next we turn to the perceptual aspect. Based on the observations of this class from the

UPC and FBK databases [72, 73], the perceptually identifying features include a distinctive

asymmetric peak shape due to the sudden rise, because of the contact of the foot with the

ground, and a gradual fall, mainly because of the room impulse response. Similarly, the

minimum interval between two successive peaks is perceptually important. For almost

all such sounds in these databases, this interval of repetition is between 0.4-1 s. If we

change the repetition interval to less than 0.4 s, the sound is no longer perceived as human

footsteps. Moreover, if the rate is more than 1 s, then it is perceived as disjointed strikes.

Thus, the time scales of perceptual significance can be up to 1 s, which is of the same order

of magnitude as the time scale of non-WSS, as shown in Figure 2. Here, we notice the

connection between the two time-scales—one derived from perception and the other from

measurements of non-WSS, mediated by the Fourier phase.

Based on the analysis hierarchy, perceptual observations, and the apparent consistency

between the two, we can infer that this sound belongs to the NSS class and that the temporal

structure is more important than the short-time spectrum. Moreover, in the absence of a

semantic hierarchical structure, bridging the gap between the long term repetition and very

short duration impulses is problematic in the Fourier domain. Thus, it is reasonable to

analyze this signal in the time domain with its envelope, as suggested in Figure 3.

In the following section, we show that this analysis can be used to improve the various

tasks that have been attempted for footsteps sound—detection and biometric extraction.

This places the analysis of this sound on a more rigorous footing which enables us to

attempt a new task for ‘footsteps’ sound—the gait analysis.

4.4 Footsteps sound detection

Within the signal processing literature, the ‘footsteps’ sound detection [74] is treated as

part of the broader acoustic event detection (AED) problem. In the AED task, the goal is
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to process the acoustic signals collected by a set of distant microphones and convert them

into symbolic descriptions corresponding to a listener’s perception of the different sound

events that are present in the signals and their sources.

In Section 3.1.1, we demonstrated the of challenge of AED in mismatched conditions

and showed the substantial decrease in performance under such conditions. We now show

that non-STFA features and modeling can substantially improve the performance of foot-

step sound in an AED task.

We have explained in previous sections that the poor performance can be because con-

ventional STFA fails to account for the very short term and longterm perceptual cues, i.e.,

the irregular repetition of the self similarity of the audio signal and the sense of dura-

tion [101]. The sub-frame features are ignored in STFA and the modeling of long term

behavior is left to the states in the HMM which model the temporal sequence of the events

with their transitions. However, a well-known limitation of the HMM is that the underlying

Markov assumption constrains the state occupancy duration to be exponentially distributed

independent of the data distribution [102]. This problem is also accentuated with gen-

eral audio signals as, when compared with speech, such signals do not have a hierarchical

language model which could provide a high level description of the audio signal.

4.4.1 Acoustic Modeling—Signal shape and self similarity

We define shape as the evolution, the dynamics of signal parameters along time. If a sig-

nal does not change along with time, we could say that it has a constant shape. The basic

question is: the evolution of which parameters need to be taken into account and over

which time-scales to define signal shape. We address this from a perceptual point of view.

Estimation of the these temporal parameters requires energy estimates that give local mea-

surements while preserving long term trends.

In general, the idea of including temporal information into audio processing system is

not new. In [103], the authors suggest using amplitude modulation features extracted in
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1 sec analysis windows for robust speech detection. This approach is motivated by pre-

vious studies that indicate that this type of information is explicitly coded in the auditory

cortex. The physiologically inspired analysis approach for audio classification presented

in [104] is based on an advanced model of the auditory system. The authors propose mod-

eling of the neural response over analysis window of the same 1 sec duration. Inspired by

auditory scene analysis, a number of auditory features based on temporal analysis of the

waveform were derived from amplitude histograms, amplitude onset maps, spectral and

harmonic profiles of the waveform in 1 sec window. These have been shown to help in

sound detection [105].

Taking cue from these studies, we begin our effort to model the long-term temporal

behavior with the MFCCs. In Figure 14, we show a self-similarity plot of MFCC, ∆MFCC

and ∆∆MFCC which is obtained by calculating the reciprocal of the Euclidean vector dis-

tance between frames. The grayscale intensity gives the similarity between frames centered

at time location on the x-axis and y-axis. We notice that there is only a single prominent

line at the main diagonal indicating self-similarity at zero lag τ, which does not provide

any information. Thus MFCCs do not represent the long term self-similarity of the signal

or the onset of the peaks.

This is not surprising as MFCCs are based upon energy distributions in the frequency

bands of a short time-interval and the variation in this distribution across frames charac-

terizes the signal. A fundamental problem with this approach is the choice of Fourier

frequency as the attribute. As we have stated, frequency in the Fourier sense has a funda-

mental limit on its temporal resolution and the time frequency uncertainty principle, thus

signals which change rapidly suffer form inadequate representation in this domain. Thus

defining the shape of the signal in terms of its Fourier frequency spectrum loses the tempo-

ral resolution.

With the failure of the frame based spectral approach, we turn to instantaneous energy
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measurements to characterize its shape. The Hilbert envelope provides one such measure-

ment of the signal energy through the Hilbert transform (cf. Section 3.3.2).

We extract the Hilbert envelope, |xa(n)|, of the signal x[n] [57] and then low pass filter

it at 20Hz to obtain the smoothed temporal envelope, xenv[n], of the signal. The Hilbert

envelope for the ‘footsteps’ sound in Figure 13 is shown in Figure 22(b). The repeatability

of the ‘footsteps’sound can be demonstrated with autocorrelation function, r[., .], of Hilbert

envelope xenv[n] shown in, Figure 15, where the energy in each frame is normalized before

calculating the autocorrelation as follows:

rxenv
M,L[n1, n2] =

∑L/2
l=−L/2 xenv[Mn1 − l]xenv[Mn2 − l]∑L/2

l=−L/2 xenv[Mn1 − l]
∑L/2

l=−L/2 xenv[Mn2 − l]
, (28)

where x[n] is the sampled x(t), L is the frame duration and M is the frame shift. In Fig-

ure 15, the ‘footsteps’demonstrate a self-similarity at 0.6 s seen clearly with a diagonal

starting at this point. The contrast improvement in Figure 15 over that of Figure 14 is also

obvious. We also observe that the diagonal lines are blurred at certain points.

Figure 16 shows the autocorrelation of the smoothed TKEO energy of the signal using

the definition in (28), which is a marked improvement over the Hilbert envelope in Fig-

ure 15. Hilbert envelope brings out the apparent self-similarity, but its focus is only on

the signal amplitude, which leads to a less sharp representation. TKEO provides the most

crisp representation of this self-similarity which is robust against intra-class variations in

‘footsteps’because it includes instantaneous frequency, in addition to signal amplitude, in

the energy estimate —combining the local and long-term measurement in a single estimate.

4.4.1.1 Waveform self-similarity features

As per our perceptual observations, the discriminative characteristic of the ‘footsteps’sound

in the time domain is the irregular repetition of certain self-similarities. One can notice that

other sounds also exhibit the repetitive behavior: ‘applause’ consists of the series of hands

clapping; ‘door knock’ consists of the successively hitting the door with human hand, etc.
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Figure 14: Autocorrelation function of a ‘footsteps’ sound using MFCC, ∆MFCC, and
∆∆MFCC features.

Figure 15: rxenv
M,L[n1, n2] of a ‘footsteps’sound with M/Fs = 10 msec, L/Fs = 800 msec and

Fs=16KHz.

The basic concept behind repetition estimation is the similarity measurement.

We define similarity in terms of autocorrelation rxT KEO
M,L of energy measurement from

TKEO, where M/Fs = 10 msec, L/Fs = 800 msec and Fs=16KHz is the sampling rate.
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Figure 16: rxT KEO
M,L [n1, n2] of ‘footsteps’with M/Fs = 10 msec, L/Fs = 800 msec and

Fs=16KHz.

Figure 17: Distribution of different sound events with similarity features F1 and F2 for
UPC database.
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We compute two features: F1[n] and F2[n] that represent the degree of the waveform self-

similarity in short and long intervals, respectively. The feature F1[n] represents the maxi-

mum of the autocorrelation function for a frame centered at n within a time lag of 0.2-0.4

sec, i.e., F1[n] = max
τ1

rxT KEO
M,L [n, n + Fsτ1] where τ1 ∈ [0.2, 0.4] sec and F2[n] is for the

same frame within a time lag of 0.4-0.9 sec, i.e., F2[n] = max
τ2

rxT KEO
M,L [n, n + Fsτ2] where

τ2 ∈ [0.4, 0.9] sec.

In Figure 17 we show the distribution of sound events in the UPC database using fea-

tures F1 and F2. As one can expect, the ‘footsteps’exhibit low short-term degree of self-

similarity and high degree of long-term self-similarity. Events such as ‘applause’ show

high degree of self-similarity in short and long terms. On the other hand, features F1 and

F2 show low degree of self-similarity for the sound events that are not repetitive like ‘door

close’.

4.4.1.2 Explicit duration HMM

For modeling the temporal duration, we use HMM as a ready model for temporal duration

characterization. HMMs incorporate the duration temporal structure of audio with the state

transitions and have been shown to be particularly powerful in modeling sounds in which

such temporal structure is important, such as speech. Ergodic (full-connected) or left-to-

right topologies can be chosen for general sound events. In either case, a well-known

limitation of the HMM is that the underlying Markov assumption constrains the state oc-

cupancy duration to be exponentially distributed according to P(d) = (1− aii)ad−1
ii , where d

is the duration, and aii is the self-transition probability.

In Figure 18 we show the waveforms of ‘footstep’ sound together with its Viterbi state

alignment that was obtained using ergodic 2-state ‘footstep’ HMM applied to this sound (1

and 2 are the two states of the HMM model). The first state corresponds to the impact sound

constituting the ‘footstep’and another state corresponds to the background sound between

two successive peaks. We note that the duration occupancy in each of these two states has

certain temporal constraints. Up to 0.2 sec, the ‘footsteps’sound occupies the first state and

59



Figure 18: State alignments of ‘footsteps’sound event.

then for the interval 0.4 - 0.9 sec, it remains in the second state. We model these constraints

for ‘footsteps’sound event using Ferguson’s explicit duration HMM (EDHMM) [102]. No

state in EDHMM in Figure 19 has self transitions, hence direct modeling of per-state du-

ration distributions using state transition probabilities parameters (αi, βi, γi, δi) becomes

possible. In Figure 19 all states marked with the same number (1 or 2) have the same

observation probability distributions but the transition probabilities between states mono-

tonically change from left to right: α’s and γ’s decrease, while β’s and δ’s increase.

The acoustic model of ‘footsteps’ sound is created in 2 steps. On the first step a two

emitting state HMM is trained using standard Baum-Welch algorithm. Then, each state is

substituted by EDHMM consisting of 20 and 90 states (corresponding to the impact sounds

and the sounds between them). At each state the observation probabilities of EDHMM

are represented by the GMM trained on the first step but the transition probabilities are

re-estimated using training data.

4.4.2 Experimental Results

The detection results for the ‘footsteps’ sound are presented in Figure 20. We used two

approaches to incorporate the irregular repetition and the sense of duration analysis con-

cepts: feature level fusion and EDHMM modeling. These approaches are compared with

the baseline results for ‘footsteps’in Table 1.

In feature level fusion, the features F1 and F2 are appended to the initial 39 MFCCs
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Figure 19: Ergodic and explicit duration HMM

to form the composite 41-dimensional feature vector. In EDHMM, the ‘footsteps’ acoustic

model is built as described in Section 4.4.1.2. The estimation and inference of EDHMM

parameters is performed using the forward-backward algorithm within the allowable dura-

tion intervals —chosen from previous perceptual observations to be 0.01-0.2 sec for peak

and 0.4-0.9 sec for background sound between peaks. Note that both EDHMM and the

baseline ergodic 2-state HMM have the same observation distributions in the correspond-

ing states; the only difference between models lies in the transition probabilities between

states. We achieved 14% of EER reduction in the case of feature level fusion approach and

27% of EER reduction in the case of EDHMM in cross-environmental scenario. Owing

to our construction of EDHMM and the design of features, the error rate reduces signifi-

cantly mainly because the temporal information, expressed in the form of long-term energy

evolution, is less sensitive to the cross-environmental effects presented in different rooms.

4.5 Gait Analysis

Our interest in person-specific footstep sound derives from the observation that the footstep

sound carries information about its source—the gait of the person, which is clinically used

as an indicator in diagnosis of and rehabilitation from certain neurological diseases [97],
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Figure 20: Comparison results for ‘footsteps’sound event.

among others, or as a biometric to identify that person. We believe that the footstep sound

can provide useful personal gait parameters and the new framework is ideally suited to

attempt this task.

4.5.1 Acoustic Gaits Database

The environmental sound collections that we have mentioned so far—UPC, FBK, BBC, and

RWCP—do not differentiate between the sound of footsteps generated by different people.

In these databases designed for acoustic or sound event detection, the ‘footstep’ sound is

treated as one of many acoustic event classes and hence the differences within a class are

ignored. Hence, those are not suitable for gait analysis. Among databases recorded for

gait analysis, audio modality is generally ignored. For example, under DARPA’s humanID

project, many research groups recorded more than a dozen databases for gait analysis but all

of them were video only [106]. A recent database that specifically addresses the ‘footsteps’

sound for gait analysis in the context of person identification is TUM Gait from Audio,

Image and Depth (GAID) database [54] which includes the audio modality, in addition

to video and depth. However, the annotations for each individual ‘footstep’sound are not

provided and audio is noisy and not suitable for an exploratory study of this type.

We recorded and manually annotated a new database with clean audio suitable for this

task. The acquisition process also entails the annotation, localization, and enhancement
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of the audio event, which can be challenging with a such a large environmental sound

database. For example, not withstanding the issues of linearity, the impulse response can

no longer be tied to the room, but has to be estimated for each microphone with respect

to the location of the audio event in the room. The type, location, and directionality of

the microphone also contribute to this non-uniformity of the impulse response across the

multiple audio channels. Standard localization and enhancement techniques rely on the

uniformity of the room impulse response for further processing [107]. We will discuss the

distributed acoustic localization problem in the next chapter.

The footsteps were recorded in a low-reverberant room ( RT60 ≈ 200 ms) schematically

shown in Figure 21. In total, sixteen microphones were employed for recordings: eight

cardioid and eight omni-directional attached in pairs to the walls of the room. The distance

between the microphones in a given pair is approximately 7 cm, except for pairs (7,8) and

(15,16) which are approximately 8.9 cm apart. All the microphones were placed at a height

of 48.9 cm from the ground, except for the pair (9,10) which was placed at a height of

101.6 cm. Additionally, one video camera with fish-eye lens was used to facilitate the

annotation process. The audio signals are recorded in pcm format at 48kHz sampling rate,

Fs, with 24-bit resolution. The ratio between the peaks of ‘footsteps’and the ambient noise

in the recordings is around 20dB. We recorded the database in two scenarios. In Scenario-

I, ten sessions corresponding to ten participating volunteers (1 female and 9 males) were

recorded. Each session consisted of the subjects walking around the recording laboratory

at his/her natural speed, making 15 rounds clockwise and 15 rounds anti-clockwise. In

Scenario II, each participant recorded at least three sessions, each with different footwear,

and walked 10 rounds clockwise and 10 anti-clockwise in each session. A total of 22

sessions were recorded for Scenario-II with seven subjects (all male). When a subject

walks in the clockwise direction, the left foot will always be closer to the microphones

mounted on the walls than the right foot, and vice versa for the anti-clockwise direction.

Making the subjects walk both two directions and using balanced averaging allow us to
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Figure 21: Recording Room Schematic

eliminate this asymmetry in distance and helps with detection and statistical analysis of the

asymmetry of the footstep energy E in Appendix A.

Additionally, each recording session includes the ‘footsteps’of two and three people

walking simultaneously. A session is about 12-15 min long. For convenience, as shown in

Figure 21, the room was divided into 12 zones so each individual footstep of the subject

may take place in a particular zone. However, to verify the internal statistical consistency

of the parameters in a recording session, we further group the 12 zones into 4 zone groups

to get a statistically significant balanced sample of the parameters (cf. Section A.1).

The database was annotated by two annotators using the ELAN annotation tool [108]

that allows creating, editing, visualizing and searching annotations for video and audio

data. The annotation file includes the starting time of each ‘footstep’sound together with the

location labels in terms of the zone in which the footstep occurred and the foot (left or right)

which produced the sound. The text labels were manually assigned based on information

from the video camera. 10 sessions from Scenario-I and 13 sessions from Scenario-II were

annotated. The annotations are used to coarsely localize the footstep sounds in our current
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analysis.

4.5.2 Acoustic Gait Profile

The acoustic gait profile (AGP) of a person is a time-domain representation of a waveform

obtained after applying a transformation, which can be linear or non-linear, on successive

footstep sound bursts. The bursts in the raw waveform become identifiable pulses within an

AGP and the gait specific characteristics naturally embedded in the waveform bursts—the

relative energy, shape, timings, and duration—become available. The AGP is similar to

other clinical diagnostic tools such as the Electrocardiogram (ECG), where the plot can be

further processed by a skilled clinician or a computer to extract relevant information.

We wish to find a possible feature representation from the acoustic signal of the foot-

steps of a person, which preserves the prominent characteristics, as outlined before. Since

these characteristics require fine temporal precision and measurements of energy over the

long run, we propose to extract the temporal profile or temporal envelope of the waveform.

This is achieved by a suitable signal processing technique. A temporal profile is an instan-

taneous energy representation of the signal. The smoothed temporal profile is a lowpassed

version of the temporal profile. We termed the smoothed temporal profile extracted from

transformed footstep sounds as the AGP in Section 4.5.2. In the following we will discuss

in more details the three methods which can be used to obtain AGP.

Let us denote the lowpass filter operator with cut-off frequency set at c Hz as Lc().

It is a fourth-order digital Butterworth filter. We can obtain the simplest profile by the

basic square energy estimate (SEE). That is, for a time-domain discrete signal x[n], n ∈ Z,

AGPS EE[n] = Lc(x2[n]) is the SEE AGP. The HT is the method that provides another way

to extract the profile. AGPHT [n] = Lc(|xa[n]|2) is the Hilbert AGP.

AGPT K[n] = Lc(ψd(x[n])) is the TKEO AGP. In Figures 22(a) to 22(c), we show the

SEE, HT, and TKEO AGPs, respectively, of the ‘footsteps’sound shown in Figure 13, with

c = 20 Hz. When compared with the profiles from Hilbert transform (HT) (Figure 22(b))
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(a) (b)

(c)

Figure 22: The SEE (a), HT (b) and TKEO (c) processed energy profiles of the raw recorded
footstep shown in Figure 13. Adapted from [74, 97].

66



and square energy estimate (SEE) (Figure 22(a)), the TKEO profile clearly shows three sub-

bursts in the footstep sound around the 1.5 sec mark, while HT and SEE profiles miss the

last sub-burst. TKEO preserves the three sub-bursts as three pulses. TKEO AGP provides

the most crisp representation of the sound, as the pulses are clearly delineated. This is

because the decay of the sound burst is similar to an exponential decay and ψd(e−bn) =

0, ∀b ≥ 0. Moreover, TKEO combines the instantaneous frequency, in addition to signal

amplitude, in the energy estimate—combining the local and long-term measurement in a

single estimate.

4.5.2.1 Acoustic Gait Analysis

Acoustic gait analysis is the processing of the AGP to automatically extract the gait char-

acteristics. The following general observations guide the acoustic gait analysis framework.

Consistency of successive footsteps. In a normal sequence of steps a walking subject’s

gait demonstrates a certain degree of statistical consistency, natural fluctuations notwith-

standing. An effective analysis method will reflect this statistical consistency in its results.

This can be manifest in the continuity of the walk, the dynamic balance, or the variability

in cadence and speed.

Presence of multiple pulses in a step burst. Each sound burst due to a footstep is found

to consist of one, two or more sub-bursts. They arise as different parts of the foot make

contact with the walking surface. The energy distribution, temporal duration, and the

number of sub-bursts are correlated with a particular walking style of an individual. The

proper analysis of these sub-bursts yields the pulses.

Asymmetry between left and right foot. The acoustic characteristics produced by the

two feet may be asymmetric. These asymmetries may be modulated by footwear, floor

surface, carry-on objects or a pathological condition.

The nature of the sensing mechanism in acoustic gait analysis limits it to the stride and

ground reaction forces level. As we will discuss in the next section, we can infer certain
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facts about the posture and kinematic parameters but we cannot directly perform posture

and kinematic analyses, which are beyond the scope of acoustic gait analysis and this paper.

Of particular interest is the number of pulses in one footstep sound, C. These

sounds arise when the different parts of the foot—the heel, the toes and the metatarsals-

phalanges—make contact with the ground during walking and, interestingly, are audible as

distinct impacts. The time-resolution and TKEO-based energy measurements provided by

the AGP allow us to detect them in a footstep sound. The features are directly correlated

with the physical attributes of the source in a way that a cepstral coefficient is not; this partly

explains the inadequacy of systems based on similar STFA features, e.g., in [52, 54, 55],

and their struggle to model such sounds. We plot the distribution of C and EL/ER for

different subjects in Figures 25 and 26, respectively.

4.5.2.2 AGP measurements

We now detail the procedure used for obtaining the raw measurements from the AGP. Let

ni be the starting time epoch of a footstep sound in samples, where i ∈ {1, . . . ,N} and N is

the total number of footsteps. ni is determined from the annotations, as described in Sec-

tion 4.5.1, though it can also be estimated automatically using the techniques in Section 4.4.

Let δ1 be the maximum duration, in samples, of the first pulse for any footstep AGP. From

our observations, we set δ1/Fs = 200 msec, where Fs is defined in Section 4.5.1. The

highest magnitude of the first pulse of the ith footstep sound, Ei
1, is determined from the

AGP with the following

Ei
1 = max

n∈[ni,ni+δ1]
{AGP{.}[n]}. (29)

The time sample epoch of Ei
1, nE1

i , is straightforward to obtain with nE1
i =

arg maxn∈[ni,ni+δ1]{AGP{.}[n]}. To determine the magnitude and time sample epoch of the

second pulse of the ith footstep sound, Ei
2, we calculate an adaptive threshold, for a par-

ticular session m and channel p with a global mean µm,p. The mean is estimated by iter-

ated expectations over the interval [ni + δ1, ni+1]∀ i, i.e., µi
m,p = E[x[ni + δ1 : ni+1]] and
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Figure 23: An illustration of the measurements that can be extracted from the AGP along
the magnitude and time axes. Adapted from [97].

µm,p = E[µi
m,p], where E[.] is the expectation operator and : is the range operator. Thus,

Ei
2 = max

n∈[ni+δ1,ni+1]
{AGP{.}[n]|AGP{.}[n] > βµm,p}, (30)

where β = 1.20. Ei
2 is undefined if there is no value above this threshold. The time sample

epoch of Ei
2, nE2

i , is obtained with nE2
i = arg maxn∈[ni+δ1,ni+1]{AGP{.}[n]|AGP{.}[n] > βµm,p}.

Likewise, we can determine the third pulse magnitude, Ei
3, and the time sample epoch, nE3

i ,

if any.

The time epochs of the first trough, nt1
i , and second trough, nt2

i , which oc-

cur after the first and second pulses, respectively, are estimated with nt1
i =

arg min[nE1
i ,nE2

i ]{AGP{.}[n]|AGP{.}[n] > 0} and nt2
i = arg min[nE2

i ,n
E3
i ]{AGP{.}[n]|AGP{.}[n] > 0},

when the respective intervals are defined. We are not interested in the magnitude of the

troughs. Figure 23 illustrates the magnitude and time epoch measurements that can be

taken from an AGP.

The database includes the footstep sounds from multiple channels and in this study we

only use the sound from the single channel closest to the source, due to the preliminary

nature of this study. This channel was identified using video. The multi-channel capability

is explored in Chapter 5 which, along with automatic detection of footsteps, can lead to

a better collection of the initial sound and will provide acoustic localization and tracking,
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Table 5: A summary of the acoustic gait parameters

Parameter Definition
C The number of pulses in one footstep sound.
D1 (nE2

i − nE1
i )/Fs, needs C ≥ 2.

D2 (nE3
i − nE2

i )/Fs, needs C ≥ 3.
T1 (nt1

i − nE1
i )/Fs

T2 (nt2
i − nE2

i )/Fs

EL and ER Ei
1 and Ei+1

1 , respectively, when i is the index of a left footstep.
S 1 (nE1

i+1 − nE1
i )/Fs

S 2L and S 2R (nE1
i+2 − nE1

i )/Fs, i is the index of a left footstep for S 2L.

which is currently accomplished with video.

4.5.2.3 The Acoustic Gait Parameters

Table 5 gives a subset of the AGP parameters that can be obtained from the raw measure-

ments in Section 4.5.2.2. They are automatically collected for every subject with each

footstep and, over a large number of footsteps, generate a statistical distribution. The num-

ber of pulses per footstep sound, derived from the sub-bursts, deserves special mention. We

use the term cardinality, C, of a footstep to indicate the number of these pulses in a footstep

sound. C = 1,2, and 3 corresponds to single, double, and triple footsteps, respectively.

Most of the parameters available from acoustic gaits are spatio-temporal gait parame-

ters [109], such as stride-time or cadence. Others, such as EL/ER and C, are not strictly

time or distance parameters but both of these parameter types are sourced from the same

time-varying sound pressure measurement. Therefore, the latter category of parameters

also inherits a spatio-temporal character.

4.5.3 Clinical Significance

The parameters identified in the last section are by no means exhaustive but they do pro-

vide a reasonable subset that are used for GA in clinical settings. We first notice that the

AGP in Figure 22(c) resembles, though not identical to, the vertical ground reaction forces

(GRF) plots [110, 111] traditionally used for GA in the stance phase of a gait cycle. GRF
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Table 6: Mapping between the AGP and GRF terms

Acoustic gait term Gait analysis term
EL/ER Balance asymmetry
D1 N/A
D2 N/A
T1 Mid stance Interval
T2 Terminal Stance interval
AGP Vertical GRF pattern
Cadence/velocity Cadence/velocity
Cardinality Forward/Backward lean

shows the magnitude and direction of loading applied to the foot structures during locomo-

tion. The AGP provides the magnitude of such forces and the information about the stance

phase of the gait cycle. Various epochs within the stance phase indicated by the AGP, such

as the initial contact, the loading response, the mid stance valley and the terminal stance,

can be easily mapped to the GRF plot. For example, EL/ER is the “balance asymmetry”

in conventional gait analysis, T1 is the mid-stance interval and T2 the terminal stance in-

terval, to name a few. The AGP provides this information with off-the-shelf microphone

sensors which are cheaper and easier to set up than force plates or pressure mats, which are

normally used in gait laboratories. Table 6 shows such a mapping.

Body-weight balancing is an important factor included in gait assessment tests such as

BBS and POMS. Interestingly, most people with normal weight systematically distribute

more weight on one foot than the other as they walk [112]. This asymmetry appears as

energy asymmetry between the AGP of the right and the left footstep quantified by the

ratio of sound energy, EL/ER.

In Figure 26 we show the normalized statistical distribution of EL/ER for different

healthy people with a normal walking style. This parameter was obtained from the database

that we collected from normal walking subjects (see Section 4.5.1). A value of EL/ER other

than 1 corresponds to an asymmetry in gait. We notice that the distribution of this ratio can

be well approximated by a log-normal distribution with the parameters of the log-normal

distribution given in Figure 26. Clearly, we are able to identify subtle asymmetries in
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weight distribution for healthy individuals—EL/ER is distributed more evenly for Subjects

7 and 9 when compared to EL/ER for Subjects 3 and 4, which is skewed towards the left

and right, respectively. These measurements can be extended to evaluation of foot and gait

pathologies [113].

Stride time, stride length, cadence (steps/min), walking speed (meters/sec) and their

stability are fundamental gait assessment parameters [114, 115]. It is straightforward to

obtain the stride time, cadence, and, given the total walking distance, the stride length from

S 2R and S 2L.

The elderly, unless they have diseases such as osteoporosis with kyphosis, can walk

upright with no forward lean [116], although some healthy people walk normally with a

forward lean. In either case, forward lean would almost always lead to increased proportion

of C > 1 cardinality steps and may suggest pathological issues for unhealthy subjects. In

Figure 25, we plot the proportion of C of left-footsteps for several healthy subjects with

normal gait during the session. This plot shows that subject 1 has the highest number of

left-footsteps with C = 3, while subject 10 does not have any. Most of the left-footsteps of

subject 5 have C = 2.

In Figure 24, we plot the distribution of D1, for subject 1 from left and right foot. D1

is a proxy for step height and foot clearance parameters, which are used in POMS gait

assessment tests.

Figures 24 to 26 illustrate the statistical distribution of a subset of acoustic gait param-

eters that can be extracted from the AGP and show the symmetry, or otherwise, of these

parameters from the left and right foot. The clustering of the distributions around a central

point indicates a consistency in a given session for a given person and we fully quantify

this statistical consistency in Appendix A and also compare the consistency of respective

parameters extracted with the analysis methods.
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(a)

(b)

Figure 24: Left and right foot distribution of D1 for subjects 1 and 7 in (a) and (b), respec-
tively. The distribution of both feet is clustered around 50 ms. Note the lateral asymmetry
due to a second prominent distribution mode for the right foot. For subject 7, the distribu-
tion of both feet is clustered around 80 ms. Adapted from [96, 97].

Figure 25: Percentage of C of ‘footsteps’for 10 subjects produced by the left foot. Adapted
from [97].
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Figure 26: The distribution of EL/ER for 4 subjects estimated with TKEO AGP. The num-
ber followed by p is the subject label, while m and s are the parameters of the best-fit
lognormal distribution. Adapted from [97].

4.5.4 Biometrics in the AGP

A biometric is a physical characteristic of an individual that can be used for person iden-

tification and verification. A person possess many biometrics and a few have been used to

identify an individual such as finger prints, facial characteristics, palm prints, retinal im-

ages, speech, etc. Gait is one such characteristic which is unique to a person [117] and it is

attractive as a biometric as it does not need the cooperation of the person and is, arguably,

not easy to fake in the standard surveillance scenarios. It is also less intrusive. Never-

theless, it is a challenging problem in signal processing to use human gait as a biometric,

even though human subjects have been shown to be capable in identifying people using

gait only [118].

The biometric gait characteristics can be modeled with features derived from spectral,

spatio-temporal, kinematic, or kinetic domains. Spectral flux, harmonicity and cepstrum

are the spectral features, which are mainly derived from the short-time Fourier power anal-

ysis (STFA) of the signal. Spatio-temporal features include average walking velocity, stride

length, step length, step time, cadence, stance phase time, swing phase time, single support
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(when only one foot is in contact with the floor), double support (when both feet are in

contact with the floor), and stride width. Kinematic features are derived from the study of

angles between the ankle, hip and kneejoints. Finally, kinetic analysis examines moments,

energy and power at these joints.

These features can be extracted from various modalities. By far the most widely used

modality has been video [119, 120, 106], especially under the auspices of DARPA’s Hu-

manID project [112]. In some scenarios seismic signals are used to model and identify a

person’s gait [121, 122].

Audio has also shown promise in this task [98] and has the advantage of being less

intrusive, less expensive, and more amenable to nocturnal surveillance tasks. Tanaka and

Inoue [100] use the STFA to extract the frequency and pitch of a footstep while [123, 124]

use MFCCs, spectral envelope and append walking intervals. Spectral features designed for

speech and music processing are also used in [125, 54] for this task. An acoustic Doppler

radar [126] has been used to identify kinematic features of the gait. In [127], the authors

use the spectro-temporal modulation features while in [99] the structural information, i.e.,

‘footsteps’ frequency and ‘footsteps’ signal energy is used to identify the person and detect

whether that person is going up or down on a staircase.

In Figures 24 to 26 the distribution of the AGP parameters for different people provides

a ready set of features that can characterize and dicriminate the walking style of an indi-

vidual person. Thus, these AGP parameters, which we have used to characterize the gait,

can be used as biometric markers to identify a person as these parameters are correlated

with the physical properties of the walking person. In the following, we describe the exper-

iments based on this ideas and show that these parameters can indeed work as biomarkers

for an individual.
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4.5.4.1 Experiments

For the following experiments, we divided the database (cf. Section 4.5.1) into two parts:

80% were used for training ‘footsteps’ models for each individual person and the remain-

ing 20% were used for testing. Cross-validation is applied to average the recognition re-

sults. All the parameters are extracted from the TKEO AGP of the corresponding ‘footstep’

sounds.

The task of person identification is defined as finding a person m ∈ {1 . . . M} that most

likely produced a test sequence of N ‘footsteps’{ f1, f2, . . . fN}. M = 10 is the total number

of persons in the database. Note that the AGP of each individual ‘footstep’ sound f j of

cardinality C j corresponds to either left or right foot. For each person m the likelihood,

Pm(x,C, L), of the AGP of a ‘footstep’sound with cardinality C and produced by the foot L

with the interval between humps x = (D1; D2) is given by equation:

Pm(x,C, L) =

3∑
c=1

2∑
l=1

δC,L(c = C, l = L)pm(c, l)Nm(x, c, l) (31)

Where δC,L(.) is an indicator function equal to 1 when c = C, l = L and 0 otherwise; pm(c, l)

is the prior probability that the AGP of the sound of footstep produced by the person m

and the foot l has cardinality c; L = 1 for left foot and L = 2 for right foot. Nm(x, c, l) is

the posterior probability distribution from the GMM that models the interval, x, between

the humps. Note that for c = 1 (single ‘footstep’) both values D1 and D2 are assumed to

be equal to 0 and Nm = 1. The log-likelihood of a sequence of N ‘footstep’ sounds is

computed as a sum of log-likelihoods from the AGP of each individual ‘footstep’ sound f j.

Given the AGP of a set of N ‘footstep’ sounds we also model the energy ratio R between

left and right foot for each person m. We group the AGP from N ‘footstep’ sounds into K

chunks in such a way that the AGP of each chunk includes ‘footsteps’ from the same zone

in the room, where K = 12 is the number of zones. This way the AGP of the left and right

‘footsteps’ from the same chunk occur at similar distance to the microphone. Assuming

each chunk Ωk includes Vk left and Wk right ‘footsteps’ with the corresponding energies
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(E1,le f t, . . . , EV,le f t, E1,right, . . . , EW,right), the energy ratio can be defined as,

Rk =

1
Vk

Vk∑
i=1

Ei,le f t

1
Wk

Wk∑
j=1

E j,right

. (32)

Given a set of features Rk, where k = 1, . . . ,K we train a GMM for each person m. During

testing the log-likelihood from this model is combined with the log-likelihood obtained

from (31).

The human identification results are presented in Figure 27. We show the recognition

rate as the function of number of individual ‘footsteps’used for identification during testing.

As one may notice, 45% of correct identification is achieved just using 3 footsteps, and the

maximum identification rate, 95%, is achieved by using more than 50 footsteps from each

individual during testing.
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Figure 27: Person identification results as a function of a number of ‘footsteps’used during
testing. Adapted from [96].

4.6 Discussion and Summary

We began this chapter by performing an analysis of the sound made by regular footsteps of

a human. Following the sound analysis hierarchy in the light of the characteristics of this

particular sound, we argued that the spectral characteristics of this sound are less important
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than its temporal properties. The temporal concepts are incorporated at feature and signal

model level for detection of ‘footstep’audio signal. The TKEO operator allowed us to ac-

curately represent the self-similarity as it calculates energy as a functions of amplitude and

frequency while we used EDHMM to model the duration of these repetitions. We further

provided evidence for this claim in a footstep sound detection task when we explicitly mod-

eled the duration and recurring character of the sound to improve the detection accuracy of

‘footsteps’. The results indicate a significant improvement over the state of the art for the

‘footsteps’ sound in cross-environmental detection task.

By building a source model for the footstep sound, we introduce the novel approach of

using audio to extract quantitative characteristics of the human gait. The analysis with these

suitable methods uncovered a physically meaningful structure embedded within the sound

and established a connection between the sound and its sources—the foot and its interaction

with the ground. We used the connection to study this regular interaction, which provides

a window into a person’s gait. It enables in situ data acquisition and testing of the subject

without wearing any instruments—as such instruments may alter the gait characteristics to

be measured. We show that the sound from footsteps does encapsulate information useful

for gait analysis and that this information can be consistently extracted.

With the results in Appendix A, we can be reasonably confident that the parameters

provided by acoustic gaits are internally consistent and reliable enough over a session to be

usable in gait analysis. In Section A.2, where we compare the parameters estimated within

each zone group of a given session, we validate a premise of acoustic gaits that the sounds

are picking up the characteristics related to gaits of the person. The TKEO profile provides

better estimates when compared with other methods as evidenced by its consistency within

the session and the low standard error of its estimates.

The results in Section A.3 indicate that EL/ER, which is energy based, is sensitive to

footwear variation, more so when estimated with TKEO and HT methods. On the one

hand, this shows that these methods are able to pick-up subtle variations in gait. On the
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other hand, it shows that this statistic is not a good biometric due to its dependence on

footwear, when estimated with TKEO. D1, which is duration based, seems to be better at

footwear independence due to its low relative variation. In case footwear dependency is to

be avoided (as in some critical situations), acoustic gaits with bare foot (i.e, footwear free)

would be advisable.

The difference between an energy based and duration based statistic is understandable

because the latter is tied to the length of the footwear, while the former depends more

strongly on the construction – such as the presence or absence of heel and its width and

height – and material of the footwear. This implies that a normalization over footwear

is essential for making acoustic gaits practically viable. However, at this point the data

and analysis that we present does not allow us to point out the exact origin and extent of

variations in the parameters due to footwear.

The variation in the parameters which is caused by footwear variation bears directly

upon the use of these parameters as biometrics. Although, the biomarkers have been shown

to be particularly useful—95% of a maximum accuracy is achieved in a human identifica-

tion task, with 45% of accuracy is achieved by using just 3 footsteps from a person—the

duration based biomarkers are more useful for the biometric identification of a person.

Our results for biometrics, although not definitive, are nonetheless an interesting step

in the identification of person using footsteps sound without using short-time spectral fea-

tures. A much harder problem is that of recognizing individuals performing more complex

walks such as random walk and running. However, the acoustic footstep features proposed

represent only a part of the information that could be obtained. The identified novel fea-

tures are constructed to be room and shoe invariant since they are based on timing and

energy ratio information from audio signal. Future work can test this empirically with a

more diverse database.

The proposed approach assumes that ‘footsteps’are accurately detected, roughly lo-

calized to a region and that the left and right foot assignment is made. In the study, the
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annotations provided this information. This is necessary in light of the relatively unex-

plored nature of the acoustic gaits problem and the preliminary nature of the study. A more

complete system should include ‘footsteps’detection and localization from the audio signal

itself. These tasks can clearly be performed from the database–the former, for example

using the methods in Section 4.4 and the latter can be extracted from the microphone ar-

ray, which we will explore in the next chapter. The lateral assignment of a footstep to left

or right can only be provided by video, though in some limited scenarios, such as going

around in a circle, it is possible to extract this information from audio.

With the novelty of the study in mind, the particular recording setup was designed to

provide maximum data for subsequent analyses. Thus, the design of the experiment is over-

determined in a few respects and the results can be replicated with a reduced or simplified

setup. E.g., the consistency of the parameters indicates that we can reduce the number of

rounds in our recording scenarios by 30-40%, the subject can also walk in a straight line,

and the number of microphones can be reduced as long as the walking area is adequately

covered and the sounds are accurately localized.

The analysis and results in this chapter allows us to augment the current mostly quali-

tative gait assessment tests with objective and quantitative parameters, identify and extract

gait characteristics in a reliable and consistent manner, and ensure that they are physically

correlated with gait spatio-temporal characteristics. The proposed approach also makes

available some new parameters which are not available with qualitative gait assessments.

However, the use of this technique in clinical conditions is predicated on further studies,

which are necessary to compare and correlate the results with current assessment methods.

The new parameters also need validation for consideration as part of the gait assessment

criteria.
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CHAPTER 5

LOCALIZATION AND TRACKING OF FOOTSTEPS

5.1 Introduction

In Section 4.5.1 we described the acoustic gaits database and noted that the footstep sounds

were digitally recorded with 16 audio channels. Up till now, our focus has been on proper

sound analysis and, as a result, we have not exploited the multi-channel capability of the

database. In Figure 21, we show the schematic of the room, the demarcations of the 12

zones, and the placement of the microphones around it. The manual annotations provide

the zone number from which the footstep sound originates. Using these coarse locations

in the previous chapter, which specify the location within a rather large rectangular zone,

we used the audio channel closest to the zone in which the footstep sound originated to

perform sound analysis.

Localizing the source of the footstep sound from the multiple audio channels can au-

tomate the process of finding the closest microphone and obviate the need for any manual

annotations. This can improve the overall viability of the acoustic gaits as a stand alone

system. We can further enhance the signal, e.g., by beamforming, if we can track the move-

ment of the person’s footsteps. In addition to signal enhancements, the location and track-

ing estimates can also inform acoustic gait analysis by providing distance metrics, such as

step length, in addition to time measurements without relying on manual annotations.

In the following we will localize and track the movements of the person through the

sounds of their footsteps and compare the performance with manual annotations. The lim-

ited resolution of the manual annotations, which locate footstep sounds source in a rather

large rectangular zone, only allow us to evaluate the localization and tracking performance

at the zone level. We will set up the problem in Section 5.2 as a distributed source localiza-

tion problem and explore various solutions in Section 5.3. We will extend the localization
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to tracking by incorporating the constraints on the movement of the subject and the geome-

try of the room in Section 5.4. We provide details on our ground truth labels in Section 5.5.

We describe experiments on the algorithms in Section 5.6, discuss the results of these ex-

periments and conclude with a summary in Section 5.7.

5.2 Time Delay Estimation

The goal of sound localization is to determine location of the sound source with respect to

certain global coordinates. At first glance this may not seem the most suitable approach

to address our problem. In particular, if we suppose our objective is only to determine the

audio channel closet to the sound source, the most straightforward way to proceed might

be to determine the audio channel which has the highest instantaneous energy at any given

time instant.

While intuitive, this approach assumes that all microphones in the distributed system

are closely placed; that they are identically constructed; and the sounds picked up by the

microphones are amplified to same levels by similar amplifiers. Our recording setup satis-

fies none of these assumptions and, thus, a system based on energy thresholding is bound

to be suboptimal. The impulsive character of the sounds that we are trying to localize may

also be problematic in this case as the high energy levels only last for less than half a second

and do not allow for a sustained comparison across all microphones.

Instead, we focus on the temporal properties of the signal which are largely indepen-

dent of the particular amplitudes for this task. The temporal properties are also subject to

issues such as room reverberation. Reverberation refers to the perception of persistence

of a sound. It arises due to the effect of reflected sound waves which arrive at the ear or

microphone shortly after the sound wave from the actual source and creates a lingering

impression for the sound even after the sound waves from the actual source have ceased to

emit. The extent of reverberation is determined by the room geometry and construction. It

is quantified by the time required for the power of sound to fall below a certain threshold,
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e.g., RT60 is a measure of room reverberation which is the time required for a sound to fall

60 dB below its initial power. It can be very challenging to localize and track sound sources

in highly reverberant rooms. In our case, as indicated in Section 4.5.1, such effects can be

safely ignored as the recording room has low reverberation time. Our choice of algorithms

will be guided by low-reverebrant, low noise tracking scenario for a single sound source.

A review of the methods for dealing with such problems can be found in [128, 129].

Consider a set of M microphone pairs, positioned at known but arbitrary locations along

the periphery of a rectangular room. We assume plane wave propagation. Each microphone

pair constitutes a sensor, enumerated as m = 1, . . . ,M. For the mth sensor, pm1 and pm2 are

locations of the two microphones in the pair and `s,t = [xs,t, ys,t] is the location of the single

source at time t, both with respect to the center of the room. The microphones at pm1 and

pm2 in each sensor are separated by a distance dm. With each sensor, we can estimate the

time delay of arrival (TDOA) at time t, τm,t as follows,

τm,t =
|pm1 − `s,t| − |pm2 − `s,t|

v
, (33)

where we neglect the multi-path effects and v = 340 m/s is the speed of sound wave. This

delay can be converted into the corresponding angle of arrival,

θm,t = arccos
vτm,t

dm
, (34)

where θm,t is the angle of arrival (AOA) measured from the midpoint, `m = [xm, ym], of the

microphones. For the rest of the this chapter, we will drop the subscript t from symbols for

clarity. For two sensor pair with m = i and j, `s can be calculated by solving the following

equation:

− tan θi 1

− tan θ j 1


xs

ys

 =

 yi − xi tan θi

y j − x j tan θ j

 (35)
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where (35) calculates the point of intersection of the two lines described by the sensor

locations and angles subtended with respect to their center. Such a system with two sensor

pairs is shown in Figure 28.

Of course, `s, being the source location, is unknown in (33). Thus, we need to estimate

the delay. Let xmn(t) denote the signal frame received at the nth microphone of the mth

sensor at time, t. n ∈ {1, 2} as each sensor is a microphone pair. Let Xmn(ω, t) = F (xmn(t))

denote the Fourier domain representation of the signal. Then, the TDOA estimate with the

well-known generalized cross correlation or GCC method [130] is given by:

fm(τ, t) =

∫
Gm(ω)Xm1(ω, t)X∗m2(ω, t)e jωτdω (36)

where Gm(ω) ∈ R+ is a weighting term. (36) is calculating a weighted cross correlation

between the two signals. The weighting term provides a sharp dominant peak for the cross

correlation function and reduces spurious peaks due to room reverberation [130]. A com-

mon choice for the weighting term is:

Gm(ω) =
1

|Xm1(ω)||Xm2(ω)|
(37)

which results in the Smoothed Coherence Transform GCC or SCOT-GCC localization al-

gorithm [128]. The weighting function in SCOT-GCC acts as a pre-whitening filter in the

frequency domain of the cross correlation function which becomes a sharp peak in the time

domain. For the mth sensor, the TDOA estimate at time t is given by:

τ̂m,t = arg max
τ

fm(τ, t) (38)

Using (38) in (34) and (35) provides an estimate of `s.

We can notice that the microphone levels do not play a role in (38). As long as relative

microphone amplifications do not fluctuate in a given recording session, we do not need any

normalization on the audio file. Because of this, once the TDOA information is available

for all sensor pairs, we can combine the TDOA estimates all sensors without worrying
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Figure 28: A schematic of the room with a sensor pair.

about their amplifications levels. We will now elaborate on combining the AOA estimates

from the M sensors to estimate the location of the source.

5.3 Sound Source Localization

Since we have M sensors, using the procedure in the previous section can provide one esti-

mate for each sensor pair, for a total of
(

M
2

)
estimates of the AOA. Ideally, the intersection

of the M lines for each of the AOA estimate should provide a unique location estimate, but

that is seldom the case. This can be due to measurement errors and unrealistic modeling

assumptions, among others. One way to address this problem is to estimate the location

as the point which minimizes the mean square distance to each point of intersection. A

straightforward extension of (35) into (39) provides such an estimate,
− tan θ̂1 1

...
...

− tan θ̂M 1


x̂LS E

s

ŷLS E
s

 =


y1 − x1 tan θ̂1

...

yM − xM tan θ̂M

 . (39)

The linear system in (39) is overdetermined and can be solved by calculating the

pseudo-inverse of the matrix on the RHS of equation. This gives us a least square error

(LSE) estimate. The LSE estimate is highly susceptible to noise, reverberation and mea-

surement errors which produce outliers in AOA estimates.
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Instead of combining all the information into a single estimate, we can adopt a statistical

approach.I.e., we explicitly estimate the pairwise
(

M
2

)
locations from the sensors using (35),

and then further generalize this by noting that we need not be limited to permutations of

pairs of sensors only. We can use AOAs from k-sensors at a time, and slightly modify (39)

to estimate the location. Thus, we generate
(

M
k

)
permutations for the k-tuples from the M

sensors, where k = 2 . . . M. To that end, let αk,p(i) : [2,M] × [1,
(

M
k

)
] × [1, k] −→ [1,M] be

the permutation function which returns the index of the sensor in the pth permutation of the

k-tuple for the ith member of the permutation set, where 1 ≤ i ≤ k.


− tan θ̂αk,p(1) 1

...
...

− tan θ̂αk,p(k) 1


x̂k,p

s

ŷk,p
s

 =


yαk,p(1) − xαk,p(1) tan θ̂αk,p(1),

...

yαk,p(k) − xαk,p(k) tan θ̂αk,p(k)

 , k = 2 . . . M , p = 1 . . .
(
M
k

)
. (40)

Thus, from M sensors we have a total of K =
∑M

k=2

(
M
k

)
location estimates. To get the best

location estimate from the K potential location, we adopt a statistical approach and form a

pseudo log-likelihood:

F(x̂s, x) =

M∑
k=2

(M
k )∑

p=1

qk,p log(N(x : x̂k,p
s , σ2)), (41a)

F(ŷs, y) =

M∑
k=2

(M
k )∑

p=1

qk,p log(N(y : ŷk,p
s , σ2)), (41b)

and the value that maximizes this likelihood, the maximum likelihood estimate (MLE),

gives the most likely location, i.e.,

x̂MLE = arg max F(x̂s, x), (42a)

ŷMLE = arg max F(ŷs, y), (42b)

whereN(x; m, σ2) denotes a Gaussian distribution with mean m and variance σ2 evalu-

ated at x. (42a) assumes that each estimate is independent of each other. ˆ̀ s = (x̂MLE, ŷMLE)

is the location estimate. qk,p < 1 is the prior probability that the (k, p)th potential location

is the true source location.
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5.4 Source Tracking with Particle Filters

The above algorithms could work well for localization of the single sound source, but they

do not exploit the regularity of the movement and temporal correlations between consecu-

tive estimates embedded in our problem. The tracking approach uses these kinematic char-

acteristics between successive localization estimates to improve the overall performance.

In order to analyze and make inference about the locations and its change with time

in a dynamic system, at least two models are required: First, a model that describes the

evolution of the system’s state with time (the system model) and, second, a model relating

the noisy measurements to the state (the measurement model). The state of a system at a

particular time characterizes the system at that time and encapsulates some of its history up

to that point in time. We will use a probabilistic formulation to specify the state.

If the successive locations are linearly related to each other, then the models for the dy-

namic system can be linear. For the location tracking problem, a linear relationship implies

that the source is moving in a more or less straight lines. Kalman filter, among a few others,

provide optimal estimates for certain constrained linear systems in the sense that they min-

imize the Bayes error for probabilistic models when noise is assumed to be Gaussian. For

non-linear dynamic models, the most general probabilistic approach is suggested by parti-

cle filtering algorithms. In the following we will describe and implement this approach to

solve our problem. Our development will follow [131].

5.4.1 The Probablistic Tracking Problem

To define the problem of tracking, consider the evolution of the state sequence γt of a target

given by

γt = f t(γt−1, vt−1), (43)

where f t is a function of the state γt−1, {vt−1} is an i.i.d. noise sequence. The objective of

tracking is to recursively estimate γt from measurements

ρt = ht(γt, nt), (44)
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where ht is a function of the state γt, {nt} is an i.i.d. measurement noise sequence. In

particular, we seek estimates of γt based on the set of all available measurements ρ0:t = {ρi :

0 < i < t}, up to time t. Thus the tracking problem is to recursively calculate some degree

of confidence in the state γt at time t, given the data ρ0:t. Thus, we construct a pdf p(γt|ρ0:t)

with the assumption that p(γ0|ρ0) = p(γ0), which is also known as the prior probability

distribution, is available. Then, in principle, the pdf may be obtained, recursively, in two

stages: prediction and update. Suppose that the required pdf p(γt−1|ρ0:t−1) at time t − 1 is

available. The prediction stage involves using the system model (43) to obtain the prior pdf

of the state at time via the following,

p(γt|ρ0:t−1) =

∫
p(γt|γt−1)p(γt−1|ρ0:t−1)dγt−1. (45)

(45) uses the fact that (43) describes a Markov process of order one. The probabilistic

model of the state evolution is defined by the system equation (43) and the known statistics

of vt−1. At time t, the measurement ρt may be used to update the prior distribution (update

stage) via Bayes’ rule, i.e.,

p(γt|ρ0:t) =
p(ρt|γt)p(γt|ρ0:t−1)

p(ρt|ρ0:t−1)
(46)

p(ρt|ρ0:t−1) =

∫
p(ρt|γt)p(γt|ρ0:t−1)dγt. (47)

where the denominator in (47) depends on the likelihood function defined by the measure-

ment model (44) and the known statistics of {nt}. In the update stage (46), the measurement

is used to modify the prior density to obtain the required posterior density of the current

state. The recurrence relations (45) and (46) form the basis for the solution. This solution

is optimal in the Bayesian sense when the respective distributions represent the true distri-

butions of the data. Furthermore, the recursive propagation of the posterior density is only

a conceptual solution in that in general, it cannot be determined analytically but particle

filters approximate the solution (45) and (46) for the case when f t and ht are not linear.

88



5.4.2 Particle Filter Algorithm

We describe the so-called sequential importance sampling (SIS) version of particle filtering

(PF) algorithm [131]. The key idea is to represent the required posterior density function by

a set of random samples, the particles, with associated weights and then compute estimates

based on these samples and weights. As the number of samples becomes very large, this

characterization becomes an equivalent representation to the usual functional description

of the posterior pdf, and the SIS filter approaches the solution (45) and (46).

Let {γi
0:t,w

i
t}

Np f

i=1 denote a random measure that characterizes the posterior pdf p(γ0:t|ρ0:t)

where, {γi
0:t, i = 0, . . . ,Np f } is a set of support points with associated weights {wi

t, i =

0, . . . ,Np f } and γ0:t = {γ j; 0 < j < t} is the set of all states up to time t. The weights are

normalized to sum to one,
∑

i wi
t = 1. Then, the posterior density can be approximated as

p(γ0:t|ρ0:t) =

Np f∑
i=1

wi
tδ(γ0:t − γ

i
0:t). (48)

We therefore have a discrete weighted approximation to the true posterior, p(γ0:t|ρ0:t). The

weights are chosen using the principle of importance sampling [132]. For a recursive esti-

mation of the weights, we have

wi
t ∝ wi

t−1 p(γt|ρ0:t) =
p(ρt|γ

i
t)p(γi

t|ρ
i
0:t−1)

χ(γt|γ0:t−1, ρt)
, (49)

where q(.) is the importance density such that γi ∼ χ(γ), i = 1, . . . ,N f p. Now the posterior

density can be approximated as

p(γt|ρ0:t) ≈
Np f∑
i=1

wi
tδ(γt − γ

i
t), (50)

with the weights defined in (49). The SIS algorithm thus consists of recursive propagation

of the weights and support points as each measurement is received sequentially. It can be

shown that the approximation (50) approaches the true posterior as Np f → ∞. A pseudo-

code description of this algorithm is given by algorithm 1.
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5.4.3 Particle Filtering Formulation

We now specify the state, γt, state update model, f t, the measurement, ρt, measurement

model ht, and the measurement likelihood, p(ρt|γt) for the general formulations in (43),

(44) and (46).

We first define a first-order model of the source location state at time t as:

γt = [rt, φt, φ̇t]T (51)

Where [rt, φt]T are the polar coordinates of the true location. We use the polar coordi-

nates from now on instead of the Cartesian coordinates because the source dynamic model

is more naturally represented in the polar coordinates for our scenario as the source is

constrained to move in a roughly ellipsoid shape. [φ̇t] is the angular source velocity.

ρt = [r̂i
t, φ̂

i
t]t, i = 1, . . . ,K are the polar coordinate transformations of the estimates in

(40). ht is a straightforward transformation which omits φ̇t. Following [133], we set

p(ρt|γt) = F(ρt,γt), where F(., .) is pseudo-likelihood in (41) modified for polar coor-

dinates.

We will now elaborate on the non-linear source dynamic model f t. The source’s dy-

namic model is based on the Langevin stochastic process [134] which has been show to be

useful as a model for tracking problems [135, 133]. The basic idea is to model a source’s

location as a Brownian motion which is driven by the stochastic nature of its velocity.

Since the sound source in our problem is following a roughly elliptical path, we model the

angle and angular velocity updates with the following Langevin equations given in (52a)

and (52b):

φ̇t = aφφ̇t−1 + bφFφ, (52a)

φt = φt−1 + ∆T φ̇t, (52b)

rt = rt−1 + ∆T ṙt, (52c)

aφ = exp(−βφ∆T ), (52d)

bφ = vφ
√

1 − a2
φ, (52e)
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where ∆T is the frame increment interval, βφ is the estimate update interval, and vφ is the

radial velocity. Fφ is a normally distributed random variable.

For expressing the rt update in terms of φ̇t in (52c), we begin by noting that:

ṙt =
dr
dt

=
dr
dφ

dφ
dt

=
dr
dφ
φ̇t (53)

We now introduce the constraint that the source follows an elliptical path, with major and

minor axes a and b, respectively and derive a relation for dr
dφ , i.e.,

d(r2
t ) = d(a2 cos2(φt) + b2 sin2(φt)), (54a)

2rdr = d((a2 − b2) cos2(φ) + b2) (54b)

2rdr = d(
a2 − b2

2
(1 + cos(2φ)) + b2) (54c)

2rdr = d(
a2 + b2

2
+

a2 − b2

2
cos(2φ)) (54d)

rdr =
b2 − a2

2
sin(2φ)dφ (54e)

dr
dφ

=
b2 − a2

2r
sin(2φ) (54f)

Plugging (54f) in (53), we get:

ṙt =
b2 − a2

2rt
sin(2φt)φ̇t, (55)

Put ṙt from (55) in (52c) and solving for rt, we get the following,

rt =
rt−1

2
+

√
r2

t−1 + 4d(φt, φ̇t)

2
, (56)

where d(φt, φ̇t) = b2−a2

2 ∆T φ̇t sin(2φt). (52) and (56) constitute the specifications of the

model for sound source movement, f t. Algorithm 1 gives the pseudo-code of the particle

filtering algorithm modified for the current problem. In the next section, we will evaluate

the techniques and algorithms that we discussed in this section on our database and compare

the performance with the ground truth indicated by our manual annotations.
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Algorithm 1: A Particle filtering algorithm modified for the current problem [133,
131].

Form an initial set of particles {γ(i)
0 i = 1, . . . ,Np f } and initialize them with uniform

weights {w(i)
0 = 1/Np f , i = 1, . . . ,Np f }. Then, as each frame of data is received ;

1 Resample the particles from the previous frame {γ(i)
t−1} according to their weights

{w(i)
t−1} to form the resampled set of particles {γ̃(i)

t−1, i = 1, . . . ,Np f };
2 Predict the new set of particles {γ(i)

t } by propagating the resampled set {γ̃(i)
t−1}

according to the source dynamical model ((52));
3 Form the likelihood function with (41):

F(ρ | γ)

4 Weight the new particles according to the likelihood function:

w(i)
t = F(ρt | γ

(i)
t )

and normalize so that
∑

i w(i)
t = 1 ;

5 Compute the current source location estimate ρ̂s as the weighted sum of the particle
locations:

ρ̂s,t =

N∑
i=1

w(i)
t ρ

(i)
γ

6 Store the particles and their respective weights {γ(i)
t i = 1, . . . ,Np f };
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5.5 Ground Truth Determination

Before we describe the results of our experiments on the location estimation and tracking

algorithms in the previous section, we discuss the criteria for evaluating the results of the

said algorithms and explain the rationale behind the choice of the ground truth. The choice

of ground truth bears significantly on subsequent discussions on the experimental results.

In general, datasets for developing distributed localization and tracking algorithms are

synthetically generated using delays between audio channels to simulate the TDOA which,

as we noted in the previous section, specifies the location. These prior locations are the

ground truth labels and, by construction, quite accurate. Noise and other distortions, such

as room impulse responses, can be added later to the audio to allow the evaluation of a

localization algorithm under non-ideal conditions. This type of location generation is not a

possibility for the acoustic gaits database.

We want subjects to walk with minimum restrictions so as to be as close to a realistic

walking scenario as possible. This necessarily precludes precise prior labeling as we cannot

ask our subjects to be at a particular location at a particular time instant. Therefore, our

initial goal is to select an audio channel for every footstep sound within the room so that

the effects of noise and reverberations could be minimized. This goal is sufficient for the

exploratory study in Section 4.5, as it does not require precise locations. Hence, the type of

location labels that we manually assigned—zone labels, were motivated by a compromise

between localizing the footstep and minimizing the manual work required to add coarse

locations.

We manually assigned the zone location label to each footstep sound using the recorded

video. The determination is made based on the heel of the foot. The footstep is labeled to

be in a particular zone if the heel of the foot touching the ground is in that zone. If the heel

is on the line between the zones, then we select the next zone in the direction of movement

because, for a heel on the edge of the zone, the next sound generation event from of the

MTP on the ground is surely going to be from the next zone in the direction of movement.
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The use of zone-based locations essentially imposes a discrete label on a continuous

location variable. This has implications for the evaluation as minor displacements of the

location estimate may become errors, if the location estimates are near zone boundaries.

5.6 Experimental Results and Discussion

In our database, we have 16 channel audio data which implies M = 8 sensor pairs. Fol-

lowing [135], we set ∆T = 160 ms, βφ = 10/s and vφ = 0.5 rad/s. We set a = 2.33 m and

b = 1.93 m from physical measurements of the room.

In Table 7 we show the zone accuracy rates for each session estimated with the LSE

algorithm (39), MLE algorithm (42a), the particle filter tracking, and the average for each

method over all sessions. The zone accuracy rate is the number of times the location zone

was estimated correctly by the algorithm divided by the total number of footsteps in that

zone for that session. The ground truth is available to us from manual annotations in the

database which were entered by utilizing the available video. The particle filtering results

have been averaged over 10 runs.

The results seem to indicate that MLE outperforms all methods, closely trailed by the

particle filtering versions. We also note that the best performance is not very good at less

than 80% zone accuracy rate. Further, it seems to imply that the prior information and

added complexity of the PFL algorithm does not translate into improved performance with

respect to this evaluation metric.

If that is indeed the case then it seems more appropriate that we ignore PFL and apply

a post processing on the best system’s, i.e., the MLEs, estimate by inferring the movement

direction—clockwise or counter clockwise, constraining the footstep location to lie within

the zone boundaries and restricting consecutive steps to only belong to the current or next

zone. Incorporating these boundary and sequential vicinity constraints within MLE in an

ad-hoc manner may improve the zone accuracy rate. However, as we will show next, the

core problem lies with the zone accuracy metric itself and this approach will not address it.
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Table 7: The zone accuracy rates for different sessions and multiple methods. The number
after PFL in the first row is number of particles, Np f , in the particle filtering algorithm.

Session Labels LSE MLE PFL-10 PFL-20 PFL-40 PFL-60 PFL-80
1 0.471 0.728 0.527 0.644 0.693 0.705 0.712
3 0.503 0.762 0.574 0.697 0.740 0.751 0.762
4 0.636 0.876 0.703 0.799 0.840 0.856 0.855
5 0.527 0.797 0.630 0.717 0.758 0.767 0.770
6 0.581 0.827 0.658 0.751 0.792 0.800 0.809
7 0.607 0.879 0.704 0.795 0.845 0.854 0.855
8 0.511 0.781 0.628 0.716 0.747 0.753 0.758
9 0.543 0.752 0.612 0.687 0.708 0.717 0.720

11 0.518 0.795 0.588 0.695 0.760 0.768 0.770
12 0.427 0.656 0.457 0.568 0.614 0.628 0.620
13 0.504 0.764 0.556 0.676 0.740 0.741 0.752
15 0.519 0.704 0.559 0.632 0.656 0.651 0.654
16 0.542 0.729 0.572 0.676 0.686 0.685 0.696

Average 0.530 0.773 0.598 0.696 0.737 0.744 0.749

To understand the reason behind this unexpected result, we take a closer look at the

location of estimates. In Figure 29 we show the MLE and PFL-60 estimates for session 11.

The distribution of the estimates across zones reveals that the PFL-60 estimates are more

regular (note the elliptical shape) and almost all the PFL-60 estimates fall within the zone

boundaries, as they should because all movements of the source were constrained to be

within the zone boundaries. We can also notice that there are a few MLE estimates which

fall outside these boundaries, especially around zone 7. Thus, the sub-par performance of

PFL-60 is not really sub-par; in fact, the resolution of the estimate is much better than the

resolution of the zone level evaluation metric and the seemingly sub-par performance is an

artifact of the evaluation metric.

The confusion matrices in Tables 8 and 9 reinforce this observation and show that the

estimates from MLE do lie outside the zone boundaries while that is not the case for PFL-

60. We also notice from the confusion matrices that the errors are mostly limited to adjacent

zones. This shows that the error rate is not a significant impediment to our goal of choosing

the most suitable microphone for the a particular footstep sound in acoustic gaits since the
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Figure 29: The black dots are the location estimates by PFL (N = 60) while the cyan ones
are MLE estimated locations during session 11.

suitable microphone will still be chosen based on its proximity to the sound and not based

on zone number alone.

Hence, the evaluation metric, the zone accuracy rate based on the ground truth indicated

by the annotations, is not without its own issues. In the annotations, the footstep sound is

assigned to a zone based on the point of contact of the heel with the floor and, for the many

cases where the point of contact lines on a zone boundary, a displacement in estimates

of few centimeters may cause a zone change. Also, the ground truth in terms of zone

numbers is rather inaccurate itself and does not allow us to measure fine differences. The

low accuracy rate can be explained by the results from the confusion matrices.

5.7 Summary

We used the multichannel audio recordings available in the acoustic gaits database to auto-

mate the process of choosing the best channel. We used the relative time delay of arrival at
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Table 8: The confusion matrix for the 12 zones in our room, estimated with MLE for
session 11. Zone number 13 is a label for any estimate which lies outside the 12 zones.

1 2 3 4 5 6 7 8 9 10 11 12 13 Zone Acc. Rate
1 8 4 0 0 0 0 0 0 0 0 0 1 0 0.61538
2 2 20 1 0 0 0 0 0 0 0 0 0 0 0.86957
3 0 1 19 0 0 0 0 0 0 0 0 0 0 0.95
4 0 0 2 15 1 0 0 0 0 0 0 0 0 0.83333
5 0 0 0 3 19 0 0 0 0 0 0 0 0 0.86364
6 0 0 0 0 4 21 1 0 0 0 0 0 1 0.77778
7 0 0 0 0 0 6 5 0 0 0 0 0 1 0.41667
8 0 0 0 0 0 2 0 17 7 0 0 0 0 0.65385
9 0 0 0 0 0 0 0 0 16 4 0 0 0 0.8

10 0 0 0 0 0 0 0 0 3 13 4 0 0 0.65
11 0 0 0 0 0 0 0 0 0 0 23 0 0 1
12 1 1 0 0 0 0 0 0 0 0 1 22 0 0.88
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.79518

Table 9: The confusion matrix for the 12 zones in our room, estimated with PFL-60 for
session 11. Zone number 13 is a label for any estimate which lies outside the 12 zones.

1 2 3 4 5 6 7 8 9 10 11 12 13 Zone Acc. Rate
1 8 4 0 0 0 0 0 0 0 0 0 1 0 0.61538
2 1 21 1 0 0 0 0 0 0 0 0 0 0 0.91304
3 0 1 19 0 0 0 0 0 0 0 0 0 0 0.95
4 0 0 3 13 2 0 0 0 0 0 0 0 0 0.72222
5 0 0 0 4 18 0 0 0 0 0 0 0 0 0.81818
6 0 0 0 0 4 22 1 0 0 0 0 0 0 0.81481
7 0 0 0 0 0 4 8 0 0 0 0 0 0 0.66667
8 0 0 0 0 0 1 1 17 7 0 0 0 0 0.65385
9 0 0 0 0 0 0 0 3 10 7 0 0 0 0.5

10 0 0 0 0 0 0 0 0 5 13 2 0 0 0.65
11 0 0 0 0 0 0 0 0 0 2 20 1 0 0.86957
12 7 0 0 0 0 0 0 0 0 0 1 17 0 0.68
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0.74699

the microphones of the sound wave to estimate an approximate location. We further incor-

porated the information embedded in the correlations between successive locations and the

constraints on the movements to track the sound source. We used the coarse manual anno-

tations of the locations of the sound source to judge the merits of the various approaches to
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location estimation and tracking. The simulation results indicated that the computationally

and conceptually complex PFL tracking did not show improved performance according to

the zone accuracy rate criteria.

We presented arguments and evidence that the PFL is indeed improving performance in

terms of its utility for acoustic gaits and that the problem is with the limited resolution of

evaluation metric of zone accuracy rate. Even though the location estimation and tracking

task is supported by the current annotations available within the database, the resolution

limits a full evaluation of the various algorithms that are presented.

The location and tracking information can also be used to enhance the signal, e.g.,

by combining the multichannel audio by beamforming or reducing the noise in the audio

signal for acoustic gaits. Further, it can also provide automated distance measurements for

acoustic gaits. However, we do not attempt these tasks here. While it will be interesting

to attempt these tasks and develop a metric for their evaluation in the signal processing

context, a proper evaluation for such task within the acoustic gaits framework needs more

extensive and precise annotations with parameters which are of interest to gait analysis

community. This will also form a part of the overall validation of the overall acoustic

gaits approach with respect to the conventional gait analysis metrics. The discretization of

the evaluation metric and lack of an independent validation of the acoustic gaits limits the

scope of the study to a localization and tracking task.
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CHAPTER 6

CONCLUSION

6.1 Summary and Contributions

In this dissertation, we have proposed and demonstrated a representation and analysis

framework to understand and analyze environmental sounds as a distinct category of

sounds. Environmental sounds broadly lack the lexical structure embedded in other sounds

such as speech and music. The proposed conceptual framework acknowledges and in-

corporates the particular aspects of environmental sounds which make them unique from

both an ontological and a structural perspective. The proposed framework eschews the

conventional single dimensional sound representation framework, the STFA, in favor of a

multidimensional representation guided by a sound profile.

The contributions of the dissertation are summarized as follows:

I We proposed to repurpose the elements of an STFA representation with the help of

non-STFA analysis methods. We demonstrated the need for this exercise by pointing

out the latent assumptions which underlie these elements and showed that environ-

mental sounds may not fulfill the criteria that makes these elements, and in turn the

STFA representation that is built from these elements, useful otherwise.

II We purposed a multidimensional sound profile. This profile is designed to provide

the missing lexical structure. We show that the sound profile does indeed reflect the

complex structures embedded in the environmental sounds.

III We proposed to analyze the sounds with signal-suitable analysis methods. Together

with II, this forms the analysis hierarchy where, the sounds are organized with the

sound profile, and then propose to analyze similar sounds, in the sense of closer in

the sound profile plane, with similar methods. Once we apply this process, we show

that the performance of detection of footstep sounds on CLEAR’s UPC and FBK

99



databases improves by 27% absolute, when compared to published results on these

databases.

IV We recorded a database of human footstep sounds. Once properly analyzed with

proposed methods and representations, guided by the proposed sound profile, this

seemingly mundane environmental sound, nonetheless, proves to be a rich source of

information and intelligence. The representation provided by the non-STFA methods

is rich enough to use this sound as a basis for a novel application—the acoustic

gaits, where we extract novel features for biometrics and gait analysis from footstep

sounds.

V We proposed and evaluated a radial Langevin model for a particle filter tracking

algorithm. The experimental results indicate that the proposed model can improve

the tracking performance when compared to independent location based tracking.

6.2 Future Perspectives

The sound profile is an attempt, albeit incomplete, at developing a ‘linguistics’ of the envi-

ronmental sounds. More work is necessary before we can be confident of the comprehen-

siveness of this approach for many sounds of interest to humans. Sparsity in a particular

domain and regular/irregular recurrences of sound structures can also be included, but the

relationship of these largely abstract mathematical and statistical constructs with perception

needs to be investigated.

The signal analysis methods mentioned in this dissertation do not represent a compre-

hensive listing of such techniques. We have left out many, such as wavelets or the data

driven empirical mode decomposition [136], or the data adaptive matching pursuit [137],

or basis pursuit techniques [138], to name a few. Further, the deep neural networks (DNN)

[139], if its proponents are to be believed, may render the choice of the analysis methods

moot. However, we do not envision such a scenario as likely. The current stage of devel-

opment of such networks in no way obviates the requirement for a perception and sound
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centric analysis. In fact, DNNs may prove useful in using multi-time scale features from

non-STFA methods as DNNs are widely believed to be neutral towards the unconventional

features.

Clinical gait analysis can benefit substantially in terms of cost and ease of use from

acoustic gait analysis. However, as it stands, our claim to validity of acoustic gait is sup-

ported by the physical correlation of the parameters to the sound production process and

internal consistency of these parameters for a given person. A comparison of gait parame-

ters, obtained by using acoustic gaits, to the current gait analysis methodologies is essential

for acoustic gaits to be a viable clinical gait analysis system. Furthermore, it may not be

straightforward to compare some acoustic gait parameters with other validated measures as

some of the parameters may not be directly comparable to the validated gait measures due

to the particular nature of the audio modality, though a correlation may be established.

The tracking performance could not be adequately judged due to limitations of the

database location annotations. We do have medium quality single camera recordings that

can help in improving the resolution of the annotation. This video tracking task can use

the expertise from the image analysis and computer vision. The tracking task also did

not make use of the non-STFA analysis methods, e.g., the sound can also be enhanced

using the output of the TKEO operator as TKEO can possibly improve the onset timings

of the footsteps sound. However, the lack of high resolution annotations may lead to a

similar problem that we faced with particle filter tracking, i.e., any improvement may not

be reflected at the level of zones.

Environmental sounds have a lot to offer and this dissertation represents a foray into

organizing the diversity which accompanies their utility. As we have argued, these sounds

form an integral component of human intelligence yet most of us take the information pro-

vided by these sounds for granted. Currently, one can record and store these environmental

sounds by the tera-bytes but the tools to specifically understand and analyze these sounds

do not go beyond human ears and spectral analyses. It is imperative that proper analysis
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of these sounds be developed and more compelling applications and tasks be designed to

highlight the information and intelligence potential of these sounds.
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APPENDIX A

STATISTICAL ANALYSIS OF THE ACOUSTIC GAITS

A.1 Introduction

Within the acoustic gaits (AG) framework, we generate the parameters by analyzing the

footstep sounds collected over a period of a few minutes. These multiple realizations of

the footstep sound generation process lends itself naturally to a statistical description. We

have already illustrated this when we showed the parameters in terms of their statistical

distributions in Section 4.5.3. The statistical analysis in this appendix,

a) verifies the internal consistency of the parameters;

b) helps us understand the parameter variation when the conditions change for a given

healthy subject; and

c) compares the results in (a) and (b) across the aforementioned three signal analysis

methods to assess the relative discerning power of parameters estimated from each

method.

We leverage our dual-scenario database recordings from healthy individuals, described

in Section 4.5.1 to achieve the above. We achieve (a) by checking for intra-session con-

sistency of the parameters estimated with recordings from Scenario-I and Scenario-II, and

(b) by checking for inter-session consistency of the perimeters estimated from recordings

in Scenario-II only. The parameters are estimated from the estimation methods for both

cases and are compared to each other to achieve (c). In the subsequent discussion, each

session label has the format ‘Sy − x’, where y = 1 for sessions from Scenario-I and y = 2

for sessions from Scenario-II. x ∈ N is an arbitrary index.

The ratio EL/ER and D1, as defined Table 5, are chosen as the study parameters in the

following analyses. EL/ER is used instead of EL or ER directly, as each analysis method’s

energy estimate is not directly comparable. This becomes important when comparing the
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estimates of this parameter with different methods, which is the goal (c) above. It also obvi-

ates the need for applying arbitrary normalizations for each scenario. A one-way balanced

ANOVA design is used to achieve the objectives (a)-(c).

One of the assumptions behind ANOVA is the normality of the data but, as we show in

Figure 26, this is not true of EL/ER derived from TKEO. To address this, we also checked

the results with the Kruskal-Wallis (KW) test, which is similar to the standard ANOVA test

but does not require the normality assumption. The results from both tests were similar,

indicating that ANOVA is sufficiently robust against the violation of the normality assump-

tion for this data. Thus, we used the standard ANOVA for subsequent tests.

A.2 Intra-session consistency and parameter stability

Let us denote the parameter of interest as ρ. It is collected from each of the 12 zones in

the room during a given session. We group the statistics from the 12 zones into 4 zone

groups (ZG) numbered 1 . . . 4. Zones 1, 2, and 3 are grouped as ZG1, zones 4, 5, and, 6

are grouped as ZG2 and, so on. This grouping into ZGs ensures adequate samples for each

grouping and makes for a more balanced ANOVA design between the ZGs when compared

with just the zones.

We assume the following fixed-effects one-way ANOVA model for parameter ρ esti-

mated in ith ZG, with jth method at time t, (ρ) j
i (t):

(ρ) j
i (t) = µ j(t) + ZG j

i,ρ(t) + ε
j
i (t) (57)

where i = 1, 2, 3, and 4 is the ZG index and j ∈ {S EE,HT,T KEO} is the label for the

method used to estimate the parameter. S EE is the SEE profile, HT is the Hilbert profile

and T KEO is the TKEO profile. µ j(t) is the grand mean for the jth estimation method, and

ZG j
i,ρ(t) is the effect on the ρ parameter estimated in the ith ZG and jth method at time t.

ε
j
i (t) is the zero mean, unit variance Gaussian noise process for the ith ZG and jth method

at time t. We set the significance level for ANOVA at α = 0.01.

We expect that a parameter collected within a session is statistically consistent across
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Table 10: The number of samples of the parameter EL/ER collected from each ZG.

Session Label i =ZG1 i =ZG2 i =ZG3 i =ZG4
S1-3 35 35 34 39
S1-5 80 70 77 72
S1-6 83 78 72 88
S1-8 76 76 71 73
S2-1 58 56 57 59
S2-3 58 49 54 59
S2-4 57 50 53 58
S2-5 54 49 54 56
S2-7 55 54 55 57

the four ZGs. This ensures that the value of the parameter is internally stable. To test this,

we set up the following null hypothesis:

H j
0ρ : ZG j

1,ρ = ZG j
2,ρ = ZG j

3,ρ = ZG j
4,ρ (58)

We begin with the perimeter ρ = EL/ER in (57). Table 10 shows the number of es-

timated parameters for EL/ER in each ZG for a given session. In Table 11 we show the

result of the ANOVA analysis on EL/ER for the sessions in Table 10. It shows that for a

majority of sessions, the hypothesis H j
0ρ|ρ=EL/ER is not rejected. This suggests that the varia-

tion across the ZGs is not statistically significant for those sessions. For sessions S1-5 and

S1-6, the parameter estimated from SEE and HT shows significant variation at α = 0.01,

while the TKEO estimates are still insignificant. These results imply that the variation of

the parameter as estimated from the audio analysis is not significant during a session, and

that TKEO estimate is the most consistent among the three.

Table 11 also gives the mean value of the parameter and its standard error for each

session and method. A value of EL/ER < 1 indicates an asymmetry in favor of the left foot

and vice-versa for EL/ER > 1. We can notice that the asymmetry indicated by the three

methods is consistent in indicating the dominance of one foot over the other within the error

bounds. For example, in session S1-3 EL/ER < 1 for all methods, while for session S2-1

EL/ER > 1 for all methods, though the degree of this asymmetry is not consistent. We can

also notice that the standard error is consistently the least for TKEO among all methods for
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Table 11: The results of ANOVA with the EL/ER parameter, collected from four ZGs with
the SEE, HT and TKEO profiles for the sessions in Table 10. The F-value column is the
F-statistic for each one-way ANOVA, the p column gives the p-value and EL/ER gives
the average estimate of the parameter along with its std. error. The p-values in bold are
statistically significant w.r.t. α = 0.01

j = S EE j = HT j = T KEO
Session Label F-value p EL/ER F-value p EL/ER F-value p EL/ER

S1-3 2.86 0.039 0.70 ± 0.04 2.41 0.070 0.81 ± 0.03 1.09 0.355 0.62 ± 0.02
S1-5 8.38 0.000 1.33 ± 0.04 9.66 0.000 1.13 ± 0.05 3.02 0.030 1.22 ± 0.02
S1-6 5.41 0.001 1.16 ± 0.06 9.96 0.000 1.04 ± 0.05 2.16 0.093 0.99 ± 0.02
S1-8 1.86 0.136 1.22 ± 0.05 0.90 0.441 1.08 ± 0.05 0.32 0.814 1.15 ± 0.02
S2-1 0.95 0.416 2.09 ± 0.09 1.34 0.263 1.36 ± 0.08 0.08 0.969 2.27 ± 0.03
S2-3 2.94 0.034 0.96 ± 0.05 3.08 0.028 0.91 ± 0.04 1.46 0.226 1.01 ± 0.02
S2-4 3.00 0.031 1.38 ± 0.08 2.58 0.055 1.09 ± 0.06 0.83 0.479 1.23 ± 0.03
S2-5 1.58 0.197 1.23 ± 0.10 0.88 0.452 0.99 ± 0.07 0.11 0.953 1.02 ± 0.04
S2-7 0.35 0.791 1.29 ± 0.09 1.00 0.396 1.05 ± 0.08 0.78 0.504 1.17 ± 0.03

Table 12: The number of samples of the parameter D1 collected from each ZG.

Session Label i =ZG 1 i =ZG 2 i =ZG3 i =ZG4
S1-4 58 64 63 71
S1-5 148 138 134 147
S1-8 118 131 123 128
S1-9 153 159 146 163
S2-4 78 87 84 94
S2-5 79 79 70 85
S2-13 93 92 83 95

a given session.

Next we test consistency for parameter ρ = D1 in (57). The setup, including the one-

way ANOVA model, is identical to the case for parameter EL/ER, except that we do not use

SEE to estimate D1, i.e., j ∈ {HT,T KEO} for ρ = D1 in (57) and (58). Table 12 tabulates

the number of parameter D1 estimated in each ZG for a given session. All estimation

methods will have the same number of parameters in a given session. Unlike EL/ER, the

parameter D1 relies on the presence of a double step — i.e., C ≥ 2 — and is thus subject

to the walking style of an individual. Hence, we only show sessions here where we could

collect adequate number of double steps balanced across the ZGs. In Table 13 we give the

results for the ANOVA analysis with the hypothesis H j
0ρ|ρ=D1 in (58). The p-values suggest

that D1 estimated from TKEO profiles does not show significant variation within a session,
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Table 13: The results of ANOVA with the D1 parameter, collected from four ZGs with the
HT and TKEO profiles for the sessions in Table 12. The F-value column is the F-statistic for
each one-way ANOVA, the p column gives the p-value and D1 gives the average estimate
of the parameter along with its std. error. The p-values in bold are statistically significant
w.r.t. α = 0.01

j = HT j = T KEO
Session Label F-value p D1 ms F-value p D1 ms

S1-4 4.50 0.004 84.17 ± 1.05 3.72 0.013 86.31 ± 1.50
S1-5 0.38 0.765 62.10 ± 0.48 1.43 0.235 64.04 ± 0.54
S1-8 3.85 0.010 106.90 ± 1.38 3.39 0.018 108.63 ± 1.36
S1-9 3.61 0.013 68.76 ± 0.88 0.47 0.700 70.09 ± 1.09
S2-4 8.03 0.000 99.90 ± 1.33 2.12 0.098 104.28 ± 1.11
S2-5 4.91 0.002 100.01 ± 1.23 0.14 0.934 105.15 ± 0.86

S2-13 0.39 0.761 69.19 ± 1.27 1.33 0.265 69.64 ± 1.42

while D1 estimated from HT profile does show significant variation for some sessions such

as S1-4 and S2-5. Thus we conclude that the intra-session consistency is much stronger for

D1 estimated from the TKEO profile than the HT profile.

The average values of the parameter and its standard error also appear in Table 13. D1

estimated by the TKEO profile is consistently higher than the HT profile estimate, while

the standard error is similar for both. We can also notice that the estimates of D1 for session

S2-4 and S2-5 are almost the same. This is an example where the same subject participated

in the two sessions, but with different footwear. We will study this inter-session variation

more throughly in the next section.

A.3 Inter-session consistency and footwear variation

We now discuss the statistical tests for the case when the same subject is recorded in dif-

ferent sessions with different footwear.

Let ρ denote the parameter of interest. We assume the following fixed-effects one-way

ANOVA model for parameter (ρ) j
ik,l

(t), which is ρ estimated in ith
k,l session, for kth subject,

with jth method at time t:

(ρ) j
ik,l

(t) = µ j,k(t) + S j
ik,l,ρ

(t) + ε
j
ik,l

(t) (59)
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Table 14: The results of ANOVA with the EL/ER parameter, collected from three subjects
estimated from the SEE, HT, and TKEO profiles for the sessions in Table 10. The F-value
column is the F-statistic for each one-way ANOVA and the p column gives the p-value.
The p-values in bold are statistically significant w.r.t. α = 0.01.

j = S EE j = HT j = T KEO
Subject No. k F-value p F-value p F-value p

3 1.94 0.145 6.31 0.002 7.93 0.000
6 0.21 0.651 0.02 0.884 2.30 0.130
8 7.03 0.001 7.36 0.001 31.32 0.000

where ik,l is the session label for the lth session of the kth subject and j ∈ {S EE,HT,T KEO}

is the label for the methods used to estimate the parameter. µ j,k(t) is the grand mean for the

jth estimation method and kth subject, and S j
ik,l,ρ

(t) is the effect on (ρ) j
ik,l

(t). The footwear

variation is achieved by keeping j and k constant and varying l. ε j
ik,l

(t) is the zero mean, unit

variance Gaussian noise process for the ith
k,l session and jth method at time t. As before, we

set the significance level for ANOVA at α = 0.01.

We first set ρ = EL/ER in (59). To check the consistency, or otherwise, of the EL/ER

estimate across the footwear variant sessions, we set up the following null hypothesis for

three subjects with k ∈ {3, 6, 8}:

H j,k
0EL/ER

: S j
ik,1,EL/ER

= S j
ik,2,EL/ER

= S j
ik,3,EL/ER

(60)

i3,{1,2,3} = {S2-4, S2-5, S2-6}, i6,{1,2} = {S2-6, S2-8}, and i8,{1,2,3} = {S2-9, S2-10, S2-11} are

the session labels for the three subjects. Note that there are only two sessions for subject

k = 6. In Table 14, we give the results of the ANOVA analysis on EL/ER for these subjects.

Table 14 shows that H j,k
0EL/ER

is not rejected for subject 6 for all methods, while it is rejected

for the majority of the rest. To analyze this further, we performed post-hoc tests at the same,

Bonferroni corrected, significance levels. The results are given in Table 15. It shows that

sessions S2-4 and S2-6, for subject 3, are not significantly different from each other while

session S2-5 is significantly different from the other two for subject 3. Subject 8 not only

shows variation with footwear, but the differences among the sessions are also significant

for different methods.
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Table 15: The table provides the average EL/ER estimate and its standard error from the
SEE, HT, and TKEO profiles for each session with the given subject labels.

Subject No. k Session label ik,l
j = S EE j = HT j = T KEO
EL/ER EL/ER EL/ER

3
S2-4 1.36 ± 0.07 1.22 ± 0.06 1.09 ± 0.03
S2-5 1.17 ± 0.07 0.97 ± 0.06 0.96 ± 0.03
S2-6 1.32 ± 0.08 1.26 ± 0.06 1.08 ± 0.03

6
S2-7 1.29 ± 0.08 1.17 ± 0.06 1.05 ± 0.03
S2-8 1.24 ± 0.08 1.04 ± 0.06 1.06 ± 0.03

8
S2-9 1.02 ± 0.06 0.88 ± 0.05 0.97 ± 0.02

S2-10 1.33 ± 0.06 1.33 ± 0.05 1.08 ± 0.02
S2-11 1.15 ± 0.05 0.85 ± 0.04 1.08 ± 0.02

Table 16: The results of ANOVA with the D1 parameter, collected from two subjects with
HT and TKEO profile. The F-value column is the F-statistic for each one-way ANOVA
and the p column gives the p-value. The p-values in bold are statistically significant w.r.t.
α = 0.01.

j = HT j = T KEO
Subject No. F-value p F-value p

2 13.55 0.000 0.48 0.487
3 4.48 0.012 3.07 0.047

Next, we fix ρ = D1 as the parameter of interest in (59). As before, j ∈ {HT,T KEO}

for ρ = D1 in (59) is the label for the methods used to estimate D1.

We now determine the effect on the estimate of the footwear across different sessions

by setting up the following null hypothesis for two subjects with labels k ∈ {2, 3}:

H j,k
0D1

: S j
ik,1,D1

= S j
ik,2,D1

= S j
ik,3,D1

(61)

i2,{1,2} = {S2-1, S2-2} and i3,{1,2,3} = {S2-3, S2-4, S2-5} are the session labels for the two

subjects. Note that there are only two sessions for subject k = 2. In Table 16, we give

the results of the ANOVA analysis on D1 for these subjects. As we explained in the last

section, the selection of these sessions was dictated by the availability of sufficient number

of estimates of D1 balanced across the sessions.

Table 16 shows that H j,k
0D1

is rejected for subject no. 2 for HT estimate, while it is

on the margin for subject no. 3 for both estimation methods. To analyze this further,
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Table 17: The table provides the average D1 estimate and its standard error from the two
methods for each session with the given subject labels.

Subject No. k Session Label ik,l
j = HT j = T KEO

D1 D1

2
S2-1 74.58 ± 0.88 79.49 ± 1.04
S2-2 78.61 ± 0.64 80.42 ± 0.80

3
S2-3 96.29 ± 1.01 102.45 ± 0.77
S2-4 100.25 ± 1.10 104.98 ± 0.86
S2-5 100.04 ± 1.16 104.85 ± 0.94

we performed post-hoc tests at the same, Bonferroni corrected, significance levels. The

results are given in Table 17. It shows that sessions S2-4 and S2-5, for subject 3, are not

significantly different from each other while session S2-3 is significantly different from the

other two for subject 3. The differences are statistically significant but, for a given method,

the absolute difference in values are less than 5% for this parameter.

A.4 Summary

The data analysis of parameters EL/ER and D1 in Section A.1 shows that the values do not

significantly vary within a walking session (p < 0.01) for parameters obtained with TKEO

profile. When the footwear is changed, EL/ER shows statistically significant (p < 0.01)

variations, while D1 remains unchanged.
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